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Preface

This book is intended as a textbook for a course in radiation physics in aca-
demic medical physics graduate programs. The book may also be of interest
to the large number of professionals, not only physicists, who in their daily
occupations deal with various aspects of medical physics and have a need to
improve their understanding of radiation physics.

Medical physics is a rapidly growing specialty of physics, concerned with
the application of physics to medicine mainly, but not exclusively, in the ap-
plication of ionizing radiation to diagnosis and treatment of human disease.
In contrast to other physics specialties, such as nuclear physics, solid-state
physics, and high-energy physics, studies of modern medical physics attract
a much broader base of professionals including graduate students in medi-
cal physics, medical residents and technology students in radiation oncology
and diagnostic imaging, students in biomedical engineering, and students in
radiation safety and radiation dosimetry educational programs. These profes-
sionals have diverse background knowledge of physics and mathematics, but
they all have a common desire to improve their knowledge of the physics that
underlies the application of ionizing radiation in diagnosis and treatment of
disease.

The main target audience for this book is graduate students in medical
physics and these students are assumed to possess the necessary background
in physics and mathematics to be able to follow and master the complete
textbook. Medical residents, technology students and biomedical engineering
students, on the other hand, may find certain sections too challenging or
esoteric; however, there are many sections in the book that they may find
useful and interesting in their studies. Candidates preparing for professional
certification exams in any of the medical physics subspecialties should find
the material useful and some of the material would also help candidates
preparing for certification examinations in medical dosimetry or radiation-
related medical specialties.

Numerous textbooks that cover the various subspecialties of medical
physics are available but they generally make a transition from elementary
basic physics directly to the intricacies of the given medical physics subspe-
cialty. The intent of this textbook is to provide the missing link between the
elementary physics and the physics of the subspecialties.
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ments from Dr. José M. Fernandez-Varea from the University of Barcelona.
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Medical Physics: A Specialty and Profession

Current Status

Medical physics is a branch of physics concerned with the application of
physics to medicine. It deals mainly, but not exclusively, with the use of
ionizing radiation in diagnosis and treatment of human disease. In diagnostic
procedures relatively low energy x rays (diagnostic radiology) and gamma
rays (nuclear medicine) are used; in therapeutic procedures most commonly
high energy (megavoltage) x rays and gamma rays or megavoltage electrons
are used (radiation therapy or radiation oncology or therapeutic radiology).

Other applications of physics to medicine include the use of nuclear mag-
netic resonance in diagnosis of disease (magnetic resonance imaging), ultra-
sound in imaging, bioelectrical investigations of the brain (electroencephalog-
raphy) and heart (electrocardiography), biomagnetic investigations of the
brain (magnetoencephalography), medical uses of infrared radiation (thermog-
raphy), heat for cancer therapy (hyperthermia), and lasers for surgery (laser
surgery).

During the past two decades medical physics has undergone a tremendous
evolution, progressing from a branch of science on the fringes of physics into
an important mainstream discipline that can now be placed on equal footing
with other more traditional branches of physics.

The four important sub-specialties in medical physics are related to:

1. Diagnostic imaging with x rays (diagnostic radiology physics)
2. Diagnostic imaging with radio-nuclides (nuclear medicine physics)
3. Treatment of cancer with ionizing radiation (radiation oncology physics)
4. Study of radiation hazards and radiation protection (health physics)

Brief History

The study and use of ionizing radiation in medicine started with three impor-
tant discoveries: x rays by Wilhelm Roentgen in 1895, natural radioactivity by
Henri Becquerel in 1896, and radium by Pierre and Marie Curie in 1898. Since
then, ionizing radiation has played an important role in atomic and nuclear
physics, and provided an impetus for development of radiology and radio-
therapy as medical specialties and medical physics as a specialty of physics.



X Medical Physics: A Specialty and Profession

The potential benefit of x ray use in medicine for imaging and treatment
of cancer was recognized within a few weeks of Roentgen’s discovery of x
rays. New medical specialties: radiology and radiotherapy evolved rapidly,
both relying heavily on physicists for routine use of radiation as well as for
development of new techniques and equipment. However, while radiology
and radiotherapy have been recognized as medical professions since the early
1900s, medical physics achieved a professional status only in the second half
of the last century.

Initially most technological advances in medical use of ionizing radiation
were related to improvements in efficient x-ray beam delivery, development
of analog imaging techniques, optimization of image quality with concurrent
minimization of delivered dose, and an increase in beam energies for radio-
therapy.

During the past two decades, on the other hand, most developments in
radiation medicine were related to integration of computers in imaging, devel-
opment of digital diagnostic imaging techniques, and incorporation of com-
puters into therapeutic dose delivery with high-energy linear accelerators.
Radiation dosimetry and treatment planning have also undergone tremen-
dous advances in recent years: from development of new absolute and relative
dosimetry techniques to improved theoretical understanding of basic radia-
tion interactions with human tissues, and to introduction of Monte Carlo
techniques in dose distribution calculations.

Educational Requirements

Pioneers and early workers in medical physics came from traditional branches
of physics such as nuclear physics, high-energy physics, and solid-state
physics. By chance they ended up working in nuclear medicine, radiology
or radiotherapy, and developed the necessary skills and knowledge through
on-the-job training. In addition to clinical work, they also promoted medical
physics as a science as well as a profession, and developed graduate medical
physics educational programs, first through special medical physics courses
offered as electives in physics departments and later through independent,
well-structured medical physics programs that lead directly to graduate de-
grees in medical physics.

Since medical physicists occupy a responsible position in the medical en-
vironment, they are required to have a broad background of education and
experience. The requirement for basic education in physics and mathemat-
ics is obvious, but the close working relationship of medical physicists with
physicians and medical scientists also requires some familiarity with basic
medical sciences, such as anatomy, physiology, genetics, and biochemistry.

Today’s sophistication of modern medical physics and the complexity of
the technologies applied to diagnosis and treatment of human disease by
radiation demand a stringent approach to becoming a member of the medical
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physics profession. Currently, the most common path to a career in medical
physics is academic progression, through a B.Sc. degree in one of the physical
sciences but preferably in physics, to a M.Sc. degree in medical physics, and
then to a Ph.D. degree in medical physics.

The minimum academic requirement for a practicing medical physicist is
a M.Sc. degree in medical physics, and this level is adequate for physicists
who are mainly interested in clinical and service responsibilities. However,
medical physicists working in academic environments should possess a Ph.D.
degree in medical physics.

Academic training alone does not make a medical physicist. In addition to
academic training, practical experience with medical problems and equipment
is essential, and this may be acquired through on-the-job clinical training
or, preferably, through a structured two-year traineeship (also referred to as
internship or residency) program in a hospital after graduation with a M.Sc.
or Ph.D. degree in medical physics.

Many graduate programs are now available to an aspiring medical physi-
cist and progression through the three educational steps (undergraduate B.Sc.
degree in physics; graduate degree in medical physics; and residency in med-
ical physics) is feasible, albeit still somewhat difficult to follow in practice
because of the relatively low number of accredited academic and residency
programs in medical physics. The number of these programs is growing,
however. We are now in a transition period and within a decade, progres-
sion through the three steps will become mandatory for physicists entering
the medical physics profession. The sooner broad-based didactic and clinical
training through accredited educational programs in medical physics becomes
the norm, the better it will be for the medical physics profession and for the
patients the profession serves.

Accreditation of Medical Physics Educational Programs

Many universities around the world offer academic and clinical educational
programs in medical physics. To achieve international recognition for its grad-
uates a medical physics educational program should be accredited by an in-
ternational accreditation body that attests to the program’s meeting rigorous
academic and clinical standards in medical physics. Currently, there is only
one such international body, The Commission on Accreditation of Medical
Physics Educational Programs (CAMPEP) that is sponsored by the Amer-
ican Association of Physicists in Medicine (AAPM), American College of
Medical Physics (ACMP), American College of Radiology (ACR), and the
Canadian College of Physicists in Medicine (CCPM). Eleven academic medi-
cal physics programs and 10 medical physics residency programs are currently
accredited by the CAMPEP.
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Certification

Several national professional medical physics organizations certify the com-
petence of medical physicists. The certification is obtained through passing
a rigorous written and oral examination that can be taken by candidates
who possess a M.Sc. or Ph.D. degree in medical physics and have completed
an accredited residency in medical physics. Currently the residency require-
ment is relaxed and a minimum of two years of work experience in medical
physics after graduation with a M.Sc. or Ph.D. degree in medical physics is
also accepted, because of the shortage of available residency positions.

The medical physics certification attests to the candidate’s competence
in the delivery of patient care in one of the subspecialties of medical physics.
The requirement that its medical physics staff be certified provides a med-
ical institution with the necessary mechanism to ensure that high standard
medical physics services are given to its patients.

Appointments and Areas of Activities

Medical physicists are involved in four areas of activities: (1) clinical ser-
vice and consultation; (2) research and development ; (3) teaching ; and (4)
administration. They are usually employed in hospitals and other medical
care facilities. Frequently the hospital is associated with a medical school
and the physicists are members of the academic staff. In many non-teaching
hospitals, physicists hold professional appointments in one of the clinical de-
partments and are members of the professional staff of the hospital. Larger
teaching hospitals usually employ a number of medical physicists who are
organized into medical physics departments that provide physics services to
clinical departments.

Career in Medical Physics

A career in medical physics is very rewarding and the work of medical physi-
cists is interesting and versatile. A characteristic of modern societies is their
ever-increasing preoccupation with health. Research in cancer and heart dis-
ease is growing yearly and many new methods for diagnosis and therapy are
physical in nature, requiring the special skills of medical physicists not only
in research but also in the direct application to patient care. Undergraduate
students with a strong background in science in general and physics in par-
ticular who decide upon a career in medical physics will find their studies
of medical physics interesting and enjoyable and their employment prospects
after completion of studies excellent.
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1 Introduction to Modern Physics

This chapter provides an introduction to modern physics and covers basic el-
ements of atomic, nuclear, relativistic and quantum physics. These elements
form the background knowledge that is required for a study of medical ra-
diation physics. The first three pages of this chapter present lists of basic
physical constants, of important derived physical constants, and of milestones
in modern and medical physics. These lists would normally be relegated to
appendices at the end of the book; however, in this textbook they are given
a prominent place at the beginning of the book to stress their importance to
modern as well as to medical physics.

Medical physics is intimately related to modern physics and most mile-
stone discoveries in modern physics were rapidly translated into medical
physics, as evident from the list in Sect. 1.3. Medical physics is a perfect
and long-standing example of translational research where basic experimental
and theoretical discoveries are rapidly implemented into benefiting humanity
through improved procedures in diagnosis and treatment of disease. A thor-
ough understanding of the basics presented in this chapter will facilitate the
readers’ study of subsequent chapters and enhance their appreciation of the
nature, importance and history of medical radiation physics.



2 1 Introduction to Modern Physics

1.1 Fundamental Physical Constants

Currently the best source of data on fundamental physical constants is the
Committee on Data for Science and Technology (CODATA), an interdisci-
plinary scientific committee of the International Council for Science. The
CODATA Task Group on Fundamental Constants was established in 1969
and its purpose is to periodically provide the scientific and technological
communities with an internationally accepted set of values of fundamental
physical constants for worldwide use. The data below (rounded off to four
significant figures) were taken from the most recent CODATA set of values
issued in 2002 (www.codata.org).

• Avogadro’s number . . . . . . . . . . . . . . . . . . . . NA = 6.022 × 1023 atom/g-atom

• Avogadro’s number . . . . . . . . . . . . . . . . . . NA = 6.022 × 1023 molecule/g-mole

• Speed of light in vacuum . . . . . . . . . . . . c = 299 800 000 m/s ≈ 3 × 108 m/s

• Electron charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e = 1.602 × 10−19 C

• Electron rest mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . me− = 0.5110 MeV/c2

• Positron rest mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . me+ = 0.5110 MeV/c2

• Proton rest mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mp = 938.3 MeV/c2

• Neutron rest mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mn = 939.6 MeV/c2

• Atomic mass unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . u = 931.5 MeV/c2

• Planck’s constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . h = 6.626 × 10−34 J · s

• Reduced Planck’s constant . . . . . . . . . . . . . � = h/(2π) = 1.055 × 10−34 J · s

• Boltzmann’s constant . . . k = 1.381 × 10−23 J · K−1 = 0.8631 × 10−4 eV · K−1

• Electric permittivity of vacuum . . . . . . . . . . εo = 8.854 × 10−12 C/(V · m)

• Magnetic permeability of vacuum . . . . . . .µo = 4π × 10−7 (V · s)/(A · m)

• Newtonian gravitation constant . . . . . . G = 6.674 × 10−11 m3 · kg−1 · s−2

• Proton mass / electron mass . . . . . . . . . . . . . . . . . . . . . . . . . . mp/me = 1836.0

• Specific charge of electron . . . . . . . . . . . . . . . . e/me = 1.759 × 1011 C · kg−1

• Planck’s constant/electron charge . . . . . . . . . . . h/e = 4.136 × 10−15 V · s
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1.2 Derived Physical Constants and Relationships

• Speed of light in vacuum

c =
1√
εoµo

≈ 3 × 108 m/s (1.1)

• Reduced Planck’s constant × speed of light in vacuum

�c =
h

2π
c = 197.3 MeV · fm = 197.3 eV · nm ≈ 200 MeV · fm (1.2)

• Fine structure constant

α =
e2

4πεo

1
�c

≈ 1
137

(1.3)

• Bohr radius

ao =
�c

α mec2 =
4πεo

e2

(�c)2

mec2 = 0.5292 Å (1.4)

• Rydberg energy

ER =
1
2
mec

2α2 =
1
2

[
e2

4πεo

]2
mec

2

(�c)2
= 13.61 eV (1.5)

• Rydberg constant

R∞ =
ER

2π�c
=

mec
2 α2

4π �c
=

1
4π

[
e2

4πεo

]2
mec

2

(�c)3
= 109 737 cm−1 (1.6)

• Classical electron radius

re =
e2

4πεomec2 = 2.818 fm (1.7)

• Compton wavelength of the electron

λC =
h

mec
=

2π�c

mec2 = 0.02426 Å (1.8)

• Thomson classical cross section for free electrons

σTh =
8π

3
r2
e = 0.6653 b = 0.6653 × 10−24 cm2 (1.9)
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1.3 Milestones in Modern Physics and Medical Physics

X rays Wilhelm Konrad Röntgen 1895

Natural radioactivity Antoine-Henri Becquerel 1896

Electron Joseph John Thomson 1897

Radium-226 Pierre Curie, Marie Curie 1898

Alpha particle Ernest Rutherford 1899

Energy quantization Max Planck 1900

Special theory of relativity Albert Einstein 1905

Photoelectric effect Albert Einstein 1905

Characteristic x rays Charles G. Barkla 1906

Alpha particle scattering Hans Geiger, Ernest Marsden 1909

Atomic model Ernest Rutherford 1911

Thermionic emission Owen W. Richardson 1911

Electron charge Robert Millikan 1911

Model of hydrogen atom Neils Bohr 1913

Energy quantization James Franck, Gustav Hertz 1914

Tungsten filament for x-ray tubes William D. Coolidge 1916

Proton Ernest Rutherford 1919

X-ray scattering (Compton effect) Arthur H. Compton 1922

Exclusion principle Wolfgang Pauli 1925

Quantum wave mechanics Erwin Schrödinger 1926

Wave nature of the electron Clinton J. Davisson, Lester H. Germer 1927

Cyclotron Ernest O. Lawrence 1931

Neutron James Chadwick 1932

Positron Carl D. Anderson 1932

Artificial radioactivity Irène Joliot-Curie, Frédéric Joliot 1934

Čerenkov radiation Pavel A. Čerenkov, Sergei I. Vavilov 1934

Uranium fission Hahn, Strassman, Meitner, Frisch 1939

Betatron Donald W. Kerst 1940

Spontaneous fission Gergij N. Flerov, Konstantin A. Petržak 1940

Nuclear magnetic resonance Felix Bloch, Edward Purcell 1946

Cobalt-60 machine Harold E. Johns 1951

Recoil-less nuclear transition Rudolf L. Mössbauer 1957

Gamma Knife Lars Leksell 1968

Computerized Tomography (CT) Godfrey Hounsfield, Alan Cormack 1971

Magnetic resonance Imaging (MRI) Paul C. Lauterbur, Peter Mansfield 1973
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1.4 Physical Quantities and Units

Physical quantities are characterized by their numerical value (magnitude)
and associated unit. The following rules apply in general:
• Customarily, symbols for physical quantities are set in italic type, while

symbols for units are set in roman type (for example: m = 21 kg; E =
15 MeV; K = 180 cGy).

• The numerical value and the unit of a physical quantity must be separated
by space (for example: 21 kg, not 21kg; 15 MeV, not 15MeV).

• The currently used metric system of units is known as the Système Inter-
national d’Unités (International System of Units) with the international
abbreviation SI. The system is founded on base units for seven basic phys-
ical quantities; all other quantities and units are derived from the seven
base quantities and units.

Length  . . . . . . . . . . . . . . . . . . . . . . . . meter (m)
Mass m . . . . . . . . . . . . . . . . . . . . . . . . kilogram (kg)
Time t . . . . . . . . . . . . . . . . . . . . . . . . . second (s)
Electric current I . . . . . . . . . . . . . . ampere (A)
Temperature T . . . . . . . . . . . . . . . . . kelvin (K)
Amount of substance . . . . . . . . . . . mole (mol)
Luminous intensity . . . . . . . . . . . . . candela (cd)

• Examples of basic and derived quantities and their units are given in
Table 1.1. The Système International obtains its international authority
from the Meter Convention that was endorsed in 1875 by 17 countries;
the current membership stands at 48 countries.

Table 1.1. The basic and several derived physical quantities and their units in
Système International (SI) and in radiation physics

Physical
quantity

Symbol Units
in
SI

Units used
in radiation
physics

Conversion

Length � m nm, Å, fm 1 m = 109 nm = 1010 Å = 1015 fm
Mass m kg MeV/c2 1 MeV / c2 = 1.78 × 10−30 kg
Time t s ms, µs, ns 1 s = 103 ms = 106 µs = 109 ns
Current I A mA, µA, nA 1 A = 103 mA = 106 µA = 109 nA
Temperature T K

Velocity υ m/s
Acceleration a m/s2

Frequency ν Hz 1 Hz = 1 s−1

Charge Q C e 1 e = 1.602×10−19 C
Force F N 1 N = 1 kg · m · s−2

Momentum p N · s 1 N · s = 1 kg · m · s−1

Energy E J eV, keV, MeV 1 eV = 1.602×10−19 J = 10−3 keV
Power P W 1 W = 1 J / s = 1 V · A
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1.5 Classification of Forces in Nature

Four distinct forces are observed in the interaction between various types of
particles. These forces, in decreasing order of strength, are the strong force,
electromagnetic (EM) force, weak force and gravitational force with relative
strengths of 1, 1/137, 10−6, and 10−39, respectively. The four fundamental
forces, their source and their transmitted particle are listed in Table 1.2.

Table 1.2. The four fundamental forces in nature

Force Source Transmitted particle Relative strength

Strong Strong charge Gluon 1
EM Electric charge Photon 1/137
Weak Weak charge W+, W−, and Zo 10−6

Gravitational Energy Graviton 10−39

• The ranges of the EM and gravitational forces are infinite (1/r2 depen-
dence where r is the separation between two interacting particles).

• The ranges of the strong and weak forces are extremely short (of the order
of a few femtometers).

Each force results from a particular intrinsic property of the particles, such
as strong charge, electric charge, weak charge, and energy.

• Strong charge enables the strong force transmitted by mass-less particles
called gluons and resides in particles referred to as quarks.

• Electric charge enables the electromagnetic force transmitted by photons
and resides in charged particles such as electrons, positrons, protons, etc.

• Weak charge enables the weak force transmitted by particles called W
and Zo and resides in particles called quarks and leptons.

• Energy enables the gravitational force transmitted by hypothetical parti-
cles called gravitons.

1.6 Classification of Fundamental Particles

Two classes of fundamental particles are known: quarks and leptons.

• Quarks are particles that exhibit strong interactions. They are con-
stituents of hadrons (protons and neutrons) with a fractional electric
charge (2/3 or – 1/3) and are characterized by one of three types of strong
charge called colour (red, blue, green). There are six known quarks: up,
down, strange, charm, top, and bottom.

• Leptons are particles that do not interact strongly. Electron, muon, tau
and their corresponding neutrinos fall into this category.
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1.7 Classification of Radiation

Radiation is classified into two main categories, as shown in Fig. 1.1: non-
ionizing and ionizing, depending on its ability to ionize matter. The ionization
potential of atoms, i.e., the minimum energy required for ionizing an atom,
ranges from a few eV for alkali elements to 24.6 eV for helium (noble gas).

• Non-ionizing radiation cannot ionize matter because its energy is lower
than the ionization potential of matter.

• Ionizing radiation can ionize matter either directly or indirectly because
its energy exceeds the ionization potential of matter. It contains two major
categories:
– Directly ionizing radiation (charged particles)

electrons, protons, alpha particles, heavy ions
– Indirectly ionizing radiation (neutral particles)

photons (x rays, gamma rays), neutrons

Directly ionizing radiation deposits energy in the medium through di-
rect Coulomb interactions between the directly ionizing charged particle and
orbital electrons of atoms in the medium.

Indirectly ionizing radiation (photons or neutrons) deposits energy in the
medium through a two step process:

• In the first step a charged particle is released in the medium (photons
release electrons or positrons, neutrons release protons or heavier ions).

• In the second step, the released charged particles deposit energy to the
medium through direct Coulomb interactions with orbital electrons of the
atoms in the medium.

Both directly and indirectly ionizing radiations are used in treatment of
disease, mainly but not exclusively malignant disease. The branch of medicine
that uses radiation in treatment of disease is called radiotherapy, therapeutic
radiology or radiation oncology. Diagnostic radiology and nuclear medicine
are branches of medicine that use ionizing radiation in diagnosis of disease.

Fig. 1.1. Classification of radiation
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1.8 Types and Sources of Directly Ionizing Radiation

Directly ionizing radiation consists of several groups of charged particles, such
as light charged particles (electrons and positrons), heavy charged particles
(protons, deuterons, and alpha particles), and heavier charged particles (e.g.,
carbon-12).

1.8.1 Electrons

Electrons play an important role in medical physics. They are used directly
as beams for cancer therapy, they are responsible for the dose deposition in
media by photon and electron beams, and they govern the experimental and
theoretical aspects of radiation dosimetry.

• Electrons released in medium by photoelectric effect are referred to as
photoelectrons.

• Electrons released in medium by Compton effect are referred to as Comp-
ton or recoil electrons.

• Electrons produced in medium by pair production interactions in the field
of the nucleus or in the field of an orbital electron are referred to as pair
production electrons.

• Electrons emitted from nuclei by β− radioactive decay are referred to as
beta particles.

• Electrons produced by linear accelerators (linacs), betatrons or microtrons
for use in radiotherapy with kinetic energies typically in the range from
4 MeV to 30 MeV are referred to as megavoltage electrons.

• Electrons produced through Auger effect are referred to as Auger elec-
trons, Coster-Kronig electrons or super Coster-Kronig electrons.

• Electrons produced through internal conversion are referred to as internal
conversion electrons.

• Electrons produced by charged particle collisions are of interest in radia-
tion dosimetry and are referred to as delta (δ) rays.

1.8.2 Positrons

• Positrons produced by pair production or triplet production are referred
to as pair production positrons.

• Positrons emitted from nuclei by β+ radioactive decay are used in positron
emission tomography (PET) and referred to as beta particles.

1.8.3 Heavy Charged Particles

Heavy charged particles are produced for use in radiotherapy through accel-
eration of nuclei or ions in cyclotrons, synchrotrons or heavy particle linacs

• Proton: nucleus of hydrogen-1 (11H) atom.
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• Deuteron: Nucleus of deuterium (21H) atom that consists of a proton and
a neutron bound together with a total binding energy of 2.22 MeV.

• Triton: Nucleus of tritium (31H) atom consisting of one proton and two
neutrons bound together with a total binding energy of 8.48 MeV.

• Helium-3: Nucleus of helium-3 (32He) atom consisting of 2 protons and 1
neutron bound together with a total binding energy of 7.72 MeV.

• α particle: Nucleus of helium-4 (42He) atom consisting of 2 protons and 2
neutrons bound together with a total binding energy of 28.3 MeV.

1.8.4 Heavier Charged Particles

Heavier charged particles are nuclei or ions of heavier atoms such as carbon-12
(126 C), nitrogen-14 (147 N), or neon-20 (2010Ne).

1.8.5 Pions

Pions (negative π mesons) are produced in nuclear reactions of energetic
electrons or protons striking target nuclei. In the past pions showed promise
for use in radiotherapy; however, during recent years the studies of pions were
abandoned in favor of heavy charged particles.

1.9 Classification of Indirectly Ionizing
Photon Radiation

Indirectly ionizing photon radiation consists of four distinct groups of pho-
tons:

• Characteristic (fluorescent) x rays (see Sect. 3.1)
result from electron transitions between atomic shells

• Bremsstrahlung photons (see Sect. 3.2)
result from electron-nucleus Coulomb interactions

• Gamma rays (see Sect. 8.12)
result from nuclear transitions

• Annihilation quanta (see Sect. 7.6.9)
result from positron-electron annihilation

1.10 Radiation Quantities and Units

Accurate measurement of radiation is very important in any medical use of
radiation, be it for diagnosis or treatment of disease. Several quantities and
units were introduced for the purpose of quantifying radiation and the most
important of these are listed in Table 1.3.
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Table 1.3. Radiation quantities, units, and conversion between old and SI units

Quantity Definition SI unit Old unit Conversion

Exposure X X = ∆Q
∆mair

2.58 × 10−4C
kgair 1 R = 1 esu

cm3 airSTP
1 R = 2.58× 10−4C

kg air

Dose D D = ∆Eab
∆m

1 Gy = 1 J
kg 1 rad = 100 erg

g 1 Gy = 100 rad

Equivalent dose H H = D wR 1 Sv 1 rem 1 Sv = 100 rem

Activity A A = λ N 1 Bq = 1 s−1 1 Ci = 3.7 × 1010 s−1 1 Bq = 1 Ci
3.7×1010

• Exposure is related to the ability of photons to ionize air. Its unit roentgen
(R) is defined as charge of 2.58 × 10−4 C produced per kg of air.

• Dose is defined as the energy absorbed per unit mass of medium. Its unit
gray (Gy) is defined as 1 J of energy absorbed per kg of medium.

• Equivalent dose is defined as the dose multiplied by a radiation-weighting
factor. The unit of equivalent dose is sievert (Sv).

• Activity of a radioactive substance is defined as the number of decays per
time. Its unit is Becquerel (Bq) corresponding to one decay per second.

where

∆Q is the charge of either sign collected,
∆mair is the mass of air,
∆Eab is the absorbed energy,
∆m is the mass of medium,
wR is the radiation weighting factor,
λ is the the decay constant,
N is the number of radioactive atoms,
R stands for roentgen,
Gy stands for gray,
Sv stands for sievert,
Bq stands for becquerel,
Ci stands for curie,
STP stands for standard temperature and standard pressure (273.2 K and

101.3 kPa, respectively).

1.11 Dose in Water for Various Radiation Beams

The dose deposition in water is one of the most important characteristics
of the interaction of radiation beams with matter. This is true in general
radiation physics and even more so in medical physics, where the dose depo-
sition properties in tissue govern both the diagnosis of disease with radiation
(imaging physics) as well as treatment of disease with radiation (radiation
oncology physics).
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Imaging with ionizing radiation is limited to the use of x-ray beams in
diagnostic radiology and gamma rays in nuclear medicine, while in radia-
tion oncology the use of radiation is broader and covers essentially all ioniz-
ing radiation types ranging from x rays and gamma rays through electrons
to neutrons, protons and heavier charged particles. In diagnostic radiology
imaging one is interested in the radiation beam that propagates through the
patient, while in nuclear medicine one is interested in the radiation that em-
anates from the patient. In radiation oncology, on the other hand, one is
interested in the energy deposited in the patient by a radiation source that is
located outside the patient (external beam radiotherapy) or inside the tumor
(brachytherapy).

Figure 1.2 displays depth doses in water normalized to 100 percent at
depth dose maximum (percent depth doses) for various radiation types and
energies; for indirectly ionizing radiation: in (a) for photons and in (b) for
neutrons; and for directly ionizing radiation: in (c) for electrons and in (d) for
protons. It is evident that the depth dose characteristics of radiation beams
depend strongly upon beam type and energy. However, they also depend in a
complex fashion on other beam parameters, such as field size, source-patient
distance, etc. In general, indirectly ionizing radiation exhibits exponential-like
attenuation in the absorbing media, while directly ionizing radiation exhibits
a range in the absorbing media.

When considering the dose deposition in tissue by radiation beams, four
beam categories are usually defined: two categories (photons and neutrons)
for indirectly ionizing radiations and two categories (electrons and heavy
charged particles) for directly ionizing radiations. Energy deposition in water
by the four categories of radiation beams is clearly highlighted in Fig. 1.2.

1.11.1 Dose Distributions for Photon Beams

A photon beam propagating through air or vacuum is governed by the inverse-
square law; a photon beam propagating through a patient, on the other hand,
is not only affected by the inverse-square law but also by attenuation and
scattering of the photon beam inside the patient. The three effects make the
dose deposition in a patient a complicated process and its determination a
complex task.

Typical dose distributions for several photon beams in the energy range
from 100 kVp to 22 MV are shown in Fig. 1.2a. Several important points and
regions of the absorbed dose curves may be identified. The beam enters the
patient on the surface where it delivers a certain surface dose Ds. Beneath
the surface the dose first rises rapidly, reaches a maximum value at a depth
zmax, and then decreases almost exponentially until it reaches an exit dose
value at the patient’s exit point.

The depth of dose maximum is proportional to the beam energy and
amounts to 0 for superficial (50–100 kVp) and orthovoltage (100–300 kVp)
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Fig. 1.2. Dose against depth in water for radiation beams of various types and
energies. Parts a and b are for indirectly ionizing radiation: in a for photon beams
in the range from 100 kVp to 22 MV and in b for neutron beams. Parts c and d
are for directly ionizing radiation: in c for megavoltage electron beams in the range
from 9 to 25 MeV and in d for heavy charged particle beams (187 MeV protons,
190 MeV deuterons and 308 MeV carbon ions)

beams; 0.5 cm for cobalt-60 gamma rays; 1.5 cm for 6 MV beams; 2.5 cm for
10 MV beams; and 4 cm for 22 MV beams.

The relatively low surface dose for high-energy photon beams (referred to
as the skin sparing effect) is of great importance in radiotherapy for treatment
of deep-seated lesions without involvement of the skin. The tumor dose can
be concentrated at large depths in the patient concurrently with delivering
a low dose to patient’s skin that is highly sensitive to radiation and must be
spared as much as possible when it is not involved in the disease.

The dose region between the surface and the depth of dose maximum zmax
is called the dose build-up region and represents the region in the patient
in which the dose deposition rises with depth as a result of the range of
secondary electrons released in tissue by photon interactions with the atoms
of tissue. It is these secondary electrons released by photons that deposit
energy in tissue (indirect ionization). The larger is the photon energy, the
larger is the range of secondary electrons and, consequently, the larger is the
depth of dose maximum.

It is often assumed that at depths of dose maximum and beyond electronic
equilibrium is achieved; however, a better term is transient electronic equilib-
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rium because of the effects of photon beam attenuation as the photon beam
penetrates into a patient. Electronic equilibrium or, more generally, charged
particle equilibrium (CPE) exists for a volume if each charged particle of a
given type and energy leaving the volume is replaced by an identical particle
of the same type and energy entering the volume.

1.11.2 Dose Distributions for Neutron Beams

Neutron beams belong to the group of indirectly ionizing radiation, but,
rather than releasing electrons like photons do, they release protons or heavier
nuclei that then deposit their energy in absorbing medium through Coulomb
interactions with the electrons and nuclei of the absorber.

As shown in Fig. 1.2b, the dose deposition characteristics in water by
neutrons are similar to those of photon beams. Neutron beams exhibit a rel-
atively low surface dose although the skin sparing effect is less pronounced
than that for energetic photon beams. They also exhibit a dose maximum be-
neath the skin surface and an almost exponential decrease in dose beyond the
depth of dose maximum. The dose build up region depends on neutron beam
energy; the larger is the energy, the larger is the depth of dose maximum.

For comparison, we may state that a 14 MeV neutron beam has depth
dose characteristics that are comparable to a cobalt-60 gamma ray beam; a
65 MeV neutron beam is comparable to a 10 MV x-ray beam.

1.11.3 Dose Distributions for Electron Beams

Electrons are directly ionizing radiation that deposit their energy in tissue
through Coulomb interactions with orbital electrons and nuclei of the ab-
sorber atoms. Megavoltage electron beams represent an important treatment
modality in modern radiotherapy, often providing a unique option for treat-
ment of superficial tumors that are less than 5 cm deep. Electrons have been
used in radiotherapy since the early 1950s, first produced by betatrons and
then by linear accelerators. Modern high-energy linear accelerators used in
radiotherapy typically provide, in addition to two megavoltage x-ray beams,
several electron beams with energies from 4 to 25 MeV.

As shown in Fig. 1.2c, the electron beam dose distribution with depth
in patient exhibits a relatively high surface dose and then builds up to a
maximum dose at a certain depth referred to as the electron beam depth
dose maximum zmax. Beyond zmax the dose drops off rapidly, and levels off
at a small low-level dose component referred to as the bremsstrahlung tail.
Several parameters are used to describe clinical electron beams, such as the
most probable energy on the patient’s skin surface, the mean electron energy
on the patient’s skin surface, or the depth at which the absorbed dose falls
to 50 percent of the maximum dose.

The depth of dose maximum does not depend on beam energy, as is the
case for photon beams; rather it is a function of machine design. On the other
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hand, the beam penetration into tissue clearly depends on beam energy; the
larger is the energy, the more penetrating is the electron beam, as is evident
from Fig. 1.2c.

The bremsstrahlung component of the electron beam is the photon con-
tamination of the beam that results from radiative losses experienced by the
incident electrons as they penetrate the various machine components, air and
the patient. The higher is the energy of the incident electrons, the higher is
the bremsstrahlung contamination of the electron beam.

1.11.4 Dose Distributions for Heavy Charged Particle Beams

Heavy charged particle beams fall into the category of directly ionizing radi-
ation and deposit their energy in tissue through Coulomb interactions with
orbital electrons of the absorber. As they penetrate into tissue, heavy charged
particles lose energy but, in contrast to electrons, do not diverge appreciably
from their direction of motion and therefore exhibit a distinct range in tissue.
This range depends on the incident particle’s kinetic energy and mass.

Just before the heavy charged particle expended all of its kinetic energy,
its energy loss per unit distance traveled increases drastically and this results
in a high dose deposition at that point in tissue. As shown in Fig. 1.2d, this
high dose region appears close to the particle’s range, is very narrow, and
defines the maximum dose deposited in tissue. This peak dose is referred
to as the Bragg peak and it characterizes all heavy charged particle dose
distributions.

Because of their large mass compared to the electron mass, heavy charged
particles lose their kinetic energy only interacting with orbital electrons of
the absorber; they do not lose any appreciable amount of energy through
bremsstrahlung interactions with absorber nuclei.

1.12 Basic Definitions for Atomic Structure

The constituent particles forming an atom are protons, neutrons and elec-
trons. Protons and neutrons are known as nucleons and form the nucleus of
the atom.

• Atomic number Z is the number of protons and number of electrons in
an atom.

• Atomic mass number A is the number of nucleons in an atom, i.e., number
of protons Z plus number of neutrons N in an atom; i.e., A = Z + N.

• Atomic mass M is expressed in atomic mass units u, where 1 u is equal
to 1/12th of the mass of the carbon-12 atom (A = 12) or 931.5 MeV/c2.
The atomic mass M is smaller than the sum of individual masses of con-
stituent particles because of the intrinsic energy associated with binding
the particles (nucleons) within the nucleus (see Sect. 1.14).
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• While for carbon-12 the atomic mass M is exactly 12 u, for other atoms
M in u does not exactly match the atomic mass number A. However, for
all atomic entities A (an integer) and M are very similar to each other
and often the same symbol (A) is used for the designation of both.

• A chemical element generally contains atoms of same atomic number Z
but varying atomic mass numbers A. The atomic mass A of the element is
then the average atomic mass of all the chemical element’s stable isotopes.

• The mass in grams equal to the average atomic mass of a chemical element
contains exactly 6.022 × 1023 atoms (NA = Avogadro’s number) and is
referred to as the gram-atom of the element. The number of atoms per
gram of an element Na/m is thus equal to the ratio NA/A.
For example: The atomic mass of natural cobalt is 58.9332 u. Thus a
gram-atom of natural cobalt is 58.9332 g of natural cobalt and a mass of
58.9332 g of natural cobalt contains Avogadro’s number of cobalt atoms.

• Number of electrons Ne per volume V of element

Ne

V
= Z

Na

V
= ρ Z

Na

m
= ρ Z

NA

A
. (1.10)

• Number of electrons Ne per mass m of an element

Ne

m
=

ZNa

m
=

ZNA

A
. (1.11)

Note that (Z/A) ≈ 0.5 for all elements with one notable exception of
hydrogen for which (Z/A) = 1. Actually, Z/A slowly decreases from 0.5
for low Z elements to 0.4 for high Z elements.

• In nuclear physics the convention is to designate a nucleus X as A
Z X, where

A is the atomic mass number and Z the atomic number. For example,
the cobalt-60 nucleus is identified as 60

27Co, the radium-226 as 226
88 Ra.

• If we assume that the mass of a molecule is equal to the sum of the
masses of the atoms that make up the molecule, then for any molecular
compound there are NA molecules per g-mole of the compound where the
g-mole (gram-mole or mole) in grams is defined as the sum of the atomic
mass numbers of the atoms making up the molecule.

1.13 Basic Definitions for Nuclear Structure

Most of the atomic mass is concentrated in the atomic nucleus consisting of
Z protons and (A–Z) neutrons, where Z is the atomic number and A the
atomic mass number of a given nucleus. The proton and neutron have nearly
identical rest masses; the proton has positive charge, identical in magnitude
to the negative electron charge and the neutron has no charge.
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• There is no basic relation between the atomic mass number A and the
atomic number Z in a nucleus, but the empirical relationship of (1.12)

Z =
A

1.98 + 0.0155A2/3 (1.12)

provides a good approximation for stable nuclei.
• Protons and neutrons are commonly referred to as nucleons, have identi-

cal strong attractive interactions, and are bound in the nucleus with the
strong force. In contrast to electrostatic and gravitational forces that are
inversely proportional to the square of the distance between two particles,
the strong force between two nucleons is a very short-range force, active
only at distances of the order of a few fm. At these short distances the
strong force is the predominant force exceeding other forces by several
orders of magnitude.

• An element may be composed of atoms that all have the same number of
protons, i.e., have the same atomic number Z, but have different numbers
of neutrons, i.e., have different atomic mass numbers A. Such atoms of
identical atomic number Z but differing atomic mass numbers A are called
isotopes of a given element.

• The term isotope is often misused to designate nuclear species. For ex-
ample, cobalt-60, cesium-137 and radium-226 are not isotopes, since they
do not belong to the same element. Rather than isotopes, they should be
referred to as nuclides. On the other hand, it is correct to state that deu-
terium (with nucleus called deuteron) and tritium (with nucleus called
triton) are heavy isotopes of hydrogen or that cobalt-59 and cobalt-60
are isotopes of cobalt. The term radionuclide should be used to designate
radioactive species; however, the term radioisotope is often used for this
purpose.

• In addition to being classified into isotopic groups (common atomic num-
ber Z), nuclides are also classified into groups with common atomic mass
number A (isobars) and common number of neutrons (isotones). For ex-
ample, cobalt-60 and nickel-60 are isobars with 60 nucleons each (A = 60);
hydrogen-3 (tritium) and helium-4 are isotones with two neutrons each
(A − Z = 2).

• If a nucleus exists in an excited state for some time, it is said to be
in an isomeric (metastable) state. Isomers thus are nuclear species that
have common atomic number Z and common atomic mass number A.
For example, technetium-99m is an isomeric state of technetium-99 and
cobalt-60m is an isomeric state of cobalt-60.

1.14 Nuclear Binding Energies

The sum of masses of the individual components of a nucleus that contains
Z protons and (A − Z) neutrons is larger than the mass of the nucleus. This
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Fig. 1.3. Binding energy per nucleon in MeV/nucleon against atomic mass num-
ber A

difference in masses is called the mass defect (deficit) ∆m and its energy
equivalent ∆mc2 is called the total binding energy EB of the nucleus.

• The total binding energy EB of a nucleus can thus be defined as:
1. The positive work required to disassemble a nucleus into its individual

components: Z protons and (A − Z) neutrons.
2. The energy liberated when Z protons and (A−Z) neutrons are brought

together to form the nucleus.
• The binding energy per nucleon (EB/A) in a nucleus (i.e., the total binding

energy of a nucleus divided by the number of nucleons) varies with the
number of nucleons A and is of the order of ∼8 MeV/nucleon. It may be
calculated from the energy equivalent of the mass deficit ∆m as

EB

A
=

∆mc2

A
=

Zmpc2 + (A − Z)mnc2 − Mc2

A
, (1.13)

where
A is the atomic mass number,
M is the nuclear mass in atomic mass units u,
mpc2 is the proton rest energy,
mnc2 is the neutron rest energy.

As shown in Fig. 1.3, the binding energy per nucleon EB/A against the
atomic mass number A for A ranging from 1 to 270 exhibits the following
characteristics:

1. For 1 ≤ A ≤ 4 the binding energy per nucleon EB/A rises rapidly from
1.1 MeV per nucleon for deuteron (21H) through 2.8 and 2.6 MeV/nucleon
for triton (3H) and helium-3 (32He), respectively, to 7.1 MeV/nucleon for
helium-4 (42He). The nucleus of the helium-4 atom is the α particle.
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2. For 4 ≤ A ≤ 28, EB/A fluctuates and exhibits peaks for nuclides in which
A is a multiple of four.

3. For 28 < A < 60, EB/A rises slowly with increasing A to reach a peak
value of 8.8 MeV/nucleon for A ≈ 60 (iron, cobalt, nickel).

4. For A exceeding 60, the EB/A values fall monotonically from the peak of
8.8 MeV/nucleon to reach 7.3 MeV/nucleon for uranium-238.

The larger is the binding energy per nucleon (EB/A) of an atom, the
larger is the stability of the atom. Thus the most stable nuclei in nature are
the ones with A ≈ 60. Nuclei of light elements (small A) are generally less
stable than the nuclei with A ≈ 60 and the heaviest nuclei (large A) are also
less stable than the nuclei with A ≈ 60.

The peculiar shape of EB/A against A curve suggests two methods for
converting mass into energy: fusion of nuclei at low A and fission of nuclei
at large A.

• Fusion of two nuclei of very small mass, e.g., 2
1H + 3

1H → 4
2He + n, will

create a more massive nucleus and release a certain amount of energy.
Experiments using controlled nuclear fusion for production of energy have
so far not been successful; however, steady progress is being made in
various laboratories around the world.

• Fission of elements of large mass, e.g., 235
92 U+n, will create two lower mass

and more stable nuclei and lose some mass in the form of kinetic energy.
Nuclear fission was observed first in 1934 by Enrico Fermi and described
correctly by Otto Hahn, Fritz Strassman, Lise Meitner and Otto Frisch
in 1939. In 1942 at the University of Chicago Enrico Fermi and colleagues
carried out the first controlled chain reaction.

1.15 Nuclear Models

Several models of the nucleus have been proposed; all phenomenological and
none of them capable of explaining completely the complex nature of the
nucleus, such as its binding energy, stability, radioactive decay, etc. The two
most successful models are the liquid-drop model that accounts for the nuclear
binding energy and the shell model that explains nuclear stability.

1.15.1 Liquid-Drop Nuclear Model

The liquid-drop nuclear model, proposed by Niels Bohr in 1936, treats the
nucleons as if they were molecules in a spherical drop of liquid. Scattering
experiments with various particles such as electrons, nucleons and α particles
reveal that to a first approximation nuclei can be considered spherical.
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The radius R of a nucleus with atomic mass number A is estimated from
the following expression

R = Ro
3
√

A , (1.14)

where Ro is the nuclear radius constant equal to 1.2 fm (also quoted as
1.4 fm).

Using (1.14) we estimate the density of the nucleus with mass M and
volume V as

ρ =
M

V
≈ Amp

(4/3)πR3 =
mp

(4/3)πR3
o

≈ 1.5 × 1014 g · cm−3 , (1.15)

where mp is the rest mass of a proton.
Based on the liquid drop model of the nucleus the nuclear binding energy

was split into various components, each with its own dependence on the
atomic number Z and atomic mass number A. Four of the most important
components of the nuclear binding energy are:

1. Volume correction. Since the binding energy per nucleon EB/A is essen-
tially constant, as shown in Fig. 1.3, the total nuclear binding energy is
linearly proportional to A.

2. Surface correction. Nucleons on the surface of the liquid-drop have fewer
neighbors than those in the interior of the drop. The surface nucleous will
reduce the total binding energy by an amount proportional to R2, where
R is the nuclear radius proportional to A1/3, as given in (1.14). Thus the
surface effect correction is proportional to A2/3.

3. Coulomb repulsion correction accounts for the Coulomb repulsion among
protons in the nucleus. The repulsive energy reduces the total binding
energy and is proportional to Z(Z − 1), the number of proton pairs in
the nucleus, and inversely proportional to R, i.e., inversely proportional
to A1/3.

4. Neutron excess correction reduces the total binding energy and is pro-
portional to (A − 2Z)2 and inversely proportional to A.

The total nuclear binding energy EB is then written as follows:

EB = C1A − C2A
2/3 − C3

Z(Z − 1)
A1/3 − C4

(A − 2Z)2

A
. (1.16)

Equation (1.16) is referred to as the Weizsäcker’s semi-empirical binding
energy formula in which the various components are deduced theoretically
but their relative magnitudes are determined empirically to match the calcu-
lated results with experimental data. The constants in (1.16) were determined
empirically and are given as follows:

C1 ≈ 16 MeV, C2 ≈ 18 MeV, C3 ≈ 0.7 MeV, and C4 ≈ 24 MeV.
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1.15.2 Shell Structure Nuclear Model

Experiments have shown that the number of nucleons the nucleus contains
affects the stability of nuclei. The general trend in binding energy per nucleon
EB/A, as shown in Fig. 1.3, provides the EB/A maximum at around A = 60
and then drops for smaller and larger A. However, there are also considerable
variations in stability of nuclei depending on the parity in the number of
protons and neutrons forming a nucleus.

In nature there are approximately 275 nuclides that are considered stable
with respect to radioactive decay. Some 60% of these stable nuclei have an
even number of protons and an even number of neutrons (even-even nuclei);
some 20% have an even-odd configuration and a further 20% have and odd
even configuration. Only 5 stable nuclei are known to have an odd-odd con-
figuration. A conclusion may thus be made that an even number of protons
or even number of neutrons promotes stability of nuclear configurations.

When the number of protons is: 2, 8, 20, 28, 50, 82 or the number of
neutrons is: 2, 8, 20, 28, 50, 82, 126, the nucleus is observed particularly
stable and these numbers are referred to as magic numbers. Nuclei in which
the number of protons as well as the number of neutrons is equal to a magic
number belong to the most stable group of nuclei.

The existence of magic numbers stimulated a nuclear model containing a
nuclear shell structure in analogy with the atomic shell structure configura-
tion of electrons. In the nuclear shell model, often also called the independent
particle model, the nucleons are assumed to move in well-defined orbits within
the nucleus in a field produced by all other nucleons. The nucleons exist in
quantized energy states of discrete energy that can be described by a set of
quantum numbers, similarly to the situation with electronic states in atoms.

The ground state of a nucleus constitutes the lowest of the entire set of
energy levels and, in contrast to atomic physics where electronic energy levels
are negative, in nuclear physics the nuclear ground state is set at zero and the
excitation energies of the respective higher bound states are shown positive
with respect to the ground state.

To raise the nucleus to an excited state an appropriate amount of energy
must be supplied. On de-excitation of a nucleus from an excited state back
to the ground state a discrete amount of energy will be emitted.

1.16 Physics of Small Dimensions and Large Velocities

At the end of the 19-th century physics was considered a completed discipline
within which most of the natural physical phenomena were satisfactorily ex-
plained. However, as physicists broadened their interests and refined their
experimental techniques, it became apparent that classical physics suffers
severe limitations in two areas:
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1. Dealing with dimensions comparable to small atomic dimensions.
2. Dealing with velocities comparable to the speed of light in vacuum.

Modern physics handles these limitations in two distinct, yet related, sub-
specialties: quantum physics and relativistic physics.

1. Quantum physics extends the range of application of physical laws to
small atomic dimensions of the order of 10−10 m (radius of atom a),
includes classical laws as special cases when dimension � a, and intro-
duces the Planck’s constant h as a universal constant of fundamental
significance. Erwin Schrödinger, Werner Heisenberg and Max Born are
credited with developing quantum physics in the mid 1920s.

2. Relativistic physics extends the range of application of physical laws to
large velocities υ of the order of the speed of light c (3 × 108 m/s),
includes classical laws as special cases when υ � c, and introduces c as a
universal physical constant of fundamental significance. The protagonist
of relativistic physics was Albert Einstein who formulated the special
theory of relativity in 1905.

1.17 Planck’s Energy Quantization

Modern physics was born in 1900 when Max Planck presented his revolu-
tionary idea of energy quantization of physical systems that undergo simple
harmonic oscillations. Planck’s energy ε quantization is expressed as

ε = nhν , (1.17)

where

n is the quantum number (n = 0,1,2,3. . . ),
h is a universal constant referred to as the Planck’s constant,
ν is the frequency of oscillation.

The allowed energy states in a system oscillating harmonically are contin-
uous in classical models, while in the Planck’s model they consist of discrete
allowed quantum states with values nhν, where n is a non-negative integer
quantum number. Planck used his model to explain the spectral distribution
of thermal radiation emitted by a blackbody (an entity that absorbs all ra-
diant energy incident upon it). All bodies emit thermal radiation to their
surroundings and absorb thermal radiation from their surroundings; in ther-
mal equilibrium the rates of thermal emission and thermal absorption are
equal.

• Planck assumed that sources of thermal radiation are harmonically os-
cillating atoms possessing discrete vibrational energy states. When an
oscillator jumps from one discrete quantum energy state E1 to another
energy state E2 where E1 > E2, the energy difference ∆E = E1 − E2 is
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emitted in the form of a photon with an energy hν, i.e.,

∆E = E1 − E2 = hν = hc/λ , (1.18)

where
h is the Planck’s constant,
ν is the frequency of the photon,
c is the speed of light in vacuum,
λ is the wavelength of the photon.

• Radiation, such as light, is emitted, transmitted, and absorbed in discrete
energy quanta characterized by the product of frequency ν and Planck’s
constant h.

• Planck’s postulate of energy quantization lead to the atomic model with
its angular momentum quantization introduced by Niels Bohr in 1913 and
to quantum wave mechanics developed by Erwin Schrödinger in 1926.

• The so-called Schrödinger equation (see Sect. 1.22), used extensively in
atomic, nuclear and solid-state physics as well as in quantum mechanics,
is a wave equation describing probability waves (wave functions) that
govern the motion of small atomic particles. The equation has the same
fundamental importance to quantum mechanics as Newton’s laws have
for large dimension phenomena of classical mechanics.

1.18 Quantization of Electromagnetic Radiation

Electromagnetic (EM) radiation incident on metallic surface may eject
charged particles from the surface, as first observed by Heinrich Hertz in
1887. Joseph Thomson proved that the emitted charged particles were elec-
trons and Albert Einstein in 1905 explained the effect by proposing that EM
radiation was quantized similarly to the quantization of oscillator levels in
matter introduced by Max Planck in 1900.

A quantum of electromagnetic radiation is called a photon and has the
following properties:

• It is characterized by frequency ν and wavelength λ = c/ν where c is the
speed of light in vacuum.

• It carries an energy hν and momentum pν = h/λ where h is Planck’s
constant.

• It has zero rest mass.

In a metal the outer electrons move freely from atom to atom and behave
like a gas with a continuous spectrum of energy levels. To release an electron
from a metal a minimum energy characteristic of the given metal and referred
to as the work function eφ must be supplied to the electron. Einstein postu-
lated that the maximum kinetic energy (EK)max of the electron ejected from
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the surface of a metal by a photon with energy hν is given by the following
expression

(EK)max = hν − eφ . (1.19)

The maximum kinetic energy of the ejected electron depends on the incident
photon energy hν and the work function eφ of the metal but does not depend
on the incident radiation intensity.

• Electrons can be ejected from a metallic surface by the photoelectric effect
only when the incident photon energy hν exceeds the work function eφ of
the metal, i.e., hν > eφ.

• The photoelectric effect is a quantum phenomenon: a single electron ab-
sorbs a single photon; the photon disappears and the electron is ejected.

• The typical size of the work function eφ for metals is of the order of a few
eV (e.g., aluminum: 4.3 eV; cesium: 2.1 eV; cobalt: 5.0 eV; copper: 4.7 eV;
iron: 4.5 eV; lead: 4.3 eV; uranium: 3.6 eV), as given in the Handbook of
Chemistry and Physics from the CRC Press. The work function is thus
of the order of the energy hν of visible photons ranging from 1.8 eV (700
nm) to 3 eV (400 nm) and near ultraviolet photons ranging in energy
from 3 eV (400 nm) to 10 eV (80 nm).

• The effect of electron emission from metallic surfaces was called the photo-
electric effect and its explanation by Einstein on the basis of quantization
of EM radiation is an important contribution to modern physics.

• The surface photoelectric effect is related to the atomic photoelectric effect
in which high-energy photons with energies exceeding the binding energy
of orbital electrons eject electrons from atomic shells (see Sect. 7.5) rather
than from metallic surfaces.

1.19 Einstein’s Special Theory of Relativity

The special theory of relativity, introduced in 1905 by Albert Einstein, extends
the range of physical laws to large velocities and deals with transformations
of physical quantities from one inertial frame of reference to another. An
inertial frame of reference implies motion with uniform velocity. The two
postulates of special relativity theory are:

1. The laws of physics are identical in all inertial frames of reference.
2. The speed of light in vacuum c is a universal constant independent of the

motion of the source.

Albert A. Michelson and Edward W. Morley in 1887 showed that the speed
of light c is a universal constant independent of the state of motion of the
source or observer. Einstein, with his special theory of relativity, explained
the results of the Michelson-Morley experiment and introduced, in contrast
to classical Galilean transformations, special transformations referred to as
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Lorentz transformations to relate measurements in one inertial frame of ref-
erence to measurements in another inertial frame of reference.

When the velocities involved are very small, the Lorentz transformations
simplify to the classical Galilean transformations, and the relativistic relation-
ships for physical quantities transform into classical Newtonian relationships.

• Galilean and Lorentz transformations relate the spatial and time coordi-
nates x, y, z, and t in a stationary frame of reference to the coordinates
x′, y′, z′, and t′ in a reference frame moving with a uniform speed υ in
the x direction:
Galilean transformation

x′ = x − υt (1.20)

y′ = y (1.22)

z′ = z (1.24)

t′ = t (1.26)

Lorentz transformation

x′ = γ(x − υt) (1.21)

y′ = y (1.23)

z′ = z (1.25)

t′ = γ(t − xυ/c2) (1.27)

where

γ = (1 − υ2/c2)−1/2 . (1.28)

• For υ � c the Lorentz transformation reduces to the Galilean transfor-
mation since γ ≈ 1. The specific form of the Lorentz transformation is a
direct consequence of c = const in all frames of reference.

• Einstein also showed that atomic and subatomic particles, as they are
accelerated to a significant fraction of the speed of light c, exhibit an-
other relativistic effect, an increase in mass as a result of the mass-energy
equivalence stated as E = mc2, where m and E are the mass and en-
ergy, respectively, of the particle. A corollary to the second postulate of
relativity is that no particle can move faster than c.

• Conservation of energy and momentum:
– In classical mechanics where υ � c the momentum given as p = moυ

and the kinetic energy given as EK = moυ
2/2 are conserved in all

collisions (mo is the mass of the particle at υ = 0).
– In relativistic mechanics where υ ≈ c the relativistic momentum p =

mυ = γmoυ and the total energy E = moc
2 + EK are conserved in all

collisions.

1.20 Important Relativistic Relationships

In relativistic mechanics the mass of a particle is not a conserved quantity,
since it depends on the velocity of the particle and may be converted into
kinetic energy. The reverse transformation is also possible and kinetic energy
may be converted into matter.
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1.20.1 Relativistic Mass m

Newton’s classical equation of motion is preserved in relativistic mechanics,
i.e.,

�F =
d�p

dt
, (1.29)

where �p is the momentum of a particle acted upon by force �F . The momentum
�p is proportional to the velocity �υ of a particle through the relationship

�p = m�υ , (1.30)

where m is the mass of the particle dependent on the magnitude of the particle
velocity υ, i.e., m = m(υ).

The mass m(υ) is referred to as the relativistic mass of a particle and is
given by the Einstein expression (see Fig. 1.4 and Table 1.4)

m(υ) =
mo√
1−υ2

c2

=
mo√
1−β2

= γmo , (1.31)

or
m(υ)
mo

=
1√

1 − υ2

c2

=
1√

1 − β2
= γ , (1.32)

where

mo is the mass of a particle at υ = 0 referred to as the particle rest mass,
c is the speed of light in vacuum, a universal constant,
β is υ/c, i.e., particle velocity υ normalized to speed of light c,
γ is 1√

1−β2
or 1√

1−(υ2/c2)
.

Table 1.4. Mass versus velocity according to (1.32)

(υ/c) = β 0.1 0.25 0.5 0.75 0.9 0.99 0.999 0.9999

(m/mo) = γ 1.005 1.033 1.155 1.512 2.294 7.089 22.37 70.71

1.20.2 Relativistic Force �F and Relativistic Acceleration �a

In classical physics the Newton’s second law of mechanics is given as follows:

�F =
d

⇀
p

dt
= mo

d�υ

dt
= mo�a , (1.33)

indicating that the acceleration �a is parallel to force �F , and that mass mo is
constant.
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Fig. 1.4. Particle mass m as a function of its velocity υ. A plot of γ against β of
(1.32) in part a; a plot of m against υ of (1.31) in part b

In relativistic physics the acceleration �a is not parallel to the force �F at
large velocities because the speed of a particle cannot exceed c, the speed of
light in vacuum. The force �F , with the mass m a function of particle velocity
υ, as given in (1.31), can be written as

⇀

F =
d

⇀
p

dt
=

d(m�υ)
dt

= m
d�υ

dt
+ �υ

dm

dt
(1.34)

and

�F =
d�p

dt
=

d(γmo�υ)
dt

= γmo
d�υ

dt
+ mo�υ

dγ

dt

=γmo
d�υ

dt
+ mo�υ

γ3υ

c2

dυ

dt
, (1.35)
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where
dγ

dt
=

1

[1 − υ2/c2]3/2

υ

c2

dυ

dt
=

γ3υ

c2

dυ

dt
. (1.36)

The acceleration �a = d�υ/dt will be determined by obtaining a dot product
of the force �F and velocity �υ as follows:

�F · �υ =γmoυ
dυ

dt
+

moγ
3υ3

c2

dυ

dt
= γmoυ

dυ

dt
(1 + γ2β2)

=γ3moυ
dυ

dt
. (1.37)

Inserting (1.37) into (1.35) gives the following result for the force �F

�F = γmo
d�υ

dt
+

�F · �υ
c2 �υ = γmo

d�υ

dt
+ (�F · �β)�β . (1.38)

Solving (1.38) for �a = d�υ/dt gives the relativistic relationship for �a

�a =
d�υ

dt
=

�F − (�F · �β)�β
γmo

. (1.39)

For velocities υ � c, where β → 0 and γ → 1, the relativistic expression for
�a transforms into the classical result �a = d�υ/dt = �F/mo with �a parallel to �F .

1.20.3 Relativistic Kinetic Energy EK

The expression for the relativistic kinetic energy EK = E − Eo, where E =
mc2 is the total energy of the particle and Eo = moc

2 is its rest energy, is
derived below.

The particle of rest mass mo is initially at rest at the initial position xi
and moves under the influence of force F to its final position xf . The work
done by force F is the kinetic energy EK of the particle calculated using the
integration of (1.34) and the following five steps:

1. EK =

xf∫
xi

Fdx =

xf∫
xi

(
m

dυ

dt
+ υ

dm

dt

)
dx (1.40)

2. Multiply (1.31) by c, square the result, and rearrange terms to obtain

m2c2 − m2υ2 = m2
oc

2 . (1.41)

3. Differentiate (1.41) with respect to time t to obtain

c2 d(m2)
dt

− d

dt
(m2υ2) = 0 . (1.42)

4. Equation (1.42), after completing the derivatives, gives

2c2m
dm

dt
− 2m2υ

dυ

dt
− 2υ2m

dm

dt
= 0 . (1.43)
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5. After dividing (1.43) by (2mv) we obtain the following expression

c2

υ

dm

dt
= m

dυ

dt
+ υ

dm

dt
. (1.44)

The expression for the kinetic energy EK in (1.40) using (1.44) can be
written as follows:

EK = c2

xf∫
xi

1
v

dm

dt
dx = c2

m∫
mo

dm = mc2 − moc
2 = E − Eo , (1.45)

since dx/dt is the particle velocity υ by definition and the masses m and mo
correspond to particle positions xi and xf , respectively.

1.20.4 Total Relativistic E as a Function of Momentum p

The expression for the total relativistic energy E as a function of the rela-
tivistic momentum p is as follows:

E =
√

E2
o + p2c2 . (1.46)

Equation (1.46) is obtained from Einstein’s expression for the relativistic
mass given in (1.31) as follows:

1. Square the relationship for the relativistic mass m of (1.31), multiply the
result by c4 and rearrange the terms to obtain

m2c4 − m2c2υ2 = m2
oc

4 . (1.47)

2. Equation (1.47) can be written as

E2 − p2c2 = E2
o (1.48)

or

E =
√

E2
o + p2c2 , (1.49)

using the common relativistic relationships for the total energy E, rest
energy Eo and momentum p, i.e., E = mc2, Eo = moc

2, and p = mυ.

The following two relationships are also often used in relativistic mechanics:

1. The particle momentum p using (1.45) and (1.49) for the kinetic energy
EK and total energy E, respectively, can be expressed as

p =
1
c

√
E2 − E2

o =
1
c

√
E2

K + 2EKEo . (1.50)

2. The particle speed υ is, in terms of its total energy E and momentum p,
given as

υ

c
=

mυc

mc2 =
pc

E
. (1.51)
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1.20.5 Taylor Expansion for Relativistic Kinetic Energy
and Momentum

The Taylor expansion of a function f(x) about x = a is given as follows:

f(x)= f(a) + (x − a)
df

dx

∣∣∣∣
x=a

+
(x − a)2

2!
d2f

dx2

∣∣∣∣
x=a

+ . . . +
(x − a)n

n!
dnf

dxn

∣∣∣∣
x=a

.

(1.52)

The Taylor expansion into a series given by (1.52) is particularly useful when
one can neglect all but the first two terms of the series. For example, the
first two terms of the Taylor expansion of the function f(x) = (1±x)n about
x = 0 for x � 1 are given as follows:

f(x) = (1 ± x)n ≈ 1 ± nx . (1.53)

• The approximation of (1.53) is used in showing that, for small velocities
where υ � c or υ/c � 1, the relativistic kinetic energy EK of (1.45)
transforms into the well-known classical relationship EK = moυ

2/2

EK =E − Eo = moc
2

(
1√

1 − υ2/c2
− 1

)

=moc
2
{

(1 − υ2/c2)1/2 − 1
}

≈moc
2
{

1 −
[
−1

2

]
υ2

c2 − . . . − 1
}

=
moυ

2

2
. (1.54)

• Another example for the use of the Taylor expansion of (1.53) is the
classical relationship for the momentum p = moυ that, for υ � c, i.e.,
(υ/c) � 1, is obtained from the relativistic relationship for the momentum
given in (1.50) as follows:

p=
1
c

√
E2 − E2

o =
1
c

√
m2

oc
4

(
1

1 − (υ2/c2)
− 1

)

=
moc

2

c

√(
1 − υ2

c2

)−1

− 1

≈moc

√
1 +

υ2

c2 + . . . − 1 = moυ . (1.55)

1.20.6 Relativistic Doppler Shift

The speed of light emitted from a moving source is equal to c, a universal
constant, irrespective of the source velocity. The energy as well as the wave-
length and frequency of the emitted photons, on the other hand, depend on
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the velocity of the moving source. The energy shift resulting from a moving
source in comparison with the stationary source is referred to as the Doppler
shift and the following conditions apply:

• When the source is moving toward the observer, the measured photon
energy increases and the wavelength decreases (blue Doppler shift).

• When the source is moving away from the observer, the measured photon
energy decreases and the wavelength increases (red Doppler shift).

1.21 Particle-Wave Duality:
Davisson–Germer Experiment

Both the electromagnetic radiation (photons) and particles exhibit a particle-
wave duality and both may be characterized with wavelength λ and momen-
tum p related to one another through the following expression

λ =
h

p
, (1.56)

where h is the Planck’s constant.
In relation to particles, (1.56) is referred to as the de Broglie relationship

and λ is referred to as the de Broglie wavelength of a particle in honour of
Louis de Broglie who in 1924 postulated the existence of matter waves.

The wave nature of the electron was confirmed experimentally by Clin-
ton J. Davisson and Lester H. Germer in 1927 who set out to measure the
energy of electrons scattered from a nickel target. The target was in the form
of a regular crystalline alloy that was formed through a special annealing
process. The beam of electrons was produced by thermionic emission from a
heated tungsten filament. The electrons were accelerated through a relatively
low variable potential difference V that enabled the selection of the incident
electron kinetic energy EK.

• Davisson and Germer discovered that for certain combinations of electron
kinetic energies EK and scattering angles φ the intensity of scattered
electrons exhibited maxima, similarly to the scattering of x rays from
a crystal with a crystalline plane separation d that follows the Bragg
relationship (see Fig. 1.5) with m an integer

2d sin φ = mλ . (1.57)

• Similarly to Moseley’s work with Kα characteristic x rays (see Sect. 2.5.2),
Davisson and Germer determined the wavelength λe of electrons from the
measured scattering angle φ at which the electron intensity exhibited a
maximum.

• The measured λe agreed well with wavelengths calculated from the
de Broglie relationship

λe =
h

p
=

h

meυ
=

2π�c√
2mec2eV

, (1.58)
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Fig. 1.5. Davisson–Germer experiment of elastic electron scattering on a nickel sin-
gle crystal target. The electrons are produced in an electron gun and scattered by
the nickel crystalline structure that has an atom spacing d and acts as a reflection
grating. The maximum intensity of scattered electrons occurs as a result of con-
structive interference from electron matter waves following the Bragg relationship
of (1.57)

where υ is the velocity of electrons determined from the classical kinetic
energy relationship EK = meυ

2/2 = eV with V the applied potential.

The experimentally determined particle-wave duality suggests that both
the particle model and the wave model can be used for particles as well as
for photon radiation. However, for a given measurement only one of the two
models will apply. For example, in the case of photon radiation, the Compton
effect is explained with the particle model, while the diffraction of x rays
is explained with the wave model. On the other hand, the charge-to-mass
ratio e/me of the electron implies a particle phenomenon, while the electron
diffraction suggests wave-like behavior.

1.22 Matter Waves

Associated with any particle is a matter wave, as suggested by the de Broglie
relationship of (1.56). This matter wave is referred to as the particle’s
wave function Ψ(z, t) for one-dimensional problems or Ψ(x, y, z, t) for three-
dimensional problems and contains all the relevant information about the
particle. Quantum mechanics or wave mechanics, developed by Erwin Schrö-
dinger (wave mechanics) and Werner Heisenberg (matrix mechanics) between
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1925 and 1929, is a branch of physics that deals with the properties of wave
functions as they pertain to particles, nuclei, atoms, molecules and solids.

1.22.1 Introduction to Wave Mechanics

The main characteristics of wave mechanics are as follows:

• The theory has general application to microscopic systems and includes
Newton’s theory of macroscopic particle motion as a special case in the
macroscopic limit.

• The theory specifies the laws of wave motion that the particles of any
microscopic system follow.

• The theory provides techniques for obtaining the wave functions for a
given microscopic system.

• It offers means to extract information about a particle from its wave
function.

The main attributes of wave functions Ψ(z, t) are:

• Wave functions are generally but not necessarily complex and contain the
imaginary number i.

• Wave functions cannot be measured with any physical instrument.
• Wave functions serve in the context of Schrödinger’s wave theory but

contain physical information about the particle they describe.
• Wave functions must be single-valued and continuous functions of z and

t to avoid ambiguities in predictions of the theory.

The information on a particle can be extracted from a complex wave
function Ψ(z, t) through a postulate proposed by Max Born in 1926 relating
the probability density dP (z, t)/dz in one dimension with the wave function
Ψ(z, t) as follows:

dP (z, t)/dz = Ψ∗(z, t) · Ψ(z, t) . (1.59)

Similarly we can relate the probability density dP (x, y, z, t)/dV in three di-
mensions with the wave function Ψ(x, y, z, t) as

dP (x, y, z, t)/dV = Ψ∗(x, y, z, t) · Ψ(x, y, z, t) , (1.60)

where Ψ∗ is the complex conjugate of the wave function Ψ .
The probability density is real, non-negative and measurable. In one-

dimensional wave mechanics, the total probability of finding the particle
somewhere along the z axis in the entire range of the z axis is equal to one, if
the particle exists. We can use this fact to define the following normalization
condition

+∞∫
−∞

dP (z, t)
dz

dz =

+∞∫
−∞

Ψ∗(x, y, z, t)Ψ(x, y, z, t)dz = 1 . (1.61)
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Similarly, in three-dimensional wave mechanics, the normalization expression
is written as

+∞∫
−∞

dP (z, t)
dV

dV =

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

Ψ∗(x, y, z, t)Ψ(x, y, z, t)dxdydz = 1 ,

(1.62)

where the volume integral extends over all space and represents a certainty
that the particle will be found (unit probability). Any one-dimensional wave
function Ψ(z, t) that satisfies (1.61) is said to be normalized. Similarly, any
three-dimensional wave function Ψ(x, y, z) that satisfies (1.62) is also said to
be normalized.

While the normalization condition expresses certainty that a particle, if
it exists, will be found somewhere, the probability that the particle will be
found in any interval a ≤ z ≤ b is obtained by integrating the probability
density Ψ∗ · Ψ from a to b as follows:

P =

b∫
a

Ψ∗ · Ψ dV . (1.63)

1.22.2 Quantum-Mechanical Wave Equation

The particulate nature of photons and the wave nature of matter are referred
to as the wave-particle duality of nature. The waves associated with mat-
ter are represented by the wave function Ψ(x, y, z, t) that is a solution to a
quantum mechanical wave equation. This wave equation cannot be derived
directly from first principles of classical mechanics; however, it must honor
the following four conditions:

1. It should respect the de Broglie postulate relating the wavelength λ of
the wave function with the momentum p of the associated particle: p =
h/λ = �k, where k is the wave number defined as k = 2π/λ.

2. It should respect the Planck’s law relating the frequency ν of the wave
function with the total energy E of the particle: E = hν = �ω.

3. It should respect the relationship expressing the total energy E of a
particle of mass m as a sum of the particle’s kinetic energy EK = p2/(2m)
and potential energy V , i.e.,

E =
p2

2m
+ V . (1.64)

4. It should be linear in Ψ(z, t) which means that any arbitrary linear com-
bination of two solutions for a given potential energy V is also a solution
to the wave equation.

While the wave equation cannot be derived directly, we can determine it
for a free particle in a constant potential and then generalize the result to
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other systems and other potential energies. The free particle wave function
Ψ(z, t) can be expressed as follows:

Ψ(z, t) = Cei(kz−ωt) , (1.65)

where (kz − ωt) is the phase of the wave with k = 2π/λ the wave number
and ω = 2πν the angular frequency of the wave.

We now determine the partial derivatives ∂/∂x and ∂/∂t of the wave
function to obtain

∂Ψ(z, t)
∂z

= ikCei(kz−ωt) = ikΨ(z, t) = i
p

�
Ψ(z, t) (1.66)

and
∂Ψ(z, t)

∂t
= −iωCei(kz−ωt) = −iωΨ(z, t) = −i

E

�
Ψ(z, t) . (1.67)

Equation (1.66) can now be written as follows:

pΨ(z, t) = −i�
∂

∂z
Ψ(z, t) (1.68)

where (−i�∂/∂z) is a differential operator for the momentum p.
Similarly we can write (1.67) as

EΨ(z, t) = i�
∂

∂t
Ψ(z, t) , (1.69)

where (i�∂/∂t) is a differential operator for the total energy E.
Equations (1.68) and (1.69) suggest that multiplying the wave function

Ψ(z, t) by a given physical quantity, such as p and E in (1.68) and (1.69) has
the same effect as operating on Ψ(z, t) with an operator that is associated
with the given physical quantity. As given in (1.64), the total energy E of
the particle with mass m is the sum of its kinetic and potential energies.

If we now replace p and E in (1.64) with their respective operators, given
in (1.68) and (1.69), we obtain

− �
2

2m

∂2

∂z2 + V = i�
∂

∂t
. (1.70)

Equation (1.70) represents two new differential operators; the left hand side
operator is referred to as the hamiltonian operator [H], the right hand side
operator is the operator for the total energy E. When the two operators of
(1.70) are applied to a free particle wave function Ψ(z, t) we get

− �
2

2m

∂2Ψ(z, t)
∂z2 + V Ψ(z, t) = i�

∂Ψ(z, t)
∂t

. (1.71)

Equation (1.71) was derived for a free particle moving in a constant po-
tential V ; however, it turns out that the equation is valid in general for any
potential energy V (z, t) and is referred to as the time-dependent Schrödinger
equation with V (z, t) the potential energy describing the spatial and temporal
dependence of forces acting on the particle of interest. The time-dependent
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Schrödinger equation is thus in the most general three dimensional form writ-
ten as follows:

− �
2

2m
∇2Ψ(x, y, z, t) + V (x, y, z, t)Ψ(x, y, z, t)= i�

∂Ψ(x, y, z, t)
∂t

.

(1.72)

1.22.3 Time-Independent Schrödinger Equation

In most physical situations the potential energy V (z, t) only depends on z,
i.e., V (z, t) = V (z) and then the time-dependent Schrödinger equation can
be solved with the method of separation of variables.

The wave function Ψ(z, t) is written as a product of two functions ψ(z) and
T (t), one depending on the spatial coordinate z only and the other depending
on the temporal coordinate t only, i.e.,

Ψ(z, t) = ψ(z)T (t) . (1.73)

Inserting (1.73) into the time-dependent wave equation given in (1.71) and
dividing by ψ(z)T (t) we get

− �
2

2m

1
ψ(z)

∂2ψ(z)
∂z2 + V (z) = i�

1
T (t)

∂T (t)
∂t

. (1.74)

Equation (1.74) can be valid in general only if both sides, the left hand
side that depends on z only and the right hand side that depends on t only,
are equal to a constant, referred to as the separation constant Λ. We now
have two ordinary differential equations: one for the spatial coordinate z and
the other for the temporal coordinate t given as follows:

− �
2

2m

d2ψ(z)
dz2 + V (z)ψ(z) = Λψ(z) (1.75)

and
dT (t)

dt
= − iΛ

�
T (t) . (1.76)

The solution to the temporal equation is

T (t) = e−i Λ
�

t , (1.77)

representing a simple oscillatory function of time with angular frequency
ω = Λ/�. According to de Broglie and Planck the angular frequency must
also be given as E/�, where E is the total energy of the particle.

We can now conclude that the separation constant Λ equals the total par-
ticle energy E and obtain from (1.76) the following solution to the temporal
equation

T (t) = e−i E
�

t = e−iωt , (1.78)

where we used Planck’s relationship E
�

= ω.
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Recognizing that Λ = E we can write (1.75) as

− �
2

2m

d2ψ(z)
dz2 + V (z)ψ(z) = Eψ(z) (1.79)

and obtain the so-called time-independent Schrödinger wave equation for the
potential V (z).

The essential problem in quantum mechanics is to find solutions to the
time-independent Schrödinger equation for a given potential energy V , gen-
erally only depending on spatial coordinates. The solutions are given in the
form of:

1. Physical wave functions ψ(x, y, z) referred to as eigenfunctions.
2. Allowed energy states E referred to as eigenvalues.

The time-independent Schrödinger equation does not include the imagi-
nary number i and its solutions, the eigenfunctions, are generally not com-
plex. Since only certain functions (eigenfunctions) provide physical solutions
to the time-independent Schrödinger equation, it follows that only certain
values of E referred to as eigenvalues are allowed. This results in discrete
energy values for physical systems and in energy quantization.

Many mathematical solutions are available as solutions to wave equa-
tions. However, to serve as a physical solution, an eigenfunction ψ(z) and its
derivative dψ/dz must be: (1) finite, (2) single valued, and (3) continuous.

Corresponding to each eigenvalue En is an eigenfunction ψn(z) that is
a solution to the time-independent Schrödinger equation for the potential
Vn(z). Each eigenvalue is also associated with a corresponding wave function
Ψ(z, t) that is a solution to the time-dependent Schrödinger equation and can
be expressed as

Ψ(z, t) = ψ(z)e−i E
�

t . (1.80)

1.22.4 Measurable Quantities and Operators

As the term implies, a measurable quantity is any physical quantity of a par-
ticle that can be measured. Examples for measurable quantities are: position
z, momentum p, kinetic energy EK, potential energy V , total energy E, etc.

In quantum mechanics an operator is associated with each measurable
quantity. The operator allows for a calculation of the average (expectation)
value of the measurable quantity, provided that the wave function of the
particle is known.

The expectation value (also referred to as the average or mean value) Q̄
of a physical quantity Q, such as position z, momentum p, potential energy
V , and total energy E of a particle is determined as follows provided that
the particle’s wave function Ψ(z, t) is known

Q̄ =
∫

Ψ∗(z, t)[Q]Ψ(z, t)dz , (1.81)
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Table 1.5. Several measurable quantities and their associated operators used in
quantum mechanics

Measurable quantity Symbol Associated operator Symbol

Position z z [z]

Momentum p −i� ∂
∂z

[p]

Potential energy V V [V ]

Kinetic energy EK − �
2

2m
∂2

∂z2 [EK]

Hamiltonian H − �
2

2m
∂2

∂z2 + V [H]

Total energy E i� ∂
∂t

[E]

where [Q] is the operator associated with the physical quantity Q. A list-
ing of most common measurable quantities in quantum mechanics and their
associated operators is given in Table 1.5.

The quantum uncertainty ∆Q for any measurable quantity Q is given as

∆Q =
√

Q2 − Q̄2 , (1.82)

where Q̄2 is the square of the expectation value of the quantity Q and Q2 is
the expectation value of Q2.

• When ∆Q = 0, the measurable quantity Q is said to be sharp and all
measurements of Q yield identical results.

• In general ∆Q > 0, and repeated measurements result in a distribution
of measured points.

1.23 Uncertainty Principle

In classical mechanics the act of measuring the value of a measurable quantity
does not disturb the quantity; therefore, the position and momentum of an
object can be determined simultaneously and precisely. However, when the
size of the object diminishes and approaches the dimensions of microscopic
particles, it becomes impossible to determine with great precision at the same
instant both the position and momentum of particles or radiation nor is it
possible to determine the energy of a system in an arbitrarily short time
interval.

Werner Heisenberg in 1927 proposed the uncertainty principle that limits
the attainable precision of measurement results. The uncertainty principle
covers two distinct components:

1. The momentum-position uncertainty principle deals with the simultane-
ous measurement of the position z and momentum pz of a particle and
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limits the attainable precision of z and pz measurement to the following

∆z∆pz ≥ �

2
, (1.83)

where ∆z is the uncertainty on z and ∆pz is the uncertainty on pz.

There are no limits on the precision of individual z and pz measurements.
However, in a simultaneous measurement of z and pz the product of the
two uncertainties cannot be smaller than �/2, where � is the reduced
Planck’s constant (� = h/2π). If z is known precisely (∆z = 0), then we
cannot know pz, since (∆pz = ∞). The reverse is also true: if pz is known
exactly (∆pz = 0), then we cannot know z, since ∆z = ∞.

2. The other component (energy-time uncertainty principle) deals with the
measurement of the energy E of a system and the time interval ∆t re-
quired for the measurement. Similarly to the (∆z, ∆pz) situation, Heisen-
berg uncertainty principle states the following

∆E∆t ≥ �

2
, (1.84)

where ∆E is the uncertainty in the energy determination and ∆t is the
time interval taken for the measurement.

Classical mechanics sets no limits on the precision of measurement results
and allows a deterministic prediction of the behavior of a system in the future.
Quantum mechanics, on the other hand, limits the precision of measurement
results and thus allows only probabilistic predictions of the system’s behavior
in the future.

1.24 Complementarity Principle

In 1928 Niels Bohr proposed the principle of complementarity postulating
that any atomic scale phenomenon for its full and complete description re-
quires that both its wave and particle properties be considered and deter-
mined, since the wave and particle models are complementary. This is in
contrast to macroscopic scale phenomena where particle and wave character-
istics (e.g., billiard ball vs. water wave) of the same macroscopic phenomenon
are mutually incompatible rather than complementary.

Bohr’s principle of complementarity is thus valid only for atomic size
processes and asserts that these processes can manifest themselves either
as waves or as particles (corpuscules) during a given experiment, but never
as both during the same experiment. However, to understand and describe
fully an atomic scale physical process the two types of properties must be
investigated with different experiments, since both properties complement
rather than exclude each other.

The most important example of this particle-wave duality is the photon, a
mass-less particle characterized with energy, frequency and wavelength. How-
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ever, in certain experiments such as in Compton effect the photon behaves
like a particle; in other experiments such as double-slit diffraction it behaves
like a wave.

Another example of the particle-wave duality are the wave-like proper-
ties of electrons as well as heavy charged particles and neutrons that mani-
fest themselves through diffraction experiments (see, for example, Davisson-
Germer experiment discussed in Sect. 1.21).

1.25 Tunneling

The particle-wave duality is highlighted in discussions of potential wells and
potential barriers in quantum and wave mechanics; the potential wells attract
and trap particles, potential barriers reflect or transmit them. While medical
physics and clinical physics rarely deal with quantum and wave mechanics,
there are several physical phenomena of importance to radiation physics and,
by extension, to medical physics that can only be explained through wave-
mechanical reasoning. Tunneling, for example, is a purely wave-mechanical
phenomenon that is used in explaining two important effects in radiation
physics: α decay and field emission. In addition, there are several other phe-
nomena of importance in electronics that can be explained invoking tunneling
such as, for example, in the periodic inversion of the ammonia molecule NH3,
used as standard in atomic clocks, and in a semiconductor device called tun-
nel diode that is used for fast switching in electronic circuits.

A classical particle incident on a square barrier will pass the barrier only
if its kinetic energy EK exceeds the barrier potential EP. If EP > EK, the
classical particle is reflected at the barrier and no transmission occurs because
the region inside the barrier is forbidden to the classical particle.

A quantum-mechanical particle incident on a square barrier has access to
regions on both sides of the barrier, irrespective of the relative magnitudes
of the kinetic energy EK and the barrier potential EP. A matter wave is
associated with the particle and it has a non-zero magnitude on both sides of
the barrier as well as inside the barrier. The wave penetrates and traverses
the barrier even when EP > EK, clearly contravening classical physics but
conforming to the rules of wave mechanics. The wave function associated with
a quantum-mechanical particle incident on a barrier must be continuous at
the barrier, will exhibit an exponential decay inside the barrier, and will be
continuous on the far side of the barrier. The non-zero probability for finding
the particle on the opposite side of the barrier indicates that the particle
may tunnel through the barrier or one may say that the particle undergoes
the tunneling effect. In tunneling through a barrier, the particle behaves as
a pure wave inside the barrier and as a pure particle outside the barrier.
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1.25.1 Alpha Decay Tunneling

Alpha decay is considered a tunneling phenomenon in which α particles with
kinetic energies between 4 MeV and 9 MeV tunnel through a potential barrier
of the order of 30 MeV. The tunneling theory of the α decay was proposed
by George Gamow in 1928. Inside the parent nucleus (atomic number Z)
the α particle is free yet confined to the nuclear potential well by the strong
nuclear force. The dimension of the well is of the order of few fm; once the α
particle is beyond this distance from the center of the parent nucleus, it only
experiences Coulomb repulsion between its charge 2e and the charge of the
daughter nucleus (Z − 2)e.

A classical α particle with kinetic energy EK < 9 MeV cannot overcome
a potential barrier with EP > 30 MeV. On the other hand, a α particle with
wave-like attributes may tunnel through the potential barrier and escape the
parent nucleus through this purely quantum-mechanical phenomenon.

1.25.2 Field Emission Tunneling

Field emission is another interesting effect that is explained by the tunneling
phenomenon. Here one relies on the wave phenomena of electrons to explain
how electrons tunnel through a potential barrier (of the order of the work
function) to escape the atoms of a metal through the application of a very
strong electric field. This effect may be considered cold cathode emission in
contrast to the well-known heated cathode emission that is used in the so-
called Coolidge x-ray tubes, electron guns in linear accelerators, and many
other instruments relying on the hot filament sources where electrons get
“boiled-off” from the heated cathode. Modern application of field emission is
in field emission microscope and in scanning tunneling microscope.

1.26 Maxwell’s Equations

The basic laws of electricity and magnetism can be summarized by four basic
Maxwell’s equations on the assumption that no dielectric or magnetic ma-
terial is present. Each of the four basic Maxwell’s equations is also known
under its own specific name honoring the physicist who derived the equation
independently before Maxwell unified electric and magnetic forces under one
umbrella. In radiation physics and in medical physics Maxwell’s equations
play an important role in the understanding of bremsstrahlung production,
in waveguide theory of particle acceleration, and in the theory of ionization
chamber operation.

Maxwell’s equations may be expressed in integral form or in differential
form and the two forms are linked through two theorems of vector calculus:
the Gauss’s divergence theorem and the Stokes’s theorem. For a vector func-
tion �A and volume V bounded by a surface S the two theorems are given as
follows:
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Gauss’s theorem∫∫∫
V

�∇ · �A dV =
∫∫∫

V

div �A dV =
∫∫
©
S

�A · dS (1.85)

Stokes’s theorem∫∫
S

(�∇ × �A) · d�S =
∫∫

S

curl �A · d�S =
∮
�

�A · d� (1.86)

Maxwell’s equations (integral form on the left, differential form on the
right) are given as follows:∫∫
© �E · d�S =

q

εo

�∇ · �E =
ρ

εo
Gauss’s law

(1.87)∫∫
© �B · d�S = 0 �∇ · �B = 0 Gauss’s law

(1.88)∮
�E · d� = − ∂

∂t

∫∫
�B · d�S �∇ × �E = −∂ �B

∂t
Faraday’s law

(1.89)∮
�B · d� =µoI +

1
c2

∂

∂t

∫∫
�E · d�S) �∇ × �B = µo(�j +

∂ �B
∂t

) Ampère’s law,

(1.90)

where �E and �B are the electric and magnetic fields, respectively; ρ and �j
are the charge density and current density, respectively, εo and µo are the
permittivity and permeability, respectively, of vacuum; q is the total charge;
and I is the current.

Maxwell’s equations combined with the Lorentz force and Newton’s second
law of motion provide a complete description of the classical dynamics of
interacting charged particles and electromagnetic fields. The Lorentz force
FL for charge q moving in electric field �E and magnetic field �B with velocity
�υ is given as follows:

FL = q(�E + �υ × �B) . (1.91)



Ernest Rutherford and Niels Bohr, Giants of Modern Physics

The photographs on the next page show stamps issued in honor of physicists
Ernest Rutherford (1871–1937) and Niels Bohr (1885–1962), the two scientists cred-
ited with developing our current atomic model. According to the Rutherford-Bohr
atomic model most of the atomic mass is concentrated in the positively charged nu-
cleus and the negative electrons revolve in orbits about the nucleus. New Zealand is-
sued the stamp for Rutherford and Denmark for Bohr, both countries honoring their
respective native son. Both physicists received Nobel Prizes for their work: Ruther-
ford in 1908 “for investigations into the disintegration of elements and the chemistry
of radioactive substances”, Bohr in 1922 for work on the structure of atoms.

Rutherford studied in New Zealand and England, but spent all his professional
life first in Canada at McGill University in Montreal (1898–1907) and then in Eng-
land at the University of Manchester (1908–1919) and the Cavendish Laboratory
in Cambridge (1919–1937). During his nine years at McGill, Rutherford published
some 70 papers and worked with Frederick Soddy on the disintegration theory of
radioactivity. In his 12 years at the University of Manchester, Rutherford collab-
orated with Geiger and Marsden and, based on their experiments, proposed the
nuclear model of the atom. In Cambridge, Rutherford continued using alpha par-
ticles from radium and polonium sources to probe the atom. He collaborated with
James Chadwick who in 1932 discovered the neutron and with Charles Wilson, the
developer of the “cloud chamber”.

Rutherford is considered one of the most illustrious scientists of all time. His
work on the atomic structure parallels Newton’s work in mechanics, Darwin’s work
on evolution, Faraday’s work in electricity and Einstein’s work on relativity.

Bohr studied at the Copenhagen University and spent most of his professional
life there, except for short intervals in 1912 and in 1914–1916 when he worked
with Rutherford in Manchester. He built a renowned school of theoretical and ex-
perimental physics at the University of Copenhagen and became its first director
from its inauguration in 1921 to his death in 1962. The school is now known as
the Niels Bohr Institute. Bohr is best known for his introduction of the electron
angular momentum quantization into the atomic model that is now referred to as
the Rutherford-Bohr atom. He also made numerous other contributions to theoret-
ical physics, most notably with his complementarity principle and the liquid drop
nuclear model.

Bohr was also interested in national and international politics and advised Presi-
dents Roosevelt and Truman as well as Prime Minister Churchill on scientific issues
in general and nuclear matters in particular. Bohr enjoyed a tremendous esteem
from physics colleagues, world leaders and the general public, and among the sci-
entists of the 20th century only Albert Einstein and Marie Curie have reached the
same level.

c© New Zealand Post (1999); Stamp depicting Ernest Rutherford. Reproduced with
Permission.

c© Post Danmark (1963) and Sven Bang; Stamp depicting Niels Bohr. Designed by
Viggo Bang and Reproduced with Permission.



2 Rutherford–Bohr Atomic Model

This chapter is devoted to a discussion of the Rutherford–Bohr atomic model.
First, it covers the intriguing Geiger–Marsden experiment of α-particle scat-
tering on thin gold foils, the results of which lead to the Rutherford’s in-
genious conclusion that most of the atom is empty space and that most of
the atomic mass is concentrated in an atomic nucleus. The kinematics of
α-particle scattering is then discussed in some detail and the Bohr deriva-
tion of the hydrogen atom kinematics is presented. The simple hydrogen
atom calculations are supplemented with corrections for the finite mass of
the nucleus and the correspondence principle is introduced. Next, the con-
cepts of one-electron atoms are expanded to multi-electron atoms through
the Hartree approximation, and the exclusion principle and the periodic ta-
ble of elements are introduced. The chapter concludes with a description of
experiments that substantiate the Rutherford–Bohr atomic model and with
a calculation of the ground state of the hydrogen atom based on the time-
independent Schrödinger equation.
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2.1 Geiger–Marsden Experiment

Hans Geiger and Ernest Marsden in 1909 carried out an experiment studying
the scattering of 5.5 MeV α particles on a thin gold foil with a thickness of
the order of 10−6 m. The α particles were obtained from radon-222, a natural
α-particle emitter. The experiment, shown schematically in Fig. 2.1, seems
rather mundane, however, its peculiar and unexpected results had a profound
effect on modern physics in particular and on the humanity in general.

At the time of the Geiger–Marsden experiment Thomson’s atomic model
was the prevailing atomic model based on an assumption that the positive
and the negative (electron) charges of an atom were distributed uniformly
over the atomic volume (“plum-pudding” model).

It was Ernest Rutherford who concluded that the peculiar results of the
Geiger–Marsden experiment did not support the Thomson’s atomic model
and proposed the currently accepted model in which:

1. mass and positive charge of the atom are concentrated in the nucleus the
size of which is of the order of 10−15 m;

2. negatively charged electrons revolve about the nucleus.

The two competing atomic models are shown schematically in Fig. 2.2 (see
Sect. 2.2.1); the Thomson model in part a, the Rutherford model in part b.

2.1.1 Parameters of the Geiger–Marsden Experiment

In the Geiger–Marsden experiment the kinetic energy of the α particles was
5.5 MeV and the radius of the gold–79 nucleus 197

79 Au is determined as follows
[see (1.14)]:

R = Ro
3
√

A = 1.4 fm 3
√

197 ≈ 8 fm . (2.1)

Fig. 2.1. Schematic diagram of the Geiger–Marsden experiment in the study of
α-particle scattering on gold nuclei in a thin gold foil. Θ is the scattering angle
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The distance of closest approach Dα−N between the α particle and the nucleus
is determined by equating EK, the kinetic energy of the α particle at ∞, with
EP, the electric potential energy at Dα−N, and solving for Dα−N to get

Dα−N =
zZe2

4πεo

1
EK

=
2 × 79 × e × 1.6 × 10−19 As Vm

4π × 8.85 × 10−12 As 5.5 × 106 eV

≈41 fm. (2.2)

Three important observations may now be made based on these parameters:

• For naturally occurring α particles interacting with nuclei of atoms the
distance of closest approach Dα−N exceeds the radius R of the nucleus.
The α particle thus does not penetrate the nucleus.

• Nature provided Geiger and Marsden with ideal conditions to probe the
nucleus. The radon-222 α particles have an energy of 5.5 MeV which is
large enough to allow penetration of the atom but it is neither too large
to cause nuclear penetration with associated nuclear reactions nor is it
too large to require relativistic treatment of the α-particle velocity.

• Since artificial nuclear reactions and the relativistic mechanics were not
understood at the time when the Geiger–Marsden experiment was car-
ried out, Rutherford would not be able to solve with such elegance the
atomic model question if the kinetic energy of the α particles used in the
experiment was much larger or much smaller than 5.5 MeV.

The speed υα of the α particles relative to the speed of light in vacuum
c for 5.5 MeV α particles can be calculated using either the classical or the
relativistic relationship (note that mαc2 ≈ 4 × 939 MeV):

The classical calculation is done using the classical expression for the
kinetic energy EK of the α particle [see (1.45)]

EK =
mαυ2

α

2
=

1
2
mαc2

{
υ2

α

c2

}
. (2.3)

Solve (2.3) for υα/c to obtain

υα

c
=
√

2EK

mαc2 =

√
2 × 5.5 MeV

4 × 939 MeV
= 0.054 (2.4)

The relativistic calculation using the relativistic expression for the kinetic
energy EK of the α particle

EK =
mαc2√

1 − (
υα

c

)2 − mαc2 . (2.5)

Solve (2.5) for υα/c to obtain

υα

c
=

√√√√1 − 1(
1 + EK

mαc2

)2 =

√√√√1 − 1(
1 + 5.5

4×939

)2 = 0.054 . (2.6)
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The relativistic and classical calculations give identical results since the ratio
of velocities (υα/c) � 1 for particles with kinetic energy EK of the order of a
few MeV. Rutherford’s use of the simple classical relationship for the kinetic
energy of the naturally occurring α particles was thus justified.

2.1.2 Thomson’s Atomic Model

Joseph J. Thomson, who is also credited with the discovery of the electron
in 1897, proposed an atomic model in which the negatively charged electrons
were dispersed uniformly within a continuous spherical distribution of posi-
tive charge with a radius of the order of 1 Å. The electrons formed rings and
each ring could accommodate a certain upper limit in the number of electrons
and then other rings began to form. With this ring structure Thomson could
in principle account for the periodicity of chemical properties of elements.
A schematic representation of the Thomson’s atomic model (“plum-pudding
model”) is given in Fig. 2.2a.

– In the ground state of the atom the electrons are fixed at their equilibrium
positions and emit no radiation.

– In an excited state of the atom the electrons oscillate about their equi-
librium positions and emit radiation through dipole oscillations by virtue
of possessing charge and being continuously accelerated or decelerated
(Larmor relationship).

According to the Thomson’s atomic model the angular distribution of
α particles scattered in the gold foil in the Geiger–Marsden experiment is

Fig. 2.2. Schematic diagram of two atomic models: a Thomson’s “plum-pudding”
model in which the electrons are uniformly distributed in the sea of positive atomic
charge and b Rutherford’s nuclear model in which the electrons revolve in empty
space around the nucleus that is positively charged and contains most of the atomic
mass
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Gaussian and given by the following expression

N(Θ)dΘ =
2IΘ

Θ2
e−Θ2/Θ2

dΘ , (2.7)

where

Θ is the scattering angle of the α particle after it passes through the
gold foil (the α particle undergoes ∼104 interactions as a result of
a foil thickness of 10−6 m and an approximate atomic diameter of
10−10 m),

N(Θ)dΘ is the number of α particles scattered within the angular range of
Θ to Θ + dΘ,

I is the number of α particles striking the gold foil,
Θ2 is the mean square net deflection experimentally determined to be

of the order of 3 × 10−4 rad2, i.e., (Θ2)1/2 = 1o.

Geiger and Marsden found that more than 99% of the α particles incident
on the gold foil were scattered at angles less than 3◦ and that their distri-
bution followed a Gaussian distribution given in (2.7). However, Geiger and
Marsden also found that one in ∼ 104 α particles was scattered with a scat-
tering angle Θ > 90◦ which implied a probability of 10−4 for scattering with
Θ > 90◦, in drastic disagreement with the probability of 10−3500 predicted
by the theory based on the Thomson’s atomic model, as shown below.

According to the Thomson atomic model the probability for α-particle
scattering with Θ > 90◦ (i.e., with a scattering angle Θ between π/2 and π)
is calculated by integrating (2.7) as follows:

N(Θ > π
2 )

I
=

π∫
π/2

N(Θ)dΘ

I
= −

π∫
π/2

e−Θ2/Θ2
d(Θ2/Θ2) = − e

− Θ2

Θ2

∣∣∣∣
π

π/2

=−e−{ 180o
1o }2

+ e−{ 90o
1o }2

= e−902 ≈ 10−3500 , (2.8)

where we use the value of 1◦ for the root mean square angle
√

Θ2.

2.2 Rutherford Atom and Rutherford Scattering

The theoretical result of 10−3500 for the probability of α-particle scattering
with a scattering angle greater than 90◦ on a Thomson atom is an extremely
small number in comparison with the result of 10−4 obtained experimen-
tally by Geiger and Marsden. This highlighted a serious problem with the
Thomson’s atomic model and stimulated Ernest Rutherford to propose a
completely new model that agreed with experimental results obtained by
Geiger and Marsden.



48 2 Rutherford–Bohr Atomic Model

2.2.1 Rutherford Model of the Atom

Contrary to Thomson’s “plum-pudding” atomic model, depicted schemati-
cally in Fig. 2.2a, essentially all mass of the Rutherford atom is concentrated
in the atomic nucleus that is also the seat of the positive charge of the atom
and has a radius of the order of 10−15 m, as shown schematically in Fig. 2.2b.
Electrons are distributed in a spherical cloud on the periphery of the Ruther-
ford atom with a radius of the order of 10−10 m.

2.2.2 Kinematics of Rutherford Scattering

Based on his model and four additional assumptions, Rutherford derived the
kinematics for the scattering of α particles on gold nuclei using basic princi-
ples of classical mechanics. The four additional assumptions are as follows.

1. the mass M of the gold nucleus is much larger than the mass of the α
particle mα, i.e., M � mα.

2. Scattering of α particles on atomic electrons is negligible because mα �
me, where me is the electron mass.

3. The α particle does not penetrate the nucleus (no nuclear reactions).
4. The classical relationship for the kinetic energy EK of the α particle, i.e.,

EK = mαυ2/2, is valid, where υ is the velocity of the α particle.

The interaction between the α particle (charge ze) and the nucleus (charge
Ze) is a repulsive Coulomb interaction between two positive point charges,
and, as a result, the α particle follows a hyperbolic trajectory, as shown
schematically in Fig. 2.3.

As shown in Fig. 2.3, the nucleus is in the outer focus of the hyperbola
because of the repulsive interaction between the α particle and the nucleus.
The relationship between the impact parameter b and the scattering angle θ
may be derived most elegantly by determining two independent expressions
for the change in momentum ∆p of the scattered α particle. Note that θ
represents the scattering angle in a single α-particle interaction with one nu-
cleus, whereas Θ represents the scattering angle resulting from the α particle
traversing the thin gold foil and undergoing 104 interactions while traversing
the foil.

The momentum transfer is along a line that bisects the angle π − θ, as
indicated in Fig. 2.3. The magnitude of the Coulomb force Fcoul acting on
the α particle is given by

Fcoul =
zZe2

4πεo

1
r2 , (2.9)

where

r is the distance between the α particle and the nucleus M ,
z is the atomic number of the α particle (for helium z = 2 and A = 4),
Z is the atomic number of the absorber (for gold Z = 79 and A = 197).
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Fig. 2.3. Schematic diagram for scattering of an α particle on a nucleus: θ is the
scattering angle; b the impact parameter; ∆p the change in α-particle momentum;
υ∞ the initial velocity of the α particle; and p∞ the initial momentum of the α
particle. The trajectory of the α particle is a hyperbola as a result of the repulsive
Coulomb interaction between the α particle and the nucleus

Since the component of the force Fcoul in the direction of the momentum
transfer is F∆p = Fcoul cos φ, the momentum transfer (impulse) ∆p may be
written as the time integral of the force component F∆p, i.e.,

∆p=

∞∫
−∞

F∆pdt =

∞∫
−∞

Fcoul cos φ dφ

=
zZe2

4πεo

π−θ
2∫

− π−θ
2

cos φ

r2

dt

dφ
dφ , (2.10)

where φ is the angle between the radius vector r and the bisector, as also
shown in Fig. 2.3.

Using the conservation of angular momentum L

L = mαυ∞b = mαω r2 , (2.11)
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where

mα is the mass of the α particle,
b is the impact parameter,
r is the radius vector between the α particle and the nucleus,
υ∞ is the initial and final α-particle velocity before and after the interac-

tion,
ω is the angular frequency equal to dφ/dt,

we can now rewrite (2.10) in a simple form

∆p=
zZe2

4πεo

1
υ∞b

π−θ
2∫

− π−θ
2

cos φdφ =
zZe2

4πεo

1
υ∞b

{sin φ}+(π−θ)/2
−(π−θ)/2

=2
zZe2

4πεo

1
υ∞b

cos
θ

2
. (2.12)

With the help of the momentum vector diagram, also given in Fig. 2.3, the
momentum transfer ∆p may also be written as

∆p = 2p∞ sin
θ

2
= 2mαυ∞ sin

θ

2
. (2.13)

Combining (2.12) and (2.13) we obtain the following expressions for the im-
pact parameter b

b =
zZe2

4πεomαυ2∞
cot

θ

2
=

1
2

zZe2

4πεo

1
EK

cot
θ

2
=

1
2
Dα−N cot

θ

2
, (2.14)

with the use of:

1. the classical relationship for the kinetic energy of the α particle (EK =
mαυ2

∞/2), since υ∞ � c,
2. the definition of Dα−N as the distance of closest approach between the

α particle and the nucleus in a “direct-hit” head-on collision for which
the impact parameter b = 0, the scattering angle θ = π, and Dα−N =
zZe2/(4πεoEK).

Hyperbolic Trajectory

Equations for the hyperbolic trajectory of an α particle interacting with a
nucleus can be derived from the diagram given in Fig. 2.3 and the simple
rule governing the hyperbola

r − r′ = 2a , (2.15)

where

a is the distance between the apex and the vertex of the hyperbola,
r is the distance between the point of interest on the hyperbola and the

outer focus,
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r′ is the distance between the point of interest on the hyperbola and the
inner focus.

The parameters of the hyperbola such as a, r, and r′ are defined in Fig. 2.3
and the locations of the inner focus, outer focus, apex and vertex are also
indicated in Fig. 2.3. Solving (2.15) for r′ and squaring the result, we get the
following expression for (r′)2

(r′)2 = r2 − 4ar + 4a2 . (2.16)

Using the law of cosines in conjunction with Fig. 2.3, we express (r′)2 as

(r′)2 = r2 − 4aεr cos φ + 4a2ε2 , (2.17)

where ε is the eccentricity of the hyperbola. Subtracting (2.17) from (2.16)
and solving for r(φ), we now obtain the following general equation for the
hyperbolic trajectory of the α particle

r(φ) =
a(ε2 − 1)
ε cos φ − 1

. (2.18)

Three separate special conditions are of interest with regard to (2.18):

1. r = ∞ (for determining the eccentricity ε)
2. φ = 0 (for determining the general distance of closest approach Ra−N)
3. θ = π (for determining the distance of closest approach in a direct hit

that results in the shortest distance of closest approach defined
as Dα−N)

For r = ∞ the angle φ equals to (π − θ)/2 and the denominator in (2.18)
[ε cos((π − θ)/2) − 1] must equal zero, resulting in the following relationship
for the eccentricity ε

ε cos
π − θ

2
= ε sin

θ

2
= 1 or ε =

1
sin θ

2

. (2.19)

The distance of closest approach Rα−N between the α particle and the nucleus
in a non-direct hit collision (θ < π and φ = 0) is given as

Rα−N = r(φ = 0) =
a(ε2 − 1)

ε − 1
= a(1 + ε)

=a

{
1 +

(
sin

θ

2

)−1
}

. (2.20)

The distance of closest approach in a direct-hit collision (θ = π) can now be
written as

Dα−N = Rα−N(θ = π) = 2a , (2.21)

from where it follows that a, the distance between the apex and the vertex
of the hyperbola, is equal to Dα−N/2.
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Hyperbola in Polar Coordinates

In polar coordinates (r, ϕ) the hyperbolic α-particle trajectory may be ex-
pressed as

1
r

=
1
b

sin ϕ +
a

b2 (cos ϕ − 1) , (2.22)

with parameters a, b, and ϕ defined in Fig. 2.3. Note that ϕ and φ are different
angles and that the following relationship for angles ϕ, φ, and θ applies

ϕ + φ =
∣∣∣∣π − θ

2

∣∣∣∣ . (2.23)

It can be shown that the expressions of (2.18) and (2.22) for a hyperbola are
equivalent.

2.2.3 Differential Cross-Section for Rutherford Scattering

The differential cross-section dσRuth/dΩ for Rutherford scattering into a solid
angle dΩ = 2π sin θ dθ that corresponds to an angular aperture between θ and
θ + dθ (equivalent to impact parameters between b and b− db), assuming the
azimuthal distribution to be isotopic, is the area of a ring with mean radius
b and width db

dσRuth = 2π b db = 2π sin θ
b

sin θ

∣∣∣∣db

dθ

∣∣∣∣ dθ . (2.24)

Recognizing that

dΩ = 2π sin θ dθ , (2.25)

expressing sin θ as

sin θ = 2 sin
θ

2
cos

θ

2
, (2.26)

and using (2.14) for the impact parameter b to determine |db/dθ| as∣∣∣∣db

dθ

∣∣∣∣ =
Dα−N

4
1

sin2(θ/2)
, (2.27)

we obtain the following expression for dσRuth/dΩ, the differential Rutherford
cross section

dσRuth

dΩ
=
(

Dα−N

4

)2 1
sin4 θ

2

. (2.28)

At small scattering angles θ, where sin(θ/2) ≈ θ/2, (2.28) may be approxi-
mated as

dσRuth

dΩ
=

D2
α−N

θ4 . (2.29)

Since most of the Rutherford scattering occurs for θ � 1 rad and even at
θ = π/2 the small angle result is within 30% of the Rutherford general
expression, it is reasonable to use the small angle approximation of (2.29) at
all angles for which the unscreened point-Coulomb field expression is valid.
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2.2.4 Minimum and Maximum Scattering Angles

Departures from the point Coulomb field approximation appear for large
and small angles θ, corresponding to small and large impact parameters b,
respectively.

At large b (i.e., at small θ) the screening effects of the atomic orbital
electrons cause the potential felt by the α particle to fall off more rapidly
than the 1/r Coulomb point-source potential. It is convenient to account for
electron screening of the nuclear potential with the Thomas-Fermi statistical
model of the atom in which the Thomas-Fermi atomic potential is given as
follows:

VTF(r) ≈ Ze2

4πεo

1
r
e−r/aTF . (2.30)

In (2.30) aTF is the Thomas-Fermi atomic radius expressed as

aTF ≈ 1.4aoZ
−1/3 , (2.31)

representing a fixed fraction of all atomic electrons or, more loosely, the radius
of the atomic electron cloud that screens the nucleus (ao = 0.5292 Å is the
Bohr radius, discussed in Sect. 2.3). This implies that with a decreasing
scattering angle θ the scattering cross-section will flatten off at small angles
θ to a finite value at θ = 0 rather than increasing as θ−4 and exhibiting a
singularity at θ = 0.

The small angle result of (2.29) may then in general be written as

dσRuth

dΩ
≈ D2

α−N

(θ2 + θ2
min)2

(2.32)

In contrast to (2.29) which is singular at θ = 0 the relationship in (2.32)
provides a finite value at θ = 0 equal to

dσRuth

dΩ

∣∣∣∣
θ=0

=
D2

α−N

θ4
min

(2.33)

For small angular deflections θ where ∆p � p and θ ≈ 0 we can write

θ ≈ ∆p

p∞
=

2zZe2

4πεov∞b p∞
=

Dα−N

b
(2.34)

using (2.2), (2.12), and (2.13)
Substituting aTF, the Thomas-Fermi radius of the atom, for b into (2.34)

we estimate θmin as

θmin = Dα−N/aTF , (2.35)

while the quantum-mechanical result is
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θmin =
�

paTF
=

�c 3
√

Z

1.4ao
√

EK(EK + 2Eo)
(2.36)

using the expressions for p and aTF given by (1.50) and (2.31), respectively.
At relatively large scattering angles θ the differential Rutherford cross

section dσRuth/dΩ is smaller than that predicted by (2.28) because of the fi-
nite size of the nucleus. Approximating the charge distribution of the atomic
nucleus by a volume distribution inside a sphere of radius R results in the
following electrostatic potentials V (r) for regions inside and outside the nu-
cleus

V (r) =
zZe2

4πεoR

(
3
2

− 1
2

r2

R2

)
for r < R, (2.37)

V (r) =
3
8

zZe2

πεoR
for r = 0 , (2.38)

V (r) =
zZe2

4πεoR
for r = R , (2.39)

V (r) =
zZe2

4πεor
for r > R . (2.40)

The scattering is confined to angles smaller than θmax = λ/(2πR) where λ
is the de Broglie wavelength of the incident particle. The maximum scattering
angle θmax is then approximated as follows using the expressions for p of (1.50)
and R: of (2.1)

θmax =
�

pR
=

�c√
EK(EK + 2Eo) Ro . 3

√
A

. (2.41)

Using (2.36) and (2.41) we obtain the following expression for θmax/θmin

θmax

θmin
=

aTF

R
=

1.4ao

Ro
3
√

ZA
, (2.42)

ranging from ∼ 5×104 for low atomic number elements to ∼ 2×103 for high
atomic number elements. Thus, we may conclude that θmax/θmin � 1 for all
elements.

2.2.5 Total Rutherford Scattering Cross-Section

The total Rutherford scattering cross section can be approximated by using
the small angle approximation and integrating (2.32) over the complete solid
angle to obtain
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σRuth =
∫

dσRuth

dΩ
dΩ =

=2π

θmax∫
0

dσRuth

dΩ
sin θ dθ ≈ 2π D2

α−N

θmax∫
0

θ dθ

(θ2 + θ2
min)2

=

=π D2
α−N

θmax∫
0

d(θ2 + θ2
min)

(θ2 + θ2
min)2

=

=π D2
α−N

{
1

θ2
min

− 1
θ2
max + θ2

min

}
=

=π D2
α−N

1
θ2
min

{
1 − 1

1 + (θ2
max/θ2

min)

}
. (2.43)

In each Rutherford collision the angular deflections obey the Rutherford’s
expression with cut-offs at θmin and θmax given by (2.36) and (2.41), respec-
tively. The typical value for �/p in the two expressions can be estimated for
α particles with a typical kinetic energy of 5.5 MeV as follows:

�

p
=

�c

mαc2(υ/c)
≈ 200 MeV · fm

4 × 103 MeV 5 × 10−2
= 1 fm . (2.44)

Inserting the value for �/p into (2.36) and (2.41) for a typical α-particle
kinetic energy EK of 5.5 MeV combined with appropriate values for aTF and
R results in the following values for θmin and θmax in the gold atom

θmin ≈ �

paTF
≈ 1 fm

2 × 104 fm
= 5 × 10−5 rad (2.45)

θmax ≈ �

pR
≈ 1 fm

10 fm
= 10−1 rad . (2.46)

Rutherford’s condition stipulating that θmin � θmax � 1 is thus satisfied
and, since also θmax/θmin � 1, the total cross section for Rutherford’s scat-
tering given in (2.43) can be simplified, after inserting (2.2) and (2.36), to
read

σRuth ≈ π D2
α−N

θ2
min

= πa2
TF

{
2zZe2

4πεo�υ

}2

. (2.47)

The parameters of (2.47) are as follows:

aTF is the Thomas-Fermi atomic radius,
Z is the atomic number of the absorber foil,
z is the atomic number of the α particle,
υ is the velocity of the α particle,
Dα−N is the distance of closest approach between the α particle and nucleus

in a direct-hit collision (b = 0).

The differential Rutherford scattering cross section of (2.32) is plotted in
Fig. 2.4 in the form (1/D2

α−N)(dRRuth/dΩ) against the scattering angle θ for
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Fig. 2.4. Differential Rutherford scattering cross section [(1/D2
α−N)×(dσRuth/dΩ)]

plotted against the scattering angle θ for 5.5 MeV α particles interacting with
gold. The minimum and maximum scattering angles θmin = 5 × 10−5 rad and
θmax = 10−1 rad, respectively, are identified. For θ → 0 the value of the ordinate
approaches (1/θ4

min) ≈ 1.6 × 1017 (rad)−4

scattering of 5.5-MeV α particles [θmin = 5×10−5 rad, as given in (2.45) and
θmax = 10−1 rad, as given in (2.46)] on gold nuclei.

The solid curve of Fig. 2.4 represents the differential Rutherford scattering
cross section and contains the following components:

1. For θmin < θ < θmax the simple differential Rutherford scattering expres-
sion given by (2.29) applies resulting in a straight line on the log-log plot
in Fig. 2.4.

2. For θ < θmin (2.32) applies since it accounts for the screening of the
nuclear potential by orbital electrons and provides a finite value of
1/θ4

min = 1.6 × 1017 rad−4 for θ = 0 in Fig. 2.4.
3. For θ > θmax the finite size of the nuclear potential must be considered

and this lowers the value of the differential cross section from the value
predicted by the simple Rutherford result of (2.29).

2.2.6 Mean Square Scattering Angle
for Single Rutherford Scattering

Rutherford scattering is confined to very small angles and for energetic α
particles θmax � 1 rad. An α particle traversing a gold foil will undergo
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a large number of small angle θ scatterings and emerge from the foil with a
small cumulative angle Θ that represents a statistical superposition of a large
number of small angle deflections.

Large angle scattering events, on the other hand, are rare and a given
α particle will undergo at most only one such rare scattering event while
traversing the gold foil. As discussed in Sect. 2.1.2, Geiger and Marsden
found that only about 1 in 104 α particles traverses the 1 µm thick gold foil
with a scattering angle Θ exceeding 90◦. The range of Rutherford angular
scattering is thus divided into two distinct regions:

1. Single scattering events with large angle θ.
2. Multiple scattering events resulting in a small cumulative angle Θ.

In the multiple-scatter region, the mean square angle for single scattering θ2

is

θ2 =

∫
θ2 dσRuth

dΩ dΩ∫
dσRuth

dΩ dΩ
=

∫
θ2 dσRuth

dΩ dΩ

σRuth
. (2.48)

The denominator in (2.48) is the total Rutherford scattering cross section
σRuth given in (2.47). It is proportional to the square of the distance of
closest approach (Dα−N)2 and inversely proportional to θ2

min.
The integral in the numerator of (2.48) is in the small angle approximation

(sin θ ≈ θ) calculated as follows:

∫
θ2 dσRuth

dΩ
dΩ =2πD2

α−N

θmax∫
0

θ2 sin θdθ

(θ2 + θ2
min)2

≈2πD2
α−N

θmax∫
0

θ3dθ

(θ2 + θ2
min)2

=πD2
α−N

θmax∫
0

(θ2 + θ2
min)d(θ2 + θ2

min)
(θ2 + θ2

min)2

−πD2
α−N

θmax∫
0

θ2
mind(θ2 + θ2

min)
(θ2 + θ2

min)2

=πD2
α−N

{
ln(θ2 + θ2

min) +
θ2
min

θ2 + θ2
min

}θmax

0

=πD2
α−N

{
ln
(

1 +
θ2
max

θ2
min

)
+

θ2
min

θ2
max + θ2

min
− 1

}
. (2.49)

The mean square angle θ2 of (2.48) for a single scattering event, after incor-
porating the Rutherford total scattering cross section given in (2.47), is then
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given by the following relationship:

θ2 = θ2
min ln

(
1 +

θ2
max

θ2
min

)
− θ2

minθ2
max

θ2
min + θ2

max

= θ2
min ln

(
1 +

θ2
max

θ2
min

)
−
(

1
θ2
min

+
1

θ2
max

)−1

. (2.50)

The expression in (2.50) can be simplified using the Rutherford scattering
condition stipulating that θmin � θmax � 1 to obtain

θ2 ≈ 2 θ2
min ln

θmax

θmin
. (2.51)

2.2.7 Mean Square Scattering Angle
for Multiple Rutherford Scattering

Since the successive scattering collisions are independent events, the central-
limit theorem of statistics (see Sect. 4.4.6) shows that for a large number
n > 20 of such collisions, the distribution in angle will be Gaussian around the
forward direction [see (2.7)] with a cumulative mean square angle Θ2 related
to the mean square angle θ2 for a single scattering event given in (2.51).

The cumulative mean square angle Θ2 and the mean square angle θ2 for
a single scattering event are related as follows:

Θ2 = nθ2 , (2.52)

where n, the number of scattering events, is given as follows:

n =
Na

V
σRutht = ρ

NA

A
σRutht = πρ

NA

A

D2
α−N

θ2
min

t . (2.53)

In (2.53) the parameters are as follows:

σRuth is the total Rutherford cross-section given by (2.47),
Na/V is the number of atoms per volume equal to ρNA/A,
ρ is the density of the foil material,
t is the thickness of the foil,
A is the atomic mass number,
NA is the Avogadro’s number (NA = 6.023 × 1023 atom/gramatom),
Dα−N is the distance of closest approach between the α particle and the

nucleus in a direct hit interaction where b = 0 [see (2.2)],
θmin is the cut-off angle defined in (2.36).

The mean square angle Θ2 of the Gaussian distribution after combining
(2.51), (2.52) and (2.53) is then given by

Θ2 = 2πρ
NA

A
tD2

α−N ln
θmax

θmin
, (2.54)

indicating that the mean square angle Θ2 for multiple Rutherford scatter-
ing increases linearly with the foil thickness t. Inserting the expressions for
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θmin and θmax of (2.36) and (2.41), respectively, into (2.54), we now get the
following expression for the mean square angle Θ2 in Rutherford scattering

Θ2 =2π ρ
NA

A
tD2

α−N ln
1.4ao

Ro
3
√

AZ

=2π ρ
NA

A
t

{
zZe2

4πεoEK

}2

ln
1.4ao

Ro
3
√

AZ
, (2.55)

where ao = 0.5292 Å and Ro = 1.2 fm are the Bohr radius constant of (2.58)
below and the nuclear radius constant of (1.14), respectively.

2.3 Bohr Model of the Hydrogen Atom

Niels Bohr in 1913 combined Rutherford’s concept of the nuclear atom with
Planck’s idea of the quantized nature of the radiative process and developed
an atomic model that successfully deals with one-electron structures such as
the hydrogen atom, singly ionized helium, doubly ionized lithium, etc. The
model, known as the Bohr model of the atom, is based on four postulates
that combine classical mechanics with the concept of angular momentum
quantization.

The four Bohr postulates are stated as follows.

1. Postulate 1: Electrons revolve about the Rutherford nucleus in well-
defined, allowed orbits (often referred to as shells). The Coulomb force of
attraction Fcoul = Ze2/(4πεor

2) between the electrons and the positively
charged nucleus is balanced by the centripetal force Fcent = mυ2/r, where
Z is the number of protons in the nucleus (atomic number); r the radius
of the orbit or shell; me the electron mass; and υ the velocity of the
electron in the orbit.

2. Postulate 2: While in orbit, the electron does not lose any energy despite
being constantly accelerated (this postulate is in contravention of the
basic law of nature which states that an accelerated charged particle will
lose part of its energy in the form of radiation).

3. Postulate 3: The angular momentum L = meυr of the electron in an
allowed orbit is quantized and given as L = n�, where n is an integer re-
ferred to as the principal quantum number and � = h/(2π) is the reduced
Planck’s constant with h the Planck’s constant. The simple quantization
of angular momentum stipulates that the angular momentum can have
only integral multiples of a basic value (�).

4. Postulate 4: An atom or ion emits radiation when an electron makes
a transition from an initial allowed orbit with quantum number ni to a
final allowed orbit with quantum number nf for ni > nf .

The angular momentum quantization rule simply means that � is the lowest
angular momentum available to the electron (n = 1, ground state) and that
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higher n orbits (n > 1, excited states) can only have integer values of � for
the magnitude of the orbital angular momentum, where n is the principal
quantum number or the shell number. One-electron atomic structures are
now referred to as the Bohr atom.

2.3.1 Radius of the Bohr Atom

Assuming that Mnucleus ≈ ∞ and that Mnucleus � melectron, equating the
centrifugal force and the Coulomb force on the electron [see Fig. 2.5a]

meυ
2

rn
=

1
4πεo

Ze2

r2
n

(2.56)

and inserting the quantization relationship for the angular momentum of the
electron (third Bohr postulate)

L = meυnrn = meωnr2
n = n� , (2.57)

we get the following relationship for rn, the radius of the n-th allowed Bohr
orbit

rn =
4πεo

e2

(�c)2

mec2

(
n2

Z

)
= ao

(
n2

Z

)
= (0.5292 Å) ×

(
n2

Z

)
, (2.58)

where ao is called the Bohr radius of a one electron atom (ao = 0.5292 Å).

2.3.2 Velocity of the Bohr Electron

Inserting the expression for rn of (2.58) into (2.57) we obtain the following
expression for υn/c, where υn is the velocity of the electron in the n-th allowed

Fig. 2.5. Schematic diagram of the Rutherford–Bohr atomic model. In a the elec-
tron revolves about the center of the nucleus M where the nuclear mass M → ∞, in
b the nuclear mass M is finite and both the electron as well as the nucleus revolve
about their common center-of-mass
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Bohr orbit

υn

c
=

n �c

mec2rn
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e2

4πεo

1
�c

(
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n
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=α

(
Z

n

)
≈ 1

137

(
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n

)
≈ (7 × 10−3) ×

(
Z

n

)
, (2.59)

where α is the so-called fine structure constant (∼ 1/137).
Since, as evident from (2.59), the electron velocity in the ground state

(n = 1) orbit of hydrogen is less than 1% of the speed of light c, the use
of classical mechanics in one-electron Bohr atom is justifiable. Both Ruther-
ford and Bohr used classical mechanics in their momentous discoveries of
the atomic structure and the kinematics of electronic motion, respectively.
On the one hand, nature provided Rutherford with an atomic probe (natu-
rally occurring α particles) having just the appropriate energy (few MeV) to
probe the atom without having to deal with relativistic effects and nuclear
penetration. On the other hand, nature provided Bohr with the hydrogen
one-electron atom in which the electron can be treated with simple classical
relationships.

2.3.3 Total Energy of the Bohr Electron

The total energy En of the electron when in one of the allowed orbits (shells)
with radius rn is the sum of the electron’s kinetic energy EK and potential
energy EP

En =EK + EP =
mev

2
n

2
+
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rn∫
∞
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2

(
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)2
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2
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(
Z

n

)2

= −ER

(
Z

n

)2

=

=(−13.61 eV) ×
(

Z

n

)2

. (2.60)

Equation (2.60) represents the energy quantization of allowed bound elec-
tronic states in a one-electron atom. This energy quantization is a direct
consequence of the simple angular momentum quantization L = n� intro-
duced by Bohr. ER is called the Rydberg energy (ER = 13.61 eV).

By convention the following conditions apply:

• A stationary free electron, infinitely far from the nucleus has zero energy.
• An electron bound to the nucleus can only attain discrete allowed negative

energy levels, as predicted by (2.60).
• An electron with a positive energy is free and moving in a continuum of

kinetic energies.
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• The five lowest bound energy levels (n = 1 through n = 5) of the hydrogen
atom according to (2.60) are: −13.6 eV, −3.4 eV, −1.51 eV, −0.85 eV,
and −0.54 eV.

The energy level diagram for a hydrogen atom is shown in Fig. 2.6. It provides
an excellent example of energy level diagrams for one-electron structures such
as hydrogen, singly ionized helium atom, or doubly ionized lithium atom.
The energy levels for hydrogen were calculated from (2.60) using Z = 1. The
following features can be easily identified:

• The negative energy levels of the electron represent discrete allowed elec-
tron states bound to the nucleus with a given binding energy.

• The positive energy levels represent a free electron in a continuum of
allowed kinetic energies.

• The zero energy level separates the discrete allowed bound electron states
from the continuum of kinetic energies associated with a free electron.

• Electron in n = 1 state is said to be in the ground state; an electron in a
state with n > 1 is said to be in an excited state.

• Energy must be supplied to an electron in the ground state of a hydrogen
atom to move it to an excited state. An electron cannot remain in an

Fig. 2.6. Energy level diagram for the hydrogen atom as example of energy level
diagrams for one-electron structures. In the ground state (n = 1) the electron is
bound to the nucleus with a binding energy of 13.6 eV
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excited state; rather it will move to a lower level shell and the transition
energy will be emitted in the form of a photon.

2.3.4 Transition Frequency and Wave Number

The energy hν of a photon emitted as a result of an electronic transition
from an initial allowed orbit with n = ni to a final allowed orbit with n = nf ,
where ni > nf , is given by

hν = Ei − Ef = −ERZ2
[

1
n2

i
− 1

n2
f

]
. (2.61)

The wave number of the emitted photon is then given by

k =
1
λ

=
ν

c
=

ER

2π�c
Z2

[
1
n2

f
− 1

n2
i

]
= R∞Z2

[
1
n2

f
− 1

n2
i

]
=

=(109 737 cm−1) × Z2
[

1
n2

f
− 1

n2
i

]
, (2.62)

where R∞ is the so-called Rydberg constant (109 737 cm−1).

2.3.5 Atomic Spectra of Hydrogen

Photons emitted by excited atoms are concentrated at a number of discrete
wavelengths (lines). The hydrogen spectrum is relatively simple and results
from transitions of a single electron in the hydrogen atom. Table 2.1 gives a
listing for the first five known series of the hydrogen emission spectrum. It
also provides the limit in eV and Å for each of the five series.

Table 2.1. Characteristics of the first five emission series of the hydrogen atom

Name of
series

Spectral
range

Final
orbit
nf

Initial
orbit
ni

Limit of
series (eV)

Limit of
series (Å)

Lyman ultraviolet 1 2,3,4 . . . ∞ 13.6 912

Balmer visible 2 3,4,5 . . . ∞ 3.4 3646

Paschen infrared 3 4,5,6 . . . ∞ 1.5 8265

Brackett infrared 4 5,6,7 . . . ∞ 0.85 14584

Pfund infrared 5 6,7,8 . . . ∞ 0.54 22957
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2.3.6 Correction for Finite Mass of the Nucleus

A careful experimental study of the hydrogen spectrum has shown that the
Rydberg constant for hydrogen is 109 678 cm−1 rather than the R∞ =
109 737 cm−1 value that Bohr derived from first principles. This small dis-
crepancy of the order of one part in 2000 arises from Bohr’s assumption
that the nuclear mass (proton in the case of hydrogen atom) M is infinite
and that the electron revolves about a point at the center of the nucleus, as
shown schematically in Fig. 2.5a on page 60.

When the finite mass of the nucleus M is taken into consideration, both
the electron and the nucleus revolve about their common center-of-mass, as
shown schematically in Fig. 2.5b. The total angular momentum L of the
system is given by the following expression:

L = me(r − x)2ω + Mx2ω , (2.63)

where

r is the distance between the electron and the nucleus,
x is the distance between the center-of-mass and the nucleus,
r − x is the distance between the center-of-mass and the electron.

After introducing the relationship

me(r − x) = Mx (2.64)

into (2.63), the angular momentum L for the atomic nucleus/electron system
may be written as

L = Mx2ω + me(r − x)2ω =
meM

me + M
r2ω = µr2ω , (2.65)

where µ is the so-called reduced mass of the nucleus/electron system given as

µ =
meM

me + M
=

me

1 + me
M

. (2.66)

All Bohr relationships, given above for one-electron structures in (2.58)
through (2.62) with a nuclear mass M → ∞, are also valid for finite nuclear
masses M as long as the electron rest mass me in these relationships is
replaced with the appropriate reduced mass µ.

For the hydrogen atom µ = me/(1 + me/Mproton) = 0.9995 me and the
Rydberg constant RH is

RH =
µ

me
R∞ =

1
1 + me

Mproton

R∞ =
109 737 cm−1

1+ 1
1837

= 109 677 cm−1 ,

(2.67)

representing a 1 part in 2000 correction, in excellent agreement with the
experimental result.
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2.3.7 Positronium

The positronium “atom” (Ps) is a semi-stable, hydrogen-like configuration
consisting of a positron and electron revolving about their common center-of-
mass before the process of annihilation occurs. The lifetime of the positronium
is about 10−7 s. The reduced mass µ for the positronium “atom” is me/2;
the Rydberg constant RPs = R∞/2; the radius of orbits (rPs)n = 2aon

2; and
the ground state energy (EPs)n = ER/(2n2).

2.3.8 Muonic Atom

A muonic atom consists of a nucleus of charge Ze and a negative muon
revolving about it. The muonic mass Mmuon is 207me. The reduced mass for
a muonic atom with Z = 1 is 186me; the Rydberg constant Rmuon = 186R∞;
and the ground state energy Emuon = 186ER.

2.3.9 Quantum Numbers

Bohr’s atomic theory predicts quantized energy levels for the one-electron
hydrogen atom that depend only on n, the principal quantum number, since
En = −ER/n2, where ER is the Rydberg energy.

In contrast, the solution of the Schrödinger’s equation in spherical coordi-
nates for the hydrogen atom gives three quantum numbers for the hydrogen
atom: n, , and m�, where:

n is the principal quantum number with allowed values n = 1, 2, 3 . . ., giving
the electron binding energy in shell n as En = −ER/n2,

 is the orbital angular momentum quantum number with the following
allowed values  = 0, 1, 2, 3, . . . n − 1, giving the electron orbital angular
momentum L = �

√
( + 1),

m� is referred to as the magnetic quantum number giving the z component of
the orbital angular momentum Lz = m�� and has the following allowed
values: m� = −,− + 1,− + 2, . . .  − 2,  − 1, .

Experiments by Otto Stern and Walter Gerlach in 1921 have shown that
the electron, in addition to its orbital angular momentum �L, possesses an
intrinsic angular momentum. This intrinsic angular momentum is referred
to as the spin �S and is specified by two quantum numbers: s = 1/2 and
ms that can take two values (1/2 or −1/2). The electron spin is given as
S = �

√
s(s + 1) = �

√
3/2 and its z component as Sz = ms�.

• The orbital and spin angular momenta of an electron actually interact
with one another. This interaction is referred to as the spin-orbit coupling
and results in a total electronic angular momentum �J that is the vector
sum of the orbital and intrinsic spin components, i.e., �J = �L+�S. The total
angular momentum �J has the value J = �

√
j(j + 1) where the possible



66 2 Rutherford–Bohr Atomic Model

values of the quantum number j are:
| − s| , | − s + 1| , . . . | + s|, with s = 1/2 for all electrons.

• The z component of the total angular momentum has the value Jz = mj�,
where the possible values of mj are: −j, −j +1, −j +2, . . . j − 2, j − 1, j.

• The state of an atomic electron is thus specified with a set of four quantum
numbers:
– n, , m�, ms when there is no spin-orbit interaction
or
– n, , j, mj when there is spin-orbit interaction.

2.3.10 Successes and Limitations of the Bohr Atomic Model

With his four postulates and the innovative idea of angular momentum quan-
tization Bohr provided an excellent extension of the Rutherford atomic model
and succeeded in explaining quantitatively the photon spectrum of the hy-
drogen atom and other one-electron structures such as singly ionized helium,
doubly ionized lithium, etc.

According to the Bohr atomic model, each of the five known series of the
hydrogen spectrum arises from a family of electronic transitions that all end
at the same final state nf . The Lyman (nf = 1), Brackett (nf = 4), and
Pfund (nf = 5) series were not known at the time when Bohr proposed his
model; however, the three series were discovered soon after Bohr predicted
them with his model.

In addition to its tremendous successes, the Bohr atomic model suffers
two severe limitations:

• The model does not predict the relative intensities of the photon emission
in characteristic orbital transitions

• The model does not work quantitatively for multi-electron atoms.

2.3.11 Correspondence Principle

Niels Bohr postulated that the smallest change in angular momentum L of
a particle is equal to � where � is the reduced Planck’s constant (2π� = h).
This is seemingly in drastic disagreement with classical mechanics where the
angular momentum as well as the energy of a particle behave as continuous
functions. In macroscopic systems the angular momentum quantization is not
noticed because � represents such a small fraction of the angular momentum;
on the atomic scale, however, � may be of the order of the angular momentum
making the � quantization very noticeable.

The correspondence principle proposed by Niels Bohr in 1923 states that
for large values of the principal quantum number n (i.e., for n → ∞) the
quantum and classical theories must merge and agree. In general, the corre-
spondence principle stipulates that the predictions of the quantum theory for
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any physical system must match the predictions of the corresponding clas-
sical theory in the limit where the quantum numbers specifying the state of
the system are very large. This principle can be used to confirm the Bohr
angular momentum quantization (L = n�) postulate as follows:

Consider an electron that makes a transition from an initial orbit ni = n
to a final orbit nf = n − ∆n, where n is large and ∆n � n. The transition
energy ∆E and the transition frequency νtrans of the emitted photon are
given as follows:

∆E = Einitial − Efinal (2.68)

and

νtrans =
∆E

2π�
. (2.69)

Since n is large, we can calculate ∆E from the derivative with respect to n
of the total orbital energy En given in (2.60) to obtain

dEn

dn
= 2ER

Z2

n3 . (2.70)

To get ∆E we express (2.70) as follows:

∆E = 2ERZ2 ∆n

n3 , (2.71)

resulting in the following expression for the transition frequency νtrans

νtrans =
∆E

2π�
=

2ERZ2

2π�

∆n

n3 =
{

Ze2

4πεo

}2
me

2π�3

∆n

n3 . (2.72)

Recognizing that the velocity υ and angular velocity ω are related through
υ = ωr, we get from (2.56) the following expression

Ze2

4πεo
= meυ

2r = meω
2r3, resulting in

{
Ze2

4πεo

}2

= m2
eω

4r6 .

(2.73)

The angular momentum was given in (2.57) as

L = n� = meυr = meωr2, resulting in n3
�

3 = m3
eω

3r6 .

(2.74)

Combining (2.73) and (2.74) with (2.72), we get the following expression for
the transition frequency νtrans

νtrans =
{

Ze2

4πεo

}2
me

2π�3

∆n

n3 =
m2

eω
4r6me∆n

2πm3
eω

3r6 =
ω

2π
∆n . (2.75)

After incorporating expressions for rn and υn given in (2.58) and (2.59),
respectively, the classical orbital frequency νorb for the orbit n is given as

νorb =
ωn

2π
=

υn

2πrn
=

αc

2πaon3 . (2.76)
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We note that νtrans of (2.75) equals to νorb of (2.76) for large values of n
and ∆n = 1, confirming the correspondence between quantum and classical
physics for n → ∞.

We now compare the transition frequency νtrans and orbital frequency νorb
for a small n transition from ni = 2 to nf = 1 in a hydrogen atom (Z = 1)
and obtain

νorb(n = 2) =
υ2

2πr2
=

αc

16πao
= 8.24 × 1014 s−1 (2.77)

and

νtrans =
E2 − E1

2π�
=

ER

2π�

{
1 − 1

4

}
=

3ER

8π�
=

3αc

16πao

=24.7 × 1014 s−1 = 3νorb (2.78)

From (2.77) and (2.78) we note that for low values of n the orbital and
transition frequencies are different, in contrast to the situation at large n
where νtrans = νorb, as shown by (2.75) and (2.76). Thus at large n there
is agreement between quantum and classical physics, as predicted by the
correspondence principle enunciated by Niels Bohr, while for low n quantum
and classical physics give different results.

2.4 Multi-electron Atoms

A multielectron atom of atomic number Z contains a nucleus of charge +Ze
surrounded by Z electrons, each of charge −e and revolving in an orbit about
the nucleus. The kinematics of electron motion and energy levels of electrons
in a multi-electron atom are governed by

1. kinetic energy of orbital electron,
2. attractive Coulomb force between the electron and the nucleus,
3. repulsive Coulomb force exerted on the electron by the other Z−1 atomic

electrons,
4. weak interactions involving orbital and spin angular momenta of orbital

electrons,
5. minor interactions between the electron and nuclear angular momenta,
6. relativistic effects and the effect of the finite nuclear size.

2.4.1 Exclusion Principle

Wolfgang Pauli in 1925 eloquently answered the question on the values of
quantum numbers assigned to individual electrons in a multi-electron atom.
Pauli’s exclusion principle that states: “In a multielectron atom there can
never be more than one electron in the same quantum state” is important for
the understanding of the properties of multi-electron atoms and the periodic
table of elements.
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• According to Pauli’s exclusion principle in a multi-electron atom no two
electrons can have all four quantum numbers identical.

• The energy and position of each electron in a multi-electron atom are
most affected by the principal quantum number n. The electrons that
have the same value of n in an atom form a shell.

• Within a shell, the energy and position of each electron are affected by
the value of the orbital angular momentum quantum number . Electrons
that have the same value of  in a shell form a sub-shell.

• The specification of quantum numbers n and  for each electron in a
multi-electron atom is referred to as the electronic configuration of the
atom.

• Pauli’s exclusion principle confirms the shell structure of the atom as well
as the sub-shell structure of individual atomic shells:
– Number of electrons in sub-shells that are labeled with quantum num-

bers n, , m�: 2(2 + 1)
– Number of electrons in sub-shells that are labeled with quantum num-

bers n, , j: (2j + 1)

– Number of electrons in a shell: 2
n−1∑
�=0

(2 + 1) = 2n2

The main characteristics of atomic shells and sub-shells are given in Tables 2.2
and 2.3, respectively. The spectroscopic notation for electrons in the K, L,
and M shells and associated sub-shells is given in Table 2.4.

Table 2.2. Main characteristics of atomic shells

Principal quantum number n 1 2 3 4 5
Spectroscopic notation K L M N O
Maximum number of electrons 2 8 18 32 –

Table 2.3. Main characteristics of atomic subshells

Orbital quantum number � 0 1 2 3
Spectroscopic notation s p d f
Maximum number of electrons 2 6 10 14

Table 2.4. Notation for electrons in the K, L, M shells of a multi-electron atom

Principal
quantum
number n

Orbital angular momentum � and total angular momentum j
of electron
s1/2 p1/2 p3/2 d3/2 d5/2 f

1 K
2 LI LII LIII

3 MI MII MIII MIV MV
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2.4.2 Hartree’s Approximation for Multi-electron Atoms

Bohr’s theory works well for one-electron structures (hydrogen atom, singly
ionized helium, doubly ionized lithium, etc.) but does not apply directly to
multi-electron atoms because of the repulsive Coulomb interactions among
electrons constituting the atom. These interactions disrupt the attractive
Coulomb interaction between an orbital electron and the nucleus and make
it impossible to predict accurately the potential that influences the kinemat-
ics of the orbital electron. Douglas Hartree proposed an approximation that
predicts the energy levels and radii of multi-electron atoms reasonably well
despite its inherent simplicity.

Hartree assumed that the potential seen by a given atomic electron is
given by

V (r) = −Zeff e2

4πεo

1
r

, (2.79)

where

Zeff is the effective atomic number,
Zeffe is an effective charge that accounts for the nuclear charge Ze as well

as for the effects of all other atomic electrons.

Hartree’s calculations show that in multi-electron atoms the effective
atomic number Zeff for K-shell electrons (n = 1) has a value of about Z − 2.
Charge distributions of all other atomic electrons produce a charge of about
−2e inside a sphere with the radius of the K shell, partially shielding the K-
shell electron from the nuclear charge +Ze and producing an effective charge
Zeffe = (Z − 2)e.

For outer shell electrons Hartree’s calculations show that the effective
atomic number Zeff approximately equals n, where n specifies the principal
quantum number of the outermost filled shell of the atom in the ground state.

Based on Bohr’s one-electron atom model, Hartree’s relationships for the
radii rn of atomic orbits (shells) and the energy levels En of atomic orbits
are given as follows:

rn =
aon

2

Zeff
(2.80)

and

En = −ER

(
Zeff

n

)2

. (2.81)

Hartree’s approximation for the K-shell (n = 1) electrons in multi-electron
atoms then results in the following expressions for the K-shell radius and
K-shell binding energy

r1 = rK =
ao

Z − 2
(2.82)
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and

E1 = E(K) = −ER(Z − 2)2 , (2.83)

showing that the K-shell radii are inversely proportional to Z − 2 and the
K-shell binding energies increase as (Z − 2)2.

• K-shell radii range from a low of 0.5×10−2 Å for very high atomic number
elements to 0.5 Å for hydrogen.

• K-shell binding energies (ionization potentials of K shell) range from
13.6 eV for hydrogen to 9 keV for copper, 33 keV for iodine, 69.5 keV for
tungsten, 88 keV for lead, and 115 keV for uranium. For Z > 30, (2.83)
gives values in good agreement with measured data. For example, the
calculated and measured K-shell binding energies for copper are 9.9 keV
and 9 keV, respectively, for tungsten 70.5 keV and 69 keV, respectively,
and for lead 87 keV and 88 kev, respectively.

Hartree’s approximation for outer shell electrons in multi-electron atoms with
(Zeff ≈ n) predicts the following outer shell radius (radius of atom) and
binding energy of outer shell electrons (ionization potential of atom)

routershell ≈ nao = n × (0.53 Å) (2.84)

and

Eouter shell ≈ −ER = −13.6 eV . (2.85)

The radius of the K-shell constricts with an increasing Z; the radius of the
outermost shell (atomic radius), on the other hand, increases slowly with Z,
resulting in a very slow variation of the atomic size with the atomic number Z.

A comparison between Bohr’s relationships for one-electron atoms and
Hartree’s relationships for multi-electron atoms is given in Table 2.5. The
table compares expressions for the radii of shells, velocities of electrons in
shells, energy levels of shells, and wave-number for electronic transitions be-
tween shells.

A simplified energy level diagram for tungsten, a typical multi-electron
atom of importance in medical physics for its use as target material in x-ray
tubes, is shown in Fig. 2.7. The K, L, M, and N shells are completely filled
with their normal allotment of electrons (2n2), the O shell has 12 electrons
and the P shell has 2 electrons.

The n > 1 shells are actually split into subshells, as discussed in
Sect. 3.1.1. In Fig. 2.7 the fine structure of shells is represented by only
one energy level that is equal to the average energy of all subshells for a
given n.

• A vacancy in a shell with a low quantum number n will result in high-
energy transitions in the keV range referred to as x-ray transitions.

• A vacancy in a shell with a high quantum number n will result in relatively
low-energy transitions (in the eV range) referred to as optical transitions.
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Table 2.5. Expressions for the radius, velocity, energy and wave-number of atomic
structure according to Bohr’s one-electron model and Hartree’s multi-electron
model

One-electron atom
Bohr theory

Multi-electron atom
Hartree approximation

Zeff (for n = 1) ≈ Z − 2
Zeff (for outer shell) ≈ n

Radius rn rn = ao
n2

Z

r1 = ao
Z

ao = 0.53 Å

rn = ao
n2

Zeff

r1 = rK ≈ ao
Z−2

router shell ≈ nao

Velocity υn υn = αcZ
n

υ1 = αcZ

α = 1
137

υn = αcZeff
n

υ1 = υK ≈ αc (Z − 2)

υouter shell ≈ αc

Energy En En = −ER
{

Z
n

}2

E1 = −ERZ2

ER = 13.6 eV

En = −ER

{
Zeff

n

}2

E1 = EK ≈ −ER(Z − 2)2

Eouter shell ≈ −ER

Wave-number k k = R∞Z2
{

1
n2
f

− 1
n2
i

}
R∞ = 109 737 cm−1

k = R∞Z2
eff

{
1

n2
f

− 1
n2
i

}
Zeff(Kα) ≈ Z − 1

k (Kα) ≈ 3
4R∞(Z − 1)2

2.4.3 Periodic Table of Elements

The chemical properties of atoms are periodic functions of the atomic num-
ber Z and are governed mainly by electrons with the lowest binding energy,
i.e., by outer shell electrons commonly referred to as valence electrons. The
periodicity of chemical and physical properties of elements (periodic law) was
first noticed by Dmitry Mendeleyev, who in 1869 produced a periodic table
of the then-known elements.

Since Mendeleyev’s time the periodic table of elements has undergone sev-
eral modifications as the knowledge of the underlying physics and chemistry
expanded and new elements were discovered and added to the pool. However,
the basic principles elucidated by Mendeleyev are still valid today.

In a modern periodic table of elements each element is represented by
its chemical symbol and its atomic number. The periodicity of properties of
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Fig. 2.7. A simplified energy level diagram for the tungsten atom, a typical example
of a multi-electron atom

elements is caused by the periodicity in electronic structure that follows the
rules of the Pauli exclusion principle (see Sect. 2.4.1).

The periodic table of elements is now most commonly arranged in the form
of 7 horizontal rows or periods and 8 vertical columns or groups. Elements
with similar chemical and physical properties are listed in the same column.

The periods in the periodic table are of increasing length as follows:

• Period 1 has two elements: hydrogen and helium.
• Periods 2 and 3 have 8 elements each.
• Periods 4 and 5 have 18 elements each.
• Period 6 has 32 elements condensed into 18 elements and the series of 14

lanthanons with atomic numbers Z from 57 through 71 is listed separately.
Synonyms for lanthanon are lanthanide, lanthanoid, rare earth, and rare-
earth element.
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• Period 7 is still incomplete and the series of 14 actinons with atomic
numbers Z from 89 through 103 is listed separately. Synonyms for actinon
are actinide and actinoid.

The groups in the periodic table are arranged into 8 distinct groups,
each group split into subgroups A and B. Each subgroup has a complement
of electrons in the outermost atomic shell (in the range from 1 to 8) that
determines its valence, i.e., chemical property.

Table 2.6 gives a simplified modern periodic table of elements with atomic
numbers Z ranging from 1 (hydrogen) to 109 (meitnerium). Several groups
of elements have distinct names, such as alkali elements (group I.A), al-
kali earth elements (group II.A), halogens (group VII.A) and noble gases
(group VIII.A). Elements of other groups are grouped into transition met-
als, non-transition metals, non-metals (including halogens of group VII.A),
lanthanons and actinons.

2.4.4 Ionization Potential of Atoms

The ionization potential (IP) of an atom is defined as the energy required for
removal of the least bound electron (i.e., the outer shell or valence electron)
from the atom. The ER value predicted by Hartree [see (2.85)] is only an
approximation and it turns out, as shown in Fig. 2.8, that the ionization
potentials of atoms vary periodically with Z from hydrogen at 13.6 eV to a
high value of 24.6 eV for helium down to about 4.5 eV for alkali elements
that have only one outer shell (valence) electron.

The highest atomic ionization potential in nature is the ionization poten-
tial of the helium atom at 24.6 eV. In contrast, the ionization potential of a
singly ionized helium atom (He+) can be calculated easily from the Bohr’s
theory using (2.60) with Z = 2 and n = 1 to obtain an IP of 54.4 eV. This
value is substantially higher than the IP for a helium atom because of the
two-electron repulsive interaction that lowers the IP in the neutral helium
atom.

A plot of the ionization potential IP against atomic number Z, shown in
Fig. 2.8, exhibits peaks and valleys in the range from 4.5 eV to 24.6 eV, with
the peaks occurring for noble gases (outer shell filled with 8 electrons) and
valleys for alkali elements (one solitary electron in the outer shell). Note: the
ionization potential of lead is a few eV in contrast to the ionization potential
of the K shell in lead that is 88 keV.

2.5 Experimental Confirmation
of the Bohr Atomic Model

The Bohr atomic model postulates that the total energy of atomic electrons
bound to the nucleus is quantized. The binding energy quantization follows
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Table 2.6. Simplified periodic table of elements covering 109 known elements and
consisting of 7 periods 8 groups, each group divided into subgroups A and B
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Fig. 2.8. Ionization potential (ionization energy) of atoms against atomic num-
ber Z. The noble gases that contain the most stable electronic configurations and
the highest ionization potentials are identified, as are the alkali elements that con-
tain the least stable electronic configurations and the lowest ionization potentials
with only one valence electron in the outer shell. The circled numbers indicate the
number of atoms in a given period

from the simple quantization of the electron angular momentum L = n�.
Direct confirmation of the electron binding energy quantization was obtained
from the following three experiments:

1. Measurement of absorption and emission spectra of mono-atomic gases.
2. Moseley’s experiment.
3. Franck-Hertz experiment.

2.5.1 Emission and Absorption Spectra of Mono-Atomic Gases

In contrast to the continuous spectra emitted from the surface of solids at high
temperatures, the spectra emitted by free excited atoms of gases consist of
a number of discrete wavelengths. An electric discharge produces excitations
in the gas, and the radiation is emitted when the gas atoms return to their
ground state. Correct prediction of line spectra emitted or absorbed by mono-
atomic gases, especially hydrogen, serves as an important confirmation of the
Bohr atomic model.

• The emission spectrum is measured by first collimating the emitted ra-
diation by a slit, and then passing the collimated slit-beam through an
optical prism or a diffraction grating. The prism or grating breaks the
beam into its wavelength spectrum that is recorded on a photographic
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plate. Each kind of free atom produces its own characteristic emission
line, making spectroscopy a useful complement to chemical analysis.

• In addition to the emission spectrum, it is also possible to study the
absorption spectrum of gases. The experimental technique is similar to
that used in measurement of the emission spectrum except that in the
measurement of the absorption spectrum a continuous spectrum is made
to pass through the gas under investigation. The photographic plate shows
a set of unexposed lines that result from the absorption by the gas of
distinct wavelengths of the continuous spectrum.

• For every line in the absorption spectrum of a given gas there is a cor-
responding line in the emission spectrum; however, the reverse is not
true. The lines in the absorption spectrum represent transitions to ex-
cited states that all originate in the ground state. The lines in the emission
spectrum, on the other hand, represent not only transitions to the ground
state but also transitions between various excited states. The number of
lines in an emission spectrum will thus exceed the number of lines in the
corresponding absorption spectrum.

2.5.2 Moseley’s Experiment

Henry Moseley in 1913 carried out a systematic study of Kα x rays pro-
duced by all then-known elements from aluminum to gold using the Bragg
technique of x-ray scattering from a crystalline lattice of a potassium fer-
rocyanide crystal. The characteristic Kα x rays (electronic transition from
ni = 2 to nf = 1; see Sect. 3.1.1) were produced by bombardment of the
targets with energetic electrons. The results of Moseley’s experiments serve
as an excellent confirmation of the Bohr atomic theory.

From the relationship between the measured scattering angle φ and the
known crystalline lattice spacing d (Bragg’s law: 2d sin φ = mλ, where m is
an integer) Moseley determined the wavelengths λ of Kα x rays for various
elements and observed that the

√
ν where ν is the frequency (ν = c/λ) of

the Kα x rays was linearly proportional to the atomic number Z. He then
showed that all x-ray data could be fitted by the following relationship

√
ν =

√
a(Z − b) , (2.86)

where a and b are constants.
The same

√
ν versus Z behavior also follows from the Hartree-type ap-

proximation that in general predicts the following relationship for the wave-
number k

k =
1
λ

=
ν

c
= R∞Z2

eff

(
1
n2

f
− 1

n2
i

)
(2.87)

or

√
ν = Zeff

√
cR∞

(
1
n2

f
− 1

n2
i

)
. (2.88)



78 2 Rutherford–Bohr Atomic Model

For Kα characteristic x rays, where ni = 2 and nf = 1, Hartree’s expression
gives

k(Kα) =
3
4
R∞Z2

eff =
3
4
R∞(Z − 1)2 . (2.89)

Note that in the Kα emission Zeff = Z − 1 rather than Zeff = Z − 2 which
is the Zeff predicted by Hartree for neutral multi-electron atoms. In the Kα

emission there is a vacancy in the K shell and the L-shell electron making
the Kα transition actually sees an effective charge (Z − 1)e rather than an
effective charge (Z −2)e, as is the case for K-shell electrons in neutral atoms.

2.5.3 Franck-Hertz Experiment

Direct confirmation that the internal energy states of an atom are quantized
came from an experiment carried out by James Franck and Gustav Hertz in
1914. The experimental set up is shown schematically in Fig. 2.9a.

• An evacuated vessel containing three electrodes (cathode, anode and
plate) is filled with mercury vapor.

• Electrons are emitted thermionically from the heated cathode and ac-
celerated toward the perforated anode by a potential V applied between
cathode and anode.

• Some of the electrons pass through the perforated anode and travel to the
plate, provided their kinetic energy upon passing through the perforated
anode is sufficiently high to overcome a small retarding potential Vret that
is applied between the anode and the plate.

• The experiment involves measuring the electron current reaching the plate
as a function of the accelerating voltage V .

 (a)                                                                         (b) 

Fig. 2.9. a Schematic diagram of the Franck-Hertz experiment; b Typical result
of the Franck-Hertz experiment using mercury vapor
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• With an increasing potential V the current at the plate increases with
V until, at a potential of 4.9 V, it abruptly drops, indicating that some
interaction between the electrons and mercury atoms suddenly appears
when the electrons attain a kinetic energy of 4.9 eV. The interaction was
interpreted as an excitation of mercury atoms with a discrete energy of
4.9 eV; the electron raising an outer shell mercury electron to its first
excited state and, in doing so, losing its kinetic energy and its ability to
overcome the retarding potential Vret between the anode and the plate.

• The sharpness of the current drop at 4.9 V indicates that electrons with
energy below 4.9 eV cannot transfer their energy to a mercury atom,
substantiating the existence of discrete energy levels for the mercury atom.

• With voltage increase beyond 4.9 V the current reaches a minimum and
then rises again until it reaches another maximum at 9.8 V, indicating that
some electrons underwent two interactions with mercury atoms. Other
maxima at higher multiples of 4.9 V were observed with careful experi-
ments. Typical experimental results are shown in Fig. 2.9b.

• In contrast to the minimum excitation potential of the outer shell electron
in mercury of 4.9 eV, the ionization potential of mercury is 10.4 eV.

• A further investigation showed a concurrent emission of 2536 Å ultraviolet
rays that, according to Bohr model, will be emitted when the mercury
atom reverts from its first excited state to the ground state through a
4.9 eV optical transition.

• The photon energy Eν= 4.9 eV is given by the standard relationship

Eν = hν = 2π�c/λ , (2.90)

from which the wavelength of the emitted photon can be calculated as

λ =
2π�c

Eν
=

2π 197.4 × 106 eV 10−5 Å
4.9 eV

= 2536 Å . (2.91)

Ultraviolet photons with a wavelength of 2536 Å were actually observed
accompanying the Franck-Hertz experiment, adding to the measured
peaks in the current versus voltage diagram of Fig. 2.9b another means
for the confirmation of the quantization of atomic energy levels.

2.6 Schrödinger Equation
for the Ground State of Hydrogen

In solving the Schrödinger equation for a hydrogen or hydrogen-like one-
electron atom, a 3-dimensional approach must be used to account for the
electron motion under the influence of a central force. The Coulomb potential
binds the electron to the nucleus and the coordinate system is chosen such
that its origin coincides with the center of the nucleus. To account for the
motion of the nucleus we use the reduced mass µ of (2.66) rather than the
pure electron rest mass me in the calculation.
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The time-independent Schrödinger wave equation was given in (1.79) as

− �
2

2µ
∇2ψ + V (r)ψ = Eψ , (2.92)

where

V (r) is the potential energy of the particle,
E is the total energy of the particle
∇2 is the Laplacian operator in Cartesian, cylindrical or spherical coor-

dinates,
µ is the reduced mass of the electron/proton system given in (2.66).

For the hydrogen atom, the potential V (r) is represented by the spherically-
symmetric Coulomb potential as follows:

V (r) = − 1
4πεo

e2

r
. (2.93)

The Schrödinger wave equation is separable in spherical coordinates (r, θ, φ)
and for the hydrogen atom it is written by expressing the Laplacian operator
in spherical coordinates as follows:

− �
2

2µ

{
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 θ

∂2

∂φ2

}

ψ(r, θ, φ) − e2

4πεo

1
r
ψ(r, θ, φ) = Eψ(r, θ, φ) , (2.94)

with (r, θ, φ) the spherical coordinates of the electron.
The boundary conditions stipulate that |ψ|2 must be an integrable func-

tion. This implies that the wave function ψ(r, θ, φ) vanishes as r → ∞, i.e.,
the condition that lim

r→∞ ψ(r, θ, φ) = 0 must hold.

Equation (2.94) can be solved with the method of separation of variables
by expressing the function ψ(r, θ, φ) as a product of three functions: R(r),
Θ(θ), and Φ(φ); each of the three functions depends on only one of the three
spherical variables, i.e.,

ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ) . (2.95)

Inserting (2.95) into (2.94) and dividing by R(r)Θ(θ)Φ(φ) we get the
following expression

− �
2

2µ

{
1
r2

1
R

∂

∂r

(
r2 ∂R

∂r

)
+

1
r2 sin θ

1
Θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
+

1
r2 sin2 θ

1
Φ

∂2Φ

∂φ2

}

− e2

4πεo

1
r

= E , (2.96)

Separation of variables then results in the following three ordinary differential
equations

d2Φ

dφ2 = −m�Φ , (2.97)
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− 1
sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

m2
�Θ

sin2 θ
= ( + 1)Θ , (2.98)

and

1
r2

d

dr

(
r2 dR

dr

)
+

2µ

�2

(
E +

e2

4πεo

)
R = ( + 1)

R

r2 , (2.99)

with separation constants m� and ( + 1), where m� and  are referred to as
the magnetic and orbital quantum numbers, respectively.

Equation (2.99) for R(r) gives physical solutions only for certain values
of the total energy E. This indicates that the energy of the hydrogen atom
is quantized, as suggested by the Bohr theory, and predicts energy states
that are identical to those calculated for the Bohr model of the hydrogen
atom. The energy levels En calculated from the Schrödinger wave equation,
similarly to those calculated for the Bohr atom, depend only on the principal
quantum number n; however, the wave function solutions depend on three
quantum numbers: n (principal),  (orbital) and m� (magnetic). All quantum
numbers are integers governed by the following rules:

n = 1, 2, 3 . . . ,  = 0, 1, 2, . . . n − 1,

m� = −,− + 1, . . . ( − 1),  . (2.100)

Equation (2.94) is generally quite complex yielding wave functions for the
ground state n = 1 of the hydrogen atom as well as for any of the excited
states with associated values of quantum numbers  and m�.

The ground state of the hydrogen atom can be calculated in a simple
fashion as follows. Since V (r) is spherically symmetric, we assume that so-
lutions to the Schrödinger equation for the ground state of hydrogen will be
spherically symmetric which means that the wave function ψ(r, θ, φ) does not
depend on θ and ϕ, it depends on r alone, and we can write for the spherically
symmetric solutions that ψ(r, θ, φ) = R(r).

The Schrödinger equation then becomes significantly simpler and after
some rearranging of terms it is given as follows:

d2R(r)
dr2 +

2
r

{
dR(r)

dr
+

µ

�2

e2

4πεo
R(r)

}
+

2µE

�2 R(r) = 0 . (2.101)

We can now simplify the Schrödinger equation further by recognizing that
for large r the (1/r) term will be negligible and we obtain

d2R(r)
dr2 −

(
−2µE

�2

)
R(r) ≈ 0 . (2.102)

Next we define the constant −2µE/�
2 as λ2 and recognize that the total

energy E1 for the ground state of hydrogen will be negative

λ2 = −2µE1

�2 . (2.103)
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The simplified Schrödinger equation is now given as follows:

d2R(r)
dr2 − λ2R(r) = 0 . (2.104)

Equation (2.104) is recognized as a form of the Helmholtz differential
equation in one dimension that leads to exponential functions for λ2 > 0, to
a linear function for λ = 0, and to trigonometric functions for λ < 0. Since the
total energy E is negative for bound states in hydrogen, λ2 is positive and the
solutions to (2.104) will be exponential functions. The simplest exponential
solution is

R(r) = Ce−λr , (2.105)

with the first derivative expressed as

dR(r)
dr

= −λCe−λr = −λR(r) . (2.106)

The second derivative of the function R(r) of (2.105) is given as follows:

d2R(r)
dr2 = λ2Ce−λr = λ2R(r) . (2.107)

Inserting (2.105) and (2.107) into (2.104) shows that (2.105) is a valid solution
to (2.104). We now insert (2.105), (2.106) and (2.107) into (2.101) and get
the following expression

λ2R(r) +
2
r

{
−λ +

µ

�2

e2

4πεo

}
R(r) +

2µE1

�2 R(r) = 0 . (2.108)

The first and fourth terms of (2.108) cancel out because λ2 is defined as
(−2µE1/�

2) in (2.103). Since (2.108) must be valid for any ψ(r), the term in
curly brackets equals zero and provides another definition for the constant λ
as follows:

λ =
µ

�2

e2

4πεo
=

µc2

(�c)2
e2

4πεo
. (2.109)

We recognize (2.109) for λ as the inverse of the Bohr radius ao that was given
in (2.58). Therefore, we express 1/λ as follows:

1
λ

= ao =
(�c)2

µc2

4πεo

e2 = 0.5292 Å . (2.110)

Combining (2.103) and (2.109) for the constant λ we now express the ground
state energy E1 as

E1 = −1
2

�
2

µ

1
a2
o

= −1
2

(
e2

4πεo

)2
µc2

(�c)2
= −13.61 eV . (2.111)

The wave function R(r) for the ground state of hydrogen is given in (2.105)
in general terms with constants C and λ. The constant λ was established in
(2.110) as the inverse of the Bohr radius ao; the constant C we determine from
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the normalization condition of (1.62) that is given by the following expression∫∫∫
|ψ(r)|

2

dV = 1 , (2.112)

with the volume integral extending over all space.
The constant C is determined after inserting ψ(r, θ, φ) = R(r) given by

(2.105) into (2.112) to obtain

∫∫∫
|ψ(r)|

2

dV =C2

2π∫
0

π∫
0

∞∫
0

e− 2r
ao r2dφ sin θdθdr

=4πC2

∞∫
0

r2e− 2r
ao dr = 4πC2 1

4a3
o

= 1 , (2.113)

where the last integral over r is determined from the following recursive
formula ∫

xneaxdx =
1
a
xneax − n

a

∫
xn−1eaxdx . (2.114)

The integral over r in (2.113) is equal to 1/(4a3
o) and the constant C is now

given as follows:

C = π−1/2a−3/2
o , (2.115)

resulting in the following expression for the wave function R(r) for the ground
state of the hydrogen atom

ψn,�,m�
(r, θ, φ) = ψ100 = R1(r) =

1

π1/2a
3/2
o

e− r
ao . (2.116)

The probability density of (1.60) can now be modified to calculate the radial
probability density dP/dr as follows:

dP

dV
= ψ∗(r, θ, φ)ψ(r, θ, φ) = |ψ(r, θ, φ)|2 (2.117)

and
dP

dr
= 4πr2 |ψ(r, θ, φ)|2 , (2.118)

since dV = 4πr2dr for the spherical symmetry governing the ground state
(n = 1) of the hydrogen atom.

The radial probability density dP/dr for the ground state is given as
follows, after inserting (2.116) into (2.118):

dP

dr
=

4r2

a3
o

e− 2r
ao . (2.119)

A plot of unit-less ao(dP/dr) given as 4(r/ao)2 exp(−2r/ao) against
(r/ao) for the ground state of the hydrogen atom is shown in Fig. 2.10.
The following observations can be made based on data shown in Fig. 2.10:
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Fig. 2.10. The radial probability density multiplied with the Bohr radius ao against
normalized radius r for the ground state electron of hydrogen

1. dP/dr = 0 for r = 0 and r = ∞.
2. dP/dr reaches its maximum at r = ao highlighting Schrödinger’s theory

prediction that the ground state electron in hydrogen is most likely to be
found at r = ao where ao is the Bohr radius given in (2.58). One can also
obtain this result by calculating d2P/dr2 and setting the result equal to
zero at r = rmax. Thus, the most probable radius rp for the electron in
the ground state of hydrogen is equal to ao.

3. Contrary to Bohr theory that predicts the electron in a fixed orbit with
r = ao, Schrödinger’s theory predicts that there is a finite probability for
the electron to be anywhere between r = 0 and r = ∞. However, the
most probable radius for the electron is r = ao.

To illustrate Schrödinger’s theory better a few simple calculations will
now be made for the ground state of hydrogen:

1. The probability that the orbital electron will be found inside the first
Bohr radius ao is calculated by integrating (2.119) from r = 0 to r = ao
to get

P =
4
a3
o

ao∫
0

r2e−2r/aodr =
{
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2

2
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[
2
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r
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)2

+ 2
(

r
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)
+ 1

]}r=ao

r=0

= 1 − 5e−2 = 0.323

(2.120)
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2. The probability that the orbital electron will be found with radius ex-
ceeding aois similarly calculated by integrating (2.119) from r = ao to
r = ∞

P =
4
a3
o
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r2e−2r/aodr =
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= 5e−2 = 0.677

(2.121)

3. The probability that the orbital electron will be found inside the nucleus
(proton) is calculated by integrating (2.119) from r = 0 to r = R where R
is the proton radius estimated from (1.14) as R ≈ 1.2 fm. Using R/ao =
2.4 × 10−5 we get the following probability
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4
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o
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≈ 2.3 × 10−9

(2.122)

4. The average electron radius r̄ is calculated from (1.81) to get

r̄ =
∫ ∫ ∫

r [R(r)]
2

dV =
4
a3
o

∞∫
0

r3e− 2r
ao dr =

4a4
o3!

16a3
0

=
3
2
ao (2.123)

The most probable radius rp = ao and the /average radius r̄ = 1.5ao
are not identical because the radial probability density distribution is not
symmetrical about its maximum at ao, as shown in Fig. 2.10. As calculated
in (2.120) and (2.121), the area under the dP/dr curve between r = 0 and
r = ao is exactly one half the area under the curve between r = ao and
r = ∞. As shown in (2.122), the probability for the electron to venture inside
the proton nucleus is very small but not negligible.



Linear Accelerator Waveguide

The photograph on the next page shows a cut-away view of a simple standing wave
accelerating waveguide used in a medical linear accelerator to accelerate electrons
to a kinetic energy of 6 MeV that corresponds to a velocity of 99.7% of the speed
of light in vacuum.

In contrast to x-ray tubes that use an electrostatic potential between the anode
(target) and the cathode (filament) for acceleration of electrons to a given kinetic
energy of the order of 100 keV, a medical linear accelerator (linac) uses an accel-
erating waveguide in which electrons are accelerated with electromagnetic fields to
much higher kinetic energies in the range from 4 MeV to 25 MeV.

Waveguides are evacuated or gas-filled structures of rectangular or circular cross
sections used in transmission of microwaves. Two types of waveguides are used in
linacs: radiofrequency power transmission waveguides (usually gas-filled) and accel-
erating waveguides (always evacuated). The power transmission waveguides trans-
mit the radiofrequency power from the power source to the accelerating waveguide
in which electrons are accelerated. The electrons are accelerated in the accelerating
waveguide by means of energy transfer from the high power microwave field that
is set up in the accelerating waveguide and produced by the radiofrequency power
generator.

The simplest accelerating waveguide is obtained from a cylindrical uniform
waveguide by adding a series of irises (disks) with circular holes at the center
and placed at equal distances along the uniform waveguide. These irises divide the
waveguide into a series of cylindrical cavities that form the basic structure of the
accelerating waveguide. The phase velocity of radiofrequency in a uniform wave-
guide exceeds that of the speed of light in vacuum and one of the roles of the irises
is to slow down the radiofrequency below the speed of light to allow electron ac-
celeration. The irises also couple the cavities, distribute microwave power from one
cavity to another, and provide a suitable electric field pattern for acceleration of
electrons in the accelerating waveguide.

The waveguide cavities are clearly visible on the photograph of the waveguide;
the accelerating cavities are on the central axis of the waveguide, the radiofrequency
coupling cavities are offside. The source of electrons (electron gun) is on the left, the
x-ray target on the right, both permanently embedded into the waveguide struc-
ture. The electron gun is a simple electrostatic accelerator that produces electrons
thermionically in a heated filament and accelerates them to a typical energy of
20 keV. The target is made of metal thicker than the 6 MeV electron range in the
target material. The 6 MeV electrons are stopped in the target and a small portion
of their energy is transformed into bremsstrahlung x rays that form a spectrum
ranging in photon energies from 0 to 6 MeV and have an effective energy of about
2 MeV. The bremsstrahlung x-ray beam produced by 6 MeV electrons striking a
target is referred to as a 6 MV beam.



3 Production of X Rays

This chapter is devoted to a study of the production of the two known types
of x rays: characteristic radiation and bremsstrahlung. Both types of x rays
are important in medical physics, since both are used extensively in diag-
nostic imaging and in external beam radiotherapy. Characteristic x-rays are
produced by electronic transitions in atoms triggered by vacancies in inner
electronic shells of the absorber atom. Bremsstrahlung, on the other hand, is
produced by Coulomb interactions between an energetic light charged particle
and the nucleus of the absorber atom. Vacancies in electronic shells of atoms
can be produced by various means such as Coulomb interactions, photon in-
teractions, nuclear decay, positron annihilation and Auger effect; however,
x-rays used in medicine are produced only through Coulomb interactions of
energetic electrons with orbital electrons and nuclei of an x-ray target.

This chapter provides a discussion of theoretical and practical aspects
of x-ray production, briefly introduces Čerenkov radiation and synchrotron
radiation, both of some interest in nuclear and medical physics, and concludes
with a brief discussion of various accelerators of interest in medicine.
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3.1 X-Ray Line Spectra (Characteristic Radiation)

A vacancy in an atomic shell plays an important role in physics and chemistry.
Defined as an electron missing from the normal complement of electrons in
a given atomic shell, a vacancy can be produced by eight different effects or
interactions ranging from various photon-atom interactions through charge
particle-atom interactions to nuclear effects. Depending on the nature and
energy of the interaction, the vacancy may occur in the outer shell or in one
of the inner shells of the atom. The list of the 8 effects for production of shell
vacancy in an atom is as follows:

1. Photoelectric effect (see Sect. 7.5)
2. Compton scattering (see Sect. 7.3)
3. Triplet production (see Sect. 7.6.1)
4. Charged particle Coulomb interaction with an atom (see Sect. 5.3.1)
5. Internal conversion (see Sect. 8.9.3)
6. Electron capture (see Sect. 8.8.4)
7. Positron annihilation (see Sect. 7.6.7)
8. Auger effect (see Sect. 3.1.2)

An atom with a vacancy in its inner shell is in a highly excited state and
returns to its ground state through a series of electronic transitions. Electrons
from higher atomic shells will fill the shell vacancies and the energy difference
in binding energies between the initial and final shell or sub-shell will be
emitted from the atom in one of two ways:

1. Radiatively in the form of characteristic (fluorescent) radiation.
2. Non-radiatively in the form of Auger electrons, Coster-Kronig electrons

or super Coster-Kronig electrons.

3.1.1 Characteristic Radiation

Radiative transitions result in emission of photons that are called character-
istic radiation, since the wavelength λ and energy hν of the emitted photon
are characteristic of the atom in which the photon originated. An older term,
fluorescent radiation, is occasionally used to describe the characteristic pho-
tons. The set of radiative transition photons emitted from a given atom is
referred to as the line spectrum of the atom. Charles G. Barkla is credited
with the discovery of characteristic x rays.

Energy level diagrams for high atomic number x-ray targets are usually
drawn using the n, , j and mj quantum numbers, as shown in Fig. 3.1. In
addition to dependence on n (main structure), the energy level diagram also
exhibits dependence on  and j (fine structure). However, only certain allowed
transitions, fulfilling specific selection rules, result in x rays. In Fig. 3.1 only
transitions from the M and L to the K shell are shown; allowed transitions
with solid lines and a forbidden transition with a dotted line.
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Fig. 3.1. Typical energy level diagram for a high atomic number element showing
the K, L, and M shells with associated sub-shells. The numbers in brackets indicate
the maximum possible number of electrons in a given sub-shell equal to (2j+1). Kα

and Kβ transitions are also shown. The allowed Kα and Kβ transitions are shown
with solid lines, the forbidden Kα3 transition is shown with a dashed line
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The selection rules for allowed characteristic transitions are:

∆ = ±1 and ∆j = 0 or ± 1 , (3.1)

with the proviso that transitions from j = 0 to j = 0 are forbidden.

• The energies released through an electronic transition are affected by the
atomic number Z of the absorbing atom and by the quantum numbers of
the atomic shells involved in the electronic transition.

• Transitions between outer shell electrons may result in optical photons
and are referred to as optical transitions (hν of the order of a few eV);
transitions between inner shells of high atomic number elements may re-
sult in x rays and are referred to as x-ray transitions (hν of the order
of 10 to 100 keV).

In general the following conventions are used in atomic physics:

1. Transitions to the K shell are referred to as the K lines, to the L shell as
L lines, to the M shell as M lines, etc.

2. Transitions from the nearest neighbor shell are designated as α transi-
tions, from the second nearest neighbor shell β transitions, etc.

3. Transitions from one shell to another do not all have the same energy
because of the fine structure (sub-shells) in the shell levels. The highest
energy transition between two shells is usually designated with number
1, second highest with number 2, etc.

4. In Fig. 3.1 the transition Kα3 represents a forbidden transition (∆ = 0)
from the L to the K shell (2s1/2 → 1s1/2 with ∆ = 0 and ∆j = 0).

5. The transition Kβ1 represents an allowed transition from the M to the K
shell (3p3/2 → 1s1/2 with ∆ = 1 and ∆j = 1).

3.1.2 Auger Effect and Fluorescent Yield

The allowed transitions between electronic shells or orbits do not necessar-
ily result in characteristic x rays, they may also result in an Auger effect.
Electrons may undergo transitions that violate the selection rules applicable
for production of characteristic radiation; however, the energy difference is
then transferred to other orbital electrons that are ejected from the atom as
Auger electrons, Coster-Kronig electrons or super Coster-Kronig electrons,
as shown schematically in Fig. 3.2. The kinetic energy of these electrons is
equal to the energy released through the primary electronic transition less
the binding energy of the ejected Auger electron. Emission of Auger electrons
from an atom is referred to as the Auger effect.

In Auger effect the primary transition occurs between two shells, in the
Coster-Kronig and super Coster-Kronig effects the primary transition occurs
within two sub-shells of a shell.

1. In the Coster-Kronig effect the transition energy is transferred to an
electron in another shell and the emitted electron is called a Coster-
Kronig electron.
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Fig. 3.2. Schematic representation of the Auger effect, the Coster-Kronig effect and
the super Coster-Kronig effect. In the Auger effect the electron makes an intershell
transition and the transition energy is transferred to the Auger electron. In the
Coster-Kronig effect the electron makes an intrashell transition and the transition
energy is transferred to an electron in a higher shell. In the super Coster-Kronig
effect the electron makes an intrashell transition and the energy is transferred to
an electron in the same shell

2. In the super Coster-Kronig effect the energy is transferred to a sub-shell
electron within the shell in which the primary transition occurred and
the emitted electron is called a super Coster-Kronig electron.

The fluorescent yield ω for a given shell gives the number of characteristic
(fluorescent) photons emitted per vacancy in the given shell, as shown in
Fig. 3.3 for the K and L shells versus the atomic number Z of the absorber.

The exact mechanism of energy transfer in the Auger effect is difficult to
calculate numerically. In the past, the effect was often considered an internal
atomic photoelectric effect and the explanation makes sense energetically.
However, two experimental facts contradict this assumption:

1. Auger effect often results from forbidden radiative transitions, i.e., transi-
tions that violate the selection rules for the radiative fluorescent process.

2. Fluorescent yield ω for high atomic number materials is significantly
larger than that for low atomic number materials; contrary to the well-
known photoelectric effect Z dependence that follows a Z3 behavior (see
Sect. 7.5).
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Fig. 3.3. Fluorescent yields ωK for hν > (EB)K and ωL for (EB)L < hν < (EB)K
as well as fractions PK for hν > (EB)K and PL for (EB)L < hν < (EB)K against
atomic number Z. Data are obtained from F.H. Attix, “Introduction to Radiological
Physics and Radiation Dosimetry”

3.2 Emission of Radiation
by Accelerated Charged Particle
(Bremsstrahlung Production)

Charged particles are characterized by their rest mass, charge, velocity and
kinetic energy. With regard to their rest mass, charged particles of interest
to medical physics and dosimetry are classified into two groups:

• light charged particles: electrons e− and positrons e+,
• heavy charged particles: protons p, deuterons d, alpha particles α, heavier

ions such as Li+, Be+ C+, Ne+, etc.

3.2.1 Velocity of Charged Particles

With regard to its velocity →
υ a charged particle is:

1. stationary with →
υ = 0,

2. moving with a uniform velocity �υ = constant,
3. accelerated with an acceleration ⇀

a = d
→
υ/dt.
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Stationary Charged Particle

A stationary charged particle has an associated electric field
⇀E whose energy

density ρ is given by

ρ =
1
2
εoE2 , (3.2)

where εo is the dielectric constant (permittivity) of vacuum (εo = 8.85 ×
10−12 A · s/V · m).

This energy is stored in the field and is not radiated away by the charged
particle. The electric field E(r) produced by a stationary charged particle of
charge q follows the inverse square law and is isotropic

E(r) =
1

4πεo

q

r2 . (3.3)

Charged Particle Moving with a Uniform Velocity

A charged particle moving with a uniform velocity →
υ has an associated mag-

netic field
⇀B as well as an electric field

⇀E. The energy density ρ is then given
by

ρ =
1
2
εoE2 +

1
2µo

B2 , (3.4)

where µo is the magnetic permeability of vacuum (µo = 4π×10−7 V ·s/A·m).
This energy is stored in the field, moves along with the charged particle,

and is not radiated away by the charged particle.
At low (classical) velocities �υ the electric field

⇀E produced by the charged
particle is isotropic and follows the inverse square law. However, as the ve-
locity of the charged particle increases and approaches c, the speed of light
in vacuum, the electric field decreases in the forward and backward direc-
tion and increases in a direction at right angles to the motion. As shown in
Fig. 3.4, the electric field is contracted by a factor (1−β2) in the direction of
the flight of the particle, whereas it is enhanced by a factor γ = 1/

√
1 − β2

in the transverse direction.
The electric field distortion for moving charged particles is of importance

in collision stopping power calculations. As a charged particle passes through
an absorber, it sweeps out a cylinder throughout which its field is capable
of transferring energy to orbital electrons of the absorber. The radius of
this cylinder increases with increasing parameter γ as the charged particle
velocity υ increases allowing more orbital electrons to be affected by the
charged particle, thereby increasing the energy loss, i.e., the stopping power,
for the charged particle.
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Fig. 3.4. Electric field produced by a charged particle q moving with uniform
velocity υ in vacuum. The field is shown for two velocities: β = υ/c ≈ 0 (classical
physics) and β = υ/c → 1. The electric field for β → 0 is isotropic, for relativistic
velocities it is distorted; contracted by a factor (1 − β2) in the direction of motion
and opposite to the direction of motion, and expanded by a factor γ = 1/

√
1 − β2

in directions perpendicular to the direction of motion

Accelerated Charged Particle

For an accelerated charged particle the non-static electric and magnetic fields
cannot adjust themselves in such a way that no energy is radiated away from
the charged particle. As a result, an accelerated or decelerated charged par-
ticle emits some of its kinetic energy in the form of photons (bremsstrahlung
radiation), as discussed below.

3.2.2 Electric and Magnetic Fields
Produced by Accelerated Charged Particles

Electric and magnetic fields associated with accelerated charged particles are
calculated from Lienard-Wiechert potentials. To determine the fields at time
t the potentials must be evaluated for an earlier time (called the retarded
time), with the charged particle at a retarded position on its trajectory.

The electric and the magnetic field of an accelerated charged particle have
two components:

1. local (or near) velocity field component which falls off as 1/r2,

2. far (or radiation) acceleration field component which falls off as 1/r.
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At large distances r of interest in medical physics and dosimetry the 1/r
radiation component dominates and the 1/r2 near field component may be
ignored, since it approaches zero much faster than the 1/r component. The
energy loss by radiation is thus determined by the far field components of
the electric field

⇀E and the magnetic field
⇀B. The far field components of

⇀E
and

⇀B are given as follows

⇀E =
q

4πεo

⇀
r × (⇀

r × →̇
υ)

r3 or E =
1

4πεo

q

c2

υ̇ sin θ

r
(3.5)

and

⇀B =
µo

4π

q

c

→̇
υ × r

r2 or B =
µo

4π

q

c

υ̇ sin θ

r
=

E
c

, (3.6)

where
→
r is the radius vector connecting the charged particle with the point of

observation,
→̇
υ is the acceleration of the charged particle,
q is the charge of the charged particle,
θ is the angle between �r and �υ,
c is the speed of light in vacuum.

The
⇀E and

⇀B fields propagate outward with velocity c and form the
electromagnetic (EM) radiation (bremsstrahlung) emitted by the accelerated
charged particle.

3.2.3 Energy Density of the Radiation
Emitted by Accelerated Charged Particle

The energy density ρ of the emitted radiation is given by

ρ =
1
2
εoE2 +

1
2µo

B2 = εoE2 , (3.7)

noting that B = E/c from (3.6) and c2 = 1/εoµo.

3.2.4 Intensity of the Radiation
Emitted by Accelerated Charged Particle

The intensity of the emitted radiation I(r, θ), i.e., the energy flow per unit

area A, is given by the vector product
⇀E × ⇀B/µo, known as the Poynting

vector
⇀

S, where
⇀

S =
⇀E × ⇀B/µo , (3.8)
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or, after using (3.5) and (3.6) and recognizing that
⇀E and

⇀B are perpendicular
to one another∣∣∣⇀S∣∣∣ = I(r, θ) =

EB
µo

= εocE2 =
1

16πεo

q2a2

c3

sin2 θ

r2 . (3.9)

• The emitted radiation intensity I(r, θ) is linearly proportional to:
– q2, the square of particle’s charge
– a2, the square of particle’s acceleration,
– sin2 θ

• The emitted radiation intensity I(r, θ) is inversely proportional to r2,
reflecting an inverse square law behavior.

• The emitted radiation intensity I(r, θ) exhibits a maximum at right angles
to the direction of motion where θ = π/2. No radiation is emitted in the
forward direction (θ = 0) or in the backward direction (θ = π).

3.2.5 Power Emitted by Accelerated Charged Particle Through
Electromagnetic Radiation (Classical Larmor Relationship)

The power P (energy per unit time) emitted by the accelerated charged
particle in the form of bremsstrahlung radiation is obtained by integrating the
intensity I(r, θ) over the area A. Recognizing that dA = r2dΩ = 2πr2 sin θ dθ
we obtain

P =
dE

dt
=
∫

I(r, θ)dA =
∫

I(r, θ)r2dΩ =2π

π∫
0

I(r, θ)r2 sin θdθ

=
2π

16π2εo

q2a2

c3

2π∫
0

sin3 θdθ =
1

6πεo

q2a2

c3 . (3.10)

Equation (3.10) is the classical Larmor relationship predicting that the
power P emitted in the form of bremsstrahlung radiation by an accelerated
charged particle is proportional to:

• q2, the square of particle’s charge
• a2, the square of particle’s acceleration.

The Larmor’s result represents one of the basic laws of nature and is of great
importance to radiation physics. It can be expressed as follows:

“Any time a charged particle is accelerated or decelerated it emits part
of its kinetic energy in the form of bremsstrahlung photons.”

As shown by the Larmor relationship of (3.10), the power emitted in the
form of radiation depends on (qa)2 where q is the particle charge and a is
its acceleration. The question arises on the efficiency of x-ray production
for various charged particles of mass m and charge ze. As charged particles
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interact with an absorber, they experience Coulomb interactions with orbital
electrons (charge e) and nuclei (charge Ze) of the absorber. Bremsstrahlung
is only produced through inelastic Coulomb interactions between a charged
particle and the nucleus of the absorber.

The acceleration a produced in this type of Coulomb interaction can be
evaluated through equating the Newton force with the Coulomb force, i.e.,

ma =
zeZe

4πεor2 , (3.11)

from where it follows that

a ∝ zZe2

m
, (3.12)

i.e., the acceleration a experienced by a charged particle interacting with
absorbed nuclei is linearly proportional with: (1) the charge of the charged
particle (ze) and (2) the charge of the absorber nucleus (Ze), and inversely
proportional to: (1) the mass m of the charged particle and (2) the square of
the distance between the two interacting particles r2.

Since it is proportional to a2, as shown in (3.10), the power of bremsstrah-
lung production is inversely proportional to m2. Thus a proton, by virtue
of its relatively large mass mp in comparison with the electron mass me,
(mp/me = 1836) will produce much less bremsstrahlung radiation than does
an electron, specifically about (mp/me)2 ≈ 4 × 106 times less. The radiative
stopping power for electrons in comparison to that for protons is over six
orders of magnitude greater at the same velocity.

• As a result of the inverse m2 dependence, heavy charged particles travers-
ing a medium lose energy only through ionization (collision) losses and
their radiative losses are negligible. These collision losses occur in interac-
tions of the heavy charged particles with orbital electrons of the medium.
The total stopping power for heavy charged particles is then given by the
collision stopping power and their radiative stopping power is ignored,
i.e., Stot = Scol.

• Light charged particles, on the other hand, undergo collision as well as
radiative losses, since they interact with both the orbital electrons and
the nuclei of the absorber. The total stopping power for light charged
particles is then a sum of the collision stopping power and the radiative
stopping power, i.e., Stot = Scol + Srad.

• As established in 1915 by William Duane and Franklin L. Hunt, the in-
cident light particle can radiate an amount of energy which ranges from
zero to the incident particle kinetic energy EK

EK = hνmax = 2π
�c

λmin
, (3.13)

producing a sharp cut-off at the short-wavelength end of the continuous
bremsstrahlung spectrum (Duane-Hunt law).
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3.2.6 Relativistic Larmor Relationship

Recognizing that ⇀
a = �̇υ = ⇀̇

p/m we can extend the classical Larmor result to
relativistic velocities and obtain

P =
dE

dt
=

1
6πεo

q2

m2c3

∣∣∣∣∣d
⇀
p

dt

∣∣∣∣∣ .
∣∣∣∣∣d

⇀
p

dt

∣∣∣∣∣ . (3.14)

For the special case of a linear motion (e.g., in a linear accelerator waveguide)
the emitted power P is given as follows

P =
dE

dt
=

1
6πεo

q2

m2c3

(
dp

dt

)2

=
1

6πεo

q2

m2c3

(
dE

dx

)2

, (3.15)

noting that the rate of change of momentum (dp/dt) is equal to the change
in energy of the particle per unit distance (dE/dx).

3.2.7 Relativistic Electric Field
Produced by Accelerated Charged Particle

The velocity →
υ of the charged particle affects the electric field E and, as

β = υ/c increases, the electric field E becomes tipped forward and increases
in magnitude as predicted by an expression differing from the classical result
of (3.5) by a factor 1/(1 − β cos θ)5/2

E(r, θ) =
1

4πεo

q

c2

υ̇

r

sin θ

(
√

1 − β cos θ)5
. (3.16)

As a result, the emitted radiation intensity I(r, θ) also becomes tipped for-
ward

S(r, θ) = I(r, θ) = εocE2 =
1

16πεo

q2a2

c3r2

sin2 θ

(1 − β cos θ)5
. (3.17)

Note that at classical velocities where β → 0, (3.16) and (3.17) revert to the
classical relationships, given in (3.5) and (3.9), respectively.

• Equation (3.17) shows that the intensity I(r, θ) is in general proportional
to sin2 θ/(1 − β cos θ)5. In classical mechanics where β → 0, the radiation
intensity is proportional to sin2 θ and the maximum intensity occurs at
θ = π/2.

• As β increases the radiation intensity becomes more and more forward-
peaked; however, the intensities for the forward direction (θ = 0) and the
backward direction (θ = π) are still equal to zero, similarly to the classical
situation.

• The function sin2 θ/(1 − β cos θ)5 that governs the radiation intensity
distribution I(r, θ) of (3.17) is plotted in Fig. 3.5 for β = 0.006 (classical
result for υ → 0) and for β = 0.941. For electrons (mec

2 = 0.511 MeV)
these two β values correspond to kinetic energies of 10 eV and 1 MeV,
respectively.
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Fig. 3.5. Radiation intensity distributions for two accelerated electrons; one with
β = 0.006 corresponding to an electron kinetic energy of 10 eV and θmax of 89.2◦

and the other with β = 0.941 corresponding to an electron kinetic energy of 1 MeV
and θmax of 10◦. Both distributions are normalized to 1 at θmax. The actual ratio
of radiation intensities at θmax = 89.2◦ and θmax = 10◦ is 1 vs. 1.44×104, as shown
in Table 3.1

• Note that in Fig. 3.5 the maximum values of both β distributions are
normalized to 1. In reality, as shown in Table 3.1, if the maximum value
for the β = 0.006 distribution is 1, then, for the β = 0.941 distribution,
it is more than four orders of magnitude larger at 1.44 × 104.

3.2.8 Characteristic Angle θmax

It is evident that, as β increases, the emitted radiation intensity I(r, θ) be-
comes more forward-peaked, and its peak intensity that occurs at a charac-
teristic angle θmax also increases. The characteristic angle θmax is determined
as follows:

Set dI(r, θ)/dθ |θ=θmax = 0, where I(r, θ) is given in (3.17), to obtain

2 sin θmax cos θmax

(1 − β cos θmax)5
− 5β sin3 θmax

(1 − β cos θmax)6
= 0 . (3.18)

Equation (3.18) yields a quadratic equation for cos θmax, given as follows

3β cos2 θmax + 2 cos θmax − 5β = 0 . (3.19)
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Table 3.1. Various parameters for bremsstrahlung production by electrons with
kinetic energy EK

EK (MeV) β(a) γ(b) θ
(c)
max CI(r, θmax)(d)

10−5 0.006 1.00002 89.2◦ 1.0000

10−4 0.020 1.0002 87.2◦ 1.0025

10−3 0.063 1.002 81.2◦ 1.024

10−2 0.195 1.02 64.4◦ 1.263

10−1 0.548 1.20 35.0◦ 6.47

1 0.941 2.96 10.0◦ 1.44 × 104

10 0.999 20.4 1.4◦ 1.62 × 1011

102 0.9999 70.71 0.4◦ 1.64 × 1015

(a) β = v
c

=
√

1 − 1(
1+ EK

mec2

)2 , where mec
2 = 0.511 MeV for electrons and

positrons
(b) γ = 1√

1−β2

(c) θmax = arccos
{

1
3β

(√
1 + 15β2 − 1

)}
, where β is given in (a)

(d) CI(r, θmax) = sin2 θmax
(1−β cos θmax)5 , where C =

(
e2a2

16π2εoc3r2

)−1

The physically acceptable solution of the quadratic equation is cos θmax =
1
3β (

√
1 + 15β2 − 1), resulting in the following expression for θmax:

θmax = arccos
{

1
3β

(
√

1 + 15β2 − 1)
}

. (3.20)

• The limiting values for θmax of (3.20) are as follows:
– Classical region: as β → 0; θmax → π/2.
– Relativistic region: as β → 1; θmax → 0.
– In the extreme relativistic region the following approximation holds:

θmax ≈ 1/(2γ) . (3.21)

• The characteristic angle θmax drops rapidly from 90◦ as β increases.
• Even for β = 0.5, corresponding to a γ of 1.155 and a relatively low

electron kinetic energy of 80 keV, the characteristic angle θmax is 38.2◦.
• In the relativistic region θmax is very small being of the order of 1/2γ,

i.e., of the order of the ratio of the particle’s rest energy Eo to its total
energy E.

• Table 3.1 lists parameters β, γ, θmax and I(r, θmax) for bremsstrahlung
production by electrons and positrons with kinetic energies between
10−5 MeV and 102 MeV.
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Fig. 3.6. Normalized electron velocity β against the kinetic energy EK of the
electron

Fig. 3.7. Characteristic angle θmax against kinetic energy EK of the electron

The entry CI(r, θmax) in Table 3.1 highlights the significant increase in the
bremsstrahlung photon distribution at θ = θmax and confirms the rapid in-
crease in x-ray production efficiency with an increase in electron (or positron)
kinetic energy.

Parameters β and θmax, given in Table 3.1, are also plotted against the
electron kinetic energy EK in Figs. 3.6 and 3.7, respectively. For very low ki-
netic energies EK (classical region) β ≈ 0 and θmax ≈ 90◦. As EK increases, β
rises and asymptotically approaches 1 for very high EK, while θmax decreases
with increasing EK and asymptotically approaches 0◦ for very high EK. In
the orthovoltage x-ray range θmax ≈ 40◦; in the megavoltage x-ray range
θmax ≈ 5◦.
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3.3 Synchrotron Radiation

Synchrotron radiation refers to electromagnetic radiation emitted by charged
particles following a curved trajectory in free space under the influence of a
magnetic field. The phenomenon was first observed in 1947 in synchrotrons
(hence the term synchrotron radiation); accelerators that accelerate charged
particles in circular orbits to very high relativistic energies. Since the effect
occurs under the influence of a magnetic field that keeps the particles in a
circular trajectory, it is sometimes called magnetic bremsstrahlung.

Electrons as well as heavier charged particles may produce the syn-
chrotron radiation. The radiation can be considered: (1) an unnecessary nui-
sance causing energy losses when the objective is to attain high kinetic en-
ergies of charged particles in circular accelerators or (2) an extraordinary
dedicated source of intense, short duration, x ray or ultraviolet pulses that
can be exploited as a tool to study structure of matter on an atomic, molec-
ular and cellular scale or to devise ultra fast imaging studies in cardiology.
Originally, research on synchrotron radiation was conducted as a sideline to
particle acceleration, recently, however, special sources of synchrotron radia-
tion called storage rings were built with the specific purpose to produce and
exploit synchrotron radiation.

The magnetic field exerts a Lorentz force on the charged particle perpen-
dicularly to the particle’s direction of motion causing particle’s acceleration
and, according to the Larmor relationship of (3.10), emission of photons.
Larmor relationship of (3.10) for power P radiated by particle of charge q
accelerated with acceleration a is given as follows

P =
1

6πεo

q2a2

c3 . (3.22)

For a classical particle in circular motion with radius R, the acceleration
is simply the centripetal acceleration υ2/R, where υ is the velocity of the
particle.

For a relativistic particle with velocity υ → c and mass m = γmo, where
mo is the particle’s rest mass, in circular motion in a circular accelerator with
radius R, the acceleration is similarly obtained from

F = moa =
dp

dt′
, (3.23)

where

p is the relativistic momentum of the particle: p = mυ = γmoυ,
t′ is the proper time in the particle’s reference frame given as: t′ = t/γ =

t
√

1 − β2.

Neglecting the rate of change of γ with time t, the acceleration a can now be
written as

a =
1

mo

dp

dt′
=

γ

mo

d(γmoυ)
dt

= γ2 dυ

dt
= γ2 υ2

R
. (3.24)
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The power radiated from a relativistic particle according to Larmor rela-
tionship is as follows

P =
1

6πεo

q2a2

c3 =
q2γ4

6πεoc3

υ4

R2 =
cq2β4γ4

6πεoR2 . (3.25)

Since we know that the particle total energy E is given as E = γmoc
2 = γEo,

where Eo is the particle rest energy, we write (3.25) as follows

P =
cq2β4

6πεoR2

(
E

Eo

)4

. (3.26)

For highly relativistic particles, υ → c and the energy loss rate is governed
by γ4 = (E/Eo)4 when R is fixed for a given accelerator. Equation (3.26)
suggests that the larger is the accelerator radius R the smaller is the rate of
energy loss.

The radiation loss ∆E during one complete revolution of a highly rela-
tivistic particle (β ≈ 1) is calculated by first determining the duration τ of
one revolution as

τ =
2πR

υ
≈ 2πR

c
. (3.27)

The radiation loss in one revolution is then

∆E = Pτ =
cq2

6πεoR2

(
E

Eo

)4 2πR

c
=

q2

3εoR

(
E

Eo

)4

. (3.28)

The radiation energy loss per turn is inversely proportional to the radius R
of the orbit and linearly proportional to (E/Eo)4.

For electrons (q = e and mo = me = 0.511 MeV) we get the following
expression for ∆E:

∆E =
e2

3εo(mec2)4
E4

R
=

{
8.8 × 10−8 eV · m

(MeV)4

}
E4

R
. (3.29)

The energy is radiated in a cone centered along the instantaneous velocity
of the particle. The cone has a half angle θsyn approximated as (Eo/E). For
highly relativistic particles the cone is very narrow and the radiation is emit-
ted in the forward direction similarly to the situation with the bremsstrahlung
loss by relativistic particles, discussed in Sect. 3.2.8.

The wavelength distribution of synchrotron radiation follows a continuous
spectrum in the x-ray, ultraviolet and visible region, with the peak emitted
wavelength linearly proportional to R and (Eo/E)3.

3.4 Čerenkov Radiation

As discussed in Sect. 3.2, a charged particle radiates energy in free space
only if accelerated or decelerated; a charged particle in rectilinear uniform
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velocity motion in free space does not lose any of its kinetic energy in the
form of photon radiation. However, if a charged particle moves with uniform
rectilinear motion through a transparent dielectric material, part of its kinetic
energy is radiated in the form of electromagnetic radiation if the particle
velocity υ exceeds the phase velocity of light cn in the particular medium,
i.e.,

υ > cn =
c

n
, (3.30)

where n is the index of refraction of light in the particular medium.
The phenomenon of visible light emission under these conditions is re-

ferred to as Čerenkov radiation and was discovered by Pavel A. Čerenkov
and Sergei I. Vavilov in 1934.

The emitted Čerenkov radiation does not come directly from the charged
particle. Rather, the emission of Čerenkov radiation involves a large number
of atoms of the dielectric medium that become polarized by the fast charged
particle moving with uniform velocity through the medium. The orbital elec-
trons of the polarized atoms are accelerated by the fields of the charged
particle and emit radiation coherently when υ > cn = c/n.

• Čerenkov radiation is emitted along the surface of a forward directed cone
centered on the charged particle direction of motion. The cone is specified
with the following relationship:

cos θcer =
cn

υ
=

1
βn

, (3.31)

where θcer is the Čerenkov angle defined as the angle between the charged
particle direction of motion and the envelope of the cone.

• Equation (3.31) suggests that there is a threshold velocity υthr below
which no Čerenkov radiation will occur for a given charged particle and
absorbing dielectric

υthr =
c

n
= cn (3.32)

βthr = 1/n . (3.33)

– For υ > υthr the Čerenkov radiation is emitted with the Čerenkov
angle θcer.

– For υ < υthr no Čerenkov photons are produced.
– The velocity threshold for Čerenkov radiation in water is υthr =

(1/1.33)c = 0.75c.
– The velocity threshold of 0.75c for water corresponds to an energy

threshold

(EK)thr =
mec

2√
1 − (

υthr
c

)2 =
nmec

2
√

n2 − 1
= 0.775 MeV. (3.34)
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Thus, Čerenkov radiation occurs in water for electrons with kinetic
energies exceeding 0.775 MeV.

• Čerenkov radiation is independent of charged particle mass but depends
on particle charge and particle velocity υ.

• Equation (3.31) also shows that there is a maximum angle of emission
(θcer)max in the extreme relativistic limit where β → 1

(θcer)max = arccos(1/n) .

Thus, for relativistic electrons (β → 1) in water (n = 1.33), (θcer)max =
41.2◦.

• Čerenkov radiation frequencies appear in the high frequency visible and
near visible regions of the electromagnetic spectrum, but do not extend
into the x-ray region because for x rays n < 1.

• Since the refraction index n depends on the wavelength λ of the emitted
radiation, the emission angle θcer for Čerenkov radiation also depends on
the frequency of the Čerenkov radiation in addition to depending on the
charged particle velocity υ.

• For emission of Čerenkov radiation, the number of quanta per wavelength
interval ∆λ is proportional to 1/λ2, favoring the blue end of the visible
spectrum. This explains the characteristic bluish glow surrounding the
fission core of a swimming-pool nuclear reactor or surrounding the high
activity cobalt-60 sources stored in water-filled storage tanks prior to
their installation in teletherapy machines. The Čerenkov radiation results
from Compton electrons that propagate through water with velocities υ
exceeding c/n = 0.75c.

• As the charged particle moves through a dielectric, the total amount
of energy appearing as Čerenkov radiation is very small compared to
the total energy loss by a charged particle through collision (ionization)
and radiative (bremsstrahlung) losses. For example, electrons in water
lose about 2 MeV/cm through collision and radiative losses and only
about 400 eV/cm through Čerenkov radiation losses, i.e., about a factor
of 5000 times less. It is obvious that Čerenkov radiation is negligible as
far as radiation dosimetry is concerned.

• The Čerenkov-Vavilov effect is used in Čerenkov detectors not only to
detect fast moving charged particles but also to determine their energy
through a measurement of the Čerenkov angle.

3.5 Practical Considerations in Production of Radiation

The sections above dealt with general classical and relativistic relationships
governing the emission of radiation by accelerated charged particles, includ-
ing bremsstrahlung as the most important means and two more-specialized
phenomena: the synchrotron radiation and the Čerenkov radiation.
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In principle, all charged particles can emit radiation under certain condi-
tions. In practice, however, the choice of charged particles that can produce
measurable amounts of radiation of interest in medical physics and medicine
is limited to light charged particles (electrons and positrons) that can undergo
the following interactions:

1. Rapid deceleration of energetic electrons in targets through inelastic
Coulomb collisions of electrons with nuclei of the target resulting in su-
perficial, orthovoltage, or megavoltage x rays (bremsstrahlung) for use in
diagnosis (imaging) and treatment (radiotherapy) of disease.

2. Deceleration of electrons in retarding potentials resulting in microwave
radiation. This process is used in magnetrons to produce radiofrequency
photons and in klystrons to amplify radiofrequency photons. The ra-
diofrequency used in standard clinical linear accelerators is 2856 MHz
(S band); in miniature linear accelerator waveguides (tomotherapy and
robotic arm mounting) it is at 104 MHz (X band).

3. Deceleration of electrons resulting in bremsstrahlung production in pa-
tients irradiated with photon or electron beams producing unwanted dose
to the total body of the patient.

4. Acceleration of electrons in a linac waveguide (rectilinear motion of elec-
trons) resulting in unwanted leakage radiation.

5. Circular motion of electrons in circular accelerators resulting in syn-
chrotron radiation (sometimes referred to as magnetic bremsstrahlung)
produced in high-energy circular accelerators and in storage rings. When
charged particles pass through transverse magnetic fields, they experience
an acceleration that, according to Larmor’s relationship, results in emis-
sion of radiation that is typically of lower energy than bremsstrahlung.
In comparison with synchrotron radiation, the accelerations in produc-
tion of bremsstrahlung are random and also much larger. Production of
synchrotron radiation is still a very expensive undertaking, as it involves
very expensive and sophisticated circular accelerators.

6. Deceleration of positrons (slowing down before annihilation) in positron
emission tomography (PET) imaging studies of human organs resulting
in unwanted stray radiation.

7. Atomic polarization effects when electrons move through transparent di-
electric materials with a uniform velocity that exceeds the speed of light
in the dielectric material result in visible light referred to as Čerenkov
radiation. The efficiency for production of Čerenkov radiation is several
orders of magnitude lower than the efficiency for bremsstrahlung produc-
tion.

8. High energy electrons striking a nucleus may precipitate nuclear reactions
(e,n) or (e,p) and transform the nucleus into a radioactive state thereby
activating the treatment room and also the patient.
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3.6 Particle Accelerators

Numerous types of accelerators have been built for basic research in nuclear
and high-energy physics, and most of them have been modified for at least
some limited use in radiotherapy. Irrespective of the accelerator type two
basic conditions must be met for particle acceleration:

1. Particle to be accelerated must be charged.
2. Electric field must be provided in the direction of particle acceleration.

The various types of accelerators differ in the way they produce the acceler-
ating electric field and in how the field acts on the particles to be accelerated.

As far as the accelerating electric field is concerned there are two main
classes of accelerators: electrostatic and cyclic.

In electrostatic accelerators the particles are accelerated by applying an
electrostatic electric field through a voltage difference, constant in time,
whose value fixes the value of the final kinetic energy of the particle. Since
the electrostatic fields are conservative, the kinetic energy that the particle
can gain depends only on the point of departure and point of arrival and,
hence, cannot be larger than the potential energy corresponding to the max-
imum voltage drop existing in the machine. The energy that an electrostatic
accelerator can reach is limited by the discharges that occur between the high
voltage terminal and the walls of the accelerator chamber when the voltage
drop exceeds a certain critical value (typically 1 MV).

The electric fields used in cyclic accelerators are variable and non-
conservative, associated with a variable magnetic field and resulting in some
close paths along which the kinetic energy gained by the particle differs from
zero. If the particle is made to follow such a closed path many times over, one
obtains a process of gradual acceleration that is not limited to the maximum
voltage drop existing in the accelerator. Thus, the final kinetic energy of the
particle is obtained by submitting the charged particle to the same, relatively
small, potential difference a large number of times, each cycle adding a small
amount of energy to the total kinetic energy of the particle.

Examples of electrostatic accelerators used in medicine are: superficial and
orthovoltage x-ray tubes and neutron generators. The best known example
of a cyclic accelerator is the linear accelerator (linac); other examples are
microtrons, betatrons and cyclotrons.

3.6.1 Betatron

The betatron was developed in 1940 by Donald W. Kerst as a cyclic elec-
tron accelerator for basic physics research; however, its potential for use in
radiotherapy was realized soon thereafter.

• The machine consists of a magnet fed by an alternating current of fre-
quency between 50 and 200 Hz. The electrons are made to circulate in a
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Fig. 3.8. Schematic diagram of a betatron. Left: vertical cross section; right: top
view

toroidal vacuum chamber (doughnut) that is placed into the gap between
two magnet poles. A schematic diagram of a betatron is given in Fig. 3.8.

• Conceptually, the betatron may be considered an analog of a transformer:
the primary current is the alternating current exciting the magnet and
the secondary current is the electron current circulating in the vacuum
chamber (doughnut).

• The electrons are accelerated by the electric field induced in the doughnut
by the changing magnetic flux in the magnet; they are kept in a circular
orbit by the magnetic field present in the doughnut.

• In the 1950s betatrons played an important role in megavoltage radio-
therapy. However, the development of linacs pushed them into oblivion
because of the numerous advantages offered by linacs over betatrons, such
as: much higher beam output (up to 10 Gy/min for linacs vs 1 Gy/min
for betatrons); larger field size; full isocentric mounting; more compact
design; and quieter operation.

3.6.2 Cyclotron

The cyclotron was developed in 1930 by Ernest O. Lawrence for acceleration
of ions to a kinetic energy of a few MeV. Initially, the cyclotron was used for
basic nuclear physics research but has later on found important medical uses
in production of radionuclides for nuclear medicine as well as in production
of proton and neutron beams for radiotherapy. The recent introduction of
the PET/CT machines for use in radiotherapy has dramatically increased
the importance of cyclotrons in medicine. The PET/CT machines rely on
glucose labeled with positron-emitting fluorine-18 that is produced by proton
cyclotrons.

• In a cyclotron the particles are accelerated along a spiral trajectory guided
inside two evacuated half-cylindrical electrodes (referred to as “dees” be-
cause of their D-shape form) by a uniform magnetic field (1 tesla) that is
produced between the pole pieces of a large magnet. A schematic diagram
of the cyclotron is given in Fig. 3.9.



3.6 Particle Accelerators 109

Fig. 3.9. Schematic diagram of a cyclotron. left: vertical cross section, right: top
view

• A radiofrequency voltage with a constant frequency between 10 and
30 MHz is applied between the two electrodes and the charged particle is
accelerated while crossing the gap between the two electrodes.

• Inside the electrodes there is no electric field and the particle drifts under
the influence of the magnetic field in a semicircular orbit with a constant
speed, until it crosses the gap again. If, in the meantime, the electric field
has reversed its direction, the particle will again be accelerated across the
gap, gain a small amount of energy, and drift in the other electrode along
a semicircle of a larger radius than the former one, resulting in a spiral
orbit and a gradual increase in kinetic energy after a large number of gap
crossings.

3.6.3 Microtron

The microtron is an electron accelerator, which combines the features of
a linac and a cyclotron. The concept of the microtron was developed by
Vladimir I. Veksler in 1944 and the machine is used in modern radiotherapy,
albeit to a much smaller extent than are linacs.

Two types of microtrons were developed: circular and racetrack.

• In the circular microtron the electron gains energy from a microwave
resonant cavity and describes circular orbits of increasing radius in a
uniform magnetic field. To keep the particle in phase with the microwave
power, the cavity voltage, frequency, and magnetic field are adjusted in
such a way that after each passage through the cavity, the electrons gain
an energy increment resulting in an increase in the transit time in the
magnetic field equal to an integral number of microwave cycles.

• In the racetrack microtron the magnet is split into two D-shaped pole
pieces that are separated to provide greater flexibility in achieving efficient
electron injection and higher energy gain per orbit through the use of
multi-cavity accelerating structures similar to those used in linacs. The
electon orbits consist of two semicircular and two straight sections.
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3.7 Linear Accelerator

During the past few decades medical linear accelerators (linacs) have become
the predominant machine in treatment of cancer with ionizing radiation. In
contrast to linacs used for high-energy physics research, medical linacs are
compact machines mounted isocentrically so as to allow practical radiation
treatment aiming the beam toward the patient from various directions.

Medical linacs are cyclic accelerators which accelerate electrons to kinetic
energies from 4 MeV to 25 MeV using non-conservative microwave radiofre-
quency (RF) fields in the frequency range from 103 MHz (L band) to 104 MHz
(X band), with the vast majority running at 2856 MHz (S band).

In a linear accelerator the electrons are accelerated following straight tra-
jectories in special evacuated structures called accelerating waveguides. Elec-
trons follow a linear path through the same, relatively low, potential difference
several times; hence, linacs also fall into the class of cyclic accelerators.

Various types of linacs are available for clinical use. Some provide x rays
only in the low megavoltage range (4 MV or 6 MV), others provide both x
rays and electrons at various megavoltage energies. A typical modern high-
energy linac will provide two photon energies (e.g., 6 MV and 18 MV) and
several electron energies (e.g., 6, 9, 12, 16, 22 MeV)

3.7.1 Linac Generations

During the past 40 years, medical linacs have gone through five distinct
generations, making the contemporary machines extremely sophisticated in
comparison with the machines of the 1960s. Each generation introduced the
following new features:

• Low energy photons (4–8 MV):
straight-through beam; fixed flattening filter; external wedges; symmetric
jaws; single transmission ionization chamber; isocentric mounting.

• Medium energy photons (10–15 MV) and electrons:
bent beam; movable target and flattening filter; scattering foils; dual
transmission ionization chamber; electron cones.

• High energy photons (18–25 MV) and electrons:
dual photon energy and multiple electron energies; achromatic bending
magnet; dual scattering foils or scanned electron pencil beam; motorized
wedge; asymmetric or independent collimator jaws.

• High energy photons and electrons:
computer-controlled operation; dynamic wedge; electronic portal imaging
device; multileaf collimator.

• High energy photons and electrons:
photon beam intensity modulation with multileaf collimator; full dynamic
conformal dose delivery with intensity modulated beams produced with a
multileaf collimator; on-board imaging for use in adaptive radiotherapy.
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3.7.2 Components of Modern Linacs

The linacs are usually mounted isocentrically and the operational systems
are distributed over five major and distinct sections of the machine:

1. gantry;
2. gantry stand or support;
3. modulator cabinet;
4. patient support assembly, i.e., treatment couch;
5. control console.

A schematic diagram of a typical modern S-band medical linac is shown in
Fig. 3.10. Also shown are the connections and relationships among the various
linac components, listed above. The diagram provides a general layout of linac
components; however, there are significant variations from one commercial
machine to another, depending on the final electron beam kinetic energy as
well as on the particular design used by the manufacturer. The length of
the accelerating waveguide depends on the final electron kinetic energy, and
ranges from ∼30 cm at 4 MeV to ∼150 cm at 25 MeV.

The beam-forming components of medical linacs are usually grouped into
six classes:

Fig. 3.10. Schematic diagram of a medical linear accelerator (linac)
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1. injection system;
2. RF power generation system;
3. accelerating waveguide;
4. auxiliary system;
5. beam transport system; and
6. beam monitoring system and beam collimation.

The injection system is the source of electrons, essentially a simple elec-
trostatic accelerator called an electron gun. Two types of electron gun are
in use: diode type and triode type, both containing a heated cathode (at a
negative potential of the order of −25 kV) and a perforated grounded an-
ode. In addition, triode type gun also incorporates a grid placed between the
cathode and the anode. Electrons are thermionically emitted from the heated
cathode, focused into a pencil beam and accelerated toward the perforated
anode through which they drift into the accelerating waveguide.

The radiofrequency (RF) power generating system produces the high
power microwave radiation used for electron acceleration in the accelerat-
ing waveguide and consists of two components: the RF power source and the
pulsed modulator. The RF power source is either a magnetron or a klystron
in conjunction with a low power RF oscillator. Both devices use electron ac-
celeration and deceleration in vacuum for production of the high power RF
fields. The pulsed modulator produces the high voltage, high current, short
duration pulses required by the RF power source and the electron injection
system.

Electrons are accelerated in the accelerating waveguide by means of an
energy transfer from the high power RF field which is setup in the acceler-
ating waveguide and produced by the RF power generator. The accelerating
waveguide is in principle obtained from a cylindrical uniform waveguide by
adding a series of disks (irises) with circular holes at the center, positioned
at equal intervals along the tube. These disks divide the waveguide into a
series of cylindrical cavities that form the basic structure of the accelerating
waveguide in a linac.

The auxiliary system of a linac consists of several basic systems that are
not directly involved with electron acceleration, yet they make the accelera-
tion possible and the linac viable for clinical operation. These systems are: the
vacuum-pumping system, the water-cooling system, the air-pressure system,
and the shielding against leakage radiation.

The electron beam transport system brings the pulsed high-energy electron
beam from the accelerating waveguide onto the target in the x-ray therapy
mode and onto the scattering foil in the electron therapy mode.

The beam monitoring and beam collimation system forms an essential
system in a medical linac ensuring that radiation dose may be delivered to
the patient as prescribed, with a high numerical and spatial accuracy.
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3.7.3 Linac Treatment Head

The linac head contains several components, which influence the production,
shaping, localizing, and monitoring of the clinical photon and electron beams.
Electrons, originating in the electron gun, are accelerated in the accelerat-
ing waveguide to the desired kinetic energy and then brought, in the form
of a pencil beam, through the beam transport system into the linac treat-
ment head, where the clinical photon and electron beams are produced. The
important components found in a typical head of a modern linac include:

1. several retractable x-ray targets;
2. flattening filters and electron scattering foils (also referred to as scattering

filters);
3. primary and adjustable secondary collimators;
4. dual transmission ionization chambers;
5. field defining light and range finder ;
6. optional retractable wedges or full dynamic wedges;
7. multileaf collimator (MLC).

Clinical photon beams are produced in medical linear accelerators with a
target/flattening filter combination. The electron beam accelerated to a given
kinetic energy in the accelerating waveguide is brought by the beam transport
system onto an x-ray target in which a small fraction (of the order of 10%) of
the electron pencil beam kinetic energy is transformed into bremsstrahlung
x rays. The intensity of the x ray beam produced in the target is mainly
forward peaked and a flattening filter is used to flatten the beam and make
it useful for clinical applications. Each clinical photon beam produced by
a given electron kinetic energy has its own specific target/flattening filter
combination.

Photon beam collimation in a typical modern medical linac is achieved
with three collimation devices: the primary collimator, the secondary movable
beam defining collimator, and the multileaf collimator (MLC). The primary
collimator defines a maximum circular field which is further truncated with
the adjustable rectangular collimator consisting of two upper and two lower
independent jaws and producing rectangular or square fields with a maxi-
mum dimension of 40 × 40 cm2 at the linac isocenter, 100 cm from the x-ray
target.

The MLCs are a relatively new addition to modern linac dose delivery
technology. In principle, the idea behind an MLC is simple. It allows produc-
tion of irregularly shaped radiation fields with accuracy and efficiency and is
based on an array of narrow collimator leaf pairs, each leaf controlled with
its own miniature motor. The building of a reliable MLC system presents a
substantial technological challenge and current models incorporate up to 120
leaves (60 pairs) covering radiation fields up to 40 × 40 cm2 and requiring
120 individually computer-controlled motors and control circuits.
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Clinical electron beams are produced in a medical linac by retracting the
target and flattering filter from the electron pencil beam and either scattering
the electron pencil beam with a scattering foil or deflecting and scanning
the pencil beam magnetically to cover the field size required for electron
beam treatment. Special cones (applicators) are used to collimate the clinical
electron beams.

Dose monitoring systems in medical linacs are based on transmission ion-
ization chambers permanently imbedded in the linac clinical photon and
electron beams. The chambers are used to monitor the beam output (pa-
tient dose) continuously during the patient treatment. In addition to dose
monitoring the chambers are also used for monitoring the radial and trans-
verse flatness of the radiation beam as well as its symmetry and energy. For
patient safety, the linac dosimetry system usually consists of two separately
sealed ionization chambers with completely independent biasing power sup-
plies and readout electrometers. If the primary chamber fails during patient
treatment, the secondary chamber will terminate the irradiation, usually af-
ter an additional dose of only a few percent above the prescribed dose has
been delivered.

3.7.4 Configuration of Modern Linacs

At megavoltage electron energies the bremsstrahlung photons produced in
the x-ray target are mainly forward-peaked and the clinical photon beam is
produced in the direction of the electron beam striking the target.

In the simplest and most practical configuration, the electron gun and the
x-ray target form part of the accelerating waveguide and are aligned directly
with the linac isocentre, obviating the need for a beam transport system. A
straight-through photon beam is produced and the RF power source is also
mounted in the gantry. The simplest linacs are isocentrically mounted 4 or
6 MV machines with the electron gun and target permanently built into the
accelerating waveguide, thereby requiring no beam transport nor offering an
electron therapy option.

Accelerating waveguides for intermediate (8–15 MeV) and high (15–
30 MeV) electron energies are too long for direct isocentric mounting, so
they are located either in the gantry, parallel to the gantry axis of rotation,
or in the gantry stand. A beam transport system is then used to transport the
electron beam from the accelerating waveguide to the x-ray target. The RF
power source in the two configurations is commonly mounted in the gantry
stand. Various design configurations for modern isocentric linear accelerators
are shown in Fig. 3.11.
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Fig. 3.11. Design configurations for isocentric medical linacs. a Straight-through
beam design; the electron gun and target are permanently embedded into the ac-
celerating waveguide; machine produces only x rays with energies of 4–6 MV; the
rf-power generator is mounted in the gantry. b Accelerating waveguide is in the
gantry parallel to the isocenter axis; electrons are brought to the movable target
through a beam transport system; the rf-power generator is located in the gantry
stand; machine can produce megavoltage x rays as well as electrons. c Accelerat-
ing waveguide and rf-power generator are located in the gantry stand; electrons
are brought to the movable target through a beam transport system; machine can
produce megavoltage x rays as well as electrons



An Electron Pencil Beam Penetrating into Water

The photograph on the next page represents a 1 MeV electron pencil beam consist-
ing of 50 electrons penetrating into a water phantom. The distribution is calculated
with the EGS-nrc Monte Carlo code that traces the trajectories of the individual
incident electrons through their various Coulomb interactions with the orbital elec-
trons and nuclei of the water molecules.

Interactions of incident electrons with orbital electrons result in collision (ion-
ization) losses of the incident electrons; interactions with nuclei result in scattering
(change in direction of motion) and may also result in radiative (bremsstrahlung)
losses. The jagged paths in the figure represent incident electron tracks in water;
the two straight traces represent two bremsstrahlung photons, both escaping the
phantom. A careful observer will also be able to discern the tracks of secondary
electrons (δ electrons) that are liberated in water by the primary electrons and
given sufficient kinetic energies to be able to ionize matter in their own right.

Monte Carlo calculations are a statistical process and their accuracy depends
on the number of events included in the calculation. The larger is this number, the
better is the accuracy of the calculation and, of course, the longer is the calcula-
tion time. With the ever-increasing power and speed of computers, Monte Carlo
techniques are becoming of practical importance in radiation dosimetry and in
calculations of dose distributions in patients treated with x rays, gamma rays, or
particle beams.

While the current treatment planning techniques are based on a set of mea-
surements carried out in water phantoms, practical Monte Carlo-based treatment
planning algorithms that are currently under development in many research cen-
ters will base the calculations directly on data for a particular patient, thereby, in
principle, significantly improving the accuracy of dose distribution calculations.

Recently patient-specific Monte Carlo-based treatment planning systems have
become commercially available; however, their routine implementation in radio-
therapy clinics still hinges on many factors, such as adequate modeling of radiation
sources; solving several experimental problems involving tissue inhomogeneities;
answering many important clinical questions; updating the dose calculation algo-
rithms; and improving the computing hardware. It is expected that in the near
future incorporation of predictive biological models for tumor control and normal
tissue complication into Monte Carlo-based dose calculation engines will form the
standard approach to radiotherapy treatment planning.

Photograph: Courtesy of Jan P. Seuntjens, Ph.D., McGill University, Montréal.
Reproduced with Permission.



4 Two-Particle Collisions

This chapter deals with two-particle collisions characterized by an energetic
projectile striking a stationary target. Three categories of projectiles of inter-
est in medical physics are considered: light charged particles such as electrons
and positrons, heavy charged particles such as protons and α particles, and
neutral particles such as neutrons. The targets are either atoms as a whole,
atomic nuclei, or atomic orbital electrons. The collisions are classified into
three categories: nuclear reactions; elastic collisions; and inelastic collisions.

The many types of interacting particles as well as the various possible
categories of interactions result in a wide range of two-particle collisions of
interest in medical physics. Several parameters, such as the Q value and en-
ergy threshold in nuclear reactions, and energy transfer, scattering angle and
angular scattering power in elastic scattering, used in characterization of two-
particle collisions, are defined in this chapter. Many of these parameters play
an important role in radiation dosimetry through their effects on stopping
powers, as discussed in Chap. 5. They also play an important role in the
production of radioactive nuclides (nucleosynthesis), as discussed in Chap. 8.
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4.1 Collisions of Two Particles: General Aspects

A common problem in nuclear physics and radiation dosimetry is the collision
of two particles in which a projectile with mass m1, velocity υ1 and kinetic
energy (EK)1 strikes a stationary target with mass m2 and velocity υ2 = 0.

As shown schematically in Fig. 4.1, the collision in the most general case
results in an intermediate compound that decays into two reaction products:
one of mass m3 ejected with velocity υ3 at an angle θ to the incident projectile
direction, and the other of mass m4 ejected with velocity υ4 at an angle φ to
the incident projectile direction.

The probability or cross section for a particular collision as well as the
collision outcome depend on the physical properties of the projectile (mass,
charge, velocity, kinetic energy) and the stationary target (mass, charge).

Projectiles of interest in medical physics fall into one of three categories,
each category characterized by its own specific mechanism for the interaction
between the projectile and the target. The three categories of projectiles are:
(i) heavy charged particles, (ii) light charged particles, and (iii) neutrons.

Fig. 4.1. Schematic representation of a two-particle collision of a projectile with
mass m1, velocity υ1 and kinetic energy (EK)1 striking a stationary target with mass
m2 and velocity υ2 = 0. An intermediate compound entity is produced temporarily
that decays into two reaction products, one of mass m3 ejected with velocity υ3 at
an angle θ to the incident projectile direction, and the other of mass m4 ejected
with velocity v4 at an angle φ to the incident projectile direction



4.1 Collisions of Two Particles: General Aspects 119

1. Heavy charged particles, such as protons, α particles or heavy ions, in-
teract with the target through Coulomb interactions. Typical targets for
heavy charged particles are atomic nuclei and atomic orbital electrons.

2. Light charged particles, such as electrons or positrons, interact with the
target through Coulomb interactions. Typical targets for light charged
particles are either atomic nuclei or atomic orbital electrons.

3. Neutrons interact with the target through direct collisions with the tar-
get. Typical targets for neutrons are atomic nuclei.

Targets are either atoms as a whole, atomic nuclei, or atomic orbital elec-
trons. Two-particle collisions are classified into three categories: (1) nuclear
reactions, (2) elastic collisions, and (3) inelastic collisions.

1. Nuclear reactions, shown schematically in Fig. 4.1 and discussed in
Sect. 4.2, represent the most general case of a two-particle collision of
a projectile m1 with a target m2 resulting in two reaction products, m3
and m4, that differ from the initial products m1 and m2.
– In any nuclear reaction a number of physical quantities must be con-

served, most notably: charge; linear momentum and mass-energy.
– In addition, the sum of atomic numbers Z and the sum of atomic mass

numbers A for before and after the collision must also be conserved,
i.e.,

ΣZ (before collision) = ΣZ (after collision)
and
ΣA (before collision) = ΣA (after collision).

2. Elastic scattering is a special case of a two-particle collision in which:
– The products after the collision are identical to the products before

the collision, i.e., m3 = m1 and m4 = m2.
– The total kinetic energy and momentum before the collision are equal

to the total kinetic energy and momentum, respectively, after the
collision.

– A small fraction of the initial kinetic energy of the projectile is trans-
ferred to the target.

Two-particle elastic scattering is shown schematically in Fig. 4.2 (p. 125).
The energy transfer in elastic collisions is discussed in Sect. 4.3; the cross
sections for single and multiple elastic scattering of two charged particles
are discussed in Sect. 4.4.

3. In inelastic scattering of the projectile m1 on the target m2, similarly
to elastic scattering, the reaction products after collision are identical to
the initial products, i.e., m3 = m1 and m4 = m2; however, the incident
projectile transfers a portion of its kinetic energy to the target in the form
of not only kinetic energy but also in the form of an intrinsic excitation
energy E∗.
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The excitation energy E∗ may represent:
– Nuclear excitation of the target.
– Atomic excitation or ionization of the target.
– Emission of bremsstrahlung by the projectile.

As a result of the various types of projectiles and targets as well as several
categories of two-particle collisions, many different two-particle interactions
are possible. The interactions of interest in medical physics and radiation
dosimetry are summarized in Table 4.1.

Table 4.1. Collisions between various projectiles and targets of interest in medical
physics and radiation dosimetry

Projectile Heavy charged
particle

Light charged
particle

Neutron

Target Nucleus Electron Nucleus Electron Nucleus Electron

Nuclear reaction
m2(m1, m3)m4

Yes(a) No Yes(e) No Yes(j) No

Elastic scattering
m2(m1,m1)m2

Yes(b) No Yes(f) Yes(h) Yes(k) No

Inelastic scattering
m2(m1,m1)m2∗

Yes(c) Yes(d) Yes(g) Yes(i) Yes(l) No

Heavy charged particle interactions with nuclei of the target

(a) Nuclear reaction precipitated by a heavy charged particle projectile m1 striking
a nucleus m2 resulting in products m3 and m4.
Example: Deuteron bombarding nitrogen-14

14
7 N(d, p)157 N

(b) Elastic Coulomb collision of heavy charged particle with atomic nucleus
Example: Rutherford scattering of α particle on gold nucleus,

197
79 Au(α, α)19779 Au

(c) Inelastic collision of heavy charged particle with nucleus
Example: Nuclear excitation,

A
Z X(α, α)AZ X∗ ⇒ A

Z X∗ → A
Z X + γ

Heavy charged particle interactions with orbital electrons of the target

(d) Inelastic collision of heavy charged particle with atomic orbital electron
Example: Excitation or ionization of an atom
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Light charged particle interactions with nuclei of the target

(e) Nuclear reaction precipitated by an energetic light charged particle striking the
nucleus
Examples: (e,n) and (e,p) nuclear reactions

(f) Elastic collision between a light charged particle and atomic nucleus
Example: Non-radiative scattering of electrons on the nuclei of the target

(g) Inelastic collision between a light charged particle and atomic nucleus
Example: Bremsstrahlung production by electrons or positrons undergoing

a Coulomb interaction with an atomic nucleus (radiative loss)

Light charged particle interactions with orbital electrons of the target

(h) Elastic collision between a light charged particle and an orbital electron
Example: Ramsauer effect in which an electron of very low kinetic energy

(below 100 eV) undergoes an elastic collision with an atomic
orbital electron

(i) Inelastic collision between a light charged particle and atomic orbital electron
Example 1: Electron-orbital electron interaction resulting in atomic excita-

tion or ionization (hard and soft collisions)
Example 2: Positron annihilation leaving atom in an ionized state coinciding

with emission of two γ annihilation quanta.

Neutron interactions with nuclei of the target

(j) Nuclear reaction caused by neutron colliding with atomic nucleus
Example: 1: Neutron capture or neutron activation (see Sect. 8.4)

59
27Co(n, γ)6027Co

Example 2: Spallation and nuclear fission for high atomic number targets
(k) Elastic collision between neutron and atomic nucleus (see Sect. 6.2.1)
(l) Inelastic collision between neutron and atomic nucleus (see Sect. 6.2.2)

Example: Nuclear excitation
A
Z X(n, n)AZ X∗ ⇒ A

Z X∗ → A
Z X + γ

4.2 Nuclear Reactions

Two-particle collisions between the projectile m1 and target m2 resulting in
products m3 and m4 are referred to as nuclear reactions and are governed
by conservation of total energy and momentum laws. As shown in Table 4.1,
the projectile can be a heavy charged particle, a light charged particle or a
neutron.

The collision leading to a nuclear reaction is shown schematically in
Fig. 4.1 with the projectile m1 moving with velocity υ1 and kinetic energy
(EK)1 striking a stationary target m2. An intermediate compound entity is
produced temporarily that decays into two reaction products, m3 and m4,
ejected with velocities υ3 at angle θ and υ4 at angle φ, respectively.
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4.2.1 Conservation of Momentum in Nuclear Reactions

The conservation of momentum in a two-particle nuclear collision is expressed
through the vector relationship

m1
→
υ1 = m3

→
υ3 + m4

→
υ4 , (4.1)

that can be resolved into a component along the incident direction and a
component perpendicular to the incident direction to obtain

m1υ1 = m3υ3 cos θ + m4υ4 cos φ (4.2)

and

0 = m3υ3 sin θ − m4υ4 sin φ , (4.3)

where the angles θ and φ are defined in Fig. 4.1 on page 118.

4.2.2 Conservation of Energy in Nuclear Reactions

The total energy of the projectile m1 and target m2 before the interaction
(collision) must equal to the total energy of products m3 and m4 after the
collision, i.e.,{

m1oc
2 + (EK)1

}
+ (m2oc

2 + 0) ={
m3oc

2 + (EK)3
}

+
{
m4oc

2 + (EK)4
}

, (4.4)

where

m1oc
2 is the rest energy of the projectile;

m2oc
2 is the rest energy of the target;

m3oc
2 is the rest energy of the reaction product m3;

m4oc
2 is the rest energy of the reaction product m4;

(EK)1 is the initial kinetic energy of the projectile;
(EK)3 is the kinetic energy of the reaction product m3;
(EK)4 is the kinetic energy of the reaction product m4.

Inserting into (4.4) the so-called Q value for the collision in the form

Q = (m1oc
2 + m2oc

2) − (m3oc
2 + m4oc

2) , (4.5)

we get the following relationship for the conservation of energy

EK1 + Q = EK3 + EK4 . (4.6)

Each two-particle collision possesses a characteristic Q value that can be
either positive, zero, or negative.

• For Q > 0, the collision is exothermic and results in release of energy.
• For Q = 0, the collision is termed elastic.
• For Q < 0, the collision is termed endothermic and, to take place, it

requires an energy transfer from the projectile to the target.
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4.2.3 Threshold Energy Ethr for Nuclear Reactions

An exothermic reaction can occur spontaneously; an endothermic reaction
cannot take place unless the projectile has a kinetic energy exceeding a thresh-
old energy.

• The threshold is defined as the smallest total energy Ethr or the smallest
kinetic energy (EK)thr of the projectile at which an endothermic collision
can still occur.

• The threshold energy for an endothermic collision is determined through
the use of the so-called invariant

E2 − p2c2 = invariant , (4.7)

where
E is the total energy before and the total energy after the collision;
p is the total momentum before and the total momentum after the col-

lision;

The invariant is valid for both the laboratory coordinate system and for the
center-of-mass coordinate system and, for convenience, the conditions before
the collision are written for the laboratory system while the conditions after
the collision are written for the center-of-mass system.

The conditions for before and after the collision are written as follows:

– total energy before: Ethr + m2oc
2 =

√
m2

1oc
4 + p2

1c
2 + m2oc

2 , (4.8)

where Ethr is the total threshold energy of the projectile;
– total momentum before: p1;
– total energy after in the center-of-mass system: m30c

2 + m40c
2;

– total momentum after in the center-of-mass system: 0.

The invariant of (4.7) for before and after the collision then gives(√
m2

1oc
4 + p2

1c
2 + m2oc

2
)2

− p2
1c

2 =
(
m3oc

2 + m4oc
2)2 − 0 .

(4.9)

Solving for Ethr =
√

m2
1oc

4 + p2
1c

2 results in the following expression for the
total threshold energy

Ethr =

(
m3oc

2 + m4oc
2
)2 − (

m2
1oc

4 + m2
2oc

4
)

2m2oc2 . (4.10)

Noting that Ethr = (EK)thr + m1oc
2, where (EK)thr is the threshold kinetic

energy of the projectile, we get the following expression for (EK)thr

(EK)thr =

(
m3oc

2 + m4oc
2
)2 − (

m1oc
2 + m2oc

2
)2

2m2oc2 . (4.11)

The threshold kinetic energy (EK)thr of the projectile may now be written
in terms of the nuclear reaction Q value [(4.5)] as follows:
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– we note that from (4.5) for the Q value we can write(
m3oc

2 + m4oc
2)2 =

(
m1oc

2 + m2oc
2)2

+Q2 − 2Q
(
m1oc

2 + m2oc
2) . (4.12)

– Inserting the relationship of (4.12) into (4.11) we obtain

(EK)thr =−Q

[
m1moc

2 + m2oc
2

m2oc2 − Q

2m2oc2

]

≈−Q

(
1 +

m1o

m2o

)
, (4.13)

where, since Q � m2oc
2, we can ignore the Q/(2m2oc

2) term in (4.13).

In (4.13) the threshold kinetic energy (EK)thr of the projectile exceeds the
|Q| value by a relatively small amount to account for conservation of both
energy and momentum in the collision.

As a special case the invariant of (4.7) may also be used to calculate the
threshold photon energy (Eγ)thr for pair production (see Sect. 7.6.2)

– In the field of nucleus of rest mass mA (pair production) as

(Ep
γ )thr = 2mec

2
(

1 +
me

mA

)
. (4.14)

– In the field of orbital electron of rest mass me (triplet production) as

(Et
γ)thr = 4mec

2 . (4.15)

4.3 Two-Particle Elastic Scattering: Energy Transfer

Elastic scattering in a two-particle collision is a special case of a nuclear
collision between a projectile m1 and target m2:

1. The initial and final products are identical (i.e., m3 = m1 and m4 = m2),
however, the projectile changes its direction of motion (i.e., is scattered)
and the target recoils.

2. The Q value for the collision, as given in (4.7), equals zero, i.e., Q = 0.
3. A certain amount of kinetic energy (∆EK) is transferred from the projec-

tile m1 to the target m2. The amount of energy transfer is governed by
conservation of the kinetic energy and momentum, and depends on the
scattering angle θ of the projectile and the recoil angle φ of the target.

Two-particle elastic scattering between projectile m1 moving with velocity
υ1 and a stationary target m2 is shown schematically in Fig. 4.2, with θ the
scattering angle of the projectile, φ the recoil angle of the target, and b the
impact parameter. After the collision particle m1 continues with velocity u1
and the target recoils with velocity u2.
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Fig. 4.2. Schematic diagram of an elastic collision between a projectile with mass
m1 and velocity υ1 striking a stationary target m2. The projectile is scattered with
a scattering angle θ; the target recoils with a recoil angle φ. The impact parameter
is b. After the collision the velocity of the projectile m1 is u1; the velocity of the
target m2 is u2

4.3.1 General Energy Transfer from Projectile m1 to Target m2

in Elastic Scattering

The kinetic energy transfer ∆EK from projectile m1 to the target m2 is de-
termined classically using the conservation of kinetic energy and momentum
laws as follows:

• Conservation of kinetic energy:

(EK)1 =
1
2
m1υ

2
1 =

1
2
m1u

2
1 +

1
2
m2u

2
2 , (4.16)

where (EK)1 is the initial kinetic energy of the projectile m1.
• Conservation of momentum:

m1υ1 = m1u1 cos θ + m2u2 cos φ (4.17)
0 = m1u1 sin θ − m2u2 sin φ , (4.18)

where
υ1 is the initial velocity of the projectile m1,
u1 is the final velocity of the projectile m1,
u2 is the final velocity of the target m2 ,
θ is the scattering angle of the projectile m1 ,
φ is the recoil angle of the target m2.

Equations (4.17) and (4.18) can be written as follows:

(m1υ1 − m2u2 cos φ)2 = m2
1u

2
1 cos2 θ (4.19)
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and

m2
1u

2
1 sin2 θ = m2

1u
2
1 − m2

1u
2
1 cos2 θ = m2

2u
2
2 sin2 φ , (4.20)

respectively.
Inserting (4.19) into (4.20) gives

m2
2u

2
2 = m2

1u
2
1 − m2

1υ
2
1 + 2m1υ1m2u2 cos φ , (4.21)

which, after inserting (4.16) multiplied by 2m1, reads

m2
2u

2
2 = 2m1υ1m2u2 cos φ − m1m2u

2
2 or

2m1υ1 cos φ = (m1 + m2) u2 . (4.22)

Since ∆EK = m2u2
2

2 , we get the following classical general expression for the
kinetic energy transfer ∆EK from the projectile m1 to the target m2

∆EK = EK1

4m1m2

(m1 + m2)
2 cos2 φ , (4.23)

where φ is the recoil angle of the target m2, defined graphically in Fig. 4.2.

4.3.2 Energy Transfer in a Two-Particle Elastic Head-On Collision

A head-on (direct hit) elastic collision between two particles is a special elastic
collision in which the impact parameter b equals to zero. This results in a
maximum possible momentum transfer ∆pmax and maximum possible energy
transfer (∆EK)max from the projectile m1 to the target m2. The head-on two-
particle elastic collision is characterized as follows:

1. The impact parameter b = 0.
2. The target recoil angle φ = 0.
3. The projectile scattering angle θ is either 0 or π depending on the relative

magnitudes of masses m1 and m2

– for m1 > m2, θ = 0 (forward scattering),
– for m1 < m2, θ = π (back-scattering),
– for m1 = m2, the projectile stops and target recoils with φ = 0.

Classical Relationships for a Head-On Collision

Before collision After collision
◦ → ◦ ◦ → ◦ →
m1, υ1 m2, υ2 = 0 m1, u1 m2, u2

Conservation of Momentum: m1υ1 + 0 = m1u1 + m2u2 (4.24)
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Conservation of Energy:
m1υ

2
1

2
+ 0 =

m1u
2
1

2
+

m2u
2
2

2
(4.25)

• The maximum momentum transfer ∆pmax from the projectile m1 to the
target m2 is given by:

∆pmax = m1υ1 − m1u1 =
2m1m2

m1 + m2
υ1 =

2m2

m1 + m2
p1 , (4.26)

where p1 is the initial momentum of the projectile m1.

• The maximum energy transfer ∆Emax from the projectile m1 to the sta-
tionary target m2 is given by

∆Emax =
m1υ

2
1

2
− m1u

2
1

2
=

m2u
2
2

2
=

4m1m2

(m1 + m2)2
EK1 , (4.27)

where EK1 is the initial kinetic energy of the projectile m1. The same
result can be obtained from the general relationship given in (4.23) after
inserting φ = 0 for the target recoil angle.

Special Cases for the Classical Energy Transfer
in a Head-On Collision

• m1 � m2 → ∆Emax =
4m1m2

(m1 + m2)2
EK1

≈4
m2

m1
EK1 = 2m2υ

2
1 (4.28)

Example: proton colliding with orbital electron: mp � me

∆Emax =
4memp

(me + mp)2
EK1 ≈ 4

me

mp
EK1 = 2meυ

2
1 (4.29)

Since 4me/mp = 4/1836 ≈ 0.002, we see that in a direct hit between a
proton and an electron only about 0.2% of the proton kinetic energy is
transferred to the target electron in a single collision.

• m1 � m2 → ∆Emax =
4m1m2

(m1 + m2)2
EK1 ≈ 4

m1

m2
EK1 (4.30)

Example 1: α particle colliding with gold nucleus (Au-207): mα � mAu
(Rutherford scattering, see Sect. 2.2)

∆Emax = 4
mamAu

(mα + mAu)2
EK1 ≈ 4

mα

mAu
EK1 . (4.31)

Since 4mα/mAu ≈ 0.08, we see that in a single direct hit head-on collision
only about 8% of the incident α-particle kinetic energy is transferred to
the gold target.
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Example 2: Neutron colliding with lead nucleus (Pb-207):
mneutron � mlead nucleus

∆Emax = 4
mnmPb

(mn + mPb)2
EK1 ≈ 4

mn

mPb
EK1 . (4.32)

Since 4mn/mPb ≈ 1/50 = 0.02, we see that in a direct hit only about 2% of
the incident neutron kinetic energy is transferred to the lead target. This
shows that lead is a very inefficient material for slowing down neutrons;
low atomic number materials are much more suitable for this purpose. Of
practical importance here is the use of polyethylene as shielding material
for doors in high-energy linac bunkers to shield against neutrons produced
in the linac.

• m1 = m2 → ∆Emax =
4m1m2

(m1 + m2)2
EK1 = EK1 (4.33)

Example: Interaction between two distinguishable particles such as posi-
tron colliding with orbital electron or neutron colliding with hydrogen
atom:
In a direct hit between two distinguishable particles of equal mass the
whole kinetic energy of the incident particle is transferred to the target
in a single hit.

• m1 = m2 → ∆Emax =
1
2
EK (4.34)

Example: Interaction between two indistinguishable particles such as elec-
tron colliding with orbital electron:
After the interaction, the particle with the larger kinetic energy is as-
sumed to be the incident particle; therefore the maximum possible energy
transfer is EK/2.

Relativistic Relationships for a Head-On Collision

The relationship for ∆Emax in (4.27) was calculated classically. The rela-
tivistic result given below is similar to the classical result, with m1o and m2o
standing for the rest masses of the projectile m1 and target m2.

Before collision After collision
◦ → ◦ ◦ → ◦ →
m1o, υ1 m2o, υ2 = 0 m1o, u1 m2o, u2

Conservation of Momentum:

γβm1oc
2 + 0 = γ1β1m1oc

2 + γ2β2m2oc
2 (4.35)
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Conservation of Energy:

γm1oc
2 + m2oc

2 = γ1m1oc
2 + γ2m2oc

2 (4.36)

with
β = υ/c; β1 = u1/c; β2 = u2/c; γ = 1√

1−β2
; γ1 = 1√

1−β2
1

; γ2 = 1√
1−β2

2

.

• The maximum momentum transfer ∆pmax from the projectile m1o to the
target m2o is given by

∆pmax =
2(γm1o + m2o)m2o

m2
1o + m2

2o + 2γm1om2o
p1 , (4.37)

where p1 is the initial momentum of the projectile m1o.

• The maximum energy transfer ∆Emax from the projectile m1o to the
target m2o is given by

∆Emax =
2(γ + 1)m1om2o

m2
1o + m2

2o + 2γm1om2o
EK1 , (4.38)

where EK1 is the initial kinetic energy of the projectile m1o.

• The relativistic equations for the maximum momentum transfer of (4.37)
and maximum energy transfer of (4.38) transform into the classical equa-
tions [(4.26) and (4.27), respectively], for small velocities of the projectile
where β → 0, corresponding to γ = (1 − β2)−1/2 → 1.

Special Cases for the Relativistic Energy Transfer
in a Head-On Collision

• m1o � m2o

∆Emax =
2(γ + 1)(m2o/m1o)

1 + (m2o/m1o)2 + 2γ(m2o/m1o)
EK1

≈2(γ2 − 1)
m2o

m1o
m1oc

2 = 2m2oc
2 β2

1 − β2 , (4.39)

with the kinetic energy of the projectile given as follows:

EK1 = m1oc
2(1/

√
1 − β2 − 1) = m1oc

2(γ − 1). (4.40)

Example: Heavy charged particle (e.g., proton) colliding with an orbital
electron

• m1o = m2o (Collision between two distinguishable particles)

∆Emax =
2(γ + 1)m1om2o

m2
1o + m2

2o + 2γm1om2o
EK1

=
2(γ + 1)m2

1o

2(γ + 1)m2
1o

= EK1 (4.41)
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Example: positron colliding with an orbital electron

• m1o = m2o (Collision between two indistinguishable particles)

∆Emax =
1
2
EK1 (4.42)

Example: electron colliding with an orbital electron (collision between two
indistinguishable particles – after the interaction, the particle with larger
kinetic energy is assumed to be the incident particle).

4.4 Cross Sections for Elastic Scattering
of Charged Particles

Most interactions of energetic charged particles as they traverse an absorber
can be characterized as elastic Coulomb scattering between the energetic
charged particle and the atoms of the absorber. The charged particles of
interest in medical physics are either light charged particles such as electrons
and positrons or heavy charged particles such as protons, α particles, and
heavier ions.

Charged particles can have elastic scattering interactions with orbital elec-
trons as well as with nuclei of the absorber atoms. The Coulomb force between
the charged particle and the orbital electron or the nucleus of the absorber
governs the elastic collisions. The Coulomb force is either attractive or repul-
sive depending on the polarity of the interacting charged particles. In either
case the trajectory of the projectile is a hyperbola: for an attractive Coulomb
force the target is in the inner focus of the hyperbola, for a repulsive Coulomb
force the target is in the outer focus of the hyperbola. An elastic collision be-
tween an α particle and a nucleus of an absorber is shown schematically in
Fig. 2.3 (Rutherford scattering); an elastic collision between a heavy charged
particle and an orbital electron is shown schematically in Fig. 5.3 (p. 146).

Various investigators worked on theoretical aspects of elastic scattering
of charged particles, most notably Rutherford on α particle scattering, Mott
on electron-nucleus scattering as well as on non-relativistic electron-orbital
electron scattering, and Møller on relativistic electron-orbital electron scat-
tering.

The particle interactions in absorbers are characterized by various param-
eters that describe single and multiple scattering events.

• For single scattering we define the differential and total scattering cross
section, effective characteristic distance, and mean square scattering an-
gle.

• For multiple scattering we define the mean square scattering angle and
the mass angular scattering power.
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4.4.1 Differential Scattering Cross Section
for a Single Scattering Event

The differential scattering cross section dσ/dΩ for a single scattering event
between two charged particles was discussed in relation to Rutherford scat-
tering in Sect. 2.2.3. In the small scattering angle θ approximation where
sin(θ/2) ≈ θ/2, the differential scattering cross section is generally expressed
as

dσ

dΩ
=

D2
eff

(θ2 + θ2
min)2

, (4.43)

where

θmin is a cut-off angle; a minimum angle below which the unscreened point
Coulomb field expression is no longer valid;

Deff is an effective characteristic distance (e.g., distance of closest approach
Dα−N in Rutherford scattering).

4.4.2 Effective Characteristic Distance

The effective characteristic distance Deff depends on the nature of the specific
scattering event as well as on the physical properties of the scattered particle
and the scattering material.

The differential scattering cross section of (2.32) was derived for Ruther-
ford scattering of α particles on gold nuclei in Sect. 2.2.3 and is a good
approximation for both heavy and light charged particles as long as the ap-
propriate effective characteristic distance Deff is used in the calculations.

In Rutherford scattering of an α particle on a nucleus the effective char-
acteristic distance Deff is the distance of closest approach Dα−N between the
α particle and the nucleus in a direct-hit (head on) collision (b = 0, θ = π).

Deff(α − N) = Dα−N =
zZe2

4πεo

1
EK

, (4.44)

where

z is the atomic number of the α particle;
Z is the atomic number of the absorber atom;
EK is the initial kinetic energy of the α particle.

In electron-nucleus elastic scattering the effective characteristic distance Deff
is as follows:

Deff(e − N)=De−n =
Ze2

4πεo
mυ2

2

=
2Ze2

√
1 − β2

4πεo(mec2β2)

=
2Zre

√
1 − β2

β2 , (4.45)
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where

m is the total mass of the electron, i.e., m = me/
√

1 − β2,
me is the rest mass of the electron,
β is the velocity of the electron normalized to c, i.e., β = υ/c,
υ is the velocity of the electron,
Z is the atomic number of the absorber,
re is the classical radius of the electron (2.82 fm)

In electron-orbital electron scattering the effective characteristic distance
Deff(e − e) is given by

Deff(e − e)=De−e =
e2

4πεo
mυ2

2

=
2e2

√
1 − β2

4πεo(mec2β2)
=

2re
√

1 − β2

β2 , (4.46)

where

m is the total mass of the electron, i.e., m = me/
√

1 − β2

me is the rest mass of the electron
β is the velocity of the electron normalized to c, i.e., β = υ/c
υ is the velocity of the electron
Z is the atomic number of the absorber
re is the classical radius of the electron (2.82 fm)

The total effective characteristic distance Deff for electron scattering on ab-
sorber atoms has two components: the electron–nucleus (e–n) component and
the electron–orbital electron (e–e) component.

• The differential cross section for elastic electron scattering on atoms of an
absorber consists of a sum of the differential electron-nucleus cross section
and Z times the differential electron-orbital electron cross section, i.e.,

dσ

dΩ

∣∣∣∣
e−a

=
dσ

dΩ

∣∣∣∣
e−n

+ Z
dσ

dΩ

∣∣∣∣
e−e

=
D2

e−a

(θ2 + θ2
min)2

, (4.47)

where De−a is the effective distance for electron-atom elastic scattering.
• Deff(e − a) is then given as follows:

Deff(e − a)=De−a =
√

D2
e−n + ZD2

e−e =
2
√

Z(Z + 1)e2

4πεomυ2

=
2re

√
Z(Z + 1)

√
1 − β2

β2 , (4.48)

where
m is the total mass of the electron, i.e., m = me/

√
1 − β2,

me is the rest mass of the electron,
β is the velocity of the electron normalized to c, i.e., β = υ/c,
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υ is the velocity of the electron,
Z is the atomic number of the absorber,
re is the classical radius of the electron (2.82 fm).

4.4.3 Minimum and Maximum Scattering Angles

The minimum and maximum scattering angles θmin and θmax, respectively,
are angles where the deviation from point Coulomb nuclear field becomes
significant. These departures from the point Coulomb field approximation
appear at very small and very large angles θ, corresponding to very large and
very small impact parameters b, respectively.

At very small angles θ the screening of the nuclear charge by atomic
orbital electrons decreases the differential cross section and at large angles θ
the finite nuclear size or nuclear penetration by the charged particle decreases
the differential cross section.

As is evident from Figs. 2.3 and 5.3, the relationship governing the change
of momentum ∆p in elastic scattering is given as follows:

sin(θ/2) = ∆p/(2p∞) , (4.49)

where

θ is the scattering angle,
p∞ is the particle momentum at a large distance from the scattering inter-

action.

In a small angle θ approximation we get a relationship

θ ≈ ∆p/p∞ ,

that results in the following quantum-mechanical expressions for θmin and
θmax [see (2.36) and (2.41)]

θmin ≈ ∆p

p∞
≈ �

p∞aTF
=

�c 3
√

Z

1.4
√

EK(EK + 2Eo) ao

≈ 2.7 × 10−3 MeV 3
√

Z√
EK(EK + 2Eo)

(4.50)

and

θmax ≈ ∆p

p∞
≈ �

p∞R
=

�c 3
√

Z√
EK(EK + 2Eo) Ro

3
√

A

≈ 1.4 × 102 MeV√
EK(EK + 2Eo)

3
√

A
, (4.51)

where

aTF is the Thomas-Fermi atomic radius equal to 1.4aoZ
−1/3 with ao the

Bohr radius and Z the atomic number of the absorber,
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ao is the Bohr radius [see (2.58)],
R is the radius of the nucleus equal to RoA

1/3 with Ro a constant (Ro =
1.4 fm),

EK is the kinetic energy of the charged particle,
Eo is the rest energy of the charged particle,
A is the atomic mass number of the absorber.

The ratio θmax/θmin is then given as [see (2.42)]

θmax

θmin
=

1.4 × 102

2.7 × 10−3 3
√

AZ
= 0.52 × 105(AZ)−1/3 . (4.52)

Using (4.50) and (4.51) we find:

• For Rutherford scattering of 5.5 MeV α particles on gold Au-197 (Geiger-
Marsden experiment) a θmin of 5 × 10−5 rad, as given in (2.45), and θmax
of 10−1 rad, as given in (2.46) in agreement with the general condition
that θmin � θmax � 1.

• For 10 MeV electrons scattered on gold-197, on the other hand, we find
considerably larger θmin and θmax at 1.6 × 10−3 rad and 2.5 rad, respec-
tively. However, we may still assume that θmin � θmax.

• For θmax larger than unity, θmax is usually set equal to 1.

4.4.4 Total Cross Section for a Single Scattering Event

The total cross section σ for a single scattering event is approximated as
follows using the small angle approximation sin θ ≈ θ:

σ =
∫

dσ

dΩ
dΩ ≈ 2πD2

eff

θmax∫
0

θ dθ

(θ2 + θ2
min)2

= π D2
eff

θmax∫
0

d(θ2 + θ2
min)

(θ2 + θ2
min)2

=−πD2
eff

[
1

θ2 + θ2
min

]θmax

0
= πD2

eff

{
1

θ2
min

− 1
θ2
max + θ2

min

}

=πD2
eff

1
θ2
min

{
1 − 1

1 + (θmax/θmin)2

}
. (4.53)

Since θmax/θmin � 1 even for very high atomic number materials, we can
simplify the expression for total cross section σ to read

σ ≈ πD2
eff

θ2
min

. (4.54)
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4.4.5 Mean Square Angle for a Single Scattering Event

The mean square angle for a single scattering event θ2 is defined by the
following relationship

θ2 =

θmax∫
0

θ2 dσ
dΩ dΩ

θmax∫
0

dσ
dΩ dΩ

=
2π

σ

θmax∫
0

θ2 dσ

dΩ
sin θ dθ , (4.55)

where

dσ/dΩ is the differential cross section for the single scattering event, given
in (4.47),

σ is the total cross section for the single scattering event [see (4.53)
and (4.54)],

θ is the scattering angle for the single scattering event,
θmax is the maximum scattering angle taken as the smaller value of either

π which represents the maximum possible scattering angle or θmax
calculated for the given interaction (see below).

The mean square angle θ2 for a single scattering event may be approximated
in the small angle approximation as follows:

θ2 =
2π D2

eff

σ

θmax∫
0

θ3dθ

(θ2 + θ2
min)2

=
π D2

eff

σ

θmax∫
0

(θ2 + θ2
min)d(θ2 + θ2

min)

(θ2 + θ2
min)2

− πD2
eff

σ

θmax∫
0

θ2
mind(θ2 + θ2

min)

(θ2 + θ2
min)2

=
πD2

eff

σ

{
ln
(

1 +
θ2
max

θ2
min

)
− 1

1 + (θmin/θmax)2

}
, (4.56)

or, after inserting the expression for σ given in (4.54)

θ2 = θ2
min

{
ln
(

1 +
θ2
max

θ2
min

)
− 1

1 + (θmin/θmax)2

}

= θ2
min ln

(
1 +

θ2
max

θ2
min

)
− θ2

minθ2
max

θ2
min + θ2

max
. (4.57)

4.4.6 Mean Square Angle for Multiple Scattering

The thicker is the absorber and the larger is its atomic number Z, the greater
is the likelihood that the incident particle will undergo several single scatter-
ing events. For a sufficiently thick absorber the mean number of successive
encounters rises to a value that permits a statistical treatment of the process.
Generally 20 collisions are deemed sufficient and we then speak of multiple
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Coulomb scattering that is characterized by a large succession of small angle
deflections symmetrically distributed about the incident particle direction.

The mean square angle for multiple Coulomb scattering Θ2 is calculated
from the mean square angle for single scattering θ2 with the help of the
central limit theorem that states the following:

“For a large number N of experiments that measure some stochastic
variable X, the probability distribution of the average of all measure-
ments is Gaussian and is centered at X with a standard deviation
1/

√
N times the standard deviation of the probability density of X”.

Since the successive single scattering collisions in the absorber are in-
dependent events, the central limit theorem shows that for a large number
n > 20 of such collisions the distribution in angle will be Gaussian around
the forward direction with a mean square angle Θ2 given as

Θ2 = nθ2 , (4.58)

where

θ2 is the mean square angle for single scattering,
n is the number of scattering events calculated as follows:

n =
Na

V
σt = ρ

NA

A
σt , (4.59)

where

Na/V is number of atoms per volume equal to ρNA/A,
σ is the total cross section for a single scattering event,
t is thickness of the absorber,
ρ is density of the absorber,
NA is the Avogadro’s number,
A is the atomic mass number of absorber.

Incorporating the value for the mean square angle for single scattering θ2

from (4.57) into (4.58) and using (4.59), the mean square angle for multiple
scattering Θ2 can be written as

Θ2 = πρ
NA

A
tD2

eff

{
ln
(

1 +
θ2
max

θ2
min

)
− 1

1 + θ2
min/θ2

max

}
, (4.60)

where θmin and θmax are the minimum and maximum scattering angles, re-
spectively, defined in Sect. 4.4.3, and Deff is the effective characteristic dis-
tance for a particular scattering event defined in Sect. 4.4.2.

Equation (4.60) for θmax/θmin � 1 simplifies to

Θ2 = 2πρ
NA

A
tD2

eff ln
(

θmax

θmin

)
. (4.61)
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4.5 Mass Angular Scattering Power for Electrons

As shown in (4.60), Θ2 increases linearly with the absorber thickness t.
A mass angular scattering power T/ρ can thus be defined for electrons as
follows:

1. either the mean square angle for multiple scattering Θ2 per mass thick-
ness ρt,

2. the increase in the mean square angle Θ2 per unit mass thickness ρt to
obtain

T

ρ
=

Θ2

ρt
=

dΘ2

d(ρt)

=π
NA

A
D2

eff

{
ln
(

1 +
θ2
max

θ2
min

)
− 1

1 + θ2
min/θ2

max

}
, (4.62)

or, as usually given in the literature (ICRU #35),

T

ρ
= π

NA

A
D2

eff

{
ln
(

1 +
θ2
max

θ2
min

)
− 1 +

[
1 +

θ2
max

θ2
min

]−1
}

, (4.63)

with Deff , the effective characteristic distance, given in (4.48).

The term
√

1 − β2/β2 in (4.48) for Deff can be expressed in terms of the
electron kinetic energy EK and electron rest energy mec

2. We first define the
ratio EK/(mec

2) as τ and then use the standard relativistic relationship for
the total energy of the electron, i.e.,

mec
2 + EK =

mec
2√

1 − β2
(4.64)

to obtain√
1 − β2 =

1
1 + τ

(4.65)

and

β2 =
τ(2 + τ)
(1 + τ)2

, (4.66)

resulting in the following expression for the term
√

1 − β2/β2√
1 − β2

β2 =
1 + τ

τ(2 + τ)
. (4.67)

The mass angular scattering power T/ρ may then be expressed as follows:

T

ρ
=4π

NA

A
r2
eZ(Z + 1)

[
1 + τ

τ(2 + τ)

]2

{
ln
(

1 +
θ2
max

θ2
min

)
− 1 +

[
1 +

θ2
max

θ2
min

]−1
}

. (4.68)
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Fig. 4.3. Mass angular scattering power T/ρ against electron kinetic energy EK

for various materials of interest in medical physics

Two features of the mass angular scattering power T/ρ can be identified:

• T/ρ is roughly proportional to Z. This follows from the Z(Z + 1)/A de-
pendence recognizing that A ≈ 2Z to obtain T/ρ ∝ Z.

• T/ρ for large electron kinetic energies EK, i.e., τ � 1, is proportional to
1/E2

K. This follows from (1 + τ)2/ {τ(2 + τ)}2 ≈ 1/τ2 for τ � 1.

A plot of the mass angular scattering power T/ρ for electrons in various
materials of interest in medical physics in the electron kinetic energy range
from 1 keV to 1000 MeV is given in Fig. 4.3. The mass angular scattering
power T/ρ consists of two components: the electron–nucleus (e–n) scattering
and the electron–orbital electron (e–e) scattering.

The plot of T/ρ against electron kinetic energy EK for kinetic energies in
the megavoltage energy range is essentially linear on a log-log plot resulting
in the T/ρ ∝ 1/E2

K dependence. The steady 1/E2
K drop of T/ρ as a function

of increasing EK suggests a relatively simple means for electron kinetic energy
determination from a measurement of the mass angular scattering power T/ρ
in a given medium.

The propagation of an electron pencil beam in a medium is described
by a distribution function that is given by the Fermi-Eyges solution to the
Fermi differential equation. The Fermi-Eyges theory predicts that the dose
distribution in a medium on a plane perpendicular to the incident direction
of the pencil electron beam is given by a Gaussian distribution with a spatial
spread proportional to the variance of the Gaussian distribution.
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In air the square of the spatial spread of the electron pencil beam, A2,
is related to T/ρ and z, the thickness of the air layer from the pencil beam
origin through the following expression

A2(z) =
T

ρ

ρz3

3
. (4.69)

In deriving (4.69) the following assumptions are made:

1. Only small angle scattering events are considered.
2. The air layer z is much smaller than the electron range in air.
3. Secondary electrons, set in motion by the electron incident pencil beam,

are ignored.
4. The bremsstrahlung contamination of the electron pencil beam is ignored.

Function A2(z) given in (4.69) is a linear function of z3 with the slope propor-
tional to the mass angular scattering power T/ρ, which in turn is a function
of electron beam kinetic energy EK through function τ given in (4.68). Thus,
from a measurement of A2(z), the spatial spread of an electron pencil beam
in air, at several distances z from the pencil beam origin, one first determines
T/ρ through (4.69) and then determines the electron beam kinetic energy EK
with data tabulated for air or data calculated for air from (4.68).



Lichtenberg Figures

Images on the next page are so-called Lichtenberg figures: in part (a) calculated
using the fractal geometry technique and in part (b) produced by 10 MeV electrons
deposited in a Lucite (acrylic) block.

The first Lichtenberg figures were actually two-dimensional patterns formed
in dust on a charged plate in the laboratory of their discoverer, Georg Christoph
Lichtenberg, an 18th century German physicist. The basic principles involved in the
formation of these early figures are also fundamental to the operation of modern
copy machines and laser printers.

Fractal geometry is a modern invention in comparison to the over 2000 year-old
Euclidean geometry. Man-made objects usually follow Euclidean geometry shapes
and are defined by simple algebraic formulas. In contrast, objects in nature often
follow the rules of fractal geometry defined by iterative or recursive algorithms.
Benoit B. Mandelbrot, a Polish-American mathematician is credited with introduc-
ing the term and techniques of fractal geometry during the 1970s. The most striking
feature of fractal geometry is the so-called self-similarity implying that the fractal
contains smaller components that replicate the whole fractal when magnified. In
theory a fractal is composed of an infinite number of ever diminishing components,
all of the same shape.

High-voltage electrical discharges on the surface or inside of insulating materials
often result in Lichtenberg figures or patterns. Lucite is usually used as the medium
for capturing the Lichtenberg figures, because it has an excellent combination of
optical (it is transparent), dielectric (it is an insulator), and mechanical (it is strong,
yet easy to machine) properties suitable for highlighting the Lichtenberg effect.
Electrons accelerated in a linear accelerator (linac) to a speed close to the speed of
light in vacuum are made to strike a Lucite block. They penetrate into the block
and come to rest inside the block. The electron space charge trapped in the block
is released either spontaneously or through mechanical stress, and the discharge
paths within the Lucite leave permanent records of their passage as they melt and
fracture the plastic along the way. The charge exit point appears as a small hole
at the surface of the Lucite block. Similar breakdown, albeit on a much larger
scale, occurs during a lightning flash as the electrical discharge drains the highly
charged regions within storm clouds; however, the discharge in air leaves behind no
permanent record of the passage through air.

The fractal tree shown in (a) is a typical example of fractal geometry use in
calculating the shape of a natural object. An example of a frozen Lichtenberg
discharge in Lucite is shown in (b). The similarity between the calculated and the
measured “tree” is striking.

(a) Courtesy of Prof. Volkhard Nordmeier, Technische Universität, Berlin.
(b) Courtesy of Bert Hickman, Stoneridge Engineering, www.teslamania.com



5 Interactions of Charged Particles
with Matter

In this chapter we discuss interactions of charged particle radiation with mat-
ter. A charged particle is surrounded by its Coulomb electric force field that
interacts with orbital electrons (collision loss) and the nucleus (radiative loss)
of all atoms it encounters as it penetrates into matter. The energy transfer
from the charged particle to matter in each individual atomic interaction
is generally small, so that the particle undergoes a large number of inter-
actions before its kinetic energy is spent. Stopping power is the parameter
used to describe the gradual loss of energy of the charged particle as it pene-
trates into an absorbing medium. Two classes of stopping powers are known:
collision (ionization) stopping power that results from charged particle in-
teraction with orbital electrons of the absorber and radiative stopping power
that results from charged particle interaction with nuclei of the absorber.

Stopping powers play an important role in radiation dosimetry. They de-
pend on the properties of the charged particle such as its mass, charge, veloc-
ity and energy as well as on the properties of the absorbing medium such as
its density and atomic number. In addition to stopping powers, other param-
eters of charged particle interaction with matter, such as the range, energy
transfer, mean ionization potential, and radiation yield, are also discussed in
this chapter.
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5.1 General Aspects of Stopping Power

As a charged particle travels through an absorber, it experiences Coulomb
interactions with the nuclei and the orbital electrons of the absorber atoms.
These interactions can be divided into three categories depending on the size
of the classical impact parameter b compared to the classical atomic radius a:

1. Coulomb force interaction of the charged particle with the external nu-
clear field (bremsstrahlung production) for b � a.

2. Coulomb force interaction of the charged particle with orbital electron
for b ≈ a (hard collision).

3. Coulomb force interaction of the charged particle with orbital electron
for b � a (soft collision).

Generally, the charged particle experiences a large number of interactions
before its kinetic energy is expended. In each interaction the charged particle’s
path may be altered (elastic or inelastic scattering) and it may lose some of
its kinetic energy that will be transferred to the medium (collision loss) or
to photons (radiative loss).

Radiative, hard and soft collisions are shown schematically in Fig. 5.1,
with b the impact parameter and a the atomic radius.

• The rate of energy loss per unit of path length by a charged particle in a
medium is called the linear stopping power (dE/dx).

• The stopping power is typically given in units MeV · cm2/g and then
referred to as the mass stopping power S equal to the linear stopping
power divided by the density ρ of the absorbing medium.

• The stopping power is a property of the material in which a charged
particle propagates.

Fig. 5.1. Three different types of collisions of a charged particle with an atom,
depending on the relative sizes of the impact parameter b and atomic radius a.
Hard collision for b ≈ a; soft collision for b � a; and radiative collision for b 	 a
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Two types of stopping powers are known:

1. Radiative stopping power that results from charged particle Coulomb in-
teraction with the nuclei of the absorber. Only light charged particles
(electrons and positrons) experience appreciable energy losses through
these interactions that are usually referred to as bremsstrahlung interac-
tions.

2. Collision (ionization) stopping power that results from charged particle
Coulomb interactions with orbital electrons of the absorber. Both heavy
and light charged particles experience these interactions that result in en-
ergy transfer from the charged particle to orbital electrons, i.e., excitation
and ionization of absorber atoms.

The total stopping power Stot for a charged particle of energy EK traveling
through an absorber of atomic number Z is the sum of the radiative and
collision stopping power, i.e.,

Stot = Srad + Scol . (5.1)

5.2 Radiative Stopping Power

The rate of bremsstrahlung production by light charged particles (electrons
and positrons) traveling through an absorber is expressed by the mass radia-
tive stopping power Srad (in MeV · cm2/g) which is given as follows:

Srad = NaσradEi , (5.2)

where

Na is the number of atoms per unit mass: Na = N/m = NA/A,
σrad is the total cross section for bremsstrahlung production given for various

energy ranges in Table 5.1,
Ei is the initial total energy of the light charged particle, i.e., Ei = EKi +

mec
2,

EKi is the initial kinetic energy of the light charged particle.

Inserting σrad for non-relativistic particles from Table 5.1 into (5.2) we
obtain the following expression for Srad:

Srad = αr2
eZ

2 NA

A
BradEi , (5.3)

where Brad is a slowly varying function of Z and Ei, also given in Table 5.1
and determined from σrad/(α r2

eZ
2). The parameter Brad has a value of 16/3

for light charged particles in the non-relativistic energy range (EK � mec
2);

about 6 at EK = 1 MeV; 12 at EK = 10 MeV; and 15 at EK = 100 MeV.
The mass radiative stopping power Srad is proportional to:

• (NAZ2/A), that, by virtue of Z/A ≈ 0.5 for all elements with the excep-
tion of hydrogen, indicates a proportionality with the atomic number of
the absorber Z.
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Table 5.1. Total cross section for bremsstrahlung production and parameter Brad

for various ranges of electron kinetic energies

Energy range σrad (cm2/nucleon) Brad = σrad/(α r2
eZ2)

Non-relativistic
EKi 	 mec

2

16
3

α r2
eZ2 16

3
(5.4)

Relativistic
EKi ≈ mec

2
complicated power series — (5.5)

High-relativistic

mec
2 	 EKi 	 mec

2

αZ1/3

8αr2
eZ2

[
ln

(
Ei

mec2

)
− 1

6

]
8

[
ln

(
Ei

mec2

)
− 1

6

]
(5.6)

Extreme relativistic

EKi � mec
2

α Z1/3

4αr2
eZ2

[
ln

183
Z1/3 +

1
18

]
4

[
ln

183
Z1/3 +

1
18

]
(5.7)

• Total energy Ei (or kinetic energy EKi for EKi � mec
2)) of the light

charged particle.
• Equation (5.3) was derived theoretically by Hans Bethe and Walter

Heitler. Martin Berger and Stephen Seltzer have provided extensive tables
of Srad for a wide range of absorbing materials

Figure 5.2 shows the mass radiative stopping power Srad for electrons in wa-
ter, aluminum and lead based on tabulated data obtained from the National
Institute of Standards and Technology (NIST) in Washington, D.C., USA.
The Srad data are shown with solid curves, mass collision stopping powers
Scol (discussed in Sect. 5.3) are shown dotted for comparison. The radia-
tive stopping power Srad clearly shows an approximate proportionality to the
atomic number Z of the absorber and kinetic energy EK of light charged
particles with kinetic energies above 2 MeV.

5.3 Collision Stopping Power
for Heavy Charged Particles

In the energy range below 10 MeV, the energy transfer from energetic heavy
charged particles to a medium (absorber) they traverse occurs mainly through
Coulomb interactions of the charged particle with orbital electrons of the
absorber atoms. As shown schematically in Fig. 5.1, these interactions (col-
lisions) fall into two categories depending on the relative magnitude of the
impact parameter b and the atomic radius a of the absorber:

1. soft collisions for b � a
2. hard collisions for b ≈ a
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Fig. 5.2. Mass radiative stopping power for electrons in water, aluminum and lead
shown with solid curves against the electron kinetic energy. Mass collision stopping
powers for the same materials are shown with dotted curves for comparison. Data
were obtained from the NIST

5.3.1 Momentum Transfer from Heavy Charged Particle
to Orbital Electron

The classical derivation of the mass collision stopping power Scol of a heavy
charged particle, such as a proton, is based on the calculation of the momen-
tum change ∆p of the heavy charged particle colliding with an orbital elec-
tron. The Coulomb interaction between the heavy charged particle (charge
ze and mass M) and the orbital electron (charge e and mass me) is shown
schematically in Fig. 5.3. The situation here appears similar to that depicted
in Fig. 2.3 for Rutherford scattering between an α particle mα and gold nu-
cleus M . We must note, however, that in Rutherford scattering mα � M ,
while the case here is reversed as we have a heavy charged particle M inter-
acting with an orbital electron me where M � me.

The momentum transfer ∆p is along a line that bisects the angle π − θ,
as indicated in Fig. 5.3, and the magnitude of ∆p is calculated as follows:

∆p =
∫

F∆pdt =

∞∫
−∞

Fcoul cos φ dt . (5.8)

The magnitude of the Coulomb force Fcoul between the heavy charged particle
and the electron is

Fcoul =
ze2

4πεo

1
r2 , (5.9)

where r is the distance between the two particles.
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Fig. 5.3. Schematic diagram of a collision between a heavy charged particle M and
an orbital electron me. Since M � me, the scattering angle θ ≈ 0◦. The scattering
angle is shown larger than 0◦ to highlight the principles of the Coulomb collision
and aid in the derivation of ∆p. The electron is in the inner focus of the hyperbola
because of the attractive Coulomb force between the positive charged particle and
the negative electron

Incorporating the expression for the Coulomb force into (5.8), the mo-
mentum transfer ∆p can now be written as

∆p =
ze2

4πεo

π−θ
2∫

− π−θ
2

cos φ

r2

dt

dφ
dφ , (5.10)

where φ is the angle between the radius vector r and the bisector, as shown
in Fig. 5.3.

The angular momentum L for the collision process is defined as follows:

L = Mυ∞b = Mωr2 , (5.11)

where

M is the mass of the heavy charged particle,
v∞ is the initial velocity of the heavy charged particle (i.e., velocity before

the interaction),
ω is the angular frequency equal to dφ/dt.
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Using the conservation of angular momentum, we can now write (5.10) in a
simpler form:

∆p=
ze2

4πεo

1
υ∞b

π−θ
2∫

− π−θ
2

cos φ dφ =
ze2

4πεo

1
υ∞b

{sin φ}(π−θ)/2
−(π−θ)/2

=2
ze2

4πεo

1
υ∞b

cos
θ

2
. (5.12)

Equation (5.12) is identical to Rutherford’s expression for ∆p in (2.12). How-
ever, in the case of a heavy charged particle (ze) interacting with a stationary
orbital electron (e) the scattering angle θ ≈ 0, and thus results in a simplified
expression for ∆p since cos(θ/2) ≈ 1

∆p = 2
ze2

4πεo

1
υ∞b

. (5.13)

The energy transferred to the orbital electron from the heavy charged particle
for a single interaction with an impact parameter b is

∆E(b) =
(∆p)2

2me
= 2

(
e2

4πεo

)2
z2

meυ2∞b2 , (5.14)

using the classical expression between kinetic energy EK = mυ2
∞/2 and mo-

mentum p = mυ∞

EK =
mυ2

∞
2

=
p2

2m
. (5.15)

Note that in (5.14) me is the rest mass of the electron (target) and υ∞ is the
velocity of the heavy charget particle (projectile).

5.3.2 Linear Collision Stopping Power

The total energy loss of the charged particle in the absorber per unit path
length dE/dx is defined as the linear stopping power. It is calculated by
integrating ∆E(b) over all possible impact parameters b ranging from bmin
to bmax and accounting for all electrons available for interaction to obtain

−dE

dx
=

bmax∫
bmin

∆E(b)
∆n

∆x
. (5.16)

The mass collision stopping power Scol is calculated from the linear collision
stopping power with the standard relationship

Scol = −1
ρ

dE

dx
. (5.17)
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In (5.16) ∆n/∆x is the number of electrons per unit path length in a thin
annual cylinder with inner radius b and outer radius b + db. The cylinder’s
axis is aligned with the trajectory of the heavy charged particle.

Intuitively we may consider integration in (5.16) over all possible impact
parameters from 0 to ∞; however, we must account for two physical limita-
tions affecting the energy transfer from a heavy charged particle to orbital
electrons:

1. Minimum possible energy transfer is governed by the ionization and ex-
citation potentials of orbital electrons resulting in a maximum impact
parameter bmax beyond which energy transfer becomes impossible.

2. Maximum possible energy transfer in a head-on collision between the
heavy charged particle and the orbital electron was discussed in Sect. 4.3
and results in a minimum impact parameter bmin.

The number of electrons ∆n contained in the annual cylinder with radii b
and b + db is

∆n = Nedm = (ZNA/A)dm , (5.18)

where

Ne is the number of electrons per unit mass (ZNA/A) in the absorber,
dm is the mass contained in the annual cylinder between b and b+db equal to

dm=ρdV = ρπ(b + db)2∆x − ρπb2∆x

=ρπ∆x[b2 + 2b(db) + (db)2 − b2] ≈ 2π ρ b db∆x . (5.19)

Ignoring the (db)2 term in (5.19) we express ∆n/∆x as follows:

∆n/∆x = 2π ρ(ZNA/A)b db . (5.20)

The mass collision stopping power Scol is then equal to

Scol =−1
ρ

dE

dx
= 4πNe

(
e2

4πεo

)2
z2

meυ2∞

bmax∫
bmin

db

b

=4πNe

(
e2

4πεo

)2
z2

meυ2∞
ln

bmax

bmin
. (5.21)

=4π
Z

A
NA

(
e2

4πεo

)2
z2

meυ2∞
ln

bmax

bmin
. (5.22)

The mass collision stopping power exhibits: (1) linear proportionality with z2,
the atomic number of the heavy charged particle (projectile) and (2) inverse
proportionality with υ2

∞, the initial velocity of the projectile. This implies,
for example, that mass collision stopping powers of an absorbing medium
will differ by: (1) factor of 4 in the case of protons and α particles of same
velocities; (2) factor of 16 in the case of protons and α particles of same
kinetic energies.
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Since Z/A varies from substance to substance within quite a narrow range
(it falls from 0.5 for low Z elements to ∼0.4 for high Z elements, with one
notable exception of hydrogen for which Z/A ≈ 1), we note that the mass
collision stopping power varies very slightly from substance to substance. This
means that the energy losses of a given charged particle passing through layers
of equal thickness in g/cm2 are about the same for all substances.

5.3.3 Minimum Energy Transfer
and Mean Ionization-Excitation Potential

For large impact parameters b the energy transfer ∆E(b), calculated from
(5.14), may be smaller than the binding energy of the orbital electron or
smaller than the minimum excitation potential of the given orbital electron.
Thus, no energy transfer is possible for b > bmax where bmax corresponds
to a minimum energy transfer ∆Emin, referred to as the mean ionization-
excitation potential I of the absorber atom. This potential depends only
on the stopping medium but not on the type of the charged particle. It is
always larger than the ionization potential of the atom since it accounts for
all possible atomic ionizations as well as atomic excitations.

The mean ionization-excitation potential I corresponds to the minimum
amount of energy ∆Emin that can be transferred on the average to an ab-
sorber atom in a Coulomb interaction between the charged particle and an
orbital electron. Using (5.14), ∆Emin is written as

∆Emin = 2
(

e2

4πεo

)2
z2

meυ2∞b2
max

= I (5.23)

showing that bmax ∝ 1/
√

I.
In general, the mean ionization-excitation potential I cannot be calculated

from the atomic theory; however, it may be estimated from the following
empirical relationships:

I(in eV) ≈ 11.5 Z , (5.24)

or, to a better approximation,

I(in eV) = 9.1Z (1 + 1.9 Z−2/3) . (5.25)

Some typical values for I are as follows (from the ICRU Report 37): hydrogen:
14.9 eV; carbon: 78 eV; aluminum: 167 eV; copper: 322 eV; water: 75 eV; air:
86 eV.

5.3.4 Maximum Energy Transfer

For small impact parameters b the energy transfer is governed by the maxi-
mum energy ∆Emax that can be transferred in a single head-on collision, as
discussed in Sect. 4.3.2. Classically ∆Emax for a head-on collision between a
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heavy charged particle M with kinetic energy EK and an electron with mass
me is given by

∆Emax =
4meM

(me + M)2
EK ≈ 4

me

M
EK = 4

me

M

Mυ2
∞

2
= 2meυ

2
∞ . (5.26)

Equation (5.26) shows that only a very small fraction (4me/M) of the heavy
charged particle kinetic energy can be transferred to an orbital electron in a
single collision (note that M � me).

The classical relationship between ∆Emax and the minimum impact pa-
rameter bmin that allows the maximum energy transfer from a heavy charged
particle to an orbital electron is

∆Emax = 2
(

e2

4πεo

)2
z2

meυ2∞b2
min

= 2meυ
2
∞ , (5.27)

resulting in ∆Emax ∝ 1/b2
min or bmin ∝ 1/

√
∆Emax.

5.4 Mass Collision Stopping Power

The energy transfer ∆E(b) from a heavy charged particle to an orbital elec-
tron ranges from ∆Emin(bmax) = I to ∆Emax(bmin) = 2meυ

2
∞; i.e.,

I ≤ ∆E(b) ≤ 2meυ
2
∞ . (5.28)

The ratio bmax/bmin, after combining (5.23) and (5.27), is given as

bmax

bmin
=
√

∆Emax

∆Emin
=

√
2meυ2∞

I
. (5.29)

• The classical mass collision stopping power of (5.22) for a heavy charged
particle (Niels Bohr 1913) colliding with orbital electrons is then given
with the following approximation:

Scol = 4π
Z

A
NA

(
e2

4πεo

)2
z2

meυ2∞
ln

√
2meυ2∞

I
. (5.30)

• The non-relativistic quantum-mechanical expression for the mass stopping
power of heavy charged particles was derived by Hans Bethe and Felix
Bloch and it differs from Bohr’s expression of (5.30) only in the occurrence
of the power 1/2 in the Bohr’s logarithmic term. The Bethe-Bloch mass
stopping power is

Scol = 4π
Z

A
NA

(
e2

4πεo

)2
z2

meυ2∞
ln

2meυ
2
∞

I
. (5.31)
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• Bethe’s relativistic quantum-mechanical expression for the mass collision
stopping power of heavy charged particles accounts for relativistic effects
to get

Scol =4π
Z

A
NA

(
e2

4πεo

)2
z2

meυ2∞{
ln

2mec
2

I
+ lnβ2 − ln(1 − β2) − β2

}
, (5.32)

where β is the normalized incident particle velocity (β = υ/c) and the
relativistic expression for ∆Emax of (4.38) is used.
– Two corrections were subsequently incorporated into Bethe’s expres-

sion for the mass collision stopping power:
– Correction CK/Z to account for non-participation of bound K-shell

electrons in the slowing-down process. This correction reduces the col-
lision stopping power but is only effective at low kinetic energies of the
charged particle.

– Polarization (density effect) correction δ also lowers the collision stop-
ping power. It is applied to condensed media (liquids and solids) for
which the dipole distortion of the atoms near the track of the charged
particle weakens the Coulomb force field experienced by the more dis-
tant atoms, thus decreasing their participation in the slowing down
process.

– The polarization correction does not apply for gases, because in gases
the atoms are spaced sufficiently far apart to act independently of one
another. The correction is also negligible for heavy charged particles
at energies of interest in medical physics, but is significant for light
charged particles (electrons and positrons).

• Incorporating the K-shell correction CK/Z and the polarization correction
δ into Bethe’s relativistic quantum-mechanical expression results in the
following relationship for the mass collision stopping power Scol for heavy
charged particles:

Scol =4π
Z

A
NA

(
e2

4πεo

)2
z2

meυ2∞{
ln

2mec
2

I
+ lnβ2 − ln(1 − β2) − β2 − CK

Z
− δ

}
. (5.33)

• Considering the various expressions stated above for the mass collision
stopping power Scol of heavy charged particles, we can write Scol in general
terms as follows:

Scol = 4π
NA

A

(
e2

4πεo

)2
z2

mec2(υ∞/c)2
Bcol . (5.34)
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Table 5.2. Expressions for the atomic stopping number Bcol for various energy
ranges of heavy charged particle energy

Derivation Bcol

Classical (Bohr) Z ln
√

2meυ2

I
(5.36)

Non-relativistic,
quantum-mechanical
(Bethe-Bloch)

Z ln 2meυ2

I
(5.37)

Relativistic,
quantum-mechanical
(Bethe)

Z
[
ln 2mec2

I
+ ln β2 − ln(1 − β2) − β2

]
(5.38)

Relativistic,
quantum-mechanical
with K-shell and
polarization correction

Z
[
ln 2mec2

I
+ ln β2 − ln(1 − β2)

−β2 − CK
Z

− δ
] (5.39)

After inserting into (5.34) the appropriate values for the constants NA, e,
εo, and mec

2 and using β = υ∞/c we obtain the following expression for
the mass collision stopping power Scol:

Scol = 0.3070
MeV · cm2

(gram − atom)
z2

Aβ2 Bcol , (5.35)

where Bcol is called the atomic stopping number.

• The atomic stopping number Bcol is a function of the atomic number Z
of the absorber (through the mean ionization-excitation potential I) and
of the velocity of the charged particle. The form of the expression for Bcol
also depends on the specific approach taken in its derivation, as indicated
in Table 5.2.

The units of Scol in (5.35) are MeV · cm2/g; the constant in (5.35) has
units of MeV · cm2/(gram-atom). Since the units of A are g/(gram-atom),
incorporating an appropriate value for A into (5.35) results in proper units
for Scol in MeV · cm2/g.

From the general expression for the mass collision stopping power given
in (5.33) we note that the mass collision stopping power Scol for a heavy
charged particle traversing an absorber does not depend on charged particle
mass but depends upon:

1. Atomic number Z, atomic mass A, and mean ionization-excitation poten-
tial I in the form [Z/A and (− ln I)] of the absorber. As Z increases, Z/A
and − ln I decrease resulting in a decrease of Scol.
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Fig. 5.4. Schematic representation of the shape of the collision stopping power
curve as a function of the charged particle kinetic energy EK. Three regions are
shown as the energy increases: (1) the rise of stopping power at low energies to reach
a maximum at about 1500AI; (2) fall-off as 1/EK or 1/υ2 beyond the maximum to
reach a minimum, and (3) slow relativistic rise at relativistic energies where υ ≈ c

2. Particle velocity υ. For increasing non-relativistic velocities Scol first
increases, reaches a maximum, then decreases as 1/υ2, reaches a
broad minimum and then slowly rises with the relativistic term{
lnβ2 − ln(1 − β2) − β2

}
as υ becomes relativistic and approaches c.

3. Particle charge ze. Scol increases as z2, i.e., a doubly charged particle ex-
periences 4 times the collision stopping power of a singly charged particle
of the same velocity υ moving through the same absorber.

As shown schematically in Fig. 5.4, the collision stopping power against EK
goes through three distinct regions as the kinetic energy EK increases:

1. At low kinetic energies, Scol rises with energy and reaches a peak at
2.78IM/(4me), where M is the mass of the heavy charged particle and
me the mass of the electron. The kinetic energy (EK)max at which the
peak in Scol occurs can be estimated from the non-relativistic Bethe-Bloch
equation [(5.31)] as follows:

Scol =4π
Z

A
NA

(
e2

4πεo

)2
z2

meυ2 ln
2meυ

2

I

=const
1

EK
ln
(

4
I

me

M
EK

)
, (5.40)

where
EK is the classical kinetic energy of the heavy charged particle; EK =

Mυ2/2,
M is the mass of the heavy charged particle,
υ is the velocity of the heavy charged particle.
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(EK)max is determined by setting dScol/dEK|EK=(EK)max
= 0 and solving

for (EK)max

dScol

dEK

∣∣∣∣
EK=EKmax

= 0=− const
[(EK)max]

2 ln
(

4
I

me

M
(EK)max

)
+

const
[(EK)max]

2

=
const

[(EK)max]
2

[
1 − ln

(
4
I

me

M
(EK)max

)]
. (5.41)

Equation (5.41) results in the following expression for (EK)max:

(EK)max =
(

4
I

me

M

)−1

e ≈ 1500 A I , (5.42)

where we use M ≈ MpA for the mass of the heavy charged particle, with
Mp the proton mass and A the atomic mass number of the heavy charged
particle; Mp/me ≈ 2000; and e ≈ 3.

2. Beyond the peak, Scol decreases as 1/υ2 or 1/EK of the charged particle
until it reaches a broad minimum around 3Mabsorberc

2, where Mabsorber
is the rest mass of the absorber.

3. Beyond the broad minimum the mass collision stopping power Scol
rises slowly with kinetic energy EK as a result of the relativistic terms{
lnβ2 − ln(1 − β2) − β2

}

5.5 Collision Stopping Power
for Light Charged Particles

Electron interactions (collisions) with orbital electrons of an absorber differ
from those of heavy charged particles in three important aspects:

1. Relativistic effects become important at relatively low kinetic energies.
2. Collisions with orbital electrons may result in large energy transfers of

up to 50% of the incident electron kinetic energy. They may also result
in elastic and inelastic electron scattering.

3. Collisions of electrons with nuclei of the absorber may result in brems-
strahlung production (radiative loss).

For electrons and positrons, energy transfers due to soft collisions are com-
bined with those due to hard collisions using the Møller (for electrons) and
Bhabba (for positrons) cross sections for free electrons. The complete mass
collision stopping power for electrons and positrons, according to the ICRU
Report 37, is

Scol = 2πr2
e

Z

A
NA

mec
2

β2

[
ln

EK

I
+ ln(1 + τ/2) + F±(τ) − δ

]
, (5.43)

In (5.43) the function F−(τ) is given for electrons as

F−(τ) = (1 − β2)
[
1 + τ2/8 − (2τ + 1) ln 2

]
(5.44)
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Fig. 5.5. Mass collision stopping power for electrons in water, aluminum and lead
against electron kinetic energy. The collision stopping power data are shown with
solid curves; the radiative stopping power data of Fig. 5.2 are shown with dotted
curves for comparison. Data were obtained from the NIST

The function F+(τ) for positrons is given as

F+(τ)=2 ln 2 − (β2/12)[
23 + 14/(τ + 2) + 10/(τ + 2)2 + 4/(τ + 2)3

]
, (5.45)

where

τ is the electron or positron kinetic energy normalized to mec
2, i.e., τ =

EK/mec
2,

β is the electron or positron velocity normalized to c, i.e., β = υ/c.

Figure 5.5 shows mass collision stopping powers Scol for electrons in water,
aluminum and lead with solid lines. For comparison, mass radiative stopping
powers of Fig. 5.2 are shown with dotted lines. The data show that higher
atomic number absorbers have lower Scol than lower atomic number absorbers
at same electron energies. The dependence of Scol on stopping medium results
from two factors in the stopping power expressions given by (5.33) and (5.43),
both lowering Scol with an increasing Z of the stopping medium:

1. The factor Z/A makes Scol dependent on the number of electrons per unit
mass of the absorber. Z/A is 1 for hydrogen; 0.5 for low Z absorbers; then
gradually drops to ∼0.4 for high Z absorbers.

2. The − ln I term decreases Scol with increasing Z, since I increases almost
linearly with increasing Z, as shown in (5.24) and (5.25).
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5.6 Total Mass Stopping Power

Generally, the total mass stopping power Stot of charged particles is given
by the sum of two components: the radiative stopping power Srad and the
collision stopping power Scol, i.e.,

Stot = Srad + Scol . (5.46)

For heavy charged particles the radiative stopping power is negligible (Srad ≈
0), thus Stot = Scol

For light charged particles both components contribute to the total stop-
ping power. Within a broad range of kinetic energies below 10 MeV collision
(ionizational) losses are dominant (Scol > Srad); however, the situation is
reversed at high kinetic energies where Srad > Scol.

The crossover between the two modes occurs at a critical kinetic energy
(EK)crit where the two stopping powers are equal, i.e., Srad = Scol for a given
absorber with atomic number Z. The critical kinetic energy (EK)crit can be
estimated from the following empirical relationship:

(EK)crit ≈ 800 MeV
Z

, (5.47)

that for water, aluminum and lead amounts to ∼105 MeV, ∼61 MeV and
∼10 MeV, respectively.

– For high Z absorbers the dominance of radiative losses over collision losses
starts at lower kinetic energies than in low Z absorbers. However, even in
high Z media such as lead and uranium (EK)crit is at ∼10 MeV, well in
the relativistic region.

– The ratio of collision to radiative stopping power (Scol/Srad) at a given
electron kinetic energy may be estimated from the following:

Scol

Srad
=

800 MeV
Z EK

=
(EK)crit

EK
. (5.48)

Figure 5.6 shows the total mass stopping power of electrons (solid curves) in
water, aluminum and lead against the electron kinetic energy. For comparison
the radiative and collision components of the total stopping power of Figs. 5.2
and 5.5 are also shown.

5.7 Bremsstrahlung (Radiation) Yield

The bremsstrahlung yield B(EKo) of a charged particle with initial kinetic
energy EKo striking an absorber is defined as that fraction of the initial kinetic
energy that is emitted as bremsstrahlung radiation through the slowing down
process of the particle in the absorber.
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Fig. 5.6. Total mass stopping power Stot for electrons in water, aluminum and lead
against the electron kinetic energy shown with solid curves. The mass collision and
mass radiative stopping powers are shown with dotted curves for comparison. The
total stopping power of a given material is the sum of the radiative and collision
stopping powers. Data were obtained from the NIST

• For heavy charged particles B(EKo) ≈ 0.
• For light charged particles (electrons and positrons) the bremsstrahlung

yield B(EKo) is determined from stopping power data as follows:

B(EKo) =

EKo∫
0

Srad(E)
Stot(E) dE

EKo∫
0

dE

=
1

EKo

EKo∫
0

Srad(E)
Stot(E)

dE . (5.49)

• For positron interactions, annihilation-in-flight also produces photons;
however, the effect is generally ignored in calculation of the bremsstrah-
lung yield B(EKo).

• The energy Erad radiated per charged particle is

Erad = EKo B(EKo) =

EKo∫
0

Srad(E)
Stot(E)

dE , (5.50)

while the energy Ecol lost through ionization per charged particle is

Ecol = EKo − Erad = EKo [1 − B(EKo)] =

Eo∫
0

Scol(E)
Stot(E)

dE . (5.51)
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Fig. 5.7. Bremsstrahlung yield B(EKo) for electrons in water, aluminum, copper
and lead against the incident electron kinetic energy. Data were obtained from the
National Institute of Standards and Technology (NIST), Washington, D.C.

• Bremsstrahlung yield B(EKo) for water, aluminum, copper and lead is
plotted against incident electron kinetic energy EKo in Fig. 5.7.

• In radiation dosimetry a quantity referred to as the radiative fraction ḡ
is defined as the average fraction of the energy that is transferred from
photons to electrons and positrons and subsequently lost by these particles
to radiative processes that are predominantly bremsstrahlung interactions
but can also include annihilation-in-flight interactions by positrons. The
quantity ḡ appears in the following expressions:

µab

ρ
=

µtr

ρ
(1 − ḡ) (5.52)

and

Kcol = K(1 − ḡ) , (5.53)

where
µab/ρ is the mass energy absorption coefficient for a photon beam,
µtr/ρ is the mass energy transfer coefficient for a photon beam,
Kcol is the collision kerma,
K is the total kerma.

• The radiative fraction ḡ is the average value of B(EKi) for all electrons
and positrons of various initial energies EKi present in the spectrum of
light charged particles produced in a medium by either monoenergetic
photons or a photon spectrum.

• B(EKo) is the bremsstrahlung yield defined for monoenergetic electrons
with initial energy EKo, while ḡ is the radiative fraction calculated for a
spectrum of electrons and positrons produced in the medium by photons.
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5.8 Range of Charged Particles

In traversing matter charged particles lose their energy in ionizing and ra-
diative collisions that may also result in significant deflections. In addition,
charged particles suffer a large number of deflections as a result of elastic scat-
tering. These effects are much more pronounced for light charged particles
(electrons and positrons) in comparison to heavy charged particles.

• Heavy charged particles do not experience radiative losses, transfer only
small amounts of energy in individual ionizing collisions with orbital elec-
trons, and mainly suffer small angle deflections in elastic collisions. Their
path through an absorbing medium is thus essentially rectilinear, as shown
schematically in Fig. 5.8.

• Electrons with kinetic energy EK, on the other hand, can lose energy up
to EK/2 in individual ionizing collisions and energy up to EK in individual
radiative collisions. Since they can also be scattered with very large scat-
tering angles, their path through the absorbing medium is very tortuous,
as shown schematically in Fig. 5.8.

Fig. 5.8. Schematic diagram of charged particle penetration into a medium. Top:
Heavy charged particle; bottom: light charged particle (electron or positron)
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• The range R of a charged particle in a particular absorbing medium is
an experimental concept providing the thickness of an absorber that the
particle can just penetrate. It depends on the particle’s kinetic energy,
mass as well as charge, and on the composition of the absorbing medium.
Various definitions of range that depend upon the method employed in
the range determination are in common use.

• Generally, the concepts of range R must be distinguished from the con-
cept of the path-length  of a charged particle. This path-length simply
provides the total path-length of the charged particle in the absorber and
can be calculated, as suggested by Martin Berger and Stephen Seltzer
in 1983, using the continuous slowing down approximation (CSDA) as
follows:

RCSDA =

EKi∫
0

dE

Stot(E)
, (5.54)

where
RCSDA is the CSDA range (mean path-length) of the charged particle

in the absorber,
EKi is the initial kinetic energy of the charged particle,
Stot(E) is the total stopping power of the charged particle as a function

of the kinetic energy EK.
• For heavy charged particles, RCSDA is a very good approximation to the

average range R̄ of the charged particle in the absorbing medium, because
of the essentially rectilinear path of the charged particle (see Fig. 5.8) in
the absorber.

• For light charged particles RCSDA is up to twice the range of charged
particles in the absorber, because of the very tortuous path that the light
charged particles experience in the absorbing medium (see Fig. 5.8).

5.9 Mean Stopping Power

In radiation dosimetry the main interest is in the energy absorbed per unit
mass of the absorbing medium governed by collision losses of charged par-
ticles. It is often convenient to characterize a given radiation beam with
electrons of only one energy rather than with an electron spectrum dφ/dE
that is present in practice.

For example, monoenergetic electrons set in motion with an initial kinetic
energy EKo in an absorbing medium will through their own slowing down
process produce a spectrum of electrons in the medium ranging in energy
from EKo down to zero. The electron spectrum dφ/dE, when ignoring any
possible hard collisions, is given as

dφ(E)
dE

=
N

Stot(E)
, (5.55)
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where

N is the number of monoenergetic electrons of energy EKo produced
per unit mass in the absorbing medium,

Stot(E) is the total stopping power.

For this electron spectrum, produced by monoenergetic electrons, we can
define a mean collision stopping power S̄col as follows:

Scol(EKo) =

EKo∫
0

dφ
dE Scol(E)dE

EKo∫
0

dφ
dE dE

. (5.56)

Using (5.54) and (5.55) the integral in the denominator of (5.56) is determined
as follows:

EKo∫
0

dφ

dE
dE = N

EKo∫
0

dE

Stot(E)
= N RCSDA . (5.57)

Using (5.50) and (5.55), the numerator of (5.56) is determined as follows:
EKo∫
0

dφ

dE
Scol(E)dE =N

EKo∫
0

Scol(E)
Stot(E)

dE

=N

EKo∫
0

Stot(E) − Srad(E)
Stot(E)

dE

=NEKo − NEKoB(EKo) . (5.58)

The mean collision stopping power Scol(EKi) of (5.58) can now be written as

Scol(EKo) = EKo
1 − B(EKo)

RCSDA
. (5.59)

The relationship for Scol(EKo) above could also be stated intuitively by noting
that an electron with an initial kinetic energy EKo will, through traveling
the path-length  equal to RCSDA, in the absorbing medium lose an energy
EKoB(EKo) to bremsstrahlung and deposit an energy EKo[1 − B(EKo)] in
the medium.

5.10 Restricted Collision Stopping Power

In radiation dosimetry one is interested in determining the energy trans-
ferred to a localized region of interest; however, the use of the mass collision
stopping power Scol for this purpose may overestimate the dose because Scol
incorporates both hard and soft collisions. The δ rays resulting from hard
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collisions may be energetic enough to carry their kinetic energy a significant
distance from the track of the primary particle thereby escaping from the
region of interest. The concept of restricted mass collision stopping power
L∆ has been introduced to address this issue by excluding the δ rays with
energies exceeding a suitable threshold value ∆.

The choice of the energy threshold ∆ depends on the problem at hand.
For dosimetric measurements involving air-filled ionization chambers with a
typical electrode separation of 2 mm a frequently used threshold value is
10 keV (Note, the range of a 10 keV electron in air is of the order of 2 mm).
For microdosimetric studies, on the other hand, one usually takes 100 eV as
a reasonable threshold value.

Of course, to be physically relevant ∆ must not exceed ∆Emax, the max-
imum possible energy transfer to orbital electron from the incident particle
with kinetic energy EK in a direct-hit collision. As shown in Sect. 4.3.2,
∆Emax equals to EK/2 for electrons, EK for positrons, and 2mec

2β2/(1−β2)
for heavy charged particles [see (4.42), (4.41), and (4.39), respectively].

For a given kinetic energy EK of the primary particle the restricted col-
lision stopping power L∆ is in general smaller than the unrestricted colli-
sion stopping power Scol; the smaller is ∆, the larger is the discrepancy.
As ∆ increases from a very small value, the discrepancy diminishes until at
∆ = ∆Emax the restricted and unrestricted collision stopping powers become
equal, i.e., L∆=∆Emax = Scol, irrespective of EK.

Figure 5.9 displays the unrestricted collision mass stopping power as well
as the restricted collision mass stopping powers with ∆ = 10 keV and ∆ =
100 keV against kinetic energy EK for electrons in carbon based on data in
the ICRU Report 37.

The following observations can now be made:

1. Since energy transfers to secondary electrons are limited to EK/2, the
unrestricted and restricted mass stopping powers are identical for kinetic
energies lower than or equal to 2∆. This is indicated in Fig. 5.9 with
vertical lines at 20 keV and 200 keV for the threshold values ∆ = 10 keV
and ∆ = 100 keV, respectively.

2. For a given EK > 2∆, the smaller is ∆, the larger is the discrepancy
between the unrestricted and restricted stopping powers.

3. For a given ∆ and EK > 2∆, the larger is EK, the larger is the discrepancy
between the unrestricted and restricted stopping powers.

5.11 Bremsstrahlung Targets

Bremsstrahlung production is of great importance in radiation oncology
physics, since most of the radiation beams used for external beam radio-
therapy are produced through bremsstrahlung interactions of monoenergetic
electrons with solid targets. These targets are components of x-ray machines
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Fig. 5.9. Unrestricted and restricted (∆ = 10 keV and ∆ = 100 keV) collision mass
stopping powers for electrons in carbon against kinetic energy. Data are based on
the ICRU Report 37

and linear accelerators; the most commonly used radiation-emitting machines
for diagnosis and treatment of disease.

An electron that strikes the target with a given kinetic energy will undergo
several different interactions with target atoms before it comes to rest and
dissipates all of its kinetic energy in the target. As discussed in Sect. 5.1,
there are two classes of electron interactions with a target atom:

1. with orbital electrons of the target atoms
2. with nuclei of the target atoms

Incident electron interaction with orbital electron of a target atom results
mainly in collision loss and ionization of the target atom that may be accom-
panied by an energetic electron referred to as a delta ray. The collision loss
will be followed by emission of characteristic x rays and Auger electrons.

Incident electron interaction with the nucleus of a target atom results
mainly in elastic scattering events but may also result in radiative loss ac-
companied with bremsstrahlung production.

While bremsstrahlung is the major contributor to the x-ray spectrum at
superficial and orthovoltage energies, it is essentially the sole contributor to
the x-ray spectrum at megavoltage energies.

With regard to their thickness compared to the range of electrons in
the target material, x-ray targets are either thin or thick. As discussed in
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Sect. 3.2.8, the peak x-ray intensity occurs at a characteristic angle θmax
that depends on the kinetic energy of the incident electrons:

1. In the diagnostic energy range (50 kVp to 120 kVp) θmax is 90o.
2. In the megavoltage radiotherapy range θmax is ∼ 0o and the target is

referred to as a transmission target.

5.11.1 Thin X-ray Targets

Thin x-ray targets are mainly of theoretical interest and their thickness is
very small compared to the range of electrons of given kinetic energy in the
target material. By definition, a thin target is so thin that electrons:

1. Lose no energy by atomic ionizations
2. Suffer no significant elastic collisions
3. Experience only one bremsstrahlung interaction while traversing the tar-

get.

The radiation emitted by accelerated or decelerated electrons of kinetic en-
ergy EK has an intensity I [(energy per photon) × (number of photons)]
that is constant for all photon energies and experiences a sharp cut-off at
hνmax = EK (Duane-Hunt law).

The shape of the spectral distribution of a thin x-ray target is independent
of the target atomic number Z.

5.11.2 Thick X-ray Targets

Thick x-ray targets have thicknesses of the order of the range of electrons
R in the target material. In practice, typical thicknesses are equal to about
1.1 R to satisfy two opposing conditions:

1. To ensure that no electrons that strike the target can traverse the target
2. To minimize the attenuation of the bremsstrahlung beam in the target.

Thick target radiation is much more difficult to handle theoretically than thin
target radiation; however, in practice most targets used in bremsstrahlung
production are of the thick target variety. Main characteristics of thick target
radiation are as follows:

• The spectral distribution of thick-target bremsstrahlung is essentially a
super-position of contributions from a large number of thin targets, each
thin target traversed by a lower energy monoenergetic electron beam hav-
ing a lower hνmax.

• The integrated intensity of thick-target bremsstrahlung depends linearly
on the atomic number Z of the target material. This implies that high Z
targets will be more efficient for x-ray production that low Z targets.
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• In megavoltage radiotherapy only photons in the narrow cone in the for-
ward direction are used for the clinical beams and the x-ray yield in the
forward direction is essentially independent of the atomic number Z of
the target.

• The average energy Erad radiated by an electron of initial energy EKo in
being stopped in a thick target was given in (5.50) as

Erad = EKo B(EKo) =

EKo∫
0

Srad(E)
Stot(E)

dE (5.60)

• In the diagnostic energy range, where EKo � mec
2, the mass radiative

stopping power Srad is independent of the kinetic energy of the electron
and, from (5.3) combined with Table 5.1, given as

Srad =(NA/A)σradEKo = (16/3)α r2
eZ

2EKo

=(16/3)α r2
e (NA/A)Z2(EKo + mec

2). (5.61)

• For EKo � mec
2 the mass radiative stopping power Srad of (5.61) is inde-

pendent of the kinetic energy of the electron and may then be simplified
to read

Erad =Srad

EKo∫
0

dE

Stot(E)

=SradRCSDA = const
NA

A
Z2RCSDA . (5.62)

• Since in this energy range Stot ≈ Scol and Scol ∝ NAZ/A, we note that
RCSDA ∝ (NAZ/A)−1 and the average energy radiated by the electron
stopped in a thick target is linearly proportional to the atomic number Z
of the target, i.e.,

Erad ∝ Z f(EKi , Z) , (5.63)

where f(EKi , Z) is a slowly varying function of Z.
• The thick target bremsstrahlung is linearly proportional to the atomic

number of the target in the diagnostic energy range where EKo � mec
2.

This rule will fail when EKo becomes large enough for the radiative losses
to no longer be negligible in comparison with collision losses.

5.11.3 Practical Aspects of Megavoltage X-ray Targets

Traditionally, the requirements for target properties, established during the
early days of x-ray technology, were quite straightforward:

1. High atomic number Z to maximize efficiency for x-ray production.
2. High melting point to minimize damage to the target from the electron

beam.
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Tungsten satisfies both conditions and is thus the material of choice in most
x-ray tubes. With the advent of megavoltage linear accelerators (linacs), it
seemed prudent to adopt tungsten as the target material in linacs. The ap-
proach worked well for linac energies below 15 MV; however, at energies above
15 MV high Z targets did not prove optimal. This was established in the early
1970s with 25 MV linacs that incorporated tungsten target/tungsten flatten-
ing filter combinations. A flattening filter is an important component of the
clinical x-ray beam forming assembly in linacs and betatrons, producing a
flat, clinically useful megavoltage photon beam.

The tungsten target/tungsten flattening filter combination in the 25 MV
linac produced an x-ray beam with tissue-penetrating properties that matched
betatron beams that were operated at 16 MV. This was a significant energy
difference considering the extra cost in building a linac running at 25 MV
rather than at 16 MV.

The cause of the discrepancy between the linac beam and the betatron
beam was traced to the target/flattening filter design and atomic number in
the two machines. By virtue of its design, the betatron uses a thin target
that inherently produces a more penetrating photon beam in comparison to
linac’s thick transmission target. It also used an aluminum flattening filter
in comparison to linac’s tungsten filter, and aluminum with its low atomic
number will soften the megavoltage x-ray beam less than the high atomic
number target.

A thin target may be used in betatrons because the target is immersed in
a strong magnetic field that engulfs the doughnut and sweeps the transmitted
electrons into the doughnut wall before they can strike the flattening filter and
produce unwanted off-focus x-rays. In linacs the targets are not immersed in a
strong magnetic field so they are of the thick variety to prevent any electrons
from traversing the target.

The 25 MV linac beam was thus formed with a thick high Z target and
a high Z flattening filter, while the betatron beam was formed with a thin
target and a low Z flattening filter. A study of unfiltered linac x-ray beams
has shown that a low Z thick target produces the same quality x-ray beam
as a thin betatron target at beam energies above 15 MeV. Thus, a conclusion
can be made that x-ray targets in this energy range should be made of low
atomic number materials to produce the most penetrating photon beams.

• The low Z target recommendation goes against the target high Z require-
ment for maximizing the x-ray production; however, it turns out that in
the megavoltage energy range the x-ray production in the forward direc-
tion is actually independent of target atomic number and for practical
radiotherapy one uses only photons projected in the forward direction.

• Even though the x-ray yield depends on Z of the target (the higher is
Z, the higher is the yield), this yield is stated for the 4π geometry and
in radiotherapy one uses only the forward direction for which the yield is
essentially independent of Z. It is actually advantageous to have a lower
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x-ray yield in regions outside the useful radiotherapy beam, because this
lowers the required shielding against leakage radiation produced by the
linac.

• The traditional target requirement on a high melting point is not as strin-
gent for high-energy linacs in comparison with diagnostic x-ray tubes. At
high photon energies used in radiotherapy, the efficiency for x-ray pro-
duction is of the order of 10% to 20% rather than below 1% as is the case
with diagnostic x-ray tubes. Therefore, the electron beam energy deposi-
tion and target cooling are of much less concern in megavoltage linacs as
compared to diagnostic range x-ray tubes.

• Since for the same electron kinetic energy (above 15 MeV) the effective
energy of the radiation beam in the forward direction is actually larger
for low Z targets in comparison with high Z targets, a conclusion can be
made that low atomic number targets should be used in high-energy linear
accelerators. The practical problem with this stipulation unfortunately is
that it is difficult to find a low Z target that also has a high density (i.e.,
has a relatively short range of electrons) to make it compact for use in
linacs. For example, the required target thickness for 25 MeV electrons
is 1 cm of lead (Z = 82, ρ = 11.3 g/cm−3), 0.5 cm of tungsten (Z = 74,
ρ = 19.25 g/cm−3), and 4 cm of aluminum (Z = 13, ρ = 2.7 g/cm−3).
From the atomic number point of view aluminum is an excellent choice of
target material, however, its low density precludes its use as a practical
target material in high-energy linear accelerators.

• As far as flattening filters are concerned, low atomic number materials
are preferable in the range above 15 MV because they cause less beam
softening than high atomic number materials; however, similarly to the
situation with target materials, space constraints in linac heads limit the
practical choices available. Thus, aluminum was a good choice for flatten-
ing the betatron beam, since the field size produced by the machine was
limited to a 20 × 20 cm2 field. Modern linear accelerators, however, must
deliver fields up to 40 × 40 cm2 at 100 cm from the target and these field
sizes cannot be supported by aluminum flattening filters because of the
associated required large size of the filter.

• The mass angular scattering power that depends linearly on the atomic
number of the flattening filter material, as discussed in Sect. 4.5, also
must be considered when the choice of flattening filter material is made.



Čerenkov Radiation in a Nuclear Reactor

The photograph on the next page shows Čerenkov blue radiation from the reac-
tor core during operation of a TRIGA Mark II nuclear reactor at Kansas State
University (KSU) in Manhattan, Kansas.

The KSU reactor, in operation since 1962, is a swimming pool reactor, so called
because it sits near the bottom of a large concrete pool of water. Currently licensed
to operate at 250 kW thermal power, it serves as an excellent tool for nuclear re-
search, education and training. It also provides special services, such as nucleosyn-
thesis, neutron activation analysis, neutron radiography and material irradiation.

Nuclear reactors are based on fission chain reactions that are self-sustained by
using some of the fission-produced neutrons to induce new fissions. Each fission
event liberates energy of the order of 200 MeV that is distributed among the fission
fragments, fission neutrons, beta particles from the beta decay of radioactive fission
fragments, and gamma rays.

The important components of a reactor core are: reactor fuel, most commonly
uranium-235; moderator that slows down to thermal energies the fission-produced
fast neutrons; and control rods that very efficiently absorb neutrons. The position
of the control rods in the reactor core affects the number of neutrons available to
induce fission thereby controlling the fission rate, reactor power, and reactor shut
down.

While no particle can exceed the speed of light in vacuum, in a given medium
it is quite possible for charged particles to propagate with velocities that are larger
than the speed of light in that medium. When a nuclear reactor is in operation,
many fission products emit high-energy beta particles (electrons and positrons)
and these particles may travel in water surrounding the reactor core at velocities
larger than the speed of light in water. Water molecules line up along the path
of beta particles, and, as they return to their normal random orientations, energy
is released in the form of visible and ultraviolet photons. This type of radiation,
produced only when a particle moves faster than speed of light in medium, is called
Čerenkov radiation and is named after the Russian scientist who in 1934 was the
first to study the phenomenon in depth.

Unlike fluorescence and atomic emission spectra that have characteristic spec-
tral peaks, Čerenkov radiation is continuous and its intensity is proportional to the
frequency (inversely proportional to wavelength), resulting in the predominantly
blue emission visible to the naked eye and even more emission in the ultraviolet
region of the photon spectrum, invisible to the human eye. The Čerenkov effect
is analogous to the sonic boom in acoustics when an object exceeds the speed of
sound in air.

Photograph: Courtesy of Kansas State University, TRIGA Mark II Nuclear Reactor,
Reproduced with Permission.



6 Interactions of Neutrons with Matter

Neutrons, by virtue of their neutrality, are indirectly ionizing radiation ex-
hibiting a quasi-exponential penetration into an absorber and depositing en-
ergy in the absorber through a two-step process: (1) energy transfer to heavy
charged particles and (2) energy deposition in the absorber through Coulomb
interactions of the charged particles with atoms of the absorber. As they pen-
etrate into matter, neutrons may undergo elastic and inelastic scattering as
well as nuclear reactions, such as capture, spallation or fission. Two distinct
categories of neutrons are of importance in medical physics: thermal neutrons
used in boron-neutron capture therapy (BNCT) and fast neutrons used in
external beam radiotherapy.

Several parameters used for describing neutron fields and neutron dose
deposition in absorbers are defined and discussed in this chapter. Also dis-
cussed are several radiotherapy techniques based on neutron beams, machines
for production of neutron beams in radiotherapy, and an efficient source of
neutrons for brachytherapy, the californium-252.
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6.1 General Aspects of Neutron Interactions
with Absorbers

Neutrons, similarly to photons, may penetrate an absorber without interact-
ing or they may undergo various interactions with the absorber. In contrast
to photons, however, neutrons interact mostly with the nuclei of the absorber
and have only weak interactions with orbital electrons of the absorber.

Neutron beams, similarly to photon beams, belong to the category of
indirectly ionizing radiation beams, both types transferring energy to ab-
sorbing medium through an intermediate step in which energy is transferred
to a charged particle (protons and heavier nuclei in the case of neutrons;
electrons and positrons in the case of photons).

The secondary heavy charged particles released in a medium traversed by
neutrons have a very short range in the medium ensuring charged particle
equilibrium. Since no bremsstrahlung x rays are generated by the charged
particles, the absorbed dose for neutron beams is equal to kerma at any
point in the neutron field.

In terms of their kinetic energy EK, neutrons are classified into several
categories:

1. Ultracold neutrons with EK < 2 × 10−7 eV
2. Very cold neutrons with 2 × 10−7eV ≤ EK ≤ 5 × 10−5 eV
3. Cold neutrons with 5 × 10−5 eV ≤ EK ≤ 0.025 eV
4. Thermal neutrons with EK ≈ 0.025 eV,
5. Epithermal neutrons with 1 eV < EK < 1 keV,
6. Intermediate neutrons with 1 keV < EK < 0.1 MeV,
7. Fast neutrons with EK > 0.1 MeV.

Note that the velocity of an ultracold neutron with kinetic energy of 2 ×
10−7 eV is ∼ 6 m/s (υ/c ≈ 2 × 10−8); of a thermal neutron with kinetic
energy of 0.025 eV it is ∼ 2200 m/s (υ/c ≈ 7 × 10−6); and of a fast neutron
with kinetic energy of 2.5 MeV it is ∼ 1.4 × 107 m/s (υ/c ≈ 0.05).

There are five principal processes by which neutrons interact with the
nuclei of the absorber:

1. Elastic scattering,
2. Inelastic scattering,
3. Neutron capture,
4. Spallation,
5. Fission.

The probability (cross section) for these different types of interactions varies
with the kinetic energy of the neutron and with the properties of the absorber.
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6.2 Neutron Interactions with Nuclei of the Absorber

6.2.1 Elastic Scattering

In elastic scattering a neutron collides with a nucleus of mass M that recoils
with an angle φ with respect to the neutron initial direction of motion, as
shown schematically in Fig. 4.2 and discussed in Sect. 4.3. Kinetic energy
and momentum are conserved in the interaction.

For a neutron with mass mn and initial kinetic energy EKi, the kinetic
energy ∆EK transferred to the nucleus is in general given as (see Sect. 4.3.1)

∆EK = EKi
4mnM

(mn + M)2
cos2 φ . (6.1)

The maximum possible energy transfer (∆EK)max is attained in a head-on
collision for which φ = 180◦ (see Sect. 4.3.1)

(∆EK)max = EKi
4mnM

(mn + M)2
. (6.2)

The average kinetic energy ∆EK transferred to the recoil nucleus is

∆EK =
1
2
EKi

4mnM

(mn + M)2
= 2EKi

mnM

(mn + M)2
. (6.3)

The kinetic energy of the scattered neutron, EKf , in a head-on collision is
equal to

EKf = EKi − (∆EK)max = EKi

(
mn − M

mn + M

)2

, (6.4)

while EKf , the average energy attained by the scattered neutron, is

EKf = EKi − ∆EK = EKi
m2

n + M2

(mn + M)2
. (6.5)

Thus, for example, if the target nucleus is hydrogen (nucleus is a proton with
mass mp), then M = mp ≈ mn and the neutron will transfer on the average
one half of its initial kinetic energy to the proton [see (6.5)]. The maximum
energy transferred to the proton equals to the initial neutron energy EKi
[see (6.2)]. The recoil proton will then travel a short distance through the
absorbing medium and rapidly transfer its kinetic energy to the medium
through Coulomb interactions with the nuclei and orbital electrons of the
medium.

The transfer of the neutron’s energy to the absorbing medium is much
less efficient when mn � M ; the larger is M , the less efficient is the energy
transfer, as evident from (6.2).
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6.2.2 Inelastic Scattering

In inelastic scattering the neutron n is first captured by the nucleus and then
re-emitted with a lower energy and in a direction that is different from the
incident neutron direction. The nucleus is left in an excited state and will
de-excite by emitting high energy gamma rays. This process is illustrated by
the following relationship:

n + A
Z X → A+1

Z Y∗ → A
Z X∗ + n ⇒ A

Z X∗ → A
Z X + γ , (6.6)

where
A
Z X is the target nucleus,
A+1
Z Y∗ is an unstable compound nucleus,
A
Z X∗ is an excited target nucleus.

6.2.3 Neutron Capture

Neutron capture is a term used to describe a nuclear reaction in which a
thermal neutron bombards a nucleus leading to the emission of a proton
or gamma ray. Two of these interactions are of particular importance in
tissue: 14N(n,p)14C and 1H(n, γ)2H and one interaction, 113Cd(n,γ)114Cd, is
of importance in shielding against thermal neutrons.

A cadmium filter with a thickness of 1 mm absorbs essentially all incident
thermal neutrons with energies below 0.5 eV, but readily transmits neutrons
with energies exceeding 0.5 eV. The cross section for neutron capture plotted
against neutron kinetic energy exhibits a broad resonance with a peak at
0.178 eV. At the resonance peak energy the cross section for neutron capture
by natural cadmium (12% abundance of cadmium-113) is 7800 b, while pure
cadmium-113 has a cross section of ∼ 64 × 103 b.

Often neutron bombardment of a stable target is carried out in a nuclear
reactor with the intent of producing a radioactive isotope for industrial or
medical purposes. When the main interest in the reaction is the end product,
the reaction is termed neutron activation. Of interest in medical physics is
the neutron activation process in general and in particular when it is used
for production of cobalt-60 sources for radiotherapy, iridium-192 sources for
brachytherapy, and molybdenum radionuclides for nuclear medicine diagnos-
tic procedures. The neutron activation process is discussed in greater detail
in Sect. 8.4.

6.2.4 Spallation

Spallation occurs when a fast neutron n penetrates the nucleus and adds suf-
ficient energy to the nucleus so that it disintegrates into many small residual
components such as α particles and protons p. An example of spallation is
as follows:

16
8 0 + n → 3α + 2p + 3n . (6.7)
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Most of the energy released from the spallation process is carried away by the
heavier fragments that deposit their energy in the absorber locally. On the
other hand, neutrons and de-excitation gamma rays produced in spallation
carry their energy to a remote location.

6.2.5 Fission Induced by Neutron Bombardment

Fission is a particular type of neutron interaction produced by the bombard-
ment of certain very high atomic number nuclei by thermal neutrons. The
residual particles are nuclei of lower atomic number and usually more than
one fast neutron is produced by the reaction. The discovery of fission is at-
tributed to Otto Hahn, Fritz Strassman, Lise Meitner and Otto Frisch in
1939.

Materials that can undergo the fission reaction are called fissile or fission-
able materials. The most important fissionable materials are:

– Uranium-235 (0.7% of naturally occurring uranium)
– Plutonium-239 produced from uranium-238
– Uranium-233 produced from thorium-232

• Uranium-238 and thorium-232 are called fertile nuclides; they do not un-
dergo fission themselves; however, they transform into fissionable nuclides
upon bombardment with neutrons in a nuclear reactor.

• As fissionable nuclides undergo the fission process, lighter, generally ra-
dioactive, nuclides called fission fragments are formed. Fission fragments
combined with the nuclides subsequently formed through radioactive de-
cay of fission fragments are called fission products.

A general equation for fission of uranium-235 is as follows:
235
92 U + n → 236

92 U → b
aX + c

dY + fn , (6.8)

where the nucleus 235
92 U has been penetrated by a thermal neutron n to pro-

duce a compound nucleus 236
92 U. The compound nucleus 236

92 U is unstable and
divides by the fission process into two generally unstable nuclei of smaller
atomic number and atomic mass number such that a+c = 92 and b+d+f =
236, with f the number of fast neutrons produced by the fission process.

Fission reactions always result in the release of a large amount of energy.
On the average, the energy released is about 200 MeV per fission of 235

92 U and
the number of new neutrons produced is, on the average, 2.5 per fission.

The new neutrons can be used to produce fission in other uranium-235
nuclei leading to an exponential increase in the number of neutrons and re-
sulting in a nuclear chain reaction. The kinetic energy acquired by fission
fragments is converted into heat that can be used in nuclear reactors in a
controlled fashion for peaceful purposes in electric power generation. Unfor-
tunately, uncontrolled chain reactions can be used for destructive purposes
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either directly in atomic bombs or indirectly as detonators of fusion-based
hydrogen bombs.

In a nuclear reactor the nuclear chain reactions are controlled in such a
way that, following each fission, only one new neutron is used for continu-
ing the chain reaction. The first nuclear reactor was constructed in 1942 in
Chicago under the scientific leadership of Enrico Fermi. Since then several
hundred nuclear reactors have been constructed around the world, mainly for
electric power generation but also for research purposes and for production
of radionuclides used in industry and medicine.

The principal component of any reactor is the core that contains the
fissionable fuel, most commonly uranium oxyde with uranium-235 enriched
to 2–4% in contrast to its natural abundance of 0.7%.

Fission occurs in the nuclear fuel and the fission energy in the form of
kinetic energy of fission fragments and new neutrons is rapidly converted
into heat. A coolant (usually water) is used to maintain a stable temperature
in the reactor core. The coolant exits the core either as steam or as hot
pressurized water, subsequently used to drive turbines connected to electric
power generators. The neutron fluence rate in the reactor core is controlled
by movable control rods that are made of material with high cross section for
absorption of neutrons, such as cadmium or boron compounds.

The fission efficiency is the highest for thermal neutrons, but the new
neutrons are produced with relatively large kinetic energies. Moderators are
used to slow down the new neutrons through elastic scattering events between
neutrons and nuclei of the moderator. Water serves as moderator material
in most reactors; however, some reactors may use the so-called heavy water
(D2O, where D stands for deuterium), graphite or beryllium for the purposes
of moderation. Heavy water has a smaller probability for neutron absorption
through the (n, γ) reaction than water. Graphite also does not absorb many
neutrons and scatters neutrons well. Beryllium is an excellent solid moderator
with its low neutron absorption cross section and a high neutron scattering
cross section.

6.3 Neutron Kerma

Neutron fields are usually described in terms of fluence ϕ(EK) rather than
energy fluence ψ(EK) as is usually the case with photon fields. For a mo-
noenergetic neutron beam of fluence ϕ in cm−2 undergoing a specific type of
interaction i with a particular atom at a point in medium, the kerma Ki in
a small mass m is expressed as

Ki = ϕσi
N

m
(∆EK)i (6.9)

where
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ϕ is the neutron fluence in cm−2

σi is the cross section for the particular interaction i,
N is the number of target atoms in mass m with N/m = NA/A,
(∆EK)i is the mean energy transferred from neutrons to charged particles

through the particular interaction i.

The product σiN/m summed over all possible neutron interactions is the
mass attenuation coefficient µ/ρ for neutrons in the absorbing medium.

Following the convention used for photon beams, we define the mass en-
ergy transfer coefficient µtr/ρ for neutrons as follows:

µtr

ρ
=

µ

ρ

∆EK

EK
, (6.10)

where ∆EK/EK is the fraction of the neutron energy transferred to charged
particles.

The total kerma K accounting for all possible interactions is

K = ϕ σi
N

m
∆EK = ϕ

µ

ρ
∆EK = ϕ

µtr

ρ
EK , (6.11)

where EK is the kinetic energy of the monoenergetic neutron beam.

6.4 Neutron Kerma Factor

The product (µtr/ρ)EK, defined as the neutron kerma factor Fn with units
of J · cm2/g, is tabulated for neutrons instead of the mass energy transfer
coefficient. Figure 6.1 provides the neutron kerma factor Fn against neutron
kinetic energy for various materials of interest in medical physics (hydrogen,
water, tissue, carbon, oxygen, and nitrogen).

For monoenergetic neutrons we get the following expression for the neu-
tron kerma K:

K = ϕ (Fn)EK,Z , (6.12)

where

ϕ is the fluence of monoenergetic neutrons of kinetic energy EK,
(Fn)EK,Z is the neutron kerma factor Fn in J · cm2/g for neutrons of kinetic

energy EK in the irradiated absorber with atomic number Z.

For neutron beams characterized with an energy spectrum ϕ′(EK) of particle
fluence, kerma is expressed as follows:

K =

(EK)max∫
0

ϕ′(EK)(Fn)EK,ZdEK , (6.13)

where (EK)max is the maximum neutron kinetic energy in the continuous
neutron spectrum with the differential fluence distribution ϕ′(EK).
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Fig. 6.1. Neuton kerma factor Fn against neutron kinetic energy EK for various
materials of interest in medical physics. Data were obtained from the NIST

An average value for the neutron kerma factor Fn for the spectrum of
neutrons ϕ′(EK) is given as

(Fn)ϕ′(EK),Z =
K

ϕ
=

(EK)max∫
0

ϕ′(EK)(Fn)EK,ZdEK

EKmax∫
0

ϕ′(EK) dEK

. (6.14)

6.5 Neutron Dose Deposition in Tissue

By virtue of their neutrality, neutrons, similarly to photons, deposit dose in
tissue through a two-step process:

1. Energy transfer to heavy charged particles, such as protons and heavier
nuclei in tissue.

2. Energy deposition in tissue by heavy charged particles through Coulomb
interactions of the charged particles with atoms of tissue.

Similarly to photons, the nature of neutron interactions with tissue depends
on the kinetic energy of neutrons; however, the options available for neutron
interactions are not as varied as those for photons (see Chap. 7). For neutrons
there are only two kinetic energy ranges to consider:

1. Thermal neutron energy of the order of 0.025 eV.
2. Epithermal, intermediate and fast neutrons with kinetic energy >0.025 eV.
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6.5.1 Thermal Neutron Interactions in Tissue

Thermal neutrons undergo two possible interactions with nuclei of tissue:

1. Neutron capture by nitrogen-14 (147 N) nucleus that produces carbon-14
(146 C) and a proton. The cross section for the 14

7 N(n,p)146 C reaction is
σN−14 = 1.84 b/atom.

2. Neutron capture by hydrogen-1 (11H) nucleus that produces a deuterium
nucleus and a γ photon. The cross section for reaction 1

1H(n,γ)21H is
σH−1 = 0.33 b/atom.

According to the ICRU and the ICRP the human tissue composition in per-
cent by mass is: ∼ 10% for hydrogen-1 and ∼ 3% for nitrogen-14. The data
for oxygen-16 and carbon-12, the other two abundant constituents of tissue,
are ∼ 75% and ∼ 12%, respectively.

The kerma deposited in muscle tissue per unit neutron fluence ϕ is from
(6.9) given as follows:

K

ϕ
= σ

(
Nt

m

)
∆EK , (6.15)

where

σ is the thermal neutron cross section for the specific nuclear reaction,
∆EK is the average energy transfer in the nuclear reaction,
(Nt/m) is the number of specific nuclei, such as nitrogen-14 or hydrogen-1,

per unit mass of tissue.

Thermal Neutron Capture in Nitrogen-14 in Tissue

The kinetic energy released by thermal neutron capture in nitrogen-14 is
determined by calculating the change in total nuclear binding energy be-
tween the nitrogen-14 nucleus (EB = 104.66 MeV) and the carbon-14 nucleus
(EB = 105.29 MeV). Since the total binding energy of carbon-14 exceeds that
of nitrogen-14 by 0.63 MeV, we note that the energy released to charged par-
ticles in thermal neutron capture by the nitrogen-14 nucleus is 0.63 MeV.
This energy is shared as kinetic energy between the proton and the carbon-
14 nucleus in the inverse proportion of their masses, since both nuclei carry
away the same momenta, but in opposite directions. Thus, the proton re-
ceives a kinetic energy of 0.58 MeV; the carbon-14 atom a kinetic energy of
0.05 MeV.

The number of nitrogen-14 atoms per gram of tissue, (Nt/m)N−14, is
determined as follows:

1. 1 gram-atom of N-14 contains NA atoms of N-14.
2. 1 g of N-14 contains (NA/A) atoms of N-14, where A = 14.01 g/gram-

atom.
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3. 1 g of tissue contains 0.03 g of N-14 atoms, i.e., 0.03 × (NA/A) atoms of
N-14, therefore (Nt/m)N−14 = 1.3 × 1021 atom/g.

The kerma K per unit thermal neutron fluence ϕ for the 14
7 N(n,p)146 C reaction

is thus equal to

K

ϕ
=σ

(
Nt

m

)
N−14

∆EK

=1.84 × 10−28 m−2

atom
× 1.3 × 1021 atom

g
× 0.63 MeV

=2.4 × 10−17 Gy · m−2/neutron. (6.16)

Thermal Neutron Capture in Hydrogen-1 in Tissue

Despite a lower cross section for capture in hydrogen compared to nitrogen,
thermal neutrons have a much larger probability for being captured by hy-
drogen than by nitrogen in tissue because in the number of atoms per gram of
tissue (concentration) hydrogen surpasses nitrogen with a ratio of ∼ 45 to 1.

In the 1
1H(n, γ) 2

1H reaction a γ photon is produced and the binding en-
ergy difference between a proton EB = 0 and deuteron (EB = 2.22 MeV)
is 2.22 MeV. Neglecting the recoil energy of the deuteron, we assume that
the γ photon receives the complete available energy of 2.22 MeV, i.e.,
Eγ = 2.22 MeV.

The number of hydrogen-1 atoms per gram of tissue, (Nt/m)H−1 is de-
termined as follows:

1. 1 gram-atom of H-1 contains NA atoms of H-1.
2. 1 g of H-1 contains (NA/A) atoms of H-1.
3. 1 g of tissue contains 0.1 g of H-1 atoms, i.e., 0.1× (NA/A) atoms of H-1,

therefore (Nt/m)H−1 = 6 × 1022 atom/g ≈ 45 × (Nt/m)N−14.

The energy transfer to γ photons per unit thermal neutron fluence ϕ and per
unit mass of tissue m for the 1

1H(n,γ)21H nuclear reaction is given as follows,
again using (6.9):

Eγ

ϕm
=σH−1

(
Nt

m

)
H−1

∆Eγ

=0.33 × 10−28 m−2

atom
× 6 × 1022 atom

g
× 2.22 MeV

=7 × 10−16 J · kg−1 · m−2/neutron . (6.17)

The result of (6.17) represents the energy per unit neutron fluence and per
unit mass of tissue that is transferred to γ photons. The amount of this energy
that actually contributes to the kerma in tissue depends on the fraction of
this energy that is transferred from the γ photons to electrons in tissue. This
fraction depends on the size of the tissue mass: for a small size mass most of
the γ photons may escape; for a large mass all photons might be absorbed.
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The human body is intermediate in size, so most of the γ photons pro-
duced through the 1

1H(n, γ)21H reaction are absorbed in the body, making
the 1

1H(n, γ)21H reaction the main contributor to kerma and dose delivered to
humans from thermal neutrons. The 1

1H(n, γ)21H reaction also dominates the
kerma production in tissue for epithermal neutrons, since the body acts as a
moderator for thermalizing the neutrons.

6.5.2 Interactions of Intermediate and Fast Neutrons with Tissue

For neutrons with kinetic energies above 100 eV (upper end epithermal, in-
termediate and fast neutrons) by far the most important interaction is the
elastic scattering with nuclei of tissue, most importantly with hydrogen-1.

As given in Sect. 4.3, the following expressions govern the elastic collisions
by two particles:

1. The kinetic energy transfer ∆EK from the neutron with mass mn to tissue
nucleus with mass M , as given in (4.23), is

∆EK =
4mnM

(mn + M)2
(EK)n cos2 φ , (6.18)

where
(EK)n is the kinetic energy of the incident neutron,
φ is the recoil angle of the target M nucleus.

2. The maximum kinetic energy transfer (∆EK)max, occurs for φ = 0 and
is given as

(∆EK)max =
4mnM

(mn + M)2
(EK)n . (6.19)

3. The average energy transfer by elastic scattering from a neutron to tissue
nucleus M is given as follows:

∆EK =
4mnM

(mn + M)2
(EK)ncos2 φ

=
2mnM

(mn + M)2
(EK)n =

1
2
(∆EK)max . (6.20)

The average energy ∆EK transferred to recoil nucleus M in tissue in elas-
tic scattering depends on the nuclear mass M and ranges from 0.5(EK)n
for hydrogen-1; through 0.14(EK)n for carbon-12; 0.12(EK)n for nitrogen-
14, to 0.11(EK)n for oxygen-16. Of the possible contributors to energy
transfer to nuclei in tissue, hydrogen-1 is the most efficient, since it not
only provides the largest number of atoms per tissue mass, it also trans-
fers the largest amount of energy (50%) from the neutron to the scattering
nucleus per each elastic scattering event, as shown in Table 6.1.
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Table 6.1. Parameters of tissue constituents relevant to neutron absorption and
scattering

Abundance
(% by mass)

Abundance
#atoms

g of tissue

Abundance
(relative to
hydrogen)

∆EK

% of (EK)n

Hydrogen-1 10 6.0 × 1022 1 50
Carbon-12 75 3.8 × 1022 0.63 14
Nitrogen-14 3 1.3 × 1021 0.022 12
Oxygen-16 12 4.5 × 1021 0.075 11

Table 6.2. Two predominant interactions of neutrons depositing dose in tissue and
their regions of predominance

Reaction ∆EK

(MeV)
K/ϕ
(Gy per neutron/m2)

EKn < 100 eV 14
7 N(n,p)146 C 0.63 2.4 × 10−17

EKn > 100 eV 1
1H(n,n’)11H’ 0.5EKn 0.5σelEKn

4. The dependence of the neutron kerma factor (K/ϕ, kerma per unit flu-
ence) on neutron energy is essentially split into two regions, one for neu-
tron energy below 100 eV and the other for neutron energy above 100 eV,
as summarized in Table 6.2.

6.6 Neutron Beams in Medicine

Of the seven energy categories of neutrons (ultracold, very cold, cold, ther-
mal, epithermal, intermediate and fast, as listed in Sect. 6.1) three categories:
thermal, epithermal and fast neutrons are used in radiotherapy; thermal and
epithermal neutrons for boron neutron capture therapy (BNCT) and fast neu-
trons for external beam radiotherapy.

6.6.1 Boron Neutron Capture Therapy (BNCT)

The BNCT irradiation technique relies on the exceptionally high thermal
neutron cross section (σ = 3840 barn) of the boron-10 nuclide.

Exposed to thermal neutrons, boron-10 undergoes the following nuclear
reaction:

10
5 B + n → 7

3Li + α + Q(2.79 MeV) , (6.21)

where n represents a thermal neutron, α an alpha particle, and 7
3Li the

lithium-7 nucleus. The nuclear masses M and binding energies EB for the
nuclides of (6.21) are given in Table 6.3 (p. 185).
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The Q value for the reaction of (6.21) is calculated either from the nuclear
rest energies for the nuclei of (6.21) or from the total binding energies for the
nuclei of (6.21) as follows:

Q=M(105 B) × 931.5 MeV/u + Mnc2 −{
M(73Li) + M(α)

}× 931.5 MeV/u = 2.79 MeV (6.22)

or

Q = EB(73Li) + EB(α) − EB(105 B) = 2.79 MeV , (6.23)

where Mnc2 is the neutron rest energy equal to 939.5654 MeV.
Both methods give a reaction Q value of 2.79 MeV that is shared between

a gamma photon (0.48 MeV) produced by an excited lithium-7 nucleus and
reaction products lithium-7 and the α particle. The 2.31 MeV kinetic energy
(2.79 MeV–0.48 MeV) is shared between the two reaction products in the
inverse proportion of their masses, i.e., lithium-7 carries away an energy of
0.84 MeV; the α particle 1.47 MeV. The range of these reaction products in
tissue is of the order of 6 µm. By virtue of their relatively large masses, both
reaction products are densely ionizing particles that can produce significant
radiation damage on the cellular level during their short travel through tissue.
In addition, the cellular damage produced by these densely ionizing particles
depends much less on the presence of oxygen than is the case with standard
sparsely ionizing beams, such as x rays, gamma rays, and electrons.

The basic premise behind the BNCT is that if boron-10 can be selectively
concentrated in a tumor and the tumor is exposed to thermal neutrons, a
higher dose will be delivered to the tumor than to the adjacent normal tis-
sue because the tumor contains the boron-10 nuclide, while the surrounding
tissues do not, at least not at the same concentration.

In theory the idea behind the BNCT is logical and simple; however, in
practice the technique is still considered in an experimental stage despite more
than 50 years that was spent on its development by various research groups.
Most attempts with the use of the BNCT are concentrated on treatment of
malignant brain tumors, and essentially all practical aspects of dose delivery
are wrought with difficulties. The most serious difficulties are:

• Boron-10 is difficult to concentrate in the tumor.
• Thermal neutrons of sufficient fluence rate (of the order of 1012 cm−2 ·s−1)

can only be obtained from a nuclear reactor and reactors are not readily
available for this kind of purpose.

• Thermal neutrons have very poor penetration into tissue, exhibiting neg-
ligible skin sparing and a rapid dose fall-off with depth in tissue (50%
dose at ∼ 2 cm depth in tissue).

• The thermal neutron beam produced in a nuclear reactor is contaminated
with gamma photons and the dosimetry of the mixed neutron/gamma ray
fields is problematic.
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Despite difficulties there are several research groups around the world working
with great enthusiasm on making the BNCT more clinically useful, yet so far
the success was limited.

6.6.2 Radiotherapy with Fast Neutron Beams

In contrast to the BNCT, radiotherapy with fast neutrons is quite advanced,
practiced in several centers around the world, and accepted as a viable, albeit
uncommon, alternative to standard radiotherapy with photon and electron
beams. In comparison with photon and electron beams, the main attraction
of fast neutron beams is their much lower oxygen enhancement ratio (OER);
the main drawback is their significantly more difficult and more expensive
means of production.

The OER is defined as the ratio of doses without and with oxygen (hypoxic
vs. well-oxygenated cells) to produce the same biological effect. The OER for
electrons and photons (sparsely ionizing radiation) is about 2 to 3, while for
neutrons (densely ionizing radiation) it is only about 1.5. This means that
treatment of anoxic tumors is much less affected by the absence of oxygen
than is the standard treatment with photons or electrons.

The depth dose distributions produced in tissue by fast neutron beams
exhibit similar characteristics to those of photon beams (see Sect. 1.11 and
Fig. 1.2). The dose maximum occurs at a depth beneath the surface and
depends on beam energy; the larger is the energy, the larger is the depth
of dose maximum and the more penetrating is the neutron beam. The skin
sparing effect is present, yet less pronounced than in photon beams of similar
penetration.

As a rough comparison one can state that in terms of tissue penetration,
a 14 MeV neutron beam is equivalent to a cobalt-60 gamma ray beam and a
70 MeV neutron beam is equivalent to an 8 MV megavoltage x-ray beam.

6.6.3 Machines for Production of Clinical Fast Neutron Beams

Two types of machine are used for production of clinical fast neutron beams:

1. neutron generator
2. cyclotron

Deuterium-Tritium (DT) Generator

In a neutron DT generator a beam of deuterons (d) is accelerated to a few
hundred keV and directed onto a tritium (31H) target thereby producing the
following nuclear reaction:

d + 3
1H → 4

2He + n + Q(17.6 MeV) . (6.24)
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The Q value for the reaction Qd-t is calculated in the simplest manner by
using the binding energies given for the nuclides of (6.24) in Table 6.3. The
calculation is as follows:

Qd-t =EB(α) − {
EB(d) + EB(31H)

}
=28.2957 MeV − {2.2246 + 8.4818} MeV = 17.6 MeV . (6.25)

The same result can be obtained by accounting for nuclear masses for the
nuclei in (6.24) as follows:

Qd-t =
{[

M(d) + M(31H)
]− [

M(42He) + Mn
]}

c2

={[1875.61 + 2808.92] − [3727.38 + 939.56]} MeV
=17.6 MeV. (6.26)

The reaction energy Qd-t of 17.6 MeV is shared between the neutron n and
the α particle in inverse proportions to their masses, resulting in a neutron
kinetic energy of 14 MeV. The atomic masses, nuclear masses and binding
energies for the nuclides discussed in this chapter are given in Table 6.3
(p. 185).

DT neutron generators are relatively inexpensive; however, they have dif-
ficulties producing stable beams of sufficient intensity because of problems
with the tritium target. Since at their best, the DT neutron generators pro-
duce beams that are only equivalent in penetration to cobalt-60 gamma ray
beams and have significantly lower outputs than a standard cobalt unit, they
are not serious contenders for delivery of routine radiotherapy treatments.

Fast Neutron Beams from Cyclotrons

Cyclotrons were briefly discussed in Sect. 3.6.2. In addition to their use in
production of clinical heavy charged particle beams and in production of
radionuclides for use in industry and medicine, they provide very practical
means for production of clinical neutron beams.

The most common approach in neutron production with cyclotrons is
to accelerate protons (p) or deuterons (d) onto a beryllium target and this
results in neutron spectra that are characteristic of the particular nuclear
reaction used.

The maximum neutron energy in the spectrum is given as the sum of the
incident particle kinetic energy and the reaction Q value for the particular
nuclear reaction that produces the neutrons. The two nuclear reactions are
as follows:

p + 9
4Be → 9

5B + n + Q(−1.85 MeV) (6.27)

d + 9
4Be → 10

5 B + n + Q(4.36 MeV) . (6.28)

The reaction Q values for the two reactions can be determined either by
subtracting the binding energies for the products before the interaction from
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those for after the interaction, similarly to the procedure with regard to (6.25)
or by subtracting the rest energies for the products after the interaction from
the rest energies for before the interaction, similarly to the procedure with
regard to (6.26).

6.6.4 Californium-252 Neutron Source

The californium-252 (Cf-252) radionuclide is an efficient neutron source that
can be readily encapsulated into portable sealed sources for use in science,
industry and medicine. It is commonly produced as a transuranium radionu-
clide in a nuclear reactor by irradiating a suitable target with a very high
neutron fluence rate of the order of 1015 cm−1 · s−1 and was found useful in
many areas such as neutron activation analysis, neutron radiography, nuclear
reactor start up, and brachytherapy treatment of cancer.

• Cf-252 decays with a half-life of 2.65 y through α decay into curium-248.
• The specific activity of Cf-252 is 2 × 107 Bq/µg (540 Ci/g).
• About 3% of all Cf-252 decays occur through spontaneous fission (see

Sect. 8.14) with 3.8 neutrons produced on the average per fission, amount-
ing to a neutron production rate of 2.35 × 106 µg−1 · s−1.

• The neutron spectrum emitted by Cf-252 has a Maxwellian energy distri-
bution with an average energy of 2.1 MeV and most probable energy of
∼0.7 MeV.

Industrial sources contain up to 50 mg of Cf-252 emitting of the order of 1011

neutrons per second. High dose rate (HDR) brachytherapy requires about 500
µg of Cf-252 per source and emits ∼ 109 neutrons per second. Current tech-
nology results in source diameters of the order of 3 mm; adequate for intracav-
itary brachytherapy but not suitable for interstitial brachytherapy. Smaller
dimension (miniature) sources are likely to be produced in the near future,
making the Cf-252 brachytherapy more practical and more widely available.
Standard HDR brachytherapy is carried out with iridium-192 sources that
emit a spectrum of gamma rays with an effective energy of ∼ 400 keV. The
advantage of neutron irradiation is that neutron therapy is significantly more
effective than conventional photon therapy in treatment of hypoxic (oxygen
deficient) malignant disease.

6.7 Neutron Radiography

X-ray and gamma ray radiography became indispensable imaging tools in
medicine, science and industry; however, radiography with more exotic par-
ticles such as protons and neutrons is also being developed.

Neutron radiography (NR) is a non-invasive imaging technique similar to
the industrial gamma radiography except that instead of x ray or gamma
ray transmission through an object, it uses attenuation of a neutron beam in
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an object. While the transmission of photons through an absorber is charac-
terized by photon interactions with orbital electrons of the absorber and is
governed by the atomic number, density and thickness of the absorber, the
transmission of neutrons through an absorber is characterized by neutron in-
teractions with the nuclei of the absorber and governed by the neutron cross
sections of the absorber nuclei. In contrast to x rays, neutrons are attenuated
strongly by some low atomic number materials such as hydrogen, lithium,
boron and cadmium but penetrate many high atomic number materials with
relative ease.

Elements with similar atomic numbers will exhibit very similar x-ray at-
tenuation and yet may have markedly different neutron attenuation charac-
teristics. Organic materials and water are clearly visible in neutron radio-
graphs because of their hydrogen content, while many structural materials
such as aluminum and iron or shielding materials such as lead are nearly
transparent.

Neutron radiography can be carried out with neutrons of any energy rang-
ing from cold to fast neutrons, but the results depend strongly on the neutron
cross sections of elements comprising the test object. Most applications of NR
are now found in industry but research in medical use is also carried out. Be-
cause of their large hydrogen content, biological objects can be imaged only
by fast neutrons and, since the equivalent doses required for clinical imaging
are relatively large, the procedure can be justified only for patients undergo-
ing neutron radiotherapy.

Table 6.3. Main attributes of nuclides presented in this chapter. Data are from
the NIST



Computerized Tomography Images and Leonardo Da Vinci

The center image on the next page is a famous sketch of a man by Leonardo Da
Vinci (1452–1519). While other great men and women that humanity produced
in arts and science generally excelled in only one specific area of art or science,
Leonardo da Vinci was a man of enormous talents covering most areas of human
endeavor, whether in arts or science; a truly versatile renaissance man. He was
active as sculptor, painter, musician, architect, engineer, inventor, and researcher
of human body. Many of Leonardo Da Vinci’s drawings of the human body helped
doctors understand better the layout of muscle and bone structures within the
human body.

The left and right images on the next page are examples of computerized tomo-
graphy (CT) images of the human body, representing the most important develop-
ment resulting from Wilhelm Roentgen’s discovery of x rays in 1895. A CT scanner
is a machine that uses an x-ray beam rotating about a specific area of a patient
to collect x-ray attenuation data for patient’s tissues. It then manipulates these
data with special mathematical algorithms to display a series of transverse slices
through the patient. The transverse CT data can be reconstructed so as to obtain
sagittal sections (shown in the right image on the next page) and coronal sections
(shown in the left image on the next page) through the patient’s organs or to obtain
digitally reconstructed radiographs. The excellent resolution obtained with a mod-
ern CT scanner provides an extremely versatile “non-invasive” diagnostic tool. CT
scanners have been in clinical and industrial use since the early 1970s and evolved
through five generations, each generation becoming increasingly more sophisticated
and faster.

Three types of detectors are used in CT scanners: (1) scintillation detectors
(sodium iodide or calcium fluoride) in conjunction with a photomultiplier tube;
(2) gas filled (xenon or krypton) ionization chamber; and (3) semiconductor detec-
tors (cesium iodide) in conjunction with a p–n junction photodiode.

Three-dimensional images can be obtained through three techniques: (1) mul-
tiple 2D acquisitions (based on a series of sequential scans); (2) spiral (helical) CT
(the x-ray source rotates continuously around the patient while simultaneously the
patient is translated through the gantry); and (3) cone-beam CT (a 2D detector
array is used in order to measure the entire volume-of-interest during one single
orbit of the x-ray source.

Allan Cormack (1924–1998), a South African-American physicist, developed the
theoretical foundations that made computerized tomography possible and published
his work during 1963–64. His work generated little interest until Godfrey Hounsfield
(1919–2004), a British electrical engineer, developed a practical model of a CT
scanner in the early 1970s. Hounsfield and Cormack received the 1979 Nobel Prize
in Psychology and Medicine for their independent invention of the CT scanner.



7 Interactions of Photons with Matter

In this chapter we discuss the various types of photon interactions with ab-
sorbing media. Photons are indirectly ionizing radiation and they deposit en-
ergy in the absorbing medium through a two-step process: (1) energy transfer
to an energetic light charged particle (electron or positron) and (2) energy
deposition in medium by the charged particle. Some of the interactions are
only of theoretical interest and help in the understanding of the general pho-
ton interaction phenomena, others are of great importance in medical physics
since they play a fundamental role in imaging, radiotherapy as well as radi-
ation dosimetry. Depending on their energy and the atomic number of the
absorber, photons may interact with an absorber atom as a whole, with the
nucleus of an absorber atom or with an orbital electron of the absorber atom.
The probability of a particular interaction to occur depends on the photon
energy as well as on the density and atomic number of the absorber, and is
generally expressed in the form of an interaction cross section.

In this chapter we first discuss in detail the individual photon interactions
of importance to medical physics and then concentrate on the general aspects
of photon interactions with absorbers including the mass energy transfer co-
efficients and mass energy absorption coefficients for use in radiation dosime-
try. Also discussed are the various effects that follow the individual photon
interactions.
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7.1 General Aspects of Photon Interactions
with Absorbers

In penetrating an absorbing medium, photons may experience various inter-
actions with the atoms of the medium. These interactions with atoms may
involve either the nuclei of the absorbing medium or the orbital electrons of
the absorbing medium.

The interactions with nuclei may be direct photon-nucleus interactions
(photodisintegration) or interactions between the photon and the electrostatic
field of the nucleus (pair production).

The photon-orbital electron interactions are characterized as interactions
between the photon and either (i) a loosely bound electron (Thomson scat-
tering, Compton effect, triplet production) or (ii) a tightly bound electron
(photoelectric effect).

• A loosely bound electron is an electron whose binding energy EB is small
in comparison with the photon energy hν, i.e., EB � hν. An interaction
between a photon and a loosely bound electron is considered to be an
interaction between a photon and a free (unbound) electron.

• A tightly bound electron is an electron whose binding energy EB is compa-
rable to, larger than, or slightly smaller than the photon energy hν. For a
photon interaction to occur with a tightly bound electron, the binding en-
ergy EB of the electron must be of the order of, but slightly smaller, than
the photon energy, i.e., EB � hν. An interaction between a photon and a
tightly bound electron is considered an interaction between a photon and
the atom as a whole.

As far as the photon fate after the interaction with an atom is concerned
there are two possible outcomes:

1. Photon disappears (i.e., is absorbed completely) and a portion of its en-
ergy is transferred to light charged particles (electrons and positrons).

2. Photon is scattered and two outcomes are possible:
a) The resulting photon has the same energy as the incident photon and

no light charged particle is released in the interaction.
b) The resulting scattered photon has a lower energy than the incident

photon and the energy excess is transferred to a light charged particle
(electron).

The light charged particles produced in the absorbing medium through pho-
ton interactions will:

1. either deposit their energy to the medium through Coulomb interactions
with orbital electrons of the absorbing medium (collision loss also referred
to as ionization loss), as discussed in detail in Sect. 5.3.
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2. or radiate their kinetic energy away through Coulomb interactions with
the nuclei of the absorbing medium (radiative loss), as discussed in detail
in Sect. 5.2.

7.2 Thomson Scattering

The scattering of low energy photons (hν � mec
2) by loosely bound, i.e.,

essentially free electrons is described adequately by non-relativistic classical
theory of Joseph J. Thomson.

Thomson assumed that the incident photon beam sets a quasi-free elec-
tron of the atom into a forced resonant oscillation. He then used classical
theory to calculate the cross section for the re-emission of the electromag-
netic (EM) radiation as a result of induced dipole oscillation of the elec-
trons. This type of photon elastic scattering is now called Thomson scatter-
ing.

The electric fields Ein for the harmonic incident radiation and Eout for
the emitted scattered electromagnetic waves [far field, see (3.5)] are given,
respectively, by

Ein = Eo sin ωt (7.1)

and

Eout =
e

4πεo

ẍ sin Θ

c2r
, (7.2)

where

Eo is the amplitude of the incident harmonic oscillation,
Θ is the angle between the direction of emission ⇀

r and the polarization
vector of the incident wave

⇀Ein,
ẍ is the acceleration of the electron.

The equation of motion for the accelerated electron vibrating about its equi-
librium position is

meẍ = e
⇀E = e

⇀Eo sin ωt . (7.3)

Inserting ẍ from the equation of motion for the accelerated electron into (7.2),
we get the following expression for Eout:

Eout =
e2

4πεo

Eo

mec2

sin ωt sin Θ

r
= reEo

sin ωt sin Θ

r
, (7.4)

where re is the so-called classical radius of the electron (re = 2.818 fm).



190 7 Interactions of Photons with Matter

The electronic differential cross section deσTh for re-emission of radiation
into a solid angle dΩ is by definition given as follows:

deσTh =
S̄out

S̄in
dA =

S̄out

S̄in
r2dΩ or

deσTh

dΩ
= r2 S̄out

S̄in
. (7.5)

The incident and emitted wave intensities are expressed as follows by the time
averages of the corresponding Poynting vectors S̄out and S̄in, respectively
[see (3.9)]:

S̄in = εocE2
in = εocE2

osin
2 ωt =

1
2
εocE2

o (7.6)

and

S̄out = εocE2
out = εoc

r2
eE2

osin
2 ωt sin2 Θ

r2 =
εocr

2
eE2

o

2
sin2 Θ

r2 , (7.7)

recognizing that sin2 ωt = 1
2 .

Inserting S̄in and S̄out into (7.5) we get the following expression for
deσTh/dΩ

deσTh

dΩ
= r2

e sin
2 Θ . (7.8)

The average value of sin2 Θ for unpolarized radiation may be evaluated using
the following relationships:

cos Θ =
a

r
; sin θ =

b

r
; and cosψ =

a

b
, (7.9)

where the angles θ, Θ and ψ as well as the parameters a and b are defined in
Fig. 7.1.

Combining the expressions given in (7.9) we obtain

cos Θ = sin θ cos ψ , (7.10)

where

θ is the scattering angle defined as the angle between the incident photon
and the scattered photon, as shown in Fig. 7.1,

ψ is the polarization angle.

sin2 Θ is now determined by integration over the polarization angle ψ from 0
to 2π

sin2 Θ =

2π∫
0

sin2 Θ dψ/

2π∫
0

dψ =
1
2π

2π∫
0

(1 − cos2 Θ)dψ

=1 − sin2 θ

2π

2π∫
0

cos2ψ dψ

=1 − 1
2

sin2 θ =
1
2
(1 + cos2 θ). (7.11)
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Fig. 7.1. Schematic diagram of Thomson scattering where the incident photon
with energy hν is scattered and emitted with a scattering angle θ. Note that angles
θ and Θ are not coplanar (i.e., they are not in the same plane)

The differential electronic cross section per unit solid angle for Thomson
scattering deσTh/dΩ is from (7.8) and (7.11) expressed as follows:

deσTh

dΩ
=

r2
e

2
(1 + cos2 θ) (7.12)

and drawn in Figs. 7.2 and 7.3 against the scattering angle θ in the range
from 0 to π. The graph in Fig. 7.2 is plotted in the Cartesian coordinate
system; that in Fig. 7.3 shows the same data in the polar coordinate system.
Both graphs show that deσTh/dΩ ranges from 39.7 mb/electron.sterad at
θ = π/2 to 79.4 mb/electron.sterad for θ = 0o and θ = π.

The differential electronic cross section per unit angle for Thomson scat-
tering deσTh/dθ gives the fraction of the incident energy that is scattered
into a cone contained between θ and θ + dθ. The function, plotted in
Fig. 7.4 against the scattering angle θ, is expressed as follows, noting that
dΩ = 2π sin θ dθ:

deσTh

dθ
=

deσTh

dΩ

dΩ

dθ
= 2π sin θ

deσTh

dΩ
= πr2

e sin θ(1 + cos2 θ) . (7.13)

As shown in Fig. 7.4, deσTh/dθ is zero at θ = 0 and θ = 180◦, reaches maxima
at θ = 55◦ and θ = 125◦ and attains a non-zero minimum at θ = 90◦.
The two maxima and the non-zero minimum are determined after setting
d2σTh/dθ2 = 0 and solving the result for θ.

The total electronic cross section eσTh for Thomson scattering is obtained
by determining the area under the deσTh/dθ curve of Fig. 7.4 or by integrating
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Fig. 7.2. Differential electronic cross section deσTh/dΩ per unit solid angle plotted
against the scattering angle θ for Thomson scattering, as given by (7.12)

Fig. 7.3. Differential Thomson electronic cross section deσTh/dΩ per unit solid
angle plotted against the scattering angle θ in polar coordinate system. The units
shown are mb/electron.steradian

(7.13) over all scattering angles θ from 0 to π to obtain

eσTh =
∫

deσTh

dΩ
dΩ =

r2
e

2

π∫
0

(1 + cos2 θ)2π sin θ dθ

=
8π

3
r2
e = 0.665 b . (7.14)
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Fig. 7.4. Differential electronic cross section deσTh/dθ per unit angle θ plotted
against the scattering angle θ

This is a noteworthy result in that it contains no energy-dependent terms
and predicts no change in energy upon re-emission of the electromagnetic
radiation. The cross section eσTh is called the Thomson classical cross section
for a free electron and has the same value (0.665 b) for all incident photon
energies.

The atomic cross section aσTh is in terms of the electronic cross section
eσTh given as follows:

aσTh = Z eσTh , (7.15)

showing a linear dependence upon atomic number Z, as elucidated for low
atomic number elements by Charles Glover Barkla, an English physicist who
received the Nobel Prize in Physics for his discovery of characteristic x rays.

For photon energies hν exceeding the electron binding energy but small
in comparison with mec

2, i.e., EB � hν � mec
2, the atomic cross section

measured at small θ approaches the Thomson’s value of (7.15). At larger
θ and larger photon energies (hν → mec

2), however, Thomson’s classical
theory breaks down and the intensity of coherently scattered radiation on free
electrons diminishes in favor of incoherently Compton-scattered radiation.

7.3 Compton Scattering (Compton Effect)

An interaction of a photon of energy hν with a loosely bound orbital electron
of an absorber is called Compton effect (Compton scattering) in honor of
Arthur Compton who made the first measurements of photon-“free electron”
scattering in 1922.
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Fig. 7.5. Schematic diagram of the Compton effect. An incident photon with en-
ergy hν interacts with a stationary and free electron. A photon with energy hν′ is
produced and scattered with a scattering angle θ = 60◦. The difference between the
incident photon energy hν and the scattered photon energy hν′ is given as kinetic
energy to the recoil electron

In theoretical studies of the Compton effect an assumption is made that
the photon interacts with a free and stationary electron. A photon, referred to
as scattered photon with energy hν′ that is smaller than the incident photon
energy hν, is produced and an electron, referred to as the Compton (recoil)
electron, is ejected from the atom with kinetic energy EK.

A typical Compton effect interaction is shown schematically in Fig. 7.5
for a 1 MeV photon scattered on a “free” (loosely bound) electron with a
scattering angle θ = 60◦. The scattering angle θ is the angle between the
incident photon direction and the scattered photon direction and can range
from θ = 0◦ (forward scattering) through 90◦ (side scattering) to θ = 180◦

(back scattering). The recoil electron angle φ is the angle between the incident
photon direction and the direction of the recoil Compton electron.

The corpuscular nature of the photon is assumed and relativistic conser-
vation of total energy and momentum laws are used in the derivation of the
well-known Compton wavelength shift relationship

∆λ = λ′ − λ = λc(1 − cos θ) , (7.16)



7.3 Compton Scattering (Compton Effect) 195

where

λ is the wavelength of the incident photon: λ = 2π�c/(hν),
λ′ is the wavelength of the scattered photon; λ′ = 2π�c/(hν′),
∆λ is the difference between the scattered and incident photon wavelength,

i.e., ∆λ = λ′ − λ,
λc is the so-called Compton wavelength of the electron defined as

λc = h/(mec) = 2π�c/(mec
2) = 0.0243 Å . (7.17)

The following three relativistic relationships can be written for the conserva-
tion of total energy and momentum in a Compton interaction:

1. Conservation of total energy

hν + mec
2 = hν′ + mec

2 + EK (7.18)

that results in

hν = hν′ + EK . (7.19)

2. Conservation of momentum in the direction of the incident photon hν:
x axis

pν = pν′ cos θ + pe cos φ . (7.20)

3. Conservation of momentum in the direction normal to that of the incident
photon hν: y axis

0 = −pν′ sin θ + pe sin φ , (7.21)

where
EK is the kinetic energy of the recoil electron,
pν is the momentum of the incident photon: pν = hν/c,
pν′ is the momentum of the scattered photon: pν′ = hν′/c,
pe is the momentum of the recoil electron: pe = meυ/

√
1 − (υ/c)2.

Using the relativistic expression for momentum p of (1.30) in conjunction
with the three basic conservation relationships above, one can eliminate any
two parameters from the three equations to obtain the Compton wavelength
shift equation for ∆λ of (7.16) which in turn leads to relationships for the
energy of the scattered photon hν′ and the energy of the recoil electron EK
as a function of the incident photon energy hν and scattering angle θ

∆λ = λ′ − λ =
c

ν′ − c

ν
=

h

mec
(1 − cos θ) or

1
hν′ − 1

hν
=

1
mec2 (1 − cos θ) . (7.22)

From (7.22) we obtain the following expressions for hν′ and EK, respectively:

hν′ = hν
1

1 + ε(1 − cos θ)
, (7.23)
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Fig. 7.6. Relationship between the electron recoil angle φ and photon scattering
angle θ

and

EK = hν
ε(1 − cos θ)

1 + ε(1 − cos θ)
, (7.24)

where ε = hν/mec
2 represents the incident photon energy hν normalized to

the electron rest energy mec
2.

7.3.1 Relationship Between the Scattering Angle θ
and the Recoil Angle φ

The scattering angle θ and the recoil electron angle φ (see Fig. 7.5) are related
as follows:

cot φ = (1 + ε) tan(θ/2) . (7.25)

The φ vs θ relationship is plotted in Fig. 7.6 for various values of ε =
hν/(mec

2) showing that for a given θ, the higher is the incident photon
energy hν or the higher is ε, the smaller is the recoil electron angle φ.

Equation (7.25) and Fig. 7.6 also show that the range of the scattering
angle θ is from 0 to π, while the corresponding range of the recoil electron
angle φ is limited from π/2 to 0, respectively.

7.3.2 Scattered Photon Energy hν′

as a Function of hν and θ

The relationship between hν′ and hν of (7.23) is plotted in Fig. 7.7 for various
scattering angles θ between 0◦ (forward scattering) and π (backscattering).
The following conclusions can now be made:
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Fig. 7.7. Scattered photon energy hν′ against the incident photon energy hν for
various scattering angles θ in the range from 0◦ to180◦

• For θ = 0, the energy of the scattered photon hν′ equals the energy of
the incident photon hν, irrespective of hν. Since in this case no energy
is transferred to the electron, we are dealing here with classical Thomson
scattering.

• For θ > 0 the energy of the scattered photon saturates at high values of
hν; the larger is the scattering angle θ, the lower is the saturation value
of hν′ for hν → ∞.

• For example, the saturation values of hν′ at θ = π
2 and θ = π for hν → ∞

are

hν′
sat(θ =

π

2
) = lim

hν→∞
hν

1 + ε

= lim
hν→∞

hν

1 + hν
mec2

= mec
2 = 0.511 MeV (7.26)

and

hν′
sat(θ = π)= lim

hν→∞
hν

1 + 2ε

= lim
hν→∞

hν

1 + 2hν
mec2

=
mec

2

2
= 0.255 MeV , (7.27)

respectively, as shown in Fig. 7.7. These results show that photons scat-
tered with angles θ larger than π/2 cannot exceed 511 keV no matter how
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high is the incident photon energy hν. This finding is of great practical
importance in design of shielding barriers for linear accelerator installa-
tions.

• For a given hν the scattered photon energy hν′ will be in the range be-
tween hν/(1 + 2ε) for θ = π and hν for θ = 0, i.e.,

hν

1 + 2ε

∣∣∣∣
θ=π

≤ hν′ ≤ hν|θ=0 . (7.28)

• As shown in (7.22), the Compton shift in wavelength ∆λ is independent
of the energy of the incident photon hν.

• The Compton shift in energy, on the other hand, depends strongly on
the incident photon energy hν. Low-energy photons are scattered with
minimal change in energy, while high-energy photons suffer a very large
change in energy. The shift in photon energy hν − hν′ is equal to the
kinetic energy EK transferred to the Compton recoil electron.

7.3.3 Energy Transfer to the Compton Recoil Electron

The Compton (recoil) electron gains its kinetic energy EK from the incident
photon of energy hν, as given in (7.24)

EK = hν − hν′ = hν
ε(1 − cos θ)

1 + ε(1 − cos θ)
. (7.29)

The maximum kinetic energy transfer (EK)max to recoil electron for a given
hν occurs at θ = π (photon backscattering) which corresponds to electron
recoil angle φ = 0, as shown in Fig. 7.8 with a plot of (EK)max/(hν) against
hν. The maximum fraction of the incident photon energy hν given to the
recoil electron, (EK)max/(hν), is also given in Table 7.1 for photon energies
in the range from 0.01 MeV to 100 MeV. In general (EK)max/(hν) is given
as follows:

(EK)max

hν
=

EK(θ = π)
hν

=
2ε

1 + 2ε
. (7.30)

The expression of (7.29) can be solved for hν after inserting ε = hν/(mec
2)

to obtain a quadratic equation for hν with the following solution:

hν =
1
2
(EK)max

{
1 +

√
1 +

2mec2

(EK)max

}
. (7.31)

For a given incident photon energy hν the kinetic energy EK of the recoil
electron is in the range from 0 at θ = 0◦ to 2hνε/(1 + 2ε) at θ = π, i.e.,

0 ≤ EK ≤ 2hνε/(1 + 2ε) = (EK)max . (7.32)

From the dosimetric point of view, the most important curve given in Fig. 7.8
is the one showing E

σ

K/(hν), the mean fraction of the incident photon en-
ergy hν transferred to recoil electrons. Data for E

σ

K/(hν) are also given in
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Fig. 7.8. Fraction of incident photon energy hν transferred in Compton effect to:
• Maximum energy of recoil electron: (EK)max/(hν); θ = π [see (7.30)]
• Mean energy of recoil electron: E

σ
K/(hν) [see (7.54 below)]

• Maximum energy of scattered photon: hν′
max/(hν); θ = 0◦ [see (7.33)]

• Mean energy of the scattered photon: hν′/(hν) [see (7.34)]
• Minimum energy of the scattered photon: hν′

min/(hν); θ = π [see (7.35)]

Table 7.1, showing that the fractional energy transfer to recoil electrons is
quite low at low photon energies (0.02 at hν = 0.01 MeV) and then slowly
rises to become 0.44 at hν = 1 MeV and 0.796 at hν = 100 MeV. The mean
fraction E

σ

K/(hν) is discussed further in (7.53) and (7.54) below.
Figure 7.8 and Table 7.1 also show the maximum, mean and minimum

fractions (hν′
max/hν, hν′/hν, hν′

min/hν, respectively) of the incident photon
energy hν given to the scattered photon. The fractions are calculated as
follows:

hν′
max

hν
=

hν′|θ=0

hν
= 1 , (7.33)

hν′

hν
= 1 − ĒK

hν
, (7.34)

hν′
min

hν
=

hν′|θ=π

hν
=

1
1 + 2ε

= 1 − (EK)max

hν
, (7.35)

where ε = hν/(mec
2).

7.3.4 Differential Cross Section for Compton Scattering
deσ

KN
c /dΩ

The probability or cross section for a Compton interaction between a photon
and a “free electron” is given by an expression derived by Oskar Klein and
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Table 7.1. Fractions of the incident phoyton energy transferred through Compton
effect to the maximum electron kinetic energy (EK)max/(hν); mean electron kinetic
energy E

σ
K/(hν); maximum scatterd photon energy hν′

max/(hν); mean scattered
photon energy hν′/(hν); and minimum scattered photon energy hν′

min/(hν)

hν (MeV) 0.01 0.1 1.0 10.0 100.0

(Eσ
K)max/(hν) 0.04 0.29 0.80 0.95 0.995

E
σ
K/(hν) 0.02 0.14 0.44 0.68 0.796

hν′
max/(hν) 1.0 1.0 1.0 1.0 1.0

hν′/(hν) 0.98 0.86 0.56 0.32 0.21

hν′
min/(hν) 0.96 0.71 0.20 0.05 0.005

Yoshio Nishina in 1929. The differential electronic cross section for Compton
effect is given as follows:

deσ
KN
c

dΩ
=

r2
e

2

(
ν′

ν

)2 {
ν′

ν
+

ν

ν′ − sin2 θ

}

=
r2
e

2
(1 + cos2 θ) FKN =

deσTh

dΩ
FKN , (7.36)

where

deσ
KN
c /dΩ is the differential Klein-Nishina electronic cross section for the

Compton effect,
ν is the frequency of the incident photon,
ν′ is the frequency of the scattered photon,
θ is the scattering angle,
re is the classical radius of the electron (2.82 fm),
FKN is the Klein-Nishina form factor,
deσTh/dΩ is the differential cross section for Thomson scattering.

The Klein-Nishina form factor FKN for a free electron is given as follows:

FKN =
1

[1 + ε(1 − cos θ)]2

{
1 +

ε2(1 − cos θ)2

[1 + ε(1 − cos θ)](1 + cos2 θ)

}
, (7.37)

where again ε = hν/(mec
2).

The Klein-Nishina form factor FKN is plotted in Fig. 7.9 against the scat-
tering angle θ for various values of the energy parameter ε. For ε = 0 the
form factor is 1 irrespective of the scattering angle θ.

As shown in (7.37) and in Fig. 7.9, the form factor FKN is a complicated
function of the scattering angle θ and parameter ε. However, it is easy to
show that:
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Fig. 7.9. Atomic form factor for Compton effect FKN against scattering angle θ

• FKN ≤ 1 for all θ and ε. (7.38)
• FKN = 1 for θ = 0 at any ε. (7.39)
• FKN = 1 for ε = 0 at any θ (Thomson scattering). (7.40)

The differential electronic cross section for the Compton effect deσ
KN
c /dΩ

when FKN = 1 is equal to the Thomson electronic differential cross section
deσTh/dΩ given in (7.12)

deσ
KN
c

dΩ
|FKN=1 =

deσTh

dΩ
=

r2
e

2
(1 + cos2 θ) . (7.41)

The differential Compton electronic cross section deσ
KN
c /dΩ is given in

Fig. 7.10 against the scattering angle θ for various values of ε ranging from
ε ≈ 0 which results in FKN = 1 for all θ, (i.e., Thomson scattering) to ε = 10
for which the FKN causes a significant deviation from the Thomson electronic
cross section for all angles θ except for θ = 0.

The data of Fig. 7.10 are replotted in Fig. 7.11 in a polar coordinate sys-
tem that gives a better illustration of the Compton scattering phenomenon.

• At low ε the probabilities for forward scattering and back scattering are
equal and amount to 79.4 mb (Thomson scattering).

• As the energy hν increases the probability for back scattering decreases
and the probability for forward scattering remains constant at 79.4 mb.

• The polar diagram of Fig. 7.11 is sometimes colloquially referred to as
the “peanut diagram” to help students remember its shape.

At low incident photon energies (Thomson limit) the probabilities for forward
scattering and back scattering are equal and twice as large as the probability
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Fig. 7.10. Differential electronic cross section for Compton effect deσ
KN
c /dΩ

against scattering angle θ for various values of ε = hν/(mec
2), as given by (7.36).

The differential electronic cross section for Compton effect deσ
KN
c /dΩ for ε = 0 is

equal to the differential electronic cross section for Thomson scattering deσTh/dΩ
(see Fig. 7.2)

Fig. 7.11. Polar representation of the angular dependence of the differential elec-
tronic cross section deσ

KN
c /dΩ for Compton scattering, as given by (7.36) and

plotted for various values of ε = hν/(mec
2). The differential electronic cross section

for Compton effect deσ
KN
c /dΩ for ε = 0 is equal to the differential electronic cross

section for Thomson scattering deσTh/dΩ (see Fig. 7.3)
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for side scattering. As the incident photon energy, i.e., ε, increases, the scat-
tering becomes increasingly more forward peaked and backscattering rapidly
diminishes.

7.3.5 Differential Energy Transfer Cross Section (deσ
KN
c )tr/dΩ

The differential energy transfer coefficient (deσ
KN
c )tr/dΩ for the Compton

effect is determined from the differential electronic cross section deσc/dΩ
given in (7.36) as follows:

(deσ
KN
c )tr

dΩ
=

deσ
KN
c

dΩ

EK

hν
=

r2
e

2

(
ν′

ν

)2 {
ν′

ν
+

ν

ν′ − sin2 θ

}(
ν − ν′

ν

)

=
deσTh

dΩ
FKN

E
σ

K

hν
=

r2
e

2
(1 + cos2 θ)

ε(1 − cos θ)
[1 + ε(1 − cos θ)]3{

1 +
ε2(1 − cos θ)2

[1 + ε(1 − cos θ)](1 + cos2 θ)

}
E

σ

K

hν
, (7.42)

where E
σ

K/(hν) is given in Fig. 7.8 and in Table 7.1 for incident photon
energies in the range 0.01 MeV ≤ hν ≤ 100 MeV.

7.3.6 Energy Distribution of Recoil Electrons deσ
KN
c /dEK

The differential electronic Klein-Nishina cross section deσ
KN
c /dEK expressing

the initial energy spectrum of Compton recoil electrons averaged over all
scattering angles θ is calculated from the general Klein-Nishina relationship
for deσ

KN
c /dΩ as follows:

deσ
KN
c (EK)
dEK

=
deσ

KN
c

dΩ

dΩ

dθ

dθ

dEK
=

=
πr2

e

εhν

{
2 − 2EK

ε(hν − EK)
+

E2
K

ε2(hν − EK)2
+

E2
K

hν(hν − EK)

}
,

(7.43)

where

deσ
KN
c /dΩ is given in (7.36),

dΩ/dθ is 2π sin θ,
dθ/dEK is (dEK/dθ)−1 with EK(θ) given in (7.29).

The differential electronic cross section deσ
KN
c /dEK is plotted in Fig. 7.12

against the kinetic energy EK of the recoil electron for various values of the
incident photon energy hν. The following features can now be recognized:

• The distribution of kinetic energies given to the Compton recoil electrons
is essentially flat from zero almost up to the maximum electron kinetic
energy (EK)max where a higher concentration occurs.
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Fig. 7.12. Differential electronic Klein-Nishina cross section per unit kinetic energy
deσ

KN
c /dEK calculated from (7.43) and plotted against the kinetic energy of the

Compton recoil electron EK for various incident photon energies hν. For a given
photon energy the maximum kinetic energy of the recoil electron, calculated from
(7.44), is indicated on the graph

• (EK)max is calculated from

(EK)max = 2hνε/(1 + 2ε) = hν − hν′
min , (7.44)

as given by (7.30). Since, as shown in (7.27), hν′
min approaches mec

2/2
for high hν, we note that (EK)max approaches hν − (mec

2/2).

7.3.7 Total Electronic Klein-Nishina Cross Section
for Compton Scattering eσ

KN
c

The total cross section for the Compton scattering on a free electron eσ
KN
c

is calculated by integrating the differential cross section deσ
KN
c /dΩ of (7.36)

over the whole solid angle

eσ
KN
c =

∫
deσ

KN
c

dΩ
dΩ

=2πr2
e

{
1 + ε

ε2

[
2(1 + ε)
1 + 2ε

− ln(1 + 2ε)
ε

]
+

ln(1 + 2ε)
2ε

− 1 + 3ε

(1 + 2ε)2

}
.

(7.45)

The numerical value of eσ
KN
c can also be obtained through a determination

of the area under the deσ
KN
c /dθ curve for a given ε. For ε = 0 the area is

equal to the Thomson result of 0.665 b [see (7.14)].
Two extreme cases are of special interest, since they simplify the expres-

sion for eσ
KN
c :
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Fig. 7.13. Compton electronic cross section eσ
KN
c and electronic energy transfer

cross section (eσKN
c )tr for a free electron against incident photon energy hν in the

energy range from 0.001 MeV to 1000 MeV, determined from Klein-Nishina Eqs.
(7.45) and (7.51), respectively. For very low photon energies eσ

KN
c = eσTh = 0.665 b

• For small incident photon energies hν we get the following relationship:

eσ
KN
c =

8π

3
r2
e (1 − 2ε +

26
5

ε2 − 133
10

ε3 +
1144
35

ε4 − . . .) , (7.46)

which for ε → 0 approaches the classical Thomson result of (7.14), i.e.,

eσ
KN
c

∣∣
ε→0 ≈ eσTh =

8π

3
r2
e = 0.665 b . (7.47)

• For very large incident photon energies hν, i.e., ε � 1, we get

eσ
KN
c ≈ πr2

e
1 + 2 ln ε

2ε
. (7.48)

Figure 7.13 shows the Compton electronic cross section eσ
KN
c as determined

by the Klein-Nishina relationship of (7.45) against the incident photon energy
hν in the energy range from 0.001 MeV to 1000 MeV. The following features
can be identified:

• At low photon energies eσ
KN
c is approximately equal to the classical Thom-

son cross section eσTh which, with its value of 0.665 b, is independent of
photon energy.

• For intermediate photon energies eσ
KN
c decreases gradually with photon

energy to read 0.46 b at hν = 0.1 MeV, 0.21 b at hν = 1 MeV, 0.05 b at
hν = 10 MeV, and 0.08 b at hν = 100 MeV.

• At very high photon energies hν, the Compton electronic cross section
eσ

KN
c attains 1/(hν) dependence, as shown in (7.48).
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• The Compton electronic cross section eσ
KN
c is independent of atomic num-

ber Z of the absorber, since in the Compton theory the electron is assumed
free and stationary, i.e., the electron’s binding energy to the atom is as-
sumed to be negligible.

The Compton atomic cross section aσ
KN
c is determined from the electronic

cross section of (7.45) using the standard relationship

aσ
KN
c = Z eσ

KN
c , (7.49)

where Z is the atomic number of the absorber.
The Compton mass attenuation coefficient σKN

c /ρ is given as follows:

σKN
c

ρ
=

NA

A
aσ

KN
c =

ZNA

A
eσ

KN
c ≈ 1

2
NA eσ

KN
c . (7.50)

The atomic Compton cross section (attenuation coefficient) aσ
KN
c is linearly

proportional to Z, while the Compton mass attenuation coefficient σKN
c /ρ is

essentially independent of Z insofar as Z/A is independent of Z. In reality
Z/A ranges from 1 for hydrogen, to 0.5 for low atomic number elements down
to 0.4 for high Z, allowing us to make the approximation Z/A ≈ 0.5.

7.3.8 Energy Transfer Cross Section for Compton Effect (eσKN
c )tr

The electronic energy transfer cross section (eσKN
c )tr is obtained by inte-

grating the differential energy cross section d(eσKN
c )tr/dΩ of (7.42) over all

photon scattering angles θ from 0◦ to 180◦ to get

(eσKN
c )tr =

2πr2
e

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2(1 + ε)2

ε2(1 + 2ε)
− 1 + 3ε

(1 + 2ε)2
−

− (1 + ε)(2ε2 − 2ε − 1)
ε2(1 + 2ε)2

− 4ε2

3(1 + 2ε)3
−
[
1 + ε

ε3 − 1
2ε

+
1

2ε3

]
ln(1 + 2ε)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

(7.51)

In addition to the Compton electronic cross section eσ
KN
c , Fig. 7.13 also shows

the energy transfer cross section for the Compton effect (eσKN
c )tr calculated

with (7.51) and plotted against the incident photon energy hν in the energy
range from 0.001 MeV to 1000 MeV.

Since (eσKN
c )tr and eσ

KN
c are related through the following relationship:

(eσKN
c )tr = eσ

KN
c E

σ

tr/(hν) , (7.52)

where E
σ

tr/hν is the mean fraction of the incident photon energy trans-
ferred to the kinetic energy of the Compton recoil electron, we can calculate
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E
σ

K/hν as

E
σ

K

hν
=

(eσKN
c )tr

eσKN
c

, (7.53)

with (eσKN
c )tr and eσ

KN
c given in (7.51) and (7.45), respectively.

Inserting (7.45) and (7.51) into (7.53) gives the following result for the
mean fraction of the incident photon energy transferred to the kinetic energy
of the recoil electron in Compton effect E

σ

K/hν:

E
σ

K

hν
={

2(1+ε)2

ε2(1+2ε) − 1+3ε
(1+2ε)2 − (1+ε)(2ε2−2ε−1)

ε2(1+2ε)2 − 4ε2

3(1+2ε)3 − [ 1+ε
ε3 − 1

2ε + 1
2ε3

]
ln(1 + 2ε)

}
{

1+ε
ε2

[
2(1+ε)
1+2ε − ln(1+2ε)

ε

]
+ ln(1+2ε)

2ε − 1+3ε
(1+2ε)2

} .

(7.54)

At first glance (7.54) looks very cumbersome; however, it is simple to use
once the appropriate value for ε at a given photon energy hν has been
established. For example, an incident photon of energy hν = 1.02 MeV
results in ε = 2 that, when inserted into (7.54), gives E

σ

K/(hν) = 0.440
or E

σ

K = 0.440 MeV. The energy of the corresponding scattered photon is
hν′ = hν − E

σ

K = 0.660 MeV.
E

σ

K/(hν) is plotted in Fig. 7.8 (the “Compton Graph”) in the incident
photon energy hν range between 0.01 MeV and 100 MeV. Table 7.1 gives
several values of E

σ

K/(hν) in the same energy range.
The plot of E

σ

K/(hν) against incident photon energy hν of Fig. 7.8 shows
that when low energy photons interact in a Compton process, very little en-
ergy is transferred to recoil electrons and most energy goes to the scattered
photon. On the other hand, when high energy photons (hν > 10 MeV) in-
teract in a Compton process, most of the incident photon energy is given to
the recoil electron and very little is given to the scattered photon.

7.3.9 Binding Energy Effects and Corrections

The Compton electronic cross section eσ
KN
c and energy transfer coefficient

(eσKN
c )tr were calculated with Klein-Nishina relationships for free electrons

and are plotted in Fig. 7.13 with solid curves. At very low incident photon
energies the assumption of free electrons breaks down and the electronic
binding energy EB affects the Compton atomic cross sections; the closer is the
photon energy hν to EB, the larger is the deviation of the atomic cross section
aσc from the calculated free-electron Klein-Nishina cross sections eσ

KN
c .

This discrepancy is evident from Fig. 7.14 that displays, for various ab-
sorbers ranging from hydrogen to lead, the atomic cross sections aσc (solid
curves) and the calculated Klein-Nishina atomic cross sections aσ

KN
c . Note

that aσ
KN
c = Z eσ

KN
c , where eσ

KN
c is calculated with (7.45). It is also shown
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Fig. 7.14. Compton atomic cross sections aσc plotted against incident photon
energy hν for various absorbers, ranging from hydrogen to lead. The dotted curves
represent aσ

KN
c data calculated with Klein-Nishina free-electron relationships; the

solid curves represent the aσc data that incorporate the binding effects of the orbital
electrons. The dashed curve represents the Klein-Nishina free electron coefficients
eσ

KN
c for the Compton effect

in Fig. 7.14 that at low incident photon energies hν, the larger is the atomic
number Z of the absorber, the more pronounced is the discrepancy and the
higher is the energy at which aσc and aσ

KN
c begin to coincide.

Various theories have been developed to account for electronic binding
energy effects on Compton atomic cross sections. Most notable is the method
developed by John Hubbell from the National Institute for Science and Tech-
nology (NIST) in Washington, USA, who treated the binding energy correc-
tions to the Klein-Nishina relationships in the impulse approximation taking
into account all orbital electrons of the absorber atom. This involves apply-
ing a multiplicative correction function S(x, Z), referred to as the incoherent
scattering function, to the Klein-Nishina atomic cross sections as follows:

daσc

dΩ
=

daσ
KN
c

dΩ
S(x, Z) , (7.55)

where x, the momentum transfer variable, stands for sin(θ/2)/λ.
The total Compton atomic cross section aσc is obtained from the following

integral:

aσc =

θ=π∫
θ=0

S(x, Z) deσ
KN
c (θ) , (7.56)
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Fig. 7.15. Incoherent scattering function S(x, Z) plotted against the momentum
transfer variable x for various absorbers in the range from hydrogen to lead

where the incoherent scattering function S(x, Z) relates to the properties
of the absorber atom and is important for collisions in which the electron
momentum pe is small enough so that the electron has a finite probability
for not escaping from the atom.

From Fig. 7.5, in conjunction with the application of the law of cosines
on the triangle (⇀

pν ,
⇀
pν′ ,

⇀
pe), we obtain the following relationship for p2

e :

p2
e = p2

ν + p2
ν′ − 2pνpν′ cos θ (7.57)

or

pe =

√(
hν

c

)2

+
(

hν′

c

)2

− 2
hν

c

hν′

c
cos θ . (7.58)

For small hν we know that hν′ ≈ hν (see Fig. 7.7) and pe of (7.58) is approx-
imated as follows:

pe ≈ hν

c

√
2(1 − cos θ) =

hν

c

√
4 sin2 θ

2
= 2h

sin θ
2

λ
= 2hx , (7.59)

where x = (sin θ/2)/λ is defined as the momentum transfer variable with λ
the wavelength of the incident photon.

Hubbell also compiled extensive tables of the incoherent scattering func-
tion S(x, Z). Figure 7.15 presents Hubbell’s data for S(x, Z) plotted against
x = sin(θ/2)/λ for several absorbers in the range from hydrogen to lead. The
figure shows that S(x, Z) saturates at Z for relatively large values of x; the
higher is Z, the larger is x at which the saturation sets in. With decreasing
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x, the function S(x, Z) decreases and attains at x = 0.01 a value that is less
than 1% of its saturation Z value. The following features can be recognized:

• The electron binding correction is effective only when S(x, Z) < Z.
• For S(x, Z) = Z there is no correction and the Klein-Nishina coefficients

eσ
KN
c provide correct values for the atomic cross sections aσc through the

simple relationship aσc = Z(eσKN
c ).

• The binding energy correction is only important at photon energies of the
order of EB, and this occurs in the photon energy region where photoeffect
and Rayleigh scattering are much more probable than the Compton effect.
Thus, ignoring the binding correction on Compton cross sections will not
adversely affect the determination of the total cross section for photon
interactions at relatively low photon energies, since, at these low energies,
effects other than the Compton effect make a much larger contribution to
the total attenuation coefficient than does the Compton effect.

The effects of binding energy corrections on Klein-Nishina differential atomic
cross sections per unit angle daσ

KN
c /dθ are shown in Fig. 7.16 for various

incident photon energies in the range from 1 keV to 10 MeV, for hydro-
gen in part (a), carbon in part (b), and lead in part (c). The data points
are for Klein-Nishina expressions daσ

KN
c /dθ = Z deσ

KN
c /dθ, the solid curves

represent the Klein-Nishina results corrected with the incoherent scattering
function S(x, Z), i.e., daσc/dθ = S(x, Z) deσ

KN
c /dθ.

The following conclusions may be made from Fig. 7.16:

• For a given absorber Z, the binding energy correction is more significant at
lower photon energies. For example, in lead the uncorrected and corrected
1 keV curves differ considerably, the 10 keV curves differ less, the 0.1 MeV
curves even less, while the 1 MeV and 10 MeV curves are identical.

• For a given photon energy hν, the binding energy correction is more sig-
nificant at higher atomic numbers Z. For example, the uncorrected and
corrected 0.1 MeV curves in hydrogen are identical, for carbon they are
almost identical, and for lead they are significantly different.

7.3.10 Mass Attenuation Coefficient for Compton Effect

The Compton mass attenuation coefficient σc/ρ is calculated from the Comp-
ton atomic cross section aσc with the standard relationship as follows:

σc

ρ
=

NA

A
aσc . (7.60)

In the energy region not affected by electron binding effects the following
relationships hold:

aσc = Z(eσKN
c ) (7.61)
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Fig. 7.16. Differential atomic cross-section per unit angle for Compton effect,
daσc/dθ, against scattering angle θ for hydrogen in part a, carbon in part b, and
lead in part c. The dotted curves (data points) are for Klein-Nishina data, the solid
lines represent the Klein-Nishina data corrected with the incoherent scattering
function S(x, Z)
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and
σc

ρ
=

ZNA

A
eσ

KN
c ≈ NA

2 eσ
KN
c , (7.62)

where Z and A are the atomic number and atomic mass, respectively, of the
absorber and their ratio Z/A is of the order of 0.5.

The following conclusions may now be drawn from (7.62):

1. Since eσ
KN
c is given for free electrons, it is independent of Z. This makes

aσc linearly dependent on Z.
2. Since Z/A ≈ 0.5 for all elements with the exception of hydrogen for which

Z/A = 1, σc/ρ is essentially independent of Z. In reality, as often stated
before, Z/A = 0.5 for low atomic number absorbers but with increasing
Z the ratio Z/A gradually falls to Z/A = 0.4 for high atomic number
absorbers.

Since the Compton atomic coefficient aσc is linearly proportional to the
atomic number Z of the absorber, as shown in (7.61), the mass attenuation
coefficient σc/ρ is essentially independent of Z, as shown in (7.62), insofar as
Z/A is considered independent of Z.

Tables 7.2 and 7.3 list the Compton atomic cross section aσc and mass at-
tenuation coefficient σc/ρ, respectively, for 10 keV and 1 MeV photons inter-
acting with various absorbers in the range from hydrogen to lead. Columns (5)
display the atomic cross sections aσc incorporating binding energy correc-
tions, while columns (6) display the Klein-Nishina atomic cross sections
aσ

KN
c = Z(eσKN

c ). The two coefficients (aσc and aσ
KN
c ) agree well for the

photon energy of 1 MeV; however, the discrepancy between the two is signif-
icant for the photon energy of 10 keV, as also shown in Fig. 7.14.

We also note that at hν = 1 MeV, the σc/ρ values follow straight from the
Klein-Nishina electronic cross sections and are affected only by the specific
value for Z/A. This is not the case for σc/ρ at 10 keV that are affected not
only by Z/A but also by the electronic binding effects that are significant in
this energy range for all Z; the larger is Z, the larger is the binding effect, as
shown in columns (5) and (6) of Table 7.2.

7.3.11 Compton Mass Energy Transfer Coefficient

The Compton mass energy transfer coefficient (σc/ρ)tr is calculated from the
mass attenuation coefficient σc/ρ using the standard relationship(

σc

ρ

)
tr

=
σc

ρ

E
σ

K

hν
, (7.63)

where E
σ

K is the average energy transferred to the kinetic energy of recoil
electrons in the Compton effect. E

σ

K is given by (7.54) and in Table 7.1. It is
plotted as “The Compton Graph” in Fig. 7.8. E

σ

K/(hν) is the average fraction
of the incident photon energy that is transferred to the recoil (Compton)
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Table 7.2. Compton atomic cross sections aσc and mass attenuation coefficients
σc/ρ at photon energy of 10 keV for various absorbers

(1) (2) (3) (4) (5) (a) (6) (b) (7) (c)
Element Symbol Atomic

number Z
Atomic
mass A

aσc

(b/atom)
Z eσ

KN
c

(b/atom)
σc/ρ
(cm2/g)

Hydrogen H 1 1.008 0.60 0.64 0.0358
Carbon C 6 12.01 2.70 3.84 0.0135
Aluminum A� 13 26.98 4.74 8.33 0.0106
Copper Cu 29 63.54 8.15 18.57 0.0176
Tin Sn 50 118.69 12.00 32.03 0.0607
Lead Pb 82 207.2 15.60 52.52 0.0153

(a) Data are from the NIST

(b) eσ
KN
c (hν = 10 keV) = 0.6405 × 10−24 cm2/electron = 0.6405 b/electron

(c)
σc

ρ
=

NA

A
aσc =

ZNA

A
eσ

KN
c ≈ NA

2 eσ
KN
c = 0.193 cm2/g (7.64)

Table 7.3. Compton atomic cross sections aσc and mass attenuation coefficients
σc/ρ at photon energy of 1 MeV for various absorbers

(1) (2) (3) (4) (5) (a) (6) (b) (7) (c)
Element Symbol Atomic

number Z
Atomic
mass A

aσc

(b/atom)
Z eσ

KN
c

(b/atom)
σc/ρ
(cm2/g)

Hydrogen H 1 1.008 0.211 0.211 0.1261
Carbon C 6 12.01 1.27 1.27 0.0636
Aluminum A� 13 26.98 2.75 2.75 0.0613
Copper Cu 29 63.54 6.12 6.12 0.0580
Tin Sn 50 118.69 10.5 10.56 0.0534
Lead Pb 82 207.2 17.19 17.32 0.0500

(a) Data are from the NIST

(b) eσ
KN
c (hν = 1 MeV) = 0.2112 × 10−24 cm2/electron = 0.2112 b/electron

(c)
σc

ρ
=

NA

A
aσc =

ZNA

A
eσ

KN
c ≈ NA

2 eσ
KN
c = 0.0636 cm2/g (7.65)

electron. As shown in Fig. 7.8, this average fraction increases with increasing
energy from a low value of 0.01 at 10 keV, through 0.44 at 1 MeV, to reach
a value of 0.8 at 100 MeV.

• For low incident photon energies (σc/ρ)tr � σ/ρ.
• For high incident photon energies (σc/ρ)tr ≈ σ/ρ.

Figure 7.17 shows the aσc and aσ
KN
c data for lead from Fig. 7.14 and in addi-

tion, it also shows the binding energy effect on the Compton atomic energy
transfer coefficients of lead by displaying (aσc)tr and (aσKN

c )tr both obtained
by multiplying the aσc and aσ

KN
c data, respectively, with the appropriate
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Fig. 7.17. The Compton atomic cross section for lead of Fig. 7.14 and the Compton
atomic energy transfer coefficients for lead; dashed curves are Klein-Nishina data
for free unbound electrons; solid curves are data incorporating electronic binding
effects. Data are from the NIST

average kinetic energy transferred to the recoil electron given by (7.54) and
plotted in Fig. 7.8.

7.4 Rayleigh Scattering

Rayleigh scattering is a photon interaction process in which photons are
scattered by bound atomic electrons. The atom is neither excited nor ionized
and after the interaction the bound electrons revert to their original state.
The atom as a whole absorbs the transferred momentum but its recoil energy
is very small and the incident photon scattered with scattering angle θ has
essentially the same energy as the original photon. The scattering angles are
relatively small because the recoil imparted to the atom must not produce
atomic excitation or ionization.

The Rayleigh scattering is named after the physicist John W. Rayleigh
who in 1900 developed a classical theory for scattering of electromagnetic
radiation by atoms. The effect occurs mostly at low photon energies hν and
for high atomic number Z of the absorber, in the energy region where electron
binding effects severely diminish the Compton Klein-Nishina cross sections.
As a result of a coherent contribution of all atomic electrons to the Rayleigh
(i.e., coherent) atomic cross section, the Rayleigh cross section exceeds the
Compton cross section in this energy region.
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7.4.1 Differential Atomic Cross Sections for Rayleigh Scattering

The differential Rayleigh atomic cross section daσR/dΩ per unit solid angle
is given as follows:

daσR

dΩ
=

deσTh

dΩ
{F (x, Z)}2 =

r2
e

2
(1 + cos2 θ) {F (x, Z)}2

, (7.66)

where

deσTh/dΩ is the differential Thomson electronic cross section,
F (x, Z) is the so-called atomic form factor with the momentum transfer

variable x = sin(θ/2)/λ, as given in (7.59),
λ is the wavelength of the incident photon,
Z is the atomic number of the absorber.

The differential Rayleigh atomic cross section daσR/dθ per unit scattering
angle θ is

daσR

dθ
=

daσR

dΩ

dΩ

dθ
=

r2
e

2
(1 + cos2 θ) {F (x, Z)}2 2π sin θ =

=πr2
e sin θ(1 + cos2 θ) {F (x, Z)}2

. (7.67)

7.4.2 Form Factor F (x, Z) for Rayleigh Scattering

Calculations of the atomic form factor F (x, Z) are difficult and, since they
are based on atomic wavefunctions, they can be carried out analytically only
for the hydrogen atom. For all other atoms the calculations rely on various
approximations and atomic models, such as the Thomas-Fermi, Hartree, or
Hartree-Fock.

The atomic form factor F (x, Z) is equal to Z for small scattering angles
θ and approaches zero for large scattering angles θ. Its values are plotted in
Fig. 7.18 against the momentum transfer variable x = sin(θ/2)/λ for various
absorbers ranging in atomic number Z from 1 to 82.

Figure 7.19 is a plot of the differential Rayleigh atomic cross section
daσR/dθ against the scattering angle θ for hydrogen and carbon, respectively,
consisting of a product of the differential Thomson electronic cross section
deσTh/dθ given in (7.13) and the square of the atomic form factor F (x, Z),
as given in (7.67). For comparison the differential Thomson atomic cross sec-
tion daσTh/dθ is also shown in Fig. 7.19. For hydrogen daσTh/dθ = deσTh/dθ,
while for carbon daσTh/dθ = 6 deσTh/dθ, with both curves symmetrical about
θ = π/2.

The daσR/dθ curves for various energies shown in Fig. 7.19 are not sym-
metrical about θ = π/2 because of the peculiar shape of the atomic form
factor F (x, Z) that causes a predominance in forward Rayleigh scattering;
the larger the photon energy, the more asymmetrical is the daσR/dθ curve
and the more forward peaked is the Rayleigh scattering. The area under each
daσR/dθ curve gives the total Rayleigh atomic cross-section aσR for a given
photon energy.
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Fig. 7.18. Atomic form factor F (x, Z) plotted against the momentum transfer
variable x = sin(θ/2)/λ

7.4.3 Scattering Angles in Rayleigh Scattering

The angular spread of Rayleigh scattering depends on the photon energy
hν and the atomic number Z of the absorber. It can be estimated from the
following relationship:

θR ≈ 2 arcsin
(

0.026Z1/3

ε

)
, (7.68)

where

θR is the characteristic angle for Rayleigh scattering, representing the open-
ing half angle of a cone that contains 75% of the Rayleigh-scattered
photons,

Z is the atomic number of the absorber,
ε is the reduced photon energy, i.e., ε = hν/(mec

2).

As suggested by (7.68), the angle θR increases with increasing Z of the ab-
sorber for the same hν and decreases with increasing photon energy hν for
the same Z. Table 7.4 lists the characteristic angle θR for Rayleigh scatter-
ing for photon energies in the range from 100 keV to 10 MeV and various
absorbers (carbon, copper and lead), calculated from (7.68).

• At high photon energies (hν > 1 MeV) Rayleigh scattering is confined to
small angles for all absorbers.

• At low energies, particularly for high Z absorbers, the angular distribu-
tion of Rayleigh-scattered photons is much broader. In this energy range
the Rayleigh atomic cross section aσR exceeds the Compton atomic cross
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Fig. 7.19. Differential atomic cross section per unit angle for Rayleigh scattering
daσR/dθ, given by (7.67), for incident photon energies of 1, 3, and 10 keV for
hydrogen in part a and carbon in part b. The differential Thomson cross-section
daσTh/dθ for the two absorbing materials is shown by the dotted curves (data
points) for comparison
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Table 7.4. The characteristic angle θR for Rayleigh scattering for various absorber
materials and photon energies in the range from 100 keV to 10 MeV

Absorber Symbol Z
Photon energy (MeV)

0.1 0.5 1 5 10

Carbon C 6 28◦ 6◦ 3◦ 0.6◦ 0.3◦

Copper Cu 29 48◦ 9◦ 5◦ 0.9◦ 0.5◦

Lead Pb 82 70◦ 13◦ 7◦ 1.3◦ 0.7◦

section aσc but is nonetheless very small in comparison with the photo-
electric atomic cross section aτ . The atomic Rayleigh cross section aσR
is therefore often ignored in gamma ray transport as well as in shielding
barrier calculations.

• Rayleigh scattering plays no role in radiation dosimetry, since no energy
is transferred to charged particles through Rayleigh scattering.

7.4.4 Atomic Cross Sections for Rayleigh Scattering aσR

The Rayleigh atomic cross section aσR can be obtained by determining the
area under the appropriate daσR/dθ curve plotted against θ, as shown in
Fig. 7.19, or it can be calculated by integrating the differential cross section
daσR/dθ of (7.67) over all possible scattering angles θ from 0 to π, i.e.,

aσR = πr2
e

π∫
0

sin θ(1 + cos2θ) [F (x, Z)]2 dθ . (7.69)

Rayleigh atomic cross section aσR is shown with solid curves against incident
photon energy hν in the range from 1 keV to 1000 MeV in Fig. 7.20. For
comparison, the figure also shows the Compton atomic cross-section aσc of
Fig. 7.14 in the same energy range. The following conclusions may be reached
from Fig. 7.20:

• At low photon energies aσR exceeds aσc; the higher is the atomic num-
ber of the absorber, the larger is the difference. However, at low photon
energies both aσR and aσc are negligible in comparison with the atomic
cross section for the photoelectric effect aτ , so both are usually ignored
in calculations of the total atomic cross section aµ for a given absorber at
very low photon energies.

• The photon energy hνeq at which the atomic cross sections for Rayleigh
and Compton scattering are equal, i.e., aσR = aσc, is proportional to the
atomic number Z of the absorber. From Fig. 7.20 we also note that for
photon energies exceeding hνeq the Rayleigh atomic cross section aσR is
inversely proportional to (hν)2; i.e.,

aσR ∝ (1/hν)2 . (7.70)
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Fig. 7.20. Atomic cross sections for Rayleigh scattering aσR and Compton scat-
tering aσc against incident photon energy hν in the range from 1 keV to 1000 MeV
for various absorbers ranging from hydrogen to lead. aσR is shown by solid curves;
aσc is shown by dashed curves for comparison. For very low photon energies the
aσR curves exhibit a plateau with a value of eσTh Z2 where eσTh is the energy
independent Thomson cross-section and Z is the atomic number of the absorber
(note that F (x, Z) → Z for low hν, i.e., large λ). Data are from the NIST

• In general, as evident from Fig. 7.20, we may also state that aσR is pro-
portional to Z2, where Z is the atomic number of the absorber.

7.4.5 Mass Attenuation Coefficient for Rayleigh Scattering

The Rayleigh mass attenuation coefficient σR/ρ is determined through the
standard relationship

σR

ρ
=

NA

A
aσR . (7.71)

• Since aσR ∝ Z2/(hν)2 and A ≈ 2Z, we conclude that σR/ρ ∝ Z/(hν)2,
where Z and A are the atomic number and atomic mass, respectively, of
the absorber.

• Since no energy is transferred to charged particles in Rayleigh scattering,
the energy transfer coefficient for Rayleigh scattering is zero.

7.5 Photoelectric Effect

An interaction between a photon and a tightly bound orbital electron of an
absorber atom is called photoelectric effect (photoeffect). In the interaction
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Fig. 7.21. Schematic diagram of the photoelectric effect. A photon with energy
hν interacts with a K-shell electron. The photon is absorbed completely and the
K-shell electron is ejected as photoelectron from the atom with a kinetic energy
EK = hν − EB(K), where EB(K) is the binding energy of the K-shell electron.
The vacancy in the K shell will subsequently be filled with a higher orbit electron
and the energy of the electronic transition will be emitted either in the form of a
characteristic (fluorescent) photon or in the form of an Auger electron

the photon is absorbed completely and the orbital electron is ejected with ki-
netic energy EK. The ejected orbital electron is referred to as a photoelectron.
The photoelectric interaction between a photon of energy hν and a K-shell
atomic electron is shown schematically in Fig. 7.21.

Conservation of energy and momentum considerations show that the pho-
toelectric effect can only occur on a tightly bound electron rather than on a
“free electron”, so that the atom as a whole picks up the difference between
the momentum of the photon (pν = hν/c) and that of the photoelectron
(pe =

√
E2 − E2

o/c), where E and Eo are the total energy and rest energy,
respectively, of the photoelectron.

Figure 7.22 shows that energy and momentum cannot be conserved simul-
taneously in a photon-free electron interaction. In part (a) the total energy
is conserved but, as a result of total energy conservation, the total momen-
tum is not conserved. In part (b) the total momentum is conserved but, as
a result of total momentum conservation, the total energy is not conserved.
Thus, an extra interaction partner must absorb the extra momentum and
this is achieved when the electron is tightly bound to the nucleus, so that the
whole atom picks up the extra momentum
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Fig. 7.22. Energy and momentum conservation considerations in photoelectric
effect occurring on a free electron. In part a the total energy is conserved (Eb = Ea)
but not the momentum; in part b the total momentum is conserved (pν = pe) but
not the total energy
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• Because of the relatively large nuclear mass, the atomic recoil energy is
exceedingly small and may be neglected. The kinetic energy EK of the
ejected photoelectron then equals the incident photon energy hν less the
binding energy EB of the orbital electron, i.e.,

EK = hν − EB . (7.72)

• When the photon energy hν exceeds the K-shell binding energy EB(K) of
the absorber, i.e., hν > EB(K), about 80% of all photoelectric absorptions
occur with the K-shell electrons of the absorber.

• The energy uptake by the photoelectron may be insufficient to bring about
its ejection from the atom (ionization), but may be sufficient to raise it
to a higher orbit (excitation).

• The vacancy that results from the emission of the photoelectron will be
filled by a higher shell electron and the transition energy will be emitted
either as a characteristic (fluorescent) photon or as an Auger electron, the
probability for each governed by the fluorescent yield (see Sect. 3.1).

7.5.1 Atomic Cross Section for Photoelectric Effect

The atomic cross section for the photoelectric effect aτ as a function of the
incident photon energy hν exhibits a characteristic sawtooth structure in
which the sharp discontinuities (absorption edges) arise whenever the photon
energy coincides with the binding energy of a particular electron shell. Since
all shells except for the K shell exhibit a fine structure, the aτ curve plotted
against the incident photon energy hν also exhibits a fine structure in the L,
M, . . . etc. absorption edges.

Three distinct energy regions characterize the atomic cross section aτ :
(1) Region in the immediate vicinity of absorption edges; (2) Region at some
distance from the absorption edge; and (3) Region in the relativistic region
far from the K absorption edge.

1. Theoretical predictions for aτ in region (1) are difficult and uncertain.

2. For region (2) the atomic attenuation coefficient (cross section) for K-shell
electrons aτK is given as follows:

aτK = α4
eσThZn

√
32
ε7 , (7.73)

where
ε is the usual normalized photon energy, i.e., ε = hν/(mec

2),
α is the fine structure constant (1/137),
Z is the atomic number of the absorber,
eσTh is the total Thomson electronic cross section given in (7.14),
n is the power for the Z dependence of aτK ranging from n = 4 at

relatively low photon energies to n = 4.6 at high photon energies,
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Fig. 7.23. Photoelectric atomic cross section aτ against photon energy hν for
various absorbers. Energies of K-absorption edges are also indicated. Data are from
the NIST

3. In the relativistic region (ε � 1), aτK is given as follows:

aτK =
1.5
ε

α4Z5
eσTh . (7.74)

The following conclusions may be reached with regard to energy and atomic
number dependence of aτK:

• The energy dependence of aτK is assumed to go as (1/hν)3 at low photon
energies hν gradually transforming into 1/hν at high hν.

• The energy dependences for regions (2) and (3) can be identified from
Fig. 7.23 that displays the atomic cross section for the photoeffect against
incident photon energy for various absorbers ranging from water to lead.
Absorption edges are clearly shown in Fig. 7.23, the K absorption edges
are identified for aluminum (1.56 eV), copper (8.98 eV) and lead (88 keV).
The fine structures of the L and M absorption edges are also shown.

• The atomic number Z dependence (aτ ∝ Zn) of aτ , where n ranges from 4
to 5, is also evident from Fig. 7.23.

7.5.2 Angular Distribution of Photoelectrons

The angular distribution of photoelectrons depends on the incident photon
energy hν. At low hν photoelectrons tend to be emitted at 90◦ to the in-
cident photon direction. As hν increases, however, the photoelectron emis-
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sion peak moves progressively to more forward photoelectron emission an-
gles, somewhat akin to the emission of bremsstrahlung photons in electron
bremsstrahlung interaction.

7.5.3 Energy Transfer to Photoelectrons in Photoelectric Effect

The photoelectron attains a kinetic energy of EK = hν − EB as it leaves the
atom but also leaves behind a vacancy in a shell that is most often a K-shell
for hν > EB(K), where EB(K) is the binding energy of the K-shell electron.
The vacancy is filled with an upper shell electron and the transition energy
is emitted either in the form of a characteristic (fluorescent) photon or in
the form of an Auger electron depending on the fluorescent yield ω for the
particular interaction.

Because of the presence of Auger electrons, the mean energy transfer to
electrons in a photoelectric effect E

τ

tr for hν > EB(K) is in general between
hν − EB(K) and hν.

• E
τ

tr = hν − EB(K) when ωK ≈ 1, i.e., no Auger electrons are produced as
a result of the photoelectric effect and the emission of a photoelectron.

• E
τ

tr = hν when ωK = 0, i.e., no characteristic photons are produced as a
result of the photoelectric effect and emission of a photoelectron.

• hν − EB(K) < E
τ

tr < hν is the general case in which a combination of
characteristic photons and Auger electrons is released.

The general relationship for E
τ

tr is given as follows:

E
τ

tr = hν − PK ωK hνK , (7.75)

where

PK is the fraction of all photoelectric interactions that occur in the K-shell
for photons hν > EB(K). Typical values of PK are of the order of 0.8
or larger, as shown in Fig. 3.3;

ωK is the fluorescent yield for the K-shell, as discussed in Sect. 3.1.2 and
displayed in Fig. 3.3;

hνK is a K-shell weighted mean value of all possible fluorescent transition
energies, ranging from the L → K transition through the M → K
transition, etc. to a limit EB(K). Since the Kα transitions are the most
probable fluorescent transitions for the K shell, the value of hνK is
weighted toward the energy of the Kα transition and typically amounts
to about 86% of the EB(K) value for a given Z of the absorber.

Figure 7.24 provides a plot of the K-shell binding energy EB(K), the K-
shell weighted mean fluorescence energy hνK ≈ 0.86EB(K), and the average
energy emitted in the form of K fluorescent photons PKωKhνK against the
atomic number Z of the absorber. The range of the K-shell binding energies in
nature is from 13.6 eV for hydrogen to about 150 keV for the highest atomic
number elements. EB(K) can be estimated from the Hartree relationship
given in (2.83).
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Fig. 7.24. The electron binding energy in the K shell, EB(K); the weighted mean
characteristic x-ray energy for the K shell, hνK; and the mean energy emitted in
the form of K-shell characteristic photons, PKωKhνK against the atomic number Z
of the absorber

7.5.4 Mass Attenuation Coefficient for the Photoelectric Effect

The mass attenuation coefficient for the photoelectric effect τ/ρ is calculated
from the atomic cross section aτ with the standard relationship

τ

ρ
=

NA

A
aτ , (7.76)

where A and ρ are the atomic mass and density, respectively, of the absorber.

7.5.5 Mass Energy Transfer Coefficient
for the Photoelectric Effect

The mass energy transfer coefficient for the photoelectric effect (τK/ρ)tr for
incident photon energy hν that exceeds the K-shell binding energy EB(K),
i.e., hν ≥ EB(K) is calculated from the relationship(

τK

ρ

)
tr

=
τK

ρ

E
τ

tr

hν
=

τK

ρ

hν − PK ωK hνK

hν

=
τK

ρ

(
1 − PK ωK hνK

hν

)
=

τK

ρ
f̄τ , (7.77)

where f̄τ = 1−PK ωK hνK/(hν) is the mean fraction of energy hν transferred
to electrons.



226 7 Interactions of Photons with Matter

Table 7.5. Parameters for photoelectric effect in various absorbers for photon
energies hν exceeding the K-shell binding energy EB(K)

Element Z ωK PK EB(K) hνK PKωKhνK f̄τ (EB(K))
(keV) (keV) (keV)

C 6 0 0.95 0.28 0.24 0 1.0
Cu 29 0.50 0.87 9.0 7.7 3.35 0.62
Sn 50 0.85 0.85 29.2 25.0 18.1 0.38
Pb 82 0.97 0.78 88.0 75.7 64.6 0.27

Table 7.5 gives the fluorescent yield ωK, the fraction PK, the K-shell bind-
ing energy EB(K), the mean K-shell characteristic radiation energy hνK, the
product PK ωK hνK; and f̄τ (EB(K)), the mean fraction of the photon en-
ergy transferred to electrons in photoelectric effect for photons of energy
hν = EB(K).

The fraction f̄τ , plotted against photon energy hν for various elements
in Fig. 7.25, starts at its lowest value at hν = EB(K) and then gradually
approaches 1 with increasing photon energy. For fτ = 1, the incident photon
energy hν is transferred to electrons in full: the photoelectron receives a
kinetic energy hν − EB(K) and the available energy EB(K) either goes to
Auger electrons for low Z absorbers or is essentially negligible in comparison
to hν for all absorbers at very high photon energies hν.

The formalism that was used above for K-shell electrons when hν >
EB(K) will apply for L-shell electrons when EB(L) < hν < EB(K), etc.
The tightest bound electron available for a photoelectric interaction is by far

Fig. 7.25. The photoelectric fraction f̄τ
K, the mean fraction of photon energy hν

transferred to electrons in a K-shell photoelectric effect interaction in carbon, cop-
per, tin, and lead, against photon energy hν
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the most likely to have a photoelectric interaction with the photon; thus only
electrons most likely to have an interaction are considered in calculation of
the photoelectric coefficients.

7.6 Pair Production

When the photon energy hν exceeds 2mec
2 = 1.02 MeV, the production of an

electron-positron pair in conjunction with a complete absorption of the pho-
ton becomes energetically possible. For the effect to occur, three quantities
must be conserved: energy, charge and momentum.

For hν > 2mec
2, energy and charge can be conserved even if pair pro-

duction occurs in free space. However, to conserve the linear momentum the
effect cannot occur in free space; it can only occur in the Coulomb field of a
collision partner (either atomic nucleus or orbital electron) that can take up
a suitable fraction of the momentum carried by the photon.

The pair production and triplet production interactions are shown schem-
atically in Fig. 7.26.

7.6.1 Conservation of Energy, Momentum
and Charge for Pair Production in Free Space

Before the pair production interaction there is photon energy Eν = hν >
2mec

2 and photon momentum pν = hν/c. In the interaction an electron-
positron pair is produced with a total energy Epair = 2γmec

2 and total
momentum ppair = 2γmeυ.

• Conservation of Energy:
Eν = hν ≡ Epair = 2γmec

2

• Conservation of Momentum:

pν =
hν

c
≡ ppair = 2γmeυ → 2γmec

2 υ

c2 = Eν
υ

c2 = pν
υ

c
Since the particle velocity υ is always smaller than c, it follows that pν ,
the momentum before the pair production interaction, is always larger
than ppair, the total momentum after the pair production interaction.
Thus, the photon possesses momentum excess that is not absorbed by
the electron-positron pair. This momentum excess must be absorbed by
a collision partner, be it the atomic nucleus or an orbital electron of an
absorber. Therefore, pair production interaction cannot occur in free space
(vacuum) where no collision partner is available.

• When the extra momentum is absorbed by the atomic nucleus of the ab-
sorber, the recoil energy, as a result of the relatively large nuclear mass,
is exceedingly small and the effect is described as the standard pair pro-
duction (usually referred to as pair production). Two particles (electron
and positron) leave the interaction site.
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Fig. 7.26. Schematic representation of pair production (a) in the Coulomb field of
a nucleus and (b) triplet production (in the Coulomb field of an orbital electron)

• When an orbital electron of the absorber picks up the extra momentum,
the recoil energy of the orbital electron may be significant and the effect
is described as the pair production in the Coulomb field of electron, i.e.,
triplet production. Three particles (two electrons and a positron) leave the
interaction site.

• Conservation of Charge:
The total charge before the interaction is zero and the total charge after
the interaction is also zero.

7.6.2 Threshold Energy for Pair Production
and Triplet Production

In contrast to other common photon interactions, such as photoelectric ef-
fect, Rayleigh scattering and Compton scattering, pair production exhibits a
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threshold energy below which the effect cannot happen. The threshold energy
is derived following the procedure described in detail in Section 4.2.3 that is
based on the invariant: E2 − p2c2 = inv where E and p are the total energy
and total momentum, respectively, before and after the interaction.

For pair production in the field of the nucleus the conditions for before
the interaction (in the laboratory system) and for after the interaction (in
the center-of-mass system) are written as follows:

• Total energy before: (hν)pp
thr + mAc2, where mAc2 is the rest mass of the

nucleus, the interaction partner.
• Total momentum before: (hν)pp

thr/c.
• Total energy after: (mAc2 + 2mec

2).
• Total momentum after: 0

The invariant for before and after the pair production event is

{
(hν)pp

thr + mAc2}2 −
(

(hν)pp
thr

c

)2

c2 = (mAc2 + 2mec
2)2 − 0 ,(7.78)

resulting in the following expression for pair production threshold Epp
thr =

(hν)pp
thr

Epp
γthr =(hν)pp

thr = 2mec
2
(

1 +
mec

2

mAc2

)

=(1.022 MeV) ×
(

1 +
mec

2

mAc2

)
. (7.79)

In the first approximation we can use (hν)pp
thr ≈ 2mec

2, since the ratio
mec

2/mAc2 is very small, indicating that the recoil energy of the nucleus
is exceedingly small.

For triplet production the conditions for before the interaction (in the lab-
oratory system) and for after the interaction (in the center-of-mass system)
are written as follows:

• Total energy before: (hν)tpthr + mec
2, where mec

2 is the rest mass of the
orbital electron, the interaction partner.

• Total momentum before: (hν)tpthr/c.
• Total energy after: 3mec

2, accounting for rest energies of the orbital elec-
tron as well as for the electron-positron pair.

• Total momentum after: 0.

The invariant for before and after the triplet production event is{
(hν)tpthr + mec

2}2 − [(hν)tpthr]
2 = (3mec

2)2 − 0 , (7.80)

resulting in the following expression for the triplet production threshold:

Etp
γthr

= (hν)tpthr = 4mec
2 = 2.044 MeV . (7.81)
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7.6.3 Energy Transfer to Charged Particles in Pair Production

The total kinetic energy transferred to charged particles (electron and posi-
tron) in pair production is

(Eκ
K)tr = hν − 2mec

2 , (7.82)

ignoring the minute recoil energy of the nucleus.
Generally, the electron and the positron do not receive equal kinetic en-

ergies but their average is given as

E
pp
K =

hν − 2mec
2

2
. (7.83)

The exact energy distribution of electrons and positrons in pair production
is a complex function of photon energy hν and atomic number Z of the
absorber. In the first approximation we assume that all distributions of the
available energy (hν − 2mec

2) are equally probable, except for the extreme
case where one particle obtains all the available energy and the other particle
obtains none.

7.6.4 Angular Distribution of Charged Particles

The angular distribution of the electrons and positrons produced in pair
production is peaked increasingly in the forward direction with increasing
incident photon energy hν. For very high energies (ε = hν/(mec

2) � 1) the
mean angle θ̄ of positron and electron emission is of the order of θ ≈ 1/ε.

7.6.5 Nuclear Screening

For very high photon energies (hν > 20 MeV) significant contribution to
the pair production cross section may come from interaction points that lie
outside the orbit of K shell electrons. The Coulomb field in which the pair
production occurs is thus reduced because of the screening of the nucleus by
the two K-shell electrons, thereby requiring a screening correction in theo-
retical calculations.

7.6.6 Atomic Cross Sections for Pair Production

The theoretical derivations of atomic cross sections for pair production aκ
are very complicated, some based on Born approximation, others not, some
accounting for nuclear screening and others not.

In general the atomic cross sections for pair production in the field of a
nucleus or orbital electron appear as follows:

aκ = αr2
eZ

2P (ε, Z) , (7.84)
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Table 7.6. Characteristics of atomic cross section for pair production in the field
of the nucleus or in the field of an orbital electron

Field Energy range P (ε, Z) Comment

nucleus 1 	 ε 	 1/(αZ1/3)
28
9

ln 2ε − 218
27

no screening (7.85)

nucleus ε � 1/(αZ1/3)
28
9

ln
183
Z1/3 − 2

27
complete
screening

(7.86)

nucleus outside the limits
above but ε > 4

28
9

ln 2ε − 218
27

− 1.027 no screening (7.87)

electron ε > 4
1
Z

(
28
9

ln 2ε − 11.3
)

no screening (7.88)

where

α is the fine structure constant (α = 1/137),
re is the classical electron radius [re = e2/(4πεomec

2) = 2.818 fm],
Z is the atomic number of the absorber,
P (ε, Z) is a complicated function of the photon energy hν and atomic num-

ber Z of the absorber, as given in Table 7.6.

It is evident from (7.83) through (7.88) and from Table 7.6, that the atomic
cross section for pair production aκpp is proportional to Z2, while the atomic
cross section for triplet production aκtp is linearly proportional to Z. In
general, the relationship between aκpp and aκtp is given as follows:

aκpp/aκtp = ηZ , (7.89)

where η is a parameter, depending only on hν, and, according to Robley
Evans, equal to 2.6 at hν = 6.5 MeV, 1.2 at hν = 100 MeV, and approaching
unity as hν → ∞. This indicates that the atomic cross section for triplet
production aκtp is at best about 30% of the pair production cross section
aκpp for Z = 1 and less than 1% for high Z absorbers.

Since the atomic cross section for pair production in the field of the atomic
nucleus exceeds significantly the atomic cross section for triplet production,
as shown in Fig. 7.27 for two absorbing materials: carbon with Z = 6 and
lead with Z = 82, both the pair production and the triplet production con-
tributions are usually given under the header of general pair production as
follows:

aκ = aκpp + aκtp = aκpp {1 + 1/(ηZ)} , (7.90)

where the electronic effects (triplet production) are accounted for with the
correction term 1/(ηZ). This term is equal to zero for hν < 4mec

2, where
4mec

2 is the threshold energy for triplet production.
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Fig. 7.27. Atomic cross sections for pair production aκpp (solid curves) and for
triplet production aκtp (dotted curves) against incident photon energy hν for carbon
and lead. Data are from the NIST

Fig. 7.28. Atomic cross section for pair production (including triplet production)
aκ against incident photon energy hν for various absorbers in the range from hy-
drogen to lead. Data are from the NIST

The atomic cross sections for general pair production aκ are plotted in
Fig. 7.28 for various absorbers ranging from hydrogen to lead. The increase of
aκ with incident photon energy hν and with atomic number Z of the absorber
is evident.
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7.6.7 Mass Attenuation Coefficient for Pair Production

The mass attenuation coefficient for pair production κ/ρ is calculated from
the atomic cross section aκ with the standard relationship

κ

ρ
=

NA

A
aκ , (7.91)

where A and ρ are the atomic mass and density, respectively, of the absorber.

7.6.8 Mass Energy Transfer Coefficient for Pair Production

The mass energy transfer coefficient for pair production (κ/ρ)tr for incident
photon energy hν that exceeds the threshold energy of 1.02 MeV for pair
production is calculated from the relationship(

κ

ρ

)
tr

=
κ

ρ

hν − 2mec
2

hν
=

κ

ρ

(
1 − 2mec

2

hν

)
= f̄κ κ

ρ
, (7.92)

where f̄κ is the average fraction of the incident photon energy hν that is
transferred to charged particles (electron and positron) in pair production.

The pair production fraction f̄κ is plotted against photon energy hν in
Fig. 7.29. The fraction f̄κ is 0 for hν ≤ 2mec

2, rises gradually with increasing
energy above 2mec

2, and approaches f̄κ = 1 asymptotically, showing that at
large hν the following relationship holds (κ/ρ)tr ≈ (κ/ρ). Figure 7.30 shows
a comparison between the mass attenuation coefficient κ/ρ and mass energy
transfer coefficient (κ/ρ)tr against photon energy for carbon and lead. Both
coefficients are related through f̄κ, as given by (7.92).

Fig. 7.29. The average pair production fraction f̄κ against photon energy hν
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Fig. 7.30. Mass energy transfer coefficient (κ/ρ)tr (solid curves) and mass attenu-
ation coefficient κ/ρ (dashed curves) for pair production against photon energy hν
for carbon and lead. Data are from the NIST

7.6.9 Positron Annihilation

The positron is an antiparticle to an electron. The two have identical rest
masses: mec

2 = 0.511 MeV and opposite signs: electrons are negative,
positrons positive. The positron was discovered in 1932 by Carl Anderson
during his study of cosmic ray tracks in a Wilson cloud chamber.

Of interest in medical physics are positrons produced by:

1. Energetic photons undergoing pair production or triplet production (im-
portant in radiation dosimetry and health physics)

2. β+decay used in positron emission tomography (PET) imaging.

Energetic positrons move through an absorbing medium and experience col-
lisional and radiative losses of their kinetic energy through Coulomb interac-
tions with orbital electrons and nuclei, respectively, of the absorber.

Eventually, positron collides with an electron and the two annihilate di-
rectly or they annihilate through an intermediate step forming a metastable
hydrogen-like structure (see Sect. 2.3.7) called positronium (Ps). The positron
and electron of the positronium revolve about their common center-of-mass
in discrete orbits that are subjected to Bohr quantization rules with the re-
duced mass equal to one half of the electron rest mass and the lowest state
with a binding energy of (1/2)ER = 6.8 eV.

The process of positron-electron annihilation is an inverse to pair produc-
tion with the total mass before annihilation transformed into one, two, or
three photons.
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• The most common electron-positron annihilation occurs when the positron
loses all of its kinetic energy and then undergoes annihilation with a
“stationary and free” electron. The annihilation results in two photons
(annihilation quanta) of energy mec

2 = 0.511 MeV each and moving in
opposite directions (at nearly 180◦ to one another) ensuring conserva-
tion of total charge (zero), total energy (2mec

2 = 1.02 MeV) and total
momentum (zero).

• A less common event (of the order of 2% of all annihilation interactions) is
the annihilation-in-flight between a positron with non-zero kinetic energy
EK and either a tightly bound electron or a “free” electron.
– When the electron is tightly bound to the nucleus, the nucleus can pick

up the recoil momentum, and annihilation-in-flight produces only one
photon with essentially the total positron energy (sum of rest energy
and kinetic energy).

– When the electron is essentially free, the annihilation-in-flight results
in two photons, one of energy hν1 and the other of energy hν2. It can
be shown that, for energetic positrons where EK � mec

2, the following
relationships hold: hν1 = EK + (3/2)mec

2 and hν2 = (1/2)mec
2.

7.7 Photonuclear Reactions (Photodisintegration)

Photonuclear reaction is a direct interaction between an energetic photon and
an absorber nucleus. Two other names are often used for the effect: photo-
disintegration and “nuclear photoeffect”. Neutrons produced in photonuclear
reactions are referred to as photoneutrons.

In photonuclear reactions the nucleus absorbs a photon and the most
likely result of such an interaction is the emission of a single neutron through
a (γ,n) reaction, even though emissions of charged particles, gamma rays,
more than one neutron, or fission fragments (photofission) are also possible
but much less likely to occur.

The most notable feature of the cross section for nuclear absorption of
energetic photons is the so-called “giant resonance” exhibiting a broad peak
in the cross section centered at about 24 MeV for low atomic number Z
absorbers and at about 12 MeV for high Z absorbers. The only exceptions to
the high photon energy rule are the two reactions 2H(γ,n)1H and 9Be(γ,n)2α
that have giant resonance peaks at much lower photon energies.

The full-width-at-half-maximum (FWHM) in the giant resonance cross
sections typically ranges from about 3 MeV to 9 MeV. The FWHM depends
on the detailed properties of absorber nuclei.

Table 7.7 provides various parameters for the “giant (γ,n) resonance”
cross section for selected absorbers.

• The threshold energy represents the separation energy of a neutron from
the nucleus that is of the order of 8 MeV or more, except for the deuteron
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Table 7.7. Photonuclear (γ, n) giant resonance cross section parameters for selected
absorbers

Absorber Threshold
energy
(MeV)

Resonance
peak energy
hνmax(MeV)

Resonance
FWHM
(MeV)

% of total
electronic cross
section at hνmax

12C 18.7 23.0 3.6 5.9
27A� 13.1 21.5 9.0 3.9
63Cu 10.8 17.0 8.0 2.0
208Pb 7.4 13.6 3.8 2.7

(2H) and berillium-9 (9Be) where it is at 2.22 MeV and 1.67 MeV, re-
spectively.

• The resonance peak energy steadily decreases from 23 MeV for carbon-12
(12C) with increasing Z.

• The magnitude of the atomic cross section for photodisintegration aσPN,
even at the resonance peak energy hνmax, is relatively small in comparison
with the sum of competing “electronic” cross sections and amounts to only
a few percent of the total “electronic” cross section. As a result, aσPN is
usually neglected in photon attenuation studies in medical physics.

While the photonuclear reactions do not play a role in general photon atten-
uation studies, they are of considerable importance in shielding calculations
whenever photon energies exceed the photonuclear reaction threshold. Neu-
trons produced through the (γ,n) photonuclear reactions are usually far more
penetrating than the photons that produced them. In addition, the daughter
nuclei resulting from the (γ,n) reaction may be radioactive and the neu-
trons, through subsequent neutron capture, may produce radioactivity in the
irradiation facility, adding to radiation hazard in the facility. This raises con-
cern over the induced radioactivity in clinical high-energy linear accelerator
installations (above 10 MV) and results in choice of appropriate machine
components to decrease the magnitude and half-life of the radioactivation
as well as adequate treatment room ventilation to expel the nitrogen-13 and
oxygen-15 produced in the room (typical air exchanges in treatment rooms
are of the order of six to eight per hour).

7.8 General Aspects of Photon Interaction
with Absorbers

The most important parameter used for characterization of x-ray or gamma
ray penetration into absorbing media is the linear attenuation coefficient µ.
This coefficient depends on energy hν of the photon and atomic number Z of
the absorber, and may be described as the probability per unit path length
that a photon will have an interaction with the absorber.
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7.8.1 Narrow Beam Geometry

The attenuation coefficient µ is determined experimentally using the so-called
narrow beam geometry technique that implies a narrowly collimated source
of monoenergtic photons and a narrowly collimated detector. As shown in
Fig. 7.31a, a slab of absorber material of thickness x is placed between the
source and detector. The absorber decreases the detector signal (intensity)
from I(0) that is measured without the absorber in place to I(x) that is
measured with absorber thickness x in the beam.

A layer of thickness dx′ within the absorber reduces the beam intensity
by dI and the fractional reduction in intensity, −dI/I, is proportional to

• attenuation coefficient µ
• layer thickness dx′

The relationship for −dI/I can thus be written as follows:

−dI/I = µdx′ (7.93)

or, after integration from 0 to x, as
I(x)∫

I(0)

dI

I
= −

x∫
0

µdx′, or I(x) = I(0)e
−

x∫
0

µdx′

. (7.94)

For a homogeneous medium µ = const and (7.94) reduces to the standard
exponential relationship valid for monoenergetic photon beams

I(x) = I(0)e−µx . (7.95)

Fig. 7.31. Measurement of photon attenuation in absorbing material. Part a is for
narrow beam geometry; part b is for broad beam geometry
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7.8.2 Characteristic Absorber Thicknesses

Several thicknesses of special interest are defined as parameters for monoen-
ergetic photon beam characterization in narrow beam geometry:

1. First Half-Value Layer (HV L1 or x1/2) is the thickness of a homogeneous
absorber that attenuates the narrow beam intensity I(0) to one half (50%)
of the original intensity, i.e., I(x1/2) = 0.5I(0). Half-value layers are often
used for characterization of superficial and orthovoltage x-ray beams. The
absorbing materials used for this purpose are usually aluminum (for the
superficial energy range) and copper (for the orthovoltage energy range).

2. Mean Free Path (MFP or x̄) is the thickness of a homogeneous absorber
that attenuates the beam intensity I(0) to 1/e = 0.368 (36.8%) of its
original intensity, i.e., I(x̄) = 0.368I(0). The photon mean free path is the
average distance a photon of energy hν travels through a given absorber
before undergoing an interaction.

3. Tenth-Value Layer (TV L or x1/10) is the thickness of a homogeneous
absorber that attenuates the beam intensity I(0) to one tenth (10%) of
its original intensity, i.e., I(x1/10) = 0.1I(0). Tenth-value layers are often
used in radiation protection in treatment room shielding calculations.

4. Second Half-Value Layer (HV L2), measured with the same homogeneous
absorber material as the first half value layer (HV L1), is defined as the
thickness of the absorber that attenuates the narrow beam intensity from
0.5I(0) to 0.25I(0). The ratio between HV L1 and HV L2 is called the
homogeneity factor χ of the photon beam.
– When χ = 1, the photon beam is monoenergetic such as a cobalt-60

beam with energy of 1.25 MeV or cesium-137 beam with energy of
0.662 MeV.

– When χ �= 1, the photon beam possesses a spectral distribution.
– For χ < 1 the absorber is hardening the photon beam, i.e., preferen-

tially removing low-energy photons from the spectrum (photoelectric
effect region).

– For χ > 1 the absorber is softening the photon beam, i.e., preferen-
tially removing high-energy photons from the spectrum (pair produc-
tion region).

In terms of x1/2, x̄, and x1/10 the linear attenuation coefficient µ may be
expressed as

µ =
ln 2
x1/2

=
1
x̄

=
ln 10
x1/10

, (7.96)

resulting in the following relationships among the characteristic thicknesses:

x1/2 = (ln 2)x̄ =
ln 2
ln 10

x1/10 ≡ 0.301x1/10 . (7.97)

The various characteristic thicknesses and their effects on photon beam in-
tensity are summarized in Table 7.8.
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Table 7.8. Characteristic absorber thicknesses and their effects upon beam inten-
sity attenuation

Absorber thickness I(x)
I(0) 100 I(x)

I(0) Name Symbol

(ln 2)/µ 0.500 50.0% Half-Value Layer HVL = x1/2

1/µ 0.368 36.8% Mean Free Path MFP = x̄
(ln 10)/µ 0.100 10.0% Tenth-Value Layer TVL = x1/10

3/µ 0.050 5.0% — —
5/µ 0.0067 ∼ 0.7% — —
7/µ 0.0009 ∼ 0.1% — —
9/µ 0.00012 ∼ 0.012% — —

7.8.3 Other Attenuation Coefficients and Cross Sections

In addition to the linear attenuation coefficient µ, other related coefficients
and cross sections are in use for describing photon beam attenuation charac-
teristics, such as

• mass attenuation coefficient µm
• atomic cross section aµ
• electronic cross section eµ
• energy transfer coefficient µtr
• energy absorption coefficient µab

The relationship among the various attenuation coefficients and cross sections
is given as follows:

µ = ρµm = n�
aµ = Z n� (eµ) , (7.98)

where

ρ is the density of the absorber:
n� is the number of atoms Na per volume V of the absorber, i.e., n� =

Na/V , and Na/V = ρNa/m = ρNA/A with NA the Avogadro’s number
of atoms per gram-atom and A the atomic mass of the absorber in
g/gram-atom;

Z is the atomic number of the absorber.

Two other coefficients are in use to account for

1. the energy transferred from photons to charged particles (electrons and
positrons) in a photon-atom interaction (energy transfer coefficient µtr);

2. the energy actually absorbed by the medium (energy absorption coeffi-
cient µab, often labeled as µen in the literature).

The energy transfer coefficient µtr is defined as follows:

µtr = µEtr/(hν) , (7.99)
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where Etr is the average energy transferred from the primary photon with
energy hν to kinetic energy of charged particles (electrons and positrons).

The energy absorption coefficient µab is similarly defined as

µab = µEab/(hν) , (7.100)

where Eab is the average energy absorbed in the volume-of-interest in the
medium.

The average energy absorbed in the volume-of-interest in the medium is
equal to

Ēab = Ētr − Ērad , (7.101)

where Ērad is the average energy component of Ētr that the charged particles
lose in the form of radiative collisions and is thus not absorbed in the volume-
of-interest.

• The energy absorption coefficient µab can now be written in terms of the
energy transfer coefficient µtr as follows:

µab = µ
Ēab

hν
= µ

Ētr − Ērad

hν
= µtr−µtr

Ērad

Ētr
= µtr(1−ḡ) ,(7.102)

where ḡ represents the so-called radiative fraction, i.e., the average frac-
tion of the energy lost in radiative interactions by the secondary charged
particles as they travel through the absorbing medium. These radiative in-
teractions are the bremsstrahlung production (for electrons and positrons)
and in-flight annihilation (for positrons).

• The in-flight annihilation is usually ignored and the radiative fraction is
often referred to as the bremsstrahlung fraction. As discussed in Sect. 5.7,
the radiative fraction ḡ is the average value of the radiation yields B(EKo)
for the spectrum of all electrons and positrons of various starting energies
EKo produced or released in the medium by primary photons.

Table 7.9 lists the various attenuation coefficients and cross-sections, their
relationship to the linear attenuation coefficient and their units.

7.8.4 Broad Beam Geometry

In contrast to the narrow beam geometry that is used in determination of
the various attenuation coefficients and cross sections for photon beam atten-
uation, one can also deal with broad beam geometry in which the detector
reading is not only decreased through attenuation of the primary photon
beam in the absorber, it is also increased by the radiation scattered from the
absorber into the detector. The geometry for a broad beam experiment on
photon attenuation in an absorber is shown in Fig. 7.31b.
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Table 7.9. Attenuation coefficients and cross sections used in photon attenuation
studies

Symbol Relationship to µ Units

Linear attenuation coefficient µ µ cm−1

Mass attenuation coefficient µm µ/ρ (a) cm2/g
Atomic cross-section aµ µ/n� (b) cm2/atom
Electronic cross-section eµ µ/(Zn�) (c) cm2/electron

(a) ρ is the density of the absorber,
(b) n� is the number of atoms per unit volume of the absorber, i.e., n� = ρNA/A,
(c) Zn� is the number of electrons per unit volume of absorber, i.e., Zn� =

ρZNA/A.

The signal measured by the detector for an absorber thickness x is then
equal to BI(x) where:

I(x) is the narrow beam geometry signal for absorber thickness x,
B is the so-called build-up factor that accounts for the secondary photons

that are scattered from the absorber into the detector.

Broad beam geometry is used in radiation protection for design of treat-
ment room shielding and in beam transport studies.

7.8.5 Classification of Photon Interactions

As discussed in previous sections and summarized in Table 7.10, there are
numerous options available to photons for interacting with matter. The pho-
ton interactions may be classified according to the type of target and type of
event.
• As shown in Table 7.11, according to the type of target there are two

possibilities for photon interaction with an atom:
– photon/orbital electron interaction,

Table 7.10. Most important photon interactions with atoms of the absorber

Interaction Symbol for Symbol for Symbol for
electronic atomic linear
cross section cross section attenuation coefficient

Thomson scattering eσTh aσTh σTh

Rayleigh scattering - aσR σR

Compton scattering eσc aσc σC

Photoelectric effect - aτ τ
Pair production - aκpp κp

Triplet production eκtp aκtp κt

Photodisintegration - aσpn σpn
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Table 7.11. Types of targets in photon interactions with atoms

Photon-orbital electron interactions Photon-nucleus interactions

— with bound electrons — with nucleus directly
Photoelectric effect Photodisintegration
Rayleigh scattering

— with “free” electrons — with Coulomb field of nucleus
Thomson scattering Pair production
Compton scattering

— with Coulomb field of electron
Triplet production

Table 7.12. Types of photon-atom interactions

Complete absorption of photon Photon scattering

Photoelectric effect Thomson scattering
Pair production Rayleigh scattering
Triplet production Compton scattering
Photodisintegration

– photon/nucleus interaction.

• As shown in Table 7.12, according to the type of event there are two
possibilities for photon interaction with an atom:
– complete absorption of the photon,
– scattering of the photon.

As far as medical physics is concerned, photon interactions are classified into
four categories:

1. Interactions of major importance:
– Photoelectric effect
– Compton scattering by free electron
– Pair production (including triplet production)

2. Interactions of moderate importance:
– Rayleigh scattering
– Thomson scattering by free electron

3. Interactions of minor importance:
– Photonuclear reactions

4. Negligible interactions:
– Thomson scattering by the nucleus
– Compton scattering by the nucleus
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– Meson production
– Delbrück scattering

7.8.6 Mass Attenuation Coefficient of Compounds and Mixtures

The mass attenuation coefficient µ/ρ for a compound or mixture is approxi-
mated by a summation of a weighted average of its constituents, i.e.,

µ

ρ
=
∑

i

wi
µi

ρ
, (7.103)

where

wi is the proportion by weight of the i-th constituent,
µi/ρ is the mass attenuation coefficient of the i-th constituent.

7.8.7 Tabulation of Attenuation Coefficients

The attenuation coefficients and cross sections listed in Table 7.10 have spe-
cific values for a given photon energy hν and absorber atomic number Z,
and these values represent a sum of values for all individual interactions
that a photon may have with an atom (photonuclear reactions are usually
neglected).

Thus, for an absorber with density ρ, atomic number Z, and atomic mass
A, we write the following relationships for the linear attenuation coefficient
µ, mass attenuation coefficient µm, atomic cross section aµ, and electronic
cross-section eµ:

µ = τ + σR + σc + κ , (7.104)

µm = µ/ρ = (τ + σR + σc + κ)/ρ , (7.105)

aµ=
µ

ρ

A

NA
=

1
ρ

A

NA
(τ + σR + σc + κ)

= aτ + aσR + aσc + aκ , (7.106)

eµ=
µ

ρ

A

ZNA
=

1
ρ

A

ZNA
(τ + σR + σc + κ) , (7.107)

where

τ is the linear attenuation coefficient for photoelectric effect,
σR is the linear attenuation coefficient for Rayleigh scattering,
σc is the linear attenuation coefficient for Compton effect,
κ is the linear attenuation coefficient for pair production (including triplet).
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In Fig. 7.32 we show the total mass attenuation coefficients µ/ρ for carbon in
part a and lead in part b, plotted against the photon energy hν. In addition
to µ/ρ that represents the sum of the individual coefficients for the photo-
electric effect, Rayleigh scattering, Compton scattering and pair production,
the coefficients for the individual components are also shown. Also shown are
the absorption edges for the lead attenuator; the absorption edges for the
carbon attenuator are not visible, because they occur off-scale at energies
below 1 keV.

Figure 7.33 is a plot on a (Z, hν) diagram of the relative predominance of
the three major photon interactions with atoms: photoelectric effect, Comp-
ton scattering, and pair production for various absorbers with Z = 1 to
Z = 100. The two curves on the graph represent the loci of points in the
(Z, hν) diagram for which either aτ = aσc or aσc = aκ, i.e., the left hand
curve represents (Z, hν) points for which the photoelectric atomic cross sec-
tion aτ equals the Compton atomic cross section aσc and the right hand
curve represents (Z, hν) points for which the Compton atomic cross section
aσc equals the pair production atomic cross section aκ.

From Figs. 7.32 and 7.33 the following conclusions may be made:

• At low photon energies (hν < 100 keV) and high atomic numbers Z
the photoeffect mass coefficient τ/ρ predominates and makes the largest
contribution to the total mass attenuation coefficient µ/ρ.

• At intermediate photon energies and low atomic numbers Z the Compton
effect mass coefficient σc/ρ predominates and makes the largest contribu-
tion to the total mass attenuation coefficient µ/ρ.

• The width of the region of Compton scattering predominance depends
on the atomic number Z of the absorber; the lower is Z, the broader is
the Compton scattering predominance region. For water and tissue this
region ranges from ∼20 keV up to ∼20 MeV, indicating that for most of
radiotherapy the most important interaction of photon beams with tissues
is the Compton scattering.

• The pair production dominates at photon energies hν above 10 MeV and
at high atomic numbers Z of the absorber.

• In all energy regions the Rayleigh scattering mass coefficient σR/ρ plays
only a secondary role in comparison with the other three coefficients.

7.8.8 Energy Transfer Coefficient

The energy transfer coefficient µtr consist of three components, each of them
representing a photon-atom interaction in which all or part of the photon
energy hν is transferred to charged particles (electrons or positrons). Rayleigh
scattering transfers no energy to charged particles in the absorber and the
interactions that generally result in energy transfer to charged particles are
the photoelectric effect, Compton scattering and pair production. The energy
transfer coefficient µtr is the sum of the energy transfer coefficients for the
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Fig. 7.32. Mass attenuation coefficient µ/ρ against photon energy hν in the range
from 1 keV to 1000 MeV for carbon in part a and lead in part b. In addition to
the total coefficient µ/ρ, the individual coefficients for photoelectric effect, Rayleigh
scattering, Compton scattering, and pair production (including triplet production)
are also shown. The mass attenuation coefficient µ/ρ is the sum of the coefficients
for individual effects, i.e., µ/ρ = (τ + σR + σc + κ)/ρ
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Fig. 7.33. Regions of relative predominance of the three main processes of photon
interactions with an absorber: photoelectric effect, Compton scattering, and pair
production. The left curve represents the loci of points on the (Z,hν) diagram where
the atomic cross section for photoelectric effect equals the atomic cross section for
Compton scattering, i.e., aτ = aσc. The right curve represents the loci of points on
the (Z,hν) diagram where the atomic cross section for Compton scattering equals
the atomic cross section for pair production, i.e., aσc = aκ

three individual effects, i.e.,

µtr =µ
Etr

hν
= τtr + (σc)tr + κtr =

= τ
E

τ

tr

hν
+ σc

E
σ

tr

hν
+ κ

E
κ

tr

hν
= fττ + fσσ + fκκ =

= τ

{
1 − PKωKhνK

hν

}
+ σc

E
σ

tr

hν
+ κ

{
1 − 2mec

2

hν

}
, (7.108)

where

E
τ

tr is the average energy transferred to electrons (photoelectron and Auger
electrons) in a photoelectric effect process,

E
σ

tr is the average energy transferred to recoil electron in a Compton effect
process,

E
κ

tr is the average energy transferred to electron and positron in a pair pro-
duction process (including triplet production).

f̄τ = 1 − PKωKhνK/(hν) is the average fraction of the photon energy given
to the photoelectron and Auger electrons in a pho-
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Fig. 7.34. Average energy transfer fractions f̄τ , f̄σ, and f̄κ for photoelectric effect,
Compton effect and pair production, respectively, for carbon, copper, tin, and lead.
Only the photoeffect fraction f̄τ depends on the atomic number Z of the absorber;
the Compton effect and pair production fractions are independent of Z and depend
only on photon energy hν

toelectric effect interaction (for photons with en-
ergy above the K edge of the absorbing medium).

f̄σ = E
σ

tr/(hν) is the average fraction of the photon energy given
to the recoil (Compton) electron in a Compton
interaction (see Fig. 7.8).

f̄κ = 1 − 2mec
2/(hν) is the average fraction of the photon energy given

to the electron/positron pair in a pair production
interaction (including triplet production).

Figure 7.34 summarizes the three energy fractions f̄τ , f̄σ, and f̄κ for en-
ergy transfer in an absorber from photon to charged particles in photoelectric
effect, Compton scattering, and pair production, respectively.

• All three fractions depend upon photon energy hν, increase with increas-
ing photon energy hν, and converge to 1 at large hν.

• The photoelectric fraction f̄τ also depends on the atomic number Z of the
absorber; the higher is Z, the lower is f̄τ in the vicinity of the absorption
edge and the slower is the convergence to 1. The photoelectric fraction f̄τ

was given in Fig. 7.25.
• The Compton Klein-Nishina fraction f̄σ and the pair production fraction

f̄κ are independent of Z and depend on photon energy hν only. The
Compton Klein-Nishina fraction f̄σ and the pair production fraction f̄κ

are given in Figs. 7.8 and 7.29, respectively.
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From (7.108) we note that Etr, the average energy transferred to charged
particles, is in general given as

Etr =hν
µtr

µ
=
∑

i

wiE
i
tr =

τ

µ
E

τ

tr +
σc

µ
E

σ

tr +
κ

µ
E

κ

tr

=wτE
τ

tr + wσE
σ

tr + wκE
κ

tr

=
τ

µ
(hν − PKωKhνK) +

σc

µ
E

σ

tr +
κ

µ
(hν − 2mec

2) , (7.109)

where

i refers to a particular interaction of the photon with an atom of the ab-
sorber,

wi is the weight of the particular interaction i of photon with absorber atoms.

Figure 7.35 gives a plot of the mass energy transfer coefficient µtr/ρ for
carbon and lead in the photon energy range from 1 keV to 100 MeV. The
mass attenuation coefficient µ/ρ is shown with dashed curves for comparison.

• For lead the K, L, and M absorption edges are visible, for carbon they
are not because they all occur below the lower 1 keV limit of the graph.

• At photon energies between 1 keV and 10 keV in the photoeffect region
µ/ρ ≈ µtr/ρ ≈ µab/ρ.

• At intermediate photon energies in the Compton region the Compton
fraction f̄σ correction to µ/ρ is very effective (see Fig. 7.34) and clearly
separates µ/ρ from µtr/ρ.

• At very high photon energies in the pair production region the pair pro-
duction fraction is 1 and µ/ρ ≈ µtr/ρ (see Fig. 7.34).

7.8.9 Energy Absorption Coefficient

The energy absorption coefficient µab is related to the energy transfer coeffi-
cient µtr by

µab = µtr(1 − ḡ) , (7.110)

with ḡ representing the so-called radiative fraction, i.e., the average fraction
of secondary charged particle energy lost in radiative interactions that the
secondary charged particles experience in their travel through the absorbing
medium. These radiative interactions are the bremsstrahlung production (for
electrons and positrons) and in-flight annihilation (for positrons).

• For low absorber atomic number Z and low photon energies hν the ra-
diative fraction ḡ approaches zero and µtr ≈ µab.

• For increasing Z or hν the radiative fraction ḡ increases gradually, so
that, for example, in lead at hν = 10 MeV, ḡ = 0.26 and µab = 0.74 µtr.

Figure 7.35 also shows, in addition to the mass attenuation coefficient
µ/ρ and mass energy transfer coefficient µtr/ρ, the mass energy absorption
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Fig. 7.35. Mass energy transfer coefficient µtr/ρ (dark solid curves), mass attenu-
ation coefficient µ/ρ (dashed curves) and mass energy absorption coefficient µab/ρ
(light solid curves) against photon energy hν for carbon in part a and lead in part b
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coefficent µab/ρ for carbon and lead in the photon energy range from 1 keV
to 100 MeV.

The following interesting observations can be made:

• The K, L, and M absorption edges are clearly visible in the plots for lead.
The plots for carbon, on the other hand, do not exhibit any absorption
edges because the edges occur below 1 keV in the energy range that is
not shown.

• Up to a photon energy of a few MeV, µtr/ρ ≈ µab/ρ.
• At photon energies above 10 MeV, µab/ρ diverges from µtr/ρ because

of the radiative loss ḡ of charged particles released in the medium by
the high-energy photons. With an increasing photon energy the radiative
fraction ḡ increases and so does the difference between µab/ρ and µtr/ρ.

• The radiative fraction ḡ also depends on the atomic number Z of the
absorber; the higher is Z, the higher is ḡ for the same photon energy,
as indicated in Fig. 7.35. For example, at a photon energy of 10 MeV,
ḡ = 0.035 for carbon and ḡ = 0.26 for lead; at 100 MeV, ḡ = 0.25 for
carbon and ḡ = 0.67 for lead.

7.8.10 Effects Following Photon Interactions

In photoelectric effect, Compton effect, and triplet production vacancies are
produced in atomic shells through the ejection of orbital electrons.

• For orthovoltage and megavoltage photons used in diagnosis and treat-
ment of disease with radiation, the shell vacancies occur mainly in inner
atomic shells of the absorber.

• Pair production, Rayleigh scattering and photodisintegration do not pro-
duce shell vacancies.

• Vacancies in inner atomic shells are not stable; they are followed by emis-
sion of characteristic x rays or Auger electrons depending on the fluores-
cent yield of the absorbing material and cascade to the outer shell of the
ion. The ion eventually attracts an electron from its surroundings and
becomes a neutral atom.

• Pair production and triplet production are followed by the annihilation
of the positron with an orbital electron of the absorber, most commonly
producing two annihilation quanta of 0.511 MeV each and moving at
approximately 180o to each other. Annihilation of a positron before it
expanded all of its kinetic energy is referred to as annihilation-in-flight
and may produce photon exceeding 0.511 MeV.

7.9 Summary of Photon Interactions

As is evident from discussions in this chapter, photons have numerous op-
tions for interaction with absorbers. The probabilities for interaction in gen-
eral depend on the incident photon energy hν and the atomic number Z of
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the absorber. While over a dozen different photon interactions are known in
nuclear physics, four of these are of importance to medical physics because
they govern: (1) the transfer of energy from photons to light charged particles
and the ultimate absorption of energy in irradiated tissues (radiation dosime-
try) and (2) the attenuation and scattering of photons by tissues (imaging
physics). The four important photon interactions are:

1. Photoelectric effect
2. Rayleigh scattering
3. Compton effect
4. Pair production

Photoelectric Effect

• The photoelectric effect (sometimes also referred to as photoeffect) is an
interaction between a photon with energy hν and a tightly bound orbital
electron of an absorber atom. The interaction is thus between a photon
and an absorber atom as a whole. The electron is ejected from the atom
and referred to as a photoelectron.

• A tightly bound orbital electron is defined as an orbital electron with bind-
ing energy EB either larger than hν or of the order of hν. For EB > hν
the photoeffect cannot occur; for hν > EB the photoelectric effect is pos-
sible. The closer is hν to EB, the larger is the probability for photoelectric
effect to happen, provided, of course, that hν exceeds EB. At hν = EB
the probability abruptly drops and exhibits the so-called absorption edge.

• When the photon energy hν exceeds the K-shell binding energy EB (K) of
the absorber atoms, the photoelectric effect is most likely to occur with a
K-shell electron in comparison with higher shell electrons. Over 80% of all
photoelectric interactions occur with K-shell electrons when hν ≥ EB(K).

• With increasing incident photon energy hν, the atomic, linear, and mass
photoelectric attenuation coefficients decrease from their absorption edge
value approximately as 1/(hν)3.

• The atomic photoelectric attenuation coefficient aτ varies approximately
as Z5 for low Z absorbers and as Z4 for high Z absorbers.

• The mass photoelectric attenuation coefficient τm = τ/ρ varies approxi-
mately as Z4 for low Z absorbers and as Z3 for high Z absorbers.

• In water and tissue Ēτ
tr, the average energy transferred to electrons (pho-

toelectrons and Auger electrons) is equal to Ēτ
ab, the average energy ab-

sorbed in the medium because the radiative fraction ḡ is negligible; i.e.,
ḡ ≈ 0.

• Furthermore, in water and tissue Ēτ
tr is approximately equal to the photon

energy hν because the fluorescent yield ωK is approximately equal to
zero. Thus in water and tissue the following relationship holds for the
photoelectric effect: Ēτ

tr = Ēτ
ab ≈ hν.
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Rayleigh Scattering

• Rayleigh scattering is an interaction between a photon with energy hν
and the whole atom. All orbital electrons contribute to the scattering
event and the phenomenon is referred to as coherent scattering because
the photon is scattered by the constructive action of the tightly bound
electrons of the whole atom.

• The photon leaves the point of interaction with the incident energy hν
intact but is redirected through a small scattering angle. Since no energy
is transferred to charged particles, Rayleigh scattering plays no role in
radiation dosimetry; however, it is of some importance in imaging physics
because the scattering event has an adverse effect on image quality.

• The atomic Rayleigh attenuation coefficient aσR decreases approximately
as 1/(hν)2 and is approximately proportional to Z2 of the absorber.

• Even at very small incident photon energies hν, the Rayleigh component
of the total attenuation coefficient is small and amounts to only a few
percent.

Compton Effect

• Compton effect (often referred to as Compton scattering) is an interaction
between a photon with energy hν and a free orbital electron.

• A free electron is defined as an orbital electron whose binding energy EB
is much smaller than the photon energy hν; i.e., hν � EB.

• In each Compton interaction a scattered photon and a free electron (re-
ferred to as Compton or recoil electron) are produced. The sum of the
scattered photon energy hν′ and the Compton recoil electron kinetic en-
ergy EK is equal to the incident photon energy hν. The relative distribu-
tion of the two energies depends on the incident photon energy hν and
on the angle of emission (scattering angle θ) of the scattered photon.

• The electronic and mass Compton attenuation coefficients eσc and σc/ρ,
respectively, are essentially independent of the atomic number Z of the
absorber.

• The atomic Compton attenuation coefficient aσc is linearly proportional
to the atomic number Z of the absorber.

• The atomic and mass Compton attenuation coefficients aσc and σc/ρ,
respectively, decrease with increasing incident photon energy hν.

• The average fraction of the incident photon energy hν transferred to recoil
electron increases with hν (see The Graph in Fig. 7.8). At low photon
energies the Compton energy transfer coefficient (σc)tr is much smaller
than the Compton attenuation coefficient σc; i.e., (σc)tr � σc. At high
photon energies, on the other hand, (σc)tr ≈ σc.

• In water and tissue the Compton process is the predominant mode of
photon interaction in the wide photon energy range from ∼100 keV to
∼10 MeV (see Fig. 7.33).
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Pair Production

• Pair production is an interaction between a photon with energy hν ex-
ceeding 2mec

2 = 1.02 MeV and the Coulomb field of a nucleus. The pho-
ton disappears and an electron-positron pair is produced. The process is
an example of mass-energy equivalence and is sometimes referred to as
materialization.

• Pair production in the Coulomb field of an orbital electron of the absorber
is referred to as triplet production. The process is much less probable than
nuclear pair production and has threshold energy of 4mec

2 = 2.044 MeV.
The photon disappears and three light charged particles are released: the
orbital electron and the electron-positron pair.

• The probability for pair production increases rapidly with the incident
photon energy hν for photon energies above the threshold energy.

• The atomic pair production attenuation coefficient aκ varies approxi-
mately as Z2 of the absorber.

• The mass pair production coefficient κm = κ/ρ varies approximately lin-
early with the atomic number Z of the absorber.

• The average energy transferred from the incident photon hν to charged
particles, Ēκ

tr, is hν − 2mec
2.

Table 7.13 provides a summary of the main characteristics for the photoelec-
tric effect, Rayleigh scattering, Compton effect, and pair production.

7.10 Example 1:
Interaction of 2 MeV Photons with Lead

For 2 MeV photons in lead (Z = 82; A = 207.2 g/g-atom; ρ =
11.36 g/cm3) the photoeffect, coherent scattering, Compton effect, and
pair production linear attenuation coefficients are: τ = 0.055 cm−1,
σR = 0.008 cm−1, σc = 0.395 cm−1, and κ = 0.056 cm−1. The aver-
age energy transferred to charged particles Ētr = 1.13 MeV and the
average energy absorbed in lead is Ēab = 1.04 MeV.

Calculate the linear attenuation coefficient µ; mass attenuation co-
efficient µm; atomic attenuation coefficient aµ; mass energy transfer co-
efficient µtr; mass energy absorption coefficient µab; and radiative frac-
tion ḡ.

µ= τ + σR + σc + κ = (0.055 + 0.008 + 0.395 + 0.056) cm−1

=0.514 cm−1 (7.111)

µm =
µ

ρ
=

0.514 cm−1

11.36 g/cm3 = 0.0453 cm2/g (7.112)
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Table 7.13. Main characteristics of photoelectric effect, Rayleigh scattering, Comp-
ton effect, and pair production

Photoeffect Rayleigh
scattering

Compton effect Pair
production

Photon
interaction

With whole atom
(bound electron)

With bound
electrons

With free
electron

With nuclear
Coulomb field

Mode of photon
interaction

Photon
disappears

Photon
scattered

Photon
scattered

Photon
disappears

Energy
dependence

1
(hν)3

1
(hν)2

Decreases with
energy

Increases with
energy

Threshold Shell binding
energy

No Shell binding
energy

∼ 2mec
2

Linear
attenuation
coefficient

τ σR σc κ

Atomic coef-
ficient depen-
dence on Z

aτ ∝ Z4
aσR ∝ Z2

aσc ∝ Z aκ ∝ Z2

Mass coef-
ficient depen-
dence on Z

τ

ρ
∝ Z3 σR

ρ
∝ Z Independent

of Z

κ

ρ
∝ Z

Particles
released in
absorber

Photoelectron None Compton
(recoil)
electron

Electron-
positron
pair

Average energy
transferred to
charged part’s

hν − PKωKhνK 0 E
σ
tr

(see Fig. 7.8)
hν − 2mec

2

Fraction of
energy hν
transferred

1 − PKωKhνK

hν
0

E
σ
tr

hν
1 − 2mec

2

hν

Subsequent
effect

Characteristic
x ray,
Auger effect

None Characteristic
x ray,
Auger effect

Annihilation
radiation

Significant
energy region
for water

<20 keV <20 keV 20 keV–10 MeV >10 MeV

Significant
energy region
for lead

<500 keV <100 keV 500 keV–3MeV >3 MeV
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aµ=
{

ρNA

A

}−1

µ =
207.2 (g/g-atom) 0.514 cm−1

11.36 g/cm3 6.022 × 1023 (atom/g-atom)
=1.56 × 10−23 cm2/atom (7.113)

µtr

ρ
=

Ētr

hν

µ

ρ
=

1.13 MeV 0.0453 cm2/g
2 MeV

= 0.0256 cm2/g (7.114)

µab

ρ
=

µen

ρ
=

Ēab

hν

µ

ρ

=
1.04 MeV0.0453 cm2/g

2 MeV
= 0.0236 cm2/g (7.115)

ḡ =
Ētr − Ēab

Ētr
= 1 − Ēab

Ētr
= 1 − 1.04 MeV

1.13 MeV
= 0.08 (7.116)

or

ḡ = 1 − µab/ρ

µtr/ρ
= 1 − 0.0236 cm2/g

0.0256 cm2/g
= 0.08. (7.117)

The mass energy transfer coefficient µtr/ρ can also be determined using
(7.108) with the appropriate average energy transfer fractions, given in
Fig. 7.34, as follows:

f̄τ = (hν − PKωKhνK)/(hν) = 0.965 , (7.118)

f̄σ = Ēσ
tr/(hν) = 0.53 , (7.119)

f̄κ = (hν − 2 mec
2)/(hν) = 0.50 . (7.120)

The mass energy transfer coefficient µtr/ρ is now given as follows:

µtr

ρ
=

1 cm3

11.36 g
(0.965 × 0.055 + 0.53 × 0.395 + 0.50 × 0.056) cm−1

=0.0256
cm2

g
(7.121)

in good agreement with the result obtained in (7.114).
Thus, as shown schematically in Fig. 7.36, a 2 MeV photon in lead will

on the average:

• Transfer 1.13 MeV to charged particles (electrons and positrons)
• 0.87 MeV will be scattered through Rayleigh and Compton scattering.

Of the 1.13 MeV of energy transferred,

• 1.04 MeV will be absorbed in lead and
• 0.09 MeV will be re-emitted through bremsstrahlung radiative loss.

The radiative fraction ḡ for 2 MeV photons in lead is 0.08.
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Fig. 7.36. Schematic diagram for general photon interactions with an atom. In
this example a 2 MeV photon hν interacts with a lead atom. An individual 2 MeV
photon, as it encounters a lead atom at point A, may interact with the atom through
photoelectric effect, Rayleigh scattering, Compton effect or pair production, or it
may not interact at all. However, for a large number of 2 MeV photons striking
lead, we may state that on the average:
• 1.13 MeV will be transferred at point A to charged particles (mainly to fast

energetic electrons, but possibly also to positrons if the interaction is pair pro-
duction);

• 0.87 MeV will be scattered through Rayleigh and Compton scattering (hν′)
Of the 1.13 MeV transferred to charged particles:
• 1.04 MeV will be absorbed in lead over the fast charged particle tracks, and
• 0.09 MeV will be emitted in the form of bremsstrahlung photons (hν′′)

7.11 Example 2:
Interaction of 8 MeV Photons with Copper

Monoenergetic photons with energy hν = 8 MeV (ε = 15.66) in-
teract with a copper absorber (Z = 29, A = 63.54 g/g-atom; ρ =
8.96 g/cm3). Using only the relationships and graphs given in this
chapter, determine:

1. atomic cross section aµ
2. mass attenuation coefficient µm
3. linear attenuation coefficient µ
4. average energy transferred to charged particles Etr
5. mass energy transfer coefficient µtr/ρ
6. average radiative fraction ḡ
7. average energy absorbed in the copper absorber Eab
8. mass energy absorption coefficient µab/ρ
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1. To determine the total atomic cross section aµ we first calculate the
individual atomic cross sections for photoelectric effect aτ , Compton scat-
tering aσc, and pair production aκ. The total atomic cross section will
be the sum of the three individual atomic cross sections. We ignore the
atomic cross sections for Rayleigh scattering aσR and for photonuclear
reactions aσPN because they are very small in comparison with the pho-
toelectric, Compton and pair production cross sections.

Photoelectric Effect

Since ε � 1, we use (7.74) to estimate aτ for K-shell electrons in copper

aτK =
1.5
ε

α4Z5
eσTh

=
1.5

15.66
295

1374 0.665
b

atom
= 0.004 b/atom (7.122)

Compton Effect

We use the Klein-Nishina relationship for the electronic cross section
eσ

KN
c , given in (7.45), and then calculate aσ

KN
c from aσ

KN
c = Z eσ

KN
c

eσ
KN
c

= 2πr2
e

{
1 + ε

ε2

[
2(1 + ε)
1 + 2ε

− ln(1 + 2ε)
ε

]
+

ln(1 + 2ε)
2ε

− 1 + 3ε

(1 + 2ε)2

}
= 0.0599 b/electron (7.123)

The atomic cross section is calculated from the electronic cross section
as follows:

aσ
KN
c = Z eσ

KN
c = 29 × 0.0599 b/atom = 1.737 b/atom. (7.124)

Pair Production

Since the photon energy of 8 MeV is significantly above the nuclear pair
production threshold of 1.02 MeV and also above the triplet production
threshold of 2.04 MeV, both effects (pair production and triplet produc-
tion) will occur and will contribute to the total atomic cross section aµ.
To determine the atomic pair production cross-section we use (7.84)

aκpp = αr2
eZ

2Ppp(ε, Z) . (7.125)

Since 1 � ε � 1
αZ1/3 , where for our example ε = 15.66 and 1/(αZ1/3) =

44.6, we use (7.84) to determine Ppp(ε, Z) as follows:

Ppp(ε, Z) =
28
9

ln(2ε) − 218
27

= 10.73 − 8.07 = 2.65 . (7.126)
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The atomic cross-section for pair production aκpp is now calculated as
follows:

aκpp =αr2
eZ

2Ppp(ε, Z) =
7.94 × 10−2 × 292 × 2.65

137
b

atom
=1.292 b/atom. (7.127)

To account for the triplet production contribution we use (7.90) to get

aκ= aκpp

{
1 +

1
ηZ

}
= 1.292

b
atom

{
1 +

1
2.5 × 29

}
=1.310 b/atom. (7.128)

Two observations can now be made:
– For 8 MeV photons interacting with copper, triplet production con-

tributes only of the order of 1.5% to the total atomic pair production
cross section.

– The atomic cross-sections aσc and aκ for Compton scattering and
pair production, respectively, are almost identical. This can actually
be surmised from Fig. 7.33 that shows the loci of points (Z, hν) for
which aτ = aσc and aσc = aκ. The point (Z = 29, hν = 8 MeV) is
very close to the aσc = aκ curve and thus must possess similar atomic
cross-sections aσc and aκ.

The total atomic cross section aµ is the sum of the cross sections for
individual non-negligible effects, as given in (7.106)

aµ= aτ + aσR + σc + aκ = (0.004 + 0 + 1.737 + 1.310)b/atom

=3.051 b/atom . (7.129)

2. The mass attenuation coefficient µm is calculated, as suggested in
(7.98), from

µm =
µ

ρ
= aµ

NA

A
= 3.051

b
atom

6.022 × 1023 atom/g-atom
63.54 g/g-atom

=0.0289
cm2

g
. (7.130)

3. The linear attenuation coefficient µ is determined by multiplying µm

with the absorber density ρ to get

µ = ρµm = 8.96
g

cm3 0.0289
cm2

g
= 0.259 cm−1. (7.131)

4. The average energy Etr transferred from photons to charged particles
is determined using (7.109)

Etr = wτE
τ

tr + wσE
σ

tr + wκE
κ

tr, (7.132)
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where

wτ = aτ

aµ
=

0.004
3.051

= 1.3 × 10−3, (7.133)

wσ = aσc

aµ
=

1.737
3.051

= 0.57, (7.134)

wκ = aκ

aµ
=

1.310
3.051

= 0.43, (7.135)

E
τ

tr =hν − PKωKhνK = 8 MeV − 0.5 × 0.85 × 7.7 × 10−3 MeV

≈8 MeV, (7.136)

(see Figs. 7.24 and 7.25 for values of PK, ωK, and hνK)

E
σ

tr = 0.67 × 8 MeV ≈ 5.36 MeV, (7.137)

(see “The Compton Graph” in Fig. 7.8)

E
κ

tr = hν − 2mec
2 = 8 MeV − 1.02 MeV ≈ 7 MeV. (7.138)

Inserting into (7.121) the weights wi and the average energy transfers E
i
tr

for the individual effects, we now calculate the average energy transferred
from 8 MeV photons to charged particles in copper

Etr =1.3 × 10−3 × 8 MeV + 0.57 × 5.36 MeV + 0.43 × 7 MeV

=6.07 MeV . (7.139)

5. The mass energy transfer coefficient µtr/ρ is determined from the
following:

µtr

ρ
=

µ

ρ

Etr

hν
= 0.0289

cm2

g
6.07
8

= 0.0219 cm2/g . (7.140)

6. The radiative fraction ḡ represents an average radiative yield B(EKo)
given in (5.49) for the spectrum of charged particles released by 8 MeV
photons in the copper absorber. This charged particle spectrum is com-
posed of recoil Compton electrons (average energy of 5.36 MeV) as well
as electrons and positrons from the pair production (average energy of
0.5×7 MeV, i.e., 3.5 MeV).
The Etr exceeds Eo, the average of the initial energies acquired by
charged particles that are set in motion in the absorber, because in pair
production two charged particles with a combined energy of 7 MeV are
set in motion and the initial average energy for each of the two charged
particles is 3.5 MeV.



260 7 Interactions of Photons with Matter

The average initial energy Eo of all charged particles released in copper
by 8 MeV photons is given as

Eo =Etr
aσ + aκ

aσ + 2aκ
= 6.07 MeV

1.737 + 1.310
1.737 + 2 × 1.310

=4.25 MeV. (7.141)

The spectrum of charged particles released by 8 MeV photons in the
copper absorber can only be determined reliably by Monte Carlo calcu-
lations.
In the first approximation, however, we assume that all charged particles
are produced with monoenergetic initial energies Eo. Then the radiative
yield B(EKo), given in Fig. 5.7, can be equated with the radiative fraction
ḡ to get ḡ ≈ 0.1.
The average energy Erad radiated by charged particles as bremsstrahlung
is given by (5.50) as

Erad = B(EKo)Etr = 0.1 × 6.07 MeV = 0.61 MeV. (7.142)

7. The average energy Eab absorbed in the copper absorber is

Eab =Etr − Erad = 6.07 MeV − 0.61 MeV

=5.46 MeV. (7.143)

8. The mass energy absorption coefficient µab/ρ is

µab

ρ
=

µ

ρ

Eab

hν
= 0.0289

cm2

g
5.46
8

= 0.0197 cm2/g (7.144)

The mass energy absorption coefficient µab/ρ may also be calculated from
the mass energy transfer coefficient µtr/ρ and the radiative fraction ḡ as
follows:

µab

ρ
=

µtr

ρ
(1 − ḡ) = 0.0219

cm2

g
(1 − 0.1)

=0.0197 cm2/g. (7.145)

In summary, as shown schematicall in Fig. 7.37, we determined for 8 MeV
photons interacting with a copper absorber that on the average:

(a) 6.07 MeV will be transferred to charged particles; 1.93 MeV will be
scattered.

(b) 5.46 MeV will be absorbed in copper; 0.61 MeV will be radiated in the
form of bremmstrahlung.

(c) The atomic cross-section aµ, the mass attenuation coefficient µm, and
the linear attenuation coefficient µ for 8 MeV photons in copper are:
3.051 b/atom; 0.0289 cm2/g; and 0.259 cm−1, respectively.
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(d) The mass energy transfer coefficient µtr/ρ and mass energy absorption
coefficient µab/ρ are: 0.0219 cm2/g and 0.0197 cm2/g, respectively.

(e) The radiative fraction ḡ for 8 MeV photons in copper is ∼0.1.

Fig. 7.37. Schematic diagram for general photon interactions with an atom. In
this example an 8 MeV photon hν interacts with a copper atom. An individual
8 MeV photon, as it encounters a copper atom at point A, may interact with
the atom through photoelectric effect, Rayleigh scattering, Compton effect or pair
production, or it may not interact at all. However, for a large number of 8 MeV
photons striking copper, we may state that on the average:
• 6.07 MeV will be transferred at point A to charged particles (mainly to fast

energetic electrons, but possibly also to positrons if the interaction is pair pro-
duction);

• 1.93 MeV will be scattered through Rayleigh and Compton scattering (hν′)

Of the 6.07 MeV transferred to charged particles:

• 5.46 MeV will be absorbed in copper over the fast charged particle tracks,
• 0.61 MeV will be emitted in the form of bremsstrahlung photons (hν′′)
• The average energies transferred to charged particles in a photoelectric process,

Rayleigh scattering, Compton scattering, and pair production are ∼8 MeV, 0,
5.36 MeV, and ∼7 MeV.



Teletherapy with a Cobalt-60 Source

The two figures on the next page depict a cobalt-60 teletherapy machine: actual
modern machine on the left and a schematic diagram on the right. The machine
is manufactured as “a megavoltage external beam therapy system using cobalt
technology” by MDS Nordion in Ottawa, Canada. The schematic diagram of a
cobalt machine was presented on a Canadian stamp issued in 1988 by the Canada
Post Corporation in honor of Harold E. Johns (1915–1997), a Canadian medical
physicist and the inventor of the cobalt-60 teletherapy machine.

The cobalt machine, shown schematically on the stamp, was developed in
Canada in the 1950s for use in cancer therapy. It was the first truly practical
and widely available megavoltage cancer therapy machine and incorporates a ra-
dioactive cobalt-60 source that is characterized with features suitable for external
beam radiotherapy, such as high gamma ray energy, relatively long half-life, and
high specific activity.

The cobalt-60 source is produced in a nuclear reactor by irradiating the stable
cobalt-59 nuclide with thermal neutrons. The cobalt-60 source decays with a half-life
of 5.26 years to nickel-60 with emission of beta particles (electrons) and two gamma
rays (1.17 MeV and 1.33 MeV) per each disintegration, as shown schematically on
the stamp.

Most modern cobalt machines are arranged on a gantry so that the source may
rotate about a horizontal axis referred to as the machine isocenter axis. The source-
axis distance typically is either 80 cm or 100 cm depending on the machine design.
The isocentric source mounting allows the use of the isocentric treatment technique
in which the radiation beam is directed toward the patient from various directions
thereby concentrating the radiation dose in the target and spreading the dose to
healthy tissues over a larger volume.

During the past two decades the linear accelerator (linac) eclipsed the cobalt
unit and became the most widely used radiation source in modern radiotherapy.
Compared to cobalt units linear accelerators offer higher beam energies that result
in better skin sparing effect and more effective penetration into tissue; higher out-
put dose rates that result in shorter treatment times; electron beams in addition
to photon beams for treatment of superficial lesions; and a possibility for beam
intensity modulation that provides optimal dose distributions in the target volume.

Despite the technological and practical advantages of linear accelerators over
cobalt-60 machines, the latter still occupy an important place in the radiother-
apy armamentarium, mainly because of considerably lower capital, installation and
maintenance costs in comparison with linear accelerators. Moreover, the design of
modern cobalt machines offers many of the features that until lately were in the do-
main of linear accelerators, such as large source-axis distance, high output, dynamic
wedges, independent jaws, and a multileaf collimator. In the developing world, the
cobalt-60 machines, owing to their relatively low costs as well as simpler design,
maintenance, and operation, are likely to play an important role in cancer therapy
for the foreseeable future.

Left photo: Courtesy of MDS Nordion, Ottawa, Canada. Reproduced with permis-
sion.
Right photo: c© Canada Post Corporation. Reproduced with Permission c© Société
canadienne des postes. Reproduit avec permission.



8 Radioactivity

In this chapter we discuss various aspects of radioactivity of importance in
medical physics. Natural radioactivity was discovered by Henri Becquerel
in 1896, artificial radioactivity by Frédéric Joliot and Irène Joliot-Curie in
1934. Artificial production of radionuclides (nucleosynthesis) plays an impor-
tant role in the treatment of cancer with teletherapy and brachytherapy as
well as in nuclear medicine imaging. Radioactivity is a process by which an
unstable parent nucleus decays into a more stable daughter nucleus that may
or may not be stable. The unstable daughter nucleus will decay further until
a stable nuclear configuration is reached. The radioactive decay is governed
by the formalism based on the definition of activity and the radioactive decay
constant.

We first discuss the decay of an unstable parent nucleus into a stable
daughter nucleus, and then develop a formalism that deals with radioactive
series decay and with the activation of radionuclides. A brief discussion of
the origin of radioactive nuclides is then given, followed first by a discussion
of general aspects of the radioactive decay and then by a detailed description
of the various radioactive decay modes available to radioactive nuclides in
their quest to attain a more stable configuration. Special emphasis is placed
on aspects of radioactive decay of importance to medical physics.
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8.1 Introduction

Radioactivity, discovered in 1986 by Henri Becquerel, is a process by which an
unstable parent nucleus transforms spontaneously into one or several daugh-
ter nuclei that are more stable than the parent nucleus by having larger
binding energies per nucleon than does the parent nucleus. The daughter
nucleus may also be unstable and will decay further through a chain of ra-
dioactive decays until a stable nuclear configuration is reached. Radioactive
decay is usually accompanied by emission of energetic particles that may be
used in science, industry, agriculture, and medicine.

• Nuclear decay, also called nuclear disintegration, nuclear transformation
or radioactive decay, is a statistical phenomenon.

• The exponential laws that govern nuclear decay and growth of radioac-
tive substances were first formulated by Ernest Rutherford and Frederick
Soddy in 1902 and then refined by Harry Bateman in 1910.

• A radioactive substance containing atoms of same structure is often re-
ferred to as radioactive nuclide. Radioactive atoms, like any other atomic
structure, are characterized by the atomic number Z and atomic mass
number A.

• Radioactive decay involves a transition from the quantum state of the orig-
inal nuclide (parent) to a quantum state of the product nuclide (daughter).
The energy difference between the two quantum levels involved in a ra-
dioactive transition is referred to as the decay energy. The decay energy
is emitted either in the form of electromagnetic radiation (usually gamma
rays) or in the form of kinetic energy of the reaction products.

• The mode of radioactive decay depends upon the particular nuclide in-
volved.

• All radioactive decay processes are governed by the same general formal-
ism that is based on the definition of the activity A(t) and on a character-
istic parameter for each radioactive decay process: the total radioactive
decay constant λ with dimensions of reciprocal time, usually in s−1.

• The decay constant λ is independent of the age of the radioactive atom
and is essentially independent of physical conditions such as temperature,
pressure, and chemical state of the atom’s environment. Careful measure-
ments have shown that λ can actually depend slightly on the physical
environment. For example, at extreme pressure or at extremely low tem-
perature the technetium-99m radio-nuclide shows a fractional change in
λ of the order of 10−4 in comparison to the value at room temperature
(293 K) and standard pressure (101.3 kPa).

• The total radioactive decay constant λ multiplied by a time interval that
is much smaller than 1/λ represents the probability that any particular
atom of a radioactive substance containing a large number N(t) of iden-
tical radioactive atoms will decay (disintegrate) in that time interval. An
assumption is made that λ is independent of the physical environment of
a given atom.
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• The activity A(t) of a radioactive substance containing a large number
N(t) of identical radioactive atoms represents the total number of decays
(disintegrations) per unit time and is defined as a product between N(t)
and λ, i.e.,

A(t) = λN(t) . (8.1)

• The SI unit of activity is the becquerel (Bq) given as 1 Bq = 1 s−1. The
becquerel and hertz both correspond to s−1, but hertz expresses frequency
of periodic motion, while becquerel expresses activity.

• The old unit of activity, the curie (Ci), was initially defined as the activity
of 1 g of radium-226 and given as 1 Ci = 3.7×1010 s−1. The activity of 1 g
of radium-226 was subsequently measured to be 3.665×1010 s−1; however,
the definition of the curie was kept at 3.7 × 1010 s−1. The current value
of the activity of 1 g of radium-226 is thus 0.988 Ci or 3.665 × 1010 Bq.

• The becquerel (Bq) and the curie (Ci) are related as follows: 1 Bq =
2.703 × 10−11 Ci or 1 Ci = 3.7 × 1010 Bq.

• The specific activity a is defined as activity A per unit mass M , i.e.,

a =
A
M

=
λN

M
=

λNA

A
, (8.2)

where NA is the Avogadro’s number (6.022 × 1023 atom/g-atom).
The specific activity a of a radioactive species depends on the decay con-
stant λ and on the atomic mass number A of the radioactive atom. The
units of specific activity are Bq/kg (SI unit) and Ci/g (old unit).

8.2 Decay of Radioactive Parent into a Stable Daughter

The simplest form of radioactive decay is characterized by a radioactive par-
ent nucleus P decaying with decay constant λP into a stable daughter nu-
cleus D, i.e.,

P λP−→ D . (8.3)

The rate of depletion of the number of radioactive parent nuclei NP(t) is
equal to the activity AP(t) at time t, i.e.,

dNP(t)
dt

= −AP(t) = −λPNP(t) . (8.4)

The fundamental differential equation of (8.4) for NP(t) can be rewritten in
general integral form to get

NP(t)∫
NP(0)

dNP(t)
NP

= −
t∫

0

λPdt , (8.5)

where NP(0) is the number of radioactive nuclei at time t = 0.
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Assuming that λP is constant, we can write (8.5) as follows:

ln
NP(t)
NP(0)

= −λPt (8.6)

or

NP(t) = NP(0)e−λPt . (8.7)

The activity of parent nuclei P at time t may now be expressed as follows:

AP(t) = λPNP(t) = λPNP(0)e−λPt = AP(0)e−λPt , (8.8)

where AP(0) = λPNP(0) is the initial activity of the radioactive substance.
The decay law of (8.8) applies to all radioactive nuclides irrespective of

their mode of decay; however, the decay constant λP is different for each
radioactive nuclide P and is the most important defining characteristic of
radioactive nuclides.

When more than one mode of decay is available to a radioactive nucleus
(branching), the total decay constant λ is the sum of the partial decay con-
stants λi applicable to each mode

λ =
∑

i

λi . (8.9)

Half life (t1/2)P of a radioactive substance P is that time during which the
number of radioactive nuclei of the substance decays to half of the initial
value NP(0) present at time t = 0. We can also state that in the time of one
half life the activity of a radioactive substance diminishes to one half of its
initial value, i.e.,

NP[t = (t1/2)P] =
1
2
NP(0) = NP(0)e−λ(t1/2)P . (8.10)

From (8.10) we obtain the following relationship between the decay constant
λP and the half-life (t1/2)P:

λP =
ln 2

(t1/2)P
=

0.693
(t1/2)P

. (8.11)

The actual lifetime of any radioactive nucleus can vary from 0 to ∞, however,
for a large number NP of parent nuclei we can define the average (mean) life
τP of a radioactive parent substance P that equals the sum of lifetimes of
all individual atoms divided by the initial number of radioactive nuclei. The
average (mean) life thus represents the average life expectancy of all nuclei
in the radioactive substance P at time t = 0; i.e.,

AP(0)τP = AP(0)

∞∫
0

e−λPtdt =
AP(0)

λP
= NP(0) , (8.12)
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Fig. 8.1. Activity A(t) plotted against time t for a simple decay of a radioactive
parent into a stable daughter. The activity follows the relationship given in (8.8)
and (8.15). The concepts of half-life t1/2 and mean-life τ are also illustrated. The
area under the exponential decay curve from 0 to ∞ is equal to A(0)τ where A(0)
is the initial activity of the parent nuclei. The slope of the tangent to the decay
curve at t = 0 is equal to −λAP(0) and this tangent crosses the abscissa axis at
t = τ

The decay constant λP and mean life τP are related through the following
expression:

τP =
1

λP
. (8.13)

The mean life τP can also be defined as the time required for the number of
radioactive atoms or their activity to fall to 1/e = 0.368 of its initial value
NP(0) or initial activity AP(0), respectively.

The mean life τP and half-life (t1/2)P are related as follows:

τP =
1

λP
=

(t1/2)P
ln 2

= 1.44(t1/2)P . (8.14)

A typical example of a radioactive decay for initial condition AP(t = 0) =
AP(0) is shown in Fig. 8.1 with a plot of parent activity AP(t) against time t,
i.e.,

AP(t) = AP(0)e−λPt . (8.15)

The following properties of the radioactive decay curve are notable:

1. The area under the activity AP(t) vs. time t curve for 0 ≤ t ≤ ∞ is given
as
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∞∫
0

AP(t)dt=AP(0)

∞∫
0

−λPtdt

=
AP(0)

λP
= AP(0)τP = NP(0) , (8.16)

and the result equals the initial number of radioactive nuclei at time
t = 0.

2. The total number of radioactive nuclei present at any time t > 0 is simply
the activity AP(t) multiplied by the mean life τP.

3. The concept of half-life (t1/2)P is shown in Fig. 8.1 as the time in which
the activity AP(t) drops from AP(0) to 0.5 AP(0).

4. The concept of mean life τP is shown in Fig. 8.1 as the time in which the
activity AP(t) drops from AP(0) to 0.368AP(0).

5. Area AP(0)τP is shown in Fig. 8.1 by a rectangle with sides AP(0) and
τP. If the initial activity AP(0) could remain constant for mean life τ ,
all atoms would have been transformed and at time t = τP the activity
would drop to zero.

6. In general, the slope of the tangent to the decay curve at time t is given
as

dAP(t)
dt

= −λPAP(0)e−λPt , (8.17)

while the initial slope at t = 0 is equal to −λPAP(0).
7. The linear function, with the slope equal to −λPAP(0) and the ordinate

intercept at time t = 0 equal to AP(0), is

AP(t) = −λPAP(0)t + AP(0) , (8.18)

and represents the tangent to the decay curve at t = 0. It serves as a good
approximation for the activity AP(t) vs. t relationship when t � τP, i.e.,

AP(t) ≈ AP(0){1 − λPt} = AP(0) {1 − t/τP} (8.19)

and results in AP(t) = 0 at t = τP, in contrast to (8.15) that predicts
AP(t) = 0 only at t → ∞.

8.3 Radioactive Series Decay

8.3.1 Parent → Daughter → Granddaughter Relationships

Equations (8.7) and (8.15) describe the simple radioactive decay from an
unstable parent P to a stable daughter D. A more complicated radioactive
decay occurs when a radioactive parent P decays with a decay constant λP
into a daughter D that in turn is radioactive and decays with a decay constant
λD into a stable granddaughter G, i.e.,

P λP−→ D λD−→ G . (8.20)
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The rate of change dND/dt in the number of daughter nuclei D is equal to the
supply of new daughter nuclei D through the decay of P given as λPNP(t) and
the loss of daughter nuclei D from the decay of D to G given as [−λDND(t)],
i.e.,

dND/dt = λPNP(t) − λDND(t) = λPNP(0) e−λPt − λDND(t) ,(8.21)

where NP(0) is the initial number of parent nuclei at time t = 0.
The parent P follows a straightforward radioactive decay process with the

initial condition NP(t = 0) = NP(0), as described by (8.7)

NP(t) = NP(0) e−λPt . (8.22)

We are now interested in obtaining the functional relationship for the number
of daughter nuclei ND(t) assuming an initial condition that at t = 0 there
are no daughter nuclei D present. The initial condition for the number of
daughter nuclei ND is thus as follows:

ND(t = 0) = ND(0) = 0 . (8.23)

The general solution of the differential equation given by (8.21) will be of the
form

ND(t) = NP(0)
{
pe−λP t + de−λDt

}
, (8.24)

where p and d are constants to be determined using the following four steps:

1. Differentiate (8.24) with respect to time t to obtain

dND

dt
= NP(0)

{−pλPe−λPt − dλDe−λDt
}

. (8.25)

2. Insert (8.24) and (8.25) into (8.21) and rearrange the terms to get

e−λPt {−pλP − λP + pλD} = 0 . (8.26)

3. The factor in curly brackets of (8.26) must be equal to zero to satisfy
the equation for all values of t, yielding the following expression for the
constant p:

p =
λP

λD − λP
. (8.27)

4. The coefficient d depends on the initial condition for ND at time t = 0,
i.e., ND(t = 0) = 0 and may now be determined from (8.24) as

p + d = 0 (8.28)

or after inserting (8.27)

d = −p = − λP

λD − λP
. (8.29)
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The number of daughter nuclei ND(t) of (8.24) may now be written as follows:

ND(t) = NP(0)
λP

λD − λP

{
e−λPt − e−λDt

}
. (8.30)

Recognizing that the activity of the daughter AD(t) is λDND(t) we now write
AD(t) as

AD(t)=
NP(0)λPλD

λD − λP

{
e−λPt − e−λDt

}
=AP(0)

λD

λD − λP

{
e−λPt − e−λDt

}
=

=AP(0)
1

1 − λP
λD

{
e−λPt − e−λDt

}

=AP(t)
λD

λD − λP

{
1 − e−(λD−λP)t

}
, (8.31)

where

AD(t) is the activity at time t of the daughter nuclei equal to λDND(t),
AP(0) is the initial activity of the parent nuclei present at time t = 0,
AP(t) is the activity at time t of the parent nuclei equal to λPNP(t).

8.3.2 Characteristic Time

Equation (8.31) represents several general expressions for the activity AD(t)
of the daughter nuclei D and predicts a value of zero for AD(t) at t = 0 (initial
condition) and at t = ∞ (when all nuclei of the parent P and daughter D
have decayed). This suggests that AD(t) will pass through a maximum at
a specified characteristic time (tmax)D for λP �= λD. The characteristic time
(tmax)D is determined by setting dAD/dt = 0 at t = (tmax)D and solving for
(tmax)D to get

λPe−λP(tmax)D = λDe−λD(tmax)D (8.32)

and

(tmax)D =
ln λP

λD

λP − λD
. (8.33)

Equation (8.33), governed by the initial conditions at t = 0

AP(t = 0) = AP(0) and AD(t = 0) = 0 (8.34)

may also be expressed in terms of half-lives (t1/2)P and (t1/2)D as well as in
terms of mean-lives τP and τD for the parent P nuclei and daughter D nuclei,
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respectively, as

(tmax)D =
ln (t1/2)D

(t1/2)P

ln2
{

1
(t1/2)P

− 1
(t1/2)D

}

=
(t1/2)P(t1/2)D

(t1/2)D − (t1/2)P

ln (t1/2)D
(t1/2)P

ln2
(8.35)

and

(tmax)D =
ln τD

τP
1

τD
− 1

τP

=
τPτD

τP − τD
ln

τP

τD
. (8.36)

8.3.3 General Form of Daughter Activity

Equations (8.33), (8.35) and (8.36) show that (tmax)D is positive and real,
irrespective of the relative values of λP and λD, except for the case of λP = λD
for which AD(t) in (8.31) is not defined.

At t = (tmax)D, we get from (8.31) that AP[(tmax)D] = AD[(tmax)D], i.e.,
the activities of the parent and daughter nuclei are equal and the condition
referred to as the ideal equilibrium is met. The term ideal equilibrium was
introduced by Robley Evans to distinguish this instantaneous condition from
other types of equilibrium (transient and secular) that are defined below
for the relationship between the parent and daughter activity under certain
special conditions.

• For 0 < t < (tmax)D, the activity of parent nuclei AP(t) always exceeds
the activity of the daughter nuclei AD(t), i.e., AD(t) < AP(t).

• For (tmax)D < t < ∞, the activity of the daughter nuclei AD(t) always
exceeds, or is equal to, the activity of the parent nuclei AP(t), i.e., AD(t) �
AP(t).

Equation (8.31), describing the daughter activity AD(t), can be written in
a general form covering all possible physical situations. This is achieved by
introducing variables x, yP, and yD as well as a decay factor m defined as

1. x: time t normalized to half-life of parent nuclei (t1/2)P

x =
t

(t1/2)P
, (8.37)

2. yP: parent activity AP(t) normalized to AP(0), the parent activity at
t = 0

yP =
AP(t)
AP(0)

= e−λPt [see (8.8) and (8.22)] , (8.38)
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3. yD: daughter activity AD(t) normalized to AP(0), the parent activity at
t = 0

yD =
AD(t)
AP(0)

, (8.39)

4. m: decay factor defined as the ratio of the two decay constants, i.e.,
λP/λD

m =
λP

λD
=

(t1/2)D
(t1/2)P

, (8.40)

Insertion of x, yD, and m into (8.31) results in the following expression for yD,
the daughter activity AD(t) normalized to the initial parent activity AP(0)

yD =
1

1 − m

{
e−x ln 2 − e− x

m ln 2} =
1

1 − m

{
1
2x

− 1
2

x
m

}
. (8.41)

Equation (8.41) for yD as a function of x has physical meaning for all positive
values of m except for m = 1 for which yD is not defined. However, since (8.41)
gives yD = 0/0 for m = 1, we can apply the L’Hôpital’s rule and determine
the appropriate function for yD as follows:

yD(m = 1)= lim
m→1

d
dm

{ 1
2x − 1

2x/m

}
d

dm (1 − m)

= lim
m→1

−2− x
m ln 2

{
x

m2

}
−1

= (ln 2)
x

2x
. (8.42)

Similarly, (8.15) for the parent activity AP(t) can be written in terms of
variables x and yP as follows:

yP = e−λPt = e−x ln 2 =
1
2x

, (8.43)

where x was given in (8.37) as x = t/(t1/2)P and yP = AP(t)/AP(0) is the
parent activity AP(t) normalized to the parent activity AP(0) at time t = 0.

The characteristic time (tmax)D can now be generalized to xmax by using
(8.37) to get the following expression:

(xmax)D =
(tmax)D
(t1/2)P

. (8.44)

Three different approaches can now be used to determine (xmax)D for yD in
(8.41)

1. Set (dyD/dx) = 0 at x = (xmax)D and solve for (xmax)D to get

dyD

dx

∣∣∣∣
x=xmax

=
ln 2

1 − m

{
−2−x +

1
m

2− x
m

}∣∣∣∣
x=xmax

= 0 . (8.45)

Solving (8.45) for (xmax)D we finally get

(xmax)D =
m

m − 1
log m

log 2
=

m

m − 1
lnm

ln 2
. (8.46)
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Fig. 8.2. Variable yD of (8.41) against variable x for various values of decay pa-
rameter m. The dashed curve is for yP of (8.43) against x. The parameter (xmax)D
shown by dots on the yP curve is calculated from (8.46). Values for (yD)max are
obtained with (8.49)

For m = 1 (8.46) is not defined; however, since it gives xmax = 0/0, we
can apply the L’Hopital’s rule to get (xmax)D|m→1 as follows:

(xmax)D|m→1 = lim
m→1

d(m ln m)
dm

ln 2d(m−1)
dm

= lim
m→1

1 + lnm

ln 2
=

1
ln 2

= 1.44 , (8.47)

Thus, (xmax)D is calculated from (8.46) for any positive m except for
m = 1. For m = 1, (8.47) gives xmax = 1.44.

2. Insert (8.37) and (8.40) into (8.33) for (tmax)D and solve for (xmax)D to
get the result given in (8.46).

3. Recognize that when x = (xmax)D the condition of ideal equilibrium ap-
plies for (8.41), i.e., yP[(xmax)D] = yD[(xmax)D]. Insert x = (xmax)D into
(8.41) and (8.43), set yP[(xmax)D] = yD[(xmax)D], and solve for (xmax)D
to get the result of (8.46).

In Fig. 8.2 we plot (8.41) for yD against x using various values of the decay
factor m in the range from 0.1 to 10.0. For comparison we also plot yP of
(8.43) against x (dotted curve).

The function plotted as a dashed curve for m = 1 in Fig. 8.2 is the function
given in (8.42). The point of ideal equilibrium for this curve occurs at xmax
given as (1/ ln 2) = 1.44 in (8.47) and at yD(xmax) = 1/e = 0.368.
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All yD curves of Fig. 8.2 start at the origin at (0,0), rise with x, reach a
peak at (xmax)D, as given in (8.46), and then decay with an increasing x. The
smaller is m, the steeper is the initial rise of yD, i.e., the larger is the initial
slope of yD. The initial slope and its dependence on m can be determined
from the derivative dyP/dx of (8.45) by setting x = 0 to get

dyD

dx

∣∣∣∣
x=0

=
ln 2

1 − m

{
−2−x +

1
m

2− x
m

}∣∣∣∣
x=0

=
ln 2
m

. (8.48)

Noting that x = t/(t1/2)P, m = λP/λD, and yD = AD(t)/AP(0), we can link
the data of Fig. 8.2 with physical situations that occur in nature in the range
0.1 < m < 10. Of course, the m region can be expanded easily to smaller and
larger values outside the range shown in Fig. 8.2 as long as a different scale
for the variable x is used.

As indicated with dots on the yP curve in Fig. 8.2, (ymax)D, the maxima
in yD for a given m, occur at points (xmax)D where the yD curves cross over
the yP curve. The xmax values for a given m can be calculated from (8.46)
and (yD)max for a given m can be calculated simply by determining yP(x) at
x = xmax with yP(x) given in (8.43). We thus obtain the following expression
for (ymax)D:

(ymax)D = yP(xmax)D = 2( m
1−m ) ln m

ln 2 =
1

2(xmax)D
≡ e

m
1−m ln m

= e−(ln 2)(xmax)D , (8.49)

where (xmax)D was given by (8.46). Equation (8.49) is valid for all positive m
with the exception of m = 1. We determine (yD)max for m = 1 by applying
the L’Hôpital’s rule to (8.49) to get

(ymax)D|m=1 = lim
m→1

2
d

dm
(m ln m)

d
dm

(1−m) ln 2 = lim
m→1

2
ln m+1
− ln 2 = 2− 1

ln 2

= e−1 = 0.368 . (8.50)

As shown in (8.49), (ymax)D and (xmax)D are related through a simple
exponential expression plotted in Fig. 8.3 and also given by (8.43) with
x = (xmax)D and yP = (ymax)D. As shown in (8.49) the ideal equilibrium
value (ymax)D exhibits an exponential decay behavior starting at (ymax)D = 1
at (xmax)D = 0 through (ymax)D = 0.5 at (xmax)D = 1 to approach 0 at
(xmax)D → ∞.

Figures 8.4 and 8.5 show plots of (ymax)D and (xmax)D, respectively,
against m as given by (8.49) and (8.46), respectively, for positive m except
for m = 1. The m = 1 values of (xmax)D and (ymax)D, equal to 1/ ln 2 and
1/e, respectively, were calculated from (8.47) and (8.50), respectively. With
increasing m, the parameter (xmax)D starts at zero for m = 0, goes through
1/ ln 2 = 1.44 at m = 1, and then increases as ln m for very large m. Pa-
rameter (ymax)D, on the other hand, starts at 1 for m = 0, goes through
1/e = 0.368 at m = 1, and then decreases exponentially for very large m.
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Fig. 8.3. Parameter (ymax)D against parameter (xmax)D as given in (8.49)

Fig. 8.4. Parameter (ymax)D against decay factor m calculated from (8.49) for all
m > 0 except for m = 1. The value of (ymax)D for m = 1 is calculated from (8.50)



276 8 Radioactivity

Fig. 8.5. Parameter xmax against decay factor m calculated from (8.46) for all
m > 0 except for m = 1. The value of (xmax)D for m = 1 is calculated from (8.47)

8.3.4 Equilibria in Parent-Daughter Activities

In many parent→daughter→granddaughter relationships after a certain time
t the parent and daughter activities reach a constant ratio independent of a
further increase in time t. This condition is referred to as radioactive equilib-
rium and can be analyzed further by examining the behavior of the activity
ratio AD(t)/AP(t) obtained from (8.31) as

AD(t)
AP(t)

=
λD

λD − λP

{
1 − e−(λD−λP)t

}

=
1

1 − λP/λD

{
1 − e−(λD−λP)t

}
(8.51)

for the two initial conditions:

1. AP(t = 0) = AP(0) = λPNP(0), (8.52)
2. AD(t = 0) = AD(0) = 0. (8.53)

Inserting the decay factor m of (8.40) and variable x of (8.37) into (8.51)
and defining parameter ξ as ξ = AD(t)/AP(t) = yD/yP, we write (8.51) as
follows:

ξ =
AD(t)
AP(t)

=
1

1 − m

{
1 − e−(ln 2) 1−m

m x
}

≡ 1
1 − m

{
1 − 2

m−1
m x

}
.

(8.54)

The ξ(x) expression of (8.54) is valid for all positive m except for m = 1
for which it is not defined. However, we can determine the ξ(x) functional
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Fig. 8.6. Variable ξ = AD(t)/AP(t) = yD/yP against x for several decay factors m
in the range from 0.1 to 10 calculated from (8.54) except for ξ(m = 1) which gives
a linear function calculated in (8.55)

relationship for m = 1 by applying the L’Hôpital’s rule to get

ξ(m = 1)= lim
m→1

d
dm

{
1 − e

m−1
m x ln 2

}
d(1 − m)/dm

= lim
m→1

−e
m−1

m x ln 2
{−x ln 2

m − m−1
m2 x ln 2

}
−1

= (ln 2)x (8.55)

Equation (8.55) shows that ξ(x) for m = 1 is a linear function of x, as shown
in Fig. 8.6 in which we plot ξ(x) for various values of m in the range from
0.1 to 10. The m = 1 linear equation actually separates two distinct regions
for the variable ξ: (i) region where m > 1 and (ii) region where 0 < m < 1.

1. For the m > 1 region, we write (8.54) as follows:

ξ =
1

m − 1

{
e

m−1
m x ln 2 − 1

}
. (8.56)

Note that ξ rises exponentially with x, implying that the AD(t)/AP(t)
ratio also increases with time t and thus no equilibrium between AP(t)
and AD(t) will ensue with an increasing time t. The exponential behavior
of ξ(x) is clearly shown in Fig. 8.6 with the dashed curves for m > 1 (in
the range 1 < m < 10).
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2. For the 0 < m < 1 region, (8.54) suggests that the exponential term
diminishes with increasing x and exponentially approaches zero. This
means that at large x the parameter ξ approaches a constant value that
is independent of x and is equal to 1/(1 − m). Under these conditions
the parent activity AP(t) and daughter activity AD(t) are said to be in
transient equilibrium, and are governed by the following relationship:

ξ =
AD(t)
AP(t)

=
yD

yP
=

1
1 − m

=
1

1 − λP/λD
=

λD

λD − λP
. (8.57)

After initially increasing, the daughter activity AD(t) goes through a
maximum and then decreases at the same rate as the parent activity
AP(t) and the two activities are related through (8.57). As m decreases,
the daughter and parent activities at relatively large times t become in-
creasingly more similar, since, as m → 0, ξ → 1. This represents a
special case of transient equilibrium (λD � λP, i.e., m → 0) and in this
case the parent and daughter are said to be in secular equilibrium. Since
in secular equilibrium ξ = 1, the parent and daughter activities are ap-
proximately equal, i.e., AP(t) ≈ AD(t) and the daughter decays with the
same rate as the parent.

Equations (8.51) and (8.54) are valid in general, irrespective of the relative
magnitudes of λP and λD; however, as indicated above, the ratio AD(t)/AP(t)
falls into four distinct categories that are clearly defined by the relative mag-
nitudes of λP and λD. The four categories are:

(1) Daughter Longer-Lived Than Parent:

(t1/2)D > (t1/2)P, i.e., λD < λP.

We write the ratio AD(t)/AP(t) of (8.51) as follows:

AD(t)
AP(t)

=
λD

λP − λD

{
e(λP−λD)t − 1

}
. (8.58)

No equilibrium between the parent activity AP(t) and the daughter activity
AD(t) will be reached for any t.

(2) Half-Lives of Parent and Daughter are Equal:

(t1/2)D = (t1/2)P, i.e., λD = λP.

The condition is mainly of theoretical interest as no such example has been
observed in nature yet. The ratio AD(t)/AP(t) is given as a linear function,
as shown in (8.55).
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(3) Daughter Shorter-Lived Than Parent:
(t1/2)D < (t1/2)P, i.e., λD > λP

The activity ratio AD(t)/AP(t) at large t becomes a constant equal to
λD/(λD − λP) and is then independent of t and larger than unity, i.e.,

AD(t)
AP(t)

≈ λD

λD − λP
> 1 . (8.59)

The constancy of the ratio AD(t)/AP(t) at large t implies a transient equi-
librium between AP(t) and AD(t). The ratio AD(t)/AP(t) of (8.51) can be
written in terms of the characteristic time tmax inserting into (8.51) a new
variable t = ntmax with tmax given in (8.33) to get the following expression
for AD(t)/AP(t):

AD(t)
AP(t)

=
λD

λD − λP

{
1 − e−(λD−λP)ntmax

}

=
λD

λD − λP

{
1 − e

−n ln λD
λP

}
=

λD

λD − λP

{
1 −

(
λP

λD

)n}
.(8.60)

Equation (8.60) allows us to estimate the required value of n to bring the
ratio AD(t)/AP(t) to within a certain percentage p of the saturation value of
λD/(λD−λP) in transient equilibrium. This simply implies that the following
relationship must hold:

(λP/λD)n = p/100 , (8.61)

or, after solving for n

n = ln
100
p

/ ln
λD

λP
. (8.62)

For example, the activity ratio ξ = AD(t)/AP(t) will reach 90%, 98%, 99%
and 99.9% of its saturation value; i.e., p is 10%, 2%, 1% and 0.1%, respectively,
for values of n equal to 2.3/ ln(λD/λP); 3.9/ ln(λD/λP); 4.6/ ln(λD/λP); and
6.9/ ln(λD/λP).

(4) Daughter Much Shorter-Lived Than Parent:
(t1/2)D � (t1/2)P, i.e., λD � λP

The ratio of daughter activity AD(t) and parent activity AP(t), i.e., AD(t)/
AP(t) of (8.51) simplifies to

AD(t)
AP(t)

≈ 1 − e−λDt . (8.63)

For relatively large time t � tmax, (8.63) becomes equal to unity, i.e.,

AD(t)/AP(t) ≈ 1 . (8.64)

The activity of the daughter AD(t) very closely approximates that of its
parent AP(t), i.e., AD(t) ≈ AP(t), and they decay together at the rate of the
parent. This special case of transient equilibrium in which the daughter and
parent activities are essentially identical, i.e., AD(t) ≈ AP(t) is called secular
equilibrium.
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8.3.5 Bateman Equations

Equation (8.30) for the P → D → G relationship can be generalized to a
chain of decaying nuclei of an arbitrary number of radioactive chain (series)
links by using equations proposed by Harry Bateman in 1910. The radioactive
chain is as follows:

N1 → N2 → N3 → . . . → Ni−1 → Ni (8.65)

and the initial condition stipulates that at t = 0 only N1(0) parent nuclei are
present, while all other descendent nuclei are not present yet, i.e.,

N2(0) = N3(0) = . . . = Ni−1(0) = Ni(0) = 0 . (8.66)

The number of nuclei Ni(t) is given as follows

Ni(t) = C1e
−λ1t + C2e

−λ2t + C3e
−λ3t + . . . + Cie

−λit , (8.67)

where Ci are constants given as follows

C1 = N1(0)
λ1λ2 . . . λi−1

(λ2 − λ1)(λ3 − λ1) . . . (λi − λ1)
, (8.68)

C2 = N1(0)
λ1λ2 . . . λi−1

(λ1 − λ2)(λ3 − λ2) . . . (λi − λ2)
, (8.69)

:
:
:
:

Ci = N1(0)
λ1λ2 . . . λi−1

(λ1 − λi)(λ3 − λi) . . . (λi−1 − λi)
. (8.70)

8.3.6 Mixture of Two or More Independently Decaying
Radionuclides in a Sample

An unknown mixture of two or more radionuclides, each with its own half-life,
will produce a composite decay curve that does not result in a straight line
when plotted on a semi-logarithmic plot, unless, of course, all radionuclides
have identical or very similar half-lives. The decay curves of the individual
radionuclides can be resolved graphically, if their half-lives differ sufficiently
and if at most three radioactive components are present.

Figure 8.7 illustrates this for a mixture of two radionuclides: nuclide A
with short half-life and nuclide B with long half-life. The solid curve rep-
resents the measured decay curve (activity) for the mixture with the two
components A and B. For large time t, the short-lived component A is essen-
tially gone and the composite activity curve follows the decay of the long-lived
radionuclide B.

The initial activities and half-lives of the nuclides A and B can be deter-
mined graphically as follows:
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Fig. 8.7. Decay curves shown on a semi-logarithmic plot for a mixture of twora-
dionuclides: short-lived A and long-lived B. The (solid curve) is the decay curve for
the mixture of radionuclides A and B. The dashed lines are individual decay curves
for radionuclide A and B

1. The first step is to carry out a linear extrapolation to time t = 0 of the
long-time portion of the composite curve (region where the curve becomes
linear on a semi-logarithmic plot). This gives the decay curve for nuclide
B and the initial activity of nuclide B at t = 0.

2. The second step is to obtain the decay curve for the short-lived com-
ponent A by subtracting the straight-line curve B from the composite
curve. This results in another straight line on the semi-logarithmic plot,
this time for nuclide A, and gives the initial activity of nuclide A at t = 0.

3. Half-lives for components A and B may be determined from the individual
linear decay data for radionuclides A and B. The two radionuclides may
then be identified through the use of tabulated half-lives for the known
natural and artificial radionuclides.

8.4 Activation of Nuclides

8.4.1 Nuclear Reaction Cross Section

Particles of an incident beam striking a target can interact with the target
nuclei through the following three processes:

1. scattering,
2. absorption,
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3. nuclear reaction.

In traversing a target the beam is attenuated in

1. intensity,
2. energy,
3. both intensity and energy.

In a simplistic approach we might consider estimating the probability for a
reaction between the incident particle and a target nucleus by treating the
incident particles as points and the target nuclei as projecting an area πR2

defined by the nuclear radius R.

• Any time an incident particle hits a nucleus, a reaction is assumed to
happen; no reaction occurs when the particle misses the nucleus.

• This geometrical picture takes no account of the finite size of the incident
particle nor does it consider the range of interaction forces that are in
effect between the incident particle and the target nucleus.

• Rather than treating a geometrical cross sectional area πR2 as a measure
of interaction probability, we assign to the nucleus an effective area σ
perpendicular to the incident beam such that a reaction occurs every
time a bombarding particle hits any part of the effective disk area.

• This effective area is referred to as the reaction cross-section σ and is
usually measured in barn, where 1 barn = 1 b = 10−24 cm2. The cross
section σ is proportional to the reaction probability P .

• The range of reaction cross sections σ in nuclear physics varies from a
low of 10−19 b to a high of 106 b with the lower limit in effect for weak
neutrino interactions with nuclei and the upper limit in effect for thermal
neutron capture in certain nuclides.

The target of thickness xo projects an area S to the incident particle beam.
The target contains N nuclei each characterized with a reaction cross section
σ. The density of nuclei n� represents the number of nuclei N per volume of
the target V = Sxo.

To determine the reaction rate R (number of reactions per unit time) we
consider two target options with regard to target thickness xo: thin targets
and thick targets.

Thin Targets
A thin target is thin enough so that no significant overlap between target
nuclei occurs as the particle beam penetrates the target. This implies that
negligible masking of target nuclei occurs in a thin target. The probability
P for an incident particle to trigger a reaction in a thin target is the ratio of
the effective area σN over the target area S, i.e.,

P =
σN

S
=

σNxo

Sxo
= n�σxo . (8.71)
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If the number of incident particles per unit time is Ṅo, then R, the number
of reactions per unit time is given as follows:

R = PṄo = Ṅon
�σxo . (8.72)

Thick Targets
In comparison with a thin target, a thick target has a thickness xo that
engenders considerable masking of target nuclei. In this case we assume that a
thick target consists of a large number of thin targets. In each thin target layer
of thickness dx the number of incident particles per unit time Ṅ diminishes
by dṄ so that we can write dṄ(x) as

−dṄ(x) = Ṅ(x)n�σdx (8.73)

or
Ṅ(t)∫
Ṅo

dṄ(x)
Ṅ(x)

= −
xo∫
0

n�σdx , (8.74)

where

Ṅo is the number of particles per unit time striking the target.
Ṅ(xo) is the number of particles per unit time that traverse the thick target

of thickness xo

The solution to (8.74) is

Ṅ(xo) = Ṅoe
−n�σxo . (8.75)

The number of reactions per unit time in the thick target is now given by
the following:

R = Ṅo − Ṅ(xo) = Ṅo

{
1 − e−n�σxo

}
. (8.76)

Equation (8.76) reduces to thin target relationship of (8.72) for small thick-
nesses xo, as a consequence of the following approximation:

e−n�σxo ≈ 1 − n�σxo . (8.77)

8.4.2 Neutron Activation

Stable nuclei may be transformed into unstable radioactive nuclei by bom-
bardment with suitable particles or photons of appropriate energy. The pro-
cess is known as radioactivation or activation and a variety of projectiles may
be used for this purpose.

In practice the most commonly used activation process is triggered by
thermal neutrons in a nuclear reactor, where a stable parent target P upon
bombardment with neutrons is transformed into a radioactive daughter D
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that decays with a decay constant λD into a granddaughter G, i.e.,

P → D → G . (8.78)

The situation in radioactivation is similar to the Parent→Daughter→Grand-
daughter decay series discussed in Sect. 8.3, except that λP in neutron acti-
vation does not apply (the parent is stable) and is replaced by the product
σPϕ̇ where:

σP is the probability for activation of parent nuclei governed by the activa-
tion cross section usually expressed in barn/atom where 1 barn = 1 b =
10−24 cm2,

ϕ̇ is the fluence rate of neutrons in the reactor usually expressed in neu-
trons per cm2 per second, i.e., cm−2·s−1. Typical modern reactor fluence
rates are of the order of 1011 to 1014 cm−2 · s−1. An assumption is made
that the neutron fluence rate ϕ̇ remains constant for the duration of the
activation process, and this is not always easy to achieve in practice,
especially for very long activation times.

8.4.3 Infinite Number of Parent Nuclei: Saturation Model

The daughter nuclei are produced at a rate of σPϕ̇NP(t) and they decay
with a rate of λDND(t). The number of daughter nuclei is ND(t) and the
overall rate of change of the number of daughter nuclei is dND/dt obtained
by combining the production rate of daughter nuclei σPϕ̇NP(t) with the decay
rate of daughter nuclei λDND(t) to get

dND(t)
dt

= σPϕ̇NP(t) − λDND(t) , (8.79)

where NP(t) is the number of parent target nuclei.
An assumption is usually made that in neutron activation a negligible

fraction of the parent atoms is transformed, so that the number of residual
target atoms NP(to) equals to NP(0), the initial number of target atoms
placed into the reactor for activation purposes at time t = 0. The time to
is the total time the target is left in the reactor. The activation model that
neglects the depletion of the number of target nuclei is referred to as the
saturation model.

Another assumption is that the neutron fluence rate ϕ̇ at the position
of the sample is contributed from all directions. The sample in the form
of pellets is irradiated in a “sea” of thermal neutrons and we may assume
that the sample is a thin target that does not appreciably affect the neutron
fluence inside the pellet.

For the initial conditions NP(t = 0) = NP(0) and ND(t = 0) = ND(0) = 0
as well as the general condition that NP(t) = NP(0) = const, the differential
equation for dND/dt is written as

dND

dt
= σPϕ̇NP(0) − λDND(t) (8.80)
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or in the integral form as
ND(t)∫
0

d {σPϕ̇NP(0) − λDND}
σPϕ̇NP(0) − λDND

= −λD

t∫
0

dt . (8.81)

The solution of (8.81) is as follows:

ND(t) =
σPϕ̇NP(0)

λD

{
1 − e−λDt

}
. (8.82)

The daughter activity AD(t) equals to λDND(t), thus we can write AD(t) as

AD(t) = σPϕ̇NP(0)
{
1 − e−λDt

}
= (Asat)D

{
1 − e−λDt

}
, (8.83)

where (Asat)D, the saturation daughter activity that can be produced by
bombardment of the parent target with neutrons, is equal to σPϕ̇NP(0).

Equation (8.83) is a simple exponential relationship and its initial slope
dAD(t)/dt at t = 0 is defined as the radioactivation yield YD of the daughter
produced in the radioactivation process. The radioactivation yield represents
the initial rate of formation of new daughter activity that depends upon the
irradiation conditions as well as the decay constant of the daughter λD, as
seen from the following expression:

YD =
dAD

dt

∣∣∣∣
t=0

= σPϕ̇NP(0)λD = λD(Asat)D =
(Asat)D

τD
. (8.84)

The build up of daughter activity AD(t) in a target subjected to constant
bombardment with neutrons in a reactor is illustrated in Fig. 8.8. The radio-
activation yield YD is given by the initial slope of the growth curve at time
t = 0. The extrapolation of the tangent to the growth curve at t = 0 intersects
the asymptotic saturation activity line at a time t = τD = (t1/2)D/ ln 2, where
(t1/2)D is the half-life of the daughter.

The following observations regarding the daughter activity growth curve,
as given in (8.83), can now be made:

1. Initially at small t, where exp(−λDt) ≈ 1 − λDt, the growth of AD(t) is
rapid and almost linear with time, since

AD(t) = (Asat)D
{
1 − e−λDt

} ≈ (Asat)DλDt , (8.85)

but eventually at large times t the daughter activity AD(t) becomes sat-
urated (i.e., reaches a steady-state) at (Asat)D and decays as fast as it is
produced.

2. Equation (8.83) and Fig. 8.8 show that
a. for an activation time t = (t1/2)D, half the maximum activity (Asat)D

is produced;
b. for t = 2(t1/2)D, 3/4 of (Asat)D is produced;
c. for t = 3(t1/2)D, 7/8 of (Asat)D is produced, etc.

3. Because of the relatively slow approach to the saturation (Asat)D, it is
generally accepted that in practice activation times beyond 2(t1/2)D are
not worthwhile.
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Fig. 8.8. Growth of daughter activity AD(t) normalized to saturation activity
(Asat)D plotted against time normalized to the half-life of the daughter (t1/2)D.
The slope of the tangent on the AD(t)/(Asat)D vs. t curve at t = 0, defined as the
activation yield YD, is also shown

8.4.4 Finite Number of Parent Nuclei: Depletion Model

In situations where a measurable fraction of the target is consumed during
the activation process, we can no longer assume that NP(t) = const. The
fractional decrease in the number of parent atoms depends on the activation
cross section σP and on the fluence rate ϕ̇ of the reactor. The activation model
that accounts for the depletion of the number of the target nuclei during the
radioactivation process is called the depletion model.

In general, the rate of change in the number of parent atoms NP(t) with
time t can be written as follows:

dNP(t)
dt

= −σPϕ̇NP(t) , (8.86)

similarly to the expression for radioactive decay given in (8.4) but replacing
λP in (8.4) with the product σPϕ̇. The general solution for NP(t) of (8.86) is
then

NP(t) = NP(0)e−σPϕ̇t , (8.87)

with NP(0) the initial number of parent nuclei placed into the reactor at time
t = 0 and NP(t) the number of parent nuclei at time t.

The general expression for dND/dt, the rate of change in the number of
daughter nuclei, is the number of parent nuclei transformed into daughter
nuclei [governed by NP(t), σP, and ϕ̇] minus the number of daughter nuclei
that decay [governed by ND(t) and λP], or
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dND(t)
dt

= σPϕ̇NP(t) − λDND(t) , (8.88)

with NP(t) given in (8.81) in parallel to (8.22) for the P → D → G decay
series.

The solution to (8.88), following the steps taken in the derivation of (8.30)
for the P → D → G decay series and using the initial conditions:

NP(t = 0) = NP(0) (8.89)

ND(t = 0) = ND(0) = 0 (8.90)

is now as follows:

ND(t) = NP(0)
σPϕ̇

λD − σPϕ̇

{
e−σPϕ̇t − e−λDt

}
. (8.91)

Recognizing that AD(t) = λDND(t) and assuming the validity of the deple-
tion model, we get the following general expression for the growth of the
daughter activity AD(t):

AD(t) = NP(0)
σPϕ̇λD

λD − σPϕ̇

{
e−σPϕ̇t − e−λDt

}
. (8.92)

Since (8.92) for AD(t) in neutron activation is identical in form to (8.31)
for a decay series, we use the analysis presented with regard to the decay
series to obtain solutions for the general daughter growth in neutron activa-
tion. Generally, in neutron activation σPϕ̇ < λD and this results in transient
equilibrium dynamics, as discussed for the decay series in Sect. 8.3.

When σPϕ̇ � λD, we are dealing with a special case of transient equilib-
rium called secular equilibrium for which (8.92) will simplify to an expression
that was given in (8.75) for the saturation model and was derived under the
assumption that the fraction of nuclei transformed from parent to daughter in
neutron activation is negligible in comparison to the initial number of parent
atoms NP(0). Equation (8.92) then reads

AD(t) = σPϕ̇NP(0)
{
1 − e−λDt

}
= (Asat)D

{
1 − e−λDt

}
, (8.93)

where (Asat)D = σPϕ̇NP(0) is the saturation activity that is attainable by
the target under the condition of secular equilibrium.

In the saturation model the activity AD(t) approaches the saturation ac-
tivity (Asat)D exponentially, as given in (8.93) and shown in Fig. 8.7. In satu-
ration the production rate of the daughter equals the decay rate of the daugh-
ter resulting in a constant ND(t) and constant saturation activity (Asat)D.

Usually, the growth of daughter in neutron activation is treated under the
condition of secular equilibrium; however, with high enough reactor fluence
rates ϕ̇ and low enough daughter decay constants λD, this approximation
may no longer be valid. The theoretical treatment then should recognize the
radioactivation process as one of transient equilibrium for which account must
be taken of the depletion of target nuclei, as given in (8.92).
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• As discussed in detail in Section 8.3, the daughter activity AD(t) in tran-
sient equilibrium cannot be assumed to reach saturation with increasing
time t. Rather, the daughter activity AD(t) is zero at time t = 0, and
with increasing time first rises with t, reaches a maximum (Amax)D at
time t = (tmax)D, and then drops as t increases further until at t = ∞ it
becomes zero again.

• The daughter activity will reach its maximum (Amax)D = AD[(tmax)D]
at the point of ideal equilibrium that occurs at a time (tmax)D where
dAD(tmax)/dt = 0 and AD[(tmax)D] = σPϕ̇NP[(tmax)D]. Note that in
general AD[(tmax)D] < (Asat)D.

• The time (tmax)D is given as

(tmax)D =
ln(σPϕ̇/λD)
σPϕ̇ − λD

. (8.94)

Equation (8.94) with σPϕ̇ replaced by λP is identical in form to (tmax)D
that was calculated for a decay series in (8.33).

• Defining new parameters m, (xmax)D and (ymax)D as well as variables
x, yP, and yD, similarly to the approach we took in Sect. 8.3.4 for the
decay series, we can understand better the dynamics resulting from the
saturation and depletion models of the neutron activation process. The
parameters and variables are for neutron activation defined as follows,
with m the so-called activation factor :

m =
σPϕ̇

λD
, compare with (8.40) (8.95)

(xmax)D =
m

m − 1
lnm

ln 2
for m > 0 and m �= 1 see (8.46) (8.96)

(xmax)D = 1/ ln 2 = 1.44 for m = 1 see (8.47) (8.97)

(ymax)D = yP(xmax) = 2( m
1−m ) ln m

ln 2 =
1

2xmax

≡ e
m

1−m ln m = e−(ln 2)(xmax)D ,

for m > 0, m �= 1 (8.98)

(ymax)D = 1/e = 0.368, for m = 1 see (8.50). (8.99)

x =
σPϕ̇

ln 2
t = m

λD

ln2
t = m

t

(t1/2)D
, compare with (8.37). (8.100)

yP =
NP(t)
NP(0)

= e−σPϕ̇t = e−x ln 2 =
1
2x

, see (8.43). (8.101)

yD =
AD(t)

σPϕ̇NP(0)
, see (8.41) and (8.42). (8.102)
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Fig. 8.9. Normalized daughter activities zD of (8.105) for the saturation model
(dotted curves) and yD of (8.103) for the depletion model (solid curves) against
the variable x for various decay factors m in the transient equilibrium region from
0.05 to 1.0 as well as for m = 2 and m = 5 in the non-equilibrium region where
m > 1. The yP curve is shown dashed. Points of ideal equilibrium specified for the
depletion model by (xmax)D and (ymax)D are indicated with heavy dots on the yP

curve. Variables x and yP are given by (8.100) and (8.101), respectively. Variables
zD for the saturation model and yD for the depletion model (m �= 1) are given by
(8.105) and (8.103), respectively. Variable yD for the depletion model with m = 1
is given by (8.104). The activation m is defined in (8.95)

Similarly to (8.41), the variable yD(x) for the depletion model is given by the
following function after inserting (8.95), (8.98), and (8.100) into (8.92) to get

yD =
1

1 − m

{
e−x ln 2 − e− x

m ln 2} =
1

1 − m

{
1
2x

− 1
2x/m

}
. (8.103)

Equation (8.103) is valid for all positive m except for m = 1. For m = 1,
yD(x) is given by the following function, as discussed in relation to (8.42):

yD(m = 1) = (ln 2)x/(2x) . (8.104)

For the saturation model, on the other hand, the normalized daughter activity
zD is given for any m > 0 as follows after inserting (8.95), (8.98) and (8.100)
into (8.93)

zD =
AD(t)

(Asat)D
=

AD(t)
σPϕ̇NP(0)

= 1 − e−λDt

=1 − e
− λD

σPϕ̇ (ln 2)x = 1 − e− (ln 2)x
m = 1 − 1

2x/m
. (8.105)

To illustrate the general case of neutron activation for any m between zero
(secular equilibrium) and 1 (start of non-equilibrium conditions) we show in
Fig. 8.9 a plot of yD and zD against x for various m in the range from 0.05
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Fig. 8.10. Normalized daughter activities zD of (8.105) for the saturation model
(dashed curves) and yD of (8.103) for the depletion model (solid curves) against the
variable x for various activation factors m in the range from m = 10−4 to m = 10.
The heavy dots represent (ymax)D, the maxima of yD for given m and follow the
normalized parent activity yP of (8.101). Variables x and yP are given by (8.100)
and (8.101), respectively. Variables zD for the saturation model and yD for the
depletion model (m �= 1) are given by (8.105) and (8.103), respectively. Variable
yD for the depletion model with m = 1 is given by (8.104). The decay factor m is
defined in (8.95)

to 5 for both activation models: the saturation model of (8.105) with dashed
curves and the depletion model of (8.103) with solid curves. For comparison
we also show the yP curve that indicates the depletion of the target nuclei
during the neutron activation process.

The points of ideal equilibrium in the depletion model, where yD reaches
its maximum, are shown with dots on the yP curve in Fig. 8.9. The expres-
sions for (xmax)D and (ymax)D in terms of the activation factor m �= 1 are
given by (8.96) and (8.98), respectively, and for m = 1 by (8.97) and (8.99),
respectively.

In Fig. 8.10 we plot the normalized daughter activities zD for the sat-
uration model and yD for the depletion model from (8.105) and (8.103),
respectively, against the variable x on a logarithmic scale to cover 6 orders
of magnitude in the activation factor m ranging from 10−4 to 10. Some of
the data presented in Fig. 8.10 have already been plotted in Fig. 8.9 that
covers a much smaller range in m (from 0.05 to 5). The maxima (ymax)D in
depletion model curves are indicated with heavy dots that also follow a trace
of yP, the normalized number of parent nuclei given in (8.101).

The following conclusions can now be reached with regard to Figs. 8.9
and 8.10:
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1. In practical neutron activation procedures the activation factor m =
σPϕ̇/λD is generally very small, justifying the use of the saturation model
in studies of radioactivation dynamics. However, since m depends on the
fluence rate ϕ̇, neutron activation processes with very high fluence rates
or relatively long activation times may invalidate the saturation model
in favor of the depletion model.

2. The initial slope dyD/dx at t = 0 is proportional to the activation yield
Y defined for the saturation model in (8.77). A closer look at Figs. 8.9
and 8.10 reveals that both the saturation model and the depletion model
predict yD with the same initial slopes equal to (ln 2/m) irrespective of
the magnitude of m. This result can be obtained by taking the derivative
dyD/dx at x = 0 of (8.105) for the saturation model and (8.103) for the
depletion model.

3. For all m in the saturation model zD approaches its saturation value
of 1.0 exponentially, while in the depletion model yD reaches its peak
value (ymax)D at (xmax)D and then decreases with increasing x.

4. In the saturation model, for a given m, the normalized daughter activity
zD approaches exponentially the saturation value (zsat)D = 1. The larger
is m, the shallower is the initial slope, and the slower is the approach to
saturation.

5. In the depletion model, for a given m, the normalized daughter activity
yD exhibits a maximum value (ymax)D that is smaller than the saturation
value (zsat)D = 1. The larger is m the larger is the discrepancy between
the two models and the smaller is (ymax)D in comparison with (zsat)D = 1.

6. Parameter (ymax)D is the point of ideal equilibrium calculated from (8.98)
and (8.99). It depends on (xmax)D, as shown in (8.98). Parameter (xmax)D
in turn depends on the activation factor m and is calculated from (8.46)
and (8.96). As m decreases from m = 1 toward zero, (xmax)D decreases
and (ymax)D increases, as shown by dots on the yP curve in Figs. 8.9
and 8.10.

7. For m > 10−3 parameter (ymax)D decreases with increasing m. Thus, in
this region of m the depletion model should be used for determination of
the daughter activity.

8. For all 0 < m < 1, variables yP and yD are said to be in transient
equilibrium at x � (xmax)D. For m ≥ 1 no equilibrium between yP and
yD exists at any x.

9. For m < 10−2, yP and yD are in the special form of transient equilibrium
called secular equilibrium.

10. For m < 10−3 the saturation model and the depletion model give identical
results, i.e., yD = zD, for x ≤ (xmax)D and attain a value of 1 at x =
(xmax)D. However, for x > (xmax)D, zD remains in saturation, while yD
decreases in harmony with yP.

11. Using (8.102) we can now express (Amax)D, the maximum daughter ac-
tivity in the depletion model, as follows:
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(AD)max =(ymax)DσPϕ̇NP(0) = σPϕ̇NP(0) 2−(xmax)D

=σPϕ̇NP(0) e− m
1−m ln m . (8.106)

12. Equation (8.106) shows that the maximum daughter activity (Amax)D
depends on the saturation activity (Asat)D = σPϕ̇NP(0) and on (ymax)D
which approaches 1 for m → 0, as shown in Fig. 8.4. However, as m
increases toward 1, (ymax)D decreases, resulting in (Amax)D that may be
significantly smaller than (Asat)D.

13. Since the normalized daughter activity yD(x) decreases with x for x >
(xmax)D, it is obvious that activation times beyond (xmax)D are counter-
productive.

8.4.5 Maximum Attainable Specific Activities
in Neutron Activation

As is evident from Fig. 8.10, (ymax)D, the maximum normalized daugh-
ter activity for the depletion model decreases with the activation factor
m = σpϕ̇/λD. In practice this means that, for a given daughter radionuclide,
(ymax)D depends only on the particle fluence rate ϕ̇, since the parameters σp
and λD remain constant.

We now determine the maximum daughter specific activities (amax)D that
can be attained during the activation process, as predicted by the saturation
model and the depletion model.

For the saturation model we use (8.105) to get

(amax)D = (asat)D =
(Asat)D

MP
= (zmax)DσPϕ̇

NP(0)
MP

=
(

σP
NA

AP

)
ϕ̇ ,

(8.107)

where Mp and Ap are the atomic mass and the atomic mass number of
the parent nucleus, respectively, and the parameter (zmax)D is equal to the
saturation value of zD equal to 1. Since σpNA/Ap is constant for a given
parent nucleus, we note that (amax)D is linearly proportional to ϕ̇, the particle
fluence rate. As ϕ̇ → ∞ we get

lim
ϕ̇→∞

(amax)D = ∞ , (8.108)

This is obviously a problematic result, since we know that the maximum
daughter specific activity produced through neutron activation cannot exceed
the theoretical specific activity (atheor)D, given for the daughter in (8.2) as

(atheor)D =
AD

MD
=

λDND

MD
=

λDNA

AD
. (8.109)

Equation (8.107) shows that the saturation model is useful as an approxima-
tion only for relatively low particle fluence rates ϕ̇; at high fluence rates it
breaks down and predicts a physically impossible result.
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For the depletion model we use (8.102) to get

(amax)D =
(Amax)D

MP
= (ymax)DσPϕ̇

NP(0)
MP

=
(

σPNA

AP

)
(ymax)Dϕ̇ .

(8.110)

This result is similar to (amax)D given in (8.107) for the saturation model;
however, it contains (ymax)D, the normalized daughter activity that exhibits
its own dependence on ϕ̇, as shown in Fig. 8.10 and given in (8.98). Intro-
ducing the expression for (ymax)D of (8.98) into (8.112) and recognizing that
the activation factor m is equal to σpϕ̇/λD, we get the following expression
for the maximum daughter specific activity (amax)D:

(amax)D =
(

σPNA

AP

)
ϕ̇ e

m
1−m ln m . (8.111)

At first glance, it seems that the depletion model of (8.111) also suffers the
same catastrophe with ϕ̇ → ∞, as shown in (8.107) for the saturation model.
However, a closer look at lim

ϕ̇→∞
(amax)D for the depletion model produces

a very logical result, namely that the maximum daughter specific activity
(amax)D will not exceed the theoretical specific activity atheor, or

lim
ϕ̇→∞

(amax)D =
(

σPNA

AP

)
lim

ϕ̇→∞
ϕ̇ e

− σPϕ̇/λD
(σPϕ̇/λD)−1 ln(σPϕ̇/λD)

=
(

σPNA

AP

)
lim

ϕ̇→∞
ϕ̇ e− ln(σPϕ̇/λD) =

λDNA

AP
≈ (atheor)D

(8.112)

The result of (8.112) is independent of the particle fluence rate ϕ̇, irrespective
of the magnitude of ϕ̇ and depends only on the decay constant λD of the
daughter and the atomic mass number AP of the parent. Recognizing that
Ap ≈ AD at least for large atomic number activation targets, we can state
that λDNA/AP ≈ (atheor)D.

The depletion model, in contrast to the currently used saturation model,
thus adequately predicts (atheor) as the limit for the maximum attainable
daughter specific activity in neutron activation and should be taken as the
correct model for describing the parent/daughter kinematics in radioactiva-
tion in general, irrespective of the magnitude of the particle fluence rate ϕ̇
used in the radioactivation.

The saturation model is valid as a special case of the depletion model
under one of the following two conditions:

1. for the activation factor m = σpϕ̇/λD < 10−3,
2. for the activation time ta short compared to (tmax)D, the time of ideal

equilibrium between yP and yD.

The maximum attainable specific activities (asat)D and (amax)D are plotted
against the neutron fluence rate ϕ̇ in Fig. 8.11 for cobalt-60, iridium-192
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Fig. 8.11. Maximum attainable specific activities (asat)D and (amax)D for the sat-
uration model (dashed curves) and the depletion model (solid curves), respectively,
plotted against neutron fluence rate ϕ̇ for cobalt-60, iridium-192, and molybdenum-
99 daughter products in neutron activation. The theoretical specific activities of
cobalt-60 and iridium-192 are indicated with horizontal dashed lines. The vertical
dashed lines at ϕ̇ = 1013 cm−2 · s−1 and 2 × 1014 cm−2 · s−1 indicate data for the
two neutron fluence rates of Table 8.2

and molybdenum-99. The theoretical specific activities (atheor)D for cobalt-
60 and iridium-192 are also indicated in the figure. We note for iridium-192
and cobalt-60 that in the practical range from 1013 to 1015 cm−2 · s−1 the
saturation model fails, while the depletion model approaches asymptotically
the theoretical result. For molybdenum-99 in the neutron fluence range shown
in Fig. 8.11, the maximum attainable specific activities are 5 to 6 orders of
magnitude lower than (atheor)MO, so that the saturation and depletion model
give identical results as a consequence of (σMOϕ̇/λMO < 10−3).

Table 8.1 lists the important characteristics of cobalt-60, iridium-192, and
molybdenum-99. The theoretical specific activity (atheor)D is calculated from
(8.2) assuming that the radioactive nuclide contains only the daughter nuclei,
i.e., the source is carrier-free.

Table 8.2 lists the neutron activation characteristics for the saturation
and depletion models applied to production of cobalt-60, iridium-192 and
molybdenum-99 with two neutron fluence rates: ϕ̇ = 1013 cm−2 · s−1 and
ϕ̇ = 2 × 1014 cm−2 · s−1. The two fluence rates are indicated with vertical
dashed lines in Fig. 8.11 and are representative of rates used in activation
processes with modern nuclear reactors. Of main interest in Table 8.2 are the
maximum attainable specific activities (asat)D and (amax)D predicted by the
saturation model and the depletion model, respectively, and their comparison
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Table 8.1. Characteristics of three radionuclides: cobalt-60, iridium-192, and
molybdenum-99 produced by neutron activation in a nuclear reactor

Daughter nuclide Cobalt-60 Iridium-192 Molybdenum-99

Half-life (t1/2)D 5.27 y 73.8 d 66 h

Decay constant (s−1) 4.171 × 10−9 1.087 × 10−7 2.917 × 10−6

Parent nuclide Cobalt-59 Iridium-191 Molybdenum-98

Nuclear reaction 59
27Co(n,γ)6027Co 191

77 Ir(n,γ)19177 Ir 98
42Mo(n, γ)9942Mo

Cross section (b) 37.2 954 0.13

atheor
(a) (Ci/g) 1.131 × 103 9.215 × 103 4.8 × 105

apract
(b) (Ci/g) ∼ 250 ∼ 450 ∼ 0.3

σPNA/AP (cm2/g) 0.38 3.01 8 × 10−4

(a) Theoretical specific activity: atheor = λDNA/AD, assuming a carrier-free source.
(b) Practical specific activity produced in a nuclear reactor.

to the theoretical values (atheor)D for the three daughter D products, also
listed in the table.

Two interesting features of Fig. 8.11 and Table 8.2 are of note:

• For cobalt-60 (atheor)Co = 1131 Ci/g, while at ϕ̇ = 2×1014 cm−2 ·s−1 the
saturation model for cobalt-60 production predicts (asat)Co = 2054 Ci/g,
a physically impossible result. On the other hand, the depletion model
predicts that (amax)Co = 550 Ci/g which is a realistic result that can be
substantiated with experiment.

• A study of iridium-192 results in conclusions similar to those for cobalt-60
and this is understood, since the activation factors m for the two radionu-
clides are essentially identical. The activation factor m for molybdenum-
99 for practical fluence rates, on the other hand, is so small that both
models predict identical specific activities, both a miniscule fraction of
(atheor)MO.

Of interest is also the activation time (tmax)D required to obtain (amax)D
using the depletion model. From (8.100) and (8.96) we obtain

(tmax)D
(t1/2)D

=
xmax

m
=

lnm

(ln 2)(m − 1)
=

λD ln σPϕ̇
λD

(ln 2)(σPϕ̇ − λD)
, (8.113)

with roughly an inverse proportionality with fluence rate ϕ̇. Thus, the higher
is the particle fluence rate ϕ̇, the shorter is the time required to reach the
maximum specific activity (amax)D. For example, (tmax)Co is 20.2 years at
ϕ̇ = 1013 cm−2 · s−1 and 5.61 years at ϕ̇ = 2× 1014 cm−2 · s−1, as also shown
in Table 8.2.

The time (tmax)D/(t1/2)D of (8.113) is plotted against the neutron fluence
rate ϕ̇ for cobalt-60, iridium-192, and molybdenum-99 in Fig. 8.12. The curves
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Table 8.2. Neutron activation characteristics for the saturation and depletion
models applied to neutron activation of cobalt-59 into cobalt-60, iridium-191 into
iridium-192, and molybdenum-98 into molybdenum-99 with neutron fluence rates
of 1013 cm−2 · s−1 and 2 × 1014 cm−2 · s−1

Daughter nuclide Cobalt-60 Iridium-192 Molybdenum-99
(1) (atheor)D(Ci/g) 1131 9215 479604

ϕ̇(cm−2·s−1) 1013 2×1014 1013 2×1014 1013 2×1014

(2) (asat)D(Ci/g) 102.7 2054 813.5 16270 0.216 4.32
(3) m 0.089 1.78 0.088 1.76 4.5×10−7 8.9×10−6

(4) xmax 0.341 1.90 0.338 1.89 9.4×10−6 1.5×10−4

(5) (ymax)D 0.789 0.268 0.791 0.270 1.00 1.00
(6) (amax)D(Ci/g) 81.0 549.8 643.3 4398 0.22 4.32
(7) tmax 20.18 y 5.61 y 284.0 d 79.3 d 1392.4 h 1107.2 h

Footnotes:

(1) (atheor)D = λDNA
AD

see (8.109)

(2) (asat)D = σPNA
AP

ϕ̇ see (8.107)

(3) m = σPϕ̇
λD

see (8.95)

(4) (xmax)D = m
(m−1)

ln m
ln 2 see (8.96)

(5) (ymax)D = 1
2xmax see (8.98)

(6) (amax)D = σPNA
AP

(ymax)D ϕ̇ see (8.112)

(7)
(tmax)D =

(t1/2)D
m

(xmax)D = ln 2
mλD

(xmax)D

= ln 2
σPϕ̇

(xmax)D = ln m
λD(m−1)

see (8.100)

for cobalt-60 and iridium-192 are essentially identical, because the activation
factors m for the two radionuclides are very similar to one another as a result
of similar ratios σP/λD for the two radionuclides.

8.4.6 Examples of Parent Depletion: Neutron Activation
of Cobalt-59, Iridium-191 and Molybdenum-98

Using the general data of Fig. 8.10 we plot in Fig. 8.13 the specific activity aD
of cobalt-60 in part (a) and of iridium-192 in part (b) against activation time
t for various neutron fluence rates ϕ̇ in the range from 1013 cm−2 · s−1 to 2×
1014 cm−2 ·s−1. The specific activity aD is calculated for the saturation model
(dashed curves) given by (8.105) and the depletion model (solid curves) given
in (8.103). Both equations are modified with incorporating (8.100) to obtain a
plot of aD against activation time t rather than against the general variable x.
The heavy dots on the depletion model curves represent the time (tmax)D at
which the maximum specific activity (amax)D occurs. The theoretical specific
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Fig. 8.12. Time (tmax)D/(t1/2)D required for reaching the maximum specific activ-
ity (amax)D plotted against neutron fluence rate ϕ̇ for cobalt-60, iridium-192, and
molybdenum-99. The data were calculated with the depletion model of radioacti-
vation

activities atheor of 1131 Ci/g and 9215 Ci/g for cobalt-60 and iridium-192,
respectively, are indicated on the figure.

The discrepancy between the saturation and depletion model is evident,
especially at high fluence rates and large activation times. An obvious break
down of the saturation model occurs when it predicts a specific activity aD
that exceeds the theoretical specific atheor.

Since both the saturation and the depletion model show identical initial
slopes, i.e., activation yields [see (8.84) and Fig. 8.8], one may use the satura-
tion model as a simple yet adequate approximation to the depletion model at
activation times short in comparison with tmax. However, when the goal is to
obtain optimal specific activities in the daughter of the order of the theoreti-
cal specific activity for a given radionuclide, such as the cobalt-60 source for
external beam radiotherapy or iridium-192 source for industrial radiography,
the saturation model fails and the depletion model should be used for esti-
mation of the required radioactivation times and specific activities expected.

Equation (8.111) gives a relationship between the maximum attainable
specific activity (amax)D and neutron fluence rate ϕ̇ for the depletion model.
We now calculate the fraction f of the theoretical specific activity (atheor)D
that (amax)D amounts to at a given fluence rate ϕ̇. The functional relation-
ship between f and (amax)D will allow us to estimate the maximum possible
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Fig. 8.13. Specific activity aD of cobalt-60 in part a and of iridium-192 in part b
plotted against activation time t for various neutron fluence rates. The specific
activity aD is calculated for the saturation model (dashed curves) given by (8.105)
and the depletion model (solid curves) given in (8.103). Both equations are used
in conjunction with (8.100) to obtain a plot of aD against activation time t rather
than against the variable x. The heavy dots on the depletion model curves represent
the time (tmax)D at which the maximum specific activity (amax)D occurs

specific activity for a given parent/daughter combination in a radioactivation
process with a given fluence rate ϕ̇. We write (amax)D as follows:

(amax)D = f(atheor)D = f
λDNA

AP
=

σPNA

AP
ϕ̇ e

m
1−m ln m , (8.114)
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Fig. 8.14. Specific activity fraction f defined as (amax)D/(atheor)D plotted against
the neutron fluence rate ϕ̇ for cobalt-60, iridium-192, and molybdenum-99. The data
for molybdenum are visible only at very high fluence rates because the activation
factor m at a given ϕ̇ is several orders of magnitude smaller for molybdenum-99 in
comparison with that of cobalt-60 and iridium-192

which gives

f = m e
m

1−m ln m = m
1

1−m , (8.115)

where we used the following relationships: m = σPϕ̇/λD and AD ≈ AP.
We then introduce m = αϕ̇, where α is defined as α = σP/λD, to obtain

f = (αϕ̇)1/(1−αϕ̇) (8.116)

and plot this expression in Fig. 8.14 for cobalt-60, iridium-192, and molybden-
um-99 in the fluence rate range from 1011 cm−2 · s−1 to 1017 cm−2 · s−1.
Again, the data for cobalt-60 and iridium-192 are essentially the same for
a given ϕ̇, since, fortuitously, the ratio σP/λD is almost identical for the
two radionuclides. The molybdenum-99 fraction f data, on the other hand,
are extremely small in comparison to those of the other two radionuclides
indicating very low practical specific activities in the practical fluence rate
range from 1012 cm−2 · s−1 to 1015 cm−2 · s−1.

Data from Fig. 8.14 show that for cobalt-60 and iridium-192 the fraction f
is 0.07 at ϕ̇ = 1013 cm−2 ·s−1 and 0.49 at ϕ̇ = 2×1014 cm−2 ·s−1. Same results
are provided in Table 8.2 with the ratio (amax)D/(atheor)D. Thus, to obtain a
higher specific activity in a cobalt-60 or iridium-192 target, we would have to
surpass the currently available reactor fluence rates ϕ̇. For example, to reach
f = 0.75, i.e., (amax)D = 850 Ci/g for a cobalt-60 source and 6900 Ci/g for
an iridium-192 source, a ϕ̇ of 1015 cm−2 · s−1 would be required. This would
result in an activation factor m of 8.8 and, as shown in Fig. 8.12 and given
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by (8.113), the activation time tmax to reach this specific activity would be
relatively short at 2.1 years for cobalt-60 and 30 days for iridium-192.

8.4.7 Neutron Activation of the Daughter:
Depletion-Activation Model

In the discussion of neutron activation above we have tacitly assumed that
the daughter nuclide is not affected by exposure to activation particles. In
situations where this assumption does not hold, account must be taken of the
activation of the daughter radionuclide into a granddaughter that may or may
not be radioactive. Ignoring the possibility of the granddaughter radioactivity,
we account for the daughter activation by subtracting σDϕ̇ND(t) from the
differential equation for dND/dt given in (8.88) to obtain

dND

dt
=σDϕ̇ND(t) − λDND(t) − σDϕ̇ND(t)

=σDϕ̇ND(t) − λ∗
DND(t) , (8.117)

where σP and σD are cross sections for activation of parent and daughter
nuclei, respectively; NP(t) and ND(t) are numbers of parent and daughter
nuclei, respectively; and ϕ̇ is the particle fluence rate. The modified decay
constant λ∗

D is defined as follows:

λ∗
D = λD + σDϕ̇ . (8.118)

Using the same initial conditions as in (8.88), we get the following solution
to (8.113):

ND(t) = NP(0)
σPϕ̇

λ∗
D − σPϕ̇

{
e−σPϕ̇t − e−λ∗

Dt
}

(8.119)

and the following expression for the daughter activity AD(t)

AD(t)=λDND(t) = NP(0)
σPϕ̇λD

λ∗
D − σPϕ̇

{
e−σPϕ̇t − e−λ∗

Dt
}

=

=σPϕ̇NP(0)
(λD/λ∗

D)
1 − σPϕ̇/λ∗

D

{
e−σPϕ̇t − e−λ∗

Dt
}

. (8.120)

To obtain a general expression for the daughter activity in the “parent
depletion-daughter activation model” we now introduce new parameters and
variables, similarly to the approach we took in the discussion of the decay
series and the radioactivation depletion model, as follows:

k∗ = σP/σD (8.121)

ε∗ =
λ∗

D

λD
= 1 +

σDϕ̇

λD
(8.122)

m =
σPϕ̇

λD
(8.123)
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m∗ =
σPϕ̇

λ∗
D

=
m

ε∗ (8.124)

x =
σPϕ̇

ln 2
t =

m∗λ∗
D

ln 2
t (8.125)

yP =
NP(t)
NP(0)

= e−σPϕ̇t = e−x ln 2 =
1
2x

(8.126)

y∗
D =

AD(t)
σPϕ̇NP(0)

=
1

ε(1 − m∗)

{
1
2x

− 1
2x/m∗

}
. (8.127)

Equation (8.127) for the normalized daughter activity y∗
D of the depletion-

activation model is similar to (8.103) for yD of the depletion model, except
for the factor ε∗ which is larger than 1 and depends on ϕ̇. In the depletion
model σD = 0, k∗ = ∞ and ε∗ = 1, while for the depletion-activation model
σD �= 0 and ε∗ > 1. Thus, y∗

D will behave similarly to the yD in the depletion
model: rise from 0 to reach a maximum (y∗

max)D at x = (x∗
max)D and then

asymptotically decrease to zero at large x.
Similarly to (8.45) we find for (x∗

max)D

(x∗
max)D =

m∗ lnm∗

(m∗ − 1) ln 2
(8.128)

and similarly to (8.49) we find for (y∗
max)D

(y∗
max)D =

1
ε2x∗

max
=

1
ε
e−(ln 2)x∗

max . (8.129)

Similarly to (8.111), the maximum specific activity (a∗
max)D of the daughter

is expressed as

(a∗
max)D =

(
σPNA

AP

)
(y∗

max)Dϕ̇ =
(

σPNA

AP

)
ϕ̇

ε∗ e− m∗ ln m∗
1−m∗ . (8.130)

Since both ε∗ and m∗ depend on ϕ̇, the question arises about the behavior
of (a∗

max)D in the limit as ϕ̇ → ∞.
We determine lim

ϕ̇→∞
(a∗

max)D as follows:

lim
ϕ̇→∞

(a∗
max)D =

(
σPNA

AP

)
lim

ϕ̇→∞
ϕ̇

ε∗ e
− σPϕ̇/λ∗

D
σPϕ̇/λ∗

D−1 ln(σPϕ̇/λ∗
D)

=
(

λDNA

AP

){
ke− k∗ ln k∗

k∗−1

}
≈ g × (atheor)D , (8.131)

where we define g as

g = k∗e− k∗ ln k∗
1−k∗ . (8.132)

A plot of the function g against the parameter k∗ in the range from k∗ = 10−3

to k∗ = 103 is given in Fig. 8.15. We note that in general at any k∗, as σD → 0,
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Fig. 8.15. A plot of function g of (8.132) against parameter k∗ = σP/σD

k∗ → ∞, the function g approaches 1, and (a∗
max)D transforms into (amax)D

of (8.110).
In the limit for ϕ̇ → ∞, the maximum specific activity (a∗

max)D in the
depletion-activation model thus approaches a limit g(atheor)D that is lower
than the (atheor)D limit of the depletion model, since g < 1. The value g = 1
applies to the depletion model in which σD = 0, ε = 1 and k∗ = ∞.

8.4.8 Example of Daughter Neutron Activation: Iridium-192

A closer investigation of the iridium radioactivation reveals a considerably
more complicated picture than the one given in Sect. 8.4.5:

• Firstly, iridium has two stable isotopes: iridium-191 (Ir-191) with a nat-
ural abundance of 37.2% (σP = σ191 = 954 b) and iridium-193 with a
natural abundance of 63.7% (σP = σ193 = 100 b). The Ir-191 isotope is of
interest in industry and medicine, since iridium-192, the product of neu-
tron activation has a reasonably long half-life of 73.8 days. In contrast,
neutron activation of Ir-193 results in Ir-194 that decays with a short
half-life of 19.3 hours. Since the Ir-192 radionuclide is produced through
the neutron activation of the Ir-191 stable nuclide, the natural mixture
of Ir-191 (37.3%) and Ir-193 (62.7%) in the activation target will result
in a lower final specific activity of the Ir-192 source in comparison with
activation of a pure Ir-191 target.
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Fig. 8.16. A plot of normalized activity functions against x for iridium-191 neutron
activation: zD for the saturation model (dashed curves); yD for the depletion model;
and y∗

D for the depletion-activation model (heavy solid curves). The functions are
plotted for two neutron fluence rates: ϕ̇ = 1013 cm−2·s−1 and ϕ̇ = 2×1014 cm−2·s−1

• Secondly, iridium-192, the daughter product of iridium-191 neutron acti-
vation, itself has a significant cross section for neutron activation σD =
σ192 = 1420 b in contrast to the parent cross section σP = σ191 = 954 b.
As shown in Sect. 8.4.5, the activation of the daughter product will affect
the specific activity of the iridium-192 source.

In Fig. 8.16 we plot the normalized activity functions for iridium-191: zD of
(8.105) for the saturation model; yD of (8.103) for the depletion model; and
y∗
D of (8.127) for the depletion-activation model. The functions are plotted

against the variable x of (8.100) for two neutron fluence rates: ϕ̇ = 1013 cm−2·
s−1 and ϕ̇ = 2×1014 cm−2 · s−1. The relevant parameters for these functions
and three activation models are listed in Table 8.3.

The following features are of note:

1. For all three functions (zD, yD, and y∗
D) the initial slopes at x = 0 are

identical and equal to (ln 2)/m.
2. For the saturation model zD saturates at 1; for the depletion model yD

reaches its maximum of (ymax)D at (xmax)D; for the depletion-activation
model y∗

D reaches its maximum of (y∗
max)D at (x∗

max)D.
3. (x∗

max)D and (y∗
max)D for the depletion-activation model decrease in com-

parison to (xmax)D and (ymax)D for the depletion model, respectively. The
larger is ϕ̇, the larger is the discrepancy between the two parameters.
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Fig. 8.17. Maximum attainable specific activity for iridium-192 against neutron
fluence rate ϕ̇ for the three activation models: saturation model (dashed curve);
depletion model (solid curve); and depletion-saturation model (heavy solid curve).
An assumption is made that the activation parent target contains pure iridium-191
rather than a natural mixture of iridium-191 and iridium-193 equal to 37.3% and
62.7%, respectively

4. (y∗
max)D no longer occurs at the point of ideal equilibrium where yP = y∗

D,
in contrast to (ymax)D of the daughter in the depletion model that occurs
at the point of ideal equilibrium.

Figure 8.17 shows a plot of the maximum attainable specific activity for
iridium-192 against neutron fluence rate ϕ̇ for the three activation mod-
els: saturation model with dashed curve; depletion model with solid curve;
depletion-activation model with heavy solid curve. The saturation model sat-
urates at σPϕ̇NA/AP, the depletion model saturates at the theoretical specific
activity for iridium-192 at 9215 Ci/g, as also shown in Fig. 8.11, while the
depletion-activation model saturates at g × (atheor)Ir−192 = 2742 Ci/g, where
g = 0.3, as given in (8.132) with k∗ for iridium-192 equal to 0.672, as shown
in Fig. 8.16 (Note: k∗ = σP/σD = 954/1420).

Figure 8.17 shows that when large specific activities of iridium-192 are
produced with fluence rates of the order of 1013 cm−2 · s−1 or higher, the
best model for estimation of the specific activity of iridium-192 sample is the
depletion-activation model.

In Fig. 8.18 we plot aD, the specific activity of iridium-192, against ac-
tivation time t normalized to (t1/2)D, for the three radioactivation models
(saturation model with dashed curve, depletion model with solid curve, and
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Table 8.3. Parameters of the depletion model and the depletion-activation model
applied to neutron activation of iridium-191 nuclide into iridium-192 nuclide

Particle fluence Definition
ϕ̇ = ϕ̇ =
1013 cm−2 · s−1 2 × 1014 cm−2 · s−1

λD (s−1) 1.087 × 10−7 1.087 × 10−7 λD = ln 2/(t1/2)D
λ∗

D (s−1) 1.229 × 10−7 3.927 × 10−7 λ∗
D = λD + σDϕ̇ (a)

ε 1.0 1.0 ε = 1
ε∗ 1.13 3.61 ε∗ = λ∗

D/λD

m 0.088 1.76 m = σPϕ̇/λD
(b)

m∗ 0.078 0.49 m∗ = σDϕ̇/λ∗
D = m/ε∗

(xmax)D 0.338 1.89 (xmax)D = m ln m/[(m − 1) ln 2]
(x∗

max)D 0.311 0.98 (x∗
max)D = m∗ ln m∗/[(m∗ − 1) ln 2]

(ymax)D 0.793 0.270 (ymax)D = 1/2(xmax)D

(y∗
max)D 0.713 0.140 (y∗

max)D = 1/(ε∗2(x∗
max)D)

(amax)D 643.8 4398 (amax)D = (σPNA/AP)ϕ̇(ymax)D
(a∗

max)D 580.0 2275 (a∗
max)D = (σPNA/AP)ϕ̇(y∗

max)D
(tmax)D/(t1/2)D 3.84 1.07 (tmax)D/(t1/2)D = (xmax)D/m
(t∗

max)D/(t1/2)D 3.53 0.56 (t∗
max)D/(t1/2)D = (x∗

max)D/(m∗ε∗)

(a) σD(Ir - 192) = 1420 b;
(b) σP(Ir - 191) = 954 b

depletion-activation model with heavy solid curve) and two fluence rates ϕ̇:
1013 cm−2 · s−1 in the top figure and 2 × 1014 cm−2 · s−1 in the bottom fig-
ure. The appropriate values for the parameters (amax)D, (tmax)D, (a∗

max)D,
and (t∗max)D are given in Table 8.3. Note that an assumption is made that
the iridium activation sample contains only the iridium-191 stable nuclide
rather than a natural mixture of iridium-191 and iridium-193. Thus to get
the specific activity for a natural sample of iridium, the natural abundance
of iridium-191 in the sample would have to be taken into account.

Again we note that the activation of the daughter product iridium-192
has a significant effect on the daughter specific activity; this is especially
pronounced at larger fluence rates, as shown in Fig. 8.18.

The following conclusions can now be made:

• The best model for description of radioactivation kinematics is the deple-
tion model when the daughter product is not activated by the exposure
to radioactivation particles. An example for the use of this model is the
activation of cobalt-59 into cobalt-60.

• The best model for describing the radioactivation kinematics in situations
where the daughter product is activated by the radioactivation particles
is the depletion-activation model. An example for the use of this model is
the neutron activation of iridium-191 into iridium-192.

• The saturation model is only an approximation to the other two models.
It is valid only at very short activation times or when σPϕ̇/λD < 10−3.
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Fig. 8.18. Specific activity of iridium-192 against activation time t normalized to
(t1/2)D for iridium-192 for three radio-activation models: saturation model with
dashed curves; depletion model with solid curves; and depletion-activation model
with heavy solid curves. Part a is for a fluence rate ϕ̇ of 1013 cm−2 ·s−1; part b is for
a fluence rate ϕ̇ of 2 × 1014 cm−2 · s−1. An assumption is made that the activation
parent target contains pure iridium-191

An example for the use of this model is the neutron activation of
molybdenum-98 into molybdenum-99.
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8.4.9 Practical Aspects of Radioactivation

Currently, the list of known nuclides contains some 275 stable nuclides and
over 3000 radioactive nuclides (radionuclides). Some 200 radionuclides are
used in industry and medicine and most of them are produced through ra-
dioactivation.

A variety of particles may be used for radioactivation; however, most com-
monly radioactivation is achieved by bombarding stable target nuclei with
neutrons produced by nuclear reactors or by protons produced by cyclotrons.

Nuclear reactors are the main source of radionuclides used in medicine.
These radionuclides are produced either through neutron activation of stable
target nuclei placed into the reactor or by separation from fission fragments
resulting from the fission process of the nuclear fuel in which fuel nuclei split
into two lighter fragments and two or three fission neutrons.

Activation with Thermal Neutrons

Thermal neutrons produced in nuclear reactors are the most common parti-
cles used for radioactivation. This type of the radioactivation process is then
referred to as neutron activation or neutron capture and produces neutron-
rich unstable isotopes that decay through β− decay into more stable config-
urations. Two types of neutron activation processes occur commonly: (n, γ)
and (n, p). The (n, γ) process results in emission of γ rays, while the (n, p)
process results in emission of protons.

Sources produced by neutron activation in a nuclear reactor normally
contain a mixture of stable parent nuclei in addition to radioactive daughter
nuclei. The parent nuclei thus act as carriers of daughter nuclei and effectively
decrease the specific activity of the source. For example, the practical specific
activity of cobalt-60 sources is limited to about 300 Ci/g or ∼25% of the
carrier-free theoretical activity of 1133 Ci/g. This means that in a cobalt-60
teletherapy source ∼75% of the source mass is composed of stable 59Co nuclei
and only ∼25% is composed of radioactive 60Co nuclei. The reactor-produced
molybdenum-99, on the other hand, has a practical specific activity that is
several orders of magnitude lower than the theoretical specific activity of
molybdenum-99.

The (n, γ) reaction is much more common than the (n, p) reaction and
usually produces radioactive products that are not carrier-free, while the
(n, p) reaction can produce carrier-free sources. In non-carrier-free sources,
a chemical separation of the daughter from the parent is not possible be-
cause the parent and daughter are isotopes of the same element; a physical
separation, while possible, is too expensive.

• In a (n, γ) reaction the target nucleus A
Z X captures a neutron and is con-

verted into an excited nucleus A+1
Z X∗ that undergoes an immediate de-

excitation to its ground state through emission of a γ ray. Note that A
Z X
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and A+1
Z X are isotopes of the same chemical element. The schematic rep-

resentation of the reaction is as follows:
A
Z X + n = A+1

Z X∗ + γ or A
Z X(n, γ)A+1

Z X . (8.133)

• In a (n, p) reaction the target nucleus A
Z X captures a neutron and promptly

ejects a proton to become converted into a new nucleus A
Z−1Y. Note that

A
Z X and A

Z−1Y do not represent the same chemical element. Schematically
the reaction is represented as follows:

A
Z X + n = A

Z−1Y + p or A
Z X(n, p) A

Z−1Y . (8.134)

From a medical physics perspective the most important neutron activation
processes are:

• Production of cobalt-60 sealed sources for use in external beam radiother-
apy with typical initial source activity of the order of 370 TBq (104 Ci).

• Production of iridium-192 sealed sources for use in brachytherapy with
typical activities of 0.37 TBq (10 Ci).

• Production of molybdenum-99 radioisotope for generating the technetium-
99m (99mTc) radionuclide for use in nuclear medicine.

Activation with Protons or Heavier Charged Particles

Protons produced by cyclotrons are used in the production of proton-rich
unstable radionuclides that decay through β+ decay or electron capture into
more stable configurations. When striking a target material, protons may
cause nuclear reactions that produce radionuclides in a manner similar to
neutron activation in a reactor. However, because of their positive charge,
protons striking the target must have relatively high kinetic energies, typi-
cally 10–20 MeV, to penetrate the repulsive Coulomb barrier surrounding the
positively charged nucleus. Many proton activation reactions are endoergic
which means that energy must be supplied by the projectile for the reaction
to occur. The minimum energy that will allow the reaction to occur is referred
to as the threshold energy.

Proton capture by a target nucleus changes the atomic number from Z for
the parent to Z + 1 for the daughter nucleus allowing production of carrier-
free radionuclides for use in medicine, because a chemical separation of the
newly produced daughter radionuclide from the remaining parent nuclide is
possible. Positron emitters produced for use in medicine by proton activa-
tion in cyclotrons generally have much shorter half-lives than radionuclides
produced for use in medicine by neutron activation in nuclear reactors.

Cyclotrons generally produce smaller quantities of radioactivity than do
nuclear reactors because:

1. cross sections for proton capture are lower by several orders of magnitude
than those for neutron capture and they are strongly energy dependent;

2. the proton beam is monodirectional and is attenuated in the target;
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3. cyclotron particle fluence rates are generally lower than those produced
by nuclear reactors.

The cyclotron-produced radionuclides are position emitters used in posi-
tron emission tomography (PET) scanners for diagnostic imaging. The four
most important position emitting radionuclides used in medical PET imaging
are: fluorine-18, carbon-11, nitrogen-13 and oxygen-15.

The nuclear reaction energy Q also known as the Q value for a nuclear
reaction provides the energy release or energy absorption during the nuclear
reaction. In general the Q value is determined in one of the following two
manners:

1. The sum of nuclear rest energies of the reaction products (i.e., the total
rest energy after reaction) is subtracted from the sum of nuclear rest
energies of the reactants (i.e., the total rest energy before reaction).

2. The sum of nuclear binding energies of the reactants (i.e., the total bind-
ing energy before reaction) is subtracted from the sum of nuclear binding
energies of reaction products (i.e., the total binding energy after reac-
tion).

The Q value obtained with the two methods will be either positive or negative.

• For Q > 0 the reaction is called exoergic and the excess energy is shared
between the two reaction products.

• For Q < 0 the reaction is called endoergic and for the reaction to occur,
energy must be supplied in the form of the kinetic energy of the projectile.

As an example we calculate the nuclear reaction energy Q for the activation of
oxygen-18 into flurorine-18 in a proton cyclotron. The reaction is as follows:

18
8 O + p → 18

9 F + n + Q(−2.44 MeV) (8.135)

and the Q value of −2.44 MeV is calculated with data from Table 8.6

Method 1:

Q=

{∑
i

Mic
2

}
before

−
{∑

i

Mic
2

}
after

=

=
{
M(188 O)c2 + Mpc2}− {

M(189 F)c2 + Mnc2} =

={16762.0227 + 938.272} MeV − {16763.1673 + 939.5654} MeV =

=−2.44 MeV. (8.136)

Method 2:

Q=

{∑
i

(EB)i

}
after

−
{∑

i

(EB)i

}
before

=

=137.3693 MeV − 139.8071 MeV = −2.44 MeV. (8.137)
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Both methods produce the same result: −2.44 MeV. The production of
fluorine-18 in a cyclotron is thus an endoergic reaction and energy must be
supplied for the reaction to occur.

In general, for endoergic reactions to occur the projectiles must have a
certain minimum threshold kinetic energy (EK)thr that exceeds the absolute
value of Q, so that the total momentum for before and after the interaction is
conserved. The general relationship for the threshold of endoergic reactions
was derived in (4.13), and based on that result we write the threshold kinetic
energy (EK)thr for the proton with rest mass Mp, activating target nuclide
of rest mass Mt, as

(EK)thr = −Q

{
1 +

Mp

Mt

}
. (8.138)

For example, the threshold energy for fluorine-18 production from oxygen-
18 in a proton cyclotron at 2.58 MeV is slightly higher than the absolute
value of |Q| = 2.44 MeV. The threshold energy of 2.58 MeV for fluorine-18
is determined from (8.138) as follows:

(EK)thr =−Q

{
1 +

Mpc2

M(188 O)c2

}
=

=−(−2.44 MeV)
{

1 +
938.272 MeV

16762.0227 MeV

}
= 2.58 MeV.

(8.139)

For cyclotrons, rather than providing a fluence rate as is done for reactor
produced neutrons, one provides a beam current, usually expressed in µA,
where 1 µA of current is equal to 6.25 × 1012 electronic charges per second,
i.e., 6.25 × 1012 e/s. Thus, a proton beam of 1 µA corresponds to 6.25 × 1012

protons; a helium He2+ beam corresponds to 3.125 × 1012 helium ions.

Targets used in charged particle activation are either thin or thick.

• The thickness of a thin target is such that the target does not appreciably
attenuate the charged particle beam.

• Charged particles traversing a thick target lose energy through Coulomb
interactions with electrons of the target and this affects the activation
yield, since the cross section for activation depends on charged particle
energy. The particle beam is completely stopped in a thick target or it is
degraded in energy to a level below the threshold energy for the particular
nuclear reaction. Similarly to the approach that one takes with thick x-ray
targets assuming they consist of many thin x-ray targets, one may assume
that a thick target in charged particle activation (CPA) consists of a large
number of thin targets, each one characterized by a given charged particle
kinetic energy and reaction cross section. The kinetic energy for each slice
is determined from stopping power data for the given charged particle in
the target material.
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• Target materials used in production of positron-emitting nuclides are ei-
ther in a gaseous or liquid state.

• Cyclotron targets are most commonly of the thick target variety resulting
in complete beam absorption in the target material.

• Essentially all energy carried into the target by the beam is transformed
into heat because of charged particle Coulomb interactions with orbital
electrons of the target atoms. Thus, targets are cooled with circulating
helium gas.

• Only a small fraction of one percent of the charged particle beam is used
up for induction of activation, the rest is dissipated as heat.

The derivations presented in Sect. 8.4 for neutron activation could in princi-
ple be generalized to charged particle activation (CPA); however, the issue of
beam attenuation in thick targets that are routinely used for CPA of medi-
cal positron-emitting radionuclides complicates matters considerably. On the
other hand, the specific activities produced by CPA are several orders of mag-
nitude lower than specific activities produced in neutron activation, so that
in general parent nuclide depletion is not of concern in CPA. In Sect. 8.4 it
was established that the depletion model should be used for activation fac-
tors m exceeding 10−3. Since typical values of m in CPA are of the order of
10−7, it is obvious that daughter activation in CPA can be calculated using
the simple saturation model that accounts for the daughter decay during the
activation procedure.

Assuming that there is no charged particle beam attenuation in the target
(thin target approximation), the daughter activity AD(t), similarly to the
neutron activation case of (8.93), can be written as follows:

AD(t) = In�σP(1 − e−λDt) , (8.140)

where

I is the intensity of the charged particle beam in particles per unit time,
n� is the number of target nuclei per volume in cm−3,
x is the target thickness in cm,
σP is the reaction cross section of the parent nuclei at the energy of the

charged particle beam in barn (1 b = 10−24 cm2).

Positron-emitting radionuclides are used in positron emission tomography
(PET) scanning; a non-invasive imaging technique that provides a functional
image of organs and tissues, in contrast to CT scanning and MRI scanning
that provide anatomic images of organs and tissues. The positron-emitting
radionuclides are attached to clinically useful biological markers that are used
in studies involving various metabolic processes in cancer diagnosis and treat-
ment (see Sect. 8.10). The main characteristics of the four most commonly
used radionuclides in PET scanning are provided in Table 8.4.
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Table 8.4. Main characteristics of four most common positron emitters produced
in cyclotrons for use in medicine

Radionuclide Specific
activity

Target Production reaction Q value
(MeV)

Half-life
(minutes)

Carbon-11 8.4 × 108 Nitrogen-14 14
7 N + p → 11

6 C + α -2.92 20.4

Nitrogen-13 1.4 × 109 Oxygen-16 16
8 O + p → 13

7 N + α -5.22 10

Oxygen-15 6.0 × 109 Nitrogen-15 15
7 N + p → 15

8 O + n -3.54 2.1

Fluorine-18 9.5 × 107 Oxygen-18 18
8 O + p → 18

9 F + n -2.44 110

8.5 Origin of Radioactive Elements (Radionuclides)

Radioactive nuclides (radionuclides) are divided into two categories:

1. Naturally-occurring,
2. Man-made or artificially produced.

There is no essential physical difference between the two categories of ra-
dioactivity and the division is mainly historical.

Henri Becquerel discovered natural radioactivity in 1896 when he noticed
that uranium spontaneously produced an invisible, penetrating radiation that
affected photographic plates.

Irene Joliot-Curie and Frédéric Joliot discovered artificial radioactivity in
1934 during a series of experiments in which they bombarded boron samples
with naturally occurring α particles and produced nitrogen that was unstable
and emitted positrons (β+ decay).

8.5.1 Man-Made (Artificial) Radionuclides

The man-made (artificial) radionuclides are manufactured by bombarding
stable or very long-lived nuclides with energetic particles produced by ma-
chines of various kinds (mainly nuclear reactors, cyclotrons or linear acceler-
ators). The process is referred to as radioactivation. Since Irene Joliot-Curie
and Frédéric Joliot discovered artificial radioactivity in 1934 over 3000 differ-
ent artificial radionuclides were synthesized and investigated. The production
of new nuclides is referred to as nucleosynthesis.

8.5.2 Naturally-Occuring Radionuclides

The naturally occurring radioactive elements are almost exclusively members
of one of four radioactive series that all begin with very long-lived parents
that have half-lives of the order of the age of the earth.
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Table 8.5. The four naturally occurring radioactive series

Name of Parent First nα Found in Half-life Stable
series decay nature today (109 y) end-product

Thorium 232
90 Th 228

88 Ra + α 6 YES 14.05 208
82 Pb

Actinium 235
92 U 231

90 Th + α 7 YES 0.704 207
82 Pb

Neptunium 237
93 Np 233

91 Pa + α 7 NO 2.144 × 10−3 209
83 Bi

Uranium 238
92 U 234

90 Th + α 8 YES 4.47 206
82 Pb

The four naturally occurring series are named as follows:

• Thorium series originates with thorium-232,
• Actinium series originates with uranium-235,
• Neptunium series originates with neptunium-237,
• Uranium series originates with uranium-238.

The main characteristics of the four naturally occurring series are listed in
Table 8.5. The series begin with a specific parent nucleus of very long half-life
that decays through several daughter products to reach eventually a stable
lead nuclide or a stable bismuth-203 isotope.

It is assumed that collapsing stars created all heavy radioactive elements
in approximately equal proportions; however, these elements differ in their
half-lives and this resulted in significant variations in today’s abundance of
heavy elements. Neptunium-237 has a significantly shorter half-life than the
other three parent nuclei listed in Table 8.5. It does no longer occur natu-
rally because it has completely decayed since the formation of the earth some
4.6 × 109 years ago. The other three parent nuclei (232Th, 235U, and 238U)
with much longer half-lives are still found in nature and serve as parents of
their own series.

Cosmic ray protons continually produce small amounts of radioactive ma-
terials. The most notable example is carbon-14 that decays with a half-life of
5730 years and is used for the so-called carbon dating of once-living objects
not older than some 50 000 years.

A few naturally-occurring complete radioactive elements lighter than lead,
the endpoint of the three naturally occurring decay series, can be found in
the earth. Most notably among them is potassium-40 (40K) with a half-life of
1.277 × 109 years. Since it is present in all foods, it accounts for the greatest
proportion of the naturally-occuring radiation load through ingestion among
humans.

The existence of the four radioactive series with long-lived parent nuclei
serves as the source of many short-lived daughters that are in transient or
secular equilibrium with their parents. For example, radium-226 with its half-
life of 1600 years would have disappeared long ago were it not for the uranium-
238 decay series that provides constant replenishment of radium-226 in the
environment.
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8.5.3 Radionuclides in the Environment

Over 60 radionuclides can be found in the environment and some of them
pose a health hazard to humans. They are grouped into three categories as
follows:

1. primordial – originate from before the creation of the Earth;
2. cosmogenic – continually produced by cosmic radiation hitting the Earth;
3. man-made or artificial – produced through the process of radioactivation.

Pathways of radionuclides into environment:

1. atmospheric pathway (through human activity, radioactive decay, cosmo-
genic reactions),

2. water pathway (deposited in water from air or from ground through ero-
sion, seepage, leaching, mining, etc.),

3. food chain pathway (radionuclides in water or air may enter the food
chain).

Pathways of radionuclides into human body:

1. ingestion,
2. inhalation,
3. through skin.

8.6 General Aspects of Radioactive Decay Processes

Radioactive nuclides, either naturally occurring or artificially produced by
nuclear reactions, are unstable and strive to reach more stable nuclear con-
figurations through various processes of spontaneous radioactive decay that
involve transformation to a more stable nuclide and emission of energetic
particles. General aspects of spontaneous radioactive decay may be discussed
using the formalism based on the definitions of activity A and decay con-
stant λ without regard for the actual microscopic processes that underlie the
radioactive disintegrations.

A closer look at radioactive decay processes shows that they are divided
into six main categories:

1. α decay
2. β decay
3. γ decay
4. Spontaneous fission
5. Proton emission decay
6. Neutron emission decay.

The β decay actually encompasses three decay processes (β+, β−, and elec-
tron capture) and the γ decay encompasses two processes (γ decay and in-
ternal conversion).
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There are many different spontaneous radioactive decay modes that an
unstable nucleus may undergo in its quest for reaching a more stable nuclear
configuration. On a microscopic scale the nine most important radioactive
decay modes are:

1. α decay
2. β− decay
3. β+ decay
4. Electron capture
5. γ decay
6. Internal conversion
7. Spontaneous fission
8. Proton emission decay
9. Neutron emission decay

Nuclear transformations are usually accompanied by emission of energetic
particles (charged particles, neutral particles, photons, etc.). The particles
released in nuclear decay are as follows:

• α particles in α decay,
• electrons in β− decay,
• positrons in β+ decay,
• neutrinos in β+ decay,
• antineutrinos in β− decay,
• γ rays in γ decay,
• atomic orbital electrons in internal conversion,
• neutrons in spontaneous fission and in neutron emission decay,
• heavier nuclei in spontaneous fission,
• protons in proton emission decay.

In each nuclear transformation a number of physical quantities must be con-
served. The most important of these quantities are:

1. Total energy
2. Momentum
3. Charge
4. Atomic number
5. Atomic mass number (number of nucleons).

The total energy of particles released by the transformation process is equal
to the net decrease in the rest energy of the neutral atom, from parent P
to daughter D. The disintegration (decay) energy, often referred to as the
Q value for the radioactive decay, is thus defined as follows:

Q = {MP − (MD + m)} c2 , (8.141)

where MP, MD, and m are the nuclear rest masses (usually given in atomic
mass units u) of the parent, daughter, and emitted particles, respectively.
The energy equivalent of u is 931.5 MeV.
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Often atomic masses rather than nuclear masses are used in calculations
of Q values for radioactive decay. In many decay modes the electron masses
cancel out, so that it makes no difference if atomic or nuclear masses are used
in (8.141). On the other hand, there are situations where electron masses
do not cancel out (e.g., β+ decay) and there special care must be taken to
account for all electrons involved when atomic rest masses are used in (8.141).

For radioactive decay to be energetically possible the Q value must be
greater than zero. This means that spontaneous radioactive decay processes
are exogenic. For Q > 0, the energy equivalent of the Q value is shared
as kinetic energy between the particles emitted in the decay process and
the daughter product. Since the daughter has a much larger mass than the
other emitted particles, the kinetic energy acquired by the daughter is usually
negligibly small.

In light (low atomic number) elements nuclear stability is achieved when
the number of neutrons N and the number of protons Z is approximately
equal (N ≈ Z). As the atomic number increases, the N/Z ratio for stable
nuclei increases from 1 at low Z elements to about 1.5 for heavy stable ele-
ments.

• If a nucleus has a N/Z ratio too high for stability, it has an excess of
neutrons and is called neutron-rich. It decays through conversion of a
neutron into a proton and emits an electron and anti-neutrino. This pro-
cess is referred to as β− decay. If the N/Z ratio is extremely high, a direct
emission of a neutron is possible.

• If a nucleus has a N/Z ratio that is too low for stability, it has an excess
of protons and is called proton-rich. It decays through conversion of a
proton into a neutron and emits a positron and a neutrino (β+ decay).
Alternatively, the nucleus may capture an orbital electron, transform a
proton into a neutron and emit a neutrino (electron capture). A direct
emission of a proton is also possible, but less likely, unless the nuclear
imbalance is very high.

8.7 Alpha Decay

Alpha (α) decay was the first mode of radioactive decay detected and in-
vestigated during the 1890s. It played a very important role in early mod-
ern physics experiments that led to the currently accepted Rutherford-Bohr
atomic model (see Chap. 2) and is characterized by a nuclear transformation
in which an unstable parent nucleus P attains a more stable nuclear config-
uration (daughter D) through ejection of an α particle. This α particle is a
helium-4 nucleus that has, with a binding energy of 7 MeV/nucleon, a very
stable configuration.

While α decay was well known since the discovery of natural radioactivity
by Henri Bequerel in 1896 and α particles were already used as nuclear probes
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by Hans Geiger and Ernest Marsden in 1909, its exact nature was finally
unraveled much later in 1928 by George Gamow.

In α decay the number of protons and neutrons is conserved by producing
a 4

2He nucleus (α particle) and lowering the parent’s A and Z by 4 and 2,
respectively, i.e.,

A
Z P → A−4

Z−2 D + 4
2He . (8.142)

• When an α particle is emitted by the parent (Z, A) nucleus, the atomic
number of the parent decreases by 2 and it sheds two orbital electrons
from its outermost shell to become a neutral daughter atom (Z−2, A−4).

• The energetic α particle slows down in moving through the absorber
medium and captures two electrons from its surroundings to become a
neutral 4

2He atom.
• Typical kinetic energies of α particles released by naturally occurring

radionuclides are between 4 MeV and 9 MeV, corresponding to a range in
air of about 1 cm to 10 cm, respectively, and in tissue of about 10−3 cm
and 10−2 cm, respectively.

The Coulomb barrier that an α particle experiences on the surface of the
parent nucleus is of the order of 30 MeV; thus classically an α particle with a
kinetic energy of 4 to 9 MeV cannot overcome the barrier. However, the quan-
tum mechanical effect of tunneling gives the α particle a certain finite prob-
ability for tunneling through the potential barrier and escaping the parent
nucleus P that transforms into the daughter nucleus D. Thus, positive decay
energy Qα and the quantum mechanical effect of tunneling (see Sect. 1.25)
make the α decay possible.

8.7.1 Decay Energy in α Decay

The decay energy Qα released in α decay appears as kinetic energy shared
between the α particle and the daughter nucleus and is given as follows:

Qα =
{M(P) − [M(D) + M(42He)]

}
={M(P) − [M(D) + M(α)]} c2 , (8.143)

where M(P), M(D), and M(42He) are the atomic rest masses and M(P), M(D)
and M(α) are the nuclear rest masses of the parent, daughter, and α particle,
respectively.

Since neither the total number of protons nor the total number of neutrons
changes in the α decay, Qα can also be expressed in terms of binding energies
EB of the parent, daughter and helium nuclei, as follows:

Qα = EB(D) + EB(α) − EB(P) , (8.144)

where

EB(D) is the total binding energy of the daughter D nucleus,
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EB(α) is the total binding energy of the α particle (28.3 MeV),
EB(P) is the total binding energy of the parent P nucleus.

The definition of nuclear binding energy EB is given in (1.13). For α decay to
be feasible, Qα must be positive. This implies that the combined total binding
energies of the daughter nucleus and the α particle nucleus must exceed the
total binding energy of the parent nucleus. Or, similarly, this implies that the
rest mass of the parent nucleus must exceed the combined rest masses of the
daughter nucleus and the α particle.

Two entities are produced in α decay: the α particle and the daughter
product. For decay of the parent nucleus at rest this implies that the α particle
and the daughter will acquire momenta p equal in magnitude but opposite in
direction and kinetic energies equal to (EK)α = p2/(2mα) for the α particle
and (EK)D = p2/(2MD) for the daughter.

• α decay occurs commonly in nuclei with Z > 82 because in this range
of atomic number Z, decay energies Qα given by (8.143) or (8.144) are
positive and of the order of ∼ 4 MeV to ∼ 9 MeV.

• The Qα > 0 results mainly from the high total binding energy of the 4
2He

nucleus (28.3 MeV) that is significantly higher than for nuclei of 3
2He, 3

1H,
and 2

1H for which spontaneous ejection from parent nuclei energetically is
not feasible.

• Ejection of a heavy nucleus from the parent nucleus is energetically possi-
ble (large Q value); however, the effect of tunneling through the potential
barrier is then also much more difficult for the heavy nucleus in compar-
ison with tunneling for the α particle.

• Emission of heavy particles from parent nuclei with Z > 92 is possible
and represents a mode of radioactive decay referred to as spontaneous
fission, as discussed in Sect. 8.14.

The total decay energy Qα must be positive for α decay to occur and is
written as follows:

Qα =(EK)α + (EK)D =
p2

2mα
+

p2

2M(D)
=

p2

2mα

{
1 +

mα

M(D)

}

=EK)α

{
1 +

mα

M(D)

}
. (8.145)

Since mα � M(D), the α particle recoils with a much higher kinetic energy
than the daughter, i.e., the α particle acquires a much larger fraction of the
total disintegration energy Qα than does the daughter.

From (8.145) we determine (EK)α, the kinetic energy of the α particle, as

(EK)α =
Qα

1 + mα

M(D)
. (8.146)



8.7 Alpha Decay 319

After inserting Qα from (8.143) we get

(EK)α =
M(P)c2 − M(D)c2 − mαc2

1 + mα

MD

≈{
M(P)c2 − M(D)c2 − mαc2}{AP − 4

AP

}
= Qα

{
AP − 4

AP

}
,

(8.147)

where AP is the atomic mass number of the parent nucleus; (AP − 4) is the
atomic mass number of the daughter nucleus; and mα/M(D) ≈ 4/(AP − 4).

The kinetic energy (EK)D of the recoil daughter nucleus, on the other
hand, is given as follows:

(EK)D = Qα − (EK)α =
4Qα

AP
. (8.148)

8.7.2 Alpha Decay of Radium-226 into Radon-222

For historical reasons, the most important example of radioactive decay in
general and α decay in particular is the decay of radium-226 with a half-life of
1600 years into radon-222 which in itself is radioactive and decays by α decay
into polonium-218 with a half-life of 3.824 days:

226
88 Ra → 222

86 Rn + α. (8.149)

Radium-226 is the sixth member of the naturally occurring uranium series
starting with uranium-238 and ending with stable lead-206. It was discovered
in 1898 by Marie Curie and Pierre Curie and was used for therapeutic pur-
poses almost immediately after its discovery, either as an external (sealed)
source of radiation or as an internal (open) source.

The external use of radium-226 and radon-222 focused largely on treat-
ment of malignant disease. In contrast, internal use of these two radionuclides
was spread over the whole spectrum of human disease between 1905 through
the 1930s and was based on ingestion of soluble radium salts, inhalation of
radon gas or drinking water charged with radon.

When radium-226 is used as a sealed source, the radon-222 gas cannot
escape and a build up occurs of the seven daughter products that form the
radium-226 series. Some of these radionuclides undergo α decay, others β
decay with or without emission of γ rays. The γ-ray spectrum consists of
discrete lines ranging in energy from 0.18 MeV to 2.2 MeV producing a photon
beam with an effective energy close to that of cobalt-60 (∼ 1.25 MeV). The
encapsulation of the source is thick enough to absorb all α and β particles
emitted by radium-226 and its progeny; however, the encapsulation cannot
stop the γ rays and this makes radium-226 sealed sources useful in treatment
of cancer with radiation.

Before the advent of cobalt-60 and cesium-137 teletherapy machines in
1950s all external beam radiotherapy machines made use of radium-226.
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They were called teleradium machines, contained 4 to 10 g of radium-226
and were very expensive because of the tedious radium-226 manufacturing
process. They were also very inefficient because of the low inherent specific
activity of radium-226 (0.988 Ci/g = 3.665 × 1010 Bq/g) and self-absorption
of γ radiation in the source.

• Widespread availability of external beam radiotherapy only started in
the 1950s with the invention of the cobalt-60 teletherapy machine in
Canada. On the other hand, radium-226 proved very practical for use
in brachytherapy where sources are placed into body cavities or directly
implanted into malignant lesions for a specific time.

• While radium-based brachytherapy was very popular in the past century,
modern brachytherapy is now carried out with other radionuclides (e.g.,
iridium-192, cesium-137, iodine-125, etc.) that do not pose safety haz-
ards associated with the radon-222 gas that may leak through damaged
radium-226 source encapsulation.

The decay energy Qα for the α decay of radium-226 is calculated either using
atomic rest masses M as given in (8.143) or nuclear rest masses M as given
in (8.136) and (8.143) or nuclear binding energies EB as given in (8.137). All
required data are given in Table 8.6 on page 353.

With appropriate atomic rest masses M and (8.143) we get

Qα ={M(22686Ra) − M(22286Rn) − M(42He)}c2 = 0.005232 × 931.5 MeV
=4.87 MeV > 0 , (8.150)

while using appropriate binding energies EB and (8.137) we get the same
result, as follows:

Qα ={EB(22286Rn) + EB(42He) − EB(22688Ra)}
=(1708.185 + 28.296 − 1731.610) MeV = 4.87 MeV . (8.151)

Using appropriate nuclear rest energies Mc2 in conjunction with (8.13) or
(8.143) we also obtain Qα = 4.87 MeV.

The kinetic energy (EK)α of the α particle is given from (8.147) as

(EK)α = Qα

(
AP − 4

AP

)
= 4.87 MeV

222
226

= 4.78 MeV , (8.152)

while 0.09 MeV goes into the recoil kinetic energy (EK)D of the 222
86Rn atom,

as calculated from (8.148)

(EK)D =Qα − (EK)α = 0.09 MeV

=
4Qα

AP
=

4 × 4.87 MeV
226

= 0.09 MeV . (8.153)

Figure 8.19 shows an energy level diagram for radium-226 decaying through
α decay into radon-222. A closer look at the decay scheme of 226

88 Ra, shown
in Fig. 8.19, paints a slightly more complicated picture with two α lines
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Fig. 8.19. Energy level diagram for the α decay of radium-226 into radon-222. The
relative mass-energy levels for the ground states of the two nuclides are calculated
from the respective atomic masses of the two radionuclides given in Table 8.6 on
page 353

emitted; one with (EK)α1 = 4.78 MeV emitted in 94.6% of decays and the
other with (EK)α2 = 4.60 MeV emitted in 5.4% of the decays. The 4.78 MeV
transition ends at the ground state of 222

86Rn; the 4.60 MeV transition ends at
the first excited state of 222

86Rn that instantaneously decays to the ground state
through emission of a 0.18 MeV gamma ray (gamma decay; see Sect. 8.12).

The decay energy Qα of 4.87 MeV is thus shared between the α particle
(4.78 MeV) and the recoil daughter (0.09 MeV). The α particle, because of
its relatively small mass in comparison with the daughter mass, picks up
most of the decay energy; the magnitudes of the momenta for the two decay
products are of course equal, but the momenta are opposite in direction to
one another.

8.8 Beta Decay

8.8.1 General Aspects of Beta Decay

The term β decay encompasses modes of radioactive decay in which the
atomic number Z of the parent nuclide changes by one unit (±1), while
the atomic mass number A remains constant. Thus, the number of nucleons
and the total charge are both conserved in the β decay processes and the
daughter (D) can be referred to as an isobar of the parent (P).

Three processes fall into the category of β decay:

1. β− decay with the following characteristics: Z → Z + 1; A = const

n → p + e− + ν̄e
A
Z P → A

Z+1D + e− + ν̄e . (8.154)
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A neutron-rich radioactive nucleus transforms a neutron into proton and
ejects an electron and an antineutrino. Free neutrons actually decay into
protons through the β− decay process with a life-time τ of 10.24 min.
This decay is possible since the neutron rest mass exceeds that of the
proton.

2. β+ decay with the following characteristics: Z → Z − 1; A = const:

p → n + e+ + νe
A
Z P → A

Z−1D + e+ + νe . (8.155)

A proton-rich radioactive nucleus transforms a proton into neutron and
ejects a positron and a neutrino. Free protons cannot decay into neutrons
through a β+ decay process because the rest mass of the proton is smaller
than that of the neutron.

3. Electron capture with the following characteristics: Z → Z−1; A = const:

p + e− = n + νe
A
Z P + e− = A

Z+1D + νe . (8.156)

A proton-rich radioactive nucleus captures an inner shell orbital elec-
tron (usually K shell), transforms a proton into a neutron, and ejects a
neutrino.

In many cases, β decay of a parent nucleus does not lead directly to the
ground state of the daughter nucleus; rather it leads to an unstable or even
metastable excited state of the daughter. The excited state de-excites through
emission of gamma rays or through emission of internal conversion electrons
(see Sect. 8.12). Of course, the orbital shell vacancies produced by the elec-
tron capture or internal conversion process will be followed by emission of
discrete characteristic photons or Auger electrons, as is the case with all
shell vacancies no matter how they are produced. A detailed discussion is
given in Chap. 3. Beta decay can only take place when the binding energy
of the daughter nucleus Eb(D) exceeds the binding energy of the parent nu-
cleus EB(P).

8.8.2 Beta Particle Spectrum

For a given β decay, similarly to the situation in α decay, the β-decay energy
is uniquely defined by the difference in mass-energy between the parent and
daughter nuclei. However, in contrast to the α decay where the energy of
the emitted α particles is also uniquely defined, the β particles emitted in
β decay are not mono-energetic, rather they exhibit a continuous spectral
kinetic energy distribution with only the maximum kinetic energy (Ee±)max
corresponding to the β decay energy.

This apparent contravention of the energy conservation law was puzzling
physicists for many years until in 1930 Wolfgang Pauli postulated the exis-
tence of the neutrino to explain the continuous spectrum of electrons emitted
in β decay. In 1934 Enrico Fermi expanded on Pauli’s neutrino idea and de-
veloped a theory of the β− and β+ decay. Only with the emission of a third
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Fig. 8.20. Typical beta particle energy spectra for β− and β+ decay normalized
to the maximum energy of the β particle

particle, the neutrino or antineutrino, could the momentum and energy be
conserved in a β decay. The existence of the neutrino was finally proven
experimentally in 1953.

The neutrino and antineutrino are assumed to have essentially zero rest
mass and are moving with the speed of light c. They are also assumed to have
only weak interactions with atoms of the absorber and are thus extremely
difficult to detect. Their charge is equal to zero. It is obvious that detection of
an essentially massless, momentless, uncharged relativistic particle that only
experiences weak interactions with matter is extremely difficult. Nonetheless,
several techniques were devised to detect the elusive particle experimentally
and thus prove correct Fermi’s contention about its existence in beta decay.

Typical shapes of β− and β+ spectra are shown in Fig. 8.20. In general,
the spectra exhibit low values at small kinetic energies, reach a maximum
at a certain kinetic energy and then decrease with kinetic energy until they
reach zero at a maximum energy (Ee±)max that corresponds to the β decay
energy Qβ , if we neglect the small recoil energy acquired by the daughter
nucleus.

The shapes of β− and β+ spectra differ at low kinetic energies owing
to the charge of the β particles: electrons in β− decay are attracted to the
nucleus; positrons in β+ decay are repelled by the nucleus. The charge effects
cause an energy shift to lower energies for electrons and to higher energies
for positrons, as is clearly shown in Fig. 8.20.

For use in internal dosimetry calculations of β sources the effective energy
(Ee±)eff of β decay spectra is usually estimated as

(Eβ)eff ≈ 1
3
(Eβ)max . (8.157)
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8.8.3 Daughter Recoil in β− and β+ Decay

In a β− and β+ beta decay event the daughter nucleus recoils with a kinetic
energy (EK)D ranging from 0 to a maximum value.

1. The recoil kinetic energy of the daughter decay product is zero, i.e.,
(EK)D = 0 when the electron and antineutrino in β− decay or positron
and neutrino in β+ decay are emitted with the same momentum but in
opposite directions.

2. The maximum recoil kinetic energy (EK)Dmax = max of the daughter
occurs when either one of the two decay particles (electron or antineu-
trino in β− decay; positron or neutrino in β+ decay) is emitted with the
maximum available kinetic energy (Eβ)max. The β decay energy Qβ is
expressed as

Qβ = (EK)Dmax + (Eβ)max . (8.158)

The maximum recoil kinetic energy of the daughter (EK)D is determined
using the laws of energy and momentum conservation and accounting for the
relativistic mass changes of the β particle (electron or positron). A common
name for electron or positron in beta decay is β particle.

1. The β particle momentum pe± = γme±υe± is equal to the daughter mo-
mentum pD = M(D)υD, where me± and M(D) are the rest masses of
the β particle and daughter nucleus, respectively; υe± and υD are the
velocities of the β particle and the daughter nucleus, respectively; and
γ = (1 − β2)−1/2 with β = υ/c.

2. The kinetic energy (EK)D of the daughter nucleus is calculated classically
as (EK)D = M(D)υ2

D/2; the maximum kinetic energy of the β particle is
given relativistically as (Eβ)max = (γ − 1)me±c2.

Since pe± = pD, we get

υD = γ
me±

M(D)
υe± . (8.159)

Inserting (8.159) into the equation for the daughter kinetic energy (EK)D =
M(D)υ2

D/2, we obtain

(EK)Dmax =
M(D)υ2

D

2
= γ2 m2

e±υ2
e±

2M(D)
= γ2β2 (me±c2)2

2M(D)c2 =

=
β2

1 - β2

(me±c2)2

2M(D)c2 . (8.160)

From the relationship (Eβ)max = (γ − 1)me±c2 we calculate the expression
for β2/(1 − β2) to obtain

β2

1 − β2 =
2(Eβ)max

me±c2 +
{

(Eβ)max

me±c2

}2

. (8.161)
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Inserting (8.161) into (8.160) we obtain the following expression for the recoil
kinetic energy (EK)D of the daughter nucleus:

(EK)Dmax =
β2

1 - β2

(me±c2)2

2M(D)c2 =
me±c2

M(D)c2 (Eβ)max +
(Eβ)2max

2M(D)c2 . (8.162)

The daughter recoil kinetic energy (EK)D is usually of the order of 10 eV to
100 eV; negligible in comparison to the kinetic energy of the β particle, yet
sufficiently high to be able to cause atomic rearrangements in the neighboring
molecules in biological materials.

The decay energy Qβ is now given as follows:

Qβ = (EK)D + (Eβ)max = (Eβ)max

{
1 +

me±c2 + 1
2 (Eβ)max

M(D)c2

}
,

(8.163)

showing that in β− and β+ decay by far the larger energy component is
the component shared between the β particle and neutrino, since these two
particles in general share the energy (Eβ)max; the recoil kinetic energy given
to the daughter is extremely small and may be neglected, unless, of course,
we are interested in calculating it, so that we may determine the local damage
produced by the daughter atom in biological materials.

8.9 Beta Minus Decay

8.9.1 General Aspects of Beta Minus (β−) Decay

Several radionuclides decaying by β− decay are used in medicine for ex-
ternal beam radiotherapy and brachytherapy. The parent nuclide decays by
β− decay into an excited daughter nuclide that instantaneously or through a
metastable decay process decays into its ground state and emits the excita-
tion energy in the form of gamma ray photons. These photons are then used
for radiotherapy.

The most important characteristics of radionuclides used in external beam
radiotherapy are:

1. High gamma ray energy
2. High specific activity
3. Relatively long half-life
4. Large specific air-kerma rate constant

Of the over 3000 natural or artificial radionuclides known, only a few are suit-
able for use in radiotherapy and of these practically only cobalt-60, with its
high photon energy (1.17 MeV and 1.33 MeV), high practical specific activ-
ity, and a relatively long half-life (5.27 years), meets the source requirements
for external beam radiotherapy.
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8.9.2 Beta Minus (β−) Decay Energy

The β− decay can occur to a neutron-rich unstable parent nucleus when the
mass M(Z, A) of the parent nucleus exceeds the mass M(Z + 1, A) of the
daughter nucleus by more than one electron rest mass me. The decay energy
Qβ− for the β− decay process is given as

Qβ− = {M(Z, A) − [M(Z + 1, A) + me]} c2 , (8.164)

in terms of nuclear mass M .
Adding and subtracting Zmec

2 to the right-hand side of (8.164) and ne-
glecting the electron binding energies to the nucleus we obtain

Qβ− ={M(Z, A) + Zme − [M(Z + 1, A) + me + Zme} c2

={M(Z, A) − M(Z + 1, A)} c2 , (8.165)

where M(Z, A) and M(Z + 1, A) represent the atomic masses of the parent
and daughter, respectively, noting that

M(Z, A) = M(Z, A) + Zme (8.166)

and

M(Z + 1, A) = M(Z + 1, A) + (Z + 1)me . (8.167)

For the β− decay to occur the atomic mass of the parent M(Z, A) must exceed
the atomic mass of the daughter M(Z + 1, A); i.e., M(Z, A) > M(Z + 1, A).

The atomic rest energy difference between the parent and daughter pro-
vides the energy released in a β− decay event, most generally consisting of:

1. Energy of the emitted electron
2. Energy of the antineutrino
3. Energy of the emitted γ ray photons or conversion electrons with char-

acteristic x rays and Auger electrons.
4. Recoil kinetic energy of the daughter nucleus (small and usually ne-

glected).

8.9.3 Beta Minus (β−) Decay of Cobalt-60 into Nickel-60

For medical physics an important β− decay example is the decay of unstable
cobalt-60 radionuclide with a half life of 5.27 years into an excited nickel-60
nuclide that decays instantaneously into its ground state with emission of two
γ ray photons of energies 1.173 MeV and 1.332 MeV, as shown schematically
in Fig. 8.21:

60
27Co → 60

28Ni + e− + ν̄e + Qβ−(2.82 MeV) . (8.168)

Cobalt-60 is used as a radiation source in teletherapy machines applied for
external beam radiotherapy. Typical cobalt-60 source activities are of the
order of 200 TBq to 400 TBq. There are several thousand cobalt units in
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Fig. 8.21. Decay scheme for the β− decay of cobalt-60 into nickel-60. The relative
mass-energy levels for the ground states of the two nuclides are calculated from
atomic masses given in Table 8.6 on page 353

operation around the world and Canada is a major producer of these units
and cobalt-60 sources.

The decay energy Qβ− for the Co-60 β− decay into Ni-60 is calculated as
follows:

Qβ− =
{M(6022Co) − M(6028Ni)

}
c2

={59.933822u − 59.930791u} 931.5 MeV/u = 2.82 MeV .

(8.169)

The calculated Qβ− of 2.82 MeV is shown in Fig. 8.21 as the energy difference
between the ground states of cobalt-60 and nickel-60. There are two β− decay
channels:

1. 99.9% of decays proceed from Co-60 to the second excited state of Ni-60
with maximum and effective electron energy of 0.313 MeV and 0.1 MeV,
respectively.

2. Only 0.1% of decays proceed from Co-60 to the first excited state of Ni-60
with maximum and effective electron energy of 1.486 MeV and 0.63 MeV,
respectively.

The excited nickel-60 nucleus attains its ground state through emission of γ
ray photons, as discussed further in Sect. 8.12.
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8.9.4 Beta Minus (β−) Decay of Cesium-137 into Barium-137

Another example of β− decay of interest in medical physics is the decay of
cesium-137 into barium-137 with a half-life of 30.07 years:

137
55 Cs → 137

56 Ba + e− + ν̄e + Qβ−(1.176 MeV) . (8.170)

The decay energy Qβ− for the decay of Cs-137 into Ba-137 by β− decay is
calculated as

Qβ− =
{M(13755Cs) − M(13756Ba)

}
c2

={136.90708u − 136.90582u} 931.5 MeV/u = 1.176 MeV .

(8.171)

The calculated Qβ− of 1.176 MeV is shown in Fig. 8.22 as the energy dif-
ference between the ground states of cesium-137 and barium-137. There are
two β− decay channels:

1. 94.6% of β− decays proceed from Cs-137 to the excited state of Ba-
137m with maximum electron energy of 0.514 MeV. The Ba-137m is a
metastable state that decays with a 2.552 min half-life to the ground state
of Ba-137 with emission of a 0.662 MeV γ ray photon. The maximum
electron energy of 0.514 MeV added to the γ ray energy of 0.662 MeV
results in decay energy of 1.176 MeV, as calculated in (8.171).

2. 5.4% of β− decays proceed directly from Cs-137 to the ground state of
Ba-137 with maximum electron energy of 1.176 MeV.

Fig. 8.22. The decay scheme for β− decay of cesium-137 into barium-137. The
relative mass-energy levels for the ground states of the two nuclides are calculated
from atomic masses listed in Table 8.6 on page 353
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8.10 Beta Plus Decay

8.10.1 General Aspects of the Beta Plus (β+) Decay

The β+ decay is characterized by the production of positrons that appear in a
spectral distribution with maximum positron energy specific to the particular
β+ decay. As in the β− decay, the daughter recoil kinetic energy in β+ decay
is essentially negligible. Radionuclides undergoing β+ decay are often called
positron emitters and are used for functional imaging with a special imaging
technique called positron emission tomography (PET).

• PET provides information on metabolic function of organs or tissues by
detecting how cells process certain compounds such as, for example, glu-
cose. Cancer cells metabolize glucose at a much higher rate than normal
tissues. By detecting increased radio-labelled glucose metabolism with a
high degree of sensitivity, PET identifies cancerous cells, even at an early
stage when other imaging modalities may miss them.

• In a PET study one administers a positron-emitting radionuclide by injec-
tion or inhalation. The radionuclide circulates through the bloodstream
to reach a particular organ. The positrons emitted by the radionuclide
have a very short range in tissue and undergo annihilation with an avail-
able electron. This process generally results in emission of two gamma
photons, each with energy of 0.511 MeV, moving away from the point of
production in nearly opposite directions.

• The radionuclides used in PET studies are produced by bombardment
of an appropriate stable radionuclide with protons from a cyclotron (see
Sect. 8.4.9) thereby producing positron-emitting radionuclides that are
subsequently attached to clinically useful biological markers. The most
commonly used positron emitting radionuclides are: carbon-11, nitrogen-
13, oxygen-15, fluorine-18 and rubidium-82.

• Fluorine-18 radionuclide attached to the biological marker deoxyglucose
forms the radiopharmaceutical fluorodeoxyglucose (FDG) that is the most
commonly used tracer in studies involving glucose metabolism in cancer
diagnosis.

8.10.2 Decay Energy in β+ Decay

The β+ decay can occur to a proton-rich unstable parent nucleus where the
mass M(Z, A) of the parent nucleus exceeds the mass M(Z − 1, A) of the
daughter nucleus by more than one positron mass me. The decay energy
Qβ+ for the β+ decay process is given as

Qβ+ = {M(Z, A) − [M(Z − 1, A) + me]} c2 (8.172)

in terms of nuclear masses M .
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Adding and subtracting Zmec
2 to the right-hand side of (8.172) and ne-

glecting the electron binding energies to the nucleus we obtain

Qβ+ ={M(Z, A) + Zme − [M(Z − 1, A) + me + Zme} c2

={M(Z, A) − [M(Z − 1, A) + 2me]} c2 (8.173)

where M(Z, A) and M(Z − 1, A) represent the atomic masses of the parent
and daughter, respectively.

We note that the relationships between atomic and nuclear masses of
parent and daughter, ignoring the binding energies of orbital electrons, are

M(Z, A) = M(Z, A) + Zme (8.174)

and

M(Z − 1, A) = M(Z − 1, A) + (Z − 1)me . (8.175)

For the β+ decay to occur the atomic mass of the parent M(Z, A) must exceed
the atomic mass of the daughter M(Z − 1, A) by more than two electron rest
masses, or in rest energies

M(Z, A)c2 > M(Z − 1, A)c2 + 2mec
2 , (8.176)

where mec
2 is the electron rest energy of 0.5110 MeV.

8.10.3 Beta Plus (β+) Decay of Nitrogen-13 into Carbon-13

An example for a simple β+ decay is the decay of nitrogen-13 into carbon-
13 with a half-life of 10 minutes. Nitrogen-13 is a proton-rich radionuclide
produced in a cyclotron. The decay scheme is shown in Fig. 8.23 and the
basic equation for the decay is as follows:

13
7 N → 13

6 C + e+ + νe + Qβ+(1.2 MeV) . (8.177)

The decay energy Qβ+ for the β+ decay of nitrogen-13 into carbon-13 is
calculated as follows, with the atomic masses for the two nuclides listed in
Table 8.5:

Qβ+ =
{M(137N) − [M(136C) + 2me]

}
c2

=(13.005739u − 13.003355u)c2 − 2mec
2

=0.002383u × 931.5 MeV/u = 2.220 MeV − 1.022 MeV
=1.2 MeV. (8.178)

The energy difference between the ground state of nitrogen-13 and carbon-13
is 2.22 MeV; however, only 2.22 MeV− 2mec

2 = 1.2 MeV is available for the
maximum energy of the positron.

Ammonia is the substance that can be labeled with the nitrogen-13 ra-
dionuclide for use in functional imaging with positron emission tomography
(PET) scanning. The nitrogen-13 labeled ammonia is injected intravenously
and is mainly used for cardiac imaging for diagnosis of coronary artery dis-
ease and myocardial infarction. It is also occasionally used for liver and brain
imaging.
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Fig. 8.23. The decay scheme for β+ decay of nitrogen-13 into carbon-13. The
relative mass-energy levels of the ground states of the two nuclides are calculated
from atomic masses listed in Table 8.6 on page 353

8.10.4 Beta Plus (β+) Decay of Fluorine-18 into Oxygen-18

The β+ decay of fluorine-18 into oxygen-18 with a half-life of 110 min is an
important practical example of the β+ decay. Fluoro-deoxy-glucose (FDG)
labeled with radionuclide fluorine-18 is a sugar compound that can be in-
jected intravenously into a patient for use in positron emission tomography
(PET) functional imaging. Based on demonstrated areas of increased glucose
metabolism the FDG PET scan:

1. Can detect malignant disease.
2. Can distinguish benign from malignant disease.
3. Can be used for staging of malignant disease.
4. Can be used for monitoring response to therapy of malignant disease.

The decay energy Qβ+ for the β+ decay of fluorine-18 into oxygen-13 is
calculated as follows:

Qβ+ =
{M(189F) − [M(188O) + 2me]

}
c2

=(18.000937u − 17.999160u)c2 − 2mec
2

=0.001777u × 931.5 MeV/u

=1.660 MeV − 1.022 MeV
=0.638 MeV. (8.179)

The energy difference between the ground states of fluorine-18 and oxygen-18
is 1.66 MeV; however, only 1.66 MeV − 2mec

2 = 0.638 MeV is available for
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Fig. 8.24. The decay scheme for β+ decay of fluorine-18 into oxygen-18. The
relative mass-energy levels for the ground states of the two nuclides are calculated
from atomic masses listed in Table 8.6 on page 353

the maximum energy of the positron, as shown schematically in Fig. 8.24 and
in (8.180) below

18
9 F → 18

8 O + e+ + νe + Qβ+(0.638 MeV) . (8.180)

8.11 Electron Capture (EC)

8.11.1 Decay Energy in Electron Capture

Electron capture (EC) radioactive decay may occur when an atomic electron
ventures inside the nuclear volume, is captured by a proton, and triggers a
proton to neutron transformation. Of all atomic electrons, the K-shell elec-
trons have the largest probability for venturing into the nuclear volume and
thus contribute most often to the EC decay process. Typical ratios EC(K
shell)/EC(L shell) are of the order of 10:1.

Electron capture can occur in proton-rich, unstable parent nuclei, when
the mass M(Z, A) of the parent nucleus combined with the mass of one
electron me exceeds the mass of the daughter nucleus M(Z − 1, A). The
decay energy QEC for electron capture is given as

QEC ={[M(Z, A) + me] − M(Z − 1, A)}
={M(Z, A) − [M(Z − 1, A) − me} c2 (8.181)

in terms of nuclear masses M . Adding and subtracting Zme to the right-hand
side of (8.181) and neglecting the electron binding energies to the nucleus we
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obtain the decay energy QEC in terms of atomic masses M
QEC = {M(Z, A) − M(Z − 1, A)} c2 . (8.182)

For electron capture to occur, the atomic mass of the parent M(Z, A) must
exceed the atomic mass of the daughter M(Z − 1, A); i.e., M(Z, A) > M(Z −
1, A). The atomic rest energy difference between the parent and the daughter
gives the energy released to the neutrino and the daughter atom in an EC
radioactive decay event.

Electron capture is a competing process to β+ decay; however, the con-
ditions on electron capture as far as relative atomic masses of parent and
daughter are concerned are less restrictive than those imposed on β+ decay
that results in positron emission and subsequent positron annihilation with
emission of annihilation quanta. The condition on EC decay is that the par-
ent atomic mass M(P) simply exceeds the daughter atomic mass M(D), while
the condition on β+ decay is that the parent atomic mass exceeds that of the
daughter by a minimum of two electron masses.

• When the condition QEC > 0 is satisfied but Qβ+ of (8.172) is negative,
the β+ decay will not happen because it is energetically forbidden and
EC decay will happen alone.

• When Qβ+ > 0 then QEC is always positive and both decays (β+ and
EC) can happen. The branching ratios λEC/λβ+ vary considerably from
one nuclide to another; for example, from a low of 0.03 for fluorine-18 to
several hundred for other proton-rich radionuclides.

• In contrast to the β− and β+ decay processes in which three decay prod-
ucts share the decay energy and produce a continuous spectral distribu-
tion, in the EC decay the two decay products do not have a continuous
spectral distribution; rather they are given discrete (monoenergetic) en-
ergies. The monoenergetic neutrinos produce a line spectrum with en-
ergy Eν , while the daughter has the recoil kinetic energy (EK)D discussed
below.

8.11.2 Recoil Kinetic Energy of the Daughter Nucleus
in Electron Capture Decay

The recoil kinetic energy (EK)D of the daughter nucleus in electron capture
decay is determined in two steps:

1. First, we determine the momenta of the daughter pD = M(D)υD and the
neutrino pν = Eν/c. The two momenta are identical in magnitude but
opposite in direction, so we can write

pD = M(D)υD = pν =
Eν

c
, (8.183)

where
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Eν is the neutrino energy
M(D) is the mass of the daughter nucleus
υD is the velocity of the daughter nucleus

2. The recoil kinetic energy of the daughter (classically) is given as follows
after inserting υD from (8.183):

(EK)D =
M(D)υD

2
=

E2
ν

2M(D)c2 . (8.184)

The energy available for sharing between the daughter nucleus and neutrino
is equal to the electron capture decay energy QEC decreased by the binding
energy EB of the captured electron, i.e.,

QEC − EB = Eν + (EK)D = Eν +
E2

ν

2M(D)c2 (8.185)

or

E2
ν

2M(D)c2 + Eν − (QEC − EB) = 0 . (8.186)

Equation (8.186) results in the following expression for the energy of the
monoenergetic neutrino emitted in electron capture:

Eν =

{
−1 +

√
1 +

2(QEC − EB)
M(D)c2

}
M(D)c2 ≈ QEC − EB . (8.187)

In the first approximation the recoil kinetic energy (EK)D of the daughter is
neglected and so is the binding energy EB of the captured electron. The en-
ergy of the monoenergetic neutrino in electron capture is then approximated
by the electron capture decay energy, i.e., Eν ≈ QEC.

8.11.3 Electron Capture Decay of Beryllium-7 into Lithium-7

An example for EC decay is given in Fig. 8.25 that shows a decay scheme for
beryllium-7 decaying through EC into lithium-7. Beryllium-7 has too many
protons for nuclear stability, so it achieves better stability by transforming
a proton into a neutron. However, it can do so only through EC and not
through β+ decay, because the atomic rest energy of beryllium-7 exceeds
that of lithium-7 by only 0.86 MeV and not by a minimum of 1.02 MeV
required for β+ decay to be energetically feasible.

The decay energy for the electron capture decay of berillium-7 into
lithium-7 is calculated as follows:

QEC =
{M(74Be) − M(73Li)

}
c2 = (7.0169292u − 7.016004u)c2

=0.0009252u × 931.5 MeV/u = 0.862 MeV. (8.188)
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Fig. 8.25. The decay scheme for electron capture decay of berillium-7 into lithium-
7. The relative mass-energy levels for the ground states of the two nuclides are
calculated from the respective atomic masses listed in Table 8.6 on page 353

8.11.4 Decay of Iridium-192

Iridium-192 serves as an important radioactive source for use in brachyther-
apy with remote afterloading techniques. It decays with a half-life of 74 days
into stable platinum-192 by β− decay and into stable osmium-192 by electron
capture decay. The source is produced through a neutron activation process
on iridium-191 in a nuclear reactor (see Sect. 8.4.8). The natural abundance
of stable iridium-191 is 37.3% in a mixture with 62.7% of stable iridium-193.
The cross section σ for thermal neutron capture is 954 b.

As shown in Fig. 8.26, iridium-192 has a very complicated γ ray spec-
trum with 14 γ energies ranging from 0.2 MeV to ∼0.9 MeV, providing effec-
tive photon energy of 0.38 MeV. Because of the relatively short half-life, the
iridium-192 source requires a source change in remote afterloading machines
every 3 to 4 months.

With M representing atomic masses, the β− decay energy Qβ− for iridium-
192 decaying into platinum-192 is given as follows:

Qβ− =
{M(19277Ir) − M(19278Pt)

}
c2

=191.96260u − 191.96104u)c2

=0.00156u × 931.5 MeV/u = 1.453 MeV. (8.189)

The electron capture decay energy QEC for iridium-192 decaying into osmium-
192 is

QEC =
{M(19277Ir) − M(19276Os)

}
c2

=(191.96260u − 191.96148u)c2

=0.00112u × 931.5 MeV/u = 1.043 MeV (8.190)
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Fig. 8.26. The decay scheme for decay of iridium-192 into platinum-192 through
β− decay and into osminum-192 through electron capture decay. The relative mass-
energy levels for the ground states of the three nuclides are calculated from the
respective atomic masses given in Table 8.6 on page 353

8.12 Gamma Decay

8.12.1 General Aspects of Gamma (γ) Decay

The α decay as well as the three beta decay modes may produce a daughter
nucleus in an excited state without expending the full amount of the decay
energy available.

The daughter nucleus will reach its ground state (i.e., it will de-excite)
through one of the following two processes:

1. Emit the excitation energy in the form of a γ photon (pure γ decay).
2. Transfer the excitation energy to one of its orbital electrons in a process

called internal conversion.

In most radioactive α or β decays the daughter nucleus de-excitation occurs
instantaneously (i.e., within 10−12 s), so that we refer to the emitted γ rays as
if they were produced by the parent nucleus. For example, for the cobalt-60
β− decay into nickel-60, the γ rays following the β− decay actually originate
from nuclear de-excitations of nickel-60, yet for convenience, we refer to these
γ rays as the cobalt-60 γ rays. Similarly, we refer to γ photons following the
β− decay of cesium-137 into barium-137m as cesium-137 γ rays even though
the γ photons actually originate from a transition in the barium-137 nucleus.

In certain α or β decays, the excited daughter nucleus does not immedi-
ately decay to its ground state; rather, it de-excites with a time delay:

• The excited state of the daughter is then referred to as a metastable
state and the process of de-excitation is called an isomeric transition.
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The metastable states are characterized by their own half-lives t1/2 and
mean (average) lives τ .

• The nucleus in a metastable state is identified with a letter m next to the
atomic mass number designation (e.g, barium-137m or 137m

56 Ba with a half-
life of 2.552 min; technetium-99m or 99m

43 Tc with a half-life of 6.01 hours).
• The term isomer is used for designation of nuclei that have the same

atomic number Z and same atomic mass number A but differ in energy
states.

In addition to α and β decay there are many other modes for producing
nuclei in excited states that subsequently undergo γ decay. For example,
excited states with energies up to 8 MeV may be produced with neutron
capture (n, γ) reactions as well as with other nuclear reactions, such as (p, γ)
and (α, γ), etc. Examples of γ rays following α and β decays are given in
Fig. 8.19 for α decay and Figs. 8.21 and 8.22 for β− decay.

8.12.2 Emission of Gamma Rays in Gamma Decay

In a general sense, γ decay stands for nuclear de-excitation either by emis-
sion of a γ ray photon or by internal conversion. In a more narrow sense,
γ decay only implies emission of γ photons. The energy of γ rays emitted
by a particular radionuclide is determined by the energy level structure of
the radinuclides and can range from a relatively low value of 100 keV up to
about 3 MeV.

The γ decay process may be represented as follows:
A
Z X∗ → A

Z X + γ + Qγ , (8.191)

where A
Z X∗ strands for an excited state of the nucleus A

Z X and Qγ is the
gamma decay energy.

8.12.3 Gamma Decay Energy

The decay energy Qγ in γ emission is the sum of the γ photon energy Eγ

and the recoil kinetic energy of the daughter (EK)D, i.e.,

Qγ = Eγ + (EK)D . (8.192)

Since the magnitudes of the momenta of the daughter recoil nucleus pD =
M(D)υD and the γ photon pγ = Eγ/c are equal, i.e., pD = pγ , we can
determine the partition of energy between Eγ = pγc = M(D)υDc and
(EK)D = M(D)υ2

D/2 as

(EK)D =
M(D)υ2

D

2
=

E2
γ

2M(D)c2 , (8.193)

where M(D) and υD are the rest mass and recoil velocity, respectively, of the
daughter nucleus.
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The gamma decay energy Qγ may now be written as

Qγ = Eγ + (EK)D = Eγ

(
1 +

Eγ

2M(D)c2

)
. (8.194)

Equation (8.194) shows that the recoil kinetic energy of the daughter (EK)D
represents less than 0.1% of the gamma photon energy Eγ . The recoil energy
of the daughter nucleus is thus negligible for most practical purposes. The
label for daughter in gamma decay is used in parallel with the same label
used in other nuclear decays that are clearly defined with a parent decaying
into a daughter. In gamma decay the parent and daughter represent the same
nucleus, except that the parent nucleus is in an excited state and the daughter
nucleus is in a lower excited state or the ground state.

8.12.4 Resonance Absorption and the Mössbauer Effect

The question of resonance absorption is of importance and deserves a brief
discussion. The resonance absorption is a phenomenon in which a photon
produced by a nuclear or atomic transition is re-absorbed by the same type
of nucleus or atom, respectively. Since the photon shares the de-excitation
energy with the atom or nucleus (recoil energy), it is quite possible that its
energy will not suffice to allow triggering the reverse interaction and undergo-
ing resonance absorption. However, if the recoil energy of the daughter atom
or nucleus is not excessive, the resonance absorption is possible because of
the natural width of the photon energy distribution and the finite lifetime of
atomic and nuclear states, where the width and lifetime are governed by the
uncertainty principle (see Sect. 1.23).

The photons’ emission and absorption spectra differ because of the atomic
or nuclear recoil energy that makes the emission energy slightly smaller than
∆E, the energy difference between the two states. However, if there is a
region of overlap between the emission and absorption spectrum, resonance
absorption is possible.

For atomic transitions that are of the order of eV to keV the resonance
absorption is not hindered. On the other hand, for nuclear transitions that
are of the order of 10 MeV, there is no overlap between the emission and
the absorption photon spectrum and resonance absorption is not possible.
However, there is a way around this problem. In 1957 Rudolph Mössbauer
discovered that nuclear transitions occur with negligible nuclear recoil, if the
decaying nucleus is embedded into a crystalline lattice. Here, the crystal as a
whole rather than only the daughter nucleus absorbs the recoil momentum.
This effect, called Mössbauer effect, minimizes the recoil energy and makes
nuclear resonance absorption possible.
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8.13 Internal Conversion

8.13.1 General Aspects of Internal Conversion

Nuclear de-excitation in which the de-excitation energy is transferred from
the nucleus almost in full to an orbital electron of the same atom is called
internal conversion (IC). The process is represented as follows:

A
Z X∗ → A

Z X+ + e− + QIC → A
Z X , (8.195)

where
A
Z X∗ is the excited state of the nucleus most likely attained as a result of

α or β decay;
A
Z X+ is the singly ionized state of atom A

Z X following internal conversion
decay;

QIC is the decay energy for internal conversion.

A small portion of the nuclear de-excitation energy Qγ is required to overcome
the binding energy EB of the electron in its atomic shell, the remaining part
of the decay energy Qγ is shared between the conversion electron and the
recoil daughter nucleus, i.e,

QIC = Qγ − EB = (EK)IC + (EK)D . (8.196)

In (8.196)

Qγ is the energy difference between two excited nuclear states, equal
to the energy of a γ photon in gamma decay

(EK)IC is the kinetic energy of the internal conversion electron ejected from
the atom

(EK)D is the recoil kinetic energy of the daughter nucleus.

The recoil kinetic energy (EK)D of the daughter is much smaller than the
kinetic energy (EK)IC of the conversion electron and is usually neglected. It
can be calculated with exactly the same approach that was taken for the
β+ decay to get

(EK)D =
mec

2

M(D)c2 (EK)IC +
(EK)2IC

2M(D)c2 (8.197)

and

QIC = Qγ − EB = (EK)IC

{
1 +

mec
2

M(D)c2 +
(EK)IC

2M(D)c2

}
, (8.198)

where M(D) stands for the rest mass of the daughter nucleus.
The kinetic energy of the conversion electrons is essentially monoener-

getic except for small variations that result from variations in the binding
energies of the shells from which the conversion electrons originate. Most of
the conversion electrons come from the K shells, since K shell electrons have
the highest probability for venturing into nuclear space.
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8.13.2 Internal Conversion Factor

In any nuclear de-excitation both the γ ray emission and the internal conver-
sion electron emission are possible. The two nuclear processes are competing
with one another and are governed essentially by the same selection rules.
Thus, similar to the situation in atomic competing processes represented by
the emission of characteristic (fluorescent) photons and emission of Auger
electrons that are governed by the fluorescent yield, the internal conversion
factor governs the two nuclear processes: emission of gamma photons and
ejection of conversion electrons. However, in contrast to the fluorescent yield
ω (see Sect. 3.1.2) that is defined as the number of characteristic photons
emitted per vacancy in a given atomic shell, the total internal conversion
factor αIC is defined as

αIC =
conversion probability

γ − emission probability
=

NIC

Nγ
, (8.199)

where

NIC is the number of conversion electrons ejected from all shells per unit
time

Nγ is the number of γ photons emitted per unit time.

In addition to the total internal conversion factor αIC one can define partial
internal conversion factors according to the shell from which the electron was
ejected, i.e.,

NIC

Nγ
=

NIC(K) + NIC(L) + NIC(M) + .....

Nγ

=αIC(K) + αIC(L) + αIC(M) + ....., (8.200)

where αIC(i) represents the partial internal conversion factors. Further
distinction is possible when one accounts for subshell electrons.

The total internal conversion factors αIC are defined with respect to Nγ

so that αIC can assume values greater or smaller than 1, in contrast to fluo-
rescent yield ω that is always between 0 and 1.

Since the K-shell electrons of all atomic electrons are the closest to the
nucleus, most often the conversion electrons originate from the K atomic
shell. The vacancy in the K shell, of course, is filled by a higher shell electron
and the associated emission of characteristic photon or Auger electron, as
discussed in Sect. 3.1.

An example for both the emission of γ photons and emission of conversion
electrons is given in Fig. 8.22 with the β− decay scheme for cesium-137 decay-
ing into barium-137. Two channels are available for β− decay of cesium-137:

1. 94.6% of disintegrations land in a barium-137 isomeric state (barium-
137m) that has a half-life of 2.552 min and de-excitation energy of
662 keV.

2. 5.4% of disintegrations land directly in the barium-137 ground state.
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The de-excitation energy of 0.662 MeV is emitted either in the form of a
662 keV gamma photon or a conversion electron of kinetic energy ∼ 662 keV.

As shown in Fig. 8.22, for 100 disintegrations of cesium-137, 94.6 transi-
tions land in barium-137m; of these 85 result in γ photons; 7.8 in K conversion
electrons and 1.8 in higher shell conversion electrons. The internal conversion
factor αIC is (7.8 + 1.8)/85 = 0.113.

8.14 Spontaneous Fission

In addition to disintegrating through α and β decay processes, nuclei with
very large atomic mass numbers A may also disintegrate by splitting into
two nearly equal fission fragments an concurrently emit 2 to 4 neutrons.
This decay process is called spontaneous fission (SF) and is accompanied
by liberation of a significant amount of energy. It was discovered in 1940
by Russian physicists Georgij N. Flerov and Konstantin A. Petržak who
noticed that uranium-238, in addition to α decay, may undergo the process
of spontaneous fission.

Spontaneous fission follows the same process as nuclear fission, except
that it is not self-sustaining, since it does not generate the neutron fluence
rate required to sustain a “chain reaction”. In practice, SF is only energeti-
cally feasible for nuclides with atomic masses above 230 u or with Z2/A ≥ 235
where Z is the atomic number and A the atomic mass number of the radionu-
clide. SF can thus occur in thorium, protactinium, uranium and transuranic
elements.

Transuranic (or transuranium) elements are elements with atomic num-
bers Z greater than that of uranium (Z = 92). All transuranic elements
have more protons than uranium and are radioactive, decaying through β
decay, α decay, or spontaneous fission. Generally, the transuranic elements
are man-made and synthesized in nuclear reactions in a process referred to
as nucleosynthesis. The nucleosynthesis reactions are generally produced in
particle accelerators or nuclear reactors; however, neptunium (Z = 93) and
plutonium (Z = 94) are also produced naturally in minute quantities, follow-
ing the spontaneous fission decay of uranium-238. The spontaneous fission
neutrons emitted by U-238 can be captured by other U-238 nuclei thereby
producing U-239 which is unstable and decays through β− decay with a half-
life of 23.5 m into neptunium-239 which in turn decays through β− decay
with a half-life 2.35 d into plutonium-239, as shown in (8.201):

238
92 U + n

neutron
capture−−−−−−−→ 239

92 U
β−

−−−−−−−→ 239
93 Np + e− + ν̄e

239
93 Np

β−
−−−−−−−→ 239

94 Pu + e− + ν̄e (8.201)

SF is a competing process to α decay; the higher is A above uranium-238, the
more prominent is the spontaneous fission in comparison with the α decay



342 8 Radioactivity

and the shorter is the half-life for spontaneous fission. For the heaviest nuclei,
SF becomes the predominant mode of radioactive decay suggesting that SF
is a limiting factor in how high in atomic number Z and atomic mass number
A one can go in producing new elements.

• In uranium-238 the half-life for SF is ∼ 1016 y, while the half-life for α
decay is 4.5 × 109 y. The probability for SF in uranium-238 is thus about
2 × 106 times lower than the probability for α decay.

• Fermium-256 has a half-life for SF of about 3 hours making the SF in
fermium-256 about 10 times more probable than α decay.

• Another interesting example is californium-256 which decays essentially
100% of the time with SF and has a half-life of 12.3 m.

• For practical purposes, the most important radionuclide undergoing the
SF decay is the transuranic californium-252 (Cf-252), used in industry
and medicine as a very efficient source of fast neutrons (see Sect. 6.6.4).
Californium-252 decays through α decay into curium-248 with a half-life
of 2.65 y; however, about 3% of Cf-252 decays occur through SF producing
on the average 3.8 neutrons per fission decay. The neutron production rate
of Cf-252 is thus equal to 2.35 × 106 (µg · s)−1.

8.15 Proton Emission Decay

Proton-rich nuclides normally approach stability through β+ decay or α de-
cay. However, in the extreme case of a very large proton excess a nucleus
may also move toward stability through emission of one or even two protons.
Proton emission is thus a competing process to β+ and α decay and is, simi-
larly to α decay, an example of particle tunneling through the nuclear barrier
potential.

Proton emission decay is much less common than are the β+ and α decay
and is not observed in naturally occurring radionuclides. In this type of decay
the atomic number Z decreases by 1 and so does the atomic mass number A:

A
Z P → A−1

Z−1 D + p (8.202)

• When a proton is ejected from a radionuclide P, the parent nucleus P
sheds an orbital electron from its outermost shell to become a neutral
daughter atom A−1

Z−1D.
• The energetic proton slows down in moving through the absorber medium

and captures an electron from its surroundings to become a neutral hy-
drogen atom 1

1H.
• Since N , the number of neutrons does not change in proton emission

decay, the parent P and daughter D are isotones.
• For lighter, very proton-rich nuclides with an odd number of protons Z,

proton emission decay is likely (see example in Sect. 8.16.2).
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• For lighter, very proton-rich nuclides (A ≈ 50) with an even number of
protons Z, a simultaneous two-proton emission may occur in situations
where a sequential emission of two independent protons is energetically
not possible (see example in Sect. 8.16.3).

8.15.1 Decay Energy in Proton Emission Decay

The decay energy Qp released in proton emission decay appears as kinetic
energy shared between the emitted proton and the daughter nucleus and is
expressed as follows:

Qp ={M(P) − [M(D) + M(H)]}c2 = {M(P) − [M(D) + mp]}c2 ,

(8.203)

where M(P), M(D), and M(11H) are the atomic rest masses of the parent,
daughter and hydrogen atom, respectively, and M(P), M(D) and mp are
nuclear rest masses of the parent, daughter and hydrogen nucleus (proton),
respectively.

The total number of protons as well as the total number of neutrons does
not change in the proton emission decay. Therefore, Qp may also be expressed
in terms of binding energies of the parent and daughter nucleus as follows:

Qp = EB(D) − EB(P) , (8.204)

where

EB(D) is the total binding energy of the daughter D nucleus
EB(P) is the total binding energy of the parent P nucleus.

The nuclear binding energy is defined in Eq. (1.13). For proton emission decay
to be feasible, Qp must be positive and this implies that the total binding
energy of the daughter nucleus EB(D) must exceed the total binding energy
of the parent nucleus EB(P); that is, EB(D) > EB(P), or else that the rest
mass of the parent nucleus must exceed the combined rest masses of the
daughter nucleus and the proton, that is, M(P) > M(D) + mp.

Two products are released in proton emission decay: a proton and the
daughter product. For a decay of the parent nucleus at rest this implies that
the proton and the daughter will acquire momenta p equal in magnitude but
opposite in direction. The kinetic energy of the proton is (EK)P = p2/2mp
and of the daughter nucleus it is (EK)D = p2/2M(D).

The total decay energy Qp must be positive for the proton emission de-
cay and can be written as the sum of the kinetic energies of the two decay
products:

Qp =(EK)p + (EK)D =
p2

2mp
+

p2

2M(D)
=

p2

2mp

{
1 +

mp

M(D)

}

=(EK)p

{
1 +

mp

M(D)

}
. (8.205)
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From (8.205) we determine the emitted proton kinetic energy (EK)p as

(EK)p = Qp
1

1 + mp
M(D)

. (8.206)

The kinetic energy of the recoil daughter (EK)D, on the other hand, is given
as follows

(EK)D = Qp − (EK)p = Qp
1

1 + M(D)
mp

. (8.207)

The decay energy Q2p released in two-proton emission decay appears as ki-
netic energy shared among the three emitted particles (two protons and the
daughter nucleus) and may be calculated simply from the difference in bind-
ing energies EB between the daughter D and the parent P nucleus

Q2p = EB(D) − EB(P) (8.208)

or from the following expression

Q2p ={M(P) − [M(D) + 2M(11H)]}c2

={M(P) − [M(D) + 2mp]} c2 , (8.209)

where M stands for the atomic rest masses, M for nuclear rest masses and
mp for the proton rest mass.

8.15.2 Example of Proton Emission Decay

An example of proton emission decay is the decay of lithium-5 into helium-4
with a half-life of 10−21 s. The decay is schematically written as follows

5
3Li → 4

2He + p (8.210)

and the decay energy may be calculated from (8.203) or (8.204). The required
atomic and nuclear data are given as follows

M(53Li)c2 = 5.012541u × 931.5 MeV/u = 4669.18 MeV

M(42He)c2 = 4.002603u × 931.5 MeV/u = 3728.43 MeV

M(11H)c2 = 1.007825u × 931.5 MeV/u = 938.79 MeV

EB(53Li) = 26.330674 MeV

EB(42He) = 28.295673 MeV

We first notice that M(53Li) > M(42He)+M(21H) and that EB(42He) > EB(53Li).
This leads to the conclusion that the proton emission decay is possible.
Next we use (8.203) and (8.204) to calculate the decay energy Qp and get
1.96 MeV from both equations. Equations (8.206) and (8.207) give 1.57 MeV
and 0.39 MeV for the kinetic energies of the ejected proton and the recoil
helium-4 atom, respectively.
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8.15.3 Example of Two-Proton Emission Decay

An example of two-proton emission decay is the decay of iron-45 (a highly
proton rich radionuclide with Z = 26 and N = 19) which decays with a
simultaneous emission of two protons at a half-life of 0.35 µs into chromium-
43 (a proton-rich radionuclide with Z = 24 and N = 19). The decay is
schematically written as follows:

45
26Fe → 43

24Cr + 2p (8.211)

and the decay energy Q2p may be calculated from (8.208) or (8.209).
At first glance one could expect the iron-45 radionuclide to decay by a

single proton emission into manganese-44; however, a closer inspection shows
that the one-proton decay would produce negative decay energy Qp from
(8.203) and (8.204) and thus is not energetically feasible.

The atomic and nuclear data for radionuclides 45
26Fe, 44

25Mn, and 43
24Cr are

given as follows:

M(4526Fe)c2 = 45.014564u × 931.5 MeV/u = 41931.07 MeV

M(4425Mn)c2 = 44.006870u × 931.5 MeV/u = 40992.40 MeV

M(4324Cr)c2 = 42.997711u × 931.5 MeV/u = 40052.37 MeV

M(11H)c2 = 1.007825u × 931.5 MeV/u = 938.79 MeV

EB(4526Fe) = 329.306 MeV

EB(4425Mn) = 329.180 MeV

EB(4324Cr) = 330.426 MeV .

Inspection of (8.204) shows that one-proton emission decay of 45
26Fe into 44

25Mn
is not possible, since it results in a negative Qp. On the other hand, (8.208)
results in positive decay energy Q2p for a two-proton decay of 45

26Fe into its
isotone 43

24Cr. The decay energy Q2p calculated from (8.208) and (8.209) then
amounts to 1.12 MeV for the two-proton decay of 45

26Fe into 43
24Cr.

8.16 Neutron Emission Decay

Neutron emission from a neutron-rich nucleus is a competing process to β−

decay but is much less common then the β− decay and is not observed in
naturally occurring radionuclides. In contrast to spontaneous fission which
also produces neutrons, in neutron emission decay the atomic number Z
remains the same but the atomic mass number A decreases by 1. Both the
parent nucleus P and the daughter nucleus D are thus isotopes of the same
nuclear species. The neutron emission decay relationship is written as follows:

A
Z X → A−1

Z X + n (8.212)
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8.16.1 Decay Energy in Neutron Emission Decay

The decay energy Qn released in neutron emission decay appears as kinetic
energy shared between the emitted neutron and the daughter nucleus and is
expressed as follows:

Qn ={M(P) − [M(D) + mn]}c2 = {M(P) − [M(D) + mn]}c2 ,

(8.213)

where M(P) and M(D) are atomic masses of the parent and daughter atom,
respectively; M(P) and M(D) are the nuclear masses of the parent and daugh-
ter respectively, and mn is the neutron rest mass.

The total number of protons Z as well as the total number of neutrons
N does not change in the neutron emission decay. Therefore, Qn may also be
expressed in terms of binding energies of the parent and daughter nucleus as
follows

Qn = EB(D) − EB(P) , (8.214)

where

EB(D) is the total binding energy of the daughter D nucleus
EB(P) is the total binding energy of the parent P nucleus.

For the neutron emission decay to be feasible, Qn must be positive and this
implies that the total binding energy of the daughter nucleus EB(D) must
exceed the total binding energy of the parent nucleus EB(P); that is, EB(D) >
EB(P), or else that the rest mass of the parent nucleus M(P) must exceed
the combined rest masses of the daughter nucleus and the neutron; that is,
M(P) > M(D) + mn.

Two products are released in neutron emission decay: a neutron and the
daughter product. For a decay of the parent nucleus at rest this implies that
the neutron and the daughter will acquire momenta p equal in magnitude but
opposite in direction. The kinetic energy of the neutron is (EK)n = p2/2mn
and of the daughter nucleus the kinetic energy is (EK)D = p2/2M(D).

The total decay energy Qn must be positive for the neutron emission
decay and is expressed as follows:

Qn =(EK)n + (EK)D =
p2

2mn
+

p2

2M(D)
=

p2

2mn

{
1 +

mn

M(D)

}

=(EK)n

{
1 +

mn

M(D)

}
. (8.215)

From (8.212) we determine the emitted neutron kinetic energy (EK)n as

(EK)n = Qα
1

1 + mn
M(D)

. (8.216)
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The kinetic energy of the recoil daughter (EK)D, on the other hand, is given
as follows:

(EK)D = Qn − (EK)n = Qn
1

1 + M(D)
mn

. (8.217)

8.16.2 Example of Neutron Emission Decay

An example of neutron emission decay is the decay of helium-5 into helium-4
with a half-life of 8 × 10−22 s. The decay is schematically written as follows:

5
2He → 4

2He + n (8.218)

and the decay energy may be calculated from (8.210) or (8.211). The required
atomic and nuclear data are as follows:

M(52He)c2 = 5.012221u × 931.5 MeV/u = 4668.88 MeV

M(42He)c2 = 4.002603u × 931.5 MeV/u = 3728.43 MeV

mnc2 = 1.008665u × 931.5 MeV/u

EB(52He) = 27.405673 MeV

EB(42He) = 28.295673 MeV .

We first notice that M(P) > M(D) + mn and EB(42He) > EB(52He) and con-
clude that neutron emission decay is possible. Next we use (8.210) and (8.211)
to calculate the decay energy Qn and get 0.89 MeV from both equations.
Equations (8.212) and (8.213) give 0.71 MeV and 0.18 MeV for the kinetic
energies of the ejected neutron and recoil helium-4 atom, respectively.

8.17 Chart of the Nuclides

All known nuclides are uniquely characterized by their number of protons Z
(atomic number) and their number of neutrons N = A − Z where A is the
number of nucleons (atomic mass number). The most pertinent information
on the 275 known stable nuclides and over 3000 known radioactive nuclides
(radionuclides) is commonly summarized in the Chart of the Nuclides in such
a way that it is relatively easy to follow the atomic transitions resulting from
the various radioactive decay modes used by radionuclides to attain more
stable configurations. Usually the ordinate of the chart represents Z and
the abscissa represents N with each nuclide represented by a unique square
(pixel) that is placed onto the chart according to the N and Z value of the
nuclide.

The chart of the nuclides is also referred to as the Segrè chart in honor of
Emilio Segrè who was first to suggest the arrangement in the 1930s. Similarly
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Fig. 8.27. Chart of the Nuclides also known as the Segrè Chart. Each known stable
and radioactive nuclide is characterized by its unique combination of the number
of protons Z and number of neutrons N, and assigned a pixel in a chart displaying
Z on the ordinate axis and N on the abscissa axis. The stable nuclides are shown
by dark pixel squares, radioactive nuclides by light pixel squares. The plot of stable
nuclides forms a “curve of stability”, neutron-rich radionuclides are below the curve
of stability and proton-rich radionuclides are above the curve of stability. The magic
numbers for neutrons and protons are also indicated

to the Periodic Table of Elements introduced by Mendeleyev in the 1870s to
represent conveniently the periodicity in chemical behavior of elements with
increasing atomic number Z, Segrè’s chart of the nuclides presents an orderly
formulation of all nuclear species (stable and radioactive) against both Z and
N and, in addition, indicates the possible decay paths for radionuclides.

In addition to Z and N for a given nuclide the Segrè Chart usually pro-
vides other data, such as:

• For stable nuclides the atomic mass number A; the nuclear mass in u;
and the natural abundance.

• For radionuclides the atomic mass number A, nuclear mass in u, radioac-
tive half-life, and mode of decay.

A schematic representation of the Segrè Chart is given in Fig. 8.27 for the
currently known stable and radioactive nuclides ranging in number of protons
Z from 1 to 118 and in number of neutrons N from 0 to 292. The magic
numbers (see Sect. 1.15.2) for protons and neutrons are shown on the chart;
the stable nuclides are shown with black squares, the radionuclides with light
squares. For each element the rows in the Segrè Chart give a list of isotopes
(Z = const), the vertical columns give a list of isotones (N = const).



8.18 General Aspects of Radioactive Decay 349

The stable nuclides contain a balanced configuration of protons and neu-
trons and follow a curve of stability on the graph. The curve of stability
follows Z ≈ N for low Z nuclides and then slowly transforms into N ≈ 1.5Z
with increasing Z.

• Below the curve of stability are neutron-rich radionuclides. Most of
neutron-rich radionuclides undergo a nuclear transmutation by β− decay
but a few do so by direct neutron emission.

• Above the curve of stability are proton-rich radionuclides. Most of proton-
rich radionuclides undergo a nuclear transmutation by β+ decay or elec-
tron capture but a few do so by direct emission of one proton or even two
protons.

• All nuclides with Z > 82 undergo α decay or spontaneous fission and
some may also undergo β decay.

A small part of a simplified complete Segrè Chart is shown in Fig. 8.28 for
1 ≤ Z ≤ 13 and 0 ≤ N ≤ 18 (from hydrogen to aluminum). The stable
nuclides are shown in light grey squares indicating the curve of stability that
is given by Z ≈ N for low atomic number elements; neutron-rich and proton-
rich radionuclides are shown in dark grey squares below and above the region
of stability, respectively. For stable nuclides their relative abundance is given;
for radionuclides the half-life is given. The black framed squares above the
region of the proton-rich radionuclides present the first 13 elements of the
Periodic Table of Elements along with their nuclear mass in u given as the
average for all stable isotopes of a given nuclear species.

As suggested by the individual rows in Fig. 8.28 (Z = const), a given
atomic species in general consists of one or more stable isotopes and several
radioactive isotopes; neutron-rich isotopes to the right of the stable ones and
proton-rich to the left. For example, aluminum has only one stable isotope
(2713Al); hydrogen has two (11H and 2

1H) and oxygen has three (168 O, 17
8 O 18

18O).
On the other hand, hydrogen has one radioactive isotope, the neutron-rich
(31H), while aluminum has 4 neutron-rich isotopes and 4 proton-rich isotopes.

8.18 General Aspects of Radioactive Decay

Nuclear physics has come a long way since Ernest Rutherford’s momentous
discovery that most of the atomic mass is concentrated in the atomic nucleus
which has a size of the order of 1 fm = 10−15 m in comparison to the atomic
size of the order of 1 Å = 10−10 m. The atomic nucleus consists of nucleons
– positively charged protons and neutral neutrons, and each nuclear species
is characterized with a unique combination of the number of protons (atomic
number) Z and number of neutrons N , the sum of which gives the number
of nucleous A = Z + N (atomic mass number).

Nucleons are bound together into the nucleus by the strong nuclear force
which, in comparison to the proton-proton Coulomb repulsive force, is at
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Fig. 8.28. A portion of the Chart of the Nuclides (Segrè Chart) for nuclides with
proton numbers Z from 1 through 13, neutron numbers N from 0 through 18, and
atomic mass numbers A from 1 through 31. Stable nuclides are shown with light
pixel squares, radionuclides with darker pixel squares. Relative natural abundance
is shown for the stable nuclides; half-lives and modes of decay are shown for radionu-
clides. The black-framed squares give the mean atomic mass in u for nuclides from
hydrogen to aluminum. Each horizontal row (Z = const) represents one element
including all stable and radioactive isotopes. Each vertical column (N = const)
represents nuclides with the same neutron numbers (isotones)

least two orders of magnitude larger but of extremely short range of a few
femtometers. To bind the nucleons into a stable nucleus a delicate equilibrium
between the number of protons and the number of neutrons must exist. As
evident from Figs. 8.27 and 8.28, for light (low A) nuclear species, a stable
nucleus is formed from an equal number of protons and neutrons (Z = N).
Above the nucleon number A ≈ 40, more neutrons than protons must con-
stitute the nucleus to form a stable configuration in order to overcome the
Coulomb repulsion of the charged protons.

If the optimal equilibrium between protons and neutrons does not exist,
the nucleus is unstable (radioactive) and decays with a specific decay constant
into a more stable configuration that may also be unstable and decays further,
forming a decay chain that eventually ends with a stable nuclide.
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As discussed in detail in this chapter, nine main processes are available
to unstable nuclei (radionuclides) to advance toward a more stable nuclear
configuration; for a given radionuclide generally only one type or at most two
types of decay process will occur.

Nuclides with an excess number of neutrons are referred to as neutron-
rich; nuclides with an excess of protons are referred to as proton-rich.

• For a slight imbalance, radionuclides will decay by beta decay charac-
terized by transformation of a proton into a neutron in β+ decay and a
transformation of a neutron into a proton in β− decay.

• For a large imbalance, the radionuclides will decay by emission of nucle-
ons: α particles in alpha decay, protons in proton emission decay, and
neutrons in neutron emission decay. For very large atomic mass number
nuclides (A > 230) spontaneous fission which competes with α decay is
also possible.

Figure 8.29 shows schematically the decay paths (except for the sponta-
neous fission) possibly open to a radionuclide (N, Z) in its transition toward a
more stable configuration. The following general features of radioactive decay
processes are noted:

1. When radionuclide (Z, N) is below the curve of stability (i.e., is neutron-
rich), the β− decay and neutron emission are possible means to attain
a more stable configuration. The resulting nucleus will be characterized
by (Z + 1, N − 1) for β− decay and by (Z, N − 1) for neutron emission
decay.

2. When radionuclide (Z, N) is above the curve of stability (i.e., is proton-
rich), the β+ decay, electron capture or proton emission may be possible
means to attain a more stable configuration. The resulting nucleus will
be characterized by (Z − 1, N + 1) for β+ decay and electron capture,
and by (Z − 1, N) for proton emission decay.

3. Proton and neutron emission decays are much less common than α and
β decays and occur only in artificially produced radionuclides. The main
characteristics of radionuclides which decay by proton or neutron emis-
sion are an extreme imbalance between the number of protons and the
number of neutrons in their nuclei as well as very short half-lives.

4. In addition to β decay the radionuclides (Z, N) with Z < 83 may decay
by α decay or spontaneous fission. In α decay the resulting nucleus is
characterized by (Z − 2, N − 2), in contrast to spontaneous fission where
the resulting nuclei are much lighter than the parent nucleus.

5. In gamma decay and internal conversion decay the parent nucleus is ex-
cited and undergoes a de-excitation process by emitting a γ photon or a
conversion electron, respectively. Both the parent and the daughter nuclei
are characterized by (Z, N), since the number of protons as well as the
number of neutrons does not change in the decay process.
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Fig. 8.29. Decay paths possibly available in the Chart of the Nuclides (Segrè Chart)
to a parent radionuclide (N, Z) in its quest to attain a more stable configuration.
The parent radionuclide is shown by the solid black circle, the daughter nuclides
are shown by open circles

Table 8.6 lists the main attributes of nuclides presented in this chapter.
The atomic masses M(u) were obtained from the tabulated data provided by
the NIST. For a given nuclide, its nuclear rest energy Mc2 is calculated from
(8.219), its total binding energy EB from (8.220) and its binding energy per
nucleon EB/A from (8.221). These data can be used to determine the decay
energies for the radioactive decay examples presented in this chapter.

A summary of the main characteristics of the eight most common ra-
dioactive decay modes is given in Table 8.7 which for each mode provides
expressions for the basic relationship, the decay energy as well as the energy
of the decay products (daughter nucleus and emitted particles). In radioactive
decay the daughter recoil kinetic energy (EK)D is generally ignored when de-
termining the energy of the other, lighter decay products. However, we must
keep in mind that in α decay as well as in proton and neutron emission decay
(EK)D is of the order of 100 keV, while in other radioactive decay modes,
except for the spontaneous fission, it is of the order of 10 eV to 100 eV. Thus
the daughter recoil kinetic energy in α decay and in proton and neutron emis-
sion decay is not negligible and should be accounted for, while for the other
common radioactive decays it may be ignored.

Table 8.8 presents a summary of the main attributes of the nine most
common radioactive decay modes showing the changes in Z and N as well
as the expressions for the decay energy Q calculated using either the nuclear
masses M or the atomic masses M.
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Table 8.6. Main attributes of nuclides presented in this chapter

Data for atomic masses were obtained from the NIST. M stands for the nuclear rest
mass; M for the atomic rest mass. The nuclear mass-energy is calculated as follows:

Mc2 = Mc2 − Zmec
2 = (M × 931.494043 MeV/u) − (Z × 0.510999 MeV) (8.219)

and the nuclear binding energies are calculated as:

EB = Zmpc2 + (A − Z)mnc2 − Mc2 (8.220)

and

EB/nucleon = EB/A . (8.221)

The rest energies of the proton, neutron and electron are given as follows:

mPc2 = 938.2703 MeV, mnc2 = 939.56536 MeV, mec
2 = 0.5109998918 MeV.
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Table 8.7. Basic characteristics of α decay, electron capture, β− decay, β+ decay,
γ decay, internal conversion, proton emission and neutron emission. The table gives
the basic relationships, the decay energy Q, and the kinetic energy EK of the decay
products. P stands for the parent nucleus or atom; D for the daughter nucleus or
atom. M represents the nuclear mass, M the atomic mass, me the electron rest
mass, mp the proton rest mass, and mn the neutron rest mass

Alpha (α) Decay

Basic relationship: [see (8.142)]
A
Z P → A−4

Z−2 D + α + Qα (8.222)

Decay energy: [see (8.143) and (8.144)]

Qα = {M(P) − [M(D) + mα]} c2 =
{M(P) − [M(D) + M(42He)]

}
c2

=EB(D) + EB(α) − EB(P) = (EK)α + (EK)D (8.223)

Kinetic energy of α particle:

(EK)α =
Qα

1 +
mα

M(D)

=
AP − 4

AP
Qα (8.224)

Daughter recoil kinetic energy: [see (8.148)]

(EK)D =
Qα

1 +
M(D)
mα

=
4

AP
Qα (8.225)

Electron Capture (EC)

Basic relationship: [see (8.156)]
A
Z P + e− = A

Z−1D + νe + QEC (8.226)

Decay energy: [see 8.181) and (8.182)]

QEC = {[M(P) + me] − M(D)} c2 =

= {M(P) − [M(D) − me]} c2 = {M(P) − M(D)} c2 = (EK)D + Eνe (8.227)

Daughter recoil kinetic energy: [see (8.185)]

(EK)D =
E2

ν

2M(D)c2 ≈ QEC

2M(D)c2 (8.228)

Energy given to neutrino: [see (8.187)]

Eν =

{
−1 +

√
1 +

2(QEC − EB)
M(D)c2

}
M(D)c2 ≈ QEC − EB (8.229)
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Table 8.7. (continued)

Beta Minus (β−) Decay

Basic relationship: [see (8.154)]
A
Z P → A

Z+1D + e− + ν̄e + Qβ− (8.230)

Decay energy: [see (8.163), (8.164), and (8.165)]

Qβ− = {M(P) − [M(D) + me]} c2 = {M(P) − M(D)} c2

=(Eβ−)max + (EK)Dmax = (Eβ)max

⎧⎪⎨
⎪⎩1 +

mec
2 +

1
2
(Eβ)max

M(D)c2

⎫⎪⎬
⎪⎭ (8.231)

Daughter maximum recoil kinetic energy: [see (8.162)]

(EK)Dmax =
me

MD
(Eβ−)max

{
1 +

(Eβ−)max

2mec2

}
(8.232)

Combined energy given to electron/antineutrino:

(Eβ−)max = Qβ− − (EK)Dmax ≈ Qβ− (8.233)

Beta Plus (β+) Decay

Basic relationship: [see (8.155)]
A
Z P → A

Z+1D + e− + νe + Qβ− (8.234)

Decay energy: [see (8.163), (8.172), and (8.173)]

Qβ+ = {M(P) − [M(D) + me]} c2 = {M(P) − M(D) + 2me} c2

=(Eβ+)max + (EK)Dmax = (Eβ)max

⎧⎪⎨
⎪⎩1 +

mec
2 +

1
2
(Eβ)max

M(D)c2

⎫⎪⎬
⎪⎭ (8.235)

Daughter maximum recoil kinetic energy: [see (8.162)]

(EK)Dmax =
me

M(D)
(Eβ+)max

{
1 +

(Eβ+)max

2mec2

}
(8.236)

Combined energy given to positron/neutrino

(Eβ+)max = Qβ+ − (EK)Dmax ≈ Qβ+ (8.237)
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Table 8.7. (continued)

Gamma (γ) Decay

Basic relationship: [see (8.191)]
A
Z P∗ → A

Z P + γ + Qγ (8.238)

Decay energy: [see (8.194)]

Qγ =E∗ − E = Eγ + (EK)D

=Eγ

{
1 +

Eγ

2M(D)c2

}
(8.239)

Daughter recoil kinetic energy: [see (8.193)]

(EK)D =
E2

γ

2M(D)c2 (8.240)

Energy of gamma photon:

Eγ = Qγ − (EK)D = Qγ

{
1 +

Eγ

2M(D)c2 )
}

≈ Qγ (8.241)

Internal Conversion

Basic relationship: [see (8.195)]
A
Z P∗ → A

Z P+ + e− + QIC (8.242)

Decay energy: [see (8.196)]

QIC = (E∗ − E) − EB = (EK)IC + (EK)D (8.243)

Daughter recoil kinetic energy: [see (8.197)]

(EK)D =
me

M(D)
(EK)IC +

(EK)2IC
2M(D)c2 =

(EK)IC
M(D)c2

{
mec

2 +
1
2
(EK)IC

}
(8.244)

Kinetic energy of internal conversion electron:

(EK)IC = QIC − (EK)D ≈ QIC (8.245)
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Table 8.7. (continued)

Proton Emission Decay

Basic relationship: [see (8.202)]
A
Z P → A−1

Z−1 D + p + Qp (8.246)

Decay energy: [see (8.203) and (8.204)]

QP = {M(P) − [M(D) + mp]}c2 = {M(P) − [M(D) + M(11H)]}c2

=EB(D) = EB(P)) = (EK)P + (EK)D (8.247)

Kinetic energy of the emitted proton: [see (8.206)]

(EK)p =
Qp

1 +
mp

M(D)

(8.248)

Daughter recoil kinetic energy: [see (8.207)]

(EK)D =
Qp

1 +
M(D)
mp

(8.249)

Neutron Emission Decay

Basic relationship: [see (8.212)]
A
Z P → A−1

ZD + n + Qn (8.250)

Decay energy: [see (8.213) and (8.214)]

Qn = {M(P) − [M(D) + mn]}c2 = {M(P) − [M(D) + mn]}c2

=EB(D) − EB(P) = (EK)n + (EK)D (8.251)

Kinetic energy of the emitted neutron: [see (8.216)]

(EK)n =
Qn

1 +
mn

M(D)

(8.252)

Daughter recoil kinetic energy: [see (.217)]

(EK)D =
Qn

1 +
M(D)
mn

(8.253)
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Table 8.8. Main attributes of the seven decay modes available to an unstable
nucleus for reaching a more stable

Decay Before
decay

After
decay

∆Z =
Za − Zb

∆N =
Na − Nb

∆A =
Aa − Ab

Decay energy Q

α P D, α −2 −2 −4 {M(P) − [M(D) + M(α)]} c2{M(P) − [M(D) + M(42He)]
}

c2

β− P D, e−, ν̄e +1 −1 0 {M(P) − [M(D) + me]} c2

{M(P) − M(D)} c2

β+ P D, e+, νe −1 +1 0 {M(P) − [M(D) + me]} c2

{M(P) − [M(D) + 2me]} c2

Electron
capture

P, e− D, νe −1 +1 0 {[M(P) + me] − M(D)} c2

{M(P) − M(D)} c2

γ P∗ P, γ 0 0 0

Internal
conversion

P∗ P, eorb 0 0 0

Spontaneous
fission

P D1, D2 ∼ Z/2 ∼ A/2

Proton
emission

P D, p −1 0 −1 {M(P) − [M(D) + mp]} c2

{M(P) − [M(D) + M(H)]} c2

Neutron
emission

P D, n 0 −1 −1 {M(P) − [M(D) + mn]} c2

{M(P) − [M(D) + mn]} c2

Legend: P = parent nucleus; D = daughter nucleus; eorb= orbital electron
M = nuclear mass; M = atomic mass; M(H) = mass of hydrogen atom
me =electron mass; mp = proton mass; mn = neutron mass;
b = before decay ; a = after decay
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Appendix 1. Short Biographies of Scientists
Whose Work Is Discussed in This Book

The biographical data were obtained mainly from two sources:

1. Book by William H. Cropper: “Great Physicists: The Life and Times of
Leading Physicists from Galileo to Hawking” published by Oxford Uni-
versity Press in 2001.

2. The website www.Nobelprize.org that contains biographies and Nobel
lectures of all Nobel Prize winners in Physics, Chemistry, Physiology or
Medicine, Literature, Peace, and Economic Sciences from 1901 to date.

ANDERSON, Carl David (1905–1991)

American physicist, educated at the California Institute of Technology (Cal-
tech) in Pasadena (B.Sc. in Engineering Physics in 1927; Ph.D. in Engineering
Physics in 1930). He spent his entire professional career at Caltech, becom-
ing Professor of Physics in 1939, Chairman of the Physics, Mathematics &
Astronomy division (1962–1970), and Professor Emeritus in 1976.

Early in his career Anderson concentrated on studies of x rays, later on on
studies of cosmic rays with cloud chambers that lead to the discovery of the
positron in 1932. Positron was the first known particle in the category of anti-
matter. Paul A.M. Dirac enunciated its existence in 1928 with his relativistic
quantum theory for the motion of electrons in electric and magnetic fields.
Dirac’s theory incorporated Albert Einstein’s special theory of relativity and
predicted the existence of an antiparticle to the electron (same mass, oppo-
site charge). In 1933 Anderson succeeded in producing positrons by gamma
radiation through the effect of pair production. In 1936 Anderson, in collab-
oration with his graduate student Seth Neddermeyer, discovered, again while
studying cosmic radiation, the muon (µ meson), the first known elementary
particle that is not a basic building block of matter.

In 1936 Anderson shared the Nobel Prize in Physics with Victor Franz
Hess, an Austrian physicist. Anderson received the Prize “for his discovery
of the positron” and Hess “for his discovery of cosmic radiation”.

AUGER, Pierre Victor (1899–1993)

French physicist who was active as a basic scientist in atomic, nuclear and
cosmic ray physics but also made important contributions to French and
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international scientific organizations. The world’s largest cosmic ray detector,
the Pierre Auger observatory, is named after him. Auger is also credited with
the discovery in 1925 of radiation-less electronic transitions in atoms that are
followed by emission of orbital electrons. The process is named after him as
the Auger effect and the emitted electrons are called Auger electrons. Lise
Meitner actually discovered the radiation-less atomic transition process in
1923, two years before Auger; nonetheless, the process is referred to as the
Auger effect.

AVOGADRO, Amedeo (1776–1856)

Italian lawyer, chemist, physicist, best known for the “Avogadro’s principle”
and “Avogadro’s number”. The Avogadro’s principle states that “equal vol-
umes of all gases at the same temperature and pressure contain the same
number of molecules.” The concepts of gram-atom and gram-mole were in-
troduced long after Avogadro’s time; however, Avogadro is credited with
introducing the distinction between the molecule and the atom. The number
of atoms per gram-atom and number of molecules per gram-mole is constant
for all atomic and molecular entities and referred to as Avogadro’s number
(NA = 6.022 × 1023 atom/g-atom) in honor of Avogadro’s contributions to
chemistry and physics.

BALMER, Johann Jakob (1825–1898)

Swiss mathematician who studied in Germany at the University of Karlsruhe
and the University of Berlin before receiving a doctorate at the University
of Basel. He then spent his professional life teaching mathematics at the
University of Basel.

Balmer is best known for his work on spectral lines emitted by the hydro-
gen gas. In 1885 he published a formula that predicted the wavelengths of the
lines in the visible part of the hydrogen spectrum. The formula predicted the
lines very accurately but was empirical rather than based on any physical
principles. Several other scientists subsequently proposed similar empirical
formulas for hydrogen lines emitted in other portions of the photon spectrum
(Lymann in the ultraviolet and Paschen, Brackett and Pfund in the infrared).
In 1913 Niels Bohr derived from first principles the general relationship for
spectral lines of hydrogen. The relationship is governed by n, the principal
quantum number, and contains a constant that is now referred to as the Ry-
dberg constant (R∞ = 109 737 cm−1). The spectral line series for n = 1 is
called the Lymann series; for n = 2 the Balmer series; for n = 3 the Paschen
series; for n = 1 the Brackett series; and for n = 5 the Pfund series.

BARKLA, Charles Glover (1877–1944)

British physicist, educated in mathematics and physics at the University Col-
lege in Liverpool from where he graduated in 1898. He worked as research
assistant with Joseph J. Thomson in the Cavendish Laboratory in Cambridge
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and as academic physicist at the University of London. In 1913 he was ap-
pointed Chair of Natural Philosophy at the University of Edinburgh and held
the position until his death in 1944.

Barklas’s most important research involved studies of the production of x
rays and of their interactions with matter. He is credited with the discovery of
characteristic (fluorescent) radiation and the polarization of x rays between
1904 and 1907.

In 1917 he was awarded the Nobel Prize in Physics “for his discovery of
the characteristic Röntgen radiation of the elements”.

BECQUEREL, Henri Antoine (1852–1908)

French physicist, educated at the École Polytechnique in basic science and
at the École des Ponts et Chaussées becoming an ingénieur in 1877. In 1888
he acquired the degree of docteur-ès-sciences. In 1895 he became Professor
of Physics at the École Polytechnique.

Becquerel was active in many areas of physics investigating polarization
of visible light, naturally occurring phosphorescence in uranium salts, and
terrestrial magnetism. In 1896, shortly after Wilhelm Röntgen’s discovery of
x rays, Becquerel accidentally discovered natural radioactivity while inves-
tigating phosphorescence in uranium salts upon exposure to light. He ob-
served that when the salts were placed near a photographic plate covered
with opaque paper, the developed plate was nonetheless fogged. Becquerel
concluded that the uranium salts were emitting penetrating rays that were
emanating from uranium atoms. He subsequently showed that the rays were
causing ionization of gases and that, in contrast to Röntgen’s x rays, they
were deflected by electric and magnetic fields.

In 1903 Becquerel shared the Nobel Prize in Physics with Pierre and
Marie Curie. He was awarded the prize “in recognition of the extraordinary
services he has rendered by his discovery of spontaneous radioactivity” and the
Curies received their prize “in recognition of the extraordinary services they
have rendered by their joint researches on the radiation phenomena discovered
by Professor Henri Becquerel”.

Becquerel and his work are honored by the SI unit of radioactivity named
Becquerel (Bq). In addition, there are Becquerel craters on the moon and
Mars.

BERGER, Martin (1922–2004)

Austrian-born American physicist, educated at the University of Chicago
where he received his degrees in Physics: B.Sc. in 1943, M.Sc. in 1948, and
doctorate in 1951. In 1952 Berger joined the Radiation Theory Section at the
National Bureau of Standards (NBS), now National Institute of Science and
Technology (NIST) in Washington D.C. In 1964 he became the Section Chief
and later, as well, Director of the Photon and Charged-Particle Data Center
at the NBS/NIST, a position he held until his retirement in 1988.
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Berger is best known for his early work on the transport of gamma rays
and applications of Monte Carlo calculations in complex media involving
boundaries and inhomogeneities. He also worked on charged-particle trans-
port with emphasis on electrons and protons, and developed algorithms for
use in charged particle Monte Carlo codes. His ETRAN code, first published
in the 1960s, became the industry standard for coupled electron-photon trans-
port. Berger, in collaboration with Stephen Seltzer, also developed cross-
section data for electron and heavy charged particle interactions as well as
for electron bremsstrahlung production. He was also involved in applications
of Monte Carlo calculations to important problems in radiological physics
and radiation dosimetry.

BETHE, Hans Albrecht (1906–2005)

German-born American physicist, educated at the Universities of Frankfurt
and Munich. He received his doctorate in Theoretical Physics under Arnold
Sommerfeld in 1928. For four years he worked as Assistant Professor at the
University of Munich, then spent a year in Cambridge and a year in Rome
with Enrico Fermi. He returned to Germany as Assistant Professor at the
University of Tübingen but lost the position during the rise of Nazism. He
first emigrated to England and then in 1935 moved to Cornell University in
Ithaca, New York as Professor of Physics. He stayed at Cornell essentially all
his professional life, but also served as Director of Theoretical Physics on the
Manhattan project at Los Alamos (1943–1946).

Bethe made important theoretical contributions to radiation physics, nu-
clear physics, quantum mechanics, and quantum electrodynamics. He was
also a strong advocate for peaceful use of atomic energy, despite having been
involved with the Manhattan project as well as with the development of the
hydrogen bomb. In collision theory Bethe derived the stopping power rela-
tionships that govern inelastic collisions of fast particles with atoms. With
Heitler, he developed the collision theory for relativistic electrons interacting
with atomic nuclei and producing bremsstrahlung radiation in the process.
Bethe’s work in nuclear physics lead to the discovery of the reactions that
govern the energy production in stars.

In 1967 Bethe was awarded the Nobel Prize in Physics “for his theory of
nuclear reactions, especially his discoveries concerning the energy production
in stars”.

BLOCH, Felix (1905–1983)

Swiss-born American physicist, educated at the Eidgenössische Technische
Hochschule in Zürich (ETHZ) and at the University of Leipzig where he
received his doctorate in physics in 1928. During the next few years he held
various assistantships and fellowships that gave him the opportunity to work
with the giants of modern physics (Pauli, Heisenberg, Bohr, and Fermi) and
to further his understanding of solid state physics in general and stopping
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powers of charged particles in particular. In 1933 Bloch left Germany and
in 1934 accepted a position at Stanford University where he got involved
with experimental physics of neutron momenta and polarized neutron beams.
During the war years he worked on the Manhattan project at Los Alamos
and on radar technology at Harvard where he became familiar with modern
techniques of electronics. This helped him upon return to Stanford in 1945
with development of new techniques for measuring nuclear moments that
culminated in 1946 with the invention of the nuclear magnetic resonance
(NMR) technique, a purely electromagnetic procedure for the study of nuclear
moments in solids, liquids, and gases. At Harvard Edward M. Purcell with
students Robert Pound and Henry C. Torrey invented the NMR technique
independently and at about the same time as Bloch.

In 1952 Bloch and Purcell received the Nobel Prize in Physics “for their
development of new methods for nuclear magnetic precision measurements
and discoveries in connection therewith”. Since the late 1970s NMR provided
the basis for magnetic resonance imaging (MRI), which is widely used as a
non-invasive diagnostic imaging technique.

BOHR, Niels Henrik David (1885-1962)

Danish physicist, educated at the University of Copenhagen where he ob-
tained his M.Sc. degree in Physics in 1909 and doctorate in Physics in 1911.
Between 1911 and 1916 Bohr held various academic appointments in the U.K.
and Copenhagen. In 1911 he worked in Cambridge with Joseph J. Thomson
and in 1912 he worked in Manchester with Ernest Rutherford. He was a Lec-
turer in physics at the University of Copenhagen in 1913 and at the University
of Manchester between 1914 and 1916. In 1916 he was appointed Professor
of Theoretical Physics and in 1920 he also became the first Director of the
Institute of Theoretical Physics (now Niels Bohr Institute) at the University
of Copenhagen. He remained in both positions until his death in 1962.

Bohr was an exceptionally gifted theoretical physicist who made impor-
tant contributions to atomic, nuclear, and quantum physics. He is best known
for his expansion in 1913 of the Rutherford’s atomic model into the realm
of Planck’s quantum physics to arrive at a model that is now called the
Rutherford-Bohr atomic model. With four postulates that merged simple
classical physics concepts with the idea of quantization of angular momenta
for electrons revolving in allowed orbits about the nucleus, he succeeded in
explaining the dynamics of one-electron structures and in predicting the wave-
lengths of the emitted radiation.

Bohr is also known as the author of the principle of complementarity
which states that a complete description of an atomic scale phenomenon
requires an evaluation from both the wave and particle perspective. In 1938
he proposed the so-called liquid drop nuclear model and in 1939 he succeeded
in explaining the neutron fission of natural uranium in terms of fissionable
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uranium-235 (an isotope with an abundance of only 0.7% in natural uranium)
and the much more abundant non-fissionable uranium-238.

During World War II Bohr worked on the Manhattan project in Los
Alamos but his contribution to the development of atomic weapons was only
minor. After the war he used his considerable credibility and influence to
promote peaceful use of the atomic energy and in 1954 helped found the
CERN (Centre Européen de Recherche Nucléaire) in Geneva, touted as the
world’s largest particle physics laboratory and the birthplace of the worldwide
web. In addition to producing his theoretical masterworks, Bohr was also
keenly interested in politics and advised Presidents Roosevelt and Truman
as well as Prime Minister Churchill on nuclear matters. Only Albert Einstein
and Marie Curie among scientists of the 20th century have attained such
esteem from physics colleagues, world leaders, and the general public.

In tribute to Bohr’s contributions to modern physics the element with
atomic number 107 is named bohrium (Bh). Bohr received the 1922 Nobel
Prize in Physics “for his services in the investigation of the structure of atoms
and of the radiation emanating from them”.

BORN, Max (1882–1970)

German mathematician and physicist, educated at universities of Breslau
(1901), Heidelberg (1902), Zürich (1903), and Göttingen where he received
his doctorate in 1907. In 1909 he was appointed Lecturer at the University
of Göttingen and in 1912 he moved to the University of Chicago. In 1919 he
became Professor of Physics at the University of Frankfurt and then in 1921
Professor of Physics at the University of Göttingen. From 1933 until 1936
he lectured at the University of Cambridge and from 1936 until 1953 at the
University of Edinburgh.

Born is best known for his work on relativity in general and the relativistic
electron in particular. He was also working on crystal lattices and on quantum
theory, in particular on the statistical interpretation of quantum mechanics.
He is best known for his formulation of the now-standard interpretation of the
probability density for ψ∗ψ in the Schrödinger equation of wave mechanics.

In 1954 Born shared the Nobel Prize in Physics with Walther Bothe.
Born received his half of the prize “for his fundamental research in quantum
mechanics, especially for his statistical interpretation of the wavefunction”
and Bothe “for the coincidence method and his discoveries made herewith”.

BRAGG, William Henry (1862–1942)

British physicist, educated at King William College on Isle of Man and at the
Trinity College at Cambridge where he graduated in 1884. His first academic
appointment was at the University of Adelaide in Australia from 1885 until
1909. In 1909 he returned to England and worked as Professor of Physics at
the University of Leeds from 1909 until 1915 and at the University College
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in London from 1915 until 1923. From 1923 until 1942 he was Director of the
Royal Institution in London.

Henry Bragg is best known for the work he carried out in collaboration
with his son Lawrence on the diffraction of x rays on crystalline structures.
von Laue discovered the diffraction of x rays on crystals; however, it was the
father-son Bragg team that developed the discipline of x-ray crystallography
based on the Bragg crystal spectrometer, a very important practical tool in
solid state physics and analytical chemistry.

The 1915 Nobel Prize in Physics was awarded to William Henry Bragg
and his son William Lawrence Bragg “for their services in the analysis of
crystal structure by means of x rays”.

BRAGG, William Lawrence (1890–1971)

Australian-born British physicist, educated at Adelaide University where he
graduated at age 18 with an honors B.A. degree in Mathematics. He then
entered Trinity College in Cambridge, continued his studies in mathematics
but switched to physics the second year and graduated in physics in 1912.
He first worked as Lecturer at the Cavendish Laboratory in Cambridge but
from 1915 spent three years in the army. He became Langworthy Professor
of Physics at the University of Manchester in 1919. During 1938 he was
Director of the National Physical Laboratory in Teddington and then worked
in Cambridge as the Cavendish Professor of Experimental Physics from 1939
until 1954 and as Director of the Royal Institution from 1954 until 1966.

In 1912 William L. Bragg became interested in the great debate on the
nature of x rays: were they waves or particles? Following the experiments
of von Laue and colleagues he developed an ingenious way of treating the
phenomenon of x-ray diffraction on crystalline structures. He pointed out that
the regular arrangement of atoms in a crystal defines a large variety of planes
on which the atoms effectively lie. This means that the atoms in a regular
lattice simply behave as if they form reflecting planes. The well-known Bragg
equation is then expressed as 2d sin φ = mλ, with d the separation between
two atomic planes, φ the angle of incidence of the x-ray beam, λ the x-ray
wavelength, and m an integer. The basis of a Bragg spectrometer is then
as follows: For a known d, an x-ray spectrum can be analyzed by varying φ
and observing the intensity of the reflected x rays that are scattered through
and angle θ = 2φ from the direction of the incident collimated beam. On the
other hand, if mono-energetic x rays with a known λ are used, it is possible to
determine various effective values of d in a given crystal and hence the basic
atomic spacing a. With the knowledge of a one may determine the Avogadro’s
number NA with great accuracy.

The 1915 Nobel Prize in Physics was awarded to William Lawrence Bragg
and his father William Henry Bragg “for their services in the analysis of
crystal structure by means of x rays”.



368 Appendix 1. Short Biographies

ČERENKOV, Pavel Alekseyevič (1904–1990)

Russian physicist, educated at the Voronezh State University in Voronezh
in Central Russia, where he graduated with a degree in mathematics and
physics in 1928. In 1930 he accepted a post as senior scientific officer in the
Peter N. Lebedev Institute of Physics in the Soviet Academy of Sciences
(now the Russian Academy of Sciences in Moscow) under the directorship of
Sergei I. Vavilov. In 1940 Čerenkov was awarded a doctorate in physics and
in 1953 he became Professor of Experimental Physics. In 1970 he became an
Academician of the USSR Academy of Sciences.

Čerenkov is best known for his studies of the visible light emitted by en-
ergetic charged particles which move through a transparent medium with a
velocity that exceeds c/n, the speed of light in the medium, where c is the
speed of light in vacuum and n is the index of refraction. In 1934 Čerenkov
and Sergei I. Vavilov observed that gamma rays from a radium source, be-
sides causing luminescence in solutions, also produce a faint light from sol-
vents. Their subsequent research lead to two important conclusions: firstly,
the emitted light was not a luminescence phenomenon and secondly, the light
they observed was not emitted by photons, rather, it was emitted by high
energy electrons released in the medium by photon interactions with orbital
electrons of the medium. The effect is now referred to as the Čerenkov effect
(or sometimes as the Čerenkov-Vavilov effect) and the blue light emitted by
energetic charged particles is called Čerenkov radiation. Ilja Frank and Igor
Tamm, also from the Lebedov Institute, explained the Čerenkov effect the-
oretically in 1937 showing that Čerenkov radiation originates from charged
particles that move through the medium faster then the speed of light in the
medium. The Čerenkov effect is used in Čerenkov counters in nuclear and
particle physics for determination of particle energy and velocity.

The 1958 Nobel Prize in Physics was awarded to Čerenkov, Frank, and
Tamm “for the discovery and the interpretation of the Čerenkov effect”.

CHADWICK, James (1891–1974)

British physicist, educated at Manchester University (B.Sc. in 1911 and M.Sc.
in 1913) before continuing his studies in the Physikalisch-Technische Reichs-
anstalt at Charlottenburg. In 1919 he moved to Cambridge to work with
Ernest Rutherford on nuclear physics research. He remained in Cambridge
until 1935 when he became the Chairman of Physics at the University of
Liverpool. From 1943 to 1946 he was the Head of the British Mission attached
to the Manhattan project.

Chadwick is best known for his discovery of the neutron, a constituent of
the atomic nucleus that in contrast to the proton is devoid of any electrical
charge. In recognition of this fundamental discovery that paved the way to-
ward the discovery of nuclear fission, Chadwick was awarded the 1935 Nobel
Prize in Physics “for the discovery of the neutron”.
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COMPTON, Arthur Holy (1892–1962)

American physicist, educated at College of Wooster (B.Sc. in 1913) and
Princeton University (M.A. in 1914 and Ph.D. in 1916). He worked as physics
instructor at the University of Minnesota, research engineer at Westinghouse
in Pittsburgh, and research fellow at Cambridge University. Upon return to
the U.S. in 1920 he worked as Chairman of the Physics department at the
Washington University in St. Louis and in 1923 he moved to the University
of Chicago as Professor of Physics.

Compton is best known for his experimental and theoretical studies of x-
ray scattering on atoms that lead to his discovery, in 1922, of the increase in
wavelength of x rays scattered on essentially free atomic electrons. This effect
illustrates the corpuscular nature of photons and is now known as the Comp-
ton effect. As Chairman of the “National Academy of Sciences Committee to
Evaluate Use of Atomic Energy in War”, Compton was instrumental in devel-
oping the first controlled uranium fission reactors and plutonium-producing
reactors.

In 1927 Compton was awarded the Nobel Prize in Physics “for the dis-
covery of the effect that bears his name”. The co-recipient of the 1927 Nobel
Prize was C.T.R. Wilson for his discovery of the cloud chamber.

COOLIDGE, William David (1873–1975)

American physicist and inventor, educated at the Massachusetts Institute of
Technology (MIT) in Boston (B.Sc. in Electrical Engineering in 1896) and
the University of Leipzig (doctorate in Physics in 1899). In 1899 he returned
for five years to Boston as a research assistant in the Chemistry department
of the MIT. In 1905 Coolidge joined the General Electric (GE) Company in
Schenectady, New York, and remained with the company until his retirement
in 1945. He served as director of the GE Research Laboratory (1932–1940)
and as vice president and director of research (1940–1944).

During his 40-year career at General Electric, Coolidge became known
as a prolific inventor and was awarded 83 patents. He is best known for his
invention of ductile tungsten in the early years of his career. He introduced
ductile tungsten for use as filament in incadescent lamps in 1911 produc-
ing a significant improvement over Edison’s design for incadescent lamps. In
1913 he introduced ductile tungsten into x-ray tubes and revolutionized x-
ray tube design that at the time was based on three major components: cold
cathode, low pressure gas, and anode (target). The role of the low pressure
gas was to produce ions which produced electrons upon bombardment of the
cold aluminum cathode. This x-ray tube design was based on the Crookes
device for studying cathode rays, and is now referred to as the Crookes tube.
The performance of the Crookes x-ray tube was quite erratic and Coolidge
introduced a significant improvement when he replaced the cold aluminum
cathode with a hot tungsten filament and replaced the low pressure gas with
high vacuum. Coolidge’s x-ray tube design is now referred to as the Coolidge
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tube and is still used today for production of superficial and orthovoltage x
rays. In the Coolidge x-ray tube the electrons are produced by thermionic
emission from the heated filament cathode and accelerated in the applied
electric field toward the anode (target).

In honor of Coolidge’s contribution to radiology and medical physics
through his hot filament innovation, the highest award bestowed annually
by the American Association of Physicists in Medicine is named the William
D. Coolidge Award.

CORMACK, Allen MacLeod (1924–1998)

South African-born American physicist, educated in x-ray crystallography
at the University of Cape Town where he obtained his B.Sc. in 1944 and
M.Sc. in 1945. For a year he continued his studies in nuclear physics at the
Cavendish Laboratory in Cambridge, and then returned to a lectureship in
the Physics department at the University of Cape Town. On a part time ba-
sis he assumed responsibilities for supervising the use of radioactive nuclides
in the Groote Shuur hospital, thus learning about medical physics in a ra-
diotherapy department. In 1956 Cormack took a sabbatical at Harvard and
developed there a crude theory for the x-ray absorption problem to be used
in future CT algorithms. From Harvard he returned to Cape Town for a few
months and carried out actual experiments on a crude cylindrical CT phan-
tom. In 1957 Cormack moved to Tufts University in Boston and continued
intermittent work on his tomography idea.

During 1963 and 1964 Cormack published two seminal CT papers in
the “Journal of Applied Physics”. The two papers were largely ignored, but
earned him the 1979 Nobel Prize in Physiology or Medicine which he shared
with Godfrey N. Hounsfiled “for the development of computer assisted tomog-
raphy”.

CURIE, Pierre (1859–1906)

French physicist and chemist, educated in Paris where, after obtaining his
“Licence ès Sciences” (equivalent to M.Sc.) at the age of 18, he was appointed
a laboratory assistant at the Sorbonne. In 1882 he was appointed supervisor
at the École de Physique et Chimie Industrielle in Paris and in 1895 obtained
his doctorate. In 1900 he was appointed lecturer and in 1904 Professor of
Physics at the Sorbonne.

Pierre Curie’s contributions to physics have two distinct components
clearly separated by the date of his wedding to Maria Sklodowska-Curie in
1895. Before that date, he was involved in crystallography and magnetism
discovering the piezoelectric effect as well as showing that magnetic proper-
ties of a given substance change at a certain temperature that is now referred
to as the Curie point. To carry out his experiments he constructed delicate
devices that proved very useful in his collaborative studies of radioactivity
with his wife Marie Curie. After their discovery of polonium and radium,
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Pierre Curie concentrated on investigating the physical properties of radium
while Marie concentrated on preparing pure compounds.

Pierre Curie and one of his students are credited with making the first
observation of nuclear power through measuring the continuous production
of heat in a sample of radium. He was also the first to report the decay of
radioactive materials and the deleterious biological effects of radium after
producing a radium burn and wound on his own skin.

In his honor the 1910 Radiology Congress accepted the definition of the
curie (Ci), a unit of activity, as the activity of 1 g of radium-226 correspond-
ing to 3.7 × 1010 s−1. The curie is still defined as 3.7 × 1010 s−1; however,
subsequent measurements have shown that the specific activity of radium-226
is 0.988 Ci/g. In tribute to the work of Pierre and Marie Curie the element
with atomic number 96 was given the name curium (Cm).

Pierre and Marie Curie shared the 1903 Nobel Prize in Physics with Henri
Becquerel “in recognition of the extraordinary services they have rendered by
their joint researches on the radiation phenomena discovered by Professor
Henri Becquerel”. Becquerel was awarded his share of the Nobel Prize “in
recognition of the extraordinary services he has rendered by his discovery of
spontaneous radioactivity”.

CURIE-SKLODOWSKA, Marie (1867–1934)

Polish-born French physicist, educated at the Sorbonne in Paris where she
obtained a “Licence ès Sciences” (equivalent to M.Sc.) in Physical Sciences
(1893) and Mathematics (1894) and her doctorate in Physics in 1903. Curie
spent her professional life at various institutions in Paris. In 1906 she was
appointed Lecturer in Physics at the Sorbonne and was promoted to Professor
of Physics in 1908.

In 1914 Marie Curie helped found the “Radium Institute” in Paris ded-
icated to scientific disciplines of physics, chemistry and biology applied to
prevention, diagnosis and treatment of cancer. The institute had two divi-
sions: the Curie Laboratory dedicated to research in physics and chemistry
of radioactivity and the Pasteur Laboratory devoted to studies of biological
and medical effects of radioactivity. The Curie Laboratory was headed by
Marie Curie; the Pasteur Laboratory by Claudius Regaud who is regarded as
the founding father of both radiotherapy and radiobiology. In 1920, the Curie
Foundation was inaugurated to raise funds to support the activities of the
Radium Institute. In 1970 the Radium Institute and the Curie Foundation
were merged into the Curie Institute mandated to carry out cancer research,
teaching and treatment.

After obtaining her “licence” at the Sorbonne, Curie, looking for a doc-
toral degree subject, decided to investigate the phenomenon of radiation
emission from uranium discovered by Henri Becquerel in 1896. She coined
the name “radioactivity” for the spontaneous emission of radiation by ura-
nium and established that radioactivity was an atomic rather than chemical
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phenomenon process. She then investigated if the peculiar property of ura-
nium could be found in any other then-known element and discovered that
thorium is also an element which exhibits radioactivity. Noticing that some
minerals (for example, pitchblende uranium ore) exhibited a much larger rate
of radioactivity than warranted by their uranium or thorium content, she
surmised that the minerals must contain other highly radioactive unknown
elements. In collaboration with her husband Pierre Curie, Marie Curie dis-
covered miniscule amounts of new elements radium and polonium after sifting
through several tons of pitchblende uranium ore. In tribute to the work of
Pierre and Marie Curie the element with atomic number 96 was given the
name curium (Cm).

The discovery of the new radioactive elements in 1898 earned Marie Curie
a doctorate in Physics and, in addition, both Marie and Pierre Curie shared,
with Henry Becquerel, the 1903 Nobel Prize in Physics “in recognition of
the extraordinary services they have rendered by their joint researches on the
radiation phenomena discovered by Professor Henri Becquerel”.

In 1911 Marie Curie was awarded another Nobel Prize, this time in Chem-
istry, “in recognition of her services to the advancement of chemistry by the
discovery of the elements of radium and polonium, by the isolation of radium
and the study of the nature and compounds of this remarkable element”.

Marie Curie’s contribution to science has been enormous not only in her
own work but also in the work of subsequent generations of physicists whose
lives she touched and influenced. She was the first woman to teach at the
Sorbonne, the first woman to receive a Nobel Prize, and the first scientist to
have received two Nobel Prizes.

DAVISSON, Clinton Joseph (1881–1958)

American physicist, educated at the University of Chicago (B.Sc. in 1908)
and Princeton University where he received his doctorate in Physics in 1911.
He spent most of his professional career at the Bell Telephone Laboratories.
Upon retirement from Bell Labs he became Visiting Professor of Physics at
the University of Virginia in Charlottesville.

Davisson is best known for his work on electron diffraction from metallic
crystals. In 1927 he was studying elastic electron scattering on a nickel sin-
gle crystal in collaboration with Lester H. Germer. When they analyzed the
angular distribution of scattered electrons they discovered that electrons pro-
duced diffraction patterns similar to those produced by x rays. The diffraction
patterns were governed by the Bragg formula with a wavelength λ given by
the de Broglie equation: λ = h/p with h the Planck’s constant and p the mo-
mentum of the electron. The experiment, now known as the Davisson-Germer
experiment, confirmed the hypothesis formulated in 1924 by Louis de Broglie
that electrons exhibit dual nature, behaving both as waves and as particles.
George P. Thomson, a physicist at the University of Aberdeen in Scotland,
confirmed the de Broglie’s hypothesis with a different experiment. He stud-
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ied the behavior of electrons as they traversed very thin films of metals and
also observed that electrons under certain conditions behave as waves despite
being particles. Thomson’s apparatus is referred to as an electron diffraction
camera and produces a series of rings when a narrow electron beam is made
to traverse a thin metallic foil.

In 1937 Davisson and Thomson shared the Nobel Prize in Physics “for
their experimental discovery of the diffraction of electrons by crystals.”

DE BROGLIE, Louis (1892–1987)

French theoretical physicist, educated at the Sorbonne in Paris, first graduat-
ing with an arts degree in 1909 and then with “Licence ès Sciences” (equiva-
lent to M.Sc.) in 1913. De Broglie spent the war years 1914–1918 in the army
and in 1920 resumed his studies in Theoretical Physics at the Sorbonne. He
obtained his doctorate in theoretical physics in 1924, taught physics at the
Sorbonne for two years and became Professor of Theoretical Physics at the
Henri Poincaré Institute. From 1932 to his retirement in 1962 he was Profes-
sor of Theoretical Physics at the Sorbonne.

De Broglie is best known for his theory of electron waves based on the work
of Max Planck and Albert Einstein. The theory, presented in his doctorate
work, proposed the wave-particle duality of matter. De Broglie reasoned that
if x rays behave as both waves and particles, then particles in general and
electrons in particular should also exhibit this duality. De Broglie’s theory
was confirmed experimentally by Clinton J. Davisson and Lester H. Germer
in the United States and by George P. Thomson in the U.K. The theory was
subsequently used by Ervin Schrödinger to develop wave mechanics.

The 1929 Nobel Prize in Physics was awarded to de Broglie “for his dis-
covery of the wave nature of electrons”.

DIRAC, Paul Adrien Maurice (1902–1984)

British physicist, educated at the University of Bristol where he obtained
his Bachelor’s degree in Electrical Engineering in 1921 and at the St. John’s
College in Cambridge where he received his doctorate in Mathematics in
1926. In 1927 he became a Fellow of the St. John’s College and from 1932
until 1969 he was Lucasian Professor of Mathematics in Cambridge. In 1969
Dirac moved to Florida to become Professor of Physics at the Florida State
University.

Dirac was an extremely productive and intelligent theoretical physicist,
mainly involved with mathematical and theoretical aspects of quantum me-
chanics. Quantum mechanics, dealing with dimensions of the order of the
atomic size, introduced the second revolution in physics, the first one being
Albert Einstein’s special theory of relativity that deals with velocities of the
order of the speed of light in vacuum.

In 1926 Dirac developed his version of quantum mechanics that merged
the “matrix mechanics” of Werner Heisenberg with the “wave mechanics”
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of Erwin Schrödinger into a single mathematical formalism. In 1928 he de-
rived a relativistic equation for the electron that merged quantum mechanics
with relativity and is now referred to as the Dirac equation. The equation
predicts the existence of an anti-particle (same mass, opposite charge) to the
electron and infers the electron quantum spin. Dirac also predicted that in
an electron/anti-electron encounter the charges cancel, and the two particles
annihilate with the combined mass transforming into radiation according to
Albert Einstein’s equation E = mc2. Four years later, in 1932 Carl D. An-
derson discovered the anti-electron, a new particle which is now called the
positron. In 1931 Dirac showed theoretically that the existence of a magnetic
monopole would explain the observed quantization of the electrical charge (all
charges found in nature are multiples of the electron charge). No monopoles
have been found in nature so far.

The 1933 Nobel Prize in Physics was awarded to Paul M. Dirac and Erwin
Schrödinger “for their discovery of new productive forms of atomic theory”.

EINSTEIN, Albert (1879–1955)

German-born theoretical physicist, educated at the Eidgenössische Technis-
che Hochschule in Zürich (ETHZ) from which he graduated in 1900 as a
teacher of mathematics and physics. He did not succeed in obtaining an aca-
demic post after graduating and spend two years teaching mathematics and
physics in secondary schools. From 1902 until 1909 he worked as a technical
expert in the Swiss Patent Office in Bern. In 1905 he earned a doctorate in
Physics from the University of Zürich.

Following publication of three seminal theoretical papers in 1905 and sub-
mission of his “Habilitation” thesis in 1908, Einstein’s credibility in physics
circles rose dramatically; he started to receive academic job offers and en-
tered a period of frequent moves and changes in academic positions. In 1908
he became lecturer at the University of Bern and in 1909 Professor of Physics
at the University of Zürich. During 1911 he was Professor of Physics at the
Karl-Ferdinand University in Prague and in 1912 he moved back to Zürich
to take a chair in theoretical physics at the ETHZ. Finally, in 1914 he moved
to Berlin to a research position without teaching responsibilities at the then
world-class center of physics at the University of Berlin.

During the Berlin period (1914–1933) Einstein produced some of his most
important work, became an international “star” physicist and scientist, got
involved in political issues, and traveled a great deal to visit physics col-
leagues and present invited lectures on his work. In 1932 he moved to the
United States to become Professor of Theoretical Physics at the Institute for
Advanced Study in Princeton, one of the world’s leading centers for theoret-
ical research and intellectual inquiry.

Einstein was an extremely gifted physicist and his contribution to modern
physics is truly remarkable. His three papers published in Volume 17 of the
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“Annalen der Physik” each dealt with a different subject and each is now
considered a masterpiece.

The first of the three papers dealt with the photoelectric effect and con-
tributed to quantum theory by assuming that light under certain conditions
behaves like a stream of particles (quanta) with discrete energies. The sec-
ond paper dealt with statistical mechanics and lead to an explanation of
Brownian motion of molecules. The third paper addressed the connection
between the electromagnetic theory and ordinary motion and presented Ein-
stein’s solution as the “special theory of relativity”. In 1916, after a decade of
futile attempts, Einstein completed his “general theory of relativity” based
on the “equivalence principle” stating that uniform acceleration of an object
is equivalent to a gravitational field. The gravitational field causes curvature
of space-time as observed experimentally by measuring the precession of the
mercury perihelion and the bending by the sun of light from the stars.

At the end of the Berlin period and during his American period from
1933 until his death in 1955 Einstein concentrated on developing a unified
field theory, unsuccessfully attempting to unify gravitation, electromagnetism
and quantum physics. Throughout his life Einstein was a pacifist detesting
both militarism as well as nationalism. In tribute to Einstein’s contributions
to modern physics the element with atomic number 109 is named einsteinium
(Es).

In 1921 the Nobel Prize in Physics was awarded to Einstein “for his
services to Theoretical Physics and especially for his discovery of the law of
the photoelectric effect”.

In recognition of Einstein‘s tremendous contribution to modern physics
the year 2005, the centenary of Einstein’s “annus mirabilis”, was proclaimed
the world year of physics, a worldwide celebration of physics and its impact
on humanity.

EVANS, Robley (1907–1995)

American nuclear and medical physicist, educated at the California Institute
of Technology (Caltech) where he studied physics and received his B.Sc. in
1928, M.Sc. in 1929, and Ph.D. under Robert A. Millikan in 1932. After re-
ceiving his doctorate he studied biological effects of radiation as post-doctoral
fellow at the University of California at Berkeley before accepting a faculty
position at the Massachusetts Institute of Technology (MIT) in Boston. He
remained an active member of the MIT faculty for 38 years and retired in
1972 to become a special project associate at the Mayo Clinic in Rochester,
Minnesota.

At the MIT Evans was instrumental in building the first cyclotron in the
world for biological and medical use. He established the Radioactivity Center
in the Physics department at the MIT for research in nuclear physics related
to biology, introduced the first iodine radionuclide for diagnosis and treat-
ment of thyroid disease, and built the first total body counter to measure



376 Appendix 1. Short Biographies

the uptake and body burden of radium in the human body. In 1941 he es-
tablished one ten-millionth of a gram of radium (0.1 µCi) as the maximum
permissible body burden. The standard is still internationally used and has
been adapted for other radioactive substances including plutonium-239 and
strontium-90. Evans’s book “The Atomic Nucleus” was first published in 1955
and remained the definitive nuclear physics textbook for several decades and
is still considered an important nuclear physics book.

In 1985 Evans received the William D. Coolidge Award from the Amer-
ican Association of Physicists in Medicine in recognition to his contribution
to medical physics and in 1990 he received the Enrico Fermi Award in recog-
nition of his contributions to nuclear and medical physics.

FERMI, Enrico (1901–1954)

Italian-born physicist who graduated from the University of Pisa in 1921. He
was a Lecturer at the University of Florence for two years and then Professor
of Theoretical Physics at the University of Rome from 1923 to 1938. In 1938
he moved to the United States and worked first for four years at Columbia
University in New York and from 1942 till his death in 1954 at the University
of Chicago.

Fermi is recognized as one of the great scientists of the 20th Century. He
is best known for his contributions to nuclear physics and quantum theory.
In 1934 he developed the theory of the beta nuclear decay that introduced
the neutrino and the weak force as one of the basic forces in nature. The
existence of the neutrino was actually enunciated by Wolfgang Pauli in 1930
and experimentally confirmed only in 1956.

In 1934, while at the University of Rome, Fermi began experiments bom-
barding various heavy elements with thermal neutrons. He discovered that
the thermal neutrons bombarding uranium were very effective in produc-
ing radioactive atoms, but did not realize at the time that he succeeded in
splitting the uranium atom. Otto Hahn and Fritz Strassmann in 1938 re-
peated Fermi’s experiments and discovered that uranium bombarded with
thermal neutrons splits into two lighter atoms. Lise Meitner and Otto Frisch
explained the process theoretically and named it nuclear fission.

Upon his move to the United States Fermi continued his fission experi-
ments at Columbia University and showed experimentally that uranium fis-
sion results in two lighter by-products, releasing several neutrons and large
amounts of energy. In 1942 he was appointed Director of the Manhattan
project at the University of Chicago with a mandate to develop an “atomic
bomb”. With his team of scientists Fermi produced the first nuclear chain
reaction and developed the atomic bombs that were dropped on Hiroshima
and Nagasaki by the United States at the end of the World War II.

In 1938 Fermi was awarded the Nobel Prize in Physics “for his demon-
strations of the existence of new radioactive elements produced by neutron
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irradiation, and for his related discovery of nuclear reactions brought about
by slow neutrons”.

Fermi’s name is honored by the unit of length that is of the order of the
size of the atomic nucleus (1 fermi = 1 femtometer = 1 fm = 10−15 m). One
of the American national laboratories is named Fermi National Laboratory
(Fermilab), and the oldest and most prestigious science and technology prize
awarded in the United States is the Enrico Fermi Award. A common name for
particles with half-integer spin, such as electron, neutron, proton and quark,
is fermion; the artificially produced element with atomic number Z of 100 is
fermium (Fm); and the quantum statistics followed by fermions is known as
the Fermi-Dirac statistics, after its inventors.

FLEROV, Georgi Nikolaevič (1913–1990)

Russian nuclear physicist, educated in physics at the Polytechnical Insti-
tute of Leningrad (now St. Petersburg) from where he graduated in 1938.
He started his scientific career at the Leningrad Institute of Physics and
Technology and was involved in basic research in a number of fundamental
and applied areas of nuclear physics. From 1941 to 1952 Flerov, together
with Igor V. Kurčatov, participated in investigations linked with the use of
atomic energy for military purposes and nuclear power industry. From 1960
to 1988 he was the director of the Nuclear Reactions Laboratory of the Joint
Institute for Nuclear Research in Dubna.

Flerov is best known for his discovery in 1940 (in collaboration with Kon-
stantin A. Petržak) of the spontaneous fission of uranium-238. With col-
leagues in Dubna, Flerov carried out research that resulted in the synthesis
of new heavy elements (nobelium No-102, rutherfordium Rf-104, dubnium
Db-105), the production of a large number of new nuclei on the border of
stability, and the discovery of new types of radioactivity (proton radioactiv-
ity) and new mechanisms of nuclear interactions.

FRANCK, James (1882–1964)

German-born American physicist, educated at the Univeristy of Heidelberg
and the University of Berlin where he received his doctorate in Physics in
1906. He worked at the University of Berlin from 1911 to 1918 and at the
University of Göttingen until 1933 when he moved to the United States to
become Professor at Johns Hopkins University in Baltimore. From 1938 to
1947 he was Professor of Physical Chemistry at the University of Chicago.

Franck is best known for the experiment he carried out in 1914 at the
University of Berlin in collaboration with Gustav Hertz. The experiment is
now known as the Franck-Hertz experiment and it demonstrated the exis-
tence of quantized excited states in mercury atoms. This provided the first
experimental substantiation of the Bohr atomic theory which predicted that
atomic electrons occupied discrete and quantized energy states.
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In 1925 James Franck and Gustav Hertz were awarded the Nobel Prize
in Physics “for their discovery of the laws governing the impact of electron
upon an atom”. In addition to the Nobel Prize, Franck was also honored by
the 1951 Max Planck medal of the German Physical Society and was named
honorary citizen of the university town of Göttingen.

GAMOW, George (1904–1968)

Ukranian-born American physicist and cosmologist, educated at the Novo-
rossia University in Odessa (1922–1923) and at the Leningrad University
(1923-1928) where he received his doctorate in Physics in 1928. After a fel-
lowship with Niels Bohr at the Institute for Theoretical Physics in Copen-
hagen and a short visit to Ernest Rutherford at the Cavendish Laboratory in
Cambridge, he returned to SSSR in 1931 to become a Professor of Physics at
the University of Leningrad. From 1934 until 1956 he was Chair of Physics at
the George Washington University in Washington D.C. and from 1956 until
his death in 1968 he was Professor of Physics at the University of Colorado in
Boulder. During World War II he was involved with the Manhattan nuclear
weapon project in Los Alamos.

Gamow is best known for his (1928) theory of the alpha decay based
on tunneling of the alpha particle through the nuclear potential barrier. He
was also a proponent of the Big-Bang theory of the Universe and worked
on the theory of thermonuclear reactions inside the stars that is still today
relevant to research in controlled nuclear fusion. His name is also associated
with the beta decay in the so-called Gamow-Teller selection rule for beta
emission. Gamow was also well known as an author of popular science books
and received the UNESCO Kalinga Prize for popularization of science.

GEIGER, Hans (1882–1945)

German physicist, educated in physics and mathematics at the University
of Erlangen where he obtained his doctorate in 1906. From 1907 to 1912 he
worked with Ernest Rutherford at the University of Manchester where, with
Ernest Marsden, he carried out the α-particle scattering experiments that
lead to the Rutherford–Bohr atomic model. He also discovered, in collabo-
ration with John M. Nuttall, an empirical linear relationship between log λ
and log Rα for naturally occurring α emitters with the decay constant λ and
range in air Rα (Geiger–Nuttall law). In collaboration with Walther Müller he
developed a radiation detector now referred to as the Geiger-Müller counter.

GERLACH, Walther (1889–1979)

German physicist, educated at the University of Tübingen where he received
his doctorate in physics in 1912 for a study of blackbody radiation and the
photoelectric effect. He worked at the University of Göttingen and the Uni-
versity of Frankfurt before returning in 1925 to Tübingen as Professor of
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Physics. From 1929 to 1952 he was Professor of Physics at the University of
Munich.

Gerlach made contributions to radiation physics, spectroscopy and quan-
tum physics. He is best known for his collaboration with Otto Stern in 1922
at the University of Frankfurt on an experiment that demonstrated space
quantization using a beam of neutral silver atoms that, as a result of passage
through an inhomogeneous magnetic field, split into two district components,
each component characterized by a specific spin (angular momentum) of the
silver atoms.

GERMER, Lester Halbert (1896–1971)

American physicist, educated at Columbia University in New York. In 1927
he worked as graduate student at Bell Laboratories under the supervision of
Clinton T. Davisson on experiments that demonstrated the wave properties
of electrons and substantiated the Louis de Broglie’s hypothesis that moving
particles exhibit particle-wave duality. The electron diffraction experiments
on metallic crystals are now referred to as the Davisson-Germer experiment.

HAHN, Otto (1879–1968)

German chemist, educated at the University of Munich and University of
Marburg. In 1901 he obtained his doctorate in Organic Chemistry at the
University of Marburg. He spent two years as chemistry assistant at the
University of Marburg, and then studied radioactivity for one year under
William Ramsay at the University College in London and for one year under
Ernest Rutherford at McGill University in Montreal. In 1905 he moved to
the Kaiser Wilhelm Institute (now Max Planck Institute) for Chemistry in
Berlin and remained there for most of his professional life. From 1928-1944
he served as the Director of the Institute.

Early in his career in Berlin he started a life-long professional association
with Austrian-born physicist Lise Meitner ; a collaboration that produced
many important discoveries in radiochemistry and nuclear physics. Hahn’s
most important contribution to science is his involvement with the discov-
ery of nuclear fission. In 1934 the Italian physicist Enrico Fermi discovered
that uranium bombarded with neutrons yields several radioactive products.
Hahn and Meitner, in collaboration with Fritz Strassmann, repeated Fermi’s
experiments and found inconclusive results. In 1938, being Jewish, Meit-
ner left Germany for Stockholm to escape persecution by the Nazis; Hahn
and Strassmann continued with the neutron experiments and eventually con-
cluded that several products resulting from the uranium bombardment with
neutrons were much lighter than uranium suggesting that the neutron bom-
bardment caused uranium to split into two lighter components of more or
less equal size. Hahn communicated the findings to Meitner in Stockholm,
who, in cooperation with Otto Frisch, explained the theoretical aspects of
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the uranium splitting process and called it nuclear fission. The discovery of
nuclear fission led to the atomic bomb and to modern nuclear power industry.

In 1944 Hahn alone was awarded the Nobel Prize in Chemistry “for his
discovery of the fission of heavy nuclei”. In 1966 Hahn, Strassmann and Meit-
ner shared the Enrico Fermi Prize for their work in nuclear fission. It is now
universally accepted that four scientists are to be credited with the discovery
of the nuclear fission process: Hahn, Strassmann, Meitner and Frisch.

HARTREE, Douglas (1897–1958)

British mathematician and physicist, educated in Cambridge where he ob-
tained a degree in Natural Sciences in 1921 and a doctorate in 1926. In 1929 he
was appointed Professor of Applied Mathematics at the University of Manch-
ester and in 1937 he moved to a Chair of Theoretical Physics. In 1946 he was
appointed Professor of Mathematical Physics at Cambridge University and
held the post until his death in 1958.

Hartree was both a mathematician and physicist and he is best known for
applying numerical analysis to complex physics problems such as calculations
of wave functions for multi-electron atoms. Hartree approached the problem
by using the method of successive approximations, treating the most impor-
tant interactions in the first approximation and then improving the result
with each succeeding approximation. Hartree’s work extended the concepts
of the Bohr theory for one-electron atoms or ions to multi-electron atoms
providing reasonable, albeit not perfect, approximations to inter-electronic
interactions in multi-electron atoms.

HEISENBERG, Werner (1901–1976)

German theoretical physicist, educated in physics at the University of Mu-
nich and the University of Göttingen. He received his doctorate in Physics at
the University of Munich in 1923 and successfully presented his habilitation
lecture in 1924. During 1924-1926 he worked with Niels Bohr at the Univer-
sity of Copenhagen. From 1927 until 1941 Heisenberg held an appointment as
Professor of Theoretical Physics at the University of Leipzig and in 1941 he
was appointed Professor of Physics at the University of Berlin and Director
of the Kaiser Wilhelm Institute for Physics in Berlin. From 1946 until his re-
tirement in 1970 he was Director of the Max Planck Institute for Physics and
Astrophysics in Göttingen. The institute moved from Göttingen to Munich
in 1958.

In 1925 Heisenberg invented matrix mechanics which is considered the first
version of quantum mechanics. The theory is based on radiation emitted by
the atom and mechanical quantities, such as position and velocity of electrons,
are represented by matrices. Heisenberg is best known for his uncertainty
principle stating that a determination of particle position and momentum
necessarily contains errors the product of which is of the order of the Planck’s
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quantum constant h. The principle is of no consequence in the macroscopic
world; however, it is critical for studies on the atomic scale.

In 1932 Heisenberg was awarded the Nobel Prize in Physics “for creation
of quantum mechanics, the application of which has, inter alia, led to the
discovery of allotropic forms of hydrogen”.

HEITLER, Walter (1904–1981)

German physicist who studied physics at Universities of Münich, Berlin,
Zürich, and Göttingen with many important contemporary theoretical physi-
cists. He completed his studies in Physics at the University of Münich in 1926
and from 1933 till 1941 worked at the University of Bristol. He then moved
to the Dublin Institute for Advanced Study. In 1950 he moved to Zürich as
Professor of Theoretical Physics and remained in Zürich for the rest of his life.

Heitler is considered one of the pioneers of the quantum field theory, but
he also applied and developed quantum mechanics in much of his theoretical
work in many other areas of physics. In addition to the quantum field the-
ory, his other notable contributions are in the theory of the chemical bond in
molecules, theory of photon interactions with absorbing media, theory of pho-
ton production by energetic electrons and positrons, and in the cosmic ray
theory. His book “The Quantum Theory of Radiation” was first published
in 1934 and is still considered a seminal textbook on the subject of ioniz-
ing radiation interaction with matter. In 1968 Heitler was awarded the Max
Planck medal. The medal is awarded annually by the Deutsche Physikalis-
che Gesellschaft (German Physical Society) for extraordinary achievements
in theoretical physics.

HERTZ, Gustav (1887–1975)

German physicist, educated at the Universities of Göttingen, Munich and
Berlin, and graduating with a doctorate in Physics in 1911. During 1913-1914
he worked as research assistant at the University of Berlin. Hertz alternated
work in industry (Philips in Eindhoven; Siemens in Erlangen) with academic
positions at the Universities of Berlin, Halle and Leipzig.

Hertz made many contributions to atomic physics but is best known for
the experiment in which he studied, in collaboration with James Franck,
the impact of electrons on mercury vapor atoms. The experiment is now
referred to as the Franck-Hertz experiment and demonstrated the existence
of quantized excited states in mercury atoms, thereby substantiating the basic
tenets of the Bohr atomic theory.

In 1925 James Franck and Gustav Hertz were awarded the Nobel Prize in
Physics “for their discovery of the laws governing the impact of an electron
upon an atom”. Hertz was also the recipient of the Max Planck Medal of the
German Physical Society.
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HOUNSFIELD, Godfrey Newbold (1919–2004)

British electrical engineer and scientist, educated at the Electrical Engineer-
ing College in London from which he graduated in 1951. The same year he
joined the research staff of the EMI in Middlesex. He remained associated
with the EMI throughout his professional career.

Hounsfield made a significant contribution to early developments in the
computer field and was responsible for the development of the first transistor-
based solid-state computer in the U.K. He is best known, however, for the
invention of computed tomography (CT), an x-ray-based diagnostic technique
that non-invasively forms two-dimensional cross sections through the human
body. Originally, the technique was referred to as computer assisted tomog-
raphy (CAT), now the term computed tomography (CT) is more commonly
used.

Following his original theoretical calculations, he first built a laboratory
CT model to establish the feasibility of the approach, and then in 1972 built
a clinical prototype CT-scanner for brain imaging. From the original single
slice brain CT-scanner the technology evolved through four generations to
the current 64 slice body and brain CT-scanners. Roentgen’s discovery of
x rays in 1895 triggered the birth of diagnostic radiology as an important
medical specialty; Hounsfield’s invention of the CT-scanner placed diagnos-
tic radiology onto a much higher level and transformed it into an invaluable
tool in diagnosis of brain disease in particular and human malignant dis-
ease in general. In 1979 Hounsfield shared the Nobel Prize in Physiology or
Medicine with Allan M. Cormack “for the development of computer assisted
tomography”. Cormack derived and published the mathematical basis of the
CT scanning method in 1964.

Hounsfield’s name is honored with the Hounsfield scale which provides a
quantitative measure of x-ray attenuation of various tissues relative to that
of water. The scale is defined in hounsfield units (HF) running from air at
−1000 HF, fat at −100 HF, through water at 0 HF, white matter at ∼ 25 HF,
grey matter at ∼ 40 HF, to bone at +400 HF or larger, and metallic implants
at +1000 HF.

HUBBELL, John (born 1925)

American radiation physicist, educated at the University of Michigan in Ann
Arbor in Engineering Physics (B.Sc. in 1949, MSc. in 1950). In 1950 he joined
the staff of the National Bureau of Standards (NBS) now known as the Na-
tional Institute of Science and Technology (NIST) in Washington D.C. and
spent his professional career there, directing the NBS/NIST X-Ray and Ion-
izing Radiation Data Center from 1963 to 1981. He retired in 1988.

Hubbell’s collection and critical evaluation of experimental and theoretical
photon cross section data resulted in the development of tables of attenua-
tion coefficients and energy absorption coefficients, as well as related quanti-
ties such as atomic form factors, incoherent scattering functions, and atomic
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cross sections for photoelectric effect, pair production and triplet production.
Hubbell’s most widely known and important work is the “National Standard
Reference Data Series Report 29: Photon Cross Sections, Attenuation Coef-
ficients and Energy Absorption Coefficients from 10 keV to 100 GeV”.

JOHNS, Harold Elford (1915–1998)

Born in Chengtu, China to Canadian parents who were doing missionary
work in China, Johns obtained his Ph.D. in Physics from the University of
Toronto and then worked as physicist in Edmonton, Saskatoon, and Toronto.
His main interest was diagnosis and therapy of cancer with radiation and
his contributions to the field of medical physics are truly remarkable. While
working at the University of Saskatchewan in Saskatoon in the early 1950s,
he invented and developed the cobalt-60 machine which revolutionized cancer
radiation therapy and had an immediate impact on the survival rate of cancer
patients undergoing radiotherapy.

In 1956 Johns became the first director of the Department of Medical
Biophysics at the University of Toronto and Head of the Physics division of
the Ontario Cancer Institute in Toronto. He remained in these positions until
his retirement in 1980 and built the academic and clinical departments into
world-renowned centers for medical physics. With his former student John R.
Cunningham, Johns wrote the classic book “The Physics of Radiology” that
has undergone several re-printings and is still considered the most important
textbook on medical and radiological physics.

In 1976 Johns received the William D. Coolidge Award from the American
Association of Physicists in Medicine.

JOLIOT-CURIE, Irène (1897–1956)

French physicist, educated at the Sorbonne in Paris where she received her
doctorate on the alpha rays of polonium in 1925 while already working as her
mother’s (Marie Curie) assistant at the Radium Institute. In 1927 Irène Curie
married Frédéric Joliot who was her laboratory partner and Marie Curie’s
assistant since 1924. In 1932 Joliot-Curie was appointed Lecturer and in 1937
Professor at the Sorbonne. In 1946 she became the Director of the Radium
Institute.

Joliot-Curie is best known for her work, in collaboration with her hus-
band Frédéric Joliot, on the production of artificial radioactivity through
nuclear reactions in 1934. They bombarded stable nuclides such as boron-10,
aluminum-27, and magnesium-24 with naturally occurring α particles and ob-
tained radionuclides nitrogen-13, phosphorus-30, and silicon-27, respectively,
accompanied by release of a neutron. The discovery of artificially produced
radionuclides completely changed the periodic table of elements and added
several thousand artificial radionuclides to the list. In 1938 Joliot-Curie’s
research of neutron bombardment of the uranium represented an important
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step in eventual discovery of uranium fission by Otto Hahn, Fritz Strassmann,
Lise Meitner, and Otto Frisch.

The 1935 Nobel Prize in Chemistry was awarded to Frédéric Joliot and
Irène Joliot-Curie “in recognition of their synthesis of new radioactive ele-
ments”.

JOLIOT, Jean Frédéric (1900–1958)

French physicist, educated at the École de Physique et Chimie Industriele in
Paris where he received an Engineering Physics degree in 1924. Upon gradu-
ation he became Marie Curie’s assistant at the Radium Institute. He married
Irène Curie, Marie Curie’s daughter, in 1927 and worked on many nuclear
physics projects in collaboration with his wife. In 1930 he obtained his doc-
torate in Physics and in 1937 he became Professor of Physics at the Collège
de France in Paris. In 1939 he confirmed the fission experiment announced by
Otto Hahn and Fritz Strassmann and recognized the importance of the ex-
periment in view of a possible chain reaction and its use for the development
of nuclear weapons.

In 1935 Joliot and Irène Joliot-Curie shared the Nobel Prize in Chemistry
“in recognition of their synthesis of new radioactive elements”.

KERST, Donald William (1911–1993)

American physicist, educated at the University of Wisconsin in Madison
where he received his doctorate in Physics in 1937. From 1938 to 1957 he
worked through academic ranks to become Professor of Physics at the Uni-
versity of Illinois. He then worked in industry from 1957 to 1962 and from
1962 to 1980 he was Professor of Physics at the University of Wisconsin. Kerst
made important contributions to the general design of particle accelerators,
nuclear physics, medical physics, and plasma physics. He will be remembered
best for this development of the betatron in 1940, a cyclic electron accel-
erator that accelerates electrons by magnetic induction. The machine found
important use in industry, nuclear physics and medicine during the 1950s and
1960s before it was eclipsed by more practical linear accelerators.

KLEIN, Oskar (1894–1977)

Swedish-born theoretical physicist. Klein completed his doctoral dissertation
at the University of Stockholm (Högskola) in 1921 and worked as physicist in
Stockholm, Copenhagen, Lund and Ann Arbor. He is best known for intro-
ducing the relativistic wave equation (Klein-Gordon equation); for his collab-
oration with Niels Bohr on the principles of correspondence and complemen-
tarity; and for his derivation, with Yoshio Nishina, in 1929 of the equation
for Compton scattering (Klein-Nishina equation). Klein’s attempts to unify
general relativity and electromagnetism by introducing a five-dimensional
space-time resulted in a theory now known as the Kaluza-Klein theory.
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LARMOR, Joseph (1857–1942)

Irish physicist, educated at Queen’s University in Belfast where he received
his B.A. and M.A. In 1877 he continued his studies in mathematics at the
St. Johns College in Cambridge. In 1880 he returned to Ireland as Professor
of Natural Philosophy at Queens College Galway. In 1885 he moved back to
Cambridge as lecturer and in 1903 he became the Lucasian Chair of Mathe-
matics succeeding George Stokes. He remained in Cambridge until retirement
in 1932 upon which he returned to Ireland.

Larmor worked in several areas of physics such as electricity, dynamics,
thermodynamics, and, most notably, in ether, the material postulated at the
end of the 19th century as a medium pervading space and transmitting the
electromagnetic radiation. He is best known for calculating the rate at which
energy is radiated from a charged particle (Larmor law); for explaining the
splitting of spectral lines by a magnetic field; and for the Larmor equation
ω = γB, where ω is the angular frequency of a precessing proton, γ the
gyromagnetic constant, and B the magnetic field.

LAUE, Max von (1879–1960)

German physicist, educated at the University of Strassbourg where he studied
mathematics, physics and chemistry, University of Göttingen and University
of Berlin where he received his doctorate in Physics in 1903. He then worked
for two years at the University of Göttingen, four years at the Institute for
Theoretical Physics in Berlin, and three years at the University of Munich,
before starting his series of Professorships in Physics in 1912 at the University
of Zürich, 1914 at the University of Frankfurt, 1916 at the University of
Würzburg and 1919 at the University of Berlin from which he retired in 1943.

Von Laue is best known for his discovery in 1912 of the diffraction of
x rays on crystals. Since the wavelength of x rays was assumed to be of
the order of inter-atomic separation in crystals, he surmised that crystalline
structures behave like diffraction gratings for x rays. Von Laue’s hypothesis
was proven correct experimentally and established the wave nature of x rays
and the regular internal structure of crystals. The crystalline structure essen-
tially forms a three-dimensional grating, presenting a formidable problem to
analyze. William L. Bragg proposed a simple solution to this problem now
referred to as the Bragg equation. Von Laue also made notable contributions
to the field of superconductivity where he collaborated with Hans Meissner
who with Robert Ochsenfeld established that, when a superconductor in the
presence of a magnetic field is cooled below a critical temperature, all of the
magnetic flux is expelled from the interior of the sample.

The 1914 Nobel Prize in Physics was awarded to von Laue “for his dis-
covery of the diffraction of x rays by crystals”.
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LAUTERBUR, Paul Christian (born 1929)

American chemist, educated at the Case Institute of Technology in Cleveland
(B.Sc. in chemistry in 1951) and University of Pittsburgh (Ph.D. in chem-
istry in 1962). His first academic position was at Stony Brook University as
Associate Professor and from 1969 until 1985 as Professor of Chemistry. From
1985 until 1990 he was Professor of Chemistry at the University of Illinois at
Chicago and since 1985 he is Professor and Director of the Biomedical MR
Laboratory at the University of Illinois at Urbana-Champaign.

Being trained in nuclear magnetic resonance (NMR), Lauterbur started
his academic career in this area. However, in the early 1970s when investi-
gating proton NMR relaxation times of various tissues obtained from tumor-
bearing rats, he observed large and consistent differences in relaxation times
from various parts of the sacrificed animals. Some researchers were specu-
lating that relaxation time measurements might supplement or replace the
observations of cell structure in tissues by pathologists but Lauterbur ob-
jected to the invasive nature of the procedure. He surmised that there may
be a way to locate the precise origin of the NMR signals in complex objects,
and thus non-invasively form an image of their distribution in two or even
three dimensions. He developed the method of creating a two dimensional
image by introducing gradients into the NMR magnetic field, analyzing the
characteristics of the emitted radio waves, and determining the location of
their source. To allay fears by the general public of everything nuclear, the
NMR imaging became known as magnetic resonance imaging or MRI.

Lauterbur shared the 2003 Nobel Prize in Physiology or Medicine with
Peter Mansfield “for their discoveries concerning magnetic resonance imag-
ing”.

LAWRENCE, Ernest Orlando (1900–1958)

American physicist, educated at the University of South Dakota (B.A. in
Chemistry in 1922), University of Minnesota (M.A. in Chemistry in 1923)
and Yale University (Ph.D. in Physics in 1925). He first worked at Yale as
research fellow and Assistant Professor of Physics and was appointed As-
sociate Professor at the University of California at Berkeley in 1928 and
Professor of Physics in 1930. In 1936 he was appointed Director of the Uni-
versity’s Radiation Laboratory and remained in these posts until his death
in 1958.

The reputation of the Berkeley Physics department as an eminent world-
class center of physics is largely based on Lawrence’s efforts. He was not
only an excellent physicist, he was also an excellent research leader, direc-
tor of large-scale physics projects, and government advisor. Lawrence is best
known for his invention of the cyclotron (in 1930), a cyclic accelerator that
accelerates heavy charged particles to high kinetic energies for use in produc-
ing nuclear reactions in targets or for use in cancer therapy. During World
War II Lawrence worked on the Manhattan project developing the atomic fis-
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sion bomb. His research interests were also in the use of radiation in biology
and medicine.

In 1939 Lawrence was awarded the Nobel Prize in Physics “for the in-
vention and development of the cyclotron and for results obtained with it,
especially with regard to artificial radioactive elements”. Lawrence’s name is
honored by Lawrence Berkeley Laboratory in Berkeley, Lawrence Livermore
National Laboratory in Livermore, California, and lawrencium, an artificial
element with an atomic number 103.

LICHTENBERG, Georg Christoph (1742–1799)

German physicist and philosopher, educated at the University of Göttingen,
where he also spent his whole professional life, from 1769 until 1785 as Assis-
tant Professor of Physics and from 1785 until his death in 1799 as Professor
of Physics.

In addition to physics, Lichtenberg taught many related subjects and was
also an active researcher in many areas, most notably astronomy, chemistry,
and mathematics. His most prominent research was in electricity and in 1777
he found that discharge of static electricity may form intriguing patters in a
layer of dust, thereby discovering the basic principles of modern photocopying
machines and xeroradiography. High voltage electrical discharges on the sur-
face or inside of insulating materials often result in distinctive patterns that
are referred to as Lichtenberg figures or “trees” in honor of their discoverer.

Lichtenberg is credited with suggesting that Euclid’s axioms may not be
the only basis for a valid geometry and his speculation was proven correct in
the 1970s when Benoit B. Mandelbrot, a Polish-American mathematician, in-
troduced the techniques of fractal geometry. Coincidentally, these techniques
also produce patterns that are now referred to as Lichtenberg patterns.

Lichtenberg was also known as a philosopher who critically examined
a range of philosophical questions and arrived at intriguing, interesting and
often humorous conclusions. Many consider him the greatest German aphorist
and his “Waste Books” contain many aphorisms and witticisms that are still
relevant to modern societies.

LORENTZ, Hendrik Antoon (1853–1928)

Dutch physicist, educated at the University of Leiden where he obtained a
B.Sc. degree in Mathematics and Physics in 1871 and a doctorate in Physics
in 1875. In 1878 he was appointed to the Chair of Theoretical Physics at the
University of Leiden and he stayed in Leiden his whole professional life.

Lorentz made numerous contributions to various areas of physics but is
best known for his efforts to develop a single theory to unify electricity,
magnetism and light. He postulated that atoms were composed of charged
particles and that atoms emitted light following oscillations of these charged
particles inside the atom. Lorentz further postulated that a strong magnetic
field would affect these oscillations and thus the wavelength of the emitted
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light. In 1896 Pieter Zeeman, a student of Lorentz, demonstrated the effect
now known as the Zeeman effect. In 1904 Lorentz proposed a set of equations
that relate the spatial and temporal coordinates for two systems moving at
a large constant velocity with respect to each other. The equations are now
called the Lorentz transformations and their prediction of increase in mass,
shortening of length, and time dilation formed the basis of Albert Einstein’s
special theory of relativity.

In 1902 Lorentz and Zeeman shared the Nobel Prize in Physics “in recog-
nition of the extraordinary service they rendered by their researches into the
influence of magnetism upon radiation phenomena”.

MANDELBROT, Benoit (born in 1924)

Polish-born American mathematician, educated in France at the École Poly-
technique in Paris and the California Institute of Technology (Caltech) in
Pasadena. Mandelbrot received his doctorate in Mathematics from the Uni-
versity of Paris in 1952. From 1949 until 1957 he was on staff at the Centre
National de la Recherche Scientifique. In 1958 he joined the research staff
at the IBM T.J. Watson Research Center in Yorktown Heights, New York
and he remained with the IBM until his retirement in 1987 when he became
Professor of Mathematical Sciences at Yale University.

Mandelbrot is best known as the founder of fractal geometry, a modern
invention in contrast to the 2000 years old Euclidean geometry. He is also
credited with coining the term “fractal”. Man-made objects usually follow
Euclidean geometry shapes, while objects in nature generally follow more
complex rules defined by iterative or recursive algorithms. The most striking
feature of fractal geometry is the self-similarity of objects or phenomena, im-
plying that the fractal contains smaller components that replicate the whole
fractal when magnified. In theory the fractal is composed of an infinite num-
ber of ever diminishing components, all of the same shape.

Mandelbrot discovered that self-similarity is a universal property that
underlies the complex fractal shapes, illustrated its behavior mathematically
and founded a completely new methodology for analyzing these complex sys-
tems. His name is now identified with a particular set of complex numbers
which generate a type of fractal with very attractive properties (Mandelbrot
Set).

MANSFIELD, Peter (born in 1933)

British physicist, educated at the Queen Mary College in London where he
obtained his B.Sc. in Physics in 1959 and doctorate in Physics in 1962. He
spent 1962-1964 as research associate at the University of Illinois in Urbana
and 1964-1978 as lecturer and reader at the University of Nottingham. In
1979 he was appointed Professor of Physics at the University of Notting-
ham and since 1994 he is Emeritus Professor of Physics at the University of
Nottingham.
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Mansfield’s doctoral thesis was on the physics of nuclear magnetic res-
onance (NMR), at the time used for studies of chemical structure, and he
spent the 1960s perfecting his understanding of NMR techniques. In the early
1970s Mansfield began studies in the use of NMR for imaging and developed
magnetic field gradient techniques for producing two-dimensional images in
arbitrary planes through a human body. The term “nuclear” was dropped
from NMR imaging and the technique is now referred to as magnetic reso-
nance imaging or MRI. Mansfield is also credited with developing the MRI
protocol called the “echo planar imaging” which in comparison to standard
techniques allows a much faster acquisition of images and makes functional
MRI (fMRI) possible.

Mansfield shared the 2003 Nobel Prize in Physiology or Medicine with
Paul C. Lauterbur “for their discoveries concerning magnetic resonance
imaging”.

MARSDEN, Ernest (1889–1970)

New Zealand-born physicist who made a remarkable contribution to sci-
ence in New Zealand and England. He studied physics at the University
of Manchester and as a student of Ernest Rutherford, in collaboration with
Hans Geiger, carried out the α-particle scattering experiments that inspired
Rutherford to propose the atomic model, currently known as the Rutherford-
Bohr model of the atom. In 1914 he returned to New Zealand to become
Professor of Physics at Victoria University in Wellington. In addition to sci-
entific work, he became involved with public service and helped in setting up
the New Zealand Department of Scientific and Industrial Research. During
World War II, he became involved with radar technology in defense work
and in 1947 he was elected president of the Royal Society of New Zealand.
He then returned to London as New Zealand’s scientific liaison officer and
“ambassador” for New Zealand science. In 1954 he retired to New Zealand
and remained active on various advisory committees as well as in radiation
research until his death in 1970.

MEITNER, Lise (1878–1968)

Austrian-born physicist who studied physics at the University of Vienna and
was strongly influenced in her vision of physics by Ludwig Boltzmann, a lead-
ing theoretical physicist of the time. In 1907 Meitner moved to Berlin to work
with Max Planck and at the University of Berlin she started a life-long friend-
ship and professional association with radiochemist Otto Hahn. At the Berlin
University both Meitner and Hahn were appointed as scientific associates and
progressed through academic ranks to attain positions of professor.

During her early days in Berlin, Meitner discovered the element protac-
tinium with atomic number Z = 91 and also discovered, two years before
Auger, the non-radiative atomic transitions that are now referred to as the
Auger effect. Meitner became the first female physics professor in Germany
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but, despite her reputation as an excellent physicist, she, like many other
Jewish scientists, had to leave Germany during the 1930s. She moved to
Stockholm and left behind in Berlin her long-term collaborator and friend
Otto Hahn, who at that time was working with Fritz Strassmann, an an-
alytical chemist, on studies of uranium bombardment with neutrons. Their
experiments, similarly to those reported by Irene Joliot-Curie and Pavle Savić
were yielding surprising results suggesting that in neutron bombardment ura-
nium was splitting into smaller atoms with atomic masses approximately half
of that of uranium. In a letter Hahn described the uranium disintegration by
neutron bombardment to Meitner in Stockholm and she, in collaboration
with Otto Frisch, succeeded in providing a theoretical explanation for the
uranium splitting and coined the term nuclear fission to name the process.

The 1944 Nobel Prize in Chemistry was awarded to Hahn “for the discov-
ery of the nuclear fission”. The Nobel Committee unfortunately ignored the
contributions by Strassmann, Meitner and Frisch to the theoretical under-
standing of the nuclear fission process. Most texts dealing with the history of
nuclear fission now recognize the four scientists: Hahn, Strassmann, Meitner,
and Frisch as the discoverers of the fission process.

Despite several problems that occurred with recognizing Meitner’s contri-
butions to modern physics, her scientific work certainly was appreciated and
is given the same ranking in importance as that of Marie Curie. In 1966 Meit-
ner together with Hahn and Strassmann shared the prestigious Enrico Fermi
Award. In honor of Meitner’s contributions to modern physics the element
with atomic number 109 was named meitnerium (Mt).

MENDELEYEV, Dmitri Ivanovič (1834–1907)

Russian physical chemist, educated at the University of St. Petersburg where
he obtained his M.A. in Chemistry in 1856 and doctorate in Chemistry in
1865. The years between 1859 and 1861 Mendeleyev spent studying in Paris
and Heidelberg. He worked as Professor of Chemistry at the Technical Insti-
tute of St. Petersburg and the University of St. Petersburg from 1862 until
1890 when he retired from his academic posts for political reasons. From
1893 until his death in 1907 he was Director of the Bureau of Weights and
Measures in St. Petersburg.

While Mendeleyev made contributions in many areas of general chem-
istry as well as physical chemistry and was an excellent teacher, he is best
known for his 1869 discovery of the Periodic Law and the development of
the Periodic Table of Elements. Until his time elements were distinguished
from one another by only one basic characteristic, the atomic mass, as pro-
posed by John Dalton in 1805. By arranging the 63 then-known elements by
atomic mass as well as similarities in their chemical properties, Mendeleyev
obtained a table consisting of horizontal rows or periods and vertical columns
or groups. He noticed several gaps in his Table of Elements and predicted
that they represented elements not yet discovered. Shortly afterwards ele-
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ments gallium, germanium and scandium were discovered filling three gaps
in the table, thereby confirming the validity of Mendeleyev’s Periodic Table
of Elements. Mendeleyev’s table of more than a century ago is very similar
to the modern 21st century Periodic Table, except that the 111 elements of
the modern periodic table are arranged according to their atomic number Z
in contrast to Mendeleyev’s table in which the 63 known elements were or-
ganized according to atomic mass. To honor Mendeleyev’s work the element
with atomic number Z of 101 is called mendelevium.

MILLIKAN, Robert Andrews (1868–1952)

American physicist, educated at Oberlin College (Ohio) and Columbia Uni-
versity in New York where he received a doctorate in Physics in 1895. He then
spent a year at the Universities of Berlin and Götingen, before accepting a
position at the University of Chicago in 1896. By 1910 he was Professor of
Physics and remained in Chicago until 1921 when he was appointed Director
of the Norman Bridge Laboratory of Physics at the California Institute of
Technology (Caltech) in Pasadena. He retired in 1946.

Millikan was a gifted teacher and experimental physicist. During his early
years at Chicago he authored and coauthored many physics textbooks to help
and simplify the teaching of physics. As a scientist he made many important
discoveries in electricity, optics and molecular physics. His earliest and best
known success was the accurate determination, in 1910, of the electron charge
with the “falling-drop method” now commonly referred to as the Millikan
experiment. He also verified experimentally the Einstein’s photoelectric effect
equation and made the first direct photoelectric determination of Planck’s
quantum constant h.

The 1923 Nobel Prize in Physics was awarded to Millikan “for his work
on the elementary charge of electricity and on the photoelectric effect”.

MÖSSBAUER, Rudolf Ludwig (born in 1929)

German physicist, educated at the Technische Hochschule (Technical Uni-
versity) in Munich, where he received his doctorate in Physics in 1958, after
carrying out the experimental portion of his thesis work in Heidelberg at the
Institute for Physics of the Max Planck Institute for Medical Research. Dur-
ing 1959 Mössbauer worked as scientific assistant at the Technical University
in Munich and from 1960 until 1962 as Professor of Physics at the Califor-
nia Institute of Technology (Caltech) in Pasadena. In 1962 he returned to
the Technical Institute in Munich as Professor of Experimental Physics and
stayed there his whole professional career except for the period 1972-1977
which he spent in Grenoble as the Director of the Max von Laue Institute.

Mössbauer is best known for his 1957 discovery of recoil-free gamma ray
resonance absorption; a nuclear effect that is named after him and was used
to verify Albert Einstein’s theory of relativity and to measure the magnetic
field of atomic nuclei. The Mössbauer effect involves the emission and absorp-
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tion of gamma rays by atomic nuclei. When a free excited nucleus emits a
gamma photon, the nucleus recoils in order to conserve momentum. The nu-
clear recoil uses up a minute portion of the decay energy, so that the shift in
the emitted photon energy prevents the absorption of the photon by another
target nucleus of the same species. While working on his doctorate thesis in
Heidelberg, Mössbauer discovered that, by fixing emitting and absorbing nu-
clei into a crystal lattice, the whole lattice gets involved in the recoil process,
minimizing the recoil energy loss and creating an overlap between emission
and absorption lines thereby enabling the resonant photon absorption process
and creating an extremely sensitive detector of photon energy shifts.

Mössbauer received many awards and honorable degrees for his discov-
ery; most notably, he shared with Robert Hofstadter the 1961 Nobel Prize
in Physics “for his researches concerning the resonance absorption of gamma
radiation and his discovery in this connection of the effect which bears his
name.” Hofstadter received his share of the 1961 Nobel Prize for his pioneer-
ing studies of electron scattering in atomic nuclei.

MOSELEY, Henry Gwen Jeffreys (1887–1915)

British physicist, educated at the University of Oxford where he graduated
in 1910. He began his professional career at the University of Manchester as
Lecturer in physics and research assistant under Ernest Rutherford.

Based on work by Charles Barkla who discovered characteristic x rays and
on work of the team of William Bragg and Lawrence Bragg who studied x ray
diffraction, Moseley undertook in 1913 a study of the K and L characteristic
x rays emitted by then-known elements from aluminum to gold. He found
that the square root of the frequencies of the emitted characteristic x-ray
lines plotted against a suitably chosen integer Z yielded straight lines. Z
was subsequently identified as the number of positive charges (protons) and
the number of electrons in an atom and is now referred to as the atomic
number Z. Moseley noticed gaps in his plots that corresponded to atomic
numbers Z of 43, 61, and 75. The elements with Z = 43 (technetium) and
Z = 61 (promethium) do not occur naturally but were produced artificially
years later. The Z = 75 element (rhenium) is rare and was discovered only
in 1925. Moseley thus found that the atomic number of an element can be
deduced from the element’s characteristic spectrum (non-destructive testing).
He also established that the periodic table of elements should be arranged
according to the atomic number Z rather than according to the atomic mass
number A as was common at his time.

There is no question that Moseley during a short time of two years pro-
duced scientific results that were very important for the development of
atomic and quantum physics and were clearly on the level worthy of Nobel
Prize. Unfortunately, he perished during World War I shortly after starting
his professional career in physics.



Appendix 1. Short Biographies 393

NISHINA, Yoshio (1890–1951)

Japanese physicist, educated at the University of Tokyo where he graduated
in 1918. He worked three years as an assistant at the University of Tokyo and
then spent several years in Europe: 1921-1923 at the University of Cambridge
with Ernest Rutherford and 1923–1928 at the University of Copenhagen with
Niels Bohr. From 1928 to 1948 he worked at the University of Tokyo.

Nishina is best known internationally for his collaboration with Oskar
Klein on the cross section for Compton scattering in 1928 (Klein-Nishina
formula). Upon return to Japan from Europe, Nishina introduced the study
of nuclear and high energy physics in Japan and trained many young Japanese
physicists in the nuclear field. During World War II Nishina was the central
figure in the Japanese atomic weapons program that was competing with
the American Manhattan project and using the same thermal uranium en-
richment technique as the Americans. The race was tight; however, the com-
partmentalization of the Japanese nuclear weapons program over competing
ambitions of the army, air force and the navy gave the Americans a definite
advantage and eventual win in the nuclear weapons competition that resulted
in the atomic bombs over Hiroshima and Nagasaki and Japanese immediate
surrender in 1945.

PAULI, Wolfgang (1900–1958)

Austrian-born physicist, educated at the University of Munich where he ob-
tained his doctorate in Physics in 1921. He spent one year at the University
of Göttingen and one year at the University of Copenhagen before accepting
a Lecturer position at the University of Hamburg (1923-1928). From 1928
to 1958 he held an appointment of Professor of Theoretical Physics at the
Eidgenössische Technische Hochschule in Zürich. From 1940 to 1946 Pauli
was a visiting professor at the Institute for Advanced Study in Princeton.

Pauli is known as an extremely gifted physicist of his time. He is best
remembered for enunciating the existence of the neutrino in 1930 and for
introducing the exclusion principle to govern the states of atomic electrons
in general. The exclusion principle is now known as the Pauli Principle and
contains three components. The first component states that no two electrons
can be at the same place at the same time. The second component states
that atomic electrons are characterized by four quantum numbers: principal,
orbital, magnetic and spin. The third component states that no two elec-
trons in an atom can occupy a state that is described by exactly the same
set of the four quantum numbers. The exclusion principle was subsequently
expanded to other electronic and fermionic systems, such as molecules and
solids.

The 1945 Nobel Prize in Physics was awarded to Pauli “for his discovery
of the Exclusion Principle, also called the Pauli Principle”.
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PLANCK, Max Karl Ernst (1858–1947)

German physicist, educated at the University of Berlin and University of
Munich where he received his doctorate in Physics in 1879. He worked as
Assistant Professor at the University of Munich from 1880 until 1885, then
Associate Professor at the University of Kiel until 1889 and Professor of
Physics at the University of Berlin until his retirement in 1926.

Most of Planck’s work was on the subject of thermodynamics in general
and studies of entropy and second law of thermodynamics in particular. He
was keenly interested in the blackbody problem and the inability of classical
mechanics to predict the blackbody spectral distribution. Planck studied the
blackbody spectrum in depth and concluded that it must be electromagnetic
in nature. In contrast to classical equations that were formulated for black-
body radiation by Wien and Rayleigh, with Wien’s equation working only at
high frequencies and Rayleigh’s working only at low frequencies, Planck for-
mulated an equation that predicted accurately the whole range of applicable
frequencies and is now known as Planck’s equation for blackbody radiation.
The derivation was based on the revolutionary idea that the energy emitted
by a resonator can only take on discrete values or quanta, with the quantum
energy ε equal to hν, where ν is the frequency and h a universal constant
now referred to as the Planck’s constant. Planck’s idea of quantization has
been successfully applied to the photoelectric effect by Albert Einstein and
to the atomic model by Niels Bohr.

In 1918 Planck was awarded the Nobel Prize in Physics “in recognition
of the services he rendered to the advancement of Physics by his discovery
of energy quanta”. In addition to Planck’s constant and Planck’s formula,
Planck’s name and work are honored with the Max Planck Medal that is
awarded annually as the highest distinction by the German Physical Society
(Deutsche Physikalische Gesellschaft) and the Max Planck Society for the
Advancement of Science that supports basic research at 80 research institutes
focusing on research in biology, medicine, chemistry, physics, technology and
humanities.

PURCELL, Edward Mills (1912–1997)

American physicist, educated at Purdue University in Indiana where he re-
ceived his Bachelor’s degree in Electrical Engineering in 1933 and Harvard
where he received his doctorate in Physics in 1938. After serving for two years
as Lecturer of physics at Harvard, he worked at the Massachusetts Institute
of Technology on development of new microwave techniques. In 1945 Purcell
returned to Harvard as Associate Professor of Physics and became Professor
of Physics in 1949.

Purcell is best known for his 1946 discovery of nuclear magnetic resonance
(NMR) with his students Robert Pound and Henry C. Torrey. NMR offers
an elegant and precise way of determining chemical structure and properties
of materials and is widely used not only in physics and chemistry but also in



Appendix 1. Short Biographies 395

medicine where, through the method of magnetic resonance imaging (MRI), it
provides non-invasive means to image internal organs and tissues of patients.

In 1952 Purcell shared the Nobel Prize in Physics with Felix Bloch “for
their development of new methods for nuclear magnetic precision measure-
ments and discoveries in connection therewith”.

RAYLEIGH, John William Strutt (1842–1919)

English mathematician and physicist who studied mathematics at the Trin-
ity College in Cambridge. Being from an affluent family he set up his physics
laboratory at home and made many contributions to applied mathematics
and physics from his home laboratory. From 1879 to 1884 Rayleigh was Pro-
fessor of Experimental Physics and Head of the Cavendish Laboratory at
Cambridge, succeeding James Clark Maxwell. From 1887 to 1905 he was
Professor of Natural Philosophy at the Royal Institution in London.

Rayleigh was a gifted researcher and made important contributions to all
branches of physics known at his time, having worked in optics, acoustics,
mechanics, thermodynamics, and electromagnetism. He is best known for
explaining that the blue color of the sky arises from the scattering of light
by dust particles in air and for relating the degree of light scattering to
the wavelength of light (Rayleigh scattering). He also accurately defined the
resolving power of a diffraction grating; established standards of electrical
resistance, current, and electromotive force; discovered argon; and derived an
equation describing the distribution of wavelengths in blackbody radiation
(the equation applied only in the limit of large wavelengths).

In 1904 Rayleigh was awarded the Nobel Prize in Physics “for his inves-
tigations of the densities of the most important gases and for his discovery
of the noble gas argon in connection with these studies”. He discovered ar-
gon together with William Ramsey who obtained the 1904 Nobel Prize in
Chemistry for his contribution to the discovery.

RICHARDSON, Owen Willans (1879–1959)

British physicist, educated at Trinity College in Cambridge from where he
graduated in 1990 as a student of Joseph J. Thomson at the Cavendish
Laboratory. He was appointed Professor of Physics at Princeton University
in the United States in 1906 but in 1914 returned to England to become
Professor of Physics at King’s College of the University of London.

Richardson is best known for his work on thermionic emission of electrons
from hot metallic objects that enabled the development of radio and television
tubes as well as modern x-ray (Coolidge) tubes. He discovered the equation
that relates the rate of electron emission to the absolute temperature of
the metal. The equation is now referred to as the Richardson’s law or the
Richardson-Dushman equation.
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In 1928 Richardson was awarded the Nobel Prize in Physics “for his work
on the thermionic phenomenon and especially for the law that is named after
him”.

RÖNTGEN, Wilhelm Conrad (1845–1923)

German physicist, educated at the University of Utrecht in Holland and Uni-
versity of Zürich where he obtained his doctorate in Physics in 1869. He
worked as academic physicist at several German universities before accept-
ing a position of Chair of Physics at the University of Giessen in 1979. From
1888 until 1900 he was Chair of Physics at the University of Würzburg and
from 1900 until 1920 he was Chair of Physics at the University of Munich.

Röntgen was active in many areas of thermodynamics, mechanics and
electricity but his notable research in these areas was eclipsed by his acciden-
tal discovery in 1895 of “a new kind of ray”. The discovery occurred when
Röntgen was studying cathode rays (now known as electrons, following the
work of Joseph J. Thomson) in a Crookes tube, a fairly mundane and com-
mon experiment in physics departments at the end of the 19th century. He
noticed that, when his energized Crookes tube was enclosed in a sealed black
and light-tight envelope, a paper plate covered with barium platinocianide,
a known fluorescent material, became fluorescent despite being far removed
from the discharge tube. Röntgen concluded that he discovered an unknown
type of radiation, much more penetrating than visible light and produced
when cathode rays strike a material object inside the Crookes tube. He named
the new radiation x rays and the term is generaly used around the World.
However, in certain countries x rays are often called Röntgen rays. In 1912
Max von Laue showed with his crystal diffraction experiments that x rays are
electromagnetic radiation similar to visible light but of much smaller wave-
length. In tribute to Röntgen’s contributions to modern physics the element
with the atomic number 111 was named röntgenium (Rg).

In 1901 the first Nobel Prize in Physics was awarded to Röntgen “in
recognition of the extraordinary services he has rendered by the discovery of
the remarkable rays subsequently named after him”.

RUTHERFORD, Ernest (1871–1937)

New Zealand-born nuclear physicist, educated at the Canterbury College in
Christchurch, New Zealand (B.Sc. in Mathematics and Physical Science in
1894) and at the Cavendish Laboratory of the Trinity College in Cambridge.
He received his science doctorate from the University of New Zealand in 1901.
Rutherford was one of the most illustrious physicists of all time and his pro-
fessional career consists of three distinct periods: as MacDonald Professor of
Physics at McGill University in Montreal (1898–1907); as Langworthy Profes-
sor of Physics at the University of Manchester (1908–1919); and as Cavendish
Professor of Physics at the Cavendish Laboratory of Trinity College in Cam-
bridge (1919–1937).
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With the exception of his early work on magnetic properties of iron
exposed to high frequency oscillations, Rutherford’s career was intimately
involved with the advent and growth of nuclear physics. Nature provided
Rutherford with α particles, an important tool for probing the atom, and he
used the tool in most of his exciting discoveries that revolutionized physics
in particular and science in general.

Before moving to McGill in 1898, Rutherford worked with Joseph J.
Thomson at the Cavendish Laboratory on detection of the just-discovered
x rays (Wilhelm Röntgen in 1895) through studies of electrical conduction of
gases caused by x-ray ionization of air. He then turned his attention to the
just-discovered radiation emanating from uranium (Henri Becquerel in 1896)
and radium (Pierre Curie and Marie Curie in 1898) and established that
uranium radiation consists of at least two components, each of particulate
nature but with different penetrating powers. He coined the names α and β
particles for the two components.

During his 10 years at McGill, Rutherford published 80 research papers,
many of them in collaboration with Frederick Soddy, a chemist who came
to McGill from Oxford in 1900. Rutherford discovered the radon gas as well
as gamma rays and speculated that the gamma rays were similar in nature
to x rays. In collaboration with Soddy he described the transmutation of
radioactive elements as a spontaneous disintegration of atoms and defined
the half-life of a radioactive substance as the time it takes for its activity to
drop to half of its original value. He noted that all atomic disintegrations were
characterized by emissions of one or more of three kinds of rays: α, β, and γ.

During the Manchester period Rutherford determined that α particles
were helium ions. He guided Hans Geiger and Ernest Marsden through the
now-famous α particle scattering experiment and, based on the experimental
results, in 1911 proposed a revolutionary model of the atom which was known
to have a size of the order of 10−10 m. He proposed that most of the atomic
mass is concentrated in a miniscule nucleus with a size of the order of 10−15 m
and that the atomic electrons are distributed in a cloud around the nucleus.
In 1913 Niels Bohr expanded Rutherford’s nuclear atomic model by intro-
ducing the idea of the quantization of electrons’ angular momenta and the
resulting model is now called the Rutherford-Bohr atomic model. During his
last year at Manchester, Rutherford discovered that nuclei of nitrogen, when
bombarded with α particles, artificially disintegrate and produce protons in
the process. Rutherford was thus first in achieving artificial transmutation of
an element through a nuclear reaction.

During the Cambridge period Rutherford collaborated with many world-
renowned physicists such as John Cocroft and Ernest Walton in designing a
proton accelerator now called the Cocroft-Walton machine, and with James
Chadwick in discovering the neutron in 1932. Rutherford’s contributions to
modern physics are honored with the element of atomic number 104 which
was named rutherfordium (Rf).
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In 1908 Rutherford was awarded the Nobel Prize in Chemistry “for his
investigations into the disintegration of the elements and the chemistry of
radioactive substances”.

RYDBERG, Johannes (1854–1919)

Swedish physicist, educated at Lund University. He obtained his Ph.D. in
Mathematics in 1879 but worked all his professional life as a physicist at
Lund University where he became Professor of Physics and Chairman of the
Physics department.

Rydberg is best known for his discovery of a mathematical expression
that gives the wavenumbers of spectral lines for various elements and in-
cludes a constant that is now referred to as the Rydberg constant (R∞ =
109 737 cm−1). In honor of Rydberg’s work in physics the absolute value of
the ground state energy of the hydrogen atom is referred to as the Rydberg
energy (ER = 13.61 eV).

SCHRÖDINGER, Erwin (1887–1961)

Austrian physicist, educated at the University of Vienna where he received
his doctorate in Physics in 1910. He served in the military during World War
I and after the war moved through several short-term academic positions
until in 1921 he accepted a Chair in Theoretical Physics at the University of
Zürich. In 1927 he moved to the University of Berlin as Planck’s successor.
The rise of Hitler in 1933 convinced Schrödinger to leave Germany. After
spending a year at Princeton University, he accepted a post at the University
of Graz in his native Austria. The German annexation of Austria in 1938
forced him to move again, this time to the Institute for Advanced Studies in
Dublin where he stayed until his retirement in 1955.

Schrödinger made many contributions to several areas of theoretical
physics; however, he is best known for introducing wave mechanics into quan-
tum mechanics. Quantum mechanics deals with motion and interactions of
particles on an atomic scale and its main attribute is that it accounts for
the discreteness (quantization) of physical quantities in contrast to classical
mechanics in which physical quantities are assumed continuous. Examples of
quantization were introduced by Max Planck who in 1900 postulated that
oscillators in his blackbody emission theory can possess only certain quan-
tized energies; Albert Einstein who in 1905 postulated that electromagnetic
radiation exists only in discrete packets called photons; and Niels Bohr who
in 1913 introduced the quantization of angular momenta of atomic orbital
electrons. In addition, Louis de Broglie in 1924 introduced the concept of
wave-particle duality.

Schrödinger’s wave mechanics is based on the so-called Schrödinger’s wave
equation, a partial differential equation that describes the evolution over time
of the wave function of a physical system. Schrödinger and other physicists
have shown that many quantum mechanical problems can be solved by means
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of the Schrödinger equation. The best known examples are: finite square
well potential; infinite square well potential; potential step; simple harmonic
oscillator; and hydrogen atom.

In 1933 Schrödinger shared the Nobel Prize in Physics with Paul A.M.
Dirac “for the discovery of new productive forms of atomic theory”.

SEGRÈ, Emilio Gino (1905–1989)

Italian-born American nuclear physicist, educated at the University of Rome,
where he received his doctorate in Physics as Enrico Fermi’s first graduate
student in 1928. In 1929 he worked as assistant at the University of Rome
and spent the years 1930–1931 with Otto Stern in Hamburg and Pieter He-
man in Amsterdam. In 1932 he became Assistant Professor of Physics at the
University of Rome and in 1936 he was appointed Director of the Physics
Laboratory at the University of Palermo. In 1938 Segrè came to Berkeley
University, first as research associate then as physics lecturer. From 1943
until 1946 he was a group leader in the Los Alamos Laboratory of the Man-
hattan Project and from 1946 until 1972 he held an appointment of Professor
of Physics at Berkeley. In 1974 he was appointed Professor of Physics at the
University of Rome.

Segrè is best known for his participation with Enrico Fermi in neutron
experiments bombarding uranium-238 with neutrons thereby creating sev-
eral elements heavier than uranium. They also discovered thermal neutrons
and must have unwittingly triggered uranium-235 fission during their exper-
imentation. It was Otto Hahn and colleagues, however, who at about the
same time discovered and explained nuclear fission. In 1937 Segrè discovered
technetium, the first man-made element not found in nature and, as it subse-
quently turned out, of great importance to medical physics in general and nu-
clear medicine in particular. At Berkeley Segrè discovered plutonium-239 and
established that it was fissionable just like uranium-235. Segrè made many
other important contributions to nuclear physics and high-energy physics
and, most notably, in collaboration with Owen Chamberlain discovered the
antiproton. Segrè and Chamberlain shared the 1959 Nobel Prize in Physics
“for their discovery of the antiproton”.

SELTZER, Stephen (born in 1940)

American physicist, educated at the Virginia Polytechnic Institute where he
received his B.S. in Physics in 1962 and at the University of Maryland, Col-
lege Park where he received his M.Sc. in Physics in 1973. In 1962 he joined
the Radiation Theory Section at the National Bureau of Standards (NBS),
now the National Institute of Standards and Technology (NIST), and has
spent his professional career there, becoming the Director of the Photon and
Charged-Particle Data Center at NIST in 1988 and the Leader of the Radia-
tion Interactions and Dosimetry Group in 1994. He joined the International
Commission on Radiation Units and Measurements (ICRU) in 1997.
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Seltzer worked with Martin Berger on the development of Monte Carlo
codes for coupled electron-photon transport in bulk media, including the
transport-theoretical methods and algorithms used, and the interaction cross-
section information for these radiations. Their ETRAN codes, underlying
algorithms and cross-section data have been incorporated in most of the cur-
rent radiation-transport Monte Carlo codes. Seltzer was instrumental in the
development of extensive data for the production of bremsstrahlung by elec-
trons (and positrons), electron and positron stopping powers, and a recent
database of photon energy-transfer and energy-absorption coefficients. His
earlier work included applications of Monte Carlo calculations to problems
in space science, detector response, and space shielding, which led to the de-
velopment of the SHIELDOSE code used for routine assessments of absorbed
dose within spacecraft.

SODDY, Frederick (1877–1956)

British chemist, educated at Merton College in Oxford where he received his
degree in Chemistry in 1898. After graduation he spent two years as research
assistant in Oxford, then went to McGill University in Montreal where he
worked with Ernest Rutherford on radioactivity. In 1902 Soddy returned to
England to work with William Ramsay at the University College in London.
He then served as Lecturer in Physical Chemistry at the University of Glas-
gow (1910–1914) and Professor of Chemistry at the University of Aberdeen
(1914–1919). His last appointment was from 1919 until 1936 as Lees Professor
of Chemistry at Oxford University.

Soddy is best known for his work in the physical and chemical aspects
of radioactivity. He learned the basics of radioactivity with Ernest Ruther-
ford at McGill University and then collaborated with William Ramsay at the
University College. With Rutherford he confirmed the hypothesis of Marie
Curie that radioactive decay was an atomic rather than chemical process,
postulated that helium is a decay product of uranium, and formulated the
radioactive disintegration law. With Ramsay he confirmed that the alpha par-
ticle was doubly ionized helium atom. Soddy’s Glasgow period was his most
productive period during which he enunciated the so-called displacement law
and introduced the concept of isotopes. The displacement law states that
emission of an alpha particle from a radioactive element causes the element
to transmutate into a new element that moves back two places in the Peri-
odic Table of Elements. The concept of isotopes states that certain elements
exist in two or more forms that differ in atomic mass but are chemically
indistinguishable.

Soddy was awarded the 1921 Nobel Prize in Chemistry “for his contri-
butions to our knowledge of the chemistry of radioactive substances, and his
investigations into the origin and nature of isotopes”.
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STERN, Otto (1888–1969)

German-born physicist educated in physical chemistry at the University of
Breslau where he received his doctorate in 1912. He worked with Albert Ein-
stein at the University of Prague and at the University of Zürich before
becoming an Assistant Professor at the University of Frankfurt in 1914. Dur-
ing 1921–1922 he was an Associate Professor of Theoretical Physics at the
University of Rostock and in 1923 he was appointed Professor of Physical
Chemistry at the University of Hamburg. He remained in Hamburg until
1933 when he moved to the United States to become a Professor of Physics
at the Carnegie Institute of Technology in Pittsburgh.

Stern is best known for the development of the molecular beam epitaxy,
a technique that deposits one or more pure materials onto a single crystal
wafer forming a perfect crystal; discovery of spin quantization in 1922 with
Walther Gerlach; measurement of atomic magnetic moments; demonstration
of the wave nature of atoms and molecules; and discovery of proton’s magnetic
moment.

Stern was awarded the 1943 Nobel Prize in Physics “for his contribution to
the development of the molecular ray method and his discovery of the magnetic
moment of the proton”.

STRASSMANN, Fritz (1902–1980)

German physical chemist, educated at the Technical University in Hannover
where he received his doctorate in 1929. He worked as an analytical chemist at
the Kaiser Wilhelm Institute for Chemistry in Berlin from 1934 until 1945. In
1946 Strassmann became Professor of Inorganic Chemistry at the University
of Mainz. From 1945 to 1953 he was Director of the Chemistry department
at the Max Planck Institute.

Strassmann is best known for his collaboration with Otto Hahn and Lise
Meitner on experiments that in 1938 lead to the discovery of neutron in-
duced fission of uranium atom. Strassmann’s expertise in analytical chem-
istry helped with discovery of the light elements produced in the fission of
uranium atoms. In 1966 the nuclear fission work by Hahn, Strassmann and
Meitner was recognized with the Enrico Fermi Award.

THOMSON, George Paget (1892–1975)

British physicist, educated in mathematics and physics at the Trinity College
of the University of Cambridge. He spent the first world war years in the
British army and after the war spent three years as lecturer at the Corpus
Christi College in Cambridge. In 1922 he was appointed Professor of Natural
Philosophy at the University of Aberdeen in Scotland and from 1930 until
1952 he held an appointment of Professor of Physics at the Imperial College
of the University of London. From 1952 until 1962 he was Master of the
Corpus Christi College in Cambridge.
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In Aberdeen Thomson carried out his most notable work studying the
passage of electrons through thin metallic foils and observing diffraction phe-
nomena which suggested that electrons could behave as waves despite be-
ing particles. This observation confirmed Louis de Broglie’s hypothesis of
particle-wave duality surmising that particles should display properties of
waves and that the product of the wavelength of the wave and momentum
of the particle should equal to the Planck’s quantum constant h. Clinton J.
Davisson of Bell Labs in the United States noticed electron diffraction phe-
nomena with a different kind of experiment.

In 1937 Thomson shared the Nobel Prize in Physics with Clinton J. Davis-
son “for their experimental discovery of the diffraction of electrons by crys-
tals”.

THOMSON, Joseph John (1856–1940)

British physicist, educated in mathematical physics at the Owens College in
Manchester and the Trinity College in Cambridge. In 1884 he was named
Cavendish Professor of Experimental Physics at Cambridge and he remained
associated with the Trinity College for the rest of his life.

In 1987 Thomson discovered the electron while studying the electric dis-
charge in a high vacuum cathode ray tube. In 1904 he proposed a model of
the atom as a sphere of positively charged matter in which negatively charged
electrons are dispersed randomly (“plum-pudding model of the atom”).

In 1906 Thomson received the Nobel Prize in Physics “in recognition
of the great merits of his theoretical and experimental investigations on the
conduction of electricity by gases.” Thomson was also an excellent teacher
and seven of his former students also won Nobel Prizes in Physics during
their professional careers.
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A

a acceleration; radius of atom; apex-vertex distance for a hy-
perbola; specific activity

amax maximum specific activity
ao Bohr radius (0.5292 Å)
aTF Thomas-Fermi atomic radius
atheor theoretical specific activity
A ampère (SI unit of current)
A atomic mass number
Å angstrom (unit of length or distance: 10−10 m)
A2(z) spatial spread of electron beam
A activity
AD daughter activity
AP parent activity
Asat saturation activity

B

b barn (unit of area: 10−24 cm2)
b impact parameter
bmax maximum impact parameter
bmin minimum impact parameter
B magnetic field
B build-up factor in broad beam attenuation
Bcol atomic stopping number in collision stopping power
Brad parameter in radiation stopping power
B(EKo) bremsstrahlung yield for particle with initial kinetic energy

EKo
Bq becquerel (SI unit of activity)
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C

c speed of light in vacuum (3 × 108 m/s)
cn speed of light in medium
C coulomb (unit of electric charge)
C constant
Ci curie (old unit of activity: 3.7 × 1010 s−1)
CK K-shell correction for stopping power

D

d deuteron
d distance; spacing
D dose
Dα−N distance of closest approach (between α particle and nucleus)
Deff effective characteristic distance
Deff(α − N) effective characteristic distance of closest approach between

α particle and nucleus
Deff(e − a) effective characteristic distance between electron and atom
Deff(e − e) effective characteristic distance between the electron and or-

bital electron
Deff(e − N) effective characteristic distance between electron and nucleus
Ds surface dose

E

e electron charge (1.6 × 10−19 C)
e− electron
e+ positron
eV electron volt (unit of energy: 1.6 × 10−19 J)
eφ work function
E electric field
E energy
Eab energy absorbed
Ēab average energy absorbed
EB binding energy
Ecol energy lost through collisions
Ei initial total energy of charged particle
Ein electric field for incident radiation
EK kinetic energy
EKo initial kinetic energy of charged particle
(EK)crit critical kinetic energy
(EK)D recoil kinetic energy of the daughter
(EK)f final kinetic energy
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(EK)i initial kinetic energy
(EK)IC kinetic energy of conversion electron
(EK)max maximum kinetic energy
(EK)n kinetic energy of incident neutron
(EK)thr threshold kinetic energy
En allowed energy state (eigenvalue)
Eo rest energy
Eout electric field for scattered radiation
Ep barrier potential
ER Rydberg energy
Erad energy radiated by charged particle
Ethr threshold energy
Etr energy transferred
Ētr average energy transferred
Ev energy of neutrino
Ēκ

tr average energy transferred from photons to charged particles
in pair production

Ēσ
tr average energy transferred from photons to electrons in

Compton effect
Ēτ

tr average energy transferred from photons to electrons in pho-
toeffect

Eβ energy of beta particle
(Eβ)max maximum kinetic energy of electron or positron in β decay
Eγ energy of gamma photon
(Eγ)thr threshold energy for pair production

F

f function; theoretical activity fraction
fκ mean fraction of energy transferred from photons to charged

particles in pair production
fσ mean fraction of energy transferred from photons to electrons

in Compton effect
fτ mean fraction of energy transferred from photons to electrons

in photoelectric effect
fm femtometer (10−15 m); fermi
F force
Fcoul Coulomb force
FKN Klein-Nishina form factor
FL Lorentz force
Fn neutron kerma factor
F (x, Z) atomic form factor
F+ stopping power function for positrons
F− stopping power function for electrons
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G

g gram (unit of mass: 10−3 kg)
ḡ radiative fraction
G Newtonian gravitational constant
Gy gray (SI unit of kerma and dose: 1 J/kg)

H

h hour (unit of time)
h Planck’s constant (6.626 × 10−34 J · s)
H hydrogen
H equivalent dose [H] hamiltonian operator
Hz unit of frequency (s−1)
� reduced Planck’s constant (h/2π)

I

I magnitude of Poynting vector; intensity of emitted radiation
I electric current; mean ionization/excitation potential; beam

intensity; radiation intensity

J

j current density; quantum number in spin-orbit interaction
J joule (SI unit of energy)

K

k wave number
keV kiloelectronvolt (unit of energy: 103 eV)
kg kilogram (SI unit of mass)
k(Kα) wave number for Kα transition
kVp kilovolt peak (in x-ray tubes)
k∗ ratio σP/σD in neutron activation
K n = 1 allowed shell (orbit) in an atom; Kelvin temperature
K kerma
Kcol collision kerma
Krad radiative kerma
Kα characteristic transition from L shell to K shell

L

l length
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L n = 2 allowed shell (orbit) in an atom
L angular momentum
L∆ restricted collision mass stopping power
 orbital quantum number; distance; path length

M

m meter (SI unit of length or distance)
m mass; magnetic quantum number; decay factor in parent-

daughter-granddaughter decay; activation factor in nuclear
activation; integer in Bragg relationship

me electron rest mass (0.5110 MeV/c2)
m� magnetic quantum number
mn neutron rest mass (939.6 MeV/c2)
mo rest mass of particle
mp proton rest mass (938.3 MeV/c2)
mα rest mass of α particle
m(υ) relativistic mass m at velocity υ
m∗ modified activation factor
M mass of atom (atomic mass)
M n = 3 allowed shell (orbit) in an atom
M rest mass of nucleus (nuclear mass)
MeV megaeletronvolt (unit of energy: 106 eV)
MHz megahertz (unit of frequency: 106 Hz)
MV megavoltage (in linacs)
M(Z, A) nuclear mass in atomic mass units
M(Z, A) atomic mass in atomic mass units

N

n neutron
nm nanometer (unit of length or distance: 10−9 m)
n principal quantum number; index of refraction
ni initial principal quantum number
nf final principal quantum number
n� number of atoms per volume
N n = 4 allowed shell (orbit) in an atom
N number of radioactive nuclei; number of experiments in cen-

tral limit theorem; number or monoenergetic electrons in
medium

Na number of atoms
NA Avogadro’s number (6.022 × 1023 atom/gram-atom)
Ne number of electrons
Nt/m number of specific nuclei per unit mass of tissue
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P

p proton
p momentum
pe electron momentum
pν photon momentum
P power; probability
P (ε, Z) pair production function
Ps positronium
PK fraction of photoelectric interactions that occur in the K shell
Pn fraction of photoelectric interactions that occur in the M shell

Q

q charge
Q charge; nuclear reaction energy; Q value
Q̄ expectation (mean) value of physical quantity Q
[Q] operator associated with the physical quantity Q
QEC decay energy (Q value) for electron capture
QIC decay energy (Q value) for internal conversion
Qα decay energy (Q value) for α decay
Qβ decay energy (Q value) for beta decay
QP decay energy (Q value) for gamma decay

R

r radius vector; separation between two interacting particles
rad unit of absorbed dose (100 erg/g); radian
re classical electron radius (2.818 fm)
rn radius of the n-th allowed Bohr orbit
r̄ average electron radius
R roentgen (unit of exposure: 2.58 × 10−4 C/kgair)
R radial wave function; radius (of nucleus); reaction rate
R̄ average range
RCSDA continuous slowing down approximation range
RH Rydberg constant for hydrogen (109 678 cm−1)
Ro nuclear radius constant (1.2 or 1.4 fm)
Rα−N distance between the α particle and nucleus in a non-direct

hit collision
R∞ Rydberg constant assuming an infinite nuclear mass

(109 737 cm−1)
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S

s second (unit of time)
s spin quantum number
S mass stopping power: Poynting vector
S̄ average total mass stopping power
Scol mass collision stopping power (unrestricted)
S̄col average mass collision stopping power
Sin Poynting vector of incident radiation
S̄in average Poynting vector of incident radiation
Sout Poynting vector of scattered radiation
S̄out average Poynting vector of scattered radiation
Srad mass radiative stopping power
Stot total mass stopping power
Sv sievert (unit of equivalent dose)
S(x, Z) incoherent scattering function

T

t triton
t time; thickness of absorber in mass angular scattering power
tmax characteristic time in nuclear decay series or nuclear activa-

tion
t1/2 half life
T temperature; angular scattering power; temporal function
T/ρ mass angular scattering power

U

u atomic mass unit (931.5 MeV/c2); particle velocity after col-
lision

V

υ velocity
υthr threshold velocity in Cerenkov effect
V volt (unit of potential difference)
V applied potential; volume; potential energy
VTF(r) Thomas-Fermi potential

W

wR radiation weighting factor
W transmitted particle in weak interaction
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X

x momentum transfer variable (x = sin(θ/2)/λ); normalized
time x = t/t1/2; horizontal axis in cartesian coordinate sys-
tem; coordinate in cartesian coordinate system

x photon originating in an atomic transition
xf final particle position
xi initial particle position
xo target thickness
x̄ mean free path
(xmax)D maximum normalized characteristic time of the daughter
x1/10 tenth value layer
x1/2 half-value layer
A
Z X nucleus with symbol X, atomic mass number A and atomic

number Z
X exposure
Xo target thickness; radiative length

Y

y vertical axis in cartesian coordinate system; coordinate in
cartesian coordinate system

y year (unit of time)
yP normalized activity
(ymax)D maximum normalized daughter activity
YD radioactivation yield of the daughter
yP normalized parent activity

Z

z atomic number of the projectile; depth in phantom; coordi-
nate in cartesian coordinate system

zmax depth of dose maximum
Z atomic number
Zeff effective atomic number
Zo transmitted particle in weak interaction
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α

α fine structure constant (1/137); ratio σP/σD; nucleus of helium
atom (alpha particle)

αIC internal conversion factor

β

β normalized particle velocity (υ/c)
β+ beta plus particle (positron)
β− beta minus particle (electron)

γ

γ photon originating in a nuclear transition; ratio of total to rest
energy of a particle; ratio of total to rest mass of a particle

δ

δ polarization (density effect) correction for stopping power; delta
particle (electron)

∆ cut-off energy in restricted stopping power

ε

ε eccentricity of hyperbola; normalized photon energy:
ε = hν/(mec

2)
ε∗ ratio λ∗

D/λD
εo electric permittivity of vacuum

θ

θ scattering angle for a single scattering event; scattering angle of
projectile in projectile/target collision; scattering angle of photon
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θcer Čerenkov characteristic angle
θmax characteristic angle in bremsstrahlung production; maximum scat-

tering angle
θmin minimum scattering angle
θR characteristic angle for Rayleigh scattering
Θ scattering angle for multiple scattering

η

η pair production parameter

κ

κ linear attenuation coefficient for pair production
aκ atomic attenuation coefficient for pair production
κ/ρ mass attenuation coefficient for pair production

λ

λ wavelength; separation constant; decay constant
λc Compton wavelength
λD decay constant of daughter
λ∗

D modified decay constant of daughter
λp decay constant of parent
Λ separation constant

µ

µ linear attenuation coefficient; reduced mass
µab linear energy absorption coefficient
µm mass attenuation coefficient
µo magnetic permeability of vacuum
µtr linear energy transfer coefficient
µ/ρ mass attenuation coefficient
(µ/ρ)ab mass energy absorption coefficient
(µ/ρ)tr mass energy transfer coefficient
aµ atomic attenuation coefficient
eµ electronic attenuation coefficient
µm unit of length or distance (10−6 m)

ν

ν frequency
νeq photon frequency at which the atomic cross sections for Rayleigh

and Compton scattering are equal
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νorb orbital frequency
νtrans transition frequency

ξ

ξ ratio between daughter and parent activities at time t

π

π pi meson (pion)

ρ

ρ density; energy density

σ

σ cross section; linear attenuation coefficient
σc Compton cross section (attenuation coefficient)
σKN

c Klein-Nishina cross section for Compton effect
aσc atomic attenuation coefficient for Compton effect
eσc electronic attenuation coefficient for Compton effect
σD daughter cross section in particle radioactivation
σP parent cross section in particle radioactivation
σpn cross section for photo-nuclear interaction
σR Rayleigh cross section (linear attenuation coefficient)
σRuth cross section for Rutherford scattering
σTh Thomson cross section (linear attenuation coefficient for Thomson

scattering)
aσ atomic cross section (in cm2/atom)
eσ electronic cross section (in cm2/electron)

τ

τ linear attenuation coefficient for photoeffect; normalized electron
kinetic energy; average (mean) life

aτ atomic attenuation coefficient for photoelectric effect
τ/ρ mass attenuation coefficient for photoelectric effect

φ

φ angle between radius vector and axis of symmetry on a hyperbola;
recoil angle of the target in projectile/target collision; neutron
recoil angle in elastic scattering on nucleus



414 Appendix 3. Greek Letter Symbols

ϕ particle fluence
ϕ̇ particle fluence rate

χ

χ homogeneity factor

ψ

ψ wavefunction (eigenfunction) depending on spatial coordinates;
energy fluence

Ψ wavefunction depending on spatial and temporal coordinates

ω

ω fluorescent yield; angular frequency
ωK fluorescent yield for K-shell transition
Ω solid angle
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BNCT Boron Neutron Capture Therapy
BNL Brookhaven National Laboratory
CODATA Committee on Data for Science and Technology
CPA Charged Particle Activation
CPE Charged Particle Equilibrium
CSDA Continuous Slowing Down Approximation
CT Computerized Tomography
DT Deuterium-Tritium
EC Electron Capture
EM Electromagnetic
FDG Fluoro-deoxy-glucose
FWHM Full Width at Half Maximum
HVL Half Value Layer
IAEA International Atomic Energy Agency
IC Internal Conversion
ICRP International Commission on Radiation Protection
ICRU International Commission on Radiation Units and Measurements
IP Ionization Potential
KN Klein-Nishina
LINAC Linear Accelerator
MFP Mean Free Path
MLC Multi Leaf Collimator
MRI Magnetic Resonance Imaging
MV Megavoltage
NDS Nuclear Data Section
NIST National Institute of Standards and Technology
NNDC National Nuclear Data Center
OER Oxygen Enhancement Ratio
PET Positron Emission Tomography
RF Radiofrequency
SF Spontaneous Fission
SI Système International
STP Standard Temperature and Pressure
TVL Tenth Value Layer



Appendix 5. Electronic Databases of Interest
in Nuclear and Medical Physics

Bibliography of Photon Attenuation Measurements
J. H. Hubbell

This bibliography contains papers (1907–1995) reporting absolute measure-
ments of photon (XUV, x-ray, gamma-ray, bremsstrahlung) total interaction
cross sections or attenuation coefficients for the elements and some com-
pounds used in a variety of medical, industrial, defense, and scientific appli-
cations. The energy range covered is from 10 eV to 13.5 GeV.
www.physics.nist.gov/PhysRefData/photoncs/html/attencoef.html

Elemental Data Index
M.A. Zucker, A.R. Kishore, and R.A. Dragoset

The Elemental Data Index provides access to the holdings of National In-
stitute for Science and Technology (NIST) Physics Laboratory online data
organized by element. It is intended to simplify the process of retrieving on-
line scientific data for a specific element.
www.physics.nist.gov/PhysRefData/Elements/cover.html

Fundamental Physical Constants
CODATA

CODATA, the Committee on Data for Science and Technology, is an in-
terdisciplinary scientific committee of the International Council for Science
(ICSU), which works to improve the quality, reliability, management and ac-
cessibility of data of importance to all fields of science and technology. The
CODATA committee was established in 1966 with its secretariat housed at
51, Boulevard de Montmorency, 75016 Paris, France. It provides scientists and
engineers with access to international data activities for increased awareness,
direct cooperation and new knowledge. The committee was established to
promote and encourage, on a world wide basis, the compilation, evaluation
and dissemination of reliable numerical data of importance to science and
technology. Today 23 countries are members, and 14 International Scientific
Unions have assigned liaison delegates.
www.codata.org
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Fundamental Physical Constants
The NIST Reference on Constants, Units, and Uncertainty.
www.physics.nist.gov/cuu/constants/

Ground Levels and Ionization Energies for the Neutral Atoms
W.C. Martin, A. Musgrove, S. Kotochigova, and J.E. Sansonetti

This table gives the principal ionization energies (in eV) for the neutral atoms
from hydrogen (Z = 1) through rutherfordium (Z = 104). The spectroscopy
notations for the electron configurations and term names for the ground levels
are also included.
www.physics.nist.gov/PhysRefData/IonEnergy/ionEnergy.html

International System of Units (SI)
The NIST Reference on Constants, Units, and Uncertainty

The SI system of units is founded on seven SI base units for seven base
quantities that are assumed to be mutually independent. The SI base units
as well as many examples of derived units are given.
www.physics.nist.gov/cuu/Units/units.html

Nuclear Data

The National Nuclear Data Center (NNDC) of the Brookhaven National Lab-
oratory (BNL) in the USA developed a software product (NuDat 2) that
allows users to search and plot nuclear structure and nuclear decay data
interactively. The program provides an interface between web users and sev-
eral databases containing nuclear structure, nuclear decay and some neutron-
induced nuclear reaction information. Using NuDat 2, it is possible to search
for nuclear level properties (energy, half-life, spin-parity), gamma-ray infor-
mation (energy, intensity, multipolarity, coincidences), radiation information
following nuclear decay (energy, intensity, dose), and neutron-induced re-
action data from the BNL-325 book (thermal cross section and resonance
integral). The information provided by NuDat 2 can be seen in tables, level
schemes and an interactive chart of nuclei. The software provides three differ-
ent search forms: one for levels and gammas, a second one for decay-related
information, and a third one for searching the Nuclear Wallet Cards file.
www.nndc.bnl.gov/NuDat2/

Nuclear Data Services

The Nuclear Data Section (NDS) of the International Atomic Energy Agency
(IAEA) of Vienna, Austria maintains several major databases as well as nu-
clear databases and files, such as: ENDF – evaluated nuclear reaction cross
section libraries; ENSDF – evaluated nuclear structure and decay data; EX-
FOR – experimental nuclear reaction data; CINDA – neutron reaction data
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bibliography; NSR – nuclear science references; NuDat 2.0 – selected eval-
uated nuclear data; Wallet cards – ground and metastable state properties;
Masses 2003 – atomic mass evaluation data file; Thermal neutron capture
gamma rays; Q-values and Thresholds.
www-nds.iaea.or.at

Nuclear Energy Agency Data Bank

The nuclear energy agency data bank of the Organization for Economic Co-
operation and Development (OECD) maintains a nuclear database containing
general information, evaluated nuclear reaction data, format manuals, pre-
processed reaction data, atomic masses, and computer codes.
www.nea.fr/html/databank/

Photon Cross Sections Database: XCOM
M.J. Berger, J.H. Hubbell, S.M. Seltzer, J.S. Coursey, and D.S. Zucker

A web database is provided which can be used to calculate photon cross
sections for scattering, photoelectric absorption and pair production, as well
as total attenuation coefficients, for any element, compound or mixture (Z ≤
100) at energies from 1 keV to 100 GeV.
www.physics.nist.gov/PhysRefData/Xcom/Text/XCOM.html

Stopping-Power and Range Tables for Electrons, Protons,
and Helium Ions
M.J. Berger, J.S. Coursey, and M.A. Zucker

The databases ESTAR, PSTAR, and ASTAR calculate stopping-power and
range tables for electrons, protons, or helium ions, according to methods
described in ICRU Reports 37 and 49. Stopping-power and range tables can
be calculated for electrons in any user-specified material and for protons and
helium ions in 74 materials.
www.physics.nist.gov/PhysRefData/Star/Text/contents.html

X-Ray Form Factor, Attenuation, and Scattering Tables
C.T. Chantler, K. Olsen, R.A. Dragoset, A.R. Kishore, S.A. Kotochigova,
and D.S. Zucker

Detailed Tabulation of Atomic Form Factors, Photoelectric Absorption and
Scattering Cross Section, and Mass Attenuation Coefficients for Z from 1
to 92. The primary interactions of x-rays with isolated atoms from Z = 1
(hydrogen) to Z = 92 (uranium) are described and computed within a self-
consistent Dirac-Hartree-Fock framework. The results are provided over the
energy range from either 1 eV or 10 eV to 433 keV, depending on the atom.
Self-consistent values of the f1 and f2 components of the atomic scattering
factors are tabulated, together with the photoelectric attenuation coefficient
τ/ρ and the K-shell component τK/ρ, the scattering attenuation coefficient
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σ/ρ (coh + inc), the mass attenuation coefficient µ/ρ, and the linear atten-
uation coefficient µ, as functions of energy and wavelength.
www.physics.nist.gov/PhysRefData/FFast/Text/cover.html

X-Ray Mass Attenuation Coefficients
and Mass Energy-Absorption Coefficients
J.H. Hubbell and S.M. Seltzer

Tables and graphs of the photon mass attenuation coefficient µ/ρ and the
mass energy-absorption coefficient µen/ρ are presented for all elements from
Z = 1 to Z = 92, and for 48 compounds and mixtures of radiological interest.
The tables cover energies of the photon (x-ray, gamma ray, bremsstrahlung)
from 1 keV to 20 MeV.
www.physics.nist.gov/PhysRefData/XrayMassCoef/cover.html

X-ray Transition Energies
R.D. Deslattes, E.G. Kessler Jr., P. Indelicato, L. de Billy, E. Lindroth,
J. Anton, J.S. Coursey, D.J. Schwab, K. Olsen, and R.A. Dragoset

This X-ray transition table provides the energies and wavelengths for the K
and L transitions connecting energy levels having principal quantum numbers
n = 1, 2, 3, and 4. The elements covered include Z = 10, neon to Z = 100,
fermium. There are two unique features of this database: (1) all experimental
values are on a scale consistent with the International System of measure-
ment (the SI) and the numerical values are determined using constants from
the Recommended Values of the Fundamental Physical Constants: 1998 and
(2) accurate theoretical estimates are included for all transitions.
www.physics.nist.gov/PhysRefData/XrayTrans/index.html



Appendix 6. International Organizations

whose mission statements fully or partially address radiation protection and
the use of ionizing radiation in medicine:

European Federation of Organisations in Medical Physics (EFOMP)
Dijon, France www.efomp.org

European Society for Therapeutic Radiology and Oncology (ESTRO)
Brussels, Belgium www.estro.be

International Atomic Energy Agency (IAEA)
Vienna, Austria www.iaea.org

International Commission on Radiological Protection (ICRP)
Stockholm, Sweden www.icrp.org

International Commission on Radiation Units and Measurements (ICRU)
Bethesda, Maryland, USA www.icru.org

International Electrotechnical Commission (IEC)
Geneva, Switzerland www.iec.ch

International Organisation for Standardization (ISO)
Geneva, Switzerland www.iso.org

International Organisation of Medical Physics (IOMP)
www.iomp.org

International Radiation Protection Association (IRPA)
Fortenay-aux-Roses, France www.irpa.net

International Society of Radiology (ISR)
Bethesda, Maryland, USA www.isradiology.org

Pan American Health Organization (PAHO)
Washington, D.C., USA www.paho.org

Radiological Society of North America (RSNA)
Oak Brook, Illinois, USA www.rsna.org

World Health Organisation (WHO)
Geneva, Switzerland www.who.int
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absorption
resonance 338
spectrum 77

accelerating waveguide 110, 112, 113,
115

acceleration
relativistic 25

accelerator 386
circular 102
cyclic 107
electrostatic 107
particle 107, 384
proton 397

actinium 313
activation 263, 281, 283

factor 288, 290, 291, 293
neutron 292
time 295, 285
with protons or heavier charged

particles 308
with thermal neutrons 307

activity 10, 265, 403
saturation 403
specific 265, 292, 293, 325

adaptive radiotherapy 110
allowed orbit 59
alpha decay 316, 341, 351, 378
alpha decay tunneling 40
alpha particle 397
α particle 9, 397

colliding with gold nucleus 127
α-particle scattering 44
aluminum 349
aluminum-27 383
Anderson 4, 234, 361, 374
angle

Čerenkov 104
characteristic 99, 164

mean square 135
polarization 190
projectile scattering 126
scattering 190, 411
target recoil 126

angular distribution
for charged particles in pair

production 230
of photoelectrons 223
of photons in Compton effect 196
of scattered particles 133

angular frequency 385
angular momentum 407

conservation of 49
angular scattering power 167
annihilation 106, 234

quanta 9
radiation 254

annihilation-in-flight 157, 158, 235
anoxic tumors 182
anti-neutrino 316
approximation

small angle 52
argon 395
artificial radioactivity 263
atom

multi-electron 66, 68–70, 72, 78, 380
one-electron 70, 72, 79, 380

atomic
attenuation coefficient 412
cross section for Compton effect

206, 213, 257
cross section for pair production

230, 257
cross section for photoelectric effect

222, 257
cross section for Rayleigh scattering

218



424 Index

emission spectra 168
form factor for Rayleigh scattering

215
ionization potential 74, 76
Klein–Nishina cross section 212
mass 14, 15
mass number 14, 15
mass unit 2, 14, 315, 409
number 14, 15, 342
recoil energy in photoelectric effect

222
shell 69
spectra 63
stopping number 152
structure 14
subshell 69

atomic mass 14
atomic mass number 14, 15
atomic mass unit 2, 14, 409
atomic model

Bohr 66, 74
Rutherford 44, 46
Rutherford–Bohr 42, 60, 365, 378
Thomson 44, 46

atomic radius
Thomas–Fermi 133

attenuation coefficient 237, 239, 249,
382, 412

for Compton effect 210, 213
for pair production 233
for Rayleigh scattering 219
for the photoelectric effect 225
linear 238, 258
mass 239, 258
of compounds and mixtures 243
tabulation 243

Auger 361, 362, 389
effect 87, 90, 254, 362, 389
electron 8, 88, 224, 246, 251, 322,

340, 362
average life 266
Avogadro 362

number 2, 15, 265, 362, 367, 407
principle 362

Balmer 63, 362
series 362

barium-137 328, 340
Barkla 4, 88, 193, 362, 392

barrier potential 342
Bateman 264
Bateman equations 280
beam

broad 240
fast neutron 182
hardening 238
narrow 237
neutron 180
softening 238

beam transport system 112, 115
Becquerel 4, 264, 316, 363, 371, 372,

397
becquerel 10, 265, 403
Berger 144, 363, 400, 419
beryllium 174, 183, 334
beryllium-7 334
beta decay 321, 325, 329, 341, 351, 378
beta minus (β−) decay 325
beta particle 8, 397
beta plus (β+) decay 329
betatron 107, 167, 384
Bethe 144, 150, 152, 364
Bethe–Bloch 150, 152
binding energy 17, 74, 224, 225, 317,

404
correction 207
effect 213
effects in Compton scattering 207
K-shell 70, 251
nuclear 343
per nucleon 17, 20

binding energy per nucleon 20
Bloch 4, 150, 364
BNCT 169, 180
Bohr 4, 18, 22, 38, 42, 59, 61, 65, 66,

68, 71, 74, 77, 79, 150, 152, 364,
366, 377, 380, 384, 393, 394, 397,
398

atomic theory 84, 381
electron 61
one-electron model 72
postulates 59
principle of complementarity 38
radius 3, 82, 84, 403
theory 84, 381

Bohr model
of the hydrogen atom 59
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bohrium 366
Boltzmann’s constant 2
Born 21, 32, 366
boron neutron capture therapy 169,

180
boron-10 181, 383
brachytherapy 320
Brackett 63, 362
Brackett series 362
Bragg

equation 367
formula 372
peak 14
relationship 30
William Henry 366, 367, 392
William Lawrence 367, 385, 392

Bragg’s law 77
branching 266
bremsstrahlung 9, 14, 40, 86, 95, 96,

100, 103, 105, 106, 139, 142–144,
158, 163, 248, 256, 261, 364, 412

magnetic 102, 106
spectral distribution 164
tail 13
targets 162
thick-target 164
yield 156, 403

broad beam geometry 237, 240
Brownian motion 375
build-up factor 241
build-up region 12

cadmium filter 172
californium-252 169, 342
californium-252 neutron source 184
carbon-12 15
carbon-13 330
carbon-14 313
cathode ray 369
central limit theorem 58, 136
Čerenkov 4, 104, 368

effect 105, 368, 409
radiation 103, 106, 168

Čerenkov–Vavilov effect 105, 368
cesium-137 16, 319, 328, 340
Chadwick 4, 42, 368, 397
chain reaction 173, 341, 376, 384
characteristic

angle 99, 412

thickness 238
time 270, 279

characteristic angle 99
for Rayleigh scattering 216

characteristic distance 137
effective 131, 132

characteristic radiation 87
characteristic x rays 9
charge

electric 6
electron 2
strong 6
weak 6

charged particle 8, 142, 387
accelerated 92, 94, 95
activation 310
colliding with an orbital electron

129
elastic scattering 130
equilibrium 13
heavier 9
heavy 8, 11, 14, 92, 97, 117, 119, 120,

130, 145, 157, 159, 170
intensity of the radiation emitted by

95
interactions with matter 141
light 92, 97, 117, 119, 121, 130, 154,

157, 159, 188
moving with a uniform velocity 93
power emitted by 96
radiation emitted by 95
range 159
relativistic electric field produced by

98
stationary 93
transport 364
velocity of 92, 105

chart of the nuclides 347, 348, 350,
352

classical mechanics 24
classificiation

of forces in nature 6
of fundamental particles 6
of radiation 7
of indirectly ionizing radiation 9

clinical electron beams 114
clinical photon beams 113
cloud chamber 42, 369
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cobalt 15
cobalt-59 16, 262, 296
cobalt-60 16, 172, 262, 293, 308, 319,

326
teletherapy machine 262, 383

cobalt-60 machine 262, 383
cobalt-60m 16
cold neutron 170
collision

direct-hit 51, 162
elastic 117, 122
endothermic 122
exothermic 122
hard 142, 154, 161
inelastic 117, 364
nuclear reaction 117
soft 142, 154, 161
two-particle 117

collision kerma 406
collision loss 116, 142
collision stopping power 150
complementerity principle 38
Compton 4, 193, 369

atomic cross section 210
attenuation coefficient 210
cross section 214
effect 31, 188, 183, 252, 257, 369
electron 8, 105, 254
graph 207, 212, 259
interaction 247
scattering 193, 241, 252, 257
shift in energy 198
wavelength 194, 412
wavelength of the electron 3

computed tomography 382
computerized tomography 186
cone-beam CT 186
conservation of energy

in Compton effect 195
in elastic scattering 125
in head-on collision 127
in nuclear reactions 122
in pair production 227
in photoelectric effect 221
relativistic 129

conservation of momentum
in Compton effect 195
in elastic scattering 125

in head-on collision 126
in nuclear reactions 122
in pair production 227
in photoelectric effect 221
relativistic 128

constant
fine structure 3, 222
nuclear radius 19
Planck 2
reduced Planck 2
Rydberg 3, 64, 65, 262, 408

continuous slowing down approximation
160

control rods 168, 174
conversion electron 339
coolant 174
Coolidge 4, 369, 376, 383

tube 40, 395
x-ray tube 40, 395

Cormack 4, 186, 370
correspondence principle 66
Coster–Kronig electron 88
Coulomb

barrier 308, 317
force 48, 68, 141, 349
interaction 7, 13, 14, 48, 70, 87, 97,

116, 142, 176, 189, 310, 311
potential 79, 80
repulsion 350
repulsion correction 19
scattering 130, 136

coulomb 404
CPA 415
Crookes tube 396
cross section 239
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L’Hôpital’s rule 272, 274, 277
Lichtenberg 140, 387

figures 140
life expectancy 266
linac 110, 166, 415
linear accelerator 86, 107, 110, 113,

163, 262, 384, 415
liquid-drop model 18
lithium-5 344
lithium-7 334
Lorentz 387

force 102

transformation 23, 24, 388
loss

collision 116, 142
radiative 14, 116, 142

Lyman 63
series 362

magic numbers 20, 348
magnesium-24 383
magnetic bremsstrahlung 102, 106
magnetic resonance imaging 365, 386,

389, 395
Mandelbrot 140, 387, 388
Manhattan project 364–366, 368, 376,

386
Mansfield 4, 388
Marsden 4, 44, 317, 378, 389, 397
mass

angular scattering power 137
defect 17
radiative stopping power 143
reduced 64
relativistic 25

matrix mechanics 373
matter waves 31
Maxwell’s equations 40
mean free path 238
mean ionization-excitation potential

149, 152
mean life 266
mean square angle 58
mean stopping power 160
measurable quantity 36
megavoltage x rays 115
Meitner 4, 18, 173, 362, 376, 379, 384,

389, 401
mendelevium 391
Mendeleyev 72, 348, 390
mercury 78, 377
metastable excited state 322
metastable state 328, 336
Michelson 23
microtron 107, 109

circular 109
racetrack 109

Millikan 4, 391
MLC 113
model

atomic 42



432 Index

depletion 286, 289, 291, 293, 297
depletion-activation 300, 304, 305
Hartree 70
liquid-drop 18
Rutherford–Bohr 316
saturation 284, 291–293, 296
shell 18

moderator 174
mole 15
Møller 130
molybdenum-98 296
molybdenum-99 294, 306, 308
momentum

relativistic 28, 29
transfer 48
transfer variable 208

Monte Carlo calculations 364, 400
Monte Carlo code 116
Morley 23
Moseley 30, 77, 392
Moseley’s experiment 76, 77
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Petržak 4, 341, 377
Pfund 63
Pfund series 362
phosphorus-30 383
photodisintegration 188, 235, 241
photoeffect 219

photoelectric effect 23, 188, 218, 219,
221, 241, 251, 254, 257, 375, 391,
394

photoelectron 8, 220, 246, 251, 254
photofission 235
photon 22, 113

backscattering 198
characteristic 222
disappearance 188
high energy 110
interaction with matter 187
megavoltage 110
scattering 188

photoneutron 235
photonuclear reaction 235
pion 9
Planck 4, 21, 22, 33, 35, 373, 378, 380,

389, 391, 394, 398, 402
constant 2, 394, 406
energy quantization 21
reduced constant 2

platinum-192 335
plum-pudding model of the atom 402
plutonium-239 173, 341, 399
polarization correction 151
polonium 370, 372
positron 8, 158, 361, 374

annihilation 234
colliding with orbital electron 128
emission tomography 311, 329
rest mass 2

positronium 65, 234, 408
potassium-40 313
potential

barrier 39, 378
Thomas–Fermi 409
well 39
well barrier 39, 378

Poynting vector 95, 190, 409
principle

of complementarity 38
of correspondence 66
of equivalence 375
of exclusion 68, 73, 393
of uncertainty 37, 380
Pauli 68, 73, 393

probability density 83
projectile



434 Index

heavy charged particle 118
light charged particle 118
neutron 118

promethium 392
protactinium 389
proton 8, 11, 183

capture 308
colliding with orbital electron 127
emission 342, 351
emission decay 342, 351
radioactivity 377
radius 85
rest mass 2

proton-rich radionuclide 332
Purcell 4, 394

Q value 122, 124, 181, 183, 316
quantization 394, 398

Bohr 234
electromagnetic radiation 22
of angular momentum 54, 66, 67, 76
of atomic energy levels 79
of binding energy 76
of electron angular momentum 59,

66, 67, 76
of spin 401
of total energy 74

quantum number 59, 65, 66, 81, 393,
407

magnetic 65
orbital angular momentum 65, 69
principal 60, 65, 69

quantum physics 21
quark 6

radiation
bremsstrahlung 9, 14, 40, 86, 95, 96,

100, 103 105, 106, 139, 142–144,
158, 163, 248, 256, 261, 364, 412
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