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Preface

This book provides an introduction to the rapidly developing field of quantum transport.
Quantum transport is an essential and intellectually challenging part of nanoscience; it
comprises a major research and technological effort aimed at the control of matter and
device fabrication at small spatial scales. The book is based on the master course that has
been given by the authors at Delft University of Technology since 2002. Most of the mat-
erial is at master student level (comparable to the first years of graduate studies in the
USA). The book can be used as a textbook: it contains exercises and control questions.
The program of the course, reading schemes, and education-related practical information
can be found at our website www.hbar-transport.org.

We believe that the field is mature enough to have its concepts – the key principles
that are equally important for theorists and for experimentalists – taught. We present at a
comprehensive level a number of experiments that have laid the foundations of the field,
skipping the details of the experimental techniques, however interesting and important
they are. To draw an analogy with a modern course in electromagnetism, it will discuss
the notions of electric and magnetic field rather than the techniques of coil winding and
electric isolation.

We also intended to make the book useful for Ph.D. students and researchers, includ-
ing experts in the field. We can liken the vast and diverse field of quantum transport to a
mountain range with several high peaks, a number of smaller mountains in between, and
many hills filling the space around the mountains. There are currently many good reviews
concentrating on one mountain, a group of hills, or the face of a peak. There are several
books giving a view of a couple of peaks visible from a particular point. With this book, we
attempt to perform an overview of the whole mountain range. This comes at the expense
of detail: our book is not at a monograph level and omits some tough derivations. The level
of detail varies from topic to topic, mostly reflecting our tastes and experiences rather than
the importance of the topic.

We provide a significant number of references to current research literature: more than a
common textbook does. We do not give a representative bibliography of the field. Nor do
the references given indicate scientific precedences, priorities, and relative importance of
the contributions. The presence or absence of certain citations does not necessarily reflect
our views on these precedences and their relative importance.

This book results from a collective effort of thousands of researchers and students
involved in the field of quantum transport, and we are pleased to acknowledge them here.
We are deeply and personally indebted to our Ph.D. supervisors and to distinguished senior
colleagues who introduced us to quantum transport and guided and helped us, and to
comrades-in-research working in universities and research institutions all over the world.
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This book would never have got underway without fruitful interactions with our students.
Parts of the book were written during our extended stays at Weizmann Institute of Science,
Argonne National Laboratory, Aspen Center of Physics, and Institute of Advanced Studies,
Oslo.

It is inevitable that, despite our efforts, this book contains typos, errors, and less com-
prehensive discourses. We would be happy to have your feedback, which can be submitted
via the website www.hbar-transport.org. We hope that it will be possible thereby to provide
some limited “technical” support.



Introduction

It is an interesting intellectual game to compress an essence of a science, or a given
scientific field, to a single sentence. For natural sciences in general, this sentence would
probably read: Everything consists of atoms. This idea seems evident to us. We tend to
forget that the idea is rather old: it was put forward in Ancient Greece by Leucippus and
Democritus, and developed by Epicurus, more than 2000 years ago. For most of this time,
the idea remained a theoretical suggestion. It was experimentally confirmed and established
as a common point of view only about 150 years ago.

Those 150 years of research in atoms have recently brought about the field of
nanoscience, aiming at establishing control and making useful things at the atomic scale.
It represents the common effort of researchers with backgrounds in physics, chemistry,
biology, material science, and engineering, and contains a significant technological com-
ponent. It is technology that allows us to work at small spatial scales. The ultimate goal of
nanoscience is to find means to build up useful artificial devices – nanostructures – atom by
atom. The benefits and great prospects of this goal would be obvious even to Democritus
and Epicurus.

This book is devoted to quantum transport, which is a distinct field of science. It is
also a part of nanoscience. However, it is a very unusual part. If we try to play the same
game of putting the essence of quantum transport into one sentence, it would read: It is not
important whether a nanostructure consists of atoms. The research in quantum transport
focuses on the properties and behavior regimes of nanostructures, which do not immedi-
ately depend on the material and atomic composition of the structure, and which cannot
be explained starting by classical (that is, non-quantum) physics. Most importantly, it has
been experimentally demonstrated that these features do not even have to depend on the
size of the nanostructure. For instance, the transport properties of quantum dots made of
a handful of atoms may be almost identical to those of micrometer-size semiconductor
devices that encompass billions of atoms.

The two most important scales of quantum transport are conductance and energy scale.
The measure of conductance, G, is the conductance quantum GQ ≡ e2/π�, the scale made
of fundamental constants: electron charge e (most of quantum transport is the transport of
electrons) and the Planck constant � (this indicates the role of quantum mechanics). The
energy scale is determined by flexible experimental conditions: by the temperature, kBT ,
and/or the bias voltage applied to a nanostructure, eV . The behavior regime is determined
by the relation of this scale to internal energy scales of the nanostructure. Whereas physical
principles, as stressed, do not depend on the size of the nanostructure, the internal scales
do. In general, they are bigger for smaller nanostructures.
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This implies that the important effects of quantum transport, which could have been seen
at room temperature in atomic-scale devices, would require helium temperatures (4.2 K),
or even sub-kelvin temperatures, to be seen in devices of micrometer scale. This is not
a real problem, but rather a minor inconvenience both for research and potential appli-
cations. Refrigeration techniques are currently widely available. One can achieve kelvin
temperatures in a desktop installation that is comparable in price to a computer. The cost
of creating even lower temperatures can be paid off using innovative applications, such as
quantum computers (see Chapter 5).

Research in quantum transport relies on the nanostructures fabricated using nanotech-
nologies. These nanostuctures can be of atomic scale, but also can be significantly bigger
due to the aforementioned scale independence. The study of bigger devices that are rel-
atively easy to fabricate and control helps to understand the quantum effects and their
possible utilization before actually going to atomic scale. This is why quantum transport
tells what can be achieved if the ultimate goal of nanoscience – shaping the world atom by
atom – is realized. This is why quantum transport presents an indispensable “Introduction
to nanoscience.”

Historically, quantum transport inherits much from a field that emerged in the early
1980s known as mesoscopic physics. The main focus of this field was on quantum sig-
natures in semiclassical transport (see, e.g., Refs. [1] and [2], and Chapter 4). The name
mesoscopic came about to emphasize the importance of intermediate (meso) spatial scales
that lie between micro-(atomic) and macroscales. The idea was that quantum mechan-
ics reigns at microscales, whereas classical science does so at macroscale. The mesoscale
would be a separate kingdom governed by separate laws that are neither purely quantum
nor purely classical; rather, a synthesis of the two. The mesoscopic physics depends on
the effective dimensionality of the system; the results in one, two, and three dimensions
are different. The effective dimensionality may change upon changing the energy scale. In
these terms, quantum transport mostly concentrates on a zero-dimensional situation where
the whole nanostructure is regarded as a single object characterized by a handful of param-
eters; the geometry is not essential. Mesoscopics used to be a very popular term in the
1990s and used to be the name of the field reviewed in this book. However, intensive
experimental activity in the late 1980s and 1990s did not reveal any sharp border between
meso- and microscales. For instance, metallic contacts consisting of one or a few atoms
were shown to exhibit the same transport properties and regimes as micron-scale contacts
in semiconductor heterostructures. This is why the field is called now quantum transport,
while the term mesoscopic is now most commonly used to refer to a cross-over regime
between quantum and classical transport.

The objects, regimes, and phenomena of quantum transport are various and may seem
unlinked. The book comprises six chapters that are devoted to essentially different physical
situations. Before moving on to the main part of the book, let us present an overview of
the whole field (see the two-dimensional map, Fig. 1). For the sake of presentation, this
map is rather Procrustean: we had to squeeze and stretch things to fit them on the figure.
For instance, it does not give important distinctions between normal and superconducting
systems. Still, it suffices for the overview.
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�Fig. 1. Map of quantum transport. Various important regimes are given here in a log–log plot. The
numbered diamonds show the locations of some experiments described in the book (see the end
of this Introduction for a list).

The axes represent the conductance of a nanostructure and the energy scale at which the
nanostructure is operated; i.e. that set by temperature and/or voltage. This is a log–log plot,
and allows us to present in the same plot scales that differ by several orders of magnitude.
There is a single universal measure for the conductance – the conductance quantum GQ.
If G � GQ, the electron conductance is easy: many electrons traverse a nanostructure
simultaneously and they can do this in many ways, known as transport channels. For G �
GQ, the transport takes place in rare discrete events: electrons tunnel one-by-one. The
regions around the cross-over line G � GQ attract the most experimental interest and are
usually difficult to comprehend theoretically.

There are several internal energy scales characterizing the nanostructure. To understand
them, let us consider an example nanostructure that is of the same (by order of magnitude)
size in all three dimensions and is connected to two leads that are much bigger than the
nanostructure proper. If we isolated the nanostructure from the leads, the electron energies
become discrete, as we know from quantum mechanics. Precise positions of the energy lev-
els would depend on the details of the nanostructure. The energy measure of such quantum
discreteness is the mean level spacing δS – a typical energy distance between the adjacent
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levels. Another energy scale comes about from the fact that electrons are charged particles
carrying an elementary change e. It costs finite energy – the charging energy EC – to add
an extra electron to the nanostructure. This charging energy characterizes the interactions
of electrons. At atomic scale, δS � 1 eV and EC � 10 eV. These internal scales are smaller
for bigger structures, and EC is typically much bigger than δS.

As seen in Fig. 1, these scales separate different regimes at low conductance G � GQ.
At high conductance, G � GQ, the electrons do not stay in the nanostructure long enough
to feel EC or δS. New scales emerge. The time the electron spends in the nanostruc-
ture gives rise to an energy scale: the Thouless energy, ETh. This is due to the quantum
uncertainty principle, which relates any time scale to any energy scale by (�E)(�t) ∼ �.
The Thouless energy is proportional to the conductance of the nanostructure, ETh �
δSG/GQ, and this is why the corresponding line in the figure is at an angle in the log–log
plot.

Another slanted line in the upper part of Fig. 1 is due to the electron–electron inter-
action, which works destructively. It provides intensive energy relaxation of the electron
distribution in a nanostructure and/or limits the quantum-mechanical coherence. On the
right of the line, the quantum effects in transport disappear: we are dealing with classi-
cal incoherent transport. At the line, the inelastic time, τin, equals the time the electron
spends in the nanostructure, that is, �/τin � ETh. The corresponding energy scale can
be estimated as � δS(G/GQ)2 � ETh. In the context of mesoscopics, Thouless has sug-
gested that extended conductors are best understood by subdividing a big conductor into
smaller nanostructures. The size of such nanostructure is chosen to satisfy the condition
�/τin � ETh. This is why all experiments where mesoscopic effects are addressed are
actually located in the vicinity of the line; we call it the mesoscopic border.

Once we have drawn the borders, we position the material contained in each chapters
on the map. Chapter 1 is devoted to the scattering approach to electron transport. It is an
important concept of the field that at sufficiently low energies any nanostructure can be
regarded as a (huge) scatterer for electron waves coming from the leads. At G � GQ, the
validity of the scattering approach extends to the mesoscopic border. At energies exceeding
the Thouless energy, the energy dependence of the scattering matrix becomes important.
In Chapter 1, we explain how the scattering approach works in various circumstances,
including a discussion of superconductors and time-dependent and spin-dependent phe-
nomena. We relate the transport properties to the set of transmission eigenvalues of a
nanostructure – its “pin-code.” The basics explained in Chapter 1 relate, in one way or
another, to all chapters.

If we move up along the conductance axis, G � GQ, the scattering theory becomes pro-
gressively impractical owing to a large number of transport channels resulting in a bigger
scattering matrix. Fortunately, there is an alternative way to comprehend this semi-classical
coherent regime outlined in Chapter 2. We show that the properties of nanostructures are
determined by self-averaging over the quantum phases of the scattering matrix elements.
Because of this, the laws governing this regime, being essentially quantum, are similar to
the laws of transport in classical electric circuits. We explain the machinery necessary to
apply these laws – quantum circuit theory. The quantum effects are frequently concealed
in this regime; for instance, the conductance is given by the classical Ohm’s law. Their
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manifestations are most remarkable in superconductivity, the statistics of electron trans-
fers, and spin transport. Remarkably, there is no limitation to quantum mechanics at high
conductances as soon as one remains above the mesoscopic border.

Chapter 3 brings us to the lower part of the map – to conductances much lower than GQ.
There, the charging energy scale EC becomes relevant, manifesting a strong interaction
between the electrons (the Coulomb blockade). This is why we concentrate on the energies
of the order of EC, disregarding the mean level spacing δS. Transport in this single-electron
tunneling regime proceeds via incoherent transfer of single electrons. However, the trans-
fers are strongly correlated and can be precisely controlled – one can manipulate electrons
one-by-one. The quantum correction to single-electron transport is co-tunneling, i.e. coop-
erative tunneling of two electrons. The energy scale

√
ECδS separates inelastic and elastic

co-tunneling. In the elastic co-tunneling regime, the nanostructure can be regarded as a
scatterer in accordance with the general principles outlined in Chapter 1. The combina-
tion of the Coulomb blockade and superconductivity restores the quantum coherence of
elementary electron transfers and provides the opportunity to build quantum devices of
almost macroscopic size.

The material discussed in Chapter 4 is spread over several areas of the map. In this
chapter, we address the statistics of persistent fluctuations of transport properties. We start
with the statistics of discrete electron levels – this is the domain of low conductances,
G � GQ, and low energies, of the order of the mean level spacing. Then we go to the
different corner, to G � GQ and the energies on the left from the mesoscopic border,
to discuss fluctuations of transmission eigenvalues – the universal conductance fluctua-
tions (UCF) – and the interference correction to transport, weak localization. The closing
section of Chapter 4 is devoted to strong localization in disordered media, where elec-
tron hopping is the dominant mechanism of conduction. This implies G � GQ and high
energies.

A fascinating development of the field is the use of nanostructures for quantum infor-
mation purposes. Here, we do not need a flow of quantum electrons, but rather a flow of
quantum information. Chapter 5 presents qubits and quantum dots, perhaps the most pop-
ular devices of quantum transport. For both devices, the discrete nature of energy levels is
essential. This is why they occupy the energy area left of the level spacing δS on the map.
We also present in Chapter 5 a comprehensive introduction to quantum information and
manipulation.

In Chapter 6 we discuss interaction effects that do not fit into the simple framework of the
Coulomb blockade. Such phenomena are found in various areas of the map. We start this
chapter with a discussion of the underlying theory, called dissipative quantum mechanics.
We study the effects of an electromagnetic environment on electron tunneling, remaining
in the area of the Coulomb blockade. We go up in conductance to understand the fate of the
Coulomb blockade at G � GQ and the role of interaction effects at higher conductances.
The electrons in the leads provide a specific (fermionic) environment responsible for the
Kondo effect in quantum dots. The Kondo energy scale depends exponentially on the con-
ductance and is given by the curve on the left side of the map. Finally, we discuss energy
dissipation and dephasing separately for qubits and electrons. In the latter case, we are at
the mesoscopic border.
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At high energies one leaves the field of quantum transport: transport proceeds as
commonly taught in courses of solid-state physics.

We have not yet mentioned the numbered diamonds in the map. These denote the
location of several experiments presented in various chapters of the book.

(1) Discovery of conductance quantization (Section 1.2);
(2) interference nature of the weak localization (Section 1.6);
(3) universal conductance fluctuations (Section 1.6);
(4) single-electron transistor (Section 3.2);
(5) discrete states in quantum dots (Section 5.4);
(6) early qubit (Section 5.5);
(7) Kondo effect in quantum dots (Section 6.6);
(8) energy relaxation in diffusive wires (Section 6.8).



1 Scattering

1.1 Wave properties of electrons

Quantum mechanics teaches us that each and every particle also exists as a wave. Wave
properties of macroscopic particles, such as brickstones, sand grains, and even DNA
molecules, are hardly noticeable to us; we deal with them at a spatial scale much bigger
than their wavelength. Electrons are remarkable exceptions. Their wavelength is a fraction
of a nanometer in metals and can reach a fraction of a micrometer in semiconductors. We
cannot ignore the wave properties of electrons in nanostructures of this size. This is the cen-
tral issue in quantum transport, and we start the book with a short summary of elementary
results concerning electron waves.

A quantum electron is characterized by its wave function, �(r, t). The squared absolute
value, |�(r, t)|2, gives the probability of finding the electron at a given point r at time t .
Quantum states available for an electron in a vacuum are those with a certain wave vector
k. The wave function of this state is a plane wave,

�k(r, t) = 1√
V

exp (ik · r− iE(k)t/�) , (1.1)

E(k) = �
2k2/2m being the corresponding energy. The electron in this state is spread over

the whole space of a very big volume V; the squared absolute value of � does not depend
on coordinates. The prefactor in Eq. (1.1) ensures that there is precisely one electron in this
big volume. There are many electrons in nanostructures. Electrons are spin 1/2 fermions,
and the Pauli principle ensures that each one-particle state is either empty or filled with
one fermion. Let us consider a cube in k-space centered around k with the sides dkx , dky ,
dkz � |k|. The number of available states in this cube is 2sV dkx dky dkz/(2π )3. The
factor of 2s comes from the fact that there are two possible spin directions. The fraction
of states filled in this cube is called an electron filling factor, f (k). The particle density n,
energy density E , and density of electric current j are contributed to by all electrons and
are given by ⎡

⎣ n
E
j

⎤
⎦ = ∫

2s
d3k

(2π )3

⎡
⎣ 1

E(k)
ev(k)

⎤
⎦ f (k). (1.2)

Here we introduce the electron charge e and the velocity v(k) = �k/m. Quantum mechan-
ics puts no restriction on f (k). However, the filling factor of electrons in an equilibrium
state at a given electrochemical potential μ and temperature T is set by Fermi–Dirac
statistics:
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�Fig. 1.1. Electrons as waves. (a) An electron in a vacuum is in the plane wave state with the wave vector k.
(b) The profile of its wave function �. (c) At zero temperature, the electrons fill the states with
energies below the chemical potential μ (|k| < kF). At a given temperature, the filling factor f is a
smoothed step-like function of energy.

feq(k) = fF(E(k)− μ) ≡ 1

1+ exp((E − μ)/kBT )
. (1.3)

The chemical potential at zero temperature is known as the Fermi energy, EF.

Control question 1.1. What is the limit of fF (E) at T → 0? Hint: see Fig. 1.1.

Next, we consider electrons in the field of electrostatic potential, U (r, t)/e. The
wave function �(r, t) of an electron is no longer a plane wave. Instead, it obeys the
time-dependent Schrödinger equation, given by

i�
∂�(r, t)

∂t
= Ĥ�(r, t); Ĥ ≡ − �

2

2m
∇2 +U (r, t). (1.4)

This is an evolutionary equation: it determines � in the future given its instant value. The
evolution operator Ĥ is called the Hamiltonian. For the time being, we concentrate on the
stationary potential, U (r, t) ≡ U (r). The wave functions become stationary, with their time
dependence given by the energy

�(r, t) = exp(−iEt/�)ψE (r).

The Schrödinger equation reduces to

EψE (r) = ĤψE (r) =
[
− �

2

2m
∇2 +U (r)

]
ψE (r). (1.5)

The Hamiltonian becomes the operator of energy, while the equation becomes a linear
algebra relation defining the eigenvalues E and the corresponding eigenfunctions �E of
this operator. These eigenfunctions form a basis in the Hilbert space of all possible wave
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functions, so that an arbitrary wave function can be expanded, or represented, in this basis.
The first (gradient) term in the Hamiltonian describes the kinetic energy; the second term,
U (r), represents the potential energy.

A substantial part of quantum mechanics deals with the above equation. It cannot be
readily solved for an arbitrary potential, and our qualitative understanding of quantum
mechanics is built upon several simple cases when this solution can be obtained explicitly.
Following many good textbooks, we will concentrate on the one-dimensional motion, in
which the potential and the wave functions depend on a single coordinate x . However, we
pause to introduce a key concept that makes this one-dimensional motion more physical.

1.1.1 Transmission and reflection

Let us confine electrons in a tube – a waveguide – of rectangular cross-section that is
infinitely long in the x direction. We can do this by setting the potential U to zero for
|y| < a/2, |z| < b/2 and to +∞ otherwise. We thus create walls that are impenetrable to
the electron and are perpendicular to the y and z axes. We expect a wave to be reflected
from these walls, changing the sign of the corresponding component of the wave vector,
ky →−ky or kz →−kz . This suggests that the solution of the Schrödinger equation is a
superposition of incident and reflected waves of the following kind:

ψ(x , y, z) = exp(ikx x)
∑

sy ,sz=+,−
Csysz exp(sy iky y) exp(sz ikzz). (1.6)

Since the infinite potential repels the electron efficiently, the wave function must van-
ish at the walls, ψ(x , y = ±a/2, z) = ψ(x , y, z = ±b/2) = 0. This gives a linear relation
between Csysz that determines these superposition coefficients. To put it simply, the walls
have to be in the nodes of a standing wave in both y and z directions. This can only happen
if ky,z assume quantized values kn

y = πny/a, kn
z = πnz/b, with integers ny , nz > 0 cor-

responding to the number of half-wavelengths that fit between the walls. The notation we
use throughout the book here we introduce for the compound index n = (ny , nz). The wave
function reads as follows:

ψkx ,n(x , y, z) = ψkx (x)	n(y, z);

ψkx (x) = exp(ikx x); (1.7)

	n(y, z) = 2√
ab

sin(kn
y (y − a/2)) sin(kn

z (z − b/2)).

The transverse motion of the electron is thus quantized. The electron in a state with
the given n (these states are called modes in wave theory and transport channels in
nanophysics) has only one degree of freedom corresponding to one-dimensional motion.
The energy spectrum consists of one-dimensional branches shifted by a channel-dependent
energy En (see Fig. 1.2), given by

En(kx ) = (�kx )2

2m
+ En ; En = π

2
�

2

2m

(
n2

y

a2
+ n2

z

b2

)
. (1.8)
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�Fig. 1.2. Waveguide. (a) Electrons are confined in a long tube of rectangular cross-section. (b) Wave
function profiles of the modes (1,1), (2,1), and (3,1). (c) Corresponding trajectories of a classical
particle reflecting from the waveguide walls. (d) Energy spectrum of electron states in the
waveguide (b/a = 0.7). At the chemical potential shown by the dashed line, the electrons are
present only in the modes (1,1) and (2,1).

Let us add some more design to our waveguide. We cross it with a potential barrier of
simple form,

U (x) =
{

U0, 0 < x < d
0, otherwise.

(1.9)

The possible solutions outside the barrier for a given n and energy are plane waves of the
form of Eqs. (1.7). It is important to note that there are two possible solutions with kx =
±k = ±√2m(E − En)/�, corresponding to the waves propagating to the right (positive
sign) or to the left. A wave sent from the left is scattered at the barrier, part of it being
reflected back, another part being transmitted. We have

ψ(x) =
⎧⎨
⎩

exp(ikx)+ r exp(−ikx), x < 0
B exp(iκx)+ C exp(−iκx), 0 < x < d

t exp(ikx), x > d,
(1.10)

where κ = √2m(E − En −U0)/� = √
k2 − 2mU0/�2. The wave function and its x-

derivative must be continuous at x = 0 and x = d. These four conditions give four linear
equations for the unknown coefficients r , B, C , and t . The most important for us are
the transmission amplitude t and the reflection amplitude r . The transmission coefficient,
T (E) = |t |2, determines which fraction of the wave is transmitted through the obstacle.
The reflection coefficient, R(E) = |r |2 = 1− T (E), determines the fraction reflected back.
We find

T (E) = 4k2κ2

(k2 − κ2)2 sin2 κd + 4k2κ2
. (1.11)



11 1.1 Wave properties of electrons
�

0 d

U0

E

x

1

r

t

(a)

0

1

0 1 2 3

T
 (

E
 )

E/U0

(b)

�Fig. 1.3. Potential barrier. (a) Scattering of an electron wave at a rectangular potential barrier.
(b) Transmission coefficient (see Eq. (1.11)) of the barrier for two different thicknesses,
d
√

2mU0/� = 3 (solid) and 5 (dashed). For the thicker barrier the transmission coefficient is
close to the classical one, T(E) = 1 at E > U0.

Control question 1.2. Find the coefficients r , t , B, and C in terms of κ , k, and d.

In classical physics, particles with energies below the barrier (E < U0) would be totally
reflected (T = 0), while particles with energies above the barrier would be fully transmitted
(T = 1). Quantum mechanics changes this: electrons are transmitted and reflected at any
energy (Fig. 1.3). Even an electron with an energy well below the barrier (corresponding
to imaginary κ) has a finite, albeit an exponentially small, chance of being transmitted,
T (E) ∝ exp(−2d

√
2m(U0 + En − E)/�)� 1. This is called tunneling.

The above consideration is not limited to barriers localized within a certain interval
of x . For any barrier, the solution very far to the left, x →−∞, can be regarded as a
superposition of incoming and reflected waves, ψ = exp(ikx)+ r exp(−ikx). Very far to
the right, x →∞, the solution is a transmitted wave, ψ = t exp(ikx). To calculate t and
r , we have to solve the Schrödinger equation everywhere and match these two asymptotic
solutions.

1.1.2 Electrons in solids

The above discussion concerns electrons in a vacuum. The electrons in nanostructures are
not in a vacuum, rather they are in a solid state medium such as a metal or a semiconductor.
What does this change? Surprisingly, not much. A crystalline lattice of a solid state medium
provides a periodic potential relief. The solutions of the Schrödinger equation for such a
potential are no longer plane waves as in Eq. (1.1), but rather are Bloch waves,

ψk,P (r) = exp (ikr) uk,P (r), (1.12)
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where uk,P is a periodic function with the same periods as the lattice. The vector of
quasimomentum, �k, is defined up to a period of a reciprocal lattice, and the index P
labels different energy bands. The energy EP (k) is a periodic function of quasimomentum.
This implies that it is bounded. Therefore, the spectrum at a given k consists of discrete
values corresponding to energy bands. The electron velocity in the given state (k, P) is
given by

vP (k) = 1

�

∂EP (k)

∂k
.

With these notations, Eq. (1.2) remains valid. The integration over d3k must be replaced
by the summation over the energy band index P and integration over the quasimomentum
within the reciprocal lattice unit cell (or the first Brillouin zone).

This summarizes the differences between the descriptions of an electron in a vacuum
and in a crystalline lattice.

Note that the above discussion disregards the interaction between electrons. However,
there are many electrons in a solid state medium, they are charged, and they interact
with each other. One would have to deal with the Schrödinger equation for a many-body
wave function that depends on coordinates of all electrons in the nanostructure, which is a
formidable task. What makes the above discussion relevant?

This was a Nobel Prize question (awarded to Lev Landau in 1962). The above descrip-
tion is relevant because we “cheat.” We do not describe the real interacting electrons.
Indeed, we cannot, nor do we have to. Rather, we implicitly consider the quantum trans-
port of quasielectrons (or quasiparticles), elementary charged excitations above the ground
state of all the electrons present in the solid state. The interaction between these excitations
is weak and in many instances can be safely disregarded.

Let us give a short summary of the arguments that justify this implicit substitution for
the important case of a metal. By definition, a metal is a material that can be charged with
no energy cost. This means that the energy required to add some charge Q into a piece of
metal is μQ/e, where μ is the chemical potential.

We now describe this quantum mechanically. Before the charge was added, the piece of
metal was in its ground state. Let us add one elementary charge. This drives the system to
an excited state, which corresponds to creating precisely one quasielectron. By symmetry
consideration, this state should have a certain quasimomentum and spin 1/2. To conform
to the definition of the metal, the energy of this state has to be equal to μ, E(k) = μ.
This condition defines a surface in three-dimensional space of quasimomentum, the Fermi
surface. Fermi surfaces can look rather complicated. For example, the Fermi surface of
gallium looks like the fossil of a dinosaur – to this end, a very symmetric dinosaur. The
Fermi surface of free electrons is a sphere: noble metals provide a good approximation to
it (see Fig. 1.4). In the following, we count the energy of quasiparticles from the Fermi
level μ.

Let us concentrate on the situation when the temperature and applied voltage are
much smaller than μ. This sets the energy scale �E � max(eV , kBT )� μ available for
quasiparticles, which are therefore all located close to the Fermi surface. The important
parameter is the density of states ν at the Fermi surface, defined as the number of states per
energy interval in a unit volume. The density of the quasiparticles is therefore ν�E , much
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�Fig. 1.4. A realistic metal: silver. (a) Brillouin zone with symmetry points �, X, W, L, and K and lines.
(b) Fermi surface. (c) Energy bands plotted along the symmetry lines.

smaller than the density of the original electrons in the metal. The smaller �E is, the big-
ger the distance between the quasiparticles. This explains why the interaction is negligible:
the quasiparticles just do not come together to interact.

The original electrons interact according to Coulomb’s law. The quasiparticles are not
original electrons, and the residual interaction between them is strongly modified. First
of all, the electric field around each quasiparticle is screened by electrons forming the
ground state since they redistribute to compensate the quasiparticle charge. This quenches
the long-range repulsion between the quasiparticles. The interaction may be mediated by
phonons (vibrations of the crystalline lattice) and is not even always repulsive. This may
drive the metal to a superconducting state.

The above arguments allow us to start the discussion of quantum transport with the
notion of non-interacting (quasi)electrons. We will see that the interactions may not always
be disregarded in the context of quantum transport. The above arguments do not work if
interaction occurs at mesoscopic rather than at microscopic scales.
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�Fig. 1.5. Energy bands in a semiconductor. Black-filled regions in (b) and (c) indicate carriers: electrons or
holes. (a) No doping; (b) n-doping; (c) p-doping. (d) Band edges in GaAlAs–GaAs heterostructure
versus the depth z. A two-dimensional electron gas (2DEG) is formed close to the GaAlAs–GaAs
interface.

1.1.3 Two-dimensional electron gas

There is a long way to go from metal solids to practical nanostructures, and this way
has been found during the technological developments of the second half of the twentieth
century. It started with semiconductors: insulators with a relatively small gap separating
conduction (empty) and valence (occupied) bands. Of all the rich variety of semiconductor
applications, one is of particular importance for quantum transport, and that is the making
of an artificial and easily controllable metal from a semiconductor. This is achieved by a
process called doping, in which a small controllable number of impurities are added to a
chemically pure semiconductor. Depending on the chemical valence of the impurity atom,
it either gives an electron to the semiconductor (the atom works as an n-dopant) or extracts
one, leaving a hole in the semiconductor (p-dopant). Even a small density of the dopants
(say, 10−4 per atom) brings the chemical potential either to the edge of the conduction
band (n-type semiconductor) or to the edge of the valence band (p-type semiconductor);
see Fig. 1.5. In both cases, the semiconductor becomes a metal with a small carrier con-
centration. A rather simple trick of doping different areas of a semiconductor with p- and
n-type dopants creates p-n junctions, transistors (for which W. Shockley, J. Bardeen, and
W. H. Brattain received the Nobel Prize in 1956), and most of the power of semiconductor
electronics.
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A disadvantage of the resulting metal is that it is rather dirty. Indeed, it is made by
impurities, so that the number of scattering centers approximately equals the number of
carriers. It is advantageous to separate spatially the dopants and the carriers induced. In
the course of these attempts, the two-dimensional electron gas (2DEG) has been put into
practice.

The most convenient way to make a 2DEG involves a selectively doped GaAlAs–GaAs
heterostructure, a layer of n-doped GaAlAs on the surface of a p-doped GaAs crystal.
The lattice constants of the two materials match, providing a clean, defect-free interface
between them. The semiconducting energy gap in GaAlAs is bigger than in GaAs, and
the expectation is that the electrons from n-dopants in GaAlAs eventually reach the GaAs.
Why would these carriers stay near the surface? To understand this, let us consider the
electrostatics of the whole structure (see Fig. 1.5). In the one-dimensional (1d) geometry
given, the potential energy of the electrons is U (z) = e	(z). The electrostatic potential
	(z) and charge density ρ(z) are related by the Poisson equation:

d2	(z)

dz2
= 4πρ(z)/ε,

where we assume the same dielectric constant ε in both materials. If no carriers are present
in GaAlAs, the dopants with volume density n1 make a parabolic potential profile in the
material, U (z) = U (0)+ (2πe2/ε)n1z2, 0 < z < a, a being thickness of the layer.1 If we
cross the interface, there is a drop in potential energy that equals the energy mismatch�1 ≈
0.2 eV between the conduction bands of the materials. Let us assume that the electrons are
concentrated close to the interface at the GaAs side and figure out the conditions at which
it actually happens. If the surface density of the electrons equals n0, the electric field in the
z direction jumps at the interface, i.e.(

d	

dz

)
z=a+0

−
(

d	

dz

)
z=a−0

= −(4πe/ε)n0.

The bulk GaAs is p-doped, so there are supposed to be holes. However, the holes are sepa-
rated from the interface and the electrons by a depletion layer of thickness b. The negatively
charged dopants (with volume density n2) in this layer form an inverse parabolic profile,
U (z) = U (a + 0)+ (dU (z = a + 0)/dz)(z − a)− (2πe2/ε)n2(z − a)2, a < z < b.

This allows us to determine conditions for the stability of this charge distribution. Since
electrons at the interface and holes in the valence band share the same chemical potential,
the difference of the potential energies just equals the semiconducting gap, �s = 1.42 eV
in GaAs, U (a + b)−U (a + 0) = �s.2 Further, the holes are in equilibrium, so the elec-
trostatic force−dU (z)/dz vanishes at the edge of the depletion layer, z = a + b. To ensure
that there are no carriers in the GaAlAs layer, one requires U (0) > U (a + b). Solving for
everything, we obtain

n0 = n1a −
√
�sn2ε

2πe2
.

1 Typically, a = 50 nm. A simple technique to reduce the disorder is not to dope GaAlAs in a spacer layer
adjacent to the interface.

2 To write this, we disregard the kinetic energy of both electrons and holes in comparison with �s.
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Control question 1.3. What is the thickness of the depletion layer in terms of n2

and �s?

The carriers in GaAlAs are absent only if the dopant density is sufficiently low, n1 <

�1(ε/2πa2e2). Since n0 > 0, the desired charge distribution occurs in a certain interval of
the dopant density: �1(ε/2πa2e2) > n1 >

√
�sn2ε/2πa2e2. The 2DEG structure is also

stable in the limit of vanishing p-dopant density, n2 → 0. In this case, the surface density
of the 2DEG just equals that of the n-dopants, n0 = n1a.

Now we turn to the details of electron wave functions and spectrum in the 2DEG. The
electrons concentrated near the interface experience the potential that depends only on
z. As for waveguides, we can separate the electron motion in the z-direction from that
in the xy plane. The motion in the x , y directions is free, whereas it is finite in the z
direction: The potential U (z) takes the form of a triangular-shaped well. So, the motion
in the z direction is quantized, giving rise to a series of discrete energy levels En with
corresponding wave functions 	n(z) of the localized states (Fig. 1.6). The wave func-
tions of the electron states are plane waves in the x , y directions and can be presented as
ψkx ,ky ,n(x , y, z) ∝ ei(kx x+ky y)	n(z). Each n thus gives rise to a subband of two-dimensional
states with energies given by (k ≡ (kx , ky))

En(k) = En + �
2k2

2m
.

Here, m is the effective mass of electrons in GaAs, equal to 0.067 of the electron mass in
a vacuum. If we count energy from the bottom of the infinitely deep triangular well, the
energy levels read En = cn((U ′)2

�
2/(2m))1/3, where U ′ ≡ dU (z = a + 0)/dz, and c1 =

2.338 and c2 = 4.082.

E
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EF
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μ

|k|
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�Fig. 1.6. Energy spectrum of a 2DEG. (a) Localized wave functions and energy levels in a triangular well
potential near the interface. (b) All electrons are accommodated in the lowest subband.
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Control question 1.4. What is U ′ in terms of n0, n1, and a? Why can E0 not
exceed �1?

Let us put electrons into the levels. We note that the density of states in each subband
does not depend on energy and equals

ν = 2s

∫
dk δE − En(k) = 2sm

2π�2
�(E − En).

Taking GaAs mass, we obtain ν = 2.8× 10−4 meV−1 nm2. The surface densities n0 in a
2DEG are in the range 1−4× 10−4 nm−2. In this density range, all electrons are accom-
modated in the lowest subband. This implies that the corresponding Fermi energy, EF,
counted from the subband edge, EF = n0/ν, does not reach the edge of the second sub-
band, EF < E2 − E1. This Fermi energy is smaller by two orders of magnitude than a
typical Fermi energy in metals. The Fermi wavelength, λ = √2π/n0, ranges from 40 to
80 nm and also exceeds the typical Fermi wavelength in metals by two orders of magni-
tude. This means that the quantum effects in a 2DEG can be seen at much larger space
scales than in common metals.

1.2 Quantum contacts

A common nanostructure does not even remotely resemble an infinitely long waveguide.
However, the physics of quantum transport is surprisingly similar to that of a waveguide.
The recognition of this fact and its experimental verification was, and still is, one of the
main events in the history of the field. We introduce this important idea in two steps. In
this section, we consider in detail the quantum point contact (QPC) – a system without
potential barriers – and show that it is equivalent to a waveguide with a potential barrier. In
Section 1.3, we turn to the more complicated case of a generic nanostructure.

1.2.1 Adiabatic quantum transport

We start by looking at a waveguide of variable cross-section. The waveguide is extended
along the x axis, bounded by impenetrable potential walls, and has a rectangular cross-
section, |y| < a(x)/2, |z| < b(x)/2, with the dimensions varying as one moves along the
contact. Far to the right and the left, x →±∞, these dimensions assume constant val-
ues a∞ and b∞. In the middle, the walls come closer, forming a constriction (Fig. 1.7).
The solutions, Eqs. (1.7), found for the ideal waveguide do not apply to this case, and
solving the Schrödinger equation is cumbersome. (The variables in the three-dimensional
Schrödinger equation do not separate and the motion does not become one-dimensional.)

We obtain, however, a general understanding of the quantum waves in the system by
looking at an adiabatic waveguide [3]. Its dimensions are assumed to vary smoothly so
that the length scale at which they change is much longer than the dimensions themselves:
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�Fig. 1.7. (a) From a waveguide of constant cross-section to an adiabatic waveguide. (b) Effective potential
energy for the transport channels. At the given energy E, only three transport channels (solid
curves) are open.

|a′(x)|, |b′(x)| � 1, a(x)|a′′(x)|, b(x)|b′′(x)| � 1. Under these conditions, the walls are
locally flat and parallel, so that locally the wave functions can be approximated by those
of the ideal waveguide (Eqs. (1.7)). The variables are locally separated, so that

ψn(x , y, z) = ψ(x)	n(a(x), b(x), y, z), (1.13)

where the transverse wave functions 	(a, b, y, z) are given by Eqs. (1.7). The function
ψ(x) corresponds to one-dimensional motion and satisfies(

− �
2

2m

∂2

∂x2
+ En(x)

)
ψ(x) = Eψ(x). (1.14)

Here, En presents a channel-dependent energy introduced by Eq. (1.8). This energy
depends on x via the waveguide dimensions a(x), b(x):

En(x) = π
2
�

2

2m

(
n2

y

a2(x)
+ n2

z

b2(x)

)
. (1.15)

We note that this term plays the role of potential energy for one-dimensional motion.
Strangely, this potential energy depends on the channel index. Let us plot these energies
versus x (see Fig. 1.7). For each channel we see a potential barrier forming in the narrowest
part of the constriction. The bigger the numbers ny , nz , the higher the barrier.

Let us concentrate on a given energy E . In a given channel, we compare it with the
maximal barrier height assuming an impenetrable barrier. If E exceeds the height, the
electrons coming to the constriction traverse it; otherwise, they are reflected back. Since
the barrier height increases with the channel index, there are only a finite number of open
channels where electrons can pass the constriction. All other channels are closed.

Therefore, the adiabatic waveguide of variable cross-section without a potential barrier
appears to be the same as for an ideal waveguide with a potential barrier, already considered
in Section 1.1. For each channel, we define transmission and reflection amplitudes in the
usual way (Fig. 1.3) and we end up with the channel-dependent transmission coefficient
Tn(E). It appears that the adiabaticity also implies an almost classical potential barrier, so
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that T = 1 for open channels and T = 0 for closed ones. The only exception is a narrow
energy interval where the energy almost aligns with the top of the barrier. Remarkably, the
electrons in the closed channels are almost perfectly reflected in spite of the absence of
potential barriers in the system.

Control question 1.5. Assume the waveguide dimensions depend on x as follows:
a(x) = b(x) = a∞ − a0/(1+ (x/ξ )2), a0 < a∞. At which energy does the first open
channel appear? At which energy are there three open channels?

Now we are ready to turn to our core business: the quantum transport. First, we deter-
mine the electric current in the constriction. The first step is to adapt the expression for
the current given by Eq. (1.2) to the case of quantized transverse motion. We do this by
replacing the integration over ky and kz by the summation over their discrete quantized
values kn

y and kn
z , as follows:∫

dkx

2π

dky

2π

dkz

2π
(· · · )→

∫
dkx

2π
ab

∑
n

(· · · ). (1.16)

This procedure describes an ideal waveguide, in which case kx stands for the wave vector.
In our case, the waveguide is not ideal and the wave vector depends on x . However, we have
chosen the shape in such a way that for x →±∞ the waveguide is ideal, and we can use
Eq. (1.16) to evaluate the full current I via the cross-section located infinitely far to the left
from the constriction. Note that we are free to choose the cross-section in an arbitrary way
since the charge conservation law implies that the stationary full current flowing through
any cross-section is the same. We get the full current by multiplying the current density jx
by the cross-section area a∞b∞, thus absorbing the factors in Eq. (1.16),

I = 2se
∑

n

∫ ∞
−∞

dkx

2π
vx (kx ) fn(kx ), (1.17)

the velocity being vx = �kx/m. Let us concentrate on the filling factors fn(kx ), which are
different for open (T = 1) and closed (T = 0) channels (Fig. 1.8). If the channel is closed,
all electrons passing the cross-section from the left are reflected from the barrier and sub-
sequently pass the same cross-section from the right. Therefore, in a closed channel there
is the same amount of right- and left-going electrons, and the filling factors are the same
for the two momentum directions, fn(kx ) = fn(−kx ). Since their velocities are opposite,
the contribution of the closed channels to the net current vanishes. Thus, we concentrate
on open channels.

For open channels, the filling factors for the two momentum directions are not the same.
To realize this fact, we have to understand how the electrons get to the waveguide. This
leads us to the concept of a reservoir. Any nanostructure taking part in quantum transport
is part of an electric circuit. This means that it is connected to large, macroscopic electric
pads each kept at a certain voltage (electrochemical potential). These pads contain a large
number of electrons at thermal equilibrium. These electrons are characterized by the fill-
ing factor, Eq. (1.3), which depends only on the energy and the chemical potential of the
corresponding reservoir. In our setup, the waveguide is connected to two such reservoirs:
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�Fig. 1.8. Filling factors in a quantum paint contact for open and closed channels.

left (x →−∞) and right (x →∞). Electrons with kx > 0 come from the left reservoir
and have the filling factor fL(E) ≡ fF(E − μL). Electrons with kx < 0 come to the cross-
section having passed the constriction. Therefore, they carry the filling factor of the right
reservoir, fR(E) ≡ fF(E − μR).

Since the filling factors depend only on the energy, it is natural to replace kx in favor of
the total energy E for each momentum direction. Since the velocity is vx = �

−1(∂E/∂kx ),
we have dE = �v(kx )dkx , and this cancels the velocity in Eq. (1.17). Thus, we end up with
the remarkably simple expression,

I = 2se

2π�

∑
n:open

∫
dE

[
fL(E)− fR(E)

]

≡ 2se

2π�
Nopen(μL − μR) ≡ GQ NopenV . (1.18)

We have integrated over energy; this yields a factor μL − μR. The simplest way to inte-
grate is to assume vanishing temperature. Then the filling factors fL,R = �(μL,R − E)
differ only within an energy strip min(μL,R) < E < max(μL,R) and are constant within the
strip. The width of the strip is given by |μL − μR|.

Exercise 1.1. (a) Making use of the explicit form of the Fermi distribution fF, show
that the integral ∫

dE
[

fL(E)− fR(E)
]

equals μL − μR at any temperature.
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(b) Prove that the integral retains the same value for any function f (E) expressing
the filling factors, fL,R = f (E − μL,R), provided f → 0 at E →∞ and f → 1 at
E →−∞.

The difference in the chemical potentials corresponds to the voltage difference applied,
V = (μL − μR)/e. The voltage difference drives the current; there is no current at V = 0
since that corresponds to the state of thermodynamic equilibrium. The factor μL − μR is
the same for all open channels. Therefore the current is proportional to the number of open
channels, Nopen, and the voltage. The proportionality coefficient is called the conductance
quantum and conventionally defined as3 GQ = 2se2/(2π�). The conductance of the sys-
tem, I/V , appears to be quantized in units of GQ. This factor is made up from fundamental
constants. The conductance quantum does not depend on material properties, nanostruc-
ture size, and geometry, or from a concrete theoretical model used to evaluate the transport
properties.

Equation (1.18) is a specific case of the celebrated Landauer formula. We have derived
the formula for the case when T (E) can be either zero or one. The general case is treated
in Section 1.3.

Let us remark that we have obtained this very general relation in the framework of a
specific model of a constricted adiabatic waveguide with impenetrable walls and rectangu-
lar cross-section. Now we discuss why this result holds in a far more general setup. First,
let us get rid of the assumption of impenetrable walls and rectangular cross-section, and
introduce a waveguide with an arbitrary confining potential Ux (y, z). Provided the wave-
guide is adiabatic, we can still separate the variables in the Schrödinger equation and write
the solution in the form of Eq. (1.13), where the transverse wave functions now obey the
following equation:

[
− �

2

2m

(
∂2

∂y2
+ ∂2

∂z2

)
+Ux (y, z)

]
	n(x ; y, z) = En(x)	n(x ; y, z), (1.19)

where the discrete index n labels the transverse states, En(x) being the channel-dependent
potential energy (see Eq. (1.15)). This is the only change compared with the previous
model.

Next, let us note that the number of open channels, and, consequently, the conductance
of our system, are determined only by the narrowest part of the waveguide. Therefore we
can change the shape of the waveguide without changing its transport properties, provided
the narrowest cross-section stays the same. Let us see what happens if we change it in the
way shown in Fig. 1.9, sending a∞ and b∞ to infinity. The structure we end up with – a
quantum point contact (QPC) – is not a waveguide at all. In particular, in a waveguide we
have a finite number of channels at each energy and the spectrum consists of discrete energy
branches (Fig. 1.2). In contrast to this, the number of transport channels approaching the
QPC is infinite, and the energy spectrum is continuous. Of all these channels, only a finite
number are transmitted through the constriction.

3 Eventually, it could be more logical to incorporate the number of spin directions 2s into the number of open
channels, so that one has two transport channels for each n.
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�Fig. 1.9. From a model to real life. (a) Adiabatic waveguide with a finite number of transport channels.
(b) QPC: infinite number of transport channels, finite number of open channels. (c) Scattering
around the QPC is negligible provided the resistance of scattering region RQPC is much smaller.
(d) Experimental realization of QPC in a 2DEG with a split gate (adapted from Ref. [4]).

1.2.2 Experimental evidence of conductance quantization

Quantization of conductance was first observed in GaAlAs–GaAs semiconductor het-
erostructures [4, 5]. In these heterostructures, the electrons are confined near the surface
forming a 2D electron gas (2DEG); see Section 1.1. In terms of our waveguide, this means
that one of the dimensions b→ 0. Then only the lowest subband (nz = 1) is relevant. In
addition, two gate electrodes were imposed on the top of the heterostructure. These elec-
trodes were electrically isolated from the 2DEG. However, they were used to shape this
2DEG; the potential applied to these electrodes repels the electrons from them (Fig. 1.9),
creating surrounding impenetrable walls. The constriction is formed by the walls in the gap
between the electrodes, the width corresponding to the dimension a of our model wave-
guide. Increasingly negative voltage created greater repulsion, shifting the walls outwards
and therefore making the constriction narrower. The minimum width amin is thus controlled
by the gate voltage.

The number of open channels, in its turn, is determined by the minimum width. Let us
write down this dependence explicitly for a model that disregards the potential inside the
2DEG and assumes infinite potential outside (a more realistic model is treated later in this
section). A new channel with index n = (ny , 1) opens when the energy position of the top
of the barrier, Wn , passes the Fermi energy as we change amin:

Wn ≡ �
2π2

2a2
minm

n2
y = EF = �

2k2
F

2m
, (1.20)
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�Fig. 1.10. Experimental evidence of conductance quantization: discrete transport channels are visible.
Adapted from Ref. [4].

and thus

Nopen =
[
kFamin/π

]
, (1.21)

where the brackets denote the integer part. Thus, by varying the gate voltage, one changes
the number of open channels. Therefore, the gate voltage dependence of the conductance
is expected to look like a set of stairs with step height GQ, and this is what was measured
in the experiment discussed in Ref. [4] (see Fig. 1.10).

Control question 1.6. Comparing Figs. 1.9 and 1.10, estimate the upper bound for kF

in the 2DEG used in the experiment discussed in Ref. [4].

At the time of the experiment, it was expected that such quantization would be observed
for an ideal waveguide, but it was a complete surprise to observe it in a relatively short
constriction in a far from ideal system. We cite Ref. [4]:

We propose an explanation of the observed quantization of the conductance, based on
the assumption of quantized transverse momentum in the contact constriction. In prin-
ciple this assumption requires a constriction much longer than wide, but presumably
the quantization is conserved in the short and narrow constriction of the experiment.

This quote, written a year before a theoretical understanding of quantum point contact
was achieved, shows the essence of this section: discrete transport channels do not need
waveguides to persist.

The conductance steps observed in the experiment are not very sharp. In reality, the
transmission coefficient of a given channel does not change abruptly from zero (closed)
to one (open). This change is only abrupt if the reflection from the barrier is classical. As
we have learned in the example of a simple barrier considered in Section 1.1, quantum
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mechanics makes the transmission coefficient a continuous function of energy. This will
also be true for a QPC.

To illustrate this, let us concentrate on the energy E that lies close to the top of the barrier
Wn at certain ny , E = Wn + δE , |δE | � Wn . In this case, the potential close to the top of
the barrier can be expanded in Taylor series, En(x) = Wn − |E ′′n (0)|x2/2 (we assume that
the top of the barrier is located at x = 0). Thus, electrons with E ≈ Wn are transmitted
through a parabolic potential. This well known quantum-mechanical problem was solved
by Kemble in 1935. The transmission coefficient obtained from the solution,

Tn(E) =
[

1+ exp

(
− δE

��n

)]−1

, (1.22)

smoothly joins the two classical values, Tn = 1 at δE � ��n and Tn = 0 for |δE | � ��n ,
δE < 0, thus providing the smearing of the steps at energy scale ��n . This energy scale is
given by

��n = �

2π

√ |E ′′n (0)|
m

= �
2ny

2m

√
a′′
a3
= Wn

√
a′′a
π2ny

,

with a′′, a being taken at x = 0. We see that this energy scale is much smaller than
Wn provided the adiabaticity condition a′′a � 1 is met. Moreover, this smearing scale
is much smaller than the energy distance between the opening of consecutive channels,
Wn+1 −Wn . This makes the cross-over sharp, even for moderately adiabatic constrictions
(a′′a ∼ 0.3 for the experiment mentioned).

To evaluate the conductance, we cannot use Eq. (1.18), since it only applies for T = 0
or T = 1. We need the full Landauer formula (to be derived in Section 1.3):

I = GQ

e

∑
n

∫
dE Tn(E)

[
fL(E)− fR(E)

]
.

At temperatures and voltages much smaller than ��n , the integration over energy is essen-
tially multiplication of the integrand with eV , with the substitution E → μ. The opening
of the nth channel occurs at |μ−Wn| � ��n and is described by

G

GQ
= n − 1+ Tn(μ) = n − 1+

[
1+ exp

(
−μ−Wn

��n

)]−1

. (1.23)

Provided the electrochemical potential μ does not fit this narrow interval, we return to the
classical situation: n channels are fully opened at Wn < μ < Wn+1.

1.2.3 Electrostatic shaping of 2DEG

The QPC in the experiment considered was shaped electrostatically with the gate elec-
trodes. We have understood that the conductance is determined by the number of open
channels, this number being changed by the gate voltage. Let us now explore the details of
the electrostatics of the shaping.

In the following we present a piece of classical rather than quantum physics; we discuss
it here because of practical importance and because it is a piece of interesting physics. We
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loosely follow Refs. [7] and [8] in this discussion. It turns out that plain classical electro-
statics is more important for the 2DEG shaping than any quantum effects related to the
motion of electrons in the 2DEG. To demonstrate this, let us first make a simple estimation
of the electrostatic potential involved. In the heterostructures used, electrons are confined
to a plane. Let us look at one semi-infinite gate electrode repelling a semi-infinite 2DEG
(Fig. 1.11), both lying in the plane z = 0 and separated by distance l. The 2DEG density is
defined by the fixed density n0 of donors located beneath the heterostructure surface. This
means that far from the gate (y →∞) the electron density equals n0 to compensate for this
positive-charge background. The same compensation takes place in the gate far from the
2DEG (y →−∞). The charge density is not compensated for at distances of the order of
l. This resembles a capacitor with the metal plates wrenched to be in the same plane. The
voltage across the capacitor can be still estimated using the formula for a planar capacitor,
Vg = (4πl/ε)(Q/S). The electric field is concentrated in the semiconductor rather than in
the vacuum, due to the large dielectric constant ε � 1. The charge density Q/S is thus of
the order of en0, so that Vg ∼ eln0/ε. Let us compare this with the typical kinetic energy
of electrons in the 2DEG, EF = (�kF)2/(2m) ∼ �

2n0/m. We see that the potential energy
dominates provided l � aB ≡ �

2ε/(e2m), aB being the Bohr radius in the semiconduc-
tor (aB is 10 nm for GaAs). This condition is thus fulfilled for l in the 100 nm range. In
this parameter range, the 2DEG can be considered as an ideal conductor that screens the
electric field, very much like a metallic gate electrode.

A surprising result of this approximation is that at Vg → 0, l → 0, and it looks like the
2DEG is depleted from under the gate. This is because, in the above reasoning, we have
disregarded the distance d from the top metallic gate to the 2DEG proper in comparison
with l. If we take d into account, the 2DEG stays under the gate at zero gate voltage, but
is depleted at relatively small gate voltages Vg = 4πen0d/ε. We will use this voltage as a
reference for further discussion.

In what follows, we consider electrostatics to quantify the gate voltage dependence of
the 2DEG shape.
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Although the charge density in the 2DEG and the gate electrode is concentrated in the
z = 0 plane, the distribution of electrostatic potential experienced and created by elec-
trons is essentially three-dimensional; i.e., one has to consider the potential in the whole
three-dimensional space to find it in the (x , y) plane in which the electrons are located. In
principle, one has to solve the electrostatic problem separately in two half-spaces: in the
vacuum (z > 0, ε = 1) and in the semiconductor (z < 0, ε � 1). There is, however, a sim-
plification stemming from the fact that the charges are at the interface only: one replaces
the setup with an effective medium with the effective dielectric constant (ε + 1)/2 ≈ ε/2.
This brings about extra symmetry with respect to z →−z. To simplify it further, we do
not consider x dependence of the potential. This implies the layout extended along the x
axis, the geometry that corresponds to an ideal waveguide considered previously. Thus,
the electric field only has two components, Ey and Ez . The positively charged donors pro-

duce electric field in the z direction, E (d)
z = −(4πn0e/ε)sign z. It is convenient to subtract

this from the total field and consider the complex-valued field E ≡ Ey + iEz produced by
all other charges. This allows us to incorporate a common trick that enables us to solve
a variety of electrostatic problems: if E is an analytic function of the complex coordinate
u ≡ y + iz, it automatically satisfies the Poisson equation for z �= 0.

This solution must obey the boundary conditions that we now describe. Both the metallic
gate (y < 0) and the 2DEG (y > l) are ideal conductors, so the potential is constant along
each conductor. The in-plane component of the field, Ey , thus vanishes at y < 0 and y > l.
The component Ez should experience a jump at z = 0 proportional to the charge density
(with the density of donors subtracted). Symmetry requires Ez(y + i0) = −Ez(y − i0). We
conclude that Ez(0) = 0 for 0 < y < l, whereas far from the capacitor, y →±∞,

Ez(y + i0) = −Ez(y − i0) = 4πn0e

ε
.

In addition, the 2DEG must be in mechanical equilibrium; no net force is acting on elec-
trons close to its boundary. This implies that Ey(l) = 0. This does not apply to the gate
electrode; the electrostatic force acting on the charge in there may be compensated for by
elastic forces keeping the gate at the substrate so that Ey(0) �= 0.

The above conditions are easy to reformulate in terms of the complex function E ; it is real
and single-valued at 0 < y < l and z = 0, it is imaginary, and has branch cuts elsewhere
at z = 0, E(y + i0) = −E(y − i0). This is the characteristic property of the square root
function! We conjecture that E is a square root of a product or a ratio of two polynomials.
The simplest guess satisfying the boundary conditions at y →∞, y < 0, and y = l reads

E = 4πn0e

ε

√
l − u

u
. (1.24)

There is an important theorem in electrostatics that guarantees the uniqueness of this
solution, so we do not have to consider this further.

Control question 1.7. Check that all boundary conditions are indeed satisfied. To this
end, explicitly evaluate the imaginary and real parts of the above expression (Ez , Ey).
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�Fig. 1.12. Split gate: electrostatic shaping of a 2DEG.

Now we relate the distance l to the gate voltage:

Vg =
∫ l

0
dy Ey = 4πn0e

ε

∫ l

0
dy

√
l − y

y
= 2π2n0el

ε
, (1.25)

where l = εVg/2π2n0e. This quantifies our initial estimate. The distance l is commonly
called the depletion length.

Exercise 1.2. Consider a thin long gate hanging at a distance a from the 2DEG plane.
If the width of the gate is much smaller than a, it can be viewed as an infinitely thin wire
with uniform charge density q̃ per unit length. Upon increasing q̃, the electron density
underneath the gate decreases. Evaluate the critical value of q̃ at which the 2DEG is
completely depleted at a certain position, i.e. its density approaches zero there.

Let us return to the shaping of the QPC. We now have two gates with the same poten-
tial Vg separated by distance W . A strip of 2DEG of width a is formed in between (see
Fig. 1.12). We begin with a naive and straightforward model. Assume that the 2DEG is
depleted by both gates independently. Then a = W − 2l. At a certain pinch-off voltage
Vp = π2n0eW/ε, we have a = 0, and the strip disappears. In addition, we assume that the
potential is zero in the 2DEG and increases steeply beyond. This allows us to use Eq. (1.21)
for the number of open channels, yielding

Nopen =
[

kFa

π

]
=

[
kFW

π

Vp − Vg

Vp

]
. (1.26)

Thus, the conductance decreases linearly with the gate voltage.
Let us try to improve on the model. First, let us improve our consideration of electrostat-

ics. There are two gates, left (y < −W/2) and right (y > W/2), and the 2DEG is confined
in the area |y| < a/2, with a to be determined. The boundary conditions are similar to
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�Fig. 1.13. Split gate. (a) Voltage versus a/W. (b) The number of open channels versus a/W. (c) The resulting
voltage dependence of the number of channels. Dashed lines show estimates based on
Eq. (1.26).

those used above. However, the solution satisfying the new boundary conditions is now as
follows:

E = 4πn0e

ε

√
u2 − (a/2)2

(W/2)2 − u2
; (1.27)

this is distinct from Eq. (1.24). We can express the gate voltage in terms of a via the
following relation:

Vg =
∫ −a/2

−W/2
dy Ey = 4πn0e

ε

∫ −a/2

−W/2
dy

√
y2 − (a/2)2

(W/2)2 − y2
.

The integral can be explicitly evaluated at a = 0 to yield the pinch-off voltage Vp =
2πn0eW/ε. It differs from our naive estimate by the factor of 2/π . Also, the dependence
of the strip width on the gate voltage is not linear (see Fig. 1.13).

Next, we improve on the relation between the number of open channels and the width
of the strip a. Naively, we have assumed that all potential in the 2DEG is screened. This is
indeed true for a large potential of the order of Vg. In fact, there is a residual potential in the
2DEG which is of the order EF/e � Vg. One can see this from the fact that the electron
density in the 2DEG differs from the bare value of n0, i.e.

n(y) = εE(y + i0)

4πe
= n0

√
(a/2)2 − y2

(W/2)2 − y2
. (1.28)

We can easily evaluate the residual potential while assuming that the density varies at a
scale much longer than the Fermi wavelength. In this case, the relation between the density,
the Fermi wave vector, and the residual potential Ur(y)/e is local and is that of a uniform
2DEG. The relation between the Fermi wave vector, kF, and the electron density, n =
2sk2

F/(2π )2, was derived in Section 1.1. The sum of the potential and the kinetic energy
of an electron equals EF, thus EF = Ur + �

2k2
F/2m. We can therefore express the residual

potential as follows:
Ur(y)

EF
= 1− n(y)

n0
, (1.29)

and we can study the electron states in the corresponding Schrödinger equation.
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There is a shortcut, however. In the ideal waveguide, we saw that transverse wave func-
tions obey the condition that an integer number of half-wavelengths is contained between
the walls. In other words, the total phase change of the wave function between the walls
should be πny , ny being a positive integer. The maximum ny allowed at a given energy
yields the number of open channels at this energy. If the wave vector varies smoothly with
y, the phase change equals

∫
dy ky(y). The maximum ny at energy EF is given by the

substitution ky(y) = kF(y), and the number of open channels is thus given by

Nopen = 1

π

∫ a/2

−a/2
dy kF(y) = kF

π

∫ a/2

−a/2
dy

√
n(y)

n0
, (1.30)

with kF evaluated at the density n0. The number of channels calculated from Eqs. (1.30) and
(1.28) is shown in Fig. 1.13. It deviates substantially from the assumed linear dependence
on a.

Let us now complete the work and plot the number of open channels as a function of the
gate voltage normalized to Vp. What a sad irony! The function evaluated hardly differs from
the naive linear estimate of Eq. (1.26). This is intrinsic for all detailed studies of quantum
transport: harder work that is intended to include all possible parameters characterizing
a nanostructure yields very little improvement in comparison with the “naive” reasoning,
provided the reasoning is correctly based on general laws of quantum transport.

1.3 Scattering matrix and the Landauer formula

In Sections 1.1 and 1.2, we studied electron transport in idealized waveguides with or
without a potential barrier. These waveguides not only illustrate the concepts of quantum
transport, but also model concrete experimental situations. A waveguide with no poten-
tial barrier models a QPC, a constriction created by gates in a 2DEG. A waveguide with
a potential barrier models electron propagation through an insulating layer between two
metals.

Real nanostructures can be made in a variety of ways, and can be more complicated.
Modern fabrication technology allows for sophisticated semiconductor heterostructures,
combining and shaping different metals, using nanotubes, molecules, and even single
atoms as elements of an electron transport circuit. Various means can be used to control
the transport properties of a fabricated nanostructure. It is only possible to describe all this
in a single book because all these systems obey the general laws of quantum transport that
we formulate in this section.

There is a common feature of all fabrication methods: two nanostructures that are
intended to be identical, that is, are made with the same design and technology, are never
identical (see Fig. 1.14). Beside the artificial features brought by design, there is also dis-
order originating from defects of different kind inevitably present in the structure. The
position of and/or potential created by such defects is random, and in most cases can be
neither controlled nor measured. It is unlikely that this situation will change with fur-
ther technological developments; even if one achieves a perfect control of every atom in
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�Fig. 1.14. Nanostructures of an identical design are never identical.

a nanostructure, one would not be able to control all the atoms in the macroscopic con-
tact leads, which cannot be separated from the nanostructure. The defects scatter electrons,
affecting the transport properties. Conductance of the structure is thus random, depending
on a specific realization of disorder in the structure and in the leads; this means there is a
formidable number of uncontrollable parameters.

Fortunately, the transport properties of any nanostructure can be expressed through a
smaller set of parameters. The condition for this is that electrons traverse the structure
without energy loss, so they experience only elastic scattering. These conditions for a given
structure are always achieved at sufficiently low temperature and applied voltage. The scat-
tering is characterized by a scattering matrix that contains information about electron wave
functions far from the structure. The transport is described by a set of transmission eigen-
values derived from this scattering matrix. A great deal of literature on quantum transport,
and a great deal of this book, is in fact devoted to evaluation of the transmission eigenval-
ues and establishing their general properties. In this section, we derive the relation between
conductance and the transmission eigenvalues and thus demonstrate that understanding
the transmission properties of a system automatically means understanding its transport
properties.

1.3.1 Scattering matrix

We have mentioned in Section 1.2 that any nanostructure taking part in quantum transport
is part of an electric circuit. It is connected to several reservoirs, which are in thermal
equilibrium and are characterized by a fixed voltage. In this section, we only consider
the case when there are two reservoirs (referred to as left and right). Generalization to
many reservoirs is given in Section 1.5. Between the reservoirs is the scattering region –
the nanostructure proper. Let us start with a feature borrowed from the QPC model of
Section 1.2: ideal waveguides connect the reservoirs and the scattering region (Fig. 1.15).
This is convenient since the scattering only takes place in a finite region, the reservoirs
being far from this region. The wave functions may have very complicated forms in the
scattering region, but in the waveguides they are always combinations of plane waves. The
left and right waveguides do not have to have the same axis and the same cross-section.
This is why it is convenient to introduce the separate coordinates xL < 0, yL, zL and xR >

0, yR, zR for the left and right waveguides, respectively. Generally, a wave function at fixed
energy E can be presented as a linear combination of the plane waves
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�Fig. 1.15. Scattering approach to quantum transport. Ideal waveguides and reservoirs from QPC plus
scattering in between form an adequate model of transport in any nanostructure.

ψ(xL, yL, zL) =
∑

n

1√
2π�vn

	n(yL, zL)
[
aLneik(n)

x xL + bLne−ik(n)
x xL

]
(1.31)

and

ψ(xR, yR, zR) =
∑

m

1√
2π�vm

	m(yR, zR)
[
aRme−ik(m)

x xR + bRmeik(m)
x xR

]
. (1.32)

Here we label the transport channels in the left and right waveguides by the indices n and m,
respectively. The corresponding transverse wave functions are	n and	m , and the energies
of the transverse motion are En , Em . For any transport channel n or m, be it in the left or
right waveguide, the energy E fixes the value of the wave vector k(n)

x = √2m(E − En)/�.
Transport is due to propagating, not evanescent, waves, and k(n)

x has to be real. Then, only
a finite number of open channels, NL to the left and NR to the right, exist at a fixed energy
E . We explicitly write the square roots of velocities vn in each channel. This is to ensure
that the current density does not contain these factors and is expressed in terms of aLn , bLn

or aRm , bRm only.
In Eqs. (1.31) and (1.32) the coefficients aLn , aRm are the amplitudes of the waves

coming from the reservoirs, and bLn , bRm are the amplitudes of the waves transmitted
through or reflected back from the scattering region. These coefficients are therefore not
independent: the amplitude of the wave reflected from the obstacle linearly depends on the
amplitudes of incoming waves in all the channels,

bαl =
∑
β=L,R

∑
l ′

sαl,βl ′aβl ′ , β = L, R, l = n, m. (1.33)

The proportionality coefficients are combined into a (NL + NR)× (NL + NR) scattering
matrix ŝ. It has the following block structure:

ŝ =
(

ŝLL ŝLR

ŝRL ŝRR

)
≡

(
r̂ t̂ ′
t̂ r̂ ′

)
. (1.34)
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�Fig. 1.16. Structure of two-terminal scattering matrix. We show reflection and transmission amplitudes of
the electron wave coming from the left in the second transport channel, n’ = 2.

The NL × NL reflection matrix r̂ describes the reflection of the waves coming from the
left. Thus, rnn′ is the amplitude of the following process: the electron coming from the left
in the transverse channel n′ is reflected to the channel n. Consequently, |rnn′ |2 is the prob-
ability of this process. The NR × NR reflection matrix r̂ ′ describes reflection of particles
coming from the right. Finally, the NR × NL transmission matrix t̂ is responsible for the
transmission through the scattering region (see Fig. 1.16).

Control question 1.8. Explain the block structure of the scattering matrix in the fol-
lowing cases: (i) electrons in all transport channels are reflected from the nanostructure
with no transmission remaining in the same channel; (ii) electrons in all transport chan-
nels are reflected from the nanostructure with no transmission, but do not remain in the
same channel; (iii) electrons in all channels are transmitted without any reflection and
do not have to remain in the same channel.

An important condition on the scattering matrix is imposed by symmetry with respect
to time reversal. If this symmetry holds, the scattering matrix is symmetric, ŝ = ŝT. So,
the reflection matrices are symmetric, and t̂ ′ = t̂T. The applied magnetic field B changes
sign upon time reversal. In this case, the time-reversal symmetry relates the elements of
the scattering matrix at opposite values of magnetic field, rnn′(B) = rn′n(−B), r ′mm′ (B) =
r ′m′m(−B), tmn(B) = t ′nm(−B).

Any scattering matrix satisfies the unitarity condition, ŝ†ŝ = 1̂. The diagonal element of
ŝ†ŝ is given by (

ŝ†ŝ
)

nn
=

∑
n′
|rnn′ |2 +

∑
m

|tmn|2 = 1, (1.35)

since it represents the total probability of an electron in channel n being either reflected or
transmitted to any channel.

Exercise 1.3. The above unitarity condition is best expressed using reflection–
transmission block structure, Eq. (1.34), and provides several important details of
the scattering approach. To see this: (i) write down the condition ŝ†ŝ = 1̂ explicitly
in block notation and show that it gives rise to three independent conditions on the
matrices r̂ , r̂ ′, t̂ , and t̂ ′; (ii) do the same with the condition ŝ ŝ† = 1̂ and show that it
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gives rise to three extra conditions; (iii) use the derived conditions to demonstrate that
t̂ ′ t̂ ′† = r̂ t̂† t̂ r̂−1; (iv) derive the corresponding condition for t̂ ′† t̂ ′; (v) making use of
the above results, prove that the matrices t̂ t̂†, t̂† t̂ , t̂ ′ t̂ ′†, and t̂ ′† t̂ ′ all have the same set of
non-zero eigenvalues {Tp} – transmission eigenvalues; (vi) show that r̂ r̂†, r̂†r̂ , r̂ ′r̂ ′†, and
r̂ ′†r̂ ′ all have the same set of eigenvalues {Rp} different from 1 and that Rp = 1− Tp.

1.3.2 Transmission eigenvalues

We now turn to the calculation of the current, using Eq. (1.17) as the starting point. Let us
calculate the current through a cross-section located in the left waveguide. The electrons
with kx > 0 originate from the left reservoir, and their filling factor is therefore fL(E).
Now, the electrons with kx < 0 in a given channel n are coming from the scattering region.
A fraction of these electrons originate from the left reservoir and are reflected; they carry
the filling factor fL(E). This fraction is determined by the probability of being reflected
to channel n from all possible starting channels n′, Rn(E) =∑

n′ |rnn′ |2. Other electrons
are transmitted through the scattering region, their filling factor being fR(E). The resulting
filling factor for kx < 0 is therefore Rn fL(E)+ (1− Rn) fR(E). For the current we write

I = 2se
∑

n

{∫ ∞
0

dkx

2π
vx (kx ) fL(E)

+
∫ 0

−∞
dkx

2π
vx (kx )

[
Rn(E) fL(E)+ (1− Rn(E)) fR(E)

]}

= 2se
∑

n

∫ ∞
0

dkx

2π
vx (kx )(1− Rn(E))

[
fL(E)− fR(E)

]
. (1.36)

To derive the final equation line, we have changed kx to −kx in the second integral in Eq.
(1.36). We use the unitarity relation, Eq. (1.35), to prove that

1− Rn =
∑

m

|tmn|2 = (t̂† t̂)nn .

Now we repeat the trick of the previous section, changing variables from kx to E , and we
arrive at the following expression:

I = 2se

2π

∫ ∞
0

dE Tr
[
t̂† t̂

] [
fL(E)− fR(E)

]
, (1.37)

where we have used the short-hand notation

Tr
[
t̂† t̂

]
=

∑
n

(
t̂† t̂

)
nn

.

Alternatively, the trace can be presented as a sum of eigenvalues Tp of the Hermitian matrix
t̂† t̂ , the transmission eigenvalues. Because of the unitarity of the scattering matrix, Tp are
real numbers between zero and one.
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The transmission eigenvalues depend on energy. However, in the linear regime, when
the applied voltage is much smaller than the typical energy scale of this dependence, they
can be evaluated at the Fermi surface, and we obtain the following expression for the
conductance:

G = GQ

∑
p

Tp(μ). (1.38)

Calculation of the current in the right waveguide gives the same result: current is conserved.
Equation (1.38) is known as the (two-terminal) Landauer formula. Rolf Landauer [8]

pioneered the scattering approach to electrical conduction many years ago. At the time, he
was met with distrust since the common view on conduction was based on the semiclassical
approach outlined in Chapter 2. Views changed drastically after the publication of Ref. [4].

Exercise 1.4. Let us evaluate corrections coming from a smooth energy dependence of
transmission coefficients near the Fermi energy. Let us assume that G(E) = GQ

∑
p Tp

can be expanded near EF, G(E) = G0 + G1(E − EF)+ G2(E − EF)2 + · · · . We keep
the first three terms in the expansion. Calculate the corresponding contributions to the
current, Eq. (1.37), assuming eV , kBT � EF, μL = EF.

Hint: ∫
x2 dx

cosh2x
= π

2

6
.

We have derived Eq. (1.38) assuming the nanostructure to be connected to ideal wave-
guides that support NL and NR transport channels. Now we can get rid of this unrealistic
assumption by repeating the reasoning we used for the QPC. Let us unfold the waveguides
so that their cross-sections become infinite; it should not change the transport properties
of the nanostructure. The number of transport channels becomes infinite, NL, NR →∞.
This means that there are infinitely many transmission eigenvalues. This also means that
the total number of transport channels NL,R is an “unphysical” quantity: it characterizes an
auxiliary model rather than the nanostructure, and no transport property of a nanostructure
would eventually depend on NL,R.4

How do we reconcile the finite conductance given by Eq. (1.38) with the infinite number
of transmission eigenvalues? The implication is that infinitely many transmission eigen-
values are concentrated very close to zero transmission, so that they contribute neither to
conductance nor to any other transport property.

To evaluate the transmission eigenvalues of a given nanostructure, one solves the
Schrödinger equation in the scattering region and matches the two asymptotics, Eqs. (1.31)
and (1.32), extracting the scattering matrix. The solutions depend on all the details, such
as the location of the gates defining the nanostructure design and the given configuration
of the disorder. Even for relatively simple systems, this is a time-consuming task, without

4 Confusingly, this “number of transport channels” is commonly used in the literature to characterize the area of
the (narrowest) cross-section of a nanostructure.
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�Fig. 1.17. One-channel scatterer. (a) Notation; (b) transmission and reflection amplitudes of the waves
coming from the left; (c) same for the waves coming from the right.

much intellectual impact. A calculation for a given system gives us no idea what the result
would be if we were to change a design detail or the disorder configuration.

This makes it important to comprehend the general properties of transmission eigenval-
ues, those depending on the system design rather than on the details.

One channel

Let us start with a simple example: a scatterer that can transmit only one transport channel
(for a given energy). All but one of the transmission eigenvalues are zero. The structure is
thus characterized by a single transmission eigenvalue, T . This is precisely the transmission
coefficient we have discussed for the potential barrier in Section 1.1; R = 1− T is the
reflection coefficient. The scattering matrix is a 2× 2 matrix and contains more parameters,
since in Eq. (1.34) r , r ′, and t are complex numbers, constrained by the conditions of
unitarity (see Fig. 1.17). There are three independent parameters T , θ , and η:

ŝ =
( √

Reiθ
√

T eiη√
T eiη −√Rei(2η−θ)

)
. (1.39)

The phases θ and η do not manifest themselves in the transport in a single nanostructure of
this type. As we show in Section 1.6, these phases are relevant if we combine two structures
producing quantum interference effects.

Control question 1.9. How many independent parameters characterize a general
scattering matrix for two channels? Assume time-reversal symmetry.

For the ideal systems considered previously – a rectangular potential barrier and a QPC –
the scattering does not mix different transport channels. An electron in channel n can either
be reflected back and stay in the same channel or be transmitted through the barrier to end
up in an identical channel at the other side. Therefore the matrix of such an ideal system is
block-diagonal – the matrices r , r ′, t , and, importantly, t†t are diagonal. Thus, the trans-
mission eigenvalues for these systems are just the transmission coefficients in the channels.

1.3.3 Distribution of transmission eigenvalues

The transmission eigenvalues Tp depend on disorder configuration and therefore are ran-
dom (Fig. 1.18). We need a quantity that characterizes the design of a nanostructure rather
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�Fig. 1.18. Transmission eigenvalues. We show the transmission eigenvalues for three disorder realizations
of a diffusive conductor with a nominal resistance of 350 �. The transmission distribution (thick
solid line) is given by Eq. (1.43).

than a concrete disorder configuration. This is provided by the distribution function of
transmission eigenvalues (transmission distribution) P(T ). Suppose we make an ensemble
of nanostructures sharing an identical design and differing in disorder configurations. Each
nanostructure provides a set of transmission eigenvalues. Let us concentrate on a narrow
interval of transmissions from T to T + dT ; count the number of transmission eigenvalues
that fall into this interval, and divide this by the total number of nanostructures. In the limit
of a large ensemble, the result converges to P(T )dT . Mathematically, the transmission
distribution is thus defined as follows:

P(T ) =
〈∑

p

δ
(
T − Tp(E)

)〉
. (1.40)

The angular brackets in Eq. (1.40) mean the ensemble average, that is, the average over
all formally identical nanostructures in the ensemble. The function P(T ) facilitates evalu-
ating other averages. The average of an arbitrary function of the transmission eigenvalues
becomes 〈∑

p

f (Tp)

〉
=

∫ 1

0
dT f (T )P(T ). (1.41)

In particular, one integrates GQT P(T ) to obtain the average conductance 〈G〉.
What is the use of the above relation? If the average conductance of a nanostructure

much exceeds the conductance quantum, 〈G〉 � GQ, the transmission eigenvalues are
dense, the typical spacing between the eigenvalues being much less than one. This means
that the sums over the transmission eigenvalues can be replaced by the integrals according
to Eq. (1.41). The transport properties are thus self-averaged in this limit, their fluctuations
being much smaller than the average values. The transport properties appear to be almost
insensitive to a specific disorder configuration. The fluctuations of transport properties may
become significant if 〈G〉 � GQ and the transmission eigenvalues are sparse.
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�Fig. 1.19. Examples of transmission distribution. (a) Tunnel junction in series with a diffusive conductor of a
small resistance. (b) QPC with 20 open channels in series with a diffusive conductor of a small
resistance.

A fair part of this book either quantifies the transmission distribution or makes use of it.
In the rest of this section, we provide examples of P(T ) without quantifying it.

Let us start with a QPC and consider the energy at which a finite number Nopen of
transport channels are open (T = 1). An infinite number of channels are closed (T = 0).
The corresponding transmission distribution consists of two delta-functional peaks,

P(T ) = Nopenδ(1− T )+∞δ(T ).

Closed channels do not play any role in the transport, and the part with the open channels
leads to the expression for the conductance, G = GQ Nopen that we have already seen. We
will ignore the part proportional to δ(T ) and write, for a clean QPC,

PQPC(T ) = Nopenδ(1− T ). (1.42)

The transmission eigenvalues in a clean QPC are highly degenerate. If we add a small
number of defects to the QPC, this degeneracy is lifted. The scattering at the defects mixes
the channels: an incident electron in open channel n, which without scattering would pass
the constriction, can now be reflected to any channel n′, or be transmitted to an arbitrary
channel m. These processes modify the transmission matrix and, consequently, the trans-
mission eigenvalues. If such channel mixing is weak, so that the probabilities of scattering
from open channels are small, we expect that all transmission eigenvalues remain close to
one. The role of disorder is thus to lift the degeneracy (see Fig. 1.19). This regime is real-
ized when the contribution of disorder to the total conductance of the system is sufficiently
small, the resistance R due to defects being much smaller than the resistance of the QPC.
As resistance R is increased further to values of the order of 1/GQPC, the transmission
eigenvalues are spread over the whole interval 0 < T < 1.

A complementary example is a tunnel junction. Let us take a sufficiently wide ideal
potential barrier at an energy much below the top energy of the barrier. All the transmission
coefficients are guaranteed to be small, T � 1. If the channels do not mix, the transmission
eigenvalues are just these coefficients and the transmission distribution concentrates near
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T = 0. If we add some defects next to the barrier, the channels mix. Some electrons after
being reflected from the barrier are reflected by defects back to the barrier. They get a
“second chance” to tunnel through. Because of this, some transmission eigenvalues grow
with increasing defect resistance R. Similarly to QPC, the transmission eigenvalues are
spread over the whole interval 0 < T < 1 if R is comparable with the resistance of the
tunnel junction.

Let us add more defects. At some stage, the resistance due to the defects dominates
the total resistance. At this point, we can forget about a QPC or a tunnel junction being
present in the structure. The electron that traverses the scattering region experiences many
scattering events at the defects. Its motion is highly random. This corresponds to diffusion
provided the conductance of the structure still much exceeds the conductance quantum. The
transmission distribution in a diffusive structure appears to be universal – not depending
on the details of the structure design (Fig. 1.18),

ρD = 〈G〉
2GQ

1

T
√

1− T
. (1.43)

The integral of the transmission distribution over T gives the total number of transport
channels. This integral diverges for the bimodal distribution, Eq. (1.43) indicating an
infinite number of channels that may take part in diffusive transport.

Control question 1.10. How would one prove using the Landauer formula that the
averaged conductance corresponding to Eq. (1.43) is indeed 〈G〉? What is the total
number of transport channels? Explain the result.

1.3.4 Scattering in operator formalism

It is customary and convenient to treat electrons in solids with the aid of creation and
annihilation operators (see Appendix A). Here we present the operator formalism for
the scattering approach and re-derive the Landauer formula. We follow the derivation of
Ref. [9].

An arbitrary wave function in the left waveguide is represented as a sum of plane waves
Eq. (1.31). These plane waves, however, do not form a basis, since they only represent
asymptotic expressions of wave functions, which have a complicated form in the scattering
region and do not have to be orthogonal. It is convenient to use scattering states – the
states which originate from the reservoirs as plane waves and then are partially transmitted
through the scattering region and partially reflected back. The scattering state originating
from the left reservoir has the form

ψLn(xL, yL, zL) = 1√
2π�vn(E)

	n(yL, zL)eik(n)
x xL

+
∑

n′

1√
2π�vn′ (E)

rn′n(E)	n′(yL, zL)e−ik(n′)
x xL , (1.44)
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in the left waveguide, and

ψLn(xR, yR, zR) =
∑

m

1√
2π�vm(E)

tmn(E)	m(yR, zR)e−ik(m)
x xR (1.45)

in the right waveguide. Analogously, there are scattering states ψRm originating from the
right reservoir.

For each of these states, we can introduce creation and annihilation operators. Let us
introduce the creation operators â†

Ln(E) and â†
Rm , which create electrons in the scattering

states with energy E , originating from the left reservoir in transport channel n and from
the right reservoir in transport channel m, respectively. The conjugated operators âLn(E)
and âRm annihilate particles in the same states. The operators â† and â are sufficient for
the quantum-mechanical description of the system.

For convenience, we introduce another set of operators. The operator b̂†
Lnσ (E) creates an

electron with energy E and spin projection σ in transport channel n in the left waveguide
moving to the left. A similar creation operator for right-movers in the right waveguide
is b̂†

Rmσ (E), and the annihilation operators are b̂Lnσ (E) and b̂Rmσ (E), respectively. These
operators are linearly related to the set â via the scattering matrix,

b̂αlσ (E) =
∑
β=L,R

∑
l ′

sαl,βl ′ (E)âβl ′σ (E);

b̂†
αlσ (E) =

∑
β=L,R

∑
l ′

sβl ′,αl (E)â†
βl ′σ (E), α = L, R, l = n, m.

(1.46)

Since electrons are fermions, the operators â obey anticommutation relations:

â†
αlσ (E)âβl ′σ ′ (E ′)+ âβl ′σ ′ (E ′)â†

αlσ (E) = δαβδll ′δσσ ′δ(E − E ′);
âαlσ (E)âβl ′σ ′ (E ′)+ âβl ′σ ′ (E ′)âαlσ (E) = 0;

â†
αlσ (E)â†

βl ′σ ′ (E ′)+ â†
βl ′σ ′ (E ′)â†

αlσ (E) = 0.

(1.47)

Equations (1.47) occur since the operators â form a basis. In the same way, the opera-
tors describing left-moving electrons in the left waveguide and right-moving electrons in
the right waveguide also form a basis, and similar relations hold between the operators
b̂ and b̂†. However, the operators â and b̂ do not obey such relations, as is evident from
Eqs. (1.46).

Exercise 1.5. Making use of Eqs. (1.46) proves that the operators b̂ and b̂† satisfy the
same anticommutation relations Eqs. (1.47) as the operators â and â†.

Now we consider the quantum-mechanical averages of the products of creation and anni-
hilation operators. Since the right-moving particles in the left waveguide originate from the
left reservoir, we have〈

â†
αlσ (E)âβl ′σ ′ (E ′)

〉
= δαβδll ′δσσ ′δ(E − E ′) fα(E), α = L, R. (1.48)

The average product of two creation or two annihilation operators is always zero.
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Let us proceed by writing down the field operators �̂σ (r, t) and �̂†
σ (r, t), which annihi-

late and create the electron with the given spin projection at a given point and time moment.
In the left waveguide, we have

�̂σ (r, t) =
∫

dE e−iEt/�
∑

n

	n(yL, zL)√
2π�vn(E)

[
âLnσ eik(n)

x xL + b̂Lnσ e−ik(n)
x xL

]
;

�̂†
σ (r, t) =

∫
dE eiEt/�

∑
n

	∗n(yL, zL)√
2π�vn(E)

[
â†

Lnσ e−ik(n)
x xL + b̂†

Lnσ eik(n)
x xL

]
.

The basic course of quantum mechanics teaches us that if we know the wave function of
the system, we can write down the expression for the current density. Now, the formulae
for the field operators enables us to write the operator of current in the left waveguide,

Î (xL, t) = �e

2im

∑
σ

∫
dyL dzL

[
�̂†
σ

∂

∂xL
�̂σ −

(
∂

∂xL
�̂†
σ

)
�̂σ

]
. (1.49)

To calculate the average current, we only need to know the time-averaged current operator.
To avoid dealing with ill defined delta-functions, we perform the following trick. Imagine
that all the quantities are periodic in time with the period T →∞. The allowed values
of energy are then found from the condition that the exponents of the type exp(iEt) are
also periodic, hence E = 2πq�/T with an integer q. Consequently, we replace

∫
dE by

2π�/T
∑

n . We use 〈
ei(E−E ′)t

〉
t
= δqq ′ ,

where the angular brackets here denote the time average. This means that in the expression
for the current Eq. (1.49) both field operators must be evaluated at the same energy. We
obtain 〈

Î
〉
t
= GQ

e

(
2π�

T

)2 ∑
nσ

∑
E

[
â†

Lnσ (E)âLnσ (E)− b̂†
Lnσ (E)b̂Lnσ (E)

]
. (1.50)

Equation (1.50) has an easy interpretation: the current in the left waveguide is the number
of particles moving to the right (represented by â†â) minus the number of particles moving
to the left (b̂†b̂), summed over all channels and energies.

Eliminating b̂ in favor of â, we write

〈
Î
〉
t
= GQ

e

(
2π�

T

)2 ∑
nσ

∑
αβ,ll ′

∑
E

â†
αlσ (E)âβl ′σ (E)

× [
δαLδβLδnlδnl ′ − s∗αl,Ln(E)sLn,βl ′(E)

]
. (1.51)

The last step is to perform the quantum-mechanical average of Eq. (1.51) and to find
the average current. At first glance, this makes no sense, since according to Eq. (1.48)
the average of the product of two operators at the same energy is infinite. However, for the
discretized energies we have to replace the delta-function with the Kronecker delta-symbol,

δ(E − E ′)→ T
2π�

δqq ′ .
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This cancels one factor of T . Now we can take the limit T →∞ and from the discrete sum
come back to the integral over energies. Taking into account that the averaging procedure
yields α = β, l = l ′, and using the unitarity condition Eq. (1.35), we safely arrive at the
Landauer formula, Eq. (1.37).

1.4 Counting electrons

Any experimental measurement is in fact a result of the average of many readings of a
measuring device. This is because the readings differ, or fluctuate, even if the parameters
controlling the physical situation do not change. Each individual reading is random, being
a result of interplay between many factors beyond our control. Some of them come from
the measuring device, reflecting its imperfectness; some are intrinsic for the system being
measured; some cannot be controlled at all owing to quantum mechanics. An example
from quantum transport is the measurement of the electric current in a nanostructure at
a given voltage. The electron transfer is a stochastic process, and the number of electrons
traversing the nanostructure during a given time interval�t is random. Even if we measure
the current with an ideal ammeter, the readings would differ.

Given the situation, there are two possible courses of action. First, and most common,
is to get rid of the fluctuations by averaging over a large number of readings. The result of
such an approach is the average current, the quantity we have studied so far. Alternatively,
one can study the statistics of these fluctuations by trying to measure a probability of a
certain current read-out. This would generally require more measurements, but rewards us
with more information. As we show in this section, the statistics of the electron transfer
reveals information about a nanostructure that cannot be readily accessed by means of
average current measurements.

Let us recall some general concepts of probability theory. Suppose we make a mea-
surement counting some random events during a certain time interval �t . This can be, for
instance, the number of babies born in Nashville, Tennessee, during a week; the number of
birds crossing the Continental Divide in an easterly direction during an hour; or the number
of electrons passing from one to another reservoir via a nanostructure during one nanosec-
ond. The number of events N measured during the time interval is a random number. On
repeating the measurement many times, we obtain different results. Summing them up and
dividing by the number of measurements, we get the average number, 〈N 〉. If the condi-
tions remain the same during the measurement, and do not change from one measurement
to another (for instance, if birds are only counted at the same time of day and during the
same season), this average is proportional to �t .

Besides the average, we may want to know the distribution of the results – the prob-
ability, PN , that precisely N events will be observed in a measurement. To quantify this
probability, one repeats identical measurements Mtot times and counts the number of mea-
surements MN that give the count N (Fig. 1.20). The ratio MN/Mtot yields the probability
PN in the limit MN � 1. This probability distribution is normalized,

∑
N PN = 1. Once

we know it, we can estimate not only the average,
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�Fig. 1.20. Counting statistics. (a) Examples of countable events. (b) Counting statistics is characterized
by a probability distribution of counts.

〈N 〉 =
∑

N

N PN ,

but also, for instance, the variance, or second cumulant, of N , which measures the degree
of the deviation from the average,

〈〈N 2〉〉 =
〈
(N − 〈N 〉)2

〉
=

∑
N

N 2 PN −
(∑

N

N PN

)2

.

The description of the statistics using the distribution function PN is not always the most
convenient one. In the example with the birds, let us suppose that we know the probability
distributions Ps (of the birds that cross the Divide south of Independence Pass) and Pn (for
those which cross north of this point). These events are statistically independent, since the
birds hardly coordinate their itineraries. The total distribution is given by a convolution of
the two,

P tot
N =

N∑
M=0

Ps
M Pn

N−M .

Most conveniently, this is expressed in terms of characteristic function of a probability
distribution,

�(χ ) =
〈
eiχN

〉
=

∑
N

PN eiχN .

For independent events, the characteristic function of the total distribution is just a product
of characteristic functions of each type of events, �tot(χ ) = �s(χ )�n(χ ). This is a handy
property if the outcome of the measurement is contributed to by various sources.

Differentiating the function ln�(χ ) k times with respect to iχ and setting χ = 0 sub-
sequently, we generate the kth cumulant of the distribution. Thus, the first derivative
produces the average N , and the second derivative reproduces the variance. How do
the cumulants depend on �t? Let us divide the interval �t into two shorter intervals
�t1 and �t2 (but still long enough so that many events occur during each of them).
Events occurring during each of these intervals are statistically independent provided the
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intervals are long enough. Therefore the characteristic function is a product of the char-
acteristic functions describing the intervals. Its logarithm is the sum of corresponding
logarithms, ln�(χ ,�t) = ln�(χ ,�t1)+ ln�(χ ,�t2). Since �t = �t1 +�t2, we con-
clude that ln�(χ ,�t), and therefore all the cumulants are proportional to the time of
measurement �t .

1.4.1 Statistics of electron transfers

Now we return to electrons in nanostructures. An event is a transfer of an electron from
one reservoir to another. The quantity to count in this case is the charge Q passed from left
to right during the time �t . We assume that this measurement time is long enough, so that
Q � e and the laws of statistics apply. On average, 〈Q〉 = 〈I 〉�t , and we have already
spent quite some time calculating the (average) current 〈I 〉. We now make a step further
and describe the statistical properties of a random variable Q. This challenging task can
be accomplished within the scattering approach outlined in the preceding text. The result
in the form of a compact Levitov formula is given in this section. The derivation of this
formula is not elementary and can be found in Section 2.9 and in Ref. [10].

We discuss two simple limiting cases that will prepare the reader before revealing such
an important piece of information.

Let us first assume that electrons are transferred only in one direction and that trans-
fers are uncorrelated. To calculate the characteristic function, we divide the interval �t
into very short intervals dt . The probability of transferring one electron during this short
interval is given by � dt � 1, � being the transfer rate; the probability of transferring no
electrons is, consequently, 1− � dt . We neglect the probability of transferring more than
one electron since this probability is proportional to (dt)2 and is therefore much less than
� dt . The characteristic function for a short interval is thus given by

�dt (χ ) =
〈
eiχQ/e

〉
= (1− � dt)+ (� dt)eiχ .

Since the electrons pass independently, the characteristic function for the whole interval is
just a product, i.e.

��t (χ ) = (�dt (χ ))�t/dt = exp
(
��t(eiχ − 1)

)
= exp

(
Ñ (eiχ − 1)

)
. (1.52)

Here Ñ ≡ ��t is the average number of electrons transferred, Ñ = 〈Q〉/e. Taking the
inverse Fourier transform, we find for the probability PN for N particles to be transferred
during the time �t ,

PN =
∫ 2π

0

dχ

2π
�(χ )e−iNχ ≈

∫ 2π

0

dχ

2π
e−iχN+Ñ (eiχ−1)

= Ñ N

N !
e−Ñ�t . (1.53)
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Equation (1.53) is recognized as the Poisson distribution. As we will see, this situation of
uncorrelated electron transfer occurs in tunnel junctions, where all transmission eigenval-
ues are small. In this case, the currents are small, implying that the time intervals between
successive transfers are large. Therefore it is easy to understand why they do not correlate.

Control question 1.11. Calculate the average number of particles 〈N 〉, and the
second 〈N 2〉 − 〈N 〉2 and third 〈N 3〉 − 3〈N 2〉〈N 〉 + 2〈N 〉3 cumulants for the Poisson
distribution in Eq. (1.52).

An opposite example is an ideally transmitting channel at zero temperature. In this case,
the electrons are in ideal wave states and their momentum in the transport direction is a well
defined quantum number, which does not fluctuate. Since the total current is just a sum over
the momenta of individual electrons, it does not fluctuate either. The distribution PN =
δ(Ñ − N ) provides the characteristic function �(χ ) = exp(iχ (N − Ñ )). The transfers are
thus correlated ideally.

For intermediate transmissions 0 < Tp < 1, the transmitted electrons are correlated, but
not ideally. The many-channel, finite-temperature result for the characteristic function is
given by the Levitov formula,

ln�(χ ) = 2s�t
∫

dE

2π�

∑
p

ln
{

1+ Tp

(
eiχ − 1

)
fL(E)

[
1− fR(E)

]

+ Tp

(
e−iχ − 1

)
fR(E)

[
1− fL(E)

]}
. (1.54)

The logarithm of the characteristic function is a sum over transport channels; this sug-
gests that electron transfers in different channels are independent. Also, the logarithm is an
integral over the energy, suggesting that electrons are transferred independently in each
energy interval. Importantly, the electron transfers from the left to the right and from
the right to the left do correlate. To stress this, let us consider an energy strip where
fL = fR = 1 so that the electron states are filled in both reservoirs. The net current is
zero. If the transfers were uncorrelated, they would give rise to current fluctuations. How-
ever, the formula gives no events in this case: transfers to the left are blocked by electrons
filling states in the left reservoir, and the same is true for transfers to the right.

To comprehend the formula, let us consider the limit of negligible temperature, eV �
kBT . In this case, the integration over energy is confined to the energy strip min(μL,R) <
E < max(μL,R) and the integrand does not depend on energy. Recalling that μL − μR =
eV , we obtain

ln�(χ ) = ±2seV�t

2π�

∑
p

ln
[
1+ Tp

(
e±iχ − 1

)]
, (1.55)

where the upper and lower signs refer to the case of positive and negative voltages, respec-
tively. Let us, for simplicity, consider V > 0. We define Nat = 2s�teV/2π� and assume
it to be integer. The characteristic function becomes
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�(χ ) =
∏

p

�p(χ ); (1.56)

�p =
((

1− Tp
)+ (

Tpeiχ
))Nat =

Nat∑
N=0

(
Nat

N

)
T N

p (1− Tp)Nat−N eiNχ .

We made use of Newton’s binomial theorem in the preceding expression. Let us con-
centrate on one channel p and take the inverse Fourier transform of �P . We obtain the
binomial distribution of the number of electrons transferred,

P (p)
N =

(
Nat

N

)
T N

p (1− Tp)Nat−N , (1.57)

which allows for a frivolous interpretation. The point is that the binomial distribution is
known from theory of gambling: For a given winning chance Tp and number of game slots
(number of attempts) Nat it yields the probability to win N times (Fig. 1.21).

At zero temperature and positive voltage, all the electrons are incident from the left
reservoir trying to get to the right. The interpretation suggests that the stream of incident
electrons is very regular: the time interval between the arrivals of two adjacent electrons
is the same, �t/Nat = e/GQV . Each of them either passes through the scatterer (with
probability Tp) or is reflected back (with probability Rp = 1− Tp). The average number
of those which pass is NatTp, conforming to the Landauer formula. The distribution PN

given by Eq. (1.57) is the probability that, out of Nat electrons arriving at the scatterer, N
pass through and Nat − N are reflected back.

For more than one channel, the binomial distribution no longer holds. However, we
obtain a convolution of binomial distributions corresponding to each channel.

Exercise 1.6. (i) Derive from Eq. (1.56) the expression for the distribution PN for the
case of two channels and check that it is indeed a convolution of two binomial distri-
butions. (ii) Show that if the transmission eigenvalues in the two channels are identical,
T1 = T2 = T , it reduces to the binomial distribution Eq. (1.57) with Nat replaced with
2Nat. Explain the result.
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The electrons appear on the right side of the scatterer in an irregular fashion. If Tp is
small, we can assume that the intervals between those which have passed are long, random
and independent – the two subsequent electron transfers are thus uncorrelated. Indeed, if
we take the Levitov formula in the limit of Tp � 1, it yields the characteristic function
given in Eq. (1.52) with Ñ/�t = GQV/e

∑
p Tp = GV/e = 〈I 〉/e. The Poisson distribu-

tion given in Eq. (1.53) is thus the limiting case of the binomial distribution Eq. (1.57) for
T � 1 and N � Nat.

If the transmission eigenvalues do not depend on energy, the integral over energy in
Eq. (1.54) can be taken explicitly at an arbitrary relation between eV and kBT . The
characteristic function then becomes

ln�(χ ) = 2skBT�t

2π�

∑
p

{
arccosh2

[
Tp cosh

(
eV

2kBT
+ iχ

)

+ (1− Tp) cosh

(
eV

2kBT

)]
−

(
eV

2kBT

)2
}

. (1.58)

1.4.2 Noise and third cumulant

We obtain the cumulants of transferred charge by differentiating Eqs. (1.54), (1.55), and
(1.58) with respect to χ at χ = 0.

We start with the most general, Eq. (1.54), to calculate the first cumulant of the
transmitted change – the average charge 〈Q〉:

〈Q〉 = e
∂ ln�

∂(iχ )

∣∣∣∣
χ=0
= 2se�t

2π�

∑
p

∫
dE Tp(E)

[
fL(E)− fR(E)

]
. (1.59)

A comparison with Eq. (1.37) shows that, as expected, 〈Q〉 = 〈I 〉�t , and Eq. (1.54) is in
full agreement with the Landauer formula.

Now we look at the second cumulant of the transmitted charge, 〈〈Q2〉〉 ≡ 〈Q2〉 − 〈Q〉2.
Differentiating Eq. (1.54) twice with respect to iχ and setting χ = 0, we obtain

〈〈Q2〉〉 = 2se2�t

2π�

∑
p

∫
dE

{
Tp

[
fL(1− fL)+ fR(1− fR)

]

+ Tp
(
1− Tp

)
( fL − fR)

2
}

. (1.60)

The first feature to note is that, in contrast to 〈Q〉, the second cumulant of the transmitted
charge does not vanish at equilibrium. Indeed, for V = 0 ( fL = fR), only the first term in
Eq. (1.60) contributes, and we obtain

〈〈Q2〉〉eq = 2se2kBT�t

π�

∑
p

Tp = 2GQkBT�t . (1.61)

To understand the meaning of this expression, we define the correlation function of current
fluctuations (usually known as current noise power),

S(ω) =
〈
Î (t) Î (t ′)+ Î (t ′) Î (t)− 2

〈
Î (t)

〉 〈
Î (t ′)

〉〉
ω

. (1.62)
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If the measurement time�t is long enough, the second cumulant of the transmitted charge
is expressed via zero-frequency noise, 〈〈Q2〉〉 = �t S(0)/2. On the other hand, at equi-
librium the correlation functions like Eq. (1.62) obey the fluctuation–dissipation theorem,
S(0) = 4kBT G, which agrees with Eq. (1.61). These equilibrium current fluctuations are
known as Nyquist–Johnson noise and are present in any system, independent of the nature
of this current.

Let us now turn to the opposite limit eV � kBT , the so-called shot noise limit. In this
case, only the second term in Eq. (1.60) survives. For energy-independent transmission
eigenvalues, this gives [12, 13]

〈〈Q2〉〉 = �t S(0)/2; S(0) = 2eGQV
∑

p

Tp(1− Tp). (1.63)

Control question 1.12. Equation (1.63) states that neither open (Tp = 1) nor closed
(Tp = 0) channels contribute to the noise. Explain why.

This non-equilibrium noise (shot noise) appears because of the discreteness of the elec-
tron charge – electrons arrive at the scatterer one-by-one. If we know only the average
current in the system, it is impossible to guess what the shot noise would be – in other
words, shot noise probes the transmission properties of the systems differently from those
probed by the conductance (for a review, see Ref. [14]).

Equation (1.63) interpolates between the two examples considered at the beginning of
this section. For the tunnel junction, Tp � 1, we have S(0) = 2e〈I 〉. This Schottky formula
follows from the Poisson distribution, Eq. (1.53). The Poisson value of shot noise shows
the maximal possible level of this type of noise. Shot noise is always suppressed compared
with this value due to the factors (1− Tp). The ratio between these two, given by

F = S(0)

2e〈I 〉 =
∑

p Tp(1− Tp)∑
p Tp

, 0 ≤ F ≤ 1, (1.64)

is known as the Fano factor. In a quantum point contact, all the channels are either fully
open or fully closed, and thus there is no shot noise, F = 0.

The third system we often mention is a diffusive wire. The channels with T ∼ 1 avail-
able in a diffusive wire noticeably suppress the shot noise. Using Eq. (1.43) to average
Eq. (1.63), we find that the shot noise is given by S(0) = 2e〈I 〉/3, or, in other words, the
Fano factor equals 1/3 [15].

Exercise 1.7. (i) Verify that for diffusive conductors the Fano factor is 1/3. (ii) For
a symmetric chaotic cavity (Section 4.3) the distribution of transmission eigenvalues is
P(T ) = 1/(π

√
T (1− T )). Calculate the Fano factor.

We now illustrate this theoretical conclusion by considering the results of an experimen-
tal study of shot noise in diffusive wires described in Ref. [11]. The authors prepared
several samples of gold wires, about 1 μm long, differing in their cross-sections. This
resulted in a difference in conductance, which varied from about 75GQ to 340GQ. For the
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�Fig. 1.22. Noise. (a) Voltage dependence of noise for tunnel junction (t), diffusive conductor (d), and
quantum point contact (QPC). (b) Experimental results adapted from Ref. [11].

samples with low resistance, the measured noise clearly demonstrates 1/3-suppression (see
the lower solid curve in Fig. 1.22). For the sample with the highest resistance, however, a
noise enhancement in comparison with the 1/3-suppression was observed. This is because
in such diffusive wires the effects of electron–electron interactions become important, and
this increases noise.

For a general relation between eV and kBT , one obtains a simple relation

S(0) = 2G (eV F coth(eV/2kBT )+ 2kBT (1− F)) , (1.65)

plotted in Fig. 1.22 for a tunnel junction, a diffusive wire and a QPC.

Third cumulant

The noise measurement is more complicated than the average current measurement since it
requires the collection of more measurement results to achieve decent accuracy. The direct
measurement of higher cumulants is even more challenging. However, the third cumulant
has been measured recently [16]. At equilibrium (V = 0) the characteristic function of
Eq. (1.54) becomes even in χ , and therefore all the odd cumulants disappear. We have seen
this already for the average charge, or current. The same is true for the third cumulant: it is
odd in voltage and absent at equilibrium. From Eq. (1.55) we obtain the third cumulant in
the shot noise regime, as follows:

〈〈Q3〉〉 = e3 ∂3

∂(iχ )3
ln�(χ ) = e2V GQ�t

∑
p

Tp(1− Tp)(1− 2Tp). (1.66)

Again, for the tunnel junction T � 1 we obtain 〈〈Q3〉〉 = e2〈I 〉�t , which can be derived
directly from the Poisson distribution. For a QPC, where the electron stream is regular, the
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〈〈Q3〉〉 disappears as expected. In a diffusive wire, the calculation with transmission prob-
ability, Eq. (1.43), yields 〈〈Q3〉〉 = e2〈I 〉�t/15. The third cumulant can be either positive
or negative; the open channels with Tp > 1/2 favor a negative sign.

The full voltage dependence is given by

〈〈Q3〉〉 = e2GQ�t
∑

p

Tp

[
eV − 3Tp X (eV X − 2kBT )

+ T 2
p (eV (3X2 − 1)− 6kBT X )

]
, X ≡ coth(eV/2kBT ). (1.67)

This expression is plotted for several types of nanostructures in Fig. 1.23.

1.5 Multi-terminal circuits

A nanostructure is typically connected to several (more than two) electrodes. Some of them
(gates) are used to form and/or control the nanostructure, and no electron transfer takes
place between them and the nanostructure (see Section 1.7). Others (terminals) either pass
the current through the system or are kept at zero current and serve to measure voltage.
Terminals are electronic reservoirs. If we send electrons from one terminal, they are either
reflected back, or, after spending some time inside the nanostructure, exit to any of the
other terminals. In Sections 1.3 and 1.4, we discussed two-terminal nanostructures. In this
section, we describe the transport properties of a multi-terminal nanostructure by general-
izing the scattering approach developed. The model is very similar: a finite-size scattering
region is connected to N equilibrium reservoirs (kept at fixed voltages Vα , α = 1, . . . , N )
by ideal waveguides (Fig. 1.24). The wave functions in these waveguides are plane waves.
Introducing for each waveguide α a set of local coordinates xα > 0, yα , zα (the axis xα is
directed along the waveguide from the scattering region to the reservoir), we write these
functions as follows:
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wave coming in the second channel of the first terminal.

ψ(xα , yα , zα) =
∑

n

1√
2π�vαn

	αn(yα , zα)
[
aαne−ik(αn)

x xα + bαneik(αn)
x xα

]
. (1.68)

Here, and in the rest of this section, the first indices α, β label different terminals, and
the second ones m, n refer to transport channels inside each terminal; 	αn and Eαn are
respectively the transverse wave function and the energy of the transverse motion in the
transport channel n in the terminal α. The (real) wave vector in the same channel depends
on the energy E , k(αn)

x = √2m(E − Eαn)/�.
The scattering matrix ŝ linearly relates the amplitudes of incoming aβm and outgoing

bαn waves, i.e.

bαn =
∑
βm

sαn,βmaβm . (1.69)

The scattering matrix is unitary, ŝ†ŝ = 1̂; this provides the conservation of the number of
electrons. Its diagonal blocks ŝαα describe the reflection of the electrons incident from the
reservoir α back to the same reservoir (possibly changing the transport channel). The off-
diagonal blocks ŝαβ are responsible for the transmission of electrons from terminal β to
terminal α.

Similarly to the two-terminal case, the matrix satisfies the time reversibility relations,

sαn,βm(B) = sβm,αn(−B), (1.70)

where the change of sign of magnetic field B indicates time-reversed situation.

1.5.1 Multi-terminal Landauer formula

Consider a current flowing through the cross-section of the waveguide α, in the direction
from the scattering region (to the reservoir). The electrons with kx < 0, originated from
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reservoir α, are described by the distribution function fα(E). The electrons with kx > 0
come from various reservoirs. The fraction of particles that are incident from the reservoir
β in the transport channel m and that end up in the waveguide α in the transport channel
n, is given by |sαn,βm |2, their distribution function being fβ (E). Thus, the filling factor for
the particles with kx > 0 is given by∑

βm

∣∣sαn,βm
∣∣2 fβ (E),

and we write for the current, in terminal α,

Iα = 2se
∑

n

{∫ 0

−∞
dkx

2π
vx (kx ) fα(E)

+
∫ ∞

0

dkx

2π
vx (kx )

∑
βm

∣∣sαn,βm
∣∣2 fβ (E)

⎫⎬
⎭ (1.71)

= 2se
∑

n

∫ ∞
0

dkx

2π
vx (kx )

∑
βm

{∣∣sαn,βm(E)
∣∣2 − δαβδmn

}
fβ (E).

Changing variables from kx to E , we arrive at the following expression:

Iα = −G Q

e

∫ ∞
0

dE
∑
βmn

{
δαβδmn −

∣∣sαn,βm
∣∣2} fβ (E)

= −G Q

e

∫ ∞
0

dE
∑
β

Tr
{
δαβ − ŝ†

αβ ŝαβ
}

fβ (E), (1.72)

where the trace is taken over the transport channels n, and the matrix ŝ†
αβ is the conjugate of

ŝαβ . In its turn, ŝαβ is a block of the matrix ŝ, which describes the transmission of electrons
from terminal β to terminal α (for α �= β) or their reflection back to α (for α = β).

We first note that, due to the unitarity condition, the currents in all terminals add up to
zero,

∑
α Iα = 0. This current conservation holds in both linear and non-linear regimes.

Consider now the linear regime. Let us keep all chemical potentials equal to EF, except
for the chemical potential at one terminal γ , μγ = EF + eVγ . This means that the voltage
Vγ is applied between terminal γ and all other terminals. This voltage induces the current
in all terminals. Let us calculate the current through terminal α induced by this voltage. We
first note that if, in Eq. (1.72), all distribution functions are the same (equal, for example,
to f (E) = (exp(E − EF)/kBT + 1)−1), the current Iα vanishes due to the unitarity of the
scattering matrix – no current is induced at equilibrium. This means that instead of fβ (E)
we can write fβ (E)− f (E), without affecting the current. The only surviving term in the
sum is then for β = γ . Assuming finally that the scattering matrix depends on the energy
on a scale much larger than the applied voltage eVγ , we obtain Iα = Gαγ Vγ , with

Gαγ = −G Q Tr
[
δαγ − ŝ†

αγ ŝαγ
]

, (1.73)

where the scattering matrix is evaluated at E = EF. Equation (1.73) is the generalization
of the Landauer formula, Eq. (1.38), to the multi-terminal case.
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Repeating the same arguments as in the two-terminal case (Section 1.3), we conclude
that the assumption that the number of channels supported by the waveguides is finite is
not necessary, and that the Landauer formula holds also for an infinite number of transport
channels.

In the linear regime, the contributions to the current from different terminals add up.
If voltages Vβ are applied to terminals β, the current induced in terminal α is found to
be the sum, Iα =∑

β GαβVβ . The coefficients Gαβ are the elements of the conductance
matrix. Current conservation requires that

∑
α Gαβ = 0. Because of the time-reversibility

properties of the scattering matrix, the conductance, given in Eq. (1.73), has the following
symmetry:

Gαβ (B) = Gβα(−B),

which is a particular case of the Onsager symmetry relations. Thus, in the absence of
magnetic field, B = 0, an N -terminal nanostructure possesses N (N − 1)/2 independent
conductances, (N − 1) diagonal and [(N − 1)2 − (N − 1)]/2 off-diagonal ones; others are
fixed from the symmetry and current conservation. In particular, for a two-terminal system,
N = 2, we have only one independent conductance, G = −GLL = −GRR = GLR = GLR,
which we calculated in Section 1.3.

We can also introduce the resistance matrix Rαβ , Vα =∑
β Rαβ Iβ , which is the inverse

of the conductance matrix. Obviously, it has the symmetry properties Rαβ (B) = Rβα(−B).

1.5.2 Voltage probes and two-terminal measurement

If one needs to characterize, investigate, or just simply test a macroscopic electric circuit,
a voltage probe is an indispensable tool. One contacts by the probe different points of the
circuit and reads the voltage. An ideal voltage probe has an infinite resistance and therefore
is not invasive; it does not perturb the distribution of the currents and voltages in the circuit.
In this way one can, for instance, compare the resistances of different elements of the circuit
by comparing the voltage drops across the elements.
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�Fig. 1.26. (a) Three-terminal circuit with terminal 3 as a voltage probe. (b) A classical circuit could be
presented in this way, and conductances of the elements G1A, GA2 can be determined from the
voltage V3 measured.

How do we implement the idea of a voltage probe for a nanostructure? It may seem
that the main problem is to make a small, nano-size, probe. In fact, this appears to be an
achievable task: a classical example is provided by scanning tunneling microscopy (STM),
in which the tunnel contact of the STM tip can be freely positioned and provides nano-
scale resolution of a non-invasive electric measurement. Therefore one can measure the
local voltage in the nanostructures. The main problem arises in interpreting the results of
such a measurement. Quantum transport does not obey the laws of classical circuitry. As
we see in what follows, the results can be very surprising.

The voltage probe can be easily considered within the multi-terminal scattering
approach. Let us start with the simplest three-terminal geometry (Fig. 1.26) and make the
third terminal a voltage probe. In the linear regime, the current to terminal 3 is given by

I3 = G31(V1 − V3)+ G32(V2 − V3),

where we have used G33 = −G31 − G32. Since we are connecting this terminal to an ideal
voltmeter, this current has to be zero. This happens when the voltage applied to the third
terminal is given by

V3 = G31V1 + G32V2

G31 + G32
= V1 Tr ŝ†

31ŝ31 + V2 Tr ŝ†
32ŝ32

Tr ŝ†
31ŝ31 + Tr ŝ†

32ŝ32
. (1.74)

This is the voltage read by the voltmeter. To make the measurement non-invasive, we have
to ensure that G32, G31 � G12, or, equivalently, that ŝ31, ŝ32 → 0. The voltage remains
finite in this limit.

One gets the same result in a classical electric circuit in which two conductances G31

and G32 are connected in series; the voltage V3 is the potential at point A between the
conductances. For a classical circuit, we could separate the circuit into two elements with
conductances G1A and G A2. From elementary circuit theory rules we immediately obtain

G1A = G12
V1 − V2

V1 − V3
; G A2 = G12

V2 − V1

V2 − V3
. (1.75)

Let us see if this separation works for an elementary example of quantum transport: a
single-channel conductor with transmission coefficient T (Fig. 1.27) connecting terminals
1 and 2. We attach the voltage probe 3 to the left waveguide, between reservoir 1 and the
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�Fig. 1.27. The “wrong” Landauer formula illustrates the non-local nature of conductance in nanostructures.

scattering region, to measure the potential VA left of the scattering region. To calculate
this voltage, we have to know the conductances G31 and G32, which are proportional to
the probability of an electron being transferred from 1 and 2, respectively, to 3. Assume
that the probability of tunneling into the voltage probe is w � 1. The electron incident
from 1 has two possible routes into 3: either directly (probability w), or after first being
reflected from the scattering region (probability (1− w)(1− T )w ≈ (1− T )w). Up to the
terms proportional to w2, these two processes are independent, and the total probabil-
ity is given by the sum of the two. Thus, G31 = GQw(2− T ). Similarly, the probability
of going from 2 to 3 is the product of the probabilities of passing the scattering region
(T ) and of tunneling to 3 (w). Thus, G32 = GQwT . It boils down to VA = V1(1− T/2)
+V2T/2.

This is somewhat unexpected. In fact, our general picture implies no resistance between
point A and the left reservoir, so we would like to have VA = V1. Let us check the previous
result for VA with a more rigorous argument. Suppose the current from point A to 3 in each
energy strip (E , E + dE) is proportional to the probability of finding an electron at point
A with energy E , the local filling factor f A(E); whereas the current from 3 to point A is
proportional to f3(E). The net current in terminal 3 is thus given by

I3 = (GQ/e)
∫

dE w(E)( f A(E)− f3(E)). (1.76)

What is f A? In fact, we have already evaluated the filling factors in the waveguide (see
Eq. (1.36)): (1− T ) f1(E)+ T f2(E) for left-going and f1(E) for right-going electrons.
Since the probe is equally coupled to both left-going and right-going electrons, the result-
ing filling factor is just an average of the two, f A(E) = (1− T/2) f1(E)+ (T/2) f2(E).
We integrate this over energy, and find the voltage V3 at which I3 vanishes. Provided the
tunneling probability w(E) does not depend on energy, we reproduce the previous result,
VA = V1(1− T/2)+ V2T/2.

Let us move voltage probe 3 to point B on the other side of the scattering region. Repeat-
ing the same arguments, we find VB = V2(1− T/2)+ V1T/2. It looks like we manage to
separate the one-channel scatterer into three parts, the conductances being given by
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G1A = G12
V1 − V2

V1 − VA
= 2GQ;

G AB = G12
V1 − V2

VA − VB
= GQ

T

1− T
; (1.77)

G B2 = G12
V1 − V2

VB − V2
= 2GQ.

This reasoning was originally provided by Landauer [8], who assigned the resistance
1/G AB to the scatterer. This differs from the two-terminal Landauer formula, Eq. (1.38),
by the factor 1− T . Indeed, for a quantum point contact (T = 1) the two-terminal Lan-
dauer formula gives the resistance RQ, whereas Eqs. (1.77) yield zero resistance RAB – the
voltage does not drop across the QPC. This sounds very intuitive: since the scattering is
absent, it does not provide any resistance. The voltage in this case drops between 1 and A
as well as between B and 2. The “elements” with conductances G1A = G B2 = GQ/2 were
called “contact resistances.” Their resistances add with RAB to provide the correct answer
for a two-terminal circuit.

The persistence of Rolf Landauer in attracting the attention of the scientific community
to these questions, and the fascination he managed to convey, have laid the foundations of
modern quantum transport. However, nobody can apply a voltage difference to a scatterer
in such a way that its conductance equals G AB . The voltage in quantum transport can only
be applied to the reservoirs. And point A, where only a single transport channel is present,
is too small for a reservoir. However, as we have just shown, the voltage difference can be
measured between any points of the nanostructure. All this proves that quantum transport
is very non-local; in general, a nanostructure cannot be separated into elements having
definite resistance. As we see in Chapter 2, this property is partially restored for nano-
structures that encompass many open transport channels so that the typical conductance is
much greater than GQ.

If we really want to apply the voltage difference to a scatterer in such a way that
Eqs. (1.77) are reproduced, we need at least a four-terminal circuit. The difference between
the two Landauer formulas, Eq. (1.38) and Eqs. (1.77), in our opinion, best illustrates the
distinction between two-terminal and multi-terminal systems.

Control question 1.13. Why does the “wrong” Landauer formula give the correct
result for a tunnel junction, T � 1?

From an experimental point of view, it is frequently convenient to measure the I –V
characteristics of a structure by the two-probe method. In this method, two terminals (1
and 2) are used to pass the current I through the structure and two extra terminals (3 and 4)
measure the voltage drop across the sample (Fig. 1.28). This is convenient way of getting
rid of a series resistance in leads 1 and 2 compared with the two-terminal setup. Intuitively,
the result of the two-probe measurement, R ≡ (V3 − V4)/I , should coincide with the result
of the two-terminal measurement, RAB . Is this really so?

Generally, it is not. We can access the result using the scattering formalism. Assuming
for simplicity that G43, G34 � G41, G42 and G31, G32 � G12, G21 (non-invasive voltage
probes), we obtain
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�Fig. 1.28. A common scheme for two-probe measurement of the resistance RAB, (a) does not generally
work in quantum transport. The reason is that the equivalent four-terminal nanostructure
(b) cannot be generally separated into elements of definite resistance.

V3 − V4 = (V1 − V2)

(
G31

G31 + G32
− G41

G41 + G42

)
. (1.78)

Taking into account that the current under this assumption is given by I = G21(V1 − V2),
we obtain the result of the two-probe measurement:

R = 1

G21

(
G31

G31 + G32
− G41

G41 + G42

)
. (1.79)

The observation to make is that this resistance does not display any symmetry with respect
to time reversal, R(B) �= R(−B) [17]. This is in contrast to the time-reversal symmetry of
two-terminal resistance RAB , RAB(B) = RAB(−B). The measurements of magnetoresis-
tance [18] that seemingly disobeyed the Onsager relations have inspired the current interest
in quantum transport.

1.5.3 Beam splitters

A basic element of a two-terminal nanocircuit is a scattering region – a region where an
incoming electron makes a choice between transmission and reflection, characterized by
a scattering matrix. The simplest single-channel example of such a scattering matrix is
presented in Fig. 1.17. More sophisticated two-terminal nanostructures can be made by
combining these basic elements in series. We discuss in Section 1.6 how to find the scat-
tering matrix of the resulting nanostructure from those of the elements. However, all such
nanostructures remain two-terminal ones. To do this in a multi-terminal arrangement, we
need to introduce a new basic element – a beam splitter, where electrons can be reflected
back or transmitted to several transport channels that end up in different terminals. The
name beam splitter comes from optics, where it is really about splitting light beams. The
simplest beam splitter mixes three transport channels (Fig. 1.29).

The scattering matrix for a general three-channel beam splitter is a 3× 3 symmetric
(in the absence of magnetic field) matrix, constrained by the conditions of unitarity. Such a
scattering matrix is parameterized by five real numbers (apart from the insignificant overall
phase factor). This is too much for a simple model, and we restrict ourselves to two cases
when the scattering matrix depends on a single parameter only. In Section 1.6 we use these
scattering matrices to model quantum interference.
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�Fig. 1.29. Fully symmetric three-channel beam splitter. We show the scattering amplitudes of an incoming
wave.
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�Fig. 1.30. T-beam splitter. If α = 0, electrons traverse between 1 and 2 without reflection. If α = π/2,
electrons from 3 get to either 1 or 2 without reflection.

If all three channels are identical (fully symmetric beam splitter), all diagonal elements
of the scattering matrix must be the same, and all off-diagonal elements must be the same.
The unitary matrix satisfying this condition can be parameterized as follows:

ŝ = 1

3

⎛
⎝ 1+ 2eiφ 1− eiφ 1− eiφ

1− eiφ 1+ 2eiφ 1− eiφ

1− eiφ 1− eiφ 1+ 2eiφ

⎞
⎠ . (1.80)

The phase φ is responsible for the coupling of the leads to the beam splitter. Indeed, the
probability of reflection to the same lead is the absolute value of the diagonal element
squared, and equals R = [5+ 4 cosφ]/9. It varies between R = 1 (φ = 0, full reflection)
and R = 1/3 (φ = π , the incoming stream is equally divided between all three leads).

Exercise 1.8. Regarding the beam splitter described by the scattering matrix in
Eq. (1.80) as a three-terminal system, calculate the corresponding conductance matrix.

This restriction is no good for modeling purposes. Let us consider a T-beam splitter,
which is symmetric with respect to the exchange of channels 1 and 2, and also its scattering
matrix (Fig. 1.30). We choose the matrix elements to be real. One of the two possible
realizations is given by
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ŝ =
⎛
⎝− sin2(α/2) cos2(α/2) sin(α)/

√
2

cos2(α/2) − sin2(α/2) sin(α)/
√

2
sin(α)/

√
2 sin(α)/

√
2 − cos(α)

⎞
⎠ . (1.81)

The angle α parameterizes the coupling of channel 3 to channels 1− 2. For α = 0, channel
3 is uncoupled and electrons go from 1 to 2, or in the opposite direction without any
scattering. If α = π/2, the scattering matrix becomes

ŝ =
⎛
⎝−1/2 1/2 1

√
2

1/2 −1/2 1
√

2
1
√

2 1
√

2 0

⎞
⎠ (1.82)

and describes the ideal beam splitting: the electrons coming from lead 3 are equally dis-
tributed between 1 and 2 and are not reflected back. An electron coming from 1 has, in
this case, probability 1/2 of being transmitted to 3, probability 1/4 of proceeding to 2, and
probability 1/4 of being reflected back.

One might want to use a better beam spitter, for instance one where an electron coming
from 1 always gets to 3. One would want too much. Indeed, time-reversibility relations
forbid this: since the probability of getting from 3 to 1 is 1/2, the probability of getting
from 1 to 3 must be the same.

Exercise 1.9. Show that the only beam splitter where the electron coming from 1
always gets to 3 has only three non-zero elements, s13 = s31, and s22, with the absolute
value of all these elements equal to one.

1.5.4 Counting statistics and noise

The transmission properties of a multi-terminal nanostructure are fully described by the
distribution function of transmitted charge P(Q1, Q2, . . . , QN ), which is the probability
that the charge Qα passed through the terminal α (from the scattering region to the reser-
voir) during the time�t . Current conservation requires that this function is proportional to
δ(Q1 + · · · + QN ). It is more convenient to introduce the characteristic function �({χα}),
which is defined as a Fourier transform:

�({χα}) =
∑

Q1,...,QN

P({Nα}) exp
[
i(χ1 Q1 + · · · + χN QN )/e

]
. (1.83)

As a consequence of the current conservation, it only depends on the differences χα − χβ .
In the multi-terminal case, the characteristic function can be brought into a compact

form analogous to the Levitov formula, Eq. (1.54). For the characteristic function, we have

ln�({χα}) = 2s�t
∫

dE

2π�
Tr ln

{
1+ f̂ + f̂ ŝ† ˆ̃s

}
, (1.84)

where the trace is taken not only over the transport channels, but also over the terminals.
In Eq. (1.84), f̂ is the diagonal matrix with the matrix elements fα(E) for all transport
channels in the terminal α, and
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�Fig. 1.31. Counting statistics of a reflectionless T-beam splitter.

ˆ̃sαβ = ŝαβei(χα−χβ ).

To start with, let us create a link to the Levitov formula, Eq. (1.54), for two terminals.
We show this explicitly for the simplest case of a single-channel scatterer. In this case, the
argument of the logarithm is a 2× 2 matrix. Using the parameterization given in Eq. (1.39),
we write this matrix explicitly as follows:(

1− fL + fL
(
R + T eiχ

)
fL RT ei(η−θ)

(−1+ e−iχ
)

fR RT ei(θ−η)
(
1− eiχ

)
1− fR + fR

(
R + T e−iχ

) ) ,χ ≡ χR − χL.

The trace of a logarithm of a matrix equals the logarithm of the determinant of this
matrix. Calculating the determinant and taking into account that T + R = 1, we reproduce
Eq. (1.54).

Let us discuss a simple multi-terminal example. We take a reflectionless T-beam splitter,
restrict ourselves to zero temperature limit, and choose voltages V1 = V2 = 0, V3 = V >

0. The contribution to the integral in Eq. (1.84) comes from the energy strip μ1 = μ2 <

E < μ3 = μ2 + eV . The integrand does not depend on the energy within the strip. We
create a 3× 3 matrix by substituting f1 = f2 = 0, f3 = 1, and using Eq. (1.82) for ŝ. We
calculate the determinant of the matrix:

�(χ1,χ2,χ3) =
(

exp(iχ2)

2
+ exp(iχ1)

2

)Nat

exp(−iNatχ3),

Nat = �tG Q V/e being the number of electrons coming from reservoir 3. The resulting
distribution of the transmitted charges Qi = eNi is binomial,

PN1,N2,N3 = δ(N1 + N2 − N3)δ(N3 − Nat)

(
Nat

N1

)(
1

2

)N1
(

1

2

)N2

. (1.85)

What does this mean? The first delta-function is just the charge conservation; i.e. the total
number of electrons going to 1 and 2 is the same as the number of electrons coming from
3. The second delta-function shows that the current coming from 3 does not fluctuate;
we expected this from the fact that there is no reflection back to 3. The binomial shows
that the electrons coming to the splitter with regular intervals reach either 1 or 2 with
equal probabilities (Fig. 1.31). Thus, the currents to 1 and 2 do fluctuate. However, their
fluctuations are strictly opposite: each extra electron that gets to 1 implies the lack of an
electron getting to 2.
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The general situation can be accessed for the noise, the second-order cumulants of the
charges transmitted. As in the two-terminal case, all cumulants of the transmitted charge
can be derived from the derivatives of �. Thus, the average charge 〈Qα〉 transmitted
through the terminal α is given by

〈Qα〉 = e
∂ ln�

∂(iχα)

∣∣∣∣
χβ=0

, β = 1, . . . , N .

A technical complication is that we are now differentiating the trace of a logarithm of
a matrix. This is done using the relation (Tr ln Â)′ = Tr Â−1 Â′. The argument of the
logarithm turns to the unit matrix due to the unitarity constraint after we set all the counting
fields χβ to zero; differentiating the matrix over χα and calculating the trace, we arrive at
〈Qα〉 = Iα�t , where the average current Iα is given by Eq. (1.72).

Let us now calculate the second cumulant of the charge,

〈〈QαQβ〉〉 = e2 ∂2 ln�

∂(iχα)∂(iχβ )

∣∣∣∣
χγ=0

, γ = 1, . . . , N .

Treating the trace of logarithm in the same manner, after some manipulations with the
unitarity condition we arrive at the following expression:

〈〈QαQβ〉〉 = �t Sαβ (0)/2;

Sαβ (0) = G Q

∫
dE

∑
γ δ

Tr
{[
δαγ δαδ − ŝ†

αγ (E)ŝαδ(E)
]

×
[
δβδδβγ − ŝ†

βδ(E)ŝβγ (E)
]}

× {
fγ (E)

[
1− fδ(E)

]+ fδ(E)
[
1− fγ (E)

]}
, (1.86)

where the trace is again taken over the transport channels. The matrix Sαβ (ω) is the current
noise at the frequency ω, defined as

Sαβ (ω) =
〈
Îα(t) Îβ (t ′)+ Îβ (t ′) Îα(t)− 2

〈
Îα(t)

〉 〈
Îβ (t ′)

〉〉
ω

, (1.87)

where the Fourier component is taken with respect to t − t ′.

Exercise 1.10. Calculate the noise matrix Sαβ for the beam splitter described by
Eq. (1.80).

We now discuss the properties of the multi-terminal noise formula, Eq. (1.86). If there
are only two terminals, we have SLL = SRR = −SLR = −SRL, and Eq. (1.86) reproduces
the expressions of Section 1.3.

Then we consider the equilibrium, when the distribution functions fα(E) in all the
reservoirs are the same. In the linear regime, we assume that the scattering matrices are
evaluated at the Fermi energy, and the integration of the Fermi functions over E provides
the factor kBT . Using the unitarity of the scattering matrix, we write∑

γ δ

Tr
{

ŝ†
αγ ŝαδ ŝ

†
βδ ŝβγ

}
= Tr δαβ ,
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which provides the expression for the equilibrium (Nyquist–Johnson) noise,

Seq
αβ (0) = −2kBT

(
Gαβ + Gβα

)
, (1.88)

in accordance with the fluctuation-dissipation theorem.
At zero temperature, noise takes a simpler form,

Sαβ (0) = GQ

∫
dE

∑
γ �=δ

Tr
[
ŝ†
αγ (E)ŝαδ(E)s†

βδ(E)ŝβγ (E)
]

× {
fγ (E)

[
1− fδ(E)

]+ fδ(E)
[
1− fγ (E)

]}
. (1.89)

In particular, for α �= β this can be rewritten as

Sαβ (0) = −2GQ

∫
dE Tr

⎡
⎣
⎛
⎝∑

γ

ŝ†
αγ ŝβγ fγ

⎞
⎠(∑

δ

ŝ†
βδ ŝαδ fδ

)⎤
⎦ ,

and is obviously negatively defined, since it includes a product of a matrix with its con-
jugate. Thus, the current correlations at different terminals are always negative at zero
frequency. We have already seen this for the beam splitter. The proof of this fact only uses
that electrons are fermions. As a matter of fact, it turns out that this statement is not correct
for bosons – the zero-frequency cross-correlations of bosons (for example photons in the
different arms of an interferometer) can very well be positive.

1.5.5 Multi-terminal scattering in operator formalism

We now extend the operator formalism, developed in Section 1.3, to multi-terminal sys-
tems, and show how it can be used to calculate noise. First we introduce scattering states.
The state ψαn , which originates from reservoir α in transport channel n, is given by its
asymptotic expressions,

ψαn(xα , yα , zα) = 1√
2π�vαn(E)

	αn(yα , zα)e−ik(αn)
x xα

+
∑

m

1√
2π�vαm(E)

sαm,αn(E)	αm(yα , zα)eik(αm)
x xα (1.90)

in terminal α and

ψαn(xβ , yβ , zβ ) =
∑

m

1√
2π�vβm(E)

sβm,αn(E)	βm(yβ , zβ )eik(βm)
x xβ (1.91)

in terminal β �= α.
Next, we proceed with the creation â†

αnσ (E) and annihilation âαnσ (E) operators for the
scattering states. Another set of operators, b̂†

αnσ (E) and b̂αnσ (E), describe electrons mov-
ing along waveguide α in transport channel n from the scattering region. These two sets
are related via the scattering matrix:
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b̂αnσ (E) =
∑
βm

sαn,βm(E)âβmσ (E); (1.92)

b̂†
αnσ (E) =

∑
βm

s∗βm,αn(E)â†
βmσ (E). (1.93)

The operators â obey the anticommutation relations, Eqs. (1.47), which are the same as
for two-terminal systems. The average product of a creation and an annihilation operator
is also the same: 〈

â†
αnσ (E)âβmσ ′ (E ′)

〉
= δαβδnmδσσ ′δ(E − E ′) fα(E). (1.94)

Writing down the field operators in lead α,

�̂σ (rα , t) =
∫

dE e−iEt�
∑

n

	αn(yα , zα)√
2π�vαn(E)

[
âαnσ e−ik(αn)

x xα + b̂αnσ eik(αn)
x xα

]

and

�̂†
σ (rα , t) =

∫
dE eiEt�

∑
n

	∗αn(yα , zα)√
2π�vαn(E)

[
â†
αnσ eik(αn)

x xα + b̂†
αnσ e−ik(αn)

x xα
]

,

we construct the operator of current in the terminal α,

Îα(xα , t) = �e

2im

∑
σ

∫
dyα dzα

[
�̂†
σ

∂

∂xα
�̂σ −

(
∂

∂xα
�̂†
σ

)
�̂σ

]
. (1.95)

Making the time periodic, with period T (and discrete energies E = 2πq�/T ), similarly
to how it was done in Section 1.3, we obtain the following expression for the time-averaged
current operator in terminal α,

〈
Îα

〉
t
= − e

2π�

(
2π�

T

)2 ∑
nσ

∑
E

[
â†
αnσ (E)âαnσ (E)− b̂†

αnσ (E)b̂αnσ (E)
]

= − e

2π�

(
2π�

T

)2 ∑
nσ

∑
βγ ,ll ′

∑
E

â†
βlσ (E)âγ l ′σ (E)

×
[
δαβδαγ δnlδnl ′ − s∗βl,αn(E)sαn,γ l ′(E)

]
. (1.96)

We have not yet taken the spin variables into consideration, and therefore the operator in
Eq. (1.96) describes the current of particles with a given spin projection (which is the same
for both projections). Using Eqs. (1.94), δ(0)→ T /(2π�), we reproduce Eq. (1.72) for the
average current.

Our next task is to calculate the zero-frequency noise, Eq. (1.87). At zero frequency,
the Fourier transform means integration over t − t ′. It is convenient to discretize the time
again, then the integration over time means time-averaging multiplied by the period T .
We also want to calculate the time-averaged (with respect to (t + t ′)/2) noise, and thus we
have to time-average all the current operators in Eq. (1.87) and multiply the result by T . In
other words, for the calculation of the zero-frequency noise, it is enough to know only the
time-averaged current operators. Substituting Eq. (1.96), we arrive at a very cumbersome
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expression that contains the quantum-mechanical average of four creation and annihilation
operators. In order to proceed, we have to learn how to deal with averages such as

〈â†
1 â2â†

3 â4〉,
where the subscript indices label the scattering states (they include the energy, the ter-
minal, and the transport channel). This average is easy to calculate since we consider
non-interacting electrons. We apply Wick’s theorem, which states that the average of a
product of an even number of creation and annihilation operators equals the sum of possi-
ble products of averages of pairs of such operators. Wick’s theorem relies on the fact that
the free-electron Hamiltonian is quadratic in creation and annihilation operators and does
not hold, for instance, for interacting electrons. In our case, the average of 〈â2â4〉 is zero,
and we are left with only two possible pairings: (i) 1 with 2 and 3 with 4, and (ii) 1 with
4 and 2 with 3,

〈â†
1 â2â†

3 â4〉 = 〈â†
1 â2〉〈â†

3 â4〉 + 〈â†
1 â4〉〈â2â†

3〉. (1.97)

In the final term we have the average of ââ†, which is calculated using the commutation
relation,

〈â2â†
3〉 = δ23 − 〈â†

3 â2〉.
After all these manipulations, taking care of delta-functions of zero argument, and finally
returning to the continuous energy variable, we arrive at Eq. (1.86).

1.6 Quantum interference

Our intuition is based on our everyday experience with classical physics. It is easier for
us to understand the scattering of classical particles rather than quantum ones. Fortunately
enough, some aspects of quantum transport can be readily understood in terms of scat-
tering of classical particles. This scattering is characterized by probabilities rather than
amplitudes. In this section, we concentrate on the effects that cannot be understood in such
terms – the effects of quantum interference.

From the early days of quantum mechanics, it was traditional to illustrate the difference
between classical and quantum mechanics using the two-slit experiment. Consider a quan-
tum particle that can propagate from an initial point to a final point in two different ways:
trajectories that go via one of the two slits in the screen (Fig. 1.32). The corresponding
quantum amplitudes are A1 and A2, and the propagation probability for each trajectory is
given by the absolute value of the amplitude squared, P1,2 = |A1,2|2. In classical physics,
the total probability is just the sum of the two,

Pcl = P1 + P2. (1.98)

In quantum mechanics, amplitudes are added rather than probabilities. The total
probability is the absolute value of the total amplitude squared, i.e.

Pqm = |A1 + A2|2 = |A1|2 + |A2|2 + A1 A∗2 + A∗1 A2 = Pcl + 2Re A1 A∗2. (1.99)
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�Fig. 1.32. Two-slit experiment. Quantum interference between two trajectories (a) results in oscillatory
dependence of the propagation probability on the phase shift between two amplitudes
((b), plotted for P1/P2 = 6).

The final term in Eq. (1.99) represents the effect of the interference between the waves
propagating along the two trajectories and cannot be accounted for in the classical theory.
This is what is lost when we try to describe quantum transport classically.

To observe and refine the interference effect, one affects the relative phase of two ampli-
tudes not changing their absolute values related to classical probabilities. For an actual
two-slit experiment, this is achieved by a small displacement of the initial and/or the final
point with respect to the slits. In terms of this phase shift φ, the probability reads.

Pqm = Pcl + 2
√

P1 P2 cosφ. (1.100)

The oscillatory dependence on the phase shift thus signals the quantum interference and
is used to identify it experimentally. The interference may be constructive when Pqm >

Pcl (cosφ > 0) or destructive in the opposite case. If P1 = P2, one can tune the phase shift
to suppress completely the quantum-mechanical probability.

Control question 1.14. Consider a non-ideal experiment in which the phase differ-
ence fluctuates during the measurement time over a typical scale much bigger than 2π .
What will be the value of Pqm measured in this experiment?

The quantum interference and Eq. (1.99) are not just about the two-slit experiment; this
occurs whenever quantum particles propagate. Throughout the rest of this section, we ana-
lyze the basic examples of interference effects in transport and describe their experimental
manifestations.

1.6.1 Phase shifts

To understand phase shifts, we start with one-dimensional motion, for example, in a certain
transport channel (Fig. 1.7). We assume that the effective one-dimensional potential E0(x)
is sufficiently smooth so no scattering occurs. Nothing would happen to a classical particle
in this case. However, a quantum electron traveling in this potential acquires a phase. To
evaluate this phase, let us consider the wave function of an electron moving from the left



65 1.6 Quantum interference
�

to the right. The absence of scattering implies that this function can be considered in the
semiclassical approximation:

ψ(x) = exp(iφ(x));
dφ

dx
= k(x) ≡ √

2m(E − E0(x))/�, (1.101)

k(x) being the “local” wave vector at point x . The electron moving from point x1 to point
x2 collects the phase φ = φ(x1)− φ(x2). If the potential along the channel does not vary,
it is just kL , L being the distance between the points.

The absolute value of the phase shift is usually of no interest. Besides, it is difficult
to control. The relative change of the phase shift is more interesting. First, let us note
that φ depends on energy. We take the derivative with respect to energy and note that
dk(x)/dE = 1/�v(x), where v(x) is the velocity of the electron. This yields

dφ

dE
=

∫ x2

x1

dx

�v(x)
= τ

�
, (1.102)

τ being the time of flight between the points at a given energy. Second, one can shift the
phase by modifying the potential within the channel, for instance with the help of gate
electrodes. The shift is given by

�φ =
∫

eV (x)
dx

�v(x)
� eV τ/�. (1.103)

The phase shifts can be defined in a similar fashion for an electron that is not confined to
a transport channel but moves in 3D space along a certain classical trajectory x(t). It is
convenient to integrate over t in the above formulas, as follows:

dφ

dE
=

∫ t2

t1

dt

�
= τ

�
; �φ =

∫
eV (x(t))

dt

�
.

The phase shift due to energy or potential is called the dynamical phase. It has an important
property: if an electron takes a time-reversed path, so that it moves from point x2 to x1, the
phase shift acquired is precisely the same.

As noticed by Aharonov and Bohm about fifty years ago, the phase shifts due to the
magnetic field are more complicated and interesting. The magnetic phase accumulated
along the trajectory explicitly depends on the vector potential A(x),

φmag = e

�c

∫ t2

t1
A · v(t)dt = e

�c

∫ x2

x1

A · dx,

and is opposite for the time-reversed path. Indeed, one can describe precisely the same
physical situation in a different gauge, shifting the vector potential by an arbitrary gradi-
ent field, A→ A+ ∇χ (x). This phase shift explicitly depends on χ (x), which makes it
“unphysical” and unobservable.

The gauge-invariant, and thus observable, quantity is the magnetic phase accumulated
along the closed path where the electron returns to the same point. It is proportional to the
magnetic flux 	 enclosed by this closed trajectory,

φmag = e

�c

∮
B · dS = π	

	0
,
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�Fig. 1.33. (a) Double-junction nanostructure consists of two scatterers in series. The electron acquires the
phase shift χ when traveling between the scatterers. (b) The transmission results from the
interference of all trajectories shown, and thus depends on the phase shift.

where the magnetic flux quantum 	0 ≡ π�c/e.5 The difference in the phase shifts along
this trajectory and the time-reversed one does not contain the dynamical phase and thus
does not depend on a concrete shape of the trajectory: it is 2π	/	0 precisely.

Generally speaking, any periodic dependence of a physical quantity on 	/	0 is called
an Aharonov–Bohm (AB) effect. There may be an AB effect observed in the two-slit exper-
iment described above, although the particle never makes a closed trajectory. Magnetic
phase shifts along each trajectory, φ1,2, are not gauge-invariant and cannot be separately
observed. However, the probability depends only on their difference φ1 − φ2, which is the
gauge-invariant phase shift that would be acquired along a closed path made of trajectory
1 and time-reversed trajectory 2.

The magnetic phase shift is not the only effect of the magnetic field – it can also
change the shape of the electron wave function and its spin state. However, for low mag-
netic fields the interference AB effect is the most important one. We note that the effect
exists even if the magnetic flux is enclosed in a finite area and the electrons moving along
the trajectories do not in fact feel the magnetic field! What matters for the interference
effect is the total flux enclosed by the two trajectories, not the distribution of the magnetic
field.

1.6.2 Double junction

The simplest quantum transport setup that demonstrates quantum interference effects
consists of two scatterers in series (Fig. 1.33).

To keep it simple, we begin the discussion with only one transport channel. The scat-
terers are characterized by corresponding 2× 2 scattering matrices ŝL,R, or, equivalently,
by transmission tL,R, t ′L,R and reflection rL,R, r ′L,R amplitudes. Importantly, the electron

5 A word of warning: 20% of publications in the field of quantum transport use a definition of 	0 that differs by
a factor of 2.
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acquires phase shift χ when traveling between the scatterers. We consider the dynamical
phase only, so that this phase shift does not depend on the direction of propagation.

Let us now consider the amplitude of transmission through both scatterers. An electron
can make it to the right of the two scatterers in a number of ways that differ by the number
of attempts to penetrate the right scatterer (Fig. 1.33). We will call these ways “processes”
(they can be viewed as classical processes of transmission, reflection, or propagation) or
“trajectories” (like in the two-slit experiment, they can be associated with motion in space).

The simplest process is to get through the right scatterer at the first attempt. Its ampli-
tude is a product of the three amplitudes of successive elementary processes: transmission
through the left scatterer tL, propagation between the scatterers exp(iχ ), and transmission
through the right scatterer tR, A1 = tL exp(iχ )tR. If the first attempt is not successful, the
electron is reflected back (rR), propagates back to the left scatterer (exp(iχ )), is reflected
to the right (r ′L), propagates again (exp(iχ )), and, if lucky, is transmitted through the right
scatterer (tR). The resulting amplitude of such a process is thus A1 = tLr ′LrRtR exp(3iχ ).
More complex trajectories involve multiple trips of electrons back and forth between the
two scatterers. The amplitude of a trajectory with m attempts is given by

Am = tLtR
(
r ′LrR

)m−1 ei(2m−1)χ . (1.104)

The total quantum-mechanical amplitude of propagation to the right is a sum of the
amplitudes of all the processes, i.e.

t =
∞∑

m=1

Am = tLtReiχ
∞∑

m=0

(
r ′LrRe2iχ

)m = tLtReiχ

1− r ′LrRe2iχ
. (1.105)

Control question 1.15. The amplitude diverges if the denominator equals zero. When
does this happen?

The squared absolute value of the amplitude yields the transmission coefficient,

T =
∣∣∣∣ tLtReiχ

1− r ′LrRe2iχ

∣∣∣∣
2

= TLTR

1+ RL RR − 2
√

RL RR cos 2χ
. (1.106)

Here TL,R = |tL,R|2 and RL,R = 1− TL,R are transmission and reflection coefficients for
the individual scatterers. In the final relation, we conveniently include the phases of reflec-
tion amplitudes in χ , 2χ → 2χ + arg(r ′LrR) is now the phase collected during the round
trip experienced by an electron traveling from the left scatterer to the right one and back.

The transmission coefficient depends periodically on the phase χ . We stress that the
phase depends on energy by virtue of Eq. (1.102) and this implies periodic dependence
of transmission on energy, with period 2π�/τ , τ being the round-trip time. The mini-
mum value of the transmission coefficient is achieved for χ = π and the maximal value is
achieved for χ = 0:

Tmin = TLTR

(1+√RL RR)2
< T (χ ) <

TLTR

(1−√RL RR)2
= Tmax.

The difference is best seen when both scatterers have low transparency, TL,R � 1. In this
case, Tmin ≈ TLTR � 1, which is not surprising. To get to the right, an electron has to pass
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�Fig. 1.34. Transmission via double junction versus phase shift or energy. (a) Symmetric scatterers with
T1 = T2 corresponding to the curve labels. The maximum transmission is always 1 in this case.
(b) Non-symmetric scatterers, T1 = 0.5, and T2 corresponds to the curve labels. The narrow
transmission resonances for T1,2 � 1 indicate formation of discrete energy levels at corresponding
energies.

two scatterers; hence, the total probability is the product of the probabilities of passing an
individual scatterer. Let us now look at Tmax. Expanding the denominator up to linear terms
in TL,R, we find, surprisingly, that

Tmax = 4TLTR

(TL + TR)2
, (1.107)

which is not at all small. For example, if the two scatterers are identical, TL = TR, the max-
imal value of the transmission coefficient may become one – the system of two identical
scatterers of very low transparency at certain values of energy becomes fully transparent. In
this case, the energy dependence of the transmission coefficient has a resonant structure –
T (E) is very small for all energies except in the close vicinity of the values χ = πn, at
which it peaks (Fig. 1.34). This phenomenon is known as resonant tunneling or Fabry–
Perot resonances. The resonances indicate the formation of discrete energy levels at the
corresponding energies. Indeed, in the limit of vanishing transmission, the space between
the scatterers is totally isolated from the leads, the motion is confined to this space, and the
energy spectrum becomes discrete.

Let us concentrate on a single transmission resonance at χ = 0 that occurs at E = E0

and expand χ in the vicinity of this point, χ = (E − E0)/2W , W being of the order of
energy distance between the resonances. The transmission assumes a Lorentzian shape,

T (E) = TLTR

((TL + TR)/2)2 + ((E − E0)/W )2
. (1.108)

The energy width of the Lorentzian is given by w = W (TL + TR). This allows for a some-
what unexpected interpretation in terms of decay rates. The particle in the resonance is
confined, flying back and forth, between the junctions. There is a finite probability per unit
time – a rate – that it will tunnel away, either through the left (�L) or the right (�R) junc-
tions. By virtue of quantum uncertainty, the width is associated with the total decay rate,
w = �(�R + �L); this yields the Breit–Wigner formula generic for resonances,
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�Fig. 1.35. Aharonov–Bohm ring made of two beam splitters penetrated by the magnetic flux �. Phase
shifts in both arms are different for the opposite directions of propagation, φ1 + φ2 = π�/�0.

T (E) = �L�R

((�L + �R)/2)2 + ((E − E0)/�)2
, (1.109)

where the rates are given by ��L,R = W TL,R.
To zoom in on the difference between quantum and classical transport, let us calculate

the classical probability of the propagation to the right. It is readily given by the sum of
probabilities, |Am |2, of all processes as follows:

Tcl =
∞∑

m=0

|Am |2 = TLTR

∞∑
m=0

(RL RR)
m = TLTR

1− RL RR
. (1.110)

This does not depend on the phase shift χ . The classical transmission through a double
junction is thus phase- and energy-independent. This means that resonant tunneling is a
purely quantum effect. Furthermore, if both scatterers have low transparency (TL,R � 1),
we can write the total classical conductance in the following form:

Gcl = GQTcl = GLGR

GL + GR
or

1

Gcl
= 1

GL
+ 1

GR
,

which is easily recognized as Ohm’s law for two resistors 1/GL and 1/GR in series.
Everything that goes beyond Ohm’s law physics (including resonant tunneling) cannot
be described in classical terms and results from the quantum interference. We will discuss
this in more detail in Section 2.1.

1.6.3 Aharonov–Bohm ring

Let us now deal with magnetic phases and devise the simplest model in which the
Aharonov–Bohm effect is manifest in quantum transport [19]. We consider transmission
through a ring connected to two reservoirs (Fig. 1.35). The ring consists of two arms, each
supporting one transport channel. We treat dynamical (χ1,2) and magnetic (φ1,2) phases.
An electron moving clockwise along the upper arm of the ring collects the phase φ1 + χ1,
while an electron moving anticlockwise collects the phase −φ1 + χ1. An electron moving
along the lower arm collects the phase φ2 + χ2 (clockwise) and −φ2 + χ2 (anticlock-
wise). As discussed, we expect that the transmission square depends on the gauge-invariant
combination of the phases φ1 + φ2 ≡ φAB = π	/	0, which corresponds to the phase col-
lected by the trajectory encircling the ring. The arms and the reservoirs are connected by
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�Fig. 1.36. Several example trajectories interfering in an AB ring. Interference of (a) and (b) provides a �0

periodic contribution that depends on dynamical phase (universal conductance fluctuations).
Interference in pairs (d), (e) and (f), (g) leads to a �0 periodic contribution that survives
averaging over dynamical phase (weak localization). Interference in pairs (c), (h) and (g), (d)
yields a contribution time-reversed to that of pair (a), (b).

two beam splitters described by the scattering matrix in Eq. (1.82). Our goal is to find
the transmission probability through the ring. As before, we proceed by identifying all the
possible processes and summing up their amplitudes.

We immediately note that the number of possible processes is much larger than for the
double junction, since, after each scattering, the electron can take either the upper or lower
arm. For a given number of attempts m, this yields 22m−1 possible processes. We plot in
Fig. 1.36 two trajectories with m = 1 and some with m = 2.

Let us consider the amplitude of trajectory (a). An electron first enters the ring picking
up the factor 1/

√
2 from the scattering matrix of the beam splitter (Eq. (1.82)), then travels

inside the ring acquiring the factor ei(χ1+φ1) and exits via the right beam splitter (factor
1/
√

2 again), so that

t(a) = 1√
2

ei(χ1+φ1) 1√
2
= 1

2
ei(χ1+φ1).

As for the amplitude of process (h), the two first factors are the same. Then the elec-
tron goes through the beam splitter to the other arm (factor 1/2), passes the lower arm
clockwise (ei(χ2+φ2)), is reflected from the beam splitter (−1/2), passes the lower arm
counterclockwise (ei(χ2−φ2)) and finally exits (1/

√
2). The amplitude is thus given by

t(h) = 1√
2

ei(χ1+φ1) 1

2
ei(χ2+φ2)

(
−1

2

)
ei(χ2+φ2) 1√

2
= −1

8
ei(χ1+φ1+2χ2).

In this way we can determine the amplitude of any given trajectory.
Before summing up, let us look at the interference contributions of selected pairs of

trajectories. Interference of the simplest trajectories (a) and (b) already gives the AB effect.
It oscillates as a function of flux with period 2	0, as follows:

P int
ab = 2Re t(a)t

∗
(b) ∝ cos(χ1 − χ2 + φAB). (1.111)

Importantly, this contribution depends on dynamical phases and would disappear if one
averages over these phase shifts. Contributions of this type are called universal conduc-
tance fluctuations. Why fluctuations? For nominally identical nanostructures, phase shifts
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are random. So, this contribution is individual for each nanostructure and will disappear if
we average over a large ensemble of nominally identical ones.

Let us look at the interference of (d) and (e). This contribution does not depend at all on
the dynamical phase and oscillates with a twice shorter period 	0,

P int
de ∝ cos(2φAB).

This is because of the very special relationship between these trajectories. Trajectories
(d) and (e) comprise trajectory (b) with an extra closed loop orbiting the ring. The only
difference is the direction of the loop: the electron orbits counterclockwise along (d) and
counterclockwise along (e). As we mentioned above, the difference of phase shifts in this
case does not depend on dynamical phase. The contribution of this type is called weak
localization correction. Since it does not depend on the dynamical phase, it survives the
ensemble averaging. We stress the generality of the effect: whatever the nanostructure, for
any trajectory that contains a loop one finds a counterpart, the trajectory that differs by the
direction of orbit only. The interference between pairs of such trajectories determines the
weak localization correction in any nanostructure.

The AB ring under consideration is a two-terminal system. As we have learned from
Section 1.5, this implies that its conductance and transmission is even in a magnetic field,
T (φAB) = T (−φAB). Since P int

ab is neither even nor odd in flux, there must be time-reversed
counter-terms proportional to cos(χ1 − χ2 − φAB) that ensure the symmetry. Such terms
arise, for example, from the interference in pairs (c), (h) and (g), (d). Taken together, these
terms provide

P int ∝ cos(χ1 − χ2) cos(φAB).

Therefore, the extrema of universal conductance fluctuations are pinned to integer values
of flux, φAB = π	0. With changing dynamical phases, the minima can change to maxima
and back.

To sum up the amplitudes of all processes, let us note that the total amplitude may be
presented as follows:

t = 1√
2

(tu + td)
1√
2

,

the square root factors corresponding to the entrance to and exit from the ring. The ampli-
tude tu describes all the processes when the electron first enters the upper arm of the ring;
it does not matter what it does later. In the same way, td describes the processes when the
electron first enters the lower arm of the ring.

What are the trajectories contributing to tu? The simplest is when the electron enters the
upper arm and then exits through the right beam splitter (Fig. 1.36(a)). A more sophis-
ticated trajectory follows the upper arm clockwise (factor ei(φ1+χ1)), is reflected back
(factor −1/2), follows the upper arm counterclockwise (factor ei(−φ1+χ1)), is reflected
again (−1/2), and starts in the upper arm. Afterwards, it can do a lot of things: it can exit, or
make more turns. It is important, however, that the sum of all these options is again tu – the
sum of all trajectories starting in the upper arm. Then, instead of being reflected into the
upper arm, the electron can make it to the lower arm (factor 1/2 rather than −1/2), and
proceed in the lower arm (amplitude td). Finally, the third variant: the electron follows the
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upper arm clockwise (factor ei(φ1+χ1)), is transmitted into the lower arm (1/2), and propa-
gates through the lower arm clockwise (ei(φ2+χ2)). Then it can either go to the upper arm
((1/2) · tu) or to the lower arm ((−1/2) · td). This exhausts the possibilities. Summing them
up, we obtain the following equation:

tu = ei(φ1+χ1) + 1

4

(
e2iχ1 + ei(χ1+χ2+φAB)

)
(tu − td) . (1.112)

Examining in the same way the trajectories starting in the lower arm, we obtain the second
equation,

td = ei(χ2−φ2) + 1

4

(
e2iχ2 + ei(χ1+χ2−φAB)

)
(td − tu) , (1.113)

whence

t = tu + td
2

=
(

ei(χ1+φ1) + ei(χ2−φ2) + ei(χ1+2χ2+φ1) + ei(2χ1+χ2−φ2)
)

×
(

1− e2iχ1 + e2iχ2 + 2ei(χ1+χ2) cosφAB

4

)−1

, (1.114)

and the conductance is given by G = GQT , T = |t |2 . A compact expression for a
symmetric ring, χ1 = χ2 = χ/2, is given by

G = GQ
(1− cosχ )(1+ cos2 φAB)

sin2 χ + [cosχ − (1+ cosφAB)/2]2
. (1.115)

Exercise 1.11. Find the transmission amplitude when both beam splitters are fully
symmetric, Eq. (1.80).

Let us plot the resulting conductance versus flux. Figure 1.37 presents examples of
such 2	0-periodic curves for several values of χ1,2. This is to be contrasted with the
conductance averaged over dynamical phases. As expected, it is clearly 	0-periodic.

More dependence of dynamical phases is presented in Fig. 1.38. There, the phases χ1

and χ2 are swept in opposite directions. As we see from Eq. (1.103), this can be realized
by applying opposite electrostatic potentials to the upper and lower arms (electric field
in vertical direction) by means of the gate electrodes. As expected, the extrema of the
conductance remain at the same positions but change from maxima to minima and back.
By a particular choice of phases, the first harmonic with the period 2	0 can be tuned to
zero, where the conductance is almost flux-independent.

1.6.4 Experiments on quantum interference

We will now describe three pioneering experiments in which quantum interference was
first observed in electron transport. To avoid any misunderstanding, we stress that the
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oscillates with period �0. This is contrasted with non-averaged magnetoconductance curves
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�Fig. 1.38. Flux-dependent conductance of an AB ring at χ1,2 = 1.3 ∓ ζ . Different curves correspond to ζ

changing from 0 to 2π with step π/8. The curves are offset by conductance quantum for clarity.
They display a characteristic pattern of extrema fixed at integer values of �/�0 that change from
minima to maxima and back when sweeping the dynamical phase.

simple one-channel models described above have very little to do with the actual exper-
imental situation. All experiments have been performed for structures whose geometrical
size exceeded the electron wavelength by many orders of magnitude. The conduction
involved at least several thousand transport channels. At least in the first experiment, the
electrons did not keep the quantum coherence throughout the length of the structure; inelas-
tic processes forbade that. At this point, we cannot provide an adequate model for these
experiments: the quantitative theory will be elaborated in subsequent chapters.

The interference in quantum transport is so wonderfully universal, however, that a
qualitative understanding can be achieved with the models in hand. Let us see how it works.
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�Fig. 1.39. The experiment by Sharvin and Sharvin [20] has proven the interference nature of the weak
localization correction. The resistance of a metal cylinder was found to oscillate with period �0

(see curve (i) in Fig. 1.37).

In 1981, Sharvin and Sharvin [20] fabricated thin metal cylinders by condensing magne-
sium vapor on a silicon thread with a diameter of 1500 nm. Magnesium formed a 100 nm
thick film at the silicon surface. The authors estimated that electrons at low temperature
could keep their coherence at a length scale Lφ of the order of the circumference of the
cylinder. The length of the cylinder, L = 1 cm, was much bigger than this coherence length.
The whole sample in this case can be viewed as L/Lφ ≈ 300 coherent conductors in series.

Sharvin and Sharvin applied a magnetic field parallel to the axis and found oscillatory
dependence of the resistance (Fig. 1.39). The main period of this dependence corresponded
to the flux 	0 via the cylinder cross-section.

The resistance of each coherent conductor contained an interference contribution that
fluctuates depending on the dynamical phases. However, these contributions were added
in series and the fluctuations were averaged out. The resistance change observed thus
presented the averaged conductance change, called the weak localization correction.

In 1985, Webb and co-authors [21] fabricated a device with spatial dimensions smaller
than Lφ : the first coherent conductor (Fig. 1.40). This simple device was made of 40 nm
thick gold wires and contained a ring of diameter approximately 800 nm. The authors
observed resistance oscillations with a twice bigger period 2	0. This identifies the oscil-
lations as “universal conductance fluctuations”. They are different for nominally identical
devices depending on dynamical phases.

The oscillations were not ideally periodic due to the finite thickness of the wires. The
trajectory loops inside the wires had slightly different areas and thus were penetrated by
slightly different flux. This produced the uncertainty of the magnetic field period.

In several years, the same group investigated an electrostatic AB effect [22]. They fab-
ricated a similar device comprising antimony wires that form a square loop 820 nm on a
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�Fig. 1.40. First observation of “universal conductance fluctuations” [21] in an AB device (inset).
(a) Magnetoresistance oscillates with period 2�0, while its average value would oscillate
with a twice shorter period. (b) Fourier power spectrum of the oscillations contains peaks
corresponding to both periods.

side (Fig. 1.41). Gate electrodes were set close to two sides. They observed magnetoresis-
tance oscillations with period 2	0. They demonstrated that the gate voltage can be used
to tune the positions of these oscillations: the phase is changed by π so that the positions
of the minima correspond to former positions of maxima. The explanation is that the gate
voltage provides the shift of dynamical phase in the arms of the loop. This was discussed
in our model of the AB ring and presented by the curves plotted in Fig. 1.38. In fact, the
effect of the gate voltage is strongly suppressed in this setup. The gate voltage would be
screened out in an ideal conductor, and only a small fraction of it eventually reaches the
electrons interfering in the loop. This is why a relatively high voltage difference is required
for the phase shift.

Control question 1.16. What is the size of the square loop in Fig. 1.41(a) (experiment
in Ref. [22]). Hint: see Fig. 1.41(b).



76 Scattering
�

(b)

(a)

1.5
0 V

0.75 V

0 V

1.0
ΔR

 (
Ω

)

0.5

0.0

–0.80 –0.79

H (T) H (T)

–0.78 –0.03 –0.02 –0.01

�Fig. 1.41. Electrostatic AB effect [22]. (a) The conducting loop was gated with two capacitance probes
(T-wires in the photo). (b) The minima of AB oscillations are changed to maxima by applying the
gate voltage, since the latter affects dynamical phase of the electrons in the ring (see Fig. 1.38).

To summarize, the qualitative features of the experiments can be understood using our
simple model of the one-channel AB ring, which includes periodicity and dependence
on dynamical phases. Interestingly, the one-channel model even gives a correct estima-
tion of the magnitude of the interference effect: a fraction of GQ per coherent conductor.
Experimentally, this estimation holds for much less resistive conductors, with G � GQ

and consequently a large number of transport channels. The reasons for this are explained
in Chapters 2 and 4.

1.6.5 Interference and combining scattering matrices

Real systems are more complicated than the simple models described above – they contain
more transport channels and more scatterers. A scattering matrix of such a complex system
is a combination of scattering matrices of individual scatterers and phase shifts acquired
by an electron traveling between the scatterers (these phase shifts are different for different
channels and form a special scattering matrix that is diagonal in the channel index). The
general principle, which we illustrate with a number of examples in the following, is that
output channels of one scatterer serve as input channels of others.

To characterize the transport, we may proceed as we did before: consider all possible
transmission processes in which an electron starts in a reservoir in a certain channel, scat-
ters to another channel at a scatterer, acquires a phase factor when getting to next scatterer,
and repeats this as many times as required to reach the same or another reservoir. The
amplitude of each process is again the product of the partial amplitudes, and we have to
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�Fig. 1.42. Interference results from combining scattering matrices. Three examples of combining considered
in this section: (a) general double-junction structure; (b) stack of scatterers considered with
transfer matrices; (c) a node allowing for multi-terminal geometry.

sum up all processes that begin in a certain channel α and end in a certain channel β. In
this way, we obtain the element sαβ of the whole scattering matrix. However, this is hardly
practical since the number of possible processes to consider increases exponentially with
the increase of different scattering possibilities. This makes the bookkeeping difficult. To
overcome these difficulties, we return to the scattering approach and learn how to combine
scattering matrices of individual scatterers into the scattering matrix of the whole structure.

The general solution of this problem is too involved and hardly instructive, so we con-
sider below only three specific examples. First, we consider the general multi-channel
double-junction setup. One can complicate this setup in two ways (Fig. 1.42). One can
stack more scatterers in series, or one can add more terminals and scatterers to the space
between the scatterers, making it a node. These three examples will reappear many times
in this book.

Let us start with the general double junction. Now each of the scatterers is characterized
by a scattering matrix with the block structure given in Eq. (1.34). Consider an electron
incident from the left of the left scatterer in channel n; the amplitude is 1 in this channel
and 0 in all other channels. Our goal is to determine the amplitudes tm in the outgoing
channels on the right side (see Fig. 1.42(a)). We consider the auxiliary amplitudes: those
in the channels leaving the left scatterer to the right (bLm) or leaving the right scatterer to
the left (bRm) and those in the channels coming to the left scatterer from the right (aLm) or
to the right scatterer from the left (aRm).

These amplitudes are related via scattering matrices of the scatterers, i.e.

bLm = tL
mn +

∑
l

r ′LmlaLl ;

bRm =
∑

l

rR
mlaRl ; tm =

∑
l

tR
mlaRl .

(1.116)



78 Scattering
�

This system of equations is not yet complete: We need to relate the amplitudes am and bm .
Since no scattering is assumed between the scatterers, these amplitudes differ by the phase
shifts only:

aRm = eiχm bLm , aLm = eiχm bRm . (1.117)

In other words, we can say that the space between the two scatterers is also described by
the “scattering matrix,”

ŝsp =
(

0 exp(iχ̂)
exp(iχ̂) 0

)
,

(
eiχ

)
mn
= eiχm δmn . (1.118)

Solving the resulting system of linear equations, we find tm . Identifying it with the element
tnm of the overall transmission matrix, we write

t̂ = t̂Reiχ̂
(

1̂− r̂ ′Leiχ̂ r̂Reiχ̂
)−1

t̂L. (1.119)

For one channel, Eq. (1.119) reduces to Eq. (1.105).
We learn from this result that the rules for combining scattering matrices are not simple:

the scattering matrix of a compound object is neither a product nor a sum of the scattering
matrices of its components; rather, it is a cumbersome combination. If we increase the
number of constituents, the complexity of the resulting expression increases beyond any
reasonable level. This provides a strong motivation for developing a semiclassical approach
to combining the multi-channel scattering matrices; as we show in the following chapters,
it is simpler and more intuitive.

Transfer matrices

One can add more scatterers to a double-junction system, stacking them in series. There
is a convenient trick we can use to find the resulting scattering matrix of the stack: the
transfer matrix technique.

Let us concentrate on one scatterer in the stack. It is fully described by either the scat-
tering or the transfer matrix. While its scattering matrix relates the amplitudes of outgoing
waves to the amplitudes of incoming waves (see Eq. (1.33)), its transfer matrix relates the
amplitudes of the waves right of the scatterer to the amplitudes of the waves left of the
scatterer – it “transfers” an electron across the scatterer from the left to the right.

To define it formally, we introduce four vectors of amplitudes: those incoming from
the left (right) aL(R) and those going out to the left (right) bL(R). In these notations, the
definition of the scattering matrix ŝ, Eq. (1.33), takes the following form:(

bL

bR

)
= ŝ

(
aL

aR

)
, (1.120)

and the transfer matrix M̂ is given by(
bR

aR

)
= M̂

(
aL

bL

)
. (1.121)
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To find the relation between the matrices, we introduce the block structure in M̂ , similar to
those in ŝ:

M̂ =
(

m̂1 m̂2

m̂3 m̂4

)
. (1.122)

In Eq. (1.120) we re-express aR, bR in terms of aL, bL to obtain

m̂1 = t̂ − r̂ ′ t̂ ′−1r̂ =
(

t̂†
)−1

; m̂2 = r̂ ′ t̂ ′−1;

m̂3 = −t̂ ′−1r̂ ′; m̂4 = t̂ ′−1.
(1.123)

Reversed relations express t̂ , t̂ ′, r̂ , and r̂ ′ in terms of m̂1−4. We no longer need their explicit
form.

Let us look at the next scatterer to the right. The incoming (outgoing) waves on its left
are, in fact, outgoing (incoming) waves on the right of the previous scatterer, bR → aL,
aR → bL. Then it follows directly from Eq. (1.121) that the matrix product of transfer
matrices of these two scatterers transfers the electron from the left to the right of the two.
This is valid in general – the transfer matrix of several objects in series is just a product of
their transfer matrices. For example, the transfer matrix of a double junction is a product of
the transfer matrices of the left scatterer, of the space between the scatterers (to be obtained
from the matrix ŝsp), and of the right scatterer. This simple combining property makes the
transfer matrices indispensable.

The scattering matrix is unitary as a consequence of the conservation of the number of
particles. The transfer matrix is not unitary, but it obeys a constraint that expresses the
conservation of flux. On the left of a scatterer, the flux I is given by

I =
(

a∗L
b∗L

)
σ̂z

(
aL

aL

)
, σ̂z =

(
1 0
0 −1

)
, (1.124)

where σ̂z is the Pauli matrix that labels left-going amplitudes with “1” and right-going
amplitudes with “−1.” The flux must be the same on the right of the scatterer, where the
amplitudes are transformed with M̂ . This implies that

M̂†σ̂z M̂ = M̂ σ̂z M̂† = σ̂z . (1.125)

We have learned in previous sections that the transport properties can be easily expressed
in terms of Tp, eigenvalues of transmission matrix square t̂† t̂ . It is advantageous to find
these eigenvalues directly from the transfer matrix without calculating t̂ explicitly. For
this purpose, consider the Hermitian matrix M̂† M̂ . Its eigenvalues Mp are real, positive
numbers. It follows from the conservation law, Eq. (1.125), that if Mp is an eigenvalue,
1/Mp is also an eigenvalue. To prove this, assume that up is an eigenvector correspond-
ing to the eigenvalue Mp, M̂† M̂up = Mpun . From Eq. (1.125), for any up we have
M̂† M̂σzup = σz(M† M̂)−1up. Since up is an eigenvector of M̂† M̂ , it is also an eigenvector
of the matrix (M̂† M̂)−1 with the eigenvalue 1/Mp. We thus conclude that the vector σzup

is an eigenvector of the matrix M̂† M̂ with the corresponding eigenvalue 1/Mp.
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Exercise 1.12. Derive Eq. (1.119) using the transfer matrix approach and find the
transmission eigenvalues Tp.

Furthermore, using Eqs. (1.123), we can prove the following relation between squares
of transmission and transfer matrices:(

M̂† M̂ +
(

M̂† M̂
)−1 + 2

)−1

= 1

4

(
t̂† t̂ 0
0 t̂ ′ t̂ ′†

)
. (1.126)

This implies the following relation between the eigenvalues:

Tp = 4

Mp + 2+ 1/Mp
. (1.127)

Scatterers connected to a node

Another way to sophisticate the double-junction setup is to add more terminals to the space
between the scatterers. This is the only way to proceed if we wish to model multi-terminal
nanostructures. The space between the scatterers becomes a common node connected to all
terminals. We will assume that each terminal is separated from the node by a corresponding
scatterer. Let us label the terminals by Greek indices. Each scatterer is described by its
own scattering matrix ŝα . The node – the space between the scatterers – is described by
the scattering matrix ŝ0. It has the same function as the matrix ŝsp for the double-junction
system. An important distinction is that we cannot find a natural diagonal form for ŝ0.
This was possible for ŝsp because we can ensure that each channel that starts from the left
scatterer ends at the right one. Now each channel that starts from terminal α can end at
any other terminal or get back. This situation can only be described with a general unitary
matrix, ŝ0.

Our goal is to calculate the scattering matrix of the compound system: the node with the
scatterers.

We proceed very much in the same way as for a double junction. Consider an electron
incident in lead α in transport channel n. For each lead β and each transport channel m,
we look at three amplitudes: that in the channel reflected outside, cβm , that coming from
inside, aβm , and that going inside, bβm . From the definition of the scattering matrix, we
have

cβm =
∑

l

t ′βmlaβl + δαβrβmn ;

bβm =
∑

l

r ′βmlaβl + δαβ tβmn .
(1.128)

To complete the system, we need to relate aβm and bβm . This is provided by the scattering
matrix of the node,

aβm =
∑
γ l

s0
βm,γ lbγ l . (1.129)
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Now, the matrices r̂α and t̂α are defined in the space of transport channels of the contact
α, whereas the matrix ŝ0 describes all transport channels in all reservoirs. In order to deal
with the matrices of the same dimensionality, we define the “big” matrices

rαn,βm = δαβrαmn ; r ′αn,βm = δαβr ′αmn ;

tαn,βm = δαβ tαmn ; t ′αn,βm = δαβ t ′αmn ,
(1.130)

and solve linear equations (1.128) and (1.129) to find

cβm = rβm,αn +
[
t̂ ′ŝ0

(
1− r̂ ′ŝ0

)−1
t̂
]
βm,αn

.

Identifying this with the corresponding elements of the scattering matrix, we find finally
that

ŝ = r̂ + t̂ ′ŝ0
(
1− r̂ ′ŝ0

)−1
t̂ . (1.131)

Exercise 1.13. Consider a beam splitter, Eq. (1.80), connected by three leads inter-
cepted by identical one-channel junctions with the scattering matrix in Eq. (1.39).
(i) Using Eq. (1.131), find the full scattering matrix of the nanostructure; (ii) sketch
the energy dependence of the transmission probability |t12(E)|; (iii) using the multi-
terminal Landauer formula, calculate the conductance matrix.

1.7 Time-dependent transport

We have studied in detail the dc electron transport in nanostructures and have understood
that it is determined by the voltages applied to the leads and the scattering matrix of the
nanostructure. If there is no possibility of changing the scattering matrix without making
a completely new nanostructure, quantum transport would be an extremely boring field, at
least from an experimental point of view.

Fortunately, such possibilities exist, and most frequently they are realized with gates –
bulk metallic electrodes that are electrically disconnected from the scattering region as well
as from the leads. The electrostatic potential of the gates can thus be varied independently
of that of the leads. We have already seen in Section 1.2 that a dc voltage applied to the
gates may change the width of a quantum point contact, thus affecting the number of open
channels. Generally, the gates affect the scattering matrix of a nanostructure. It is very
handy that the gates are electrically disconnected: there are no dc currents to the gates,
only to the leads. If there is no voltage difference between the leads, applying the voltage
difference to the gate does not drive the nanostructure out of equilibrium.

While a gate is not coupled to the scattering region electrically, it is always coupled
capacitively. The voltage on the gate induces some stationary charge distribution, both in
the nanostructure and the leads. If the leads and the scattering region were ideal conductors,
the charge would be accumulated in infinitesimally thin layer at the surface. This layer
would screen the electric field of the gate inside the conductors and there would be no
effect on the scattering properties. In reality, the charge induced is spread over finite width,
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�Fig. 1.43. Nanostructure with two leads and a gate. The large external capacitances C12, C1g, and C2g

provide paths for ac current, shunting the nanostructure at sufficiently high frequencies.

and the screening is not perfect. For bulk leads, this is irrelevant. For a sufficiently small
nanostructure, a penetrated electric field changes the scattering matrix. A convenient model
is that of a double junction. From all the charge induced by the gate, only a small part q
accumulated between the scatterers can affect the transport. This charge is proportional to
the gate potential Vg with respect to the ground, q = −CgVg, assuming grounded leads.
The coefficient Cg is the capacitance between the nanostructure and the gate. Since the
leads and the gate are bulk and the nanostructure is small, the charge induced in the leads
and the corresponding capacitances usually greatly exceed Cg (Fig. 1.43).

One tends to under-appreciate the ultimate convenience provided by a dc electric mea-
surement in the investigation of nanostructures. The nanostructure size is negligible in
comparison with the dimensions of the gates and leads. Nevertheless, we are sure that the
dc current goes through the nanostructure and is completely defined by its scattering prop-
erties. Full appreciation is only achieved when we understand that it is no longer convenient
if, instead of dc voltage, we apply ac voltage and try to measure ac current.

The point is that one cannot measure an ac particle current; rather, one measures elec-
tric current. At finite frequency all capacitors become conductors. A displacement current
I = Q̇ = CV̇ flows between the plates of each capacitor. If we look at Fig. 1.43, we see
that the external capacitances – those between the leads, and between the leads and the
gate – are large, matching the large size of these conductors. At a sufficiently high fre-
quency, the displacement currents dominate, and the current goes through the capacitors,
completely bypassing the nanostructure. Given the dc conductance G of the nanostruc-
ture, the frequency is estimated by comparison of displacement and particle current,
GV � ωCV , ωext � G/C . To make this practical, we take C � 1010 F corresponding to
the electrodes of a meter scale and 1/G ≡ 1 k� to estimate ωext � 107 Hz. This frequency
is low at quantum transport scale: the conductance of the nanostructure stays the same
as at zero frequency. It would be interesting to access the frequency dependence of the
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nanostructure conductance – this would supply more detailed information about the quan-
tum transport. However, the above reasoning shows that this is not possible. The measured
frequency dependence is determined by the inter-lead capacitances.

1.7.1 The ac current response

The macroscopic capacitances mentioned above can, in principle, be characterized accu-
rately. This allows us, in principle, to single out the small frequency-dependent response of
the nanostructure proper. Can one evaluate this response using the scattering matrix only?
A short answer is that the scattering approach only works if the frequency scale is small
in comparison with the scale Ei that sets the energy dependence of the scattering matrix.
For few-channel nanostructures, this energy scale can be readily associated with a typical
time that the electrons spend traversing the nanostructure. Indeed, if we recall our favorite
model of two scatterers in series (Section 1.6), the energy dependence scale is set by the
inverse time of flight between the scatterers. At frequencies below this scale, the response
does not depend on frequency and corresponds to the conductance given by the (multi-
terminal) Landauer formula. It is intuitively clear that if the frequency of the electric field
that drives the electrons through the nanostructure is higher than the inverse time of flight,
the driven electrons do not traverse the nanostructure; instead they oscillate inside without
getting to the leads.

One might think that it is enough to solve the time-dependent Schrödinger equa-
tion inside the nanostructure with the time-dependent potential incorporating the high-
frequency driving field, and consequently find the high-frequency particle current. It is far
more complicated than this, however. At a low frequency, we have frequently been helped
by the fact that the particle currents through any cross-section of the nanostructure are
the same and equal the electric currents. This is not automatically guaranteed at a finite
frequency. The electrons could have been accumulated between two cross-sections. The
conservation of the number of electrons, the continuity equation,

ρ̇(r , t)+ div j (r , t) = 0,

implies that J2(ω)− J1(ω) = −iωN (ω), where J1,2 are Fourier components of the particle
currents through the cross-sections 1,2 and N (ω) is the Fourier component of the number
of electrons accumulated between the cross-sections. This is not the only problem. At a
low frequency, the particle current did not depend on the details of the voltage distribution
across the nanostructure. Instead, it was completely defined by the overall voltage drop. At
a finite frequency, different voltage distributions with the same overall drop will result in
different particle currents.

Both problems are solved by careful consideration of capacitive response in the
nanostructure [23]. The accumulation of particles is the accumulation of charge; this
accumulated charge produces the electric field that tries to suppress the particle/charge
accumulation. This brings about yet another frequency scale, the inverse RC-time of the
structure, τRC � Cg/G. We stress that Cg � C , and thus the defined frequency scale
greatly exceeds ωext.
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Control question 1.17. What is this scale for a nanostructure of micrometer size and
1/G = 1 k�?

At frequencies much less than 1/τRC , the charge accumulation is strongly suppressed,
and the particle current is the same in all cross-sections and equals the electric current. The
distribution of voltage in the nanostructure is adjusted to ensure the absence of charge accu-
mulation. If the frequencies are still smaller than the energy scale Ei , the resulting current
response conforms to the scattering matrix result. Otherwise, the scattering approach fails
in general. At frequencies much greater than 1/τRC , the capacitive response dominates:
the electric currents mainly go via capacitors between the different parts of the nanostruc-
ture as well as via capacitors to the gates and leads. Substantial current goes to the gate
electrode(s).

The frequency dependence of particle current at ω � 1/τRC can be commonly regarded
as an inductive response. To illustrate this, let us consider free electrons subject to an exter-
nal uniform electric field E(t). The field accelerates the electrons so that their velocities
are v̇ = eE/m, resulting in a current proportional to E/iω. This is kinetic inductance, to
be distinguished from geometric inductance due to the time dependence of the magnetic
field generated by the current. We can readily apply this to a quantum point contact with
Nopen open channels to obtain I (ω) = GQ NopenvF/iωL , L being the constriction length.
We see that the inductive response approaches the order of conductance at ω � vF/L; this
frequency scale is indeed related to the typical traversal time L/vF. The above estimation is
valid for quasiballistic nanostructures, in which electrons experience few scatterings. The
estimation is modified if there are many scatterings: GQ Nopen is replaced by the nanos-
tructure conductance G, and L is replaced by a typical distance l traveled by the electron
between two scatterings (the mean free path). In this case, the inductive response only
becomes important at a frequency scale corresponding to the inverse of scattering time
vF/ l. We stress that in this case the scattering time is much shorter than the traversal time
through the whole structure. Thus the frequency response of nanostructures with many
scatterings, in particular diffusive ones, exhibit no features at the inverse traversal time.
This is in line with the absence of the energy dependence of the scattering matrix at the
corresponding energy scale.

The above reasoning can be summarized in a simple model describing the nanostructure
made of resistances, inductances, and capacitances to the gate and the leads (Fig. 1.44).
The ac voltage drops over the resistors, and inductors model the voltage distribution over
the nanostructure. An interesting model situation that we make use of is when the voltage
difference between the points of the nanostructure and one of the leads is negligible, so
the voltage drops between the other lead and the last scatterers of the nanostructure. As an
example, let us take a two-junction one-channel nanostructure and choose TL � TR � 1:
the voltage drops mainly at the left scatterer, while the voltage in the middle approximately
equals VR. The interesting aspect is that in this case the nanostructure can be treated within
the scattering approach. Since there are no voltage drops inside, the electrons traversing
the nanostructure do not experience an ac field and thus propagate at the same energy.
However, the scattering matrix may exhibit a significant energy dependence.
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�Fig. 1.44. Simple circuit illustrating ac responses of a nanostructure: resistive, inductive, and capacitive.

The reasoning of this subsection eventually discourages the detailed investigation of ac
current response in quantum transport. It is difficult to quantify this response, theoreti-
cally as well as experimentally. If the difficulty is overcome, the result is most likely to be
expressed by means of a simple circuit, as in Fig. 1.44, with no interesting physics.

It is much more interesting to study a dc transport in the presence of time-dependent
voltages and/or frequency-dependent noise. In both cases, the electric measurement is per-
formed at low frequency so that it takes no effort to single out the nanostructure response.
However, these phenomena are essentially non-linear since, in linear approximation, the
ac drive causes an ac response only. The phenomena and situations that occur in time-
dependent quantum transport are too many and diverse to be described within this book.
We concentrate in what follows on three concepts that, on one hand, are often encountered
in various circumstances, and, on the other hand, are of general importance.

1.7.2 Tien–Gordon effect

In 1963, Tien and Gordon [24] put forward a simple, intuitive, and unusually practical
description of quantum transport that is valid for a variety of two-terminal nanostructures
biased simultaneously by dc and ac voltages. This description relates the dc current in
the presence of ac voltage modulation with frequency � to I –V curves I (V ) of the same
nanostructure in the absence of ac modulation:

Idc(V ) =
∑

l

pl I (V + ��l/e) . (1.132)

Here the coefficients pl depend on the amplitude and shape of the modulation. For a sim-
ple harmonic signal Vac(t) = Ṽ sin�t , these read pl = J 2

l (eṼ /��). The I –V curve with
modulation is thus a linear superposition of dc voltage I –V curves shifted by quantized
voltages ��l/e with coefficients depending on the ac power.

Let us concentrate first on one lead only (for instance, the left one) and forget about
electron transfers to another lead. Let us apply a time-dependent potential V (t) to the lead.
If we neglect all other electrodes, the potential is spatially uniform, i.e. the same in all
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points of the lead. Without the applied potential, the time-dependent wave function of an
electron state with the energy E is given by

�(r, t) = exp

(
− i

�
Et

)
ψE (r), (1.133)

whatever the complicated function ψE may be. In the presence of the potential, the same
wave function becomes

�(r, t) = exp

(
− i

�
Et − ie

�

∫ t

V (t ′)dt ′
)
ψE (r). (1.134)

Thus, the uniform potential does not modify the coordinate dependence of any state, only
adding the extra phase to the usual term Et/� in its wave function.

We stress that this extra phase is the same for all electron states in the lead and thereby it
produces strictly no physical effect if we forget about electron transfers. Since the phase is
not a gauge-invariant quantity, we could easily produce such shifts by choosing a different
gauge. This is not surprising: a potential that is constant in space cannot affect the electron
motion.

Let us now assume that the time-dependent potential is periodic and let us expand the
resulting wave function in Fourier series. As an example, we take V (t) = V + Ṽ sin�t , a
constant plus a single harmonic. Using

exp

(
ieW

��
cos�t

)
=

∞∑
l=−∞

al exp(−il�t), al = Jl

(
eṼ

��

)
,

where Jl is the Bessel function of lth order, we find

�(r, t) =
∞∑

l=−∞
al exp

(
− i

�
(E + eV − ��l)t

)
ψE (r). (1.135)

The wave function given by Eq. (1.135) is made up of components with discrete energies
ε = E + eV − �l�.

The intensities of the components are given by the squares of Fourier amplitudes, and
the energy distribution is given by

PE (ε) =
∑

l

plδ(ε − E − eV + �l�), (1.136)

to be compared (Fig. 1.45) with PE (ε) = δ(ε − E) without the potential. The electron
can thus be found in a set of discrete energy bands labeled l; these are called side bands
provided l �= 0. The probabilities pl = |al |2, given by the square of the Bessel function,
are even in l and normalized:

∞∑
l=−∞

pl = 1. (1.137)

Note that Eqs. (1.135) and (1.137) are not restricted to the case of harmonic potential
V (t): they retain the same form for any periodic potential, with the only difference that
the probabilities pl are more complicated functions of the parameters characterizing the
potential.
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�Fig. 1.45. Development of side bands in the presence of ac voltage. (a) Side band weights pl for eṼ/��

ranging from 0 to 4.5 with step 0.5. (b) First 12 pl plotted versus eṼ/��; oscillations are clearly
visible. The curves are offset for clarity.

These side bands do not give rise to any physical effect unless we include the electron
transfers to the right lead not subjected to any potential. We now turn to electron tunneling
thus assuming Tp � 1. In this case, the electron transfers in either direction, channel, and
energy interval are rare independent events. As in Section 1.4, the corresponding statistics
in the low-frequency limit are generated by the characteristic function �(χ ),

ln��t (χ ) = �t
{(

eiχ − 1
)
�LR +

(
e−iχ − 1

)
�RL

}
. (1.138)

Here �LR(RL) are the tunneling rates from the left to the right (from the right to the left)
given, for dc voltage bias, by

�LR = 2s

∑
p

∫
Tp(E) fL(E)(1− fR(E))

dE

2π�
;

�RL = 2s

∑
p

∫
Tp(E) fR(E)(1− fL(E))

dE

2π�
.

The filling factor is given by the equilibrium Fermi function in the right lead, fR(E) =
fF(E), and is shifted by the voltage bias in the left lead fL(E) = fF(E − eV ). Here and in
the following we make a rather specific assumption concerning the transmissions: if they
depend on energy, this energy is always counted from the chemical potential in the right
electrode. This means that the contact is electrostatically coupled to the right lead only, so
that the voltage applied to the left lead does not change the shape of the scattering potential
in the contact.

What changes if we add an ac component to the applied voltage? Consider �RL first.
Electrons are transferred from the filled states on the right to the empty states on the
left. The overall transfer probability at a given energy in channel p is thus a product of
transmission probability Tp(E), the fraction of filled states on the right ( fR(E)), and the
fraction of empty states on the left. The latter would be just 1− fL(E) in the dc case. Now
it is more complicated. On the left, the electron can end up in any discrete energy band
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with index l. By doing so, it would absorb (l < 0) or emit (l > 0) l energy quanta ��:
photons forming the ac electric field. This is why the Tien–Gordon effect is sometimes
referred as photon-assisted tunneling. The chance of reaching a certain band is given by
pl , and the filling factor corresponding to this band is shifted by energy eV − ��l. Sum-
ming up all probabilities, we find that the fraction of empty states is given by 1− f̃L(E)
with f̃L(E) =∑

l pl fF(E − eV + ��l). The same reasoning for �LR also gives that fL(E)
should be replaced by f̃L(E).

Now we use the characteristic function given by Eq. (1.138) with the rates modified
to calculate dc current and low-frequency noise. Since the only effect of ac voltage is to
replace fL(E) by f̃L(E), the average dc current becomes

Idc = GQ

e

∑
p

∫
dE Tp(E)

[
f̃L(E)− fR(E)

]

= GQ

e

∑
lp

pl

∫
d E Tp(E)

[
fF(E − eV − ��l)− fF(E)

]
=

∑
l

pl I (V + ��l/e) ; (1.139)

this proves Eq. (1.132). To derive the final equality, we note that each term corresponding
to a given band l is, by virtue of Landauer formula, the dc current produced by voltage Vl =
V + ��l/e. In the same situation, it is easy to derive a similar formula for zero-frequency
current noise, S = 2〈〈Q2〉〉/�t ,

Sdc =
∑

l

pl S (V + ��l/e) , (1.140)

where S(V ) is likewise the noise at dc bias given by Eq. (1.60).

Exercise 1.14. (i) Using Eq. (1.139), show that Idc(V ) for a double junction with
TL, TR � 1 is a staircase-like curve. (ii) Calculate positions and heights of the steps,
considering separately the cases when ω = �, where �ω is the distance between the
transmission resonances, and ω �= �.

We have still assumed very small transmissions. It is remarkable that Eq. (1.139) and
Eq. (1.140) are in fact valid in the much more general situation of arbitrary transmission.
This can be verified by a rather tedious calculation. A straightforward hypothesis would be
that the whole counting statistics can be obtained with the same trick of shifting and adding
counting statistics at dc voltage. But this is not true: the counting statistics of ac transport
is much more complicated. To understand the reason for this, consider the contributions in
the characteristic function from a correlated transfer of two electrons, those arising in the
second order in Tp � 1. In the dc case, the correlation takes place if the electrons have the
same energy. In the presence of ac bias, the electrons starting in the right lead at energies E
and E + ��n can end up on the left with the same energy (although in different side bands)
and thus correlate. So, in general, the electrons are correlated even if they are at different
energies. Therefore, the transfers within different energy intervals are not independent. The
latter implies that Eq. (1.138) cannot be valid generally. These processes are negligible in
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�Fig. 1.46. Tien–Gordon modification of dc I–V curves (thick solid lines). (a) Sharp step of dc I–V curve at
V0 = 0.5�� is multiplied in the presence of ac voltage to be seen at any V = V0 + ��l/e.
Subsequent curves correspond to eṼ/��, ranging from 0 to 4 with step 1. (b) The same curves for
a less sharp step. The peculiarities are barely seen and dc voltage mainly results in overall
smoothing of the curve.

the tunneling limit Tp � 1, where the full statistics still corresponds to the Poissonian
expression in Eq. (1.138) with ac-modified rates.

Let us now discuss the general properties of the Tien–Gordon formulas Eqs. (1.132) and
(1.140). The resulting I –V curve is a sum of shifted dc I –V curves. This means that if
the dc curve has any isolated peculiarity, i.e. peak, step, cusp, etc., at voltage V0, there are
multiple peculiarities of the same sort at voltage positions V0 + ��l/e. The magnitude of
the original peculiarity (for instance, height of a step) is spread between the new ones with
the weights pl . As a result, the overall curve eventually becomes smoother (Fig. 1.46).
If the dc current I (V ) is linear in voltage (which is always the case if the transmission
eigenvalues do not depend on energy at the scale of eV ), the sum rule given by Eq. (1.137)
ensures no effect of ac voltage on dc current, Idc(V ) = I (V ) = GV .

The Tien–Gordon effect is essentially quantum-mechanical: � is involved in the con-
version between frequency and voltage or energy. The effect sets a quantum scale of ac
voltage, Ṽscale ≡ ��/e. If Ṽ � Ṽscale, few photons are emitted or absorbed in the course
of electron transfer. In the opposite limit, Ṽ � Ṽscale, the ac modulation is too slow to
provide quantum effects and is in fact adiabatic. The Tien–Gordon formula in this limit
becomes evidently simple, as follows:

Idc =
∫ 2π/�

0
I (V + Ṽ sin�t)

� dt

2π
, (1.141)

the time-dependent current adiabatically follows V (t), and the dc current is the average of
the time-dependent current over the period.

Control question 1.18. Assume that the current I (V ) is a sharp step function like that
shown in Fig. 1.46. What does the current Idc look like for Ṽ � Ṽscale? For Ṽ � Ṽscale?
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�Fig. 1.47. Tien–Gordon modification of voltage-dependent noise. (a) For kBT → 0 the noise curve has a cusp
at V=0. This cusp is multiplied in the presence of ac voltage. (b) If the cusp is smoothed by the
temperature (kBT = �� is taken), the ac voltage just smoothes it further. This results in increased
noise at zero dc voltage. The values of eṼ/�� corresponding to different curves are the same as in
Fig. 1.46.

At dc voltage bias, the current is always absent if the voltage is zero. Moreover, the
current is positive at positive bias and negative at negative bias, so that the positive power,
I V , is dissipated in the course of electron transport. This power is supplied by the voltage
source. These properties generally do not hold in the presence of an ac voltage. There can
be a net dc current at zero dc bias provided the dc I –V curve is not odd in voltage: the ac
current is rectified, as in a common diode. Consequently, dissipated power IdcV does not
have to be positive. This implies that the dc voltage source may gain energy in the process
of electron transfer. This energy comes from the absorption of an ac electromagnetic field.

The same picture of superimposed curves applies to the low-frequency noise,
Eq. (1.140). We note that even for energy-independent transmission eigenvalues the noise
is modified by ac voltage. At vanishing temperatures, S(V ) has a cusp at V = 0. The
corresponding peculiarities in Sdc(V ) are found at voltages �l�/e (Fig. 1.47).

1.7.3 Quantum noise

The current through a nanostructure is, in principle, time-dependent even at dc voltage
bias since it consists of transfers of individual electrons. This is manifested in frequency-
dependent noise, so we address this topic when discussing time-dependent transport.

We have discussed low-frequency noise thoroughly in Section 1.4. As discussed above,
the measurements at low and high frequencies are essentially different. At low frequencies,
noise can be readily measured as slow current fluctuations. The discussion implied that the
noise persists at high frequency as well, at least up to frequencies of the order of the attempt
frequency estimated for one channel. How do we measure high-frequency noise?

This question has a fundamental aspect. If the current were a classical fluctuating
variable I (t), the finite-frequency noise would be defined as

Sclass(ω) = 2
∫ ∞
−∞

dt e−iωt 〈I (τ )I (τ + t)〉 .
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For dc voltages, the correlator of currents at two different moments of time 〈I (τ )I (t + τ )〉
only depends on the difference t and does not depend on τ . It is convenient to set τ = 0.
The classical variables commute, so 〈I (0)I (t)〉 = 〈I (t)I (0)〉 = 〈I (0)I (−t)〉, which makes
classical noise real and even in frequency.

In reality, the currents are quantum operators, and noise is defined in terms of the average
product of these operators:

S(ω) = 2
∫ ∞
−∞

dt e−iωt
〈
Î (τ ) Î (t + τ )

〉
.

Unlike classical variables, the operators do not commute. This implies that, for a quantum
noise, S(ω) �= S(−ω).

How do we measure this noise? A classical detector sensitive to a certain frequency
would measure the square of the Fourier component (of the current) at this frequency and
is not able to distinguish between positive and negative frequencies. To measure quantum
noise, we need a quantum detector able to make such a distinction [25, 26].

Let us consider the transitions between the quantum states of a detector and concen-
trate on two states |a〉 and |b〉. We assume that this transition is induced by the weak
time-dependent perturbation proportional to the current, Ĥ = α|b〉〈a| Î (t)+ h.c. In this
situation, one uses the Fermi golden rule to find the transition rate:

�a→b = |α|
2

2�2
S

(
Eb − Ea

�

)
. (1.142)

We see that the transition rate is proportional to the noise at the frequency �ω = Eb − Ea

and thereby one can measure noise by measuring the transition rate. In its turn, the tran-
sition rate is measured at low frequency rather than at frequency ω; one may say that the
current fluctuations are thereby rectified. This is, for instance, how a photodiode works:
the high-frequency signal – light – causes transitions of electrons, which are detected as
a dc output current. Remarkably, this detector distinguishes between positive and negative
frequencies. If Eb > Ea , the detector absorbs energy from noise and senses positive fre-
quency. Otherwise, it emits energy and senses negative frequency. The classical noise is
even in frequency and thus causes equal transition rates in both directions: |a〉 → |b〉 as
well as |b〉 → |a〉.

As a warm-up, let us look at quantum noise of the nanostructure in equilibrium at tem-
perature T . This noise tries to bring the detector to the same temperature so that the
probability of finding the detector in a state with energy E would obey the Boltzmann
distribution, p(E) ∝ exp(−E/kBT ). For two states |a〉 and |b〉, this implies pa/pb =
exp (−(Ea − Eb)/kBT ). However, by virtue of detailed balance, the number of transi-
tions from |a〉 to |b〉 should be the same as that from |b〉 to |a〉, i.e. �a→b pa = �b→a pb.
Recalling Eq. (1.142), we see that

S(ω)

S(−ω)
= e−�ω/kBT ,

irrespective of the nature of the nanostructure.
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�Fig. 1.48. Frequency dependence of the non-equilibrium noise (Fano factor F = 0.5). Dashed line:
corresponding equilibrium noise (V = 0).

Another relation between S(ω) and S(−ω) is not restricted to equilibrium and stems
from the Kubo theory of linear response,

S(ω)− S(−ω) = 4�ω ReG(ω),

where G(ω) is the finite-frequency conductance expressing the current response of the
nanostructure on the ac voltage applied. These two relations determine the noise at
equilibrium as follows:

S(ω) = 4�ω ReG(ω)

exp(�ω/kBT )− 1
. (1.143)

At zero temperature, S is only non-zero at negative frequencies, S = −4�ω ReG(ω)×
θ (−ω) (Fig. 1.48). Indeed, an equilibrium nanostructure at zero temperature is in its lowest
energy state and therefore cannot give any energy to the detector – it can only absorb energy
from the detector to undergo a transition to an excited state.

Now we turn to non-equilibrium quantum noise. We first recall the zero-frequency
expression, Eq. (1.60), and present it in the following form:

S(0) = 2eGQ

∫
dE

∑
p

{
Tp(E)

[
fR(E)(1− fL(E))

+ fL(E)(1− fR(E))
]− T 2

p (E)
[

fL(E)− fR(E)
]2

}
. (1.144)

An actual calculation of the finite-frequency noise yields a similar expression, with some
energies shifted by �ω:

S(ω) = 2eGQ

∫
dE

∑
p

{
Tp(E)

[
fR(E)(1− fL(E − �ω))

+ fL(E + �ω)(1− fR(E))
]− Tp(E)Tp(E + �ω)

[
fL(E)− fR(E)

]
× [

fL(E + �ω)− fR(E + �ω)
]}

. (1.145)
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The first group of terms in square brackets describes one-electron transfers corresponding
to the rates �RL,LR discussed earlier in this section. It allows for an easy interpretation in
terms of photon-assisted tunneling. The first term in the group depicts the transmission of
an electron from the right with energy E . This event produces noise – an opportunity to
give out the energy �ω. Therefore, the energy in the left lead is shifted by this amount.
Similarly, the second term gives the transmission of the electron from the left, with energy
E + �ω, that ends up in the right lead with energy E . In the tunneling limit, the noise is
determined by these terms. Generally, the second group with T 2

p also contributes. These
terms correspond to the correlated transfer of two electrons through the scattering region,
the energies of the two differing by �ω. Their contribution is symmetric in frequency and
disappears in equilibrium.

Let us concentrate on the zero-temperature case and assume that the transmission eigen-
values as functions of energy do not change on the scale of frequency and voltage. Then
we have a simple expression for quantum noise (Fig. 1.48),

S(ω) = 2G

⎧⎪⎪⎨
⎪⎪⎩
−2�ω, �ω < −e|V |

(e|V | − �ω)− (1− F)(e|V | + �ω), −e|V | < �ω < 0
F(e|V | − �ω), 0 < �ω < e|V |
0, e|V | < �ω,

where all transmission eigenvalues are incorporated into the Fano factor F ≡∑
p Tp(1−

Tp)/
∑

p Tp and the conductance G. The noise at positive frequencies is restricted by
e|V |/�: The maximum energy quantum the detector can take from the noise is the work
from the voltage source upon transfer of a single electron through the nanostructure. There
is piecewise linear dependence on both frequency and voltage. The noise increases at large
negative frequencies, indicating the increasing ability of the nanostructure to absorb bigger
energy quanta.

Exercise 1.15. (i) Find an argument to explain that Eq. (1.145), for finite temper-
ature and a one-channel quantum point contact with T = 1, reproduces Eq. (1.143).
(ii) Deduce the equilibrium noise given by corrections to the quantum noise expression
assuming a small reflection coefficient, R = 1− T � 1.

1.7.4 Adiabatic pumping

There are numerous examples of pumping and pumps in technology and nature, ranging
from bicycle pumps to human hearts. To give a definition, a pump produces a net flow
(of water, air, charge, etc.) in the absence of constant drive (water level or air pressure
difference) by cyclic action. For electric transport, this means a dc current induced by an
oscillatory perturbation in the absence of dc voltage. As we saw at the beginning of this
section, this perturbation can be an applied ac voltage: in this case, the ac voltage may be
rectified to produce a dc current.

This is not the only way to realize pumping in quantum transport. Instead of applying
the voltage to the terminals, one may change the scattering matrix of the nanostructure
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by applying the ac voltage to the gates. We consider adiabatic pumping, implying that
the frequency of this perturbation is the smallest of all possible frequency scales. In
fact, this frequency must be smaller than the inverse time for an electron to traverse the
nanostructure.

Our starting point is the relation between the charge transferred to a certain transport
channel j upon a slow variation of the scattering matrix, ŝ → ŝ + δŝ,

δQ j = − ie

2π

(
δŝ ŝ†

)
j j

. (1.146)

This is a short-hand relation for the case where we can disregard the energy dependence
of the scattering matrix. If this is not the case, one integrates this expression over energies,
with the weight given by the energy derivative of the filling factor, ∂ f (E)/∂E . The charge
depends only on the variation of the scattering matrix and does not depend on how fast this
matrix has been charged: this expresses the adiabaticity.

To evaluate the current flowing to a certain terminal α, we take the time derivative and
sum over all channels that belong to this terminal. Thereby we relate the current to the time
derivative of the scattering matrix [27],

Iα = ie

2π

∫
dE

∂ f (E)

∂E

∑
γ

Tr ˙̂sαγ (E)ŝ†
αγ (E), (1.147)

where, as in Section 1.5, ŝαγ (E) is a block of the scattering matrix that describes
transmission of electrons from terminal γ to terminal α.

To understand these relations better, let us inspect two specific cases. First, let us con-
sider only one terminal supporting one channel; in this case, electrons are reflected ideally
from the scattering region. The scattering matrix is just a single number presenting the
reflection amplitude: ŝ = r = exp(iθ ). The charge in the channel at a certain length L is
given by

Q = Le
∫ ∞
−∞

dkx

2π
f (kx ) = ekFL/π . (1.148)

The change of the reflection phase θ is equivalent to the x-shift of the scatterer, resulting in
effective elongation δL of the channel. To see this, we recall that the wave function reads
ψ(x) ∝ exp(ikFx)+ exp(−ikFx) exp(iθ ). Thus, δθ = 2kFδL and

δQ = e

2π
δθ = − ie

2π
δs s†, (1.149)

in full accordance with Eq. (1.146). The relation between the number of particles and the
reflection phase at Fermi energy is known as the Friedel sum rule in solid state physics.

Secondly, let us recover the Landauer formula from Eq. (1.147). Let us apply voltages
Vα to the terminals. As we have seen at the beginning of the section, the wave functions in
each lead acquire phase factors exp(iφα), φα ≡ −(e/�)

∫ t Vα(t ′)dt ′. We consider vanish-
ing voltages so that the phases change adiabatically and can be treated as time-independent
ones. The scattering matrix relates the wave amplitudes in incoming and outgoing chan-
nels. Since each amplitude has acquired the terminal-dependent phase factor, the scattering
matrix changes as follows:

ŝαβ → ei(φα−φβ )ŝαβ . (1.150)
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For the time derivative of the scattering matrix we therefore obtain

˙̂sαβ = ie

�
(Vβ − Vα)ŝαβ .

Substitution into Eq. (1.147) immediately yields

Iα =
∑
β

GαβVβ ,

with conductances given by the Landauer relation, Eq. (1.73). These two checks convince
us of the validity of Eq. (1.146)

Let us now consider pumping in a two-terminal one-channel conductor described by
the scattering matrix given in Eq. (1.39). If we vary adiabatically the three independent
parameters T = 1− R, θ , and φ, the charge transferred to the left (right) terminal becomes

δQL(t) = −δQR(t) = e

2π
{Rδθ (t)+ T δφ(t)} , (1.151)

where δθ and δφ are shifts of the corresponding parameters. As we have seen, the shift
of θ arises from the displacement of the scatterer in the channel (δθ = 2kFδL); the first
term simply describes this effect. If R = 1, the scatterer does not leak and the left side of
the channel becomes effectively longer to accumulate extra charge δQL, while the right
side becomes shorter, losing the same charge. If R �= 1, the scatterer leaks, producing a
counterflow of charge; this reduces the accumulated charge. As we see from Eq. (1.150),
the variation of φ corresponds to the voltage applied across the scatterer. The second term
in Eq. (1.151) therefore describes the current produced by this voltage. We have already
studied this effect at the beginning of the section so we assume that φ is not varied. We
are ready to pump. Let us vary R and θ in a cyclic fashion. The instant values of these
two specify a point in the parameter space of the scattering matrix, which, in our case,
is a two-dimensional manifold (R, θ ). The point moves upon varying the parameters. All
points swept in the course of cyclic motion make a closed contour ∂C in this space. To
visualize this, let us plot it in convenient coordinates X = √R cos θ , Y = √R sin θ . Since
R ≤ 1, all possible scattering matrices fall into the unit circle X2 + Y 2 ≤ 1. The net charge
pumped over a period is given by

Q = e

2π

∫ period

0
dt R(t)

dδθ

dt
= e

2π

∮
∂C

R dθ

= e

π

∫
C

dX dY = e

π
AC , (1.152)

where AC is±area enclosed by the contour ∂C , where the plus (minus) sign is for a contour
swept counterclockwise (clockwise). The net charge pumped thus has a straightforward
geometrical meaning.

Control question 1.19. Can you see from the derivation why there is no charge
transferred if only T is varied?

There are contours and contours. The contour that comes to mind first is simply a circle
of radius

√
R. Its area is given by AC = πR, and the charge eR is pumped over a period.
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�Fig. 1.49. Different pumping cycles of a one-channel scatterer plotted in convenient coordinates (see the
text). The net charge pumped over the period is given by the area enclosed by the closed contour
(a) presenting the pumping cycle. The pumping requires variation of two independent
parameters: contour (b), corresponding to a one-parameter cycle, encloses no area. Cycle (c) is
forbidden because the corresponding contour encloses the origin (the cycle would give rise to a
net shift of the scatterer). Cycle (d), which is very similar to cycle (c), is allowed.

This looks suspicious: if R = 1, no charge is ever transferred via the scatterer. The point
is that this simplest contour is not legitimate. Indeed, variation of the phase θ means that
the scatterer moves. If

∮
dθ �= 0, as for the contour under consideration, there is net dis-

placement of the scatterer over the period and it does not return to the same position. The
action is thus not cyclic: this is not a pumping! For a true cycle, there is no net phase shift,∮

dθ = 0. In other words, a legitimate contour may not encircle the origin. We stress that
the charge can only be pumped if at least two parameters of the scattering matrix – for
example, R and θ , or any two independent combinations of those – are varied. Otherwise,
the scattering matrix will pass each point in parameter space twice during the cycle (going
back and forth). The contour presenting the cycle (contour (b) in Fig. 1.49) would be just
a curve enclosing no area – no charge is pumped.

This is also true in the many-channel case. Consider a multi-channel multi-terminal
scattering matrix that depends on time via two parameters X1,2(t) (they can be, for instance,
potentials of the gate electrodes). The charge transferred to channel j upon variation of
these parameters is (Eq. (1.146))

δQ j = − ie

2π

[(
∂ ŝ

∂X1
ŝ†

)
j j
δX1(t)+

(
∂ ŝ

∂X2
ŝ†

)
j j
δX2(t)

]
. (1.153)

As above, let us consider a contour ∂C in two-dimensional space (X1, X2) drawn in the
course of the cyclic motion of the parameters. By virtue of Green’s formula of vector
analysis,

∮
∂C

F dl =
∫

C
dX1 dX2

(
∂F2

∂X1
− ∂F1

∂X2

)
,

which is valid for an arbitrary vector field F ≡ (F1, F2). The charge pumped over the cycle
is again given by the integral over the area C enclosed, i.e.
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δQ j = e

π

∫
C

K j (X1, X2)dX1 dX2;

K j (X1, X2) ≡ Im

(
∂ ŝ

∂X1

∂ ŝ†

∂X2

)
j j

.
(1.154)

Thus, the charge pumped also has a geometric meaning for the multi-channel case. The
detailed structure of the scattering matrix is incorporated into the functions K j (X1, X2),
which are called curvatures.

Exercise 1.16. Consider a beam splitter that is symmetric with respect to the exchange
of leads 1 and 2. It is characterized by the following scattering matrix:

ŝ =
⎛
⎜⎝
√

1− 2T
√

T eiθ
√

T eiθ ′√
T eiθ

√
1− 2T

√
T eiθ ′√

T eiθ ′ √
T eiθ ′ √

1− 2T eiχ

⎞
⎟⎠ ,

which is unitary provided the constraints 2
√

T (1− 2T ) cos θ + T = 0 and√
T exp(iθ )+√1− 2T (1+ exp(2iθ ′ − iχ )) = 0 are fulfilled. This leaves only

two independent parameters, T and χ . Consider the pumping cycle, which is a small
circle in the T –χ plane: (T − T0)2 + χ2 = (δT )2, δT < T0. The circle surrounds the
point T = T0, χ = 0. Calculate the charge pumped into all three leads during the cycle.

In the course of adiabatic pumping the parameters vary in a smooth, continuous fashion.
Intuitively, one expects that the response to this variation varies continuously as well. How-
ever, the response in our case is the charge transferred – a discrete quantity. This is why
the adiabatic pumping is always noisy. At non-zero temperature, this is obvious: the noise
arises from thermally activated electrons going back and forth. In addition, the pumping
itself produces noise that persists even at zero temperature. The low-frequency counting
statistics of pumping can be conveniently expressed in terms of the probabilities pn of
transfering n elementary charges per cycle [28]. We illustrate this with small cycles where
the change of the scattering matrix is small. In this case, the electron transfers are rare,
p0 ≈ 1, p±1 � 1, and we have a bidirectional Poissonian statistics given by Eq. (1.138)
with �LR,RL = p±1/period. Let us specify a small cycle for our one-channel model by
R(t) = R + r cos(�t), θ (t) = η cos(�t +	), r , η � 1. The probabilities are given by

p±1 = T

(
r2

R
+ η2 R ∓ 2rη sin	

)
. (1.155)

The current and the noise are given by I = e(p1 − p−1)/period and S = 2e(p1 +
p−1)/period, respectively; they are plotted in Fig. 1.50. Whereas the current essentially
depends on the phase shift, the noise does not. If R and θ vary in phase or in anti-phase,
the current vanishes. Interestingly, the pumping can be optimized by tuning the parameters
to r = ηR and 	 = −π/2. In this case, p−1 = 0 and all electrons are transferred in the
same direction.
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�Fig. 1.50. Example: current and noise for a small pumping cycle described in the text. The horizontal lines
represent noise, which does not depend on �. The curves denote the current, which is an
oscillating function of �. The parameter η differs for dashed (η = 0.05) and solid (η = 0.2)
curves, respectively. All other parameters are the same: T = R = 0.5, r = 0.1.

1.8 Andreev scattering

In this section, we consider electron transport in nanostructures which are connected not
only to the reservoirs in the normal state, but also to one or several reservoirs that are in the
superconducting state. Electron properties of superconductors differ from those of normal
metals, as explained in Appendix B. The energies of the quasiparticle states are separated
from the Fermi energy by the superconducting gap �. Let us count energy measured from
the Fermi level. If a piece of a normal metal is brought into a contact with a superconductor,
an electron with an energy above� can enter the superconductor, where it will be converted
into a quasiparticle of the same energy. This, however, does not work at E < � since there
are no quasiparticles. Therefore, for voltages and temperatures below �, no current may
flow to the superconductor according to the scattering approach considered in the preceding
sections.

1.8.1 Andreev reflection

Charge transfer may proceed, however, by a different mechanism: an electron coming from
a normal metal to a superconductor can be reflected back as a hole. While this process
conserves energy, it does not conserve charge in the normal metal: since the charges of an
electron and a hole are opposite, a charge deficit of 2e arises. This implies that a Cooper
pair with charge 2e has been added on the superconducting side. This transfers the charge
from the normal metal into the superconductor. Let us note that the momentum of the hole
�kh is almost equal to that of the electron, �kh = �ke − 2E/vF (Fig. 1.51). Since |E | �
EF, kh ≈ ke ≈ kF. However, the velocity of the holes, vh = �

−1(∂E/∂kh) is opposite to
that of electrons; holes with kh > 0 actually move away from the superconductor. This
process is called Andreev reflection [29].
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�Fig. 1.51. Andreev reflection: an electron coming from a normal (N) metal to a superconductor (S) is
reflected as a hole with the same energy and approximately the same momentum.

Let us elaborate on the quantitative description of Andreev reflection. In the presence of
superconductivity, an excitation in a metal is conveniently represented by a two-component
wave function, the components describing electrons (ψe(r)) and holes (ψh(r)). The wave
function obeys the Bogoliubov – de Gennes (BdG) equation, which is a generalization of
the Schrödinger equation:(

Ĥ �eiϕ

�e−iϕ −Ĥ∗

)(
ψe(r)
ψh(r)

)
= E

(
ψe(r)
ψh(r)

)
. (1.156)

Here the energy is counted from the Fermi level, so that Ĥ = Ĥ0 − EF, Ĥ0 =
−(�2/2m)(∇ + ieA(r)/�c)2 +U (r) being the Hamiltonian for electrons in the absence of
any superconductors. As explained in Appendix B, the superconductivity mixes electrons
and holes. With these cross-terms, the Hamiltonian becomes a 2× 2 matrix. The cross-
terms are off-diagonal elements of the matrix and are complex numbers with modulus �
and phase ϕ. These values are position-dependent and vanish in the normal part of the
nanostructure. It is enough for our purposes to assume that � and ϕ are constant in the
superconducting reservoir, with � being equal to the superconducting energy gap far in
the reservoir.6

To understand the meaning of Eq. (1.156), let us first consider a normal metal, in
which the Hamiltonian is diagonal and the equations for the electron and hole compo-
nents separate. The solutions are plane waves ψe,h(r) ∝ exp(ikr). Substituting this into Eq.
(1.156), and considering only excitations close to the Fermi surface, |E | � EF, we find
k = kF ± E/�vF, where ± represents electron and hole components, respectively. Note
that the momenta of both electron-like and hole-like solutions can be either above or below
kF. This is in conflict with the conventional definition of quasiparticles in a normal metal,

6 Strictly speaking, the values of �(r) and ϕ(r) actually depend on the solutions of BdG equations at all
energies. Consequently, the superconducting pair amplitude � is suppressed in the region adjacent to the nor-
mal reservoir. However, the suppression does not play an important role and can be disregarded for model
purposes [30].
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where the quasiparticles with k > kF (k < kF) are called electrons (holes). We can eas-
ily sort out this problem for the normal metal. Indeed, BdG equations allow for solutions
with positive energies, E = |ξ |, where we have defined ξ = �vF(k − kF), as well as for
the solutions with negative energies, E = −|ξ |. The latter are not independent from the
former; they are obtained from each other by a flip of components. Thus, BdG equations
contain a double set of solutions. The solutions with negative energies would represent
electrons with k < kF and holes with k > kF – contradicting the conventional definition
of a quasiparticle. To conform to the conventional definition of electrons and holes in a
normal metal, we retain the solutions with positive energies only.

Let us now look at the solutions of Eq. (1.156) in a superconductor. Substituting ψe,h in
the form of plane waves and assuming�, E � EF, we find that the corresponding energies
are given by

E =
√
ξ2 +�2, ξ = �vF(k − kF). (1.157)

For E > �, quasiparticles can freely propagate in a superconductor and have an energy
spectrum given by Eq. (1.157) rather than E = |ξ |. For E < �, quasiparticles in a bulk
superconductor do not exist.

We consider next an ideal (no scattering) contact between a normal metal (x < 0) and a
superconductor (x > 0). Since the transport channels are not mixed, it suffices to consider
one transport channel n (this channel index will be suppressed where it does not lead
to the confusion). Let us look at the solutions of the form ψe,h(x) ∝ ψ̃e,h(x) exp(ik(n)

F x)
that correspond to an electron propagating to the right and a hole moving in the opposite
direction. The envelope function ψ̃(x) varies at a space scale that is much bigger than the
electron wavelength and satisfies the following BdG equation:(−i�vF d/dx �(x)eiϕ

�(x)e−iϕ i�vF d/dx

)(
ψ̃e(x)
ψ̃h(x)

)
= E

(
ψ̃e(x)
ψ̃h(x)

)
. (1.158)

In the normal metal, we take the wave function in the form

ψ̃(x < 0) =
(

eix E/�vF

rAe−ix E/�vF

)
, (1.159)

which describes the incoming electron and the outgoing Andreev-reflected hole. The hole
amplitude acquires an extra factor rA: the amplitude of Andreev reflection.

For E < �, there are no solutions extending to the bulk of the superconductor. There
is, however, an evanescent solution falling off away from the normal reservoir. This is
given by

ψ̃(x > 0) = C

(
fe

fh

)
e−x
√
�2−E2/�vF , (1.160)

where C is an arbitrary constant and the coefficients fe,h are to be found from Eq. (1.158)
(the BdG equation) and the normalization condition | fe|2 + | fh|2 = 1.

Control question 1.20. What are the explicit forms of fe,h?

The typical scale of penetration into the superconductor – the superconducting correla-
tion length – is of the order �vF/�� λF and diverges at the threshold energy E =�.
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Now let us find the amplitudes rA and C matching both solutions at x = 0. The deriva-
tives do not have to be matched since the effective BdG equation contains the first
derivatives only. The amplitude of Andreev reflection is given by

rA(E) = eiχ = e−iϕ

(
E

�
− i

√
�2 − E2

�

)
, χ = − arccos

(
E

�

)
− ϕ. (1.161)

As expected, the electron is fully Andreev reflected (|rA|2 = 1). The phase of the outgoing
hole is shifted by χ with respect to the phase of the incoming electron. The phase shift
between the amplitudes of an incoming hole and an outgoing electron, calculated similarly,
equals χ̃ = − arccos(E/�)+ ϕ.

Exercise 1.17. (i) Write down the solutions of the BdG equation, Eq. (1.158), for
energies above the threshold, E > �. (ii) Matching these solutions with the solutions
in the normal metal, show that the amplitude of Andreev reflection is given by

rA = e−iϕ

(
E

�
−
√

E2 −�2

�

)
. (1.162)

(iii) Note that |rA|2 < 1 and describe the corresponding scattering process. (iv) Find the
asymptotic expression for the probability of Andreev reflection for E � �.

1.8.2 Andreev conductance

We now consider a more general situation in which a nanostructure is placed between the
normal and superconducting reservoirs. The nanostructure in the normal state is described
by a scattering matrix ŝ(E) that generally depends on energy. Quite amusingly, the same
scattering matrix determines the properties of Andreev reflection, which is now combined
with the common “normal” reflection of electrons or holes coming to the nanostructure
from either side. The scattering theory for Andreev reflection was first put forward by
Blonder, Tinkham, and Klapwijk [31].

To start with, we have to find the scattering matrix for electrons and holes. For electrons
at energy E > 0, this is obviously ŝe(E) = ŝ(E). The holes at the same energy involve
states below the Fermi level, and their scattering is related to ŝ(−E). However, as we
have seen, an electron and a hole at the same momentum have opposite velocities, so the
incoming electrons correspond to outgoing holes and vice versa. To account for this, one
replaces ŝ by ŝ−1. In addition, the holes obey a time-reversed Hamiltonian: to account for
this, the scattering matrix must be transposed. Therefore,

ŝh(E) = (ŝ(−E)−1)T = ŝ∗(−E). (1.163)

Control question 1.21. Which property of the scattering matrix guarantees
Eq. (1.163)?
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�Fig. 1.52. Andreev conductance. The amplitude of the Andreev equation to the normal (N) lead from the
nanostructure adjacent to a superconductor (S) is contributed by the processes that differ in the
number of electron trips between the nanostructure and superconductor.

To simplify the notation, we consider a one-channel scatterer. For this setup, re = r (E),
rh = r∗(−E), te = t(E), and th = t∗(−E).

Let us calculate the amplitude of the Andreev reflection assuming E < �. We use the
same approach as in Section 1.6 to sum the amplitudes of various processes that convert
the incoming electron to the outgoing hole (Fig. 1.52). The simplest process involves the
electron transmission through the nanostructure (amplitude te), Andreev reflection from
the superconductor (the phase factor exp(iχ ), see Eq. (1.161)) and transmission through
the nanostructure in the backward direction as a hole (t ′h). Thus, the total amplitude of this
process is given by ra0 = tet ′h exp(iχ ). The next process (Fig. 1.52) involves the reflec-
tion of the hole (amplitude r ′h). The hole is Andreev-reflected (exp(iχ̃)), the resulted
electron is reflected again (r ′e), and is converted back into a hole in the superconductor
(exp(iχ )). Finally, the hole transmits through the nanostructure. The extra steps mentioned
result in ra1 = ra1r ′heiχ̃r ′eeiχ . More complicated processes differ in the number of elec-
tron trips between the nanostructure and the superconductor, so that ran = ra0(r ′heiχ̃r ′eeiχ )n .
Summing them up, we obtain the total amplitude of Andreev reflection:

rA =
∞∑

n=0

ran = tet ′heiχ

1− r ′er ′hei(χ+χ̃ )
. (1.164)

Let us disregard the energy dependence of the scattering matrix: as we have seen, this is
plausible if the energy scale associated with the dwell time in the nanostructure exceeds
the energies involved, i.e. eV or �. In this case, the scattering matrices for electrons and
holes are complex-conjugate.

To simplify, let us assume a low voltage eV � �. We note that χ + χ̃ =
−2 arccos(E/�); since the relevant energies E are of the order of eV , one can approximate
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χ + χ̃ = −π . The Andreev reflection coefficient, RA = |rA|2, is given by

RA = T 2

(2− T )2
, (1.165)

and is unambiguously determined by T , the transmission eigenvalue of the corresponding
transport channel for the nanostructure in the normal state. The normal reflection coeffi-
cient is RN = 1− RA. For ideal contact (T = 1), we recover the earlier result RA = 1,
RN = 0. Note that the result in Eq. (1.165) is a consequence of quantum interference. A
“classical” calculation (summing up the probabilities |ran|2 rather than the amplitudes)
would yield a wrong result.

To calculate the conductance, we note the analogy with normal scattering. Indeed, the
fraction RN of incoming electrons is normally reflected; these electrons do not contribute to
the current. The Andreev reflection process (probability RA) results in the charge transfer
of 2e (rather than e in the normal case). Thus, the Andreev conductance becomes GA =
2GQ RA. The same reasoning actually reproduces the whole counting statistics of Andreev
transport: it is given by the Levitov formula with e→ 2e and T → RA.

Exercise 1.18. Determine the noise in Andreev transport. Express the result in terms
of the Fano factor (see Eq. (1.64)). What is the upper boundary for the Fano factor?

For many transport channels, one obtains a sum over the channels:

GA = 2GQ

∑
p

(RA)p = 2GQ

∑
p

T 2
p

(2− Tp)2
. (1.166)

Now we can analyze this formula, employing the notion of the distribution of transmission
eigenvalues.

Exercise 1.19. Assume that the nanostructure is diffusive so that the distribution of
transmission eigenvalues is given by Eq. (1.43). Express the Andreev conductance in
terms of the conductance in the normal state.

If the nanostructure is of a tunnel type, Tp � 1, we end up with GA = GQ
∑

p T 2
p /2.

Andreev conductance is thus proportional to the second power of the transmission eigen-
values. This reflects the fact that Andreev reflection requires two transmission events, one
of an electron and one of a hole. Note that in the normal state the conductance is much
higher, being proportional to the first power of Tp. For an ideal contact (Tp = 1), the sit-
uation is reversed: GA = 2G, the factor of 2 reflecting the fact that Andreev reflection
transfers double charge.

1.8.3 Andreev bound states

Consider now a superconducting junction: a nanostructure placed between two supercon-
ductors that have the same superconducting gap � but differ in their phases. We assume
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that the nanostructure is sufficiently short, not manifesting the energy dependence of its
scattering matrix at energy scale �. Under these conditions, it is not important whether
the nanostructure is made of a normal metal or a superconductor, or even an insulator.
The absence of energy dependence implies that the electrons spend a very short time τd

in the nanostructure; by virtue of the Heisenberg uncertainty principle, this time is too
short to allow a response to the superconductivity inside the nanostructure, τd�� �. The
scattering matrix of the nanostructure is thus its scattering matrix in the normal state.

Let us consider an electron in the nanostructure at sufficiently low energy. It will
experience Andreev reflections trying to get to either superconductor. The resulting hole
experiences the same problem: it cannot escape the nanostructure and is converted back
to an electron in the course of the escape attempt. We conclude that an electron/hole in
the nanostructure must perform a so-called finite motion. Quantum mechanics teaches us
that any finite motion of a particle gives rise to discrete energy levels. Indeed, a nanos-
tructure between the superconducting reservoirs kept at different phases gives rise to a set
of bound states for quasiparticles – Andreev bound states. Let us calculate the energies of
these states.

First consider again a single channel. The scattering matrix of the nanostructure relates
the amplitudes of outgoing and incoming states with respect to the nanostructure,(

be

bh

)
=

(
ŝ 0
0 ŝ∗

)(
ae

ah

)
, (1.167)

where the two components of the amplitude vectors correspond to the left and right side of
the nanostructure, respectively,

be =
(

bLe

bRe

)
; bh =

(
bLh

bRh

)
,

and similarly for the incoming amplitudes ae, ah. The scattering of holes, as mentioned, is
given by the complex-conjugate matrix ŝ∗. The nanostructure does not convert electrons to
holes; this is why the matrix appearing in Eq. (1.167) is block-diagonal.

Andreev reflection from the superconductors converts electrons to holes and vice versa,
yielding the following complementary relation between a and b:(

ae

ah

)
=

(
0 ŝeh

ŝhe 0

)(
be

bh

)
, (1.168)

with

ŝeh =
(

eiχ̃L 0
0 eiχ̃R

)
; ŝhe =

(
eiχL 0

0 eiχR

)
.

The Andreev reflection phases are given by Eq. (1.161): χL,R = −ϕL,R − arccos(E/�),
χ̃L,R = ϕL,R − arccos(E/�), ϕL,R being the superconducting phases of the left and right
reservoirs.

Control question 1.22. Explain the structure of the matrix in Eq. (1.168).
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�Fig. 1.53. (a) The energies of Andreev bound states versus ϕ for Tp, ranging from 0.1 (upper curve) to 1
(lowest curve) with step 0.1. (b) Corresponding superconducting currents (the upper curve at
positive ϕ corresponds to Tp = 1).

Two systems of linear equations, Eqs. (1.167) and (1.168), have non-zero solutions only
if the product �̂ of the 4× 4 matrices in these relations has an eigenvalue 1. Indeed, if one
excludes a from the equations, the equation for b reduces to the eigenvalue problem �̂b =
b, and solutions exist only if det(�̂− 1̂) = 0. Transforming this condition, one obtains the
energy of the bound state:

E = �
√

1− T sin2(ϕ/2), (1.169)

where T is the transmission eigenvalue corresponding to the scattering matrix ŝ, and ϕ =
ϕL − ϕR is the phase difference across the junction [32].

Control question 1.23. Can you trace how Eq. (1.169) emerges from the conditions
imposed on the Andreev phases χL,R?

For many channels, an Andreev bound state appears in each channel with the energy
given by

E p = �
√

1− Tp sin2(ϕ/2). (1.170)

The energy is modulated by the phase difference ϕ. For ϕ = 0, E p = � for all channels.
In this case, the states are not really bound: they are at the edge of a continuous quasiparti-
cle spectrum in the superconductor. The minimum value �

√
1− Tp is achieved at ϕ = π

(Fig. 1.53).

1.8.4 Josephson effect

So far we have considered the bound states for excitations. For example, an excitation can
be a quasiparticle cooled down in the vicinity of the nanostructure: it will be trapped in the
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bound state. An important property of superconductivity is the correspondence between
the properties of the excitations and those of the ground state of the superconductor. This
is manifested in the symmetry of the BdG equation with respect to positive and negative
energies. The solutions at negative energies can be associated with the filled levels con-
tributing to the ground-state energy, which is the sum of single-particle excitation energies
En , Eg = −∑

En .7

Let us now concentrate on the ground-state energy of the system. It is contributed to by
all excitation energies: those corresponding to propagating quasiparticles above the super-
conducting gap and those of the bound Andreev states. Only the latter contributions depend
on the superconducting phase difference between the reservoirs ϕ. We concentrate on this
phase-dependent part:

E(ϕ) =
∑

p

E p(ϕ) = �
∑

p

√
1− Tp sin2(ϕ/2). (1.171)

We will see now that the phase-dependent energy gives rise to a persistent current in the
ground state – a supercurrent. Let us slowly vary the phase difference. The energy shift
per unit time is given by

dE

dt
= ∂E(ϕ)

∂ϕ

dϕ

dt
.

The global gauge invariance (see Appendix B) dictates that the time derivative of the super-
conducting phase is simply the potential of the corresponding superconductor, ϕ̇ = 2eV/�.
The energy change per unit time is the power dissipated at the junction. On the other hand,
this power is the product of current and voltage. We conclude that the current in the junction
is given by

I (ϕ) = −2e

�

∑
p

∂E p

∂ϕ
= e�

2�

∑
p

Tp sinϕ√
1− Tp sin2(ϕ/2)

. (1.172)

The supercurrent – or Josephson current – is an odd periodic function of the phase differ-
ence, and vanishes at ϕ = 0. In particular, for a tunnel junction Tp � 1, the supercurrent
reads I (ϕ) = Ic sinϕ, where the amplitude Ic = (e�/2�)

∑
p Tp = (π�/2e)GN, where

GN is the conductance of the junction in the normal state. Here, Ic is the maximum pos-
sible supercurrent achieved at ϕ = π/2. Historically, the first superconducting junctions
were tunnel ones. Usually, the term Josephson junction implies the above relation, between
the current and phase, that corresponds to the Josephson energy EJ(ϕ) = −EJ cos ϕ, EJ =
�Ic/2e. In principle, any nanostructure can serve as a Josephson junction; the current–
phase characteristics essentially depends on the transmission eigenvalues. For example, a
quantum point contact (Tp = 1) gives I (ϕ) = Ic sin(ϕ/2), Ic = (π�/e)GN and maximum
current is achieved at ϕ = π (Fig. 1.53).

7 Intuitively, one would include the spin degeneracy in the state count. This would be wrong: the sum is
over orbital states. The reason is that the BdG equations provide a double set of solutions, as mentioned in
Section 1.8.1.
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�Fig. 1.54. The dc SQUID layout: two Josephson junctions with phase differences ϕ1,2. The difference,
ϕ1 − ϕ2, is determined by the flux � through the SQUID loop.

Exercise 1.20. Find the maximum supercurrent for a one-channel Josephson junction
with transmission coefficient T . At which value of the phase is this current achieved?

The Josephson effect is essentially quantum-mechanical. We have already seen some
examples of phenomena in which quantum mechanics plays an important role, such as the
transmission through a double junction or the Andreev reflection from a single interface;
in those cases, we were always able to present a classical analog of the effect to give
them some meaning. In contrast, the Josephson effect is formulated in a way that cannot
be interpreted classically: in classical physics, the phase of the wave function does not
exist, and therefore a supercurrent cannot occur. The Josephson effect is one of the best
illustrations of the concepts of quantum mechanics.

Josephson junctions are applied in many areas where a sensitive measurement of
magnetic fields is an issue. Such a measurement is performed with a superconducting quan-
tum interference device (SQUID). In the conceptually simplest version (dc SQUID), the
device is a large superconducting loop with two arms intercepted by Josephson junctions
(Fig. 1.54). The current through the device is the sum of the currents through both junc-
tions, I = I1(ϕ1)+ I2(ϕ2), where we denote the phase drops at the junctions by ϕ1 and ϕ2,
respectively.

Let us consider a magnetic field B applied perpendicular to the plane of the SQUID.
The magnetic field modifies the phase drops at the junctions making them unequal. Indeed,
the global gauge invariance requires that the phase and the vector potential always come in
the combination ∇ϕ − (2e/�c)A. Let us integrate this combination over the SQUID loop
(the integration contour is given by the dashed curve in Fig. 1.54). In doing so, we can
neglect the phase gradients in the bulk superconductors, but we must keep the phase drops
at the Josephson junctions. This yields∮

dr (∇ϕ − (2e/�c)A(r)) = ϕ1 − ϕ2 + 2π	/	0,

where we have used the Stokes theorem transforming the contour integral of the vector
potential to the area integral of the field – the magnetic flux 	 through the SQUID loop,
	0 = π�c/e being the flux quantum (see Section 1.6). The phase shift along the closed
contour is zero: ϕ1 − ϕ2 = −2π	/	0.
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Now we calculate the Josephson current in the SQUID, assuming equal tunnel Josephson
junctions, I = Ic(sinϕ1 + sinϕ2). Given the relation between the phase drops, we obtain

I = 2Ic cos

(
π	

	0

)
sin

(
ϕ2 + π	

	0

)
. (1.173)

If we fix the total current I , the only independent parameter that can adjust to the cur-
rent is the phase drop ϕ2. However, this is only possible if the current I does not exceed
Imax = 2Ic| cos(π	/	0)|. Otherwise, the current is not a supercurrent and a finite volt-
age is measured on the SQUID. The area of the loop can be quite large, even of meter
scale. Since the SQUID measures 	, the total flux through the whole area of the loop, it is
sensitive to astonishingly small magnetic fields.

Control question 1.24. Which magnetic field significantly changes the critical current
of a SQUID with dimensions 1 m× 1 m?

Exercise 1.21. Consider a SQUID in which one of the junctions is of tunnel origin,
Ib(ϕ) = Ib sin ϕ and another is characterized by Is(ϕ) to be determined from the mea-
surement of the SQUID critical current. Assume Ib � Is. (i) Show that, in zeroth order
in Is/Ib, the critical current does not depend on the flux. At which value of ϕb is this
critical current achieved? (ii) Compute the critical current in the next order and explain
how to recover Is(ϕ) from the measurement.

1.8.5 Superconducting junction at constant voltage bias

If a constant voltage V is applied across a superconducting junction, the phase difference
increases linearly with time, ϕ = (2eV/�)t . The junction between the two superconductors
reacts to the constant voltage in a manner very different from junctions in the normal state:
it produces an ac current (ac Josephson effect) that oscillates at the Josephson frequency
2eV/�.

If the voltage is low, eV � �, the origin of the ac current is easy to comprehend. The
linear sweep of the phase gives rise to the oscillating motion of the energies of the Andreev
bound states. The ac current is given by Eq. (1.172), with ϕ = (2eV/�)t . There is no dc
current. The latter would imply the energy dissipation. However, the energies of all bound
states return to the same position over a time period π�/eV .

If the voltage eV is comparable with the value of the superconducting gap �, the situa-
tion is more complicated. Since the Josephson frequency is comparable with the energies
of the states, we cannot expect that the energies adiabatically follow the time-dependent
phase. Besides, there is a dissipation: the junction creates quasiparticles above the gap that
leave the junction region carrying the energy away. Thus, we expect to observe a dc current.

To see how this works, let us first consider an open channel between two superconduct-
ing electrodes biased at finite constant voltage V . As already noted, the current does not
actually depend on the spatial distribution of the voltage. We can assume that the voltage
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�Fig. 1.55. Elementary scattering processes in a voltage-biased open channel between two superconductors.
Electrons (holes) acquire energy eV when crossing the dashed line from the left (right).
Quasiparticle states are available in the shaded regions. (a) If eV > 2�, a quasiparticle can be
transferred from the left to the right in one shot. (b) Alternatively, it may be Andreev-reflected
and get to the left at a higher energy. (c) Multiple Andreev reflections are required for such
processes at eV � �. The process shown transfers five elementary charges and is enabled at
5eV > 2�.

drops over an arbitrary point of the channel (given by the dashed line in Fig. 1.55). When an
electron (hole) crosses the point from the left to the right it increases (decreases) its energy
by eV . It decreases (increases) the energy by the same amount while crossing from the
right to the left. Since the energies are changing in the process of transmission, we cannot
separate positive and negative energies in BdG equations as we did before and we consider
quasiparticle energies of both signs. Then, in both left and right electrodes only quasi-
particle states with |E | > � are available (Fig. 1.55). Let us consider an electron coming
from the left superconducting electrode with an energy E slightly below −�. It crosses
the point where the voltage drops so it arrives at the right electrode with energy E + eV .
If E + eV > �, it may leave the junction, reaching the quasiparticle states available at
this energy. This requires eV > 2�. Thereby, the electron from negative energies has been
transformed into a quasiparticle at positive energies. This can be seen as the generation
of two quasiparticles of two positive energies: one with energy −E > � and another with
E + eV > � (Fig. 1.55 (a)).
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Control question 1.25. Compare the energies of the initial and final states. What
charge is transferred through the junction in the course of the process?

Alternatively, the electron does not leave the junction but instead is converted into a
hole at the superconducting electrode. The hole crosses the voltage drop from the right
to the left, increasing its energy and arriving at the left electrode with energy E + 2eV .
If it escapes to the left electrode, we have quasiparticles with energies −E and E + 2eV ,
and the charge transferred through the junction equals 2e. Otherwise, it is converted into an
electron of the same energy. This brings us back to the beginning of the process: an electron
incoming from the left. We conclude that Andreev reflections can help a process to result in
any number of charges transferred, although only two quasiparticles are created. Since the
probabilities of Andreev reflections (Eq. (1.162)) quickly decrease with increasing energy,
the probabilities of the processes transferred with multiple charge are small.

This is quite different if the voltage is small, eV � �. Let us again consider an incom-
ing electron with energy E slightly below −�. If E + eV > −�, there are no available
quasiparticle states in the right lead, and the electron has to turn into a hole by Andreev
reflection. The hole arrives at the left lead with the slightly larger energy E + 2eV < �,
so Andreev reflection is the only option. The process of subsequent Andreev reflections
continues until the energy of an electron or a hole exceeds �. We conclude that each such
process transfers at least 2�/eV elementary charges. Generally, at eV � � we find the
processes that differ in the charge transferred, en. The n-process involves n − 1 Andreev
reflections and starts at threshold voltage eVn > 2�/n. The onset of each process pro-
duces a singularity in I –V curves at the corresponding voltage. These singularities –
subgap structure at I –V curves – form an experimental signature of these multiple Andreev
reflections.

The quantitative theory should include the scattering between the superconducting
electrodes. We sketch the general approach below [33, 34].

The setup is the same as the one used to calculate Andreev bound states. The important
difference is that the amplitudes of the electrons and holes are not at the same energy:
instead, the time-dependent amplitude is a superposition of all energies separated by
eV , i.e.

ψ(t) =
∑

n

ψne−i(E+neV )t/�.

Each of the amplitudes ψn can describe incoming or outgoing electrons or holes. These
amplitudes are related by the scattering matrix of the nanostructure,(

be

bh

)
=

(
ŝ 0
0 ŝ∗

)(
ae

ah

)
, (1.174)

where, in distinction from Eq. (1.167), the amplitudes are shifted in energy by eV to
incorporate the voltage drop,

be =
(

bLe,n

bRe,n+1

)
; bh =

(
bLh,n

bRh,n−1

)
,

and similarly for a.
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�Fig. 1.56. I–V curves of a single-channel superconducting junction. The transmission eigenvalue Tp increases
from 0.1 (lowest curve) to 1 (upper curve) with step 0.1 except for the curve below the upper
curve, for which Tp = 0.98. Vertical dotted lines indicate threshold voltages V1–V6.

Let us consider a scattering state for the case when a quasiparticle with energy E < −�
comes from the left superconducting electrode. At the left superconductor, the energy of
electrons and holes stays the same. The corresponding complementary relation for a, b
does not mix the amplitudes of different energies (different n),

(
aLe,n

aLh,n

)
=

(
0 r (n)

A

r (n)
A 0

)(
bLe,n

bLh,n

)
+

(
u(E)
v(E)

)
δn0, (1.175)

where the Andreev reflection amplitudes r (n)
A are taken at corresponding energies En =

E + eV n and are given by Eqs. (1.161) and (1.162). We disregard the dependence of
the amplitudes on the superconducting phase since the superconducting phase differ-
ence is already taken into account by the voltage drop between the electrodes. We can
thus conveniently set both ϕR,L to 0. The second term in Eq. (1.175) accounts for the
incoming quasiparticle at energy E (hence n = 0). We learn from Appendix B that a
quasiparticle excitation is a superposition of an electron and a hole, with u, v = ((1±√

1− (�/E)2)/2)1/2 being the superposition coefficients. The amplitude of the incom-
ing quasiparticle enters the equations for an and bn as a free term. Similar relations hold at
the right superconductor. Since no quasiparticle comes from the right, one has simply

(
aRe,n

aRh,n

)
=

(
0 r (n)

A

r (n)
A 0

)(
bRe,n

bRh,n

)
. (1.176)

The scattering state is found by solving the resulting (in principle, infinite) system of
equations for an , bn . The solution is cumbersome and has to be analyzed numerically. Each
scattering state, with quasiparticles coming either from the left or from the right at all
negative energies, provides a contribution to the current that is obtained by integration over
all energies. The result is a function of the ratio eV/� and of the transmission coefficient
Tp in the channel, Ip = (GQ�/e)I(eV/�, Tp) (Fig. 1.56). The total current is the sum
over all transmission channels.
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We note that I is strongly suppressed below the voltage 2�/e if Tp � 1. Indeed, the
charge transfer below this threshold requires at least one Andreev reflection. To perform
this, the electron or hole should traverse the scattering region one more time. The proba-
bility of this is suppressed by a factor Tp. Similarly, the charge transfer below Vn requires
n Andreev reflections and is suppressed by a factor T n

p . At large voltages eV � �, the
superconductivity is not important for charge transfer, and current approaches its value in
normal metal, I � Tp(eV/�). In principle, there are singularities in I –V curves at each
threshold voltage Vn corresponding to the onset of a process with charge en transferred.
The singularities are clearly visible up to Tp � 0.7. In the tunneling regime, the singulari-
ties are steps (see Section 3.7.2, Eq. (3.102)) that are increasingly rounded upon increasing
Tp. The actual singularities that survive the rounding, even at Tp → 1, are jumps of the
second derivative of the current and are not visible with the naked eye.

Beside the dc current, the scattering approach allows us to find the harmonics Im of
the ac current at multiples of the Josephson frequency, I (t) =∑

m Im exp(2eV tm/�) [34].
Indeed, each scattering state contributes to the time-dependent current, given by

I (t) ∝
(
|ψe(r, t)|2 − |ψh(r, t)|2

)
,

where ψe,h are electron and hole components of the amplitude. Substituting the time-
dependent amplitudes, we see that

Im ∝
∑

n

(
b∗Le,nbLe,n+m − b∗Lh,nbLh,n+m − a∗Le,naLe,n+m + a∗Lh,naLh,n+m

)
.

The harmonics also exhibit subgap singularities at V = Vn .
It is clear that the processes involving a transfer of multiple charges should lead to inter-

esting and non-trivial full counting statistics; this has been analyzed in Ref. [35] in detail.
As we have seen, at low voltages and transmissions, an elementary process of charge trans-
fer involves the transfer of many (� 2�/eV ) elementary charges. To make an analogy, the
electrons do not traverse the nanostructure as separate independent vehicles; rather, they
are organized in long trains of � 2�/eV coaches. This enhances the Fano factor, and
accounts for its large values. This enhancement has been confirmed experimentally [36]
for nanostructures with a well controlled set of the transmissions Tp.

1.8.6 Nanostructure pin-code: experimental

We have already mentioned many times that the scattering and transport properties of a
nanostructure are completely determined by the full set of transmission eigenvalues, known
as the “pin-code.” It is very difficult to crack the pin-code in the course of measurement in
the normal state since the Landauer conductance gives only the sum of all Tp. On the con-
trary, the I –V curves of a superconducting junction are reasonably sensitive to individual
eigenvalues Tp. The brilliant experiment described in Ref. [37] demonstrates how one can
extract all the relevant transmission eigenvalues just by measuring the I –V curves.

The experiments were performed with superconducting break junctions. In the break
junction technique [38], a long and narrow wire is deposited on an elastic substrate. In the
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�Fig. 1.57. Experimental determination of nanostructure pin-code [37] (a) Break junction: experimental
layout. (b) A fit of I–V curves in the superconducting state reveals the individual transmission
eigenvalues. (i) T1 = 0.997, T2 = 0.46, T3 = 0.29; (ii) T1 = 0.74, T2 = 0.11; (iii) T1 = 0.46,
T2 = 0.35, T3 = 0.007; (iv) T1 = 0.0025.

course of the experiment, the substrate is bent so that the wire stretches and eventually
breaks; hence the name “break junctions.” The substrate bending can be controlled with
high precision, so that it is possible to stabilize the system immediately before the wire
breaks. At this moment, the narrowest place of the wire is only several atoms wide, and the
voltage drops at narrowest place. Thereby one creates an atomic-size nanostructure with
a few open transport channels. One monitors the conductance during the experiment and
tunes the nanostructure to any desired value of G.

The samples used in Ref. [37] were suspended aluminum microbridges (Fig. 1.57), 2 μm
long and 100 nm thick, constricted in the middle to approximately 100 nm. This is still
too wide for a few-channel junction, and further narrowing of the constriction has been
achieved with the break junction technique. From both sides, the bridge opens to large
(dozens of microns long) pads glued to an elastic organic (polyamide) substrate. The sub-
strate was mounted on a bending mechanism, which was adjusted in such a way that a
micron-long displacement of the mechanism resulted in a well controlled change in the
distance between the clamping points of the bridge of only 0.2 nm. The samples were
first broken and then brought back into contact to form a nanostructure with a few open
transport channels. The experiment was performed at ultra-low temperature (∼ 1 mK, well
below the temperature of the superconducting transition). In the course of the experiment,
the clamping points were slowly pushed apart. This diminishes, and effectively reduces the
number of, transmission eigenvalues: the conductance goes down. The setup was stable
enough that the deformation could be stopped at any point (corresponding to a particular
set of transmission eigenvalues) and the dc current versus the applied voltage could be
measured at this point.

Fitting the I –V curves using a sum of contributions of individual transport channels,
one can very precisely determine all the relevant transmission eigenvalues. The number
of transmissions Tp taken into consideration is determined by the accuracy of the fit, and
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the authors were able to resolve up to the five biggest transmission eigenvalues. Examples
of similar fits are presented in Fig. 1.57, where we see the precision of the fits and of the
transmission eigenvalues extracted.

The importance of these experiments on superconducting break junctions goes far
beyond an experimental check of validity of the theory of non-equilibrium transport in
Josephson junctions. The experiments provide an experimental justification of the basics
of scattering theory of quantum transport.

1.9 Spin-dependent scattering

Electrons have spin 1/2. This implies that the electron wave function is a two-component
quantity – a spinor, given by

ψ(r) =
(
ψ↑(r)
ψ↓(r)

)
,

where ψ↑(↓) correspond to the states with spin “up” (“down”) with respect to a given
axis. Spin is a physical quantity, very much like electric charge or momentum. It has three
components x , y, and z, making a pseudovector. The corresponding operator is expressed
in terms of the pseudovector of 2× 2 Pauli matrices σ̂ , Ŝ = �σ̂/2 that act on spinors.
Frequently, electron spin can be disregarded, as we have been doing so far. In the absence
of interactions that explicitly depend on spin, the wave functions ψ↑ and ψ↓ are identical.
The only fact to take into account is that the number of electron states is twice that without
spin. In quantum transport, this only leads to the factor 2s in the conductance quantum. In
this section, we consider circumstances in which the spin-dependent interactions cannot
be disregarded. This may happen due to three factors: spin-splitting in a magnetic field,
interaction with an exchange field in ferromagnets, and spin-orbit interaction. All these
factors can be incorporated into the scattering matrix, making it spin-dependent.

Zeeman splitting

A magnetic field B does many things to electrons: it produces phase shifts (described
in Section 1.6), and it also tries to bend electron trajectories into Larmor circles. These
orbital effects will be disregarded in this section. The magnetic field also interacts with
electron spin, so that the spin-dependent Hamiltonian reads Ĥ = gμB B · σ̂/2. Here the
combination of fundamental constants μB = e�/2mc is the Bohr magneton, and g = 2 for
electrons in a vacuum. In semiconductor heterostructures, the value of this g-factor may
be significantly modified and even change sign; for example, g = −0.44 for electrons in
bulk GaAs. Thus, the energy of the state with the spin projection parallel (antiparallel) to
the magnetic field is shifted up (down) by gμB B/2. This is known as Zeeman splitting.
To understand the effect of this splitting on quantum transport, let us recall the model of
an adiabatic wave guide (Section 1.2) that describes a quantum point contact. Within each
transport channel n, the electrons with the spin projection ±�/2 (spin up and spin down)
feel different effective potential energies, given by
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E↑,↓ = En(x)± gμB B

2
.

At first, it seems that the Zeeman splitting does not affect transport since in a uniform mag-
netic field the final term does not depend on the coordinate. However, if we concentrate on
a given total energy E , electrons with different spin projections see potential barriers of
different heights. It is easy to find the energy window in which a certain transport channel
is open for spin-down electrons but closed for spin-up electrons. If the chemical poten-
tials of the leads exist in this window, the quantum point contact (QPC) works as a spin
filter – it only lets through the electrons with spin down (see Fig. 1.58). If, under these
circumstances, one changes the number of open channels with gate voltage, one sees extra
plateaus arising at half-integer values of the conductance GQ/2, 3GQ/2, . . . This is the
simplest illustration of spin-dependent scattering.

Exercise 1.22. Find the quantitative form of the QPC linear conductance versus gate
voltage in the presence of a spin-polarizing magnetic field. Use Eq. (1.23), assuming a
linear dependence of the barrier height W1 on the gate voltage, W1 − μ = α(V (0)

g − Vg)

(V (0)
g is the gate voltage corresponding to the middle of the first conductance step in the

absence of the magnetic field). How big should the magnetic field be to enable the
resolution of GQ/2 plateau?

Ferromagnets

A uniform magnetic field favors a certain projection of spin, for example spin down in
all parts of the sample – in all reservoirs as well as the scattering region. It is much more
interesting if different projections of the spin are favorable in different regions. This could
be achieved with a magnetic field that is directed differently in different regions. However,
such a magnetic field is difficult to create, and besides, the Zeeman energy for magnetic
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spin-up electrons. Thicker lines: occupied states; dotted line: h = 0.

fields available remains numerically small, not exceeding 10 meV. Instead, one can use fer-
romagnets (more precisely, ferromagnetic metals). In ferromagnets, there is a preferential
direction for electron spins – that of the magnetization of the ferromagnet. This results from
the spontaneous breaking of time-reversal symmetry. Indeed, a magnet reversed in time has
the opposite magnetization. Electrons with different spin projections on the magnetization
axis have different energies corresponding to the same quasimomentum, E↑(k) �= E↓(k).
There is a spin-splitting similar to Zeeman splitting. The energy difference is called the
exchange field since it arises from an exchange interaction between electron spins, and its
k-dependence is frequently disregarded. The exchange field may be as high as 1 eV, sev-
eral orders of magnitude greater than the Zeeman splitting due to the magnetic field in the
magnet.

The exchange field h is a pseudovector quantity directed along the magnetization. Com-
bining magnets with different orientations of the magnetization and/or normal metals with
no exchange field, one achieves the situation where favorable spin directions are different
across the nanostructure.

Exercise 1.23. Let us consider a simplified model of a ferromagnetic metal with a
parabolic spectrum and k-independent exchange field.

E↑,↓(k) = �
2k2

2m
± |h|

(see Fig. 1.59). (a) Calculate the density of electrons of different spin directions, n↑,↓,
at given μ making use of Eq. (1.2). (b) The total density of electrons remains fixed,
independent of the exchange field. Express the chemical potential in terms of the den-
sity and the exchange field. (c) At which exchange field are all electrons polarized in
the same direction? Express this field in terms of μ0, the chemical potential at zero
exchange field.
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Spin-orbit interaction

There is another spin-dependent interaction which, in contrast to Zeeman splitting and
ferromagnetism, does not require breaking of time-reversal symmetry, and therefore in
principle persists in all materials. This interaction takes the following form:

ĤSO = μB

2c
(σ̂ · E × v̂), (1.177)

where v ≡ −(i�/m)∂/∂ r is the velocity operator and E is the electric field originating
from either the crystal lattice potential or various defects in the nanostructure. This inter-
action has a simple interpretation: special relativity implies that an electron moving with
velocity v � c in the electric field “sees” an extra magnetic field B = (v × E)/c that pro-
vides Zeeman splitting of its spin states. Note, however, that this simple interpretation
produces a wrong factor of 2 in the above relation.

Without spin-orbit interaction, electron states in a crystal solid can be regarded as plane
waves (Bloch states) with a certain wave vector k. Surprisingly, the spin-orbit interaction
brings almost no change to this picture. The reason for this is time-reversal symmetry,
which requires E↓(k) = E↑(−k). Thus, if the crystal lattice possesses inversion symmetry,
the energy does not change upon inversion of k, E(k) = E(−k). From this it follows that
E↓(k) = E↑(k), so that spin-orbit interaction does not lead to any spin-splitting and the
electron states remain double-degenerate. If we fill a spin-up state with an electron, the
state remains occupied – spin is conserved despite the presence of spin-orbit interaction.

This drastically changes if spin-orbit interaction is combined with scattering. In this
case, the scattered electron not only changes its momentum, but also can change – flip – its
spin. The probability of the flip is proportional to the strength of the spin-orbit interaction.
We see that spin-orbit interaction is a relativistic effect that must be weak for electrons
moving with typical velocities v � 10−2c. The probability of the flip contains a small
factor (v/c)4. This small factor is compensated by Z4, where Z is the atomic number of
the solid constituents. We see that the flip probability is negligible for solids made up of
from light atoms, approaches 1/2 for heavier atoms, and is about 10−4 for elements from
the middle of the periodic table.

Thus spin-flip scattering does not conserve spin, so that electrons in bulk materials keep
their spin only for a typical time τsf. Since the flip probability is small, this time is much
longer than the typical scattering time τ it takes an electron to forget the direction of its
momentum.

We should note that spin-orbit interaction is not the only source of spin-flip scattering.
Electrons can flip spin while scattering on localized magnetic moments, which we discuss
in detail in Section 6.6.2.

Exercise 1.24. For a GaAs-based two-dimensional electron gas, the spin-dependent
part of the Hamiltonian is given by (z ⊥ the 2DEG plane)

ĤSO = α(σ̂x ky − σ̂ykx )+ β(σ̂x kx − σ̂yky).

The first term is called the Rashba interaction and originates from the asymmetry of the
electron confinement in the z direction. The second term, the Dresselhaus interaction,
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originates from the absence of inversion symmetry in the bulk GaAs. Show that at given
kx ,y this Hamiltonian amounts to an effective exchange field. Find the direction of the
field and associated spin-splitting energy.

1.9.1 Scattering matrix with spin

In the presence of a spin-dependent interaction, the elements of the scattering matrix
depend not only on the incoming and outgoing transport channels p, p′, but also on the
spin projections α,β =↑,↓ of incoming and outgoing states: sp′,β;p,α . If we disregard spin-
dependent interactions, as we did in previous sections, sp′,β;p,α = sp′;pδαβ ; the scattering
conserves the spin projection and does not depend on it. The scattering matrix can be
presented with the aid of Pauli matrices,

sp′,β;p,α = s(0)
p′,pδαβ + s p′,p · σ βα , (1.178)

where ŝ(0) and the pseudovector ŝ are matrices in the space of transport channels.
Unitarity and time-reversal symmetry impose several conditions on the spin dependence

of the scattering matrix. Let us start with the spin-orbit interaction when the time reversibil-
ity holds, so that, for any permitted process, the time-reversed process is also permitted
and has the same amplitude. A normal wave function (for example, of spinless particles) is
complex-conjugated under time-reversal. It is more complicated with spinors: under time
reversal a spinor ψ is transformed to ψ tr :

ψ tr = ĝψ∗, ĝ =
(

0 −1
1 0

)
. (1.179)

This is the only transformation that assures that the spin operator flips sign under time
reversal, S→−S. Consider now an initial state characterized by the spinor ψi, which is
transformed to the final one, ψf, by means of the scattering matrix ŝ, ψf = ŝψi. The time-
reversed process is characterized by the same amplitude, which means ψ tr

i = ŝψ tr
f . Using

Eq. (1.179) we obtain

ψ∗i = −ĝŝ ĝψ∗f ⇒ ψi = −ĝŝ∗ĝψf. (1.180)

Taking into account the unitarity of ŝ, we come to the symmetry relation

ŝT = −ĝŝ ĝ. (1.181)

In Pauli notation, this reads as follows:

s(0)
p′,p = s(0)

p,p′ ; s p′,p = −s p′,p. (1.182)

Note that if the scattering matrix does not have any spin structure (ŝ = 0), Eq. (1.181)
simply states that it is symmetric – the condition we have used throughout the preceding
sections. From these symmetries, one proves that transmission eigenvalues – eigenvalues
of t̂† t̂ – remain doubly degenerate in the presence of a spin-orbit interaction. This is anal-
ogous to the well known Kramer theorem in quantum mechanics, which states that the
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levels – the eigenvalues of a Hamiltonian – remain doubly degenerate with respect to spin
provided time reversibility holds.

If the spin-dependent part of the scattering matrix arises due to either a magnetic or
an exchange field, its time-reversal properties are exactly opposite, since ŝ is proportional
to this field and the field changes sign upon time reversal. If spin-dependent scattering is
weak, as is usually the case, ŝ(0) � ŝ, and the whole spin-dependent part of the scatter-
ing matrix can be presented as a sum of two independent contributions ŝ = ŝ(SO) + ŝ(M),
where, by definition,

s(M)
p′,p = s(M)

p′,p; s(SO)
p′,p = −s(SO)

p′,p . (1.183)

Another set of conditions arises from the unitarity of the scattering matrix. If ŝ(0) � ŝ,
the spin-independent part ŝ(0) is approximately unitary. As for the spin-dependent part, in
this limit it satisfies

ŝ(0)† ŝ + ŝ†ŝ(0) = 0

for all cases: spin-orbit interaction, exchange field, and magnetic field. This yields a rela-
tion between the real and imaginary parts of ŝ, generally speaking, not a simple one. To
make it simple, one presents the (unitary) scattering matrix as a matrix exponent of a
Hermitian matrix, ŝ = exp(iĤ ). If we separate Ĥ into a spin-dependent part Ĥ (0) and a

spin-independent part Ĥ , the unitarity requires that Ĥ = Ĥ
†
, and time reversibility yields

H (M)
p′,p = H (M)

p′,p; H (SO)
p′,p = −H (SO)

p′,p . (1.184)

We illustrate the above relations using a one-channel scatterer. Without spin, the scat-
tering matrix is a symmetric 2× 2 matrix. With spin, it becomes a 4× 4 matrix, or,
equivalently, is characterized by four 2× 2 matrices ŝ(0), ŝ. We concentrate on the case
of weak spin-dependent scattering, with ŝ(0) given by

ŝ(0) =
(

r t
t r ′

)
.

The spin-orbit part can be presented as follows:

ŝ(SO) = ξ t

(
0 i
−i 0

)
,

with real vector ξ � 1. Note that the reflection matrix does not depend on the spin, so the
electrons can only be reflected with the same spin. For two or more transport channels,
electrons can flip the spin only if they are reflected to a different channel. The probability
of spin-flip occurring during transmission depends on the polarization of the incoming
electron, given by p = (ξ × n)2 for an electron with spin in the direction of unit vector n.

Control question 1.26. What is the average (over initial spin directions) spin-flip
probability?

The spin-flip probability vanishes for ξ ‖ n. If there are more channels, the vectors ξ in
different channels generally point out in different directions, so that the spin-flip probability
never vanishes.
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We restrict the discussion of the spin effects of exchange and magnetic field to the case
when the vectors s(M)

p′,p are all parallel to the same fixed unit vector m. This is the case
when there is only one favored spin direction in the nanostructure, for example when the
magnetization directions of all ferromagnetic reservoirs are collinear, or there is only one
ferromagnetic reservoir, or there is a uniform external magnetic field. In this case, we have
two separate unitary scattering matrices for spins up and down with respect to m, i.e.

ŝ = ŝ↑
1+ m · σ

2
+ ŝ↓

1− m · σ
2

, (1.185)

where, for a one-channel conductor, one has

ŝ↑ =
(

r↑ t↑
t↑ r ′↑

)
; ŝ↓ =

(
r↓ t↓
t↓ r ′↓

)
. (1.186)

There are two distinct transmission eigenvalues T↑ and T↓. If the incoming electrons are
spin-polarized in the direction of m, they do not experience any spin-flip. It looks like
there are two species of electrons, with spins up and down, that are scattered differently,
and that the number of electrons of each species is conserved. We stress that this does not
happen if the electrons are polarized in any other direction. The probabilities of spin-flip
reflection and transmission are given by (n× m)2|r↑ − r↓|2/4 and (n× m)2|t↑ − t↓|2/4,
respectively. Spin-flip may occur even for closed channels with |r↑|2 = |r↓|2 = 1.

1.9.2 Spin currents

Spin is a quantity that can be transported with electron flow, very much like charge. Let
us consider a flow of electrons with spin up and a flow of electrons with spin down in the
opposite direction. In this situation, there is no net electric current. However, there is spin
current – the spin component in the direction of the quantization axis is transferred by the
flow. In contrast to the electric current, spin current is a current of a pseudovector quantity.
The spin current density operator has nine components and is given by

ĵ (S)
α;β =

�

2
σ̂αv̂β ,

σ̂α and v̂β being Cartesian components of the Pauli matrix vector and velocity operator,
respectively. The total spin current in a nanostructure is determined as the integral of the
current density over a cross-section and has three components corresponding to three Pauli
matrices.

It would be nice if spin current were a conserving quantity, and in the absence of spin-
dependent scattering this is indeed the case. However, without spin-dependent interaction
the spin current can be neither excited nor measured, at least by electric means.

As we mentioned above, spin and spin currents are conserved at the time scale τsf

and, consequently, at the length scale Lsf covered by moving electrons during this time.
In practice, this scale rarely exceeds several micrometers. Transfer of spin leads to spin
accumulation at this length scale, resulting in non-equilibrium spin-dependent chemical
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potentials μ↑,↓. It is convenient to regard the parts of the leads adjacent to the nanostruc-
ture at space scale Lsf as “spin-reservoirs” where spin and spin current are conserved.
This does not correspond to the current definition of a reservoir, and in principle the “spin-
reservoirs” can be regarded as parts of the nanostructure, so that spin current is both excited
and detected within the nanostructure. We will discuss these issues extensively in Sec-
tion 2.7; at the moment we just make use of the concept of “spin-reservoir.” We note that
there are two types of “spin-reservoirs”: normal, where all three components of spin current
are conserved and all three components of spin can be accumulated, and ferromagnetic. In
a ferromagnet, only one component of spin – that parallel to the magnetization – is con-
served, and only this component can be accumulated. The reason for this is that scattering
in a ferromagnetic “spin-reservoir” is different for different spin projections. As we have
seen, this causes spin-flip for spin components perpendicular to the magnetization axis and
they are not conserved.

Let us illustrate spin and electric currents with a single-channel scatterer, described
by Eq. (1.186), placed between ferromagnetic (left) and normal (right) “spin-reservoirs.”
First, let us concentrate on the spin components in the direction of magnetization (z axis).
Regarding electrons as “species” and applying the Landauer formula to the particle currents
J↑,↓ of each species, we immediately obtain(

J↑
J↓

)
= GQ

2e

(
T↑[μL↑ − μR↑]
T↓[μL↓ − μR↓]

)
, (1.187)

where the different chemical potentials μ↑,↓ account for spin accumulation in the “spin-
reservoirs.” We define the spin accumulation as W L,R

z ≡ (μL,R↑ − μL,R↓)/�.
Since electric current and the z component of spin current are given by e(J↑ + J↓) and

�(J↑ − J↓)/2, respectively, we obtain

I = GV + �GP

2e
(W L

z −W R
z ),

I (S)
z = �GP

2e
V + �

2G

4e2
(W L

z −W R
z ),

(1.188)

where V is the voltage difference between left and right, G is the Landauer conductance
of the nanostructure, and GP characterizes the spin-polarization properties of the contact,

G, GP = G↑ ± G↓ = GQ
T↑ ± T↓

2
.

We see from this that spin current is generated by applying a voltage difference across the
contact, provided T↑ �= T↓. In addition, spin accumulation, which can arise in the course
of spin transport, generates electric current and can be detected. Note the remarkable sym-
metry: both effects are characterized by the same coefficient GP. This is an example of
Onsager relations for generalized fluxes and forces.

What about other components of spin current? The situation is rather unusual. As we
have mentioned, the ferromagnet supports x , y components of neither spin current nor
spin accumulation. Thus, I (S)

x ,y = 0 on the left of the contact. Normally, one concludes
that currents on the right are also absent. Such a conclusion, however, relies on current
conservation in the scattering region, and this does not hold for x , y components of the
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spin current! Let us assume that some spin accumulation W R
x ,y has been created in the

normal “spin-reservoir” and evaluate the resulting spin current.
This can be achieved in a way similar to the derivation of the Landauer formula in

Section 1.3. The difference is that a given state coming to the scatterer from the right is a
spinor,ψi exp(−ikx x), whereas the corresponding outgoing state isψf exp(ikx x),ψi andψf

being related by the scattering matrix. Both states contribute to the density of spin current,

j (S)
α =

�

2
vx

(
ψ∗i σ̂αψi − ψ∗f σ̂αψf

)
; ψf =

(
r↑ 0
0 r↓

)
ψi.

Substituting spinors polarized in the x , y directions, and integrating over kx or energy, we
obtain the spin currents:

I (S)
x = �

2

4e2

(
Re G↑↓W R

x + Im G↑↓W R
y

)
,

I (S)
y = �

2

4e2

(
Re G↑↓W R

y + Im G↑↓W R
x

)
,

(1.189)

where the complex conductance G↑↓ is given by

G↑↓ = GQ(1− r↑r∗↓).

This coefficient is called the mixing conductance since it highlights the fact that electrons
cannot really be considered as two independent species with spin up and spin down, and
the scattering eventually mixes the up and down components of the spinors. We see that
there is some mixing conductance even if the usual conductance is absent (T↑ = T↓ = 0),
for example, at the boundary between a metal and a ferromagnetic insulator. There, the spin
current flows even in the absence of actual electron transfer. It arises from spin precession
of the electrons that hit the boundary, feeling the exchange field in the insulator.

For a non-polarizing contact (r↑ = r↓), the mixing conductance coincides with the usual
one, along with the spin-dependent conductances: G↑↓ = G↑ = G↓ = G. The resulting
relations can readily be generalized for multi-channel conductors. The spin-dependent con-
ductances, similar to the Landauer conductances, are simply the sums of the corresponding
transmission eigenvalues, i.e.

Gα = G Q

2

∑
pq

|tαpq |2 =
GQ

2

∑
p

T αp . (1.190)

The complex mixing conductance cannot be expressed in the transmission eigenvalues
since, as mentioned above, it is not entirely determined by transmission. However, it is
related to the reflection matrices at the normal-metal side of the contact:

G↑↓ = GQ

∑
pq

[
δpq − r↑pq (r↓pq )∗

]
. (1.191)

It follows that Re G↑↓ ≥ (G↑ + G↓)/2.
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1.9.3 Spin and interference

It turns out that the spin-orbit interaction may strongly affect quantum interference of elec-
tron waves at length scales exceeding Lsf. We analyze the details of this effect in Section
4.4. Here we give a simple explanation stemming from the fundamentals of spin.

In Section 1.6, when discussing interference, we identified pairs of electron trajectories,
the interference of which provides the so-called weak localization contribution to scatter-
ing probabilities. This contribution does not disappear upon averaging over random phase
shifts and shows up in the Aharonov–Bohm effect.

These trajectories contain a loop and differ by the direction in which the loop is tra-
versed. Propagation amplitudes in the loop for these two directions, A1,2, correspond to
the same scattering process with initial and finite states interchanged. If these ampli-
tudes are regarded as matrices, they are thus transposed, A1 = AT

2 . In the absence of
AB flux, time reversibility implies that A1 = A2. Then, the probability is determined by
|A1 + A2|2 = 4|A1|2: the interference contribution P int = A∗1 A2 + A1 A∗2 is the same as
the classical contribution Pcl = |A1|2 + |A2|2. There is constructive interference of the
two trajectories. AB flux modulates interference, P = P int cos(2φAB)+ Pcl, suppressing
the probability at small values of flux.

This changes in the presence of spin-orbit scattering. The amplitudes A1 and A2 now
become 2× 2 matrices in the spin space. The relation between these transmission ampli-
tudes follows from Eq. (1.182). Therefore, if Â1 = A01̂+ A · σ̂ , another amplitude reads
Â2 = A01̂− A · σ̂ . The total probability is obtained by summing up over two initial and
two final spin states, labeled α,β:

P =
∑
αβ

|Aαβ1 eiφAB + Aαβ2 e−iφAB |2 = Pcl + P int,

Pcl =
∑
αβ

(
|Aαβ1 |2 + |Aαβ2 |2

)
= 4(|A0|2 + A · A∗), (1.192)

P int = 4(|A0|2 − A · A∗) cos(2φAB).

The total probability at zero flux, P(0) = 8|A0|2, is not sensitive to the spin-dependent part
of scattering, but the interference contribution is. The sign of the interference contribution
depends on the relation between spin-dependent and spin-independent scattering, and the
latter depends on the length of the loop. For loops shorter than Lsf, the spin-independent
scattering dominates, |A0| � |A|, and interference remains constructive, P(0) = 2Pcl >

Pcl. For loops longer than Lsf, transmissions with and without spin-flip at any initial spin-
polarization should have the same weight: the spin is forgotten in the course of scattering.
This implies that |A0| = |Ax | = |Ay | = |Az|, and P(0) = Pcl/2 < Pcl – i.e. that the inter-
ference is destructive. Thus, a sufficiently strong spin-flip scattering charges the sign of the
interference correction; this is often referred to as weak antilocalization.



2 Classical and semiclassical transport

We devoted Chapter 1 to a purely quantum-mechanical approach to electron transport:
the scattering approach. Electrons were treated as quantum waves that propagate between
reservoirs – the contact pads of a nanostructure. The waves experience scattering, and
the transport properties are determined by the scattering matrix of these waves. As we
have seen, this approach becomes progressively impractical with the increasing number of
transport channels, and can rarely be applied for G � GQ, where G is the conductance of
the system.

A different starting point is well known from general physics, or, more simply, from
general life experience, which is rather classical. In this context, a nanostructure is regarded
as an element of an electric circuit, which conducts electric currents. If one makes a more
complicated circuit by combining these elements, one does not have to involve quantum
mechanics to figure out the result. Rather, one uses Ohm’s law or, generally, Kirchhoff
rules. The number of parameters required for this description is fewer than in the quantum-
mechanical scattering approach. For example, the phase shifts of the scattering matrix do
not matter.

In this chapter, we will bridge the gap between these opposite starting points. The first
bridge is rather obvious: it is important to understand that these two opposite approaches do
not contradict each other. In Section 2.1, we illustrate the difference and the link between
the approaches with a comprehensive example of a double-junction nanostructure. We
derive the rules of common circuit theory, that is, a classical description of electron trans-
port, from quantum mechanics, using conservation laws for number-of-particles, charge,
heat, and balance equations that follow from these laws. In Section 2.2 we present the tra-
ditional description of electron transport in solids based on Boltzmann and drift-diffusion
equations. Further, we see how it evolves into a finite-element approach of a circuit theory.

We will build another bridge by considering semiclassical transport. To this end, we
introduce Green’s functions, which allow us to take quantum coherence into account
(Section 2.3). We will show that quantum mechanics eventually brings about some new
conservation laws and balance equations that are absent in classical physics (Section 2.4).
From these laws, we will derive a template for a quantum circuit theory (Section 2.5).
Thereby the interference effects, which constitute the difference between classical and
quantum transport, can be incorporated into a circuit theory.

After establishing the rules of the game, we can use the template by assigning the phys-
ical significance to its components. Thereby, we make quantum circuit theories suitable
for specific tasks. We consider a number of specific circuit theories describing distribution
of transmission eigenvalues (Section 2.6), spin transport (Section 2.7), superconductivity
(Section 2.8), and full counting statistics (Section 2.9).
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2.1 Disorder, averaging, and Ohm’s law

2.1.1 Double-junction paradox

To appreciate the points we are to make in this chapter, we first consider an example of
a double tunnel junction, studied in detail in Section 1.6. Let us present it in a somewhat
paradoxical way by confronting two naive estimates of the conductance of this system.
Consider the situation when both scatterers are tunnel junctions, so that tL,R � 1.

One way to look at it is to observe that an electron should hop over both junctions in
order to go from the left to the right. According to the rules of quantum mechanics, the
amplitude A of such a process should be proportional to the product of partial amplitudes,
A ∝ tLtR. The amplitudes of more complicated processes that involve reflections from the
junctions should be proportional to the higher powers of tL,R and thus can be disregarded.
The Landauer formula states that the conductance of each junction is proportional to the
absolute value of the corresponding amplitude squared, GL,R ∝ |tL,R|2, and the overall con-
ductance is proportional to |A|2. We come to the conclusion that the overall conductance
scales as a product of conductances of the two tunnel junctions,

G ∼ GLGR/GQ.

Now, let us employ our common sense. Each tunnel junction is a resistor. Resistances of
the junctions are inverse conductances, 1/GL,R. Ohm’s law states that the overall resistance
of two resistors in series is a sum of the two resistances:

G = 1

1/GL + 1/GR
= GLGR

GL + GR
.

There is an apparent contradiction between these two estimations. To make it even more
obvious, let us reduce the conductance of each junction by a factor of 2. The “quantum”
formula yields that overall conductance is decreased by a factor of 4, whereas Ohm’s
law predicts the factor of 2. This is the double-junction paradox (see Fig. 2.1). Which
estimation is the correct one?

Fortunately, we know the full quantum-mechanical solution from Section 1.6. Neither
of the estimates, “classical” nor “quantum,” is correct. The total conductance of a dou-
ble junction cannot be expressed only in terms of the conductances of the two junctions.
Instead, it shows a resonant structure as a function of the phase shift χ acquired by an
electron when traveling between the junctions (see Eq. (1.106)):

E

t1 t2

G1 G2

�Fig. 2.1. Double tunnel junction. A quick quantum estimate of its conductance and Ohm’s law seem to
contradict each other.
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G = GQ
TLTR

1+ RL RR + 2
√

RL RR cosχ
, RL,R = 1− TL,R.

This is a very important and general statement (it is not limited to the double junction):
although transport properties of a single nanostructure depend on transmission eigenvalues
only, the transport properties of a combined nanostructure are not uniquely determined by
the transmission eigenvalues of its constituents. They also depend on phase shifts.

In our example, the “quantum” estimate works if we are far from the resonance, cosχ �=
−1. In this case, the conductance scales as GLGR. At the resonance, cosχ = −1, the
conductance does not scale at all; for GL = GR it always stays equal to GQ, for example.

There is, however, an easy way to obtain Ohm’s law from the quantum-mechanical
result. In fact, the classical expression for the double-junction conductance, Eq. (1.110),
can be obtained by averaging T (χ ) over the phase shift, Tcl = 〈T (χ )〉χ . This proves that
the averaging over χ is equivalent to summing the probabilities rather than amplitudes –
precisely the approach of classical physics. It is important to note that this procedure of
averaging has an immediate physical sense. As we have discussed in Section 1.6, the
acquired phase is proportional to energy, dχ/dE ∝ τ/�, τ being a typical time of elec-
tron propagation between the junctions. Therefore the averaging over χ is equivalent to
the averaging of the transmission eigenvalue over a wide energy interval, as the Landauer
formula suggests.

Exercise 2.1. Average Eq. (1.106) over the phase shift χ and recover Ohm’s law in
the limit TL,R � 1.

The analysis of a single-channel double junction brings us to two important ideas. First,
Ohm’s law is reproduced only if we average over phase shifts, thus disregarding quantum
interference. Secondly, this averaging makes physical sense: it corresponds to an averaging
over wide energy bands.

Let us turn to a multi-channel double junction. To start with, consider a simple model
of independent channels, where an incoming electron may go back and forth between the
junctions but always remains in the same channel. For this simple model, the conductance
is just a sum over channels,

G =
∑

p

TL,pTR,p

1+ RL,p RR,p + 2
√

RL,p RR,p cosχp
, (2.1)

with transmission coefficients and phase factors depending on the channel index p. The
result of the summation is sketched in Fig. 2.2 for six channels. The contribution from
each channel is a regular periodic function of energy. However, the periods and offsets of
the phase shifts are different for different channels. This is why the result exhibits small
irregular fluctuations around the mean value; i.e., self-averaging takes place. The more
channels that take part in the sum, the smaller the relative fluctuations. In the limit of a
large number of channels, we expect that the conductance is close to its average value.
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�Fig. 2.2. A large number of channels (G � GQ) in a nanostructure gives rise to the self-averaging of
transport properties. Plot: transmission eigenvalues of six independent channels with random
phase shifts. Thick line: transmission averaged over the channels.

There is, however, a detail that requires some extra discussion. The average conductance
for independent channels is not quite the same as predicted by Ohm’s law:

G = GQ

∑
p

TL,pTR,p

TL,p + TR,p
�= GQ

∑
p TL,p

∑
p TR,p∑

p TL,p +∑
p TR,p

≡ GOhm. (2.2)

It turns out that the simple model misses an important feature: the channels are generally
mixed, whereas electrons are scattered between the barriers. This scattering is described by
a general (unitary) scattering matrix ŝ – a unitary mixer, as discussed in Section 1.6.5. The
assumption of the independent-channel model is that this matrix is diagonal. In this case,
the number of phase shifts equals the number of channels. Yet generally ŝ does not have to
be diagonal. Moreover, it is natural to assume that the non-diagonal elements are equally
important and are of the same order of magnitude. Thus, for a multi-channel system we
have more complicated phase shifts. Averaging over all possible phase shifts, we recover
Ohm’s law in the limit of a large number of transport channels.

2.1.2 Random phase shifts

The example with the double junction illustrates the generic situation in quantum transport,
which we encountered in Section 1.6: transport properties depend on phase shifts. We
know already (from Section 1.3) that these phase shifts are impossible to control due to
the disorder. Furthermore, the phase shifts are large provided the size of a nanostructure
L exceeds the Fermi wavelength by at least several times, since the phase of the wave
function is of the order of kFL . A misplaced atom or an alien atom provides a phase shift
of the order of π , at least for one transport channel, and scrambles the whole picture.

We know that formally identical nanostructures are random, meaning that there exists
random configuration of disorder. The bigger the nanostructure, the bigger the number of
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unknown parameters. If we knew the precise configuration of disorder, we could figure out
what the phase shifts are. We do not know. But do we really need to know?

Let as draw an analogy to statistical physics. Even the smallest volume of gas consists
of zillions of molecules. Although the gas is characterized by the enormous number of the
coordinates and velocities of the molecules, quite fortunately we do not have to know them
all to deal with the gas. What we need is a handful of numbers: pressure, temperature,
volume, etc.

The same occurs in quantum transport: the randomness of the phase shifts and the related
complexity eventually lead to simplicity. We expect that in the limit of a large number of
channels the conductance, along with all the other transport properties, is self-averaged
and has a negligible dependence on phase shifts. The nanostructure then can be character-
ized using a handful of parameters: most generally, those that determine the transmission
distribution.

The difference with the gas is that a given disorder configuration and given phase shifts
are “frozen”: they do not change in time. A fluctuation – a deviation from the average
value – in a gas lives for a very short time, whereas fluctuation of conductance in a nanos-
tructure persists at given control parameters. If one does not trust self-averaging and wishes
to check if it is good, one in principle should fabricate many formally identical nanostruc-
tures and measure the conductance. In practice, this is inconvenient. Instead, one changes
control parameters, such as gate voltages or magnetic field. The phase shifts strongly
depend on these parameters, and the averaging over a sufficiently wide region of their
variation is equivalent to averaging over phase shifts.

When do we expect self-averaging? The effective number of transport channels, which
is given by the conductance of the structure, N � G/GQ, must be large.1 This requires
G � GQ. In this case, the conductance fluctuations are small in comparison with the aver-
aged conductance 〈G〉; as we will see in Chapter 4, they are of the order of GQ. If G � GQ,
the fluctuations are of the order of the mean value. An extra condition is the efficient mixing
of the channels. Indeed, we have seen that the averaging is incomplete for the example of
independent channels. Fortunately, any realistic nanostructure contains enough disorder to
provide the mixing. So the condition rather forbids some especially degenerate theoretical
models.

Let us illustrate this general discussion with an explicit calculation for a multi-terminal
node connected to a number of scatterers (Section 1.6). Quantum mechanically, this system
is described by the scattering matrix, Eq. (1.131). We now perform the averaging of the
conductance over the unitary mixer ŝ0. Consider the probability that an electron incident in
lead α in the transport channel n ends up in lead β, transport channel m. Using the notation
of Section 1.6, this probability is given by

|cβm |2 =
∣∣∣∣∣
∑
m′

tβmm′aβm′

∣∣∣∣∣
2

,

1 This holds for coherent electron transport described by scattering theory. Large incoherent conductors can
self-average at G � GQ.
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provided β �= α. If the scattering matrix ŝ0 of the node is randomly distributed, the aver-
aged probability of ending up in a channel does not depend on the channel. If the number
of the channels is sufficiently large, one can disregard the fluctuations of this probability.
This is why we can assume that the amplitudes aβm′ of electrons leaving the node have the
same magnitude |a|2 but different random phases. Averaging over these phases (i.e. throw-
ing out all terms containing phase factors) and summing over m, we obtain the element of
conductance matrix Gβα ,

Gβα = GQ

∑
m

|cβm |2 = GQ|a|2
∑
mm′
|tβmm′ |2 = Gβ |a|2,

where Gβ is the conductance of the barrier separating the node from the reservoir β. To
complete the calculation, we need to find |a|2. To this end, we involve the current conser-
vation: the number of particles entering the node equals the number of particles exiting the
node, ∑

βm

|bβm |2 =
∑
βm

|a|2.

Expressing the amplitudes b in terms of the amplitudes a (special care has to be taken with
lead α), taking their absolute values squared and averaging again over random phases of a,
we obtain

|a|2 = Gα∑
γ Gγ

,

which yields Ohm’s law,

Gβα = GαGβ∑
γ Gγ

, α �= β. (2.3)

A similar calculation can be performed for the component Gαα , to yield

Gαα = −Gα + G2
α∑

γ Gγ

.

As it should be, the total current is conserved:
∑
β Gαβ = 0.

To summarize this section, we have shown that the conductance of a nanostructure in
the classical limit G � GQ obeys Ohm’s law and that this fact is in full agreement with
the quantum-mechanical treatment.

Exercise 2.2. Consider a ring (Section 1.6) connected to the reservoirs by two identi-
cal beam splitters (see Eq. (1.81)). (i) Explain why the use of Ohm’s law for the setup
is less obvious than for a double junction. (ii) Argue that the only way to implement
Ohm’s law is to ascribe the voltages to the arms of the ring. (iii) Given the potentials
of the reservoirs, compute the currents in the beam splitters. (iv) Show that the current
conservation in each arm suffices to determine the voltages in the arms. (v) Calculate
the total conductance of the ring.
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2.2 Electron transport in solids

As we have just seen, the main difficulty with the true quantum-mechanical approach to
transport is that the scattering matrix becomes very complicated depending on barely con-
trollable phase shifts. It is worth noting that the same problem was encountered about 80
years ago when scientists recognized that electrons in solids are waves rather than parti-
cles. In an ideal crystal solid, electron wave functions are Bloch waves and are reasonably
similar to plane waves. However, the impurities in solids considerably complicate the wave
functions. Each impurity acts as a scattering center, re-emitting incoming waves, and each
wave function becomes a superposition of Bloch waves scattered by each impurity in the
sample. The true quantum picture thus becomes hopelessly complicated.

The way out was quickly found and is described in (for example) Refs. [40] and [41].
One uses common sense instead of quantum mechanics and describes quantum electrons
as a statistical ensemble of particles, or “balls.” The classical particles are characterized by
their coordinates r and (quasi)momenta p, points in six-dimensional phase space. How-
ever, one does not need information concerning the coordinates of all the particles. Instead,
the statistical ensemble is described by a distribution function in six-dimensional space that
shows how many particles are there in an element of the space d p dr . A quantum particle
cannot be described by a coordinate and a momentum simultaneously. However, a statis-
tical ensemble of quantum particles can be described by a function of p, r that is similar
to the distribution function. Qualitatively, the dependence of this function on momenta and
coordinates is characterized by two scales δp, δr . For electrons in a metal, δp � �kF. By
virtue of the Heisenberg uncertainty relation δr δp ≥ �/2, the classical limit is achieved if
the function only slowly depends on the coordinates, δr � k−1

F . In this limit, the function
can be unambiguously identified with the distribution function of the classical particles.

2.2.1 Boltzmann equation

To start with a statistical description, one introduces the non-equilibrium filling factor (or
distribution function), which shows how many particles there are in a small volume of
phase space around the point (r , p). In principle, one can express this filling factor quantum
mechanically in terms of the wave functions ψn ,

f (r , p) =
∑
filled

∫
d yψ∗n (r + y/2)ψn(r − y/2) exp(−i( p · y)/�), (2.4)

and try to implement the Schrödinger equation to find the equations for f (r , p). However,
this is highly redundant. There is a much simpler way to obtain the equations from a rea-
soning based on particle balance. Let us consider the motion of particles concentrated in an
element of the phase space near the point (r , p). The time derivatives of their coordinates
and momenta are all the same within the element,

ṙ = v( p), velocity;
ṗ = F(r), force ,
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since velocity and force are functions of the point in the phase space. In this case, we
can say that the element shifts with all the particles it contains. The number of particles
in this element obviously stays the same. Moreover, the six-dimensional volume of this
element does not change either. This follows from the fact that the motion is governed by
the Hamilton function H (r , p) and

v = ∂H

∂ p
; F = −∂H

∂ r
.

The Hamilton function commonly used encompasses the parabolic electron spectrum and
an external (non-periodic) potential given by

H ( p, r) = p2

2m
+U (r).

This disregards the effects of a periodic crystalline potential in solids. These can be incor-
porated by modifying the electron spectrum. We do not consider this modification to
simplify the outlining the issue.

From this it follows that the total time derivative of the filling factor, d f (t , r(t), p(t))/dt ,
is simply zero. Rewriting this in terms of partial derivatives, we obtain the balance equation
of the first stage:

0 = d f

dt
= ∂ f

∂t
+ v

∂ f

∂ r
+ F

∂ f

∂ p
. (2.5)

This suffices to describe the filling factor if the Hamilton function varies smoothly at the
space scale k−1

F . However, this is usually not the case: one should not forget impurities and
other defects that created the problem. The impurities give rise to a potential profile that is
sharp at space scale k−1

F . This potential causes scattering: the particle changes its momen-
tum by a value of the order of �kF. To incorporate the scattering into the particle balance,
we introduce scattering rates W p, p′ : the probabilities per unit time of going from a state
with momentum p to a state with momentum p′. The number of particles leaving state p to
all possible states p′ is then given by

∫
W p, p′ f p d p′/(2π�)3, whereas the number of par-

ticles coming to state p from all possible states p′ is given by
∫

W p′, p f p′ d p′/(2π�)3.
Summing up everything, we arrive at the Boltzmann equation for the non-equilibrium
filling factor:

∂ f p

∂t
= −v

∂ f p

∂ r
− F

∂ f p

∂ p
+

∫
d p′

(2π�)3
(W p′ p f p′ −W p p′ f p). (2.6)

Note first that the scattering rates W themselves may depend on the filling factor. This is
why the Boltzmann equation is generally non-linear in f . If the source of the scattering is
particle–particle collisions, like in the original Boltzmann equation for a gas, this is indeed
the case. Usually such collisions are accompanied by energy transfer, and are therefore
inelastic.

At low energies, however, most scattering is elastic – electrons are scattered off the
potential of impurities without energy change. Correspondingly, the rates contain a delta-
function, δ(E( p)− E( p′)), that accounts for the energy conservation. The rates also do
not depend on the filling factors, so the Boltzmann equation for elastic scattering is a linear
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one. In this section, we will assume that the elastic scattering dominates. We will consider
the details of inelastic processes in Chapter 6.

The elastic rates generally obey the symmetry relation W p, p′ = W− p′,− p owing to time-
reversal symmetry. Indeed, upon time reversal the initial state interchanges with the final
state and the momenta change in sign.

Control question 2.1. Show that if one takes the equilibrium Fermi distribution as
f p, and assumes elastic scattering rates, the final term in Eq. (2.6) vanishes.

Since the Boltzmann equation, Eq. (2.6), is solely based on the classical balance rea-
soning, one can ask: is quantum mechanics needed there? Quantum mechanics is in fact
required to evaluate the scattering probabilities W p, p′ using the electron wave functions
without impurities – plane or Bloch waves – and concrete models of impurity potential.
A customary model for the scattering rates is based on the Born approximation: the rates
are evaluated using the Fermi golden rule, assuming that the impurity potential Ũimp is a
perturbation. The rates are given by

W p, p′ = 2π

�
cimp|Ũimp(( p− p′)/�)|2δ(E( p)− E( p′)), (2.7)

where Ũimp(k) is a Fourier component of the potential of an impurity or a defect of a
given sort and cimp is the concentration of these impurities. Equation (2.7) is the result of
the averaging over the positions of impurities required to suppress possible interference
effects. This makes the scattering events on different impurities independent. If there are
several sorts of impurities present in the system, the rates are the sum of contributions
of each sort. The scattering is elastic; as seen explicitly from Eq. (2.7), the energy of the
initial state is the same as the energy of the final state. Due to this energy conservation, the
final term in Eq. (2.6), known as the collision integral, vanishes, provided the distribution
function f depends only on the energy E( p) and not on the direction of the momentum
p. In particular, the Fermi distribution function is the function of energy only. Therefore,
it nullifies the collision integral and satisfies the Boltzmann equation in the absence of
external forces. This is not surprising: the electrons are supposed to be at thermodynamic
equilibrium under these conditions. It is the external force F that drives the system out of
equilibrium and modifies the distribution function.

A common customization of the scattering rate is based on the convenient assumption
that Ũimp(k) does not depend on k. This assumption is physically justified when the size of
an impurity is smaller than k−1

F , so that Ũimp can be regarded as constant. This situation is
sometimes called “white noise scattering” since it takes place for the delta-function corre-
lations of the random scattering potential. In this case, the scattering is characterized by a
single parameter: The momentum relaxation time is given by τ−1

P = (2πνcimp/�)|Uimp|2.
The Boltzmann equation now reads

∂ f

∂t
= −v

∂ f

∂ r
− F

∂ f

∂ p
+ (〈 f 〉 − f ) τ−1

P , (2.8)
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where the angular brackets denote the averaging of f over the angles – over all directions
of p at a given energy E . It is customary to define the mean free path l = vτP , which
describes the typical distance covered by the electron between scattering events.

Since the scattering is elastic, the filling factors at different energies enter the scattering
terms independently. Inelastic scattering, which may originate from either electron–
electron or electron–photon interaction, mixes the filling factors at different energies.

2.2.2 Drift-diffusion equation

As discussed, the Boltzmann equation given in Eq. (2.8) is valid at spatial scales exceeding
k−1

F . We have just seen that the equation defines a new spatial scale: the mean free path l.
At spatial scales much bigger than l, the electrons scatter many times, each time changing
direction randomly. Thereby they forget the initial direction of their momentum. However,
they do remember their initial energy since the scattering at impurities is elastic. Thus, at
length scales greater than l, the filling factor is isotropic and depends on energy only:

f (r , p)⇒ f (E) (isotropic).

This allows us to proceed to a simpler equation, known as the drift-diffusion equation. It
holds separately at each energy provided there is no inelastic scattering. The derivation is
worth giving here. Let us substitute into the Boltzmann equation the filling factor in the
form f (r , p) = f (E)+ f (1)(r , p), f (1) being the small anisotropic part, f (1) � f (E),
〈 f (1)〉 = 0, and the average is taken over the directions of p. As a first step, we average
the resulting equation over the angle. The scattering term is zero upon integration over the
angle, irrespective of the specific form of f . The rest of the terms result in the following:

∂ f

∂t
+∇ · j = 0; j = 〈v f (1)〉.

Note that this represents a conservation law, or, in other terms, a continuity equation for the
number of particles at a given energy. The notation j stands for the particle current density
per element of momentum space. As a second step, we must obtain the relation between
this current density and the isotropic part of f . To this end, we take the difference of the
Boltzmann equation and its angular average. The scattering terms yield the contribution
proportional to f (1), and we disregard the anisotropic part in comparison with the isotropic
one in the rest of the terms. This expresses the anisotropic part in terms of the isotropic
one, i.e.

− f (1)

τP
= v

∂ f

∂ r
+ (F · v)

∂ f

∂E
,

where we have used v ≡ ∂E/∂ p. The current density is now readily obtained, and we
combine these two relations into the drift-diffusion equation:

∂ f

∂t
+ ∇ · j = 0; j = −D F

∂ f

∂E
− D

∂ f

∂ r
. (2.9)
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In the second part of Eq. (2.9), the first term describes the drift: an external force F
produces a flux of particles. The second term is the diffusion: the current density is pro-
portional and opposite to the density gradient trying to compensate it. The coefficient of
proportionality, D(E) = τP (E)v2(E)/3, is the diffusion coefficient.

Control question 2.2. Derive the expression for the diffusion coefficient D in one,
two, and three dimensions.

The quantities ν, τP , and D depend on the energy at the scale of the Fermi energy. As
we have already noted in Section 1.2, electron transport usually takes place in a narrow
energy strip near the Fermi energy. Under these assumptions, one can disregard this energy
dependence, replacing ν, τP , and D by their values at the Fermi energy. It is also convenient
to count energy from the Fermi energy, as we frequently do. Another convenient notation
we introduce now concerns the definitions of the current and current density. For circuit-
theory applications, it is convenient to work with currents and current densities that have
dimensions of conductance and conductivity, respectively. Such a current density is related
to particle current density per element of the momentum space by the normalization j →
je2ν. The new notation is not expected to mislead the reader since, from dimensional
analysis, one always understands what quantity is considered. Using the new notation, the
drift-diffusion equation is given by

e2ν
∂ f

∂t
+ ∇ · j = 0; j = −σ F

∂ f

∂E
− σ ∂ f

∂ r
. (2.10)

The conductivity σ = e2 Dν is thereby expressed in terms of the diffusion coefficient and
the density of states. The relation between the conductivity and the diffusion coefficient is
known as the Einstein relation.

Now we are ready for the next simplification step. We integrate the drift-diffusion equa-
tion over energy, assuming that ν and σ are energy-independent in a narrow region near the
Fermi surface. Using the relations for the charge density ρ and the electric current density
I , we have (

ρ

I

)
=

∫
dE

(
νe f (E)
j (E)/e

)
, (2.11)

to obtain
∂ρ

∂t
= −∇ · I ; I = σ E − D∇ρ. (2.12)

The first part of Eq. (2.12) is simply the charge conservation law; gives the electric current
in terms of the electric field and the charge density gradient. We can employ yet another
simplification: in most conductors there is no volume charge density, the charge being
concentrated at the surface of the conductor, and thus ρ = 0. In the stationary case, E =
−∇V , V (r) being the electrostatic potential. This brings us to the Laplace equations, the
solutions of which define current and potential distribution in conductors characterized by
(position-dependent) conductivity:

∇ · I = 0; I = −σ (r)∇V . (2.13)
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2.2.3 Distribution function in one dimension

To illustrate Eq. (2.10), we consider it in a one-dimensional geometry, where the distri-
bution function depends only on one coordinate (x) over the length L . Such a situation
is likely to occur if a uniform piece of metal of constant cross-section is placed between
two massive contacts. One example is a sandwich: a metallic film of thickness L and other
dimensions much larger than L placed between two semi-infinite electrodes. In this case,
all quantities depend only on the coordinate x (with the possible exception of the regions
near the film boundaries, which are disregarded). Another setup is a wire, which can be
described by the drift-diffusion equation if its smallest width d is much greater than the
mean free path l. If the wire is long (d � L), the distribution function depends only on
the coordinate x along the wire and stays constant over the cross-section (with the possible
exception of the wire ends, which are also disregarded). For definiteness, we will talk about
a wire.

Equation (2.10) allows us to find the distribution function at any point of the wire.
Indeed, since there is no field inside the wire, F = 0, the equation reads ∂2 f/∂x2 = 0.
Thus f is a linear function of x . The wire is attached to the two reservoirs, left (at x = 0)
and right (x = L), described by the distribution functions fL(E) and fR(E), respectively.
This provides the boundary conditions at the ends of the wire: f (0) = fL, f (L) = fR.
Taking this into account, we obtain

f (x , E) = L − x

L
fL(E)+ x

L
fR(E). (2.14)

The current in Eq. (2.11) is given by I = (σ/eL)
∫

dE( fL − fR).
It might seem that the appearance of the distribution function, Eq. (2.14), implies that

there is a finite density of charge in the system. Indeed, one can try to compute the
difference of charge densities at points x1, x2 as follows:

ρ(x1)− ρ(x2) = eν
∫

dE ( f (x1, E)− f (x2, E)) = x2 − x1

L
eV ν,

assuming a voltage difference V between the electrodes. This would be contradictory: the
charge density would produce an electric field that should be absent in a metal. The point
is that the bottom of the energy band E0, which sets the lower limit of integration in the
above expression, depends on the position x along the conductor. For instance, in the left
reservoir it is higher than in the right reservoir by the amount equal to the applied voltage
eV . The x-dependence of the bottom of the band is determined from the condition that the
charge density in the conductor is homogeneous:

ρ(x1)− ρ(x2) = e

(∫ ∞
E0(x1)

ν(E − E0(x))dE f (x1, E)

−
∫ ∞

E0(x1)
ν(E − E0(x))dE f (x2, E)

)
= 0.

Control question 2.3. How does E0(x) depend on x?
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Consider first a vanishing temperature. Then, each of the functions fL,R is a step func-
tion: fL(E) = θ (EF + eV − E), fR(E) = θ (EF − E). The distribution function in the
wire then takes a double-step shape: it equals zero for E > eV , unity for E < 0, and
1− x/L for the energies between zero and eV . The position of an intermediate step
depends on the point x . Such an arrangement obviously produces the current density
I = σV/L . Electron–electron interactions smear the double-step curve (see Section 6.8).

As a different example, let us assume that there is no voltage bias (the chemical poten-
tials are the same on the left and on the right), but the temperatures are different. The
distribution function in the wire, Eq. (2.14), is given by

f (x , E) = L − x

L
fF(E , TL)+ x

L
fF(E , TR), (2.15)

where the second argument of a Fermi distribution function indicates the temperature at
which it is evaluated. Note that it does not have the form of a Fermi function, and thus the
distribution inside the wire cannot be characterized by a certain temperature.

Let us calculate the thermal current generated by the temperature difference in the
reservoirs. Similar to electric current, it is expressed in terms of the distribution function,

Q =
∫

dE( j (E) E/e2). (2.16)

Substituting Eq. (2.15) and assuming again that the temperature difference is small, we
obtain Q = −K�T , with the thermal conductance K = (π2/3)(σ/Le2)k2

BT . Note that the
electric and thermal conductance obey the relation K/T G = π2k2

B/3e2. This is actually
more general (not specific to the one-dimensional case), and is well known from the theory
of solids as the Wiedemann–Franz law. This law holds provided that the electron scattering
is predominantly elastic and that all non-electronic contributions (for example those from
phonons) can be disregarded.

Exercise 2.3. Derive the Wiedemann–Franz law from Eqs. (2.15) and (2.16).

The final remark we make is about the replacement of the energy-dependent density of
states, or conductivity, by their values at the Fermi surface. We have already seen that in
nanostructures, for example in the double junction, the transmission coefficient may be a
rapidly changing function of energy, and such an approximation should be taken with a
certain amount of caution. There are situations when this approximation does not suffice
to obtain an effect known to persist from general reasoning. In solids, such an example is
the thermoelectric effect, in which the current is generated by the temperature difference
(with no voltage applied). Consider the distribution function given in Eq. (2.15). The temp-
erature gradient is not a force, and thus, if there is no voltage, one has the current density,
j =−σ∂ f/∂r , and the total current, I = ∫

dE j(E)/e. Using Eq. (2.15), we obtain

I = 1

eL

∫
dE σ ( fF(E , TL)− fF(E , TR)) .

We see that, if the conductivity σ is taken to be energy-independent, the integral
vanishes. For example, if the temperature difference is small, �T ≡ TL − TR � TL,R,
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one uses the following approximation:

fF(E , TL)− fF(E , TR) ≈ ∂ fF

∂T
�T = − E − EF

kBT 2

∂ fF

∂E
�T ,

and since ∂ fF/∂E is an even function of E − EF (the delta-function at zero temperature),
the integral is zero. To obtain the thermoelectric effect, we have to take into account that
the conductivity is (weakly) energy-dependent and expand it around the Fermi energy,
σ (E) ≈ σ (EF)+ (E − EF)σ ′. Calculating the current, we obtain

I = π2

3k2
B

σ ′T
eL
�T .

Thus, the thermoelectric effect vanishes at zero temperature and is due only to the energy
derivative of the conductivity. In this sense, the thermoelectric current is very small. Indeed,
let us compare it with the electric current Iel = σV/L . The energy dependence of σ occurs
at the scale of EF, thus σ ′ ∼ σ/EF. We then have I/Iel ∼ k2

BT�T/eV EF. Typically, EF

is of the order of electron-volts. For the two currents to be of the same order, even for
room temperature (kBT/EF ∼ 10−2), we would need to apply the temperature difference
kB�T ∼ 102 eV.

2.3 Semiclassical coherent transport

2.3.1 Green’s functions

The Boltzmann and drift-diffusion equations disregard the coherence of electron waves
from the very beginning, and thus are not very useful for a description of quantum transport
in nanostructures. What we need is a rigorous formalism that, on the one hand, is semiclas-
sical, while, on the other hand, at least partially preserves this coherence. Such a formalism
is based on the semiclassical Green’s functions, and is detailed in the following. We will
see that the formalism is very similar to the traditional semiclassical description. We will
find analogs of the Boltzmann equation as well as of the drift-diffusion equation. There is,
however, an important difference: semiclassical Green’s functions, in contrast to the dis-
tribution function, are able to retain information about the coherence. In the semiclassical
approximation, only the relevant part of this information is retained: the coherence that
survives isotropization of electrons by scattering. The information is stored in the matrix
structure of the Green’s functions.

Originally, the formalism was developed for the description of superconductors, but
it proved to be much more broad. For the moment, we stick to the original formulation
[42, 43, 44], and show later how the formalism should be adapted for a broader class of
problems, including those not involving superconductivity.

As we discussed in Section 1.8, the starting point for describing electron states in super-
conductors are the BdG equations (see Eq. (1.156)) for the two-component wave function.
For� = 0 (no superconductivity), they are two uncoupled equations describing single par-
ticles in a metal, either as electrons with energies E or holes with energies −E . A finite
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� couples electrons and holes, so that the actual single-particle state is a coherent super-
position of an electron and a hole. Forty years ago it was recognized with fascination that
this coherence survives isotropization by impurity scattering and persists at long spatial
and time scales. It was also understood that the traditional particle-balance approach can-
not account for this coherence and must be replaced by the quantum-mechanical Green’s
function approach.

A historical comment would be in order here. Even 15 years ago, Green’s function
methods were regarded as advanced knowledge available to only a selected few, a sub-
ject not to be taught to lay persons. Accordingly, the wider scientific community tended
to regard Green’s function users as math freaks not capable of thinking in physical terms
or of communicating relevant results. Although such attitudes have not disappeared com-
pletely, there has been tremendous progress in popularizing these methods, as well as in
the understanding of “the physics behind” them. This is why we dare to address the topic in
this comprehensive text. We will not present any general introduction to quantum Green’s
functions here, however. They may be of various sorts and used for various purposes.

In this chapter, we use the Keldysh approach, outlined below. This is designed to
describe open quantum systems out of thermodynamic equilibrium. This suits the goals
of quantum transport. The starting point of the approach is to consider the evolution of
the density matrix ρ̂ of a quantum system subject to the many-body Hamiltonian Ĥ(t) at
the time interval (t0, t1). The density matrix can be presented as a linear combination of the
products of some “bra” and “ket” wave functions,

ρ̂(t) =
∑
i , j

ρi j |�(i)
ket(t)〉〈�( j)

bra(t)|,

and satisfies the Heisenberg equation,

∂ρ̂

∂t
= − i

�

(
Ĥ(t)ρ̂(t)− ρ̂(t)Ĥ(t)

)
.

To find the evolution, one solves the above equation, introducing unitary operators
Û (±)(t0, t1), where ± stands for “ket” (“bra”), so that

ρ(t1) = Û (+)(t0, t1)ρ(t0)Û (−)(t0, t1). (2.17)

The evolution operator Û (+)(t0, t1) is a product of elementary operators Û (+)(t , t + dt) =
exp{−iĤ(t)dt/�} that describe the evolution within a short time interval (t , t + dt). These
elementary operators are time-ordered so that Û (+)(t , t + dt) stands on the left from
Û (+)(t ′, t ′ + dt) provided t > t ′, i.e.

Û (+) = T exp

{
− i

�

∫ t1

t0
dt Ĥ(t)

}
, (2.18)

where T denotes the time ordering. The evolution operator for “bra” is the inverse of
Û (+)(t ′, t ′ + dt) and is consequently anti-time-ordered (notation T̃ ):

Û (−) = T̃ exp

{
i

�

∫ t1

t0
dt Ĥ(t)

}
=

(
Û (+)

)−1
. (2.19)

One speaks of the Keldysh contour that has a forward (“ket”) part (for Û (+)), going
from t0 to t1, and a backward (“bra”) part (for Û (−)), going back in time from t1 to
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t0. Then, all elementary evolution operators in Û (±) are ordered along the contour. The
Keldysh diagram technique is, by construction, a perturbation theory for the evolution ker-
nel, Eq. (2.17). Contributions to this quantity arise from perturbations to Ĥ in both forward
or backward contours. This is why all elements of the diagram technique and all physical
quantities in the Keldysh approach have an extra Keldysh index ± that denotes the forward
or backward parts of the contour.

Extended Keldysh formalism

An interesting recent advance is the modification of the Keldysh technique that makes
it suitable for the problems of counting statistics. In this case, one operates with an
“extended” Keldysh approach. There, the evolution of the “ket” and “bra” wave functions is
governed by different Hamiltonians Ĥ±(t). One works with an “extended” density matrix
ˆ̃ρ, satisfying

∂ ˆ̃ρ
∂t
= − i

�

(
Ĥ+(t) ˆ̃ρ(t)− ˆ̃ρ(t)Ĥ−(t)

)
.

Therefore, the evolution is different in the forward and backward parts of the Keldysh
contour and is given by

ˆ̃ρ(t1) = Û (+)(t0, t1)ρ(t0)Û (−)(t0, t1), (2.20)

Û (+) = T exp

{
− i

�

∫ t1

t0
dt Ĥ(+)(t)

}
, (2.21)

Û (−) = T̃ exp

{
i

�

∫ t1

t0
dt Ĥ−(t)

}
�= (Û (+))−1, (2.22)

Ĥ(±) = Ĥ± Îχ . (2.23)

Since the Hamiltonians are different, the ρ̃ evolved in this way is not a density matrix.
For example, its trace Tr[ ˆ̃ρ] �= 1, whereas it should equal unity for any density matrix.
Nevertheless, this trace is not useless – it gives the characteristic function of counting
statistics of the variable Q̂ = ∫ t1

t0
dt Î(t),

�(χ ; t1 − t0) = Tr
( ˆ̃ρ(t1)

)
. (2.24)

It is customary to define Green’s functions as averages of pairs of electron cre-
ation/annihilation operators that are time-ordered along the Keldysh contour. However, in
this chapter we concentrate on non-interacting electrons in the semiclassical limit. In this
case, things become much simpler. We state that the Green’s functions are matrices that
depend on two coordinates r , r ′ and two time moments t , t ′: Gαβ (r , t ; r ′, t ′). For Keldysh
Green functions in superconductivity, each index α,β is a composite index containing three
indices, each taking two values: Keldysh (corresponding to either the forward or backward
contour), spin (either “up” or “down”), and the so-called Nambu index that distinguishes
electrons and holes. Thus, the Green function is eventually an 8× 8 matrix. To operate
with these indices, it is convenient to use Pauli matrices. We introduce the matrices τ̂1,2,3,
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acting in Keldysh space, as follows:

τ̂1 =
[

0 1
1 0

]
; τ̂2 =

[
0 −i
i 0

]
; τ̂3 =

[
1 0
0 −1

]
.

We also introduce similar matrices σ1,2,3 and η1,2,3, acting on spin and Nambu indices,
respectively. In the following, we denote the Green’s functions with the matrix structure
with a check, Ǧ, to distinguish them from “hats” of the operators. It is also common to use
the following parameterization of the Green’s function in Nambu space:

Ǧ =
(

Ĝ F̂
F̂† −Ĝ

)
. (2.25)

Here, the Green’s function Ĝ (which may still be a matrix in spin and Keldysh spaces)
describes electrons and holes, whereas F̂ and F̂† are the components related to the super-
conductivity; they describe, for example, the mixing of electrons and holes and the creation
of Cooper pairs.

In stationary conditions, Green’s functions depend only on the time t − t ′, so one can
work in an energy representation, Ǧ(t − t ′)→ Ǧ(ε). The Green’s functions obey the
following equation:

(Ě − Ĥr )Ǧ(r , r ′; ε) = δ(r − r ′); (2.26)

Ě ≡ εη̂3 + 1

2
�(r)(iη̂2 + η̂1)+ 1

2
�∗(r)(iη̂2 − η̂1),

where �(r) is a complex quantity, denoted as �eiϕ in Eq. (1.156).

Control question 2.4. What is the matrix structure of the Green’s function if there is
no superconductivity and spin-dependent scattering is absent?

If we set the right-hand side of Eq. (2.26) to zero, it becomes equivalent to the
Schrödinger equation (or the BdG equation if superconductivity is present). Its solution
can be obtained in terms of solutions of the Schrödinger (BdG) equations – the scattered
electron waves studied in Chapter 1. The right-hand side ensures proper normalization of
these solutions, since the Schrödinger equation defines the wave functions only up to a fac-
tor. Equation (2.26) does not contain information about the filling of electron states. To take
this information into account, and thereby find a unique solution for the Green’s functions,
one has to require that the Green’s functions “at infinity”, that is, far from the nanostruc-
ture, assume their equilibrium values. In the realm of quantum transport, the “infinities”
correspond to the reservoirs or leads. They are in thermodynamic equilibrium, and are
characterized by chemical potentials and temperatures. Once the solution for the Green’s
functions is obtained, one can express physical observables in terms of these functions. In
quantum transport, we are mostly interested in the charge density and the electric current
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density. For superconducting Green’s functions, they are expressed as follows:

ρ(r) = e

4

∫
dε

2π
Tr{τ̂3Ǧ(r , r; ε)}; (2.27)

I(r) =
∫

dε

2π
lim

r ′→r

−ie

4m
Tr{τ̂3η̂3 (∇r −∇r ′) Ǧ(r , r ′; ε)}. (2.28)

Let us note that Eq. (2.26) is in fact a rewriting of the Schrödinger (BdG) equation:
its solutions can be obtained from the wave functions satisfying the equations. From this
we conclude that, at this stage, the Green’s function formalism based on Eq. (2.26) is
completely equivalent to the scattering approach outlined in Chapter 1, although it does not
explicitly introduce the scattering matrix. For simple scattering that encompasses several
channels the “blunt” scattering approach is definitely simpler and provides more intuition.

The situation changes for G � GQ: scattering matrices become too complicated to
handle, and the Green’s function method becomes more advantageous. The power of
the Green’s function method relies on opportunities of semiclassical approximation. For
Green’s functions, one can derive the semiclassical approach straightforwardly and rig-
orously from quantum mechanics rather than the “balance” reasoning of Section 2.2. We
outline the derivation below. The main point we would like to make is that there are Green’s
function counterparts to Boltzmann and drift-diffusion equations. However, these counter-
parts bring about an important new element absent in Section 2.2 – the “check” matrix
structure of Green’s functions that accounts for quantum coherence.

2.3.2 Eilenberger equation

Note first that Eq. (2.26) can be equivalently presented in the conjugated form, where the
Hamiltonian acts on r ′ rather than on r , and the matrix Ě is on the right of Ǧ:

Ǧ(r , r ′; ε)(Ě − Ĥr ′ ) = δ(r − r ′). (2.29)

This equation can be obtained from Eq. (2.26) if one treats Ǧ(r , r ′) as an operator in
r-space and multiplies Eq. (2.26) by (Ě − Ĥ )−1 from the left and by (Ě − Ĥ ) from
the right.

The first step in the semiclassical approach is to take the difference of the direct and
conjugated Eq. (2.26) and (2.29) to obtain

[
Ě , Ǧ

]
−

(
�

2(∇2
r ′ − ∇2

r )

m
+U (r)−U (r ′)

)
Ǧ(r , r ′; ε) = 0. (2.30)

This is still an exact equation. To make it semiclassical, let us introduce the so-called
Wigner representation of the Green’s function:

Ǧ(r , p ; ε) ≡
∫

d y e−i p· y/�Ǧ(r + y/2, r ′ − y/2; ε). (2.31)

Let us note the similarity with Eq. (2.4) for the “quantum” non-equilibrium filling factor.
This establishes an analogy between a Green’s function and a distribution function. We
now substitute the Wigner representation into Eq. (2.30), assuming that the dependence
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of Ǧ on r at the scale of the wavelength λF is smooth, ∂/∂ r � p/�. We thus obtain the
Green’s function analog of the first-stage balance equation, Eq. (2.5):

i
[

Ě , Ǧ
]

�
+ v

∂Ǧ

∂ r
+ F

∂Ǧ

∂ p
= 0. (2.32)

The difference from Eq. (2.5) is the commutator that appears due to the matrix struc-
ture of the Green’s functions. This structure is absent for the distribution function in the
Boltzmann equation. Also, the equation is for a quantity that depends on a greater num-
ber of variables: whereas f ≡ f (r , p), the Green’s function depends also on the energy
parameter ε. In fact, this dependence is redundant. The Green’s function has a sharp singu-
larity at ε = ±E(p), for electrons and holes, respectively. To remove the redundancy and
to obtain simpler Green’s functions, an important step is taken in the course of the deriva-
tion. Traditionally, it is called, rather mathematically, “Integration over ξ .” It follows from
the observation that we have already made: that quantum transport takes place at energies
close to the Fermi surface. Here we also note that, in Eq. (2.32) (i) important values of p
are close to the Fermi surface, p � �kF, and (ii) the coefficients at this scale barely depend
on the distance to the Fermi surface. For instance, the velocity p/m can be replaced by
v = vFn, where n (the unit vector in the direction of momentum) parameterizes the Fermi
surface. This is why the equation holds if we integrate it over ξ ≡ p2/2m − EF. This
corresponds to the averaging over wide energy intervals mentioned in Section 2.1. From
now on, we will work with “ξ -integrated”, or semiclassical, Green’s functions Ǧ(r , n; ε),
defined as follows:

Ǧ(r , n; ε) = i

π

∫
dξ Ǧ(r , p ; ε).

The Green’s function defined in this way is conveniently dimensionless and satisfies
Eq. (2.32).

Let us now outline how to take the scattering by impurities into account. Since the
Keldysh technique is essentially a perturbation theory, one can proceed with perturbations
in terms of impurity potential and derive equations for Green’s functions averaged over
different realizations of this potential – over positions of impurities and defects. The effect
of impurities can be incorporated into Eq. (2.26) by adding impurity “self-energy”  ̌(r , r ′),
to the Hamiltonian, Ĥ → Ĥ +  ̌(r , r ′). The function  ̌, in contrast to the impurity poten-
tial, is a smooth function of coordinates. Repeating the steps that led us to Eq. (2.32), we
obtain an analog of the Boltzmann equation, Eq. (2.6), known as the Eilenberger equation
(we skip the terms containing force F):

i
[

Ě , Ǧ
]

�
+ v

∂Ǧ

∂ r
=

i
[
 ̌, Ǧ

]
�

. (2.33)

The commutator of  ̌ and Ǧ plays the role of the scattering terms in the Boltzmann
equation, and  ̌ is expressed in terms of the scattering rates W p p′ as a check:

 ̌( p) =
∫

d p′

(2π�)3
W p p′ Ǧ( p′) =

∫
iν

π

dn′

4π
Wnn′ Ǧ(n′). (2.34)
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The simplest model assumption of the “white noise” potential and isotropic scattering that
led us to Eq. (2.8) can be implemented here also; this yields

 ̌ = i

2τP
〈Ǧ(n)〉. (2.35)

The Eilenberger equation depends on the same parameters as the Boltzmann equation
and has the same range of validity. There are two important distinctions arising from the
matrix structure. First, in contrast to all the semiclassical relations we studied, the Eilen-
berger equation is non-linear, since  ̌ ∝ Ǧ. The non-linearity thus arises from averaging
over impurities. Secondly, the Eilenberger equation has an important integral of motion,
∂r (Ǧ(n, r))2 = 0. At “infinity” (far from all interfaces) the Green’s functions assume
equilibrium values. This brings us to an important conclusion, i.e.

Ǧ2 = 1̌ (2.36)

everywhere in the nanostructure. Surprisingly, although this relation, sometimes called the
“normalization condition,” plays an important role in practical calculations, and is very
simple to write, we are not able to offer a simple explanation.

Let us recall the extended Keldysh formalism at this point. In quantum transport, its
main application is the counting statistics of electron transfers. In this case, the operators
Î and Q̂ in Eq. (2.23) are, respectively, the many-body operators of current and transferred
charge. For non-interacting electrons, the Green’s functions are 2× 2 matrices in Keldysh
indexes, satisfying

(E − Ĥ − τ3χ Î )Ǧ(r , r ′)Ǧ = 0, (2.37)

Î being the single-particle operator of the full current through a certain cross-section. Since
the current is conserved, this cross-section can be chosen arbitrarily. It is convenient to
choose the cross-section to be far from the nanostructure so that it bisects an adjacent reser-
voir. In this case, the effect of the counting field χ can be incorporated into the boundary
condition in the corresponding reservoir by a modification of the corresponding Green’s
function,

Ǧ(χ ) = exp(−iχτ3/2)Ǧ(χ = 0) exp(iχτ3/2), (2.38)

Ǧ(χ = 0) being the usual equilibrium Keldysh Green’s function of the corresponding
reservoir.

All steps and equations of the semiclassical approach remain precisely the same for the
extended χ -dependent Green’s functions. This enables evaluation of full counting statis-
tics for a variety of nanostructures. The approach can be extended to superconducting
nanostructures with minor effort and has been successfully used for that.

Control question 2.5. (i) Write the Eilenberger equation, Eq. (2.33), in components
in Nambu space. (ii) Find its solutions in a normal metal (� = 0) and without scattering
( = 0).
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2.3.3 Usadel equation

We proceed now to the analog of the drift-diffusion equation. As in the balance approach,
the equation is valid at scales exceeding the mean free path l. To derive it from the Eilen-
berger equation, one eventually performs the same steps as for Eq. (2.9). The Green’s
function in this limiting case is almost isotropic and can be represented as Ǧ(r , n) =
Ǧ(r)+ Ǧ(1)(r , n), Ǧ(1) being the small anisotropic term, Ǧ(1) � Ǧ, 〈Ǧ(1)〉 = 0. Due to the
normalization condition Ǧ2 = 1̌, the matrices Ǧ(1) and Ǧ anticommute, Ǧ(1)Ǧ = −ǦǦ(1).
As the first step, we substitute this representation into the Eilenberger equation and average
the resulting equation over the angle. The scattering term drops out, yielding

ie2ν

�
[Ě , Ǧ]+ ∂ ǰ

∂ r
= 0; ǰ = 〈vǦ(1)〉. (2.39)

This is the first time we encounter the matrix current ǰ , a quantity that will play an impor-
tant role in quantum circuit theory. The coefficient e2ν before the commutator arises from
the fact that the so-defined current has the dimension of conductance, as introduced previ-
ously (Section 2.2). Apart from the commutator term, the current ǰ is conserved. To find
the relation between the matrix current and the isotropic part of the Green’s function Ǧ,
we subtract the angle-averaged Eilenberger equation from the original one. In this way, we
obtain (assuming 1/τP � ε,�)

1

2τP
[Ǧ(1), Ǧ] = Ǧ(1)Ǧ

τP
= v

∂Ǧ

∂ r
,

which immediately gives us the Usadel equation,

ie2ν

�
[Ě , Ǧ]+ ∂ ǰ

∂ r
= 0; ǰ = −σ (r)Ǧ∇Ǧ. (2.40)

This describes coherent transport in the diffusion regime, when Ǧ(r) are continuous
functions of coordinates. If there are tunnel barriers in the structure, this is not the case, and
Ǧ(r) are generally different on the two sides of the barrier. To describe the situation, one
has to implement a boundary condition on the barrier. This condition relates a component
of the matrix current normal to the barrier to the Green’s functions at both sides Ǧ1 and Ǧ2,

ǰ⊥ = gT

2

[
Ǧ1, Ǧ2

]
, (2.41)

where gT is the conductance of the barrier per unit area. One can understand this condition
better if one considers its counterpart for a non-matrix current, as we did in Section 2.2. In
this case, it relates the normal component of the current to the local drop of filling factors
across the barrier:

j⊥ = gT
[

f1(E)− f2(E)
]

.

What one actually measures is the current density per unit energy j . It is expressed via
diagonal components of the matrix current (see Eq. (2.28)):

j = e

4
Tr

(
τ3η3 ǰ

)
. (2.42)
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Exercise 2.4. Consider Eq. (2.40) for a normal metal with homogeneous conductivity
σ (r) = σ . (i) Write the Usadel equation, Eq. (2.40), in components. (ii) Assuming 1d
geometry, solve the Usadel equation with the boundary conditions Ĝ|x=±∞ = τ̂3 −
τ̂1 + iτ̂2 − 2 fL,R(E)(τ̂3 + iτ̂2) (see Eq. (2.83) below). (iii) Using Eq. (2.42), calculate
the conductivity and show that it indeed equals σ .

2.3.4 Semiclassical approach and coherence

The semiclassical Green’s function approach outlined above is valid provided the mean
free path is much longer than the Fermi wavelength, kFl � 1. There are corrections to the
conductance, which are of order GQ and have essentially quantum origin: they reveal the
coherence of electron waves since they depend on the interference pattern of the waves
created by the defects. In one dimension, they become so strong that the whole semiclas-
sical approach fails (see Section 4.5). These corrections can be of the two types – weak
localization and universal conductance fluctuations. We have already seen how they arise
in the example of an Aharonov–Bohm ring (see Section 1.6), and we will consider them in
more detail in Chapter 4. We only mention now that the quantum corrections are obviously
affected by both weak magnetic field and (gate) voltage, which allows their experimental
observation. If the measurement is performed with a coherent conductor, with a dimen-
sion smaller than the coherence length determined by inelastic scattering, its conductance
exhibits irregular dependence on the magnetic field on the scale of GQ, the conductance
fluctuations. These fluctuations are determined by random phase shifts unique to this con-
ductor. A conductor much longer than the coherence length can be seen as a classical
circuit composed of many coherent conductors with dimensions determined by this coher-
ent length. Their universal conductance fluctuations are independent, and average out when
the conductance of the whole sample is measured. This is how we access weak localiza-
tion correction: the GQ correction to the conductance of each coherent conductor averaged
over many of them.

It is important to note that coherent effects in conductors with G � GQ are not lim-
ited to GQ corrections. They can be large if one measures anything but the conductance,
for example, noise. The semiclassical Green’s function approach can be slightly modified
to include coherence and to evaluate the transmission distribution for any nanostructure
with G � GQ. For this purpose, one introduces a “fake” matrix structure that accounts for
coherence. As a matter of fact, the Eilenberger and Usadel equations do not depend on
the concrete matrix structure and can be applied to systems that have nothing to do with
superconductivity. With this “fake” matrix structure, the commutators disappear from the
Usadel equation, and the matrix current is conserved exactly:

∂ ǰ
∂ r
= 0; ǰ = −σ (r)Ǧ∇Ǧ. (2.43)

In this situation, one can derive from the Usadel equation an analog of the Laplace equa-
tion. Let us describe a two-terminal nanostructure. If the Green’s functions in the terminals
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are Ǧ1, Ǧ2, the Green’s function everywhere in the nanostructure can be expressed as
follows:

Ǧ(r) = exp{u(r)M̌}Ǧ1, (2.44)

where M̌ is a constant matrix that anticommutes with Ǧ1. This yields

ǰ = −M̌∇u(r),

and the Usadel equation yields the linear equation

∇(σ (r)∇u(r)) = 0,

which is precisely the Laplace equation, Eq. (2.13), for the voltage distribution in a con-
ductor of an arbitrary shape. Suppose we know this voltage distribution with the boundary
conditions u → 0 (1) in the left (right) reservoir, respectively. Then one immediately
restores the solution of the Usadel equation: the constant matrix M̌ is found from the
condition given by

Ǧ2 = exp{M̌}Ǧ1 ⇒ M̌ = ln{Ǧ1Ǧ2}.
It is clear from Eq. (2.13) that the full current – the current density integrated over a cross-
section – is proportional to the full electric current at the voltage drop uR − uL = 1, which
is just GD, the conductance of this arbitrary-shaped conductor:

Ǐ = GD ln{Ǧ1Ǧ2}. (2.45)

We show in Section 2.6 that, based on this relation, the transmission distribution for a
diffusive conductor is universal and does not depend on its shape, geometry, and other
parameters. The only relevant quantity is the conductance G � GQ.

The semiclassical Green’s function method outlined in this section has many advantages:
it can be rigorously derived from exact quantum mechanics, and microscopic details and
material parameters can be taken into account with any precision desired. However, the
method may become quite disastrous in concrete applications: one has to solve a non-
linear differential equation with complicated boundary conditions. This is why in the next
section we turn to quantum circuit theory, which is a finite-element approximation to the
semiclassical Green’s function method. As we will see, quantum circuit theory can be very
easy to apply.

Exercise 2.5. Take the Green’s functions Ǧ1 and Ǧ2 in the form described in
Exercise 2.4 (Eq. (2.83)) and use Eq. (2.45) to reproduce the linear conductance.

2.3.5 Supercurrent from the Eilenberger and Usadel equations

In the following, we give concrete examples of typical work flows in the course of appli-
cation of the Eilenberger and Usadel equations in order to illustrate the corresponding
techniques.
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Both examples concern the evaluation of the equilibrium supercurrent. Under equilib-
rium conditions, the Keldysh structure of the Green’s function can be expressed in terms
of the equilibrium Fermi distribution function f (ε) ≡ (1− tanh(ε/2kBT )):

Ǧ(ε) =
[

Ř f̃ + Ǎ f ( Ǎ − Ř) f
( Ǎ − Ř) f̃ Ř f + Ǎ f̃

]
, (2.46)

where f̃ ≡ (1− f ) ≡ f (−ε). The 2× 2 matrices Ř ( Ǎ) are retarded (advanced) Green’s
functions, respectively. They are analytic functions of complex ε at Im ε > 0 (< 0). We
thus need to evaluate these energy-dependent matrices in any point of the structure. In
the case of the Eilenberger equation, we also need to specify their dependence on the
momentum direction n. In fact, both matrices satisfy the same equation and are related
to each other by Ř(ε, n) = −η̌3 Ǎ(−ε,−n)η̌3. So we need to solve for one of these: we
choose a retarded one.

We consider a 1d geometry where two massive superconductors are separated by a layer
of a normal metal of the width d . The axis z is perpendicular to the layer plane. Absolute
values of the order parameter � in the superconductors are the same. The phases of the
order parameter are ϕ1 and ϕ2, respectively, for the left and right superconductor. In other
words,

�(r) =
⎧⎨
⎩
�eiϕ1 z < −d/2
0 |z| < d/2
�eiϕ2 z > d/2.

The current is in the z direction, and its density at a given point is expressed in terms of Ř
and Ǎ (see Eq. (2.42)) as follows:

Iz(z) = 1

4
Tr

∫
dε τ̂3η̂3 Ǐ = eνvF

4

∫
dn dε tanh

ε

2T
nzTr

(
η̌3(Ř − Ǎ)

)
.

To start with, we assume that the thickness of the normal layer d, as well as the super-
conducting coherence length ξ = �vF/�, are much smaller than the mean free path. We
can therefore disregard the impurity scattering. This allows us to stick to the Eilenberger
equation and to the simplest version of it, where  ̌ = 0. The resulting equation is linear in
the Green’s function:

−i[Ě , Ř] = �v
∂ Ř

∂ r
.

It is interesting to note that, in this limit, the Eilenberger equation splits into separate
equations for separate electron trajectories that go straight through the structure. We param-
eterize a trajectory with parameter τ that has the dimension of time, r(τ ) = r(0)+ vτ . At
a given trajectory, �∂ Ř(τ )/∂τ = −i[Ě , Ř].2 A convenient choice is z(0) = 0. In this case,
each trajectory remains in the normal layer provided |τ | < τ0/2 ≡ d/2|vz | ≡ d/2vF|nz |.
Let us concentrate first on the trajectories that go from the left to the right superconductor
(vz > 0).

2 This does not imply a time dependence of Ř: τ gives a position at the trajectory.
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It is clear that the solutions of the above linear equation are many in number. We have
to choose a proper one from the unitary condition Ř = 1 and the behavior of the solution
at z →±∞. For the Eilenberger equation, this choice is not evident and requires some
discussion. Let us note first that for an interval where Ě = const(τ ) it is not a problem to
provide a general solution for Ř in the special basis – let us call it the local basis – where
Ě is diagonal:

Ě →
(

E 0
0 −E

)
; Ř =

(
r r+e−i2Eτ/�

r−ei2Eτ/� −r

)
.

Here we choose Im E > 0, and r , r± are piecewise constants taking generally different
values in different intervals. In our setup, there are three such intervals: the normal metal,
the right, and the left superconductor. By virtue of the unitarity condition, r2 + r+r− = 1.
Let us note that the exponent coming with r+ grows without bound at z →+∞, while that
with r− grows without bound at z →−∞. Since unbounded solutions must not occur, we
conclude that r− = 0 in the left superconductor and r+ = 0 in the right superconductor.
Since Ř is continuous, this establishes two good boundary conditions at τ = ±τ0 for the
Green’s function in the normal metal. Unfortunately, they are in local bases of the corre-
sponding superconductors and not in the local basis of the normal metal. To proceed, we
have to present these conditions in an arbitrary basis where Ě is not diagonal. The best way
to do this is to use the projection matrices. Let us note that in the local bases of the left and
right superconductors the equilibrium Green’s functions are diagonal, Řeq = η3 = Ě/E .
Let us consider two matrices P± = (1± Řeq)/2. It is evident from the explicit form of
these matrices in the local basis,

P+ =
(

1 0
0 0

)
; P− =

(
0 0
0 1

)
,

that they can be used to cut – or project – matrix elements of other matrices. For instance,
for any M̌ ,

P̌+M̌ P̌+ =
(

M11 0
0 0

)
, P̌+M̌ P̌− =

(
0 0

M12 0

)
.

This enables us to write the conditions in the arbitrary basis, for example

r+ = 0⇔ (1+ Řeq)Ř(1− Řeq) = 0.

Thereby we come to two boundary conditions imposed on Ř in the normal metal at the
boundaries with both superconductors:

(1− Ř1)Ř(τ = −τ0/2)(1+ Ř1) = 0;

(1+ Ř2)Ř(τ = τ0/2)(1− Ř2) = 0,

where Ř1(2) stand for the equilibrium functions in the left (right) superconductor. We stress
the general nature of the boundary conditions presented. We have derived them for 2× 2
matrices, but in fact they are valid for any matrix structure and are indispensable in applica-
tions of the Eilenberger equation. Let us also note the difference between the conditions on
the left and on the right: these conditions depend on the direction of electron propagation.
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Control question 2.6. Give the conditions for a trajectory going from the right to the
left.

Exercise 2.6. Consider the limit d → 0 so that Ř(−τ0/2) = Ř(τ0/2) ≡ Ř. Show that
the matrix Ř = (2− Ř1 + Ř2)(Ř1 + Ř2)−1 satisfies both boundary conditions and the
unitarity condition. Use only the fact that Ř2

1,2 = 1.

Let us give the explicit form of Ř1,2:

Ř1,2 = 1

E

(
ε �eiϕ1

−�e−iϕ1 −ε
)

, E =
√

(ε + i0)2 −�2. (2.47)

In the superconducting gap, |ε| < �, E is purely imaginary, E = i
√
�2 − ε2. Beyond the

gap, E seems to be purely real. The small imaginary part i0 that distinguishes between
retarded and advanced Green’s functions is, however, important here and must not be omit-
ted. An ambiguous sign of the square root has to be chosen regarding i0 and should satisfy
Im E > 0. This suggests that beyond the gap E is odd in ε, E = sign(ε)

√
ε2 −�2. In the

normal metal, E = ε.
With all this taken into account, we bring the boundary conditions to the explicit form:

ei(ετ0/�−ϕ1)(E − ε)r+ + 2�r + e−i(ετ0/�−ϕ1)(E + ε)r− = 0;

ei(−ετ0/�−ϕ2)(E + ε)r+ − 2�r + ei(ετ0/�+φ2)(E − ε)r− = 0.

We then make use of the unitarity condition3 and solve for the most important part of the
Green’s function, Tr(η̌3 Ř)/2 = r :

r = −i tan
(ετ0

�
− ϕ

2
+ arcsin

ε

�
+ i0

)
. (2.48)

Here, ϕ is the phase difference between the superconductors, ϕ = ϕ1 − ϕ2. The expression
in the above form is most comprehensive at |ε| < �. Beyond the gap region the same
expression can be cast to the following form:

r = i cot

(
ετ0

�
− ϕ

2
+ i arccosh

|ε|
�

)
. (2.49)

Let us note that in the gap region the Green’s function diverges in a set of energy
points where the argument of tan approaches π/2+ nπ . This gives the discrete energies
of Andreev bound states developed along the trajectory. Both positive and negative ε give
rise to positive bound state energies EA that satisfy arcsin(EA/�)+ EAτ0 = ±ϕ + nπ . If
the trajectory is short, τ0 � �/�, there is a single bound state EA = � cos(ϕ/2). We have
already seen this in Section 1.8: this is the Andreev bound state for a short (Eq. (1.170))
and transparent (Tp = 1) junction. With increasing length of the trajectory, more and more
Andreev bound states appear in the gap region emerging from the continuum of delocal-
ized quasiparticle states beyond the gap region (Fig. 2.3(a)). At sufficiently large τ0, there

3 Strictly speaking, the conduction determines Ř upon a ±1 factor. However, the correct sign is readily fixed by
comparing the resulting expression with its known limits, for example, at ε � �.
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�Fig. 2.3. Discrete Andreev bound states developed along a trajectory. The shaded rectangles denote
the continuum of quasiparticle states above �. (a) Energies of the states at ϕ = 0 versus the
trajectory length vFτ0. (b) Shoe lacing: phase dependence of the energies at τ0 = 9�/�.

are ≈ 2τ0�/π� bound states in the gap region. The phase dependence of all these levels
resembles a criss-cross shoe lacing (Fig. 2.3(b)).

We are almost ready to compute the current. We have the retarded Green’s func-
tion, and can express the advanced function by making use of the relation Ǎ(n, ε) =
−η̌3 Ř(−n, ε)η̌3. Note that flipping n flips the trajectory direction: trajectories going from
the left to the right change to those going from the right to the left. This does not change
τ0, but does flip the superconducting phase difference: ϕ→−ϕ. Therefore, the current
density reads Iz = eνvF/2

∫
dε dn tanh(ε/2kBT )|nz|Re(r (ε,ϕ)+ r (−ε,−ϕ)). In the gap

region, the real part of the Green’s function consists of δ peaks corresponding to the discrete
Andreev states:

Re r = π
∑

n

δ
(ετ0

�
− ϕ

2
+ ε

�
+ πn

)
.

Integrating over energies, we recover the contribution of the Andreev bound states to the
current: it resembles a familiar relation (Eq. (1.172)):

Iz = eπνvF

∫
dn |nz |

∑
n

∂E A,n(ϕ)

∂ϕ
. (2.50)

Comparing this with Eq. (1.172), we find the density of transport channels per area and per
element of direction dn as follows:

dNtr = π�νvF

2
dA dn |nz |.

There is also a contribution to the current from the energy region beyond the gap. Gener-
ally, this contribution cannot be disregarded. However, in two opposite limits of long and
short trajectories it is negligible, and the current is given by Eq. (2.50). The limit of short
trajectories and vanishing temperatures has been already discussed in Section 1.8.4: the
supercurrent is given by I (φ) = (π�/e)GN sin(ϕ/2), where in our case the normal-state
conductance of the structure GN = e2 AνvF/4.
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Let us investigate the opposite limit of long trajectories assuming vanishing tempera-
ture. In this limit, the Andreev bound states are linear functions of the phase difference
∂E A,n/∂ϕ = ±�/2τ0. Looking at Fig. 2.3, we note that the sign of the derivatives alter-
nates from level to level. Therefore, the contributions of the levels cancel each other,
except at the last “lace,” which oscillates with τ0. Averaging over these oscillations,
we obtain

∑
n〈∂E A,n/∂ϕ〉 = �ϕ/2πτ0. Integrating over n, we recover the “sawtooth”

(piecewise-linear) current–phase relation: Iz = (eνv2
F/6d)ϕ at |ϕ| < π .

Such a simple form of the answer suggests that there exists some simple explanation.
Indeed, the current in this limit can eventually be evaluated without going to microscopic
details. Since the Andreev bound states in the limit are dense in the gap region, the electrons
in the normal metal layer are fully involved in the motion of the superconducting conden-
sate. This motion, as mentioned in Appendix B, is characterized by the superfluid velocity
vs = (�/2m)(∇ϕ − (2e/c)A). In our case, the phase gradient∇zϕ = ϕ/d. The current den-
sity is then given by Iz = envs, where n is the total electron density. This coincides with
the above relation derived with the Eilenberger equation.

Let us turn to the Usadel equation. We now assume that the structure contains a sufficient
number of impurities such that the thickness of the normal metal layer along with the
superconducting coherence length, ξ = √D�/�, are bigger than the mean free path; this
enables the use of the equation. The unitarity condition Ř2 = 1 imposed on the retarded
Green’s function in Nambu space is readily resolved by the following parameterization in
terms of two variables, θ and χ :

Ř =
(

cosh θ sinh θeiχ

sinh θe−iχ − cosh θ

)
. (2.51)

This parameterization is equally applicable in the global basis where η3 is diagonal and in
a local basis where Ě is diagonal. The variables θ and χ are generally complex.

Let us first discuss general solutions of the Usadel equation in a local basis. Substituting
Ř in the above parameterization into Eq. (2.40), we obtain (′ ≡ ∂z)

(
χ ′ sinh2 θ

)′ = 0; (2.52)

θ ′′ = −2iE

�D
sinh θ + χ

′2

2
sinh 2θ . (2.53)

These equations have two (complex) integrals of motion:

χ ′ sinh2 θ = J ; (2.54)

(θ ′)2

2
+ 2iE

�D
(cosh θ − 1)+ J 2

2 sinh2 θ
= K . (2.55)

The first integral of motion manifests the conservation of a component of the matrix current
in the Usadel equation, i.e. that commuting with Ě .

Let us first analyze the solutions in the superconductors. At z →±∞, the Green’s func-
tions should approach Ř. For the parameterization in use, this implies θ → 0 at z ±∞.
The only solution satisfying this corresponds to K = J = 0, and we obtain
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χ ′ = 0; (2.56)

θ ′ = ±23/2eiπ/4

√
E

�D
sinh

θ

2
, (2.57)

where the + (−) sign refers to the left (right) superconductor. The latter equations can
be easily integrated to obtain θ ,χ inside the superconductors in terms of their boundary
values. For instance, in the right superconductor,

χ (z) = χ (d/2);

tanh(θ (z)/4)

tanh(θ (d/2)/4)
= exp

(
−eiπ/4

√
2E

�D
(z − d/2)

)
. (2.58)

At the same time, Eqs. (2.56) and (2.57) give the boundary conditions at the interfaces
z = ±d/2, thereby enabling us to solve for the Green’s function in a normal metal. These
conditions relate the derivatives of χ , θ to their values at the corresponding interface.
Equations (2.56) and (2.57) give them in local bases of the superconductor: they have to
be brought to an arbitrary basis with projection matrices P̌± = (1± Řeq)/2, as we did
for the Eilenberger equation. We do not do this here, turning instead to simpler boundary
conditions.

These simpler boundary conditions hold whenever we can neglect the change in the
Green’s functions in the superconductors compared with that in the normal metal. To see
how this works, consider small energies |ε| � �. The Green’s function changes at a typical
length

√
E/�D. Since in the normal metal E = ε and in the superconductor |E | = �, this

length is much bigger in the normal metal. The derivatives of the Green’s functions are the
same at the interface; therefore, the change of the Green’s function in the superconductor
is much smaller and can be neglected. Generally, we need to compare the resistance of the
superconductor layer of thickness ξ to the resistance of the normal metal, either at thickness√
ε/�D or at full thickness d: the change is roughly proportional to the resistance, and is

negligible if the resistance is small.
If we may neglect the change of the Green’s function in a superconductor, the Green’s

functions at the edges of a normal metal must match the equilibrium Green’s functions
in the corresponding superconductors, Ř(∓d/2) = Ř1,2. From now on, we use the θ–χ
parameterization in the local basis of the normal metal. Recalling Eq. (2.47), we see that
the boundary conditions become

θ (d/2) = θ (−d/2) = θS; cosh(θS) ≡ ε√
�2 − (ε + i0)2

;

χ (−d/2) = φ1; χ (d/2) = φ2,

and no longer contain derivatives. Owing to the symmetry between left and right, θ is an
even and χ − (ϕ1 + ϕ2) is an odd function of the coordinate z. So we have two differential
equations, Eqs. (2.52) and (2.53), supplemented by the boundary conditions: a computer-
ready problem.

An alternative solution strategy relies on the integrals of motion, Eqs. (2.54) and
(2.55). With these, one expresses derivatives in terms of θ . For example, it follows from
Eq. (2.55) that
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θ ′ =
√

2(K − J 2 sinh−2 θ/2+ sinh2(θ/2)(iε/�D)) ≡ F(θ , K , J ).

This allows us to avoid the explicit computation of θ ,χ at all z. One expresses the layer
thickness and the phase drop in terms of these derivatives to arrive at

d

2
=

θS∫
θ (0)

dθ

θ ′
=

θS∫
θ (0)

dθ

F(θ )
≡ F1(K , J , θ (0), θS); (2.59)

φ2 − φ1 =
d/2∫
−d/2

dz χ ′ = J 2

d/2∫
−d/2

dz

sinh2 θ

= 2

θS∫
θ (0)

dθ

F(θ ) sinh2 θ
≡ F2(K , J , θ (0), θS) , (2.60)

where F1,2 are expressed in terms of incomplete elliptic integrals. Since θ is even in z,
θ ′(0) = 0 and K = J 2 sinh−2 θ (0)+ (4iε/�D) sinh2 θ (0). This leaves two ordinary com-
plex equations to solve and find J ,χ (0) at given ε. It is precisely this first integral of
motion that we need in order to compute the current density. Indeed, in the Usadel form-
alism, the current density per energy interval reads (Eq. (2.40)) ǰ = −σ ǦǦ ′. We recall
Eq. (2.46) to express Ǧ via the retarded and advanced Green’s functions, to make use
of the parameterization Eq. (2.51), and to compute the trace with τ̌3η̌3/4 (Eq. (2.42)) to
arrive at

Iz = −σ/e
∫

dε tanh
ε

2kBT
Im J (ε),

where we take into account that JR(ε) = JA(−ε). Therefore, the fact that J is an integral
of motion is the manifestation of current conservation.

The resulting equations generally prohibit analytical solutions. These can be obtained
in several limiting cases, and we analyze one of them below. We restrict our consideration
to energies that are higher than the Thouless energy of the junction, but still much lower
than the gap, ETh = �D/d2 � |ε| � �. Naturally, this makes sense only if ETh � �, or,
equivalently, d � ξ : the normal metal layer must be sufficiently thick. In this limit, the
Green’s function in the normal metal essentially deviates from its equilibrium value θ = 0
only near the interfaces, at distances � (ε/�D)−1/2 � d. Therefore, we do not expect a
large supercurrent: let us see how small it is.

Since ε � �, θ (±d/2) = θS ≈ iπ/2, and χ = φ1,2 in the left and right superconductor,
respectively. Let us first investigate the Green’s function near the left interface. In doing so,
we can disregard the mere existence of the right interface and assume θ → 0 at z →∞.
We have been dealing with solutions of this type in the superconductors, and the solution
sought is obtained by minor adaptation of Eq. (2.58):

tanh
θ (z)

4
= i tan

(π
8

)
exp

(
− z − d/2

L(ε)

)
,

L(ε) ≡ eiπ/4

√
2ε

�D
;χ (z) = ϕ1.
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This falls off exponentially with increasing z. Sufficiently far from the interfaces, θ ≈ 0,
so we can expand as follows:

(θe±iχ )1 = κ exp(−z/L(ε))e±ϕ1 ,

where κ is an exponentially small number. Now let us turn to the right interface. Repeating
the steps, we find another approximate solution that is accurate closer to the right interface:

(θe±iχ )2 = κ exp(z/L(ε))e±ϕ2 ; κ ≡ i4 tan
(π

8

)
exp

(
− d

L(ε/2)

)

far from the interfaces.
The crucial observation is that, in most of the normal metal layer, θ ≈ 0, and the Usadel

equation is linear in terms of the non-diagonal matrix elements. Because of this, the true
solution is just a linear superposition of the two approximate solutions:

θe±iχ = (θe±iχ )1 + (θe±iχ )2.

Now we can evaluate the integral of motion, given by

J (ε) = χ ′ sinh2 θ ≈ χ ′θ0 = 2κ2/L(ε) sinϕ.

It does not depend on z as it should by virtue of current conservation.
The remaining task to complete is the integration over ε. It does not make sense to

do this at vanishing temperature kBT � ETh since, in this case, the main contribution
to the current comes from the energies not covered by the present consideration. So we
do it at a higher temperature that still does not exceed the superconducting gap, ETh �
kBT � �. Let us note that, at real energy, L(ε) has both real and imaginary parts. This
causes J (ε) to oscillate quickly. To evaluate the integral, we shift the integration contour
in the plane of complex ε to the imaginary axis where the integrand does not oscillate. The
thermal factor tanh(ε/2kBT ) has poles at the imaginary axis, and the main contribution to
the integral comes from a pair of closest poles at ε = ±πkBT . Finally, we obtain (using
tan(π/8)=√2− 1)

I = 64(
√

2− 1)2 σ

ed
kBT

√(
2πkBT

ETh

)
exp

(
−
√

2πkBT

ETh

)
sinϕ. (2.61)

We see that the supercurrent in this regime is always proportional to sin ϕ. As we have
seen in Section 1.8, this I –ϕ characteristic is typical for tunnel junctions. However, the
electrons do not tunnel; rather, they diffuse through the metal layer. What tunnels are the
Cooper pairs: the sinϕ term indicates that the Cooper pair transfers are independent. This
is in line with the exponentially suppressed supercurrent: the Cooper pairs really see the
normal metal layer as a kind of almost impenetrable tunnel barrier. Qualitatively, this sup-
pression can be understood in terms of scattering theory. Energies � ETh bring essential
energy dependence to transmission amplitudes. An amplitude of a Cooper pair transfer
involves two transmission amplitudes at ±ε and is therefore sensitive to energy-dependent
and random phases of the transmission amplitudes. The self-averaging over these ran-
dom phases efficiently suppress the resulting Cooper pair amplitude. This also explains
the temperature dependence of the supercurrent.
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The following remark concerns both examples given in the preceding text. We have
evaluated the current density in a normal metal and found it constant in z, as dictated
by current conservation. If we evaluate it beyond the normal layer, we would be sur-
prised: the computed current density vanishes inside the superconductors at a rather short
length scale ∼ξ ! It is clear what happens: at length scale ∼ξ , the current coming from
the normal layer is converted to the bulk supercurrent, the motion of the superconducting
condensate. This motion gives rise to a phase gradient in the superconductor, and there-
fore the superconducting order parameter should depend on z. Our calculation has failed
to encompass this effect since we forced the constant superconducting order parameter at
|z| > d/2. The accurate solution of superconductivity equations requires self-consistency.
The superconducting order parameter,�(r), should be determined from the solution for the
Green’s functions. Such a solution conforms to current conservation. In practice, the accu-
rate account of self-consistency is seldom required for nanostructures. This is in contrast to
bulk superconductors. Another simplifying assumption made was to disregard the depen-
dence of the Green’s functions on transverse coordinates. However natural this assumption
might seem, it is not compatible with the Meissner effect in superconductors: they cannot
support a uniform current density. The magnetic fields produced by currents repel them
from the superconducting bulk to a thin surface layer. So, in fact, our consideration is
restricted to the structures of small transverse dimensions.

In this technical subsection, we have exemplified a typical application of the Eilenberger
and the Usadel equations in their differential form to a superconducting heterostructure.
Even for the simplest geometry considered, the technicalities are rather difficult. Besides,
the simplest geometry cannot account for self-consistency and the Meissner effect. This
calls for a more comprehensive approach, and provides the extra motivation to turn to the
finite-element techniques considered in the rest of this chapter.

2.4 Current conservation and Kirchhoff rules

Laplace equations (see Eqs. (2.13)) for continuous distribution of voltages and currents
are physically obvious and therefore simple. The position-dependent conductivity allows
us to model conductors of any shape and design, and solving Laplace equations will give
currents and voltages. The problem is that the equations are partial differential ones – this
means that they are not easy to solve either numerically or analytically except for several
primitive geometries. We know that for electric circuits there is a fortunate way out –
instead of solving differential Laplace equations, one splits the circuit into finite elements
and solves several algebraic equations.

Any circuit consists of terminals and nodes denoted by a Latin index, say k, and char-
acterized by voltages Vk . The voltages at the terminals are fixed, while the voltages in
the nodes need to be found. Terminals and nodes are connected by connectors (Fig. 2.4).
The current through a connector between the nodes (terminals) i and k is proportional to
the voltage drop at the connector:

Iik = Gik(Vi − Vk). (2.62)



156 Classical and semiclassical transport
�

V1

V2

V4

V5

V3

I42

I45

I53

I41

G

�Fig. 2.4. A common electric circuit consists of terminals (1–3), nodes (4,5), and connectors. Each connector
is characterized by its conductance G. The voltages V1,2,3 are fixed in the reservoirs. The voltages
at nodes V4,5 are determined from the balance of currents in the circuit, and the current in each
connector is finally determined from these voltages.

How do we calculate the voltages at the nodes? The rules of circuit theory, the Kirchhoff
rules, are in fact conservation laws, or balance equations. Current is conserved. This
implies that, for each node k, the sum of the currents coming from all connectors equals
zero, i.e. ∑

k

Iik = 0. (2.63)

This yields a set of equations for voltages at the nodes. The solution of these equations
allows one to find the current in any connector and between the terminals.

The solution of the Laplace equations for an arbitrary geometry with any desired accu-
racy is, in principle, obtained by the finite-element approach in the limit of a large number
of circuit elements. In such a scheme, the volume of the conductor is separated into ele-
mentary volumes, for example small cubes. The elementary volumes then become the
nodes of the circuit. Making elementary volumes smaller and smaller boosts accuracy,
simultaneously increasing the number of nodes.

It is good that this number does not have to be high for the purposes of design or any
other practical activity; a few elements suffice. If a highly accurate solution of the Laplace
equations is desired, it is found by a computer program that eventually implements a finite-
element, circuit-theory approach with thousands of elements.

In the following, we consider the rules of quantum circuit theory, which is more power-
ful than the standard circuit theory based on Ohm’s laws. The principle is essentially the
same – the system is split into finite elements, and these elements are combined using
balance equations. The difference now is that (i) properties of these finite elements are
found from quantum-mechanical laws; (ii) quantum mechanics adds new conservation laws
generally absent in classical circuit theory.
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2.4.1 Double junction revisited

Before starting this complicated business, we would like to demonstrate some general ideas
of the finite-element approach and the importance of balance equations using a particular
simple example. We turn again to the double junction setup, which we have discussed thor-
oughly in Section 2.1. The finite-element approximation of this setup is straightforward:
the space between the junctions is a node, and the two junctions are Kirchhoff connectors
between the node and the left and right terminals.

We will discuss the energy dependence of the distribution function of electrons in the
node in three different situations that differ in the role played by inelastic scattering in the
node. To understand this role, let us first analyze an infinite system that does not know
about the reservoirs. If the scattering in the system is elastic only, the energy dependence
is undefined. Any isotropic function of energy would satisfy the balance equations for the
filling factor, even if does not have the form of an equilibrium Fermi distribution. This
changes if inelastic scattering is present in the node. The electrons can either lose or gain
the energy. If the inelastic processes come from electron–electron scattering, the electrons
can only exchange energy, in which case the total energy and number of electrons are con-
served. In this case, the equilibrium distribution function is a Fermi distribution function.
However, two parameters of this function – temperature and chemical potential – remain
undefined. Finally, if electrons experience inelastic scattering on phonons (the vibrations
of crystal lattice), the electron system can lose or gain energy from the lattice and the elec-
tron temperature is that of the crystal. The chemical potential is still undefined since the
total number of electrons is conserved.

Let us now consider coupling to the reservoirs and see how the balance equations set
these undefined quantities.

First, we assume that no inelastic scattering takes place when electrons traverse the dou-
ble junction. This implies conservation of current at each energy. The reservoirs (terminals)
are characterized by filling factors fL,R(E). The assumption is that the node is character-
ized by the filling factor fN(E). By virtue of Landauer formula, the currents through each
junction to the node are proportional to the corresponding filling factor differences:

j1 = G1( fL(E)− fN(E)); j2 = G2( fR(E)− fN(E)).

The conservation law gives simply j1 + j2 = 0. From this we readily calculate the filling
factor and current at each energy:

fN = G1 fL + G2 fR

G1 + G2
; j = j1 = − j2 = G1G2

G1 + G2
( fL − fR).

At each energy, fN is thus in between fL and fR. It does not have the form of a Fermi
function; instead, at low temperatures it develops two steps as a function of energy, which
correspond to steps in fL and fR (see Eq. (2.14)). The full electric current is obtained by
integration over the energy,

I = 1

e

∫
dE j(E) = G1G2

G1 + G2
V , (2.64)
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and satisfies Ohm’s law provided the transmission eigenvalues of the tunnel junctions do
not depend on energy.

Let us turn to the second situation. If one increases the spacing between the barri-
ers, more and more inelastic electron–electron collisions take place. Electrons exchange
energy, and this results in their thermalization. The filling factor has the form of the Fermi
distribution,

fN(E) = 1

1+ exp(E − μ)/kBT ∗
, (2.65)

and is a smooth function of energy. This function depends on two unknown parameters:
the chemical potential μ and the temperature T ∗ of the node. To determine these two
parameters, we apply two conservation laws: charge and energy conservation. The charge
and heat flows through junctions 1 and 2 are given by

eI1 = G1

∫
d E( fL(E)− fN(E)),

eI2 = G2

∫
dE( fR(E)− fN(E))

and

e2q1 = G1

∫
dE E( fL(E)− fN(E)),

e2q2 = G2

∫
dE E( fR(E)− fN(E)).

The balance of the charge flows,

I1 + I2 = 0,

yields

μ = G1μL + G2μR

G1 + G2
.

On computing the current, we recover the same relation as for the previous situation of
negligible inelastic scattering, Eq. (2.64).

To calculate the temperature of the node, we employ the balance of heat flows,
q1+ q2= 0. At equilibrium (zero voltage), the temperature of the node obviously equals
the temperature of both terminals. When voltage is applied and both terminals are kept at
zero temperature, T ∗ is determined by the voltage:

kBT ∗ =
√

3

π

√
G1G2

G1 + G2
eV .

Generally, it is of the order of the applied voltage and temperature in the reservoirs,
whichever is greater. The result for several ratios G1/G2 is plotted in Fig. 2.5.

Exercise 2.7. Evaluate the effective temperature T ∗ for the finite temperature T
of both terminals given the voltage difference eV. Hint: the expression for heat flow
through each terminal consists of separate terms that depend either on two chemical
potentials or on two temperatures.
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�Fig. 2.5. Effective temperature of the node in the double-junction system versus temperature at fixed
voltage V; G1 ≥ G2, and G1/G2 takes values 1, 2 and 4 from the top curve down.

Finally, we present the third case. Upon further increase of the size of the node, the
latter can efficiently exchange heat with external world. The heat conservation law does
not apply, and the effective temperature is that of the external environment, T ∗ � 0. The
charge conservation yields the same equations as before, so the current is again given by
Ohm’s law.

The three cases we have considered demonstrate the power and wide applicability of the
classical conservation laws, balance equations, and circuit theory.

It is important to understand that the same Ohm’s law holds in all three cases under
quite different conditions. In the first situation, the electrons retain their quantum coherence
while traversing the nanostructure. It can be regarded as a single scatterer, and is character-
ized by transmission eigenvalues. Under these conditions, one can use the quantum circuit
theory described below, for example to find the distribution of the transmission eigenval-
ues. In the two latter cases, the electron coherence is destroyed by inelastic processes, and
therefore only classical balance applies.

2.4.2 Matrix currents and leakage currents

We have already encountered the conservation of a matrix current when discussing the
Usadel equation. Here we comprehend matrix currents at a more general level. It turns
out that quantum mechanics gives rise to conservation laws which are absent in classical
mechanics, or at least are not associated with any quantities of obvious physical signifi-
cance. This sounds strange at least. Since we will base the whole of quantum circuit theory
on these laws, we should avoid any possible misunderstanding and distrust. This is why we
revise the concept step by step.

Let us recall first how the conservation of probability current is proven in quantum
mechanics. The proof can be found in the first few pages of any good introductory textbook
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in quantum mechanics and goes as follows. Consider a wave function ψ(r) that obeys the
Schrödinger equation:

Eψ = Ĥψ =
(
− �

2

2m
∇2 +U (r)

)
ψ(r) .

Let us try the following expression for the vector density of the probability current:

j (r) = − i�

2m
(ψ∗∇ψ − ψ∇ψ∗). (2.66)

We show that the divergence of this current is zero, i.e.

∇ · j (r) = − i�

2m
∇ · (ψ∗∇ψ − ψ∇ψ∗)

= − i�

2m

{[∇ψ∗ ·∇ψ −∇ψ ·∇ψ∗]+ [
ψ∗∇2ψ − ψ∇2ψ∗

]}
= i

�

[
ψ∗ [E −U (x)]ψ − ψ [E −U (x)]ψ∗

] = 0,

where we have assumed that the first term in the second line vanishes identically, and we
have transformed the second term using the Schrödinger equation.

Thus, we have proved the current conservation irrespective of any concrete realization
of the potential U (r), ∇ · j (r) = 0. The quantum expression given in Eq. (2.66) has an
obvious classical analog – the particle current. The introductory textbook stops here, and
we proceed further.

Let us look at two different solutions χ ,ψ of the same Schrödinger equation,

Eψ = Ĥψ =
(
− �

2

2m
∇2 +U (r)

)
ψ(r)

and

E ′χ = Ĥχ =
(
− �

2

2m
∇2 +U (r)

)
χ (r),

and try the following combination:

j (r) = −i
�

2m
(χ∇ψ − ψ∇χ) .

The same calculation gives us

∇ · j (r) = i

�
(E − E ′)χψ . (2.67)

For E = E ′, we obtain the conserving current. In general, this current does not have an
obvious classical analog, at least for χ �= ψ∗. Thus, quantum mechanics can give rise to
new conservation laws absent in classical mechanics.

Let us illustrate this statement with two examples. First, we address spin currents (see
Section 1.9). The electron wave function is a spinor with two components corresponding
to two possible values of electron spin, s = ±�/2. Provided the Hamiltonian is spin-
independent and time-reversible, the two components, ψ↑ and ψ↓, and their complex
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conjugates all satisfy the same Schrödinger equation. To implement the general scheme
outlined above, we consider the 2× 2 matrix current, given by

jαβ (r) = − i�

2m
(ψ∗α∇ψβ − ψβ∇ψ∗α ),

where each of the indices α,β can assume the values ↑, ↓. For the time-dependent
Schrödinger equation, we can prove along the same lines that

∂ραβ

∂t
+∇ · jαβ (r) = 0,

where ραβ is the electron density matrix in spin indices. We note now that any 2× 2 matrix
can be expanded in the basis containing the diagonal unity matrix 1̂ and three Pauli matri-
ces. If we expand the above equation, the part proportional to 1̂ gives the conservation law
for particle density, whereas the parts proportional to the Pauli matrices give conservation
laws for the x , y, z components of spin density.

One may argue that the spin density can be regarded as a pseudovector classical quan-
tity, and hence that these conservation laws are still of classical nature. However, we can
unleash our imagination and consider particles of higher spin, say S = 5/2. The spin
density is still a pseudovector, so we expect four conserving currents again. How many
quantum laws are there? The electron wave functions in this case are six-component
spinors. Thus the matrix current is a 6× 6 matrix, and we count 36 conservation laws.

The second example we provide is in the context of Andreev scattering, where wave
functions obey the Bogoliubov–de Gennes equation (see Section 1.8). In this case, a wave
function also has two components, a superposition of electron and hole components. If
the Hamiltonian is time-reversible, the electron ψe and hole ψh components in the normal
metal (where � = 0) satisfy the same Schrödinger equation with energies equal to ±E .
Therefore, the matrix current, given by

jαβ (r) = −i
�

2m

(
ψ∗α∇ψβ − ψβ∇ψ∗α

)
,

where Nambu indices α and β mark electrons or holes, is conserved at E = 0, exactly at
the Fermi surface.

Since the Green’s functions comprise two wave functions, the Green’s function formal-
ism is able to utilize these conservation laws. Indeed, we have already seen that the Usadel
equation (Eq. (2.40)) can be cast into a conservation law at zero energy.

Leakage matrix currents

The same Usadel equation, however, indicates that matrix currents are not always precisely
conserved: at non-zero energy, the matrix current ǰ is obviously not conserved, i.e.∇ · ǰ =
−(ie2ν/�)[Ě , Ǧ] �= 0. Formally, this prohibits the use of conservation laws. Practically, it
is easy to get around this prohibition. One can always redefine matrix currents in such a
way that they are conserved. This is achieved by introducing additional “leakage” matrix
currents.

To understand this concept, let us draw an analogy with a leaking electrical device.
Consider a thin metallic film of thickness d with conductivity σ , which is separated by a
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resistive tunnel barrier (conductance per unit area given by gT) from a bulk grounded elec-
trode. The current density j in the film is almost uniform and is a vector in two directions
in the plane of the film. The voltage distribution in the film satisfies

∇ · j + gTV = 0; j = −σd∇V , (2.68)

a relation similar to the Usadel equation. Indeed, the charge in the film is not conserved:
it leaks to the ground. However, the relation can be presented in current-balance form. We
simply introduce the surface density of the leakage current, jlc = gTV , so that

∇ · j + jlc = 0.

Exercise 2.8. Assume a semi-infinite film in the half-plane x > 0. Its left end (x = 0)
is connected to a terminal at fixed voltage V0. Find the voltage and current distributions
in the film. Find the resistance between the terminal and the ground.

Thus encouraged, we return to the Usadel equation and introduce the (volume) density
of the matrix leakage current as follows:

ǰlc = ie2ν

�

[
Ě , Ǧ

]
.

The full matrix current flowing to each elementary volume of the structure is now redefined
to include the leakage. In this case, it is conserved in each volume, i.e.

Ǐfull =
∫

dS( ǰ · N)+
∫

dV ǰlc = Ǐ + Ǐlc = 0.

The first integration is over the surface of the volume, N being the normal to the surface,
and the second one is over the volume.

If one stays with partial differential equations, the leakage current introduced in this
way is an unnecessary trick: one can (try to) solve equations without it. However, leakage
currents become very helpful when constructing a quantum finite-element approach.

2.4.3 Finite-element approximation

We have just learned that quantum mechanics provides extra conservation laws that account
for the coherence of electron waves, and that conserved currents acquire a matrix structure.
Now we are ready to construct a finite-element theory – a quantum circuit theory – based
on the conservation of matrix current. This theory greatly resembles common electric cir-
cuit theory. The latter works with three elements: terminals, connectors, and nodes. The
voltages at the terminals are fixed, and the voltages at the nodes are determined from the
current conservation in each node. Finally, these voltages determine the currents in each
conductor and, most importantly, to and from the terminals. The same elements are also
there in quantum circuit theory (see Fig. 2.6). We will use the term “reservoirs” instead of
terminals, since these elements are just the reservoirs described in Chapter 1 – large contact
pads adjacent to the nanostructure.
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�Fig. 2.6. A quantum circuit consists of reservoirs (1–3), nodes (4,5), and connectors. Each connector is
characterized by the set of its transmission eigenvalues {Tp} or, equivalently, by their distribution.
Matrix voltage Ǧ1,2,3 is fixed in the reservoirs. Matrix voltages Ǧ4,5 are determined from the
balance of matrix currents that also include “leakage” currents.

In common circuit theory, the counterpart of the current is the voltage (drop). Is the
counterpart of the matrix current the matrix voltage? Obviously, it must be a matrix. Less
obviously, this matrix Ĝ can always be chosen to satisfy the following properties:

Tr Ĝ = 0, Ĝ2 = 1̂. (2.69)

These relations come from the Green’s function approach outlined in Section 2.3, and the
matrix voltage in fact corresponds to the ξ -integrated isotropic Green’s function discussed
there. The above properties thus follow from the microscopic theory of disordered nanos-
tructures based on the Green’s function approach. However, the applications of quantum
circuit theory do not require any knowledge of Green’s functions and can be presented
following circuit-theory rules and the simple examples outlined in the following. We note
several properties of such matrices that will be used frequently in the text. The fact that
Ǧ2 = 1 implies that eigenvalues of the matrix Ǧ can only be ±1. Since Tr Ǧ = 0, there
must be an equal number of positive and negative eigenvalues. For two such matrices, Ǧ1

and Ǧ2, one checks by direct multiplication that Ǧ1Ǧ2 = (Ǧ2Ǧ1)−1. This implies that
Ǧ1Ǧ2 and Ǧ2Ǧ1 always commute and therefore can be diagonalized simultaneously. The
sum and the difference of Ǧ1,2 anticommute.

Control question 2.7. Can you prove that Ǧ1Ǧ2 =
(

Ǧ2Ǧ1

)−1
explicitly?

If we consider the difference in the limit Ǧ1 → Ǧ2, we see that any variation of
Ǧ anticommutes with Ǧ.
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As in common circuit theory, the matrix voltage is fixed in the terminals (reservoirs).
Each node is also characterized by a matrix voltage. To solve a circuit means finding the
matrix voltage at the nodes as a function of matrix voltages in the reservoirs. To do so, one
implements the conservation of matrix current in each node,∑

connectors

Ǐ = 0, (2.70)

the quantum Kirchhoff rule. The matrix current in each connector is expressed via two
matrix voltages at its ends, just as electric current via a connector is expressed via the
difference of the voltages at its ends; i.e.

Ǐ = F(Ǧ1, Ǧ2)↔ I = G(V1 − V2). (2.71)

Whereas it takes a single parameter, conductance, to characterize a connector in common
circuit theory, a connector in quantum circuit theory is characterized by its “pin-code” – a
set of its transmission eigenvalues Tp. For connectors with G � GQ, we will not operate
with Tp but rather with their distribution ρ(T ). For instance, a quantum point contact and a
tunnel junction of the same conductance are indistinguishable in the framework of common
circuit theory. In quantum circuit theory, these connectors are very different since they
have different transmission distributions. We will show below (Section 2.6) that there is a
universal relation that gives the matrix current in terms of G1,2 and Tp irrespective of the
concrete physics that gives rise to the matrix structure.

Similar to common circuit theory, the goal of quantum circuit theory is to find the matrix
currents flowing to each reservoir as functions of the matrix voltages fixed in the terminals;
this becomes an easy task once the matrix voltages in the nodes are known. As we will
see from the examples, the physical information is finally extracted from these matrix cur-
rents. “Leakage” currents require some more reasoning. To incorporate them into the same
template, one introduces fictitious reservoirs and fictitious connectors to these reservoirs
from each node. These elements, unlike real terminals, cannot be positioned in space, even
at an intuitive level, since a quantum leakage current only describes the loss of coherence
and does not leak anywhere in space. However, the practical advantage is overwhelming,
since currents from the fictitious terminals enter the current balance in precisely the same
fashion as from the real ones and can be treated in the same manner.

Control question 2.8. Separate the nanostructure given in Fig. 1.14 into finite
elements.

Variational principle

Many, if not all, physical laws can be formulated as variational principles. Newton’s equa-
tions of motions, the thermodynamic laws, and the Schrödinger equation can all be derived
by minimizing the corresponding (energy) functionals. The same applies to quantum cir-
cuit theory, in which Kirchhoff rules – balance equations for the matrix current – can be
most consistently derived from a variational principle.
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To formulate a variational principle for quantum circuit theory, we introduce an action
that depends on matrix voltages in all nodes and reservoirs. The actual voltages at the nodes
are determined from the condition that this action has a minimum with respect to variations
of Ǧ at the nodes, δS = 0.

This action in circuit theory can be presented as a sum of contributions of each
connector:

S =
∑

c

Sc(Ǧ1c, Ǧ2c), (2.72)

where 1c and 2c are the nodes at the ends of connector c. Variations of Ǧ are not arbi-
trary since they must obey the normalization condition Ǧ2 = 1̌, which implies (δǦ)Ǧ +
Ǧ(δǦ) = 0. It is advantageous to parameterize such variations by an infinitesimally small
matrix δw̌ at which no constraints are imposed, i.e.

δǦ = (δw̌)Ǧ − Ǧ(δw̌), (2.73)

so that δǦ automatically anticommutes with Ǧ. The current through the connector to node
1c is then given by

Ǐ1c = GQ
δS
δw̌1c

= GQ

[
δS
δǦ1c

, Ǧ1c

]
. (2.74)

If we vary the matrix voltage at node i , the variation of the total action is given by

δS
δw̌i
= 1

GQ

∑
j

Ǐi j , (2.75)

where the summation runs over the connectors that end at node i . The extremum condition
δS = 0 thus assures that the Kirchhoff rule given in Eq. (2.70) is fulfilled.

There is another relation worth mentioning. Suppose we have found the matrix voltages
at the nodes that provide the extremum of the action. The resulting action depends now
only on the matrix voltages of the reservoirs. If we vary the result with respect to these
voltages, we obtain matrix currents that are flowing to the corresponding reservoirs,

Ǐr = GQ
δS
δw̌r

.

We will use the variational approach several times in this book, and we always provide
the concrete expressions for the action.

2.5 Reservoirs, nodes, and connectors

2.5.1 Separation into finite elements

First, we need to address two important questions: (1) how do we present a real nanostruc-
ture in terms of quantum circuit theory, and (2) how do we subdivide it into finite elements?
The situation is once again similar to that of common circuit theory: although there is no
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general algorithm we can employ to make a subdivision such as this for an arbitrary struc-
ture, a suitable subdivision can be found in any realistic situation. Nanostructures are often
devised as a combination of elements such as tunnel junctions, quantum point contacts, or
diffusive layers. In this case, the subdivision is already made at the nanostructure design
stage. The electric properties of a structure serve as a good guide for its subdivision into
elements. If there is a voltage drop somewhere in a nanostructure, the place where it occurs
is regarded as a connector. If there is a place where voltage hardly changes, and it is not
adjacent to the contact pads, it has to be treated as a node. Since any voltage distribution
can be presented as a sequence of drops and plateaus with any fixed accuracy, such subdivi-
sion can always be carried out, as long as the number of elements increases with increasing
accuracy.

In principle, this is enough to proceed. However, it is a good idea to provide a specific
example of finite-element separation to introduce the concepts involved. For this purpose,
we consider a finite-element presentation of a diffusive conductor described by the Usadel
equation, Eq. (2.40), as a combination of tunnel junctions in series.

Instead of continuous space r , we take a connected discrete set of r i such that the
Green’s functions Ǧ(r i ) at neighboring points of the set are close to each other. We asso-
ciate a connector with each nearest-neighbor connection in the set in such a way that it
simulates continuous conductivity of the system. Let us demonstrate how to choose such
connectors for a cubic lattice of r i with periods a along the x , y and z axes. Let us expand Ǧ
in the vicinity of node i : Ǧ(r) = Ǧ(r i )+ �̌ · (r − r i ), �̌a � Ǧ. Since �̌ is proportional
to a variation of Ǧ, �̌ and Ǧ anticommute.

From Eq. (2.40) we obtain the continuous matrix current density:

ǰ = σ Ǧ(r i )�̌. (2.76)

In the network, the α component of the current density (α = x , y, z) is given by the matrix
current via a connector in the α direction divided by the area a−2 of the corresponding face
of the cube that bounds the node i ; i.e.,

ǰα = a−2 Ǐα . (2.77)

We see that if we choose

Iik = gik

2
[Ǧi , Ǧk], (2.78)

k being the node neighboring i , with gik = σa, we reproduce Eq. (2.76). To prove this
we make use of the fact that �̌Ǧ + Ǧ�̌ = 0. Later in this section, we demonstrate that
the matrix current in the form given in Eq. (2.78) corresponds to the notion of a tunnel
junction. Thus, indeed, the discretization of a diffusive conductor means representing it
using a set of tunnel junctions.

Now we can rewrite Eq. (2.40) as a Kirchhoff rule:∑
k

Ǐik + Ǐlc = 0. (2.79)

We have already mentioned that, since the Usadel equation does not conserve current, the
matrix leakage current Ǐlc has to be introduced at each node. This is the same as attaching
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a fictitious terminal to each node via a connector that supports the leakage current. Indeed,
the expression for the leakage current has a similar form to that of Eq. (2.78):

Ǐlc = gif

2

[
Ǧi , Ǧf

]
, (2.80)

with the matrix voltage Ǧf = Ě/
√
ε2 −�2(r) in the fictitious terminal, the matrix Ě

defined in Eq. (2.26), and the corresponding “conductance”

gif = i2e2νVi

√
ε2 −�2(r)/�

being proportional to the volume Vi = a3 associated with node i . The matrix current
in Eq. (2.80) describes two processes that may be viewed as a “leakage of coherence.”
Namely, the terms proportional to ε describe the decoherence between electrons and holes,
that is they describe the fact that the electrons and holes at the same energy difference ε
from the Fermi surface have slightly mismatching wave vectors. The terms proportional to
� are responsible for the conversion between quasiparticles and Cooper pairs that form the
superconducting condensate. This explains the leakage of quasiparticles.

An important practical issue to address is the choice of the lattice parameter a that sets
the fineness of the discretization. There is no limitation on a from below – we can discretize
the conductor down to the mean free path, the scale at which Usadel equation ceases to
hold. However, a finer mesh increases computational efforts. From the practical point of
view, we obviously want to keep the number of elements as low as possible. What are the
limitations on a from above?

We can gain some intuition about this by looking at a leaking electric device described
by Eq. (2.68). The voltage distribution in one-dimensional geometry is given by V (x) =
V (0) exp(−ξ x), ξ = √σd/gT, where V (0) is the voltage at the edge of the film. To repro-
duce this distribution, the distance between the nodes should be smaller than ξ in the region
of several ξ from the edge. At larger distances from the edge, one node would suffice. An
optimal mesh is therefore non-uniform. Similarly, the nodes for the Usadel setup should
be closer than the coherence length ξ = √D max(�, ε) at the scale of several ξ from the
edge. However, it makes no sense to keep the mesh this fine through the whole sample; at
larger distances from the edge, one or two nodes suffice.

Let us now present the above Kirchhoff rules in the form of an action. We start with a
single conductor. Looking at Eq. (2.74) it is easy to guess that the simplest form, Eq. (2.78),
of the current through connector c between nodes i and j corresponds to the simplest
action:

Ǐ ∝ [Ǧi , Ǧ j ]⇐ Si j ∝ Tr{Ǧi Ǧ j }. (2.81)

Control question 2.9. Can you restore the proportionality coefficients in Eq. (2.81)?

The contribution of an individual connector to the action is thus given by Sc =
(gik/2GQ) Tr{Ǧi Ǧ j }, both for real and leakage currents. The total action is therefore the
sum over all connectors, real or fictitious:

S =
∑

c

Sc.



168 Classical and semiclassical transport
�

We will see in Section 2.5.2 that this form of the action is characteristic of a tunnel junction.
Indeed, this is consistent with the form of the matrix current via a tunnel boundary (see
Eq. (2.41)).

Let us now go back and obtain the continuous limit (a → 0) of the action. First we note
that we can add an arbitrary constant to the action. For the moment, we choose it in a
convenient way such that, for any conductor c, S = 0 if the Green’s functions are the same
at both ends. Then we prove that, for conductor c,

Sc = gik

2GQ
Tr{Ǧi Ǧk − 1} = gik

4GQ
Tr{Ǧi Ǧk + Ǧk Ǧi − 2}

= − gik

4GQ
Tr{(Ǧi − Ǧk)2},

the action depends only on the difference of the Green’s function at the ends. To derive this,
we use the cyclic permittivity of matrices under the trace function, Tr(AB) = Tr(B A), and
the normalization condition. The difference becomes a spatial derivative in the continuous
limit, and we obtain

S = −G−1
Q

∫
dr σ (r) Tr{(∇Ǧ)2} + iπν

∫
dr Tr{Ě Ǧ(r)}, (2.82)

where the first term describes the usual connectors and the second one describes leakage
currents. The variation of this action yields the Usadel equation.

2.5.2 Reservoirs and nodes

A reservoir in quantum circuit theory is very much the same as that discussed in the
scattering approach (see Chapter 1). It presents an “infinity,” a bulk lead in contact with
the nanostructure containing many electron states in local equilibrium. In the scattering
approach, a reservoir is characterized by an energy-dependent filling factor, f (E), which
is, in principle, a Fermi distribution characterized by a certain temperature and chemical
potential.

In the Green’s function formalism, and in quantum circuit theory, the reservoir is char-
acterized by an energy-dependent matrix voltage Ǧ. Different choices of Ǧ correspond
to different physical theories and situations. For example, if we are interested only in
average currents inside the nanostructure and in those going to/coming from the reser-
voirs, and therefore we are after Landauer formulas, each reservoir is characterized by an
energy-dependent 2× 2 matrix in Keldysh space,

Ǧusual =
[

1− 2 f (E) −2 f (E)
−2+ 2 f (E) 2 f (E)− 1

]
≡ τ̂3 − τ̂1 + iτ̂2 − 2 f (E)(τ̂3 + iτ̂2), (2.83)

corresponding to usual (not extended) Keldysh Green’s functions. If one wishes to address,
for example, the full counting statistics of electron transfers (Levitov formula), one does
this with slightly more general matrices,

Ǧ = e−iχτ̂3/2Ǧusuale
iχτ̂3/2 =

[
1− 2 f (E) −2 f eiχ

(−2+ 2 f (E))e−iχ 2 f (E)− 1

]
, (2.84)
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corresponding to the extended Keldysh Green’s functions. The parameter χ is a count-
ing field that counts electrons going to the reservoir. Solving the quantum circuit theory
equations yields �({χα}), the characteristic function of charge transfers.

The next example is for nanostructures where spin-injection is of importance. As dis-
cussed in Section 1.9, we can ascribe a non-equilibrium spin accumulation to a reservoir.
Correspondingly, the filling factor acquires spin structure and is, by itself, a 2× 2 matrix ρ̌
in spin indices. The corresponding matrix voltage Ǧ is then a 4× 4 matrix made of 2× 2
spin blocks as follows:

Ǧ =
[

1− 2ρ̌ −2ρ̌
−2+ 2ρ̌ 2ρ̌ − 1

]
. (2.85)

Superconductivity introduces the coherence between electrons and holes, and a super-
conducting reservoir in equilibrium is generally characterized by a 4× 4 matrix in Nambu
(electron–hole) and Keldysh indices. It is convenient to present it in the form of Keldysh
blocks in the following way:

Ǧsup = 1

2

[
Ř + Ǩ + Ǎ −Ř + Ǩ + Ǎ
−Ř − Ǩ + Ǎ Ř − Ǩ + Ǎ

]
, (2.86)

where Ř, Ǎ, and Ǩ are 2× 2 matrices in Nambu space. The advantage of this representa-
tion is that the circuit-theory relations for Ř and Ǎ involve only these two matrices, so that
one can first evaluate them in the network, and then proceed with Ǩ . The matrices Ř and
Ǎ are associated with retarded and advanced Green’s functions, respectively, and are there-
fore analytical in the upper (lower) half-plane of the complex variable ε. They also satisfy
separately the normalization condition Ř2 = Ǎ2 = 1. In an equilibrium superconducting
reservoir, they are given by(

Ř
Ǎ

)
= ±1√

(ε ± iδ)2 − |�|2
[

ε �∗
−� −ε

]
, (2.87)

with δ→+0 and Ǩ = (Ř − Ǎ) tanh ε/2T .

Control question 2.10. At what energies are the Green’s functions given by Eq. (2.87)
real? At what energies are they imaginary? Hint:

√
z = √|z| exp(iϕ/2).

If the setup contains both normal and superconducting reservoirs, we need to express the
Green’s function in the normal reservoir with Nambu matrices. The normal reservoir may
be biased at voltage V with respect to the superconductors. The resulting 4× 4 matrix is
obviously diagonal in the Nambu space and is given by

R̂ = − Â = η̂3; K̂ =
[

tanh ε+ eV
2T 0

0 − tanh ε− eV
2T

]
. (2.88)

We have given examples of reservoirs for the problems that we will address later in
this chapter. They by no means exhaust all the possibilities. Note first of all that the size
and form of the matrix voltage – the Green’s function – in a reservoir depends not only
on the reservoir itself, but also on what other reservoirs are present in the circuit. (In
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the above example, when some reservoirs are superconducting, and some are normal, we
need to keep an extra dimension in the Nambu space, even for the normal reservoirs.)
Moreover, it depends on the problem in hand – the Green’s functions in use are differ-
ent for the calculation of average current and full counting statistics in the same system.
More complicated situations can be envisaged where the matrix structure is more complex,
combining simpler structures. For example, to describe the full counting statistics of a
stationary, non-equilibrium superconducting system with spin-injection, one makes use of
8× 8 energy-dependent matrices with Keldysh, Nambu, and spin indices that also include
counting fields.

Exercise 2.9. Write down the matrix Green’s function in a normal reservoir for the
above problem of full counting statistics of a stationary non-equilibrium superconduct-
ing system with spin injection.

In the absence of time-dependent drives, the quantum circuit theory equations apply
separately at each energy. An interesting and important twist in the matrix structure comes
about in a time-dependent situation, for example if the voltages applied to the reservoirs
are time-dependent. In this case, the Green’s functions depend on both time arguments,
Ǧ = Ǧ(t1, t2), rather than on the time difference only. Their Fourier components corre-
spondingly depend on two energies, Ǧ(ε1, ε2). The point is that a time (energy) coordinate
can be regarded as an extra matrix index. The time-dependent Green’s function satisfies the
same normalization condition, which is now expressed in terms of integration over time:

Ǧ2 = 1̌⇐
∫

dt Ǧ(t1, t)Ǧ(t , t2) = δ(t1 − t2).

Control question 2.11. How may this condition be rewritten in an energy represen-
tation?

In fact, the matrix structure can also be very simple; as we will show in the next section,
the transmission distribution can be evaluated with a matrix voltage as simple as

Ǧ =
[

0 eiφ

e−iφ 0

]
. (2.89)

We now turn to the nodes. In common circuit theory, a node is similar to a terminal:
its state is described by the same parameter, voltage. The same is true in quantum circuit
theory: the state of a node is characterized by a matrix voltage Ǧ. This is, in fact, the basic
approximation of the quantum circuit theory: a node is about the same as a reservoir. The
only difference is that the Green’s function of the node is determined from the balance
equations. It will have the same matrix structure as ascribed to the reservoirs, but does
not have to assume any specific form characteristic of a reservoir. This is in line with the
classical balance reasoning of Section 2.1, where we revisit the double junction. In that
case, the node between two tunnel junctions is characterized by its own filling factor; its
energy dependence does not have to be that of a Fermi distribution function.
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We stress again that this simple correspondence “node = reservoir” is an approximation
of the full scattering approach of Chapter 1. Indeed, in the scattering approach a node has
a different function: it is a unitary mixer being described by an energy-dependent scatter-
ing matrix that relates electron waves going in and out of the node. The matrix reflects
the random configuration of disorder in the node. Thus, the node is characterized by a
multitude of energy-dependent functions, components of the scattering matrix. Only the
self-averaging over disorder configurations, which occurs in the limit G � G Q , enables
the approximation “node = reservoir” and allows one to ascribe a certain matrix voltage
to a node.

In microscopic terms, the “node = reservoir” equation implies that Green’s functions
must be isotropic over a part of the nanostructure assigned to a node. This required
isotropization certainly takes place in the above example. There, the discretization led
to an elementary cube. The size of this cube was still greater than the mean free path.
This presumes that the cube contains many impurities. The impurities account for dif-
fusive scattering and thus for isotropization on this spatial scale. Surprisingly, the nodes
can be associated with parts of the nanostructure where there are no impurities so the
transport is formally ballistic. Let us look, for example, at a model nanostructure that is
a bounded region of metal connected to the reservoirs through ballistic quantum point
contacts with G � GQ. There are no impurities in the metal, so all electron scattering –
reflection – takes place at the boundaries only. Such a model structure is called a “cav-
ity” or a “quantum cavity,” since it resembles the cavity resonators used in the microwave
technique. If the size of the cavity exceeds by far the Fermi wavelength, the electron trans-
port is almost classical: electrons enter and leave the nanostructure following a certain
classical trajectory. If the cavity size exceeds the cross-sections of the point contacts, the
trajectory involves several reflections from the boundaries. It is the chaotic character of
this classical motion that produces isotropization: after several reflections, the memory of
the initial direction of momentum is lost. This is why, although the transport in the cav-
ity is ballistic, one can actually regard the whole cavity as a single node connected to the
reservoirs by means of the ballistic point contacts. This isotropization requirement can be
reformulated as follows: the conductance of the contacts must be much less than the esti-
mation of the system conductance based on its geometric size, for example, GQkF R for
a two-dimensional nanostructure of spatial dimensions R. The leakage current from the
nanostructure is still given by Eq. (2.80) for a diffusive system; it is not sensitive to the
concrete mechanism that has provided the isotropization.

2.5.3 Connectors

A connector element of a circuit theory is completely described by a relation between the
current in the connector and the states of the nodes at the ends of the connector. For classi-
cal (linear) electric circuits, it is just Ohm’s law: I = G(V1 − V2). It is characterized by a
single parameter, conductance G. In our quantum circuits, a connector element describes
an elastic scattering between the electron states of the nodes, and is characterized by the
corresponding scattering matrix. As discussed, in quantum transport we usually do not need
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all elements of the scattering matrix: all transport properties are determined by the “pin-
code,” the set of transmission eigenvalues Tp. Moreover, in the limit G � GQ there are
many transmission eigenvalues, and their distribution ρ(T ) is an adequate characteristic.
Therefore, a connector is characterized by the distribution of its transmission eigenvalues.
In all other respects, a connector is a black box: we do not (have to) know (and do not want
to know) what is inside.

This is not to promote ignorance: one has to know inside details to decide whether a
given part of a nanostructure (or the whole nanostructure) can be regarded either as a single
connector or represented as a set of connectors and nodes. The decision may be different
depending on the circumstances, even for the same structure. Let us take the example of a
long diffusive wire. If we consider transport of normal electrons, and we are sure that no
inelastic scattering occurs in the wire, it is acceptable to regard it as a single connector with
diffusive distribution of transmission eigenvalues. If the reservoirs are superconducting,
one may need to incorporate the leakage currents from the Usadel equation by splitting the
wire into shorter connectors and nodes. Estimating the relative importance of two terms
in the Usadel equation, we conclude that it becomes necessary if the wire length exceeds
the energy-dependent coherence length ξ (see Section 2.5.1). Inelastic scattering will also
become important at a certain length L in (see Section 6.8). If the wire length exceeds L in

one would again split the wire into connectors and nodes where the inelastic relaxation
takes place, similar to the double junction in Section 2.4.

Let us turn to the expression for the matrix current in a connector in terms of the matrix
voltages Ǧ1,2 of the corresponding nodes or reservoirs at the two ends of the connector.
The expression is eventually the same for all possible physical situations that the matrix
structure may represent. The current is given by

Î = GQ

∑
p

Tp(Ǧ1Ǧ2 − Ǧ2Ǧ1)

2+ (Tp/2)(Ǧ1Ǧ2 + Ǧ2Ǧ1 − 2)
. (2.90)

This corresponds to the following connector action:

S = 1

2

∑
p

Tr

{
ln

[
1+ Tp

4
(Ǧ1Ǧ2 + Ǧ1Ǧ2 − 2)

]}
. (2.91)

To prevent any possible misunderstanding, we recall that the matrices Ǧ1Ǧ2 and Ǧ1Ǧ2

commute, so the exact order of factors in the above expressions is of no importance. A
detailed derivation of the expressions is given in Ref. [45].

Exercise 2.10. Show that Eqs. (2.90) and (2.91) are in fact equivalent and follow from
each other.

The simplest example of a quantum circuit is a nanostructure without nodes (just a con-
nector between two reservoirs), which has been studied in detail in Chapter 1. Amazingly,
all possible physical situations concerning such a nanostructure and all possible trans-
port relations are contained in a very compact form in Eqs. (2.90) and (2.91). Now we
derive several fundamental relations of quantum transport starting from Eq. (2.90) for the
Landauer matrix current.
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Naturally enough, we start with the Landauer formula. Take a connector between two
reservoirs in the normal state. Substituting the matrix voltages Ǧ1, Ǧ2 in the form given by
Eq. (2.83), we find that, in this case, Ǧ1Ǧ2 + Ǧ2Ǧ1 = 2̌, and the matrix current (Eq. 2.90))
is given by

Î = GQ

2

∑
p

Tp

[
Ǧ1, Ǧ2

]
= 2GQ

∑
p

Tp ( f1 − f2)

[
1 1
−1 −1

]
.

To obtain the current through the connector in each energy interval, we take the trace of
the matrix current, similar to Eq. (2.42), in the context of the Usadel equation. For normal
transport, the relation is given by

j = 1

4
Tr

(
τ̂3 Î

)
. (2.92)

The trace yields the familiar relation j = GQ
∑

p Tp( f1 − f2). Integrating it over energy
yields the Landauer formula, Eq. (1.38).

Let us now turn to Levitov formula. It is easier to derive it from the connector action
than from the expression for the current. In the context of full counting statistics, we have
to work with matrices, as in Eq. (2.84). Since the result depends only on the difference of
counting fields across the connector, we can attach the counting field χ only to the second
reservoir. Taking the logarithm of the matrix in this case is trivial, since the anticommutator
of two traceless 2× 2 matrices is proportional to the unity matrix. In this particular case,
direct matrix multiplication yields

Ǧ1Ǧ2 + Ǧ2Ǧ1 =
[
2+ 4

(
eiχ − 1

)
f1 (1− f2)+ 4

(
e−iχ − 1

)
f2 (1− f1)

]
1̌

and

S = ln
{

1+ Tp

[(
eiχ − 1

)
f1 (1− f2)+

(
e−iχ − 1

)
f2 (1− f1)

]}
.

Integration over energy yields the Levitov formula, Eq. (1.54).

Exercise 2.11. Derive the Andreev conductance in Eq. (1.166) starting from Eq. (2.90)
and using the superconducting matrix voltages given by Eqs. (2.86), (2.87), and (2.88).

Thus, the Landauer matrix current relations given by Eqs. (2.90) and (2.91) provide a
uniform and compact presentation of all these quantum transport formulas that we have
previously obtained by different methods and in different contexts. In the limit G � GQ,
the summation over the channels in these expressions can be straightforwardly replaced
by the integration over T with the weight given by the transmission distribution ρ(T ).
There is, however, an alternative equivalent representation of a Landauer connector, which
is frequently more convenient. Since Ǧ1Ǧ2 = (Ǧ1Ǧ2)−1, the relations can be written in
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terms of one-parametric functions of a matrix, I and S̄, as follows:

Ǐ = iI(−i ln(Ǧ1Ǧ2)); S = Tr S(−i ln(Ǧ1Ǧ2)); (2.93)

I(φ) = GQ

∑
p

Tp sinφ

1− Tp sin2(φ/2)
; (2.94)

S̄(φ) = 1

2

∑
p

ln(1− Tp sin2(φ/2)); −4GQ
∂ S̄

∂φ
= I(φ). (2.95)

Many formulas of quantum transport become more elegant if expressed in terms of I
and S̄, rather than in terms of ρ(T ). In this way we obtain the following:

Landauer conductance: G = İ(0), (2.96)

Andreev conductance: GA = İ
(π

2

)
, (2.97)

Fano factor: F = 1

3

1− ...
I (0)

İ(0)
, (2.98)

and the full counting statistics in the shot noise limit eV � kBT is given by

ln�(χ ) = S̄(2 arcsinh2
√

eiχ − 1), (2.99)

with İ ≡ ∂I/∂φ.

Exercise 2.12. Derive Eq. (2.99) from the Levitov formula in the corresponding limit.

In the subsequent sections of this chapter we will make use of three basic types of
connectors – tunnel junctions, quantum point contacts, and diffusive conductors. Each is
characterized by the distribution of transmission eigenvalues discussed in Section 1.3. Now
we specify the matrix current and the connector action for these three main types of con-
nectors. They are easily obtained from Eqs. (2.94) and (2.95). Thus, for a tunnel junction
all transmission eigenvalues are very small, Tp � 1. Expanding these expressions in the
first power of Tp, we obtain

I = GT sinφ; S̄ = − GT

2GQ
sin2(φ/2), (2.100)

where GT = GQ
∑

Tp is the tunnel conductance. Furthermore, for a ballistic quantum
point contact all transmission eigenvalues equal either zero or one. Hence we have

I = 2GB tan(φ/2); S̄ = GB

GQ
ln cos(φ/2), (2.101)

with the total conductance GB = GQ N , N being the number of eigenvalues with Tp = 1.
For a diffusive connector, the expressions for the matrix current and the connector action
can be obtained directly from the Usadel equation, Eq. (2.45). We give the result here,

I = GDφ; S̄ = GD

8GQ
φ2, (2.102)

and explain it using simple arguments in Section 2.6.
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Exercise 2.13. Derive Eq. (2.102) from Eq. (2.45).

2.5.4 Summary of the circuit-theory rules

We have not as yet fully developed any concrete quantum circuit theory suitable for a
concrete physical situation; rather, we have discussed its general features. Thereby, we
have prepared a template that we will adapt for several examples. Before doing this, let us
summarize the template rules.

(i) Define the circuit. This includes a proper subdivision of the nanostructure into reser-
voirs, connectors, and nodes, specifying the type of each conductor in terms of
its transmission distribution – usually tunnel junction, ballistic contact, or diffusive
conductor.

(ii) Define the matrix structure of the theory: what are the matrix voltages characterizing
the reservoirs?

(iii) Write down the Kirchhoff rules (see Eq. (2.70)) for each node with leakage currents
taken into account. Information about the types of connectors is used at this point.

(iv) For given values of matrix voltages find, from the Kirchhoff rules, the matrix voltages
Ǧ at each node.

(v) Find the matrix currents in the circuit using Eq. (2.90).
(vi) If necessary, repeat steps (iv) and (v) at each energy. Extract physical values from the

matrix currents.

An almost equivalent approach is to use the variational principle. In this case, at step (v)
one finds the action for each connector and sums the individual contributions to obtain the
action for the whole nanostructure.

2.6 Ohm’s law for transmission distribution

Let us start with the examples of specific quantum circuit theories. We know from Chapter
1 that the “pin-code” of Tp and the distribution ρ(T ) of these transmission eigenvalues play
a central role in quantum transport. In this section, we address the transmission distribution
of a compound nanostructure comprising elements with known transmission distributions.
For this purpose, we develop a specific quantum circuit theory based on the conservation
law for a matrix current. The resulting scheme is surprisingly similar to common circuit
theory based on Ohm’s law and is applicable at G � GQ where the law applies. This is
why it is natural to call it a generalized Ohm’s law.

As discussed in Chapter 1, the distribution of transmission eigenvalues of a nanostructure
is defined as follows:

ρ(T ) =
∑

p

〈
δ(T − Tp)

〉
,
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where summation is over all transport channels of a nanostructure, and the average is over
all possible phase shifts, that is, over an ensemble of formally identical nanostructures.
We work assuming G � GQ. In this limit, the transmission eigenvalues are dense in the
interval (0, 1), and self-averaging takes place.

To derive the scheme, we first relate the transmission distribution to a matrix structure.
Let us consider a connector between reservoirs (nodes) 1 and 2. For the matrix voltages of
these reservoirs (nodes) we make the simplest choice possible, i.e.

Ǧ(φ1,2) =
[

0 exp(iφ1,2)
exp(−iφ1,2) 0

]
.

All possible Green’s functions thus belong to the same manifold, which is parameterized
with a single parameter φ, referred to below as a phase. The normalization condition Ǧ2 =
1 is automatically satisfied on this manifold. This phase should not be confused with the
phase of the electron waves or with the superconducting phase: it is an auxiliary parameter
to help us with our task, and does not have an obvious physical meaning. Let us substitute
these matrices into the expression for the matrix current, Eq. (2.90). We obtain

Ǐ =
[

i 0
0 −i

]
I(φ1 − φ2); I(φ) = GQ

∑
p

Tp sinφ

1− Tp sin2(φ/2)
.

There are two important features to note. First, the matrix current through the connector for
this choice of matrix voltages depends only on the phase difference across the connector.
In a sense, this is similar to a common electric conductor: the current depends only on
the voltage difference across it. Secondly, the matrix structure involved is a trivial one: for
any situation, the current is proportional to the same matrix, Î ∝ iσz . Therefore, the matrix
current in this particular circuit theory can be conveniently regarded as a scalar. The one-
parameter function I(φ) characterizing the type of connector has already been introduced
by Eq. (2.92). In terms of transmission distribution, it can be rewritten as follows:

I(φ) = GQ

∫
dT ρ(T )

T sinφ

1− T sin2(φ/2)
. (2.103)

If we know the transmission distribution, we can evaluate the phase dependence of the
current I (φ): the I –φ characteristic of a connector. We have already exploited this idea in
Section 2.5 to give these phase dependences for the basic types of connectors.

Control question 2.12. What are the current–phase relations for hypothetical con-
ductors with the following distributions of transmission eigenvalues (normalize these
distributions to the total conductance): (i) δ(T − 1/2); (ii) δ(T − 1); (iii) uniform.

It works the other way round too: the transmission distribution can be retrieved from
the phase dependence of the current. To this end, one uses the theory of the functions of a
complex variable and considers I(φ) in the plane of the complex phase. This allows one
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Ι1(φ − θ) Ι2(θ)

�Fig. 2.7. Phase drops and matrix currents in the simplest compound nanostructure.

to invert Eq. (2.103) and directly express the transmission distribution in terms of I(φ), as
follows:

ρ(T ) = ρD(T )

πG
Re

(
I
(
π − 0+ 2i arccosh(T−1/2)

))
,

ρD(T ) ≡ G

2GQT
√

1− T
.

(2.104)

The “0” in Eq. (2.104), as is common in the theory of the functions of a complex variable,
stands for an infinitesimally small positive number. This is important since I, as a function
of a complex variable, may have cuts at Re φ = π + 2πn, and “0” determines at which
side of the cut the function is to be evaluated. The function ρD is already familiar to us;
this is the transmission distribution of a diffusive conductor (see Eq. (1.43)).

Exercise 2.14. Prove Eq. (2.104) starting from Eq. (2.103). For this, assume the fol-
lowing parameterization of the complex phase: φ = π − 0+ iμ, and make use of the
Cauchy relation Im{(A + i0)−1} = −iπδ(A).

A rather unexpected use of Eqs. (2.103) and (2.104) is to evaluate the transmission dis-
tribution of a quantum circuit made of connectors and nodes. To see this, let us construct
the simplest two-terminal quantum circuit from two connectors with known transmission
distributions. It is presented in Fig. 2.7. For each element, the transmission distribution
defines the I –φ characteristics – the relation between the current and the phase drop at the
element. We set the phase to φ and 0 for the two terminals, respectively. Let us ascribe an
(as yet unknown) phase θ to the node. Then the current in the left connector is given by
I1(φ − θ ), and that in the second one is given by I2(θ ), with I1 and I2 being properties of
the connectors. Next, we use the current conservation in the node,

I2(θ ) = I1(φ − θ ) = I(φ),

to find the phase, θ . From this we find the resulting current I(φ), which can be evaluated in
either connector due to the current conservation. This is the I –φ characteristic of the whole
compound circuit. We know, however, that, for any connector, including the compound one,
the characteristic unambiguously determines the transmission distribution (Eq. (2.104)). So
we have found that one!

This reasoning is readily generalized to an arbitrary circuit with two terminals. We
ascribe the phases to the terminals, and find, using the Kirchhoff rules, the resulting phase
in each node of the circuit. Then the total current, being expressed as a function of the
phase difference between the terminals, φ, provides the transmission distribution for the
whole setup.
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Before moving on to concrete examples, let us consider the “linear regime” where the
phase difference between the terminals φ � 1. This also implies that the phase drops at
each connector are much less than unity, so that Ic ≈ Gc(φ1c − φ2c). By virtue of Eq.
(2.93), Gc is just the Landauer conductance of this connector. This makes the solution of
quantum Kirchhoff equations both easy and trivial. We end up with a linear circuit, which is
equivalent to the corresponding circuit of ohmic resistors. The I –φ characteristics becomes
I(φ) = Gφ, G being given by Ohm’s law. Non-trivial information about the transmission
distribution is obtained beyond the linear regime.

Let us apply this general technique to a number of concrete examples.

2.6.1 Double tunnel junction

Let us start with an example to which we have already paid some attention in this book –
two tunnel junctions in series. The space between the junctions is now a node. Under
current assumptions, the character of the electron motion between the barriers does not
really matter. It can be diffusive, ballistic, or even tunnel, provided the resistance of the
region between the junctions is negligibly small in comparison with the resistance of each
junction.

The current through each connector is given by Eq. (2.100). We write down the condition
of current conservation in the node,

I (φ) = G1 sin θ = G2 sin(φ − θ ),

where G1,2 are the tunnel conductances of the junctions, and θ is the phase in the node.
Solving for θ , we obtain

I (φ) = G1G2 sinφ√
G2

1 + G2
2 + 2G1G2 cosφ

. (2.105)

Performing analytical continuation to complex phase and using Eq. (2.104), we readily
find the transmission distribution (see Fig. 2.8),

ρDJ(T ) = G

πGQ

1√
T 3(Tc − T )

, T < Tc, Tc ≡ 4G1G2

(G1 + G2)2
, (2.106)

while the total conductance of the system, G = G1G2/(G1 + G2), is given by Ohm’s law.
This transmission distribution differs drastically from the one for a single tunnel barrier:

the transmission eigenvalues are not small and concentrated near T = 0; instead, typically,
T � 1, especially if the junctions are of comparable conductances. Since we have already
explained the double-junction “paradox” in detail (see Section 2.1.1), this should be of no
surprise to the reader. This is yet another manifestation of resonant transmission via elec-
tron states localized between the junctions. Another prominent feature of the distribution
is that it reaches T � 1 only if the conductances of the junctions are the same. Otherwise,
there is a gap in the distribution at 1 > T > Tc. This is also in agreement with the quantum
results of Section 2.1.1. If the transmission amplitudes via two junctions are not the same,
the highest possible transmission coefficient is less than unity. Only if the probabilities of
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�Fig. 2.8. Transmission distribution of two tunnel junctions in series is bimodal at “resonance” G1 = G2 and
is restricted from the side of high transmissions for unequal junctions. The curve labels denote the
parameter G1/G2.

escaping from the node to both sides are equal is the transmission in the resonant state
ideal. Note, however, that the prediction of the gap under the current assumption G � GQ

does not imply a strict prohibition of transmission eigenvalues in the gap region. There
can be always a quirk: a peculiar realization of random phase factors that brings a trans-
mission eigenvalue to the “forbidden” interval. The prediction of the gap just implies that
such quirks are highly improbable. More sophisticated techniques [46] based on the eval-
uation of a non-trivial extremum of a circuit-theory action estimates this probability as
ln p ∝ −G/GQ. The probability is thus exponentially small in the limit G � GQ.

It is interesting to provide here a phenomenological derivation of the double-junction
transmission distribution based solely on transmission resonances. We will assume G1 =
G2 for simplicity, and look at a symmetric resonance where maximum transmission is
ideal. In the vicinity of the transmission peak, the transmission assumes Lorentzian shape
(see Eq. (1.106)):

T = 1

1+ (χ/w)2
⇒ dT

dχ
= 2

w

χ/w

(1+ (χ/w)2)2
= ± 2

w
T 2

√
1

T
− 1 , (2.107)

χ being a small deviation of the phase shift from its value at resonance position, and
w � π gives the width of the resonance. Let us make a natural assumption: that the phase
shifts are random and are distributed uniformly. This reproduces the distribution,

ρ(T )dT = const. · dχ ⇒ ρDJ(T ) = const.

∣∣∣∣dχ

dT

∣∣∣∣ = G

πGQ

1√
T 3(1− T )

, (2.108)

where the constant is determined from the normalization condition,
GQ

∫
Tρ(T )dT = G. Similar reasoning reproduces the transmission distribution for

unequal junctions as well. There are obvious logical caveats in this derivation. For instance,
we assume that all resonances reach the ideal transmission. For many channels and random
scattering between them, this assumption is not justified. The “derivation” therefore cannot
be taken seriously: its value is mnemonic rather than scientific.
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The distribution function given in Eq. (2.108) and/or the I –φ characteristic Eq. (2.105)
can now be used to calculate physical quantities. Thus, for the Fano factor and Andreev
conductance one obtains, respectively,

F = 1− G1G2

(G1 + G2)2
, GA = G2

1G2
2

(G2
1 + G2

2)3/2
. (2.109)

Exercise 2.15. Evaluate the full counting statistics for a double junction making use
of the general equations Eqs. (2.109) and (2.99) and the concrete Eq. (2.105). Why
might the full counting statistics expression be understood in terms of the transfer of
half-integer charges e/2?

It is interesting to note that the double-junction transmission distribution unexpectedly
reappears in rather different setups not related to any tunneling. For instance, the same
transmission distribution holds for a very disordered interface [47]. As we will see in
Section 6.5, the renormalization by electron–electron interactions causes the transmission
distribution of most conductors to converge to Eq. (2.108).

2.6.2 Two ballistic contacts

As the next example, we consider the transmission through two point contacts in series.
We repeat the same procedures using the I –φ characteristic of point contacts, Eq. (2.101).
The conductances of the contacts, G1,2, are determined by the numbers of open channels
supported by the contacts. From the current balance in the node,

I (φ) = 2G1 tan(θ/2) = 2G2 tan((φ − θ )/2),

we find

I (φ) = (G1 + G2) cot(φ/2)

{[
1+ 4G1G2

(G1 + G2)2
tan2(φ/2)

]1/2

− 1

}
, (2.110)

and eventually the following transmission distribution [48]:

ρ(T ) = G1 + G2

πGQ

1

T

√
T − Tc

1− T
, T > Tc, Tc ≡

(
G1 − G2

G1 + G2

)2

, (2.111)

and ρ(T ) = 0 otherwise (see Fig. 2.9).
All properties of the distribution are almost exactly reversed compared with those of the

double-junction transmission distribution. Generically, the distribution is concentrated at
open channels with T � 1 as opposite to almost closed channels T � 1. It also has a gap
at low transmissions 0 < T < Tc rather than at high ones. The gap is closed only if the two
quantum point contact conductances are the same, in which case the distribution becomes
symmetric with the minimum at T = 1/2. If one of the conductances (say G1) is much
larger than another one, the distribution shrinks to T = 1, approaching a distribution of a
single quantum point contact with the conductance G2. Let us give here the limiting form
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�Fig. 2.9. Transmission distribution of two ballistic contacts in series is bimodal at G1 = G2. For unequal
conductances, the transmission eigenvalues avoid lower values, so that the distribution is
concentrated near 1 if G1 � G2. The parameter G1/G2 takes the values 1, 0.5, 0.1, 0.03 from the
upper curve down.

of this distribution, which is more convenient to regard as the distribution of reflection
eigenvalues R = 1− T , R � 1:

ρ(R) = 4G2

πRc
�(Rc − R)

√
Rc

R
− 1; Rc ≡ 4G2

G1
� 1. (2.112)

The noise suppression and the Andreev conductance for two ballistic junctions in series
are as follows (see Eqs. (2.98) and (2.97)):

F = G1G2

(G1 + G2)2
, GA = (G1 + G2)

⎛
⎝1− G1 + G2√

G2
1 + G2

2 + 6G1G2

⎞
⎠ . (2.113)

Ballistic cavity paradox

Two quantum point contacts in series give the circuit-theory description of a ballistic cav-
ity discussed in Section 2.5.2: a model system where electrons do not experience any
scattering except at the walls. Such ballistic cavities are convenient models for a class
of nanostructures made by shaping a 2DEG with a set of top gates. The contacts between
the cavity and the “bulk” 2DEG are defined by pairs of extra gates. Changing the gate
voltages, one tunes the contacts from full isolation through the tunnel regime to quantum
point contacts with many open channels. These devices can thus cross over between var-
ious regimes – ballistic transmission, resonant tunneling, and the interaction-dominated
Coulomb blockade (see Chapters 3 and 5). Here we concentrate on the ballistic cavity
regime when both contacts are open wide. As discussed in Section 2.5.2, the ballistic cav-
ity can be regarded as a node if it is much bigger in size than the openings of the contacts.
Also, the contacts have to be placed in such a way that there is no possibility of a direct
ballistic transmission through both of them. Under these conditions, the electrons scatter
many times when traversing the cavity and their motion is typically chaotic, so we have
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�Fig. 2.10. A realization of a ballistic cavity in a 2DEG (top view). White: 2DEG; gray: depleted regions; black:
top gates. The rectangular gates shape the cavity while the pairs of gates with sharp ends tune
the openings of two ballistic contacts. The electron trajectories are scattered at the cavity
boundaries only.

here a ballistic chaotic cavity. (We will give more details about chaos in Section 4.3.) Let
us note that the size of the cavity exceeds the Fermi wavelength. The same is true for the
size of the contact openings (this is consistent with the condition G1,2 � GQ). Under these
conditions, the electron motion is classical.

Now the paradox appears. If the motion is classical, including scattering at the bound-
aries, the future motion of an electron is completely certain given the initial conditions
defining an electron trajectory, i.e. the starting point and the direction of motion. This is
the same as saying a trajectory never branches. Let us look at the electrons coming from
the left reservoir. Depending on the initial conditions, a given trajectory of such an electron
either reflects back, ending up in the same reservoir, or traverses the cavity to end up in
the right-hand reservoir (Fig. 2.10). Let us note that this corresponds to a very plain trans-
mission distribution: the transmission eigenvalues are either 0 (trajectories ending up in the
same reservoir) or 1 (trajectories crossing to another reservoir). This is not the transmission
distribution given by Eq. (2.111). Paradoxically, we have two incompatible answers for the
transmission distribution under seemingly identical assumptions of semiclassical transport.
Both answers eventually give the same conductance given by Ohm’s law and thus cannot
be distinguished thereby. However, they predict different Fano factors.

Control question 2.13. What is the Fano factor corresponding to the plain transmis-
sion distribution?

Although the physics related to the paradox is notoriously difficult to quantify, it has
been sufficiently understood at a qualitative level [49]. It only seems that both answers
correspond to identical assumptions. To understand this, let us use an analogy between
electron trajectories and optical beams. We know that the resolution of an optical device,
say a microscope, is limited by diffraction. An optical beam does not propagate in a micro-
scope at a well defined angle; rather, there is an angle uncertainty called the diffraction
limit (δφ)diff � λ/L , λ being the wavelength of the light, L � λ being a typical spatial
scale of an optical system, say a lens diameter.
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This implies that the direction of a trajectory in or near the cavity is uncertain, with
uncertainty (δφ)diff � (kFL)−1, L being the cavity diameter. To see how this leads to a
branching, let us replace a single trajectory with two close trajectories separated by a small
angle (δφ)diff (see Fig. 2.10). Naively, the close trajectories are expected to remain close to
each other and therefore to end up in the same reservoir.

Let us note, however, that each reflection at the concave boundaries of the cavity approx-
imately doubles the angle between close trajectories, so it grows exponentially with the
number of reflections. The trajectories that are initially separated by a small angle (δφ)diff

will after a short time be separated by a large angle � π , i.e. after NE � log(kFL)� 1
reflections at the boundaries. If the angle is large, the initially close trajectories can easily
end up in different reservoirs. Therefore, after � NE reflections a trajectory can branch: a
quantum or diffraction effect which is easy to miss.

This implies that there may be two distinct regimes of semiclassical transport via a bal-
listic cavity. If a typical number of reflections Nr in a cavity is smaller than NE, diffraction
effects can be safely ignored. The transport is said to be purely classical, and the transmis-
sion distribution is plain. In the opposite limit, Nr � NE, the transport is semiclassical, the
trajectories branch, and the transmission distribution is given by Eq. (2.111). We stress that
the latter limit is the most practical one. Since NE only logarithmically depends on kFL , it
is a large number only in theoretical considerations and two to three reflections lead to the
branching. In addition, extra scattering in the cavity not confined to the cavity boundary
induces extra branching of the trajectories [50].

A time scale at which an electron experiences NE reflections is called the Ehrenfest time,
τE. In the early days of quantum mechanics, Paul Ehrenfest suggested that the diffraction
of particle waves sets a time scale characterizing the departure of quantum dynamics for
observables from classical dynamics.

2.6.3 Diffusive connectors

The traditional concept of diffusive transport is underlaid by the microscopic picture con-
sidered in Section 2.2: electrons are scattered at a large number of impurities that are
distributed in the nanostructure more or less uniformly. This microscopic model has been
the starting point at which to derive both the drift-diffusion and the Usadel equations. Solv-
ing the Usadel equation eventually yields the diffusive transmission distribution given by
Eq. (1.43). However, the reader will have noted that we have introduced the distribution
ρD(T ) very early in this book. This is not because its relation to the diffusive nature of
transport is obvious. Quite the opposite: the distribution ρD(T ) was first put forward by
Dorokhov [51] in a rather specific context, and its significance remained unappreciated for
years.

Now we are ready to understand this significance and the true universality of ρD(T ): the
generalized Ohm’s law makes it obvious. It is crucial to note that, by virtue of Eq. (2.102),
the diffusive transmission distribution gives rise to a linear I –φ characteristic. Since any
I –φ characteristic must be periodic in φ, the linear relation holds in the interval (−π ,π ).
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�Fig. 2.11. Universality of diffusive transmission distribution ρD(T). Any nanostructure consisting of diffusive
elements retains ρD(T). Any nanostructure consisting of several elements in series that have
comparable resistance has a transmission distribution close to ρD(T). In the plot, I−φ

characteristics of the chains of ballistic contacts (N = 1, 2, 3, 4 from upper curve down) and tunnel
junctions (N = 1, 2, 3, 4 from bottom curve up) approximate the linear I–φ characteristics of a
diffusive conductor.

Let us now consider a large number N of similar connectors in series. For simplicity, we
may assume that the I –φ characteristic is the same for every connector in the circuit and is
given by I0(φ). Now we characterize N − 1 nodes by the phases θ1, θ2, . . . , θN−1, which
are found from the current conservation:

I0(φ − θ1) = I0(θ1 − θ2) = · · · = I0(θN−2 − θN−1) = I0(θN−1).

Since the connectors are the same, the phase drops over each connector are the same as
well. Each drop thus equals φ/N . The overall I − φ characteristic is thus simply given by

I(φ) = I(φ/N ).

The crucial observation is that the characteristic is linear in the limit of large N :

I(φ) = I0(φ/N ) ≈ Gφ, G ≡ N−1 ∂I/∂φ
∣∣∣
φ=0
= G0/N , (2.114)

irrespective of the type and details of the connectors. We thus prove that a series com-
bination of a large number of connectors always gives rise to the diffusive transmission
distribution ρD(T ). Thus, this is, in fact, a natural definition of diffusive transport. Any
nanostructure that consists of many connectors of comparable conductance in series is
effectively diffusive. This definition is universal since it is not underlaid by any specific
microscopic model of scattering. An example, shown in Fig. 2.11, shows that both a long
array of tunnel junctions or quantum point contacts are good approximations of a diffusive
connector.

Control question 2.14. Let us take two different conductors, A and B (conductances
G A and G B). What is the distribution of transmission eigenvalues of a long chain A −
B − A − B − A − B − · · · comprising the serial connection of these conductors?
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The transmission distribution for diffusive connectors has yet another remarkable prop-
erty. Consider a combination of two diffusive connectors with conductances G1 and G2.
Since both elements are linear, the resulting current–phase relation is also linear:

I(φ) = G1G2

G1 + G2
φ .

Thus, the combination of diffusive connectors is a diffusive connector, with the con-
ductance given by Ohm’s law. This reasoning is valid for any number of connectors.
Any nanostructure composed of diffusive conductors is just a diffusive conductor with
transmission distribution ρD.

Exercise 2.16. Let us model a non-ideal quantum point contact with a circuit that
consists of a ballistic connector (conductance GB) in series with a diffusive connector
of much smaller resistance (conductance GD � GB). (i) Find a correction to the I –φ
characteristic ∝ G2

B/GD. (ii) Demonstrate that the correction becomes relatively large
at φ→ π . (iii) Solve the circuit-theory equations at φ ≈ π beyond the perturbation
expansion in GB/GD. (iv) Find the distribution of the transmission eigenvalues and
compare it with Eq. (2.112).

Exercise 2.17. Let us model a slightly non-ideal ballistic cavity as two ballistic con-
nectors of conductance GB in series with two diffusive connectors of conductance
GD � GB. Make use of the results of Exercise 2.16 to find the correction to the
distribution of transmission eigenvalues.

2.6.4 Tunnel junction and diffusive connector

All examples of transmission distributions considered so far can be separated into two
classes. The first class is represented by two unequal tunnel junctions: there are no trans-
mission eigenvalues near T = 1, and I(φ = π ) = 0. For the second class, the ballistic
cavity and the diffusive connector being two examples, the I –φ characteristic takes a finite
value at φ = π , and transmission distribution in accordance with Eq. (2.104) exhibits an
inverse square-root singularity at T = 1. Nanostructures of the first class resemble a single
tunnel junction: an electron traverses the most resistive part of the structure in one hop. In
nanostructures of the second class, an electron first jumps into the structure and bounces a
while inside it before making another jump and leaving it. Indeed, as we have seen, such
bouncing provides transmission resonances, and therefore channels with high transmission
appear.

Let us give an example of a structure that demonstrates a transition between two classes.
It consists of a diffusive conductor in series with a tunnel junction (there can be another
diffusive conductor in series on the other side of the tunnel junction – in circuit theory it
is the total resistivity of two diffusive components that matters). Real systems of this type
can be, for example, a sandwich comprising two metals separated by a tunnel layer.
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�Fig. 2.12. Transmission distributions of the T + D system at different values of GT/GD
(1/5, 1/3, 2/3, 1, 3/2, 3, 5) increasing from the bottom to the upper curve. The distribution at
GT < GD does not contain open channels with T ≈ 1, while the one at GT > GD has an inverse
square-root singularity at T = 1. The separating distribution at GT = GD is denoted by a thicker
line.

We have to match the currents through the diffusive conductor and the tunnel junc-
tion, i.e.

I = GDθ = GT sin(φ − θ ),

where θ is, as usual, the phase of the node. This is enough to express the current in terms
of φ:

I (φ) = GD X (φ); X (φ)+ GT

GD
sin(X (φ)− φ) = 0. (2.115)

To extract the distribution, we make use of Eq. (2.104). The result comes in an implicit
form, which suffices to plot and analyze it:

ρ(T ) = f (T )ρD(T ); T = 1

cosh2(μ/2)
;

μ = arccosh Y − GT

GD

√
Y 2 − 1 cos(π f ); Y = GDπ f

GT sin(π f )
.

(2.116)

The distribution is always suppressed in comparison with the one for diffusive con-
nectors, ρ(T ) < ρD(T ). The more resistive the barrier, the larger is the suppression. If
GT > GD, the distribution diverges at T → 1 as (1− T )−1/2, indicating a nanostructure
of the second class. This fraction turns to zero at GT = GD, where the transition occurs.
At the transition point, the transmission distribution diverges still, ρ(T ) ∝ (1− T )−1/4

for T → 1. At the other side of the transition, for GT < GD, when the resistance of the
system is dominated by the tunnel barrier, the maximum transmission available does not
exceed a certain threshold value Tc. The nanostructure belongs therefore to the first class.
At the transition point, Tc = 1, and Tc decreases upon increasing the tunnel resistance
(see Fig. 2.12). At GT � GD the transmission eigenvalues are concentrated near zero,
Tc = eGT/GD � 1.
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Exercise 2.18. Derive an implicit equation for Andreev conductance of the nanos-
tructure under consideration using Eq. (2.97). Find the Andreev conductance in the
limit GD � GT.

These features reveal an important new physics which is absent if tunneling occurs
between two clean metals. In the latter case, transmissions through the barrier are always
restricted by some maximal value depending on the structure of the barrier. Intuitively, one
could expect that the same value restricts the maximal transmission through the compound
system of the tunnel barrier and diffusive conductor. It does not happen to be the case. The
average transmission is suppressed by the addition of extra scatterers, but some channels
become even more transparent, having transmissions of the order of unity. This can be
understood as a result of constructive quantum interference between different trajectories
traversing the barrier. If the metals are clean, a typical trajectory reaches the barrier only
once, either reflecting or getting through. However, if the metals are disordered, the typical
trajectory gets back to the barrier to make another attempt to cross it. This enhances the
possibilities for interference.

We finish this example with the following observation. Usually, in disordered systems,
transmission eigenvalues close to unity are associated with delocalized (spread over the
whole system) electron states. If the nanostructure in hand were uniform, the opening of
the gap at GD = GT would create the localization transition since the delocalized states
disappear. It is clear that something drastic happens at this point, but one should be cautious
about drawing direct conclusions. The mere introduction of the transmission distribution
is an attempt to describe an almost classical system (G � GQ) in quantum mechanical
terms. This can make the results difficult to interpret. Indeed, neither the resistance that
obeys Ohm’s law, nor the Fano factor given by

F = 1

3

(
1+ 2

(
GD

GT + GD

)3
)

in the system, exhibits any critical behavior around the transition point, at least within the
framework of the semiclassical approach used.

2.7 Spin transport

This section is devoted to nanostructures that combine ferromagnets and normal (non-
ferromagnetic) metals. We have already shown in Section 1.9 how these nanostructures
can be described by the scattering theory. The structure of this kind that is the simplest
to make is a layer of a normal metal between two ferromagnetic films. More normal and
ferromagnet layers can be stacked together to form a multi-layer structure. Such struc-
tures are important due to their use in the applications of the giant magnetoresistance
(GMR) effect – a strong dependence of the resistance on the mutual orientation of mag-
netizations in the magnetic layers. The effect arises from spin-dependent scattering at the
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�Fig. 2.13. Classical spin balance explaining the GMR effect. Transport of electrons of two spin directions can
be represented by two independent parallel circuits. The spin relaxation is described with a
resistor Rr (dashed lines) connecting the circuits. Labels “up” and “down” denote the
magnetization directions of the corresponding ferromagnetic reservoirs.

interfaces between the layers. Scattering theory would provide the resistance in terms of a
(complicated) scattering matrix.

In a typical GMR experiment, the nanostructure conductance greatly exceeds the con-
ductance quantum simply because the structure is relatively large supporting a large
number of transport channels. The scattering matrix would be too complicated. One needs
a theory that gives an adequate description of the phenomenon, expressing all possible
microscopic details in terms of a handful of parameters. If magnetizations of all mag-
nets in the structure are collinear, that is, either parallel or antiparallel, such a theory is
yet another application of classical balance reasoning. In this case, the electrons can be
regarded as particles of two sorts – with spins “up” and “down.” The electrons of two
different types experience different scattering in and near ferromagnets, this results in dif-
ferent conductances for the two types. In the first approximation, the scattering does not
change the numbers of particles of each sort. So one can work with two balance equations
instead of one, or, equivalently, with two independent parallel ohmic circuits for two elec-
tron sorts (see Fig. 2.13). The effects of spin relaxation may be incorporated in the form
of a “leakage” current that tries to decrease the difference of concentrations of particles of
different sorts. This current can be represented by a connection between the nodes of the
independent circuits (see Rr in Fig. 2.13). The origin of GMR can be then understood from
the example sketched in. There, two ferromagnets are reservoirs connected to a normal
metal node. In a reservoir, electrons of both spin directions are biased at the same chem-
ical potential (= voltage). The interface resistance between a ferromagnet and the normal
metal depends on electron spin, and we assume that it is smaller (Rs) for electrons polar-
ized along the magnetization direction. If the magnetization direction changes to opposite,
this swaps the resistances for a given spin direction, Rs ⇔ Rb. This gives the difference
of resistances for parallel and antiparallel configurations of the magnets, the GMR4 effect
[52] (for a review, see Ref. [53]).

4 “Giant” in GMR is relative to other contributions to the magnetoresistance, which are negligible at the relatively
small magnetic fields used to swap magnetization directions. The actual scale of GMR commonly does not
exceed 10%. This suffices for practical applications.
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Exercise 2.19. Compute the resistance of the circuit in Fig. 2.13 for parallel and
antiparallel orientation of magnetizations. Discuss the limits Rr → 0 and Rr →∞.

It would seen to be a minor difference if the magnetizations of different magnets in the
system were not perfectly aligned. However, this is the difference between quantum and
classical mechanics. Suppose some of the magnets are polarized in the x direction while
others are polarized in the z direction. An electron state polarized in the x direction is a
quantum superposition of the states quantized in the z direction,

|x↑〉 = 1√
2

(|z↑〉 + |z↓〉) ,

and vice versa. This prohibits a classical balance reasoning. In the following, we demon-
strate how the spin transport in this situation can be described by means of a very simple
circuit theory based on conservation laws of charge and spin current, a 2× 2 matrix cur-
rent. It makes use of 2× 2 matrix voltages that come from a 2× 2 density matrix of
spin-polarized electrons. The matrix structure of this voltage is related both to electri-
cal voltage and to spin accumulation discussed in Section 1.9, V̌ = V + (�/2e)(Wx σ̌x +
Wy σ̌y +Wz σ̌z).

The quantum circuit theory of spin transport falls into the general template outlined
previously in this chapter, but simultaneously presents a simplification and a complication.
The simplification comes from the fact that, upon substitution of the matrix voltages of
the form given by Eq. (2.84), the circuit-theory, equations become linear. There is also no
appreciable energy dependence, so that the equations can be trivially integrated over the
energy within the energy strip relevant for the transport.

The complication is that the spin-dependent scattering is not accounted for in Eq. (2.90).
Thus, the general expression for the Landauer connector has to be extended to incorporate
interesting effects such as GMR. In addition, there are two kinds of nodes and reservoirs
in theory: normal ones and ferromagnetic ones. In a ferromagnetic node, only two current
components are conserved: the particle currents of electrons with spins “up” and “down”
with respect to its magnetization direction. This is because the “up” and “down” electrons
experience rather different scattering in the ferromagnet. This destroys the coherence at a
time scale of the order of τP . In the normal metal node, the scattering is predominantly
spin-independent, and all four components of the matrix current are conserved.

2.7.1 Spin currents and spin-dependent connectors

We have already discussed spin-dependent connectors in Section 1.9. An important case
corresponds to a scattering matrix that is block-diagonal in spin space upon a proper choice
of the spin quantization axis. This is the case for a connector between a normal and a
ferromagnetic node (reservoir). The electric current, as well as the three components of
the spin currents, are related to the voltage difference and spin accumulation by the linear
equations given in Eqs. (1.188) and (1.189). Four contact-specific parameters enter these
equations: two real spin conductances (G↑ and G↓), which are just the generalization of the
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concept of Landauer conductance to spin-dependent scattering, and the real and imaginary
parts of the mixing conductance G↑↓. These parameters are given by the spin-dependent
scattering matrix.

Equations (1.188) and (1.189) are written in the fixed basis where the magnetization
is directed along the z axis. Since in this section we are mostly interested in the non-
collinear magnetizations, we can no longer use this convenient basis and we need to write
the equations in an arbitrary basis. This is accomplished by the use of projector matrices
ǔ↑ = (1̂+ σ̂ · m)/2 and ǔ↓ = (1̂− σ̂ · m)/2, where σ̂ is the vector of Pauli matrices and m
is a unity vector in the direction of the magnetization. Any matrix A that is block-diagonal
in the fixed basis is given by

Ǎ = ǔ↑A↑↑ + ǔ↓A↓↓

in an arbitrary basis.

Control question 2.15. Can you demonstrate that ǔα is a projector, that is (ǔα)2 =
ǔα?

For example, this holds for the scattering matrix given by š pq =∑
α ǔαsαpq , where

α=↑,↓.
Making use of ǔα , we come to a compact relation between matrix current and voltage

in an arbitrary basis [54]:

Ǐ = G↑ǔ↑
(

V̌F − V̌ N
)

û↑ + G↓ǔ↓
(

V̌F − V̌ N
)

û↓

− G↑↓ǔ↑V̌ Nǔ↓ − (G↑↓)∗ǔ↓V̌ Nǔ↑. (2.117)

The actual voltage in the node or in the reservoir is given by a halved trace of this
matrix. In the normal node, the three remaining independent matrix elements give three
independent components of spin accumulation. In any (normal or ferromagnetic) reservoir,
the matrix distribution function f̌ F is proportional to the unit matrix 1̌ (and is thus invariant
with respect to the choice of axes).

Exercise 2.20. Consider a-so-called spin valve – a normal node between two fer-
romagnetic reservoirs with directions of magnetization mL and mR. Assume, for
simplicity, identical values of G↑, G↓, G↑↓ for both connectors. (i) Make use of Eq.
(2.117) and the matrix current conservation in the node to find the matrix voltage V̌ N.
(ii) Find the matrix current through the node. (iii) Find the conductance of the device as
a function of the angle between the magnetization directions.

Spin-orbit interaction and possible magnetic impurities result in the loss of spin coher-
ence, even in a normal metal. Quite generally, one characterizes such processes using the
spin-flip time τsf. Since spin-orbit interaction is usually weak, and the number of magnetic
impurities is less than the number of usual defects, τsf � τP , Spin coherence is lost at a
time scale exceeding the isotropization time. Spin-flip scattering causes relaxation of spin
accumulation V̌ N in a normal metal:



191 2.7 Spin transport
�

∂ V̌ N

∂t
= − 1

τsf

(
V̌ N − Tr V̌ N

2
1̌

)
.

As usual, we incorporate the effect into the circuit theory by assigning a spin leakage
current to each normal node as follows:

Ǐlc = −Gr

(
V̌ N − Tr V̌ N

2
1̌

)
; Gr = GQ

�νV
τsf

,

where V is the volume of the node. Since there is no electric leakage from the node,
Tr Ǐlc= 0. This works only if the leakage from the node is not large so that the size of
the node does not exceed Lsf = √Dτsf. If the size of the nanostructure does exceed this
scale, it is separated into many nodes.

Exercise 2.21. Add spin-flip processes into the spin-valve setup considered in
Exercise 2.20. Obtain the angular dependence of the conductance in the limit Gr �
G↑, G↓, G↑↓.

We can set electron spins into precession by applying an external magnetic field B.
Since the precession frequency depends on neither the momentum nor the energy of the
electrons, the spin accumulation in a given node would precess as a whole:

∂ V̌

∂t
= iμB

�
[(B · σ̌ ), V̌ ].

This suggests that the spin precession can also be incorporated into leakage current:

Ǐlc = iGQμBνV
[
(B · σ̌ ),V̌

N
]

.

Quantum Kirchhoff equations in normal nodes assume the usual form:∑
connectors

Ǐc + Ǐlc = 0.

In a ferromagnetic node (reservoir) with magnetization direction m, one has to leave only
two components in these equations of the four, which correspond to “up” and “down”
currents. The lack of equations is compensated for by a lesser number of unknown matrix
voltages in the ferromagnetic node; we have already mentioned that the spin accumulation
in the node must be collinear to the magnetization axis.

With these additions, the solution of the Kirchhoff equations defines the matrix voltage –
the actual voltage as well as the spin accumulation – in all nodes. Then we can find currents
through each connector.

2.7.2 Spin transistor

We will now illustrate the theory by computing the electric currents in the three-terminal
device shown in Fig. 2.14. A normal metal node (N) is connected to three ferromagnetic
reservoirs (F1, F2, and F3) by arbitrary contacts parameterized by our spin conductances.
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�Fig. 2.14. A typical spin circuit. A normal node is connected to three ferromagnetic reservoirs characterized
by their magnetizations. Each spin-dependent connector is characterized by four “conductances.”
Spin accumulation V in the node depends on all magnetizations and influences the currents
through each connector. Spin-flip scattering in the node is described by “leakage” current.

The reservoirs are biased at voltages V 1,2,3
F . Since the reservoirs are in equilibrium, the spin

accumulation is absent there. The fourth connector, with conductance Gr, describes spin
relaxation in the node.

To start with, let us separate the expression (Eq. (2.117)) for the current of a certain
connector into electric and spin parts, substituting 2 Ǐ = I + I · σ̂ , V̌ = V + V · σ̂ . We
also introduce the compact notation G = G↑ + G↓, P = (G↑ − G↓)/G. This yields

I = G(VF − V )− PG(m · V ), (2.118)

I = (VF − V )PGm − M̂V , (2.119)

where M̂ is a 3× 3 matrix given by

Mab = Re(G↑↓)δab +
(

G

2
− Re G↑↓

)
mamb + Im G↑↓eabcmc,

where Latin indices label Cartesian coordinates and eabc is the asymmetric tensor of the
third rank. We see from Eq. (2.118) that the current via a connector is sensitive to spin
accumulation. The first term on the right-hand side of Eq. (2.119) shows that the same
coefficient PG shows how much spin current is produced by a voltage drop across the
connector. There is also a contribution to the spin current from the spin accumulation
determined by the matrix M̂ , which is generally anisotropic in spin space.

The actual spin accumulation V in the node is determined from the balance of spin
currents. Summing up Eqs. (2.119) for all three connectors α, one relates the spin
accumulation to the voltage V in the normal node:

V = (M̂ tot)−1 I tot; M tot
ab =

∑
α

M (α)
ab ;

I tot =
∑
α

GαPαmα(V αF − V ).
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In the next step, we compute electric currents in each conductor in the presence of spin
accumulation with the help of Eq. (2.118):

Iα =
∑
β

Gαβ (V βF − V );

Gαβ = δαβGα − PαPβGαGβ

(
mα

[
(M̂ tot)−1

]
αβ

mβ

)
.

Note that the summation now also includes the fake terminal that we introduced to take
spin relaxation into account.

From a purely electric point of view, we see a strange “non-local” effect – a current in a
certain connector is not only proportional to the voltage drop across this connector, but also
is contributed to by voltage drops across all other connectors of the circuit. The “non-local”
cross-conductances Gαβ ,α �= β, are entirely due to the spin-accumulation effect.

Finally one finds the voltage V in the normal node from the electric Kirchhoff rule∑
α Iα = 0:

V =
∑
αβ

GαβV βF
∑
αβ

Gαβ .

To obtain compact expressions, let us assume that spin-dependent scattering is relatively
weak, so that, for each connector P , Im G↑↓/G � 1. In this limit, one has Re G↑↓ = G/2
for each connector, and the matrix M̂ can be regarded as isotropic:

M̂ tot = (Gr + G1 + G2 + G3)1̂/2 ≡ G 1̂/2 ,

where the (cross)-conductances are proportional to the scalar products of magnetization
vectors of proper reservoirs, i.e.

Gαβ = δαβGα − 2PαPβGαGβ (mα · mβ )

G 

,

and the currents in each connector manifest dependence on mutual orientation of magneti-
zations. A larger spin-flip rate increases Gr and G , and thus suppresses the effect.

Exercise 2.22. Find the (cross)-conductances in the above limit in the presence of a
magnetic field B in the normal node.

2.8 Circuit theory of superconductivity

Superconductivity induces coherence between electrons and holes that persists at typical
length scales that exceed by far the Fermi wavelength and, frequently, the mean free path.
This is why superconducting systems are a natural field for the application of semiclassical
methods. As a matter of fact, these methods were developed for bulk superconductors by
Larkin, Ovchinnikov, Eilenberger, and Usadel much earlier than for normal metals. Subse-
quently, these methods were extended to constrictions, interfaces, and other heterogeneous
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structures and hybrid systems made artificially. Thereby the theoretical development along
these lines has been essentially accomplished. We will refer to this piece of knowledge as
the “full theory.”

There used to be a sharp contrast between the complexity of the full theory and the rel-
ative simplicity of the final results. It has been a kind of disappointment to address, for
instance, the problem of linear conductivity of a double tunnel barrier separating a nor-
mal metal and a superconductor, to spend weeks and weeks calculating and to obtain that,
under very general assumptions, G = GN/

√
2, GN being the conductivity in the normal

state. Such frustration prompted attempts to provide a reformulation of the “full theory”
in simpler, or at least user-friendly, terms. One of the attempts was the implementation of
the scattering approach in the form described in Section 1.8. Although useful for nano-
structures with a small number of transport channels, the scattering approach has the same
disadvantages as any fully quantum theory – it becomes less and less operational with
the increase of the dimension of the scattering matrix. For many exemplary setups, these
problems can be overcome with the use of random matrix theory (RMT, see Section 4.3),
but in this case the relation of RMT to the full theory remains elusive. In this book, we
will not consider the RMT application to hybrid structures [55]. Rather, we concentrate
on a different semiclassical approach – circuit theory for hybrid systems. It is essentially
a discretized version of the “full theory.” Even the most sophisticated experimental lay-
outs can be presented as a collection of a few circuit theory elements – reservoirs, nodes,
and connectors. The extension of usual circuit theory presented in this section includes
normal and superconducting circuit elements on an equal footing, accounts for the deco-
herence of electrons and holes, and thereby allows one to consider arbitrary connectors –
superconducting junctions of any kind.

For the sake of simplicity, we only talk about stationary non-equilibrium superconduc-
tivity. For normal nanostructures, the transport is stationary if the voltages applied to all
reservoirs are stationary. In contrast, if there are two superconducting terminals biased at
different stationary voltages, the corresponding superconducting phases are linear in time
and induce non-stationary Josephson currents, with the frequencies corresponding to the
voltage difference. Thus, the stationary condition for superconducting and/or hybrid nano-
structures implies that all superconducting terminals are at the same voltage. It is natural
to set this voltage to zero.

2.8.1 Specifics

Let us introduce the specific rules and matrix structure of the theory. Under stationary con-
ditions, the theory is for 4× 4 Keldysh–Nambu matrix voltages – Green’s functions – at
each energy. There are two kinds of reservoirs, superconducting and normal. The matrix
voltages are fixed in the reservoirs by Eqs. (2.87) and (2.88), respectively. There are also
two kinds of nodes: superconducting and normal. They are distinguished by “leakage” cur-
rents, which describe decoherence of electrons and holes and are given by Eq. (2.80). For
a normal node, the leakage is proportional to the energy and describes only decoherence.
For a superconducting node, the leakage involves the superconducting order parameter �,
providing coherent coupling of electrons and holes.
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Generally, one needs to evaluate the matrix currents separately at each energy. The
Kirchhoff rules – matrix current conservation – enable us to solve for matrix voltages
at the nodes. Electric currents are obtained by integration of the τ̂3η̂3 component of the
matrix currents over the energy. It is interesting to note that the electric currents in the
course of this procedure are not automatically conserved in the superconducting nodes:
this leakage is the conversion of electron or hole quasiparticles into Cooper pairs that form
a superconducting condensate. Indeed, it is known in superconductivity theory that the cur-
rent is conserved only if the superconducting order parameter satisfies the self-consistency
relation ([56]; see also the end of Section 2.3.5). This relation is not incorporated into the
circuit theory automatically; for example, the order parameter in the node can be affected
by non-equilibrium distribution of the carriers. Thus, to ensure current conservation, one
should, in principle, incorporate the self-consistence relation into circuit theory. In prac-
tice, this non-conservation of current is rarely encountered, and we will not discuss the
self-consistency in this section.

In this form, the circuit theory rules can already be implemented numerically. To make
analytical progress, it is important to note that the Kirchhoff equations of the theory can
be solved by separate blocks. This comes from the fact that in standard “non-extended”
Keldysh theory only three of the four Keldysh blocks are independent. Traditionally, this
relation is emphasized by applying the unitary transform Ǔ = (1̌+ iτ2)/

√
2 to all matrices

in Keldysh space. After this transform, the Keldysh Green’s functions (our matrix voltages)
acquire the following block form:

Ǧ =
(

R̂ K̂
0 Â

)
. (2.120)

The lower left block is always zero, and Ř, Ǎ, and Ǩ are 2× 2 matrices in Nambu space,
corresponding to retarded, Keldysh, and advanced Green’s functions, respectively.

Control question 2.16. What is the structure of the product of two Green’s functions
Ǧ1 and Ǧ2 with the block structure given in Eq. (2.120)?

Equations for Ř and Ǎ separate: they do not contain other elements in the Keldysh
space. In particular, neither equation depends on the actual filling of the electron–hole
states – this information is only contained in block Ǩ ; Ř and Ǎ just determine spectral
properties of these states. Solving these equations is the first step in solving the network.
These equations for 2× 2 matrices are, as we show in the following, relatively easy to
solve. In fact, it is enough to solve for Ř for all energies, and then find Ǎ from the relation
Ǎ(ε) = −η3 Ř(−ε)η3 (see Refs. [57] and [58]).

The next step is to solve for Ǩ . Equations for Ǩ contain Ř and Ǎ, obtained in the pre-
vious step. Importantly, the equations are linear in Ǩ . This is also a consequence of the
structure of the Green’s function: the Keldysh component of a product of any number of
Green’s functions only contains terms in which a product of several retarded blocks is
followed by one Keldysh block, and then by a product of a number of advanced blocks
(see Control question 2.16). In addition, the normalization condition Ǧ2 = 1̌ implies
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Ř Ǩ + Ǩ Ǎ = 0. Therefore, matrix Ǩ has only two independent components. Traditionally,
block Ǩ is presented in terms of two scalar “distribution functions” f L,T, as follows:

Ǩ = Ř f̌ − f̌ Ǎ; f̌ = f L1̌+ f Tη̂3. (2.121)

Since the normalization also implies Ř2 = Ǎ2 = 1̌, the constraint Ř Ǩ + Ǩ Ǎ = 0 is
automatically satisfied in this way.

Similarly, the matrix current in block Ǩ also has only two independent components,
I0 = Tr(τ̂3 Ǐ ), I3 = Tr(τ̂3η̂3 Ǐ ). Circuit-theory equations for Ǩ are therefore the Kirchhoff
rules for these currents. For each connector, there is a convenient linear relation between
I0,3 and the distribution functions f T,L at the ends of the connector:

I3 = gT( f T
1 − f T

2 )+ gTL f L
1 − gLT f L

2 ,

I0 = gL( f L
1 − f L

2 )+ gTL f T
2 − gLT f T

1 . (2.122)

Four energy-dependent coefficients, “conductances” gT, gL, gTL, and gLT, are expressed in
terms of Ř and Ǎ at both ends of the connector. The balance of currents I3,0 at each energy
provides us with the distribution functions f T,L at each node, and eventually the currents.
Solutions at positive energies are related to those at negative energies since I0, f L, gTL,
and gLT are odd in energy while I3, f T, gT, and gL are even in energy. The quantity I3 is
immediately related to electric current, Iel =

∫
dε I3(ε)/4e.

An important case arises when this scheme can be simplified even further. If the “mix-
ing” conductances gTL and gLT can be disregarded, the equations for I0 and I3 separate. In
particular, the current I3 only depends on f T:

I3(ε) = gT(ε)
[

f T
1 (ε)− f T

2 (ε)
]

. (2.123)

In this case the coefficient gT(ε) can be viewed as an energy-dependent effective conduc-
tance of the junction. Indeed, the Kirchhoff rules that determine f T at any given energy
have the same structure as those in electric circuit theory, apart from the fact that the
conductances depend on energy. Such effective conductance differs from the Landauer
conductance of the connector, being renormalized by superconductivity.

This condition of “no mixing” is always satisfied at zero energy since gTL and gLT are
odd in energy. In addition, gTL and gLT are associated with the drops of superconducting
phase across the connectors. This is why this condition is always fulfilled in nanostruc-
tures with a single superconducting reservoir. It can also be satisfied if the normal and
superconducting currents are geometrically separated.

2.8.2 Proximity effect and density of states

A normal metal is a material in which the superconducting order parameter � equals zero.
If a superconductor is brought into contact with a normal metal, the density of states in
the normal metal in the proximity of the superconductor will be modified – this is the
proximity effect. Indeed, electrons in the normal metal do not stay in the same place; they
travel, and sooner or later reach the superconductor and interact with its order parameter.
This interaction is expected to reduce the density of states in the normal metal, since in
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a superconductor there are no quasiparticles below the gap. In particular, if a finite-size
piece of normal metal is connected to a bulk superconductor only, the density of states is
zero below a certain energy�ETh � �/τ , τ being a typical time to reach the superconduc-
tor. Alternatively, if this piece is connected to a normal reservoir as well, there is a finite
density of states, even at zero energy. This density is, however, reduced in comparison
with the density of states in the absence of the proximity effect. Let us describe this effect
quantitatively by circuit-theory means.

The density of states at a given point of the structure can be related to the retarded
Green’s function Ř(ε), ν(ε)/ν = Re Tr {η̂3 Ř}, ν being the density of states in the normal
state. Therefore, if we are after the density of states, we can work with 2× 2 matrices Ř
rather than with the full Keldysh structure. Applying this relation to the superconductor
itself (see Eq. (2.87)), we reproduce the BCS density of states,

ν(ε)

ν
= �(ε2 − |�|2)

|ε|√
ε2 − |�|2 , (2.124)

which is zero for energies below |�|, exhibits an inverse square-root singularity at |ε| =
|�|, and approaches the normal-metal value ν at |ε| � |�|.

To implement the simplest model of the proximity effect, let us consider a network
consisting of a single normal node (matrix voltage Ř) connected to a superconducting
reservoir (ŘS). The decoherence of electrons and holes is described by the leakage. The
Kirchhoff equation in the node is given by Ǐc + Ǐlc = 0. We express the current through the
connector using Eq. (2.93), while the leakage current is taken from the Usadel equation,
Ilc = iνVnode[Ě , Ř], Vnode being the volume of the node. Since, in the normal node,� = 0,
we have Ě = εη̌3, and the current conservation becomes

iI(−i ln ŘS Ř)+ iE[η̌3, Ř] = 0.

As we know, different types of connectors (tunnel, ballistic, and diffusive) yield different
functions I.

To simplify, we concentrate on low energies ε � |�|. In this case, we can approxi-
mate the Green’s function in the superconducting reservoir by ŘS = η̌1 (Eq. (2.87)). Let
us parameterize the matrix voltage in the normal node by Ř = sin θ η̂1 + cos θ η̂3. Both
currents in this case are proportional to η̂2, and we have a scalar equation for an unknown
function θ ;

I(π/2− θ )

G sin θ
= ε

ETh
; ETh ≡ G

2νVnode
, (2.125)

where we write sin θ − iη̂2 cos θ as exp(−iη̂2(π/2− θ )), take into account that I is always
an odd function of its argument, and that for any odd function f (x) one has f (x η̂2) =
η̂2 f (x).

In Eq. (2.125), we made use of ETh, the Thouless energy of the node. We assume that
ETh � |�|. The density of states in the node is given by ν(ε)/ν = Re cos θ . The above
equation has purely imaginary solutions for θ up to the gap energy Eg � ETh. Above the
gap, the solution is complex, yielding a non-zero density of states. Let us illustrate this
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�Fig. 2.15. The density of states in a normal node connected to a superconducting reservoir (S) develops a
gap. The plots are for ballistic (B), diffusive (D), and tunnel (T) connectors of the same
conductance G.

point using the example of a tunnel junction, I = G sin θ ,(
ν(ε)

ν

)
T
= �(ε2 − E2

Th)
|ε|√

ε2 − E2
Th

.

The tunnel connector mimics the BCS density of states with the gap reduced to ETh (some-
times referred to as a mini-gap) and a divergent singularity at the gap energy. For other
types of connectors, the mini-gap exists, but the singularity at the edge is of square-root
type, as we see from Fig. 2.15.

Exercise 2.23. Find the density of states for the case where the connector is a quantum
point contact with conductance GB.

In the presence of a normal reservoir, the density of states remains finite, even at zero
energy. Let us exemplify this with a long chain of nodes – a diffusive wire. The wire
of length L in the x direction connects normal (ŘN = η̂1, x = 0) and superconducting
(ŘS = η̂3, x = L) reservoirs. As mentioned, applying circuit theory to the wire amounts
to solving the Usadel equation there. Conveniently, at zero energy there are no leakage
currents. The matrix currents are conserved, and we can use the general solution of the
Usadel equation, Eq. (2.44), obtained in Section 2.3.4. Adapting it for the problem in hand,
we obtain the retarded Green’s function Ř at point x in the wire,

Ř = exp{u(x)M̌}ŘS, M̌ = ln
(

ŘS ŘN

)
= ln(iη̌2) = iπη̌2/2,

and u solves the Laplace equation with the boundary conditions u(0) = 0, u(x) = 1. For
a simple one-dimensional wire, u = x/L , and we immediately find the density of states at
zero energy ε in each point x of the wire:

ν(0)

ν
= sin

( xπ

2L

)
.
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This changes from zero at the superconducting end to the normal value at the normal end.
In the middle of the wire the density of states is close to the normal one.

Control question 2.17. A diffusive nanostructure made in the shape of a chicken has
been measured in a two-terminal setup. While the left-hand electrode was grounded, a
voltage V was applied to the right-hand electrode. Measurement with a non-obtrusive
voltage probe has yielded 0.7 V at the tip of the beak. The voltage source has been
switched off, and the temperature has been lowered so that the right-hand electrode has
become a superconductor. What is the density of states at zero energy and at the top of
the beak?

2.8.3 Circuit theory of Andreev conductance

As we have just seen, the limit of very low energy ε � ETh, |�|, allows for extensive sim-
plifications, with which, one can build up a yet more compact circuit theory called the
circuit theory of Andreev conductance [59]. When evaluating Ř, one can safely disregard
leakage currents. Besides, Ř is Hermitian, Ř = Ř†. This allows for an instructive geo-
metric interpretation: Ř = (s · η̂), s being a real three-dimensional “spectral” vector. Due
to the normalization condition, the vector s takes values on the northern hemisphere of
a unit sphere, s2 = 1. In these terms, normal terminals correspond to the northern pole,
superconducting terminals are mapped onto the equator, and their longitude is set by their
superconducting phase. The spectral vector in the nodes lies somewhere between the equa-
tor and the northern pole, and its latitude determines the reduction of the density of states,
ν(0)/ν = sin θ . The spectral vector in the nodes is determined from the balance of vector
“spectral” currents in all connectors. The direction of the current is orthogonal to spectral
vectors at both ends of the connector, and its absolute value is given by I(θ12), θ12 being
the geometric angle between the spectral vectors. Recall that I is expressed in terms of the
transmission eigenvalues of a conductor (see Section 2.6).

The second simplification at vanishing energy is that gTL = gLT = 0 in Eq. (2.122), and
electric properties of the circuit are determined by the coefficients gT of the connectors
only. The energy-dependence of gT can be disregarded provided the voltages applied and
the temperature are much smaller in energy units than both the Thouless energy ETh and
the superconducting gap |�|. Under these conditions, we can do what we have done already
many times in the book: we can integrate the equations over energy. We introduce thereby
a voltage in each node by eṼ = ∫

dε fT(ε). We have so many matrix voltages in this
chapter that we have to say now explicitly: this is really a voltage one would measure with
a non-obtrusive voltage probe connected to this node.5

The electric currents in each connector are determined by the drop of these voltages Ṽ
across the connector, and the conductances gT that depend on “spectral” vectors at the ends,
and are related to the transmission eigenvalues of the connector by the derivative of I:

5 It is a fascinating fact that this voltage may differ from the electrostatic voltage measured with an electrometer
close to the node [60].
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gT = İ(θ12) . (2.126)

The current conservation sets the voltages in each node and finally allows one to calculate
electric currents in each connector.

Let us relate this circuit theory to the facts learned in the preceding sections. First, we
note that if there are no superconducting terminals, all spectral vectors are at the north pole,
and all coefficients gT are equal to Landauer conductances. Thereby the results of the com-
mon circuit theory are reproduced. Secondly, if we deal with a two-terminal nanostructure
with one superconducting and one normal terminal, there is no need for the special circuit
theory of Andreev conductance at all: one can use the circuit theory of transmission dis-
tribution to access the I –φ characteristics of the whole nanostructure and then implement
the relation for the Andreev conductance, Eq. (2.97). Indeed, it is in strict correspondence
with Eq. (2.126): in this case, the angle θ12 is the angle between the vectors pointing to
the north pole (normal reservoir) and to the equator (superconducting reservoir), that is,
π/2. Consider, for example, two identical tunnel junctions with conductances G in series.
The I –φ characteristic of a single tunnel junction is I = G sinφ. Since the setup is sym-
metric, the phase in the node between the junctions is φ/2, and the current through either
junction becomes I = G sin(φ/2). From Eq. (2.126) we find the Andreev conductance,
GA = İ (π/2) = (G/2) cos(π/4). Taking into account that the conductance of the structure
in the normal state is GN = G/2, we obtain GA = G N/

√
2, as mentioned in the beginning

of this section.

Control question 2.18. Derive the Andreev conductance for a diffusive connector in
contact with a superconductor.

The circuit theory of Andreev conductance is indispensable for multi-terminal nano-
structures. Let us give an example of a system which consists of a normal reservoir and
two superconducting reservoirs, S1, with superconducting phase ϕ1, and S2, with ϕ2. All
the reservoirs are connected by the tunnel junctions to the same node. For simplicity, we
consider the case when the conductances in the normal state separating the node from
both superconducting reservoirs are the same, GS, and the tunnel junction leading to the
normal node has a conductance GN. We introduce the spectral vectors: for the normal
reservoir sN = η̂3; for the two superconducting reservoirs sS1,2 = cosϕ1,2η̂1 + sinϕ1,2η̂2;
and in the normal node we have sn. Representing the currents in the connectors by
Ia = gTasn × sa, for each connector, a = N, S1, S2, making use of current conservation
in the node, IN + IS1 + IS2 = 0, we find the spectral vector of the node. Indeed, since
s2

n = 1, it has to be

sn = GNsN + GS(sS1 + sS2)√
G2

N + 2G2
S(1+ cosϕ)

,

with ϕ = ϕ1 − ϕ2. The next step is to compute the Andreev renormalization of the
conductances Ga. Equation (2.126) yields G̃a = Ga(sa · sn). This yields

G̃N = G2
N√

G2
N + 2G2

S(1+ cosϕ)
; G̃S = G2

S(1+ cosϕ)√
G2

N + 2G2
S(1+ cosϕ)

.
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Now we can find the Andreev conductance of the circuit. Since both superconductors are at
zero voltage, both tunnel junctions that connect them to the node are connected in parallel,
and the third junction is in series with both. Thus,

GA = 2G̃NG̃S

G̃N + 2G̃S
= 2G2

NG2
S(1+ cosϕ)

[G2
N + 2G2

S(1+ cosϕ)]3/2
.

We see that the Andreev conductance of the setup essentially depends on the phase dif-
ference between the two superconducting reservoirs. At ϕ = 0, the conductance reaches
maximum and vanishes for ϕ = π .

Exercise 2.24. Show that the conductance does not vanish at ϕ = π if the conduc-
tances of the junctions to the superconductors are not the same. What is the minimum
conductance?

Exercise 2.25. Replace the tunnel junction with GN by a point contact of the same
conductance and evaluate the phase-dependent conductance of the whole structure.

2.8.4 Double junction

Let us now go beyond the low-energy limit and give an example of a current calculation
valid at any energy/voltage. To illustrate, let us turn again to the well used nanostructure,
the double tunnel junction. We consider two tunnel junctions of the same conductance
GT with a normal metal node in between that separate a superconducting electrode and
a normal metal biased at voltage V . The node is thus connected to two reservoirs and
experiences “leakage.” First, we find the retarded Green’s function Ř in the node. For a
tunnel junction, the matrix current is proportional to the commutator of matrix voltages at
the sides of the junction. The matrix current conservation thus reads as follows:[

M̌ , Ř
]
≡

[
GT ŘS + GT ŘN + iη̂3ε/ETh, Ř

]
= 0,

with ŘS,N being the retarded Green’s functions describing the superconducting and normal
reservoirs. Since Ř is a 2× 2 matrix, normalized to Ř2 = 1, the solution is given by

Ř = M̌

Tr
√

M̌2/2
.

To simplify the expressions, we write them explicitly only for ε � �:

Ř = 1√
(1+ iε/ETh)2 + 1

(
1+ iε/ETh 1

1 −1− iε/ETh

)
. (2.127)

Since there is only one superconducting reservoir in the system, the “no mixing” con-
dition applies. The currents at each energy are thus determined by the renormalized
conductances gT. For a tunnel junction, the renormalization is given by Eq. (2.134). Even
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though our tunnel junctions initially have identical conductance, the renormalization makes
them unequal:

GS(ε) = GTRe

(
1/

√
(1+ iε/ETh)2 + 1

)
;

GN(ε) = GTRe

(
(1+ iε/ETh)/

√
(1+ iε/ETh)2 + 1

)
. (2.128)

The differential conductance of the system is then given by an Ohm’s law expression:

dI

dV
= GN(eV )GS(eV )

GN(eV )+ GS(eV )
,

provided kBT � ETh. The plots of GS, GN, and dI/dV are given in Fig. 2.16.

2.8.5 Details of conductance renormalization

In this technical subsection, we work with 4× 4 matrices to derive the four energy-
dependent conductances in Eqs. (2.122), to give concrete (and generally rather long)
formulas in terms of Ř and Ǎ at the ends of the connector, and relate particular limits
of these formulas to the cases already studied in the book. The starting point is the gen-
eral expression for the effective action of a Landauer connector, Eq. (2.91). For 2× 2
matrices, the expression is rather trivial, since for any 2× 2 traceless matrices Ǧ1,2 the
anticommutator is proportional to the unity matrix:

Ǧ1Ǧ2 + Ǧ1Ǧ2 = 1̌ Tr(Ǧ1Ǧ2 + Ǧ1Ǧ2)/2.

0 4
0

1

eV/ETh

(dI/dV)/GT

S
node

N

V

GS GN

GN/GT

GS/GT

GTGT

1

2

1

2  2

�Fig. 2.16. Double junction between a normal metal (N) and a superconductor (S). The differential
conductances of two identical junctions are the same at V = 0, GS = GN = G/

√
2. At higher energy,

the normal node gets more “normal,” and the proximity effect is suppressed. Consequently, GS

drops, while GN approaches its normal value. The differential conductance of the composite
system dI/dV reaches maximum at eV ≈ 0.8ETh.
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The first step of the derivation is to derive a similar relation for 4× 4 matrices. To do
so, we note that, in this case, the commutator has two distinct eigenvalues, which can be
expressed in terms of the traces Tr(Ǧ1Ǧ2) and Tr(Ǧ1Ǧ2Ǧ1Ǧ2). We use these eigenvalues
to arrive at the following:

S =
∑

p

∑
±

ln

(
1+ Tp

4
(A ± B)

)
; A = Tr[Ǧ1Ǧ2]

2
− 2;

B2 = Tr[(Ǧ1Ǧ2)2]

2
+ 2− (Tr[Ǧ1Ǧ2])2

4
.

We are interested in particle currents per energy interval, I0 = Tr(τ̂3 Ǐ ), I3 = Tr(τ̂3η̂3 Ǐ ). To
this end, we calculate the current, making use of the variational relation in Eq. (2.74) and
assuming that the variation is proportional to τ̂3 (for I0) or to τ̂3η̂3 (for I3). We obtain

Iα =
∑
p,±

Tp

4

Wα/2± B−1(Uα − 2Wα(A + 2))/4

1+ Tp(A ± B)/4
,

where Wα and Uα are variations of the two traces that enter Eq. (2.127),

Wα = Tr
[
τ̂3η̂α[Ǧ1, Ǧ2]

]
; Uα = Tr

[
τ̂3η̂α((Ǧ1Ǧ2)2 − (Ǧ2Ǧ1)2)

]
.

Calculation of the traces yields

A ± B = 2�(±ε)− 2; �(ε) ≡ Tr
[

Ř1 Ř2

]
/2; �∗(ε) = �(−ε) ,

so that the traces do not contain the actual filling of electron states given by matrices Ǩ1,2

and are determined by retarded Green’s functions Ř at the two ends of the connector. To
present the information about transmission eigenvalues in compact form, we introduce the
function

Z(�) ≡ GQ

∑
p

Tp

1+ (Tp/2)(�− 1)
,

which is related to the function I used in this chapter by sinφZ(cosφ) = I(φ). In this
notation, the currents are given by

I α = Re Z
4

Wα + Im Z
16 Im �

(Uα − 4Wα Re �). (2.129)

The variations of the traces Wα , Uα depend on the functions Ǩ1,2,

Ǩi = Ři

[
f T
i + f L

i 0
0 f T

i − f L
i

]
−

[
f T
i − f L

i 0
0 f T

i − f L
i

]
Ǎi , (2.130)

and are linear in these matrices. So it is convenient to present those in the following form:

Wα =
∑
β=L,T

Wαβ

1 f β1 +Wαβ

2 f β2 , (2.131)
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and similarly for Uα . Specific expressions are given by{
Wαβ

1

−Wαβ

2

}
= Tr

[
ηα(Ř1η

β Ǎ2 + Ř2η
β Ǎ1)

]

−
⎧⎨
⎩

Tr
[
ηαηβ ( Ǎ1 Ǎ2 + Ř2 Ř1)

]
Tr

[
ηαηβ ( Ǎ2 Ǎ1 + Ř1 Ř2)

]
⎫⎬
⎭ ;

{
Uαβ

1

−Uαβ

2

}
= Tr

[
ηα Ř1(Ř2 Ř1η

β + Ř2η
β Ǎ1 + ηβ Ǎ2 Ǎ1) Ǎ2

]

+ Tr
[
ηα Ř2(Ř1 Ř2η

β + Ř1η
β Ǎ2 + ηβ Ǎ1 Ǎ2) Ǎ1

]

−
⎧⎨
⎩

Tr
[
ηαηβ (( Ǎ1 Ǎ2)2 + (Ř2 Ř1)2)

]
Tr

[
ηαηβ (( Ǎ2 Ǎ1)2 + (Ř1 Ř2)2)

]
⎫⎬
⎭ .

In any case, Wαα
1 = Wαα

2 and Wαβ

1 (ε) = Wβα

2 (−ε); the same relations also hold for Uαβ

1,2 .
Substituting this into Eq. (2.129), we obtain the “conductances” gT, gL, gLT, and gTL.

Let us illustrate these relations with simple examples. First, we obtain the Andreev con-
ductance of a single connector. In this case, it is enough to set energy ε to zero, to consider
reservoir 1 to be a normal metal (R1 = −A2 = η3), and to consider reservoir 2 to be super-
conducting. Since for Andreev reflection the conductances gLT and gTL can be neglected
(“no mixing” condition), it is enough to calculate only the conductance gT which contains
the matrices W 33

1 = W 33
2 and U 33

1 = U 33
2 . Explicitly, we have

W 33 = 0; U 33 = 8; � = 0;
Im Z
Im �

→ Z ′(0) = GQ

∑
p

2T 2
p

(2+ Tp)2
, (2.132)

and we reproduce Eq. (1.166) derived from the scattering approach.
A complementary example is the equilibrium supercurrent equilibrium at zero tempera-

ture. In this case, we take f T
1,2 = 0, f L

1,2 = sgn(ε). In this case, we only need the “mixing”

conductances gTL, gLT, which are expressed in terms of the matrices W 03 and U 03. We set
two reservoirs to (see Eq. (2.87))

Ř1,2 = 1√
(ε + iδ)/�− 1

[
ε/� e∓iϕ/2

−e±iϕ/2 ε/�

]
, (2.133)

corresponding to the difference of the superconducting phases ϕ. In this case, we have

� = (ε/�)2 − cosϕ

(ε/�)2 − 1
,

and the denominators of Z approach zero at energy E p given by

1+ Tp

2
(�− 1) = 0 ⇒ E p = ±

√
1− Tp sin2(ϕ/2) .

We thus reproduce Eq. (1.170) for the energies of Andreev bound states.
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Extending this for a tunnel junction, we derive a simple relation valid under “no mixing”
conditions:

G(ε) = GT

8
Tr

[
(Ř1 + Ř†

1)(Ř2 + Ř†
2)
]

. (2.134)

2.9 Full counting statistics

As the last application, we formulate in this section the circuit theory of the full count-
ing statistics (FCS) of non-interacting electrons for a multi-terminal circuit. Let us first
explain why we immediately go to the multi-terminal case. The point is that, by virtue
of the Levitov formula, the FCS of a two-terminal circuit is readily expressed in terms
of the transmission distribution ρ(T ) (Section 1.4). There is no need for a special cir-
cuit theory for the FCS: one just can use the circuit theory for transmission distribution
given in Section 2.6. We have learned in Chapter 1 that the multi-terminal FCS can also
be expressed in terms of the scattering matrix. However, this is a multi-terminal scatter-
ing matrix that cannot be characterized by a transmission distribution. As an example, we
recall that noise in multi-terminal circuits is determined by the following combinations of
scattering amplitudes (see Eq. (1.86)):

Aαβ,γ δ(E) = Tr
{[
δαγ δαδ − ŝ†

αγ (E)ŝαδ(E)
] [
δβδδβγ − ŝ†

βδ(E)ŝβγ (E)
]}

,

with the Greek indices labeling the terminals. Higher-order cumulants are defined by sim-
ilar expressions involving higher powers of the scattering matrix. The number of possible
combinations quickly grows with increasing order of the cumulant.

In fact, the circuit theory of multi-terminal FCS sorts out which combinations of
scattering amplitudes are relevant for quantum transport and provides averages of these
combinations over the phase shifts. We illustrate this at the end of this section by explicit
calculation of Aαβ,γ δ .

The approach is based on the extended Keldysh Green’s function method as outlined in
Section 2.5. At each energy, we operate with 2× 2 Green’s functions – matrix voltages. In
the terminals, they are fixed to

Ǧα(E) = exp(iχατ̂3/2)Ǧ(0)
α (E) exp(−iχατ̂3/2), (2.135)

where Ǧ(0)
α (E) corresponds to the equilibrium Keldysh Green’s function taken sufficiently

far in the terminal α and expressed in terms of the corresponding filling factor fα(E):

Ǧ(0)
α =

[
1− 2 fα(E) −2 fα(E)
−2(1− fα(E)) 2 fα(E)− 1

]
. (2.136)

The calculation proceeds according to the general rules: we find the matrix voltages at
the nodes using the conservation of matrix currents. To find the generating function of
the FCS, one substitutes the matrix voltages found into the total action, Eq. (2.72), and
integrates over energy to obtain

ln�({χα}) = −�t
∫

dE

2π�
S(E ; {χα}) ≡ −�t SFCS({χα}). (2.137)
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The probability of Nα electrons transferring to each reservoir is given by the inverse Fourier
transform of the generating function:

P({Nα}) =
∫ 2π

0

∏
α

dχα �({χα}) e−i
∑
α χαNα .

To find the probability, it is enough to evaluate the integral over the counting fields {χα}
in the saddle-point approximation, that is, to find its extremum over all χα . This is always
valid for the limit of zero-frequency FCS, where the measurement time �t is assumed to
be much longer than the typical time between successive electron transfers. We express
the probability in terms of currents measured during the time �t , I el

α ≡ eNα/�t . In the
saddle-point approximation, this amounts to minimizing the function

ln P(I el
α ) = −�t

{
SFCS({χα})+ i

∑
α

I el
α χα

}
(2.138)

over the counting fields. The extremum is usually reached at imaginary counting fields.

2.9.1 Three-terminal setup

From now on, let us concentrate on the simplest example: a multi-terminal circuit with a
single node. Then there is just a single matrix voltage to solve for: the one for the node,
ǦN.

An easy analytical solution is available for a specific case when all contacts are tunnel
junctions. In this case, the currents from the reservoirs to the node are proportional to the
commutators of the Green’s function ǦN and the matrix voltages of the corresponding
reservoir, and the Kirchhoff rule is given by[

M̌ , ǦN

]
= 0; M̌ ≡

∑
α

G(T)
α Ǧα ,

where G(T )
α are tunnel conductances of the connectors. For 2× 2 matrices, the solution is

proportional to M̌ and needs to be normalized as follows:

ǦN = M̌/
√

Tr{M̌2}/2 .

Each tunnel junction contributes to the action with a term ∝ Tr(ǦαǦN) (see Eq. (2.81)).
Summing up, we readily find the effective action up to an additive constant:

SFCS = 1

π�GQ

∫
dE

(√
Tr{M̌2}/2− 1

)

= G 
2e2

∫
dE

⎡
⎣
⎛
⎝1+

∑
αβ

2gαgβ
[

fα(1− fβ )(ei(χα−χβ ) − 1)

+ fβ (1− fα)(e−i(χα−χβ ) − 1)
]⎞⎠

1/2

− 1

⎤
⎥⎦ , (2.139)
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where G =∑
α G(T)

α is the total conductance and gα = G(T)
α /G is a connector conduc-

tance relative to the total one.
In the limit of low temperatures (shot-noise limit), kBT � e|Vα − Vβ |, the states in each

reservoir are either occupied ( f = 1) or empty ( f = 0). Let us now restrict our consider-
ations to a three-terminal setup (α = 1, 2, 3). The contribution to the FCS is given only in
the two following situations: either one of the reservoirs injects electrons ( f = 1) and two
remaining reservoirs drain them ( f = 0), or one of the reservoirs injects “holes” ( f = 0)
and two remaining ones drain them ( f = 1). This is why, in order to evaluate the FCS
at any set of voltages V1,2,3, it is enough to know the FCS in the situation where a given
reservoir (say number 3) injects carriers being at either positive or negative bias V3 and
reservoirs 1 and 2 are grounded, as shown in the schematic in Fig. 2.17. For this situation,
the FCS becomes

SFCS = G V3

2e

(
1+ 2g1g3(ei(χ1−χ3) − 1)

+ 2g2g3(ei(χ2−χ3) − 1)
)1/2 − 1. (2.140)

The terms proportional to g1g3 and g2g3 describe electron transfers from 3 to 1 or 3 to
2, respectively. If there were no square root sign in the above expression, these processes
would be Poissonian and uncorrelated. The square root sign thus signifies the correlations
between the transfers of two kinds. The physical origin of this correlation is intuitively
clear – fluctuations of current in the third connector produce deviations of the filling factor
in the node. Positive deviation results in more current to both 2 and 3, while negative
deviation reduces both currents – this explains the correlations. Equation (2.140) quantifies
them. In the limit G(T)

1,2 � G(T)
3 or G(T)

1,2 � G(T)
3 the filling factor deviations in the node

are strongly shunted by the largest conductance, so we expect the correlations to vanish.
Equation (2.140) can be expanded in terms of the small relative conductances to give

SFCS = G V3

2e

(
g1g3ei(χ1−χ3) + g2g3ei(χ2−χ3)

)
, (2.141)

and corresponds indeed to two independent Poissonian processes.

Control question 2.19. What is the distribution P(I1, I2, I3) corresponding to Eq.
(2.141)?

Exercise 2.26. Derive an analog of Eq. (2.140) for a setup of N terminals connected
to a single node.

For arbitrary connectors, one solves two independent non-linear equations to find ǦN at
any set of Gα: a task best handed over to a computer. We present here a set of numerical
results for ln P(I1, I2) obtained for the three-terminal structure in the shot-noise limit. We
consider three particular types of connectors: tunnel (T), ballistic (B), and diffusive (D),
and assume equal resistances of all three connectors of the circuit.
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�Fig. 2.17. Logarithm of the current probabilities in the three-terminal single-node nanostructure as a
function of I3, under the condition I1 = I2. The schematic presents the system configuration. The
resistances R = G(T)−1 of all connectors are assumed to be equal. (i) Tunnel connectors;
(ii) diffusive connectors; (iii) ballistic connectors.
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�Fig. 2.18. The contour maps of the current distribution log[P(I1, I2)] in the three-terminal single-node
nanostructure for different configurations of connectors: (a) ballistic; (b) diffusive; (c) tunnel.

As we mentioned above, it is sufficient to consider only the case V1 = V2 = 0, V3 = V .
The results of the calculations are presented in Figs. 2.17 and 2.18. The maximum of
probability always occurs at I1 = I2 = −V/3R, I3 = 2V/3R, which is exactly the set
of currents obeying common electric Kirchhoff rules. As seen from the figures, the cur-
rent distribution P(I1, I2) for a ballistic system is bounded. The reason for this is that
the current through any ballistic connector cannot exceed the maximum value GBV that
is set by the number of open channels. On the other hand, for tunnel and diffusive junc-
tions every connector has, in principle, an infinite number of partially open transmission
channels, and thus the current fluctuations can be arbitrary. One also sees that the relative
probabilities of large current fluctuations increase in the sequence ballistic → diffusive
→ tunnel. Qualitatively, this is explained by increasing the Fano factor in this sequence:
FB = 0, FD = 1/3, FT = 1, and the noise production is increased from ballistic to tunnel.
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Exercise 2.27. Using Eq. (2.140) and taking identical tunnel connectors, calculate
the matrix of third cumulants of the currents 〈Iα Iβ Iγ 〉 − 〈Iα〉〈Iβ Iγ 〉 − 〈Iβ〉〈Iα Iγ 〉 −
〈Iγ 〉〈Iα Iβ〉 + 3〈Iα〉〈Iβ〉〈Iγ 〉.

2.9.2 Noise in multi-terminal circuits

Let us attempt to understand this point in more detail and concentrate on the current noises.
It makes sense to do this in a more general setup where a single node is connected to many
reservoirs by arbitrary connectors. This is also a good opportunity to illustrate the use of
the variational principle in quantum circuit theory. Let us present the matrix voltage at the
node in the form similar to that of the reservoirs:

ǦN = exp(iχNτ3/2)

[
1− 2 fN(E) −2 fN(E)
−2(1− fN(E)) 2 fN(E)− 1

]
exp(−iχNτ3/2),

where we introduce the filling factor fN and counting field χN in the node. By virtue of the
variational principle, the total action at each energy is obtained by global minimization of
the sum of connector actions with respect to these two parameters:

S({χα}, { fα}) = extr
fN,χN

[∑
α

Sα(χα − χN, fα , fN)

]
,

where the sum is taken over all connectors (situated between the central node and reservoir
α), and the connector action Sα is given by Eq. (2.91) at the corresponding energy in
accordance with the Levitov formula. Since we are interested in noises only, and these
are given by second-order expansion in the vicinity of χα = 0, we only need to know the
action near χα → 0 with accuracy up to quadratic terms in {χα}. Therefore we expand
each connector action, keeping the linear and quadratic terms only;

Sα ≈ G

GQ

{
i(χα − χN)( fα − fN)

− 1

2
(χα − χN)2

[
fα(1− fα)+ fN(1− fN)+ Fα( fα − fN)2

]}
.

We see that, with this accuracy, all information concerning the type of the connector is
incorporated into its Fano factor Fα =∑

n Tn(1− Tn)/
∑

n Tn . The total action is obtained
by minimization with respect to fN,χN and is given by

S({χα}, { fα}) = extr
fN,χN

∑
α

Gα

GQ

{
i(χα − χN)( fα − fN)

−1

2
(χα − χN)2

[
fα(1− fα)+ fN(1− fN)+ Fα( fα − fN)2

]}
.

Varying this expression, we see that the extremum with this accuracy is achieved at
fN = f̄ , χN = χ̄ , where f̄ =∑

α gα fα , χ̄ =∑
α gαχα . Evidently, they are just averages
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of the corresponding reservoir values with weights given by the relative conductances of
the connectors. The quadratic part of the action taken at this point is given by

S =
∑
α

(χα − χ̄ )2

2GQ
S(α).

This defines the noises per energy interval in the reservoirs:

Sαβ = ∂2S
∂χα∂χβ

= δαβ S(α) − Gα

G 

S(α) − Gβ

G 

S(β) + GαGβ

G2
 

∑
γ

S(γ ), (2.142)

where

S(α) = Gα

(
fα(1− fα)+ f̄ (1− f̄ )+ Fα( fα − f̄ )2

)
are current noises per energy interval produced in each connector. Note that they have
the same form as the two-terminal noise, Eq. (1.60), with the only difference being that
one of the filling factors fN is no longer the Fermi function. Since the conductances Gα

do not depend on energies, Eq. (2.142) is also valid upon integration over energies. The
interpretation of Eq. (2.142) is straightforward: each connector independently produces
current fluctuations δ I α with intensity given by S(α). The current fluctuation sent into the
node returns to all the reservoirs (including the sender) being divided according to Ohm’s
law: δ I αN = −(Gα/G )

∑
α δ I α . The actual current fluctuation in each connector is the

sum of the two: δ Iα + δ I αN.

Control question 2.20. What does Eq. (2.142) look like in the two limits of (i) zero
temperature and (ii) no voltages applied to the terminals?

Let us now recall Eq. (1.86), which gives the noise in each terminal in terms of the
scattering matrix of the whole nanostructure. Comparing the two expressions, we discover
that we have determined the coefficients Aαβ,γ δ that are characteristics of the scattering
matrix of the whole nanostructure:

GQ Aαβ,γ δ = δαβ�αγ δ − gα�βγ δ − gβ�αγ δ + gαgβ
∑
ε

�εγ δ ,

where

gα = Gα/G ; �αβδ = Gα

(
(1− Fα)(δαγ δαδ + gγ gδ)+ Fα(δαγ gδ + δαδgγ )

)
.

Thus, FCS calculations enable the characterization of the scattering matrix of a complex
nanostructure; we have found rather abstract “quantum” coefficients Aαβ,γ δ in terms of
conductances and Fano factors of the connectors that form the nanostructure.



3 Coulomb blockade

A paradox of solid state physics is that electrons in conductors are almost exclusively
regarded as non-interacting particles, even though they do interact. This comes both from
physical reasons and from the human need for convenience. The physical reason is that the
interacting electrons form a ground state, and charged elementary excitations above the
state – quasielectrons – do not interact provided their energies are sufficiently close to
the Fermi surface. This makes a model of non-interacting electrons completely adequate
for quasielectrons, at least in the low-energy limit. This allows a scattering approach to
quantum transport that assumes the absence of interaction. The convenience model is that
the physics of non-interacting particles is much easier to understand and apply. Besides,
sticking to a convenient picture usually goes unpunished. In fact, in solid state physics there
are only a few rather exotic examples where interaction effects really reign and the non-
interacting approach produces obviously erroneous results. These cases are notoriously
difficult to comprehend and to quantify; some effects revealed almost a century ago (for
instance, Mott insulator transition) are still on the front-line of modern research.

In contrast to solid state physics, there is a very common regime in quantum transport
where interaction effects are dominant: the Coulomb blockade regime, and here the scat-
tering approach fails. However, in contrast to the situation in solid state systems, Coulomb
blockade systems are usually even simpler than those of Chapters 1 and 2 where interaction
does not play an important role. Due to this, one can quickly grasp the fascinating features
of Coulomb blockade physics, and begin to design and apply Coulomb blockade circuits
and devices. This physics is based on charge quantization, giving rise to charging energy.
It occurs in any nanostructure where a place to store an electron – an island – is fenced
off with tunnel barriers, provided the tunnel conductances are sufficiently small, G � GQ.
This chapter is devoted to Coulomb blockade physics.

The charging energy EC is a classical concept. The nanostructure is described with an
equivalent capacitance circuit (Section 3.1). Elementary processes in Coulomb blockade
systems are single-electron transfers, described by the master equation, which expresses
the classical probability balance (Section 3.2). The simplest Coulomb blockade circuit with
only one island is called a single-electron transistor (SET). It exhibits a number of signi-
fying features of the Coulomb blockade – Coulomb diamonds, Coulomb oscillations, and
the Coulomb staircase (Section 3.3). Quantum mechanics gives rise to cooperative tunnel-
ing of two electrons – co-tunneling – which becomes the dominant transport mechanism
in the situation when single-electron transport is blocked (Section 3.4).

The combination of the Josephson effect and Coulomb blockade creates a quantum
system, which can be in a quantum superposition of charge states, creating the base
for solid state qubits. To describe this combination, we turn to superconducting islands
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connected to normal and superconducting electrodes. Each tunnel junction in this setup
becomes a Josephson junction. The Josephson effect sets a new energy scale, the Joseph-
son energy EJ. Most importantly, a superconducting state characterized by a phase, which
is a conjugated variable to the charge: the state with a certain charge has a phase which is
undetermined, and vice versa. This uncertainty is of a quantum nature. This macroscopic
quantum mechanics is considered in Section 3.5. We start from the generic example, the
Cooper pair box (CPB), quantize the phase and charge, and reveal the Schrödinger equation
for the CPB. We introduce two complementary regimes where either Coulomb or Joseph-
son energy is dominant and discuss macroscopic quantum tunneling. In Section 3.6 we
come to a more complex system, the Josephson junction array, which is a collection of
superconducting islands connected by Josephson junctions. If one superconducting island
can be likened to a home-made artificial atom, then an array is a home-made solid, which
has distinct quantum phases and phase transitions. We shortly review the most interest-
ing aspects of Josephson junction array physics – vortices, charge–vortex duality, and the
Berezinsky–Kosterlitz–Thouless transition.

In Section 3.7, we turn to superconducting islands beyond the Josephson limit. The
Josephson limit implies that only Cooper pairs may be transferred through Josephson junc-
tions, and the number of electrons at each island is even. In this final section of the chapter,
we go to energies of the order of the superconducting gap. Then an odd number of electrons
is also permitted at the islands, this number being fixed by the parity effect, and tunneling
of quasiparticles can also be important. In this situation, some of the transfer processes
are coherent and are characterized by quantum-mechanical amplitudes, whereas others are
incoherent and are described by tunneling rates. We introduce the density matrix descrip-
tion appropriate for this situation, and solve the equation of motion for the density matrix,
which replaces the Schrödinger equation.

Principles of single-electron tunneling have been reviewed in Ref. [61].

3.1 Charge quantization and charging energy

Let us start with an isolated metallic island hanging somewhere in space. The number of
elementary particles in the island – positively or negatively charged – must be integer.
Thus, its charge Q must be an integer amount of elementary charges, Q = Ne, N being
the number of excess electrons in the island. Since the island is metallic, the actual charge
is concentrated at the surface of the island; there is no charge in the bulk, although the extra
electrons are spread over the volume of the island. The charge Q produces an electric field
E around the island, this field accumulating some electrostatic energy. As we know from
the electrostatics, this energy can be expressed via the capacitance C of the island,

E = Q2

2C
= e2

2C
N 2 ≡ EC N 2. (3.1)

Suppose we add an extra electron to the island, transferring it from a metal with the same
Fermi energy. Since we are charging the island, we have to pay the energy EC. This energy
cost rises if we add more electrons: we must provide EC N 2 − EC(N − 1)2 = EC(2N − 1)
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�Fig. 3.1. (a) Excess charge in an isolated metallic island produces an electric field outside, thus
accumulating charging energy. (b) The energy cost to put an electron into the island is not just a
typical level spacing δS: it includes charging energy EC � δS.

extra energy to add the N th electron. The same goes for extraction, since we also charge
the island, although with positive charge. The fact that the addition energy depends on
the number of particles added is in contradiction with the paradigm of non-interacting
electrons: the charging energy produces an electron–electron interaction. The bigger the
island, the bigger the capacitance. Because of this, the charging energy ∝ 1/C vanishes in
the traditional thermodynamic limit when the energies are counted per particle. However,
it presents a finite energy scale for any finite island.

We see that the charging energy EC is in fact a classical concept since it is expressed in
terms of classical capacitance of the island with no regard for quantum mechanics forming
the electron states in there. The charging energy is also an electrostatic part of the addition
energy: the energy required to add one extra electron to the neutral island. To see how good
the classical description is, let us compare this part with quantum effects. Due to quantum
mechanics, the electron levels in the island are discrete; there is a typical energy distance
between the electron levels, the mean level spacing δS. This also contributes to the addition
energy, since the added electron would go to the first unoccupied level separated by δS from
an occupied one (see Fig. 3.1).

To get a feeling of the energy scales involved, let us take a cubic island of size L . It
consists of Nat � (L/a)3 atoms, a being the interatomic distance. Typically, there is one
valence electron per atom, and these electrons fill up the energy band EF. The mean level
spacing is therefore given by δS � EF/Nat. From Coulomb’s law, we estimate that the
charging energy is of the order of e2/L: the charge e is spread over a typical distance L .
The ratio of the two energy scales is estimated as follows:

δS

EC
� EFL

e2 Nat
= EFa

e2

L

aNat
� 1

N 2/3
at

.

Here we make use of the fact that e2/a � EF. The conclusion is that δS/EC is small
provided the island consists of many atoms. To illustrate this with numbers, let us take
L = 100 nm corresponding to Nat = 109, and e2/a � EF � 10 eV. We obtain EC � 1 mV,
δS � 10−8 eV, a large difference. So, for practical purposes, δS ≈ 0, and one may safely
disregard all effects related to the discreteness of the electron spectrum. This discrete-
ness only becomes important for nanostructures consisting of several natural atoms, like a
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molecule, or those comprising an artificial atom, such as a quantum dot in a semiconductor
heterostructure. For such nanostructures, δS/EC � 0.1–0.5. The discrete spectrum will be
discussed in detail in the context of quantum dots in Chapters 4 and 5. Here, we disregard
the discreteness.

We have learned that it costs us some extra energy to add an electron to an isolated
island, and to good accuracy it is an electrostatic, Coulomb energy. To transfer electrons
to the island, this energy must be supplied either by an external voltage source or by a
thermal fluctuation. Otherwise, the electron transport is blocked, and Coulomb blockade
takes place.

3.1.1 Single-electron box

Not much would happen if we simply had a single isolated island: it would keep a given
number of extra charges forever. Let us add some functionality to our setup and make an
elementary Coulomb blockade circuit: a so-called single-electron box. The box consists of
a single island and two bulk metallic electrodes: a source and a gate. We place the island
very close to the source electrode so that the electrons can jump between the electrode and
the island, changing its charge. We assume that the source electrode is grounded. The gate
electrode is placed further away so that the electrons cannot be transferred between the
island and the gate.

It turns out that we can tune the number of extra electrons in the island, changing the
potential Vg of the gate electrode with respect to the source (so that Vs = 0). Physically, Vg

shifts the electrostatic potential of the island with respect to the source; this helps electrons
to enter the island. Alternatively, we can say that the gate potential induces charge in the
island. Let us quantify this.

In a stationary state, the number of electrons in the island corresponds to the minimum
electrostatic energy. Let us find this energy. We have now two capacitors: C , which is in
between the island and the source, and Cg, which is in between the island and the gate.
Let us denote the charges at the plates of these capacitors, respectively, as ±q1,2. The
electrostatic energy consists of the energy accumulated in these capacitors and the work
done by the voltage source to transfer the charge q2 to the gate electrode, −q2Vg. This
energy is given by

Eel = 1

2

(
q2

1

C
+ q2

2

Cg

)
− q2Vg. (3.2)

It can be expressed either in terms of q1,2 or in terms of the corresponding voltage drops
V1,2 across the capacitors since they are related by CV1 = q1, CgV2 = q2:

Eel = 1

2

(
CV 2

1 + CgV 2
2

)
− CgV2Vg. (3.3)

To determine these charges/voltage drops we use two conditions: (i) the sum of the
voltage drops on the two capacitances is Vg, (ii) the charge in the island is quantized and
equals eN . So, we have
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�Fig. 3.2. Single-electron box. (a) Setup. (b) Equivalent capacitance circuit (the dashed box includes
capacitance plates that belong to the island). (c) The charging energy of the single-electron box
versus q = −CgVg. Each parabola corresponds to a charge state with N excess charges. The lowest
segments of the parabolas give the minimum energy and the actual charge state.

V1 + V2 = q1/C + q2/Cg = Vg (i);

−q2 + q1 = eN (ii).

We will now introduce a convenient notation: a charge induced in the island by the gate,
q ≡ −CgVg. This induced charge is not quantized; it is a continuous quantity proportional
to the gate voltage. What is quantized is the charge in the island. Using this notation, q1 =
(eN − q)/(1+ Cg/C), q2 = −(eN − q)/(1+ C/Cg)− q, and the energy is given by

Eel = EC

(
N − q

e

)2 − q2

2Cg
; EC ≡ e2

2(C + Cg)
. (3.4)

We will disregard the final term in Eel since it does not depend on N and therefore does
not influence the energy balance between the different charge states.

The next question is what is the number of extra electrons N that correspond to the
minimum energy. To understand this, we plot the energy versus q. Each number N gives a
parabola that reaches zero minimum at qN = eN . For all possible values of N we obtain
a series of shifted parabolas (see Fig. 3.2). The state with minimum energy corresponds to
the lowest segments of the parabolas. The minimum energy thus occurs at different discrete
Nq , Nq = [q/e + 1/2], where the square brackets denote the floor of a continuous number.
We see that Nq is a step-like function of q (or Vg), and one can tune the number of excess
electrons in the island by varying Vg. We note the e-periodicity of the charging energy:
the minimum energy is periodic in q with a period e. If the value of induced charge is
q and the corresponding charge state is N , at the induced charge q + |e|M (M being an
integer), the charge state is N + M . This state will have the same properties with respect
to Coulomb blockade as the original state.

The electrostatic energy defined above manifests charge quantization. If there were no
quantization, N would be continuous, and the minimum energy would always be Eel = 0
at eN = q . This could actually happen if there is a metal shortcut between the island and
the source electrode. In this case, the charge in the island does not have to take integer
values since there is no natural separation between the electron states in the island and in
the electrode, and an electron has to be localized neither in the island nor in the electrode.
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�Fig. 3.3. Overlap junction fabrication scheme. First, a metallic film (source electrode) evaporated on the
substrate is oxidized. The oxide layer so formed provides a tunnel contact for the subsequently
evaporated second electrode (island).

3.1.2 Islands and barriers

This brings us to the following question: how good should the isolation be between the
islands and electrodes in order to keep the charge quantization? A quick answer would be:
the thicker, the better. However, we are interested in electron transport. A good isolation
would imply that the electron transfers occur very rarely; this current would be too small to
measure. On the other hand, a bad isolation would imply a shortcut, destroying the charge
quantization.

In practice, the islands in metal-based Coulomb blockade systems are always placed
very close to the electrodes. They are separated from them by tunnel barriers, the best
choice of which is a thin film of an oxide. For aluminum, the native oxide film is just
1.5 nm thick. Complicated structures can be made by evaporation of metal film, oxidation,
and yet another evaporation under a different angle: an overlap junction is an example of
this (see Fig. 3.3). Such junctions have a high capacitance; it can be estimated as A/d, A
and d being the contact area and the thickness of the barrier, respectively. This is bigger
than the geometric capacitance ∝ L . This is not good, since the charging energy scales
down. However, this is usually the price we must pay for a well controlled contact.

A tunnel junction is characterized by its conductance (or resistance), so the question is
about the resistance of the junction. As an estimation, we use the Heisenberg uncertainty
relation�E�t � �. Let us put an extra electron in the island. We have paid the energy EC.
What is a typical time that it remains there? We can obtain this time this in a very classical
way: it should be of the order of the classical discharge time of the capacitor through the
(tunnel) conductance, the so-called RC-time τRC = 1/RTC = GT/C . This corresponds
to an energy uncertainty �/τRC . For a state with an extra electron to be well defined, this
uncertainty should not exceed the charging energy EC, i.e. ECτRC � �. Remarkably, the
capacitance does not enter this condition:

ECτRC � �⇒ G � e2

�
� GQ. (3.5)

Therefore, the junction must be sufficiently resistive, and the conductance should not
exceed the conductance quantum GQ. Recall that we encountered a similar condition when
studying the scattering approach to quantum transport. In that case, it separated the “clas-
sical” conductors, with many transport channels participating in conductance, from the
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“quantum” ones where only a few channels contribute to the transport. Remarkably, the
same typical value of conductance separates nanostructures with pronounced Coulomb
blockade effects from those where these effects are negligible. Universality of scatter-
ing suggests that one does not need high tunnel barriers to provide a good isolation: any
conductor with G � GQ would suffice. Charge quantization and Coulomb blockade at
G ∼ GQ will be discussed in Section 6.5.

From the above discussion, one could receive the impression that if we know the gate
voltage, we also know how many excess integer charges there are in the island. In fact, this
is not so in most practical situations. We only know the relative change of discrete charge;
for example, we get one charge more by shifting the voltage by e/Cg. The point is that
the gate electrode is not the only source of the induced charge. In a realistic nanostruc-
ture, there are always some stray charges located in the substrate around the island, and/or
there may be charged immobile impurities in the oxide barriers of the tunnel junctions. If
the nanostructure is composed of metals/semiconductors with different Fermi energies, this
difference is compensated by charging. All together, these random sources produce a back-
ground charge qi which adds to the charge induced by the gate electrode in the island i .
Usually the absolute amount of the excess charges does not matter, since the charging
energy is periodic in N , q/e. Therefore one can regard qi to be uniformly distributed in the
interval (−|e|/2, |e|/2). In this interval, the background charge can be always compensated
by the proper shift of the gate voltage.

3.1.3 Many-island capacitive circuits

The essential features of Coulomb blockade can be illustrated with a single-island system.
However, one can make more complicated, interesting, and useful Coulomb blockade cir-
cuits by bringing more islands together. A new element is the interaction of electrons that
are in different islands: excess discrete charge in island i changes the energy of the charge
state in island j .

Charging effects in many-island systems can also be understood using equivalent capac-
itance circuits. Let us preview the answer. The state on any Coulomb blockade system is
characterized by the number of excess charges in each island. The electrostatic energy of
the system is given by

Eel =
∑
i , j

E (C)
i j (Ni − qi )(N j − q j ), (3.6)

where i , j number the islands, Ni is the quantized charge in island i , and qi is the charge
induced in the same island by any electrodes. The charging energy becomes a matrix,
proportional to the inverse capacitance matrix of the islands. The diagonal elements of
the charging energy matrix denote the energy cost of adding an excess electron to a given
island. Non-diagonal matrixes denote a repulsive interaction between quantized charges in
different islands.

To derive this from classical electrostatics, let us consider the most general capacitance
circuit. We have some gate electrodes labeled k and biased at voltages V (g)

k . We count the
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source electrode among the gate electrodes. There is a capacitive connection between each
island i and gate electrode k with capacitance C (g)

ik . In addition, the islands are connected to

each other by capacitors C (c)
ik . The voltages of the islands are given by Vi . The full energy

consists of energies of the capacitors and the work done by voltage sources:

Eel = 1

2

∑
i> j

C (c)
i j (Vi − Vj )

2 + 1

2

∑
i ,k

C (g)
ik (Vi − V (g)

k )2 −
∑
ik

qik V (g)
k .

Here, qik is the charge in the capacitance C (c)
ik , so that

qik = C (g)
ik (V (g)

k − Vi ).

We use this to bring the electrostatic energy to the following form:

Eel = 1

2

∑
i> j

C (c)
i j (Vi − Vj )

2 + 1

2

∑
i ,k

C (g)
ik V 2

i −
∑
i ,k

C (g)
ik (V (g)

k )2. (3.7)

As for the single-electron box, we will disregard the final group of terms since they do not
depend on the charge state of the system. To proceed further, let us note that the full charge
in island i is the sum over charges accumulated in all capacitors connected to this island:

Ni =
∑

j

qi j +
∑

k

qik =
∑

j

C (c)
i j (Vi − Vj )+

∑
k

C (g)
ik (Vi − V (g)

k ).

This is most conveniently rewritten as

Ni − qi =
∑

j

Ci j Vj . (3.8)

Here qi ≡ −∑
k C (g)

ik V (g)
k is the offset charge induced on island i by all the gate electrodes,

and Ci j is the capacitance matrix. Its diagonal elements are sums of all the capacitances
connected to an island, and the non-diagonal ones are cross-capacitances with the minus
sign:

Ci j =
{ ∑

j C (c)
i j +

∑
k C (g)

ik i = j

−C (c)
i j i �= j .

(3.9)

We invert this relation by expressing voltages in terms of island charges, Vi =∑
j (C
−1)i j (N j − q j ), and substituting this into Eq. (3.7). We recover the charging energy

given in Eq. (3.6), with

E (C)
i j =

e2

2
(C−1)i j .

Let us illustrate this with a simple circuit consisting of two islands (see Fig. (3.4)).
Each island is controlled by its own gate, so the charges induced at each island are
q1,2 = C (g)

1,2V (g)
1,2 . There is a capacitance C12 between the islands. The diagonal elements

of the capacitance matrix are contributed to by all capacitors connected to an island,
C1,2 = C (g)

1,2 + C12 + C (s)
1,2 Obviously, C1,2 > C12. Inverting the capacitance matrix, we

obtain the charging energy matrix:

Ê (C) = e2

2(C1C2 − C2
12)

[
C2 C12

C12 C1

]
. (3.10)
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�Fig. 3.4. (a) Equivalent capacitance circuit of a two-island system. (b) The energies of two different charge
states are equal along a line in the q1–q2 plane. Six lines define a region where the state (0, 0)
has minimum energy. (c), (d) Periodic tilings of the q1–q2 plane.

Let us make use of convenient dimensionless notations C1,2 = C12(1+ α1,2).
In these notations, the charging energy is given by

Eel(N1, N2) =E2

(
α2

(
N1 − q1

e

)2 + α1

(
N2 − q2

e

)2

+
(

N1 + N2 + q1

e
+ q2

e

)2
)

; E2 ≡ e2C12

2(C1C2 − C2
12)

.

Our present goal is to find the charge state (N1, N2) of the system that corresponds to
the minimum energy at given q1, q2, the ground state. Let us note the e-periodicity in
both charges: if (N1, N2) is the ground state at q1, q2, the ground state at q1 + M1e, q2 +
M2e is (N1 + M1, N2 + M2) and resembles the original state with respect to its charging
properties. Therefore the regions where a given charge state occurs comprise a periodic
tiling of the q1–q2 plane. Due to periodicity, it is enough to look at the tile corresponding
to (0, 0). To find the shape of this tile in the q1–q2 plane, we compare the energies of
the (0, 0) state with those made with the addition/extraction of one electron to/from each
island:

E(0, 0) < E(±1, 0) →
∣∣∣∣q1 + q2

1+ α2

∣∣∣∣ < e

2
;

E(0, 0) < E(0,±1) →
∣∣∣∣q2 + q1

1+ α1

∣∣∣∣ < e

2
.
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Each condition from the four given above gives a line in the q1–q2 plane, so four lines
carve a diamond in the q1–q2 plane. However, the periodically shifted diamonds overlap
and thus do not provide the periodic tiling required! The point is that the charge state of
two islands can be changed without adding electrons to the island, just by electron transfer
between the islands. We check the energies of two states (1,−1) obtained in this way as
follows:

E(0, 0) < E(1,−1), E(0, 0) < E(−1, 1)→ |α2q1 − α1q2|
α1 + α2

<
e

2
.

This gives two extra lines that crop the diamond, resulting in a hexagonal tile (see Fig. 3.4).
For α1,2 � 1, the charges in the different islands almost do not interact, and the tile is
almost a square |q1|, |q2| < |e|/2 (see Fig. 3.4(c)). In the opposite case of large C12, the
hexagons are extended in the (−1, 1) direction and the tiling resembles a brick wall (see
Fig. 3.4(d)).

Control question 3.1. What does the structure look like for (i) C1, C2 � C12; (ii)
C1 � C2 � C12; (iii) C1 � C12 � C2?

Exercise 3.1. Consider a system of three identical islands in series; take into account
the capacitances to the gate Cg and capacitances of the junctions C , but disregard the
mutual capacitance of the two side islands. (i) Write down the charging energy in terms
of three offset charges qi . (ii) Starting from the state when all the islands are empty,
increase q1. At which value of charge q1 does the first electron enter the system, and in
which island will it reside?

3.1.4 Coulomb blockade in arrays

Technology allows us to fabricate large arrays of formally identical nanostructures. These
nanostructures may be electrically connected to each other (as elements of microcircuits) or
interact with each other by other means (as we will see below). The arrays can be regarded
as nanostructured materials. Common materials are made of (periodically placed) atomic
or molecular units, and their functionality is determined by solid state particles: elec-
trons, holes, phonons, excitons, etc., localized on these units and/or propagating between
them. The arrays are made of nanostructures – artificial atoms – and their properties are
determined by the (excited) states of the nanostructures – artificial “particles.” A poten-
tial advantage of arrays is that the nanostructures can be designed to achieve the desired
properties, and the design is easier to implement than that of atoms.

The physics of the arrays can be quite complicated since many “particles” may be
involved and their collective behavior may be important. Like common materials, the
arrays can exhibit phase transitions and are generally described by models of (quantum)
statistical physics. Since the focus of this book is on an individual nanostructure, statis-
tical aspects of array physics are not discussed here at the quantitative level. We present,
however, some qualitative discussion of this interesting physics [62].
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Let us concentrate on the arrays of metallic islands connected by tunnel junctions. If
the conductance of a single junction is much smaller than GQ, the arrays are in Coulomb
blockade regime. A state of the array is a charge state: it is defined by the number of excess
charges in each island of the array, {Ni }. The energetics of charge states is governed by the
same charging energy matrix as in Eq. (3.6). Let us consider uniform periodic arrays with
capacitive connections between neighboring islands only. This implies that the important
parameters – the charges induced in the islands – are the same throughout the array, qi = q.
The islands can either form a line (1d arrays) or cover a region in a plane (2d arrays).
Three-dimensional (3d) arrays are difficult to fabricate in a controlled fashion; a “natural”
realization of such an array is a thick film of granulated metal where the metal granules
(islands) are separated by oxide. All islands usually share the same gate, so that the induced
charge is the same for all islands of the array. In this case, the arrays are e-periodic with
respect to this charge: changing it by e adds one excess electron to all islands of the array.

An important parameter is the ratio of junction capacitance C to the capacitance to the
gate Cg. To reveal its physical significance, let us look at the charging energy matrix in
a long uniform 1d array. We number the islands in order, so that island i is connected to
islands i ± 1. The matrix elements E (C)

i j in a uniform array depend on the distance |i − j |
between islands i , j only:

E (C)
i j = EC e−|i− j |/κ ; EC = e2

2Cg
√

4C/Cg + 1
; (3.11)

κ−1 = ln

(√
4C/Cg + 1+ 1√
4C/Cg + 1− 1

)
. (3.12)

As we mentioned, the non-diagonal elements of the charging energy matrix denote the
interaction between the charges situated at different islands. The parameter κ denotes
the effective radius of this interaction in units of island spacing. For C � Cg, κ ≈
1/ ln(Cg/2C)� 1, and the charges hardly interact, even if they are at neighboring islands.
In the opposite limit, C � Cg, κ ≈ √

C/Cg � 1. An extra charge placed on such an array
is called a charge soliton, to stress the fact that its potential spreads over many islands.

Let us start with q = 0. (Because of the e-periodicity we can start with any multiple
of e.) The charge state corresponding to the minimum energy of the array is very simple:
Ni = 0. Let us increase the induced charge. It costs an energy EC to add a charge into
the array, so the first “particle” will enter the array only when it becomes energetically
favorable. This occurs at some critical value qc of the induced charge, defined by energy
balance between the state with no (E0) and one (E1) extra charge. If the discrete charge
appears in island j , the energy balance is given by

E1 = E0 → E (C)
j j = 2(qc/e)

∑
i

E (C)
j i

→ EC = 2(qc/e)EC

∑
i

e−|i|/κ → qc = e

2

1√
4C/Cg + 1

Once qc is crossed, discrete charges enter the array. Their concentration quickly grows until
the average distance between the charges becomes of the order of the interaction radius κ .
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�Fig. 3.5. The charges in a 13-island uniform array (C/Cg = 3). The rows in the diagrams correspond to the
islands of the array. (a) Filling the island with extra charges upon increase of q. (Black pixels
denote extra charge.) (b) The same in the presence of random background charges.

Then they start to repel each other, and this slows down further concentration growth.
If the coordinates of these charges were continuous, the minimum-energy arrangement
would be the periodic lattice of the charges, with the period given by their concentration,
the so-called Wigner lattice. The coordinates are, however, discrete. There is an issue of
commensurability of the periods of charge lattice and the original lattice of the islands:
whether the period of the charge lattice is a multiple of the original period. With increasing
induced charge, the system passes a series of commensurable configurations. Those with
shorter period are more stable and correspond to wider intervals of the charge induced; q =
|e|/2 is a symmetry point. At this point, exactly half of the islands have an extra charge,
and the other half is empty. The charges thus form an ideal checkerboard pattern (obviously
commensurable with the lattice of islands). The minimum-energy charge configuration at
|e|/2 < q < |e| is mirrored with respect to that at qm = |e| − q: Empty (filled) islands
of one configuration correspond to filled (empty) islands of the mirrored one. Instead of
electron-like particles, one can think in terms of hole-like particles situated where N = 0.
Upon further increase of induced charge, the concentration of holes decreases, with the last
hole disappearing at q = |e| − qc.

The qualitative part of this story is almost the same for both limits C � Cg and C � Cg.
The difference is the interval of induced charge where the story happens. If C � Cg

(weakly interacting charges), qc is already very close to |e|/2, |e|/2− qc ≈ 2|e|C/Cq.
The charge state changes from N = 0 for all islands to N = 1 for all islands in a nar-
row interval � 4eC/Cg around |e|/2. In the opposite case, C � Cg (charge solitons),
qc ≈

√
Cg/C/4� 1, and transition from an empty to a completely filled state takes the

whole interval of induced charge. In fact, the concentration of discrete charges in this
case approximately follows the charge induced, with an accuracy of the order of qc.
Qualitatively, the above scenarios also apply to 2d arrays.

The above quantitative reasoning is illustrated with numerical results for a uniform 1d
array of 13 islands with C/Cg = 3 (see Fig. 3.5). This gives κ = 1.75, so that the inter-
action radius is about 2 islands. The first charge enters the array at q ≈ 0.14, which is
very close to qc of an infinite array. We note that the islands at the edge of the array miss
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a capacitive connection, so the charging energy is higher at the edges. This results in a
potential profile for extra charges with a minimum in the center of the array. This is why
the first charge appears in the center. The interval of q where one charge is energetically
favorable is tiny; two charges arrive almost immediately. Their positions are determined
by the balance of their mutual repulsion and the effect of potential profile, which pushes
them to the center. Upon further increase of q, we observe a tendency for formation of
commensurable charge lattices with a period of four and three islands. These lattices are,
however, distorted. Finally, at q ≈ 0.4, we reach the checkerboard pattern, and the picture
is mirrored at q > 0.5.

The spoilers of array physics as described above are random background charges. In
a Coulomb blockade system with several islands, one can, at least in principle, tune out
the effect of the charges with gate electrodes. However, this implies that one should have
at least one gate electrode per island, and such extensive wiring is not feasible for a big
array. It is therefore reasonable to assume that, beside the charge induced by the gate, each
island is shifted by a random uniformly distributed charge qi . The effect of all background
charges is to create a random potential relief for discrete charges. A typical amplitude
of this random potential is the charging energy EC. The effect of background charges is
illustrated with a numerical example in Fig. 3.5. The random potential relief has minima
near the fourth, seventh, and tenth islands and maxima near the twelfth, second, and eighth
islands. The filling of the islands upon increasing the charge induced is mostly determined
by this potential relief, and this masks any interaction effects. It is an important technolog-
ical challenge to fabricate arrays with no background charges, since this problem hinders
most of applications of complex Coulomb blockade systems.

We end by noting several analogies between the array physics and that of doped semi-
conductors. At q = 0 there is an energy cost EC associated with adding either positive
or negative charge, similar to the energy gap of an undoped semiconductor. The induced
charge plays the role of a dopant forcing either positive or negative discrete charges into
the array. Finally, background charges present the disorder that is also intrinsic for most
doped semiconductors.

3.2 Single-electron transfers

The appeal of Coulomb blockade systems is that the electrons, under most general circum-
stances, are transferred one-by-one. This follows from the fact that the charge states are
well defined, and most of the time the system is in a well defined charge state. This state,
however, may change as a result of electron tunneling either to or from the leads from or to
one of the islands or between the islands. Most probable changes are those involving only
one tunneling electron – single-electron transfers.

The purpose of this section is to present the notion of single-electron transfers and to
explain in general terms how one describes electron transport under these circumstances.
The specific manifestations, signatures, and opportunities of single-electron transport will
be discussed at length in Section 3.3. However, to avoid too much abstraction, we begin
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�Fig. 3.6. Single-electron transistor (SET). The electron transport from left to right may be influenced by the
gate voltage Vg. Arrows denote four possible single-electron transfers in the SET (FL = from the
left; FR = from the right; TL = to the left; TR = to the right).

this section with the description of a particular device – the single-electron transistor. This
device will provide the necessary illustrations of more general concepts discussed in this
section, for example energetics of the transfers, the master equation describing transport in
Coulomb blockade systems, and the energy dependence of tunneling rates.

3.2.1 Single-electron transistor

Let us introduce the generic design of a Coulomb blockade system: the so-called single-
electron transistor, or SET.1 Its design is very similar to that of a single-electron box. An
important distinction is an extra transport electrode contacting the island (Fig. 3.6): like
any transistor, a SET has three electrodes. Two electrodes, R and L, the source and drain,
are the transport ones: one expects electric current from R to L if the voltage difference is
applied. The electrons transferred are forced to move through the island. The third electrode
is the gate: it does not have a direct electric contact either with the island or with the other
two electrodes. To evaluate the electrostatic energy for a given charge configuration, we
draw an equivalent capacitance circuit, with the capacitances CR, CL, Cg being present.
The difference from the single-electron box seems minor: the electrostatic energy is given
by the same expression:

Eel = EC(N − q/e)2; EC = e2

2C 
. (3.13)

The difference is that the charging energy is inversely proportional to the total capacitance
of the island C = CR + CL + Cg contributed to by all capacitors. The same occurs with
induced charge: it is contributed to by all three electrodes, q = CRVR + CLVL + CgVg.

1 An alternative name frequently used in literature is single-electron tunneling transistor, or SETT.
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Let us now inspect all possible processes of single-electron transfer in a SET. Suppose
that initially there are N extra charges in the island: it is thus in charge state N . The number
of charges can change in four ways. An extra electron can jump into the island either from
the left or from the right electrode, and then N is replaced with N + 1. Alternatively,
an electron can also leave the island either to the left or to the right, with the change
N → N − 1.

Each process at a given N is characterized by an energy difference between the final and
initial states. It is important to recognize that this energy difference is not just the difference
of electrostatic energy given by Eq. (3.13). Indeed, in the course of a transfer we add
(extract) an electron to (from) the corresponding electrode i . The energy cost associated
with this is given by eVi (−eVi for extraction). We did not take that into account in the
previous section since we considered all source electrodes to be at the same potential V =
0. In this case, we could figure out the equilibrium charge state to be one with minimum
energy. It is very different for a SET. If VR �= VL, the system cannot be in equilibrium. Nor
can we speak of an energy of a given charge state! To understand this, let us start with a
given charge state N , add an electron from the left, and extract it to the right. The sum of
the energy differences of the two processes is e(VL − VR), although the charge state after
this operation is the same as before.

Taking this into account, we list the energy differences associated with all four processes:

from the left: �EFL(N ) = Eel(N + 1)− Eel(N )− eVL;
to the left: �ETL(N ) = Eel(N − 1)− Eel(N )+ eVL;

from the right: �EFR(N ) = Eel(N + 1)− Eel(N )− eVR;
to the right: �ETR(N ) = Eel(N − 1)− Eel(N )+ eVR.

(3.14)

When we add (extract) a charge to (from) the island, the electrostatic energy change is
given by

Eel(N ± 1)− Eel(N ) = 2(±N + 1/2∓ q/e)EC.

It is interesting to note that we can understand a lot about single-electron transport even
if we do not know (or do not care) how the electrons are actually transferred. The only thing
we have to know are the energy differences listed. Let us consider zero temperature so that
the tunneling electron can gain no energy from heat. In this case, an electron transfer can
only occur if the corresponding energy difference is negative, �E < 0; indeed, the energy
can only be dissipated, not gained. This simple inequality governs the transport in Coulomb
blockade systems and defines the regions of the parameters – gate and transport voltages –
where the electron transport proceeds in a certain way, the regions of different transport
regimes.

The simplest, and most important, transport regime is the Coulomb blockade itself. In
this case, in the given charge state N all four single-electron processes are forbidden. This
requires all four energy differences to be positive:

�ETL,FL,TR,FR(N ) > 0. (3.15)

Since the charge state does not change, and no electron transfers take place, no current is
expected in the Coulomb blockade regime.
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�Fig. 3.7. Energy differences of single-electron transfers in a SET. (a) The charge state N is blocked.
(b), (c) One-by-one transfer. The SET switches between (b) N and (c) N + 1. Filled arrows indicate
the transitions allowed in each state.

Another example transport regime is when the electrons go one-by-one from the left to
the right (see Fig. 3.7). The parameter region where such transport regime takes place is
defined by the condition that only two processes are allowed: a transfer from the left at N
and a transfer to the left at N + 1. Note this number N + 1: in order to go to the right, the
extra electron must already be in the island! These two processes thus have negative energy
differences given by

�EFL(N ) < 0; �ETR(N + 1) < 0,

whereas all other possible processes at N and N + 1 must be blocked and the correspond-
ing energy differences must be positive. In particular,

�EFL(N + 1) > 0.

The latter condition ensures that the electrons really go one-by-one: the second electron
cannot enter the island while the extra electron is there.

3.2.2 Coulomb diamonds in a SET

Let us now concentrate on parameter regions where Coulomb blockade of single-electron
transport takes place. To reduce the number of parameters, let us assume symmetric capac-
itors CR = CL and antisymmetric bias voltage VL = −VR = V/2 (in such a setup, the
induced charge q conveniently does not depend on bias voltage). If N = 0, the Eqs. (3.15)
become
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�Fig. 3.8. Coulomb diamonds in a SET. The transport is blocked inside white diamonds. The light gray
region denotes where the one-by-one transport cycle takes place.

�EFL(N = 0) = 2EC(1/2+ q/e)− eV/2 > 0;
�ETL(N = 0) = 2EC(−1/2+ q/e)+ eV/2 > 0;
�EFR(N = 0) = 2EC(1/2+ q/e)+ eV/2 > 0;
�ETR(N = 0) = 2EC(−1/2+ q/e)− eV/2 > 0.

In the V –q plane, each condition is represented by a slanted straight line. Four such lines
bound a rhombus, a diamond, that is, a region in the V –q plane where all four conditions
are fulfilled. For N = ±1,±2, ... we have the same diamond shifted by ±e,±2e, ... along
the q axis (see Fig. 3.8). At vanishing temperature there is no single-electron current inside
the diamonds, and there is a noticeable current outside. This makes the diamond pattern
easy to observe when sweeping the gate and bias voltages while measuring current in the
SET. In reality, there is always some current inside the diamonds. Even if the temperature
is negligible, a finite current may arise from the electron transfers involving more than one
electron. These processes will be discussed in Section 3.4. Here we only need to know that
such processes are much less probable than single-electron transfers provided G � GQ.
Thus, there is enough current contrast between the inside and outside of the diamonds.

The diamond pattern is exactly periodic: all diamonds have the same shape, width, and
height. The diamonds touch each other at V = 0. The touch points correspond to the values
of the induced charge at which two charge states are degenerate having the same energy
(compare with the crossing of parabolas in Fig. 3.2). Due to this degeneracy, in the vicinity
of these points the Coulomb blockade is already lifted by a small bias voltage V � EC.

Exercise 3.2. Determine the shape of Coulomb blockade diamonds in the V –Vg plane
for unequal capacitances CL �= CR assuming VL = 0, VR = V .

Where does the one-by-one transport regime occur? If we count the conditions to be
fulfilled, we get eight, which might imply a complicated shape for this region. This is not
the case: the corresponding region is also a diamond. It has the same shape as a Coulomb
diamond and is shifted in such a way that it touches the Coulomb diamonds with N and
N + 1.
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Control question 3.2. Give the region in the V –q plane corresponding to the electron
one-by-one transfer from right to left.

3.2.3 Coulomb shards

The (almost) regular pattern of SET-like Coulomb diamonds with equally spaced degen-
eracy points has been observed in a variety of nanostructures and is considered to be a
fingerprint of Coulomb blockade physics. The point we discuss is that this pattern is charac-
teristic to a SET only, and is by no means typical for more complicated Coulomb blockade
systems.

More typical situations are presented in Fig. 3.9 for two- and four-island arrays. There
are three immediately noticeable features in these diagrams. First, the pattern is no longer
regular. The current threshold as a function of the charge induced by the gates zigzags
wildly in a seemingly chaotic fashion. There are no nicely shaped diamonds; in fact, the
regions look more like shards. This situation is sometimes called a stochastic Coulomb
blockade. Secondly, there are obvious signatures of order in this chaos: the boundaries of
the diamonds are straight lines, and there are many series of lines with the same slope.
Finally, although the current threshold changes over a wide interval of voltages, it never
hits the V = 0 axis. In distinction from the SET, the Coulomb blockade is never lifted at
an arbitrary small voltage.

Let us discuss these features. The first feature, “chaoticity,” turns out to be a mat-
ter of perception. The (1+ 1)-dimensional diagram in fact presents a cross-section of a
structure which is regular and periodic in (1+ n)-dimensional space, n being the num-
ber of islands in the system. This follows from a fact mentioned in the preceding text:
the electrostatic energy stays the same if Ni → Mi and qi → qi − eMi for any integer
Mi . The same applies to the energy differences for single-electron transfers, and there-
fore to the transport properties of the system, which have to be periodic in n-dimensional
space of qi . To give an example, for a two-island system each charge state is blocked
within a three-dimensional body in (V , q1, q2) space. Due to periodicity, all bodies are of
the same shape and size forming a regular structure. Figure 3.4 presents the cross-section
of the structure in the V = 0 plane and is evidently regular and periodic. To construct
a (1+ 1)-dimensional plot, we choose a line in (q1, q2) space: we change the gate volt-
age(s) in such a way that q2 = const.+ αq1 along this line. This usually corresponds to
a realistic experimental situation where the voltage of a single gate is swept, but this
gate voltage induces the charges in many islands. If α is a rational number, the result-
ing plot is periodic, with a period given by the denominator of α. For irrational α, the
period tends to infinity, and the resulting plot is completely irregular. Even rational num-
bers with moderately large denominators give rise to visibly chaotic patterns. To stress this,
Fig. 3.9(a) has been constructed for the rational value α = 3/5. The whole picture is peri-
odic in q1 with a period 5e. Since only one period has been shown, this regularity cannot
be seen.
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�Fig. 3.9. Coulomb shards in more complicated Coulomb nanostructures. The figures present the parameter
regions (white) where a certain charge state is blocked for (a) two- and (b) four-island arrays
biased as shown. There is some single-electron current in the gray-shaded regions. For a
four-junction array, N4 = 0 for all blocked states in the parameter region shown.

This hidden order also explains the second feature: there is some visible order in the
slopes of the boundary lines. To see the explicit origin of this, we recognize that the bound-
aries of each shard are, in principle, set by 2m conditions, m being the total number of
junctions. Each junction connects two metal pieces i and j , i , j labeling both islands and
electrodes. For each junction, two single-electron transfers must be blocked: from i to j
and from j to i . Thus, each junction gives rise to two conditions as follows:

�E from i to j > 0; �E from j to i > 0. (3.16)

Let us find the explicit form of these conditions for an arbitrary capacitance circuit. We
first consider the case when both i and j are islands. The energy differences in this case
are the differences of electrostatic energies given by Eq. (3.6):
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�E from i to j = Eth + e(Vj − Vi );

�E from i to j = Eth + e(Vi − Vj );
(3.17)

where Eth = EC
i i + EC

j j − 2EC
i j . The voltages of the islands are given by

eVk =
∑

p

EC
kp(Np − qp/e) (3.18)

(compare with Eq. (3.8)), and induced charges are contributed to by the gate and transport
electrodes. If one of the metal pieces, for example j , is the transport electrode, the energy
differences are given by Eqs. (3.17), where Vj is the voltage of the electrode and Eth = EC

i i .
We learn that the energy differences are linear functions of the gate and transport voltages.
In addition, the coefficients in these linear relations depend on a junction only, and do not
depend on the charge state. The slope of a shard boundary line is therefore a characteristic
of the junction, and does not depend on the charge state bounded. The doubled number of
junctions therefore gives the maximum possible number of shard sides: six for the two-
island array. We see in Fig. 3.9 the shards with a fewer number of sides; some are even
triangles.

For the two-island array in Fig. 3.9(a), the Coulomb shards do not overlap and share
parts of their boundaries. This is because the states blocked in adjacent shards can be trans-
formed to each other by means of a single-electron transfer, eventually via the junction that
provides the shared boundary. Figure 3.9(b) illustrates that this is not true in general: the
shards can overlap. In the overlap region, at least two different charge states are blocked,
both being stable with respect to single-electron transfers. Such bistability is a remarkable
property of Coulomb blockade systems, and can be used in principle for memory cells (see
the discussion in Section 3.3). Thermally activated and multi-electron tunneling processes
provide random switching between the blocked states.

To understand the third feature, let us concentrate on vanishing bias voltages. In this
case, we can talk about energies of the charge states. We see that by varying induced
charges we can always reach a degeneracy point where the energies of two charge states
are the same. This corresponds to two shards sharing a part of the boundary. For a SET,
this is sufficient to organize a transport cycle, since the degeneracy point happens to
be at the boundaries corresponding to both the left and right junctions. Generally, this
is not the case, and only one junction is involved, instead of, for example, the three
needed to transfer an electron via a two-island array. For two degenerate states, the trans-
port cycle at a vanishingly small voltage may only work if both transport electrodes are
connected to the same island. In addition, the degenerate states should differ only by a
single extra electron precisely in this island. The only other way to achieve a finite cur-
rent at vanishing voltage is to have multiple degeneracy: three or more states at the same
energy. A concrete example is the two-island system. We return to Fig. 3.4 and recog-
nize that three-fold degeneracy should occur in the vertices of the hexagons where three
of them come together. Indeed, at this point the current threshold goes to zero. A possi-
ble transport cycle is the successive electron transfer through all three junctions: (0, 0)→
(1, 0)→ (0, 1)→ (0, 0).
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Control question 3.3. For an array of three identical islands, can one achieve four
charge states at the same energy by varying the voltage V and three background charges
on the islands independently?

3.2.4 The master equation

The electron transport in the Coulomb blockade regime allows for very accurate quantita-
tive evaluation based on a master equation. We note that whereas many parameters may
characterize the electrons in a Coulomb nanostructure, only a few are relevant, these being
the numbers of extra charges in the islands {Ni }. We can thus assume that the system at a
given moment in time is in a certain charge state N . We stress that this charge state is not a
quantum state, since the quantum coherence between the different states is absent, and the
system can never be in a superposition of two charge states (see Section 5.5.1). The charge
state can be regarded as a classical one, and this allows a simple classical approach.

The system goes from one state to another by means of electron transfers. These pro-
cesses are random; if the condition �E < 0 for a certain transfer is fulfilled, it does not
occur instantly. A certain transfer is characterized by a rate �({Ni }), the probability per
unit time for this transfer to happen given the initial charge state {Ni }, so that it takes some
random time, of the order of 1/�, for this process to occur. This is why the dynamics of
Coulomb blockade systems is random, and the approach to the dynamics has to be proba-
bilistic. The system shall be described with probabilities p{Ni }(t) to be in the states {Ni }.
The master equation is a straightforward balance equation for this probability distribution.

Let us write this equation for a SET first and then zoom in on various terms. A SET
state is characterized by a single integer number of extra electrons N in the island, and the
master equation for the probability distribution p(N ) reads as follows:

d

dt
pN (t) =− (�F(N )+ �T(N ))pN (t)

+ �F(N − 1)pN−1(t)+ �T(N + 1)pN+1(t). (3.19)

Here, �F,T are the total rates of going from/to the island:

�F = �FL + �FR; �T = �TL + �TR.

There is a time derivative on the left-hand side, and it presents the probability change per
unit time. This change is contributed to by two groups of terms: outgoing and incoming.
Outgoing terms are due to processes that transfer the system from state N to any other
states. For our SET, these states can be either N − 1 or N + 1, the corresponding rates
adding accordingly. The contribution to the derivative is negative and proportional to the
probability of being in the initial state pN ; the system must be in this state for the process
to occur.

Incoming terms are due to processes that transfer the system from any initial state to the
state N . Their contribution to the derivative is positive and proportional to the probabilities
of being in the initial states and the corresponding transition rates. Since we are dealing
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with single-electron transfers, the possible initial states are N + 1 and N − 1, with the
corresponding rates given by �F(N + 1) and �T(N − 1).

If the parameters of the system (gate and bias voltages, capacitances) do not vary in time,
the rates defined by these parameters do not vary either. Under these circumstances there
is a stationary solution of the master equation, p(0)

N . This can be readily obtained from the
master equation with the left-hand side-set to zero (dp/dt = 0) and the condition that the
probability of being in all possible states must total unity,

∑
N pN = 1.

It is a separate problem to get a stationary current from p(0)
N . Again we use the probability

balance. For instance, the current through the left junction is contributed by “from the left”
processes with positive sign and by “to the left” processes with negative sign, so that

IL = e
∑

N

[�FL(N )− �TL(N )]pN . (3.20)

Similarly, for the current through the right junction, we obtain

IR = e
∑

N

[�TR(N )− �FR(N )]pN .

By virtue of charge conservation, IL = IR. This is automatically fulfilled if pN is the
stationary solution of the master equation.

Exercise 3.3. Prove that, in the stationary case, IL = IR.

How does this apply to a general Coulomb nanostructure? The charge states are many,
so to simplify the notation we label them with Greek letters α,β. In principle, there can be
transition rates from any α to any β, �α→β . Making balance of the probabilities, we obtain
the general form of the master equation as follows:

dpα
dt
= −

∑
β

�α→β pα +
∑
β

�β→α pβ ≡
∑
β

�̃αβ pβ . (3.21)

As in the SET master equation, Eq. (3.19), the first group on the right-hand side is formed
by outgoing processes, while the second group are incoming ones. The equation can be
viewed as a linear algebra problem with a matrix �̃ and is solved with linear algebra meth-
ods. The stationary solution p(0) of the master equation is, in these terms, the eigenvector
of the matrix �̃ that corresponds to the zero eigenvalue, i.e.

0 =
∑
β

�̃αβ p(0)
β . (3.22)

We note that each rate �α→β enters the matrix twice: it contributes to the diagonal term
�̃αα with the minus sign and to the off-diagonal term �̃βα with the positive sign. This
guarantees that �̃ has a zero eigenvalue.

This form is, of course, too general as we are dealing with single-electron transfers.
The transition between α and β can only happen if these states can be transformed one to
another by such transfers. Each transfer is associated with a junction. Each junction c that
connects islands i and j gives rise to two rates: an electron can be transferred in either the
forward (from i to j) or the backward direction. These rates, �(c)

f (α) and �(c)
b (α), depend
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on the initial state α. The final state β is completely determined by the direction of the
transfer: N (β)

i = N (α)
i ∓ 1; N (β)

j = N (α)
j ± 1; N (β)

k = N (α)
k , if k �= i , j . The same is true

for a junction that connects island i and transport electrode j , the only difference being
that the electron transferred to/from the electrode does not change the charge state, N (β)

i =
N (α)

i ∓ 1. Here the upper (lower) sign is for the forward (backward) rate. If we know p(0)
α ,

we can compute the current via each junction c using a relation similar to Eq. (3.20):

I (c) =
∑
α

(
�

(c)
f (α)− �(c)

b (α)
)

p(0)
α . (3.23)

3.2.5 FCS of charge transfers and master equation

We stress that the above equations only apply to the averaged current, not to the instant one.
It is clear that the charge is transferred in random single-electron shots. The typical estima-
tion of the current noise is the Schottky value, S(0) = 2eI , corresponding to uncorrelated,
Poisson statistics of electron transfers, as discussed in Section 1.4. However, the coefficient
is not quite the same. The electron transfers in the Coulomb blockade regime correlate.
Take, for instance, the one-by-one regime we found in a SET. The transfer through the left
junction can only occur after the transfer through the right one, and vice versa. This makes
it relevant to investigate the statistics of electron transfers in the Coulomb blockade regime
as we did in Section 1.4 for electron transfers in the framework of the scattering approach.

The full counting statistics can be obtained with a minor modification of the master
equation approach. Suppose we wish to study the statistics of the current through junc-
tion c. As discussed in Section 1.4, the statistics are defined by the generating function of
the charges transferred, �(χ ). To obtain this function, we modify the tunneling rates. As
mentioned, each transfer rate via this junction enters �̃ twice, contributing to diagonal and
non-diagonal elements of the matrix �̃. In non-diagonal elements, we modify these rates
as follows:

�
(c)
f (α)→ eiχ�

(c)
f (α); �(c)

b (α)→ e−iχ�
(c)
b (α). (3.24)

We do not modify these rates in the diagonal elements. Thus the modified matrix �̃(χ ) has
the following set of eigenvalues:

λ(k) p(k)
α = �̃(χ )αβ p(k)

β . (3.25)

We focus on the eigenvalue λ(0)(χ ) with the real part closest to zero. Since at χ → 0 the
modification of �̃ vanishes, by virtue of Eq. (3.22) λ(0)(χ )→ 0 at χ → 0.

It can be proven that

�(χ , τ ) = exp
(
−λ(0)(χ )τ

)
; (3.26)

this enables one to compute statistics with the master equation approach. Taking the deriva-
tive of � at χ → 0 reproduces Eq. (3.23) for average current. This method can be readily
generalized for many junctions. In this case, counting fields are introduced for each junc-
tion, and the rates of transfer via a certain junction are modified with the corresponding
counting field. A certain elegance of the method is that one does not have to compute the
eigenvectors of �̃ – one eigenvalue suffices.
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�Fig. 3.10. Tunneling rates. (a) Without Coulomb blockade, an electron preserves its energy when tunneling.
(b) With Coulomb blockade, it has to pay charging energy �Eel, this reduces the energy strip
available for tunneling by a corresponding amount. (c) Energy dependence of the rate at finite
temperature.

3.2.6 Tunneling rates

To use the master equation for the quantitative description of single-electron transport, we
must know the rates �({Ni }) as functions of the gate and bias voltages. The good news is
that the rates depend on macroscopic parameters only – resistances and charging energies –
that is, capacitances in the circuit.

To see this, we start from a tunnel junction between two reservoirs and forget about
Coulomb blockade for a moment. If a voltage difference much bigger than kBT is applied
to the reservoirs, the electrons in the energy strip of width eV can go from the left to
the right (Fig. 3.10). The rate determines the number of electron transfers per second,
and is related to the current by � = I/e. Since the electron transfers at different energies
are independent, both the rate and the current are proportional to the width of the energy
strip available for transfers, that is, to the voltage applied. By definition of conductance,
I = GV . Therefore, � = eV G/e2, and this is the forward rate. A rate is never negative,
so for the forward rate we have �f = eV�(eV )G/e2, whereas the rate of transfers in the
backward direction is given by �b = −eV�(−eV )G/e2.

Without a Coulomb blockade, the energy of the tunneling electron is the same on the left
and on the right. What happens if a Coulomb blockade is present? Suppose the right-hand
electrode is the island of a SET. In this case, the tunneling electron must perform some
extra work �Eel to charge the capacitors of the SET. Therefore if it starts with energy
E on the left, its energy on the right is E −�Eel. For this tunneling to occur, the state
at this energy has to be empty. For positive (negative) �Eel this reduces (increases) the
width of energy strip available for tunneling by a corresponding amount. Therefore, � =
(eV −�Eel)�(eV −�Eel)G/e2. We can merge eV and �Eel if we recall the definition
of energy difference �E discussed above. We thus come to a straightforward formula,
valid at zero temperature:

� = G

e2
(−�E)�(−�E).

We already know that � = 0 if�E > 0. Now we learn that the rate increases linearly with
decreasing negative �E .
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There is some implicit assumption hidden in the above straightforward reasoning.
Namely, the charges in all the capacitors of the SET are supposed to adjust instantly to
the new value of the extra charges in the island. They must at least do it faster than the time
it takes an electron to accomplish the tunneling from left to right. The recharge time, a
typical RC-time of this process, is indeed zero if the resistances of the island material and
the lead are precisely zero. In reality these are small but finite, so the RC-time is also finite.
If the electron tunnels faster than this time, the charges do not adjust. The electron would
have to pay more energy than �E . It turns out that the proper estimation of tunneling time
is given by the uncertainty relation, �/�E . In this case, the recharge time is bigger than
the tunneling time provided the resistance of the lead/island is much smaller than 1/GQ.
We discuss this in detail in Section 6.5.

To calculate the rate at finite temperature, we note that the tunneling probability comes
with the blocking factor f (E)(1− f (E ′), E , E ′ being energies before and after tunneling
(see Eq. (1.54)). This reflects the probability of the state being filled at E and empty at E ′.
The rate at finite temperature is contributed to by all energies:

� = G

e2

∫
dE f (E)(1− f (E −�E)) = G

e2

�E

exp (�E/kBT )− 1
(3.27)

The rate (see Fig. 3.10) is enhanced in comparison with its zero-temperature value. Most
importantly, there is a finite rate at positive energy differences: the energy required is
gained from thermal fluctuations. Quite generally, the rates satisfy the so-called detailed
balance condition, given by

�(�E)/�(−�E) = exp(�E/kBT ) . (3.28)

This guarantees that, in the absence of bias voltages, the probability distribution assumes
the Boltzmann form required by the laws of thermodynamics:

p({Ni }) ∝ exp

{
− Eel({Ni })

kBT

}
. (3.29)

The master equation with these rates provides the quantitative description of single-
electron transport.

3.2.7 Tunneling Hamiltonian

We managed to obtain the tunneling rates without any calculation, just by pure reasoning.
A “scientific” disguise of this reasoning is known as the tunneling Hamiltonian method.
This method is convenient when analyzing more complicated tunneling processes.

Let us label all the electron states in the left (right) reservoir by l (r ). In the first approx-
imation, no tunneling occurs, so that these states are completely independent. The idea of
the tunneling Hamiltonian method is to regard tunneling as a perturbation described by the
term

Ĥint =
∑
l,r

Tlr âl â
†
r + h.c. (3.30)
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Each term annihilates an electron on the left (right) side and creates an electron on the right
(left) side, thereby transferring it from the left to the right (from the right to the left).2

The general rules of quantum mechanics imply that the rate between the initial state i
and the final state f should be calculated from the Fermi Golden Rule:

�i f = 2π

�

∣∣∣〈i ∣∣∣Ĥint

∣∣∣ f
〉∣∣∣2 δ(E f − Ei ). (3.31)

The total rate from the left to the right is a sum over all possible one-electron states l, r ,
and is given by

� = 2π

�

∑
l,r

|Tlr |2 f (El )(1− f (Er ))δ(Er − El +�E).

It would be a good practical result if we knew Tlr . One could develop a microscopic
model to derive them for a concrete nanostructure, but such a model, if even possible,
would be necessarily restricted to a specific setup. Luckily, one does not have to know the
concrete values of Tlr : there is a trick we can use to get around this. Let us introduce extra
integration variables EL,R such that we can make the following replacement:∑

l,r

→
∫

dER dEL

∑
l,r

δ(ER − Er )δ(EL − El ).

Comparing this with the single-electron rate derived in Eq. (3.27) we find that∑
l,r

|Trl |2δ(Er − ER)δ(El − EL) = G

2π2GQ
. (3.32)

This relates this particular combination of Trl to the junction conductance and enables the
practical use of the tunneling Hamiltonian method. If the result of a calculation can be
expressed in terms of this combination, one just puts the junction conductance in place.
The shorter version of the same trick is to express the combination in terms of the rate,
rather than the conductance:∑

l,r

|Tlr |2 f (El )(1− f (Er ))δ(Er − El +�E) = �

2π
�(�E), (3.33)

the rate being given by Eq. (3.27). We will use yet another trick, which is useful if the level
spacing in the islands is not negligible, δS �= 0. Let us evaluate the tunneling rate from a
given state l to all possible states r . The Golden Rule readily yields

�given = 2π

�

∑
r

|Trl |2δ(El − Er ). (3.34)

We will see in Chapter 5 that this rate, in principle, strongly fluctuates from state to state.
However, if there are many states involved in electron transfer, the fluctuations are aver-
aged away. To relate this averaged rate to junction conductance, we note that if the energy
difference �E is available for transport, �EδS discrete states are involved. Therefore〈

�given
〉 = (G/e2)δS (3.35)

2 The numbers Tlr of the Tunneling Hamiltonian method are not transmission amplitudes introduced in Chapter
1, although they may seem to perform the same function. Even their dimensions do not match.
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and ∑
r

〈
|Tlr |2

〉
δ(E − Er ) = G

2π2GQ
δS. (3.36)

3.3 Single-electron transport and manipulation

In this section, we aim for concrete manifestations of the Coulomb blockade phenomena
in transport. We analyze in detail the I –V curves of the SET transistor and address noise
in the device. The orderly and quantized nature of single-electron transport opens up the
possibility of controlling single-electron transfers and manipulating charge states. We look
into classic examples of this manipulation: memory cell, turnstile, and pump.

3.3.1 Experiment

Let us describe a pioneering experiment in single-electron transport: the first SET ever
fabricated [63]. The device was made by two-step deposition of aluminum layers (≈14 nm
thick) on a silicon substrate. The island is fabricated in the first step. The subsequent oxi-
dation covers the island with a native oxide barrier. During the second step, long strips
of approximately 100 nm width – the electrodes – are deposited, contacting the island
where they overlap it. Since the island is protected by oxide, the resulting junctions
are of a tunnel nature. The technological challenge was to make these tunnel junctions
of sufficiently small area. Indeed, to observe Coulomb blockade, the charging energy
(� 0.4 meV) should exceed at least several times the thermal energy (kBT � 0.1 meV).
For aluminum oxide junctions, Ae/C ≈ 100 mV nm2, A being the junction area, so that
the total area of the junctions connected to the island should not exceed 200 nm2. This
requires alignment with nanometer precision. This problem has been solved using a special
technique put forward by the authors: they made a deposition mask using e-beam lithog-
raphy and evaporated aluminum twice through the same mask at two different angles,
thereby achieving precise alignment of the electrodes and the island. This method pro-
duces dummy copies of the electrodes in the first step and the island in the second step.
These copies are in almost perfect electric contact with the originals since the tunnel
junctions separating them are of very large area. Thus, one can just forget that there are
copies. This technique is still commonly used to fabricate metallic Coulomb blockade
systems.

The experimental results are presented in Fig. 3.11. At voltages above 0.5 mV, the I –V
curves are almost linear, with differential conductance about 0.5GQ. At voltages below
0.5 mV, the current is suppressed, which is a combined effect of Coulomb blockade and
superconducting energy gap (aluminum is superconducting at this temperature). The sup-
pression is big but not absolute, since the temperature is still of the order of EC and the
conductance is of the order of GQ. However, the most important feature observed is not the
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�Fig. 3.11. Single-electron transistor (adapted from Ref. [63]). (a) Top view of three transport electrodes
overlapping a Coulomb island. Length of the island is about 1 μm; the shaded areas of overlap are
tunnel junctions. One of the electrodes is not used. (b) Periodic dependence on gate voltage. The
I–V curves of the device are shown at equally spaced gate voltages covering 5/6 of the cycle.
Curves are offset by increments of 7.5 nA. Inset: voltage response on the gate voltage at two
fixed currents through the SET (10.5 and 26 nA).

blockade itself – rather, it is a pronounced periodic dependence of I –V curves on gate volt-
age VM applied to the reverse side of the substrate. The period corresponds to the change
in induced charge q by e. This experiment has provided the first direct evidence of charge
quantization in artificially made nanostructures. Even the first SET fabricated was an aston-
ishingly good electrometer, being sensitive to a fraction of elementary charge induced to
its island.

3.3.2 SET in two states

To begin our detailed study of transport properties of SETs, we consider first an analytically
tractable regime where the SET is, with overwhelming probability, in one of the two states
that differ by one extra electron. To be specific, we concentrate on the states N = 0 and
N = 1. From the analysis of Section 3.2 we see that this approximation is relevant in a
parameter region composed of two Coulomb diamonds “0” and “1” and two adjacent one-
by-one diamonds (see Fig. 3.8). In the master equation, Eq. (3.19), we thus may set pN = 0
for N �= 0, 1 to obtain

dp0

dt
= −�T(0)p0 + �F(1)p1;

dp1

dt
= −�F(1)p1 + �T(0)p0, (3.37)

so that for the stationary probability and current we readily obtain

p(0)
0 =

�T(0)

�T(0)+ �F(1)
; p(0)

1 =
�F(1)

�T(0)+ �F(1)
; (3.38)

I/e = �TL(0)p(0)
0 − �FL(1)p(0)

1

= �TL(0)�FR(1)− �FL(1)�TR(0)

�T(0)+ �F(1)
. (3.39)
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�Fig. 3.12. Current in a SET within a one-by-one diamond at eV � kBT. The symmetric curve is for equal
conductances of the junctions, GR = GL. Increasingly asymmetric curves correspond to
GL/GR = 2, 5, 20, 1000.

To quantify the rates, we recall the energy differences given by Eq. (3.14):

�ETL(0) = −�EFL(1) = w − eV/2; (3.40)

�ETR(0) = −�EFR(1) = w + eV/2; (3.41)

w ≡ 2EC(1/2− q/e)− e(VR + VL)/2. (3.42)

Here we conveniently introduce an energy difference w that allows us to treat a non-
symmetric SET with compact notation. For a symmetric asymmetrically biased SET, w
does not depend on bias voltage, and, in any case, dw/d(eVg) = Cg/C . The four-diamond
region where we work is bounded by conditions |w| + |eV/2| < EC. Let us assume
kBT → 0, eV > 0, so that we are in the upper one-by-one diamond where |w| > eV/2.
The only non-vanishing rates are �TL(0) = GL(eV/2− w)/e2 and �FR(1) = GR(eV/2+
w)/e2, and the current is given by

I = G∞V

2

1− (2w/eV )2

1− (2w/eV )(GL − GR)/(GL + GR)
, (3.43)

where G∞ ≡ GRGL/(GL + GR) is the high-voltage differential conductance of the SET
given by Ohm’s law. The current thus vanishes at the boundaries separating the one-by-
one diamond from adjacent Coulomb diamonds and depends linearly on V and w near the
boundaries (see Fig. 3.12).

An interesting regime occurs near the degeneracy point w = 0, V = 0. Even if kBT �
EC, the thermal activation of the rates becomes important at sufficiently small w, eV �
kBT . All four rates are in play, and this disrupts the strict sequence of electron transfers
typical in the one-by-one regime. At vanishing bias voltage the current disappears while
the conductance remains finite. The conductance peaks sharply at w = 0, the width of the
peak being determined by kBT . The shape of the peak is given by
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G

G∞
= w/kBT

2 sinh(w/kBT )
, (3.44)

with a maximum conductance of G∞/2.

Exercise 3.4. Prove Eq. (3.44) for the peak shape. For this: (i) find the rates at finite
temperature from Eq. (3.27); (ii) substitute those into Eq. (3.39) for the current; (iii)
expand the result in small bias voltage.

3.3.3 Coulomb oscillations and the Coulomb staircase

Because of the e-periodicity, the zero-bias conductance peaks described above arise any
time the charge states N and N + 1 are degenerate. A periodic pattern of equidistant
peaks is thus observed, with a period corresponding to�q = e, so that�Vg = e/Cg. With
increasing temperature, the peaks first become wider and then merge at kBT ≈ 0.15EC

(Fig. 3.13). However, the periodic modulation – the Coulomb oscillations – remains vis-
ible up to kBT � 0.7EC. Coulomb oscillations serve as an experimental signature of the
Coulomb blockade effects in various SET-like nanostructures. We note another feature vis-
ible in Fig. 3.13. At higher temperatures, the conductance, although not sensitive to the
gate voltages, remains sensitive to temperature, saturating to G∞ up to kBT ≈ 4EC. Thus,
the SET in this temperature range can be used as a very precise thermometer.

Control question 3.4. A periodic modulation of conductance by gate voltage in the
range of 20–35�−1 is observed during an experiment, and is interpreted as Coulomb
oscillations. Would you support this interpretation?

0

1

–2 –1 0 1 2

q/e

G
(0

)/
G

∞

�Fig. 3.13. Zero-voltage conductance of a symmetric SET versus the charge induced at different temperatures;
kBT/EC = 0.01 for the thick curve and ranges from 0.1 to 2.0 with step 0.1 for subsequent curves.
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�Fig. 3.14. Coulomb staircase for GL = GR at vanishing temperature. (a) There is a cusp in the current at
special voltages shown by dotted lines (see Eq. (3.45)). The white region is the Coulomb blockade
diamond. (b) The current and differential conductance versus V at q = 0.3e (dashed line in (a)).
The cusps in the current are almost invisible in the I–V curve (solid), although they are still
noticeable in the differential conductance (dashed curve); kBT = 0.01EC.

Another signature of Coulomb blockade phenomena is observed when one increases
the bias voltage at fixed gate voltage. The number of charge states available for the SET
increases with increasing voltage. At kBT � eV this results in a singularity of I –V char-
acteristics at special values of bias voltage – this pattern is called a Coulomb staircase. At
these values, a new single-electron transfer becomes possible, setting the system to a newly
available charge state. The condition for this is that one of the energy differences involved
equals zero:

�ETL,TR,FL,FR(N ) = 0.

For a symmetric SET, these conditions give rise to two series of special voltages:

eVspecial = 4EC

(
M + 1

2
± q

e

)
, (3.45)

where M is integer and ± corresponds to a new transfer through the right (left) junction.
To understand this qualitatively, let us choose q = 0.3 (Fig. 3.14(a)). At zero voltage, the
blockade takes place and the only charge state available is N = 0. At eV > 0.8EC the
electron transfer through the left junction becomes possible and electrons go one-by-one
from the left to the right. The available states are N = (0, 1). At higher voltage eV =
3.2EC, it becomes possible to tunnel via the right junction while in state “0” going to
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�Fig. 3.15. Coulomb staircases with GL = 100GR and GL = 0.01GR (q = 0.3) at vanishing temperature for a
symmetric asymmetrically biased SET. The cusp in the current is followed by the step-like
increase. Only one series of special voltages is visible for each curve. Dotted line: Ohm’s law.

state “−1,” so that N = (−1, 0, 1). The next two special voltages, eV = 4.8EC and eV =
7.2EC, extend this set of states to N = (−1, 0, 1, 2) and N = (−2,−1, 0, 1, 2), respectively.

In principle, there is a cusp in the current – a jump in the differential conductance – at
any special voltage for any SET. However, if the conductances of two tunnel junctions are
comparable, most cusps remain as a theoretical possibility only. The corresponding con-
ductance jumps are numerically small, and a small but finite temperature quickly washes
them away (Fig. 3.14).

The Coulomb staircase reveals its full beauty if the junction conductances differ by
more than an order of magnitude. This is illustrated by Fig. 3.15: the cusps are pronounced
and develop into characteristic smooth steps separated by 4EC/e. Only one cusp series is
visible, corresponding to new transfers via the most conducting junction.

To understand why this happens, we note that in the first approximation we can disre-
gard the tunneling through the least-conducting junction (for concreteness, the right-hand
one). In this case, the charge state is set by transfers through the most-conducting junction.
Therefore,

Nc =
[

1

2
+ q

e
+ eV

4EC

]
.

As for the current, it is contributed to by transfers through the least-conducting junction.
Since the SET is almost always in state Nc, the current is just given by the rate �TR(Nc),

I = GR (V/2+ 2(EC/e)(Nc − 1/2− q/e)) .

The number of electrons Nc increases by one at special voltages eVc = 4EC(1/2+ Nc −
q/e); therefore the current jumps by 2GR EC/e at these values of voltage.
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Exercise 3.5. Find the I –V characteristics of a SET with GR � GL in the vicinity
of a special voltage Vc. (i) Show that the SET in this region can only be in two charge
states, Nc and Nc + 1. (ii) Determine two possible rates. (iii) Finally, make use of Eq.
(3.39).

At greater voltages, above EC/e, the current tends to Ohm’s law, I = G∞V , since the
large voltage drops involved mask any manifestation of single-charging phenomena. It
is interesting to note that the best fit is provided by an offset Ohm’s law I = G∞(V −
2EC/e signV ). This is used for estimating the charging energy.

3.3.4 FCS and noise in SETs

To characterize the FCS in a SET, we use the method outlined in Section 3.2 and summa-
rized by Eqs. (3.25) and (3.26). For simplicity, we consider only the situation described
at the beginning of this section: the SET can only be in two possible charge states. The
FCS in this case are readily given by an eigenvalue of a 2× 2 matrix (see Eqs. (3.25) and
(3.37)):

λ

(
p0

p1

)
=

[ −�T(0) �̃F(1)
�̃T(0) −�F(1)

](
p0

p1

)
, (3.46)

where �̃ are the rates modified according to (3.24),

�̃F(1) = �FL(1)eiχ + �FR(1),

�̃T(0) = �TL(0)e−iχ + �TR(0).

We pick out an eigenvalue that vanishes at χ → 0, given by

λ(χ ) = �T(0)+ �F(1)

2

(
−1+

√
1+ A+(eiχ − 1)+ A−(e−iχ − 1)

)
; (3.47)

A− ≡ 4�FL(1)�TR(0)

(�T(0)+ �F(1))2
; A+ ≡ 4�FR(1)�TL(0)

(�T(0)+ �F(1))2
.

Expanding λ(χ ) in series at χ → 0, we obtain the cumulants of the FCS: the current, noise,
and the third cumulant. We give these only in the shot noise limit eV � kBT , where only
two rates, �TL(0) and �FR(1), are in play so that all electrons go from the left to the right.
We introduce a convenient parameter that measures the relative magnitude of these rates,
b ≡ 1/(

√
�FR(1)/�TL(0)+√�TL(0)/�FR(1)). If one of the rates is much bigger than the

other one, b→ 0. If the rates are equal, b achieves its maximum, b = 1/2. Using this
notation,

I = e

(
�TL(0)�FR(1)

�TL(0)+ �FR(1)

)
= eb(�TL(0)+ �FR(1)); (3.48)

S = 2eI
(

1− 2b2
)

; (3.49)

〈〈Q3〉〉 = e2�t I

(
1

6
− b2 + 2b4

)
. (3.50)
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�Fig. 3.16. The first three cumulants of the charge transferred for conditions corresponding to the symmetric
curve in Fig. 3.12. The noise and the third cumulant are normalized to the current. They approach
their Poissonian values at the boundaries and beyond the one-by-one diamond.

These relations are illustrated in Fig. 3.16 for a SET that corresponds to the symmetric
curve in Fig. 3.12. Near the boundaries of the diamond one of the rates vanishes. At
the boundaries, both the noise and the third cumulant approach their Poissonian values,
indicating uncorrelated electron transfers. They are suppressed by factors 1/2 and 1/4,
respectively, in the middle of the diamond, where the rates are equal.

This helps us to understand which correlations are actually reflected in the FCS of a SET.
Two successive transfers through the left and right junctions are obviously correlated since
one enables the other. This correlation, however, is not detected in the FCS: the statistics
are only sensitive to completed transfers when an electron jumps through both junctions.
What is detected is that two successive completed transfers cannot occur if they are as
close in time as if they were uncorrelated. Indeed, it takes some time to complete a transfer
so there must be some “dead time” separating the successive transfers. If both rates are
comparable, the “dead time” is of the order of the average time between the transfers, and
the rates exhibit strong correlations in time. If the rates are of very different magnitude, the
average time is determined by the slowest rate, while the “dead time” is determined by
the fastest one. In this case, the “dead time” is only a small fraction of the average time
between two transfers, and those almost do not correlate.

The “dead time” FCS given by Eq. (3.47) seems to be different from those given by
the Levitov formula, where correlations arise from the regularity of the stream of incident
electrons. It may be tempting to explain the difference in terms of the opposition between
the coherent transport of non-interacting electrons and the incoherent correlated tunneling
in the Coulomb blockade regime. However, we will encounter similar statistics at least
twice in this book: in the context of one-channel resonant tunneling and the multi-channel
double junction, and the transport is coherent in both cases.

A peculiar fact is that if the two rates are the same, so that the correlations are at
maximum, the FCS expression reduces to

λ(χ ) = �(eiχ/2 − 1). (3.51)
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Comparing this with Eq. (1.52), we understand that this denotes the statistics of uncor-
related transfers of electron halves. One should not seek for physical implications here:
obviously, a SET does not chop electrons into two pieces. Albeit, the above expression has
a certain mnemonic value.

Exercise 3.6. Close to the degeneracy point, one always works in the Nyquist limit
kBT � eV . What does Eq. (3.47) yield for I , S, and 〈〈Q3〉〉 in this case?

3.3.5 Memory cell

The energetics of the Coulomb blockade make it possible to enable and disable certain
single-electron transfers at will just by applying voltages to the gate and/or transport elec-
trodes. This allows the construction of electronic devices based on physical principles that
are very different from those used in up-to-date commercial electronics. We review below
the simplest versions of such devices.

We start with a memory cell. It consists of two islands connected in series to a single
transport electrode (Fig. 3.17(a)). One can regard this circuit as either a single-electron
box with a tunnel junction replaced by a SET or a two-junction array cut from one of the
electrodes.
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(1, 0) (1, 0)

(0, 1)

write ì0 ”
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write “1”

write “1”
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�Fig. 3.17. Single-electron memory cell. (a) The information is encoded by the number of electrons in the
second island (N2 = 0, 1) and can be read with a SET capacitively connected (dashed lines) to this
island. (b) Stability diagram and manipulation of the cell. (c) Energies of the three states versus
q2. The dashed line indicates that a state is unstable with respect to a single-electron transfer.
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The information is encoded by the number of excess electrons in island 1: it can be either
in charge state “0” or “1.” To read the information, one can use a separate SET with a weak
capacitive coupling to island 1, as shown in Fig. 3.17(a). The current through the SET will
be sensitive to N1. One operates the cell by changing q2. For sufficiently large (small) q2,
the only stable state of the cell is “1” (“0”). There is an interval of q2 where both states are
stable. The information is kept if q2 is within this interval. To write “1,” we shift q2 to the
left, wait for the possible single-electron transfers to occur, and shift it back to the interval.
To write “0,” we do the same, shifting q2 to the right.

To understand the energetics that enables such operations, we refer to the stability dia-
gram of the two-island system (Fig. 3.4). We plot this again in Fig. 3.17(b), focusing on a
small area where the states (0, 0), (0, 1), and (1, 0) come together. Since in the memory cell
setup island 2 is not connected to any transport electrode, the line separating the domains
(0, 0) and (0, 1) no longer corresponds to any single-electron transfer. It simply indicates
where the energies of “0” and “1” are the same. Two remaining lines and their continua-
tions (dashed) indicate where the energy of either “0” or “1” match the energy of (0, 1),
and correspond to single-electron transfers through junction 2. The bistability interval of
q2 is bounded by dashed lines. Indeed, if we start with state “1” in the interval and shift
q2 to the left, crossing the left dashed line, we enable single-electron tunneling to the state
(1, 0). From this state, the electron tunnels out through junction 1 so that we are in state
“0.” The energies of the three states versus q2 and the single-electron transitions are shown
in Fig. 3.17(c).

3.3.6 Turnstile

Suppose we connect the working island of the cell with double junctions to two electrodes,
L and R. Next we assume that we are able to manipulate the conductances of the junctions
by switching them on and off. Consider the following cycle. We start with cell in “0” state.
We switch the left double junction on, the right double junction off, and write “1.” An
electron is taken from the left electrode. We reconnect the cell so that the right junction is
on and the left one is off. We write “0.” The extra electron goes to the right-hand electrode,
and we are back at the starting point of the cycle. We have achieved a controllable transfer
of precisely one electron between the left and right electrodes!

Such a transfer can be organized in a more elegant way. It turns out that we do not
have to manipulate the conductances: we can let the Coulomb blockade do this for us. The
corresponding device is called a turnstile [64]. The simplest turnstile is indeed a biased
three-island array: a memory cell connected to two electrodes (see Fig. 3.18).

The turnstile is operated by changing the charge induced in the central island. The region
of operation is where the Coulomb shards – stability regions – of states (0, 1, 0) and (0, 0, 0)
overlap. The (0, 1, 0) shard is bounded by a line that corresponds to the transition to (0, 0, 1)
through junction 3. The system does not stay long in (0, 0, 1) since it is not stable in the
operational region. The electron tunnels to the right, bringing the system to a stable state,
(0, 0, 0). Similarly, the (0, 0, 0) shard is bounded by a line of transitions to (1, 0, 0). This
state is not stable, turning to (0, 1, 0). The working cycle starts deep in the (0, 0, 0) shard.
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�Fig. 3.18. A single-electron turnstile is operated by the cycling gate voltage, U, of the central island. The
cycle crosses the region where both states (0, 0, 0) and (0, 1, 0) are stable. The tunneling “in” and
“out” occurs in two steps right after crossing the boundaries of bistability region. The gray area
depicts the region where uncontrolled tunneling through the turnstile would take place.

When we cross the boundary of this shard, an electron is transferred in two jumps from
the left electrode to the central island. We turn back. When we cross the boundary of the
(0, 1, 0) shard, the electron trapped in the central island is released to the right electrode.
In this region of operation, we cannot reverse the direction of electron flow by changing
the cycle; in fact, the direction is set by the bias applied to the turnstile. This protects the
turnstile against possible manipulation errors.

To demonstrate the operation, one applies to the central gate a time-dependent sig-
nal with frequency ω. If the turnstile works ideally, the current is precisely I = eω/2π ,
depending neither on the modulation amplitude nor the bias voltage. The accuracy of more
complicated turnstiles allows one to use them in metrology as very accurate current and
capacitance standards.

3.3.7 Single-electron pump

There is an alternative way to transport electrons one-by-one in a controllable fashion
[65]. It greatly resembles the adiabatic pumping considered in the context of the scattering
approach; see Section 1.7.4.

Let us once again turn to the stability diagram of a two-island array connected to two
electrodes and concentrate on the vicinity of the common point where three different charge
states come together (see Fig. 3.19). No bias voltage is applied. We now change both
charges q1,2 in a cyclic fashion. We do this slowly, giving all the allowed single-electron
transfers time to occur. If the cycle does not enclose the common point, nothing special
happens. Let us consider cycle A, which encloses the point. We start in the (0, 0) region.
After crossing the first line, an electron jumps into island 1 from the left. Crossing the
second line promotes it into island 2, and, finally, crossing the third line brings the electron
to the right-hand electrode. Thus, we have transferred an electron from the left to the right.
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�Fig. 3.19. A single-electron pump, like all adiabatic pumps, operates when two parameters (q1,2) are
cycled. A cycle that encloses the common point in the clockwise (counterclockwise) direction
transfers a single electron from the left to the right (from the right to the left).

In contrast to the turnstile, the reverse cycle transfers an electron in the opposite direction.
We see that the single-electron pump is advantageous in comparison with the adiabatic
pumps considered in Section 1.7: the charge transferred is always quantized, not dependent
on the actual shape of the cycle.

The same factors limit the applicability of all the devices considered – the memory cell,
the turnstile, and the pump. They should not be operated too fast. The limitation is that
all allowed single-electron processes should take place before the energy conditions have
changed. The upper limit of the operation frequency is set by a typical single-electron rate
�se � G EC/e2 � G/C . The devices also must not be operated too slowly. The lower limit
of the operational frequency is set by the small rates of unwanted processes that disrupt the
normal operation. For example, an electron trapped in the memory cell could just tunnel
away, and the information would be lost. Such unwanted processes originate from three
sources. The first source is thermal activation, whereby the electrons can tunnel in the
wrong direction with a rate estimated at �se exp(−EC/kBT ). Such rates are exponentially
suppressed with decreasing temperature. The second source involves tunneling processes
involving more than one electron. They are enabled even at vanishing temperature. They
will be considered in detail in Section 3.4. Here we note a standard way of protecting
against such processes: one replaces the double junctions of the cell and turnstile by many
junctions in series, that is many-island arrays. This, however, increases the importance of
the least fundamental and most limiting source: the random drift of offset charges. A given
stable configuration of offset charges can, in principle, be tuned away by gates affecting
all islands of the system. The change in offset charge, however, may disrupt all energy
differences so that the device ceases to work normally unless it is retuned.

3.4 Co-tunneling

An old joke likens classical physics to a totalitarian regime, since the behavior of every
classical particle is strictly determined by the regulations – the physical laws. What is not
commanded is forbidden. Quantum physics in this joke represents a democratic society
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where everybody does what they want unless it is explicitly forbidden by some funda-
mental law. It turns out that everything not forbidden is compulsory. The tunnel processes
involving many electrons – co-tunneling processes – under Coulomb blockade conditions
exemplify this joke rather explicitly.

The concept of a Coulomb blockade is classical in nature: there are single-electron tran-
sitions between well defined charge states. At sufficiently low bias, these transitions are
forbidden by virtue of energy conservation: one has to pay energy to charge the island.
Does the concept precisely fit the reality, and is the transport really forbidden if quantum
effects are taken into account? The answer is “no,” since the energy restriction is not funda-
mental. In fact, two or more electrons may cooperate in the process of tunneling (co-tunnel)
and thereby cheat the energy conservation [66].

As an example, we describe a SET in the Coulomb blockade regime and consider a
process where the tunneling of an electron from the left is immediately followed by the
tunneling of another electron to the right. In the resulting state, the island charge does not
change. However, one electron charge has been transferred from the left to the right.

Instead of immediately presenting a quantitative theory of co-tunneling, let us start with
a “cartoon,” which will give us order-of-value estimations of co-tunneling rates. Electrons
want to tunnel from the left to the right (see Fig. 3.20(a)). They would do this with a typ-
ical rate �FL. They cannot tunnel by virtue of energy conservation: they have to pay the
charging energy EC, which they do not possess. The cartoonish feature we use is that the
energy conservation is not imposed instantly: the electron may stay in the island during
the Heisenberg uncertainty time tH � �/EC, even if the energy conservation forbids a per-
manent stay. This gives a small, but finite, chance for co-tunneling; during this short stay,
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�Fig. 3.20. Co-tunneling in a SET. (a) Co-tunneling: simultaneous transfer of two electrons in two junctions is
not forbidden by energy conservation. (b) Energy diagram for inelastic co-tunneling: two
electron–hole pairs remain in the final state. (c) Energy diagram for elastic co-tunneling: the
transferred electron keeps its energy.
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another electron from the island may jump to the right-hand junction. This is energetically
favorable since, during the Heisenberg time, the island is in the charge state “1.” This state
is termed virtual, since the energy conservation forbids its realization. The rate in the right-
hand direction in this virtual state is thus given by �TR. The chance to realize co-tunneling
during the short stay is therefore given by �TRtH � 1.

Multiplying these chances, we obtain the following estimation:

�cot � �FL�TR
�

EC
.

Since a typical estimation of the single-electron rate is �se � G/C � G EC/e2, we rewrite
this as follows:

�cot � �se
G

GQ
. (3.52)

We see that the co-tunneling is essentially less probable than single-electron tunneling
provided G � GQ. The same condition ensures the presence of a Coulomb blockade. At
G � GQ the co-tunneling and similar multi-particle processes may become as important
as single-electron ones; this results in the corruption and disappearance of the Coulomb
blockade.

We can improve on this if we take into account the details of the final state and the
energy conservation in this state. After two electron transfers, four excitations have been
created in the system: a hole in the left electrode, an electron and a hole in the island,
and an electron in the right electrode. We count the energies of these excitations from
the corresponding Fermi levels (Fig. 3.20(b)), so that all εi > 0. If we impose no energy
restrictions, all εi are of the order of EC. Let us assume that the SET is biased by a volt-
age much smaller than the Coulomb blockade threshold, eV � EC. Energy conservation
dictates that

∑
εi = eV . Therefore each εi < eV . Since the number of electron states in

an energy strip is proportional to the width of the strip, the number of states available is
reduced by a factor � (eV/EC)3. The same factor reduces the rate in comparison with the
estimation given in Eq. (3.52):

�cot � GL

GQ

GR

GQ

(
eV

EC

)2

eV . (3.53)

This consideration is relevant at vanishing temperature kBT � eV . In the opposite case,
kBT � eV , the excitations can appear in the energy strip of the width of kBT ; this gives
the rate of thermally activated co-tunneling,

�cot � GL

GQ

GR

GQ

(
kBT

EC

)2

kBT . (3.54)

The thermally activated processes can proceed in both directions, from the left to the right
as well as from the right to the left. The rates in both directions differ only by a small factor
�eV/kBT . Therefore the current can be estimated as Icot � V (G/GQ)2(kBT/EC)2. We
conclude that two-electron co-tunneling is an inelastic process; this leads to non-linear
and/or temperature-dependent I –V curves.

We can apply the above estimations to the simple memory cell considered in Section 3.3.
If there is an energy difference �E between two stable states of the cell, co-tunneling
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through two junctions will bring the system to the state with the lowest energy. Since the
energy available for co-tunneling is�E , the rate of this process is estimated by Eq. (3.53).
This “bad” process thus determines the time of memory loss. One can substantially reduce
this time by tuning �E to zero. In this case, only thermal energy kBT is available for co-
tunneling, and the time of memory loss is determined by the rate given in Eq. (3.54). At
larger time scales, the cell switches randomly between “0” and “1” with this rate.

We have already mentioned the use of multi-junction arrays to protect single-electron
devices against undesired multi-electron processes. In the case of co-tunneling through
an array of N junctions of equal conductance G, N electrons should co-operate, jumping
simultaneously. Such processes create 2N excitations in the final state. Multiplying the
rate suppression factors for each junction and for each excitation brings us to the following
estimate (with the energy available for co-tunneling �E � max(eV , kBT )):

�cot �
(

G

GQ

)N

EC/�, �E � EC; (3.55)

�cot �
(

G

GQ

)N (
�E

EC

)2N−2
�E

�
, �E � EC. (3.56)

Exercise 3.7. One of the “bad” processes that limits the accuracy of a four-junction
single-electron turnstile is the co-tunneling through all four junctions in the bias direc-
tion. Give an estimate of the rate of this process assuming EC = 1 meV, 1/G =
1 M �.

Control question 3.5. Why would co-tunneling through all junctions not disrupt the
current in the single-electron pump? Give an example of a co-tunneling process that
does affect the pump accuracy.

Until now we have assumed that at least two electrons participate in the co-tunneling
process. Eventually, there is a chance that the same electron that enters the island from the
left tunnels out to the right, thereby completing the co-tunneling process. How big is this
chance? The electrons would tunnel to the right from an energy window of the order of EC

with the rate �se � G EC/e2. The electron states in the island are discrete, with average
spacing δS. Thus, the rate of tunneling from any given state is �given � (G/GQ)δS/�. It
seems unlikely that the same electron would complete the co-tunneling: the chance of it
happening is just δS/EC. However, the process involving the same electron is elastic: no
excitations are there in the island in the final state, and the electron transferred to the right
has the same energy as the incoming electron. This removes the extra factor (eV/EC)2,
which suppresses the inelastic co-tunneling at small bias:

�el-cot � GelV/e; Gel � GLGR

GQ

δS

EC
. (3.57)

Comparing this with Eq. (3.53), we find that the elastic co-tunneling dominates at suffi-
ciently low energies �E ≤ √δS EC. If we apply the same reasoning to a multi-junction
array, we obtain
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Gel �
(

G

GQ

)N (
δS

EC

)N−1

. (3.58)

Comparison with Eq. (3.56) yields that the cross-over between inelastic and elastic co-
tunneling takes place at the same energy scale

√
δS EC – the geometric mean between

Coulomb energy and level spacing.
This result is conceptually important for all quantum transport. The first two chapters

of this book have dealt mostly with elastic, coherent electron transport. In this chapter,
we study Coulomb blockade systems which at first sight look entirely different. Now we
can link these two: at sufficiently low energies, below

√
δS EC, the transport in Coulomb

blockade nanostructures is essentially elastic and coherent, and can be described with the
scattering approach of Chapter 1.

It would be unfortunate to complete the present qualitative discussion leaving the
impression that the only possible role of co-tunneling is to spoil Coulomb blockade
physics. Co-tunneling can certainly be both interesting and useful. To prove this, we discuss
briefly the following device idea [67]. Let us place two one-dimensional Coulomb arrays
close to each other, creating a substantial capacitive coupling between neighboring islands
of opposite arrays (see Fig. 3.21(b)). There is no tunneling between the arrays, and each of
them is connected to its own transport electrodes. With proper gate voltages, one induces
charges of opposite polarities in these opposite arrays. Thereby one creates extra electrons
in one array and extra holes in another one. The capacitive coupling between the arrays
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�Fig. 3.21. (a) Complex co-tunneling process: charge transfer in four-junction array. Four electron–hole pairs
are left in the final state. (b) Co-tunneling enables transport of artificial excitons – electron–hole
pairs in capacitively coupled arrays.
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enables Coulomb attraction between these charges of opposite sign. They come together
on neighboring islands, forming bound states of electron and hole: they are called excitons
in semiconductor physics. To set our artificial excitons into motion, we apply small bias
voltages to the arrays. Single-electron processes cannot take place; as they would break the
exciton apart, and this costs binding energy. The exciton moves in this double array as a
whole by means of a co-tunneling process comprising two simultaneous electron transfers
in opposite directions and opposite arrays. Over a wide range of bias voltages, the cur-
rents in both electric circuits are therefore the same in amplitude and opposite in direction.
Therefore the device is called a current copier.

3.4.1 Quantum effects in single-electron box

Before we proceed with the quantitative theory of co-tunneling, let us check, by means of
a rigorous quantum calculation, the most important feature of the cartoon in use. In the
cartoon, we allow an electron to stay in the Coulomb island for time tH even if energy
conservation forbids this. For a single-electron box, this implies that there is a chance of
finding the island in a charge state that is not the minimum-energy state of the system in
the absence of tunneling. This chance is proportional to the intensity of tunneling and is of
the order of �setH � G/GQ.

In quantum language, this implies that the true ground state of the single-electron box is
no longer an eigenstate of charge. Rather, the tunneling results in a small but non-vanishing
admixture of other charge states. This admixture is readily evaluated using the general rule
of quantum perturbation theory: an admixture of any state n to the unperturbed state g is
given by

ψn =
∑
n �=g

H (int)
ng

En − Eg
, (3.59)

where En,g and H (int)
ng are the unperturbed energies and the matrix element of the

perturbation.
In our case, Ĥ (int) is the tunneling Hamiltonian given by Eq. (3.30). Let us assume that

in the ground state N = 0, and label the electron states in the electrode (island) by r (i).
The action of the terms of the tunneling Hamiltonian on the ground state produces two
groups of states. If in the ground state r is empty and i is filled, the electron is transferred
from i to r and the charge state of the island becomes N = −1. If i is empty and r is filled,
the electron is transferred to the island and N = 1. Now we can evaluate the probability of
finding the island in the charge state N = 1 by summing up over all possible r , i :

p1 =
∑
r , i

|ψr , i |2 =
∑
r , i

|Tr , i |2 f (Er )(1− f (Ei ))

(E (+) + Ei − Er )2
, (3.60)

where E (+) ≡ Eel(1)− Eel(0) > 0 account for the charging energy. Since we are working
with pure states, we set kBT = 0. A similar expression with E (+) → E (−) ≡ Eel(−1)−
Eel(0) is valid for p−1. Now we use the trick given in Eq. (3.33) to express the tunneling
amplitudes in comprehensive terms of the single-electron rate (ξ ≡ Ei − Er ):
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p±1 = �

2π

∫ ∞
∞

�(−ξ )dξ

(E (±) + ξ )2
= G

2π2GQ

∫ ∞
0

ξ dξ

(E (±) + ξ )2
. (3.61)

A very rough order-of-value estimation gives p±1 � G/GQ, in accordance with the car-
toon. Close inspection of the expression, however, reveals two alarming features worth
discussion.

The first, and seemingly acute, problem is that the integral in Eq. (3.61) diverges at
large electron–hole pair energies ξ , so that the small probability of being in the states
N = ±1 is formally infinite. Such ultra-violet divergency is commonplace in many-body
quantum physics – very similar problems arise, for example, in quantum electrodynamics.
The problem is philosophical rather than physical and arises from our human restric-
tions: we consider the “objective” quantum states of a single-electron box with tunnel
coupling in the basis of “subjective” states without tunnel coupling. The quick rem-
edy is to look at the “more physical value.” If we concentrate on the average charge
in the ground state, the integrand does not diverge at large energies. The integration
yields

δ〈N 〉 = p1 − p−1 = G

2π2GQ
ln

(
1/2+ q/e

1/2− q/e

)
(3.62)

(see Fig. 3.22) and represents a smoothing quantum correction to a classical step-like N −
q relation.

Control question 3.6. In Fig. 3.22, which solid curve corresponds to which value
of G?

The second feature is that the integral diverges at low energies provided E± → 0; this
corresponds to q →±e/2. This is also seen in the expression for the average charge:
the correction formally diverges at q →±e/2. This indicates that the perturbation theory
developed is no good at tiny energy scales E± � EC exp{−G/(2π2GQ)}. We will come
back to this problem in Chapter 6.

q/e

0 1/2 1–1/2–1

N

–1

0

1

�Fig. 3.22. Quantum fluctuations – virtual transitions to other charge states – smoothen the step-like
features in the N − q relation. The dashed line shows the G = 0 limits, and the two solid curves
correspond to G = 0.5GQ and 0.25GQ. See Control question 3.6.
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3.4.2 Co-tunneling rate

Let us quantify the co-tunneling rate in a SET setup. The general rules of quantum mechan-
ics imply that the transition rate between the initial state i and the final state f is given by
the Fermi Golden Rule, Eq. (3.31), the heart of which is the square of the transition matrix
element Mi f between the states. In a common situation, the perturbation Ĥ (int) has matrix

elements between i and f and, quite simply, Mi f = H (int)
i f . This is not our situation. The

perturbation is the tunneling Hamiltonian that can only provide a single-electron transfer
through any junction. In order to get to the final state, we need two such transfers, and we
have to visit intermediate virtual states where the charge of the island differs by ±e from
its stable value.

The same general rules dictate that, for a complex process involving the intermediate vir-
tual states, the matrix element Mi f is more complicated: it is composed of matrix elements
of perturbation involving all possible virtual states v and energy difference(s) between
these states and the initial state:

Mi f =
∑
v

H (int)
iv H (int)

v f

Ei − Ev
. (3.63)

Let us specify this general relation to our SET. As we have seen at the beginning of
this section, the final state of an elementary co-tunneling process, where an electron is
transferred from state l in the left electrode to state r in the right electrode, also involves
two electron states i1,2 in the island. The electron tunneling from the left ends up in state
i1, while the electron tunneling to the right originates from another state i2.

Each final state can be reached via two possible virtual states depending on the order of
the two single-electron transfers. If the tunneling through the left junction comes first, the
charge of the island changes from N to N + 1. The energy of the resulting virtual state v+
with respect to the initial one is given by

Ev+ − Ei = Eel(N + 1)− Eel(N )+ Ei1 − El − eVL ≡ E (+) + Ei1 − El

(see Eqs. (3.14)). Alternatively, the transfer through the right junction happens first,
changing the charge of the island to N − 1, so the energy of alternative state v− is given by

Ev− − Ei = Eel(N − 1)− Eel(N )+ Er − Ei2 − El + eVR ≡ �E (−) + Er − Ei2 .

The matrix element is the sum of these two possibilities, given by

Mi f |i1i2 = Tli1 Ti2r

(
1

E (+) + Ei1 − El
+ 1

E (−) + Er − Ei2

)
.

Since the rate is given by the square of the matrix element, the contributions from these two
possible orderings of elementary transfers do not sum up in the rate. Rather, they interfere,
very much like the amplitudes of the complex scattering processes discussed in Section 1.6.
The total tunneling rate is given by the sum over all possible final states:
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�cot =
∑

l,r ,s1,s2

|Mi f |i1i2 |2δ(Er − El + Es1 − Es2 − eV )

× f (El )(1− f (Er )) f (Es2 )(1− f (Es1 )).

We implement the same trick (Eq. (3.33)) to replace the sum over the electron states by
integration over two energies ξL = Es1 − El , ξR = Er − Es2 , ξL(R) being the energy of
electron–hole pair created by electron transfer in the left (right) junction. We obtain finally

�cot = �

2π

∫
dξL dξR �L(−ξL)�R(−ξR)

×
(

1

E (+) + ξL +
1

E (−) + ξR
)2

δ(ξR + ξL − eV ). (3.64)

This gives the co-tunneling from the left to the right; the co-tunneling in the opposite
direction is obtained by the replacement eV →−eV . Some features of the cartoon used at
the beginning of this section are still recognizable in this exact expression if we associate
the squares of the energy denominators with those arising in Eq. (3.60) for the chance of
being in the wrong charge state.

Let us elaborate on two simple limits. For eV � kBT , the co-tunneling proceeds only in
the energetically favorable direction. The integration domain is restricted by ξL,R > 0 and
the expression is valid in the whole Coulomb diamond restricted by E (±) > 0. The single-
electron rates in this situation are given by �L,R(−ξ ) = GL,R/e2ξ , and the integration can
be performed analytically to give

Icot(V ) = e�cot =�GLGRV

2πe2

[(
1+ 2

eV

E (+) E (−)

E (+) + E (−) + eV

)

× ln(1+ eV/E (+))(1+ eV/E (−))− 2
]

. (3.65)

This is illustrated in Fig. 3.23. Another significant limit is that of relatively small voltage
eV � kBT � E (±). To integrate, we disregard the dependence of energy denominators on
ξL,R, so the rate reduces to

�LR
cot =

�

2π

(
1

E (+)
+ 1

E (−)

)2 ∫
dξL �L(−ξL)�R(ξL − eV )

=�GLGR

12πe4

(
1

E (+)
+ 1

E (−)

)2 (eV )((eV )2 + (2πkBT )2)

1− exp(−eV/kBT )
,

and �RL
cot (V ) = �LR

cot (−V ). The co-tunneling current is the difference of these two rates:

I (V ) = e(�LR − �RL) = �GLGR

12πe2

(
1

E (+)
+ 1

E (−)

)2

V ((eV )2 + (2πkBT )2), (3.66)

in full accordance with the qualitative estimations given by Eqs. (3.53) and (3.54) at the
beginning of the section. The zero-voltage conductance diverges at the crossing points of
the diamonds (Fig. 3.23); we will deal with this divergency later on.

The rates of more complicated co-tunneling processes are quantified in the same way.
Like a single-electron transfer, a general co-tunneling process is characterized by the
electrostatic energy difference �E between the final and initial charge states. For the
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�Fig. 3.23. (a) Co-tunneling current in symmetric SET versus voltage for several values of q. (b) Dotted lines
show the q values used. (c) Zero-voltage co-tunneling conductance versus q.

simplest case of a single electron transferred between the leads it is simply −eV . There
is an electron–hole pair produced in each junction, and the integration proceeds over all
electron–hole pair energies ξ j . Subject to the energy conservation condition

∑M
j ξ j +�E ,

�cot = �

2π

∫ ⎛
⎝ M∏

j=1

�� j (−ξ j )dξ j

2π

⎞
⎠S({ξ j })δ

⎛
⎝ M∑

j

ξ j +�E

⎞
⎠. (3.67)

Here the factor S accounts for the contribution of energy denominators. For M > 2 it
becomes very cumbersome, requiring scrupulous book-keeping. The point is that there are
M! possible sequences of M single-electron transfers, and S is the sum contributed by
all sequences. Given a sequence { j1, . . . , jM }, the system is subsequently transferred to
M − 1 virtual states {s1, . . . , sk , . . . sM−1}, sk being the charge state at the kth step. Each
step brings a factor of inverse energy of this state, the latter comprising electrostatic energy
and energies of the electron–hole pairs created up to this step, E(sk)+∑k

i=1 ξ ji . Therefore

S =
∑

{ j1,..., jM }

M−1∏
k=1

1

E(sk)+∑k
i=1 ξ ji

.

The integration over ξ j can be performed analytically in the limit kBT → 0 and small
energy available for co-tunneling �E � Es . The rate is given by



258 Coulomb blockade
�

�cot = 2π

�

⎛
⎝ M∏

j=1

G j

2π2GQ

⎞
⎠S(ξ j = 0)

(−�E)2M−1

(2M − 1)!
, (3.68)

in accordance with the estimation given in Eq. (3.56).

Exercise 3.8. Let us consider a long double array (Fig. 3.21(b)) with one extra electron
and hole situated in the islands j , k, where j(k) numbers the islands in the upper (lower)
array. Let us assume that the electrostatic energy is given by

E( j , k) = const.− E0 exp(| j − k|/κ)− eVup j − eVdownk.

Initially the electron and hole are in adjacent islands, j = k. Find the condition that
forbids single-electron transfers at zero temperature. Find the co-tunneling rate under
these conditions.

3.4.3 Co-tunneling co-existing with single-electron transfers

Upon inspecting Eqs. (3.65) and (3.66) for co-tunneling current, one notes an annoying
detail: they diverge at the Coulomb blockade threshold where either �E (+) or �E (−)

approaches zero. Above this threshold, single-electron tunneling is enabled. It is clear
that the co-tunneling rate cannot exceed a typical single-electron rate. This implies that
the divergences are not physical, rather they signal that the elementary perturbation
theory ceases to work close to a Coulomb blockade threshold where co-tunneling and
single-electron tunneling may co-exist. It happens frequently that such a breakdown of
perturbation series signals novel, complicated, and sometimes incomprehensive physics.
Fortunately, this is not the case at the Coulomb blockade threshold: one can sort out the
situation quite simply by obtaining more insight into the quantum nature of both processes.

Let us sketch another cartoon to help in our qualitative understanding. Till now, we have
assumed that if a tunneling event happens it is accomplished instantly. Let us assign a
Heisenberg uncertainty duration to a tunneling event: we assume that if the energy dif-
ference �E is associated with the event, it takes time tH � �/�E for the event to be
accomplished. To check if this makes sense, let us apply the cartoon to generic single-
electron tunneling, for example, in a SET. The single-electron transfers occur randomly
in time, the typical time separation of two events being of the order of the inverse
rate 1/�se � (GQ/G)�/�E . We observe that, for G � GQ, the time separation greatly
exceeds the duration of the events, so they do not overlap: an event is accomplished long
before the next event starts. This enables the classical treatment of single-electron transfers
in the Coulomb blockade regime. If G approaches GQ, the events begin to overlap and
there is no longer any strict separation between them. This indicates, as we have already
noted, the break-down of the Coulomb blockade or at least its classical description.

Let us now specifically apply the cartoon at the Coulomb blockade threshold near a
diamond boundary assuming eV � kBT (G/GQ). If we come to the threshold from the
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�Fig. 3.24. Co-tunneling coexisting with single-electron tunneling at the diamond boundary. Cartoonish
time-line of tunneling events: charge in the island versus time. The Heisenberg duration of events
is given by a wavy profile. The events are grouped in pairs. Within each group, the events are well
separated on the single-electron side (a), overlap at the transition (b), and cannot be separated
on the co-tunneling side (c). (d) Differential conductance in the vicinity of the boundary. The
dashed lines present co-tunneling and single-electron tunneling asymptotes.

single-electron side, we encounter the familiar one-by-one tunneling. To simplify the nota-
tion, we concentrate on electrons going from the left to the right with the transition via
the left junction being enabled at the threshold. The charge states involved are “0” and
“1.” All other possible cases are obtained by changing left to right and shifting the charge
states. The energy difference �EL related to the tunneling via the left junction vanishes
at the threshold with the corresponding rate �L, while �ER,�R stay constant in the close
vicinity of the threshold.

The tunneling events are grouped into pairs (see Fig. 3.24). Within the group, the events
are separated by a short time interval 1/�R while the groups are separated by 1/�L. Very
close to the threshold, the events begin to overlap within each group – this happens at
|�EL|�R � � – while the groups are still perfectly separated. Let us note now that on the
other side of the threshold the events of the group become the constituents of a co-tunneling
process and cannot be separated in time. The Heisenberg duration of this co-tunneling
process is still of the order of �/|�EL|, and successive co-tunnelings are separated by
time intervals �1/�cot � tH. To give an overall picture, the charge near the threshold is
transferred in well separated groups. Far above the threshold, each group can be regarded
as two successive single-electron transfers. Far below, the group is a single co-tunneling
process. At the threshold, single-electron tunneling and co-tunneling processes cannot be
regarded separately: the group is neither co-tunneling nor single-electron tunneling.

An alternative scenario of co-existence is realized near the degeneracy point of two
diamonds at eV � kBT . If the energy difference w between two charge states is of the
order of kBT , the transport is mostly due to thermally activated single-electron processes.
Each process disposes energy �kBT ; this defines its Heisenberg duration, and occurs with
the rate � � (G/GQ)(kBT )/�. This implies that the single-electron processes remain well
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separated in time, even at the degeneracy point w = 0, quite in contrast with the former
scenario.

Is there a place for co-tunneling events in this regime? Yes, there is. As a matter of fact,
the time interval remains random. There is always a chance of experencing the rare coinci-
dence of two events when this time interval becomes comparable with tH. The fraction of
rare coincidences in the event flow can thus be estimated as tH� � (G/GQ). In this case,
two events cannot be separated in time so one expects that the rate of each event is modi-
fied in comparison with that of well separated events: the correlation at short time interval
� tH should take place. The co-tunneling in this regime accounts for this rate change for
rare coincidences. So we expect it to give the corrections of the order of G/GQ. In princi-
ple, the rate change can be positive as well as negative, the latter corresponding to mutual
inhibition of coinciding events. We will see that this is indeed the case near the degeneracy
point. Further from the point where w � kBT , separate single-electron processes become
rare. The rare coincidences, however, do survive: in this case, the electrons co-operate in
the course of a co-tunneling event. To summarize, the single-electron tunneling and co-
tunneling contributions to the transport can be separated; this is in contrast to the former
scenario.

Now we are ready for a quantitative discussion, and we start with the first scenario.
First we note that the rate �R is the fastest of the two and the Heisenberg duration of the
corresponding tunneling event is negligible. If the island is in the state “1,” the rate �R

brings it to the state “0” with an electron transferred to the right electrode. This is why the
current in this situation just measures the probability to be in the state “1”:

I

e
= p1�R.

On the co-tunneling side of the transition, this probability is due to virtual tunneling
transitions involving the left junction and the excited state “1,” and is given by (see Eq.
(3.61))

p1 = GL

2π2GQ

∫ ∞
0

ξ dξ

(�EL + ξ )2
. (3.69)

This expression diverges at �E → 0. We remove this problem by taking into account that
the excited state “1” is not stable: it decays with the rate �R. We account for this in the
simplest fashion possible: we multiply the wave function of the state by a time-dependent
factor that describes the reduction of probability to be in this state, ψ ∝ exp(−iEt/�)→
exp(iEt/�− t�R/2). The factor 1/2 is here because it takes the square of a wave function
to create a probability. This is equivalent to an imaginary shift of the energy difference
�EL, which we incorporate into the denominator of Eq. (3.69) as follows:

1

(ξ −�EL)2
→ 1

|ξ −�EL + i��R/2|2 . (3.70)

After this modification, the probability and the current are reduced to the expressions that
contain no divergencies at the threshold, and the expressions make sense even at�EL < 0,
where single-electron tunneling is enabled.
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We check the validity of this expression at the single-electron side of the transition,
where |�EL|�R � �. In this case, we decompose the denominator into the leading delta-
function term and the rest:

1

|ξ −�E + i��/2|2 ≈
2π

��
δ(ξ −�E)

+ Re

(
1

(ξ −�E + i0)2

)
+ O(��/�E). (3.71)

The leading term reproduces the result of the master equation approach p1 = �L/�R,
I = e�L, and therefore presents the contribution of single-electron tunneling. The whole
expression in the threshold region reduces to (see Fig. 3.24)

∂ I

∂V
= ∂

∂V

∫
dξ

eGLξ�R(2π2GQ)−1

|ξ −�EL + i�R/2|2 = G th

(
1

2
+ 1

π
arctan

(
v

vr

))
. (3.72)

In Eq. (3.72), we change to universal notations: G th is the differential conductance at the
single-electron side of the transition that takes place at V = Vth, v ≡ V − Vth. The cusp
of the I−V curve is rounded off at voltage scale vr ≡ ��R/(2∂�E/∂V ) � (G/GQ)EC/e.
We have therefore quantified the transport near the threshold that are due to events which
are neither co-tunnelings nor single-electron tunnelings.

While the separation given in Eq. (3.71) is artificial near the diamond boundary, it allows
us to quantify the co-tunneling contribution in situations where it can be actually separated
from the single-electron one. Let us concentrate on the vicinity of the degeneracy point
between the “0” and “1” diamonds, assuming the energy difference w between the states
at zero voltage. On the “0” side of the transition, |w| � kBT , the current is mostly due
to the co-tunneling. The rate is given by Eq. (3.64), where we include only the dominant
contribution of the virtual state “1” and note that �EL,R = ±w − eV/2:

�
(L→R)
cot (0) = �

2π

∫
dξ
�L(−ξ + eV/2)�R(ξ − eV/2)

(w − ξ )2
.

There is a divergence at ξ = w provided both single-electron rates are enabled at this
energy, that is, �L(�EL)�R(�ER) �= 0. The divergence is clearly a contribution of single-
electron processes to be subtracted. We employ the decomposition in Eq. (3.71), skip
the leading term, and keep the next-to-leading one. The resulting rate is plotted in
Fig. 3.25 versus w/kBT . While its asymptotics at w � kBT agree with the co-tunneling
result in Eq. (3.66), the rate is strikingly negative at w � kBT , achieving its minimum
−(GRGL/2π3G2

Q)(kBT/�) at w = 0. A negative rate does not seem to make any sense.
However, this is a rate for two separate processes going together under conditions where
both processes may go separately. Thus the defined rate may be perfectly negative, pre-
senting a small negative correlation correction to the positive rates of the two constituent
processes. Indeed, the co-tunneling rate evaluated turns negative only if the rates of con-
stituent single-electron processes are sufficiently large. In this case, the co-tunneling rate
presents a small (G/G Q) correction to these rates.

Generally, there are four distinct co-tunneling rates in this situation: two for co-tunneling
in state “0” in two opposite directions, �(L→R)

cot (0) and �R→L
cot (0) and two for co-tunneling
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�Fig. 3.25. Co-tunneling coexisting with single-electron tunneling near the degeneracy point. (a), (b)
Cartoonish time-line of tunneling events. (a) At the Coulomb peak, (w � kBT) the transport is due
to well separated single-electron tunnelings. The co-tunneling accounts for rare coincidences of
tunneling events (shown by the arrow). (b) Far from the peak (|w| � kBT), the transport is due to
these rare coincidences – co-tunneling events. (c) Zero-voltage co-tunneling rate and correction to
the conductance (solid curve). Dotted curve: single-electron contribution to the conductance given
by Eq. (3.44) plotted for G = 10GQ. Dashed curve: co-tunneling asymptotics corresponding to
Fig. 3.23.

in state “1.” The contributions of all four, weighted with the probabilities p1,0 of being in
a given state, make up the current:

Icot

e
= p0

{
�

(L→R)
cot (0)− �(R→L)

cot (0)
}
+ p1

{
�

(L→R)
cot (1)− �(R→L)

cot (1)
}

.

Since the co-tunneling process does not change the charge state, the probabilities p1,0 are
determined by the balance of the single-electron processes. It turns out that, in the vicin-
ity of the degeneracy point, �cot(0) = �cot(1), so that Icot = e(�(L→R)

cot (0)− �(R→L)
cot (0)). In

the limit of vanishing voltage, ∂�cot/∂(eV ) = �cot(V = 0)/2kBT , so that the correction to
zero-voltage conductance is Gcot = πGQ��cot(V = 0)/kBT . This enables us to plot the
correction and �cot(V = 0) in the same figure (see Fig. 3.25). At the peak, the correction
is negative and equals−GRGL/2π2GQ. We have thus demonstrated that, in the vicinity of
the degeneracy point, the co-tunneling contribution is separated from the single-electron
tunneling processes and presents a correction of the order of G/GQ. Formally speaking,
this is not the only correction of this order. Quantum fluctuations change (renormalize)
the energy differences between charging states by a factor �EC(G/GQ) with respect to
energy differences without tunnel coupling. However, as we have already learned, the states
without coupling are “subjective,” presenting no valid reference, and renormalization cor-
rections are hardly observed in experiment unless the tunneling conductance of the device
can be changed during the course of the experiment.

The cross-over between the two scenarios discussed takes place when the temperature
matches the fastest decay rate, kBT � ��R, that is, eV � (kBT )(G/GQ).
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�Fig. 3.26. (a) The elastic co-tunneling amplitude is made up from the contributions of ∼EC/δS discrete levels
in the island. These contributions come with random phase shifts, resulting in a strong destructive
interference. (b) Zero-voltage elastic conductance versus q.

3.4.4 Elastic co-tunneling

So far, we have considered inelastic co-tunneling. In a SET, an elementary co-tunneling
process transfers an electron from state l in the left lead to state r in the right, leaving an
excitation in the island, with an electron in state s1 and a hole in state s2. An alternative is
to set s1 = s2 so that no excitation is left in the island. This elastic co-tunneling is usually
weak in metallic systems, where EC � δS, except when only small energy differences are
available.

To quantify, we write the matrix element of the transition between the states l and r
using Eq. (3.63):

T̃lr =
∑

s

Tls F(Es , El , Er )Tsr ;

F(Es , El , Er ) ≡
(

1− f (Es)

E (+) + Es − El
+ f (Es)

E (−) + Er − Es

)
.

(3.73)

Since the process is elastic, we can immediately relate these matrix elements to the rate
and the corresponding conductance (see Eq. (3.32)):

Gel = 2π2GQ

∑
lr

|T̃lr |2δ(Er − E)δ(El − E).

Each electron state s in the box contributes to each T̃lr , giving rise to two virtual states:
one with N = 1 if the state is filled; one with N = −1 otherwise. It is constructive at this
stage to recall the favorite model of Chapter 2: the double tunnel junction. As discussed, we
encounter there a set of transmission resonances that become localized levels in the limit
of low transparency of the junctions. These resonances are also found here in the resonant
structure of the denominators F(Es). However, we see from Fig. 3.26 that the positions of
the resonance are shifted from the Fermi level by the Coulomb energy E (±). This is why the
transmission does not proceed through the resonance closest to E ; rather, the transmission
amplitude is contributed by the tails of many resonances, and the transmission probability
is a result of interference of all pairs of resonances.
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From the material of Chapter 2, we readily understand that this interference must
be destructive: phase shifts cancel each other and average to zero. Let us assume for
the moment that the interference is so destructive that the transmission probability is
contributed by squares of amplitudes:

|T̃lr |2 =
∑
s′,s

Tls T ∗ls′Tsr T ∗s′r F(Es)F(Es′ ) ≈
∑

s

|Tls |2|Tsr |2 F2(Es , E).

In this case, we can replace the matrix elements by their averaged values, given by
(Eq. 3.36): ∑

r

δ(E − Er )|Tsr |2 = δS
GR

2π2GQ
;

similarly for the left junction. We also replace the summation over s by integration over
Es . We thus obtain (kBT , E � EC) the following

Gel = GRGLδS

2π2GQ

∫
dEs F2(Es) = GLGR

2π2GQ

(
δS

E (+)
+ δS

E (−)

)
� GRGL

GQ

δS

EC
,

in agreement with previous estimations. The small factor δS/EC in this expression comes
from our assumption of destructive interference: if it were constructive, we would end up
with Gel � GRGL/GQ. We revisit this assumption in Chapter 5, where it will become
clear how it is related to the structure of wave functions of localized states.

The evaluation of multi-junction elastic co-tunnelling requires us to take steps similar
to those we took to evaluate the inelastic co-tunneling in these structures. This includes
the book-keeping of all intermediate virtual states and a subsequent summation over all
possible sequences of elementary tunneling processes.

3.5 Macroscopic quantum mechanics

As we have learned, Coulomb blockade distinguishes states that differ by charge accumu-
lated in an almost isolated metal island. At sufficiently low temperature and voltage, the
island is in a certain charge state, while finite temperature and voltage causes transitions
between different charge states. These states, however, are classical rather than quantum.
The island is always supposed to be in a certain charge state, and never in a quantum
superposition of the two.

The situation changes if both the island and the electrodes become superconducting.
Superconductivity is essentially a coherent phenomenon. Gauge symmetry breaking asso-
ciated with superconducting transitions gives rise to a new degree of freedom, the phase ϕ.
A state of a superconductor, or of a piece of superconductor, is characterized by this phase.
Manifestations of the coherence are superconducting currents in bulk superconductors
caused by phase gradients and the Josephson current between two superconductors with
different phases; the latter has been explained in Section 1.8.

What can we achieve by combining the Josephson effect and Coulomb blockade? Let
us consider a small superconducting island connected by a Josephson junction with a bulk
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superconductor that is kept at zero phase. If an island is in a state with a certain phase,
a Josephson current flows through the junction. This implies that the charge of the island
cannot be constant, that is, certain. Vice versa, if the island is in the state with a certain
charge, this implies that the phase of the island cannot be certain: a certain phase would
produce a constant Josephson current to the island. It turns out that this dual uncertainty
is of quantum nature, and is described by the Heisenberg uncertainty relation. As we will
prove in this section, charge and phase are conjugated quantum variables, very much like
the coordinate and the momentum of a quantum particle. Conjugated variables obey the
Heisenberg uncertainty relation: if one variable is well defined, the other one is uncertain.
Thus, if we combine the Josephson effect and Coulomb blockade, we make a quantum
system which can be in a coherent superposition of the charge states.

Usually, discrete quantum states are associated with small particles: an example are the
states of electrons in atoms. A quantum state arising from the combination of Coulomb
blockade and the Josephson effect is associated with an object of micrometer scale: islands
and junctions, which contain billions and billions of electrons and atoms. This is why it
is frequently termed a macroscopic quantum state. Indeed, the micrometer scale is readily
accessible for modern engineering: one could design circuits and manufacture devices at
the micrometer scale as a hobby at home. The parameters and properties of such a quan-
tum state, in sharp contrast with atomic states, can be changed both by nanostructure design
and by turning handles of the device. This controllability brings about a potential for prac-
tical applications. Nanostructures of this type do not just realize a peculiar phenomenon
of macroscopic quantum mechanics, they can also be used to realize artificial and control-
lable quantum states. Indeed, as we review in Chapter 5, the practical realization of qubits
has been achieved by combining the Josephson effect and Coulomb blockade in several
different ways.

3.5.1 Cooper-pair box and similar systems

We consider here the simplest system available to realize these macroscopic quantum
states: a Cooper-pair box (CPB). The system is almost the same as the single-electron
box discussed in Section 3.1: there is an island to store charges, a bulk electrode to pro-
vide these charges, and a gate electrode to shift the electrostatic potential of the island with
respect to the bulk electrode and to tune the number of charges thereby. The crucial differ-
ence is that now both the island and source electrodes are superconducting, and the tunnel
junction that connects them is in fact a Josephson junction (Fig. 3.27).

There are two energies that characterize the system. The first energy is the Josephson
energy of the junction. As we know from Section 1.8, it is a periodic function of the super-
conducting phase difference across the junction,−EJ cosϕ. It is convenient to set the phase
of the lead to zero, so that the phase difference is just a phase that characterizes the super-
conducting state of the island. We also know from Section 1.8 that the relation between
the Josephson energy and the transmission eigenvalues of the contact for the tunnel junc-
tion reduces to EJ = (GT/GQ)�/4, where � is the energy gap in the superconductors.
We recall that good isolation of the island, enabling Coulomb blockade effects, requires
G � GQ, so that EJ � �.
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�Fig. 3.27. Cooper-pair box (CPB) and similar systems. A double-crossed box denotes a Josephson junction
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with magnetic flux �. (d) A single current-biased Josephson junction is in many respects similar to
a CPB. A crucial difference is that the charge in the capacitor does not have to be discrete.

The second energy is the same as for the non-superconducting setup: the charging energy
associated with discrete charge Ne in the island, given by

EC(N − q/e)2; EC = e2

2(C + Cg)
; q ≡ CgVg.

Why is the system called a Cooper pair box? Each superconductor is a coherent reservoir
of Cooper pairs rather then electrons, provided the energies involved are smaller than the
superconducting energy gap. In this section, we will assume that there is always an even
number of extra elementary charges in the island, and that charges are always transferred
in Cooper pairs. More complicated situations are addressed in Section 3.7.

The CPB turns out to be close to two other physically different systems. What happens if
we make yet another Josephson connection to another superconducting electrode? In doing
so, we enable electron transfer between the electrodes through the island: we make a SSET,
a superconducting version of a SET. A normal SET exhibits rather different physics from
a single-electron box. For a SSET, an extra connection only means a modification in the
Josephson energy of the CPB. Indeed, consider two superconducting leads with the phases
ϕ1,2 (Fig. 3.27(b)). The Josephson energy of two junctions is given by

−E (1)
J cos(ϕ − ϕ1)− E (2)

J cos(ϕ − ϕ2) = −Re
(

(Ẽ (1)
J + Ẽ (2)

J )eiϕ
)

,

where we have introduced the complex-valued Josephson amplitudes Ẽ (1,2)
J ≡

E (1,2)
J exp(−iϕ1,2). We see that the amplitudes of different superconducting leads add up in

the expression for energy, and the resulting energy is the same as for a single junction with
the effective Josephson energy given by
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E (eff)
J (ϕ1 − ϕ2) =

∣∣∣Ẽ (1)
J + Ẽ (2)

J

∣∣∣
=

√
(E (1)

J )2 + (E (2)
J )2 + 2 cos(ϕ1 − ϕ2)E (2)

J E (1)
J , (3.74)

and a proper shift of the phase ϕ. This equivalence offers the practically important
possibility of tuning the actual value of EJ by changing magnetic flux if necessary. To
understand this, let us take a single superconducting lead connected to the island with
two junctions (Fig. 3.27(c)). If there is a magnetic flux in the loop created by these junc-
tions, it induces a phase difference 2π	/	0 between the points of the lead adjacent to the
junctions. So these two junctions may be replaced by one with flux-dependent Josephson
energy:

E (eff)(	) =
√

(E (1)
J )2 + (E (2)

J )2 + 2 cos(2π	/	0)E (2)
J E (1)

J . (3.75)

A less evident similarity is between the Cooper-pair box and a single Josephson junc-
tion under current-bias conditions (Fig. 3.27(d)). While the phase difference between two
voltage-biased superconducting leads is set by these leads, the phase across the current-
biased junction may change in time, following its own dynamics. The dynamics is governed
by the same two energies: the Josephson energy and the charging energy of a capacitor
associated with the junction. The difference between the current-biased junction and the
Cooper pair box is that the charge accumulated on the capacitor does not have to be dis-
crete as it is in the isolated island. In the following, we will see just how interesting the
quantum manifestation of this difference is.

3.5.2 Second quantization

The two energy scales discussed above have been considered under the assumption that
both the phase and the charge in the island behave as classical, well defined variables.
But we have already learned that this cannot be true; they cannot be simultaneously well
defined. So we have to understand the precise relationship between the phase and the
charge. This is achieved by a second quantization procedure, which can be applied to any
system, the classical dynamics of which is known. Examples of such systems include an
electromagnetic field in a vacuum, governed by the Maxwell equations, and mechanical
oscillations in atomic lattices, governed by elasticity. Both systems, and many others, can
be successfully quantized: one builds up a quantum description of the system from the
classical one. The most general quantization prescription is as follows.

(i) Replace classical variables by operators.
(ii) Postulate commutation relations between these operators.

(iii) Derive Heisenberg equations of motion from these commutation relations.
(iv) Check if these equations of motion correspond to classical ones.

The second point, (ii), is a creative one and requires some guesswork. Fortunately, for
most systems the simplest guess works. For systems obeying linear equations of motion,
the procedure is especially automated since, in this case, the problem is reduced to the
quantization of a (large) number of harmonic oscillators.
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To accomplish the quantization of our system, we should thus compare classical and
quantum equations of motion. We will do this now explicitly for a simplified form of
Josephson energy, −EJ cosϕ→ const.+ EJϕ

2/2, which is obviously valid for |ϕ| � π .
It implies that, with this accuracy, the Josephson junction can be replaced by an inductance.
Indeed, in this approximation the current through the junction is given byI = −Icϕ and
İ = Ic2e/�V . By the definition of inductance, L ≡ V/ İ = �/2eIc. In addition, we bypass
the gate with the charge induced by it, so the charging energy is simply e2 N 2/2C . The
reason for the simplification is that the resulting equations are nicely linear. The classical
equations of motion comprise the charge conservation law,

dQ

dt
= −I (ϕ) = −Icϕ, (3.76)

and the Josephson relation,

dϕ

dt
= 2eV

�
= 2eQ

C�
, (3.77)

where Q = CV is the charge in the island.
Let us change the notation, making use of

Q = eN ; EC = e2

2C
; Ic = 2e

�
EJ.

On doing so, we can bring these classical equations into a nice symmetric “quantum” form:

dN

dt
= 2EJ

�
;

dϕ

dt
= 4EC

�
N . (3.78)

Let us postulate the commutation relations. We assume[
N̂ , ϕ̂

]
= α,

where α is a constant that needs to be determined. As we have already mentioned, this
resembles the commutation relations between the coordinate and momentum in one-
particle quantum mechanics,

[
p̂, x̂

] = −i�. The simplified Hamiltonian is the sum of
Josephson and charging energy:

Ĥ = EJ
ϕ̂2

2
+ EC

N̂ 2

2
.

Basic quantum mechanics states that the quantum equation of motion for an arbitrary
operator Â is given by

d Â

dt
= i

�

[
Ĥ , Â

]
.

Applying this to our systems, we have to deal with the commutators
[
ϕ̂2, N̂

]
and

[
N̂ 2, ϕ̂

]
,

which are calculated as follows:

ϕ̂2 N̂ − N̂ ϕ̂2 = (ϕ̂2 N̂ − ϕ̂ N̂ ϕ̂)− (N̂ϕ2 − ϕ̂ N̂ ϕ̂)

= ϕ̂
[
ϕ̂, N̂

]
−

[
N̂ , ϕ̂

]
ϕ̂ = −2αϕ̂.
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In this way, we obtain

dN

dt
= i

�
[Ĥ , N̂ ] = − iαEJ

�
ϕ̂;

dϕ

dt
= i

�
[Ĥ , ϕ̂] = i2αEC

�
N̂ .

Comparison with Eqs. (3.78) yields α = −2i.
The commutation relation is very instructive, since we can use the whole apparatus of

one-particle quantum mechanics and borrow physical analogies from this. Thus motivated,
we introduce the wave function of the Cooper-pair box. We write it in the phase represen-
tation, �(ϕ), which is analogous to the coordinate representation in one-particle quantum
mechanics. The operator N in this representation becomes −2i∂/∂ϕ (recall the relation
p̂→−i�∂/∂x for the momentum operator in one-particle quantum mechanics). We con-
clude that the wave function of a state with a certain charge N is a “plane wave” in phase
representation:

|N 〉 → eiNϕ/2. (3.79)

What about the phase operator? First let us recognize that we do not need it directly. The
actual Josephson energy is not quadratic in phase; rather, it is made of two exponents of
the phase operator, 2 cosϕ =∑

± e±iϕ . We see from Eq. (3.79) that these exponents either
increase or reduce N by 2:

e±iϕ̂ |N 〉 = |N ± 2〉. (3.80)

The alternative representation of this operator is therefore given by

e±iϕ̂ =
∑

N

|N ± 2〉〈N |. (3.81)

We come to an interesting and physically appealing conclusion: the Josephson effect is
associated with the coherent transfer of a Cooper pair (charge 2e) via the junction in either
(N → N ± 2) direction.

Given the Hamiltonian Ĥ = −EJ cos ϕ̂ + EC(N̂ − q)2, we come to the Schrödinger
equation for the wave function �. We can do this in either phase,

E�(ϕ) = Ĥ� =
[

EC

(
−2i

∂

∂ϕ
− q

e

)2

− EJ cosϕ

]
�(ϕ), (3.82)

or charge,

E�(N ) = Ĥ� = EC

(
N − q

e

)2
�(N )− EJ

2
(�(N − 2)+�(N + 2)) , (3.83)

representation, the relation between these representations being given by

�(N ) =
∫

dϕ �(ϕ) exp(−iNϕ/2).

The solutions of the Schrödinger equation determine the actual quantum states and energy
levels of our superconducting system. We go on with the useful analogy between ϕ and
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a coordinate of a particle. The Schrödinger equation, Eq. (3.82), is that for a particle in
cosine potential given by Josephson energy. The charging energy is associated with the
kinetic energy of the particle with mass �

2/2m = 4EC. A smaller charging energy there-
fore corresponds to a heavier, “less quantum” particle. We will use this analogy a great
deal and we will refer to the system as a “particle” without warning.

Before dealing with the equation, we must discuss one issue. The Josephson energy and
the whole Hamiltonian of the system do not change if the phase ϕ is shifted by 2π . This
brings up two possibilities. The first is that the quantum states that differ by phase 2π are
just identical, |ϕ〉 = |ϕ + 2π〉. This implies that the wave function in the phase represen-
tation must be periodic in phase. If we make use of our analogy between the phase and
particle coordinate, this corresponds to a particle confined on a circle. The coordinate of
the particle can be parameterized with polar angle θ , but θ shifted by 2π corresponds to
the same point on a circle.

The alternative is that these states are different and distinguishable, so that |ϕ〉 �= |ϕ +
2π〉. The particle in this case is free to move in the whole one-dimensional space, but
feels the periodic potential. It is discussed in solid state physics that the solutions of such
an equation are Bloch functions that obey the Bloch boundary condition �(ϕ + 2π ) =
exp(iπ q̃)�(ϕ). The parameter q̃ plays a similar role to the quasimomentum in solid state
physics: it labels different groups of quantum states. This is why it is called quasicharge.

It turns out that both possibilities are physical. They describe two distinct physical sit-
uations and two different Josephson junction setups. For the Cooper-pair box, the choice
is a periodic boundary condition. This makes the states discrete and provides the charge
quantization. Indeed, if we disregard the Josephson energy for a while, we get an isolated
island. The solutions of the Schrödinger equations are as follows:

�N = exp(iNϕ/2),

and they satisfy periodic boundary conditions only if N is an even integer.
Bloch boundary conditions describe the quantum states of a single Josephson junction

under current bias. The charge in this case is just the charge accumulated on the plates of
the capacitor. The charge does not have to be integer: it is continuous. Indeed, in the limit
of vanishing EJ, there are solutions to Schrödinger equation

�N = exp(i(N + q̃)ϕ/2)

for any charge (q̃ + N/2)e.

3.5.3 Charging energy dominating

There are two energy scales characterizing the Cooper-pair box, EC and EJ, and the char-
acter of the quantum states depends on ratio of the two. We will look now at two opposite
limits or regimes, EJ � EC and EJ � EC. It is useful to note that the actual cross-over
between the regimes occurs at EJ/EC � 8. This is due to a play of numerical factors: in
fact, one has to compare diagonal and non-diagonal elements of the Hamiltonian given in
Eq. (3.83), i.e. 4EC and EJ/2.
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�Fig. 3.28. (a) Energy levels in a Cooper-pair box at EJ/EC = 0.5 versus q. The quantum states are almost pure
charge states except at the parabola crossings. (b) The vicinity of the lowest crossing at q = 1
(EJ/EC = 0.05). The eigenstates are superpositions of the two states that cross. A similar picture of
repelling levels is valid for any crossing (for example at q = 0).

We start with the first regime when the charging energy dominates and the quantum
states in the Cooper-pair box are almost pure charge states. Their energies are the same as
for a non-superconducting island: if we plot them versus q (see Fig. 3.28(a)), we recognize
the familiar sequence of shifted parabolas. The only detail is that the number of extra
electrons is even, so the energies of the states are periodic in q with period 2e rather than e.

An interesting phenomenon takes place at critical values of q corresponding to the cross-
ings of the parabolas. Small but finite EJ lifts the degeneracy in the crossing points and
opens up the gaps between two charge states that are trying to cross. We have here the
situation of avoided level crossing, which is commonplace in quantum physics. To look at
this in more detail, we concentrate on the vicinity of the crossing between charge states |0〉
and |2〉 at the induced charge q = e (see Fig. 3.28(b)). The Hamiltonian reduces to a 2× 2
matrix in the basis of these two states, i.e.

Ĥ = EC +
[

ε EJ/2
EJ/2 −ε

]
, (3.84)

where the Josephson energy provides the non-diagonal matrix elements between |0〉 and
|2〉, and 2ε ≈ 4EC(1− q/e) is the splitting of the charge states in the absence of Josephson
coupling. This reduction is valid provided ε � EC. Two eigenvalues and eigenvectors are
given by

E± = EC ±
√
ε2 + (EJ/2)2;

|+〉, |−〉 = 1√
2(1± sin θ )

(|0〉 cos θ + |2〉(sin θ ± 1)); (3.85)

θ = arctan(2ε/EJ).

The minimum splitting (the gap) is EJ. At this point, the eigenstates are superpositions
of two charge states with equal weights, |±〉 = (|0〉 ∓ |2〉)/√2. Therefore, in the close
vicinity of the crossings the quantum states are coherent superpositions of the states with
different charge.
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The crossings at higher energies are also avoided. However, the parabolas that cross at
these points differ by more than two charges, so they cannot be directly coupled by EJ.
That is why the couplings appear in higher orders in EJ; the estimation of the gap between
parabolas that differ by 2m charges is EJ(EJ/EC)m−1 � EJ.

Let us evaluate the superconducting current through the SSET in this regime. As
explained above, the energy of a SSET is obtained from the energy of a Cooper-pair box
(CPB) by replacing EJ → E (eff)

J (ϕ) (Eq. (3.74)). We use the relation I = −(2e/�)(∂E/∂ϕ)
to express the current through the phase-dependent part of the energy. The latter is given
by the second-order perturbation correction to the energy of the ground state:

I (ϕ) = 2e

�

∂E (2)

∂ϕ
;

E (2) = −
(

E (eff)
J

2

)2 (
1

E+
+ 1

E−

)
; (3.86)

I (ϕ) = e

�
E (1)

J E (2)
J sinϕ

(
1

E+
+ 1

E−

)
� Ic(EJ/EC), (3.87)

where E± are the energy differences between the ground charge state and the closest
excited states that differ by ±2 elementary charges. Equation (3.87) bears a close resem-
blance to the co-tunneling matrix element given by Eq. (3.63): it comprises two Josephson
amplitudes of two junctions and energy denominators of virtual states. Indeed, charge
transfer in this situation can be viewed as a co-operative tunneling of two Cooper pairs
via two junctions. This suppresses the superconducting current by a factor �EJ/EC.

Exercise 3.9. (i) Prove Eq. (3.86) and explain why it does not hold in the close vicinity
of the crossing point. (ii) Find the current–phase relation in the vicinity of the crossing
point using Eq. (3.85). (iii) Find the critical current from the current–phase relation
obtained in (ii).

3.5.4 Josephson energy dominating

In the opposite limit, EJ � EC, we expect the states to have a well defined phase. For the
ground state and several excited states this is indeed the case. To get the picture, let us
use the analogy with one-particle quantum mechanics and associate ϕ with the coordinate
of the particle. The particle feels the potential profile −EJ cos ϕ. Since EC is small, the
particle is “heavy” and therefore almost classical. Therefore, in the ground state it is local-
ized near the minimum of the potential at ϕ = 0, the energy of this state being −EJ. The
fluctuation of the phase in the ground state is small, ∼(EC/EJ)1/4 � π .

Low-energy excited states correspond to oscillations of the particle near this minimum.
At energies much smaller than EJ the potential profile, as discussed, can be approximated
by a parabola EJϕ

2/2. The excited states are those of a harmonic oscillator: equidistant
levels separated by �ωp = √8EJ EC � EJ, whereωp is the so-called “plasmon” frequency,
the frequency of the oscillator. The higher the energy, the greater the amplitude of the
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�Fig. 3.29. (a) Energy levels in a CPB at EJ/EC = 20 versus q. The states in the energy interval (−EJ, EJ) are
localized in phase. (b) The tunneling amplitudes determining the charge dependence of the
phase-localized states. The solid line depicts the semiclassical result. (c) Evolution of the states
with increasing EJ/EC at q = e.

oscillations, so that the uncertainty of the phase gradually increases. The energies of all
levels between −EJ and EJ show an exponentially weak dependence on q. They are clas-
sically localized since the classical particle cannot reach the maximum of the potential EJ

at ϕ = ±π .

Exercise 3.10. Produce a semiclassical estimate for the number of localized states.
(i) Consider a particle in the periodic potential U = −EJ cos(x/a) and write down
the Bohr–Sommerfeld quantization rule (see Appendix A)

∮
p dq = 2π�(n + 1/2).

(ii) Calculate the number of the state corresponding to the energy EJ (which gives the
total number of states). (iii) Write down the equation for the CPB and, mapping it to
the equation of motion of the classical particle, calculate the number of localized states.
Hint: Nc = (8EJ/π

2 EC)1/2.

The q-dependence of the energy manifests if the state is localized or delocalized in phase
space. The point is that q enters the Hamiltonian in very much the same way as magnetic
flux enters the Hamiltonian of a particle on a circle, its effect being the interference of
trajectories enclosing different flux (Section 1.6). All closed trajectories on the circle can
be classified according to their winding number nw: the number of full cycles the trajectory
makes around the circle. The propagation amplitudes corresponding to these trajectories
acquire the following phase factor:

F = exp(inwπq/e). (3.88)

For a localized state, classically allowed trajectories never cross the potential maximum EJ

at ϕ = ±π , so nw = 0 for all trajectories. Indeed, the q-dependence is invisible for classi-
cally localized states in Fig. 3.29. In order to make a full circle in either direction (nw ± 1),
a particle in a localized state has to tunnel through the potential maximum. The finite ampli-
tude of this tunneling gives rise to an exponentially small q-dependence of the nth localized
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state: En(q) = En +�n cos(πq/e). In the limit EJ � EC the q-dependent part of the
energy is given for the lowest localized state by �0 = 16(E3

J EC/2π2)1/4 exp(−πNc).
The exponential factor in this formula originates from the semiclassical expression for
the transmission probability through the barrier, T ∝ exp(−(2/�)

∫ |p|dq), where p and q
are, respectively, the classical momentum and coordinate for the CPB found by compari-
son with the equations of motion for the classical particle (see Exercise 3.10). Here, Nc =
(8EJ/π

2 EC)1/2 is the semiclassical estimate for the number of localized states. For higher
states, the following rule-of-thumb estimation is commonly applied: �n = �0 exp(πn).
As shown in Fig. 3.29(b), it gives a good order-of-magnitude estimation. We note the rapid
increase of the amplitude with increasing n: for each next excited state, the amplitude
increases by eπ ≈ 23 times.

A particle with energy higher than EJ crosses the potential maximum in the course of
classical motion; this enables the dependence on q. Finally, at energies much bigger than
2EJ the energy of the particle is almost entirely kinetic (that is, charging) and it hardly sees
the potential. The eigenfunctions are plane waves corresponding to states of certain charge,
and the energy levels resemble the crossing parabolas.

The evolution of quantum states with increasing EJ/EC ratio is illustrated in Fig. 3.29(c).
The charge q is set to e, so the charging states are degenerate at EJ = 0. The degener-
acy is visibly lifted only if EJ is of the order of the charging energy of a given state. At
smaller EJ, the state is localized in charge. At larger EJ, the energy of the state goes down.
The state becomes increasingly localized in phase and is finally converted into a plasmon
excitation.

3.5.5 Macroscopic quantum tunneling

Let us turn from a CPB to a single current-biased Josephson junction. We have seen that
the difference in the quantum description of these two systems is the phase range: while
the phase of the superconducting island is confined to the interval from−π to π , the phase
across the single junction can take any value. Besides, if the bias current Ib �= 0, it brings
the extra term into the Hamiltonian:

Hb = �

2e
ϕ̂ Ib. (3.89)

Indeed, only this term guarantees that the classical equation, Eq. (3.76), is correctly mod-
ified: dQ/dt = −Ic sinϕ + Ib. Thus, at non-zero bias current the particle feels a tilted
cosine potential, or a tilted washboard potential (see Fig. 3.30). This potential has a series
of local minima separated by 2π provided |Ib| < Ic.

The current-bias Josephson junction is an exemplary theoretical model of macroscopic
quantum variable and conveys a clear and comprehensive physics. What is difficult to com-
prehend and explain is why the part of this physics – let us call it coherent tunneling – is
almost impossible to realize, while the other – incoherent tunneling – has not only been
realized, but still exemplifies our achievements in macroscopic quantum mechanics. This
suggests the following plan: first we explain coherent tunneling, then we concentrate on
the difficulties of its realization. This will bring us to incoherent tunneling.
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�Fig. 3.30. Macroscopic quantum tunneling in a single Josephson junction. White arrows: quantum tunneling;
black arrows: classical motion. (a) Coherent tunneling forms Bloch states that are extended in
phase space. (b) Incoherent tunneling in washboard potential at Ib < 0.22Ic. The particle is
retrapped in the neighboring potential minimum. (c) Incoherent tunneling at Ib > 0.22Ic. After
tunneling, the particle moves steadily to the right. The junction is switched to the finite-voltage
state.

Let us start with zero bias current. The Schrödinger equation is that of a particle in a
periodic (cosine) potential: the eigenfunctions are thoroughly studied in solid state physics
and are called Bloch states. They are labeled with the discrete band index n and continuous
quasicharge q̃ , −e < q̃ < e, and are conveniently presented in the form

�n,q̃ (ϕ) = un,q̃ (ϕ)eiπϕq̃/e, (3.90)

where un is periodic in ϕ. These wave functions are extended in phase space and pretty
much localized in charge space, irrespective of the ratio EJ/EC. To understand this, we
assume EJ � EC, expecting the quantum state to be well localized in phase in one of the
minima of the washboard potential. However, all minima are equivalent. The particle can
tunnel to any neighboring minimum with no energy cost, and do it again and again (see
Fig. 3.30(a)). Therefore, the particle is delocalized in phase space as a result of coherent
tunneling between the minima.

We do not have to formulate a new calculation to determine the energy spectrum and the
eigenfunctions; we can re-use the results for the CPB levels and states. The point is that un

satisfies the same equation as the periodic wave function of CPB with q = q̃, n being the
number of the CPB level. We stress that this does not imply the equivalence of the states
of the CPB and the single junction. While the energy spectrum of the CPB is discrete, the
spectrum of a single junction is continuous, and q̃ is not an external parameter set by the
gate voltage: it is a dynamical variable characterizing the system.

The properties of Bloch states determine a simple and distinct physics of the current-
biased quantum Josephson junction. The best way to present it is to use the duality
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between voltage-biased and current-biased situations. The voltage-biased Josephson junc-
tion is characterized by the phase-dependent energy E(ϕ). At V = 0, the junction can
be in a state with finite current I = (2e/�)(dE/dϕ) not exceeding the critical current
Ic = (2e/�)max(dE/dϕ). If voltage V is applied, the phase monotonically increases with
time due to the Josephson relation, ϕ̇ = 2eV/�. The current, being a periodic function
of the phase, oscillates with the Josephson frequency ωJ = 2eV/�. The dual setup is the
current-biased junction. It is characterized by a q̃-dependent energy E0(q̃). (“0” refers here
to the lowest-in-energy band.) At I = 0, the junction can be in a state with finite voltage
V = dE/dq̃ not exceeding the critical voltage Vc = max(dE0/dq̃). If a (sufficiently small)
current is applied, the quasicharge monotonically increases with time, ˙̃q = I . The volt-
age over the junction, being a periodic function of q̃ with period 2e, oscillates with the
Bloch frequency ωB = I/2e. This reveals the fact that the charge is transferred by discrete
Cooper pairs, the transfers being strongly correlated in time.

Despite significant theoretical and experimental efforts, pure Bloch physics has never
been realized in actual devices. The crucial difficulty is in achieving sufficiently good cur-
rent bias. As discussed in Section 1.7, this can be easily achieved for low frequencies,
while at higher frequencies the capacitance coupling between the leads effectively shunts
the nanostructure. The resulting environmental impedance, Zenv, is typically much less
than G−1

Q . This impedance causes dissipation, which is absent in the model under consid-
eration. Dissipative quantum mechanics will be considered in Chapter 6, and we will see
that the coherence of many tunneling events in a single junction requires Zenv > G−1

Q over
a wide frequency region. This is similar to the condition of good isolation of a Coulomb
island, GT � GQ, but the point is that no distinct island should be formed at either side
of the junction: the charge in the island would become discrete rather than continuous as
implied by Bloch physics, and we are back to either a SSET or a CPB configuration. A
complicated, but technologically possible, way of approaching the isolation required is
to place uniform high-resistive leads very close to the junction. In this way [68] the sig-
natures of Bloch oscillations have been observed. The dissipation remaining in the setup
suppresses the actual coherence of the tunneling events.

The current-bias condition is easier to fulfil for a single tunneling event not implying
the coherence of successive events. Assuming EJ � EC, we estimate the duration of a
tunneling event as the inverse of the plasmon frequency, ω−1

p . The impedance of the junc-

tion in this frequency range is estimated as Z j � 1/ωpC � G−1
Q . The current bias requires

Zenv � Z j. This can be satisfied by Zenv � G−1
Q . It is interesting to note that the ratio

Z j/Zenv is simply the quality factor of the resonance at plasmon frequency: Q = ωp ZenvC .
The current-bias condition therefore corresponds to negligible damping of the plasmon
oscillations. The junction in this regime is called “underdamped.”

We return to the washboard potential and concentrate on sufficiently big tilt I � Ic (see
Fig. 3.30(b)). Quantum effects aside, the particle is localized in one of the minima of the
washboard potential. This is the zero-voltage state of the junction: on average, the par-
ticle does not move, and thus the time-averaged voltage is zero. Since the potential is
tilted, it is energetically favorable to increase the phase. At sufficiently low temperature,
this involves quantum tunneling through the potential barrier. After tunneling, the par-
ticle exerts classical motion, with the energy corresponding to the initial energy in the
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minimum. If this energy does not exceed the energy of the next potential minimum (this
corresponds to I < 0.22Ic), the particle oscillates in the neighboring well. Eventually, it
dissipates energy to the environment and stops at the bottom of the well. Then the next tun-
neling event takes place. Since the energy is dissipated between the tunneling events, they
are evidently incoherent. If I > 0.22Ic, the classical motion after the tunneling event is
unrestricted; the particle has sufficient energy to transverse all the potential barriers and to
travel down the slope (see Fig. 3.30(c)). If the dissipation due to the environment is strictly
zero, the particle always accelerates. The finite dissipation stabilizes its velocity at some
finite average value. By virtue of the Josephson relation, this means the average voltage
across the junction. Therefore, a single tunneling event at I > 0.22Ic switches the junction
between two stable regimes: zero-voltage and finite-voltage. This facilitates the observa-
tion of single-tunneling events and the accurate determination of the rate of these events.
The usual measurement setup is as follows: the current is ramped up from a low value until
the switching to the finite-voltage state takes place. After the finite voltage is detected, the
current is brought back to a low value. The measurement is repeated many times until
the switching current distribution is characterized. The tunneling rate is then extracted
from this distribution. Macroscopic quantum tunneling was experimentally observed in
1981 [69] under conditions where quantum tunneling was affected by dissipation. Later
experiments were performed [70] with an improved quality factor Q � 30.

The rate is exponentially suppressed and can be estimated from the semiclassical for-
mula as � ∝ exp(−2πNc), Nc being number of the levels in the inverted potential. In
turn, Nc can be roughly estimated from the barrier height u0 and the frequency of the
plasmon oscillations around the minimum, since the latter determines the level separation,
Nc � u0/�ωp. This is why the exponential part can be presented as � ∝ exp(−αu0/�ωp),
where α is a dimensionless coefficient of the order of 2π . The measurements at finite tem-
perature distinguish between quantum tunneling and classical thermal activation. The latter
is proportional to the probability of being at the potential maximum, � exp(−u0/kBT ).
Comparing this with the quantum estimate, we see that quantum tunneling dominates at
kBT < �ωp/α.

The tunneling rate substantially increases close to the critical current, where Ĩ ≡ (Ic −
|Ib|)/Ic � 1 since the potential barrier becomes lower and disappears at Ĩ = 0. Under
these circumstances, the Josephson potential can be approximated by a cubic parabola
(χ = ϕ − π/2, |χ | � π ), given by

U (χ ) = const.+ EJ

(
− Ĩχ + χ3/6

)
. (3.91)

Exercise 3.11. Evaluate the rate of macroscopic quantum tunneling in the cubic
parabola approximation. (a) Compute ωp and u0 for the cubic parabola potential given

in Eq. (3.91). Result: u0 = (25/2/3) Ĩ 3/2 EJ; ωp = 27/4√EJ EC

(
Ĩ
)1/4

. (b) Use the

semiclassical formula to estimate the rate with exponential accuracy. Present the estima-
tion in the form � ∝ exp(−αu0/�ωp) and give the expression for α. Result: α = 36/5.
(c) Estimate at which value of Ĩ the above estimate becomes invalid. Explain why it is
not possible to measure the tunneling rate in this range of Ĩ . Result: Ĩ � (EC/EJ)2/5.



278 Coulomb blockade
�

(d) The asymptotically exact expression for the rate is given by

� = ωp

2π

(
120παu0

�ωp

)1/2

exp(−αu0/�ωp). (3.92)

Given EJ = 300 meV and EC = 0.1 meV, find the bias current value at which the rate
becomes ≈1 s. What are the values of u0 and ωp? Result: Ĩ = 0.219, u0 = 58 meV,
ωp = 12 meV.

3.6 Josephson arrays

It is remarkable that one can group many superconducting islands into an array, connecting
them by Josephson junctions. Importantly, such a system is scalable: one can understand
how the whole system works if one knows how its parts, the capacitors and Josephson
junctions, work. Since the system is quantum, the full description is provided by a Hamil-
tonian. The degrees of freedom are either charges or phases of each island of the array.
The full Hamiltonian consists of Josephson and charging parts. The Josephson part is just
a sum over all junctions, each junction contributing a term proportional to the cosine of the
difference of the phases of the islands that this junction connects. Similarly, the charging
energy is the sum over energies accumulated in each capacitor. A minor complication is
that the charge at the plates of each capacitor is not a variable characterizing the system, it
is a linear function of these variables, integer and induced charges. Therefore the Coulomb
energy is most conveniently expressed in terms of the inverse capacitance matrix C−1 that
relates voltages and charges in the islands, Vi =∑

j (C
−1)i j Q j . The full Hamiltonian thus

reads as follows:

Ĥ =
∑

i , j=islands

(e2/2)(N̂i − Qi )Ĉ
−1
i j (N̂ j − Q j )

+
∑

k=junctions

E (k)
J cos(ϕ̂(k)

1 − ϕ̂(k)
2 ). (3.93)

As in a single island, N̂i and ϕ̂i are the operators satisfying [N̂i , ϕ̂ j ] = −2iδi j .
Both our interest in the arrays and our difficulty in understanding the physics arise from

the same source: the large number of quantum degrees of freedom involved. While a single
superconducting island corresponds to one particle, a superconducting array corresponds to
many quantum interacting particles. While a single superconducting island can be regarded
as a home-made atom, an array presents a large collection of atoms, an artificial solid
state system. For a system made of simple elements, the quantum physics of arrays is
extraordinary rich and has analogies, and even direct similarities, with other complicated
systems, for example quantum (anti)ferromagnets. The scalability of the arrays makes them
suitable for quantum computer designs.

For further consideration of Josephson arrays, we focus on three topics: quantum phase
transitions, vortices, and Kosterlitz–Thouless phenomena. A comprehensive review of the
physics of Josephson arrays can be found in Ref. [71].
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3.6.1 Quantum phase transition

Although the quantitative physics of the arrays is very much involved, the main qualita-
tive feature is understood using a simple guide – the Heisenberg uncertainty relation. Let
us consider an infinitely big uniform array that is characterized by the typical scales of
Josephson and charging energies, EJ and EC. If EC � EJ, the charge in each island is well
defined. It costs a charging energy EC to add an extra hole (electron) into the array. The
array is therefore similar to an insulator or semiconductor with a gap of order EC. One can
force charges to the array by applying a sufficiently large gate voltage; this is like doping a
semiconductor. An important effect of the Josephson energy is that it makes these charges
movable. Indeed, as discussed, a Josephson junction connecting two superconductors pro-
vides an amplitude for a Cooper pair hopping between them. The charges are forced to hop
between the islands, forming extended quantum states, similar to those of charge carriers
in semiconductors.

In the opposite case, EJ � EC, the phase of each island is well defined. Currents induced
by the phase differences emerge between the islands. The array supports the supercon-
ducting current and is like a bulk (inhomogeneous) superconductor. What happens if the
ratio EC/EJ changes from small to large values? A superconductor cannot be continu-
ously changed into an insulator, so somewhere, at EC ∼ EJ, a sharp transition should
occur separating these two distinct behaviors. This is called a quantum phase transition.
Recent speculation identifies the complicated physics of high-Tc superconductors with the
quantum phase transition in Josephson arrays.

Let us consider a more quantitative, though approximate, model of this transition [72].
We consider a uniform array where the dominant capacitance is between an island and the
ground. As we have seen in Section 3.1, this allows us to disregard the interaction between
the charges in different islands. The Hamiltonian in the phase representation is given by

Ĥ =
∑

n

⎛
⎝EC

(
−2i

∂

∂ϕn
− q

e

)2

−
∑

i∈Nb(n)

EJ

2

(
ei(ϕn−ϕi ) + ei(−ϕn+ϕi )

)⎞⎠,

where n numbers the islands, and Nb(n) is a manifold of all neighbors of the island n con-
nected by identical Josephson junctions EJ. This Hamiltonian cannot be solved exactly. Let
us make an approximation in the spirit of the “mean-field” approach or the “Weiss field”
method; these are routinely involved by analysis of the complicated models of (quantum)
statistical mechanics. We concentrate on a given node and replace the terms that depend
on the phases of neighboring islands by their mean values, exp(±iϕi )→ 〈exp(±iϕ)〉. This
brings us to the approximate Hamiltonian of this particular node:

Ĥ = 4EC

(
∂

∂ϕ
− q

2e

)2

− 1

2

(
eiϕ�∗ + e−iϕ�

)
; (3.94)

� ≡ Nnb EJ〈eiϕ〉, (3.95)

where Nnb is the number of neighbors. We note that the CPB is described by almost the
same Hamiltonian (see Eq. (3.82)), with � playing the role of effective Josephson energy.
We are interested in the ground state of the array, and correspondingly in the ground state of
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�Fig. 3.31. Quantum phase transition in Josephson array. (a) Effective Josephson energy � versus Josephson
energy at three values of the charge induced (q/e = 0, 0.5, 1 from lower to upper curve). For
q = e, finite � persists only above a critical Josephson energy. (b) Critical Josephson energy
versus q for the two approximations described in the text.

the Hamiltonian, Eq. (3.94). The phase factor averaged over this state is computed through
the �-dependence of the ground-state energy:

〈eiϕ〉 = −
〈
∂ Ĥ

2∂�∗

〉
= −2∂Eg

∂�∗
.

Recalling Eq. (3.95), we observe that � is determined from the self-consistency equation
as follows:

� = −2Nnb EJ
∂Eg(|�|)
∂�∗

. (3.96)

If EJ does not exceed a certain critical value E (c)
J , the only possible solution is � = 0.

There are no hops between the islands, and the array is insulating. At EJ > E (c)
J , the solu-

tion with the minimum energy corresponds to |�| �= 0: the array is superconducting. The
transition takes place at EJ = E (c)

J and |�| approaches zero at this point: this is a second-
order transition (see Fig. 3.31). To find the transition point, we need the dependence Eg(�)
at small �; this is readily given by Eq. (3.86). We find that

E (c)
J Nnb = 2

E+E−

E+ + E−
. (3.97)

We recall that the method in use is approximate. To estimate the accuracy of this approxi-
mation, let us consider an alternative one. We inject a single Cooper pair into an insulating
array. In the absence of Josephson energy, the resulting quantum states |i〉 are labeled by
the number of the island i where the extra charge is situated. The Josephson energy mixes
up these states, the Hamiltonian in this basis being

H = const.− EJ

2

∑
n

∑
i∈Nb(n)

(|n〉〈i | + |i〉〈n|) . (3.98)
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Such Hamiltonians are common in solid state physics. The eigenstates are Bloch states
characterized by the quasimomentum q, |q〉 =∑

i exp(iqr i ), r i being the position of
island i . They extend over all islands as promised above. Let us note that the lowest energy
state corresponding to q = 0 decreases with increasing EJ, Emin = −EJ Nnb/2. There-
fore, at sufficiently big EJ it becomes energetically favorable to add (extract) charges,
Emin + E+ < 0 (Emin + E− < 0), and the movable charges flood the array, resulting in
the superconducting state. The critical value of the Josephson coupling is given by

E (c)
J Nnb = 2 min(E+, E−). (3.99)

The two approximations given in Eqs. (3.97) and (3.99) are plotted in Fig. 3.31(b) ver-
sus the induced charge. It is believed that the true transition line lies between these
approximations.

Control question 3.7. Why is the Eq. (3.99) approximate?

Exercise 3.12. Given the results of Section 3.5.3, determine the asymptotics of �
given by the self-consistency equation, Eq. (3.96), in the limit EC � EJ.

Interaction between electrons in different islands complicates the phase diagram of the
array. We have seen already in Section 3.1 that such interaction stabilizes the charge lattices
with a period exceeding the period of the array, so that the charge distribution is no longer
uniform. Such configurations are called “solid” phases since the emergence of these phases
changes the symmetry of the charge configuration very much in the same way as a solid
phase emerges from a liquid – the translational symmetry is broken. It appears that “solid”
phases are not incompatible with superconductivity: the resulting “supersolid” phases com-
bine superconducting currents with inhomogeneous periodic charge distribution over the
islands. Needless to say, the random background charges mask all effects that depend on
induced charge and therefore may significantly complicate the transition. Nevertheless, by
virtue of the Heisenberg uncertainty principle, the transition should persist and was indeed
observed in a real charge-disordered array [71].

3.6.2 Vortices

One cannot complete a discussion of the arrays without mentioning vortices. There is an
extra tool we can use to tune the properties of Josephson arrays – the magnetic field. In the
presence of a magnetic field, the energy of each Josephson junction c that connects islands
i and j is modified to accommodate the phase shift due to the magnetic field:

E (c)
J cos(ϕi − ϕ j )→ EJ cos(γ (c));

γ (c) ≡ ϕi − ϕ j −	i j ; 	i j = 2e

c

∫ r j

r i

dr · A(r),
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where A is the vector potential of the magnetic field, and r i and r j are the coordinates
of the islands. The quantity γ (c) is known as the gauge-invariant phase. We see that in the
presence of a magnetic field it is a characteristic of a junction rather than of the phases of
two islands. The vortices in the arrays resemble Abrikosov vortices in bulk superconductors
(see Appendix B). As in that case, the magnetic field favors the formation of vortices.
However, there are differences due to the discrete nature of the arrays.

In a superconducting film, a vortex has a coordinate: a point where the superconducting
order parameter becomes zero to accommodate the phase whirl. In the arrays, the super-
conducting order parameter in the islands never vanishes. Vortices in the arrays do not
have a point-like core. Rather, they dwell in plaquettes: the smallest loops of the Joseph-
son junctions. Let us consider the simplest plaquette formed by three junctions and a path
encircling the plaquette 1→ 2→ 3→ 1 (see Fig. 3.32(a)). The sum of the magnetic phase
shifts taken along this path is directly related to the total magnetic flux 	 encircled, i.e.

	12 +	23 +	31 = 2π f ; f ≡ 	/	0.

If we take the sum of three gauge-invariant phases, the island phases drop out, as follows:

γ12 + γ23 + γ31 = 	12 +	23 +	31 = 2π f .

Let us now note that the Josephson energies stay the same. This suggests that the states
that differ by this shift are probably equivalent. To remove this ambiguity, let us consider
reduced phases – those shifted by an integer number of 2π to the interval (−π ,π ). Mathe-
matically, they are given by mod(γ ) = γ − 2π [γ /(2π )− 1/2]. The crucial observation is
that the sum of reduced phases along the path is not the same as the sum of the phases; it
may deviate by an integer multiple of 2π ,

γ12 + γ23 + γ31 �= mod(γ12)+mod(γ23)+mod(γ31) = 2π f + 2πM , (3.100)

where the integer M gives the number of vortices in the plaquette. Note that M can be
negative, indicating antivortices. A critically inclined reader has to exclaim at this point:
“But what is going on? They add a π , subtract a π , and sell it as a physical object.” To see
the vortices at work, let us consider the following example.

We take a ring of N identical Josephson junctions penetrated by flux. We disregard the
charging energy for the time being. Let us find stationary states of the ring. The current
must be the same in all junctions. Since the current is directly related to the gauge-
invariant phase in each junction, I = (eEJ/�) sin(γ ), all reduced phases are the same.
Equation (3.100) becomes

N mod(γ ) = 2π f + 2πM ; mod(γ ) = 2π
f − M

N
.

We see that, at a given flux, the ring can be in many stationary states. These states differ
in the number of vortices in the ring. Since |mod(γ )| < π , for a plaquette of N junctions
M cannot deviate from f by more than [N/2]. The energy of a stationary configuration is
given by E = −N cos(mod(γ )) = −N cos(2π ( f − M)/N ). We plot these energies versus
flux and note that, while each curve is periodic in flux with period N	0, the whole set
of curves is periodic with the period 	0 as expected. The stationary configurations can be
stable as well as unstable, corresponding to solid or dashed lines in Fig. 3.32(b). This brings
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�Fig. 3.32. (a) Three-junction Josephson ring: the simplest plaquette housing a vortex. (b) The energies of
the states with different numbers of vortices (labels 1,-1,0 on the curves). Note the �0 periodicity
of the energy and the 3�0 period of each curve.

us to the physical significance of the vortices: they label different stable configurations of
a Josephson array in the limit of well defined phase, EJ � EC.

There is an interesting similarity, or, to put it better, duality, between the discrete charges
in the islands of an array and the discrete vortices in the plaquettes of an array. Let us
recognize the close resemblance between Fig. 3.32(b) and Figs. 3.2 and 3.28. In those
figures, each parabolic curve represented the energy of a certain charge state, while the
whole set of curves displayed e (2e) periodicity in the induced charge. The discrete charge,
corresponding to minimum energy, uniformly increases with q. In Fig. 3.32(b) we have
the same situation with vortices instead of charges and flux instead of induced charge. The
similarity is not exact: while at any given q the number of possible charge states in a CPB
or single-electron box is, in principle, infinite, the number of stable vortex configurations
in a ring of N junctions is restricted by [N/2+ 1]. In addition, the dependence of energy
on f is not precisely parabolic.

The increase in charging energy makes the vortices quantum particles. We see from
Fig. 3.32(b) that at half-integer values of flux the ground state is always degenerate: two
states (say |0〉 and |1〉) that differ by one vortex have precisely the same energy. Making
the analogy with a CPB (Fig. 3.28), we expect that quantum effects lift the degener-
acy. Two resulting quantum states are superpositions (|0〉 ± |1〉)/√2 and are separated by
small energy Es; if EJ � EC, Es is exponentially small. Indeed, the mixing of two vortex
states can only result from the macroscopic tunneling of phase between two distinct vor-
tex configurations. This process for a single junction and for a CPB has been analyzed in
section 3.5. The analytical estimate for Es is more difficult to obtain since, in distinction
from the single junction, the tunneling involves many degrees of freedom: all phases in
the ring. However, estimations for the energy barrier (�EJ) and attempt frequency (�ω �√

EJ/EC remain the same. Therefore, one expects Es ∝ exp(−α√EJ/EC) with α � 1.
This consideration shows that for a finite array a vortex does not make a good particle.

In the course of tunneling, a vortex just disappears from the plaquette: unlike the number
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(a)

(b)

�Fig. 3.33. (a) A vortex in an infinite array tunnels between neighboring plaquettes. Dashed line: a closed
vortex trajectory encircling the islands (marked white). (b) A simple array to demonstrate the
Aharonov–Casher effect.

of charges, the number of vortices in an isolated array is not conserved. The situation is
different for a vortex in the middle of the array. To see why, let us note that the number of
vortices in a given plaquette can only change if the reduced phase at one of the junctions
reaches ±π (the Josephson energy of this junction passes through the maximum at this
point). If the junction is on the array boundary, the vortex just disappears in vacuum. How-
ever, if the junction is in the middle of the array, and therefore is shared by two plaquettes,
the π shift on the junction simultaneously shifts the sum of the reduced phases in both pla-
quettes. Therefore, the vortex moves to the neighboring plaquette and the vortex number is
conserved. For small but finite EC � EJ, this motion may proceed by quantum tunneling.
Thus, we expect that, in a uniform array, a single vortex hops between neighboring pla-
quettes resulting in a delocalized state. The hopping amplitude Es remains exponentially
small. For a uniform square-lattice array, where the capacitance to the ground is a domi-
nant one, one finds Es ∝ exp(−(π3/25/2)

√
EJ/EC). So we again encounter a duality: we

have moving charges at EC � EJ, on the insulating side of the quantum phase transition,
and moving vortices at EJ � EC, on the superconducting side of the transition.

One of the finest things in the array physics is quantum interference in the course of the
vortex motion. We know that the phase of electrons moving in the solid and of charges
moving in the array are affected by the magnetic field. The phase shift accumulated along
a closed-loop trajectory is proportional to the flux penetrating the loop. Let us consider
a vortex moving along a closed-loop trajectory. It encircles a certain number of islands
(marked white in Fig. 3.33(a)). Although the phases of each island in the array are the
same at the beginning and end of the motion, one can show that the phases of the encircled
islands describe a full circle, passing all values in the interval (0, 2π ). The phases of the
other islands are not shifted: they deviate (slightly) from their original values and then
return. We know from our consideration of a CPB that this creates a phase shift proportional
to q for each island (see Eq. (3.88)). This means that the total phase acquired by the vortex
equals 2π

∑
i (qi/2e), the summation running over the encircled islands i . This is the total

charge “penetrating” the loop. This is yet another example of duality between vortices and
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charges. Aharonov and Casher [73] predicted a similar phase shift for magnetic dipoles
moving in an electric field: this gave the name to the effect.

The Aharonov–Casher effect in the array is not only good at illustrating the duality
between vortices and charges, but also illustrates how treacherous this approximate concept
could be. To see this, let us add a vortex to a simple array (Fig. 3.33(b)) and induce a
charge at the central island of the array. The vortex will hop around the island forming
a delocalized state. The energy of the state is affected by the Aharonov–Casher phase
shift. This results in a contribution to the energy of the array that is periodic in q with a
period of 2e. Can we regard this periodicity as a manifestation of the Aharonov–Casher
effect? Evidentally not: we recall that the same periodic contribution persists in the energy
of a CPB where no vortices are present (although the phase of the island can describe
full circles). Let us now change the situation and induce the same charge to all islands
of the array rather than to the central one. It looks like the periodic contribution to the
energy should persist since it is not affected by the charge induced to the outer islands.
We understand, however, that this cannot be true. The isolated array has a certain charge,
and the q-dependence of its energy is purely parabolic in accordance with the reasoning
of Section 3.1. It turns out that we miss a contribution from the process in which a vortex
comes from the vacuum, moves round one of the outer islands, and disappears into the
vacuum again. If all induced charges are the same, this contribution precisely cancels the
contribution of the circulating vortex.

Exercise 3.13. Calculate the energies and eigenfunctions of a single vortex in the
array in Fig. 3.33(b) assuming that the modulus of the tunneling amplitude between
neighboring plaquettes equals Es and that the array is symmetric.

3.6.3 Berezinsky–Kosterlitz–Thouless transition

In the 1970s, Berezinsky [74] and independently Kosterlitz and Thouless [75] found a
phase transition of a new type (BKT transition). Their discovery amounted to a chapter of
statistical mechanics, which we cannot cover in this book. Their ideas have had a significant
impact on quantum transport, and will be discussed in several places in this book.

At first glance, the BKT transition appears to have little chance of being seen in prac-
tice since it occurs in rather specific situations: in systems of particles that move in two
dimensions and are subject to an extremely long-range pairwise interaction that obeys the
logarithmic law. It turns out that two-dimensional Josephson arrays present a unique system
where the BKT transition can be directly observed [76, 77].

To proceed, let us calculate the energy of a single vortex in a two-dimensional square
array with lattice period a in the absence of magnetic field. The presence of the vortex
induces the phase differences on all junctions of the array. These phase differences are
small for the junctions that are far from the plaquette where the vortex is situated. It turns
out that the main contribution to the energy arises from these junctions. Their Josephson
energy can be approximated by a quadratic expansion (as we did in Section 3.5). Also one
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can use the continuous coordinate r instead of discrete positions of the islands and replace
the summation over the junctions by integration over r . Thereby the energy is expressed in
terms of phase gradients ∇ϕ:

E = EJ

2

∫
dr(∇ϕ)2.

Let us enclose the vortex with a circle of radius r . The phase change along this path equals
2π , and the phase gradient is therefore given by |∇ϕ| = 2π/2πr = 1/r . The energy is
expressed as an integral over r :

E = πEJ

∫
dr

r
.

This integral diverges both at small and large r . While integration at small distances is cut
off at r � a, the upper limit is only restricted by the linear size of the array L . The energy
of a single vortex thus diverges with increasing array size. To circumvent this problem, let
us consider a vortex–antivortex pair separated by distance R � L . The phase differences
induced by the vortex and the antivortex cancel each other at distances of the order of R.
Therefore the energy of the pair is finite at L →∞ and can be estimated as follows:

Eint = 2πEJ ln(R/a).

Next, we regard this pair as a thermal fluctuation and estimate the Boltzmann statistical
weight of this fluctuation, summing over all possible positions of the vortex at r1 and the
antivortex at r2:

W1 ≈ a4
∫

dr1 dr2 exp−[E(|r1 − r2|)]/kBT ≈ (L/a)2
∫

dR R

a2
|R/a|−2πEJ/kBT .

At low temperatures, the integral converges at large distances. The statistical weight of the
pairs is small and the thermal activation of pairs can be disregarded. The situation changes
at sufficiently high temperature, greater than T2 = πEJ. The statistical weight diverges.
This indicates that it is more probable that we have a pair in the array than we have none.
Moreover, if a pair is present, the energy cost is compensated for by a diverging entropy
factor.

Eventually, the BKT transition takes place at a lower temperature. Suppose that vortex–
antivortex pairs are already present in the array. If we add another pair, the pairs already
present screen the interaction between the vortex and the antivortex and reduce the energy
cost we have to pay. The divergence takes place at lower temperatures. To quantify this,
we estimate the statistical weight of N pairs separated by a typical distance R:

WN ≈ a4N
∫

dr1 · · · dr2N exp

⎛
⎝− ∑

i< j≤2N

M j Mi (E(|r i − r j |)/kBT )

⎞
⎠

� (L/a)2
∫

dR R4N−3

a4N−2
|R/a|−2NπEJ/kBT .

The indices i and j label vortices and antivortices distinguished by their “charge”
Mi = ±1. This statistical weight diverges at temperature kBTN = πEJ2N/(4N − 2). As
more pairs get involved, the temperature lowers and the transition eventually occurs at
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TBKT = T∞ = T2/2 = πEJ/2. Below this temperature no appreciable concentration of
vortices is present in the array, and the array is superconducting. Above TBKT, the array is
filled with the gas of vortices and antivortices. The vortices move if the current is applied
to the array. This results in dissipation and electric resistance. Thus, we conclude that the
array is in a resistive state.

It is interesting to note that the BKT transition may take place for charges as well [77].
This requires negligible capacitance to the ground and EJ � EC. If the junction capac-
itance C only is present, the interaction energy between the extra charges 2e and −2e,
separated by R, is given by

E = 2e2

πC
ln(R/a).

Repeating all the above reasoning, we predict the BKT transition to occur at kBT =
e2/2πC . Below this temperature, the array is in an insulating state. Above TBKT, the gas
of charges is present and the array conducts. Such a charge BKT transition also takes place
in a normal uniform array. Since in this case the pair components are single charges, ±e,
the transition temperature is four times smaller.

The interaction between charges does not stay logarithmic at distances exceeding the
screening length a

√
C/C0. The same is true for the vortices: Josephson currents around the

vortex generate a magnetic field not taken into account in our consideration; this magnetic
field quenches the phase differences far from the vortex. This takes place at the screening
length estimated as 	2

0/(EJμ0). It is believed that the BKT transition persists provided the
screening length is much bigger than a.

Exercise 3.14. The above estimate of transition temperature holds for a square array.
Give TBKT for triangular and hexagonal arrays with the same Josephson junction energy.

3.7 Superconducting islands beyond
the Josephson limit

In Sections 3.5 and 3.6, we have studied Josephson physics in combination with the
Coulomb blockade. Explicitly or implicitly it was assumed that the energy scales involved
are much smaller than the superconducting energy gap �, at least as far as excitations are
concerned. It allowed us to forget about quasiparticles – single-electron or hole excitations
in the superconductors – and to deal only with coherent states formed by Cooper-pair trans-
fer. It is simple to induce quasiparticles in experiments: one just applies a bias voltage to
the nanostructure that is of the order of�. In this section, we concentrate on the interesting
effects and processes involving single-quasiparticle excitations. The most fundamental,
and first, to be considered is the parity effect. A superconducting island is sensitive to
the parity of the number of electrons in it. Next, we list transport processes that involve
single-electron transfer in superconductors. There are many, and this results in many trans-
port regimes possible in SETs made of superconductors. In Section 3.7.3, we specifically
describe the so-called JQP cycle: a transport regime where coherent Josephson tunneling
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�Fig. 3.34. Parity effect. (a) An odd electron in a superconducting island. (b) The charge states for � > EC:
there is always an even number of electrons in the ground state. (c) The charge states for � < EC:
there is an odd number of electrons in the ground state in the intervals bounded by the dotted
lines. The states with an odd number of electrons are depicted by thicker lines.

co-exists with quasiparticle tunneling. This regime is important, both from the fundamental
aspect of such a co-existence, and in its frequent usage for quantum measurements.

3.7.1 Parity effect

In Sections 3.5 and 3.6 we implicitly assumed that a superconducting island can only con-
tain an even number of extra charges – Cooper pairs. Actually, we have not yet explained
why.

The explanation comes from the microscopic theory of superconductivity (see Appendix
B). According to this theory, in the ground state of a bulk superconducting island all elec-
trons are combined in Cooper pairs: there is an even number of electrons in this state. The
theory also states that quasi-particle excitations – either single electrons or single holes –
are separated by energy � from the ground state. Let us carve a superconducting island
from this superconductor. If there is an even number of electrons, the ground state of the
island is similar to that of the bulk. If we wish to have an odd number, we add an extra
electron (or hole) to the superconducting island. It stacks in the lowest state available for a
quasiparticle; this state is separated by energy � from the Fermi level. Therefore, it costs
the extra energy� to add one extra electron (or hole). Surprisingly, if one adds yet another
electron, the energy of the system may become lower. Two electrons do not have to be
quasiparticles: they can form a Cooper pair and return to the Fermi level. We conclude
that the ground-state energy of a superconducting island has an addition � at any time
that the number of electrons is odd. This is called the parity effect. Let us combine the
parity effect with the familiar picture of crossing parabolas: the charge states versus q (see
Fig. 3.34(b)). We understand that all parabolas with an even number of electrons must be
shifted upwards by energy �. If � > EC, the ground state always corresponds to an even
number of electrons. Let us recall that, for a well isolated island, EJ � (GT/GQ)�� �.
This implies that, in the interesting quantum regime where EC � EJ, one has EC � �, the
parity effect is strong, and we can disregard the states with an even number of electrons.

If � < EC, the situation is slightly more complicated: the ground state has an even
number of electrons in the vicinity of even integer values of q/e (see Fig. 3.34(c)). The
Coulomb diamonds with an odd number of electrons are a factor of (1−�/EC) narrower
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than those with an even number. The overall pattern of diamonds is 2e-periodic in q in
contrast with the e-periodic pattern of a normal-metal island.

Control question 3.8. Which values of �/EC have been taken for the plots in
Figs. 3.34(b) and (c)?

Despite the simplicity of the parity effect and its seemingly robust manifestations, 2e-
periodicity of Coulomb blockade in superconducting systems was not observed until 1992.
This caused significant confusion and even doubts about the validity of the traditional the-
ory of superconductivity. The parity effect was first experimentally confirmed in Ref. [78].
The reference explains that the parity effect is only seen below a typical temperature T ∗.
To estimate this temperature, we note that the parity effect is due to a single quasiparticle
trapped in the island. If there are several thermally excited quasiparticles in the island, in
the state with either even or odd numbers of electrons, the difference between even and odd
is gone. A quick estimation would be kBT ∗ � �. However, the typical number of quasi-
particles at this temperature is already big: they fill the energy levels in the energy strip
of the order of �, that is, there are � �/δS levels and quasiparticles. To obtain a better
estimate, let us calculate a statistical weight of two excited quasiparticles. It is given by the
summation of Boltzmann factors over all possible quasiparticle states εp,

W2 =
∑

ε
(1)
p , ε(2)

p

exp

(
ε

(1)
p + ε(2)

p

kBT

)
=

(
δ−1

S

∫
�

dε νBCS(ε) e−ε/kBT
)2

≈
(
δ−1

S e−�/kBT
∫

dE

√
�

2E
e−E2/2�kBT

)2

= e−2�/kBT�
√
�kBT /δ2

S ,

where νBCS = |E |�(|E | −�)/
√

E2 −�2 is the BCS density of states (see Appendix B).
In the preceding equation, we assume kBT � � and E ≡ ε −�� �. At T = T ∗, W2 �
1, so we conclude that kBT ∗ = �/2 ln(�/δS), kBT ∗ ≈ 0.2�, for typical dimensions of
metallic islands.

Under common experimental conditions, the obstacle to observating the parity effect is
not the temperature of the nanostructure, but rather the undesired electromagnetic irradi-
ation coming from the room-temperature environment (kBT � 100�). A quantum of this
irradiation produces several dozen quasiparticles if absorbed in the nanostructure. These
quasiparticles are subsequently trapped in the islands and superconducting leads nearby
and poison the parity effect. Indeed, it was demonstrated that, owing to the parity effect,
superconducting SET transistors may be used as ultrasensitive detectors of microwave
radiation for frequencies greater than or equal to �/� � 100 GHz [79].

3.7.2 Transport processes involving quasiparticles

The convenient aluminum technology for Coulomb blockade systems results in
superconducting devices, provided the superconductivity of aluminum is not sup-
pressed by a magnetic field. Eventually, the first SET, described in Section 3.2, was
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all-superconducting – both leads and the island were in superconducting states. This did
not matter much for I –V curves of the device in the regime of single-electron transfer.
Since the superconducting gap � was several times smaller than EC, the I –V curves look
very similar to those of a normal SET. The situation changes if � is much bigger than
EC and/or at bias voltages smaller than �. A rich variety of specific single-electron and
multi-electron processes is observed in this range. A complete description would make a
chapter by itself, so the following discussion is very sketchy. We concentrate on trans-
port in two symmetric SETs: an all-superconducting one, and one with a superconducting
island and normal leads (NSN-SET). We give the estimations of the typical rates assuming
eV � � � EC. In these estimations, two small parameters will play a role: GT/GQ and
δS/�. For concreteness, we always assume GT/GQ � δS/�.

We start with single-charge transfers. A transfer from normal metal to a superconductor
would create a quasiparticle; this costs at least � of extra energy. This fact is accounted
for by the BCS density of states. The tunnel rate corresponding to the electrostatic energy
difference �E is obtained by incorporating the BCS factor into Eq. (3.27) as follows:

�S−N(�E) = GT

e2

∫
dE νBCS(E) f (E)(1− f (E −�E))

= GT

e2

√
(�E)2 −�2)�(−�E −�) at T = 0. (3.101)

If a single-charge transfer takes place between two superconductors, a quasiparticle is cre-
ated at each side of the junction. The BCS factors appear on both sides. Assuming the same
gap � for both superconductors yields

�S−S(�E) = GT

e2

∫
dE νBCS(E)νBCS(E −�E) f (E)(1− f (E −�E)). (3.102)

These two rates at vanishing temperature are plotted in Fig. 3.35. The most important fea-
ture is that the tunneling does not proceed below a certain energy threshold:� for�N−S and
2� for �S−S. The square-root singularity of the BCS factor causes the rates to rise quickly
just above the threshold: while �N−S ∝

√
�−�E at E → �+ 0, �S−S suddenly rises

by (π/4) (GT�/e2). This is why the rates are already very close to the normal rate already
at�E > 2� and can be estimated as �se � ��(GT/GQ). Finite temperature smoothes the
singularities. For both rates, the detailed balance relation in Eq. (3.28) holds, as it should.

Let us start with the NSN-SET [80]. At sufficiently high voltages and temperatures, the
transport is determined by the single-charge rates �N−S. The transport characteristics are
readily obtained from the master equation with these rates. Upon decreasing temperature,
�N−S become exponentially small (proportional to exp(−�/kBT )), and more complicated
transport processes take over. At vanishing temperature, this happens below the threshold
voltage V (1)

th that is shifted up by 2�/e with respect to that of the normal SET. What are
these processes? In the normal SET, inelastic co-tunneling would dominate since it can
proceed at an arbitrary small bias voltage. In NSN-SET, inelastic co-tunneling must create
two quasiparticles in the island so that it can proceed only above the threshold voltage
2�/e (see the horizontal dashed lines in Figs. 3.36(a) and (b)). To estimate the rate, we
assume eV � � � EC, so that �cot � (GT/GQ)�se. The elastic co-tunneling still occurs
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at an arbitrary small voltage with a typical rate (GT/GQ)(δS/�)�se. However, it does not
necessarily dominate the transport at V < 2�/e.

If � < EC, at zero bias voltage we encounter degeneracy points between the charge
states with even and odd numbers of electrons, say 0 and 1. Near these points in the course
of the transport cycle the SET switches between zero and one with the aid of a peculiar
single-charge process that we call parity tunneling. We have seen that the state with an odd
number of electrons has a single quasiparticle trapped at the lowest energy level available.
During parity tunneling, this same quasiparticle leaves the island, so the SET goes from
1 to 2, where “2” denotes a state with two electrons. Since the quasiparticle tunnels from
a given state, the rate of this process is rather small, �given � (δS/�)�se (see Eq. (3.36)),
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although it is still faster than elastic co-tunneling. In contrast to the parity tunneling, the
switching between 0 and 1 proceeds with a quasiparticle created anywhere in the allowed
energy strip. Therefore it happens at a much faster rate. The SET spends most of its time
in an odd state waiting for parity tunneling to occur.

If � > EC, the zero-voltage degeneracy points separate states with even numbers of
electrons, say 0 and 2. The switching between these states occurs by means of two-electron
tunneling. Indeed, we understand that two electrons do not have to create a quasiparticle
on entering a superconductor: they can form a Cooper pair at no extra energy cost. It is
important to understand that this process is completely equivalent to Andreev reflection,
considered in Sections 1.8 and 2.8. In the course of Andreev reflection, the electron is
reflected from a superconductor, resulting in a hole. This hole can be regarded as the result
of the second electron tunneling into the superconductor. In distinction from the elastic
Andreev reflection considered previously, the difference between the electron and hole
energies – or the sum of the energies of two incoming electrons – must be equal to the
change of electrostatic energy. For order-of-value estimation of the two-electron tunneling
rate, we can disregard the difference; this yields (GA/GT)�se. The Andreev conductance
GA, as explained in Section 2.8, is usually determined by the effective resistance RN of the
normal lead: GA � G2

T RN. Thus, we have (GT/GQ)� (GA/GT)� 1.

Control question 3.9. Explain the latter estimation.

If we forget about all the processes except two-electron ones, the energetics are the
same as for single-electron tunneling in the normal SET, apart from the doubled charge.
The two-electron transport cycles are formed beyond the Coulomb diamonds, which are
four times higher and twice as wide as in the normal SET. They form a 2e-periodic pat-
tern. This makes the transport extremely sensitive to the parity. If a single quasiparticle
enters the island, its effect on the two-electron transport is a shift of the induced charge
by e. At sufficiently small voltages, this interrupts the two-electron tunneling cycle, and
no transport takes place before a parity tunneling event removes the quasiparticle. Since
two-electron rates are usually faster than the parity tunneling rate, the current is quenched,
being determined by the parity rate. This is called quasiparticle poisoning. Such poisoning
always takes place if one of the states, 0 or 2, is unstable with respect to single-charge
tunneling since the latter process brings a quasiparticle to the island. As we can see from
Fig. 3.36(b), this restricts the two-electron transport to a diamond with maximal height
2(�− EC). The current at the edge of this diamond sharply drops with increasing bias
voltage.

Another low-voltage process is three-electron (3e) tunneling – co-tunneling of three
electrons. To describe it, we start with state 0. First, two electrons enter the island, forming
a virtual state with charge 2e and no quasiparticles. To complete the process, an electron
leaves the island. The resulting final state has charge e and an excited quasiparticle. As for
all co-tunneling processes, the rate estimate is reduced by a factor (GT/GQ) in compari-
son with the two-electron tunneling rate and is given by (GA/GQ)�se. A similar process
with the opposite order of tunneling events brings the SET back from 1 to 0, forming a
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transport cycle. To evaluate the threshold voltage, we note that the difference of the elec-
trostatic energies of the initial and final states is same as for a single-charge tunneling. The
energy given by the voltage source is, however, different. For a single-charge tunneling,
one electron is extracted from a lead. This gives eV/2. For the 3e process, two electrons
are extracted and an electron is added to the opposite lead, resulting in 3eV/2. This is why
the threshold voltage for 3e tunneling is three times smaller than that for single electrons,
V (3)

th = V (1)
th /3. The cycle can also be formed by subsequent 3e and e tunneling processes

(Fig. 3.36(b)). The resulting cycles do not depend on parity. There is a theoretical possi-
bility for more complicated processes that switch between 0 and 1. The threshold voltage
of a process involving N electrons is reduced by a factor N with respect to V (1)

th . However,
the smaller rate of these processes presently forbids their experimental observation.

Let us turn to the all-superconducting SET (SSS-SET) [81]. At sufficiently high volt-
ages, the single-charge tunneling once again dominates the transport. The threshold voltage
for single-charge transport is shifted by 4�/e with respect to the threshold voltage for the
normal SET. The inelastic co-tunneling process produces at least four quasiparticles: two
in the island and one in each lead. The threshold jump in the S–S rate results in the jump
on co-tunneling current at this voltage. Careful theoretical consideration along the lines of
Section 3.4 shows that the maximum conductance at the jump reaches the universal value
GQ/2; this has been proven experimentally [82].

What determines the transport at lower voltages? A peculiarity of an SSS-SET is that at
zero voltage a superconducting current can flow through it. It can be seen as a co-tunneling
of a Cooper pair through both junctions that yields an effective Josephson coupling ESET

J
between the leads, ESET

J � (GT/GQ)2� at � � EC. The effective rate corresponding to
this current is rather large, �(GT/GQ)�se. However, a finite voltage applied to the SET
causes the supercurrent to oscillate with the Josephson frequency 2eV/�. This results in
zero dc current at finite voltage. It is instructive to regard this problem as an energy mis-
match: a Cooper-pair transfer from one lead to another results in energy gain 2eV ; this
energy cannot be easily disposed of into electronic degrees of freedom.

This energy can, in principle, be given to the electromagnetic environment of the SET.
Such energy transfer indeed provides a finite dc current. However, it is not specific for the
SET, it occurs in any Josephson junction, and depends on the properties of the environ-
ment rather than on those of the system under consideration. To this end, we postpone its
consideration until Chapter 6. Another channel of the energy disposal is to create (at least)
two quasiparticles. We note that this can be achieved at arbitrary low voltage, provided
an elementary process involves a sufficient number of Cooper-pair transfers. Since the
energy gain from N transferred Cooper pairs is 2eVN , the corresponding threshold voltage
is �/eN . Let us note the analogy between these processes and multiple Andreev reflec-
tion described in Section 1.8. Both processes transfer a number of Cooper pairs through
the nanostructure, result in the creation of a quasiparticle pair, and have peculiarities at
voltages �/eN .

In real Coulomb blockade systems, many-particle co-tunneling processes are hard to see
due to their low rates. However, 3e tunneling is readily observed in most SSS-SETs and
proceeds as follows. Given the initial state 0, a Cooper pair is transferred to the island,
bringing it to the virtual state 2. During the second step, a quasiparticle tunneling takes
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�Fig. 3.37. Transport regimes in a symmetric SSS-SET. (a) Overall picture at � ≈ EC (corresponding to Ref.
[81]). (b)–(c) Josephson quasiparticle transport cycle. (d) Bright spot transport cycle.

place in another junction. The resulting state has charge e and two quasiparticles: one in the
island and one in the lead. Similar to NSN-SET, a reverse process may bring the SET from
1 back to 0, completing the transport cycle. The threshold voltage of this transport regime
is one-third that of single-electron tunneling. Since three-electron transfers are involved,
a typical rate is estimated as (GT/GQ)3

�� � (GT/GQ)2�se. The three-electron transport
cycle is not sensitive to parity and results in an e-periodic pattern. At lower voltages, the
transport cycle is formed by 3e tunneling and parity tunneling. The latter process transfers
the trapped quasiparticle to the lead. Since the number of quasiparticles in the initial and
final states is the same, the threshold voltage of this process is the same as for single-
electron tunneling in a normal SET (Fig. 3.37).

The I –V curve of a SSS-SET displays spectacular resonant features: high currents in
the vicinity of certain lines or points in the V –Vg plane. At these lines or points, the energy
difference associated with a Cooper-pair transfer through one or both junctions is close to
zero. Therefore there is no energy mismatch for such a transfer, and the junction, in fact,
supports supercurrent. The sharpness of resonant features enables the use of the SSS-SET
in this regime as a sensitive detector, since small changes in gate/bias voltage result in large
changes in current. Many applications of this kind make use of the Josephson quasiparticle
cycle (JQP cycle), sometimes called resonant pair tunneling. It gives rise to the St Andrew
cross features seen in Fig. 3.37(a).

To describe the cycle, let us start in state 0. The resonant Cooper-pair transfer brings
the SET to state 2. This state is sufficiently high in energy for a quasiparticle to tunnel
through another junction, bringing the SET to state 1. Yet this state has enough energy
for another quasiparticle to tunnel through the same junction and bring the SET to 0 to
complete the cycle (Fig. 3.37(b)). The resonance condition reads E(2)− E(0) = eV . An
alternative cycle in the same diamond differs in the junctions where the transfers take
place. First, the Cooper pair is transferred from the island, bringing the SET to state −2.
Two successive quasiparticle additions through another junction bring the SET back to
the beginning of the cycle (Fig. 3.37(b)). Two lines presenting the above condition cross
at 4EC/e. JQP cycles can proceed only at voltages that are sufficiently high to enable
quasiparticle processes. They are not sensitive to parity, forming the e-periodic pattern
shown.
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Another prominent resonant feature is the so-called “bright spot” (the high currents
appear as brighter tones in gray-scale experimental plots). At the bright spot, the Cooper-
pair transfer is resonant in both junctions but in different charge states. The transport
cycle proceeds in four steps: Cooper-pair transfer, bringing the SET from 0 to 2; quasi-
particle tunneling to 1; Cooper-pair transfer to −1; another quasiparticle tunneling to 0
(Fig. 3.37(d)). We will see in Section 3.7.3 that the maximum current for both resonant
processes is estimated as e�se. Since the features are sharp, the maximum differential con-
ductance does not depend on the junction conductance, reaching values of the order of GQ.

Control question 3.10. At which values of Qg and V do the bright spots occur?

3.7.3 Coherence in the JQP cycle

To describe resonant processes taking place in a SSS-SET, we talked about Cooper-pair
transfers as if they were classical processes switching the system between two well defined
states. In fact, they are not. To see this, let us cut off the non-resonant junction. We get a
Cooper-pair box in the limit described in Section 3.5.3. The resonant condition corresponds
to the parabola crossing in Fig. 3.28. We recall that, in this case, the charging states are
not well defined. Cooper-pair transfer is a coherent process and is characterized by an
amplitude EJ/2 rather than by a rate. The transfer proceeds in both directions and results
in new eigenstates that are the quantum superpositions of the two, (|0〉 ± |2〉)/√2.

The JQP cycle thus provides a generic example of quantum transport in a situation where
coherent and incoherent electron transfers are equally important. We will encounter this
many times in Chapter 5. Here we present the proper description of the transport. Before
doing this, we quantify EJ under JQP cycle conditions.

The natural assumption would be that this EJ is the same as that discussed in Section 1.8
and given by the Ambegaokar–Baratoff formula EJ = (GT/4GQ)�. This is indeed true if
�� EC, as assumed in Section 1.8. However, now we have � � EC. To evaluate EJ, we
make use of the tunneling Hamiltonian method. Cooper-pair transfer is a complex process,
involving two-electron tunneling events. Suppose that in the course of the first tunneling
event an electron is transferred from state l in the electrode to state i in the island. The sys-
tem is brought thereby into a virtual state with the island charge e and two quasiparticles in
states l and i . The amplitude is composed of the tunneling amplitude Til and the coherence
factors ui , vl that account for the excitation of quasiparticles (see Appendix B). In order to
annihilate the quasiparticles, the second electron tunneling shall proceed between the same
states and an electron with opposite spin is transferred. The corresponding amplitude is
composed of Til and ul , vi . According to the general formula given in Eq. (3.63), the total
amplitude of the Cooper-pair transfer is given by

EJ

2
=

∑
i ,l

Tiluivl
1

Ei + El + E (+)
Tli ulvi ,
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where Ei ,l are the quasiparticle energies and E (+) is the electrostatic energy paid for the
addition of the electron. Since coherence factors depend on the energies only, uv = �/2E ,
we can replace the summation over the states by integration over energies and use Eq.
(3.63) to express the result in terms of the tunnel junction conductance. This yields

EJ

2
= � GT

2π2GQ

∫
dE dE ′ 1

E + E ′ + E (+)
.

The charging energy suppresses EJ in comparison with the Ambegaokar–Baratoff formula.
Coming back to our general thread, we have to deal with the situation where some tran-

sitions are coherent and characterized by amplitudes whereas others are incoherent and
characterized by rates. We can use neither Hamiltonian quantum mechanics nor the classi-
cal master equation. The proper tool to analyze the situation is the density matrix approach,
which is a convenient quantum generalization of classical probabilities used in the master
equation context. The matrix is defined in a basis where each element presents either a
quantum state or a group of quantum states. Diagonal elements yield the probabilities to be
in a certain (group of) states. Non-diagonal elements of this matrix describe the quantum
coherence between the states involved.

For a completely coherent quantum system, the evolution of the density matrix is
determined by a Hamiltonian:

∂ρ̂

∂t
= − i

�
[Ĥ , ρ̂]. (3.103)

For our case, the Hamiltonian in the basis of |0〉 and |2〉 states is given by the 2× 2 matrix
in Eq. (3.84). The full density matrix certainly has elements ρ00, ρ22, ρ02, ρ20. There also
exists a probability of finding the SET in the charging state 1, so that ρ11 must be present
as well. We recognize that “1” represents a large group of quantum states; each state in the
group is characterized by labels of all possible final states of two quasiparticles excited in
the process of single-electron tunneling. Therefore there is no coherence between the states
of the group “1” and “0” or “2,” ρ12 = ρ10 = 0.

Let us concentrate on the evolution equations for the diagonal elements of the density
matrix. We write down these equations (called Bloch equations) by summing up the terms
originated from Eq. (3.103), with terms describing the probability balance in the master
equation. Denoting the rates of first- and second-quasiparticle tunneling, respectively, by
�a ,�b, we obtain

∂ρ00

∂t
= −i

EJ

2
(ρ20 − ρ02)+ �bρ11; (3.104)

∂ρ22

∂t
= i

EJ

2
(ρ20 − ρ02)+ �aρ22; (3.105)

∂ρ11

∂t
= �aρ22 − �bρ11. (3.106)

(We drop � for brevity.)
The Hamiltonian brings about non-diagonal elements to the first two equations, so we

need the equations for non-diagonal elements as well. We obtain them using the same
procedure:
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∂ρ02

∂t
= i2ερ02 − i

EJ

2
(ρ22 − ρ00)− 1

2
�aρ02. (3.107)

Since the density matrix is Hermitian, ρ20 = ρ∗02, and we do not need to write a separate
equation for ρ20: it is obtained by complex conjugation. The origin of the factor 1/2 in
front of �a is precisely the same as in Eq. (3.70). Heuristically, only one index (“2”) is
affected by quasiparticle decay, whereas two are affected in the equation for ρ22.

To find the stationary solution of these equations, let us first exclude the non-diagonal
elements with the help of Eq. (3.107). The resulting system is given by

0 = ∂ρ00

∂t
= �p(ρ22 − ρ00)+ �bρ11; (3.108)

0 = ∂ρ22

∂t
= −�p(ρ22 − ρ00)+ �aρ22; (3.109)

0 = ∂ρ11

∂t
= �aρ22 − �bρ11, (3.110)

where

�p ≡ E2
J�a

16ε2 + �2
a

. (3.111)

We will refer to �p as the pseudorate. Indeed, the above equations coincide in form with
a master equation where incoherent switchings from “0” and “1” and back take place with
equal rates �p. This is of course not an adequate picture of quantum transport in this sit-
uation; one can see this, for example, from the fact that �p depends on the intensity of
another rate, �a , and would vanish if �a = 0. However, the use of pseudorates conve-
niently reduces the density matrix approach to equations for probability balance. Using the
pseudorate, one readily solves for ρ11, ρ22, and ρ00. The average current is found from the
relation I/e = �bρ11 and is given by

I/e = �a�b�p

�a�b + �p(2�b + �a)
= E2

J�a

16ε2 + �2
a + E2

J (2+ �a/�b)
. (3.112)

We see that the current reaches its maximum, Imax � e max(E2
J /�,�) � e�se, at the res-

onance ε = 0 and falls off upon decreasing the detuning |ε|. A current versus ε plot shows
a Lorentzian peak, with the half-width of order max(EJ,�) � �se. Since the detuning is
shifted by the bias voltage, δε = eδV , a typical differential conductance near the peak is
just GQ.

To access the FCS in the density matrix approach, we adopt the method used for the
master equation in Section 3.2.5. We monitor the rate of the �b transition and modify
the rate in Eq. (3.104): �b → �b exp(iχ ). We look at an eigenvalue λ of the evolution
equations; this is determined by solving the following system:
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λρ00 = −i
EJ

2
(ρ20 − ρ02)+ �b exp(iχ )ρ11; (3.113)

λρ22 = i
EJ

2
(ρ20 − ρ02)+ �aρ22; (3.114)

λρ11 = �aρ22 − �bρ11; (3.115)

λρ02 = i2ερ02 − i
EJ

2
(ρ22 − ρ00)− 1

2
�aρ02; (3.116)

λρ20 = −i2ερ02 + i
EJ

2
(ρ22 − ρ00)− 1

2
�aρ02; (3.117)

which is an analog of Eq. (3.25). The FCS is given by Eq. (3.26) and current cumulants are
obtained by expanding λ(χ ) near χ = 0. The FCS obtained in such a way is not the FCS
of the master equation with pseudorate given by Eq. (3.111), the difference can already be
seen in the noise. However, there is no simple limit where the difference is qualitative. If
one of the rates �p,�a , or �b is much smaller than the other two, the FCS is Poissonian
with this smallest rate and is indistinguishable from a FCS of a master equation. We will
see in Section 5.5 that applying time-dependent voltages – quantum manipulation – will
make the quantum features explicit.

The density matrix approach can be easily expanded to more complicated systems.
Let us illustrate this by giving the equations that describe the bright spot transport cycle
(Fig. 3.37(d)). We have four states, 0, 1,−1, and 2. There is coherence between 0 and 2
and between 1 and −1, giving rise to non-diagonal elements of the density matrix,
ρ02, ρ20, ρ1,−1, ρ−1,1. The coherence within each pair of states is described by a 2× 2
Hamiltonian matrix, with parameters E (1)

J , ε(1) (E (2)
J , ε(2)) for 0, 2 (−1, 1). Again, we sum

up the contributions to evolution equations from coherent and incoherent transitions. For
diagonal elements we obtain

∂ρ00

∂t
= −i

E (1)
J

2
(ρ20 − ρ02)+ �bρ−1,−1; (3.118)

∂ρ22

∂t
= i

E (1)
J

2
(ρ20 − ρ02)− �aρ22; (3.119)

∂ρ11

∂t
= i

E (2)
J

2
+ �aρ22; (3.120)

∂ρ−1,−1

∂t
= −i

E (2)
J

2
�aρ22 − �bρ−1,−1. (3.121)

For non-diagonal ones we have

∂ρ02

∂t
= i2ε(1)ρ02 − i

E (1)
J

2
(ρ22 − ρ00)− 1

2
�aρ02; (3.122)

∂ρ−11

∂t
= i2ε(2)ρ−11 − i

E (1)
J

2
(ρ11 − ρ−1,−1)− 1

2
�bρ−11. (3.123)

Exercise 3.15. Solve the above equations to find the stationary current in the cen-
ter of the bright spot (ε(1) = ε(2) = 0). Hint: introduce pseudorates for both coherent
transitions.



4 Randomness and interference

This chapter treats quantum interference effects in disordered conductors. We have already
discussed interference phenomena for the few-channels case in Section 1.6, and in Chapter
2 we have seen that the scattering approach becomes increasingly complicated for many
transport channels. This is why we need special methods to treat many-channel diffusive
conductors. Some of their properties can be understood if we replace the Hamiltonian or
a scattering matrix by a random matrix. In Section 4.1 we discuss random matrices as
mathematical objects and review the properties of their eigenvalues and eigenvectors. We
then use random matrix theory to describe the properties of energy levels (Section 4.2) and
transmission eigenvalues (Section 4.3).

To describe interference effects in a very broad class of conductors, we develop in Sec-
tion 4.4 the methods to handle interference corrections for a circuit theory, which allows us
to take account of all nanostructure details. We evaluate universal conductance fluctuations
and the weak localization correction to conductance.

We also find that, in some situations, electrons are localized – confined to small regions
of space. Section 4.5 discusses under which conditions this strong localization occurs and
briefly outlines transport properties associated with this regime.

4.1 Random matrices

In this section, we describe disordered and chaotic systems. Disordered systems contain
some defects that scatter electrons; chaotic ones do not have any defects, but scattering
at the boundaries induces a very different motion for particles with very close energies.
In these systems, the positions of energy levels and transmission eigenvalues are ran-
dom and vary from sample to sample. We have already encountered such a situation
when discussing the transport properties of diffusive conductors in Chapter 2. Quantities
of interest to quantum transport are not sensitive to the positions of the energy levels,
and transmission eigenvalues and can be described statistically. It is natural, following
the idea introduced by Wigner in the 1950s, to consider the Hamiltonian and the scat-
tering matrix as random matrices. Energy levels as eigenvalues of the Hamiltonian, and
transmission eigenvalues as eigenvalues of t̂† t̂ , where t̂ is the transmission block of the
scattering matrix, are regarded as random entities with certain statistical properties. The
mathematical technique dealing with random matrices is known as random matrix theory
(RMT). In this section, we review the basic properties of random matrices as mathemat-
ical objects. Derivations and additional details can be found in Refs. [83] and [84]. The
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connection between RMT and quantum transport is studied in the following sections of
this chapter.

4.1.1 Gaussian ensembles

Consider a set of square matrices Ĥ of size N whose elements are random numbers.
Due to the central limit theorem, it is natural to assume that these elements are Gaussian-
distributed. We consider three species of random matrices: (i) real and symmetric random
matrices, so that Hmn = Hnm = H∗mn ; (ii) Hermitian random matrices without any further
constraints, Hmn = [Hnm]∗; (iii) matrices of double size (2N ). The latter, when expanded
in Pauli matrices σ̂ ,

Ĥ = Ĥ (0)1̂− iĤ · σ̂ , (4.1)

have the following symmetry: the N × N matrix Ĥ (0) is real and symmetric, and the
N × N components of the vector Ĥ are real and antisymmetric, H (γ )

mn = −H (γ )
nm , γ =

x , y, z. In Section 4.2, we will see that these types describe the Hamiltonian of a system
with (i) time-reversal symmetry; (ii) broken time-reversal symmetry, for example because
of an applied magnetic field; and (iii) presence of spin-orbit scattering. For each of the
species, we assume that the probability density (in the space of all matrices with the
required symmetry) of finding a matrix Ĥ is Gaussian, given by

P(Ĥ ) ∝ exp

[
− β

2δ2
S

Tr Ĥ2

]
, (4.2)

where δS is the only parameter of the problem; we will see that it is equal to the average
spacing between the eigenvalues of the random matrix. The variable β equals 1, 2, and 4
for the symmetries (i), (ii), and (iii), respectively. Note that β essentially counts a number
of independent real numbers needed to describe an element of a random matrix – real,
complex numbers, and 2× 2 matrices for (i), (ii), and (iii), respectively. Random matri-
ces are Gaussian-distributed around zero. In particular, for case (i) the probability can be
written as

P(Ĥ ) ∝ exp

[
− 1

2δ2
S

∑
mn

H2
mn

]
,

meaning that all matrix elements are independent random variables, Gaussian-distributed
around zero with the same variance δ2

S.
A set of random matrices described by Eq. (4.2) is known as a Gaussian ensemble,

specifically a Gaussian orthogonal ensemble (GOE) for symmetry (i), a Gaussian unitary
ensemble (GUE) for symmetry (ii), and a Gaussian symplectic ensemble (GSE) for sym-
metry (iii). Eigenvalues and eigenvectors of these random matrices are random quantities
with statistical properties; RMT was designed to study these properties.



301 4.1 Random matrices
�

4.1.2 Eigenvalues of random matrices

A naive expectation would be that, since random matrices are Gaussian-distributed, their
eigenvalues and eigenvectors are also Gaussian-distributed and independent. It turns out
that this is not the case. For example, eigenvalues of random matrices repel each other. To
understand the origin of this repulsion, we consider first an example of a random 2× 2
matrix taken from a Gaussian ensemble. For instance, in a GUE a matrix must be real and
symmetric. A general 2× 2 real symmetric matrix has the following form:

Ĥ =
(

H0 + Hz Hx

Hx H0 − Hz

)
, (4.3)

where H0, Hx , and Hz are random real variables. From Eq. (4.2) we see that all three
are independent Gaussian variables distributed around zero with the dispersion of δ2

S/2,
P(Ĥ ) ∝ exp(−δ−2

S (H2
0 + H2

x + H2
z )).

The matrix in Eq. (4.3) can be easily diagonalized, producing the eigenvalues E1,2 =
H0 ±

√
H2

x + H2
z , and the spacing δE = E2 − E1 = 2

√
H2

x + H2
z does not depend on H0.

Since Hx and Hz are two independent Gaussian variables, we can treat them as two com-
ponents of a random two-dimensional vector, with the eigenvalue spacing being twice the
length of this vector. Introducing the polar coordinates – length δE/2 and the polar angle
θ – and writing dHx dHz = δE dδE dθ/4, we find the distribution function of the spacing
δE , up to a normalization constant:

PG O E (δE) ∝ δE exp
(
−(δE)2/4δ2

S

)
.

Note that the distribution function vanishes if the spacing is zero: eigenvalues cannot come
close, or, in other words, they repel each other. This repulsion comes technically from the
fact that the Jacobian of the transition from Cartesian to polar coordinates in two dimen-
sions is proportional to the polar radius. In this sense, the repulsion is a purely geometric
effect, originating from the symmetry constraints: the fact that we only have two relevant
parameters is due to the symmetry.

Let us now look at a 2× 2 matrix from a GUE, which depends on four real parameters:

Ĥ =
(

H0 + Hz Hx + iHy

Hx − iHy H0 − Hz

)
; (4.4)

the eigenvalue spacing is given by δE = 2
√

H2
x + H2

y + H2
z . Representing Gaussian vari-

ables Hx , Hy , and Hz as three components of a random vector and introducing spherical
coordinates, we obtain the distribution function of the spacing:

PGUE(δE) ∝ (δE)2 exp
(
−(δE)2/4δ2

S

)
.

Note that the repulsion is stronger than in a GOE: the distribution function is proportional
to (δE)2 rather than to δE .
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For larger matrices, the calculations become progressively cumbersome. However, for
N � 1 one can still obtain an expression for the joint probability of eigenvalues:

Pβ (E1 · · · EN ) ∝ exp

(
− β

2δ2
S

N∑
n=1

E2
n

) ∣∣∣∣∣
∏
n>m

En − Em

δS

∣∣∣∣∣
β

∝ exp

(
−β

[
1

2δ2
S

∑
n

E2
n +

∑
m<n

ln |En − Em |
])

. (4.5)

This formal expression has a transparent physical analogy. Let us identify Ei/δS as posi-
tions of classical charges. Then the probability Pβ plays the role of the partition function,
with effective temperature β−1, and the exponent that of the free energy. The first term
in the exponent is a sum over all positions and thus represents the confining potential
U ∝ x2: the charges prefer to be close to the origin. The second term is a sum over all
pairs of charges, and thus it represents interaction between the charges. This interaction
is repulsive (positive potential) and logarithmically depends on the distance between the
charges (like Coulomb interaction in two dimensions). Thus, the behavior of the eigenval-
ues of random matrices is the same as the behavior of N charges with logarithmic repulsion
confined in a parabolic potential. The repulsion of the charges means that the eigenvalues
of random matrices repel each other, as we have already seen in the example of a 2× 2
matrix. The higher the temperature, the easier it is for the “charges” to overcome the level
repulsion and come close to each other; this is why the level repulsion is weakest in a GUE
(β = 1) and strongest in a GSE (β = 4).

Let us now investigate the quantitative consequences of Eq. (4.5). We look at the density
of eigenvalues {En}, defined as

ν(E) =
∑

n

δ(En − E),

and consider first the average density. Note that in Section 1.2 we investigated the density
of two-dimensional electrons confined along one dimension. What we discovered is that
the density vanishes at the edge of the electronic system as the square root of the distance to
the edge. Similarly, eigenvalues of random matrices form a band, and the average density
vanishes as a square root at the band edge. For all three ensembles, in the limit of large
matrices N →∞, the following concise expression is valid:

〈ν(E)〉 =
√

N

πδS

√
1−

(
E

2
√

NδS

)2

. (4.6)

The density takes the shape of a semicircle centered around E = 0. There are no eigenval-
ues for |E | > 2

√
NδS: the eigenvalues lie within a wide band. Close to the center of the

band, the density of eigenvalues is constant and proportional to
√

N . This is easy to explain.
Indeed, the eigenvalues are found as solutions of the equation det(Ĥ − E) = 0, which is a
polynomial equation. The first two terms in the polynomial are E N and E N−1 Tr Ĥ . The
trace of Ĥ is a sum of N random terms, Gaussian-distributed around zero with variance
δS. By virtue of the central limit theorem, Tr Ĥ is also Gaussian with zero average and the
variance of Nδ2

S. Thus, the maximal eigenvalue is of the order of δS
√

N . Since one has N
eigenvalues, it follows that the density of states at the band center is of the order of

√
N/δS.
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It is more convenient to look at the range of eigenvalues close to the center of the band,
and this is indeed what we need for the applications considered in this chapter. Below we
only consider properties of the eigenvalues at the center of the band, E � √NδS, and
assume that the average density of eigenvalues is constant.

Next, we look at the distribution function of spacings δE between adjacent eigenvalues.
This distribution can be calculated in a closed form, but the expression is too cumbersome.
Instead, there is an convenient approximation known as the Wigner surmise, or the Wigner–
Dyson distribution,

ρβ (δE) = aβ

(
δE

δS

)β
exp

(
−bβ

(
δE

δS

)2
)

, (4.7)

where the coefficients a and b are given by

a1 = π
2

; a2 = 32

π2
; a4 = 32 768

729
;

b1 = π
4

; b2 = 4

π
; b4 = 64

9π
.

We see that the probability of finding low spacings δE � δS is suppressed; the suppres-
sion increases from a GOE to a GUE and then to a GSE, due to the factor (δE)β in Eq.
(4.7). This is the same eigenvalue repulsion that we have already encountered. Using the
distribution, one can calculate all its moments. For example, the average spacing between
adjacent eigenvalues in all three ensembles equals δS, as we anticipated. The root mean
square of the spacing

√〈(δE)2〉 − 〈δE〉2 is different in all three ensembles. Due to the
weakest repulsion, it is largest in the GOE, where it equals (4/π )2δS.

Exercise 4.1. Calculate the root mean square of the spacing in a GUE and in a GSE.

Next, we calculate the (irreducible) pair correlation function, given by

R2(δE) ≡ 〈ν(E) ν(E + δE)〉
〈ν〉2 − 1. (4.8)

Since we are working in the middle of the band, this does not depend on the global position
E , only on the separation δE between the levels.

Equation (4.8) is the correlation function. We set the energy of one eigenvalue at E and
look at the probability that another eigenvalue is found at E + δE . It is important that these
eigenvalues do not have to be adjacent, in contrast to Eq. (4.7); several or many eigenvalues
can lie between these two. For large separations, δE � δS, it is most probably the case;
the two levels do not know anything about each other, the densities of eigenvalues at E and
E + δE are uncorrelated, and R2 vanishes. For low separations, δE � δS, there is a big
chance that two eigenvalues are adjacent and they repel each other. Thus, for δE → 0, the
correlation function must approach −1.
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�Fig. 4.1. Two-point correlation functions for three different ensembles: GOE (1), GUE (2), and GSE (3).

The RMT result for the correlation function is given by

R2(ε) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
δ(ε)− s2(ε)− ds

dε

∫ ∞
ε

s(ε′)dε′ (GOE)

δ(ε)− s2(ε) (GUE)

δ(ε)− s2(2ε)+ ds(2ε)

dε

∫ ε

0
s(2ε′)dε′ (GSE),

(4.9)

where ε ≡ |δE |/δS and s(x) ≡ sinπx/(πx). These functions are shown in Fig. 4.1. The
first term, with the delta-function, is the same in all three ensembles. It is just the correla-
tion of an eigenvalue with itself and is required to ensure the conservation of numbers of
eigenvalues:

∫
dε R2(ε) = 0. The second term is negative and is thus a manifestation of

eigenvalue repulsion. The strongest repulsion is for eigenvalues taken at the same value of
E . The repulsion depends on |δE | in an oscillatory manner. For example, in a GUE eigen-
values are not correlated if the separation between them is an integer multiple of δS. For
separations much greater than the eigenvalue spacing, ε � 1, the smooth part of the pair
correlation assumes a simple form:

Rsmooth
2 (ε) = − 1

π2β(ε + i0)2
. (4.10)

A useful quantity is the eigenvalue number variance  2(δE): the variance of the
number of eigenvalues between E and E + δE . It is meaningful provided the interval con-
tains many eigenvalues, δE � δS. The level number variance is related to the correlation
function R2 as follows:

 2(δE) =
∫ E+δE

E
dE1 dE2 R2(E2 − E1) = 2

∫ δE

0
(δE − E ′)R2(E ′)dE ′.

The level number variance does not contain new information as compared with the cor-
relation function, it just represents this information differently – the smooth part is better
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emphasized than the oscillations. The double integration of Eq. (4.10) gives, for the smooth
part,

 smooth
2 (δE) = 2

βπ2
ln
δE

δS
. (4.11)

Note that if the eigenvalues were independent (uncorrelated), the eigenvalue number vari-
ance would grow proportionally to the eigenvalue number itself, i.e. proportionally to δE ,
in accordance with the Gauss theorem. On the other hand, if the eigenvalues were equidis-
tant, the variance obviously is less than one. RMT gives a result intermediate between
these two extremes. This property is known as spectral rigidity: the spectrum consisting of
equidistant levels is maximally rigid, whereas the RMT eigenvalue spectrum is more rigid
than the one of independent eigenvalues.

Control question 4.1. On top of the smooth behavior given in Eq. (4.11), the level
number variance also contains a contribution which oscillates with δE . Estimate the
period and the magnitude of the oscillations.

4.1.3 Eigenvectors of random matrices

Properties of eigenvectors of random matrices are as simple as they could be: in the leading
order in 1/N , eigenvectors corresponding to different eigenvalues are independent. Thus,
we only need to study properties of a single eigenvector (ψ1 · · ·ψN ). We assume that it is
normalized,

∑ |ψi |2 = 1. The distribution function for the amplitudes ψi is Gaussian, and
for the intensities ψ2

i it is written as follows (y = N |ψi |2):

ρ(y) =
⎧⎨
⎩

1√
2πy

e−y/2 (GOE)

e−y (GUE),
(4.12)

(the Porter–Thomas distribution). The distribution is normalized such as∫
dy ρ = 1.

Control question 4.2. What is the average intensity 〈|ψi |2〉? Explain the result.

Another remarkable fact is that, also in the leading order in 1/N , the properties of eigen-
values and eigenvectors of random matrices are not correlated: they can be considered as
independent entities.

4.1.4 Parametric statistics

In practice, we can have a control parameter that is varied in the experiment. It could, for
example, be the external magnetic field or shape of the external potential. Let us denote
this parameter as X . Each individual random matrix depends on X ; this dependence is
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�Fig. 4.2. Parametric evolution of eigenvalues. Dashed lines show the motion of eigenvalues without the
repulsion taken into account; solid lines include the repulsion.

such that, for any value of X , the statistical properties of the Gaussian ensemble of random
matrices stay the same. However, we can now ask new types of questions: What is the
correlation between the properties of a random matrix at different values of X?

The first question concerns the evolution of the eigenvalues. By varying X , we shift all
the eigenvalues of the random matrices simultaneously. Imagine we have taken a random
matrix, and for X = 0 it has a set of eigenvalues E1(0), . . . , EN (0). For a finite value of
X , the eigenvalues have evolved to E1(X ), . . . , EN (X ). Since the eigenvalues are random,
they also evolve randomly. At small X , this evolution is characterized by the eigenvalue
velocity – the derivative dEn/dX . On average, the velocity vanishes, since, for some matri-
ces, the nth eigenvalue moves up, and for others it moves down. Instead, one characterizes
the eigenvalue motion by the mean square of eigenvalue velocity:

C(E) = 1

〈ν(E)〉

〈∑
n

(
dEn

dX

∣∣∣∣
X=0

)2

δ(E − En)

〉
.

Close to the band center this variance does not depend on E . The parameter C characterizes
the response of the random matrix ensemble to an external perturbation. It is convenient
to rescale the variable X so that it takes the same dimension as eigenvalues, x = X

√
C .

Expressed in terms of x , the properties of parametric statistics are universal [85] and do
not really depend on the origin of the variable X . Note that x measures the shift of the
eigenvalue due to the external perturbation.

If we take two adjacent eigenvalues, they both evolve with the parameter x ; the spacing
δE between them is also a function of x . For x ∼ 1, the levels typically come close to each
other. Further evolution (when the eigenvalues first become degenerate, and eventually pass
each other) is prohibited by the level repulsion, so that they turn around and start moving
in the opposite direction (see Fig. 4.2). This is the situation that we know from quantum
mechanics as avoided crossing. For x � 1, the eigenvalues have already undergone many
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crossings, and thus the eigenvalues at the same value of E do not know anything about
each other: they are uncorrelated.

An appropriate way to look at the parametric statistics is to use the analogy with a system
of electric charges representing the eigenvalues, with a parabolic confining potential, log-
arithmic repulsion, and the effective temperature β−1. To describe the level motion under
external perturbation, one considers the dynamics of the charges. We introduce the ficti-
tious time τ and look at the evolution of the positions of all charges. Since they are at finite
temperature, they now perform random Brownian motion. The joint distribution function
of the positions of all the charges (the distribution function of all eigenvalues), P({En}, τ ),
obeys the Fokker–Planck equation:

∂P

∂τ
= βC

2

N∑
n=1

∂

∂En

(
1

β

∂P

∂En
+ P

∂

∂En

(
1

2δ2
S

∑
n

E2
n −

∑
m<n

ln |En − Em |
))

. (4.13)

On the right-hand side, the first term (second derivative) represents “diffusion,” whereas
the other two are responsible for the “drift” in the effective potential – external parabolic
confinement and logarithmic interaction potential created by all eigenvalues. In addition to
the “effective temperature” β−1, we also have the “viscosity” 2/Cβ. Equation (4.13) tells
us that the eigenvalues can perform Brownian motion in time τ , but, due to the logarithmic
repulsion, they cannot come close to each other; then we have an avoided crossing. The
time τ cannot be expressed in terms of the variable x ; the rule is that one has to replace
time differences τ − τ ′ by (x − x ′)2.

One proceeds by reducing Eq. (4.13) to an equation for the average density of eigen-
values, which has the form of the diffusion equation, and then derive various correlation
functions. Thus, the distribution of the level velocities is Gaussian with zero average and
variance equal to C :

ρ(v) = 1√
2πC

exp

(
− v

2

2C

)
, v ≡ dEn

dX
.

Another question concerns the correlation function of eigenvalues at different values of
the perturbation x , which is a generalization of the function R2 in the case of parametric
statistics. We define it in the following way:

R2(δE , δx) = 〈ν(E , x) ν(E + δE , x + δx)〉
〈ν(E)〉2 − 1,

where we have taken into account that the average density of states does not depend on
x . The previously studied function R2(E) is a particular case for δx = 0. The RMT result
for this correlation function is rather cumbersome, and we only show the GUE expression,
ε = |δE |/δS,

R2 = 1

2
Re

∫ 1

−1
dz

∫ ∞
1

dz′ exp

{
−π

2(δx)2

2
(z′2 − z2)− iπε(z − z′)

}
.

For δE = 0, δx � 1, we obtain R2(0, δx) = −2/(βπ2(δx)2) (this result is valid for all
three Gaussian ensembles). The negative sign of the correlation is again a manifestation of
the eigenvalue repulsion.
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4.1.5 Circular ensembles

Gaussian ensembles are useful in discussing the positions of energy levels. If we want to
discuss transport properties, we need to deal with scattering matrices rather than Hamiltoni-
ans. Scattering matrices are unitary, providing the motivation to study properties of random
unitary matrices. Let us consider an ensemble of random matrices ŝ that are unitary, ŝ†ŝ,
and possess the following symmetry: they are either (i) symmetric, (ii) not symmetric,
or (iii) each element of them is a 2× 2 matrix with the symmetry properties given by
Eq. (4.1). We assume that these random matrices are distributed uniformly: the probabil-
ity of finding a matrix is always the same, provided the matrix is unitary and obeys the
constraints for (i) and (iii). One says that random matrices are uniformly distributed in
the unitary group. Such a collection of random matrices is known as a circular orthogonal
ensemble (COE) for (i), a circular unitary ensemble (CUE) for (ii), and a circular symplec-
tic ensemble (CSE) for (iii). These ensembles are similar to the corresponding Gaussian
ensembles GOE, GUE, and GSE; in particular, they are characterized by the same “inverse
temperature” β = 1, 2, 4.

To understand the properties of circular random matrix ensembles, let us start with
an example of a 2× 2 random unitary matrix from the orthogonal ensemble. A general
symmetric unitary matrix can be parameterized as follows (see Eq. (1.39)):

ŝ =
( √

Reiθ
√

T eiη√
T eiη −√Rei(2η−θ)

)
,

with T + R = 1. It is characterized by the two independent phases, θ and η, and we assume
that these phases are independent random numbers, uniformly distributed between 0 and
2π . The coefficient R is, in principle, also a random quantity, and its distribution must be
found from the requirement that the matrix is distributed uniformly, but to illustrate our
point it is enough to keep it fixed.

Let us calculate the eigenvalues of this matrix. Since the matrix is unitary, both
eigenvalues lie on the unit circle in the complex plane:

λ1,2 = ±ei(η±φ) ≡ eiα1,2 , sinφ = √R sin(θ − η). (4.14)

The difference between the phases α = α1 − α2 = π − 2φ only depends on the difference
of η and θ , not on their sum. Since the distribution function of θ − η is constant, P(θ −
η) = 1/2π , the distribution function of the phase difference is given by

P(α) = 1

2π

∣∣∣∣∂(θ − η)

∂α

∣∣∣∣ = 1

4π

sin(α/2)√
R − cos2(α/2)

.

Thus, small phase differences are suppressed: the phases of the eigenvalues of the scatter-
ing matrix repel each other. Similarly for the eigenvalue repulsion in Gaussian ensembles,
this repulsion is a geometric effect, related to the Jacobian of the transformation from
phases of the scattering matrix to the phases of its eigenvalues.
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The same repulsion occurs for matrices of a greater size. A unitary 2N × 2N matrix has
eigenvalues exp(iφ1), . . . , exp(iφ2N ). The joint distribution function of these eigenvalues
has the form, up to a normalizing constant factor, given by

P(φ1, . . . ,φN ) ∝
∏
m<n

∣∣∣eiφm − eiφn

∣∣∣β ∝ exp

(
β

∑
m<n

ln |sin(φm − φn)|
)

, (4.15)

which, similarly to Gaussian ensembles, has an interpretation in terms of classical charges.
Imagine a system of charges on a ring of unit radius. Their positions are characterized
by the polar angles φm . Equation (4.15) states that these charges repel logarithmically,
since 2| sin(φm − φn)| is the distance between the two points on the ring. The effective
“temperature” is β−1; this results in a higher probability of small eigenvalue spacings in
COE in comparison with other ensembles.

For the purpose of quantum transport, one needs to investigate (rather than the eigenval-
ues of the scattering matrix) the transmission eigenvalues Tn – eigenvalues of the matrix
t̂† t̂ , where t is a block of size N1 × N2 in the representation of the random unitary matrix ŝ:

ŝ =
(

r̂ t̂
t̂ ′ r̂ ′

)
.

Their joint distribution can be derived from Eq. (4.15) as follows:

P({Tn}) ∝
∏
n<m

|Tn − Tm |β
∏

n

T−1+β/2+(β/2)|N1−N2|
n . (4.16)

Transmission eigenvalues in the Gaussian ensembles also repel each other, and the
repulsion is strongest in a COE and weakest in a CSE.

We discuss the consequences of Eq. (4.16) in Section 4.3.

4.2 Energy-level statistics

One of the main differences between classical and quantum mechanics is in the quanti-
zation of energy levels. In this section, we describe quantum dots, (home-made) systems
where electrons are confined in visibly discrete levels. The word “visibly” is important
here. By virtue of quantum mechanics, any confined motion gives rise to discrete levels.
If an electron is confined within the Empire State Building, its states are characterized
by discrete levels. However, these levels are separated by a vanishingly small energy, and
although we theoretically know they are present and discrete, we are not able to verify this
experimentally. Roughly speaking, with modern measuring techniques, one can resolve
levels separated by approximately 0.1 meV. This value is not a fundamental physical con-
stant, it just characterizes the apparatus currently available in a lab. Thus, the Empire State
Building is not a quantum dot. Metallic islands described in Chapter 3 are not quantum
dots either – the level separation there is way too small.

On the other hand, a hydrogen atom ideally suits the definition: it has discrete levels
that are observed by optical means as spectral lines. With discrete atomic or molecular
levels giving rise to thin spectral lines, one makes lasers. This was the original motiva-
tion to study quantum dots, and the research started in the 1970s. The discrete levels of



310 Randomness and interference
�

atoms and molecules do not always lie at convenient frequencies, nor can they readily be
tuned to those frequencies. The idea was to confine electrons in artificially made potential
wells in order to make artificial atoms. By that time, it was already possible to engineer an
electrostatic potential in superconducting heterostructures. The level distances in the wells
can be engineered and sometimes even tuned. Using lithography, one can cover large areas
with zillions of tiny quantum dots and use such surfaces for tunable lasers. These dots are
optical: they are not connected to any electrodes, and they are measured only with light
absorption and/or emission.

This idea never worked, and, despite the remarkable progress in the fabrication of quan-
tum dots, it is still not clear whether it will ever work. Hydrogen atoms are all identical:
the spectral line is thin for a single atom, and it remains thin if the light is emitted by a
big atomic cloud. As for quantum dots, the good features immediately become drawbacks.
If a level position can be engineered, it is sensitive to fabrication errors. If a level posi-
tion can be tuned by, for example, gate voltage, it can be also “tuned” by any charged
impurity in the vicinity of the dot. Since fabrication errors are inevitable, and impurity
concentrations are different in different dots, the artificial atoms are never identical, and
discrete levels in each quantum dot are different. Thus, there are no thin spectral lines
for big ensembles of dots: the light from different dots is emitted at different frequen-
cies. This is known as inhomogeneous broadening, and renders the discrete levels hardly
visible.

If one can assess a single dot by optical means, one still sees a thin spectral line. This,
however, became possible only a few years ago. It appears easier to observe discrete levels
in transport dots, which are connected to the leads so that the electrons can be transferred
from a lead to the dot and to the other lead. One understands that the coupling to the leads
cannot be too good. If the coupling is too strong, discrete levels are mixed with continuous
electron states in the leads and are no longer discrete. To keep the levels discrete, one
should provide sufficient isolation of the dot states from the leads. We have already seen
in Chapter 3 that the criterion for good isolation is a sufficiently low conductance of the
contacts, G � GQ. In this section, we assume that this condition is fulfilled.

Also, in Chapter 3, we saw that, for G � GQ, charging effects may be important. In
this section, we do not consider them – we only study the properties for which charging
does not play any role. We return to the discussion of tunneling and Coulomb blockade in
quantum dots in Section 5.4.

To prevent any misunderstanding, we note that in the literature on quantum transport one
finds so-called open quantum dots with higher conductance, G ≥ GQ. We have considered
these systems in Section 2.6, and will return to them in Section 4.3. They do not possess
any discrete levels, and they do not conform to our definition.

Let us now start with a simple example, which we can fully understand. Consider a two-
dimensional rectangular quantum dot of the size Lx × L y . The external potential inside
the dot equals zero, and outside rises to infinity, so that the wave function vanishes at x =
0, Lx , y = 0, L y . Solving the Schrödinger equation, we obtain the electron states labeled
by two numbers nx , ny = 1, 2, . . . , with wave functions given by

ψ(x , y) = 1√
Lx L y

sin
πnx x

Lx
sin
πny y

L y
(4.17)
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and energies given by

Enx ,ny =
π2

�
2

2m

[(
nx

Lx

)2

+
(

ny

L y

)2
]

. (4.18)

First, these energy levels are perfectly regular. For example, if we fix nx = 1, we get
a series of levels with various ny , arranged parabolically. Other values of nx give simi-
lar series, offset by (π�nx )2/mL2. Secondly, we may want to plot all the levels without
thinking about the states they describe. Then the system becomes irregular. For example,
take Lx = L y = L . There is a ground state – the state with energy equal to π2

�
2/mL2.

The next state has energy 5(π�)2/2mL2 and is doubly degenerate. The next one is again
non-degenerate and has energy 4(π�)2/mL2. The next one is doubly degenerate, and so
on. However, for Lx �= L y there is a mess – some spacings are large, some are small. For
such a collection of energy levels, we can introduce the notion of level statistics.

Indeed, let us look at large scales. Consider the number of levels N in the energy interval
between two energy values E1 and E2, which we choose large enough to contain many
levels. In this case, it is not really important that the levels are discrete – continuous values
of nx and ny would produce the same result and are much easier in practical calculations.
Introducing the “wave vectors” of the standing wave kx ,y = πnx ,y/Lx ,y , we obtain

N = 2s
Lx L y

π2

∫ √2m E2/�

√
2m E1/�

k dk
∫ π/2

0
dθ = 2sAm

2π�2
(E2 − E1),

where A = Lx L y is the area of the dot, and we have represented the “vector” k in polar
coordinates. The number of levels contained in the energy interval is proportional to
the width of this interval and does not depend on the energies E1 and E2 otherwise. In
other words, we can define the density of states per energy interval ν = N/(E1 − E2) =
2sAm/2π�

2 and the mean level spacing δS ≡ ν−1.
In the same way, we can probe other properties of the system of levels. For example, one

can calculate spacings between adjacent levels Ei and E j . Plotting a histogram – the fre-
quency of the appearance of the spacing |Ei − E j | – we discover that this dependence
is exponential: larger spacings have a smaller probability, proportional to exp(−|Ei −
E j |/δS). In other words, level spacings of a two-dimensional rectangular quantum dot
obey a Poisson distribution.

4.2.1 Chaotic and disordered quantum dots

Things are never quite as easy as they seem. Let us consider a dot of arbitrary shape (not
necessarily rectangular), often called a billiard in the literature. If the size of the dot is
much greater than the wavelength, we can look at the properties of classical electron trajec-
tories. Consider two classical trajectories originating from the same point at a small angle
θ between them. These trajectories follow straight lines (ballistic propagation) until they
hit the wall of a dot and are reflected specularly. If the wall is not flat, the angle between
the trajectories changes. After many reflections from the wall, the angle can considerably
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(a) (b) (c)

�Fig. 4.3. (a) Rectangular and (b) circular quantum dots are integrable, and the classical trajectories are
periodic with a finite period: short in (a) and longer in (b). The stadium billiard (c) is a textbook
example of a chaotic billiard, and a classical trajectory fills all the space inside the billiard.

decrease, stabilize, or grow. The first two cases are realized in integrable dots – where sepa-
ration of variables produces a number (more than one) of integrals of motion in the sense of
classical mechanics. For instance, in a circular dot the energy and the angular momentum
of electrons are always conserved. Rectangular dots are also integrable.

A different class is chaotic quantum dots. There, the classical trajectories are very irreg-
ular (Fig. 4.3). Each trajectory, if we let it run for a long time, will visit any point of the
billiard and every point in the phase space allowed by the energy conservation. Chaos
means that two close (in the phase space) trajectories after many reflections from the walls
of the dot move apart from each other. Usually, if one takes a bundle of trajectories of
width a0, all moving in the same direction, the size of the bundle a increases exponentially
with time, a = a0 exp(γ t), t � τesc, where τesc = v/L is the time it takes for an electron to
escape the dot. The quantity γ is called the Lyapunov exponent. More precisely, there is a
(usually infinite) set of Lyapunov exponents in a given chaotic system. They are related to
the eigenvalues of the Liouville operator, defined in the phase space, L̂ = vn∂/∂r, where
n is the unit vector in the direction of motion and v is the absolute value of the velocity.
The operator is supplemented by the boundary conditions that the reflection at the walls is
specular. In chaos theory, this operator needs to be regularized by introducing some initial
infinitesimal noise to make the chaotic dynamics irreversible. The regularized operator is
known as the Perron–Frobenius operator.

Another typical situation occurs if there are impurities in the dot (disordered quantum
dots). One situation is when they are concentrated at the surface – the reflection from
the wall is not specular, but diffusive: an incoming electron can be reflected with certain
probability in all directions. This is the case similar to classical chaos. The dynamics is
again governed by the Liouville operator, and the Thouless time equals L/v, as in chaotic
quantum dots. One can say that close trajectories lose track of each other after the first
collision with the surface – “very strong” chaos.

Even more common is disorder spread over the dot. We already considered this sit-
uation in Section 2.3, and know that the classical dynamics of electrons is governed
by the Usadel equation, which in the case of a normal metal just describes classical
diffusion – the particle is scattered randomly at the impurities. The dynamics of an elec-
tron is governed by the diffusion operator, −D∇2, where D is the diffusion coefficient.
The boundary conditions constitute that there is no current through the impenetrable
walls of the dot, that is ∇ · P = 0 at the walls (see Section 4.4). All eigenvalues of the
diffusion operator are real, in accordance with the fact that diffusion is irreversible. The
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escape time is τesc = L2/D – this is how long it takes for an electron to diffuse across
the dot.

Note that not any disorder leads to the diffusion: it must be strong enough. The strength
of the disorder is characterized by the mean free path l; diffusion occurs for l � L . Another
way to formulate this condition is to say that electrons experience many scattering events
before actually being transmitted through the system – the average probability of transmis-
sion from the left to the right is very small. In the opposite case, electrons perform ballistic
motion inside the dot, and impurities may lead (or may not lead) to classically chaotic
motion.

We cannot predict positions of energy levels in chaotic or diffusive dots, since they
depend on the fine details of the dot shape, or on the configuration of impurities. If any
detail is changed, the position of a level can be changed at the scale of the mean level
spacing δS. However, as in statistical mechanics, we can predict a probability of having a
certain configuration of the levels. We can observe, in principle, this probability by con-
sidering a statistical ensemble of dots: a number of formally identical diffusive dots, or by
taking a chaotic dot and changing its shape by nearby gates.

For quantum dots with different classical dynamics, one also has different properties
of quantum levels. Surprisingly, the dots can be separated into two main groups accord-
ing to the statistical properties of the energy levels. The spectrum of an integrable system
consists of many series of levels. Within a series, the levels are separated by large, slowly
varied intervals. Since there are many series, these intervals are much bigger than δS. Lev-
els separated by a distance of the order of δS come from different series. Since the motion
is separable, levels from different series are not aware of the presence of each other, and do
not correlate their positions. They can occasionally become degenerate or cross under the
influence of external perturbation such as a magnetic field. Typically, levels in an integrable
system do not correlate at all, obeying Poisson statistics; sometimes long-distance correla-
tions are observed. We will not consider integrable dots in this chapter further. However,
the other hand, the statistics of both chaotic and disordered dots is very similar and is not
Poissonian – levels interact with each other – as we describe next.

4.2.2 Level statistics in quantum dots

It is natural to assume that, from a statistical point of view, the Hamiltonian describing
an electron in such quantum dots is a random matrix. In disordered dots, the randomness
comes from disorder. In chaotic quantum dots, the randomness is not intrinsic. However,
the properties of electron trajectories taken at very close energies are very different. Any
real measurement necessarily involves electrons in a (narrow) window of energies, and all
physical quantities should be averaged over the energy inside this window. This averaging –
coarse-graining – plays the same role as ensemble averaging in disordered dots.

Each individual quantum dot is characterized by one member of an ensemble of random
matrices. Energy levels are obtained as eigenvalues of these matrices. Of interest are the
levels lying close to the Fermi surface. Assuming that the number of filled levels is very
large, the Fermi surface is close to the center of the band, and the mean level spacing
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δS is the only parameter describing statistical properties of energy levels. Then, using
the statistical properties of these eigenvalues (Section 4.1), one calculates the physical
quantities.

Which ensemble of random matrices one chooses depends on the time-reversal prop-
erties of the electron system. If there is no magnetic field, no spin-orbit or magnetic
scattering, the Hamiltonian is real and symmetric. In this case, the random matrix must
be chosen from a GOE. If a magnetic field is present, time-reversal symmetry is broken,
and the Hamiltonian is Hermitian – one uses a GUE. To destroy the time-reversal symme-
try, the magnetic field must have a value which produces the flux quantum 	0, piercing a
typical trajectory. Finally, for the case of spin-orbit scattering, as explained in Section 1.9,
the wave functions are spinors, and this symmetry corresponds to a GSE.

Random matrix theory immediately provides us with a result on the level statistics. We
will discuss this result first and turn to the limits of applicability later. In RMT, the levels
repel each other, and the distribution of spacings |Ei − E j | between adjacent levels obeys
Wigner–Dyson statistics; it is proportional to |Ei − E j |β , with β = 1, 2, 4 in a GOE, GUE,
and GSE, respectively. The two-point level correlation function,

R2(E) ≡ δ2
S

〈
ν(E ′)ν(E + E ′)

〉− 1

= δ2
S

〈∑
i j

δ(E ′ − Ei )δ(E + E ′ − E j )

〉
− 1, (4.19)

ν(E) =
∑

j

δ(E − E j ),

with ν(E) being the density of states, and 〈ν(E)〉 = δ−1
S , has the easiest form in a GUE

(Eq. (4.9)):

R2(E) = δ
(

E

δS

)
−

(
sinπE/δS

πE/δS

)2

. (4.20)

The first term describes a correlation of a level with itself and only exists at zero energy
separation, and the second one oscillates with period δS. These oscillations are a remnant
of the discrete structure of energy levels: for the levels with fixed positions one would
obtain a set of delta-functions; for Poisson distribution the oscillations are washed out
completely, and RMT describes an intermediate situation. The negative sign of this term
indicates level repulsion. Note that if one averages out the oscillations, replacing sine
squared with 1/2, the correlation function takes an even simpler form, valid for E � δS,
R2(E) = −δ2

S/2π
2 E2; see Eq. (4.10).

Whereas in a GOE and a GSE all levels are doubly spin-degenerate, in a GUE the mag-
netic field produces Zeeman splitting δZ of energy levels. One can easily take this splitting
into account, shifting corresponding distributions for different spin projections by δZ as
follows:

R2(E)→ 1

2
R2(E)+ 1

4
R2(E + δZ)+ 1

4
R2(E − δZ). (4.21)

Other results on level statistics in the framework of RMT are found in Section 4.1.
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All results provided by RMT are universal: they only depend on the mean level spacing
δS, not on the particular shape of the quantum dot, or on the degree of disorder. One can
interpret this as a “zero-dimensional” result: the electron has enough time to explore the
whole area of the dot. The characteristic time taken to explore the dot is the escape time
τesc, and thus the RMT results such as Eq. (4.19) are only valid provided the level sepa-
ration is not too large, E � ETh, where ETh = �/τesc is known as Thouless energy. One
always has ETh � δS. For example, in a disordered quantum dot of a square shape (size L),
one has δS ∼ �

2/mL2, ETh ∼ �D/L2, and thus ETh/δS ∼ kFl. This quantity must always
be much greater than unity, otherwise the disorder would be too strong and electron states
would become localized (Section 4.5). If we attach electric contacts to the opposite sides
of the quantum dot, we can formally calculate the conductance of the dot. (Note that it has
nothing to do with real conductance, since the latter quantity is determined by the tunnel
junctions separating it from the outside world.) Indeed, the average transmission proba-
bility is of the order of l/L (see Section 4.3), the number of transport channels is of the
order of kFL , and thus, by the virtue of Landauer formula, the conductance is given by
G ∼ GQkFl ∼ GQ ETh/δS. Thus, our condition means that the (formally defined) conduc-
tance of the quantum dot is much greater than the conductance quantum. We return to this
condition in Section 4.5.

At the level separation above the Thouless energy, level statistics is not universal. For
the level correlation function, for energies E � δS the following formula is valid [86]:

R2(E) = δ2
S

8π2
Re

∑
μ

(
1

(γμ − iE)2
+ 3

(γμ − iE + 1/τSO)2

+ 1

(γμ − iE + 1/τH)2
+ 3

(γμ − iE + 1/τH + 1/τSO)2

)
. (4.22)

Here γμ are the eigenvalues of the operator responsible for the electron dynamics – the
Perron–Frobenius operator in chaotic quantum dots or the diffusion operator in diffusive
ones, and we have disregarded the Zeeman splitting. The cut-off time τH originates from
the eigenvalues γ ′μ of the same operator modified by the magnetic field; for example, for
the diffusion operator,

D (∇ + 2ieA(r)/c)2 ψμ = γ ′μψμ, (4.23)

and A is the vector potential. In the absence of magnetic field, obviously γμ = γ ′μ. Work-
ing the equation out, we find that γ ′μ is replaced by γμ + 1/τH. We will see in Section 4.4
that the eigenvalues γμ and γ ′μ correspond to diffusons and cooperons, respectively. The
form for τH depends on the geometry of the system; it is given by the cyclotron frequency
τ−1

H = 4DeH/�c in diffusive three-dimensional and two-dimensional (provided the mag-
netic field is perpendicular to the plane) dots. In the one-dimensional and two-dimensional
(longitudinal field) diffusive case this time is of the order of τ−1

H ∼ D(eHa)2/(c�)2, where
a is the transverse dimension of the sample. The time τSO characterizes the spin-orbit
scattering. Equation (4.22) is known as Altshuler–Shklovskii formula.

Note that in Eq. (4.22) the first term repeats in several variations. First, there are terms
with coefficient 1 (first and third) and terms with the coefficient 3. They correspond to
singlet and triplet pairing of electron spins, respectively; the coefficient 3 corresponds to
three different triplet states. In zero magnetic field (τH →∞), if the spin-orbit scattering is



316 Randomness and interference
�

also weak, τSO →∞, singlet and triplet contributions are the same. Spin-orbit scattering
suppresses the triplet contributions, and thus for strong spin-orbit scattering in zero mag-
netic field the correlation function R2 is suppressed by a factor of 4. Another observation
is that, if the magnetic field is finite, the terms that have τ−1

H in the denominator (cooperon
contributions, as opposed to diffuson contributions, see Section 4.4), are also suppressed.
Without spin-orbit scattering, this leads to the suppression of the correlation function by a
factor of 2; in combination with strong spin-orbit scattering, this singles out the first term,
and all other contributions are suppressed – the total suppression factor is 8.

Equation (4.22) also contains the summations over the modes γμ. It is important that, in
closed systems, a zero mode γμ = 0 is present, which corresponds to a uniform solution
of the diffusion (or Liouville) equation. Terms with γ = 0 have the order of magnitude
of E−2, τ 2

H, or τ 2
SO, depending on the relation between these quantities. All other eigen-

values are of the order of the Thouless energy. Thus, at low energies, E � ETh, the main
contribution to the Altshuler–Shklovskii formula originates from the zero mode. One has
R2(E) = −δ2

S/βπ
2 E2, with β = 1 for E � �/τH, �/τSO, β = 2 for �/τSO � E � �/τH,

and β = 4 for �/τH � E � �/τSO. Note that what we get are universal expressions,
which are just smooth parts of the RMT results, Eqs. (4.9), with β = 1, 2, 4 for a GOE,
a GUE, and a GSE, respectively. Physically, indeed, if no magnetic field and no spin-
orbit interactions are present, we are always in the regime E � �/τH, �/τSO and have to
use an orthogonal ensemble of random matrices. Oscillations of the correlation function
are not present in Eq. (4.22), and these expressions are not valid in any case for E ∼ δS

(they diverge for E → 0). On top of these contributions, there are small non-universal
contributions originating from the eigenvalues γμ �= 0 [87]. The non-universal part has the
following form, valid for E � ETh (for simplicity, we assume zero magnetic field):

δR2(E) = δ2
S

2π2β
Re

∑
μ

′ 1

γ 2
μ

d2

dE2

(
E2 RWD

2 (E)
)

,

where the prime means that the zero mode γμ = 0 is excluded from the summation, and
RWD is the correlation function provided by RMT. For a GUE it is given by Eq. (4.20);
then one has

d2

dE2

(
E2 RWD

2 (E)
)
= sin2 πE

δS
,

and the smooth part (obtained by replacing the sine squared with 1/2) of R2 is the same
as the contribution to the Altshuler–Shklovskii result, Eq. (4.22), of the eigenvalues with
γμ �= 0. The amplitude of these oscillations is small compared with RMT (factor ETh/δS).
In contrast to RMT, this amplitude is energy independent. For E ∼ ETh it becomes of the
same order as the RMT contribution.

Let us now investigate the Altshuler–Shklovskii expression for E � ETh. In this regime,
the result is not universal: spectral statistics is determined by the eigenvalues γμ, and is
different for chaotic and diffusive cases, or for systems of different dimensions. Equa-
tion (4.22) can be explicitly evaluated for a rectangular diffusive quantum dot, when the
eigenvalues are given by γμ = π2n2

i /L2
i , ni = 0, 1, . . . . For E � ETh, many eigenvalues

γμ contribute, and the summation can be replaced by the integration, after which one finds
for different dimensionalities,
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R2(E) ∝ −
{

(ETh/δS)−3/2 E−1/2 (3d)
(ETh/δS)−1/2 E−3/2 (1d).

(4.24)

The level correlation function is always negative – levels repel each other even at sepa-
rations higher than the Thouless energy. This is not a universal property, and in chaotic
systems one may have level attraction. Also, the correlation function is again smooth and
does not oscillate on the scale of δS. As expected, the results differ in different dimensions.
Note also that, in two dimensions, the integration in Eq. (4.22) gives precisely zero (the
integral is purely imaginary, and the real part vanishes). Thus, in this approximation in two
dimensions, levels are not correlated. The correlation is in this case provided by quantum
corrections, and the result reads R2(E) ∝ −(ETh/δS)−2 E−1, and the levels still repel each
other [88].

Exercise 4.2. Evaluate the level correlation function in one dimension for E �
ETh. Check the functional dependence of Eq. (4.24) and calculate the proportionality
coefficient.

For E � ETh there is also an oscillating contribution to the correlation function – a
remnant of the RMT oscillations – but it is non-universal, and, in diffusive dots, is exponen-
tially suppressed by a factor of exp(−(E/ETh)D/2), D = 1, 2, 3, being the dimensionality.
For chaotic dots, these oscillations can be significant.

From Eq. (4.22) it is also clear what role the magnetic field plays. Indeed, there is a
natural scale for the field, Hc, at which the cut-off time τH becomes of the order of the
escape time �/ETh. This corresponds to one flux quantum piercing a typical trajectory. For
H � Hc the contributions of all the terms in Eq. (4.22) are approximately the same; for
H � Hc only the first two terms contribute, and the two other terms are suppressed by
the magnetic field. This is how the cross-over between orthogonal and unitary symmetries
occurs at high separation between the energy levels.

The last remark is that, in diffusive quantum dots, all the above results are valid pro-
vided the level separation E is much less than �/τ , where τ is the elastic scattering time
(momentum relaxation time). Indeed, otherwise we probe very short time scales, shorter
than the time between collisions. At these scales, the electron motion is not diffusive – it
is ballistic flight with little or no chance of scattering. Such systems must be considered
as ballistic – in particular, for chaotic dynamics, similar formulas occur, but now with the
diffusion operator replaced by the Perron–Frobenius operator.

Now we know the statistical properties of energy levels. In the following we show
in a few examples how they help us to understand the statistical properties of physical
quantities.

4.2.3 Persistent currents

Let us for a moment return to ideal systems (no disorder). Consider an ideal one-
dimensional narrow ring of radius R. The motion of an electron in the transverse direction
(across the ring) is quantized. We assume that only the lowest level of this quantization is
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relevant and that all other levels have too high an energy to be considered. The Schrödinger
equation for the wave function projected at this level of transverse motion is given by

− �
2

2m R2

(
d

dθ
− i

	

2	0

)2

ψ(θ ) = Eψ(θ ), (4.25)

where θ is the polar angle. We have assumed that the ring is placed in the magnetic field
perpendicular to the plane of the ring; 	 is the magnetic flux through the ring and 	0 =
π�c/e is the flux quantum (see Section 1.6).

In zero magnetic field, the wave functions have to be periodic in θ with period
2π . Normalized solutions have the form ψn(θ ) = (2π )−1/2 exp(inθ ), n = 0,±1, . . . . The
corresponding energies are En = �

2n2/(2m R2).
In the magnetic field, the phase of the electron wave function is modified (Aharonov–

Bohm effect, Section 1.6). In agreement with Eq. (4.25), we obtain

ψn(θ ) = 1√
2π

ein(θ−	/2	0), n = 0,±1, . . . , En = �
2

2m R2

(
n − 	

2	0

)2

. (4.26)

The energy levels are plotted in Fig. 4.4.
Thus, the total energy E of the ring depends on the magnetic field. The field-dependent

energy means that there is a current in the ground state, I = −c∂E/∂	, known as the per-
sistent current. It is a ground-state property and a thermodynamical quantity – in contrast
to the transport current, considered elsewhere in this book. In our case, the explicit expres-
sions for the persistent current are easily obtained. Indeed, the free energy of an electron
system at zero temperature is just the sum of the energies of all filled levels – all levels
below the Fermi energy EF, i.e.

E = 2s

∑
n:En<EF

En , (4.27)
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and we find the current to be given by

I =− 2sc�
2

2m R	0

∑
n

(
n − 	

2	0

)
= 2se�

2πm R2

×

⎧⎪⎪⎨
⎪⎪⎩

(2N + 1)
	

2	0

(
N − 1+ 	

2	0

)2

<
2m EF R2

�2
<

(
N − 	

2	0

)2

2N

(
	

	0
− 1

) (
N − 	

2	0

)2

<
2m EF R2

�2
<

(
N + 	

2	0

)2

.

(4.28)

Here the upper and lower lines correspond to the case of odd (2N − 1) or even (2N ) num-
bers of spin-degenerate filled levels, respectively, and for simplicity we have disregarded
the Zeeman splitting of energy levels. Equation (4.28) is valid for 0 < 	 < 	0; otherwise,
the persistent current is odd in 	 and periodic with period 2	0. It is positive for an odd
number and negative for an even number of levels. If there is no flux, or precisely half a
flux quantum per ring, the persistent current vanishes.

The scale of magnitude of the persistent current in Eq. (4.28) is evF/L . To understand
this result, we need to realize that if there is a persistent current in the system, there
is also magnetization. Indeed, the magnetization is defined as M = −∂E/∂B = AI/c,
where A = πR2 is the area enclosed by the flux. The magnetization is proportional to the
mechanical moment exerted on electrons by the magnetic field, M = (e/mc)r× p, aver-
aged over the area of the system. If electrons are at the Fermi surface, the magnetization is
of the order of eRkF�/mc, which yields the value of the persistent current of the order of
evF/R, in accordance with Eq. (4.28).

Without the magnetic flux, all energies except for n = 0 are doubly degenerate: the
state with a certain value of n has the same energy as the state with −n. In a small mag-
netic field, the energies are slightly shifted, En(	) ≈ En(0)− (�2n/m R2)(	/2	0): the
energies of levels with positive (negative) n decrease (increase). For the levels close to
the Fermi surface, one estimates n ∼ kF R. Thus, at the value of the flux of the order of
	 ∼ 	0δS/ETh, the levels come close to each other. In an ideal ring, described by Eq.
(4.28), nothing happens: the levels cross and proceed further.

We can also add some external potential to our design. The energies of discrete levels
still depend on the magnetic field, but in a more complicated manner. If the disorder is
not too strong, the motion of the electrons is ballistic, and Eq. (4.28) holds as an order of
magnitude estimate. However, the important difference now is that the levels in the process
of evolution with magnetic flux cannot cross – they perform an avoided crossing, and a gap
opens instead of every level crossing. Since δS/ETh � 1, a given level undergoes many
avoided crossings if the flux varies by one quantum. This means that the simple classifica-
tion of discrete levels associated with certain values of the momentum n at 	 = 0 is only
valid for very small fluxes, 	 � 	0δS/ETh, and for higher fluxes the states completely
change their properties after many avoided crossings.

Note that the above considerations apply, strictly speaking, to one-channel single rings.
The persistent current produced by such a ring is rather small, and one may wish to increase
it by taking a ring with several transport channels (all contributing to the persistent current),
or by measuring a response of an ensemble of the rings. It does not work this way. Indeed,
the rings in the ensemble are never identical, and the persistent current given by Eq. (4.28)
is very sensitive: it changes sign if just one electron is added. Thus, it is natural to assume
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that the persistent currents produced by different rings in the ensemble (or, for that matter,
by different transport channels in the same rings) have random signs: the average persistent
current is zero! However, the fluctuations are finite; if all M rings contribute independently,
a typical current produced by such an ensemble would be given by I ∼ evF/(R

√
M). It is

suppressed by the factor of 1/
√

M as compared with the value for one single-channel ring.
The persistent current of a single ring in the ballistic regime was measured by Mailly,

Chapelier, and Benoit [89], who fabricated a GaAlAs–GaAs ring approximately 3 μm in
diameter, and measured the magnetization by a SQUID device situated on the same chip
as the ring. The mean free path was estimated to be a factor 1.3 longer than the cir-
cumference of the ring. In the experiment, the ring was connected to two contacts, and
a special gate was used to disconnect it. Thus, both conductance (Aharonov–Bohm effect)
and magnetization (persistent current) were measured on the same ring. The conductance
measurements indicated the presence of four conductance channels. The persistent current
observed has a typical amplitude of 4± 2 nA, whereas the estimate I ∼ evF/R gave 5 nA.
Given that the ring is not precisely ideal, the agreement can be regarded as good.

For strong disorder, the situation is similar to that of an ensemble of rings. The energies
of the levels depend on the magnetic field in a random manner: some energies go up with
the energy; others go down. The flux-dependent part of the total energy has a random sign,
depending on the impurity configuration. This means that, on average, there is no persistent
current in a disordered ring. One can characterize the magnitude of the persistent current
only by its root mean square fluctuations, which have a finite value.

We should note an important detail, however. To calculate the persistent currents we
need to use the canonical ensemble (CE) – the number of electrons is fixed for each number
of the ensemble. Using a CE is appropriate for isolated rings. Usually, as soon as the total
number of electrons is large, there is no difference between the CE and the grand-canonical
ensemble (GCE, when the chemical potential is fixed for each ensemble member). The
persistent-current problem is, as we see below, an example where the difference between
the CE and the GCE is important: in the GCE the calculation is more simple, but would
give zero for the average current. The CE calculation below gives a finite value and relates
it to the level statistics [90, 91].

There are several ways we may describe the CE. For example, one can just follow ther-
modynamics: define the grand thermodynamic potential, express the chemical potential in
terms of the number of particles, and proceed with the evaluation. We will take a different,
conceptually simpler, route. Imagine that the Fermi level is pinned to one of the electron
levels: EF = Em + 0. In this case, the number of electrons in each member of the ensem-
ble is guaranteed to be integer. The energy E is still given by Eq. (4.27); however, now it
depends on a random level position Em . Averaging it over disorder, we obtain

E = 2sδS

〈∑
m

δ(EF − Em)E(Em)

〉

= (2s)2δS

〈∑
mn

∫ EF

0
Enδ(EF − Em)δ(E ′ − En)dE ′

〉

= (2s)2δS

∫ EF

0

〈
ν(EF)ν(E ′)

〉
E ′ dE ′, (4.29)
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where we have used the definition of the density of states. The disorder average of the
product of the densities of states is a sum of two parts: the product 〈ν(E ′)〉〈ν(EF)〉, which
is independent of the flux and thus does not contribute to the persistent current, and the
irreducible part 〈ν〉2 R2(E ′ − EF). Thus, the persistent current only exists due to level cor-
relations. Note that the integral is determined by the range of energies E–EF of the order
of the Thouless energy. In this case, we can employ the Altshuler–Shklovskii expression,
Eq. (4.22), with γμ being the eigenvalues of the diffusion operator in the ring. The first two
terms do not depend on the flux and thus do not contribute to the persistent current; for the
two others, we assume that spin-orbit scattering is negligible. If the ring is thin enough, so
that only the zero eigenvalue in the transverse direction is important, one finds, from Eq.
(4.23), γ ′μ = (D/R2)(n +	/	0)2. Thus, the persistent current is given by

I = − (2s)2cδS EF

2π2
Re

∫ EF

0
dE

∂

∂	

∞∑
n=−∞

(
1

−iE + (D/R2)(n +	/	0)2

)2

. (4.30)

We see that the current is a periodic function of the flux with period 	0, and it is an odd
function of flux. One can then expand as follows:

I =
∑

l

Il sin 2πl	/	0,

and find, for the amplitude,

Il = − (2s)2eδS

π2�
. (4.31)

Note that, for 	→ 0, all the harmonics in Eq. (4.30) give the same contribution to
the current, of order of (eδS/�)(	/	0). The number of harmonics for which this equa-
tion holds is given by

√
ETh/δS, yielding the maximum value of the persistent current,

(e
√

EThδS/�)(	/	0).
Measurements of persistent current (magnetization) were carried out both on a single

isolated gold ring [92] and on an ensemble of 107 isolated copper rings [93]. Surprisingly,
both experiments yield a magnetization approximately two orders of magnitude greater
than the theoretical prediction.

Exercise 4.3. Estimate the magnitude of the mean square fluctuation of the persistent
current. Use the grand canonical ensemble.

4.2.4 Magnetopolarizability

Can one actually measure correlations of energy levels? This question was raised in 1965
by Gor’kov and Eliashberg, and even though their quantitative conclusions were later
disputed by many authors, the qualitative idea is correct. Consider a disordered isolated
metallic grain in an external magnetic field. The field polarizes the grain – it induces the
dipole moment. The dipole moment is proportional to the field, and the proportionality
coefficient is called polarizability. To calculate the polarizability, one needs to take into
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account screening of electric charge by other electrons. This is a standard subject for an
advanced solid state physics course, and a detailed description of screening goes outside the
scope of this book, so we will only discuss it very briefly. It turns out that the polarizability
is a classical quantity that depends only on the geometry of the system and knows nothing
about discrete electron levels. However, there is a quantum correction to the polarizability,
sensitive to the level statistics. Similar to the persistent current, it must be calculated in the
canonical ensemble, and we show below that this quantum correction is sensitive to the
three-point level correlation function. This correction is the only contribution to the polar-
izability that is sensitive to the external magnetic field, and we concentrate therefore on the
magnetopolarizability – the difference of the polarizability with and without a magnetic
field.

To give a concrete example, we consider a disordered metallic grain in the shape of a
disk, radius R, in an external electric field E(t) applied in the plane of the disk. The field
polarizes the particle, inducing the dipole moment. The density of charge ρ(r) and the
electrostatic potential 	(r) obey the Poisson equation:

�	 = −4πeρ(r)θ�δ(z),

where θ� is the function that equals unity inside the disk and zero outside, and z is the
coordinate normal to the plane of the disk. In its turn, the density can be found in the
Fourier representation as follows:

ρ(r,ω) = −2e
∫
�

�(r, r′,ω)	(r′,ω)dr′,

where the integration is carried out over the area of the disk, and � is the polariza-
tion operator, which, at distances longer than the wavelength, can be approximated as
(see Eq. (6.29))

�0(r, r′,ω) = ν
[
δ(r− r′)− 1

V

]
. (4.32)

The boundary conditions for the electrostatic potential	 are such that far from the particle
it describes the external field, 	 = −Er. The induced dipole moment,

d = e
∫
�

rρ(r)dr,

for the disk geometry, since there is no preferential direction, must have the same direction
as the field. In the Fourier representation, one writes d(ω) = α(ω)E(ω). The response func-
tion α(ω) is the polarizability. For the disk geometry, it does not depend on the frequency
and equals α0 = (4/3π)R3.

What does this nice exercise in classical electrodynamics have to do with the correlation
of energy levels? The point is that Eq. (4.32) is only an approximation. The polarization
operator can be expressed in terms of energy levels En and eigenfunctions of the energy
states ψn(r):

�(r, r′,ω) =
〈∑

m �=n

ψ∗m(r)ψn(r)ψ∗n (r′)ψm(r′) fF(Em)− fF(En)

�ω − Em + En

〉
. (4.33)
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Apart from the short-range contribution given by Eq. (4.32), it also contains a long-range
part originating from the correlation of the wave functions. This part is sensitive to the
level statistics. It only produces a minor correction to the polarizability, small compared
with the classical result α ∼ R3, but is sensitive to the magnetic field applied – technically
it is different in a GUE and a GOE. Thus, if one studies the magnetic-field dependence of
the polarizability – the magnetopolarizability δα – one deals with the object sensitive to
level and eigenfunction statistics.

One proceeds in the perturbation theory in the long-range part of the polarization oper-
ator. Since the grain is isolated, the canonical ensemble must be used, similar to the
persistent current, and it is realized by pinning the Fermi level EF to one of the single-
particle states Ek . It is important that the statistics of the energy levels and the wave
functions of the electrons are independent. We obtain

δα = 2e2

E2δ2
S

δB

∫ ∞
+0

dE

(
1

E − �ω − i0
+ 1

E + �ω + i0

)

×
[

R2(E)δS +
∫ E−0

+0
dE ′R3(E , E ′)

] 〈
	2

0

〉
E

, (4.34)

where δB denotes the difference of the quantity calculated in a GUE and a GOE, that
is, with and without a magnetic field. In the square brackets, the first term corresponds
to the contributions with n = k, and therefore contains the two-point correlation function
(correlations between the levels m and n), and the second term originates from the terms
with n �= k, and is expressed via the three-point correlation function, given by

R̃3(E , E ′) = δ3
S

〈∑
i jk

δ(E ′′ − Ei )δ(E ′′ + E − E j )δ(E ′′ + E ′ − Ek)

〉
,

which is independent of E ′′ and, in our case, describes the mutual correlations between the
states m, n, and k. The three-point correlation function only appears here because we use
the canonical ensemble. Note that, in distinction from R2, R̃3 is not a cumulant, i.e. the
products of averages are not subtracted. Equation (4.34) is complex and contains both real
(describing the phase shift) and imaginary (describing energy absorption) parts.

We denoted as 〈	2
0〉 the average matrix element of the potential in the grain. This matrix

element depends on the statistics of the wave functions, but not of the energy levels. The
electric field is effectively screened by the electrons in the grain and decays rapidly away
from the boundary. This is why the dielectric response of the grain only comes from a
narrow boundary layer, and the magnetopolarizability is small compared with the classical
value of the polarizability, of order R3. Indeed, the calculation for the disk geometry gives a
magnetopolarizability of the order of R2/(κkFl), where κ = 4πe2ν is the inverse screening
radius and κR � 1. What is interesting is the frequency dependence of δα, expressed by
the dimensionless function as follows [94]:
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�Fig. 4.5. Real and imaginary parts of the function F(ω) (Eq. (4.35)).

δα ∝ F(ω) ≡ 1+
∫ ∞
+0

dE

δS

(
1

E − �ω
+ 1

E + ω̄
)

×
[
δSδB R2(E)+

∫ E−0

+0
dE ′ δB R3(E , E ′)

]
. (4.35)

Since the integrals in Eq. (4.35) for low frequencies are determined by the range of energies
of the order of δS, one can substitute the expressions for the correlation functions produced
by random matrix theory. Consequently, F(ω) is a universal function of the frequency,
oscillating on the scale of δS. Real and imaginary parts of the polarizability are plotted in
Fig. 4.5. They oscillate on the scale of δS, clearly indicating level correlations.

Control question 4.3. How low should the frequency ω be to justify the application
of RMT in Eq. (4.35)?

4.3 Statistics of transmission eigenvalues

This section is about the transport properties of chaotic and disordered systems. We apply
random matrix theory (RMT) to transmission eigenvalues, and find the statistical properties
of conductance. For scattering matrices, the type of ensemble depends on the proper-
ties of the contacts connecting the system with the outside world. We first present the
general treatment of the situation and then specialize to two cases – closed cavities (essen-
tially, quantum dots, separated from the reservoirs by tunnel junctions), and (open) chaotic
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cavities – connected to the reservoirs by quantum point contacts. Finally, we show how
RMT applies to a more complicated object – a disordered wire.

4.3.1 Chaotic cavities: Poisson kernel

Consider a chaotic cavity, separated from the reservoirs by arbitrary scatterers. We saw in
Section 1.6 that the scattering matrix of such an object ŝ is a combination of scattering
matrices of the cavity itself, ŝ0, and of the junctions connecting the cavity to the reservoirs.
Indeed, the scattering matrices can be combined (see Eq. (1.131)) in the following way:

ŝ = r̂ + t̂ ′ŝ0
(
1− r̂ ′ŝ0

)−1
t̂ ,

where, in our case, r̂ and t̂ characterize the junctions. The matrix ŝ0 is random. In this
subsection, we assume that we know the statistical properties of the matrix ŝ0 and use them
to characterize the properties of the matrix ŝ, determining the transport characteristics of
the chaotic cavity.

Let us first characterize the matrix ŝ0. The classical dynamics inside the cavity is chaotic.
This means that an electron entering from one contact follows a very complicated classical
trajectory, and eventually either exits back (reflection) or proceeds to one of the other leads
(transmission). The key assumption for the calculation of transport properties is that the
scattering matrix of a chaotic cavity is random and is a member of a circular ensemble
of random matrices (see Section 4.1). If there is no magnetic field present in the system,
we choose a COE (β = 1), and if magnetic field is present we choose a CUE (β = 2); a
CSE (β = 4) can be realized if we assume spin-dependent scattering from the walls of the
cavity.

Now we take the matrices r̂ and t̂ as not being random and depending only on the
transmission eigenvalues of the barriers. The matrix ŝ is random, but, in contrast to s0, is
not a member of a circular ensemble (unless r̂ = 0 – open cavities, see below). One can
show [95] that ŝ is not distributed uniformly, but rather has the distribution known as a
Poisson kernel, given by

P(ŝ) ∝
∣∣∣det

(
1− r̂†ŝ

)∣∣∣−(βN+2−β)
, (4.36)

where N is the dimension of the matrix ŝ0 (the sum of the numbers of transport channels
in all the leads). If the leads are ideal, r̂ = 0, and the matrix ŝ is distributed uniformly.

Equation (4.36) is a mathematical statement that one now has to use to extract the joint
distribution of transmission eigenvalues of the matrix ŝ. To the best of our knowledge, this
distribution is unknown – the problem is just too complicated. Even calculating averages of
various quantities is sometimes difficult and requires a development of special techniques
of integration of the unitary group [95]. It is not our goal to describe these techniques in
this book, and we only give a couple of formulas to illustrate the point.

For these illustrations, we consider an almost closed chaotic cavity, connected with two
reservoirs (left and right) by two tunnel junctions with low transparency, TL, TR � 1. Left
and right leads support NL and NR transport channels, respectively; the total number of
channels, N = NL + NR, we assume to be much bigger than unity.
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Let us start from the distribution function of transmission probabilities, ρ(T ). The RMT
result for this function is, for N � 1,

ρ(T ) ∝ 1

T 3/2
√

1− T
,

which is exactly Eq. (2.108) we produced in Section 2.6 by means of the circuit theory. Let
us try to understand its physical meaning.

For this purpose, we use again the example of a one-channel double barrier. The
transmission probability is given by Eq. (2.108),

T = TLTR

1+ RL RR − 2
√

RL RR cosχ
,

where χ is the phase the electron acquires during the round trip between the barriers. We
can consider the double junction as a combined system consisting of left and right barriers,
and the “cavity” as the space between the barriers. The cavity is ideal and is characterized
by one parameter – the phase χ . We assume that the scattering matrix of the cavity is
a member of the circular ensemble. Then χ is a random variable uniformly distributed
between 0 and 2π . Now we can easily find the distribution of the transmission probability
T as follows:

ρ(T ) ∝
∣∣∣∣dT

dχ

∣∣∣∣
−1

∝ 1

T
√

4RL RRT 2 − (T + T RL RR − TLTR)2
.

In particular, for a symmetric opaque barrier, TL = TR � 1, we obtain Eq. (2.106).
Another example is the average conductance of the cavity. If there are two terminals,

from Eq. (4.36) we obtain, for N � 1,

G = GLGR

GL + GR
+ GQ

(
1− 2

β

)
G2

R QL + G2
L QR

(GL + GR)3
, QL,R ≡ GQ

∑
n

T 2
L,R. (4.37)

The first term is just a series resistance addition – it reflects purely classical physics. For
β �= 2, i.e if the scattering matrix of the cavity is chosen from a COE or a CSE, there
are quantum corrections to the classical result – weak localization (WL) corrections, orig-
inating from the quantum interference of different trajectories. We have already discussed
WL corrections in a slightly different context in Section 1.6, and we will discuss them in
more detail below. They are negative for a COE and positive for a CUE, and are in both
cases much weaker than the classical contribution in the large number of channels limit.
A magnetic field destroys the interference, and this is why the correction is absent in a
CUE. Such a structure of the result is not specific for the conductance. Provided all trans-
mission eigenvalues Tn are of the same order, the first term is proportional to the number
of open transport channels N , and the second term is of the order of unity. The terms of
order N−1 and higher are not written out in Eq. (4.37). Note also that the WL correction
cannot be expressed in terms of the average conductance only – it contains some unusual
combinations of transmission eigenvalues QL,R that are required for the calculation of the
shot noise, not of the average conductance. Conductance fluctuations require, in addition
to GL,R and QL,R, another combination,

∑
T 3

L,R. Thus, knowledge of the average classical
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conductance is generally not sufficient to obtain information on the quantum effects in
transport.

Exercise 4.4. Calculate the quantities QL,R and the weak localization correction to
the conductance assuming that left and right junctions are diffusive conductors.

Let us now consider the case of an open chaotic cavity connected to the reservoirs by
quantum point contacts with ideal transmission. For simplicity, we assume that there are
only two contacts, one (left) supports NL open transport channels and the other one (right)
supports NR open channels. The joint distribution of transmission eigenvalues follows from
Eq. (4.36) as follows:

P({Tn}) ∝
∏
n<m

|Tn − Tm |β
∏

n

T−1+β/2+(β/2)|NL−NR|
n

∝ exp

(
β
∑

n

(
− 1

β
+ 1

2
+ |NL − NR|

2

)
ln Tn + β

∑
n<m

ln |Tn − Tm |
)

. (4.38)

As on previous occasions, the joint distribution function has the form of a partition function
of a system of classical particles at temperature β. These particles are placed in a confining
potential (first term in the second equation), which, depending on the symmetry of the
cavity, may favor either transparent (T = 1) or opaque (T = 0) channels. The particles
also repel each other in a logarithmic fashion.

Equation (4.38) is a complete description of the transport properties of an open chaotic
cavity. The results for average conductance, conductance fluctuations, counting statistics,
and other relevant properties can be obtained by taking the averages with Eq. (4.38).

First, one can produce the distribution of transmission eigenvalues ρ(T ), given by

ρ(T ) = NL + NR

2πT

√
T − Tc

1− T
+ 1− 2/β

4
(δ(1− T )− δ(T − Tc)) , (4.39)

Tc =
(

NL − NR

NL + NR

)2

,

which is valid for NL + NR � 1. The first term represents classical values and can be
obtained by means of circuit theory (see Eq. (2.111)). However, Eq. (4.38) provides us
with additional understanding of this result. Indeed, Eq. (4.39) is the average density of
the transmission eigenvalues, and we already saw in Section 1.2 (and also in Section 4.2)
that the density of confined two-dimensional particles interacting by logarithmic law (two-
dimensional Coulomb particles) has a square-root singularity at the edge of the distribution.
This is precisely what we see from Eq. (4.39). The delta-functions are quantum (weak
localization) corrections to this classical result.

The simplest quantity one can calculate is the average conductance, given by

G = GQ
NL NR

NL + NR − 1+ 2/β
. (4.40)

Let us see whether we can comprehend this result. Consider the limit of the large number of
channels, NL, NR � 1. We calculate now the transmission through the cavity by summing



328 Randomness and interference
�

up the trajectories, in the same way as in Section 1.6. An incoming electron in a certain
channel m in the left lead follows one of infinitely many sophisticated classical trajectories.
Some of them eventually, after many reflections from the walls of the cavity, get to the lead
on the right; some bring the electron back to the same channel in the left lead, and others
return to the left lead but change the transport channel. A trajectory leading from channel
m to channel n is characterized by an amplitude Ai (mn) = ai (mn) exp(iθi (mn)). Here the
index i labels the trajectories; we have separated the absolute value ai and the phase θi , and
the indices m and n both run from 1 to NL + NR – thus, we describe both reflection and
transmission. The phases acquired by the trajectories depend on the details of the classical
motion. However, we assume that the trajectories are so sophisticated that these phases can
be regarded as random uncorrelated quantities.

Let us now calculate the probability of transmission/reflection from m to n:

〈
|smn|2

〉
=

〈∣∣∣∣∣
∑

i

Ai

∣∣∣∣∣
2〉
=

〈∑
i

a2
i

〉
+

〈∑
i �= j

ai a j cos(θi − θ j )

〉
; (4.41)

the summation is performed over all possible electron trajectories originating in transport
channel m and leading to channel n. The second term depends on random phases, and
the phases are random, and thus it averages to zero. As for the first term, it is a sum of
contributions of many trajectories, and thus we assume that this sum does not depend
on the initial and final channels: all 〈|smn|2〉 are the same. From the condition that the
scattering matrix is unitary, ∑

m

〈|smn|2〉 = 1,

we find 〈|smn|2〉 = (NL + NR)−1. Using the Landauer formula, we find the average
conductance (Section 1.6) as follows:

Gcl = GQ

∑
m∈L,n∈R

〈
|smn|2

〉
= GQ

NL NR

NL + NR
= GQ

GLGR

GL + GR
. (4.42)

The third equation highlights the fact that our result is merely a series resistance of
two QPCs, with the conductances GL,R ≡ GQ NL,R, respectively. The classical result we
obtained is proportional to the number of transport channels and is essentially Ohm’s law.

However, Eq. (4.42) is not exactly the same as Eq. (4.40): they only coincide for the
unitary ensemble (β = 2), but not for the orthogonal one (β = 1). Indeed, if we think
more about it, we find a mistake in our consideration. For the unitary ensemble, the system
possesses time-reversal symmetry. This means that, for any trajectory leading from m to n,
there is also a time-reversed trajectory that leads from n to m, with the same amplitude Ai

and phase θi . This fact does not affect the calculation of |smn|2 with m �= n. However, if
we look at |smm |2, for each trajectory Ai (nn) contributing to Eq. (4.41) one has the time-
reversed trajectory A′i (nn), which is different from Ai but has the same amplitude and
phase. The contribution from the interference of these two trajectories is given by∣∣Ai + A′i

∣∣2 = 4a2
i ,
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which is twice as high as the classical contribution |Ai |2 + |A′i |2. The two trajectories
interfere constructively, enhancing the probability of reflection. We obtain now, instead of
Eq. (4.41),

〈
|snn|2

〉
=

〈∣∣∣∣∣
∑

i

Ai

∣∣∣∣∣
2〉
= 2

〈∑
i

a2
i

〉
+

〈∑
i , j

ai a j cos(θi − θ j )

〉
, (4.43)

where the second term in the second equation only sums over two trajectories with dif-
ferent amplitudes and/or phases (it does not include a pair of a certain trajectory and its
time-reversed analog). After averaging, the last term disappears, and one has 〈|snn|2〉 =
2〈|smn|2〉, m �= n. Using the unitarity, we find 〈|smn|2〉 = (NL + NR + 1)−1, and for the
conductance we have Eq. (4.40). We must keep in mind, of course, that our derivation is
only valid in the limit of a large number of channels, and thus it is more correct to write
the following:

G ≈ Gcl + GQ
GLGR

(GL + GR)2

(
1− 2

β

)
.

The first term is the classical contribution, and the second term represents the weak local-
ization correction, negative for a COE and positive for a CUE. In both cases the correction
is of the order of GQ (much weaker than Gcl ∼ GQ N in the large number of channels
limit).

Let us now look at a quantity that cannot be expressed as a sum of contributions of
independent channels – the variance of the conductance. Indeed,

Var G ≡
〈
G2

〉
− 〈G〉2 = G2

Q

∑
mn

(
〈Tm Tn〉 − 〈Tn〉2

)

=
∑

m,m′∈L ,n,n′∈R

{〈
|smn|2 |sm′n′ |2

〉
−

〈
|smn|2

〉 〈
|sm′n′ |2

〉}
,

and we need information about the correlation of various elements of the scattering matrix.
Let us first calculate the average fourth power of the scattering matrix element, 〈|smn|4〉.
Using Eq. (4.41), we write

〈
|smn|4

〉
=

〈(∑
i

a2
i

)
+

∑
i �= j ,k �=l

ai a j akal cos(θi − θ j ) cos(θk − θl )
〉

, (4.44)

where we have discarded terms proportional to the cosine of the phase difference, since
these terms always average to zero, provided we neglect weak localization corrections.
The first term in Eq. (4.44) is just a product of averages, equal to (NL + NR)−2 in the
limiting case of NL, NR � 1. In a CUE, in the second term the only contribution comes
from the terms with i = k, j = l and i = l, j = k. The cosine squared averages to 1/2, and
one finds the following:

〈
|smn|4

〉
CUE
= 2

〈
|smn|2

〉2 = 2 (NL + NR)
−2 .
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In a COE, the time-reversal symmetry is preserved, and smn = snm . Then, in the second
term of Eq. (4.44) there is another pair of contributions, when the trajectory k is the time-
reversed trajectory of i , and l is the time-reversed trajectory of j , or i and l are time-
reversed, and j and k are time-reversed. These contributions are exactly the same as in a
CUE, and thus the fluctuations in a COE are twice as high as those in a CUE:〈

|smn|4
〉
−

〈
|smn|2

〉2 = 2

β

1

(NL + NR)2
. (4.45)

In the leading order in NL and NR all matrix elements, diagonal and off-diagonal, have the
same fluctuation.

Naively, we could think that this gives the only contribution to the conductance fluc-
tuations, since different matrix elements are determined by different trajectories and are
thus uncorrelated. This is, indeed, partially correct – different matrix elements are not cor-
related in the leading order in (NL + NR)−1, i.e. their correlations are much weaker than
the values of these matrix elements themselves. However, due to the large number of these
contributions, they become important. What can RMT say about these correlations?

Consider the condition of the unitarity of the scattering matrix, written in the following
way: ∑

kl

〈
|smk |2 |snl |2

〉
= 1. (4.46)

In RMT, in the leading order in NL, NR one can only have three distinct correlation func-
tions: 〈|smk |2〉 (all the same for any m and n), 〈|smk |2|sml |2〉 for k �= l, and 〈|smk |2|snl |2〉 for
m �= n, k �= l. The first one we have already calculated, and the other two are immediately
expressed through the first one via the unitarity condition given by Eq. (4.46), where we
need once to take m = n, and eventually m �= n. As the result, we obtain〈

|smk |2 |sml |2
〉
−

〈
|smk |2

〉 〈
|sml |2

〉
= −(NL + NR)−3, k �= l;〈

|smk |2 |snl |2
〉
−

〈
|smk |2

〉 〈
|snl |2

〉
= (NL + NR)−4, k �= l, m �= n.

Substituting this result into the expression for conductance fluctuations, one obtains

Var G = G2
Q(2/β)N 2

L N 2
R

(NL + NR)4
.

One could of course derive this expression directly from Eq. (4.38).

Control question 4.4. Explain why in a very asymmetric cavity, NL � NR, NL � 1,
the variance of the conductance vanishes.

For symmetric barriers, one has Var G = G2
Q/(8β). This result is known as universal

conductance fluctuations (UCF). We have already encountered UCF in Section 1.6, along
with the weak localization; UCF have an order of magnitude of G2

Q – fluctuations of the
conductance are of the same order as WL corrections. Thus, this is a quantum effect and
is missed in any classical approach. The effect is twice as great in a COE than in a CUE.
This is because the repulsion of transmission eigenvalues is stronger in a COE.
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In the same way, we can, using the unitarity constraints, obtain other correlation
functions, for example〈

s∗mksnks∗nl sml
〉 = −(NL + NR)−3 , m �= n, k �= l,

and calculate the Fano factor for the shot noise, F = NL NR/(NL + NR)2. This result con-
forms to the notion of two QPCs in series: for NL � NR, the noise is controlled by the
more resistive contact, and a noise of a QPC is zero; thus, the Fano factor becomes zero.

Control question 4.5. Is there a weak localization correction to shot noise of the order
of 1/N relative to the classical value? Is there such a correction to the Fano factor?

Let us now look at the experiments. Conductance fluctuations in chaotic cavities were
investigated in Ref. [96]. The authors studied the conductance of a “stadium” billiard con-
nected to the reservoirs by two tunnel contacts. This “stadium” is one of the exemplified
systems exhibiting classically chaotic dynamics. The main problem is how to create an
ensemble to measure the UCF. Theoretically, we assumed that one has many samples iden-
tical in parameters, but different in phase shifts; this is not convenient experimentally.
What experimentalists do in practice is to manipulate the phase shifts by a magnetic field.
The same billiard for two close values of the field behaves as two different chaotic sys-
tems. Conductance as a function of the field shows aperiodic modulation, from which one
extracts the statistics of the conductance fluctuations. For a stadium billiard, the measured
magnitude of the fluctuations is exactly the same as is predicted theoretically.

4.3.2 DMPK equation: diffusive wires

Another system successfully described by RMT is a disordered wire. We have already
derived the distribution function of transmission eigenvalues in Section 2.6 by means of
circuit theory. Here, we will show how (i) one derives weak localization corrections and
(ii) one calculates correlations of several transmission eigenvalues, for example to evaluate
the conductance fluctuations.

Consider a wire of length L with random impurities. The scattering matrix of such a wire
is random, but it obviously cannot be taken from a circular ensemble; for example, the aver-
age transmission probability through the wire depends on the length, and this dependence
cannot originate from the circular ensemble of RMT.

To calculate the joint distribution of transmission eigenvalues, we apply the following
trick [55]. Imagine we know this distribution for a wire of length L . Let us append a short
disordered slice of length δL and see how the distribution is modified. In the end, we will
be able to write an equation that determines the evolution of this distribution function with
the length of the wire. From the equation, we will determine various statistical properties
of transmission eigenvalues. Usually this is done by using the transfer matrices, with the
advantage that the resulting transfer matrix is just a product. However, we did not consider
statistical distributions for transfer matrices, and instead we have chosen to combine the
scattering matrices of the wire and the slice.
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Before addressing the general problem, let us first prepare for this by considering the
simplest example of one transport channel T0 = 1− R0, R0 being random. We append to
the wire a short slice of disordered material. This last piece is so short that it is almost
ideally transmitting. Its reflection probability, Radd = 1− Tadd ≡ δs � 1, is obviously
proportional to the length δL of the added slice. We assume that, due to the random scatter-
ing, the phase of the scattering matrix of the added piece is randomly uniformly distributed
between 0 and 2π . Combining the scattering matrix of the wire and the added piece, we
obtain for the transmission probability of the composed system (Eq. (1.106)) the following:

T = T0Tadd

1+ R0 Radd − 2
√

R0 Radd cos θ
,

where θ is the phase acquired by an electron during the round trip. It is a linear function of
the phase of the scattering matrix of the added slice, and thus can be taken to be a uniformly
distributed random variable. Averaging over θ , we obtain

〈T 〉 = T0Tadd

1− R0 Radd
≈ T0 − T 2

0 δs,

where the second equation is the result of the expansion in δs up to first order.
One can also calculate higher-order cumulants of the transmission probability. The

variance in the first order in δs is given by〈
δT 2

〉
≡

〈
T 2

〉
− 〈T 〉2 = 2T 2

0 (1− T0)δs,

and all higher cumulants vanish (i.e. only contain second or higher orders in δs).
Thus, if we identify the parameter s, proportional to the length of the system, with a

fictitious “time,” we realize that the random variable T performs Brownian motion char-
acterized by the average “velocity” 〈T − T0〉/δs and the “diffusion coefficient” 〈δT 2〉/δs.
Such a motion, as we know from statistical mechanics, is described by the Fokker–Planck
equation for the distribution function of the random variable P(t):

∂P

∂s
= 1

δs

{
−〈T − T0〉 ∂P

∂T
+

〈
δT 2

〉 ∂2 P

∂T 2

}
. (4.47)

We thus obtain
∂P

∂s
= ∂

∂T

[
T 2 P + ∂

∂T
T 2(1− T )P

]
. (4.48)

Such an approach be generalized to the case of many transport channels. We assume the
joint distribution function of transmission eigenvalues P(T1 · · · TN ) to be known for the
wire of length L and we add a slice that is characterized by a random scattering matrix,
uniformly distributed in the unitary group, with the only constraint that the average reflec-
tion coefficient is fixed to be δs � 1. Combining the scattering matrices, averaging over the
unitary group, and extending the results for different symmetries with respect to the time-
reversal, after some lengthy calculations one obtains the multi-dimensional Fokker–Planck
equation:

∂P

∂s
=

N∑
n=1

∂

∂Tn

{
A{Tn}P + 1

2

∂

∂Tn
B{Tn}P

}
, (4.49)
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with the coefficients given by

A = −Tn + 2

γ
Tn

⎛
⎝1− Tn + β

2

∑
m �=n

Tn + Tm − 2TnTm

Tn − Tm

⎞
⎠ ,

B = 4

γ
T 2

n (1− Tn), γ ≡ βN + 2− β.

Equation (4.49), known as the Dorokhov–Mello–Pereira–Kumar (DMPK) equation, looks
more compact after the change of variables, Tn = (1+ λn)−1, is performed (note that one
also has to transform the distribution function to keep the normalization: integration over
all variables gives the number of transport channels). We give it here for reference:

∂P

∂s
= 2

γ

N∑
n=1

∂

∂λn
λn(1+ λn)J {λn} ∂

∂λn

P

J {λn} , (4.50)

with

J =
N∏

n=1

N∏
m=n+1

|λn − λm |β .

The most practical form of the DMPK equation is that using the variables xn , Tn =
cosh−2 xn , and λn = sinh2 xn . Note that now almost closed (almost open) channels corre-
spond to xn � 1 (xn � 1), respectively. If, in addition, we perform the transformation of
the function, P = � exp(−β�/2),

� = −1

2

∑
m �=n

ln
∣∣∣sinh2 xn − sinh2 xm

∣∣∣− 1

β

∑
n

ln |sinh 2xn| ,

the resulting equation,

−∂�
∂s
= H�,

H = − 1

2γ

∑
n

(
∂2

∂x2
n
+ 1

sinh2 2xn

)

+ β(β − 2)

4γ

∑
m �=n

sinh2 2xn + sinh2 2xm

(cosh 2xn − cosh 2xm)2
,

(4.51)

has an easy physical interpretation. The equation describes the evolution of the system
of classical particles in the imaginary time s. The first two terms on the right-hand side
represent the kinetic and potential energy of the particles, and the last term denotes the
interaction between them (note that the interaction is not translationally invariant, in the
sense that it does not depend on the difference |xn − xm |). The interaction is attractive for
β = 1 (orthogonal ensemble) and repulsive for β = 4 (symplectic ensemble). For β = 2
(unitary ensemble) there is no interaction between the particles. For this reason, the uni-
tary ensemble is the simplest to handle: there is an exact solution of the DMPK equation,
Eq. (4.49), for an arbitrary number of channels and the length of the wire s. It is too cum-
bersome to be written down here, but it is good to know that all approximate solutions can
be checked against the exact one. For the two other symmetries, no exact solutions exist.
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Control question 4.6. Can the DMPK equation as given in Eqs. (4.51) describe the
situation when all transport channels are almost open?

The only remaining problem is that the meaning of the variable s is unclear: we know
that it is proportional to the length of the wire L , but the proportionality coefficient is
not specified. For the moment, we write s = L/ l and call l the mean free path. From
the comparison with the solution of the DMPK equation in what follows we will relate the
mean free path to the average conductance of the wire. In particular, for the metallic regime
(large number of channels N , so that 〈G〉 � GQ) one finds 〈G〉 = GQ Nl/L = GQ N/s;
see the following text.

One can make further progress in the two cases. For one channel, the DMPK equation
can be solved exactly. For a low number of transport channels, various quantities can be
calculated without knowing the exact solution for the joint distribution function. It turns
out that in this regime (we remind the reader that this is the regime opposite to the one
we treated using circuit theory in Section 2.6) the electrons in the wire are localized –
all transmission eigenvalues are small, and the transport is suppressed. The characteristic
feature of this regime is that Ohm’s law no longer holds; The resistance of the wire is an
exponential function of its length, rather than a linear one. We will address the issue of
localization in Section 4.5.

In the following, we concentrate on a different regime – a metallic diffusive wire, when
a considerable fraction of almost open channels exists. This regime is realized for the large
number of transport channels N � 1. In this case, one can build up an expansion of the
results in a power of GQ/〈G〉, calculating first the classical effects of order CJ , and then
the quantum corrections of order GQ.

Imagine we want to calculate the average of some function F{T1 · · · TN }. From the
DMPK equation, it is easy to derive an equation for the “time” derivative of 〈F〉: indeed,
we multiply the DMPK equation by F and integrate over all variables. On the left-hand
side, we get ∂〈F〉/∂s, and on the right-hand side, after partial integrations, a cumbersome
expression involving averages of first and second derivatives of the function F over the
Tn values, multiplied by different combinations of transmission eigenvalues. This is not a
closed equation. To close it, one also needs equations for the evolution of the combinations
appearing on the right-hand side, and so on. The calculations require an infinite chain of
equations, and become progressively messy. However, we can use the condition N � 1.
In this case, the equations close up, and one can calculate the averages.

Let us illustrate this with the calculation of the average conductance G = GQ
∑

n Tn .
The equation is given by

∂

∂s
〈G〉 = −β

γ

〈
G2

GQ
− GQ

(
1− 2

β

)∑
n

T 2
n

〉
. (4.52)

For N � 1, we can drop the second term in the brackets (it is proportional to N as com-
pared with N 2 for the first term; these relations are checked after the calculation), and
obtain ∂〈G〉/∂s = −N−1〈G2〉/GQ. Similarly, one writes equations for the average higher
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powers of the conductance as follows:

∂

∂s

〈
Gk

〉
= − k

N GQ

〈
Gk+1

〉
.

This chain of equations must be supplemented with the “initial” condition. We employ
a formal trick: for s = 0, the wire has zero length and thus must be ideally transmitting.
(Note that the DMPK equation is not valid in this regime, since there is no scattering,
and formally one can only start from the wire of length of the order l, s ∼ 1. It does
not change our conclusions.) This means that, at s = 0, Tn = 1, and 〈Gk〉 = Gk

Q N k . The
solution corresponding to this initial condition is given by〈

Gk
〉
= Gk

0 N k(1+ s)−k .

Finally, we are only interested in long wires, s � 1, and thus 〈Gk〉 = (GQ N/s)k =
(GQ Nl/L)k .

The average conductance equals 〈G〉 = GQ Nl/L , and thus〈
Gk

〉
= 〈G〉k .

This is remarkable, and means that, in the leading order in 〈G〉/GQ, the conductance does
not fluctuate. To obtain fluctuations, or WL corrections, to the conductance, we have to
keep the next terms of the expansion in GQ/〈G〉. One obtains, for the weak localiza-
tion correction, δG = (GQ/3)(1− 2/β), which is positive for an orthogonal ensemble,
vanishes for a unitary ensemble, and is of the order of GQ. Conductance fluctuations,
Var G = G2

Q(2/15β), are also of the order of GQ, and the value for an orthogonal ensemble
is twice as high as for the unitary one.

Exercise 4.5. Keep the next-order terms in GQ/〈G〉 and check that the preceding
expression for the conductance fluctuations is correct.

Let us now compare the average conductance with the WL correction. For GQ � 〈G〉,
the average conductance is much greater than the WL correction. This constitutes the
metallic regime. On the other hand, for 〈G〉 � GQ the correction is formally greater. This
signals a problem: indeed, the expansion in GQ/〈G〉 formally does not work, and all higher
corrections will be of the same order or higher. The average conductance is not propor-
tional to L−1 – Ohm’s law does not hold. We will see in Section 4.5 that this situation
corresponds to electron localization. The metallic (diffusive) regime is thus only possible
for l � L � Nl (the condition L = Nl corresponds to 〈G〉 = GQ). Electrons in longer
wires are localized. Note that the diffusive regime only has a chance to exist for the large
number of transport channels N – in full agreement with the assumptions we have made at
the beginning of this subsection.

In the same manner, one can calculate more sophisticated averages in the diffusive
regime. As an example, we give the expression for the distribution function of the
transmission eigenvalues (it is more convenient to use the variable x , T = (cosh x)−2):



336 Randomness and interference
�

ρ(x) = 〈G〉
GQ
+

(
1− 2

β

)(
1

4
δ(x)− 1

4x2 + π2

)
. (4.53)

The first term is equivalent to the familiar distribution function, Eq. (1.43), of the trans-
mission eigenvalues, P(T ) = (G/2GQ)(1/T

√
1− T ). The second term represents the

WL correction, is of the order of GQ and vanishes for the unitary ensemble, β = 2.
Higher-order terms are not included.

4.4 Interference corrections

We have seen that RMT can provide a lot of information about the properties of the
transmission eigenvalues. However, we have also seen that calculations become progres-
sively cumbersome if a large number of elements of the scattering matrix are involved. In
particular, RMT is not very well suited for the calculation of distribution functions.

In this section, we show how various quantum corrections to transport properties can
be calculated with the help of circuit theory, which we introduced in Chapter 2 for clas-
sical values. The general argument proceeds as follows. Circuit theory treats quantum
circuits as analogs of classical electric circuits. Currents in electric circuits are represented
in circuit theory as matrix currents, obeying Ohm’s law, and voltages are represented as
matrix voltages. However, apart from the average currents, classical electric circuits exhibit
current fluctuations – noise. We will show in this section that the analog of noise in quan-
tum circuits takes the form of quantum corrections to transport – weak localization and
conductance fluctuations.

Let us illustrate this with the following schematic consideration. An electric circuit
at thermal equilibrium can be characterized using a set of fluctuating particles with
coordinates Vi (potentials of the nodes). The partition function of the system is given by

Z =
∏

i

dVi exp(−S{Vi }), S = E{Vi }/kBT ,

where E is the energy of the system. We need to minimize the energy with respect to all
coordinates to find the equilibrium solutions V eq

i . In the first approximation, the partition
function (up to the normalization) is Z = exp(−Eeq/kBT ), with Eeq = E{V eq}. So far,
we have disregarded the fluctuations. Expanding the energy to the second order in V eq

i ,
E − Eeq =∑

i j ∂
2 E/∂Vi∂Vj (V − Vi )(V − Vj ), and on integrating over Vi we obtain

Z = 1

| det ∂2 E/∂Vi∂Vj | exp(−Eeq/kBT ).

We see that there is a fluctuation correction to the free energy of the equilibrium state, F ≡
kBT ln Z = Eeq + ln | det ∂2 E/∂Vi∂Vj |. This correction yields fluctuation contributions to
physical observables.

In this section, we try to follow a similar program for quantum circuits out of equi-
librium. In circuit theory, the effective action given by Eq. (2.91), depends on the matrix
voltages Ǧ in the nodes. “Fluctuation corrections” to the effective action, as we check after
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the calculation, yield a correction to the transport coefficients of the order of GQ – weak
localization and universal conductance fluctuations.

It is much easier said than done. First, the matrix “voltages” are constrained by the
condition Ǧ2

i = 1, and thus some of the second derivatives turn to infinity. One has to
perform the expansion carefully. Secondly, and more important, quantum corrections rep-
resent various limiting cases of a general problem – parametric correlations, for example
〈G(x)G(x ′)〉 – the correlation function of two conductances taken for two different values
of the parameter x , which could be, for example, a magnetic field. These two values of
the parameter represent two different “worlds” – say black and white – and the correlation
between these worlds is provided by the averaging over the impurities. Thus, in order to
describe parametric correlations, one needs to double the dimension of the matrix G and
to introduce “black” and “white” elements. We show in the following that the quantum
corrections are expressed through certain objects, known as diffusons and cooperons, and
to define the objects in terms of the Green’s function, we need to build up a systematic
theory. Let us see how this is all done in practice.

4.4.1 Diagram technique: diffusons and cooperons

Here we do the preparatory work; we develop a technique of averaging over a random
potential, the so-called diagram technique. We already introduced some components of it
in Section 2.3, but here we explain them in a systematic way.

Our starting point is Eq. (2.26) for the Green’s function. In this section, we only con-
sider normal-state systems in the linear regime, and thus we do not need Nambu and spin
decompositions. For Keldysh decomposition, we only need to find advanced and retarded
Green’s functions, for which we have the following equation:

(E ± i0− Ĥr)ǦR,A(r , r ′; ε) = δ(r − r ′), (4.54)

where the upper and lower signs correspond to advanced and retarded functions, respec-
tively, and Ĥr = Ĥ0 +U (r), with U and Ĥ0 being the random potential and the
Hamiltonian in the absence of random potential, respectively.

Now we are going to calculate the average Green’s functions and average products of
several Green’s functions. This is done in the way outlined in Section 2.3. Denote the
unperturbed Green’s function (the solution of Eq. (4.54) for U = 0) as G(0)(r, r′, E). In the
simplest case, when H0 only contains the kinetic energy, we obtain

G(0)
R,A(k,ω) = (ε − ξ (k)± i0)−1 ,

where we have moved to the momentum representation (over r− r′), ε = E − μ, and ξ (k)
is the kinetic energy counted from the Fermi level, ξ ≈ vF|k− kF|. Following tradition, in
this section we use the system of units where � = 1.

Now one develops a perturbation theory in U for Eq. (4.54), solving it formally, G =
(G−1

0 −U )−1, and then expanding the denominator in powers of U . To keep track of the
expansion, we represent it graphically in the following way. Let us draw the unperturbed
Green’s function G(0) as an oriented straight line (straight line with an arrow). The arrow
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(a) (b)

(c)

= +

+ +

=+ ... +

�Fig. 4.6. (a) Green’s functions with several crosses; (b) the simplest crossing diagram; (c) non-crossing
approximation for the Green’s function.

supports the momentum k and the energy ε. Alternatively, if one wishes to develop the
perturbation theory in the space-time representation, the line connects the point r, t with
the point r′, t ′. The first-order correction to the Green’s function is given by

G(1)
R,A(r , r ′; ε) =

∫
dr ′′ G0

R,A(r , r ′′; ε)U (r ′′)G0
R,A(r ′′, r ′; ε).

In space-time representation, this is drawn as a straight line, a cross with an attached dashed
line (indicating the random potential U (r ′′) – an electron is scattered at an impurity at the
intermediate point r′′), and another straight line. This is the simplest Feynman diagram
for the electron in a random potential. In the momentum representation, crosses also carry
momentum (which is conserved: the sum of the momenta carried by two Green’s functions
and the cross equals zero). Note that a cross does not carry energy, as is obvious from the
expression for G(1), since our disorder potential is time-independent.

Further orders of the perturbation theory create new diagrams. The full series of the
perturbation theory for the Green’s function is as follows: each term is a straight line
intercepted by a number of crosses; all these terms come with equal weights (see Fig.
4.6(a)).

So far, we have not averaged anything over disorder. All our diagrams depend on the
positions of the impurities involved in the scattering process. The averaging is performed
using the rules 〈U (r)〉 = 0, 〈U (r)U (r′)〉 = wδ(r− r′), and for simplicity we assume w to
be position-independent. In the language of the diagram, this means that we have to connect
pairwise all pieces of dashed lines attached to the crosses. After this averaging, all diagrams
with an odd number of crosses vanish, and we get a huge number of diagrams with an even
number of crosses connected by dashed lines. Each dashed line denotes the correlation
between the potentials U , i.e. the scattering of an electron at the same impurity. A dashed
line carries a momentum (but not an energy), but is momentum-independent and is equal
to w in the momentum–energy representation.
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It is impossible to sum up all the diagrams. Fortunately, one can check by a direct cal-
culation that all the diagrams where the dashed lines cross (crossing diagrams) are small
compared with the other (non-crossing) ones. The estimation of their relative contributions
is given by (kl)−1, where l is the mean free path. For kl � 1, one can disregard these
and work in the non-crossing approximation. For the Green’s function, in the non-crossing
approximation we can write the following equation (see Fig. 4.6(c)):

GR,A(r , r ′; ε) = w
∫

dr ′′ G0
R,A(r , r ′′; ε)GR,A(r ′′, r ′′; ε)GR,A(r ′′, r ′; ε),

which is most conveniently solved in the momentum–energy representation (we drop the
angular brackets for the average Green’s function) as follows:

GR,A(k, ε) = (ε − ξ (k)± i/2τ)−1 . (4.55)

This is what we saw in Section 2.3: for the average Green’s function, the effect of impurities
is to introduce the self-energy, equal in our case to 1/2τ , where the (momentum) relaxation
time is related to the strength of the random potential w as τ−1 = 2πνw2. Note that, as it
should be, retarded and advanced Green’s functions only have poles in the upper lower and
upper half-planes of the complex variable ε, respectively.

Exercise 4.6. Calculate the simplest crossing diagram (Fig. 4.6(b)) and verify that it is
indeed small in comparison with the non-crossing one, being of second order in (kl)−1.
Where does this small factor come from?

In the coordinate representation, the averaged Green’s function becomes short-ranged
and decays proportionally to exp(−|r − r ′|/ l). This just expresses the fact that the electron
can propagate without scattering to a distance not longer than l – eventually, it experiences
elastic scattering, and its momentum is not conserved.

We proceed with complex averages. In this section, we will need the following object,
known as the diffuson,

P B B′
diff (r, r′) = wτ

〈
GR(r, r′, E + ω, B)GA(r′, r, E , B ′)

〉
, (4.56)

where B and B ′ are two values of a certain parameter characterizing the system, for
example the magnetic field. These values play the roles of “black” and “white” indices
as discussed. The diffuson has an optimum appearance in the momentum representation:

P B B′
diff (q) = wτ

∫
ddp

(2π )d

〈
GR(p+ q, E + ω, B)GA(p, E , B ′)

〉
. (4.57)

Let us now perform the averaging over disorder. We need to draw crosses and connect them
pairwise (there is also a contribution that is a product of two Green’s functions G0 with
no crosses at all). We employ again the non-crossing approximation. There are only two
types of dashed lines. Some lines connect two crosses at the same Green’s function. As we
have seen, these scattering processes just renormalize the average Green’s function – each
line becomes 〈G〉 rather than G0. Now, there are also dashed lines connecting two differ-
ent Green’s functions (retarded and advanced ones). In the non-crossing approximation, all
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�Fig. 4.7. Diffuson equation and averaging. The impurity crosses are not shown for simplicity.

these lines are parallel, like a ladder (see Fig. 4.7). This “ladder” series of diagrams is easy
to sum up. Indeed, let us move to the momentum representation. The first diagram in the
diffuson series equals wτ times J (q,ω), where J is just the integrated product of retarded
and advanced Green’s functions. This product equals 2πνV τ (1− Dq2τ + iωτ − τ/τD),
where the term 1/τD originates from the averaging of the square of the “long” momentum,
−i∇ − eB/c, over the cross-section of the system perpendicular to the magnetic field. We
have 1/τD = (e/�)2 D〈A2 − A′2〉, where the averaging is performed over the volume of
the system. In particular, for a one-dimensional wire of square cross-section (side a) and
the magnetic field directed along the wire, one has τ−1

D = e2a2(B − B ′)2/(12c2). The dif-
fusion coefficient is D = v2

Fτ/d , d being the dimensionality. This expression is only good
for Dq2τ ,ωτ , τ/τD � 1. The next term in the series equals w2τ J 2, and so on. Summing
up the geometric series, we obtain P = wτ J (1− wJ )−1 ≈ (Dq2 − iω + 1/τD)−1. Note
that the series is converging very slowly and that all terms in the series contribute equally –
in particular, omission of the first few terms would not change the result.

This expression is best written as the solution of the following equation in space-time
representation: (

∂

∂t
− D∇2

r +
1

τD

)
P B B′

diff = δ(r− r′)δ(t − t ′). (4.58)

(Note that even though we derived this for a translationally invariant system by moving into
the momentum representation, Eq. (4.58) is more general.) For B = B ′, τ−1

D = 0, and the
diffuson obeys the diffusion equation: it is not affected by the magnetic field. The equation
is only valid provided the time difference t − t ′ is much longer than τ and the distance
|r− r′| is much longer than the mean free path.

One can also account for spin-orbit scattering [97]. In this case one has four diffusons: a
singlet one, with time τ−1

D = e2a2(B − B ′)2/(12c2), and three identical triplet ones, with
τ−1

D replaced by τ−1
D + τ−1

SO , see Eq. (4.22).
It is clear what the meaning of diffuson is from Eq. (4.58) – it is the probability of finding

a particle at point r at time t provided it was at point r′ at time t ′. Our ladder diagrams show
how it occurs at the microscopic level. Indeed, we saw that the average Green’s function
is short-ranged and decays exponentially, provided the distance between the end points is
greater than the mean free path l. However, the sum of ladder diagrams is long-ranged:
diffusive motion occurs due to multiple impurity scattering. The product of two averaged
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Green’s functions cannot produce such an object. Note that this conclusion only makes
sense at long spatial scales, much longer than the mean free path (ql � 1). At shorter
scales, the diffusion approximation does not apply.

One can also define a cooperon as follows:

P B B′
coop(r, r′) = w

〈
GR(r, r′, E + ω, B)GA(r, r′, E , B ′)

〉
. (4.59)

It obeys a similar equation, which we write again in the time representation (the cooperon
depends on two times t , t ′ rather than on the frequency ω):(

∂

∂t
− D∇2

r +
1

τC

)
P B B′

coop = δ(r− r′)δ(t − t ′), (4.60)

where the time τC is obtained from τD by the substitution B − B ′ → B + B ′. This means
that for B = B ′ it survives; for example, for the same wire geometry, we have τ−1

C =
τ−1

H ≡ e2a2 B2/3c2. For B = B ′ = 0, the cooperon obeys the diffusion equation and is
identically equal to the diffuson. In contrast to the diffuson, the cooperon is sensitive to the
time-reversal symmetry and is suppressed by the applied magnetic field. For the record,
we give here the equation for the cooperon in both position- and time-dependent fields,
described by the same vector potential A:(

∂

∂t
+ D

(
i∇r + e

c�
A(r , t)+ e

c�
A′(r , t ′)

)2
)

P AA
coop = δ(r− r′)δ(t − t ′). (4.61)

If spin-orbit scattering is present, the structure of the cooperon is similar to that of the
diffuson.

It is also important that both the diffuson and the cooperon contain the average of the
product of advanced and retarded Green’s functions. It is easy to check that other aver-
ages – of the type 〈GRGR〉 or 〈GAGA〉 – are essentially equal to the products of averages,
〈GRGR〉 ≈ 〈GR〉〈GR〉, and therefore decay exponentially at scales longer than the mean
free path.

4.4.2 Quantum corrections to the effective action

Let us now return to the general matrix case and consider the Green’s functions of an arbi-
trary additional matrix structure with Nch indices, and later on apply this general treatment
to various problems of quantum transport, as in Chapter 2. This action has cooperon and
diffuson contributions to the action which are representing GQ corrections. These contribu-
tions are given by wheel diagrams, made up of either cooperon or diffuson ladder sections
in a straightforward way (see Fig. 4.8).

We now introduce the operators K̂ presenting a section of a corresponding ladder (wJ
in Section 4.4.1) as follows:

K̂ ab,cd
diff (r, r′) = w(r)〈Gac

b (r, r′)〉〈Gdb
w (r, r′)〉, (4.62)

K̂ ab,cd
cooper(r, r′) = w(r)〈Gac

b (r, r′)〉〈Gbd
w (r, r′)〉, (4.63)
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Ǧw
Ǧw

Ǧb
Ǧb

(a) (b)

�Fig. 4.8. Wheel diagrams that determine GQ corrections to the action. A single (double) line represents
the Green’s functions from the black (white) block, while dashed lines represent the averaging
over disorder. The diffuson (a) and cooperon (b) wheels differ by mutual orientation of the lines.

where Latin letters represent “check” indices (including the parameters and energies).
Now the “white” Green’s function is transposed for the cooperon. Diffuson and cooperon
sections are operators in the space spanned by the coordinates and the two check indices.

Summing up all the diagrams, we find the formal operator expressions for the contribu-
tions to the action [98]. One contribution corresponds to fluctuations and is given by

SGQ = Tr
[
ln(1− K̂coop)

]
+ Tr

[
ln(1− K̂diff)

]
. (4.64)

Another contribution, corresponding to the weak localization correction, takes into account
the fact that the last ladder section is twisted. We do this by introducing the permutation
operator P̂ , which exchanges the “check” indices,

P̂ K̂ ab,cd = K̂ ba,cd . (4.65)

The corresponding contribution to the action becomes

SWL = 1

2
Tr

[
P̂ ln(1− K̂coop)

]
. (4.66)

The factor 1/2 is included in Eq. (4.66) to take into account the fact that “black” and
“white” Green’s functions, in the case of weak localization, are no longer independent. We
note that K̂ for the cooperon is symmetric with respect to index exchange, so that K̂ and
P̂ commute. The eigenfunctions and the eigenvalues of K̂ are therefore either symmetric
(K+) or anti-symmetric (K−) with respect to permutations. We can rewrite Eq. (4.66) as a
sum over these eigenvalues:

SWL = 1

2

∑
n

[
ln(1− K+n )− ln(1− K−n )

]
. (4.67)

In order to calculate the GQ corrections, one has to evaluate the eigenvalues of the ladder
section K̂ , both for the cooperon and the diffuson. We introduce a method to compute this
matrix easily. The observation is that the ladders under consideration are not specific for
GQ corrections: the same ladders determine a response of semiclassical Green’s functions
upon variation of  ̌.

To see this, let us go back to non-averaged Green’s functions. We keep in mind that we
have doubled the “check” space to include the white and black sectors. We add by hand a
source term, the self-energy, which mixes up black and white Green’s functions, δ ̌bw(r).
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δ Gbw
ˇ

δ ∑bw
ˇ

= + + + ...

�Fig. 4.9. The response of Green’s function δǦbw on self-energy �̌bw in a semiclassical non-crossing
approximation is determined by the sum of the ladder diagrams. This allows us to express the
wheel diagrams in terms of the eigenvalues of the response kernels.

This source term gives rise to a correction to the Green’s function in the same black–white
sector. In the first order, we have

δǦbw(r, r′) = −
∫

dr1 dr2 Ǧb(r, r1)δ ̌bw(r1, r2)Ǧw(r1, r′), (4.68)

which is best illustrated by the diagram in Fig. 4.9. The next step is to include the effect
of the random potential U (r). We average Eq. (4.68), discarding all diagrams with crossed
dashed lines (non-crossing approximation) and obtaining a set of ladder diagrams (Fig.
4.9.) By summing up all the contributions, we obtain the correction – taken in coinciding
points – to the Green’s function:

〈δǦbw(r, r)〉 = 1

w(r)

K̂diff

1− K̂diff
δ ̌bw (r). (4.69)

Equation (4.69) is very valuable: it demonstrates that the response of the Green’s function
to the source term δ ̌bw is determined by the same ladder operator K̂ , which we need to
compute the GQ corrections.

At the space scale of isotropization length (mean free path), one has K̂ ∼ 1. Usually
one is interested in the contribution arising from the larger space scale where a cooperon–
diffuson approximation is valid. At this scale, the eigenvalues of K̂ are either zero, or very
close to unity. To see this, we cite the results for the homogeneous case with r-independent
 ̌. A convenient basis in “check” space is one where  ̌ is diagonal, the eigenvalues being
 n . The Green’s function is diagonal in this basis as well, Gn = sa ≡ sign Im  a . Due
to homogeneity, the section operator is diagonal in the wave vector representation, with
eigenvalues equal to K nm(q). Direct calculation yields K nm(q) = 0 provided sn = sm . For
sn �= sm ,

1− K ab(q) ≈ τ
[
isb( a − b)+ Dq2

]
+ · · · (4.70)

for  τ , ql � 1. This equation forms the relation between our technique and the common
technique for cooperons and diffusons in homogeneous media, as outlined above.

Now we note that zero eigenvalues contribute neither to Eq. (4.64) nor to Eq. (4.69). As
for those close to unity, we may replace K̂ by 1 in the numerator of Eq. (4.69). We also note
that δǦ can be presented as the derivative of the action Therefore, we can write the GQ

corrections due to the diffuson modes to the action in terms of a determinant comprising
derivatives of the semiclassical action with respect to  ̌bw,  ̌wb:
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SGQ,diff = − ln det ′
(
−w(r)

δ2S
δ ̌wbδ ̌bw

)
. (4.71)

The “prime” sign of the determinant signals that the zero eigenvalues are excluded: det′ is
defined as the product of all non-zero eigenvalues. Indeed, as we have seen, some variations
of self-energies do not change the Green’s functions, giving rise to zero eigenvalues. We
also note that the GQ corrections are not affected by the specific form of w(r): since the
determinant of a product of two matrices is a product of their determinants, this matrix
gives a constant contribution to the action that does not affect any physical quantities.

4.4.3 Finite-element approximation

Equation (4.71) is microscopic and holds in all cases. We now adapt it to the finite-element
approach outlined in Chapter 2. We replace the actual r-dependent matrices Ǧ and  ̌ by
constants in each node. To obtain the action in these terms, one integrates over the volume
of each node so that the correction to the action is given by

δS = −
∑
α

iπ

δα
Tr

[
Ǧαδ ̌α

]
, (4.72)

where the summation is over the nodes, and δα = (νVα)−1 is the mean level spacing in the
node. The discrete analog of the determinant relation, Eq. (4.71), is now given by

SGQ,diff =− ln det ′
(
−wαVα

δ2S
δ ̌wbδ ̌bw

)

− ln det ′
(

π

2ταδα

δ2S
δη̌wbδη̌bw

)
= const.− ln det ′

(
δ2S

δη̌wbδη̌bw

)
, (4.73)

where we have introduced the dimensionless response matrix η̌α ≡ iπ ̌/δα . The response
matrix is determined from the solution of the Kirchhoff equations at the vanishing source
term η̌bw

α . It has Nnodes · N 2
ch/2 non-zero eigenvalues and the same number of zero eigen-

values. We observe that at  w,b = 0 the eigenvalues of this matrix do not depend on the
volume of the nodes Vα , rather they are determined by the transmission eigenvalues of the
connectors only, and are of the order of G/GQ. Since rescaling of all conductances gives
only an irrelevant constant contribution to the action, the GQ corrections depend only on
the ratios of the conductances of the connectors: this brings about the universality of these
corrections.

The circuit theory action is given in terms of Ǧα . It is advantageous to present the answer
for SGQ in terms of the expansion coefficients of the action around the saddle-point –

the solution of the semiclassical circuit-theory equations, that is, to use δ2S/δǦwbδǦbw

instead of δ2S/δη̌wbδη̌bw. If the latter matrix were invertible, we would make use of the
fact that δ2S/δǦwbδǦbw = (δ2S/δη̌wbδη̌bw)−1. In fact, due to the constraint Ǧ2 = 1, there
is a large number of zero eigenvalues in the response matrix, and the task in hand is not
completely trivial.
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We proceed as follows. We expand the action by replacing each Ǧ in each node by

Ǧ = Ǧ0 + ǧ − Ǧ0ǧ2/2+ · · · (4.74)

and collecting terms of the second order in ǧ and η̌. Equation (4.74) satisfies the con-
straint Ǧ2 = 1 up to second-order terms, provided ǧǦ0 + Ǧ0ǧ = 0. Let us work in the
N 2

ch Nnodes–dimensional space indexed with the “bar” index ā composed of two “check”
indices and one node index, ā ≡ (a, b,α). We present the result of the expansion as follows:

δS = gwb
ā Māb̄gbw

b̄
− ηā gbw

ā . (4.75)

The variation of Eq. (4.75) under the constraint ǧǦ0 + Ǧ0ǧ = 0 gives the response matrix
δ2S/δηāδηā . Next we consider the matrix�āb̄ defined through the following relation:

�āb̄gbw
b̄
→ 1

2

(
ǧ − Ǧ0ǧǦ0

)
→ 1

2

(
ǧbw − ǦbǧbwǦw

)
; (4.76)

the final equation makes the white–black block separation explicit. We note that �āb̄ is a
projector: it separates “bar” space on two subspaces where ǧ either commutes or anticom-
mutes with Ǧ0, and projects an arbitrary ǧ onto the anticommuting subspace. Applying
this projector to Eq. (4.75), we show that the projected matrix�āb̄ Mb̄c̄�c̄b̄ is an inverse of
the response matrix within the anticommuting subspace. Thus,

SGQ = ln det′
(
�āb̄ Mb̄c̄�c̄b̄

) = ln det
(
�āb̄ Mb̄c̄�c̄b̄ + δāb̄ −�āb̄

)
. (4.77)

In the final part of Eq. (4.77) we added the matrix 1− �̂. This procedure replaces all zero
eigenvalues with 1, so that one can evaluate a usual determinant.

We recall that, as far as fluctuations are concerned, there are two contributions of this
sort coming from diffuson and cooperon ladders, respectively. The weak localization cor-
rection involves the permutation operator, which sorts out eigenvalues involved according
to Eq. (4.67). With this, Eqs. (4.77) and (4.73) give the GQ corrections in an arbitrary
circuit-theory setup in the most general form.

Up to now we have assumed that the Hamiltonian commutes with the “check” struc-
ture and is invariant with respect to time reversal. This implies strict coherence of waves
with different “check” indices, which propagate in the disordered media described by this
Hamiltonian. Even small “check”-dependent perturbations of the symmetric Hamiltonian
give accumulating phase shifts to these waves and may significantly change their interfer-
ence patterns at long distances. Due to its random nature, such phase shifts can be regarded
as decoherence, although this should not be confused with a real decoherence coming from
interaction-driven inelastic processes, treated in Chapter 6. In real experimental situations,
two sources of such decoherence are usually of importance – spin-orbit scattering and the
magnetic field, corresponding to unitary and symplectic ensembles in the RMT language
(Section 4.3).

The most convenient way to incorporate magnetic field and spin-orbit scattering into our
scheme is to present them as perturbative corrections to Ǧ-dependent action (Fig. 4.10).
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(a) (b)
σaˇ

σaˇ

ˇ(vA)∑Η

ˇ(vA)∑Η

�Fig. 4.10. Second-order diagrams in spin-orbit interaction (a) and magnetic field (b) provide decoherence
terms in the action. These terms describe transitions between pure RMT ensembles.

The spin-orbit scattering enters the Hamiltonian in the form ȞSO = σ̂a Ha(r, r′),
Ha(r, r′) = −Ha(r′, r), σ̂a representing spin Pauli matrices in “check” space. In second
order in Ha , the averaging gives (Fig. 4.10)

SSO =
∫

dr
πν

8τSO(r)
Tr

[
Ǧ(r)σ̌aǦ(r)σ̌a

]
. (4.78)

At the level of microscopic approach, the spin-orbit scattering takes place anywhere in
the nanostructure. In the finite-element approach, it is advantageous to ascribe spin-orbit
scattering to nodes rather than to connectors. This is consistent with the main idea of our
scheme: random phase shifts take place in the nodes. The spin-orbit contribution in each
node α is obtained by integrating Eq. (4.78) over the node:

SSO = ηSO

4
Tr

[
Ǧασ̌aǦασ̌a

]
, (4.79)

where ηSO ≡ π/2τSO
α δα .

The magnetic field is incorporated into the Hamiltonian through the modification of the
derivative,

H → H − (e/c)(ν A) H

where A is the vector potential, v is the electron velocity, and  ̌H ( ̌2
H = 1) describes the

interaction of different “check” waves with the magnetic field. In its simplest form,  ̌H is
the matrix in the white–black structure introduced such that  ̌b

H = 1,  ̌w
H = −1, provided

we describe a cooperon. This is consistent with the requirement that one of the Hamil-
tonians must be transposed to describe a cooperon ladder. This is not the only plausible
form of this matrix. For example, in non-equilibrium superconductivity  ̌H involves an
electron–hole Nambu structure.

The magnetic field decoherence contribution can also be assigned to a node and is
given by

SH = ηH

2
Tr

[
Ǧα ̌H Ǧα ̌H

]
, (4.80)

where ηH = π/2τHδα and τH has been introduced in Section 4.2. It depends on the
geometry of the node and its characteristics. By the order of magnitude, one has
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1/τH δS� (	/	0)2(Gnode/G Q), where 	 is the magnetic flux through the node, 	0 ≡
π�/e is the flux quantum, and Gnode is a typical conductance of the node. The latter is
limited by its Sharvin value in the ballistic regime, where the isotropization length is of the
order of the node size.

To find the effect of the decoherence terms, Eqs. (4.79) and (4.80), on the eigenvalues
forming the localization correction, we expand the action as it was done to obtain Eq.
(4.75). The decoherence contribution to M̂ is diagonal in the node index, and can be made
diagonal in the “bar” index by a proper choice of the basis in “check” space. For instance,
if no external spin polarization is present in the structure, the spin-orbit contribution is
diagonal in the basis made of singlets and triplets in spin space. The simple realization of
 H mentioned is automatically diagonal. If, in addition, this diagonal contribution is the
same in all nodes, both decoherence effects just shift the eigenvalues of M̂ corresponding
to the symmetric Hamiltonian. This provides us with an extremely convenient model of
decoherence effects.

The action for fluctuations is modified as follows:

Sdiff =
∑

n

{ln(Mn)+ 3 ln(Mn + ηSO)} , (4.81)

Scoop =
∑

n

{ln(Mn + ηH )+ 3 ln(Mn + ηSO + ηH )} , (4.82)

where the summation runs over the non-degenerate eigenvalues of M̂ and the factor 3
comes from three-fold degeneracy of the triplet (see Eq. (4.22)). To derive the modification
for the weak localization contribution, we note that the singlet and the triplet are, respec-
tively, antisymmetric and symmetric with respect to the permutation. Therefore, triplet
extensions of symmetric and antisymmetric eigenvalues are, respectively, symmetric and
antisymmetric. The weak localization correction is thus given by

SWL = 1

2

∑
n

{
ln

M−n + ηH

M+n + ηH
+ 3

2
ln

M+n + ηSO + ηH

M−n + ηSO + ηH

}
, (4.83)

M+(−) denoting the (anti)symmetric eigenvalues of M̂ .
Since the eigenvalues of M̂ are of the order of G/GQ, the decoherence effects become

important at ηSO , ηH � G/GQ, that is when inverse decoherence times match the Thouless
energy: ETh = (G/GQ)δS of the node, 1/τSO, 1/τH � ETh.

The magnetic field produces not only random, but also deterministic phase shifts, giv-
ing rise to the Aharonov–Bohm (AB) effect discussed in the following. Let us show how
to incorporate the AB effect into our scheme. For simplicity, we now disregard all the
orbital effects of the magnetic field and assume that only the topological effects – due to
non-trivial geometry – are important. Consider a nanostructure in the shape of a closed
ring threaded by a magnetic flux 	. Neglecting orbital effects, one can get rid of the vec-
tor potential in the Schrödinger equation by a gauge transformation. Let us make an ideal
cut in the nanostructure that breaks the loop (see Fig. 4.11). The topological effect of
the flux can be incorporated into the boundary condition for the wave-function ψL,R on
two sides of the cut, ψL = exp(iφAB H )ψR. The phase of the wave function therefore
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ψL

ψR

Φ

�Fig. 4.11. Aharonov–Bohm effect: the topological phase arising from the magnetic flux � is incorporated
into the boundary conditions that relate the wave functions on two sides of an imaginary cut.
The cut can be made in any place.

presents a discontinuity at the cut that is equal to ±φAB,φAB = π	/	0. Since the trans-
formation does not explicitly depend on the coordinate, it can be immediately extended to
semiclassical Green’s functions. These functions at two sides are related as follows:

ǦL = exp(iφAB ̌H )ǦR exp(−iφAB ̌H ). (4.84)

This solves the problem at the microscopic level. Once the nanostructure has been dis-
cretized to finite elements, we note that the cut always occurs between a connector and a
node. The most convenient way to deal with the gauge transformation, Eq. (4.84), is to put
it into the action of the corresponding connector. To do this, we observe that the Green’s
function at the right-hand end of the connector is not ǦR of the node anymore: since the cut
is crossed, it is eventually ǦL, given by Eq. (4.84). The connector action in the presence
of flux is therefore given by

Sc = 1

2

∑
n

Tr ln

[
1+ Tn

4
(Ǧc1Ǧc2(φAB)+ Ǧc2(φAB)Ǧc1 − 2)

]
, (4.85)

with

Ǧ(φAB) = exp(iφAB ̌H )Ǧ exp(−iφAB ̌H ). (4.86)

One checks that the variation of the action modified in such a way reproduces the Kirch-
hoff laws for matrix current. Due to global gauge invariance, it does not matter to which
connector and to which end of the connector the A–B phase is ascribed. If there are more
loops in the nanostructure, more connector actions have to be modified in this way.

Now, we have an action that contains all GQ corrections. We still need to produce
expressions for the transmission distributions ρ(T ) that eventually give weak localization
correction to the conductance and conductance fluctuations. According to Section 2.6, the
transmission distribution is given by

ρ(T ) = −ρ0(T ) Re

[
∂S
∂φ

(
π + 2i cosh−1 1√

T
− 0

)]
, (4.87)
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where the transmission distribution for the diffusive conductor ρ0(T ) is given by Eq.
(1.43). Classical circuit theory, developed in Section 2.6, provides the result in the limiting
case G � GQ. The weak localization contribution SWL provides the GQ correction to the
transmission distribution. The fluctuation contribution SGQ = Sdiff + Scoop that depends
on two parameters φw,b, gives correlations of transmission distributions:

SGQ (φb,φw) =
∫

dT dT ′
〈〈
ρ(T )ρ(T ′)

〉〉
× ln

[
1− T sin2 φb

2

]
ln

[
1− T ′ sin2 φw

2

]
. (4.88)

A simple application of the above formulas are quantum corrections to the conductance.
These are given by the derivatives of corresponding actions at φb,w = 0:

δGWL

GQ
= −2

∂2Swl(φ)

∂φ2

∣∣∣∣
φw=−φb=φ=0

; (4.89)

〈〈GbGw〉〉
G2

Q

= 4
∂4SGQ(φb,φw)

∂φ2
b∂φ

2
w

∣∣∣∣∣
φb,φw=0

. (4.90)

Control question 4.7. Imagine we want to study the correlations of shot noise – a
quantum correction, defined analogously to conductance fluctuations. What parts of the
effective action should we use and how?

4.4.4 Application: junction chain

To compute the distribution of transmission eigenvalues in Section 2.6, we made use of
2× 2 matrix voltages. Let us now apply our general expressions for the GQ corrections to
specific systems. We start with a chain of N identical tunnel junctions. As we remember
from Section 2.6, in the limit of large N this chain is equivalent to a diffusive wire. In the
semiclassical approximation, the “phase” φ drops by the same amount at each junction,
and one eventually reproduces the transmission distribution ρ0(T ).

To calculate the GQ corrections, we augment this matrix by adding the “black” and
“white” structure. The technical details of the calculation can be found in Ref. [98]. The
parameter φ gets a “color” index “b” or “w”. The semiclassical solution for the resulting
4× 4 matrix is non-zero in bb and ww blocks:

Ǧ0
k =

(
Ǧ(kφb/N ) 0

0 Ǧ(kφw/N )

)
. (4.91)

Now we need to derive the matrix M̂ , the eigenvalues of which determine the GQ correc-
tions. It is advantageous to use a parameterization of the deviations from the semiclassical
solution, ǧ, which automatically satisfy ǧǦ + Ǧǧ = 0 in each node. To this end, we rewrite
the semiclassical action in a special basis, where Ǧ0

k are diagonal in each node:
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Ǧ0
k =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠ . (4.92)

Then the deviation of the form given by

ǧk =

⎛
⎜⎜⎜⎝

0 0 0 gbw
k,p

0 0 gbw
k,m 0

0 gwb
k,p 0 0

gwb
k,m 0 0 0

⎞
⎟⎟⎟⎠ (4.93)

satisfies the above condition.
In this basis the semiclassical action is given by

S = GT

2GQ

N−1∑
k=0

Tr
(

Ǧk ĽǦk+1 Ľ−1
)
− iπ

δS

N−1∑
k=1

Tr
(
 ̌k Ǧk

)
, (4.94)

where the bb (ww) block of Ľ is given by

Lbb(ww) =
(

cos(φb(w)/N ) i sin(φb(w)/N )
i sin(φb(w)/N ) cos(φb(w)/N )

)
. (4.95)

We expand the Green’s matrices according to Eq. (4.74), write the quadratic form in terms
of ǧ, and diagonalize it to find the following set of eigenvalues, l = 1, . . . , N − 1:

4GQ

GT
M±l (φb,φw) = 2 cos

φb

2N
cos

φw

2N
cos

πl

N
− cos

φb

N

− cos
φw

N
∓

√
4 sin2 φb

2N
sin2 φw

2N
cos2 πl

N
+ ε2, (4.96)

and ε ≡ 2πGQ( b − w)/GTiδS measures the difference of Green’s function energy
parameter in bb and ww blocks in units of a single-node Thouless energy. To obtain the
eigenvalues that determine the weak localization contribution, we set φw = −φb = φ, ε =
0. This yields

M+WL,l (φ) = GT

2GQ
cos

φ

N

[
cos

πl

N
− 1

]
, (4.97)

M−WL,l (φ) = GT

2GQ

[
cos

πl

N
− cos

φ

N

]
. (4.98)

Let us discuss the weak localization correction first. If we disregard the decoherence
factors, we can sum up over l to find a compact analytical expression:

SWL = (N − 2)

2
ln

(
cos

φ

N

)
+ 1

2
ln

(
sin 2φ/N

sinφ

)
. (4.99)

In the limit N →∞ this becomes

SWL = 1

2
ln

(
φ

sinφ

)
. (4.100)
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It is interesting to note that the weak localization correction is absent for N = 2. This is a
general property of a single-node tunnel-junction system.

Exercise 4.7. Does this property hold if a magnetic field or spin-orbit scattering is
present?

A part of the weak localization correction in diffusive conductors is universal [99]: it
depends neither on the shape nor on the dimensionality of the conductor. The universal
part is concentrated near transmissions close to unity and is given by

δρWL(T ) = −1

4
δ(T − 1), (4.101)

while the non-universal part is a smooth function of T . Equation (4.99) possesses this
property at any N , since the universal part comes from the divergency in Eq. (4.99) at
φ = π , where the eigenvalue M−WL,1 goes to zero. Our approach proves that this correction
is universal for a large class of the nanostructures, not limited to diffusive ones, for any
nanostructure where transmission eigenvalues approach unity. This is guaranteed by the
logarithmic form of the action. If M−WL,1 ∝ (π − φ) at φ→ π , the correction is given by
Eq. (4.101) irrespective of the proportionality coefficient.

Expanding Eq. (4.99) at φ→ 0, we find the correction to the conductance of the tunnel
junction chain:

δGWL

GQ
= −1

3

(N − 1)(N − 2)

N 2
. (4.102)

This is written for an orthogonal ensemble; for other pure ensembles the factor (1− 2/β)
must be added. For a diffusive conductor, N →∞, Eq. (4.97) yields the weak localiza-
tion correction δGWL = −(1− 2/β)(1/3), in accordance with the conclusions of random
matrix theory (Section 4.3). The effect of spin and magnetic decoherence can be taken
into account by shifting the eigenvalues, Eqs. (4.97) and (4.98), according to Eq. (4.83)
since the decoherence factors ηH ,SO in each node are the same. The correction to the trans-
mission distribution is plotted in Fig. 4.12 for different strengths of spin-orbit coupling to
illustrate the transition between orthogonal and symplectic ensembles.

Let us discuss the parametric correlations. Without decoherence factors and at the same
energy (ε = 0) one can still sum up over the modes to obtain an analytical expression:

Sdiff = Scoop = (N − 1) ln

(
cos

φb

N
+ cos

φw

N

)

+
∑
±

ln

(
sin
φb ± φw

2
− sin

φb ± φw

2N

)
. (4.103)

The fluctuation of conductance obtained using Eq. (4.90) is given by

〈〈δG2〉〉
G2

Q

= 2

15

N 4 + 15N − 16

N 4
, (4.104)

and converges to the expression 〈〈δG2〉〉 = (2/15)G2
Q for N →∞, again in accordance

with RMT. We note that this convergence is rather quick; the fluctuation at N = 5 differs
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�Fig. 4.12. Weak localization correction to the transmission distribution of a system of four identical
junctions at different values of spin-orbit parameter ηSO. We plot the cumulate correction
X(T) ≡ ∫ 1

T dT’ T’δρ(T’); X(1) represents the universal singular part of the correction (see Eq.
(4.101)), while X(0) gives the correction to the conductance. (i) The lowest curve corresponds
strictly to zero ηSO and therefore represents a pure orthogonal ensemble. Its negative value at
T=1 is partially compensated for by a positive non-universal contribution coming from T � 1 so
that the resulting correction to conductance δGWL/GQ = X(0) ≈ 0.2. (ii), (iii) These curves
correspond to relatively small values of ηSO, 0.05 and 0.4. While they are close to the orthogonal
ensemble result at T � 1, their behavior at T ≈ 1 is quite different: the universal correction is that
of a symplectic ensemble and is of positive sign. Curve (iv), corresponding to ηSO = 10, is close to
the cumulate correction of pure symplectic ensemble, Xsym(T) = −Xort(T)/2.

from asymptotic value by only 10%. We see thus that the diffusive wire, that in princi-
ple contains an infinite number of cooperon and diffuson modes, can be, with sufficient
accuracy, described by the finite-element technique, even at a low number of elements.

Another point to discuss concerns the correlations of transmission eigenvalues Tn , which
can be obtained by analytic calculation of Eq. (4.88). It is instructive to concentrate on
relatively small eigenvalue separations, those much smaller than unity but still exceeding
the average spacing (of order of GQ/G) between the eigenvalues, GQ/G � |T − T ′| � 1.
We observe that the correlation in this case is determined by the divergence of S at φb −
φw →±2π . Indeed, M−1 approaches zero in this limit. This again suggests the universality
of these correlations. Indeed, this corresponds to the notion of RMT that, for diffusive
conductors, the correlations in this parameter range are determined by universal Wigner–
Dyson statistics and reduce to

〈〈ρ(T )ρ(T ′)〉〉 = − 2

π2β
Re

(
1

(T − T ′ + i0)2

)
. (4.105)

Since the conductance fluctuations are contributed by correlations of Tn at scale of order
1 as well, they are not universal. We plot in Fig. 4.13 the correlator of conductance
fluctuations as a function of energy difference at several N .
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�Fig. 4.13. Energy dependence of the correlator of conductance fluctuations 〈〈G(0)G(E)〉〉 for chains with
different numbers of junctions N. The energy difference is normalized to the Thouless energy of
the whole chain, ETh ≡ δSGT/2πGQN2. Note the fast convergence of the correlator to that of
diffusive wire for large N and negative correlations at large E.
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�Fig. 4.14. A simple circuit to exemplify the AB effect consists of two nodes and four (tunnel) connectors.
The AB phase modifies the Green’s function on the tight side of the lowest connector with respect
to ǦB. The cut is given by the dashed line.

4.4.5 Example: Aharonov–Bohm ring

Now we exemplify evaluation of the AB effect within our scheme. We concentrate on
the simple circuit presented in Fig. 4.14. It contains four tunnel junctions and two nodes
labeled A and B. The conductances of the junctions are chosen as equal in order to re-use
the results of the previous subsection for a chain of three tunnel junctions: the solution
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of semiclassical circuit theory equations is given by Eq. (4.91) for N = 3. The action is
given by

S = GT

4GQ
Tr

{
ǦLǦ A + 1

2
Ǧ AǦ B

+1

2
Ǧ AǦ B(φAB)+ Ǧ B ǦR

}
− i
π

δS

∑
i=A,B

Tr  ̌i Ǧi , (4.106)

where ǦL,R are the Green’s functions in the reservoirs and Ǧ B(φAB) is modified accord-
ing to Eq. (4.84). To study correlation of conductance fluctuations, we consider different
Green’s functions for white and black blocks, subject to different fluxes φb

AB �= φw
AB. For

the weak localization correction, we set φb
AB = −φw

AB = φAB.

To calculate the matrix M̂ , we again use the basis where G(0)
i are diagonal and the

parameterization for ǧ introduced in the previous subsection. It is given by

M =
(

Md Mod

M∗od Md

)
,

where 2× 2 blocks Md,od are given by

GT Md

4GQ
=

( − cosφb − cosφw + ε 0
0 − cosφb − cosφw − ε

)
,

GT Mod

4GQ
= 1+ ei(φb

AB−φw
AB)

2

(
cosφb/2 cosφw/2 sinφb/2 sinφw/2
sinφb/2 sinφw/2 cosφb/2 cosφw/2

)
.

The parameter ε, which characterizes the energy difference between the black and white
Green’s function, is defined in the previous subsection. At ε = 0, we obtain an explicit
expression for the diffuson eigenvalues (the cooperon ones are obtained by the substitutions
φw →−φw and φw

AB →−φw
AB),

4GQ

GT
M+1,2 = − cos

φb

3
− cos

φw

3
± cos

(
φb

AB − φw
AB

2

)
cos

(
φb − φw

6

)
,

4G Q

GT
M−1,2 = − cos

φb

3
− cos

φw

3
± cos

(
φb

AB − φw
AB

2

)
cos

(
φb + φw

6

)
.

The weak localization correction to the action is given by

SWL(φ) = 1

2
ln

(
cos2(φ/3)(4− cos2(φAB))

4 cos2(φ/3)− cos2(φAB)

)
, (4.107)

from which we calculate the correction to conductance as the function of the flux,

δGWL

GQ
= − 4 cos2(φAB)

9(7− cos(2φAB))
. (4.108)

We see that the weak localization correction cancels at half-integer flux φAB = π . This
is because the junctions forming the loop are taken to be identical. The flux dependence
exhibits higher harmonics, indicating semiclassical orbits that encircle the flux more than
once. We discuss this in more detail below for diffusive conductors.
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For the correlation function responsible for conductance fluctuations we obtain

〈δG2〉
G2

Q

=
∑
±

259− 4 cos(φw
AB ± φb

AB)+ cos 2(φw
AB ± φb

AB)

81(cos(φw
AB ± φb

AB)− 7)2
, (4.109)

where plus and minus signs indicate the cooperon and diffuson contributions, respectively.
Higher harmonics are present as well.

4.4.6 Example: two connectors and one node

Probably the simplest system to be considered by circuit-theory methods consists of a sin-
gle node and two connectors (Fig. 4.15). Since in this case there are only Nch eigenvalues,
one can straightforwardly elaborate on complicated arbitrary connectors. For this setup we
are still able to find an analytical expression for cooperon and diffusion eigenvalues. This
allows us to obtain an expression for the weak localization correction to the conductance
which was vanishing in the case of two tunnel junctions. Each connector is, in principle,
characterized by the distribution of transmission coefficients {T R

n }, {T L
n }, or, equivalently,

by the functional form of the connector action, Eq. (2.91), SL and SR. The action for the
whole system is given by

S = SL(ǦL, Ǧ)+ SR(Ǧ, ǦR)− i
π

δs
Tr  ̌Ǧ, (4.110)

where Ǧ is the Green’s function of the node. We employ 2× 2 matrices and set the Green’s
functions in the left and right reservoirs to Ǧ(−φ/2) and Ǧ(φ/2), respectively. The saddle-
point value of Ǧ is given by the phase χ . This phase, for the general choice of SL and SR,
does depend on φ, χ ≡ χ (φ). The total action in the saddle point is therefore S(φ) =
SL(χ + φ/2)+ SR(χ − φ/2). We expand the Green’s function according to Eq. (4.74).
The second-order correction to the action in this case is given by

S(2) = −i
π

δs
Tr  ̌ ǧ − 1

2

∑
n

Tr

{
T L

n

4+ T L
n ({Ǧ0, ǦL} − 2)

ǧ2Ǧ0ǦL

+
[

T L
n

4+ T L
n ({Ǧ0, ǦL} − 2)

]2

(ǧǦLǧ ǦL + ǧ2)+ (L↔ R)

}
. (4.111)

SL SR

GL
ˇ GR

ˇǦ

−φ /2 φ /2
χ

�Fig. 4.15. The simplest possible circuit comprises one node, two connectors (L and R), and two reservoirs
where Green’s functions ǦL,R are fixed.
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As in the previous subsections, we find two diffuson eigenvalues (the cooperon ones are
obtained by the substitution φw →−φw) as follows:

M±(φb,φw) =
∑

i=b,w

I (φi )

[
cot

(
χ (φi )− φ

i

2

)
− cot

(
χ (φi )+ φ

i

2

)]

− 1

2

(
1− cos

[
χ (φb)+ φb

2
∓ χ (φw)∓ φw

2

])

×
∑

i=b,w

1

sin2(χ (φi )+ φi/2)

[
I ′(φi )

χ ′(φi )+ 1/2
− I (φi ) cot

(
χ (φi )+ φ

i

2

)]

+ 1

2

(
1− cos

[
χ (φb)− φb

2
∓ χ (φw)± φw

2

])

×
∑

i=b,w

1

sin2(χ (φi )− φi/2)

[
I ′(φi )

χ ′(φi )− 1/2
− I (φi ) cot

(
χ (φi )− φ

i

2

)]
. (4.112)

Here we introduced I (φ) ≡ ∂S/∂φ to characterize the derivative of the total semiclassical
action. We see that M− approaches zero in the limit φb →±π , φw →∓π , provided I (φ)
stays finite. As discussed, this divergency guarantees the universality of the correlations of
the transmission eigenvalues. In the following, we specify to two different cases.

Symmetric setup

If we set SR = SL, χ (φb(w)) is zero regardless of the concrete form SL. The total action
therefore reads S(φ) = 2SL(φ/2). The eigenvalues in Eq. (4.113) take a simpler form. To
compute the weak localization correction to the action we set φb = −φw = φ to find

SWL = 1

2
ln

(
I ′(φ)

I (φ)
tan
φ

2

)
+ const. (4.113)

For tunnel junctions, I (φ) ∝ sin(φ/2) and the correction disappears. Expanding
Eq. (4.113) in a Taylor series near φ→ 0 we find

δGWL

GQ
= − t2

4t1
, tp =

∑
n

T p
n . (4.114)

A similar expansion of diffusion and cooperon eigenvalues yields

〈(δG)2〉
G2

Q

= 3t2
2 + 2t2

1 − 2t1(t2 + t3)

8t2
1

. (4.115)

It is instructive for understanding the circuit theory of GQ corrections to elaborate on
Eq. (4.113) for the specific case of diffusive connectors. Since in this case I (φ) ∝ φ, we
obtain

SWL,node = 1

2

[
ln(tan(φ/2))− lnφ

]
. (4.116)

A two-connector, single-node situation can be easily realized in a quasi-one-dimensional
wire with an inhomogeneous resistivity distribution along the wire. A low-resistivity region
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would make a node if bounded by two shorter resistive regions comprising the connectors.
On the other hand, the existing literature shows that the weak localization correction in
inhomogeneous wires does not depend on the resistivity distribution. Therefore, it has to
be universally given by Eq. (4.100), SWL,1d = (1/2) ln(φ/ sinφ) �= SWL,node. How should
this apparent discrepancy be understood?

This illustrates a very general point: GQ corrections may be accumulated at various
space scales ranging from mean free path to sample size. The experimental observation
of the corrections relies on the ability to separate the contributions coming from different
scales, for example by changing the magnetic field. With our approach, we evaluate the
part coming from the interference at the scale of the node. The part coming from the inter-
ference at shorter scales associated with the connectors is assumed to be included into the
transmission distribution of these connectors.

For our particular setup, this extra contribution comes from two identical connec-
tors. Since only half of the phase φ drops at each connector, the contribution equals
2SWL,1d(φ/2). Summing up both contributions, we obtain

SWL,node + 2SWL,1d(φ/2) = Swl,tot = Swl,1d(φ).

That is, the weak localization correction in this case remains universal, provided the
contribution of the node is augmented by the contributions of two connectors.

Control question 4.8. What do we obtain for the weak localization correction for the
node between two quantum point contacts?

Non-ideal quantum point contact

The transmission distribution of an ideal multi-mode quantum point contact with conduc-
tance G B � GQ is highly degenerate since all Tn = 1 or 0. This degeneracy is lifted if the
QPC is adjacent to a disordered region, even if the scattering in this region is weak. This
can be modeled as a connector with conductance GD � G B in series.

Below, we show that the weak localization correction to the conductance has the order of
δGWL = −GQ(G B/GD), i.e. it is small compared to GQ. The usual way to verify the appli-
cability of the semiclassical approach to quantum transport is to compare the conductance
of a nanostructure with the weak localization correction to it. For a generic nanostructure,
this gives G � G Q . However, for our particular example, one has δGWL � G B even for
a few-channel QPC with G B � G Q . Thus, one may ask the following question: is the
semiclassical approach really valid at G B � GQ?

To produce an answer, we compute the weak localization correction to the transmission
distribution. Since the system is not symmetric, we make use of Eq. (4.113). In the limit
of GD � GB, the relevant values of φ are close to π . We stress it by shifting the phase,
μ = π − φ, |μ| � 1.



358 Randomness and interference
�

The circuit-theory analysis in the semiclassical limit yields

I (μ) = GD

⎛
⎝−μ

2
+

√
μ2

4
+ Rc

⎞
⎠ , χ = π

2
+

√
μ2

4
+ Rc,

where Rc ≡ 4G B/GD � 1. This gives to the following distribution of reflection coeffi-
cients (see Eq. (4.87)):

ρ(R) = G D

2πGQ
θ (Rc − R)

√
Rc

R
− 1.

We use the above relations with Eq. (4.113) to find the cooperon eigenvalues:

M+(μ) = −GD

(
−1

2
+ μ/4√

μ2/4+ Rc

)
μ2/4+ Rc

Rc/2
, (4.117)

M−(μ) = GD

⎛
⎝−μ

2
+

√
μ2

4
+ Rc

⎞
⎠ μ

2Rc
. (4.118)

This yields the weak localization correction to the current,

IWL(μ) = 2Rc

μ(μ2 + 4Rc)
.

The resulting correction to the transmission distribution consists of two delta-functional
peaks of opposite sign, located at the edges of the semiclassical distribution:

δρWL(R) = 1

4
[δ(R − Rc)− δ(R)] . (4.119)

In particular, the weak localization correction is δG = −GQG B/GD and is, indeed,
anomalously small.

To estimate the conditions of applicability, we smoothen the correction at the scale of Rc.
This gives |δρ|/ρ � GQ/G B , and the semiclassical approach does not work at G B � GQ.

4.4.7 Extended diffusive conductors

As a particular case of a junction chain (N arbitrary junctions for N � 1) we treated a one-
dimensional diffusive conductor. The results obtained for a weak localization correction to
the conductance and the conductance fluctuations are identical to those following from
the DMPK equation. In this subsection, we concentrate on extended diffusive conductors.
Starting from circuit theory, we shift to the more traditional cooperon–diffuson approach
and review the results that depend on the effective dimensionality of a conductor taking
magnetic and spin-orbit decoherence into account.

Let us derive the one-dimensional (junction chain) results in a slightly different way. For
N � 1, the phase difference at each connector, φw,b/N is small. We can thus expand the
effective action in series of φ/N . In particular, it is obvious from Eq. (4.89) that we need
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to expand up to the second order for the weak localization, and from Eq. (4.90) that fourth-
order terms are needed for conductance fluctuations. Let us start with the weak localization.
Expanding Eqs. (4.97) and (4.98) to second order in φ and substituting the eigenvalues into
the effective action, Eq. (4.83), and differentiating twice over φ, we obtain

δGWL

GQ
= − 4

N 2

N−1∑
n=1

(
1− 1

cosπn/N

)
≈ − 2

N 2

∞∑
n=1

(πn

N

)−2
, (4.120)

where we have taken into account that only eigenvalues with n � N contribute. Note
that the sum is actually taken over the eigenvalues of the operator M . Performing the
summation,

∑
n−2 = π2/6, we restore the result δGWL = −GQ/3.

Now we see how this result can be generalized to two and three dimensions: we just
have to sum over all available eigenvalues. Indeed, generally the eigenvalues are labeled
by three indices nx , ny , and nz , and one writes (assuming we have Ni junctions in the i
direction),

δGWL

GQ
= − 2

N 2
x

∑
nx ,ny ,nz

1

(πnx/Nx )2 + (πny/Ny)2 + (πnz/Nz)2
. (4.121)

The summation is carried out for non-negative values of integers nx , ny , nz , with nx =
ny = nz = 0 excluded, and the current flows in the x direction. Note that in Eq. (4.121)
the distinction between one-, two-, and three-dimensional behavior is simple. Indeed, for
Nx ∼ Ny ∼ Nz , all values of nx , ny , nz contribute, and the system is two-dimensional. For
Nx , Ny � Nz , only the value nz = 0 gives a significant contribution to the weak localiza-
tion correction, and the system is effectively two-dimensional. Finally, for Nx � Ny , Nz

only the values Ny = nz = 0 are significant, and we return to the one-dimensional result
given in Eq. (4.120).

Let us now take into account the decoherence factors ηSO and ηH . We shift the
eigenvalues as prescribed by Eq. (4.83) to arrive at the following:

δGWL

GQ
=− 1

N 2
x

∑
nx ,ny ,nz

(
3

(πnx/Nx )
2 + (

πny/Ny
)2 + (πnz/Nz)

2 + [2GQ(ηSO + ηH )]/GT

− 1

(πnx/Nx )
2 + (

πny/Ny
)2 + (πnz/Nz)

2 + 2GQηH/GT

)
. (4.122)

To proceed, we write the weak localization correction as a sum over discrete wave vectors
qi = πni/Ni :

δGWL

GQ
= − D

L2
x

∑
q

(
3

Dq2 + 1/τH + 1/τSO
− 1

Dq2 + 1/τH

)
. (4.123)

Equation (4.123) is general for diffusive conductors of any dimension, for arbitrary mag-
netic field and spin-orbit interaction. If the system is big enough, min(τH, τSO)� L2

i /D,
we can replace the summation over discrete modes by integration over wave vectors. It
could be one-dimensional integral (if only modes with ny = nz = 0 are important), or
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two- or three-dimensional. Writing the result for the conductivity (rather than conduc-
tance), we obtain

δσWL = −GQ D
∫

dq
(2π )3

(
3

Dq2 + 1/τH + 1/τSO
− 1

Dq2 + 1/τH

)
. (4.124)

Control question 4.9. What is the condition under which the system can be
considered one-, two- or three-dimensional, in terms of Li , τH, and τSO?

Equation (4.124) can be evaluated explicitly. In particular, for one-dimensional diffusive
conductors we obtain (L = Lx )

δGWL = GQ
L H

2L

(
1− 3√

1+ τH/τSO

)
, L H =

√
DτH. (4.125)

Comparing this with the result δGWL = −GQ/3 valid for L � L H , LSO = √DτSO, we
find that in one dimension the WL correction by order of magnitude is given by the product
of GQ/L , with the lowest of the lengths L , L H , and LSO.

We also write an order-of-magnitude estimate in two and three dimensions. Note that
the integrals diverge at high q , and had to be cut off at the scale q ∼ 1/ l, since, at shorter
length scales, the diffusion approximation does not work. Taking all spatial dimensions
equal to L , we obtain

GWL

GQ
∼

⎧⎨
⎩

Lmin/L 1d
ln Lmin/ l 2d
Lmin/ l 3d,

(4.126)

where Lmin = min(L , L H , LSO).
We now provide a physical interpretation of the WL results, already obtained by three

different methods. We have seen in Section 1.6 that the weak localization correction origi-
nates from the interference of two electron trajectories, similar to a double-slit experiment.
Generally, if one has two trajectories with amplitudes A1 and A2, the quantum-mechanical
probability is given as the squared absolute value of their sum,

Pq = |A1 + A2|2 = |A1|2 + |A2|2 + 2Re (A∗1 A2).

Here the first two terms (squared absolute values of the amplitudes A1 and A2) give
the probability in the classical picture, and the final term is the interference – quantum-
mechanical – contribution, giving rise to weak localization. In a diffusive system, one has
to average this contribution over disorder. Naively, due to the dependence of the amplitudes
of random phase shifts, one concludes that the interference contribution averages to zero.
However, there are special pairs of the trajectories (see Fig. 4.16) – those spanning clock-
wise and counterclockwise the same loop – that have the same phase (see the consideration
which led us to Eq. (4.43)). For these pairs, the interference term is phase-independent and
does not average to zero. It is clear that the appearance of such a term leads to the decrease
in conductance, since the particle spends more time in the loop. The correction is also
small compared with the classical value of the conductance, since the probability of find-
ing such an intersecting trajectory is small. One can write the result given by Eq. (4.124)
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�Fig. 4.16. Two classical trajectories contributing to the weak localization corrections. Crosses indicate the
impurities; the trajectories with amplitude A1 (A2), shown by a solid (dashed) line, traverse the
same loop clockwise (counterclockwise).

for the weak localization correction in terms of the cooperon P – the probability that the
trajectory returns to the same point r during the time interval t :

δσWL(B) = −GQ D

∞∫
0

dt P B B
coop(r, t ′ + t ; r, t ′) (3 exp(−t/τSO)− 1) . (4.127)

Here, P is the solution of Eq. (4.60) – without spin-orbit decoherence, and the decoherence
corrections are taken into account as the additional factor in the integrand.

If a magnetic field is present, the trajectories A1 and A2 acquire different phases. The
total phase of the interference term equals the magnetic flux through the loop divided
by the flux quantum (see Section 1.6). This phase depends on the area of the loop, and
the interference term is suppressed after the impurity averaging. This is why the weak
localization correction is suppressed by the external magnetic field.

Let us now return to the pioneering experiments described in Section 1.6. To under-
stand the results of Sharvin and Sharvin [20], we consider an Aharonov–Bohm effect in
a diffusive ring. In principle, one has AB oscillations containing all possible harmon-
ics, sinπn	/	0, corresponding to the periods 2	0/n in the flux 	, n being an integer.
However, the ring supports many transport channels (otherwise it would not be diffu-
sive), and in each channel the coefficients with which a given harmonic appears have
random signs. Thus, in a diffusive ring all oscillations average out – the average current is
magnetic-field-independent.

We saw above (see, for example, Eq. (4.108)) that a straightforward calculation does
not confirm this conclusion – the flux dependence of the conductance comes from the
WL correction. Indeed, the WL correction is due to the special pairs of trajectories that
follow the same loop in opposite directions. We have already discussed this for an AB
ring (Section 1.6). The difference with the clean ring is that all trajectories are diffusive.
In particular, the phase shift between the trajectories in Figs. 1.36(a) and (b) is random
and averages out. There is no conventional Aharonov–Bohm effect in diffusive rings. The
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simplest flux-sensitive contribution comes from the pairs of the trajectories shown in Figs.
1.36(d)–(g), corresponding to the WL correction. The magnetic flux dependence of the
WL correction is due to the phase differences between these two trajectories, and this
phase difference equals 2π	/	0. Thus, the conductance of a diffusive AB ring contains
only oscillations with the period of 	0. Conversely, if one observes these oscillations and
there is no sign of oscillations with period 2	0, it means the WL correction is observed.

Sharvin and Sharvin measured the resistance of metallic cylinders (which, for our pur-
poses can be considered as rings with many transport channels) in the magnetic field
parallel to the cylinder axis. They clearly observe a	0-periodicity, indicating the presence
of a WL correction.

Let us now consider conductance fluctuations. The expressions in this case become
heavy, and we keep the discussion to a qualitative level. For a quantitative discussion, the
reader is referred to Ref. [100]. First, there are always two contributions to conductance
fluctuations – one originating from the diffuson and one originating from the cooperon
eigenvalues. If there is no magnetic field, τ−1

C = τ−1
D = 0, these two contributions are

identical, and, at zero temperature, one obtains in all dimensions var G = αG2
Q, where

α is a numerical coefficient of order 1, determined by the geometry of the system. We have
seen that, for a one-dimensional system, α = 2/15. This is the regime where conductance
fluctuations are universal.

Next, let us switch on the magnetic field, B = B ′. Diffusons are not sensitive to the
time-reversal symmetry, and their contribution to the conductance fluctuations remains the
same. On the other hand, cooperons are suppressed by a magnetic field, and in the strong-
field limit, the cooperon contribution dies out: conductance fluctuations are reduced by a
factor of 2. This fact, which we have already observed in the framework of RMT, now has
an easy qualitative explanation. Indeed, as we discussed in Section 4.3, the interference
of any two trajectories A1 and A2 (not necessarily the time-reversed ones) contributes to
conductance fluctuations. For zero magnetic field not only the interference of A1 and A2

contributes, but also interference of A1 and the time-reversed trajectory of A2. Magnetic
field suppresses this last contribution, and thus the conductance fluctuations decrease by a
factor of 2. The typical scale of the field Bc is again given by L ∼ (DτC)−1, similar to the
weak localization correction.

In the same formalism, we can also discuss parametric correlations, taking B �= B ′.
Now all diffusons decay with the time τD, and cooperons with the time τC. Both diffuson
and cooperon contributions are suppressed in comparison with their universal values in a
zero field. The asymptotic behavior of this decay for a one-dimensional system (we assume
B, B ′ > 0) is 〈G(B)G(B ′)〉 − 〈G(B)〉〈G(B ′)〉 ∼ G2

Q(Bc/|B − B ′|)3.
Let us now discuss the temperature dependence of the conductance fluctuations. For

the weak localization correction, we did not find any temperature dependence (it only
comes via the decoherence length, discussed in Chapter 6). The situation with the fluctua-
tions is different: one finds a visible temperature dependence at the scale of the Thouless
energy ETh = D/L2, var G ∼ G2

Q(ETh/kBT )1/2 for the case kBT � ETh. This depen-
dence occurs for the following reason. Diffusons and cooperons connect the Green’s
functions of two different electrons. These electrons may have different energies, up to a
difference of kBT . In Eq. (4.58), the time derivative would yield a factor of order kBT , and
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�Fig. 4.17. An example of the classical trajectory returning to the same point several times.

the term with the gradient provides D/L2. Thus, the behavior of a diffuson and a cooperon
essentially depends on the ratio between the thermal and Thouless energies. Conductance
fluctuations are sensitive to this behavior: obviously, conductances produced by electrons
moving at different energies are less correlated than if the electrons had the same energy.

The experiment by Webb et al. [20], shown in Fig. 1.40, measured the conductance of
small metallic rings with a relatively weak disorder – the mean free path was compara-
ble with the length of a ring, and AB oscillations of all the periods were observed, not
just 	0-oscillations. On top of the oscillations, we clearly see an aperiodic pattern in the
conductance – fluctuations of the order of GQ. These fluctuations are reproducible – if the
same sample is measured again, the fluctuations are precisely the same – and thus represent
the “fingerprints” of the diffusive system.

4.5 Strong localization

4.5.1 DMPK equation and localization in wires

We have already demonstrated in Section 4.3 (and confirmed in Section 4.4) that in a suffi-
ciently long one-dimensional system the weak localization correction, calculated according
to the perturbation theory, becomes formally greater than the classical value of the conduc-
tance. This occurs if the length of the wire exceeds l N , where l and N are the mean free
path and the number of transport channels, respectively. Another way of describing the
same condition is to say that the average conductance of the wire becomes of the order of
GQ. What happens for longer wires?

One way of reasoning is the following. The weak localization correction in the diffu-
sive regime originates from the trajectories that return to the same point. We disregard the
trajectories that return to the same point twice or several times (Fig. 4.17). Using the lan-
guage of diagrams, these trajectories correspond to several diffusons and cooperons. For
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long wires, trajectories returning many times to the same point become non-negligible.
This means that the electron likes to stay in the vicinity of the same point – it is said to be
localized.

Let us now investigate this phenomenon by means of the DMPK equation, Eq. (4.50),
valid for wires of any length. For long wires we make an Ansatz, verified a posteriori:
all transmission eigenvalues Tn are very small. In terms of the variables xn , Tn = (1+
sinh2 xn)−1, it means that all xn values, as well as the distances between them, are very
large. Approximating sinh xn ≈ cosh xn ≈ exp(xn)/2, we obtain the following equation
(γ = βN − β + 2):

∂P

∂s
= 1

2γ

N∑
n=1

∂

∂xn

[
∂P

∂xn
− 2(βn − β + 1)P

]
. (4.128)

Note that this equation is much simpler than the full DMPK equation (Eq. (4.50)), since
on the right-hand side different variables xn are not mixed. The solution can be therefore
written as a product,

P(s; x1 · · · xn) =
∏

n

Pn(xn , s),

and each of Pn solves the following equation:

∂Pn

∂s
= 1

2γ

∂2 Pn

∂xn
− s

μn

∂Pn

∂xn
, μn ≡ γ

1+ βn − β .

The solution, obeying the initial condition Pn(s = 0) = δ(xn − 1) (ideal transmission for
an infinitely short wire) is given by

P =
∏

n

√
γ

2πs
exp

(
− γ

2s

(
xn − s

μn

)2
)

. (4.129)

Each of the xn values is a Gaussian variable distributed around s/μn � 1 (for n � 1 this
becomes sn/N ), having a root mean square fluctuation of order of (s/βN )1/2. Thus, the
transmission eigenvalues are “crystallized”: their averages are roughly equally spaced, and
fluctuations are much less than the spacing between the neighboring values.

We now look at the conductance, determined by the lowest value of all the xn values:

G/GQ =
∑

n

Tn =
∑

n

(
1+ sinh2 xn

)−1 ≈ exp(−2x1).

The average conductance is readily calculated using the distribution function, Eq. (4.129),

〈G〉 = GQ

√
γ

2πs
e−s/2γ . (4.130)

Thus, we see that the average conductance does not obey Ohm’s law and does not scale
inversely proportionally to the length L . (In other words, the parameter s is no longer pro-
portional to the average conductance; it is, in leading order, proportional to the logarithm
of the average conductance.) Instead, it decays exponentially at the length scale ξ = γ l –
the localization length. A long disordered wire is not a metal – it is an insulator. The
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characteristic feature of this regime is that the average conductance is much smaller than
the conductance quantum GQ.

Note that for a large number of transport channels the localization length becomes ξ =
l Nβ. This means that the localization length in a magnetic field is twice as short as without
it. In contrast, for one channel, the localization length is ξ = 2l and does not depend on
the symmetry of the system.

Exercise 4.8. Calculate the variance of the conductance in the localized regime.

We also see from Eq. (4.129) that the logarithm of conductance has a normal distribu-
tion. The conductance itself has a log-normal distribution. This is a situation very much
different from what we encountered earlier. Indeed, in the diffusive regime, the fluctuations
are always small compared with the typical (average) value of physical quantities. Distri-
bution functions can be reasonably well approximated by (sharp) Gaussians. This is very
convenient: for instance, the disorder average of any complicated function 〈 f (x)〉, where
x is an observable, can be replaced by f (〈x〉). This property is known as self-averaging.
In contrast, conductance in the localized regime is not a self-averaged quantity. Indeed, the
average logarithm of the conductance is given by

〈ln G/GQ〉 = −2〈x1〉 ≈ 4 ln〈G〉/GQ.

The average exp(〈ln G〉) decays faster than the average conductance 〈G〉. Consequently,
each function of the conductance has to be averaged individually. We will give more
examples later in this section.

4.5.2 Scaling theory of localization

Let us now look at the results for the weak localization correction in two and three dimen-
sions (see Eq. (4.126)). In two dimensions, the correction grows logarithmically with the
length. Thus, large two-dimensional systems are localized. One can estimate the localiza-
tion length ξ as the scale at which the WL correction becomes of the same order as classical
conductance. This yields ξ ∼ l exp(πkFl). This result is obtained under the assumption
kFl � 1, and for typical values of kF and l the localization length is greater than the
size of the Universe. Thus, large two-dimensional systems are theoretically localized, but
practically they always remain metallic.

Control question 4.10. Estimate the localization length for an aluminum film taking
l = 100 nm.

In three dimensions, the WL correction decreases with the size of the system and is
always small compared with the classical conductance – three-dimensional systems in the
regime kFl � 1 are always metallic, independent of their size.

What happens if the condition kFl � 1 does not hold? In this case, the energy of the
electrons at the Fermi surface is comparable with or less than the typical amplitude of
random potential. Thus, an electron is typically trapped in a “potential well” formed by
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X
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�Fig. 4.18. Random potential landscape. For low energies (dashed lines) electrons are localized in the
minima of the potential, whereas for high energies (solid line) the states are extended, and
electrons see the random potential as a source of (weak) scattering.

one or several impurities. The states in neighboring potential wells typically have very
different energies, and states with the same or close energies are located in the wells very
far apart in space. Thus, these states do not hybridize and do not form extended states: the
electrons states are localized. The phenomenon of electron localization for strong disorder
is known as Anderson localization and occurs for any dimension of the system – at d = 1,
d = 2, and d = 3.

It is important to realize that delocalized (extended) and localized states may correspond
to the same disorder potential. The difference is in electron energy (Fig. 4.18). For high
energies, exceeding the typical height of the random potential (kl � 1), the potential can
be treated as a perturbation, and one is in the weak localization (metallic) regime. For the
same potential, but low energies, electrons are localized. If one can change the electron
density, one can go all the way from high densities (metallic) to low densities (localized).

It is interesting to understand how a metallic state evolves into an insulating state. In the
following we first argue that any system enters the localization regime when its average
conductance becomes of the order of the conductance quantum GQ. This criterion already
appeared in the comparison of the average conductance and the weak localization correc-
tion in the metallic regime, and here we present more general and transparent arguments.
Then, we investigate what systems can become localized according to this criterion.

The following argument is due to Thouless [101]. Consider a d-dimensional piece of
disordered metal. The electron levels in the metal are discrete, with the mean level spacing
given by δS = (νLd )−1, with L being the linear size of the piece of metal. Let us now
put 2d such pieces together, so that they form a piece of the size 2L . Each eigenstate of
an electron in a (2L)d system is a linear combination of the states in the Ld systems.
There are two scenarios. If the resulting state is extended – all 2d blocks contribute with
appreciable probabilities – we have a metal. On the other hand, if the contribution of one of
the blocks is of the order 1, and contributions of all other blocks are negligible, the electron
is localized in this one block – we have an insulator. Obviously, the choice between metal
and insulator depends on the properties of the Ld blocks. The question is: What are the
properties determining the choice?
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Let us look at the hybridization of states in different blocks more closely. From perturba-
tion theory, we find that the correction to the wave function of an electron in one block due
to the hybridization with the other block has an amplitude given by the ratio of the overlap
integral between the blocks divided by the difference of energies of the states in the two
blocks. The energy difference is of the order of the mean level spacing δS (it is the same
in all blocks). For a localized state, the overlap t obviously would be exponentially small,
since the wave functions are concentrated in different areas of the space. For an extended
state, an electron can diffuse everywhere in the sample, and a good estimate for an overlap
integral would be the inverse time for an electron to diffuse out of the sample, t ∼ ETh,
with ETh being the Thouless energy of one block.

Thus, the choice between metallic and insulating behavior is determined by just one
dimensionless parameter t/δS. For t � δS we have an insulator, and, for t � δS, a metal.
Note that we can formally define the conductance of a piece Ld – imagine, for example,
that ideal metallic contacts are attached to the opposite faces. The conductance is also
determined by the same quantities – the overlap integral t and the mean level spacing δS –
and thus it must be related to the parameter t/δS. In particular, it is easy to check that, in
the metallic regime, the conductance is of the order of G ∼ GQ ETh/δS = GQt/δS. Thus,
for G � GQ one has a metal, and for G � GQ one has an insulator.

Let us now actually perform putting these pieces together, a procedure known as the
scaling theory of localization. The smallest size of the cube we can describe in this way is
the mean free path l – shorter systems do not exhibit electron scattering. Consider a square
plaquette of size l; it is ideal, and thus its conductance equals G0 ∼ GQ N , with N being
the number of transport channels, that is G0 ∼ G QkFl or (the resistance) R0 = RQ(kFl)−1.
For kFl � 1 this piece is obviously metallic, since its conductance is large. Let us now put
M = L/ l such pieces next to each other, to construct a one-dimensional conductor. The
resistances add in series, and we obtain R ∼ RQL/(kFl2). The resistance grows with the
length, and for L ∼ kFl2 it becomes of the order of the resistance quantum – the system
is localized, with localization length of order ξ ∼ kFl2. This corresponds to the results we
have obtained above by means of the DMPK equation. For kFl � 1 the small pieces are
insulating from the very beginning, and the composite system (wire) exhibits localization
for any length.

We look now at two dimensions. Again, for kFl � 1 any two-dimensional system would
be insulating. Assume kFl � 1 and let us count the plaquettes in circles of radius r , l <
r < L . The plaquettes within each circle are connected in parallel, the resistance of a circle
is R0l/r , and circles are connected in series. Performing the summation over the circles and
replacing it by integration, we find R ∼ (kFl)−1 ln L/ l. This means that sufficiently large
two-dimensional systems are always insulating. Writing down the localization length, we
arrive at the same result, ξ ∼ l exp(πkFl), that we obtained previously from the comparison
of the weak localization correction to classical conductance.

In three dimensions, the resistance only decreases provided we sum the resistances. This
means that a three-dimensional system of any size is metallic provided kFl � 1. Only if
one varies the parameter kFl � 1, for example, by varying the electron concentration,
does one arrive at the insulating regime – the Anderson phase transition. An Ander-
son transition in three-dimensional systems has been observed experimentally, in doped
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semiconductors [102] and in the Al0.3Ga0.7As compound [103]; however, it still remains
an exotic phenomenon.

4.5.3 Localized regime: optimal fluctuation and hopping

In the rest of this section, we consider the localized regime. It goes well beyond the scope
of this book, since it is not really transport (the resistance of an insulator is exponen-
tially high) and not really quantum (the main features can be explained by purely classical
physics; the only quantum concept important for localization is tunneling). The important
ideas were elaborated a long time ago in the context of transport properties of disordered
semiconductors, and currently form textbook material [104]. We will not therefore attempt
a systematic discussion of transport at strong disorder, and only focus on the conceptually
important ideas that made their way into the theory of quantum transport.

So far, the only tool we have had for a quantitative description of transport at strong dis-
order is the DMPK equation. However, its use is limited: it only describes one-dimensional
situation, and only disordered wires. Let us look at a localized system from a different point
of view: localized states. These states have random locations in space and random energy.
The precise properties of the system may strongly depend on the type of disorder; it is
not unreasonable to assume that the average density of states is constant both in space
and energy. To get from the left side of the sample (attached to an electrode) to the right
side (attached to another electrode), the electron must tunnel sequentially through these
localized states (Fig. 4.19) – this process is known as hopping conduction.

The main issue in hopping conduction is to characterize the route the electron would
follow. Indeed, we already mentioned that the states close together in energy are typically
far away in space, and vice versa. In particular, this means that to be able to hop between
neighboring (in space) localized states, an electron must change its energy. An alternative
would be co-tunneling, but since all the states have different energy, the electron must
co-tunnel from the left to the right through many states (see Section 3.4), and this is a
quantum-mechanical process of a very high order of the perturbation theory. Disregarding
the co-tunneling, we find that hopping conduction is an inelastic process. It is only possible
at finite temperatures.

Next, we see that there is a conceptual difference between one dimensional hopping
and hopping in two and three dimensions. Indeed, in one dimension the electron has no
choice – it must sequentially tunnel through all available states. We have already seen
from the DMPK calculations that the conductance is not self-averaging – the average con-
ductance may differ strongly from the typical value of conductance in a given disorder
configuration. We might expect that the average conductance is determined by the disorder
configuration maximizing the conductance. This is not actually correct, since the probabil-
ity of finding such a configuration is typically very small, and the configuration does not
contribute to the average value. On the other hand, it is easy to find a disorder configura-
tion yielding low conductance, but the contribution of these configurations to the average
is small. One has to find the optimal configuration of disorder, maximizing the product of
the conductance and the probability of finding such a configuration. Note that, for example,
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�Fig. 4.19. Hopping in one dimension. (a) At low concentrations, electrons have to hop over the states with
minimum energy in each potential well. (b) For higher concentrations, many of these states are
already occupied, and the hopping electrons do not see some of the minima. Eventually, for even
higher concentrations, all localized states are occupied, and electrons travel in extended states
rather than hop.

the fluctuations of the conductance will also be determined by the same approach, but the
optimal configurations for conductance and for conductance fluctuations are generally dif-
ferent. This is a direct consequence of non-averaging: every function of the conductance
has to be calculated individually [105].

First, let us consider hopping in one dimension. As we have already discussed, in a
given disorder configuration, the electron hops over available localized states. However,
the probability of hopping is different for different disorder configurations. Let us guess
which configuration of the localized energy levels is the most profitable for transport. We
assume that the probability of a hop between two states located at points r1 and r2, having
energies ε1 and ε2, measured from the Fermi surface, is given by

T12 = T0 exp

(
−|r1 − r1|

a
− |ε1| + |ε2| + |ε1 − ε2|

2kBT

)
. (4.131)

The second term in the exponent is just the Boltzmann factor, reflecting the fact that to
create a particle above the Fermi surface, as well as the hole below the Fermi surface, costs
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energy. At zero temperature, the tunneling is only possible if both states are precisely at
the Fermi energy. The first factor models the transmission of the potential barrier between
the localized states; the length a is of the order of the localization length.

For our first guess, we take N − 1 electron states forming a chain. The total resistance
of the chain is given by the sum of resistances corresponding to all hops, and the resistance
of each hop is inversely proportional to the probability of the hop T12. For a given N ,
the maximum conductance (minimum resistance) of the chain is obviously realized for all
sites lying at equal distances L/N , L being the total length of the system, and at the Fermi
energy. The probability of finding such a chain is zero. This is why it does not contribute
to the resistance. What we can do, however, is to consider lattice-like configurations: let
the positions deviate slightly from the ideal lattice sites, and let the energies deviate from
the Fermi energy. If the chain is along the z axis, we denote the possible deviation of the
position in the longitudinal (along z) and transverse directions as δz and δr, respectively,
and the deviation in energy as δε. The total resistance of the chain is determined by the
highest of all the resistances of the hops. Assuming the deviations to be small, |δz|, |δr| �
L/N , we write |r1 − r1| ≈ L/N + δz + (δr)2 N/(2L), and the resistance of the chain up
to a pre-exponential factor (R0 ∝ T−1

0 ) is given by

R ≈ R0 exp

(
L

Na
+ δz

a
+ (δr)2 N

2La
+ δε

kBT

)
.

The probability of the formation of such a chain is proportional to wN = (νδz(δr)2δε)N ,
where ν is the density of states.

To find the optimal configuration, we multiply the resistance of a given configuration
(characterized by the values of δz, δr, δε, and N ) by the probability of such a configuration,
and calculate the resulting integral by the saddle point method. Technically, it means that
we have to write

wN = exp(N ln(νδz(δr)2δε)),

take the product wN R, and find what values of the parameters optimize the exponent. For
a given N , we obtain δz = Na, δε = NkBT , and |δr| = √2La. Optimizing the resulting
expression with respect to N , we find N = √L/(aλ), λ ≈ − ln(4νkBT L2a). Thus, the con-
ductance decays exponentially with the size of the system L , G ∝ exp(−√Lλ/a). Since
the parameter λ logarithmically depends on the temperature, we also predict a stretched
exponential temperature dependence of the conductance, ln G ∝ √ln T .

Let us see under what conditions our calculation is valid. We have assumed that the
displacement δz is small in comparison with the period of the chain L/N = √Laλ. The
optimal value of δz we found is Na = √2aL/λ. Thus, the condition is λ� 1, or kBT �
(νL2a)−1. Other assumptions yield the same criteria. This condition is violated for high
enough temperatures or in long enough samples.

Control question 4.11. At very low temperatures, we formally have N � 1. Find the
temperature at which this occurs and characterize the behavior of the conductance at
lower temperatures.
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What happens at higher temperatures? Since the assumption of small displacement
around the sites of the lattice no longer holds, electron hops are characterized by the expo-
nential spread of resistances. In this situation, the resistance is determined by the largest
of the resistances of all the hops. In Eq. (4.131), the term r/a in the exponential obviously
favors short hops. However, as we already discussed, states close together in distance are
far away in energy, and the second term, δε/kBT , favors long hops. Assuming that the
density of states is constant in space and energy, we can estimate, in three dimensions,
δε ∼ (νr3)−1. Writing G(r ) ∝ exp(−r/a − (νr3kBT )−1), we find that it is maximal for
the distance r ∼ a(T0/T )1/4, where up to a numerical factor we have T0 ∼ (νkBa3)−1.
Note that the probability of finding such a pair of states is constant and thus does not affect
the optimal hopping distance. For the average conductance, we obtain the dependence
G ∝ exp(−(T0/T )1/4), known as Mott’s law, or the variable-range hopping conductance.

Control question 4.12. Produce estimates for the variable-range hopping conduc-
tance in one and two dimensions.

Note that, in this picture, the radius of the hop decreases with temperature, and at a tem-
perature of order T0 this becomes of order a. For T ∼ T0, the hops are no longer tunnel
processes; indeed, the transmission probability associated with each hop is not small. Thus,
one has a metallic behavior at higher temperatures. Another way to arrive at metallic behav-
ior is to increase the electron density, as discussed earlier in this section. Indeed, electrons
in a strong disorder potential occupy minima of the potential. If the density is increased,
electrons eventually become closer (they “fill” the potential minima up to a higher level),
and then the minima eventually merge (Fig. 4.19). Once all the minima have merged, one
has a metal rather than an insulator. In one dimension this occurs when the highest barrier
between the minima has been overcome.

The picture is more complicated in two and three dimensions. Indeed, an electron has
to choose from many paths connecting the leads, each path being a series of hops. Since
the hops are incoherent, the resistance of each path is given by the sum of the resistances,
and is thus determined by the greatest resistance along this path. The paths are connected
in parallel, but their resistances differ exponentially, and thus only the one with the low-
est resistance matters: with the exponential precision, the resistance of the insulator is
determined by the highest resistance of all the hops in the lowest resistance path.

Let us now see what happens if we increase the electron density. Similarly to one dimen-
sion, the localization length increases, and electrons come “closer” to each other – the
resistance of each hop goes down. Eventually, some of the former localized states merge,
and hops disappear. Finally, at some concentration all states along a certain path merge –
the last barrier has been overcome. A commonly used analogy is with water percolation.
Imagine that we have a random landscape and fill it with water. At a low level of water
(corresponding to low electron concentration), the water only fills isolated trenches to form
lakes. Water cannot flow from the left to the right in this landscape. In terms of electrons,
to make it from left to right, electrons have to hop between the “lakes” – the resistance
does not obey Ohm’s law, and we have an insulator. If the water level increases, the lakes
become bigger, new lakes appear, and, at some level, a waterway between the left and the
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right sides is established. This is known as the percolation threshold, and the waterway is
called the “percolating path.” At the threshold, there is strictly one way of getting across
the system.

Above the percolation threshold, electrons move along the paths connecting the two
sides of the system without tunneling. This is usual diffusive propagation, and one has a
metal. Thus, the percolation transition separates a metal and an insulator (the Mott tran-
sition). The conductance below the transition is exponentially small; above the transition
it obeys Ohm’s law. Such problems are studied by mathematical physicists, and analyti-
cal results on the percolation theory are limited. For instance, the conductance of a large
system near the percolation threshold increases as a power law, (n − nc)ρ , where the expo-
nent ρ depends on the dimensionality of the system, n is the electron concentration, and nc

denotes the percolation threshold. In two dimensions, the threshold nc corresponds to the
filling factor 1/2 – “lakes” and “soil” occupy equal areas. For details, see Ref. [104].

4.5.4 Interaction and the Coulomb gap

What is the role of interactions in the localized regime? Interactions must be important
for insulators, since there are no free charges to screen interactions, and they remain long-
ranged. First, close to the percolation threshold, an insulator is a collection of “islands”,
which may contain many electrons and behave as small pieces of metal. Due to interactions,
each island is characterized by the charging energy, and at low voltages the transport is
modified similarly to arrays of Coulomb islands (see Section 3.1).

For low energies, Coulomb interactions between electrons have a strong effect on the
electron properties. Let us return to the picture of localized levels Ei , located at the points
r i , uniformly distributed in energy and space. In the ground state, all levels below the Fermi
level are filled and all other levels are empty. Without interaction, the energy of an electron
sitting in level i is Ei . With interaction, we define the quasiparticle energy,

ξi = Ei +
∑
j �=i

Vi j , (4.132)

where the sum is taken over all occupied levels j (except for i = j , if i is occupied), and
Vi j = e2/|r i − r j | is the Coulomb interaction. The energy cost of transfering a quasiparti-
cle from an occupied state i to an empty state k is�ik = ξk − ξi − Vik . The final term here
appears because in Eq. (4.132), for an empty state k the quasiparticle energy includes the
interaction with all occupied states, whereas for an occupied state i it includes interaction
with all occupied states but i .

In the ground state, all excitation energies�ik must be positive. This means that if states
i and k are both close to the Fermi level, so that the difference ξk − ξi is small, these states
must be located very far from one another in space, so that the Coulomb energy does not
exceed this difference. In particular, there are no states precisely at the Fermi level. This
suppression of the density of states at the Fermi level by long-range Coulomb interactions
is known as the Coulomb gap.



373 4.5 Strong localization
�

The condition �ik > 0 can be used to quantify the energy dependence of the density
of states close to the Fermi level. For example, one can start with a state with a uniform
distribution of energies ξi , which is not the ground state of the system. In this state, some
of the conditions �ik > 0 are not fulfilled. The ground state is obtained from this initial
state by transpositions of electrons within pairs of states, one of which is occupied and
one empty, so that some of the excitation energies �ik become positive. At the end of the
process, one finds the ground state, and the evolution of the density of states in the process
of transpositions is described by an equation similar to the Boltzmann equation [106] (with
the distance between the states in the transposed pairs playing the role of time). It turns
out that the density of states vanishes logarithmically for D = 1, and as ν ∝ |E |D−1 for
D = 2, 3. If the interaction is short-ranged (screened) rather than Coulomb, instead of a
Coulomb gap one has a slight suppression of the density of states at the Fermi level [107].

This energy dependence affects Mott’s law for hopping conductivity: if the Coulomb gap
is effective, the same argument that led us to Mott’s law now, with the energy-dependent
density of states, yields G ∝ exp(−(T0/T )1/2).

The energy-dependent density of states can be measured in the tunneling experiment.
Note that the thermodynamic properties of the system are not sensitive to interactions. This
is why in interacting systems one can introduce two densities of states: the tunneling one,
sensitive to interactions and determining the tunneling properties, and the thermodynamic
one, insensitive to interactions and determining the thermodynamic properties.



5 Qubits and quantum dots

It is difficult nowadays to graduate from a department of natural sciences and not hear
anything about quantum computing, most likely about the fascinating prospects of it.
Quantum computing by its origin is a rather abstract discipline, a branch of math or
information science. It has emerged from a persistent search for more efficient ways
to process information when quantum mechanics made it to the scope of the search.
Being an abstract discipline, quantum computing approximates a physical quantum sys-
tem with a number of axioms and explores the consequences of these axioms, precisely
as conventional math has been. These activities begun in the 1970s, and for a long
time it was not obvious why quantum calculational schemes have to be any better
than common computer algorithms. This extensive work was rewarded with a break-
through in 1994, when Peter Shor discovered a remarkable quantum algorithm for the
factorization of large numbers into prime ones. This sounds quite abstract, but many
public key cryptosystems will become obsolete if Shor’s algorithm is ever implemented
in a practical quantum computer. Modern communication security is based on the fact
that the factorization is a tough problem for a classical computer: it takes too long
to crack a code. The proposed algorithm speeds up the factorization enormously. The
discovery by Shor has brought quantum computing to the scientific and even public
attention.

This progress has motivated a massive research effort towards the manipulation of indi-
vidual quantum systems, the practical realization of quantum computing schemes being
one of the most attractive goals. This chapter describes this goal, the quantum transport
systems suitable for it, and the achievements made so far.

Section 5.1 describes a quantum computer: an information processor made of qubits,
two-level quantum manipulable systems. “Qubits” is a shorthand notation for “quantum
bits.” We will explain the difference between the presentation of information by classical
bits and qubits and formulate principles and algorithms of a quantum computer. Section
5.2 is devoted to fascinating and counter-intuitive aspects of quantum mechanics impor-
tant for information. We recommend the book by Nielsen and Chuang [108] for a more
advanced outline of these subjects. Next, we discuss the manipulation of physical quan-
tum systems – single qubits and pairs of qubits – in Section 5.3. The second part of
the chapter is devoted to quantum transport systems that realize the qubits and quantum
gates. Quantum dots, frequently called artificial atoms, are generic objects that realize
discrete quantum degrees of freedom, and deep discussion (Section 5.4) of their states
and transport properties provides the necessary introduction to the practical realizations of
qubits. We separate these onto charge (Section 5.5), phase and flux (Section 5.6), and spin
(Section 5.7) qubits.
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5.1 Quantum computers

In this section, we describe a quantum computer as an abstract scheme. The minimal ele-
ment of the computer is a qubit – a quantum system characterized by a two-component
wave function and outlined in detail below. The quantum computer encompasses N qubits
and thus is characterized by a 2N -component wave function. It is essential that the wave
function is processed by the computer according to its program: a quantum algorithm. An
important idealization is that any quantum algorithm is given by a 2N × 2N unitary matrix
Û that relates the final and initial wave functions: | f 〉 = Û |i〉. This corresponds to a phys-
ical assumption that no other degrees of freedom are involved in the operation; that the
quantum computer is an isolated system during the computation. After the computation,
the resulting wave function is read out and the processed information is transferred to other
degrees of freedom such as classical computers or our brains. To achieve efficient program-
ming, an algorithm is decomposed into its elementary operations. These involve either a
single qubit (qubit rotations) or pairs of qubits (two-qubit gates). From these elementary
operations, one constructs the advanced and advantageous algorithms described at the end
of the section.

Sometimes students ask: How long will it take to make a working quantum computer?
Some do it rather ironically, implying that this will never happen. Others imply that if this
happens before his/her graduation, he/she would not be able to contribute to this piece of
progress and his/her quantum-mechanical studies would not make any sense. The analogy
with classical computers may be relevant for an estimation of the time scales involved. The
basic principles of modern digital computer architecture were established by Charles Bab-
bage around 1825. However, it took 120 years to build a practical computer and yet another
40 years to make it an everyday item. One might think that in 1825 the technology was not
sufficiently developed and/or that computers were not in demand, but this would not be
true. There was a strong demand for automated calculations: the Royal Navy, for example,
would have been a major customer. And the technology was sufficiently advanced for the
mechanical implementation intended. Charles Babbage had the blueprints of a computer,
and had received several grants to build it.

5.1.1 Qubits

The basic difference between classical and quantum computers is in the presentation of
information. An elementary unit of a classical computer is a bit: a system that can be in
two states, |0〉 or |1〉. Any information can be presented in bits as a long series of “0”
and “1” digits, and processed by elementary operations whereby a bit is set to a state that
depends on the state of other bit(s). A quantum analog of a bit is a qubit, a quantum two-
state system. The trick is that an arbitrary state |s〉 of a qubit is not necessarily “0” or “1.”
It is given by its wave function, which can be any linear superposition of two basic states
|0〉 and |1〉:

|s〉 = α |0〉 + β |1〉 ; |α|2 + |β|2 = 1, (5.1)
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where α and β are complex numbers satisfying the normalization condition. Frequently for
a single qubit only the relative phase of α, β is of importance; then the wave function can
be parameterized with two real floating-point numbers. For example, we may choose

α = cos(θ/2)eiφ/2; β = sin(θ/2)e−iφ/2, (5.2)

with real θ ,φ. How many classical bits does it take to present a real floating-point num-
ber? The answer is “an infinite number,” if we want to achieve an infinite accuracy. For
a reasonable accuracy of 10−19, 64 bits would suffice. So one needs 128 = 2× 64 clas-
sical bits to present a qubit: not that many, in fact. The next question is: How many bits
does it take to present a state of N qubits? A quick answer is that 128× N would be
wrong. The point is that the wave function of N qubits has 2N independent complex com-
ponents. The basis states | j〉 are the states where each qubit is either in the state |0〉 or
|1〉. They thus correspond to all possible sequences of “0” and “1” of the length N , that
is, to integer non-negative numbers 0 ≤ j ≤ 2N − 1 written in binary notation. This inte-
ger is called the binary code of state | j〉. For example, for the basis state of four qubits,
|1〉|0〉|1〉|1〉 ≡ |1011〉, the binary code is given by 23 · 1+ 21 · 1+ 20 = 11. An arbitrary
wave function of N qubits is a superposition of the basis states,

| f 〉 =
2N−1∑

j=0

f j | j〉,

with complex f j . There is a single normalization condition
∑

j | f j |2 = 1 imposed, and the
global phase of all f j is irrelevant, so that a wave function is generally characterized by
2× 2N − 2 real numbers. We conclude that the correct answer is M = 128× (2N − 1).

This sounds as if it is too much. The exact representation of the quantum state of several
qubits requires plenty of classical memory. The RAM of a typical computer can represent
26 qubits only. A detailed simulation of a quantum system with a moderate number of
quantum degrees of freedom (say 20 atoms) is a tough problem for classical computers
because of the enormous memory required and the enormous number of operations needed
to process the information in this memory. This is the negative side, and Richard Feynman,
in 1981, was the first to point out the positive aspects. Feynman noticed that 20 atoms can
simulate themselves perfectly in a fraction of a nanosecond, and they encode thereby an
enormous information. A popular example intended for mp3 consumers says that with 47
qubits one may encode 1743 years of living music (transferred at 40 kB/s).

Let us turn back to the representation of a single-qubit wave function. A popular way
to visualize it is to use the Bloch sphere. The wave function is a point on a unit-radius
sphere, θ and φ being polar and azimuthal angles in spherical coordinates. The convenience
of the representation comes from the fact that the expectation values of the three Pauli
matrices σx ,y,z are given by the x , y, z components of the corresponding three-dimensional
real vector (Fig. 5.1):

〈s|σx |s〉 = sin θ cosφ; 〈s|σy |s〉 = sin θ sinφ; 〈s|σz |s〉 = cos θ .

Control question 5.1. Can you prove the above formula?
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�Fig. 5.1. Bloch sphere. A qubit wave function can be represented as a point on the unit sphere (see
Eq. (5.2)).

The pure basis states |0〉 and |1〉 are at the north and south pole, respectively. A “natural”
qubit, a quantum two-level system, is an electron with a spin degree of freedom. The
electron spin is a three-dimensional (pseudo)vector, the expectation values of the com-
ponents being proportional to the expectation values of the corresponding Pauli matrices
s = (�/2)〈σ 〉. The spin is transformed under rotations in real three-dimensional space pre-
cisely like a vector, so that these rotations are directly visualized as rotations on the Bloch
sphere. Since any point on a sphere can be transformed to any other point by a proper
rotation, and a wave function of a qubit is a point on the Bloch sphere, an arbitrary trans-
formation of the qubit wave function is called a rotation. The rotation about the n axis by
angle γ is represented by the following unitary 2× 2 matrix:

R̂n(γ ) = exp

(
iγ

2
n · σ

)
. (5.3)

The factor 1/2 is crucial here, and at this point the Bloch sphere visualization is slightly
misleading. It looks as if a rotation by 360 degrees should transform a wave function to
itself, as it does with the points on the sphere. This is not correct: the rotation by 360
degrees flips the sign of the wave function. One can check this, for example using the
parameterization in Eqn. (5.2): the 360 degree rotation about z shifts φ by 2π . Only 4π
rotation transforms the wave function to itself.

Exercise 5.1. Take the pure basis state |0〉. To which states does it transform upon three
(separate) rotations (see Eq. (5.3)) by an arbitrary angle about the x , y, and z axes?
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5.1.2 Principles of quantum computers

The rotation of a qubit provides a simple example of a quantum operation, or, as it is called
in analogy with classical computing, a gate. Such a single-qubit gate takes the initial qubit
state |i〉 and gives out the final state | f 〉 = R̂|i〉, R̂ being a unitary 2× 2 matrix. The
single-qubit gate does not change the states of the other qubits in the quantum computer.

Control question 5.2. Which rotation realizes a negation single-qubit gate, that is the
gate changing “1” to “0” and “0” to “1”?

Single-qubit operations are not enough to unleash the power of quantum computation.
If the qubits are initially independent, they remain so upon application of any number
of single-qubit gates. We must organize an interaction to occur between the qubits. In
distinction from naturally occurring quantum systems, the qubits in a quantum computer
should interact in a controlled fashion; that is, only during an operation involving several
qubits. For N qubits, such an operation is called a N -qubit gate.

Since the wave function of N qubits contains 2N components, the N -qubit gate is rep-
resented by a 2N × 2N unitary matrix Û . Sequential application of the gates Û1 and Û2

yields a gate represented by the matrix product Û2Û1, which is also unitary. The whole
N -qubit quantum computer programmed in a certain way provides an N -qubit gate. This
is why quantum computation is always reversible: there is always a unitary matrix that is
the inverse of a given unitary matrix. This is not so in a classical computer: many classical
gates are not reversible.

Most fortunately, one does not have to program a quantum computer using unitary
matrices of high dimensions as elementary building blocks. It is proven in quantum
computing that any complex many-qubit gate can be made combining single-qubit gates
(different for different qubits involved) and an elementary two-qubit gate. Thus, in order
to demonstrate the feasibility of a certain physical realization of a quantum computer,
one concentrates on the realization of single-qubit and two-qubit gates. In mathemati-
cal terms, finding the correct combination of elementary gates proceeds in two steps.
First, one decomposes the 2N × 2N unitary matrix into two-level unitary matrices, i.e.
matrices diagonal in all 2N components except for two. Second, each of these matrices
is represented as a combination of single-qubit and two-qubit gates. It is worth noting
that this combination for an arbitrary quantum algorithm involves an exponentially large
number of elementary gates, of the order of N 24N . This slows the computation down
and eventually cancels out the advantage of a large memory, 128 · 2N of the quantum
computer, as compared with the classical one. We conclude that efficient quantum compu-
tation requires clever algorithms, involving less than an exponential number of elementary
gates.

Usually a so-called CNOT (controlled-NOT) gate is chosen as an elementary two-qubit
gate. A classical analog of the CNOT gate would do the following: it negates the value of
a second (target) bit if the first (control) bit is in state “1” and does nothing if the first bit
is in state “0.” The resulting state of the target bit is the result of an XOR operation on two
input bits. A quantum CNOT does the same to two qubits. There are four basis states for
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�Fig. 5.2. Quantum circuits. (a) Graphical representation. From left to right we have: three single-qubit
gates; a CNOT; a three-qubit gate controlled by the first qubit. (b) Composition of elements. The
circuit on the left is equivalent to a CNOT. (c) Decomposion of Toffoli gate in terms of single-qubit
gates and CNOTs.

two qubits given by a direct product of single-qubit basis states, |0〉|0〉, |1〉|0〉, |0〉|1〉, and
|1〉|1〉. In terms of these basis states, the CNOT works as follows:⎧⎪⎪⎨

⎪⎪⎩
|0〉 |0〉 → |0〉 |0〉
|0〉 |1〉 → |0〉 |1〉
|1〉 |0〉 → |1〉 |1〉
|1〉 |1〉 → |1〉 |0〉.

It is therefore represented by the following unitary matrix in the basis of the four states:

UCNOT =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ . (5.4)

Let us describe a convenient graphical representation of quantum algorithms. In this
representation, each qubit is shown as a horizontal line (see Fig. 5.2(a)). The horizontal
axis represents time: symbols to the right denote operations taking place later. Single-qubit
gates are naturally given by squares located on the corresponding line. It is customary to
use the following single-qubit gates:

Hadamard: H = 1√
2

(
1 1
1 −1

)
= R̂h(π/2), h = x + z√

2
;

phase : S =
(

1 0
0 i

)
= e−iπ/4 R̂z(π/2);

π/8: T =
(

1 0
0 eiπ/4

)
= e−iπ/8 R̂z(π/4);

Z = σ̂z = −iR̂z(π ).
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The gates Z = S2, S = T 2, and T are the z rotations multiplied by the phase factors
(−π/2, −π/4, −π/8). While these global phase factors are irrelevant for a single qubit,
they become important when the qubits interact.

The CNOT gate operating on qubits a and b is given by a vertical line connecting the
corresponding qubit lines. The target (control) qubit is distinguished by the empty (filled)
circle (Fig. 5.2(a)). Some combinations of elementary operations can be readily simplified;
for example, with four Hadamard gates one can flip the target and control qubits of the
CNOT gate.

Exercise 5.2. Prove the equivalence shown in Fig. 5.2(b) explicitly, writing down the
corresponding matrices.

More complicated and more functional gates can be constructed in this way.
Figure 5.2(c) shows the decomposition of the Toffoli gate. The Toffoli gate has two control
qubits that do not change during the operation. The target qubit is negated provided both
control qubits are set to “1.” The Toffoli gate is used to prove that any classical compu-
tation algorithm can be implemented with quantum software. At first sight, this does not
seem possible. Classical computation necessarily involves irreversibility: one cannot figure
out the input of a classical computer from the output and the program. As we will learn,
quantum computation is always reversible. A simple trick to overcome this is to use extra
qubits with fixed initial states called ancilla qubits. For example, the classical NAND gate
outputs the negated product of the two input bits a and b. To realize it in a quantum circuit,
we take a Toffoli gate with control qubits a and b and the target qubit set to |1〉. As a result,
the target qubit is in the state corresponding to the NAND output with inputs a and b.

How do we access the results of quantum computation? Upon completion of a quantum
algorithm, the resulting wave function must be converted into classical information: this
is called a read-out. In fact, this is the measurement of the wave function as described in
textbooks on quantum mechanics. The measurement described there is projective: after the
measurement of all its qubits, the quantum computer appears to be in a certain state | j〉.
This occurs with probability Pj = | f j |2. Therefore, the measurement is obtrusive, and the
final quantum state is destroyed by it. A single measurement cannot provide accurate infor-
mation about f j . To obtain accurate information, one should re-run the quantum algorithm
achieving the same state | f 〉. We estimate that one needs � (1/s2)Pj runs to measure the
probability Pj with precision s.

Control question 5.3. Explain the above estimate.

If all probabilities Pj are of the same order, one needs at least 2N/s2 runs: yet another
factor that may slow down the efficient quantum computation. An advanced quantum
algorithm must therefore output information that can be read quickly. Examples of such
algorithms are given below.

We conclude by listing the provisions imposed by the abstract quantum computer
scheme described in any practical realization of such a device.
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(i) Qubits The quantum information must be stored in the computer: there must be
physical quantum two-level systems of some sort.

(ii) Operation of the qubits The quantum information shall be processed. For phys-
ical qubits, this is achieved by quantum manipulation, as described in Section
5.3.

(iii) Read-out There must be means to convert the quantum state of the qubits to a
classical signal.

(iv) Coherence An ideal quantum computer isolated from any environment would
keep the quantum information stored forever. It would remain coherent. A real phys-
ical system cannot be completely isolated from the environment. Interaction with
environmental degrees of freedom results in decoherence (Section 6.7). This can be
seen as errors in the course of quantum computation: we expect a certain wave func-
tion after our manipulation, but it appears to be different. A quantum computer is
much more sensitive to environmental effects than a classical one. Since the errors are
accumulated in time, the coherence issue would make quantum computing useless.
Fortunately, the errors of quantum computation can be corrected at “software level”
by clever algorithms [108]. The example error correction algorithms ensure that a
quantum computer is operational provided the probability of error of each elementary
gate does not exceed 10−4.

(v) Scalability Like a classical computer, a quantum computer must have a large
number of elementary logical units in order to be useful. This presumes scalability:
one is able easily to increase the performance of a quantum computer by adding new
qubits and/or new blocks of qubits.

5.1.3 Advanced algorithms

An advanced quantum algorithm, by definition, requires much fewer operations than the
best classical algorithm solving the same problem. At the time of writing, there are several
such known algorithms. They can be separated into two groups. The algorithms of the first
group use the quantum Fourier transform, while those of the second group are based on
quantum search.

Let us start with the quantum Fourier transform (QFT). A “classical” discrete Fourier
transform is a transformation of M = 2N -component complex vectors x j to the vectors y j

given by

yk = 1√
M

M−1∑
j=0

e2π i jk/M x j . (5.5)

There is an efficient classical algorithm – the fast Fourier transform – that solves the
sum. One uses the same algorithm for a continuous Fourier transform making a discrete
approximation. The QFT is a unitary operator F̂ that transforms any basis state | j〉 as
follows:
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F̂ | j〉 = 1√
M

M−1∑
j=0

e2π i jk/M |k〉; (5.6)

the numbers j , k being the binary codes of the states | j〉, |k〉. It is easy to see that the
QFT transforms the superposition with coefficients x j to the superposition with y j given
by Eq. (5.5); that is, it performs a classical Fourier transform.

The QFT can be implemented with � N 2 single- and two-qubit quantum gates. This
is an enormous increase in speed in comparison with the classical fast Fourier transform,
which requires� N · 2N operations. To understand why the QFT can be this fast, one notes
that there is a useful product representation for F̂ :

F̂ | j〉 =
N∏

n=1

(|0〉 + eiφn |1〉)√
2

.

Here n numbers the qubits, and the product is the direct product of their wave functions.
Each term in the product resembles the action of the Hadamard gate on a basis qubit state
apart from the phase factor. The phase φn , however, is not determined by the state of the
qubit n only. It is expressed in the form of the binary code, φn = 2π j/2n . Since 2π addi-
tions to the phase do not change the phase factor, the phase φ1 for the first qubit depends
on the state of the last qubit jN only, the phase φ2 depends on the states of the two last
qubits, and so on. The quantum algorithm consists of single-qubit Hadamard gates fol-
lowed by conditional two-qubit phase gates Rk that transfer information about the state of
the control qubit to the phase shift of the target qubit:

R̂k =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 e2π i/2k

⎞
⎟⎟⎟⎠ .

The gates are applied as shown in Fig. 5.3. Each qubit is affected once by its Hadamard
gate. In addition, the first qubit acquires N − 1 phase factors from R gates, the second one
is affected by N − 2 gates, and so on. In total, this gives N (N + 1)/2 gates. However, we
are not quite done. In comparison with Eq. (5.6), the order of the qubits is reversed. We
need to apply two-qubit SWAP gates that swap the wave functions of two qubits. A SWAP
gate can be implemented with three CNOT gates (Fig. 5.3(b)) and one needs N/2 SWAPs.
In total, the QFT requires N (N + 4)/2 operations.

This sounds like an exponential speed-up in comparison with the classical algorithm.
Owing to widespread applications of the Fourier transform in science and statistical an-
alysis, that would be really great news. Unfortunately, the read-out of the result presents
a difficulty. Generally speaking, the resulting Fourier harmonics are of the same order.
As discussed, it takes more than 2N measurements to read the result. Therefore, the QFT
by itself is not an advanced algorithm. However, it is used as an essential part of a set
of advanced algorithms. Since these algorithms make heavy use of advanced math, in
particular number theory, we just name them.

Since the major obstacle is the read-out, the output of an advanced algorithm would be
better concentrated on a few basis states of the computer or its part to be read out. Ideally,
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�Fig. 5.4. Phase estimation. The second register is in an eigenstate |u〉 of the operator Û. The output of the
first register gives a K′-bit approximation of the phase of the corresponding eigenvalue.

it would be just a single basis state: in this case, the result could be read in a single shot.
The phase estimation algorithm provides such a result. The problem it solves looks rather
abstract: given a unitary operator Û of dimension 2K and its eigenvector |u〉, find a good
approximation of its eigenvalue. Since the eigenvalues of a unitary matrix are of the form
ei2πφ , with real φ, this is the estimation of the phase φ. The computer consists of two sets,
or registers, of qubits: K ′ < K qubits of the first register give the K ′-bit approximation
of the phase, and the K qubits of the second register are transformed by the powers of Û
conditioned on the states of the qubits of the first register (Fig. 5.4). One uses only powers
of the form Û 2k

, k < K ′. The algorithm is advanced, provided each power can be computed
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for less than 2K ′ operations and therefore does not work for arbitrary Û . The algorithm is
sketched in Fig. 5.4 and uses QFT on the first register. The output of the first register is
exactly the binary representation of φ, provided it takes less than K ′ binary digits to write
φ exactly. Otherwise, it gives a good approximation of φ. This solves the read-out problem:
it can be read quickly. Suitable operators Û arise in the problem of order-finding. This is
a standard problem of number theory: given two positive integers x , M , x < M , find the
least integer r such that xr mod M = 1, that is the remainder on dividing xr by M is 1. For
example, if x = 3 and M = 16, r = 4 since 34 = 5× 16+ 1 and smaller powers of 3 give
other remainders. The quantum order-finding involves Û defined as Û |y〉 = |(xy) mod M〉
for y = 0, . . . , M − 1.

Control question 5.4. What are the non-zero matrix elements of Û for x = 3 and
M = 24? Can you show that the matrix is unitary? How many qubits are needed to
represent the matrix?

The eigenvalues of this matrix are related to r , and the phase estimation algorithm can
be used to find r efficiently: it requires �N 3 gates, N being the number of bits required to
represent M . This is exponentially faster than any classical known algorithm. Shor [109]
has published the quantum order-finding algorithm and noted that the factoring integers
into prime numbers can be reduced to order-finding. Since the factoring may be used to
break the RSA cryptosystem – the most popular public key cryptosystem – and actually
endanger modern communication security, this result has brought quantum computing to
public attention. Kitaev [110] has demonstrated that all applications of QFT, including
order-finding and factoring, can be viewed as partial solutions to a single general problem –
the hidden subgroup problem.

Another set of advanced algorithms is based on the quantum search algorithm described
by Grover [111]. Suppose we have M stones in a sack and that we know that K � M
stones are diamonds. Our task is to find all the diamonds. We cannot look into the sack,
but we can get the stones out one-by-one. It is intuitively clear that we have to take out
∼M stones. (Although we could be extremely lucky and find all the diamonds in the
first K attempts). Indeed, the classical search algorithm requires ∼M steps. The quantum
search can be done in

√
M/K steps. The increase in speed is not exponential, but it is still

considerable.
In distinction from QFT methods, we can understand the quantum search speed-up in

physical terms. The classical probability of finding a diamond in a single attempt is K/M .
Let us consider a wave function defined on an M-dimensional basis, where K basis states
are “diamonds.” If we assume that the function is uniformly spread over all basis states, a
typical amplitude corresponding to a diamond state is�1/

√
M . Since the quantum dynam-

ics involve the amplitudes rather than the probabilities, the diamond states can be found
faster.

To provide a quantitative illustration, we take the continuous version of the quantum
search algorithm, not separating it into different discrete operations. Let us have N qubits
with M = 2N basis states. We label the basis “diamond” states by |xk〉, k = 1, . . . , K . We
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will consider a special state: the equal-weight superposition of all basis states (including
the “diamond” ones), |c〉 = (

√
M)−1 ∑

j | j〉. To perform the quantum search, we need the
following Hamiltonian:

Ĥ = �ω0

(
K∑

k=1

|xk〉〈xk | + |c〉〈c|
)

. (5.7)

Initially, the wave function is chosen to be |c〉. Its time evolution is governed by the Hamil-
tonian. At any time moment, the wave function can be represented by two-time dependent
amplitudes α,β,

|ψ(t)〉 = α(t)
K∑

k=1

|xk〉 + β(t)|c〉.

The resulting time-dependent Schrödinger equation for α,β,

i
dα

dt
= ω0(α + β/√M),

i
dβ

dt
= ω0(β + Kα/

√
M),

can be readily solved to yield α(t) = −ie−iω0t sin(ω0t
√

K/M)/
√

K ; β(t) = e−iω0t cos
(ω0t
√

K/M).

Control question 5.5. Can you derive the above Schrödinger equation? Beware of
the fact that 〈c|xk〉 �= 0.

Let us note now that, at some value of t = (π/2ω0)
√

M/K , the coefficient β becomes
zero. At this moment, we interrupt the computation and end up with an equal-weight super-
position of “diamond” states”. The measurement of the output thus produces a diamond
state, each state sought arising with probability 1/K . So we need �K measurements to
find them all; this costs �√K M gates.

We still need to explain the discrete version of the algorithm that conforms to the princi-
ples of a quantum computer. There is, however, a seeming logical inconsistency. We need
the Hamiltonian, Eq. (5.7), to perform the search of |xk〉, and it explicitly contains the
states sought. It seems that we cannot realize this Hamiltonian without knowing the search
result! The point here is the difference in efforts between finding the result and checking if
the result is correct. This difference is rather apparent for diamonds; a more mathematical
example is the difference between the calculation of an indefinite integral and checking
the correctness of the results. The discrete version of the algorithm involves a quantum
oracle. Basically, it checks if a basic state is a diamond. A quantum oracle is a gate. It
involves its own qubit register. The qubits of the oracle register receive the information
about the state of the main register where the “diamond” states are sought. The algorithm
of the oracle has to be designed separately; for example, one implements different algo-
rithms to search for diamonds and gold nuggets. This is of no interest to us provided this
algorithm is efficient. What is of interest is what the oracle does to the qubits of the main
register. By convention, it flips the signs of all amplitudes of the diamond basis states
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while leaving other amplitudes intact. In operator terms, the oracle gate corresponds to
Ô = 1̂− 2

∑K
k=1 |xk〉〈xk |. The application of the oracle gate is followed by an operation

that corresponds to 2|c〉〈c| − 1̂. This is implemented as two Hadamard transforms of all
qubits, separated by an operation that shifts the phase of all states except |0〉 by π . All
together, it makes up a single Grover iteration. The quantum search algorithm consists of
a finite number, ≈√M/K , of Grover iterations. Before the iterations are applied, the state
of the main register is initialized to state |c〉 by the Hadamard transform of all qubits. In
the limit K � M , the effect of the iterations corresponds to the dynamics governed by the
Hamiltonian, Eq. (5.7). We note that for successful operation of the quantum search algo-
rithm we need to know the total number of diamonds, K . This number can be efficiently
found using another advanced algorithm – quantum counting – that combines the quantum
search and the phase estimation.

5.2 Quantum goodies

In this section we present a set of concepts from the field of quantum information. We
cannot say that at the time of writing these concepts form an indispensable part of the
field of quantum transport. However, there is a substantial current interest towards the
implementation and development of the quantum transport devices suitable of transmitting
quantum information or at least of illustrating the concepts in question. There are several
theoretical proposals along these lines, which will be discussed briefly at the end of the
section. One cannot exclude the possibility that quantum information ideas will become
the mainstream of quantum transport in near future. This is why we include this section.

There is a large, well developed field of information science, the analysis of commu-
nication, with the information transfer being an integral part of it. It is important for us
to note that communication necessarily involves at least two subjects, say persons that
exchange the information for some reason and are interested in faultless transmission and
reception of the messages. This is in contrast to physical communication channels – cop-
per wires or glass fibers – that transmit electricity or light without caring about the possible
informational content. Communication science can be very abstract, so the subjects may
be presented as mathematical objects. Albeit they remain the subjects. On the other hand,
there is a well developed science called quantum mechanics that operates with a linear
equation – the Schrödinger equation for the wave function |	〉 – and expresses all physical
quantities in terms of expectation values 〈	| Â|	〉 defined by the wave function and the
corresponding Hermitian operator Â. We should note that such pure quantum mechanics
has no subjects involved.

Loosely speaking, the field of quantum information comes about from a combination
of quantum mechanics and information-hungry subjects. These subjects are customarily
called Alice and Bob, and they exchange information using both quantum mechanical
and classical means. The abstract representation of the quantum mechanical part includes
an exchange of qubits and performing quantum gates. It has been proven that quantum



387 5.2 Quantum goodies
�

mechanics provides novel opportunities for information exchange that are absent in clas-
sical world. This makes quantum ways potentially better than classical ones. This is why
we call the concepts arising in this context goodies: they involve the notion of better that
makes strictly no sense in the absence of subjects. For instance, one of the goodies is quan-
tum entanglement, which is commonly considered as a resource for an efficient quantum
information transfer. From the point of view of pure quantum mechanics, entanglement
cannot even be associated with a physical quantity: there is no expectation value giving the
entanglement.

When we deal with classical information, it is a very good assumption that once stored
it remains uncorrupted and can be retrieved at any time. In addition, the classical infor-
mation can be read and/or copied to another location without destroying it. An example
is the information stored and processed in the Internet. These properties, which we often
take for granted, eventually allow us to consider information separately from the physical
devices used to store or transmit it. These properties do not hold for quantum information
that is stored in a wave function, say that of a qubit. It is common to assume the projective
read-out. If the initial wave function is α|0〉 + β|1〉, such a read-out is probabilistic, giving
“0” with probability |α|2 and “1” with probability |β|2. Also, the read-out distorts the wave
function: it is either |0〉 or |1〉 after the measurement. Thus the superposition coefficients
(i) are erased by the measurement and (ii) cannot be precisely determined by this measure-
ment. These two very unpleasant obstacles could have been circumvented if we were able
to clone the unknown quantum information without reading it. We could take a single qubit
and produce two with identical wave functions. Repeating the process, we could produce
as many copies of the quantum state as required to measure the superposition coefficients
with the desired precision.

Control question 5.6. How many qubits are required to measure |α|2 with 1%
accuracy?

Unfortunately, cloning is prohibited by quantum mechanical laws, and this is known
as the no-cloning theorem. This is a simple consequence of the fact that the Schrödinger
equation is linear. The resulting wave function after the first cloning would be given by

(α|0〉 + β|1〉)(α|0〉 + β|1〉) = α2|00〉 + αβ(|01〉 + |10〉)+ β2|11〉,
that is, quadratic in α,β. Therefore, no quantum algorithm can clone a qubit. It is important
that the quantum state to be cloned is unknown. If we know α,β in advance, there is no
problem to set to this state as many qubits as we want.

5.2.1 Quantum teleportation and key distribution

All this so far sounds hopeless. The good news is that the unknown quantum information
can be transmitted from a subject to another subject without losses. The simplest scheme
that allows for it bears the rather misleading name quantum teleportation. There are two
subjects, Alice and Bob. Alice has a piece of unknown quantum information. It is stored in
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a qubit in the form of the superposition coefficients. She wants to transfer the information
to Bob. The simplest thing to do would be just to send the qubit to him with DHL. This is
impossible: there would be no story otherwise. However, Alice does have classical means
to communicate with Bob (a cell phone). At first glance, it does not help much. If Alice
measures the qubit, she would destroy it without learning α,β. She would have almost
nothing to report to Bob, only the “0” or “1” outcome of the probabilistic read-out.

Alice and Bob can solve the problem in hand if they prepare themselves for such a
situation. Namely, they have to come together and prepare in advance a pair of the qubits
in the state

|B00〉 = 1√
2
(|00〉 + |11〉) .

Then they separate. Bob takes the first qubit while Alice gets the second one. Upon acquir-
ing the third qubit in the unknown state, she inserts the second and the third qubit into her
personal quantum computer. The quantum state of the three qubits is given by

|i〉 = |B00〉(α|0〉 + β|1〉).
The further discussion uses a special basis for any two qubits: the Bell basis. By definition,
the four Bell states are as follows:

|B00〉 = 1√
2
(|00〉 + |11〉); |B01〉 = 1√

2
(|01〉 + |10〉);

|B10〉 = 1√
2
(|00〉 − |11〉); |B11〉 = 1√

2
(|01〉 − |10〉). (5.8)

State |i〉 already uses the Bell basis for the first and second qubit. However, these qubits are
now separated. The idea is to write the same wave function using the Bell basis of Alice’s
qubits, the second and the third. Some algebra yields

|i〉 = 1

2
(α|0〉 + β|1〉)|B00〉 + 1

2
(β|0〉 + α|1〉)|B01〉

+ 1

2
(α|0〉 − β|1〉)|B10〉 + 1

2
(−β|0〉 + α|1〉)|B11〉.

It is now advantageous for Alice to measure her qubits in this Bell basis. To enable this
measurement, she applies the quantum gate that transforms the Bell states into the basis
states of her quantum computer, |Bab〉 → |ab〉, a, b = 0, 1. This gate is a combination of
a CNOT and a Hadamard gate (Fig. 5.5). The result of the measurement, (r1, r2), which
can be “00,” “01,” “10,” or “11,” is now communicated to Bob over the cell phone. Now
Bob has to apply a single-qubit gate X to his qubit. The crucial part is that the gate he
must apply depends on Alice’s report, X = X (r1, r2). Let us look at the above equation.
If the reported result is “00,” Bob does not have to do anything; the state of his qubit is
(α|0〉 + β|1〉), precisely the unknown state to be transmitted to him. Otherwise he needs to
perform the following gate: −iRx (π ) if the report is “01,” −iRz(π ) if “10,” and −Ry(π ) if
it is “11.” This accomplishes the quantum teleportation: the unknown state is copied into
Bob’s qubit. It is necessary to note that Alice has destroyed the initial unknown state by
her measurement: otherwise it would be cloned.
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⏐unknown〉

⏐unknown〉

⏐B00〉

Alice

Bob

H r1, r2

X(r1, r2)

�Fig. 5.5. Quantum teleportation protocol. Alice can transmit an unknown state to Bob by using a classical
communication line (shown as a double line) to report the results of her measurement (eye
symbol). The condition is that Alice and Bob share a two-qubit entangled state |B00〉.

Quantum teleportation makes use of a special property of the Bell state |B00〉: it is entan-
gled, that is, it cannot be represented as a direct product of the quantum states of the
two qubits. This is in distinction from the basis states of the qubits |ab〉; they are indeed
the products, |ab〉 ≡ |a〉|b〉. Not every entangled state will do the job: |B00〉 belongs to
a manifold of maximally entangled states. Any two-qubit state may be presented as the
superposition of the basis states, |�〉 =∑

ab �ab|ab〉. For such a state, one can look at the
reduced density matrix of one of the qubits, say the first one. In this case, the possible states
of the second qubit are of no interest to us, so the density matrix is obtained by summing
up over them:

ρab =
∑

c

�ac�
∗
bc ⇒ ρ̂ = �̂�̂†. (5.9)

In Eq. (5.9) we represent the wave function �bc by the matrix �̂. For a maximally
entangled state, this density matrix is diagonal.

Exercise 5.3. Show that all the states of the Bell basis are maximally entangled. Show
that a state |�〉 is maximally entangled if the matrix is proportional to a 2× 2 unitary
matrix. Explicitly write a general state satisfying this condition. How many independent
parameters (except the global phase factor) enter this expression?

The diagonal density matrix means that if Bob, instead of teleportation, measures
his qubit, he gets “0” or “1” with equal probability, that is, completely randomly. The
same holds for Alice. However, let us note that for the state |B00〉 the outputs are fully
correlated: Alice and Bob always measure the same result. For an arbitrary maximally
entangled state, this is not the case; the probability of having the same outputs is given
by |�00|2 + |�11|2 < 1. Let us show how this can be improved. Both Alice and Bob can
apply a gate to their qubit. Generally, their gates are 2× 2 unitary matrices, û A for Alice
and û B for Bob. The state after applying the gates is given by

� ′ab =
∑
cd

u B
acu A

bd�cd ⇒ �̂ ′ = û B�̂
(

û A
)T

, (5.10)

where we switch to matrix notations in the second equation. We note that in these notations
|B00〉 is proportional to the unity matrix |B00〉 → 1̂/

√
2. It follows that either Alice or Bob
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can apply a gate to their qubit to transform the maximally entangled state to |B00〉. A
correcting gate is (�̂)−1/

√
2 for Bob (if Alice does nothing) and (�̂T)−1/

√
2 for Alice

(if Bob does nothing). After this correction, the resulting state is |B00〉 and their outputs
coincide.

Quantum teleportation proves that the unknown state, a piece of quantum information,
can be transferred without the physical transfer of its carrier. Though interesting, it does
not seem to be practical. What is the use of transferring the information if it cannot be
read unambiguously? Unexpectedly, the use of quantum information relies on just this
drawback; it is almost impossible to intercept it.

Let us illustrate this point by discussing the EPR quantum key distribution protocol. We
find Bob and Alice in a very unfortunate situation. All informational channels they may use
are listened in to by a third subject, Eve. Bob and Alice can code their messages. To this
end, they need to share a key: a long sequence of bits known to both, but not to Eve. This
is, however, precisely the problem. If Bob devises the key he has to transmit it to Alice, and
Eve would intercept it. The problem with the key is solved if they have prepared in advance
a number of entangled pairs, say in the state |B00〉. Let us first describe the protocol and
then understand why they need every line of it.

• Alice and Bob communicate which pair they measure.
• Each decides randomly whether to apply the Hadamard gate to his/her qubit before

the measurement. It is vital that they do not communicate the decision prior to the
measurement.
• They perform the measurement of their qubits and keep the result secret.
• They communicate to figure out if the gate has been applied. If both have either applied

or not applied the gate, they keep the result as a bit of the key: they are sure that the
readings are the same. Otherwise, the result is discarded.
• They repeat the above procedure with the next pair until they get enough bits for the key.

If neither Alice nor Bob applies the gate, the equal outcome of the measurement is
the property of |B00〉 discussed above. If they both apply a gate, the resulting state is
û B(û A)T/

√
2 (see Eq. (5.10)). It is equivalent to |B00〉 if û A = (û B)∗. Since the Hadamard

gate is a real matrix, this condition is fulfilled, and Alice and Bob’s results are guaranteed
to be identical. They could use any gates satisfying the above condition. Thus, they can
establish a private key.1

The good news is that the key established by Bob and Alice is secure. Eve does not know
the key provided she only listens in their communication channel. If she also tampers with
the supply of their entangled pairs, her efforts will result in a corrupt key: some of the bits
acquired by Bob and Alice will be different. Alice and Bob will notice that their versions
of the key do not coincide. Suppose Bob transmits a message in plain English. If the keys
differ, Alice would get gibberish. To check this for sure, they need to sacrifice a part of
their key and communicate it to each other. They will pinpoint the difference and thereby
detect Eve’s evil activity.

1 Alice and Bob cannot use a public key as modern Internet users do. As explained, a public key can be broken
by a quantum computer, and Eve has one.
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To see how this works, let us investigate the opportunities open to Eve. She can connect
her quantum computer to the qubits of the entangled pair and transform |B00〉 to any other
state. However, she must avoid outputs that contain either |01〉 or |10〉: this yields the prob-
ability of Alice and Bob measuring different bits in case none of them applies the gate. If
they never apply the gate, Eve’s tactics are simple: she chooses the bit she wants the par-
ties to receive. Then she transforms |B00〉 to either |00〉 or |11〉 depending on her choice.
This would result in an uncorrupted key, designed and perfectly known by Eve. To exclude
this, Alice and Bob must use the gate from time to time. If only Bob applies the gate, the
product state |00〉 received from the corrupted pair is transformed into (|00〉 + |10〉)/√2.
The key is corrupted with one-half probability. However, if Eve knows whether or not they
use the gates, she can adjust the results. She simply corrects the state of the corresponding
qubit with the inverse gate if necessary. This is keeping the decision about the gates secret
is an important part of the protocol. The only way Eve can conceal her tampering is to
transform |B00〉 to the same |B00〉 apart from a phase factor. But in this case she does not
get any information concerning the key!

The “EPR” in the name of the protocol stands for Einstein, Podolsky, and Rosen, who
jointly published a seminal article in 1935 [112]. The authors believed that a wave function
does not provide a complete description of reality. In particular, they disliked the fact that
the outcome of a measurement is not unambiguously defined by the initial state, and they
explicitly gave a wave function that does not possess this property. In modern terms, their
wave function was a maximally entangled state. In the decades that followed, scientists
were ready to assume the existence of “hidden” variables that are not in the Schrödinger
equation but nevertheless determine the measurement outcomes. The probabilistic nature
of the outcomes just comes from our ignorance of the hidden variables. In the protocol
described, a hidden variable is the choice of Eve. The variable determines the outgoing
state – |00〉 or |11〉 – and thereby the measurement outcomes.

The EPR key distribution protocol would not work if hidden variables exist, at least not
in a simple form. Bell [113] and Clauser, Horne, Shimony, and Holt (known as CHSH)
[114] have quantified the statement, enabling its experimental verification. They suggested
a criterion commonly referred to as the Bell inequality. Let us consider Alice and Bob
again. Now they do not have any secrets. Rather, they investigate a source of qubit pairs,
trying to pinpoint its state. They vary û A and û B – their gates to be applied to the qubits
before the measurement. They repeat the measurement many times, and finally they deter-
mine the three independent probabilities of four possible outcomes. These probabilities
depend on the gate settings: Pab(û A, û B). The criterion makes use of a single parameter,
given by

E = P00 + P11 − P01 − P10,

which determines the correlation of outcomes: −1 < E < 1, the limiting values cor-
responding to absolute (anti) correlation. We have seen that if the state of the source
is maximally entangled, Alice and Bob can always adjust the gates to achieve the
absolute correlation, E = 1. However, recalling Eve, we understand that these set-
tings also give coinciding outcomes for two product states: ((û B)−1|0〉)((û A)−1|0〉) and
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((û B)−1|1〉)((û A)−1|1〉). The source can give out these states randomly. In this case, Alice
and Bob will measure the same probabilities as for the maximally entangled state.

The EPR protocol suggests that each observer should use at least two settings, û and û′.
Let us define the Bell parameter as follows:

B = E(û A, û B)+ E(û′A, û′B)+ E(û′A, û B)− E(û A, û′B);

it is determined by four possible settings. It has been proven that, for any hidden variable
scheme B2 ≤ 4, while quantum mechanics can provide bigger values, B2 ≤ 8.

If there are hidden variables λ, they define the result of the measurement X (λ), Y (λ) for
Alice and Bob, respectively, X , Y = 0, 1. We assume that the hidden variables are local
so that the measurement result for Bob does not depend on the settings of Alice, and vice
versa. In quantum terms, this implies that, at a given value of λ, the source gives out a
product state ((û B)−1|Y (λ)〉)((û A)−1|X (λ)〉). Let us note that

E(û A, û B) = 〈(2X − 1)(2Y − 1)〉 ≡
∫

dλ P(λ)(2X (λ; û B)− 1)(2Y (λ; û A)− 1).

Here, P(λ) is the probability distribution of the hidden variable. The Bell parameter is
written as follows:

B = 2〈(X + X ′ − 1)(2Y ′ − 1)− (X − X ′)(2Y − 1)〉; (5.11)

X ≡ X (û B), X ′ ≡ X (û′B), Y ≡ Y (û A), Y ′ ≡ Y (û′A). (5.12)

Since the outcomes X , X ′, Y , and Y ′ only assume the values of 0 and 1, the expression
between the angular brackets in Eq. (5.11) can only assume values ±1. Since it is inte-
grated with positive measure P(λ),−2 < B < 2, and we prove that, in the hidden-variable
scheme, B2 ≤ 4. In quantum terms, the scheme is related to product states. Indeed, for any
product state of the two qubits, |φB〉|φA〉, −2 < B < 2.

Let us access the quantum boundary of B. Making use of the matrix notation for a
two-qubit wave function, we write

E(û A, û B) = Tr
(
σ̂z�̂

′σ̂z�̂
′†) ,

where �̂ ′ is given by Eq. (5.10). We express it in terms of �̂, E = Tr
(
σ̂ B�̂σ̂ A�̂†

)
,

where the settings of Alice and Bob are represented by the matrices σ̂ A = (û A†σ̂z û A)T

and σ̂ B = û B†σ̂z û B , respectively. These matrices are unitary rotations of σ̂z , and are
best written in the form σ̂ A,B = nA,B · σ̂ , nA,B being three-dimensional vectors of unit
length. We know that if 	̂ is a maximally entangled state, an extra gate of either
Alice or Bob can bring it to |B00〉. Assuming this extra gate has been applied, we
replace �̂ by 1̂/

√
2 to obtain E = (1/2)Tr

(
σ̂ B σ̂ A

) = nA · nB . The Bell parameter
becomes

B = nA
(

nB − n′B
)
+ n′A

(
nB + n′B

)
,

where nA(B), n′A(B) denote two settings of Alice (Bob) corresponding to the gates

û A(B), û′A(B)
. The rest is a geometry exercise. To find the upper boundary, we need
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to maximize the Bell parameter with respect to four vectors of unit length. The maxi-
mum with respect to nA, n′A is reached at (nA, n′A) = (

nB ∓ n′B
)
/|nB ∓ n′B | so that

B = |nB + n′B | + |nB − n′B |.

Control question 5.7. Can you explain the geometric meaning of the above
expressions?

The expression for B reaches a maximum for any nB ⊥ n′B , Bmax = 2
√

2. The vectors
nA, n′A are also orthogonal, are in the same plane as nB , n′B , and are rotated by 45 degrees
with respect to them.

5.2.2 Entanglement

The common denominator of the above examples is the notion of entanglement. It is time
now to talk about this in the context of a general quantum system. Let us consider a full
Hilbert space H of all quantum states of the system. Next, consider a bipartition of the
space into subspaces A and B, so that H = A ⊗ B. We have already seen the space of
the two qubits: it is naturally2 partitioned into Alice’s and Bob’s qubit space. A more
general example is the Hilbert space of two particles with coordinates x1,2. An element
of the space is a wave function ψ(x1, x2). The natural partition is into the Hilbert spaces
of each particles, represented by single-particle wave functions φ1(x1), φ2(x2). Indeed,
any two-particle wave function can be represented as a superposition of the product states
φi (x1)φ j (x2), ψ(x1, x2) =∑

i j ci jφi (x1)φ j (x2), φi (x) being the basis states of the single-
particle Hilbert space.

Formally, entanglement is defined by negation. A wave function is not entangled if it
is a product of the wave functions |φA〉, |φB〉 from the partitions A and B, respectively,
|ψ〉 = |φA〉|φB〉. The entanglement is called a resource. Many resources are physical quan-
tities, like energy. It would be nice to have an operator of entanglement Ênt such that its
expectation value 〈ψ |Ênt|ψ〉 gives us the degree of entanglement. It is essential for our
understanding of entanglement that this is impossible in principle: the entanglement is not
a physical quantity in this respect. One could note that the Bell parameter is an expectation
value of an operator, though a rather complicated one. If B2 > 4, the wave function cannot
be a product state and the Bell operator is said to witness entanglement. The problem is that
the Bell operator essentially depends on the settings of Alice and Bob. Given the settings,
the Bell operator gladly witnesses the entanglement of some wave functions whilst ignor-
ing that of others. Generally, for each wave function there exists such a witness operator,
whereas no operator witnesses all the entangled wave functions.

A true measure of entanglement cannot be quadratic in the wave function. Therefore
it cannot be linear in the density matrix. For pure quantum states, the measure is the von

2 Naturally, that is, for us subjects. From a purely quantum point of view bipartition is not natural. There is
an important “democratic” symmetry of quantum description: it is valid in any basis of the Hilbert space, so
all bases are proclaimed equal. The bipartition breaks this symmetry, making some bases better than others.
Thereby it smuggles the subjects into quantum mechanics.
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Neumann entropy of the density matrix reduced on a partition. For the general density
matrix ρ̂, the von Neumann entropy is given by

S = −Tr
(
ρ̂ log2(ρ̂)

) = −∑
i

pi log2 pi , (5.13)

where pi are the eigenvalues of the density matrix. By definition of the density matrix,
these are the probabilities of finding the system in the corresponding eigenstate |i〉. They
have a well defined classical correspondence: the probabilities of being in a certain classical
state i . Indeed, the von Neumann relation is the quantum generalization of the classical
Shannon entropy, widely used in information theory.

Let us consider a pure state. Its entropy in the whole Hilbert space is zero, since the
density matrix of a pure state |�〉 is given by ρ̂ = |�〉〈�| and has a single non-zero eigen-
value 1 corresponding to the eigenvector |�〉. Recalling the matrix representation of |�〉
valid for any bipartition, and Eq. (5.9), we find the entropy of the reduced density matrix
in terms of the eigenvalues pA

i of the matrix �̂�̂†:

SA = −
∑

i

pA
i log2 pA

i .

It is known from basic statistical mechanics that the entropy is maximized by an equal
distribution, pA

i = 1/M , M being the dimension of subspace A. The maximum entropy
Smax = log2 M , the reduced density matrix of such a state being a diagonal matrix. We have
seen previously that this defines a maximally entangled state: such states thus maximize the
von Neumann entropy. For a product state, SA = 0. Thus we demonstrate that the entropy
provides the measure for entanglement.

With this in mind, we are ready for the final example: entanglement distillation. Alice
and Bob share a two-qubit state. They wish to transform it into another state, preferably
with a higher degree of entanglement. They can play with their single-qubit gates as usual.
The transformed wave function is given by Eq. (5.10). Since the gates in use are unitary
matrices, the eigenvalues of �̂ ′�̂ ′† are the same as of �̂�̂†, resulting in the same entropy.
So it looks like Alice and Bob cannot change the degree of entanglement of the pair in their
possession.

There is a way, however, to achieve this. Alice entangles her qubit with another one, per-
forms a two-qubit gate, and measures the auxiliary qubit (see Fig. 5.6). She communicates
the result of the measurement to Bob. He may want to apply a gate based on the Alice’s
report. Depending on the output of the measurement, the transformed pair state has either
higher or lower entropy than the initial one. Let us examine this in detail.

Alice starts with the wave function |�〉|0〉, the last ket being the initial state of the
auxiliary qubit. After the action of a general gate, the state is given by

Û0|�〉|0〉 + Û1|�〉|1〉,
and the 2× 2 matrices Û0,1 act in the space of Alice’s qubit. It is important to note that Û0,1

are no longer unitary: they are two blocks of a 4× 4 unitary matrix describing the two-qubit
gate. Two other blocks not used here describe the transformation from the |1〉 state of the
auxiliary qubit. The only constraint imposed by the unitarity of the larger matrix is
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⏐0〉

⏐f 〉⏐Ψ〉

Alice

Bob

U

r

�Fig. 5.6. A simple distillation algorithm. The goal is to make |B00〉 from a known state |�〉. To probe her
qubit, Alice uses a designed gate U and an ancilla to be measured. If the measurement result is
r = 0, the goal is achieved. If |�〉 is not maximally entangled, the probability of success is given
by p0 < 1.

Û †
0 Û0 + Û †

1 Û1 = 1̂, (5.14)

similar to the condition on the reflection and transmission matrices discussed in Section
1.3. We can say that after the measurement of the auxiliary qubit, the pair wave function
becomes either

|� ′0〉 =
Û0|�〉√

p0
; p0 = 〈�|Û †

0 Û0|�〉,

if the measurement outcome is “0,” or

|� ′1〉 =
Û1|�〉√

p1
; p1 = 〈�|Û †

1 Û1|�〉,

if the measurement outcome is “1,” p0,1 being the probabilities of the corresponding out-
comes. The aim is to reach the maximally entangled state, |B00〉 for simplicity, for one of
the outcomes, say “0.” If the state is known, there is no problem. In matrix notation,

1̂/
√

2 = �̂ ′ = û B�̂(Û0)T/
√

p0.

Our aim is thus reached if Alice uses the gate with Û0 = (�̂−1)T√p0/2. Bob does not
have to do anything.

At the moment, it looks like Alice can design the gate where the probability of favorable
outcome reaches unity (or even more). This is because we did not look at the constraint
given by Eq. (5.14), which implies that Û0 is a kind of reflection matrix, that is, that the
eigenvalues of Û †

0 Û0 – the reflection coefficients – cannot exceed unity. These eigenvalues
for the matrix of interest are readily expressed through those of Alice’s reduced density
matrix ρ̂A = (�̂�̂†)T, pA

1,2. Since Û0 is proportional to the transposed inverse of �̂, the

eigenvalues are given by p0/2pA
1,2. The condition they do not exceed unity provides the

upper bound for the probability of the favorable outcome:

p0(|�〉) = 2 min(pA
1,2).

The bound p0 is a monotonic function of the entropy. If the initial state is a product state,
that is, has zero entropy, p0 is zero, and the creation of the Bell state is impossible. If the
state is maximally entangled, so the entropy reaches maximum, p0 = 1, and the Bell state
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can be created with certainty. In general, Alice takes a gamble in her quest for |B00〉: she
succeeds with probability p0 and fails otherwise.

Control question 5.8. Assume that Alice has optimized the gate so that p0 reaches
the upper boundary. Express the entropy of the initial state in terms of p0. Give the
entropy of the final state in the cases of both success and failure. Does it make sense to
reuse the resulting state in the case of failure?

If Alice and Bob have a single copy of the initial state, their strategy is too risky. The
situation changes drastically if there are many copies of the same state. They repeat the
procedure again and again, taking new copies, until they get |B00〉. Moreover, in this case
they can distill |B00〉 from an unknown state or from a source that does not give a pure state
but is characterized by a density matrix. To tune the gates, they have to spare several first
attempts on the characterization of the state. There, Bob’s measurements and communica-
tions become crucial (we note he played a rather passive role in the example considered).
However, there may be a situation when all their attempts are futile. If the source gives
the product states only, that is, does not contain entanglement, no entangled state can be
produced by the methods described. The entanglement distillation plays an important role
in quantum information. For instance, quantum error correction algorithms are based on a
closely related concept.

All the above examples are basic in the rapidly expanding field of quantum information.
The underlying theory is mathematically involved and aims to address the relevant prob-
lems of information technology using adequate language of devices and protocols. Many
ideas – the violation of the Bell inequality, various protocols of quantum key distribution,
quantum teleportation, entanglement distillation, and even quantum games – have been
successfully realized experimentally (see Ref. [115] for a recent review). So far, the experi-
ments are performed with photons generated in non-linear media, the quantum information
being encoded in its polarization.

There is potential to realize these ideas in the field of quantum transport, and this is out-
lined in a significant number of theoretical proposals. However, the experiments have not
been accomplished so far; it is interesting to discuss why. To start with, quantum transport
systems readily provide vast “natural” resources of entanglement. The basis wave functions
of identical particles – either fermions or bosons – are either antisymmetric or symmetric
combinations of the product state, and are therefore entangled. The simplest example is the
Pauli principle: two electrons sharing the same orbital state are entangled with respect to
spin. Their wave function is the spin singlet,

|S〉 = 1√
2
(| ↑↓〉 − | ↓↑〉) ,

corresponding to the |B11〉 state. Two electrons of a Cooper pair in a superconductor are
also in a spin-singlet state. Moving electrons together and apart and letting them interact
allows for control over their quantum state and therefore entanglement of the orbital and
spin degrees of freedom. It is feasible to arrange a controlled sequence of quantum states
that simulates any quantum information protocol and measures the results demonstrating
the realization of the protocol. The reason this has not yet been done is rather subjective,
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to conform to the subjective nature of quantum information. There is not yet a natural real-
ization of subjects – Alice and Bob – available in quantum transport. Without subjects,
all quantum behavior can be understood, predicted, and measured without invoking quan-
tum information concepts. In addition, a concrete experimental realization is frequently
involved and requires much technological effort, while its results would not necessarily
be superior to the advances in quantum optics. However, it appears that these subjective
obstacles will be removed in the near future.

Most proposals naturally fall into three groups. Proposals of the first group use the inter-
action between electrons to move them in a controlled fashion: to extract them from a
reservoir, to move them close together in order to entangle, and to separate them again.
This imitates the situation of Alice and Bob. One can, for example, push the electrons
into different reservoirs. The correlations of currents in these reservoirs may be related to
the correlation of Alice’s and Bob’s outcomes and may be measured relatively easy. Most
proposals from this group are reviewed in Refs. [116] and [117].

For the proposals of the second group, interactions are not necessarily essential. They use
the analogy between the photons propagating in media or waveguides and electrons prop-
agating and being scattered in nanostructures. The difficulty here is that there are many
electrons doing this simultaneously. The multi-particle flow does not automatically and
naturally separate into individual events involving either one or two, or even a few, par-
ticles. We encountered this before in Section 1.4. Confusingly, in many cases, the flow
can be interpreted in terms of events, but the interpretation is ambiguous. To give a sim-
ple example, an electron tunneling between two reservoirs can be seen as a transfer of a
single electron from the filled state l in the left reservoir to the empty state r in the right
one. However, an equally legitimate interpretation is the creation of an electron and a hole
at the tunnel junction at the moment of tunneling: the electron goes to state r , while the
hole goes to l. So there are two particles simultaneously involved in the event. The pro-
posals elaborated go as far as to demonstrate quantum teleportation and the violation of
the Bell inequalities. They also prove that many electrons present in nanostructures poten-
tially allow for more interesting and involved schemes than that of quantum optics. Most
proposals are reviewed in Ref. [118].

The proposals of the third group combine photonics and electronics. Quantum dots, for
instance, can be used as single-photon sources and even as sources of entangled photon
pairs. Quantum dots can also detect photons. Thereby one can create quantum information
in a nanostructure and transfer it using photons to another nanostructure.3

5.3 Quantum manipulation

In the preceding section, we discussed in detail the paradigm of quantum computing. Ide-
ally, the paradigm implies our ability to perform an arbitrary unitary transformation Ŝ of
a 2N -component wave function of the N -qubit computer. It has been explained how this

3 Such proposals are outlined in a private communication from L. P. Kouwenhoven.
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general transformation can be carried out as a sequence of single-qubit and two-qubit uni-
tary transformations. In this section, we consider how these transformations are realized in
physical systems. This consideration is incomplete: we treat the computer as an isolated
N -qubit system. No actual system is isolated; any computer is a part of the whole world.
We postpone the discussion on the important effects of decoherence and dissipation cre-
ated by outside agents until Chapter 6. The closed system is completely characterized by
the 2N -component wave function. The evolution of the wave function is determined by
the time-dependent Schrödinger equation with a (time-dependent) Hamiltonian. Generally
speaking, the Hamiltonian is determined by a set of external parameters – handles. We can
change at will the values of the parameters (turn the handles) in time. This is known as
quantum manipulation. The subject of this section is to show how we turn the handles to
achieve the desired result. There are many possible physical realizations of qubits and han-
dles, albeit the present discussion hardly depends on such realizations. The point is that the
qubit as a physical system is ultimately simple, so that all possible qubits are described by
the Hamiltonian of the same form. A sufficiently general Hamiltonian of an N -qubit com-
puter consists of single-qubit Hamiltonians Ĥi and the pairwise interactions Ĥi j between
different qubits:

Ĥ =
N∑

i=1

Ĥi +
N∑

i< j

Ĥi j ,

Ĥi = h(i)
a σ̂

(i)
a , Ĥi j = U (i j)

ab σ̂
(i)
a σ̂

( j)
b .

(5.15)

Here the summation over repeated Cartesian indices a, b = x , y, z is implied, and σ̂ (i)
a are

Pauli matrices representing the three spin-projection operators of the qubit i . In principle,
the Hamiltonian could also contain terms corresponding to the interaction of three or more
qubits. For instance, a three-qubit term would be proportional to σ̂ (i)

a σ̂
( j)
b σ̂

(k)
c . However,

these terms are hardly useful for any manipulation, and their physical realization is less
than obvious.

Single-qubit handles h(i)
a (to be referred to in this section as x-, y-, and z-handles) and

qubit coupling handles U (i j)
ab correspond to very different physical quantities for different

qubit realizations. We consider various realizations of solid state qubits in Sections 5.5,
5.6, and 5.7.

Since any quantum algorithm consists of elementary operations only involving single-
qubit and two-qubit operations, for each elementary manipulation it is enough to consider
either a single-qubit Hamiltonian, or a Hamiltonian involving two qubits. Thus, the big
Hamiltonian, Eqs. (5.15), can be handled part by part for quantum information purposes –
an enormous simplification that we take the advantage of.

5.3.1 Single-qubit manipulation

We concentrate now on a single qubit, given by

Ĥ (t) = ha(t)σ̂a . (5.16)
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To start with, let us assume that we can set all handles to zero, ha = 0. Conveniently, the
wave function of the qubit then stays constant. Now, we turn one of the handles (say z) to
position hz . The wave function does not change instantly; it evolves continuously in time.
On the Bloch sphere, this evolution corresponds to a rotation around the z axis with angular
velocity −hz/�. We keep hz constant during the time interval τ and set the handle back to
zero. Thereby we achieve a unitary transformation of the wave function (see Eq. (5.3)):

R̂z(α) = eiασ̂z/2 = cos
α

2
+ i sin

α

2
σ̂z , α = −hzτ/�. (5.17)

To prove the above relations, one works in the basis where σ̂z is diagonal and notes
that, for any diagonal matrix diag(a1, . . . , aN ) the function of this matrix is given by
f (diag(a1, . . . , aN )) = diag( f (a1), . . . , f (aN )). So,

eiασ̂z/2 = exp

[
iα

(
1 0
0 −1

)]
=

(
eiα/2 0

0 e−iα/2

)
= cos

α

2
+ i sin

α

2
σ̂z .

If we use other handles x , y and proper products of pulse height and duration, we imple-
ment the rotations R̂x (α), R̂y(α) around the corresponding axes. If we give a simultaneous
pulse hx , hy , hz of duration τ to all three handles, we can rotate the wave function about

the axis n = (hx , hy , hz)/h by the angle −hτ/� (h ≡
√

h2
x + h2

y + h2
z ). Since an arbi-

trary single-qubit operation is a rotation, such a rotation by pulse solves the manipulation
problem in a straightforward way.

The real difficulty is our inability to switch off the Hamiltonian by setting the handles
to zero. In most practical qubits, not all three handles are available for turning. The most
common situation is that the evolution of the wave function cannot be stopped at will. In the
absence of manipulation, the evolution is determined by a time-independent “background”
Hamiltonian Ĥ0, and the turning of the handles adds a time-dependent part to it.

Resonant manipulation

Fortunately, the manipulation for this case does not appear to be much more complicated,
and one may still use pulses. However, now they are pulses of an ac rather than a dc
field. The frequency of the field matches the energy difference between two levels of the
Hamiltonian Ĥ0.

To prove this, we present a celebrated approach to the time-dependent
Schrödinger equation applicable close to the resonance – the rotating wave approximation
(RWA). In this book, the RWA comes in two variants, which we call A and B.

We start with RWA-A. Let us work in the basis where the background Hamiltonian
H0 is diagonal. If the frequency matching the energy difference between its levels is �,
Ĥ0 = diag(��/2,−��/2).

Control question 5.9. Why is it always possible to present Ĥ0 in this form?

The time-dependence of the handles is now oscillatory with frequency ω ≈ �,

ha(t) = Re(h̃a(t)e−iωt ),
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h̃a(t) being the complex amplitudes that vary slowly at the time scaleω−1. The Schrödinger
equation is given by

i�
∂

∂t

(
ψ+(t)
ψ−(t)

)
=

(
��/2+ hz(t) hx (t)− ihy(t)
hx (t)+ ihy(t) −��/2− hz(t)

)(
ψ+(t)
ψ−(t)

)
.

Without the manipulation, the general solution of the equation is given by
(ψ+e−i�t/2,ψ−ei�t/2). Let us search for the solution with the manipulation making ψ±
time-dependent and replacing � by a close value ω, (ψ+(t)e−iωt/2,ψ−(t)eiωt/2). The
resulting equation for this “new” wave function is as follows:

i�
∂

∂t

(
ψ+(t)
ψ−(t)

)

=
(

�(�− ω)/2+ hz(t) (hx (t)− ihy(t))eiωt

(hx (t)+ ihy(t))e−iωt −�(�− ω)/2− hz(t)

)(
ψ+(t)
ψ−(t)

)
.

This equation is still exact. The coming approximation relies on the separation of the
frequency scales: we assume that the new wave function varies slowly, not changing sig-
nificantly over time scale ω−1. To this end, we average the time-dependent Hamiltonian
over the oscillation period. For example,

〈hx (t)eiωt 〉 = 1

2
〈h̃x (t)+ h̃∗x (t)e2iωt 〉 = h̃x (t),

where we have kept the slow term h̃x , and the average of the rapidly oscillating second
term proportional to exp(2iωt) averages to zero. The time-averaged Hamiltonian is given
by (we omit the time dependence of the amplitudes for brevity)

ĤRWA−A =
(

�δω/2 h̃x (t)− ih̃ y(t)
h̃∗x (t)+ ih̃∗y(t) −�δω/2

)
, (5.18)

where δω ≡ �− ω is the frequency mismatch between the oscillation frequency of the
manipulation handles ω and the working frequency of the qubit �.

Note first that the averaged Hamiltonian given by Eq. (5.18) is independent of the handle
hz . Furthermore, if the amplitudes h̃x and h̃ y are time-independent, the Hamiltonian is
stationary and has the following eigenvalues:

±�ωR/2 ≡
√

�2ω2/4+ |h̃x |2 + |h̃ y |2 .

This defines a new frequency scale ωR for slowly varying wave functions. By virtue of
scale separation, we must require ωR � �,ω. This sets the limits of applicability of RWA:
small frequency mismatch |δω| � � and small oscillation amplitudes |h̃x |, |h̃ y | � ��.

Let us set the frequency mismatch δω, as well as the amplitudes h̃x and h̃ y , to zero. We
see then that the averaged Hamiltonian vanishes – we have managed to stop the evolution of
the wave function, as discussed above. Let us assign pulses to these amplitudes. Such pulses
are sharp at the slow time scale ω−1

R , but smooth at the fast scale �−1. These oscillation
pulses work precisely as dc pulses described above for Ĥ0 = 0, and thus realize rotations
of the wave functions. Now h̃x and h̃ y correspond to the handles hx and hy . It might seem
that, for the resonant manipulation, we miss out handle hz . This is not strictly correct: the
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third handle is the frequency mismatch. A rotation around the z axis can be achieved by a
slow variation of δω; see Eq. (5.18).4

We now fix certain initial conditions for the wave function, for example (1, 0). We
assume δω = 0. During the pulse with constant amplitude, the wave function evolves
in time, (cos(ωRt/2),−i sin(ωRt/2)). The probability of remaining in the initial state
oscillates as a function of time with frequency ωR:

P+ = cos2(ωRt/2). (5.19)

This phenomenon is known as Rabi oscillations, and ωR as the Rabi frequency. For zero
frequency mismatch, it is proportional to the amplitude of the resonant field.

The second variant of RWA, RWA-B, is most convenient to apply in the basis where a
single oscillating handle hz(t) = h̃ cosωt is diagonal. The Hamiltonian Ĥ0 does not have
to be diagonal in this basis and can be generally written as follows:

Ĥ0 = 1

2

(
ε T
T ∗ −ε

)
. (5.20)

Let us search for the solution in the form (ψ+(t)e−iφ(t)/2,ψ−(t)eiφ(t)/2), where

φ̇(t) = ω + 2hz(t)/�.

The idea behind this substitution is that, at the resonant frequency ω = ε/� and T = 0, the
Schrödinger equation is satisfied with constant ψ±. So we expect these wave functions to
vary slowly near the resonance point. After substitution, we obtain the Hamiltonian, which
we average over the period as above:

ĤRWA-B = 1

2

(
�δω T 〈eiφ(t)〉

T ∗〈e−iφ(t)〉 −�δω

)
〈eiφ(t)〉 = −J1(2h̃/ω�). (5.21)

If the oscillation amplitude h̃ does not depend on time, the Hamiltonian given by Eq. (5.21)
is stationary. As for ĤRWA-A, the diagonal elements are proportional to the frequency mis-
match, δω = ε/�− ω. In distinction from ĤRWA-A, the non-diagonal elements depend on
the oscillation amplitude in a rather complicated way – through the first-order Bessel func-
tion. We have already encountered Bessel functions in Section 1.7, where we saw that they
represented photon-assisted tunneling. The same applies here: the Bessel function gives
the amplitude of the transition between the levels + and − that is accompanied by the
emission/absorption of one photon with energy �ω. The time-dependent wave functions
driven by the Hamiltonian given in Eq. (5.21) oscillate with the Rabi frequency

ωR =
√

(δω)2 + |(T /�)J1(2h̃/ω�)|2.

The approximation works provided ωR � ω, that is max(δω, |T |/�)� ω. We note that
RWA-A and RWA-B, although similar in spirit, are different approximations suitable for

4 One might be surprised by the fact that one can rotate the wave function around the z axis by shifting the
frequency ω, even if the amplitudes of all oscillations are strictly zero. We note that a rotation R̂z corresponds
to shifting the phase difference between the components ψ+ and ψ−. This phase difference is, however, purely
conventional. For example, we could use other definitions of these two components, up to a time-dependent
phase factor, ψ±(t)→ ψ±(t) exp(±iϕ(t)).
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different regimes. Whereas both require a small frequency mismatch δω, RWA-A is only
good for the manipulation amplitudes that are small in comparison with Ĥ0 but do not have
the same “direction” in spin space. RWA-B applies to the case where the manipulation part
and H0 have almost the same direction (T � ε), but is not restricted to small values of the
amplitudes.

Whatever the RWA, it proves that the resonant manipulation can be achieved using
pulses, each rotating the wave function around a certain axis. The precise shape of the pulse
is not important. More complicated manipulation protocols are realized using sequences of
pulses, usually separated by time intervals greatly exceeding their duration so that they do
not overlap or interfere.

Ramsey sequence

Let us initialize the qubit to the ground state |−〉. We first apply a short pulse that rotates
the spin by π/2 around the x axis:

Rx (π/2) = 1√
2

(
1 i
i 1

)
.

After the pulse, the wave function becomes a superposition (|−〉 + i|+〉)/√2, and the
corresponding spin is along the y axis. After a delay τ , another π/2 pulse is applied.
Naively, one expects the two to add: the resulting state would be i|+〉. This is indeed the
case if the oscillation frequency exactly matches the working frequency � of the qubit.
In practice, this match is never perfect: even if we match the two in a given moment
of time, the frequency � may drift in time due to slow fluctuations of the parameters
caused by “unfriendly” agents. Let us see how the frequency mismatch δω affects the
result of the Ramsey sequence. Between the pulses, the spin performs a free rotation
along the x axis with frequency δω. The corresponding rotation matrix for the wave
function is exp(−iδωτ σ̂z/2); the superposition created by the first pulse thus evolves in
time, (i exp(−iδωτ/2)|+〉, exp(iδωτ/2)|−〉)/√2. Application of the second pulse again
rotates the wave function around the x axis, and the final state is i(cos(δωτ/2)|+〉 +
sin(δωτ/2)|−〉). The probability of finding the qubit in state |+〉 after the Ramsey sequence
is thus given by P+ = cos2(δωτ/2). This is an oscillating function of the pulse duration
and the mismatch – the so-called “Ramsey fringes.” The effect is used to fine tune quantum
resonant systems, for example the atomic clocks used as a modern time standard.

Spin echo

There is an elegant way to cancel the effect of the frequency mismatch. Let us sophisticate
the Ramsey sequence by applying an extra π -rotation pulse around the x axis in between
the π/2 pulses. The time intervals between the pulses are τ1 and τ2. The principle is best
understood in terms of spin. After the first π/2-pulse, the spin is in the y direction. Owing
to the frequency mismatch, it rotates around the z axis. The rotation angle just before the
π -pulse is −δωτ1. The pulse rotates the spin such that its x component does not change,
while its y component flips sign. The rotation angle becomes π + δωτ1, so that before the
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last pulse it is π − δω(τ2 − τ1). If the time intervals are precisely the same, the subsequent
π/2 pulse brings the qubit back to |−〉, irrespective of the frequency mismatch: its effect
is canceled by the manipulation. The term “spin echo” comes from the experiment with
a large ensemble of (nuclear) spins. In an ensemble, there are inevitable fluctuations of �
from spin to spin. They are manifested as an apparent decay of total spin at a time scale
determined by a typical fluctuation (see Section 6.7 for details). The π -pulse applied after
the time interval τ cancels the effect of the fluctuations so that the signal mysteriously
reappears at time moment 2τ as an echo.

Control question 5.10. What is the probability P− after the spin-echo sequence
described if τ1 �= τ2?

Diabatic and adiabatic manipulation

There are two useful alternatives to the resonant manipulation. We exemplify those with
the Hamiltonian given by Eq. (5.20), assuming that we can vary ε in time in any way we
please. Let us suddenly, that is diabatically, change ε from large (� |T |) positive to large
negative values. Initially, the wave function corresponds to the ground state |−〉 of the
Hamiltonian given by Eq. (5.20) with large positive ε. The change does not immediately
affect the wave function: is it a manipulation? In fact, it is: the Hamiltonian has changed.
The wave function corresponds now to the excited state of the new Hamiltonian. The same
result would be achieved by applying a π -pulse without the Hamiltonian change. Diabatic
manipulation should be performed with caution. Usually, the two states representing a
qubit do not constitute the full spectrum of the quantum system. There are more states with
higher energy, which are usually disregarded. The diabatic manipulation may provide the
energy required to reach these states: this temporarily destroys the qubit.

The opposite of diabatic manipulation is adiabatic manipulation. Here, we change ε
from large positive to large negative values in a slow fashion. In this case, if the initial
wave function is an eigenfunction of the initial Hamiltonian, in the moment t it remains
very close to the eigenfunction of the instant Hamiltonian Ĥ (t). If we start in the ground
state at positive ε, we end up in the ground state at negative ε – we turn the spin by
π . Although it seems less intuitive, the same applies to the excited state (assuming no
relaxation process has taken place). The point of caution concerning the adiabatic manip-
ulation are the phase shifts acquired by the eigenstates in the process. These phase shifts
are not generally the same; this corresponds to the rotation around the “direction” of the
Hamiltonian.

Generally, one can vary ε neither infinitely fast (diabatically), nor infinitely slow (adi-
abatically). In practice, there is always a finite “speed” ε̇ with which the variation is
performed. In this case, if the qubit starts in the ground state of the initial Hamiltonian,
there exist finite probabilities of it ending up in both the ground and the excited states of
the final Hamiltonian. The probability of it switching from the ground to the excited state,
as well as from the excited to the ground state, is given by the celebrated Landau–Zener
formula:
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P−→+ = P+→− = exp

(
−π |T |

2

2|ε̇|�
)

, (5.22)

and the switching process is known as Zener tunneling.
We can now understand the condition under which the manipulation is diabatic (adia-

batic). It all depends on the minimum energy difference |T | between the states. If |ε̇| �
|T |2/�, the probability of Zener tunneling is exponentially small, and the manipulation is
adiabatic. Otherwise, the manipulation is diabatic.

5.3.2 Two-qubit manipulation

Two-qubit manipulation is performed on a four-component wave function of two qubits.
A convenient basis to work with comprises direct products of |±〉 states of two qubits,
| + +〉, | + −〉, | − +〉, | − −〉. A manipulation involves the turning of a coupling handle
Uab; see Eqs. (5.15). The most convenient handle Uzz couples only the z components
of the qubits, so that the coupling Hamiltonian reads Uzz σ̂

(1)
z σ̂

(2)
z , but this handle is not

always available. Frequently for symmetry reasons the handles are grouped. As we will
see in Section 5.7, the coupling of spin qubits is isotropic in spin space, U σ̂ (1)

a σ̂
(2)
a , so the

turning of U affects three couplings. The inductive coupling of the charge qubits groups
the two together, that is V (σ̂ (1)

x σ̂
(2)
x + σ̂ (1)

y σ̂
(2)
y ).

Let us consider a meaningful, but simple, example involving the most convenient handle
Uzz . Initially, the handle is set to zero so that the qubits are decoupled. A pulse of Uzz of
duration τ gives a unitary transformation, as follows:

R(12)
zz (θ ) = exp(iθσ̂ (1)

z σ̂ (2)
z ) = diag(eiθ , e−iθ , e−iθ , eiθ ); θ = −Uzzτ ,

diagonal in the basis in use. This is thus a pure phase shift, opposite for parallel and antipar-
allel qubit spins. It cannot be represented as a sum of individual qubit phase shifts, and
therefore can be utilized for more complex two-qubit gates.

Let us consider a CNOT gate (see Eq. (5.4)) since it is a building block for most quantum
computation schemes. In terms of qubit Pauli matrices, it is given by

UCNOT = 1+ σ̂ (1)
z

2
+ 1+ σ̂ (1)

z

2
σ̂ (2)

x .

This is not diagonal in our basis. Let us try to make it diagonal, first with single-qubit rota-
tions. It is the x-Pauli matrix of the second qubit which seems to break ranks, so we should
rotate the second qubit. This matrix can be diagonalized by two rotations by opposite π/2
angles applied before and after the CNOT gate:

−σ̂ (2)
z = R(2)

y (−π/2)σ̂ (2)
x R(2)

y (π/2).

Note that a single rotation would not work, since it makes non-diagonal a part of the CNOT
that is proportional to the unit matrix of the second qubit.

Therefore we can represent the CNOT by a diagonal matrix Û0:

UCNOT = R(2)
y (π/2)Û0 R(2)

y (−π/2), Û0 = diag(1, 1,−1, 1). (5.23)
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To realize the CNOT gate we thus need to realize the diagonal matrix Û0. We have three
means of doing this: two single-qubit rotations around the z axis, R(2)

z (φ1) and R(2)
z (φ2),

respectively, and a two-bit rotation R(12)
zz (θ ). All three commute, and thus their order is not

important. The product of the three is the diagonal matrix given by

diag
(

ei(φ1/2+φ2/2+θ ), ei(φ1/2−φ2/2−θ ), ei(−φ1/2+φ2/2−θ ), ei(−φ1/2−φ2/2+θ )
)

.

It has to be matched with Û0 by a proper choice of the three phases. Given that the three
phases must reproduce four elements of Û0, this can only be done up to a (generally
unimportant) phase factor. Choosing φ1 = −φ2 = π/2, θ = π/4, we express the CNOT
as follows:

UCNOT = e−i π4 R(2)
y

(π
2

)
R(1)

z

(π
2

)
R(12)

zz

(π
4

)
R(2)

z

(
−π

2

)
R(2)

y

(
−π

2

)
.

That is, the CNOT is realized by a five-pulse manipulation sequence: two rotations of the
second qubit are followed by a turn of the coupling handle, and subsequently the first
and the second qubit are rotated. If the handles are grouped as above, a single turn of the
coupling handle does not suffice: one needs at least two turns separated by a qubit rotation.

We have described a pulse manipulation. All single-qubit manipulation techniques; res-
onant, diabatic, and adiabatic, can be applied to turn the coupling handles. We will give
another example in Section 5.6. In addition, the single- and two-qubit manipulations do
not have to be separated in time. Although this complicates the analysis of the results, it
may significantly increase the manipulation speed.

5.3.3 Manipulation for quantum state tomography

Given a quantum system with M basis states labeled by |i〉, the probability P of finding the
system in any given state |ψ〉 is determined from its M × M density matrix ρ̂ as follows:

P = 〈ψ |ρ̂|ψ〉 =
∑

i j

〈ψ |i〉ρi j 〈 j |ψ〉.

We have encountered the density matrix in Chapters 2 and 3. If we know all the elements
of a density matrix, we can predict all the probabilities. How do we reconstruct this den-
sity matrix from the measuring results? First of all, let us note that such a reconstruction
implies our ability to initialize the quantum system and to manipulate it in a completely
reproducible way, so that the same density matrix is generated as a result of quantum
manipulation at any time. Reconstruction of the density matrix, as well as the measure-
ment of a probability, cannot be performed in a single shot and requires data accumulation
from many elementary measurements.

The full characterization of the density matrix is known as quantum state tomography.
The term comes from the analogy with the computer tomography for medical applications
where the rotation of a radiation source allows three-dimensional imaging of an inner body.
Similarly, the quantum state tomography involves rotations – unitary transformations of the
wave function or density matrix before measurement, that is the quantum manipulation.
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Let us illustrate this for a single qubit. The 2× 2 density matrix of the qubit can be
decomposed into four terms corresponding to the Pauli matrices:

ρ̂ = 1

2
+ 1

2

∑
i=x ,y,z

ri σ̂i , ri = Tr σ̂i ρ̂,

where we have used the fact that Tr ρ̂ = 1, expressing that the sum of all probabilities
equals one. Thus, to characterize the density matrix fully, one needs to measure three real
parameters rx ,y,z , corresponding to expectation values of the three spin components.

The easiest way to carry out such a characterization would be to perform three sets of
projective measurements of x , y, z components of the spin. The probability extracted from
each set yields the corresponding ri . However, this measurement setup is an unaffordable
luxury. In most cases, one can only measure a single component, say z. To perform the
tomography, one rotates the qubit spin immediately before the measurement. For example,
to measure the x component, one uses the rotation Ry(−π/2) so that the x axis comes to
the former position of the z axis. Experimentally, one measures the probability of finding
the system in state |0〉, varying the angle θ of the y rotation,

P0 = 1

2
[1+ (ρ00 − ρ11) cos θ − (ρ01 + ρ10) sin θ ] .

The result depends on both spin components, rx = ρ01 + ρ10 and rz = ρ00 − ρ11, that are
extracted from the measurements with the fit of θ -dependence with the above formula.
Similarly, the y component ry = i(ρ01 − ρ10) is determined using an Rx rotation.

An N -qubit quantum computer is characterized by a 2N × 2N density matrix. Its diag-
onal elements are determined from the simultaneous measurement of the z components
of all N qubits. To determine the off-diagonal elements, one performs the rotations. For
example, the element of the density matrix between two states differing by a flip of a sin-
gle qubit can be determined by rotating this qubit as described above. If the two states
differ by two flips, one needs to perform more measurement sets that differ in the rotation
of both qubits, and so on.

Suppose now one performs quantum state tomography initializing the quantum system
to various initial states. This allows one to carry out quantum process tomography: to crack
the quantum protocol – the unitary transformation that gives the final state for an arbitrary
linear superposition of possible initial states.

5.4 Quantum dots

We defined quantum dots in Section 4.2 as artificially made systems where electrons are
confined in visibly discrete levels. We have discussed at large the properties of the levels
both in the dots of regular shape (“integrable”) and generic chaotic dots. The discreteness
of levels in principle brings discrete quantum states, so the quantum dots are natural candi-
dates for qubit applications. One can think of an electron that can be in two discrete levels
(and the coherent superposition of the two) as a qubit. A quantum computer would be
obtained by placing many electrons in the dot with a sufficient number of discrete levels,
or, equivalently, patching many dots together. It would be nice if in such a setup we could,
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for simplicity, disregard the interaction between electrons, as is the custom in solid state
physics and implemented in Chapters 1, 2, and 4. Unfortunately we are not able to make a
quantum computer in this way. The states of many non-interacting particles are too simple,
and this forbids the quantum computation; indeed, as discussed, a requirement for efficient
quantum computation is that these states are complex and entangled.

This is why the knowledge of levels does not suffice if we want to implement the dots as
elements of a quantum computer. Nor does it suffice to understand the physics of realistic
quantum dot devices where Coulomb blockade is of importance. Indeed, as discussed,
the connections to a quantum dot should have conductance G � GQ for the levels to be
discrete. The same condition, as discussed in Chapter 3, enables strong charging effects.
This sets the topic of the present section.

We start by filling the levels and making quantum states with a given number of electrons
in the dot. We discuss the specifics that the interaction brings to the picture of these states.
The charging energy – the most important interaction effect – only comes into play if the
number of electrons is changed. This usually happens in the course of transport. We further
discuss single-electron transport in quantum dots, mention relaxation, and review resonant
tunneling and co-tunneling. Concrete quantum-dot-based qubit realizations are considered
in Sections 5.5 and 5.7.

5.4.1 From levels to states

Levels are quantum states for a single electron. What are discrete quantum states in a dot
that contains many electrons? We begin our discussion of the states by disregarding the
electron–electron interaction. We will see later in this subsection what the interaction adds
to the picture of the states.

For non-interacting electrons, a many-body state is a way of distributing electrons over
the levels. Since electrons are fermions, each spin-split (with a certain spin direction) level
can be either empty or filled with an electron: more electrons in the same level are forbidden
by the Pauli exclusion principle. Let us label the levels by k and introduce the number of
electrons in each level, nk , nk = 0 or 1. Then the state of the dot is given by a set, {nk}. Such
a set, a sequence of “0” and “1,” is very much like a number in binary representation. We
also made use of such sequences to label the states of qubit registers in Section 5.1.3. The
energy of this state is given by E =∑

k Eknk in terms of the level energies Ek , provided
the interaction is disregarded.

For quantum dot applications, we need to sort these states in a certain way. Let us con-
sider a dot with a given number of electrons N (N = 6 in Fig. 5.7 (a)). In the lowest energy
state – the ground state – they occupy the lowest levels available. The levels are assumed to
be spin-degenerate in Fig. 5.7 so that each horizontal line gives two levels, each occupied
by an electron with a certain spin direction; these directions must be opposite on each line.

Let us turn to the excited states of the dot with the same number of electrons. The
simplest way to make an excited state is to take an electron from an occupied level k′
and to put it in an empty level k. One can regard it differently: we have created an electron
excitation in level k and a hole excitation in level k′. So, empty levels are places for electron
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�Fig. 5.7. Levels and states in quantum dots. (a) The ground state of the dot with N = 6 electrons. (b) The
first excited state. (c) Some states of the first generation. (d) Some states of the second
generation. (e) The number of states exponentially increases with energy.

excitations, while occupied levels are places for hole excitations (Fig. 5.7(b)). All states
with one electron and one hole placed in levels k and k′ are states of the first generation
(Fig. 5.7(c)). The excitation energy – the energy of the state counted from the ground state –
is given by

Es = Ek − Ek′ .

It is positive, with a notable exception. Suppose the levels are degenerate with respect to
spin and there are an odd number of electrons in the dot. The ground state is a spin doublet:
it is doubly degenerate. It costs no energy to flip the spin of the electron at the uppermost
level. Such a flip is also equivalent to an electron-pair creation.

Control question 5.11. Can you redraw Fig. 5.7 for N = 5 and represent the spin-flip
as an electron–hole pair creation?

A state of the second generation may be created from any state of the first generation by
adding yet another electron–hole pair involving two more levels. Adding more pairs, one
constructs the states of the third generation, and so on (Fig. 5.7(d)). The excitation energy
of any such state is just the sum over energies of the corresponding levels:

Es =
∑

k

Ek −
∑

k′
Ek′ ,

where k (k′) labels the levels of excited electrons (holes), so that Ek − Ek′ ≥ 0 for any
pair k, k′.
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The lowest excited state is separated from the ground state by an energy �δS. One won-
ders how many states are there in an energy strip several times bigger than δS, say 10δS.
Naively, we would suggest several, ten to twenty maybe? That would be a typical human
error: we tend to underestimate the speed of exponential multiplication. Eventually, the
answer would be several thousand. In fact, the states multiply very quickly: there are many
more states of the second generation than of the first one, and so it goes on. This is plotted
in Fig. 5.7(e) for some random choice of the levels (the electron levels and the hole levels
are shown). The states of the first generation (longest lines) start, as promised, at E ≈ δS,
and are rather sparse in the beginning, although the spacing between them decreases with
increasing energy. The states of the second generation (shorter lines) start at E ≈ 4δS, but
by E ≈ 8δS the spacing is so tiny that we cannot visually resolve the neighboring states.
This is where the first states of the third generation appear. We summarize this with two
formulas, for a typical number of levels and states below a certain energy E � δS:

Nlevels ≈ 2E/δS;
Nstates ≈ exp

(
π
√

2E/3δS
)

.
(5.24)

(Since we count both electron and hole levels, there is a factor of 2 in the first formula.)

Exercise 5.4. (The exercise requires knowledge of some elements of statistical
mechanics.) Prove Eqs. (5.24). (i) Consider the partition function of the dot, given by

Z =
∑

s

e−Es/kBT .

Implement Fermi statistics and give the expression for Z in terms of the electron and
hole levels Ek , Ek′ . (ii) Replace the summation over levels by integration over energies
to arrive at ln Z = (π2/12)kBT/δS. (iii) The above expression for the partition function
can be represented in the following form:

Z =
∫

dE(dN (E)/dE) exp(−E/kBT ).

Find N (E) keeping the factors in the exponent only and taking the integral in the saddle-
point approximation.

These considerations still concern non-interacting electrons. What does interaction do
to these states? It turns out that it does surprisingly little as long as we do not change
the number of electrons in the dot. There are still discrete states if interaction is taken
into account, and their number and abilities to multiply are approximately the same as
without interaction. Indeed, at an increasing number of levels and energy scale the exci-
tation spectrum is continuous, and the dot is nothing but an isolated piece of a metal. We
know that interaction effects in metals can be disregarded, and expect the same for discrete
levels.

There are, however, several issues where the discreteness opens up the way for interac-
tions to play a role (for a review, see Refs. [119] and [120]). Before discussing them, let
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us consider a formal Hamiltonian where the interactions are taken into account and spin
degeneracy is assumed:

H =
∑
iσ

Ei â
†
iσ âiσ +

∑
i jlm

∑
σ ,σ ′

(â†
iσ â jσ )Ui j ,lm(â†

lσ ′ âmσ ′ ). (5.25)

Here, i , j , m and l label orbital levels, and âiσ is the electron annihilation operator in the
level i with spin σ . The first term gives the contribution of non-interacting particles, Ei

being the energies of the levels. The second term gives the contribution of the Coulomb
interaction, Ui j ,lm being the matrix elements of the interaction U (|r1 − r2|):

Ui j ,lm =
∫

dr1 dr2 ϕi (r1)ϕ∗j (r1)U (|r1 − r2|)ϕl (r2)ϕ∗m(r2), (5.26)

where ϕi (r) are the wave functions of the corresponding levels.
The interactions are responsible for the removal of extra spin degeneracy. Let us come

back to the excited states of the first generation and look at the lowest excited state (Fig.
5.7(b)). We have “forgotten” that it is not a single state if the levels are spin-degenerate.
With this, there are four states at the same energy corresponding to two possible spin ori-
entations of the electron and the hole, | ↑〉e| ↑〉h, | ↑〉e| ↓〉h, | ↓〉e| ↑〉h, | ↓〉e| ↓〉h. The
relevant part of the interaction is, in this case, the exchange interaction that arises from
Coulomb repulsion between electrons and usually favors the states with higher total
spin. So the four states are split into two groups – three components of a spin triplet
(S = 1), | ↑〉e| ↓〉h, | ↓〉e| ↑〉h, (| ↑〉e| ↑〉h + | ↓〉e| ↓〉h)/

√
2 and a spin singlet (S = 0),

(| ↑〉e| ↑〉h − | ↓〉e| ↓〉h)/
√

2.

Exercise 5.5. Find the excitation energy splitting of the state discussed treating the
Coulomb interaction as a perturbation.

The same happens with all states: all extra degeneracy is removed and the states are
sorted by the groups that differ by full spin S, the remaining degeneracy in the group being
2S + 1. A weaker spin-orbit interaction may remove some degeneracy within spin multi-
plets. If no spatial symmetry is present in the dot (that is, the dot is sufficiently disordered),
the remaining degeneracy is between the time-reversed states of opposite spin direction.
This degeneracy can only be lifted by the magnetic field causing Zeeman splitting of the
doublets.

Another important issue is that the electron–electron interaction removes the “barri-
ers between generations.” To recognize the barriers, let us assume that the interaction is
irrelevant and that the dot is in the ground state and is excited by light. One expects the
excitation to succeed if the light frequency matches an energy difference: but is this the
difference between the levels or the states? If the interaction is neglected, only the first
generation states are excited (in the first order in the light intensity): the absorption of a
light quantum creates a single electron–hole pair. If the light frequency corresponds, say
10δS, the absorption spectrum still consists of well separated lines. The interaction mixes
up the generations. Indeed, the second term in Eq. (5.25) gives rise to matrix elements
that are not diagonal in the number of electron–hole pairs, since some levels i , j , l, m are
occupied.
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Control question 5.12. What is the matrix element between the ground state with
N = 6 and the lowest excited state of the first generation?

Owing to this, the true discrete states no longer belong to a certain generation – they
are coherent superpositions of the states with different numbers of electron–hole pairs. If
the matrix element is small in comparison with the level spacing, the states of different
generations connected by the matrix elements form an interesting hierarchical network
theoretically studied in Ref. [121].

Since the states of all generations are mixed, the absorption of a light quantum can com-
mence any time the frequency matches the difference between the states. Recalling the
estimations of Nstates(E), we recognize that the absorption spectrum becomes quasicontin-
uous; the spacing between the adjacent absorption lines is exponentially small. This is a
quantitative effect brought about by interactions.

Interactions of a different kind do not involve the electrons in the dot only – the dot
is open to an environment. The possibility to transfer energy to the environment gives
rise to the finite lifetime, τr, of the excited states. The discrete states are no longer pre-
cisely discrete: they are broadened by δE � �/τr. Comparing this with the exponentially
small spacing between the states, we find the continuous spectrum of the dot excitations
at E � δS ln(δSτr/�). We stress that this estimation is very naive, and the border between
the discrete and continuous spectrum, as well as the character of the transition between the
two, is still under active scientific debate.

This concludes the discussion of interaction in quantum dots for a given number of
electrons.

Charging effects

If we compare the energies of the states with different numbers of electrons, we encounter
the most important interaction – the charging energy. It provides the dominant contribution
to the energy difference between the states (either ground or excited) that differ in the
number of electrons. In terms of Hamiltonians, this means that the dominant terms in Eq.
(5.25) are reduced to charging energy, which is a function of the total number of electrons
in the dot:

H = Ech(N̂ ) = Ech

(∑
iσ

â†
iσ âiσ

)
.

The discussion of the Coulomb interaction basically repeats one for a metallic Coulomb
island (Chapter 3). The simplest setup consists of a quantum dot, a bulk electrode separated
from the dot by a tunnel barrier, and the gate electrode. The electrostatic energy of the
system depends on the integer charge, eN , of the dot:

E = EC

(
N − CgVg

e

)2

.
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The equilibrium number of electrons corresponds to the minimum energy and can be tuned
with the gate voltage:

N =
[

CgVg

e
+ 1

2

]
.

There are several notable differences, the first being the separation of energy scales. When
dealing with a metallic island, the discreteness of the levels can be safely forgotten, δS �
EC. For a quantum dot, the charging energy typically still exceeds the level spacing, but
only by several times, EC = 2− 10δS. For a metallic island, the periodicity of all Coulomb
blockade features, for example the positions of Coulomb peaks, is close to ideal. For a dot,
the Coulomb blockade peaks are randomly shifted by a noticeable fraction of the period.
This is because the energy difference between the levels contributes to the addition energy
of the dot. Indeed, since the internal interactions in the dot are weak, the added electron
either comes to the next empty orbital level (for an even number of electrons in the dot) or
to the same orbital level with opposite spin direction (for an odd number). In the first case,
the addition energy is contributed by the spacing between the two levels; in the second case
it comes from the exchange energy.

Secondly, the capacitances, and therefore EC, in quantum dots depend on the number
of electrons stored. To understand this, we recall that the capacitance is related to the
geometric size of a dot/island. We may increase the size of the dot by putting more electrons
into it.

Exercise 5.6. Consider a three-dimensional quantum dot created by a spherically
symmetric parabolic potential U = e2r2/r3

0 . The gates are sufficiently far from the dot.
Assume that the kinetic energy of the electrons can be disregarded and that the full
energy of the dot is due to charging. Electrons can be thus regarded as a continuous
charged liquid. (i) Find the charge density q(r ) in the dot at a given number of electrons
N . (ii) Find the charging energy at a given number of electrons in the dot. What is the
capacitance? What is the addition energy? (iii) Estimate the validity of the approxima-
tion. For this, calculate the energy levels of the electrons in the above parabolic potential
and the full kinetic energy of the electrons.

The third and most obvious difference is that the dot can be emptied by a sufficiently
large gate voltage, something we would never achieve for a metallic island due to the high
number of electrons it contains.

5.4.2 Single-electron transport

There is a variety of transport regimes in quantum dots, the overall picture being more
complex than that for Coulomb blockade devices described in Chapter 3. Let us present a
brief overview of all regimes before concentrating on each one. At temperatures smaller
than the charging energy, one sees (see, for example, Fig. 5.10(c)) a familiar picture of
Coulomb diamonds in the V –Vg plane (or Coulomb shards, if we have several dots in
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series). Each diamond corresponds to a certain fixed number of electrons in the dot. The
current in the diamonds is strongly suppressed, and the dominating transport mechanism
is co-tunneling. Above a certain threshold voltage, single-electron transfers are available.
We have already encountered this in Chapter 3.

A characteristic distinction between dots and other Coulomb blockade systems is the
presence of a great number of extra lines in the V –Vg plane. The lines are mostly seen in
the single-electron regions outside the diamonds and run (almost) parallel to the diamond
edges. There are also lines inside the diamonds running parallel to the Vg axis at finite
bias. Sometimes one even sees such lines at zero bias. In addition, there may be some
lines running parallel to the V axis. Obviously, the lines manifest discrete states in the dot,
both ground and excited. By measuring and analyzing their positions, we are performing
transport spectroscopy: the characterization of the states in an (almost) isolated dot. The
lines have a finite width in energy units, and this is either determined by temperature kBT
or, at sufficiently low temperatures, by decay processes.

In short, the transport regimes are plain if they are not in the immediate vicinity of
the lines with width not determined by temperature. A plain regime describes is either
single-electron tunneling (to be understood via the master equation) or co-tunneling.

At the lines with width not determined by temperature, one encounters more “quantum”
regimes of varying complexity. If the line is parallel to a diamond edge, it manifests the
alignment of the energy difference between the states of the dot with N and N + 1 elec-
trons with the Fermi level. In this case, we have resonant tunneling, which we consider in
Section 5.4.2. The resonant tunneling is simple if it involves a single spin-split level and
presents a complicated and generally unsolved many-body problem if two spin-split levels
are involved. The lines at zero bias manifest the Kondo regime, also related to many-body
interactions involving electrons in the leads and discussed in Section 6.6. The lines parallel
to the Vg axis usually indicate inelastic co-tunneling. The lines parallel to the V axis indi-
cate the level crossings inside the dot and the importance of quantum superpositions of the
discrete states crossed. We have a mixture of coherent and incoherent elementary transport
processes to be understood using the density matrix and the Bloch equation (see Section
3.7.3). We address an example of such crossing, the double quantum dot, in Section 5.5.

This subsection concerns the single-electron transport through the dot. We concentrate
on the most common situation, familiar from Chapter 3: the dot is connected to two elec-
trodes, making a SET. In this regime, the electrons that go from one electrode to another
have to pass the dot, changing its charge by ±e. The single-electron transport in the dot is
more complicated than in the metallic island of a common SET. This complication arises
from the fact that the state of the dot cannot just be characterized by the number of elec-
trons N inside. At a given N , the dot can be in one of many discrete states s. We will show
how important it is for the transport. We label the states with a composite index α = (N , s).

As soon as we recognize this, we can proceed with the master equation as in Section
3.2.4. The master equation is a balance equation for the probabilities pα for the dot to be
in a certain state,

0 = ∂pα
∂t
= −pα

∑
β

�(α→ β)+
∑
β

pβ�(β → α),
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where �(α→ β) is the rate of the transition between states α and β.
The rates are of two sorts: tunneling and relaxation. The tunneling rates, as in metallic

Coulomb blockade systems, correspond to a single-electron transfer through either the left
or right junction in either direction:

�L,R(N , s → N ± 1, s′).

The difference from metallic systems is that these rates in principle depend on the initial
and final discrete states of the dot, s and s′. Only tunneling rates contribute to the current.
We reason, as in Section 3.2.4, that

IL =
∑

N ,s,s′
pN ,s

{
�L(N , s → N + 1, s′)− �L(N , s → N − 1, s′)

}
,

and similarly for the right junction. Under stationary conditions, IR = IL by virtue of
current conservation.

In addition to the tunneling rates, there are transition processes that do not change the
number of electrons in the dot, �(α→ β) = R(N , s → N , s ′). These are usually relax-
ation processes: the dot driven to an excited state by a tunneling process, goes to the state
of lower energy. At finite temperature, the transitions can also proceed in the opposite
direction, with increasing energy. In both cases, these rates do not involve any tunneling
and do not immediately contribute to the current. However, they change the probability
distribution pN ,s and thereby influence the transport.

Let us first discuss the tunneling rates. At vanishing temperature, the energy consid-
eration applies: a transition occurs only if the energy difference between the final and
initial states is negative. As in the case of metallic Coulomb blockade systems, this energy
difference includes the difference of the charging energies and the contribution from the
voltage of a corresponding lead (Section 3.2, Eqs. (3.14)). Unlike in the metallic island, this
energy difference also includes the energy difference between the discrete states. The tran-
sition rate �L,R(N , s → N ± 1, s′) is thus allowed if the corresponding energy difference,
given by

�E = E(N ± 1, s′)− E(N , s)∓ eVL,R,

is negative.
If the rate is allowed, it hardly depends on the energy difference, at least at vanishing

temperature. This is in distinction from single-electron rates in a SET that are proportional
to �E . The point is that this tunneling rate is to/from a given discrete state (Eq. (3.34))
and involves the tunneling matrix element between the localized level in the dot and the
extended electron state in a lead. In principle, this matrix element is a characteristic of
the localized level and may vary strongly from level to level. Its statistics are related to the
statistics of wave functions studied in Section 4.1.3. We have seen in Chapter 3 that the typ-
ical magnitude of the rate is related to the conductance of the tunnel barrier separating the
dot from the lead, ��L,R = (G(T)

L,R/GQ)δS.
At finite temperature, the�E-dependence is given by the Fermi distribution function fF:

�(�E) = f (�E)�; ⇒ �(�E) = �(−�E)� at T = 0.
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(a) (b)

�Fig. 5.8. (a) Tunneling to a discrete state of the dot. (b) Relaxation process in the dot: the electron–hole
pair in the dot can transform itself into an electron–hole pair in a nearby lead. No tunneling is
involved.

We put all this in a comprehensive diagram (Fig. 5.8(a)). The lead on the right is filled
with electrons. On the left, we picture the discrete levels in the dot. If the dot before the
tunneling contains N electrons, its energy EN consists of the charging energy EC(N ) and
the sum of energies of all levels occupied by electrons,

∑
k nk Ek . After the tunneling,

the energy of the dot is increased by the addition electron energy �E , which has the
electrostatic part, EC(N + 1)− EC(N ), and the energy Ek of the level that the new elec-
tron occupies. The level positions drawn in Fig. 5.8(a) incorporate the change of charging
energy corresponding to these addition energies.

For N + 1 electrons, the dot is in the ground state provided the new electron comes to
the lowest unoccupied level. This transition, �R(N , g→ N + 1, g), is shown by the arrow
in Fig. 5.8(a). (Note that the ground states are different for N and N + 1 electrons, and
for an odd number of electrons there are two ground states due to spin degeneracy.) Since
the tunnel process can only occur if there is an electron in the lead with the corresponding
energy �E , the rate is proportional to the filling factor fF(�E) in the lead at the corre-
sponding energy. This picture is actually a cartoon since it disregards the mixing of the
states of different generations by electron–electron interaction. If the interaction is weak,
the picture illustrates selection rules for tunneling rates: the most probable transitions are
selected. At the cartoon level, the incoming electron either jumps in an empty level or anni-
hilates a hole that can be present in an occupied level. Therefore, as a result of a tunneling
event, the generation number either changes by ±1 or remains the same. If the mixing
of the generations is taken into account, the selection rules are violated and more complex
processes can take place, enabling transitions between any (N , s) and (N + 1, s′). The rates
of such processes are smaller, including the small interaction parameter.

Let us turn to the relaxation rates R(N , s → N , s ′). They do not involve any tunneling
to the leads. It might thus seem that, for these rates only, the dot itself is of importance; the
transition seems to be an “internal affair” of the dot. However, for a completely isolated
dot these transitions just would not happen! A completely isolated dot is a closed quantum
system where energy conservation applies. If put in a discrete excited state, it remains there
forever. Therefore, the relaxation in the dot requires an environment. The situation is the
same as for a generic qubit, and the relaxation is detailed in Section 6.7. Here we just list
possible sources of the relaxation: the natural environment of the dots. In many cases, the
environment is the substrate where the dots are manufactured. The oscillations of the atoms
of the substrate, phonons, can take the energy of the excited state: the dot emits a phonon
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with a transition to a lower-energy state. Like natural atoms, the dots can dispose of energy
by emitting electromagnetic irradiation, photons instead of phonons. The photon does not
have to go far: it can be readily absorbed in the adjacent lead, creating an electron–hole pair
there (Fig. 5.8(b)). It looks like the electron–hole pair presenting an excited state of the dot
has just slipped to the lead, albeit this process does not involve any tunneling. The typical
rates of relaxation processes cannot be readily estimated since they depend greatly on the
details of the dot setup. Two limiting situations can be envisaged: all relaxation rates are
much slower and all relaxation rates are much faster than the tunneling rates � involved.
It is important that there are selection rules for relaxation rates with respect to spin: the
rates between the states of the same total spin are much faster than between the states of
different spin. The latter processes require rather exotic mechanisms, such as spin-orbit
interaction and hyperfine coupling with nuclear spins [122, 123].

We know enough about the rates to start with the transport. Let us go to the crossing
of two diamonds. At zero bias voltage, the ground states with N and N + 1 electrons
have the same energy in the crossing point. At sufficiently low bias voltage the excited
states do not appear in the transport cycle (see region I in Fig. 5.9(b)). The state of the
dot changes between the ground states with N and N + 1 electrons. Let us assume the
spin degeneracy: the ground state with an odd (N + 1) number of electrons is double-
degenerate. The probabilities of these degenerate states are the same, so the master equation
can be written in terms of probabilities pN (to be in the ground state with N ) and pN+1 (to
be in either of the ground states with N + 1):

0 = dpN/dt = −2�L pN + �R pN+1,

0 = dpN+1/dt = −�R pN+1 + 2�L pN .

Here the electrons are transferred from the left to the right; at opposite bias voltage the
transfer direction is opposite and �R ↔ �L. The factors of 2 reflect the double degeneracy:
the electron may come from the left lead with two possible spin directions. It goes to the
right lead from a state with certain spin, so that there is no factor of 2 in front of �R.

This yields the following current:

II = e
2�R�L

�R + 2�L
(5.27)

for electrons going from the left to the right. So current is constant in region I, where
both rates are allowed, and zero in the diamonds. There is a sharp step in current at the
lines corresponding to �EL = 0 or �ER = 0. This sharp step in the current gives a high
differential conductance at the lines. Let us note that at opposite voltage the current is not
precisely opposite: it is given by Eq. (5.27) with a minus sign and R, L swapped.

Control question 5.13. Describe what changes occur if N is odd and N + 1 is even.

In reality, of course, no sharp feature is really sharp: it must be smoothed somehow.
The natural smoother is temperature, in our case, the electron temperature in the leads. We
expect the width of the step in energy units to be of the order of kBT ,

width ∼ kB T ; Gmax ∼ I/(e · width) ∼ GQ��/kBT . (5.28)
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�Fig. 5.9. Single-electron transport in a quantum dot. (a) Five states involved in transport for the example
considered. (b) Transport regions in the V–Vg plane. White rectangules with labels denote energy
crossings of the corresponding states. (c) Transport cycles for all regions shown. The line between
an odd and an even state shows single-electron transfers in both directions; dashed lines show
relaxation. States not participating in transport are not shown.
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We see that the differential conductance grows with decreasing temperature. It would reach
values of the order of GQ at kBT � ��. We will discuss this limit in Section 5.4.3. To
quantify, one has to take into account all four rates allowed at finite temperature (see Eqs.
(3.37) and (3.39)). Recalling convenient energy differences w, eV (w also incorporates the
energies of the levels so that w = 0 at the crossing), we obtain the master equation:

0 = −pN 2(�L fF(w − eV/2)+ �R fF(w + eV/2))

+ pN+1(�L fF(−w + eV/2)+ �R fF(−w − eV/2));

0 = pN+1(�L fF(−w + eV/2)+ �R fF(−w − eV/2))

− pN 2(�L fF(w − eV/2)+ �R fF(w + eV/2)).

The current ( fL,R ≡ fF(w ∓ eV/2)) is given by

II/e = 2�L�R( fL − fR)

�L(1+ fL)+ �R(1+ fR)
.

Zero-voltage conductance (V → 0) exhibits a slightly asymmetric Coulomb peak; the
maximum conductance Gmax = 2π (3− 2

√
2)GQ(��R�L)/kBT (�L + �R) is achieved at

w ≈ 0.347kBT . A simple analytical expression can also be obtained for the conductance
at the step at sufficiently high bias voltages eV � kBT .

Exercise 5.7. Find analytical expressions for zero-voltage conductance and conduc-
tance at the step at eV � kBT .

Let us now go to higher positive bias voltage where single-electron transfers may lead to
the appearance of excited states. We assume the bias is sufficiently high to neglect thermal
effects: a process is only possible if the corresponding �E is negative. Let us take into
account the lowest excited states for both N (even) and N + 1. For N , this amounts to a
triplet and a singlet state, as discussed in Section 5.4.1. For N + 1, the excited state is a
doublet. Thus we have five states participating in transport, some being degenerate (see
Fig. 5.9). We number them as follows: 1 – ground state for N ; 2 – ground state for N + 1;
3 – triplet excited state; 4 – the excited doublet; 5 – singlet excited state. The excitation
energies are sorted as follows: E3 − E1 < E4 − E2 < E5 − E1. The single-electron trans-
fers take place only between the states with numbers of different parity. In addition, there
are relaxation processes 4→ 2, 5→ 1. The relaxation processes 5→ 3 and 3→ 1 are
very slow since they do not conserve spin. Things become complicated at high pace: this
gives rise to nine distinct transport regimes at positive bias voltage (Figs. 5.9(b),(c)). The
lines separating the regimes cross at V = 0 at the point where Em − En = μ. The energy
distance between crossings is immediately related to the excitation energy.

Control question 5.14. What is the energy distance between the crossings 2–3 and
2–5? When does the transition between 1 and 4 become possible?

Now we can determine which tunneling processes can take place in each region bounded
by the lines. Not every allowed process will contribute to the transport. No lines are visible
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Table 5.1

States | ↑〉 | ↓〉
| ↑〉e| ↓〉h �′L 0
| ↓〉e| ↑〉h 0 �′L|↑〉e|↑〉h+|↓〉e|↓〉h√

2
�′L/2 �′L/2

inside the diamonds. For example, let us look at the bias voltages above the 4–1 crossing.
The dot would switch between 4 and 1 there, but why would it come to any of these states?
It must be in state 2: no tunneling or relaxation would lead from 2 to either 1 or 4. This also
explains why the lines coming from the 4–5 and 4–3 crossings are not visible in region I:
no process leads from 1 or 2 to any of the excited states.

The transport cycles for all the regions are given in Fig. 5.9(c). All five states are involved
in transport, except regions II and IX. Let us concentrate on region IX. The tunneling
between 1 and 2 is characterized by the familiar rates �L,R. The transitions between 2
and 3 involve another level, characterized by other rates �′L,�′R. The electrons are still
transferred from the left to the right. The actual tunneling rates have to be evaluated, tak-
ing the spin structure of the triplet and doublet state into account. For tunneling from the
triplet to the doublet we have three possible initial states: (| ↑〉e| ↓〉h, | ↓〉e| ↑〉h, (| ↑〉e| ↑〉h
+ | ↓〉e| ↓〉h)/

√
2), and two final states: | ↑〉,| ↓〉. The rates are summarized in Table 5.1.

Summing up over the final states, we understand that the rate is the same for all ini-
tial triplet states, �′L, as it should be due to spin symmetry. The total rate of the reverse
processes is evaluated in a similar way, yielding 3�′R/2.

Control question 5.15. Can you draw the corresponding table for the reverse
processes?

The solution of the master equation with three states 1, 2, 3 yields the following current:

IIX/e = �L�
′
L(2�R + 3�′R)

2�L�
′
L + 3�L�

′
R + �R�

′
L

,

which differs from the current in the adjacent region I. Usually, IIX > II, as one expects
from a current at higher voltage. To give an example: if all rates are the same, �L,R =
�′L,R = �, IIX = (5/6)e�, and II = (2/3)e�, a 25% increase. However, there is no general
rule that guarantees this increase. For example, if �′L is much smaller than all the other
rates, IIX is small, being proportional to �′L. The dot is trapped in state 3. This implies
that the conductance at the line is negative, corresponding to the current decrease with
increasing voltage.

If we look at the transport in region II, we note that the rates between 1 and 4 are small
provided the interdot interaction is weak. Indeed, in the energy-level diagram the addition
of an electron to any empty level of 1 does not give 4: one needs an extra electron–hole
pair. This is why the lines coming out of crossing 4–1 are dashed in Fig. 5.9(c). Is there a
visible current step on the line? Somewhat unexpectedly, this is determined by the ratio of
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the slow rate �1→4 to the relaxation rate R4→2. If the relaxation is faster, the dot switches
all the time between states 1 and 2; if it is occasionally brought to state 4, it quickly relaxes
to 2. If the relaxation is slower, the dot spends comparable times carrying out one of the
two transport cycles: either 1↔2 (current I12/e = 2�L�R/(�R + 2�L)) or 3↔4 (current
I34/e = 3�L�R/(3�R + 2�L)). The slow rates �1→4, �4→1 switch between the cycles,
and result in an average current given by

III = �1→4 I34 + �4→1 I12

�1→4 + �4→1
�= II.

The relative increase or decrease of the current does not have to be small in this case.
To summarize, the lines visible in the V –Vg plane provide information about the ener-

gies of the discrete states in the dot, the ground state as well as excited states. The
relative value of the current in the bounded regions and visibility of lines depends on
rather fine details of tunneling and relaxation, and thus supplies information about these
details.

Exercise 5.8. Evaluate the current in region VI. Take into account the relaxation rates
R4→2 and R5→1, disregarding the relaxation between singlet and triplet states. Consider
two limiting cases of fast and slow relaxation.

Exercise 5.9. Assume fast relaxation to the ground state for N and N + 1, including
singlet–triplet transitions. Determine the current in all the regions. Which lines in the
diagram remain visible?

Experiment

We review here the first observation of discrete states in quantum dots by means of trans-
port measurement [124]. The dot was defined by metal gates on top of a GaAlAs–GaAs
structure as discussed in Sections 1.2.3 and 2.6.2. The dot diameter was estimated as
100 nm, and it typically housed 25 electrons. The curves (see Fig. 5.10(a)) present the
current traces at several constant bias voltages. At the lowest voltage, two Coulomb peaks
are seen separating three diamonds and corresponding to the tunneling between the ground
states in each diamond. The trace at intermediate voltage cuts region I, where tunneling
still takes place between the same states. The current is seen in the interval w = eV . It
displays a significant smooth dependence on gate voltage in this interval owing to the volt-
age dependence of the tunneling amplitudes. The trace at higher voltage displays an extra
feature near the middle of the increased interval. This indicates the appearance of a discrete
excited state in the tunneling cycle, for both transition regions between the diamonds. The
discrete state positions are best visualized by the traces of differential conductance at con-
stant gate voltage. Figure 5.10(b) shows the set of such traces at different magnetic fields.
The voltage positions of the slanted lines are given by either peaks or dips of the differential
conductance. They depend on magnetic field, which significantly affects the energies of the
levels. Let us recall that the voltage position of a line gives the energy difference between



421 5.4 Quantum dots
�

(a)

(b)

(c)

– 0.75
0

1

2

– 0.7

center gate voltage (V)

cu
rr

en
t (

nA
)

–3 –2 –1 0 1 2 3
voltage (mV)

dt
/d

V
 (

ar
bi

tr
ar

y 
un

its
)

–1000
–10

–5

0

5

10

–500 0 500 1000

gate voltage (mV)

bi
as

 v
ol

ta
ge

 (
m

V
)

N – 2 N – 1 N + 1 N + 2N

�Fig. 5.10. Discrete states in quantum dots: experiments. (a) Current versus gate voltage for three diamonds
at increasing bias voltage. The highest trace shows a current step associated with a discrete state
[123]. (b) Positions of conductance peaks and dips indicate the energies of the discrete states.
The evolution of these energies in a magnetic field is shown [124]. (c) Overall picture of the
discrete states across five diamonds [125].

two discrete states corresponding to N and N + 1. The magnetic-field dependence of this
energy difference gives the change of the magnetization of the dot upon transition between
the states.

If we move to higher voltages �3–5 δS/e, more and more excited states of the dot come
into play, creating new transport cycles and breaking old ones. The appearance of each new
cycle is manifested as a sharp current step at a slanted line. With more states, the picture
becomes increasingly complicated. We have learned that the number of states exponentially
increases with energy. Since the width of a current step is finite, the states can no longer
be resolved at voltages eV � δS ln(δS/width). Conclusions can be drawn from the experi-
mental figure (Fig. 5.10(c)) presenting the transport spectroscopy in a quantum dot made
in a carbon nanotube [125]. The gray scale reflects the differential conductance: lighter
regions are domains of almost constant current, whereas dark lines indicate current steps
with enhanced differential conductance. Large diamonds correspond to Coulomb-blockade
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regions, and a large number of lines at higher voltage manifest discrete states at each
charge configuration. As well as demonstrating the feasibility and accuracy of transport
spectroscopy, Fig. 5.9(c) also demonstrates how messy the transport becomes at energies
exceeding the 3−5 level spacings due to the increasingly high number of states involved.

One could think that at yet higher voltages the exponentially large number of states
renders the transport totally incomprehensible. In fact, we have the opposite situation: it
becomes simpler. There are so many discrete states that they cannot be resolved, and all the
formerly sharp features in transport become smooth. The effects of discreteness are gone,
and the spectrum of electron states is effectively continuous. Thus we return to Chapter 3,
which illustrates Coulomb-blockaded transport in an island with a continuous spectrum of
electron states.

5.4.3 Resonant tunneling

Let us come back to the estimation of the maximum zero-voltage conductance, Eq. (5.28).
The conductance is initially �GQ but increases with decreasing temperature. We under-
stand that this trend cannot extend to the vanishing temperatures since it would imply
superconductivity. Eventually, the maximum conductance saturates at values �GQ. One
understands this by noting that the width of a level is determined by its energy uncertainty
related to the decay time of the level �1/�. The width of the level sets the lowest limit
of the width of Coulomb-blockade peak or the current step at finite bias. Thus, the width
saturates at kBT � ��:

width ∼ ��; Gmax ∼ I/(e · width) ∼ e2�/�� ∼ GQ.

Let us investigate the situation in a low-voltage regime near a diamond crossing. In this
case, there is a single level in the energy strip where the states in the left lead are filled and
those in the right one are empty. Such a situation is called resonant tunneling.

We consider now a non-degenerate level with a certain spin direction (“up”), assuming
that the spin degeneracy has been lifted by, for example, an external magnetic field. Tak-
ing a non-degenerate level provides us with a rare opportunity to disregard the Coulomb
interaction in the dot and to think in terms of non-interacting electrons and their scattering
matrix as detailed in Chapter 1. Let us pause to explain the reason for this. If we concen-
trate on a single level and treat the low-lying electrons as a background, the dot can only
be in two states with two possible numbers of extra particles, |0〉 and |1〉. An interaction,
however, is always between the particles and therefore can be safely skipped for no and one
particles. Why does this not work for a degenerate level? In this case, the non-interacting
electrons give rise to an extra state, with both spin directions filled, that lies at the same
energy. This is, however, nonsense for a dot subject to Coulomb blockade: such a state
would have extra energy � EC. The doubly occupied state thus has to be excluded from
our consideration: unfortunately, this forbids the use of non-interacting electrons.

Making use of non-interacting electrons, we associate the resonant level in the quantum
dot with a single transmission resonance between two tunnel junctions, as considered in
Sections 1.6 and 2.1.1. If we concentrate on energies close to the peak transmission, we
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can disregard the contributions of other resonances. The energy-dependent transmission is
given by the Breit–Wigner formula, Eq. (1.109):

T (E) = �L�R

((E − E0)/�)2 + ((�R + �L)/2)2
. (5.29)

Equation (5.29) does not only apply at low voltages, it works perfectly for any voltage
and temperature at which we can disregard the presence of other levels. For high voltages,
eV � �L,R, the current is given by

I = GQ

2

∫ eV

0
T (E)dE ≈ e

2

�L�R

�L + �R
, (5.30)

provided 0 < E0 < eV . To calculate the integral, we note that the width of the transmission
peak is much smaller than the integration range and thus we extend both limits to infinity.
The result is consistent with Eq. (5.27) if we correct for the spin degeneracy. The Landauer
formula also allows for an evaluation of the precise shape of the current step at the diamond
edges.

Exercise 5.10. Calculate the maximum differential conductance at the diamond edge
assuming that the bias voltage is much bigger than ��/e.

Qualitatively, the situation is the same for a spin-degenerate level, and also if we take
more excited states into account. The width of any sharp feature, such as a Coulomb
peak, Coulomb diamond edges, or current steps at the lines separating different regions
of single-electron transport, is of the order of the tunneling rate. Accordingly, the maxi-
mum conductance at any feature is of the order of GQ. However, an accurate evaluation
of the precise shape of these steps involves many-body interactions with electrons in the
leads and is currently not accessible by analytical methods – the Landauer formula does
not apply. Much progress with many-body problems has been achieved for the Anderson
model, which involves one spin-degenerate level (see Section 6.6). The striking prediction
of this model is that a narrow (���) Kondo resonance is formed at the Fermi level, visible
as a line at zero bias voltage at all extent of the Coulomb diamonds corresponding to an
odd number of electrons.

5.4.4 Co-tunneling

Let us consider co-tunneling in quantum dots; we start with elastic co-tunneling. In this
case, the electron is transferred at once via both tunnel junctions that separate the dot
from the leads. There is no change in the dot state in the course of the process; the dot
is void. Indeed, how would we distinguish a quantum dot from any other nanostructure
between the junctions? We can only do this if the transport excites some states in the dot
that are different from the ground state. Otherwise, we deal with a generic nanostructure
with no interesting internal degrees of freedom. Such nanostructures are described in the
framework of the scattering approach, which therefore suits our purposes for elastic co-
tunneling.
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We will consider elastic co-tunneling inside the Coulomb diamonds with an even num-
ber of electrons. The point is that, although the formulas for the co-tunneling rate may look
similar for even and odd diamonds, the dot in the odd diamond is not void unless the spin
degeneracy is lifted by a spin magnetic field. If spin degeneracy is present, the co-tunneling
may switch the dot between two distinct ground states – two spin directions. This sets up
a new situation where the Kondo phenomenon may develop (see Section 6.6.2). Equation
(6.128) gives a concrete expression for co-tunneling in the odd diamond.

Elastic co-tunneling in even diamonds is, in fact, identical to this process in a SET (see
Section 3.4.4). The difference is that in the dot the discrete states require more attention.
Following Section 3.4.4 we obtain the tunneling matrix element for the transition between
electron states l, r in the left and right lead, as follows:

T̃lr =
∑

n

Tln

(
1

E (+)
n − El

+ 1

E (−)
n + Er

)
Tnr . (5.31)

Here, the summation runs over the discrete states in the dot. There is a contribution from
the states with N + 1 electrons, these states (typically doublets) have positive addition
energies E (+)

n . In the energy-level diagram, these energies are E (+) + En , where En is the
energy of an empty level and E (+) is the electrostatic energy. Another contribution comes
from the states with N − 1 electrons; the positive extraction energies are E (−) − En , where
En are the energies of occupied levels. In the energy-level diagram, this coincides with
Eqs. (3.73), where Fermi factors discriminate between the empty and occupied levels. The
amplitude contains the virtual states that in principle can lie very high in energy, so one
may wonder if these states provide a decisive contribution to the amplitude. One could
estimate this contribution by setting equal tunneling matrix elements Tln , Tnr for all the
levels. In this case, the sum over the levels can be replaced by integration over the energy
and T̃lr � Tr Tl ln(EF/EC)/δS. The co-tunneling conductance is then estimated as G �
GQ(�2�R�L/δ

2
S) ln2(EF/EC). This strange expression hardly depends on EC, and is in

fact a large overestimate of the actual co-tunneling effect. It was a mistake to regard TlnTnr

as level-independent.
To see what is going wrong, let us recall a simple rectangular two-dimensional dot. The

levels are labeled by two integers nx ,y , and their wave functions are given by (see Eq.
(4.17))

ψ(x , y) = 1√
Lx L y

sin
πnx x

Lx
sin
πny y

L y
,

where the edges of the dot correspond to x = 0, Lx and y = 0, L y . Let us assume that the
left lead is connected to the x = 0 edge and that the right lead is connected to the x = Lx

edge. The tunneling amplitude Tln is proportional to the overlap of the wave functions
of the lead and of the dot. It is convenient to choose the wave functions in both leads to
be real, then the amplitudes Tln and Tnr are also real. The sign of the product TlnTnr is
then proportional to the product of the signs of ψnx ,ny at two different edges, ∝(−1)nx+1.
The sign therefore alternates with increasing nx . This forbids the approximation of TlnTnr

with the same value for all levels. In a more realistic dot, the sign of this product does not
precisely alternate owing to the random nature of the levels. However, for a given level,
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the positive and negative sign of TlnTnr occurs with the same probability, so the contribu-
tions of different levels to T̃lr cancel each other, resulting in destructive interference. In
the limit of continuous spectrum (see Section 3.4.4), we could replace the square of the
amplitude with the sum of squares of the amplitudes of the individual levels. This yields
Gel � GQ�

2�R�L/(δS EC), assuming δS � EC. In quantum dots, where δS is in principle
comparable with EC, the interference contributions cannot be disregarded. The same per-
tains to the contribution of the lowest-energy excited states, especially in the vicinity of
Coulomb peaks.

To show this, let us evaluate the elastic co-tunneling in the previously used setup. We are
in the N diamond and only take into account the virtual states of lowest energy: the ground
states with N + 1 and N − 1 electrons. We denote their energies as E±, the smallest addi-
tion and extraction energies. This choice is the most convenient one: E+(E−) become zero
at the edges of the Coulomb diamond.

Control question 5.16. Can you express these energies in terms of the electrostatic
energies E (±) and the energies of electron levels? How do these energies depend on
gate voltage?

We adapt Eq. (5.31) to the current case of two levels characterized by �R,L and �′R,L
and make use of Eqs. (3.32) and (3.34) to express the tunneling matrix elements in terms
of conductance and � values. This yields the elastic co-tunneling conductance at a given
electron energy E , as follows:

Gel(E) = GQ

(
�R�L

(E+ − E)2
+ �′R�′L

(E− + E)2
± Aif

√
�R�L�

′
R�
′
L

(E+ − E)(E + E−)

)
. (5.32)

The coefficient Aif accounts for interference. It cannot be directly expressed in terms of the
� values since they are contributed by all possible electron states with generally different
coefficients. A notable exception is the case where the tunneling to the dot is dominated by
a single transport channel in each lead. In this case, Tln , Tnr do not depend on the states in
the channel and the coefficient Aif achieves its maximum value of 2. The ± factor reflects
the possibility of different signs of the product TlnTnr for the two levels involved.

Exercise 5.11. Express the coefficient Aif in terms of Tln , Tnr to prove the above
statement. What is the value of Aif if a large number of channels contributes to the
tunneling?

The co-tunneling conductance diverges at E+ = E and E− = −E ; we understand these
as the conditions for resonant tunneling described in Section 5.4.3. Indeed, an electron
coming at energy E+ may become stuck in the dot bringing it to the ground state with
N + 1 electrons. Similarly, if an electron state with energy −E− is empty in a lead, the
dot can go to the ground state with N − 1 electrons, putting the electron in this empty
state. We note that the co-tunneling conductance in the leading term (either (E+ − E)−2

or (E− + E)−2) matches the asymptotics of the resonant tunneling formula, Eq. (5.29),
T (E) ≈ �

2�R�L/(E − E0)2. Although we had resonant tunneling for a non-degenerate
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�Fig. 5.11. Inelastic cotunneling in quantum dots. (a) The even diamond. The inelastic co-tunneling threshold
is given by the dashed line. It crosses the diamond edges at the same position as the lines of
current cusps in single-electron transport. (b) Differential conductance in the diamond along the
dotted line in (a). The jump at the threshold is frequently seen as a conductance peak. The width

of the jump is determined by –hRT→g.

level, the tails of the resonant peak simply add for two spin directions, resulting in a double
conductance, conforming to Eq. (5.32).

Let us consider inelastic co-tunneling in quantum dots (see Fig. 5.11). This is very dif-
ferent from the inelastic co-tunneling in a SET (see Section 3.4.2) since it involves discrete
states: in this case, excitations with the same N . For instance, an electron with energy
E coming to the dot can give it energy Es to bring it into a triplet excited state (state
3 from Section 5.4.2) and go to another lead with energy E − Es . These processes are
therefore enabled at sufficiently large bias e|V | > Es . This allows us to witness another
peculiarity in transport spectroscopy: a line parallel to the gate voltage axis seen inside the
diamond. The energy consideration immediately means that this line crosses the diamond
edge at the same point as the slanted line that corresponds to the excitation of the triplet
state in the course of single-electron transport. Let us evaluate the rate of this switching
process. The virtual states arising are identical to those already used: the ground states
with N ± 1 electrons. For both virtual states, the tunneling involves the matrix elements
Tl , T ′r corresponding to two levels in play. If an electron comes with spin “up”, there
are two possible final states: (i) | ↑〉e| ↓〉h and electron with spin “up” in the right lead
and (ii) (| ↑〉e| ↑〉h + | ↓〉e| ↓〉h)/

√
2 and electron with spin “down” in the right lead. The

rates of these processes differ by a factor of 2. The total rate includes all possible spin
configurations in the initial and final states and is given by (see Eq. (3.64))

�g→T = 3�

2π

∫
dE dE ′ fL(E)(1− fR(E ′))δ(E − E ′ − Es)�L�

′
R

×
(

1

E+ − E
+ 1

E− + E ′

)2

. (5.33)

Slightly above the threshold voltage, �g→T = (G j/e2)(eV − Es), G j = 3GQ�
2�L�

′
R

(E−1+ + E−1− )2 at E± � Es . This gives the conductance jump G j at the threshold volt-
age; the magnitude of the jump can be comparable with Gel, the conductance below the
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threshold, or even exceed this conductance by a factor of 2–3. It is interesting to note that
experimentally one frequently sees a rather broad conductance peak rather than a jump (see
Fig. 5.11(b)). This is related to the interesting dynamics of the dot at voltages exceeding
the threshold. The master equation describing the dynamics concerns the probabilities of
being in the ground singlet and excited triplet states, pg and pT:

0 = dpT/dt = −RT→g pT + �g→T pg;

0 = dpg/dt = −�g→T pg + RT→g pT,

where RT→g is the relaxation rate from the excited triplet to the ground state. This, in a
typical situation, is not due to environment: this is yet another co-tunneling rate comparable
with the rates discussed. In distinction from these rates, both elementary tunneling events
can happen in the same junction, either left or right.

Exercise 5.12. (Extensive calculation!) Compute the rate RT→g in the model
formulated.

Let us note that the co-tunneling current is different in two states available above
the threshold, Ig �= IT. In addition, �g→T and a part of the relaxation rate, R̃T→g, also
contribute to the current that reads I = pT(IT + R̃T→g)+ pg(Ig + �g→T). There is a sub-
stantial increase of pT immediately above the threshold that inhibits the current increase
and results in lower conductance (see Fig. 5.11).

What determines the width of the conductance jump at vanishing temperature? The sit-
uation unexpectedly resembles that in a SET at the cross-over between co-tunneling and
single-electron tunneling, although there is no single-electron transfer at the threshold volt-
age. To understand the analogy, let us look at Fig. 3.25. Above the threshold, we have
switching events between g and T with rates �g→T and RT→g (see Fig. 3.25(a)). It is
essential that �g→T goes to zero upon approaching the threshold. The switching events are
thus grouped in pairs. They are separated by a time interval �1/RT→g that competes with
the Heisenberg uncertainty time tH � �/(eV − Es) (see Fig. 3.25(b)). This gives the esti-
mation of the energy width of the cross-over, width � �RT→g. One can adapt Eq. (3.72) to
quantify the cross-over at this scale. Slightly below the threshold, there is a current increase
due to a complicated process made of two co-tunnelings switching between g and T (see
Fig. 3.25(c)).

5.5 Charge qubits

In Sections 5.5–5.7, we give several examples of “working” solid state qubits, that is,
those experimentally realized up to date (2009). We do not review the numerous, and pos-
sibly even more successful, realizations and proposals not related to quantum transport,
such as nuclear magnetic resonance schemes, ultra-cold atom manipulation, or optically
driven qubits. Solid state qubits always involve electron transfers, either coherent or inco-
herent. Since electrons are charged, it looks natural to employ a charge degree of freedom
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to represent the quantum information. These qubits are discussed in the present section.
It turns out that so far the most successful realizations have involved superconductivity.
Superconducting nanostructures can be exploited in a different regime where the super-
conducting phase, rather than charge, is the working degree of freedom. These phase and
flux qubits will be considered in Section 5.6. The very notion of a qubit historically orig-
inates from our experience with 1/2 electron spin. Naturally enough, there are solid state
qubits utilizing the spin degree of freedom – spin qubits (see Section 5.7).

5.5.1 Double quantum dots

We learned in Chapter 3 that a normal-metal Coulomb blockade can be used to create and
manipulate states of fixed charge. However, they are not suitable when realizing a qubit: the
transitions between those states involve infinitely many degrees of freedom of the electrons
in the reservoirs and therefore do not preserve quantum coherence. Neither can such charge
states form a quantum superposition. The simplest way out is not to involve the reservoirs
in the electron transfer. Let us consider two quantum dots placed close to each other and, for
the moment, not connected to the leads. The energy is dominated by a Coulomb interaction,
and the charge states of both dots are controlled by two gates. We have considered a similar
situation in Section 3.1. Adjusting the two gate voltages (see Fig. 3.4(a)), one can align the
Coulomb energies of states (1, 0) and (0, 1). (In Fig. 3.4(a), (N1, N2) denotes the state
with N1 (N2) excess electrons in the first (second) dot.) If the spectrum of the electron
states in the dot were continuous, many of these states would have close energies, and the
degeneracy would not lead to quantum coherence. The discreteness of the states in the
dots makes a crucial difference. If the energy mismatch of two charge states (1, 0) and
(0, 1) is sufficiently small, only the ground states of both dots are close in energy, while
other states can be disregarded. This is the case provided this Coulomb energy mismatch
does not exceed the mean level spacing δS in either dot. Thereby we achieve one-to-one
correspondence between the charge configuration and the quantum-mechanical state of the
system: we have the simplest-charge qubit. (For the sake of compactness, we denote the
states as (1, 0)→ |0〉 and (0, 1)→ |1〉 in the following.) This setup is commonly known as
a double quantum dot. This stresses the fact that two quantum dots brought together still
comprise an isolated discrete system, that is, a quantum dot (see Fig. 5.12).

The qubit Hamiltonian involves the energy mismatch ε. In addition, we recognize that,
for sufficiently close dots, electrons can tunnel through the barrier separating the dots. Such
tunneling switches the double dot between the charge states, mixes them, and is represented
by the non-diagonal matrix element T /2 in the basis of these charge states. If the tunneling
is not affected by interference effects induced by an external magnetic flux, the phase of
T is irrelevant and T can be chosen as real. The Hamiltonian assumes the common qubit
form:

Ĥ = 1

2

(
ε T
T −ε

)
= 1

2

(
εσ̂z + T σx

)
. (5.34)

Two eigenstates are separated by energy �� = √ε2 + T 2.
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�Fig. 5.12. Double-dot charge qubit. (a) Double dot between two leads. The arrows show the tunnel
processes: coherent (T ) and incoherent (�R,L). (b) Energy diagram of the effective qubit.
Irradiation enables manipulation. (c) Current versus energy mismatch ε at different irradiation
intensities: ε̃/ε�R� = 1, 3, 9, 27 from lower to upper curves. T /��R = 10, �ω = 5T . The broad
peak (see Eq. (5.36)) is the qubit “leakage.” The narrow peak (see Eq. (5.38)) is the result of the
resonant irradiation growing with intensity.

This qubit can be easily prepared in a certain state. If this state is given by

|ψ〉 = −(|0〉 + |1〉) sin(θ/2)√
2
+ (|1〉 − |0〉) cos(θ/2)√

2
,

this is the ground state of the system provided ε/T = tan θ . We tune the gate voltages to
satisfy this condition, and wait long enough for the qubit to relax: the state is prepared. The
manipulation can be achieved by applying the resonant oscillating fields with frequency
ω ≈ �. It is simpler to vary the potential of the gate electrodes, that is, to vary ε. We
note that the efficiency of this action becomes increasingly lower with ε→ 0 since, in
this case, the direction of the manipulating “field” coincides with the quantization axis. To
circumvent this, one may modulate the height of the potential barrier separating the dots
with the optional extra gate electrode. This modulates T . The read-out of the qubit is the
measurement of charge. For example, one can measure the charge in a quantum dot by
measuring the current in the nearby quantum point contact (see Section 5.7 for details).

There are some practical reasons that mean that this qubit realization is limited in its
applications. The main reason is the large charge noise affecting the qubit arising from the
slow motion of the background charges (see Chapter 3) in the structure. One can reduce
the effect of the noise by manipulating the qubit at ε ≈ 0. At this “magical” point, the qubit
energy splitting �� does not depend on the external charge/field, ∂�/∂ε ≈ 0. Alas, this
makes it difficult to manipulate the qubit using the external field. However, the double-dot
qubits were realized even before qubits came into fashion. The scheme, however, was not
as good as that first described as it involved the electron tunneling to/from the dots [126].
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Let us describe this “worse” double-dot qubit (see Fig. 5.12). We set the dots between
two leads, L and R. We adjust the voltages of the leads in such a way that the electron
from the left lead can only tunnel to the first dot (provided it is empty), while the electron
from the second dot can only escape to the right lead. The transport cycle is between three
charge states: (1, 0)→ (0, 1)→ (0, 0)→ (1, 0). Apart from the notation, this is the same as
for the JQP cycle considered in Section 3.7.2 (see Fig. 3.37). The transitions between (0, 0)
and the two other states are not coherent, involving electron transfer to/from the reservoirs,
while those between (0, 1) and (1, 0) are clearly coherent. As we learned in Section 3.7.3,
to describe the situation we need a density matrix with non-diagonal elements between |0〉
and |1〉. To specify the parameters, we denote the tunneling rate from the left and right
leads as �L and �R, respectively.

Why does this make a qubit? Let us start with the state (0, 0). Upon tunneling from
the left lead, the system is “prepared” in the state |0〉. It will not stay in this state
forever, but we can use the time it stays there for the manipulation. With a resonant
pulse, we may bring the system to state |1〉 or to a superposition of |0〉 and |1〉. The
read-out is the electron tunneling to the right lead: the current through the right junc-
tion is proportional to the probability p1 of being in state |1〉, I = e�R p1. The read-out
is destructive: after the tunneling, the system is in the state (0, 0) and not a qubit at all.
However, the tunneling through the left lead creates a (new) qubit and initializes it to |0〉
again.

Why is this a bad qubit? Ideally, the qubit is initialized to an eigenstate of the
qubit Hamiltonian and a probability of being in an eigenstate is read. This is not the
present case: the eigenstates of Eq. (5.34) differ from |0〉, |1〉. Therefore, the cur-
rent in the double-dot cannot be always identified with the result of the manipulation.
Since each eigenstate is a superposition of the two charge states |0〉 and |1〉, each
one can decay by tunneling through the junction on the right. Therefore the current
flows even in the absence of the resonant excitation of the qubit that switches the
eigenstates.

To make this quantitative, we consider the average current through the double-dot sub-
ject to constant external irradiation. The equations for the density matrix are similar to Eqs.
(3.108)–(3.110) and are given in the present notation by

∂ρ00

∂t
= �L(1− ρ00 − ρ11)− iT

2�
(ρ10 − ρ01);

∂ρ11

∂t
= −�Rρ11 + iT

2�
(ρ10 − ρ01); (5.35)

∂ρ01

∂t
= −1

2
�Rρ01 + iε(t)

�
ρ01 − iT

2�
(ρ11 − ρ00).

Here, ε(t) = ε + ε̃ cosωt , where ε is the time-averaged energy mismatch, and ε̃ and ω are
the amplitude and frequency of the irradiation, respectively.

Let us consider moderate amplitudes of the irradiation, ε̃ � max(ε, T ). In this case,
the irradiation can be disregarded except for in the vicinity of the resonance ω ≈ �. The
current I = e�Rρ11 is determined by the stationary solution of Eqs. (5.35):
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I/e = T 2�R

T 2(2+ �R/�L)+ �2�2
R + 4ε2

. (5.36)

The current as a function of ε has a Lorentzian-shaped peak with width of the order
of max(T , ��R, T

√
�R/�L). We further concentrate on the limit T � ��R, where the

lifetime of the qubit exceeds the period of the coherent oscillations 2π/�. The current
vanishes at |ε| � T since in this case the eigenstates of the Hamiltonian given by Eq.
(5.34) almost coincide with |0〉, |1〉. At ε ≈ 0, the eigenstates are equal mixtures of |0〉
and |1〉.

Control question 5.17. What is the decay rate for each of the eigenstates?

The current reaches a maximum possible value given by eI = �R�L/(2�L + �R) < �R/2.
Let us concentrate on the vicinity of the resonance. In Section 5.3 we described two

methods to deal with the qubit Hamiltonian in the presence of resonant excitation. In

both methods, the time-dependent Hamiltonian is replaced by a quasistationary one, ˆ̄H .
The difference between the methods is the time-dependent unitary transformation made:
it is diagonal either in the basis of the time-averaged Hamiltonian or in the basis where
the time-dependent modulation is diagonal. We opt for the second method. The effective
Hamiltonian is given by

ˆ̄H = 1

2

(
�δω T̃ (t)
T̃ ∗(t) −�δω

)
, (5.37)

where �δω = ε − �ω is the frequency mismatch and

T̃ = −T J1(ε̃/�ω) ≈ −T ε̃/2ε
is the effective tunneling amplitude. The validity of the method is restricted by
max(δω, T̃ /�)� ω. The density matrix equations are quasistationary and are readily

obtained by replacing the Hamiltonian given in Eq. (5.34) by ˆ̄H , that is, making the replace-
ments ε(t)→ �δω, T → T̃ . The current in the vicinity of the resonance is obtained from
Eq. (5.36) by changing notation:

I/e = Imax
1

1+ (δω/w)2
, (5.38)

with the height Imax = �R(2+ �R/�L + 4�
2�2

Rε
2/(T 2ε̃2))−1 and the width w2 =

(T 2ε̃2)(2+ �R/�L)/(16�
2ε2)+ �2

R/4. We note the emergence of the second current peak
at ε = �ω. This peak is narrow and well separated from the non-resonant peak (see Fig.
5.12(c)) provided ω � T /�,�R. For �R � T /�, it becomes as big as the non-resonant
peak at relatively small irradiation amplitudes ε̃/ε � �R�/T . We note that under these
conditions the resulting qubit is not as bad as it looked at the beginning: it obviously
responds to the manipulation. The result of the manipulation is clearly visible in the
current, so the read-out works as well. The next step of the improvement would be to
pulse the irradiation and possibly the bias voltage. This, however, was first realized for a
superconducting qubit rather than for the normal-electron double-dot [127].
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5.5.2 Superconducting charge qubits

The heart of a superconducting charge qubit is the Cooper-pair box described in detail in
Section 3.5.1. It consists of a superconducting Coulomb island connected to a supercon-
ducting lead (or leads) by a Josephson junction (or junctions). This gives rise to a rich
energy spectrum. The charge qubits exploit the limit of large charging energies EC � EJ

(to avoid complications with quasiparticles, one also requires that the superconducting
energy gap exceeds the charging energy, �S > EC).

As discussed in Section 3.5.3, if the charging energy dominates, the charge of a Coulomb
island is a well defined variable. The energies of the states are shifted parabolas if plotted
versus the gate voltage. The notable exceptions are the values of the gate voltage where two
parabolas cross. The Josephson energy gives rise to a single Cooper-pair transfer, changes
the charge by 2, and therefore mixes up the crossing states. We concentrate here on a
single crossing. The charge states crossing correspond to n = 0 and n = 2 extra charges. To
comply with the standard qubit notation, we call these states |0〉 and |1〉, respectively. Let us
first recognize that the Hamiltonian of the superconducting charge qubit can be presented
in precisely the same form as Eq. (5.34) provided T ≡ EJ. This is not especially surprising
since the Hamiltonians of all qubits are the same. Surprisingly, there were more similarities
between the double-dot setup described above and the pioneering experiment by Nakamura
et al. [127], where the coherent control of a superconducting charge qubit was achieved.
The read-out in this experiment basically followed the JPQ cycle (see Section 3.7.2). The
extra probe junction at sufficiently high bias provided the two-stage quasiparticle decay
from state |1〉 to state |0〉. The rates of the decays correspond to �R and �L of the double-
dot setup. Experimental values were (6 ns)−1 and (8 ns)−1, respectively. The qubit is thus
completely described by Eqs. (5.35).

Let us describe the working sequence used in Ref. [127]. In the beginning of the
sequence, the qubit is tuned far from the degeneracy point. The read-out is on during the
whole sequence. This means that the qubit sooner or later is found in the state close to
|0〉: the final stage of the read-out induced decay. Then a dc voltage pulse is applied. The
height of the pulse is such that the pulse brings the qubit to the degeneracy point ε ≈ 0.
The pulse is not adiabatic: it is so fast that the qubit remains in the state |0〉. However, at the
crossing point the state |0〉 is not an eigenstate of the Hamiltonian. The actual eigenstates
are (|0〉 ± |1〉)/√2, corresponding to energies ±��/2. The wave function evolves in time
according to the following expression:

|ψ(t)〉 = 1

2

(
(|0〉 + |1〉)e−i�t/2 + (|0〉 − |1〉)ei�t/2

)
; |ψ(0)〉 = |0〉. (5.39)

The probabilities of being in certain charge states, ρ00, ρ11, oscillate in time. The pulse lasts
for the time interval τ . After this, the qubit returns to the preparation point, which is far
from the degeneracy point. If the pulse is sufficiently short, �Rτ � 1, the coherent dynam-
ics of the qubit during the pulse is not affected by the read-out. The read-out takes place
afterwards. If the qubit after the manipulation is in state |0〉, nothing happens: it remains
in |0〉 till the next pulse. If the qubit is in state |1〉, two quasi-particle tunnel processes
take place: the current they produce is detected. Thereby the current is proportional to the
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�Fig. 5.13. Cooper-pair box as a charge qubit. (a) The setup includes the CPB, the gate electrodes, and the
read-out junction (shaded). The flux loop is used to tune EJ. (b) Working sequence and energy
diagram. (c) The pulse-induced current measures the probability p1 and displays Rabi oscillations
as a function of the pulse duration τ . Inset: EJ tuned. Reprinted by permission from Macmillan
Publishers Ltd: Ref. [127], copyright (1999).

probability of being in state |1〉. After the tunneling, the qubit is back in state |0〉 and ready
for the next pulse. Equation (5.39) yields p1 = sin2(τ�/2). Thus, the charge transferred
per sequence period, Q = 2ep1, exhibits oscillations as a function of pulse duration. Such
oscillations have indeed been observed. The ratio of the signal observed to the theoretical
maximum Q = 2e – often called “visibility” – was about 25% (see Fig. 5.13). The low
visibility was explained by the finite fall and rise times of the pulse and the rather short
sequence period not exceeding by much the inverse tunneling rates (faulty preparation).
The visibility was greatly increased in the subsequent experiments of the group, in which
two coupled superconducting charge qubits have been measured and the entanglement of
the two was accessed.

The next step in the charge qubit design – the so-called “quantronium” [128] – was
to improve the coherence times by two orders of magnitude and to characterize different
decoherence mechanisms (see Fig. 5.14). The heart of the quantronium is the same Cooper-
pair box (CPB). However, the Josephson energy was increased to the order of the charging
energy. As mentioned, in this situation neither charge nor phase is a good quantum number.
The CPB eigenstates are coherent superpositions of several charge states. Therefore, it is
not plausible to choose the basis states of a qubit as the states with fixed charge. Rather, the
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.

basis states of the qubit, |0〉 and |1〉, are represented by the ground state and first excited
state of the CPB, respectively. The Hamiltonian is thus diagonal in this basis.

The increased Josephson energy increases supercurrents flowing through the CPB. This
makes it possible to read out the qubit states in a less obtrusive and more controlled way.
The read-out variable is this supercurrent. The CPB is embedded into a larger supercon-
ducting current-biased loop closed by a more conducting junction with Josephson energy
�20EJ. To obtain the read-out, a current pulse with a value slightly below the critical cur-
rent of the conducting junction is applied to the loop. The CPB current adds to this bias
current in the conducting junction. Now let us note that the CPB current is different for
different qubit states. It is given by the derivative of the energy of the state with respect to
the superconducting phase, I0,1 = (2e/�)∂E0,1/∂ϕ (see Section 1.8). The maximum dif-
ference of the currents, I1 − I0, was as big as 12 nA. Adjusting the height of the read-out
pulse, one makes sure that the total current through the conducting junction exceeds its
critical current if the qubit is in state |1〉 and does not exceed it for state |0〉. Adjusting the
duration of the pulse, one tries to make sure that the conducting junction switches to the
resistive state if the qubit is in state |1〉 and does not switch otherwise. The voltage pulse
generated by the junction switching is detected.

The quantronium has two control parameters, discussed in Section 3.5.1: the induced
charge q and the superconducting phase difference ϕ, and the energies and wave functions
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of the states depend on the two. The trick that allowed us to achieve long coherence times
is a specific choice of the working point in this two-dimensional parameter space (see Fig.
5.14(b)). This “magic” point is chosen from the saddle-point condition:

∂(E0 − E1)

∂ϕ
= ∂(E0 − E1)

∂q
= 0.

The idea behind this choice is that the main sources of noise are fluctuations of back-
ground charges and flux in the loop. Thus both can be seen as random deviations of the
control parameters q and ϕ. At the magic point, the energy difference of the qubit states
is not sensitive to these deviations, at least in linear order. The qubit was thus prepared
and manipulated at the magic point. The read-out would not work at the magic point since
I1 = I0. However, the current pulse used for the read-out automatically shifts the phase,
taking the qubit away from the magic point.

The quantronium is best manipulated by pulses of irradiation at resonant frequency
� ≡ (E0 − E1)/�, (which yields the value 1.04× 1011 Hz). The irradiation can be applied
to the gate electrode as well as to the coil controlling the phase. What matters is that the
interaction of the qubit and irradiation contains operators σx , σy orthogonal to the quanti-
zation z axis of the qubit. This enables the resonant manipulation described in Section 5.3.
The x axis can always be chosen such that the interaction is proportional to σ̂x .

Control question 5.18. Explain why at the magic point the interaction of the qubit
and irradiation does not contain terms ∝σ̂z .

To probe coherent oscillations of the qubit, two different experiments were performed.
In the Rabi oscillations experiment, the qubit, initially in state |0〉, was subject to a long
irradiation pulse of duration τ . During the pulse, the qubit oscillates with Rabi frequency
ωR =

√
U 2 + (δω)2, where U is the pulse amplitude and δω ≡ �− ω is the frequency

mismatch. The probability distribution after the pulse is given by Eq. (5.39) and exhibits
periodic oscillations in ωRτ (see Fig. 5.14(c)). Experimentally, these oscillations are
weakly damped owing to decoherence. This allows the measurement of coherence time
T2 ≈ 1 μs.

Another measurement has been taken by applying the Ramsey pulse sequence (Section
5.3). Since the π/2 pulses in the sequence are short in comparison with the interval τ
between them, the measurement probes the free evolution of the qubit during this interval.
The Ramsey oscillations with period 2π/(δω) are damped; this damping gives a somewhat
shorter decoherence time T̃2 = 0.5 μs (see Fig. 5.14(d)).

The explanation of this fact implies that the main source of decoherence is still low-
frequency fluctuations of� induced by the charge and flux noise. The free evolution of the
qubit is immediately subject to these fluctuations. As for Rabi oscillations, their frequency
is less susceptible to the fluctuations of� since ∂ωR/∂� = (δω)/ωR < 1 so that the effect
of the fluctuations is insignificant provided |δω| � U .

The important advantage of a superconducting charge qubit is that it has two control
parameters – charge and flux – although at the same time it makes the qubit vulnerable to
both noises. Corresponding to the two control parameters, qubits can be coupled in two
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different ways. Theoretical proposals [129] stressed the advantages of inductive coupling
where the qubits share a common loop so their fluxes interact. This also seems easier to
fabricate. However, an alternative – capacitive coupling – has been realized experimentally
[130]. In that case, the interaction is between the charges of adjacent CPB islands.

5.6 Phase and flux qubits

So far, the most successful realizations of solid state qubits have been made with using
“home-made” quantum mechanics based on Josephson- and Coulomb-blockade phenom-
ena. There are two reasons for this. First, the systems involved are rather big and the
manufacturing technology is mature. Secondly, the system is an integral part of an electric
circuit; this simplifies the manipulation and read-out. As well as superconducting charge
qubits, where the ratio of the Josephson and charging energies is either small or moderate,
successful designs have been realized with EJ � EC. Such designs come in two classes:
phase and flux qubits, which we consider in this section.

5.6.1 Phase qubits

A phase qubit is conceptually very simple: the physical system where it is realized is just
a (relatively) big Josephson junction with a capacitance. The Josephson energy dominates,
EJ/EC > 104. The junction is biased by the current Ib close to the critical value. The goal
of the qubit design is to make the Josephson potential well so small that it houses only a
few quantum levels. In this case, the potential is well approximated by a cubic parabola
(see Eq. (3.91)).

The two lowest levels are used to make up a qubit with states |0〉 and |1〉 [131]. Formally
speaking, they are not true quantum states. The cubic parabola Hamiltonian supports the
continuum spectrum at the same energy so that all “discrete” states have finite lifetimes due
to macroscopic quantum tunneling (see Section 3.5.5). The ingenious qubit design imple-
mented is based on the fact that these lifetimes differ by two or three orders of magnitude
for neighboring levels. The lifetime of the ground state |0〉 by far exceeds the measurement
time.

The faster decay rate of the higher states has been used for read-out. There are two
types of read-out proposed. In each case, the well during the qubit manipulation houses
three levels (see Fig. 5.15(a)). The first read-out scheme uses the irradiation pulse, with
frequency matching the energy difference of the upper level |2〉 and the excited qubit level
|1〉. The pulse performs a SWAP operation between |1〉 and |2〉, so the probability ρ11 is
transferred to state |2〉. The upper state |2〉 is close in energy to the top of the barrier, so
it lives for a very short time, while lifetimes in |0〉 and |1〉 by far exceed the measure-
ment time. Therefore, the probability of the junction switching is ρ11. The second read-out
scheme involves lowering the potential barrier by an adiabatic change of the bias current
after manipulation. The reduced potential well houses only two levels, so that state |1〉
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�Fig. 5.15. Phase qubits. (a) Three- and (b) two-level wells. (c), (d) Two setups differ in their histories after
the switching. (e) The working sequence of the “partial collapse” experiment. (f) Corresponding
time-line of the amplitude β. It experiences a “non-unitary” evolution (Eq. (5.41)) during the first
read-out pulse (gray region). From Ref [132]; reprinted with permission from AAAS.

decays fast (Fig. 5.15(b)). Therefore, in this case the switching probability is also ρ11. We
note that, in contrast to the schemes described in Section 5.5, the read-out variable is just
the level number, that is, it commutes with the Hamiltonian.

The history of the system after switching differs for the two schemes used. In an older
scheme, the Josephson potential was a classical tilted washboard (see Fig. 5.15(c)). After
switching, the junction was retrapped in the adjacent potential minimum and relaxed to
the ground state |0〉. This is how preparation was implemented. In a newer scheme, the
qubit junction is embedded into a SQUID loop, so that the Josephson potential is an almost
parabolic well with a minute metastable minimum at one side (see Fig. 5.15(d)). After
switching, the junction relaxes to the bottom of the well. Subsequent adiabatic shift of the
flux in the SQUID loop distorts the potential and finally brings the junction back to the
minute minimum. After this is completed, the manipulation of the qubit is performed in a
standard way, by applying irradiation pulses with frequency matching the energy difference
between |0〉 and |1〉.

Technical advances have allowed high quality read-out and manipulation at the fast time
scale of 10 ns. Importantly, one can have two read-out pulses within the working sequence
of the qubit. This made possible the following interesting experiment [132]. The qubit
was prepared in the state |0〉. The first irradiation pulse changed it into the superposition
cos(θ0/2)|0〉 + sin(θ0/2)|1〉. After this, the first read-out pulse of variable duration was
applied. The second irradiation pulse served to perform tomography of the superposition
after the first read-out pulse. The second read-out pulse was subsequently applied, and
the switching probability was measured (see Fig. 5.15(e)). The subject of interest is the
dependence of this probability on the rotation angles of the second pulse. This allows one
to perform the tomographic scan and accurately determine the coefficients in the resulting
superposition.

Let us try to predict the results of the experiment. There seem to be two outcomes of the
working sequence. If the junction has switched during the first read-out pulse, our qubit
is destroyed (none of the levels |0〉, |1〉 is populated, and it is not even clear if the levels
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still exist). The second irradiation pulse works on nothing, and this outcome produces no
contrast in the tomography measurement. The second outcome is no switching during the
first read-out pulse. It is very natural to assume that in this case the superposition remains
intact, taking a possible decoherence effect apart. We therefore predict that the tomography
measurement would give the original superposition coefficients cos(θ0/2), sin(θ0/2).

This seemingly indisputable reasoning appears to be wrong. Let us describe the quantum
evolution during the first read-out pulse in more detail. This evolution involves three states:
|0〉, |1〉, and the state |s〉 into which |1〉 can decay. The density matrix of the systems evolves
according to the following system of equations:

∂ρ00

∂t
= 0;

∂ρ11

∂t
= −�ρ11;

∂ρss

∂t
= �ρ11;

∂ρ01

∂t
= −�

2
ρ01;

(5.40)

with � being the decay rate of state |1〉. We disregard the small decay rate of state |0〉. The
first three equations are in fact classical and describe the probabilities of being in the cor-
responding states. The last equation for the non-diagonal matrix element is quantum and is
a simplified version of the equations used earlier in the book, for example Eqs. (5.35). The
equations have to be solved with initial conditions corresponding to the superposition made
by the first irradiation pulse: ρ00 = cos2(θ0/2); ρ11 = sin2(θ0/2); ρ01 = ρ10 = sin(θ0)/2;
ρss = 0. The solution for the density matrix after the pulse of duration τ reads: ρ00 =
cos2(θ0/2); ρ11 = sin2(θ0/2) exp(−�τ ); ρ01 = ρ10 = exp(−�τ/2) sin(θ0)/2. We normal-
ize the solution to ρ11 + ρ00 = 1. This is so we focus on the case when switching did
not take place. We thus exclude state |s〉 and look at the qubit density matrix obtained. It
appears that ρ̂2 = ρ, indicating the pure state to be characterized by a wave function. This
is given by

|ψ〉 = cos(θ0/2)√
cos2(θ0/2)+ sin2(θ0/2) exp(−�τ )

|0〉

+ exp(−�τ/2) sin(θ0/2)√
cos2(θ0/2)+ sin2(θ0/2) exp(−�τ )

|1〉. (5.41)

We see that the coefficients in the superposition are modified by the first read-out pulse.
This conclusion has been experimentally confirmed in Ref. [132]. The authors interpret
this as a “non-unitary evolution” of the state in the course of “partial collapse measure-
ment.” This is very expressive; however, the evolution of the whole quantum system
is certainly unitary, according to the basics of quantum mechanics. And Eqs. (5.40) do
not contain any terms specifically responsible for the measurement and/or the collapse.
Rather, they describe the natural evolution of the system. The result is easy to under-
stand if one recalls that the components of a wave function are not just amplitudes but
probability amplitudes. The change of the probabilities during the first read-out pulse
must therefore necessarily be accompanied by the corresponding change in the probability
amplitudes.
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Exercise 5.13. Evaluate the probability p1 after the tomography pulse. Assume that
the pulse makes a rotation about the x axis by the angle φ. Use Eqs. (5.40) and (5.41).

The quantum gate for two phase qubits has been realized by coupling two Josephson
junctions capacitively [133].

5.6.2 Flux qubits

Under the same condition that Josephson energy dominates the charging energy, there is
also an alternative design, known as a flux qubit. The idea of this design originates from a
device, an rf (radio-frequency) SQUID, developed back in the 1960s and successfully used
for measurements of low magnetic fields – a Josephson junction embedded in a supercon-
ducting loop with inductance L . To understand the principle, let us write the energy of the
rf SQUID in terms of the phase ϕ of the Josephson junction:

H = −EJ cosϕ + (ϕ	0/2π −	ext)2

2L
+ Q2

2CJ
.

The first term is the Josephson energy of the junction; the second one represents the mag-
netic energy of the loop, with 	ext being the flux created by an external magnetic field in
the loop area. The final term is the charging energy responsible for the quantum effects
and is disregarded for the moment. Without the charging energy, the phase is a classical
variable, and the energy of the ground state is found by minimization of the energy over
the phase ϕ:

E(	ext) = min
ϕ

H (ϕ,	ext).

The differential inductance of the whole system,

1

Lsys
= ∂

2 E(	ext)

∂	2
ext

,

is measured from the SQUID response on an external rf signal; this is why it is called an rf
SQUID and differs from the two-junction dc SQUID considered in Section 1.8.

Let us now turn to the idea of the qubit. We use the rf SQUID in a new fashion: we would
like to tailor the potential for ϕ in such a way that it has two close symmetric minima (see
Fig. 5.16(a)). This is achieved by matching the inductances of the ring and the junction.
We note that the inductance of the junction becomes negative for cosϕ < 0. We choose
parameters in such a way that the positive inductance of the ring almost compensates for
the negative inductance of the junction near ϕ ≈ π ; this requires (2π/	0)2 EJL ≈ 1. Then
at 	ext ≈ 	0/2 we reproduce the (approximately symmetric) double-well potential.

Let us switch the charging energy, on enabling the quantum-mechanical effects. Discrete
levels appear in each well. For a symmetric situation, the energies of the states |0〉 and |1〉,
localized in the right/left well, respectively, are precisely the same. The tunneling through
the barrier mixes the states and thereby lifts their degeneracy. The true eigenstates of the
Hamiltonian are symmetric and antisymmetric combinations (|0〉 ± |1〉)/√2, separated by
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�Fig. 5.16. (a) An almost symmetric double-well potential of an rf SQUID with matching inductances near
ϕ = π . The lowest states localized in different wells form a qubit. (b) Energy levels of a more
complicated three-junction flux qubit versus flux. The two lowest states are similar to those in the
double-well potential. Part (b) taken from Ref. [134]; reprinted with permission from AAAS.

the energy difference T . If the external flux deviates slightly from 	0/2, the potential is
slightly warped so that one of the wells becomes higher in energy. The energy difference
between the bottoms of the wells is proportional to this deviation, ε ∝ (	ext/	0 − 1/2).
This provides a convenient handle for quantum manipulation.

The two states, |0〉 and |1〉, localized in two wells, are used to represent the qubit. The
Hamiltonian in the basis of these two states acquires the standard form as in Eq. (5.34):

Ĥ = −1

2

(
εσ̂z + T σ̂x

)
.

The qubit states |0〉 and |1〉 correspond to the opposite directions of the magnetization
current in the qubit loop and can be distinguished thereby.

The design of the actual qubit [134] is slightly more sophisticated. To start with, it com-
prises three Josephson junctions combined in a single loop. Two extra junctions replace
the inductance loop: it appears to be easier to fabricate the two extra junctions than to
adjust the inductance of the loop. The system contains two Coulomb islands and therefore
encompasses two quantum degrees of freedom. Diagonalizing the Hamiltonian, we obtain
the energy levels, conveniently represented as functions of the external phase ϕ, over the
three junctions, which now plays the role of the external flux. Although the actual system
is more complicated than the rf SQUID, as far as the two lowest levels are concerned, it
is very similar. The main features remain intact: a symmetric two-well potential is formed
near ϕ = π , the two states in different wells correspond to opposite current circulations,
and the potential is utilized to represent a qubit manipulated by modulations of the external
flux with the frequency matching the energy difference.

The read-out of a flux qubit is basically the flux difference induced by the currents of two
opposite circulations. First, measurements have been performed by a dc SQUID, whose
loop was placed around the structure to pick up this flux difference. The value measured
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was the critical current of the dc SQUID, similar to the readout of the quantronium (see
Section 5.5). Such a read-out scheme has some disadvantages due to strong influence of the
dc SQUID on the qubit during the switching process. Another way to read-out is similar
to the traditional use of the rf SQUID: the measurement of differential inductance of the
qubit loop by means of an ac response. The very fast and discriminating read-out makes
use of the bistability of a non-linear oscillator driven by the external source with frequency
close to the resonant frequency of the oscillator. Such a driven oscillator, if the magnitude
of the driving current lies within a certain range, may perform stable oscillations with two
different amplitudes (“high” and “low”). The non-linear oscillator has been realized using
another Josephson junction biased by ac current. Inductive coupling between this circuit
and the qubit results in a small shift of the frequency of the resonator; this shift depends
on the state of the qubit. For the setup of the experiment [135], the shift was about 1%.
However, this was enough to ensure a discriminating and fast read-out. The qubit state
|0〉 caused the oscillator to switch into the “high” state from the “low” state within 5 ns,
while state |1〉 failed to induce the switching. It is interesting to note that it takes more
time (≈25 ns) to read out the amplitude of the oscillator, despite the fact that it is a rather
classical object.

Such an improved read-out made it possible to demonstrate the concept of quantum
non-demolition (QND) measurement. By definition, a QND measurement is arranged in
such a way that the interaction of the quantum system measured with the measuring
device does not cause any transitions between the eigenstates of the system measured.
In more formal terms, the Hamiltonian of the system measured commutes with Ĥint which
describes the interaction with the measuring device. For example, if the qubit Hamiltonian
is proportional to σ̂z , the read-out will discriminate between the states σz = ±1. The most
important property of QND measurement is its repeatability: if a QND measurement gives
the outcome 0 (1), the next QND measurement will reproduce the same result with 100%
probability. This, of course, disregards any possible relaxation of the qubit between two
measurements, which can be caused by the agents not related to the measurement. QND is
very much reminiscent of the text-book notion of the projective measurement. The projec-
tive measurement is supposed to cause the collapse of the wave function so that the latter
is projected on the basis state corresponding to the measurement result. As far as realis-
tic measurements are concerned, the QND and projective measurements differ. We will
discuss the difference in Section 6.7.

The fast and relatively reliable read-out implemented in Ref. [135] made it possible
to perform two measurements of the qubit state, separated by a time delay, as in the phase
qubit experiment discussed previously. The improvement is that the result of each measure-
ment is read out. In this way, three independent quantities can be extracted: the probability
P0 of the qubit of being in state |0〉 after the first measurement, and two conditional prob-
abilities P0|0 (P1|1) of measuring the same result |0〉 (|1〉) in both measurements. All other
probabilities are fixed by the normalization requirements, for example, P0 + P1 = 1.

In the first experiment described in Ref. [135], the two measurements were separated by
a time delay of the order of the relaxation time of the qubit. The experimental curves are
shown in Fig. 5.17(b). Plotted are the probabilities P0, P0|0, and P1|1. The probability P0

does not depend on the delay time due to the trivial reason that the first measurement has



442 Qubits and quantum dots
�

0
0

0

200 400
time (ns)

delay
time

V
re

ad
-o

ut
δΦ

qb

π/2 pulse

0
0

25

50

75

100

1 2 3
delay time (μs)

pr
ob

ab
ili

ty
 (

%
)

0
0

0

100 200
time (ns)

δΦ
qb

Δt1 Δt2

V
re

ad
-o

ut

(a) (b) (c)

�Fig. 5.17. QND measurement with flux qubits. (a) The working sequence with two read-out pulses provides
two successive measurements of the qubit. (b) Results: probabilities P0, P0|0, P1|1 (from upper to
lower curve) versus the delay time. (c) The working sequence with an additional pulse proves the
quantum coherence during the sequence. Taken from Ref. [135]; reprinted by permission from
Macmillan Publishers Ltd, c© (2007).

already occurred. The fact that P0|0 also does not depend on the time delay indicates indeed
that the measurement is repeatable, as one expects from a QND measurement. The condi-
tional probability P1|1 of measuring the excited states in both measurements displays an
exponential fall-off with time constant, corresponding to the relaxation time as yet another
proof of the repeatability.

The decisive proof comes, however, from the second experiment, where the delay time
was short enough to allow for coherent evolution of the qubit between the measurements.
Two manipulation pulses with durations t1 and t2 were applied before the first and the
second measurement, respectively (see Fig. 5.17(c)). The pulses change the pure states |0〉
and |1〉 into superpositions, with the coefficients depending on the pulse durations. Owing
to this, the outcome of the first measurement did depend on t1. With experimental accuracy,
the conditional probabilities did not depend on t1, that is, on the wave function before
the first measurement. This proved that the first measurement is indeed projective: once a
definite outcome (say, |0〉) is obtained, the information about the superposition coefficients
of the measured wave function is lost. The conditional probabilities did depend on t2 in the
expected fashion: the second measurement is sensitive to the superposition made by the
second pulse rather than to the outcomes of the first measurement.

As a step towards the realization of quantum algorithms, several flux qubits, eventually
whole arrays of them, can be inductively coupled. The resulting interaction is proportional
to the currents ∝σ̂z in each qubit, so that the interaction Hamiltonian of two qubits 1, 2
is given by Hint ∝ σ (1)

z σ
(2)
z . The strength of this coupling can be varied by varying the

flux; this provides the means for two-qubit manipulation. The main decoherence source
also comes through the σ̂z channel: the qubits, as well as the interaction between them, are
sensitive to the noise of the external flux.

To present the state of the art of the flux qubit array, we describe the design proposed
in Ref. [136]. This design aims to reduce the sensitivity of the qubits to the external flux
noise. To achieve this, the two coupled qubits are biased in the corresponding “magic”
points, ε1,2 = 0. The Hamiltonian of the two is thus given by (T2 > T1 > 0)

Ĥ = T1

2
σ̂ (1)

x +
T2

2
σ̂ (2)

x + J12σ̂
(1)
z σ̂ (2)

z . (5.42)
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Owing to vanishing currents for both qubit states in this point, the inductive coupling J12

has no direct effect and can be disregarded. So the qubits are (almost) decoupled by default.
The variable coupling is implemented via a third qubit, which is not used to store the
quantum information but to provide a non-linear inductance that can be modulated by the
microwave irradiation. The idea is to match the frequency of such irradiation and the energy
difference of one of the transitions |10〉 ↔ |01〉 or |00〉 → |11〉. These energy differences
are T2 ∓ T1. The part of the coupling mediated by the third qubit is therefore resonantly
enhanced. Let us keep in the Hamiltonian the only resonant terms corresponding to all four
resonant frequencies:

Ĥ = T1

2
σ̂ (1)

x +
T2

2
σ̂ (2)

x

+ ε̃1 cos(T1t/�+ φ1)σ̂ (1)
z + ε̃2 cos(T2t/�+ φ2)σ̂ (2)

z

+ J̃+12 cos((T2 + T1)t/�+ φ+)σ̂ (1)
z σ̂ (2)

z

+ J̃−12 cos((T2 − T1)t/�+ φ−)σ̂ (1)
z σ̂ (2)

z .

Let us rewrite this in the rotating frame and swap the quantization axes x→ z, z→ y,
y→ x . The resulting Hamiltonian is given by

Ĥ/� = �1

(
σ̂ (1)

y cosφ1 + σ̂ (1)
x sinφ1

)
+�2

(
σ̂ (2)

y cosφ2 + σ̂ (2)
x sinφ2

)
+�+

(
(σ̂ (1)

y σ̂ (2)
y − σ̂ (1)

x σ̂ (2)
x ) cosφ+ − (σ̂ (1)

x σ̂ (2)
y + σ̂ (1)

y σ̂ (2)
x ) sinφ+

)
+�−

(
(σ̂ (1)

x σ̂ (2)
x + σ̂ (1)

y σ̂ (2)
y ) cosφ− − (σ̂ (1)

x σ̂ (2)
y − σ̂ (1)

y σ̂ (2)
x ) sinφ−

)
,

where the Rabi frequencies of the four transitions are proportional to the amplitudes of the
corresponding modulations, �1,2 = ε̃1,2/2�, �± = J̃±12/4�.

We see that one achieves full control over the coupled qubits: the pulses with fre-
quencies T1/� and T2/� perform separate unitary transformations for the first and second
qubits, respectively, while the pulses with frequencies (T2 ± T1)/� provide two-qubit gate
operations.

In the experiment [136] one realizes the unitary gate

U+ = exp
(
−i�+τ

(
σ̂ (1)

x σ̂ (2)
x − σ̂ (1)

y σ̂ (2)
y

))
by applying a pulse of duration τ at the sum frequency (T1 + T2)/�. In particular, for
�+τ = π/4, the gate performs the double-CNOT operation (up to two single-qubit rota-
tions). Three applications of this operation, supplemented by proper single-qubit rotations,
are sufficient to implement any two-qubit gate. For �+τ = π/2, the gate is diagonal,
U+(π/2) = diag(−1, 1, 1,−1). This means that, if the input state of the gate is an eigen-
state, the corresponding oscillations of the probabilities have a period of τP = π/2�+.
However, U+(π/2) is not an identity gate involving the phase shift of π . The true identity
gate is U 2+(π/2) ≡ U+(π ), so that the true period of the oscillations is 2τP . This can be
probed if, instead of taking the eigenstate, one takes an input state that is a superposition
of two eigenstates.

The read-out in the experiment was implemented with a switching SQUID sensitive
to the states of both qubits. The read-out was not designed to discriminate between the
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�Fig. 5.18. (a) Two-qubit gate implementation involves three flux qubits. The central qubit only serves to
provide a controllable coupling between the left and right qubits. The energy diagrams show the
bias points of the qubits. (b) The levels of the two qubits and possible channels of the resonant
manipulation. (c) Experimental demonstration of the U+(�+τ ) two-qubit gate. The curves
corresponding to the two working sequences differ in period. Taken from Ref. [136]; reprinted
with permission from AAAS.

states. Instead, the switching probability measured by the SQUID was proportional to the
expectation value of the weighted sum of the qubit currents, 〈a1σ

(1)
z + a2σ

(2)
z 〉, in the final

state of the qubits. The coefficients a1,2 characterize the qubit coupling to the SQUID
loop. The typical measurement results are plotted in Fig. 5.18 (c). Two different working
sequences have been explored. In both cases, the qubits are initialized to the ground state
with σ (1)

z = σ (2)
z = −1. During the first sequence, the U+(�+τ ) gate has been applied

with no qubit rotations. In this case, the input state for the gate is an eigenstate, and the
periodicity is τP . This corresponds to the curve labeled “without π/2 pulses.” During the
second working sequence, the second qubit was subject to two π/2 rotations with pulses at
frequency T2/�, before and after the gate operation. The corresponding curve apparently
has a double period.

Exercise 5.14. Compute the theoretical outcome of the measurement for both
sequences, i.e. 〈a1σ

(1)
z + a2σ

(2)
z 〉 as a function of �+τ . Compare this qualitatively with

the measurement results. Can you draw the conclusion about the ratio a2/a1 in the
experiment?
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5.7 Spin qubits

Spin qubits are very distinct from superconducting qubits. They exploit a very straightfor-
ward qubit realization: electron spin. In distinction from the macroscopic quantum states
described in preceding sections, the spin is a generic property of an elementary particle.
We concentrate on spin qubits that are based on controllable quantum dots (for a review,
see Ref. [137]). We start this section by outlining the influential proposal of Loss and Di
Vincenzo back in 1998 [138]. Most of the proposal may look naive nowadays, but it played
a catalytic effect in the field of solid state spin manipulation.

The electrons are confined in quantum dots formed in a semiconductor heterostructure.
Each dot contains strictly one electron, due to the high charging energy. The spin of each
dot represents a qubit. The possibility of manipulation is provided by an external magnetic
field interacting with the spin. The single qubit Hamiltonian is given by

Ĥ = −μeσ̂ · B, (5.43)

where μe is the effective magnetic moment of an electron (which in heterostructures can
be very different from the value in vacuum, μB/2). We thus see that three components of
the magnetic field, Bx ,y,z , serve as three independent handles. Note that to manipulate sev-
eral qubits separately, one needs separate sources of magnetic fields acting on each qubit.
For single qubits, one can immediately implement the variety of manipulation techniques
elaborated in the field of spin resonance. A static magnetic field along the z axis also serves
for the preparation of the qubit: if one applies this field and waits long enough, the qubit
will, with certainty, be found in the spin-up state.

The coupling of two or more qubits is more difficult. Interacting qubits, i.e. quantum
dots, are supposed to be very close to each other, separated only by a tunnel junction
which can be tuned by a nearby gate. If the tunnel barrier is set to “high,” the spins of
the qubits do not interact; setting the barrier to “low” allows the overlap of the localized
electron states in the dots. This results in an exchange interaction between the spins:

Hint = J (t)σ̂ (1) · σ̂ (2).

The specific feature of this interaction is the isotropy in the spin space, i.e. the matrices
σ̂x ,y,z come with the same weights. One can make pulses of the exchange interaction,
to be used as an elementary unitary transformation to enable more complicated quantum
gates. Thus, all pulses of the coupling with

∫
J (t)dt = θ define the quantum gate Us(θ ).

The SWAP operation is obtained as Usw = Us(π/4). By itself, the SWAP operation is not
enough to set up a functioning quantum computer. One requires a CNOT gate, which can
be expressed in terms of our SWAP gate as follows:

UCNOT = R(1)
z (π/2)R(2)

z (−π/2)U 1/2
sw R(1)

z (π )U 1/2
sw , (5.44)

where we have defined U 1/2
sw ≡ Us(π/8).

Exercise 5.15. Prove Eq. (5.44).
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An obvious disadvantage of the proposed two-qubit gate is that the qubits have to be
very close to each other, that is separated by a distance of the order of the electron wave-
length. One might conclude that it is impossible to build a scalable quantum computer
based on the principle of two-qubit operation; indeed, it is difficult to imagine that all
elements of such computer would be in such a close proximity. However, it has been
shown that a one-dimensional array of quantum dots would work as a scalable quan-
tum computer. The only disadvantage would be that the operation time is longer. A gate
operation involving two qubits, which are not in immediate proximity, can always be
implemented as a sequence of two-qubit operations involving only neighboring qubits.
If these two qubits are separated by a long distance, the operation takes a long time
indeed.

The read-out of the spin is a challenging task, and currently one cannot measure the elec-
tron spin remotely without destroying it. In the original proposal, the read-out was based
on the spin-valve effect (see Section 1.9): a dot is connected by a controllable junction to a
ferromagnetic reservoir. When the junction is open, during the read-out, the transmission
probability is higher provided the spin of the dot is oriented parallel to the magnetization
of the ferromagnetic reservoir. The qubit is destroyed thereby, and its spin is converted into
electric current.

It is clear that quantum dots in principle allow for more flexibility than the above scheme.
For instance, the scheme assumes that one qubit is represented by a single quantum dot with
precisely one electron. In fact, one can put any odd number of electrons in each dot: the
resulting ground state will be degenerate in spin anyway. Moreover, the ground states of
the dots may correspond to higher spin states; this allows for multi-state qubits of higher
degeneracy.

Any quantum computer must be optimized with respect to decoherence. The most attrac-
tive feature of spin qubits is their long coherence time. This is due to the fact that the
coupling of electron spin to any noisy field and/or any orbital degree of freedom is small:
this coupling is in principle a relativistic correction negligible for non-relativistic electrons
in solid state systems. Spin is thus a well isolated degree of freedom. The point is that
this good isolation of spin from any environment simultaneously hinders its detection and
therefore the qubit read-out.

This is why initial experimental efforts were directed at achieving a reliable read-out.
The measurements with the read-out realized have confirmed that the spin relaxation times
are long and have quantified them. We review here the research described in Ref. [139].
The idea implemented requires the conversion of spin into charge. The charge in a dot
is measured by a non-ideal quantum point contact (see Section 1.2) placed near the dot.
Both the dot and the QPC are defined by means of the metallic gates depleting the two-
dimensional gas (see Fig. 5.19). The transmission coefficient T0 of the contact depends
slightly on the charge in the dot n, T0(n), since the electric field of the charge affects the
potential relief in the QPC. The difference between the transmission coefficients for the
adjacent charge configurations n and n + 1 is usually small, δT ≡ (T0(n + 1)− T0(n)) �
0.01. However, it produces an extra current δ I = GQδT V proportional to the voltage over
the QPC. At sufficiently large voltages (1 mV), the extra current is big enough (δ I � 1 nA)
to be measured quickly (0.2 ms). One has to be cautious about the feedback of such a
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�Fig. 5.19. (a) Double-dot layout used in experiments on spin-charge conversion. Gray areas are filled with
electrons of two-dimensional gas. Gate electrodes are not shown. QPCs 3 and 4 formed near dots
1 and 2 measure the charge of the dots. (b) A typical trace of the QPC current versus a gate
voltage. The jump gives the change of the charge configuration in the dot.

detector: the charges traversing the QPC can bring an energy of the order of eV to the
object measured. This effect, however, could be disregarded in the experiments described
below.

Control question 5.19. Estimate theoretically the minimal duration of the measure-
ment required to resolve the extra current �I given the background current I . Hint:
Schottky formula (Section 1.4).

Let us have a single electron in the dot and apply a magnetic field that splits levels
corresponding to the direction of spin, E↓ > E↑. Let us bring the dot into contact with
the lead at a chemical potential that lies in between the split levels. If an electron is in
the upper energy state | ↓〉, it tunnels to the lead and the charge of the dot is changed to
zero. Otherwise, it remains in the dot. This is how we intend to convert spin into charge.
The potential shift between the dot and the lead can be readily tuned by a gate electrode.
During the working sequence (Fig. 5.20) the dot was first emptied. Then both levels are
shifted below the chemical potential of the lead. An electron with unknown spin enters the
dot. This is followed by a waiting time tw, during which the electron can relax to the ground
state | ↑〉with rate �s. The read-out pulse brings the | ↓〉 state above the chemical potential,
while the | ↑〉 state remains below to enable the spin detection as explained. If there is a
spin-up electron in the dot, the dot charge remains equal to e during the read-out. If there is
a spin-down electron, it will tunnel out during a random time of the order of �−1, � being
the tunneling rate from the level. The charge of the dot is zero. It takes time for the electron
from the lead to come and fill the | ↑〉 level, bringing the charge back to e. The pulse of the
charge is detected by the QPC and the presence or absence of such a pulse allows one to
determine the electron spin. At the end of the sequence, the dot is again emptied. Measuring
the dependence of the fraction of the spin-down electrons on the waiting time, one extracts
the spin relaxation rate �s. The main relaxation mechanism was predicted to be the spin-
orbit interaction (Section 1.9). The energy difference 2μe B between the excited and ground
states must be given to an environment, in this case radiated as a phonon. This produces
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�Fig. 5.20. Energy-selective read-out of a single-electron spin [139]. (a) The working sequence. (b) Expected
response of the QPC current to the voltage pulses. (c) Energy diagrams depicting the levels during
the different stages of the sequence. Measurement outcomes for (d) a spin-up and (e) a
spin-down electron. (f) The fraction of spin-down electrons versus the waiting time shows an
exponential decay with the spin relaxation time T1. Inset: T1 for different magnetic fields.
Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.

a rate strongly increasing with magnetic field ∝B5. Such strong dependence was revealed
experimentally. We note that the experiment requires unusually low tunneling rates �: to
detect the charge pulse, they should not exceed 104 Hz. Nor should they be smaller than
the spin relaxation rate.

Exercise 5.16. Quantify possible non-idealities in the work of the described detector.
Assume (tw)−1 � � � �s. Evaluate:

(i) the probability that the dot is empty after the waiting time;
(ii) the probabilities of finding either a spin-up or a spin-down electron in the dot after

the waiting time.
(iii) There is a chance that after the waiting time the dot is in the | ↓〉 state, but this is

not detected since the spin relaxes before the electron would tunnel out. Evaluate
the probability of this process.



449 5.7 Spin qubits
�

(a) (d) (e)

(f)

(b)

(c)

V
p

Δ
I Q

PC

Δ
I Q

PC
 (n

A
)

initialization
preparation &
waiting time

twait
read-out

time

time

Ν = 1
Ν = 1 → 2

Ν = 2 → 1

⏐T〉

⏐T〉

⏐S〉

⏐T〉

⏐T〉

⏐T〉

⏐S〉

⏐S〉

⏐S〉

⏐S〉

“T”

“T”

“S”

“S”

“S”

0

0

10

20

40

1.5
time (ms)

0
0

1

0

0

0.02 T
1.5 T
3.0 T
4.5 T
6.0 T

2 31

0.2

0.4

0.6

0.8

1

4 8 20
waiting time (ms)

fr
ac

tio
n 

of
 “

T
”

no
rm

al
iz

ed
 f

ra
ct

io
n 

of
 “

T
”

1/ T1

B// = 0.02 T

�Fig. 5.21. Single-shot rate-selective read-out of two-electron spin states [139]. (a) Working sequence.
(b) Expected response of the QPC current. (c) Energy diagrams indicating the positions of the
levels during the stages of the sequence. (d) Real-time traces of QPC during the last stage for
tw = 0.8 ms. The step-like negative change right after the pulse indicates the singlet. (e) The
relaxation of the triplet states measured gives T1 = 2.58 ms. (f) Magnetic-field dependence of the
relaxation. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.

Another type of read-out has been implemented to resolve spin states in a two-electron
quantum dot. The ground state in the two-electron configuration is a singlet (see Sec-
tion 5.4) with two electrons in the same level. The first excited state is a triplet with two
electrons in different levels: first and second. The triplet is three-fold-degenerate in the
weak magnetic fields used in the experiment, so the triplet components cannot be distin-
guished. The read-out makes use of the fact that the tunneling rates from singlet (�S) and
triplet (�T) differ significantly (by a factor of 20 in the experiment). This is because the
second electron level is close to the top of the tunnel barrier; this increases its tunneling
amplitude.

The working sequence is as follows. By applying the gate voltage, the dot is put first to
the state with a single electron. Then the gate voltage pulse pulls the two-electron levels
down and thus enables the tunneling of the second electron to the dot. The resulting state
can be either singlet or triplet. The probability of a certain state is determined by the compe-
tition of the tunneling rates �S,T. Since there are three degenerate triplet states, the singlet
is realized with the probability �S/(�S + 3�T). After the waiting time tw, during which
the relaxation from the triplet to singlet state may take place, the spin state is detected. The
read-out pulse pulls the levels up so that tunneling from both states is enabled. If the sys-
tem is in a triplet state, the tunneling takes place with the faster rate �T. The QPC charge
read-out does not show the charge 2e between the beginning of the read-out pulse and the
moment of tunneling since it is too slow to resolve this. If the system is in the singlet state,
the tunneling rate is much slower, so the corresponding signal is resolved (Fig. 5.21). The
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presence or absence of the step-like change of the QPC current thus serves to differentiate
the singlet from either triplet state. Evidently, this read-out can be used to measure the
relaxation time of a triplet state. This was found to be rather long (T1 = 2.5 ms) in low
magnetic fields and quickly decreased with increasing field. Let us note that this time is
at least four orders of magnitude longer than the typical working sequences of the charge,
phase, and flux qubits. This raises the hope that the manipulation of a spin qubit may be
performed with better accuracy and using more complicated working sequences: one just
has more time to do this.

5.7.1 Spin blockade in a double-dot

In practice, such a manipulation still remains a substantial challenge. Most experimental
work in this direction has been concentrated on a particular setup. We will describe it in
detail below, so its advantages become apparent.

We have a double-dot between two leads described in Section 5.5 (Fig. 5.12). Let us
concentrate first on two charge configurations: (1, 1) and (0, 2), and assume that the gating
of the dots brings these to the same energy. The ground state in the (0, 2) configuration is
a spin singlet |Sg〉. The first excited state is a triplet. It lies at sufficiently higher energy
to be disregarded in our consideration. If there is no tunneling between the dots and no
magnetic field, the charge configuration (1, 1) is four-fold-degenerate: an electron in each
dot may come with either spin-up or spin-down. The tunneling through the potential barrier
separating the dots mixes the states of (1, 1) with those of (0, 2). It is essential to note that
the spin conservation imposes strict selection rules on possible matrix elements describing
such mixing: singlets are only coupled to singlets, and triplets only to triplets. This implies
that only the singlet |S〉 of the (1, 1) configuration is coupled to |Sg〉 while the triplet states
are not affected by tunneling. The magnetic field applied in the z direction splits up these
three states according to the projection of the full spin Sz = −1, 0, 1. We denote the states
as |T−〉, |T0〉, |T+〉, respectively. The Hamiltonian in the basis of the five states involved is
given by

Ĥ = ε|Sg〉〈Sg| + T
(|S〉〈Sg| + |Sg〉〈S|

)+ 2μe B(|T−〉〈T−| − |T+〉〈T+|), (5.45)

where ε is the energy shift of the (0, 2) configuration with respect to (1, 1). The Hamiltonian
is diagonal in triplets so that their energies are 2μe B, 0, and −2μe B, respectively. The
singlet states are mixed: the diagonalization of the 2× 2 matrix gives (see Fig. 5.22)

E+,− = ε
2
+

√
ε2

4
+ T 2 . (5.46)

So far we have not considered tunneling to the leads. The voltages of the leads are tuned
in such a way that the state |Sg〉 quickly decays – an electron tunnels to the right-hand lead.
This brings the system to the charge configuration (0, 1), with a random direction of the
spin of the remaining electron. The next process is electron tunneling from the left lead
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�Fig. 5.22. The levels in a double quantum dot in the spin-blockade regime. The crossings of singlet and
triplet states are encircled.

to the left dot, so that the system arrives at one of the states corresponding to the charge
configuration (1, 1).

Let us note a remarkable feature of the setup. If the resulting state is a triplet state, the
charge transport stops: owing to spin conservation, an electron cannot tunnel from the left
to the right dot. In other words, the matrix elements between the triplet states and |Sg〉 are
absent. This phenomenon is known as spin blockade. In contrast to Coulomb blockade, the
tunneling is not forbidden by energy limitations, but rather by the fundamental law of spin
conservation.

We are now ready to describe the idealized work of the device at hand. Two qubits, one
in each dot, are realized in the basis of the four states of the charge configuration (1, 1). It
is expedient to keep the energy shift large, |ε| � T , during preparation and manipulation
of the qubits. This is to prevent the mixing of the states |S〉 and |Sg〉, so that |S〉 lives longer
than the manipulation time. For manipulation, it is convenient to have two sources of mag-
netic field, B1 and B2, affecting two dots separately. The Hamiltonian at the manipulation
stage can be written as

Ĥ = −μeB1σ̂
(1) −−μeB2σ̂

(2) − J (t)σ̂ (1) · σ̂ (2), (5.47)

where the exchange interaction between spins, J (t) ≈ T 2/ε, equals the energy splitting of
spin singlet and triplet states and is obtained by the expansion of E− in Eq. (5.46) in T /ε.
This enables all possible quantum operations with two qubits. Separate qubit rotations are
implemented with the pulses of B1 and B2, whereas the modulation of J (t) allows us to
implement two-qubit gates. In particular, to implement the CNOT operation, one uses Eq.
(5.44).

For the read-out, one reduces the energy shift ε so that the states |S〉 and |Sg〉 mix sig-
nificantly. If a two-qubit gate after the manipulation sequence ends up in state |S〉, this
mixing partially transfers the probability to state |Sg〉. The electron quickly tunnels to
the right lead. In contrast, triplet states are spin-blocked, and the electron does not tunnel
out. Detecting the current averaged over many working cycles thus gives the probability
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of it ending up in state |S〉. As discussed above, in combination with arbitrary two-qubit
operations, this suffices to measure an arbitrary element of the density matrix.

Exercise 5.17. Rewrite the Hamiltonian, Eq. (5.47), in terms of the singlet and triplet
states.

5.7.2 Nuclear spins

Of all the factors that could disturb the work of the device, a rather exotic one turns out to
be the most limiting. At least, it is the most limiting for quantum dots made in GaAs-based
semiconductor heterostructures. The proper functioning is affected most by the magnetic
fields originating from nuclear spins. In almost all materials, each nucleus bears a spin.
The interaction of the nuclear spins and electrons in solids can often be disregarded: the
nuclear spins have a “life on their own” that hardly affects the electron transport under nor-
mal circumstances. Nuclear spin dynamics is very slow at electron or even human scales;
to give the typical numbers for GaAs, the relaxation time of nuclear spins can be as large
as τns ∼ 100 s. The inhomogeneous distribution of nuclear spin also diffuses, character-
ized by the diffusion coefficient DN � 10−13 cm2/s. Nuclear spins are usually randomly
oriented. Since they are in fact small magnets, one could wonder why this is: the magnets
should be oriented by either mutual interaction or by the external magnetic field if present.
The point is that the energy scale of these magnetic interactions is unusually small: their
magnetic moments are about 10−3 of the electron magnetic moment, and the interaction
between the neighboring nuclear spins is �104 Hz. The estimate of the ordering tempera-
ture is therefore 10−7 K, far below any reasonable temperature to be reached in a quantum
transport experiment.

The specific feature of GaAs is a sizeable interaction of electron spin with nuclear polar-
ization. If all nuclear spins are aligned in the same direction, the Zeeman splitting of the
electrons is En = 0.135 mV, corresponding to a magnetic fields of 5 T. Such energies are
certainly noticeable at the quantum transport scale. Since the nuclear spins are disordered,
one may think that the average over this disorder cancels the effect. Let us estimate if this
is really so. In a typical one-electron quantum dot in GaAs, the electron wave function
extends over NQD ∼ 105–106 atoms; this yields an estimate of a typical number of nuclei
interacting with the electron spin. The energy En is composed of independent contributions
of NQD nuclear spins. If the nuclear spins are disordered, we still expect the fluctuation to
be of the order of �ns ≡ En/�

√
NQD∼108 Hz. This corresponds to a temperature 10−3 K

and is therefore negligible at the energy scale of electrons in the quantum dot. On the
other hand, it is significant in the context of coherent spin manipulation. It represents a
random shift of the operational frequency. This random shift varies in time over the typical
scale τns.

In particular, for a double-dot device considered above, the interaction of electrons with
nuclear spins adds the following term to the qubit Hamiltonian given by Eq. (5.47):

Ĥn = −��(1)σ̂
(1) − ��(2)σ̂

(2), (5.48)
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where �(1),(2) are randomly oriented vectors with a typical magnitude of the order of �ns,
acting in each of the dots.

Moreover, the interaction between electron spin and nuclei can be further enhanced by
the polarization of the nuclei induced by the manipulated spin. The point is that the relax-
ation of electron spin sometimes (rarely) involves the flip of a spin of a certain nucleus
in the dot. Note that, depending on the manipulation protocol, there may be a preferential
direction for this spin flip. Since the relaxation time of a nuclear spin is enormously slow,
even very rare flips can lead to a substantial nuclear polarization. The effective magnetic
field created by this polarization again shifts the operational frequency and may create a
considerable feedback on the manipulation scheme.

5.7.3 Coherent manipulation of electron spin: example

We described the scene for which experiments on coherent manipulation of electron spins
are performed. We concentrate on one particular experiment [140] that gives an example of
how the difficulties described above can be circumvented by a creative choice of the manip-
ulation protocols. The authors were not able to achieve the full two-qubit functionality of
the device: they work with two quantum states |S〉, |T0〉 representing a single qubit thereby.
The higher triplet states |T±〉 are separated by applying a sufficiently high magnetic field
Bz such that the Zeeman energy by far exceeds the random contribution of the nuclear
spins. Furthermore, only one “handle,” the time-dependent exchange interaction J (t), has
been employed for the manipulation. As discussed above (Eq. (5.47)), the exchange J (t)
is determined by the energy shift ε, and this allows for an easy gate voltage manipulation.
Three working sequences have been realized.

Nuclear spin effect

To initialize the system, the gate voltages have been set to assure the stable (0, 2) charge
configuration, so the quantum state is an almost pure |Sg〉. A sweep of the gate voltage
transfers this state deep into charge configuration (1, 1). The sweep is fast on the scale of
the random nuclear field �ns but slow at the scale of the tunneling mixing T /�. Under
these conditions, the resulting quantum state is |S〉. The effective Hamiltonian in the basis
of |S〉, |T0〉 is given by

Ĥ =
(

J (t) ��

�� 0

)
, (5.49)

with � = �(1)
z −�(2)

z � �ns.

Control question 5.20. Why does the external field Bz not appear in Eq. (5.49)? Why
are the nuclear magnetic fields in two dots subtracted? Why do their x , y components
not enter the effective Hamiltonian?
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Deep in the (1, 1) configuration, J ≈ 0, and the free evolution of the qubit is the rotation
about x axis. The qubit is kept rotating for the time τS, so that after the evolution it is in
the coherent superposition cos(�τS)|S〉 + sin(�τS)|T〉. Another sweep of the gate voltage
brings the system back to the initialization conditions: to the gate voltages corresponding
to the stable charge configuration (0, 2). There are two possible outcomes. With probability
cos2(�τS), the state is |S〉 and is adiabatically transferred to |Sg〉. In this case, the adjacent
QPC measures the (0, 2) charge configuration immediately after the sweep. With probabil-
ity sin2(�τS), the state is |T0〉. After the sweep, the charge configuration remains as (1, 1).
This is an excited state with respect to (0, 2). However, the spin blockade guarantees that
the triplet state persists for a long time (>10 μs in the experiment) sufficient to measure
the charge configuration (1, 1). We note that the read-out exploits the same idea as the
two-electron read-out described previously (Fig. 5.21).

If � were a fixed frequency, the measurement would yield the singlet probability
PS = cos2(�τS). However, it takes a long time and many working cycles to accumulate
the data with sufficient precision. Although � does not change within a working cycle,
it does change during the data accumulation time. Therefore, the probability measured is
an average over the distribution of �. Since � arises from the independent contributions
of a large number of nuclei, it is normally distributed with zero average. The average is
evaluated in the following way (see also Section 6.7);

〈cos2�τS〉 = 1

2
+ 1

2
Re〈e2i�τS〉 = 1

2

(
1+ e−2〈�2〉τ 2

S

)
.

The probability PS decreases exponentially with the time, saturating at 1/2. This expo-
nential decay observed experimentally (Fig. 5.23) allowed a measurement of 〈�2〉 =
(10 ns)−2, in accordance with preceding estimations. The decay seems to indicate that the
duration of the manipulation sequence must be shorter than 10 ns.

Rabi oscillations

The next working sequence we describe attempts to achieve the manipulation at this time
scale of 10 ns, and is as follows. The system is again initialized in the charge configura-
tion (0, 2), and brought deep into the charge configuration (1, 1). In distinction from the
previous working sequence the transfer is slow in comparison with the nuclear mixing
time �−1

ns . The Hamiltonian at this point in the basis of |S〉 and |T0〉 states has the form
given by Eq. (5.49) with J = 0. The slow transfer brings the qubit to the ground state of
this Hamiltonian, which is | ↑↓〉 = (|S〉 + |T0〉)/

√
2 (assuming negative�). Subsequently,

the qubit is brought rapidly to the vicinity of the point ε = 0 where J (t) is finite, and is
rapidly brought back after the time τE. This is the manipulation: we give a pulse to the
exchange interaction J . The read-out is the reverse of the initialization: one slowly moves
the qubit out to the point ε ≈ 0, whereby the ground state | ↑↓〉 and the excited state
| ↓↑〉 = (−|S〉 + |T0〉)/

√
2 are adiabatically transformed into |S〉 and |T0〉, respectively.

Further rapid increase of ε transfers the qubit in the charge configuration (0, 2), provided it
is in the |S〉 state, and leaves it in the configuration (1, 1) due to the spin blockade, provided
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�Fig. 5.23. Example of coherent manipulation of electron spin. (a) Nuclear spin effect causes apparent spin
decoherence at the nanosecond scale seen in PS versus the pulse time τS. The deviations of PS

from the theoretical saturation value 1/2 are due to non-ideality of the read-out. The theoretical
Gaussian fit (solid curve) is adjusted for this. (b) Rabi oscillations in PS versus the exchange
coupling pulse duration τE. Different curves correspond to different values of J(ε) and manifest
different periods of the oscillations. The curves are shifted by 0.3 for clarity; the solid line is a fit
with damped cosine function. (c) Spin-echo experiment reveals the true coherence time of
microsecond scale. The slowly decaying curve corresponds to the precisely equal free evolution
intervals τS,S′ : In this case, the effect of the random nuclear field is canceled by the spin-echo
sequence. The insets show the decay at τS − τS′ in the nanosecond range. Taken from Ref. [140];
reprinted with permission from AAAS.

it is in the |T0〉 state. Thus, measuring the charge of one of the dots yields the probability
of the qubit being in the| ↑↓〉 state after the manipulation.

If we neglect� in comparison with J/�, the manipulation is the rotation about the z axis
by the angle JτE/2�. The qubit would perform Rabi oscillations with frequency J/2�, the
probability P↑↓ after the manipulation being given by cos2(JτE/2�). A small but finite �
results in a random shift of the Rabi frequency �2

�/J . One expects the apparent decay
of the Rabi oscillations at the time scale of the inverse frequency shift, J/��2 � �−1,
that is, at a larger time scale than in the preceding nuclear spin effect experiment. The
experimental results are shown in Fig. 5.23 and do not display such an improvement. This
has been attributed to the extra dephasing brought by the charges: during the pulse, the
qubit is sensitive to the charge noise that affects J .
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Spin echo

These two experiments, however, do not show the real potential of the device. In fact, the
free evolution of the qubit remains coherent for much longer times than the decay constants
measured. It is just that the random nuclear fields essentially mask this time scale. The
authors have implemented a spin-echo manipulation sequence (Section 5.3) to cancel the
random field �. The initialization and read-out are the same as in the previous experiment.
The free evolution of the qubit during the time interval τS in the presence of the random
field � is followed by the exchange interaction pulse that provides the π -rotation around
the z axis. If after the pulse the qubit is left to evolve during precisely the same time
τS′ = τS, the rotations around the x axis cancel each other precisely. This is how the true
coherence time (1.2 μs), two orders of magnitude better than �−1 has been revealed. The
signal quickly dies if the difference, τS − τ ′S, becomes of the order of �−1 (see Fig. 5.23).



6 Interaction, relaxation, and decoherence

In Chapter 3, we discussed charging effects in nanostructures: the most important
manifestation of electron–electron interaction in quantum transport. In this chapter, we
concentrate on another aspect of interactions which we have so far mentioned very
briefly. It concerns interaction with slow modes. In most cases these slow modes are
electromagnetic excitations in the nanostructure and nearby circuit that form an electro-
magnetic environment of the nanostructure. The effect of this interaction is threefold.
First, it may affect and alter transport properties of the nanostructure. Secondly, it pro-
vides energy relaxation: transporting electrons and qubits may exchange their energy with
the electromagnetic environment. Thirdly, the environment provides decoherence, induc-
ing time-dependent phase shifts to wave functions of propagating electrons and qubits,
thereby destroying the quantum coherence of corresponding states.

The physics discussed in this chapter is sometimes involved and various. It requires
effort to see a “common denominator” in all effects mentioned. We choose to present
material starting from the ideas of dissipative quantum mechanics: a branch of quantum
mechanics developed in the 1970s and 1980s. For several concrete phenomena this presen-
tation manner deviates from that commonly accepted in the literature. Although this may
be inconvenient for the reader, we did this for the sake of the “big picture,” which allows
us to see links and analogies between formally different phenomena.

The structure of the chapter is as follows. Sections 6.1 and 6.2 are introductory. In Sec-
tion 6.1, we discuss electromagnetic excitations in linear circuits and the way to treat them
quantum-mechanically. In Section 6.2 we review general ideas of dissipative quantum
mechanics, which are not specific for quantum transport: the orthogonality catastrophe,
shake-up, classification of environments.

These ideas receive the most direct implementation in the context of tunneling of elec-
trons and Cooper pairs in the presence of an electromagnetic environment, which we
consider in detail in Section 6.3. Section 6.4 is devoted to situations where it is impor-
tant that electrons move in the electromagnetic environment before and after tunneling.
Altshuler–Aronov corrections and Luttinger liquids fall into this class. Section 6.5 extends
our ideas to nanostructures that include more transparent channels. Coulomb blockade at
arbitrary transparency is also presented.

The electrons in nanostructures may provide slow modes that are not electromagnetic
excitations. This fermionic environment is presented in Section 6.6, in which we consider
the Kondo effect and Fermi-edge singularity. Sections 6.7 and 6.8 focus on decoherence
and relaxation. These phenomena are manifested differently for qubits and electrons, which
is why we separate the material into two different sections.
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�Fig. 6.1. Stages of quantization in electric circuits. (a) The simplest electrical oscillator is quantized as a
generic quantum oscillator giving rise to a single boson mode. (b) The response to the
time-dependent current source I(t) defines the susceptibility χ(ω). (c) To describe dissipative
circuit elements (resistor R), infinitely many boson modes are introduced to simulate the
susceptibility given by the circuit theory rules.

6.1 Quantization of electric excitations

The purpose of this section is to provide a quantum description of electromagnetic exci-
tations. We start with a simple circuit consisting of a capacitor with capacitance C and an
inductor with inductance L (see Fig. 6.1(a)). This circuit is known as the simplest electric
oscillator: its excitations are persisting oscillations with frequency ω0 = 1/

√
LC . In clas-

sical terms, the circuit is described with two equations for the flux in the inductor 	 and
the charge in the capacitor Q:

Q̇ = 	/L; (6.1a)

	̇ = −Q/C . (6.1b)

Equation (6.1a) is the first Kirchhoff rule: the currents in the capacitor and the inductor are
the same. Equation (6.1b) is the second Kirchhoff rule: the sum of voltage drops over a
closed loop in the circuit is zero; the voltage drops are therefore opposite.

Let us construct the quantum description of the circuit. In fact, we did most of the work
in Section 3.5.2 when discussing the Josephson junction. The point is that a Josephson
junction at a small phase difference can be approximated by an inductor. We have estab-
lished that, in this case, the quantum mechanics of the system is governed by the following
Hamiltonian:

Ĥ = EJ
φ̂2

2
+ EC

N̂ 2

2
,

where the operators N̂ and φ̂ are proportional to the charge of the capacitor and the flux in

the inductor, and satisfy canonical commutation relations
[

N̂ , φ̂
]
= −2i. Since N̂ = Q̂/e,

φ = 2π	/	0, the Hamiltonian can be written in terms corresponding to classical energies
of the capacitor and the inductor as follows:

Ĥ = 	̂
2

2L
+ Q̂2

2C
.

The commutation relation is rescaled to [Q̂, 	̂] = −i�.
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It turns out that all harmonic oscillators – physical systems exhibiting oscillations that
obey linear equations of motion – are described by equivalent Hamiltonians. Such a Hamil-
tonian is a quadratic form of two operators whose commutator is a constant. The most used
example is the Hamiltonian of a particle with a mass m moving in a parabolic poten-
tial U (x) = U ′′x2/2. The operators of particle momentum p̂ and coordinate x̂ satisfy
[ p̂, x̂] = −i� and Ĥ = p̂2/2m +U ′′ x̂2/2. The Hamiltonians of all oscillators are the same
upon linear transformation of the operators involved.

There is a standard form of the oscillator Hamiltonian valid for all imaginable harmonic
oscillators. It is given in terms of the boson creation and annihilation operators b̂†, b̂, which
satisfy the standard commutation relation [b̂†, b̂] = 1. The Hamiltonian is given by

Ĥ = �ω0b̂†b̂ + const.,

irrespective of the nature of the oscillator. The eigenstates of this Hamiltonian differ by the
number of excited quanta n = b̂†b̂, the corresponding energies being En = �ω0n.

Exercise 6.1. Given the Hamiltonian Ĥ = AX̂2/2+ BŶ 2/2 and the commutation
relation [X̂ , Ŷ ] = iC , bring it to the above standard form. Find ω0 and express X̂ , Ŷ
in terms of b̂†, b̂.

To specify the nature of the oscillator, one has to specify the forces moving and exciting
it. For electric circuits, these forces are voltage and current sources. For example, let us
add the current source I (t) to our oscillator circuit. The source increases the energy of the
system by −I (t)	̂, and this is to be added to the Hamiltonian:

Ĥ = �ω0b̂†b̂ − 	̂I (t).

The flux operator 	 is linear in b̂†, b̂, and the coefficients of the linear combination are
given by the answer to the above exercise,

	̂ = −i

(
�

2L

4C

)1/4

b̂† + h.c.

Next, we relate the expectation value of the flux operator to the current source. As dis-
cussed, in the context of Josephson junctions we can do this solving either quantum
Heisenberg equations 	̇ = i[Ĥ , 	̂] or classical equations (Eqs. (6.1)) with the current
source added:

Q̇ = 	/L − I (t); (6.2a)

	̇ = −Q/C . (6.2b)

The latter is simpler. We rewrite the above equations in terms of the Fourier components
	(ω), I (ω) to establish that

〈	(ω)〉 = χ (ω)I (ω); χ (ω) = L

1− (ω + i0)2/ω2
0

. (6.3)

The so-defined function χ (ω) is an example of a generalized susceptibility. It is a response
function: it gives the flux response on the action of a time-dependent current source
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I (t). For any circuit or system, the response function satisfies the causality property: the
response depends on the values of the action in the past and not those in the future. In
terms of Fourier components, this means that χ (ω) is an analytical function of ω in the
upper half-plane of complex ω. We add an infinitesimally small imaginary part i0 to the
denominator in Eqs. (6.3) to assure this property. The imaginary part of the susceptibility
is obtained using the Cauchy formula Im (x + i0)−1 = −πδ(x) and is given by

Im χ (ω) = πL

2ω0
(δ(ω − ω0)− δ(ω + ω0)) .

This produces δ-peaks at resonant frequency ω = ±ω0. The imaginary part of the suscepti-
bility is related to dissipation in the circuit. For an oscillator, the dissipation can only occur
at a resonant frequency corresponding to the excitation of the bosons of the oscillator mode.

The circuit studied so far is rather unrealistic: it does not contain the dissipative elements,
for example, resistors. It is straightforward to introduce such elements at classical level: let
us add a resistor in parallel with the capacitor and the inductor. The current in the resistor,
	̇/R, is proportional to the voltage drop 	̇ on it, so the classical equations become

Q̇ = 	/L + 	̇/R − I (t); 	̇ = −Q/C .

The susceptibility is now given by

χ (ω) = L

1− (ω2/ω0)2 − iωL/R
;

Im χ (ω) = ωL2/R(
1− (ω/ω0)

2)2 + (ωL/R)2
.

We see that the imaginary part of the susceptibility is not zero at any ω, although at weak
dissipation, R � √L/C , it gives two narrow peaks approximating the δ-peaks of an ideal
oscillator. The boson modes are thus present at any frequency.

This implies the following quantum description. A circuit with dissipative elements
is described by infinitely many boson modes, numbered k, with frequencies ωk . This
is instead of a single mode with frequency ω0. The frequencies of the modes form a
continuous spectrum, filling the whole frequency interval. The Hamiltonian becomes

Ĥ =
∑

k

�ωk b̂†
k b̂k − I (t)	̂; (6.4a)

	̂ =
∑

k

Ckb̂†
k + h.c. (6.4b)

The quantum model is specified with the introduced weight coefficients Ck . Their values
also determine the dynamics of the flux 	. To see how this works, let us relate these
coefficients to the susceptibility. We look at the Heisenberg equations of motion for boson
operators corresponding to the Hamiltonian, Eq. (6.4a)

˙̂bk = i[Ĥ , b̂k]/� = −iωk b̂k + iCk I (t)/�.

Solving the equations using the Fourier transform method, we find

〈bk(ω)〉 = Ck/�

ωk − ω − i0
I (ω).
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Summing up these averages to 〈	̂〉, we find the susceptibility in terms of Ck as follows:

χ (ω) =
∑

k

|Ck |2
�

(
1

ωk − ω − i0
+ 1

ωk + ω + i0

)
.

Taking the imaginary part of this equation and using the Cauchy formula again we
show that ∑

k

ω|Ck |2δ(ω − ωk) = �

π
Im χ (ω) at ω ≥ 0. (6.5)

This relation in fact provides the quantum description of electric circuits. It relates the
parameters of the quantum model – the weight coefficients Ck – with the classical descrip-
tion of the circuit in terms of the susceptibility. Obviously, the relation does not fix all
Ck unambiguously. However, this is not necessary. The point is that the quantum model
involves infinitely many boson degrees of freedom to describe the dissipative dynamics of
a single degree of freedom	. The model is therefore highly redundant: all possible choices
of Ck satisfying Eq. (6.5) bring about identical results.

Let us employ the quantum description obtained to evaluate the (quantum) fluctuations
in the circuit. We define the frequency-dependent noise of flux similar to in Section 1.7.3
as follows:1

S	(ω) =
∫

dt e−iωt 〈	̂(0)	̂(t)〉 =
∫

dt e−iωt S	(t). (6.6)

The time-dependent boson operators become b̂k(t) = eiωk t b̂k . Expressing the operator 	̂
in terms of the weight coefficients, we see that

S	(ω) = 2π
∑

k

|Ck |2 (Nkδ (ω − ωk)+ (1+ Nk)δ (ω + ωk)) , (6.7)

where Nk ≡ 〈b̂†
k b̂k〉 is the average occupation number of the boson mode. Using Eq. (6.5),

we prove that the asymmetric part of the noise does not depend on the occupation and is
immediately given by the imaginary part of the susceptibility, that is

S	(−ω)− S	(ω) = 2� Im χ (ω). (6.8)

If the circuit is in thermal equilibrium, the occupation numbers of the boson modes are
given by a Bose distribution, Nk = NB(ωk) ≡ 1/(e�ωk/kBT − 1) and depend on frequency
only. Substituting this into Eq. (6.7), we find S(−ω) = S(ω) exp(�ω/kBT ) and

S(ω) = 2�NB(ω) Im χ (ω) (6.9)

at any frequency. A special limit is given by ω � kBT/�. In this case, NB ≈ kBT/ω and

S(ω) ≈ S(−ω) ≈ kBT Im χ (ω)/ω. (6.10)

This does not contain � and presents therefore the classical thermal fluctuations. In the
opposite limit, ω � kBT/�, the noise is purely quantum:

S(ω) = 2� Im χ (|ω|)�(−ω).

1 There is a factor of 2 difference between the definitions.
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We note the similarity with the relations for the equilibrium current noise discussed in
Section 1.7.3. In that case, the susceptibility is defined as the charge response on the action
of the voltage source and is given by iωG(ω), G(ω) ≡ I (ω)/V (ω) being the frequency-
dependent conductance (admittance) of the nanostructure. This is in contrast to the case of
flux or voltage noise where the susceptibility χ (ω) = iωZ (ω) is, apart from the factor, the
impedance of the circuit. The fluctuations in linear circuits, either quantum or classical,
are Gaussian and have a well known property that any higher-order correlator of electric
variables can be expressed in terms of the noise S	. In the present quantization approach,
this is guaranteed by the properties of boson annihilation and creation operators. Later in
the chapter, we will need a relation for the correlation of the exponents of electric variables.
The Gaussian property means that

〈e Â〉 = e〈 Â2〉/2; 〈e ÂeB̂〉 = e〈 Â2〉/2+〈 Â B̂〉+〈B̂2〉/2 (6.11)

for any operators Â, B̂ that are linear in boson operators. Using this, we prove, for
example, that

〈e−ia	̂(0)eia	̂(t)〉 = e−a2(S(0)−S(t)). (6.12)

The above relations present the quantization of the circuit where only one degree of free-
dom – either flux or charge – is important. The quantization requires the susceptibility – the
response of this degree of freedom on either current or voltage source, respectively. What
do we do for a general linear circuit where several degrees of freedom are of importance?
The Hamiltonian in this case generally includes the corresponding sources: current ones
for flux variables (labeled i) and voltage ones for charge variables (labeled j):

Ĥ =
∑

k

�ωk b̂†
k b̂k −

∑
j

I j 	̂ j −
∑

i

Vi Q̂i .

The quantum dynamics of the circuit is determined by the corresponding susceptibilities –
the responses to the sources:

−iω〈	̂ j (ω)〉 =
∑

j ′
Z j j ′(ω)I j ′(ω)+

∑
i

Ki j (ω)Vj (ω);

−iω〈Q̂i 〉 =
∑

i ′
Gii ′ (ω)Vi ′ (ω)+

∑
j

K̃i j I j (ω),

which we choose to present as the matrices of impedances (Z j j ′ ), admittances (Gii ′ ), and
gains (K ji , K̃i j ). The operators of the variables are linear in boson variables:

	̂ j =
∑

k

f ( j)
k b̂†

k + h.c.; Q̂i =
∑

k

q(i)
k b̂†

k + h.c. (6.13)

The correspondence between the weight coefficients and response functions is given
by (ω > 0) ∑

k f ( j)
k ( f ( j ′)

k )∗ δ(ω − ωk) = �

ωπ

(
Z j j ′(ω)− Z∗j ′ j (ω)

)
;∑

k q(i)
k (q(i ′)

k )∗ δ(ω − ωk) = �

ωπ

(
Gii ′ (ω)− G∗i ′i (ω)

)
;∑

k f ( j)
k (q(i)

k )∗ δ(ω − ωk) = �

ωπ

(
K ji (ω)− K̃ ∗i j (ω)

)
.

(6.14)
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�Fig. 6.2. (a) In this example circuit, the variables of interest are the current I3 in resistor R3 and the
voltage VN in node N. For quantization, one needs the corresponding susceptibilities. (b) The
susceptibilities are obtained by as responses of VN and I3 on virtual current (iN) and voltage
sources (V3(t)).

The response functions in an equilibrium circuit satisfy the Onsager symmetry rela-
tions, Z j j ′ = Z j ′ j , Gii ′ = Gi ′i , Ki j = −K̃ ji . In this case, the weight coefficients qk can
be chosen to be real while fk are purely imaginary.

To avoid any misunderstanding, we note that no physical detail of the circuit design
should represent the sources introduced; one does not have to provide the actual means for
applying voltage or injecting electrons. The sources are needed to represent the response
functions of the variables of interest and can be completely virtual. Let us illustrate this
with a concrete example of the circuit depicted in Fig. 6.2. Suppose the variables of interest
are current in resistor R3 and voltage in node N . To characterize the weight coefficients,
we need the response functions. Those are readily obtained if we insert the voltage source
V3 in series with the resistor 3 and inject the current iN into the node N . The response
functions, however, are calculated with the circuit theory rules and are known provided the
parameters of the circuit are known.

The noises in this general circuit are defined in terms of the product of the time-
dependent operators. For example, the current noises form a matrix given by

Si j (ω) =
∫

dt e−iωt 〈 Îi (0) Î j (t)〉. (6.15)

For i �= j , this yields a correlator of the corresponding fluctuating currents.

Exercise 6.2. Evaluate the correlator of the current and voltage specified, SI V (ω) =∫
dt e−iωt 〈 Î3(0)V̂N (t)〉. For this, present the operators in the form given in Eqs. (6.13),

express the correlator in terms of weight coefficients, and use Eqs. (6.14) to find the cor-
respondence between the correlator and response functions. Find the required response
functions from the circuit theory analysis.

We have just quantized the electric circuits: we found their quantum description starting
from a classical one. Sometimes we come across the reverse problem. Start with a Hamilto-
nian of a quantum system, for example that of electrons in a metal, and find the description
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of the system in terms of a handful of variables, for example in terms of voltages and cur-
rents appearing in an equivalent electrical circuit. This belongs to the subject of quantum
response theory. If there are reasons to assume that the resulting description boils down to
a system of linear equations (as for the electrons in a metal), this belongs to the subject
of linear response theory. Let us formulate several general properties of susceptibilities
and noises that do not depend on the concrete choice of variables in use. Let the variables
be denoted as x̂i : they do not have to have a dimension of length, nor do they have to
be of the same dimension. To derive the relations, we add extra terms to the Hamiltonian,
Ĥ = Ĥ0 −∑

i Fi (t)x̂i , introducing sources that drive the dynamics of x̂i . The susceptibili-
ties are defined as the response functions of xi on the forces Fi , 〈x̂i (ω)〉 =∑

j χi j (ω)Fi (ω).
They are given by the Kubo formula:

χi j (ω) = i

�

∫ 0

−∞
dt e−iωt [x̂i (0), x̂ j (t)] ≡

∫ ∞
−∞

dt χi j (τ ). (6.16)

Exercise 6.3. Derive the Kubo formula from the Heisenberg equations for operators
x̂ j (t).

If we compare this to our definition of noises given in Eq. (6.6), we see that χi j (t) =
i�(−t)(Si j (t)− S ji (−t))/�, where the factor �(−t) guards the causality: the response
depends on the force in the past only. Due to this factor, we cannot immediately relate the
frequency components of the χ and S values. However, if we take two mutually reversed
susceptibilities, χi j and χ j i , we can prove that

χi j (ω)− χ j i (−ω) = i

�
(Si j (ω)− S ji (−ω)). (6.17)

Since χ∗i j (ω) = χi j (ω), we recover Eq. (6.8) for i = j . We also note that the definition
of the noises imply that S∗i j (ω) = S ji (ω). This is all we can say about the system under
general circumstances.

We can say much more if we assume that the system is in thermal equilibrium. A conve-
nient basis to work in is that of the Hamiltonian. In this case, the density matrix is diagonal
in this basis and ρn ∝ e−En/kBT . The noise definition is given by

Si j = 2π
∑
n,m

x (i)
nm x ( j)

mnδ(�ω + Em − En)ρn . (6.18)

Comparing this with the expression for S ji , we find that

Si j (ω) = S ji (−ω) exp(−�ω/kBT ). (6.19)

Combining this with Eq. (6.17), we can unambiguously relate the noises and susceptibili-
ties. Traditionally, this is written in the form of the fluctuation-dissipation theorem, which
relates the symmetrized noises (measured with a classical detector; see Section 1.7.3),
S(s)

i j (ω) = (Si j (ω)+ S ji (−ω))/2, and the susceptibilities,

S(s)
i j (ω) = coth

(
�ω

2kBT

)
1

2i

(
χi j (ω)− χ∗j i (ω)

)
. (6.20)
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Yet more relations hold under time-reversibility conditions. One can choose the variables
xi to be either symmetric or antisymmetric with respect to time reversal. In our general
circuit example, the charges Qi are symmetric while the fluxes 	i are antisymmetric. The
matrix elements of the operators entering Eq. (6.18) are real for symmetric and purely
imaginary for the asymmetric ones. Suppose all xi are symmetric. This implies that S ji (ω)
are real, and S ji = Si j . It then follows that the susceptibilities must be symmetric, χi j =
χ j i . This is the Onsager relation.

Control question 6.1. Suppose some of the variables xi are antisymmetric. What do
the Onsager relations look like?

6.1.1 Electricity in extended conductors

Several times in this chapter we will need to depart from the circuit description and to know
how electricity is quantized in extended conductors, where it is characterized by the spatial
distribution of voltage, V (t , r). As in circuits, the quantization is based on the response
functions. The difference is that the response functions depend now on two coordinate
arguments r , r ′, giving, for instance, the voltage response in the point r on the current
I (t)dr ′ injected in the point r ′:

V (ω, r) =
∫

dr ′ Z (ω; r , r ′)I (r ′). (6.21)

This defined impedance determines all quantum properties of the voltage distribution. In
this subsection, we evaluate this impedance for several various geometries addressed in
this chapter.2

A geometry represents a concrete structure at a certain space scale, a typical distance
between r and r ′. For the sake of a concrete example, let us consider a uniform conductor
in the form of a slab with dimensions Lx � L y � Lz placed above an ideally conducting
plane (gate electrode) (see Fig. 6.3).

At space scales smaller than Lz , the system can be regarded as a three-dimensional
infinite homogeneous conductor. In a homogeneous system, the impedance conveniently
depends only on the difference of the coordinates r , r ′. So we work with Fourier
transformations with respect to the coordinate difference, V (ω, q) = Z (ω, q)I (ω, q).
To find the voltage response on the current injected in the point r ′, we use charge
conservation:

div j + ∂ρ
∂t
= I (t)δ(r − r ′) .

2 Strictly speaking, the exact description of a spatially dependent electromagnetic field, taking relativistic retar-
dation into account, requires a vector potential A(r) along with a scalar potential V (r) to be considered. The
corresponding response functions are matrices representing, for example, current responses on the action of
vector potentials. However, in most model problems – and in all problems in this chapter – one can live with
scalar potential only.
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�Fig. 6.3. Geometries and separation of scales. The coordinate-dependent impedance of the conducting
nanostructure shown on the left (Lz � Ly � Lx), Z(ω, r, r′), can be evaluated in different
homogeneous geometries depending on the distance between r and r′.

In metals we have the electroneutrality condition, ρ(r , t) = 0. Using this and the rela-
tion between current density and potential gradient, j = −σ∇V (σ being the specific
conductivity of the conductor material), we obtain

Z (ω, q) = 1/(σq2). (6.22)

The impedance does not depend on frequency, indicating that the response is instantaneous
in this approximation.

Let us turn to larger space scales. At Lz � |r − r ′| � L y , the geometry is effectively
two-dimensional. The voltage profile in the z direction is fixed and the voltage can only
change in two directions x , y, i.e. V (x , y, z) = V (x , y) f (z); f (z) is a unity constant in
the film and drops linearly to zero in the space between the film and the gate electrode.
Implementing the charge conservation, we should be aware of the capacitance between the
film and the gate. This leads to charge accumulation at the surface of the film, ρ = C̃V , C̃
being the capacitance to the gate per unit area, and this charge takes part in overall charge
balance. To create the balance, we integrate the current density over the thickness of the
film. In this form, it becomes j = −∇V/R̃, where j ,∇ have x , y components only. The
proportionality coefficient is called the “resistance per square,” R̃ = 1/σ Lz . Substituting
all this into the charge conservation law, we obtain

−∇2V/R̃ + C̃ V̇ = I (t)δ(r − r ′)⇒ Z (ω, q) = 1

−iωC̃ + q2/R̃
, (6.23)

where the wave vector q is two-dimensional as well.
At yet larger scales, Lz � |r − r ′| � L y , the profile of the voltage distribution is fixed

in two directions, V (x , y, z) = V (x) f (y, z), so we encounter one-dimensional geometry.
The relations are valid for 1d geometry if we redefine C̃ , R̃ as capacitance and resistance
per unit length, respectively. Such a 1d wire is commonly called an RC-line. By inspect-
ing the denominator of Eq. (6.23), we find that the propagation of the field is no longer
instantaneous; rather, it is a diffusion, with diffusion coefficient D∗ = 1/(R̃C̃).

Until now, we have assumed that the current response on the voltage gradient is resis-
tive. More generally, the response contains resistive and inductive parts, so that −∇V =
R̃ j + L̃ d j/dt . The induction can come from changing magnetic fields produced by
the current, but can also come from electrons accelerated by the electric field (kinetic
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induction). For 2d geometry, L̃ is the film inductance per square, while for 1d geometry it
is the inductance per unit length. We see that at sufficiently large frequencies ω � R̃/L̃ ,
the inductive response dominates and the time derivative of the current is proportional
to the voltage gradient, d j/dt = −∇V/L̃ . A plain example of such a system is a coaxial
TV cable: at very low frequencies, it is an RC-line; at higher frequencies of TV signal,
its response is almost entirely inductive and it becomes an LC-line. For both 1d and 2d
geometries, the impedance is given by

Z (ω, q) = iω

(ω + i0)2C̃ − q2/L̃
. (6.24)

This changes the way in which the electricity propagates. Since the inductive response
does not provide the dissipation by itself, the electrical excitations move, conserving their
energy. The elementary excitations are called plasmons. The dispersion law for the plas-
mons is found by inspecting the denominator of Eq. (6.24): ω = vpq; this implies that the

plasmons propagate with velocity vp = 1/
√

L̃C̃ , which does not depend on q.
As an application of the quantization procedure, let us evaluate the correlator of the

voltages in the extended conductor:

SV (ω, q) =
∫

dt dreiωt+iq·r〈V̂ (r , 0)V̂ (r ′, t)〉.

As we see from Eqs. (6.14) and (6.9), this correlator is directly related to the impedance,

SV (ω, q) = ωNB(ω) Re Z (ω, q). (6.25)

For instance, for an RC-line and ω � kBT/�, we find

SV (ω, q) = 2kBT R̃

(ωC̃ R̃/q2)2 + 1
. (6.26)

Control question 6.2. Estimate the correlation length of the electrical fluctuations in
the RC-line at a given frequency ω.

6.1.2 Electricity and electrons

Electricity in conductors is due to electrons. In Section 6.1.1, we evaluated the impedance
in various geometries under some simplifying assumptions about the electrons. We have
assumed that the electrons ideally screen any stationary charge in the conductor, so there
is no net charge except in the conductor-bound areas. We also disregard the effects of
electron motion – either diffusive or ballistic – on the impedance. In this subsection, we
will evaluate the impedance in a more microscopic way, explicitly taking into account the
electron response on the electric field. This response will contain the disregarded effects.
We will see that the assumptions are good, and that in most cases the corrections can be
disregarded. They are, however, important for the interaction effects to be considered in
Section 6.4.
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We define the impedance as the frequency-dependent voltage response at point r on the
external current injected to the conductor at point r ′. We stress that this current is not a
stream of electrons (otherwise, we should be able to provide a physical terminal to each
point of the conductor.) Generally, the impedance is evaluated as follows. The external
current induces a charge ρext(r ,ω) = I (r ,ω)/(−iω). This charge induces the electrostatic
potential, even in the absence of electrons, Vext(r ,ω) = ∫

dr ′ U (r , r ′)ρext(r ′,ω). The elec-
trons are present, however, and react on this potential. Generally, the charge response of
the electrons on the potential may be presented as follows:

ρel(r) =
∫

dr ′ Cel(r , r ′)V (r ′,ω). (6.27)

Since the electron charge produces a potential on its own, the actual voltage distribution is
found from Eq. (6.27) and the following self-consistency equation:

V (r ,ω) =
∫

dr ′ U (r , r ′)(ρext(r ′,ω)+ ρel(r ′,ω))

=
∫

dr ′U (r , r ′)(I (r ′,ω)/(−iω)+ ρel(r′,ω)).

If we turn to a homogeneous geometry and change to Fourier transforms with respect to
the coordinate difference, the resulting impedance is given by

Z (ω, k) = U (k)

1− Cel(ω, k)U (k)
. (6.28)

Let us specify the electron response. If the coordinate difference is of the order of Fermi
wavelength, there is no other way to evaluate Cel(r , r ′) except full quantum-mechanical
perturbation theory involving exact electron wave functions. However, if |r − r ′| exceeds
the Fermi wavelength, the electron motion is semiclassical. It can be characterized by the
probability P(t − t ′, r , r ′) of finding an electron at point r at time moment t provided it
was at point r ′ at time moment t ′. The kernel Cel is related to this probability as follows:

ρ(ω, r ) = e2ν

(
−V (ω, r)− iω

∫
dr ′ P(ω, r , r ′)V (ω, r ′)

)
⇒ Cel(ω, r , r ′) = −e2ν(δ(r − r ′)+ iωP(ω, r , r ′)). (6.29)

Depending on geometry, the electron density of states ν here may be per unit volume (3d),
area (2d), or length (1d). An heuristic derivation of this relation is as follows. The stationary
voltage (ω = 0) concentrated near a point reduces the electron density by−eV (r )ν around
this point. This is given by the first term in the brackets. If voltage increases in time, the
electrons are released from the point and propagate through the nanostructure, increasing
the electron density wherever they arrive.

We are ready to consider concrete geometries. Let us start with three dimensions. In this
case, U (r − r ′) = 1/|r − r ′| and U (k) = 4π/k2. In the stationary case, Cel = −e2/ν, and
we obtain

V (k) = 4π

k2 + κ2
; κ ≡

√
e2ν/4π . (6.30)

This yields a potential produced by an external charge, and we see that it is not screened
completely: the potential persists at distances of the order of κ−1, the screening length,
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and falls off exponentially at larger distances. Usually the screening length is very small,
even smaller than the Fermi wavelength. Let us consider ω �= 0 and assume diffusive
propagation of electrons, so that

P(ω, k) = 1

−iω + Dk2
; Cel = − e2ν

1− iω/Dk2
. (6.31)

Since we have assumed diffusion, we work at space scales exceeding the mean free path
and therefore exceeding the screening length, k � κ . So the impedance is given by

Z3d = 1

σk2

(
1− Dk2

iω

)
= 1

σk2
+ 1

e2ν(−iω)
, (6.32)

where we have made use of σ = e2νD. The first term coincides with the simpler form
of the impedance given in Eq. (6.22). The second term presents the effect of incomplete
screening and can be seen as a capacitance between the source of external charge and the
conductor. Since this part of the response is purely imaginary, it does not contribute to the
real part of the impedance and thus does not affect the voltage fluctuations from Eq. (6.25).

Dealing with 2d and 1d geometry, we make use of the local electrostatics model express-
ing the electron interaction in terms of capacitance C̃ , U (r − r ′) = C̃−1δ(r − r ′). The
expression for Cel remains the same, and the impedance is cast into the following form:

Z (ω, k) = (C̃ ′/C̃)2

−iωC̃ ′ + k2/R̃
+ 1

−iωC̃

(
1− C̃ ′

C̃

)
, (6.33)

where we introduce the effective capacitance C̃ ′ = e2νC̃/(C̃ + e2ν). Comparing this with
Eq. (6.23) we see that also in 2d and 1d cases the impedance acquires a purely capacitive
correction (the second term in Eq. (6.33)). The first term is very close to the simplified
impedance, Eq. (6.23); the difference is the renormalized capacitance in the denominator
and an overall factor.

The capacitance renormalization is usually small, C̃ ≈ C̃ ′, since C̃ � e2ν. Owing to
this, the diffusion coefficient of electricity, D∗ = 1/R̃C̃ , by far exceeds the diffusion
coefficient of electrons D = 1/R̃e2ν = (1− C̃ ′/C̃)D∗. To illustrate the smallness, let us
consider 1d geometry with a wire of radius r0 and the distance to the gate a � r0. The
geometric capacitance C̃ ≈ 2/ ln(r0/a) � 1, while e2ν = πe2ν3dr2

0 � κr2
0 . We see that the

renormalization is small provided r0 exceeds the screening length κ−1, that is for any wire
whose geometric cross-section allows for many transport channels.

We finish this subsection by introducing a model of a one-channel ballistic wire. It is
frequently called the Luttinger model. The model is characterized by the Fermi velocity of
electrons in the channel vF and the geometric capacitance C̃ per unit length. To evaluate
the impedance, we start with P(x , x ′; t − t ′). Since in the initial point the electron can have
either velocity, P(x , x ′; t − t ′) consists of two contributions corresponding to the electron
motion in two opposite directions:

P(x , x ′; t − t ′)

= (δ(x − x ′ − vF(t − t ′))+ δ(x − x ′ + vF(t − t ′)))�(t − t ′)
2

.
(6.34)
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In Fourier components, P(ω, q) = iω/((ω + i0)2 − v2
Fq2). Using this and ν = 2s/(πvF),

we obtain, for the impedance,

Z (ω, k) = 1

−iωC̃

(ω + i0)2 − v2
Fk2

(ω + i0)2 − v2
pk2

(6.35)

= C̃ ′

C̃2

iω

(ω + i0)2 − v2
pk2
+ 1

−iωC̃

(
1− C̃ ′

C̃

)
, (6.36)

where the effective capacitance is defined as in Eq. (6.33) and the plasmon velocity is given

by vp = vF

√
C̃/(C̃ − C̃ ′). The first term in the impedance is similar to that of the LC-line

(see Eq. (6.24)). Elementary excitations of the Luttinger liquid are therefore plasmons. The
second term presents a capacitive contribution identical to Eq. (6.33). The specifics of the
Luttinger model is that the capacitance renormalization can be significant. As we will see
in Section 6.4, this provides significant interaction effects.

Common features of all concrete examples analyzed in this subsection are the capacitive
correction and the absence of peculiarities in the denominators of Z that would reflect the
electron motion. Naively, one could think of an opportunity to measure the electron motion
directly by impedance measurement, hoping that at least part of the electric signal prop-
agates with the electrons moving. The evaluated impedances show that this is not so: the
measured impedance detects only the propagation of electricity. We will see in Section 6.4
that tunneling of electrons in a medium is affected by an effective impedance that incorpo-
rates both the effects of electricity and electron propagation: measuring the tunnel current,
one can thus indirectly observe the electron motion in an electrical measurement.

6.2 Dissipative quantum mechanics

The quantization in electric circuits considered in the previous section can be straight-
forwardly generalized to any linear dissipative system. Although the quantum description
involves many degrees of freedom (boson modes), only one or several variables are impor-
tant, and the linear susceptibilities corresponding to these variables are sufficient to find all
the quantum features. Dissipative quantum mechanics investigates more complicated non-
linear systems. An example problem is of a particle with mass M in a potential U (x) that
experiences a friction force Ff = −γ ẋ and an optionally external force Fext. The classical
equation of motion is as follows:

Mẍ = −∂U (x)

∂x
− γ ẋ + Fext.

If the potential U (x) has a single minimum, one can proceed as follows. The qualita-
tive result can be readily guessed: the classical particle subject to friction would freeze in
the minimum, and quantum fluctuations spread the particle around the minimum. A rea-
sonable first step is to expand the potential around the minimum, U (x) ≈ ax2/2+ const.
The resulting equations are linear, and we can apply the quantization procedure described
in Section 6.1. We need to know the frequency-dependent susceptibility χ (ω) which is
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determined it from the classical equation as the reaction of x on the external force. The
corresponding quantum Hamiltonian is given by

Ĥ = Henv − x̂ Fext(t), (6.37)

where Henv denotes the collection of boson modes and the operator x̂ is a linear com-
bination of creation and annihilation boson operators of these modes with the weight
coefficients that reproduce χ (ω). To describe non-linear effects, we add Hnl = U (x)−
ax2/2. This term can be taken into account in the framework of perturbation theory, but it
is not obvious why one should introduce such complications: since the potential has only
a single minimum, the result is not supposed to change qualitatively.

The potential U (x) with two minima of (almost) the same depth presents a much more
interesting problem. The corresponding classical particle in the presence of friction is
bistable: it may freeze in either minimum. Once frozen in a given minimum, it remains
there forever, and the system functions like a binary memory cell. This is in contrast to a
quantum particle without friction. It may be delocalized in such a two-minima potential
owing to the coherent tunneling via the potential barrier between the minima. If the quan-
tum states corresponding to the particle localized in a certain minimum are |+〉, |−〉, the
stationary states may be the superpositions of the two, for example (|+〉 ± |−〉)/√2, where
the particle is equally distributed between both minima.

The most interesting part of the problem is thus how a particle tunnels between two
states in the presence of friction. So we can concentrate on yet simpler problem: a two-level
system, a qubit coupled to a dissipative environment. Although the complete solution of
this problem is still not presented, a qualitative understanding was achieved about 20 years
ago [141, 142] and was one of the major developments of quantum mechanics. A very short
formulation of this understanding is as follows: the system is either quantum (delocalized
between minima) or classical (bistable memory cell) depending on the properties of the
environment. It appears that the same scenario holds for more complicated situations, for
example for a particle in a periodic potential.

To start with, we truncate the problem. From all the quantum states of the system without
dissipation, we concentrate on two and consider the effect of the dissipation on transitions
between them.

6.2.1 Spin-boson model

The corresponding framework model for a two-level system in the presence of the envi-
ronment is called the spin-boson model. “Spin” appears here because a qubit is commonly
mapped onto two states of a spin-1/2 particle. “Boson” denotes the boson model of the
environment that affects the qubit. The total Hamiltonian of the spin-boson model consists
of the Hamiltonians of the qubit, the environment, and the coupling between the two:

Ĥ = Ĥq + Ĥenv + Ĥcoupling. (6.38)

The qubit Hamiltonian is given in its usual 2× 2 matrix form (see Section 5.3). Let us fix
the basis states and the stationary Hamiltonian, having in mind a two-minimum potential
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with an energy difference ε between the minima. The basis states |+〉, |−〉 are localized
in minima with energies ±ε/2. The tunneling matrix element between the states |±〉 is T .
The Hamiltonian is given by

Ĥq = ε
2
σ̂z + T σ̂x =

[
ε/2 T
T −ε/2

]
. (6.39)

There are two stationary states of this Hamiltonian, “up” and “down,” corresponding to
the energies Eu,d = ±

√
(ε/2)2 + T 2. Their wave functions are given by (tan θ ≡ 2T /ε)

|u〉, |d〉 = − sin θ |+〉 + (cos θ ± 1) |−〉√
2(1± cos θ )

.

“Down” is the ground state. An important parameter that characterizes the delocalization
is the probability of finding the qubit in the upper minimum provided the system is in the
ground state, pdec = |〈d|+〉|2 at ε > 0. From the “down” eigenvector we derive that

pdec = sin2(θ/2); pdec = T 2

ε2
+ · · · at T → 0. (6.40)

We see that the delocalization probability is in fact small if the tunneling is weak,
T � ε. However, this probability at a given T quickly increases on decreasing the energy
bias ε. This signals the breakdown localization, and we use this signal to identify the
delocalization in the context of dissipative quantum mechanics.

As in Section 6.1, the environment consists of the non-interacting boson modes, which
we number here by m:

Ĥenv =
∑

m

�ωmb̂†
mb̂m .

As to the coupling Hamiltonian, it is assumed that only a single spin component, σz , is
coupled to the environment. The strength of this coupling is controlled by a parameter q0:

Ĥcoupling = −q0σ̂z F̂ ; F̂ ≡
∑

m

(Cmb̂†
m + C∗mb̂m).

The operator F̂ represents the fluctuations of the environment that affect the qubit. We
should make sense of the spectral weight coefficients Cm . How should we do this? The best
way is to consider a continuous variable q which is, for the spin-boson model, restricted to
two values ±q0. If our model stems from a particle in a two-minimum potential, q is just
the coordinate of the particle and F̂ is then the friction force the particle may experience.
Let us provide an action: move the particle with our hands, so that this coordinate is a fixed
q(t). We get the reaction of the environment, which is this friction force. We introduce a
dynamical susceptibility χ (ω) that relates the action and the reaction:

F(ω) = χ (ω)q(ω).

As in Section 6.1 (see Eq. (6.5)), this fixes the weight coefficients such that

Im χ (ω) = π
�

∑
m

|Cm |2 δ(ω − ωm). (6.41)
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6.2.2 Shifted oscillators and shake-up

The spin-boson model cannot be solved exactly for general parameters. However, if we
set T = 0, we can do this, and we find some very instructive solutions. We will use these
solutions to proceed with the perturbation expansion in terms of small T . If T = 0, no
tunneling may occur and the system is fixed in one of the two classical states: + or −. The
Hamiltonians for either of the states depend on the boson variables only and are given by

Ĥ+,− =
∑

m

�ωmb̂†
mb̂m ± q0(Cmb̂†

m + C∗mb̂m).

We can handle very well the Hamiltonian that does not contain the linear terms ∝q0. The
stationary wave functions of this Hamiltonian are those with a fixed number of bosons
nm in each mode, |{nm}〉, the corresponding energies being

∑
m �ωm Nm . We are going

to perform a trick that kills these linear terms. One can guess the trick from a very sim-
ple analogy with a single oscillator. Let us “spoil” the parabolic potential with the term
linear in x :

U (x) = α x2

2
+ λx .

Eventually, it stays parabolic with a shifted variable x :

U (x) = α x2

2
+ λx = α

2

(
x − λ

α

)2

−
(
λ

α

)2

.

Thus inspired, let us shift the boson operators. The shift is opposite for the states +, − so
new operators are different in these situations, i.e.

b̂(±)m = b̂m ± λm/2.

One checks that linear terms cancel out if λm = −2q0Cm/(�ωm). The Hamiltonians in
terms of new boson operators in this case simply become

Ĥ+,− =
∑

m

�ωmb̂(±)†m b̂(±)m + const.

The shifted operators satisfy the same boson commutation relations as original operators.
Thus we can handle each of the Hamiltonians as described above. The eigenstates of Ĥ+
are |{nm}+〉 and those of Ĥ− are |{nm}−〉. The important point is that these states are not the
same since the annihilation/creation operators for + and − have been shifted with respect
to one another. Let us find the relation between the vacuums |0+〉 and |0−〉. By definition
of a vacuum,

b(−)m |0−〉 = 0,

one can extract no boson from the vacuum. We rewrite this in terms of the annihilation
operators of another vacuum:

b(+)m |0−〉 = λm |0−〉 .
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This is recognized as the definition of coherent state. A coherent state |ψ〉 of a single boson
mode is defined as an eigenstate of the annihilation operator of this mode:

b̂ |ψ〉 = λ |ψ〉 .
The coherent states are heavily used in quantum optics. They can be expressed as a
superposition of the states with a different certain number of bosons n:

|ψ〉 = exp

(
−|λ|

2

2

)∑
n

λn

√
n!
|n〉.

This formula is proven from the explicit form of the annihilation operator b̂ =∑
n
√

n|n −
1〉〈n|. The average number of bosons in the coherent state is N̄ = |λ|2. We thus come to
the following important understanding: one of the vacuums is a coherent state with respect
to the other one, and the shifts λ determine the parameter of this coherent state:

|0−〉 = exp

(
−|λ|

2

2

)∑
n

λn

√
n!
|n+〉. (6.42)

Now we are ready to discuss the shake-up. Let the system relax in state −, so it gets to
the ground state |0−〉 (assuming ε > 0). Let us suppose we have a knob that allows us to
change q . We suddenly turn the knob, shifting the value of q from−q0 to q0. If we manage
to shift very quickly, the wave function does not change and is still |0−〉. However, since
the q has changed, it is no longer a ground state. Rather, it is a superposition of the ground
and all excited states with coefficients given by Eq. (6.42). We thus supply energy to the
system: we shake it up. Let us first consider a single mode and estimate the probability of
supplying energy E while shaking it up in such a way. The probability P(E) comprises
the partial probabilities pn to excite n bosons and, for a single mode, consists of a series of
δ-peaks:

P(E) =
∑

n

pnδ(E − n�ω).

The partial probabilities are given by

pn = |〈0− | n+〉|2 = e−N̄ N̄ n

n!
, (6.43)

with N̄ = |λm |2 = |(2q0Cm/�ωm)|2, depending on the mode index n. We see that these
probabilities obey the Poisson distribution; this is typical for coherent states. The Poisson
distribution indicates that the acts of boson excitations are statistically independent.

Most of the important issues in dissipative quantum mechanics can be understood if we
look at this one-mode P(E) in two different limits (see Fig. 6.4(b)). If N̄ � 1, the highest
probability is that of no energy. The shake-up in this limit most likely occurs without
any dissipation. The highest probability of getting some energy is the one-boson one, as
the probabilities of exciting a larger number of bosons decreases quickly as this number
increases. The opposite limit is N̄ � 1. In this case, P(E) is centered around N̄ , and it is
improbable that more than N̄ bosons are excited. Importantly, the probability of exciting
none or a few bosons is also strongly suppressed.
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�Fig. 6.4. (a) Artistic representation of an oscillator shake-up. Solid (dashed) lines give the potential and
the position of the oscillating “particle” before (immediately after) the shake-up. (b) The
probabilities of getting n bosons in the course of the shake-up plotted at various N̄.

Let us recall now that the environment consists of infinitely many modes that together
form a continuous spectrum. There is an oscillator shift and a shake-up in each mode. The
energy excitations in different modes are independent, so the total P(E) is thus contributed
by all modes and all possible boson numbers nm in each mode in the following way:

P(E) =
∑
nm

exp

(
−

∑
m

N̄m

)∏
m

N̄ nm

nm!
δ

(
E −

∑
m

nm�ωm

)
. (6.44)

This cumbersome expression may be reduced to a much more comprehensive form. How-
ever, we pause before doing this since it is now a convenient moment to introduce the
important concept of the orthogonality catastrophe.

6.2.3 Orthogonality catastrophe

Let us figure out what the probability is of emitting strictly no bosons during the shake-up
of all modes. This probability is a product of the probabilities of emitting no bosons in
each mode:

p0 = exp

(
−

∑
m

N̄m

)
, (6.45)

and thus has a “quiet” shake-up, without exciting any environmental modes, and, impor-
tantly, without any energy dissipation. For any finite number of boson modes, this
probability stays finite. This may be different if we go to the continuous limit. The
integral presenting the sum over modes in Eq. (6.45) may diverge and the probability
vanishes. This situation is called the orthogonality catastrophe (first described by P. W.
Anderson in 1951). The point is that p0 is simply the overlap between the two vacu-
ums, p0 = |〈0+|0−〉|2. If p0 = 0, the two vacuums are orthogonal. This takes place if
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the average number of bosons emitted in all modes diverges. Orthogonality of two quan-
tum states implies that these states, so to say, belong to two different worlds: they neither
know nor care about each other, they do not mix, and no (elastic) tunneling is possible
between them. We can readily use Eq. (6.41) to express the probability in terms of the
susceptibility χ (ω):

∑
m

N̄m =
∑

m

∣∣∣∣2q0Cm

�ωm

∣∣∣∣
2

=
∞∫

0

dω
∑

m

δ(ω − ωm) |Cm |2 4q2
0

�2ω2

=
∞∫

0

dω
4q2

0 Im χ (ω)

π�ω2
.

The integral over frequencies in this expression may diverge either at the upper or the lower
limit. The upper (“ultra-violet”) divergency is usually irrelevant since it can be removed by
the upper cut-off frequency that limits the applicability of a given environmental model
at very short time scales. The divergence at low frequencies – long time scales – is more
important. We see that the integral diverges at low frequencies if Im χ approaches zero at
ω→ 0 faster than ω.

6.2.4 P(E) and classification of environments

Let us write Eq. (6.44) for P(E) in a more convenient form. The idea is to introduce an
extra integration to present the δ-function of energy as an integral over an exponent. The
exponent can be straightforwardly summed up over nm :

P(E) =
∑
nm

exp

(
−

∑
m

N̄m

)∏
m

N̄ nm

nm!
δ

(
E −

∑
m

nm�ωm

)

=
∫

dt

2π�

∑
nm

exp

(
i

(
E −

∑
m

nm�ωm

)
t/�

)
exp

(
−

∑
m

N̄m

)∏
m

N̄ nm

nm!

=
∫

dt

2π�
eiEt/�

∏
m

∑
nm

N̄ nm
m

nm!
exp(−inmωmt − N̄m)

=
∫

dt

2π�
eiEt/�

∏
m

exp(N̄m(e−iωm t − 1))

=
∫

dt

2π�
eiEt/� exp

(∑
m

N̄m(e−iωm t − 1)

)

=
∫

dt

2π�
eiEt/�eJ (t)−J (0);

J (t) =
∑

m

e−iωm t N̄m =
∞∫

0

dω e−iωt 4q2
0 Im χ (ω)

π�ω2
.
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Finally, let us express P(E) in terms of the Fourier component of J (t), P1(E). This is the
probability of emitting one boson with energy E in any mode in the limit of small q0. It
can be readily expressed in terms of χ (ω) as follows:

P1(E) = 4q2
0 Im χ (E/�)

E2
at E > 0, (6.46)

where P(E) = 0 at negative energies. Finally, P(E) is given by

P(E) =
∫

dt

2π�
e−iEt/� exp

(∫
dE ′ P1(E ′)(eiE ′t/�− 1)

)
. (6.47)

From this one concludes that, in the limit of small q0, p0 ≈ 1− ∫
dE P1(E)+ · · · and

P(E) = p0δ(E)+ P1(E)+ · · · , (6.48)

where the first term corresponds to a “quiet” shake-up with no boson emitted, while the
second term describes one-boson excitation.

So far, we have considered the shake-up and evaluated the probability P(E) of giving
energy E to the environment. In view of the fact that we are not usually able to shake
the system in this way, the quantity does not seem to be particularly useful. The use of
P(E) becomes apparent if we recognize that the shake-up takes place by itself in the
course of a spontaneous transition between the upper and lower states of the qubit. We
concentrate on two states, “+” and “−,” separated by an energy bias ε, and consider now
a small but finite tunneling matrix element T . The transition rate can be evaluated in the
lowest non-vanishing (second) order from the Fermi Golden Rule, which in general is
given by

� = 2π

�

∑
final states

|Mi f |2δ(Ei − E f ).

In our case, the matrix element M is just the tunnel matrix element T . In the initial state,
the qubit is in the “+” position accumulating the energy ε – the energy splitting between
the qubit levels. The environment is in the ground state |0+〉 corresponding to this position.
After the transition, the qubit is in position “−,” while the environment is shaken up with
respect to the new ground state |0−〉. Owing to energy conservation, the energy that goes
to the environment is ε. Therefore, the transition rate is directly proportional to P(ε), the
probability of disposing this energy in the course of the shake-up:

�(ε) = 2πT 2

�
P(ε). (6.49)

If one-boson processes dominate, this probability is just the one-boson probability P1,
given by

�(ε) = 2πT 2

�
P1(ε). (6.50)

Another characteristic quantity is the delocalization probability pdec defined by
Eq. (6.40). It is evaluated in second order in T by perturbations, the resulting expression
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�Fig. 6.5. Types of P(E). (a) First type: orthogonality catastrophe; P(E) strongly suppressed at small
energies. (b) Second type: no catastrophe, δ-peak (shown with a bar) at zero energy.

also involving P(E). In first order in T , the ground state |0−〉 acquires corrections
proportional to all possible states |nm+〉, where the qubit is in the “wrong” position:

|g〉 = |0+〉 +
∑
{nm }

ψ{nm }
∣∣{nm}−

〉
; ψ{nm } =

�
〈
0+

∣∣ {nm}−
〉

ε +∑
m

�nmωm
.

The delocalization probability, i.e. the probability of finding the system in any of these
states, is therefore given by pdec = ∑

{nm }

∣∣ψ{nm }
∣∣2. Expressing the squares of matrix elements

in terms of P(E), we prove that

pdec = T 2

∞∫
0

dE
P(E)

(ε + E)2
. (6.51)

If there is no dissipation, P(E) = δ(E), and Eq. (6.51) reduces to the known result for a
qubit not affected by the environment: pdec = T 2/ε2.

There are two main types of P(E); the difference between them is best seen from the
plots in Fig. 6.5. For the first type, the orthogonality catastrophe is in place. This implies
that the shake-up cannot occur “quietly,” that is, without disposing of energy. This also
implies that the probability of disposing finite but small amounts of energy is strongly
suppressed, although it remains finite. The P(E) of the first type looks very much like a
continuous version of the one-mode probability (Fig. 6.4) in the classical limit N̄ � 1,
having a peak at large energies. This peak becomes relatively narrow in the classical limit,
corresponding to well defined energy transfer in the course of classical shake-up.

For the second type, there is no orthogonality catastrophe and p0 remains finite. This
gives rise to a characteristic δ-peak at zero energy, indicating the possibility of “quiet”
shake-up and elastic tunneling. A continuous tail beyond the peak is mainly due to the
one-boson excitations; the processes involving more bosons are increasingly suppressed.
This resembles the one-mode P(E) at N̄ � 1.
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�Fig. 6.6. Ohmic environment: P(E). (a) Different curves correspond to different coupling strengths.
(i) α = 0.1; (ii) α = 0.5; (iii) α = 1; (iv) α = 2; (v) α = 10. (b) The same plot with a log-log scale.
The power-law dependence of P(E) becomes apparent.

Control question 6.3. Which type is “more quantum”?

By continuously changing the parameters of the environment, one can move between the
first and second types by crossing a border line. At the border line, the situation is rather
unusual. The P(E) does not display the δ-peak, so the orthogonality catastrophe takes
place. However, the P(E) is more intense at small energies than in the first type: it assumes
a power-law dependence. If the power is negative, it even increases with decreasing energy
(see Fig. 6.6).

Let us outline the classification of all possible environments proposed by Leggett in 1981
[143]. The starting point of this classification is the energy dependence of one-boson prob-
ability (we have seen that it is directly related to dynamical susceptibility by Eq. (6.46)).
The attention is paid to small energies, and the assumption is that there is a cut-off Ecut

that removes possible problems at high energies. There is a power-law dependence of P(E)
at E → 0:

P1(E) ∝ Es(Ecut)
−1−s exp(−E/Ecut). (6.52)

If s < −1, the environment is called subohmic, and the P(E) is of the first type mentioned.
If s > −1, the environment is superohmic, and the P(E) is of the second type.

Special attention is paid to the so-called ohmic environment (s = −1) that corresponds
to the borderline between the first and second types. This is because this type of environ-
ment is rather widespread: in this case, Im χ (ω) ∝ ω at small frequencies, so that at any
time χ (ω) is analytical and therefore expandable at ω = 0.3 It is convenient to choose the
high-energy cut-off for the ohmic environment in the following form:

P1(E) = 2α

E

1

(E/Ecut)2 + 1
, (6.53)

3 This is always true for the susceptibilities in finite-element electrical circuits. This gave rise to the term “ohmic”
since the dissipation in such circuits is due to ohmic resistors.
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which corresponds better to a typical form of χ (ω) than the exponential cut-off. Here,
α ∝ q2

0 characterizes the strength of coupling to the environment. The corresponding P(E)
assumes a power-law dependence at small energies, with the exponent that depends on
the coupling strength to the environment (Fig. 6.6), that is, on the intensity of one-boson
process,

P1 = 2α

E
⇒ P(E) ∝ E2α−1.

Below we will briefly address each type of environment.

Subohmic

The subohmic environment suppresses the transitions between “+” and “−” in the most
efficient way, at least at low energies. The transition rate is exponentially small at low
energies, and is given by

�(ε) ∝ exp

(
− 1

(ε/Ecut)(1/(s+2)−1)

)
. (6.54)

It seems that the + and − states are separated by an almost impenetrable barrier. They are
also localized, as we see by examining the delocalization probability. Indeed, the integral
in Eq. (6.51) is mostly contributed by E � Ecut. The resulting pdec is small, �(�/Ecut)2,
and does not depend on the energy bias ε. Therefore, it does not increase with ε→ 0 as
pdec of the delocalized qubit does.

Ohmic

For an ohmic environment, P(E) is not exponentially small and may even increase with
decreasing E . However, the transitions with a given energy loss E generally involve many
phonons. One sees this from the fact that P(E) is suppressed in comparison with P1(E):

s = −1; P1 = 2α

E
⇒ P(E) ∝ E2α−1 � P1(E) at E → 0.

Let us look at the transition rate given by Eq. (6.49) as a function of energy bias ε:

�(ε) = 2π

�
T 2

(
ε

Ecut

)2α−1

. (6.55)

The transition rate brings about an uncertainty,���, to the energy position of the decaying
level +. We compare this uncertainty to the energy itself. We label a quantum state “good”
provided the relative energy uncertainty ��(ε)/ε is much smaller than unity. Evaluating
this relative uncertainty from Eq. (6.55), we see that α > 1 implies that the excited qubit
state is “good,” at least in the limit of low energies ε. As for α < 1, the state becomes
“bad” at low energy and decays too fast. This signals that some kind of transition takes
place precisely at α = 1. What kind of transition is this?

The answer to this question was given by Albert Schmid in 1983 [144]. He proved that
the system is localized at α > 1 and delocalized otherwise. The transition at α = 1 was
named after him.
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In fact, this seems rather counter-intuitive. A truly quantum system – of which a qubit
without dissipation would be an example – displays both (infinitely) slow decay, that is a
“good” excited state and delocalization. Intuitively, it would be clear that the “good” state
at α > 1 is also delocalized. However, it is precisely the other way around. To understand
the point, let us look at the integral in Eq. (6.51). We cut it off at Ecut, so it becomes

pdec ∝ T 2

Ecut∫
0

dE
1

(ε + E)2
(E/Ecut)

2α−1.

If α < 1, the integral converges at energies �ε and the probability,

pdec ∝ T 2

ε2

(
ε

Ecut

)2α

,

decreases with decreasing ε, reaching values �1 at sufficiently small ε. This is the de-
localization. We see that such behavior requires that P(E) either increases or at least grows
slower than E at E → 0. For the ohmic case, this is only possible if the excited state is
“bad.” Otherwise, the integral converges at E � Ecut and the delocalization probability
remains small and not sensitive to ε, pdec = (T /Ecut)2. The system is localized although
the excited state is “good.” Actually, this is consistent with the fact that the excited state is
also “good” in the subohmic regime owing to the vanishing transition rate (see Eq. (6.54)).

Superohmic

For any superohmic environment (s > −1) the transition rate is dominated by a one-boson
process. The transition rate is therefore a power-law at low energies:

�(ε) = 2π�2

�
P1(ε) = const. · εs .

Repeating the analysis carried out for the ohmic regime, we see that the excited state is
“bad” if s < 1 and “good” if s > 1.

Does this imply a localization transition at s = 1 similar to the Schmid transition in
the ohmic regime? The answer is no; in fact, the state is delocalized in both cases. The
orthogonality catastrophe is absent for a superohmic environment. The P(E) is of the
second type with the δ-peak at zero energy, which is absent for ohmic and subohmic envi-
ronments. The integral in Eq. (6.51) for the delocalization probability is mainly contributed
by this δ-peak, so that pdec = p0(T /ε)2. The classification of all possible environments is
summarized in Table 6.1.

6.2.5 Finite temperature and renormalization

For a deeper discussion of the spin-boson model, it is constructive to present it in an
alternative form. Let us look again at the Hamiltonian of the model, given by

Ĥ = ε
2
σz + T σx + Ĥenv − q0σz F̂ ,
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Table 6.1 Classification of environments

Environment type Delocalization “Good” state Orthogonality
catastrophe

Superohmic, s > 1 yes yes no
Superohmic, −1 < s < 1 yes no no
Ohmic, s = −1; α < 1 yes no yes
Ohmic, s = −1; α > 1 no yes yes
Subohmic, −2 < s < −1 no yes yes

The behavior changes (top row to bottom row) from completely quantum qubit-like to a
completely classical “memory cell.”

and let us regard, for the moment, the operator F as a classical external force, F̂ ⇒ F(t).
We note that this force contributes to a time-dependent phase shift between the states |+〉,
|−〉 of the qubit, this contribution being given by

φ(t) = 2q0

�

t∫
−∞

dτ F(τ ).

We can define new basis states corresponding to |+〉, |−〉 that incorporate this part of the
phase shift as follows:

|+〉new, |−〉new = exp±iφ(t)/2 (|+〉, |−〉) .

The qubit Hamiltonian in this new basis is given by

Ĥ = ε
2
σz + T eiφ(t)σ− + T e−iφ(t)σ+; 2σ± ≡ σx ± iσy ,

and does not contain the term linear in F . This transformation is similar to the “moving
frame” transformation studied in Section 5.3. The same transformation can be done using
the operator F̂ . The resulting Hamiltonian is given by

Ĥ = −ε
2
σz + T eiφ̂(t)σ+ + T e−iφ̂σ− + Henv, (6.56)

where the phase shift operator φ̂ is, as usual, linear in boson operators, φ̂ =∑
m( f ∗mb̂m +

fmb̂†
m). Since φ̇ = q0 F̂/�, fm = iq0Cm/(�ωm), and the correspondence between the

weight coefficients and the susceptibility is now given by

q2
0ω

2 Im χ (ω) = π�

∑
m

| fm |2 δ(ω − ωm).

The transition rate from the upper to the lower level is obtained using second-order
perturbations in T and is given by

�+→−(ε) = T 2

∞∫
−∞

dt〈eiφ̂(0)e−iφ̂(t)〉eiεt . (6.57)
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Recalling Eq. (6.49), we understand that this expresses P(E) in terms of the correlator
of the exponents of φ. We have already evaluated P(E) at zero temperature and in equi-
librium, and this is given by Eq. (6.47). We use the present relation to find it for finite
temperatures. Using the results of Section 6.1 (Eqs. (6.11) and (6.12)), we see that

P(E) =
∫

dt

2π�
eiEt eSφ (t)−Sφ (t=0). (6.58)

Using the susceptibility (see Eq. (6.9)) and the fact that φ̇ = 2q0 F/�, we find

Sφ(t)− Sφ(t = 0) =
∫

dω

2π

(
e−iωt − 1

)
Sφ(ω)

=
∫

dω

2π

1

e�ω/kBT − 1

(
e−iωt − 1

) 8q2
0

�ω2
Im χ (ω). (6.59)

These two formulas summarize the environmental effects on tunneling in the most general
way and will be used intensively below. Comparing this with Eq. (6.47), we see that the
finite temperature effects are taken into account using the following modification:

P1(T , E) = P1(T = 0, |E |)/(1− e−E/kBT ). (6.60)

Let us review some properties of P(E) at finite temperature. At finite temperature, the
qubit may absorb energy from the environment, so that P(E) has some weight at nega-
tive energies too. We note that the energy change for the transition rate in the opposite
direction, �−→+, is opposite. Therefore �−→+ = (2πT 2/�)P(−ε). Since the system is in
thermal equilibrium, the rates must satisfy the detailed balance condition �+→−/�−→+ =
exp(ε/kBT ). This implies

P(−E) = P(E) exp(−E/kBT ) . (6.61)

At zero temperature, there is always a singularity in P(E) at E → 0. At finite temperature,
the singularity is expected to be smoothed, so that P(E) is continuous with all derivatives.

It could seem natural to assume that the temperature modifies P(E) only at the energy
scale |E | � kBT so that it vanishes at negative energies and retains its zero-temperature
value at positive energies provided |E | � kBT . This is indeed the case for an ohmic envi-
ronment at α � 1 (see Fig. 6.7(a)), and, as seen from Eq. (6.60), for one-boson processes.
Generally, the thermal effect on P(E) is more involved. For example, for subohmic envi-
ronments a transition is typically a many-boson process. In this case, E is associated with
the energy of all bosons, while kBT is a typical energy scale for one boson. Moreover,
at finite temperature many-boson processes may also become important for superohmic
environments. To see this, let us consider the average number of bosons emitted at finite
temperature, given by

N̄ =
∫ ∞
−∞

dE P1(T , E) =
∫ ∞

0
dE coth

(
E

2kBT

)
P1(T = 0, E).

The integrand is extra divergent at E � T , ∝ T P1(E)/E ∝ T Es−1. This is why the
average number of bosons also diverges at low energies for superohmic environments,
provided s < 0.
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�Fig. 6.7. P(E) at finite temperature. The dotted lines in all plots denote the zero-temperature result.
(a) Ohmic environment (α = 1.5). The P(E) is smoothed and modified at E � kBT. (b) Superohmic
environment (s = 1.5). The δ-peak is not smoothed, and P(E) is modified at E � kBT. (c) Ohmic
environment at small (α = 0.05). P(E) is concentrated in a peak that is much narrower than kBT.
Dashed line: Lorentzian shape given by Eq. (6.62). (d) Subohmic environment (s = −3/2). P(E) is
modified at energy scale ET ∝ T1/2 � kBT. The scaling function F−3/2(E/ET) = ln(P(E))/(ET/kBT) is
presented (see the text). Dashed line: 1 − x/2.

For superohmic environments with s = 0, the picture remains simple: the δ-peak
survives while the one-boson contribution is smoothed by temperature at |E | � kBT
(Fig. 6.7(b)). For a superohmic environment with s > 0, the δ-peak at zero energy is
replaced by a smooth symmetric peak spread over an energy scale much smaller than kBT .
The same situation pertains to the practically important case of an ohmic environment with
α � 1/2π . At E � kBT the noise Sφ is essentially classical (see Eq. (6.10)), and the phase
is driven by a white noise. This leads to phase diffusion: the correlator of phases increases
linearly in time, 〈φ(0)(φ(t)− φ(0))〉 = 2Dφ |t |, Dφ ≡ απ (kBT/�). Substituting this into
Eq. (6.58), we find a Lorentzian-shaped peak of energy-width w, as follows:

P(E) =
∫

dt

2π�
eiEt/� e−2Dφ |t | = w/π

w2 + E2
; (6.62)

w ≡ 2παkBT � kBT . (6.63)
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The energy scalew � kBT is in fact related to the decoherence of qubit states, so we recall
this scale in Section 6.7.

For subohmic environments, the thermal effect results in an energy scale greater
than temperature. To estimate this scale, let us recall Eq. (6.54). The typical number
of bosons involved can thus be estimated as N (E) � − ln P(E) � (Ecut/E)1/(s+2)−1.
The thermal scale ET is determined from the condition ET/N (ET) � kBT , that is, the
energy of each boson is of the order of kBT . This gives the temperature-dependent
ET � kBT (kBT/Ecut)s+1. At zero energy, this defines the temperature dependence of
P(E), P(0) = exp(ET/kBT ). At the thermal scale, the P(E) is given by s-dependent
scaling function Fs(x):

ln P(E) = ET

kBT
Fs

(
E

ET

)
.

At small parameter values, Fs(x) = −1+ x/2, so that, at E � ET, P(E) =
P(0) exp(E/(2kBT ). At x →∞, Fs(x) ∝ x1−1/(s+2); this guarantees that at E � ET the
P(E) does not depend on temperature and coincides with Eq. (6.54).

To conclude our review of dissipative quantum mechanics, let us consider renor-
malization techniques in application to the spin-boson model. Generally speaking, a
renormalization technique attempts to approximate a change of dynamics of a system
upon changing a scale of time (or energy) by a change of parameters characterizing the
system Hamiltonian. Therefore, a renormalization technique is not an exact method: the
accuracy of its results is usually similar to that of the dimension analysis method in ele-
mentary physics. Similar to dimension analysis, renormalization works where no other
method does. This is why the renormalization technique is in fact not technical: it formu-
lates the essence of the dynamics in the simplest terms possible and thereby refines the
understanding of a system, clearing up unnecessary technical details.

To illustrate, let us reconsider the transition rate for an ohmic environment. At low
energies, it is given by (see Eq. (6.55))

�(ε) = 2π

�
T 2

(
ε

Ecut

)2α−1

.

Since we work at low energies, higher energies E � Ecut are not accessible for us and
we cannot know what Ecut is. Moreover, we should expect that the transition rate does
not depend on the details of the cut-off: we do not have to know what Ecut is. The same
applies to the “bare” tunneling matrix element T . Those parameters cannot be measured at
low energies and therefore present unnecessary technicalities. An equivalent and adequate
form of the presentation of the same relation is the scaling law: for any low-energy ε1, ε2,

�(ε1)

�(ε2)
=

(
ε1

ε2

)2α−1

.

This does not contain any “unphysical” parameters T , Ecut.
The idea of renormalization of the spin-boson model is to make the tunneling amplitude

dependent on the energy scale. Let us work with a conveniently dimensionless energy
scale, ζ = ln(Ecut/E), which changes from zero to infinity while E changes from Ecut

to zero. The renormalized T (ζ ) is estimated as follows. The phase operator φ̂ is linear in
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boson operators. Let us separate it into “slow” and “fast” parts, φ̂ = φ̂s + φ̂f, where the
slow (fast) part is contributed by boson modes m with energies �ω smaller (bigger) than
the energy E∗cut = Ecut e−ζ . The next step is to average the Hamiltonian, Eq. (6.38), over
“fast” modes of higher energy. The only terms which are modified by the averaging are
those proportional to T :

T 〈eiφ̂〉fastσ
− = T exp

(
−1

2
〈φ̂2

f 〉fast

)
eiφ̂sσ−, (6.64)

where we use Eq. (6.11) and the fact that φ̂s, φ̂f commute since they originate from separate
boson modes. If we now define

T (ζ ) = T exp

(
−1

2
〈φ̂2

f 〉fast

)
,

the resulting averaged Hamiltonian is equivalent to the original Hamiltonian upon replac-
ing Ecut → E∗cut and T → T (ζ ). The new cut-off energy E∗cut is called the running cut-off.
We will bring the renormalization equations to the differential form by inspecting the
difference between T (ζ + dζ ) and T (ζ ), in the limit of dζ → 0. We find

T (ζ + dζ )

T (ζ )
= exp

(
−1

2
〈φ̂2

f 〉(ζ , ζ+dζ )

)
≈ 1− 1

2
〈φ̂2

f 〉(ζ , ζ+dζ ), (6.65)

where the averaging is over boson modes with energies in a slice between E∗cut(ζ ) and
E∗cut(ζ + dζ ). Using Eqs. (6.59) and (6.47) we obtain

dT
dζ
= −1

2
P1(E∗cut)E∗cutT .

For an ohmic environment, P1(E) = 2α/E , and we immediately obtain

dT
dζ
= −αT . (6.66)

For super/subohmic dissipation, we cannot proceed in such a direct fashion, since
P1(E), given by Eq. (6.52), still explicitly depends on Ecut. To get rid of it, we
note that (dP1/dE)/P1 = s and introduce an auxilliary scale-dependent variable X (ζ ) ≡
P1(E∗cut)E∗cut. We obtain two scaling equations that do not depend on cut-offs:

dT
dζ
= −XT , (6.67)

dX

dζ
= −(s + 1)X , (6.68)

thereby accomplishing the renormalization. While the equations do not depend on the cut-
off, the solutions certainly do. The analysis of the solutions reproduces all the qualitative
results of this section, including those previously obtained from the explicit solution for
P(E) given by Eqs. (6.47), (6.58), and (6.59). To avoid repetition, we do not outline this
analysis here: we spare this for the models that defy explicit solutions given in Sections 6.5
and 6.6.
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6.3 Tunneling in an electromagnetic environment

In this section, we consider inelastic tunneling in nanostructures. The tunneling is accom-
panied by energy loss (or possibly energy gain from thermal fluctuations). From a very
formal point of view, this is usually caused by electron–electron interaction. However, this
point is hardly practical since this is not usually the interaction between nearby electrons.
The electric perturbation caused by a tunneling electron quickly propagates through the
whole setup and may affect other electrons that are, say, meters apart from the point of
tunneling. So in the field of quantum transport it is natural to assume that the interaction
takes place between an electron and electromagnetic excitations rather than between two
electrons. These excitations have been considered in Section 6.1 in detail, and they form
an environment for the tunneling electron.

From a theoretical point of view, we apply the spin-boson model of the previous sec-
tion to concrete setups [145]. As in the spin-boson model, the essential physics will be
incorporated into P(E), the probability of disposing of energy E into the environment.

This section is closely related to Chapter 3, where Coulomb blockade was considered.
Basically, we refine the simple theory of interaction described there to encompass inelastic
effects. The effect of environment on electron tunneling is sometimes nicknamed dynam-
ical Coulomb blockade. First of all, we consider single-electron tunneling, where we will
mostly elaborate on a single-junction setup. Next, we concentrate on Josephson circuits,
where Cooper-pair tunneling comes into play. Another tunneling process in Josephson cir-
cuits is phase tunneling, where the system jumps between the minima of the Josephson
potential separated by the phase difference ≈2π . We note a remarkable duality between
these two types of tunneling.

6.3.1 Single-electron tunneling

A tunnel junction is usually a capacitor whose plates are metallic leads separated by (an
almost) insulating tunnel barrier. Let us consider two one-particle states r , l, one on each
side of the barrier with energies Er , El (see Section 3.2.7). Let us then consider two states
of the whole electron system: state “+” corresponds to r filled with an electron while l
is empty, and in state “−” r is empty. The tunneling matrix element Trl mixes these two
states. If we forget for the moment about all other states in the system, “+”, “−” form a
qubit with the following Hamiltonian:

Ĥq = Er − El

2
σz + Trlσx .

The transition between “+” and “−” transfers an electron between the leads. Let us now
switch to the electric circuit theory description. The capacitor in question is embedded
into a circuit that provides a fluctuating voltage difference V̂ between the plates of the
capacitor. Since the transferred charge is the electron charge e, this contributes to the energy
difference between “+” and “−” as eV̂ , and the full Hamiltonian becomes
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Ĥ = Ĥq + e

2
V̂σz + Henv,

where, as discussed, Henv is the collection of boson modes presenting the electrical exci-
tations in the circuit. The Hamiltonian is the same as for the spin-boson model, Eq. (6.38),
if we make the associations (Er − El )→ ε, Trl → T , V̂ → F , e/2→ q0. The transition
rate between “+” and “−” is therefore given by Eq. (6.49). The total rate of single-
electron tunneling is contributed by all possible pairs of r , l. Since the P(E) is the same
for all such pairs, we may use the tunneling Hamiltonian trick described in Eq. (3.32) to
arrive at

�RL = GT

e2

∫
dER dEL fR(ER)(1− f (EL))P(ER − EL). (6.69)

Let us note a similarity with single-electron tunneling under Coulomb-blockade conditions.
An electron present in the right-hand lead (filling factor fR) tunnels to an empty state in the
left lead (filling factor (1− fL)) with energy change so that ER �= EL. Under Coulomb-
blockade conditions, this energy change is the same for all tunnel processes and equals the
difference of electrostatic energies−�E . The environment provides a random contribution
E to this energy change, its probability distribution being given by P(E). Integration over
the energies of incoming electrons thus yields

�RL(�E) =
∫

dE �(0)
RL(�E + E)P(E), (6.70)

where �(0)
RL(�E) is the single-electron energy-dependent rate in the absence of coupling to

the environment, given by Eq. (3.27):

�
(0)
RL(�E) = GT

e2

�E

exp (�E/kBT )− 1
.

At vanishing temperature, the energy given to the environment is always positive so that
the tunneling rate is suppressed.

The time has come to characterize the P(E) for an electromagnetic environment. The
susceptibility for the voltage variable V̂ is, apart from a factor, the impedance of the cir-
cuit seen by the tunneling electron: χ (ω) = iωZ (ω). From the general relation given in
Eq. (6.46), with q0 = e/2, we see that

P1(E) = �(E)

E
GQ Re Z (E/�), (6.71)

at vanishing temperature. At finite temperature,

P1(T , E) = P1(T = 0, |E |)/(1− e−E/kBT ),

as mentioned in Section 6.2.5. P(E) is related to P1(E) in the usual way (Eq. (6.47)).
The environment modifies the single-electron rate according to Eq. (6.69) in any tunnel

junction, for example one of the two junctions of a SET transistor. Here we concentrate on
a single junction biased by voltage V . There is no Coulomb blockade in a single junction,
so the electrostatic energy change is given by �E = −eV .
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To find the I –V curve of a single tunnel junction, we note that the rate in the opposite
direction is that at opposite voltage, �LR(V ) = −�RL(−V ). The current is thus odd in
voltage:

I = GT

∫
dE P(E)

⎛
⎝ E − eV

exp
(−eV+E

kBT

)
− 1
− E + eV

exp
(

eV+E
kBT

)
− 1

⎞
⎠ . (6.72)

This rather terrifying equation simplifies for vanishing temperatures kBT � eV to the
following:

eI (V ) = GT

eV∫
0

dE(eV − E)P(E)⇒ ∂2 I

∂V 2
= eGT P(eV ). (6.73)

To model the environment for any realistic nanostructure, one has to understand at which
time and space scale is this environment felt by tunneling electrons. It is clear from the pre-
ceding equations that the characteristic scale of energy change is Ech � max(eV , kBT ).
This gives a time scale �/Ech. The time scale sets the space scale: the typical dis-
tance at which the electricity has propagated given the time scale. One has to remember
that the time scale is quite short (shorter than one nanosecond) for any realistic volt-
age/temperature, so there is high-frequency impedance involved in all such models. One
could set up a conveniently tunable electromagnetic environment for a tunnel junction by
mounting a variable resistor on a desk in a lab and connecting the resistor to the small
tunnel junction in the dilution fridge, typically several meters apart. This would not work.
The parasitic capacitance of the connecting wires would efficiently shunt this resistor at
time scales shorter than one-tenth of a second.

Exercise 6.4. An overlap tunnel junction has been formed by evaporation of metal-
lic films through the mask such that long wires of width 100 nm have been formed.
The film resistance per square is 1 �, and the capacitance per unit length characteriz-
ing the wires is 10 F/cm. The junction is biased at 1 mV. Estimate the time and space
scales characterizing the electromagnetic environment. From this, estimate the effective
impedance felt by the tunneling electrons.

Having said that, we turn to three most interesting and simple models of electromagnetic
environment.

Single-mode environment

Let the electron tunnel between the plates of a capacitor that is a part of the elec-
tric oscillator we have considered at the beginning of this chapter (see Fig. 6.8). The
frequency-dependent impedance is that of the capacitor and inductor connected in parallel:

Z (ω) = 1

−i(ω + i0)C + i/ωL
,

Re Z (ω) = π

2C
δ(ω − ω0) at ω > 0,
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�Fig. 6.8. Electron tunneling in a single-mode environment. Curves a, b, and c correspond to N̄ = 0.25, 1,
and 4. The differential conductance shows steps at eV = n�ω0. The I–V curves show the offset
N̄�ω0 ≡ Ec at higher voltages. Dashed line: linear I–V curve, I = GTV. Dotted line: the same line
off-set for N̄ = 4.

where ω0 =
√

LC . The real part gives a δ-peak at ω = ω0, indicating the emis-
sion/adsorption from/to a single mode. To make Re Z smoother, we can add a resistor,
giving a small width to the δ-peak as was done to produce the plots of Fig. 6.8. The corre-
sponding P(E) consists of a series of δ-peaks at En = n�ω0, their magnitudes being given
by the Poisson distribution, Eq. (6.43), with N̄ = �ω0/EC. Each peak in P(E) gives rise
to a step in differential conductance at eV = n�ω0. At the step, the conductance increases
with increasing voltage. This manifests the onset of a new tunneling process: the electron
has enough energy to emit n quanta in the course of tunneling. However, the increase is
relative. In fact, the conductance at low voltages is suppressed by a factor of exp(−N̄ ).
It takes (infinitely) many step-like increases to reach, at high voltages, the unsuppressed
conductance GT.

The steps in the differential conductance produce cusps in the I –V curve. Visually, these
cusps are not very prominent. What is visible on the I –V curves is the voltage offset Voff: at
high voltages, the asymptote I (V ) ≈ GT(V − Voff sgn(V )) is shifted by Voff with respect
to the Ohm’s law. The value of the offset is naturally given by the average energy loss of a
high-energy electron traversing the junction:

eVoff =
∫

dE P(E) =
∫

dE P1(E). (6.74)

For the single-mode environment, eVoff = N̄�ω0.

Resistor model

The most straightforward and widely used model of the environment takes into account
the capacitance of the junction but disregards the frequency dependence of the parallel
impedance: it is represented by a frequency-independent resistor R. The effective environ-
ment is of the ohmic type (Eq. (6.53)) with α = RGQ and cut-off energy Ecut = �/RC .
The G–V and I –V curves at vanishing temperature kBT � eV (see Figs. 6.9 (a) and (b))
are not unlike the smoothed versions for the single-mode environment with N̄ � α (they
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do not display steps or cusps). The differential conductance is suppressed at low voltages,
the suppression being weak/strong for α much smaller/larger than unity. The I –V curves
show the voltage offset at sufficiently large voltages. Yet there are differences. At low
voltages, the I –V dependence is an anomalous power law, I � V 1+α . Therefore, the zero-
voltage tunneling conductance is zero at any α, even a very small one. For the latter case,
the substantial suppression of the conductance is restricted to low voltages and tempera-
tures, max(eV , kBT )/EC � exp(−1/α). This complicates the experimental observation of
the suppression: the tunnel conductors in the low-resistive environment RGQ � 1 look
linear, although in principle they are not.

For I –V curves, the value of the voltage offset is always Voff = EC/e, irrespective of
R. This is the charging energy of the capacitor charged by the instantaneous electron
tunneling. We know that the capacitor will not keep this energy/charge for long: it will
discharge via the resistor R at the time scale �RC . From the Heisenberg uncertainty rela-
tion, we expect that the electrons will feel this energy scale at E � �/RC . Indeed, for low
resistances, the offset achieves its asymptotic value only at eV � �/RC � EC. For large
resistances, the energies of the order of EC are already much bigger than �/RC , so that the
offset is visible at the energies of the order of itself. In the limit R →∞, the I –V curve
is piecewise linear: I = 0 for voltages not exceeding e/C and I = GT(V − sgn(V )Voff).
This suggests that in this limit (almost) every electron transferring the tunnel junction has
to charge the capacitor, very much like it has to do in Coulomb-blockade systems like
SETs. This is in agreement with the peak-shaped P(E) at large α.

Let us discuss the temperature dependence of the differential conductance. At large
and moderate α, the typical scale of this dependence is kBT � EC. At eV < EC, the
conductance increases with temperature, saturating at GT. At eV > EC, the conduc-
tance exhibits non-monotonous temperature dependence: first it decreases, deviating
from its zero-temperature value GT. This is followed by an increase back to GT at
kBT � eV (Fig. 6.9(c)). At low voltages, eV � Voff, the strongly suppressed conduc-
tance shows a dependence at kBT � eV . At small α, the temperature dependence mostly
occurs at the scale kBT � eV . Very roughly, the conductance retains its zero-temperature
value at eV > kBT/3 and has minimal dependence on voltage at |eV | < kBT/3
(Fig. 6.9(d)).

RC line

An interesting type of environment is felt by a tunnel junction connected to one end of a
semi-infinite RC-line made of capacitors and resistors (Fig. 6.10). We evaluate the effective
impedance as follows: we know from Eq. (6.23) the Fourier component Z (q) of the RC-
line impedance. The junction is connected in a certain point r , so it feels the impedance
Z (r , r ′ = r ) = ∫

Z (q)dq/2π . Since the line is semi-infinite, this has to be corrected by
a factor of 2 (a semi-infinite line provides one-half of the conductance of the infinite
line):

Z RC (ω) = 2
∫

dq

2π
Z (q) =

√
R̃

iωC̃
, (6.75)
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R̃, C̃ being the resistance and capacitance per unit length, respectively. Qualitatively, the

electric field penetrates into the line at the length L(ω) �
√
ωC̃ R̃ feeling the impedance

�R̃L(ω). Using the general considerations of Section 6.2.4, we determine that the RC-line
environment is of superohmic type with s = −3/2. A natural cut-off energy for P1(E) is
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the charging energy EC associated with the self-capacitance of the wire. We note, however,
that we do not need any cut-off: all integrals in Eq. (6.47) converge giving a one-parametric
P(E) (Fig. 6.10) as follows:

P(E) =
√

ERC

E3
exp(−ERC/E), (6.76)

with the characteristic energy scale ERC = (e2/4πC̃)R̃GQ, ERC being the charging
energy of the piece of the wire with resistance 2πG−1

Q of the order of inverse conduc-
tance quantum. This form of P(E) is valid, provided the natural cut-off does not matter,
max(E , ERC )� EC . It combines a relatively narrow region of exponential suppression at
low energies with a long slow-falling tail at higher energies. This leads to a difference of
scales that is highly unusual for one-parametric behavior. For instance, from the plots in
Figs. 6.10 (b) and (c), we see that the differential conductance is exponentially suppressed
for E < ERC . However, it still noticeably deviates from GT at energies that are two orders
of magnitude higher.

Small corrections

In all the examples given above, the effect of environment may be strong, and this requires
the high-frequency impedance to be at least of the order of G−1

Q . As mentioned, this is
by no means a typical situation. If one does not make any special attempts to create a
high-impedance environment, one ends up at the scale of so-called vacuum impedance,
or wave resistance of a vacuum, characterizing emission of electromagnetic irradiation to
outer space, Z0 = 1/(ε0c) ≈ 377 �, c being the speed of light. Geometric factors usu-
ally suppress the impedance to a fraction of Z0: for instance, the wave impedance of
a TV cable is 50 �. This scale is much smaller than GQ: Z0GQ/2 ≈ 0.015. Therefore,
in a typical situation, the interaction with the electromagnetic environment provides only
small (10−2) corrections to linear I –V curves. Expanding P(E) as in Eq. (6.48) and using
Eq. (6.72), we evaluate the correction to the differential conductance up to the first power
in the environmental impedance:

δGT(V )/GT =
∞∫

0

dω

ω
W

(
�ω

kBT
,

eV

kBT

)
Re Z (ω)GQ;

W (v,w) ≡
∑
±
± 1

e−v±w − 1

(
1− v ∓ w

1− e−v±w

)
.

(6.77)

The correction is additive in Z (ω). The modes at a given frequency ω contribute to the
correction with a weight function W (see Fig. 6.11). At vanishing temperature kB � �ω,
this weight function is simply a step function, given by

W = −�(|eV | − �ω),

with the correction vanishing at |eV | > �ω. It is instructive to present the correction as a
sum of elastic and inelastic parts. The elastic part can be attributed to the renormalization
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�Fig. 6.11. Weight function for small corrections to the tunnel differential conductance. Curves (i)–(iv)
correspond to kBT/�ω = 0.005, 0.05, 0.5, 5, respectively. Dotted lines represent inelastic and
elastic parts of the correction at vanishing temperature.

of the tunneling amplitudes and therefore does not depend on V . As discussed, the
elastic conductance is suppressed and the elastic part is therefore negative. The inelas-
tic part corresponds to the opening of a new transport channel: electron tunneling with
emission of the quantum �ω, so it can only take place at |eV | > �ω and is positive
there. As we see, in the case considered the two parts cancel each other at eV > �ω

(Fig. 6.11). Correspondingly, at vanishing temperature the correction to the conductance is
given by

δGT(V )

GT
= −GQ

∞∫
eV/�

Re Z (ω)
dω

ω
; (6.78)

∂(δGT)

∂V GT
= GQ

Re Z (eV/�)

V
. (6.79)

6.3.2 Cooper-pair tunneling

Let us turn to a single Josephson junction embedded into an electromagnetic environment.
As discussed in previous chapters, the coherent flow of Cooper pairs in the junction is
not accompanied by energy dissipation and cannot be separated into elementary tunnel-
ing events. Here we concentrate on the opposite situation: the Cooper pairs traverse the
junction one by one, and each separate tunneling event dissipates some energy into the
environment.
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To see how and when it is possible, we consider a Josephson junction biased by voltage
V and we inspect its Hamiltonian in charge representation, N being the number of Cooper
pairs transferred:

Ĥ = EJ

2

∑
N

(|N + 1〉〈N | + |N 〉〈N + 1|)

+ 2e(V + Ṽ )
∑

N

N |N 〉〈N | + Ĥenv. (6.80)

Here, we have also added the terms describing the environment (Henv) and the coupling
to it. The latter term comes with an environment-induced fluctuating voltage drop over
the junction, Ṽ , that is linear in the environment boson operators. This form makes it
evident that the junction can be found in the states of the set |N 〉. If all |N 〉 have the same
energy, the wave function is spread uniformly over the whole set of N . The dissipationless
supercurrent takes place. The applied voltage V shifts the neighboring states by 2eV . The
N states now form a ladder in energy space. Owing to the energy mismatch between the
neighboring states, the junction localized in a state with a well defined N so that no net
supercurrent is flowing through it. The environment helps the current: the junction may
tunnel from |N 〉 to |N − 1〉, emitting 2eV to the environment (assuming V > 0). A Cooper
pair is thereby transferred through the junction in the direction given by the voltage (down
the ladder). In the presence of thermal fluctuations, the energy may also be absorbed from
the environment. This results in a Cooper-pair transfer in the opposite direction (up the
ladder).

If we concentrate on two neighboring states, we immediately recognize the qubit shake-
up setup of Section 6.2.2 with the tunneling amplitude given by EJ/2. The rates of Cooper-
pair tunneling are thus given by Eq. (6.49):

�± = πE2
J

2�
P(±2eV ), (6.81)

and the current is therefore given by

I = 2e(�+ − �−) = eE2
J

�
(P(2eV )− P(−2eV )). (6.82)

P(E) is determined by the impedance of the environment. Since the Cooper pairs bear the
charge 2e, the corresponding one-boson probability, given by

P1(E , T = 0) = �(E)

E
4GQ Re Z (E/�), (6.83)

is four times bigger than that for single-electron tunneling, Eq. (6.71). In distinction from
the single-electron tunneling, the tunneling of Cooper pairs is immediately related to the
energy-loss function P(E) of an environment. The plots showing P(E) for various envi-
ronments (Figs. 6.4, 6.5, 6.6, and 6.7) give us, upon rescaling, the I –V curves of the
voltage-biased Josephson junction.

Let us now understand the parameter region where the Cooper-pair tunneling takes
place. We start with ohmic dissipation. In this case, �I/e � (E2

J /eV )(eV/Ecut)2α (α =
2GQ R for Cooper-pair tunneling). We can see the anomalous power law involved as
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the result of the energy-dependent renormalization of the tunneling amplitude, E∗J �
EJ(E/Ecut)α . The tunneling rate in this notation reads � � E∗2J /�eV . The rate estimated
should be compared with the renormalized amplitude E∗J . The latter determines the max-
imum coherent current, Ic � eEJ/�, through the junction. The Cooper-pair tunneling rate
cannot exceed this quantity since, in this case, the tunnel events would occur too quickly to
be regarded as independent ones. So, if our estimate for � exceeds E∗J , the tunneling pic-
ture fails; this signals the coherent regime. If � � E∗J , we are in the Cooper-pair tunneling
regime. This implies E∗J � eV .

If the environment is sufficiently resistive, α > 1, E∗J (E = 2eV )/eV decreases with
decreasing voltage. Therefore, the junction is always in the Cooper-pair tunneling regime.
The coherent supercurrent in the junction is destroyed by the voltage fluctuations coming
from the environment. The junction is localized in charge space. If α < 1, the situa-
tion is reversed: E∗J /eV increases with decreasing voltage. At sufficiently small voltage
eVc � E∗J (eVc), the junction enters the coherent regime characterized by a supercurrent
I ∗c . The junction is delocalized in charge space. In terms of Ecut and EJ, eVc � I ∗c �/e �
EJ(EJ/Ecut)α/(1−α). We will see below how this supercurrent is disrupted by the phase
tunneling. Therefore, at α = 1, the Josephson junction undergoes a transition between the
localized and delocalized state: this is the Schmid transition (see Section 6.2.4).

Control question 6.4. Explain the difference between the Schmid transition for a
qubit and for a Josephson junction.

Even for a typical, low-impedance, environment (α � 1), at sufficiently high tempera-
ture the voltage fluctuations may become strong enough to destroy the supercurrent and
provide Cooper-pair tunneling. The relevant energy scale in this case is much less than
kBT , so that P(E) assumes the Lorentzian shape given by Eq. (6.62). The corresponding
rates are the same in both directions:

�+ = �− = E2
J

2�

w

w2 + (2eV )2
; w ≡ 2παkBT � kBT .

As mentioned, the Cooper-pair tunneling regime takes place only if � � EJ/�, so we
imply that EJ � w. Since the rates are the same in both directions, there is no net current
in this approximation. To get the current, let us note that, by virtue of the detailed bal-
ance condition in Eq. (6.61), P(E)− P(−E) ≈ (P(E)+ P(−E))(E/kBT ) at E � kBT .
Therefore, the current is reduced by a small factor �eV/kBT in comparison with 2e�±:

I = 2e
4eV

kBT
�± = 4E2

J

�

2παV

w2 + (2eV )2
.

In the opposite case of a high-impedance environment, one has to go to higher voltages
to reach the significant current. The current peaks near the resonant voltage V0 ≡ e/C ,
where the energy gain from voltage, 2eV , matches the charging energy of the junction,
(2e)2/2C = 4EC. The shape of the peak is Gaussian with voltage width Vf,

I (V ) = E2
J

2
√

2πVf�
exp

(
− (V − V0)2

2V 2
f

)
,
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conforming to the shape of P(E). This shape of the current resonance indicates that the
position of the resonance is simply shifted by the quasi-stationary voltage fluctuations.
Their normal distribution gives the Gaussian shape, and the square of the width is just the
variance of the fluctuations. Indeed, the time scale of the fluctuation is RC-time,�α�/EC,
which is much larger than the time scale �/EC corresponding to the resonant frequency.
At low temperatures, kBT � �RC , the voltage fluctuations are quantum. They are thermal
in the opposite limit. As discussed, the applicability of the Cooper-pair tunneling picture
requires EJ � eVf.

Exercise 6.5. Compute V f in both limits, making use of Eq. (6.9).

The name “Cooper-pair tunneling” suggests the quantum nature of the effect. It is not
always so: it is worth noting that Cooper-pair tunneling has a simple classical analog in
the limit of small impedances, Re ZGQ � 1 and voltages exceeding w/e. If in the first
approximation we disregard the effect of the environment, the voltage bias of a Josephson
junction gives rise to a linear sweep of the phase difference, ϕ = ϕ0 + 2eV t/�. This results
in an ac current through the junction, I (t) = Ic sin(2eV t/�+ ϕ0), which oscillates at the
Josephson frequency 2eV/�. The ac current dissipates in the environment, the dissipation
rate dE/dt = I 2

c Re(Z (2eV/�))/2 being proportional to the real part of the impedance at
the frequency. Since the dissipated energy must be supplied by the circuit, we conclude
that a small dc current must be running such that IdcV = dE/dt . Therefore we obtain

Idc(V ) = I 2
c

2V
Re(Z (2eV/�)),

which coincides with the “quantum” relation in Eq. (6.82) in the relevant limit P1(E) ≈
P(E).

6.3.3 Phase tunneling

Let us consider the Josephson junction from a complementary viewpoint and recall the
washboard potential discussed in Section 3.5. If EJ � EC, the quantum state of the junc-
tion is expected to be well localized in phase in one of the equidistant minima of the
washboard potential. As discussed in Section 3.5.5, the system can coherently tunnel
between the neighboring minima. This tunneling is characterized by the (exponentially
small) amplitude �0, �0 = 8

√
EJ�ωp/π exp(−8EJ/�ωp). Here, ωp = √8EJ EC/� is the

so-called plasmon frequency – the oscillation frequency near the bottom of each well,
such that �ωp gives the first excited state in the well. The bias current I tilts the poten-
tial so that the neighboring minima are separated by the energy difference π�I/e. Now the
tunneling can only proceed by emitting/absorbing this energy from the environment. In dis-
tinction from Section 3.5, we concentrate here on small tilts (I/e � ωp). The Hamiltonian
describing the situation reads as follows:
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Ĥ = �0

2

∑
N

(|N + 1〉〈N | + |N 〉〈N + 1|

+ π�

e
(I + Ĩ )

∑
N

N |N 〉〈N | + Ĥenv. (6.84)

Here, N numbers the minima of the washboard potential and Ĩ represents the current
fluctuations due to the environment.

The best way to proceed is to note the formal equivalence of the above Hamiltonian and
that of the Cooper-pair tunneling (Eq. (6.80)). One switches between the Hamiltonians just
by switching notation:

EJ ⇔ �0;
π�

e
(I , Ĩ )⇔ 2e(V , Ṽ ).

This is the manifestation of the charge–phase duality: we have encountered this in
Section 3.5 when we compared two coherent regimes where charge or phase were delo-
calized. Now we observe the same duality for incoherent tunneling of charge or phase
in the presence of the environment. While the voltage fluctuations Ṽ are proportional to
the environment impedance, the current fluctuations are proportional to the admittance
Y (ω) ≡ Z−1(ω). The duality relation is given by

2GQ Z (ω)⇔ Y (ω)/2GQ. (6.85)

The duality thus relates the phase tunneling in a low (high) impedance environment to the
Cooper-pair tunneling in a high- (low-) impedance environment. Using the above duality
relations, we immediately obtain the V –I curve of the Josephson junction in the phase
tunneling regime: we just rewrite Eqs. (6.82) and (6.83) to obtain the voltage over the
junction,

V = π�
2
0

2e
(P(π�I/e)− P(−π�I/e)) , (6.86)

where P(E) is determined by the impedance of the environment with the zero-temperature
one-boson probability, given by

P1(E , T = 0) = �(E)

E

Re Y (E/�)

GQ
. (6.87)

Control question 6.5. How many replacements have been made to obtain Eqs. (6.86)
and (6.87)?

So we do not have to discuss the V –I curves in the phase tunneling regime in much
detail: they are similar to the V –I curves in the Cooper-pair tunneling regime in the corre-
sponding environment. We will only consider ohmic environment in the limit of vanishing
temperature and small voltages/currents. We have seen that in this limit for α > 1, Cooper-
pair tunneling takes place and I � V 2α−1. What happens at α < 1? By virtue of the duality
relation, Eq. (6.85), α > 1 is mapped onto α < 1 if charge and phase are exchanged. We
conclude that at α < 1 the transport is dominated by the phase tunneling. The P(E) for
phase tunneling is proportional to E2/α−1; this gives V � I 2/α−1. Reverting this relation,
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we obtain I � V α/(2−α). The current is thus increasing with increasing voltage, with the
power exponent<1. At the Schmid transition, both Cooper-pair and phase tunneling result
in I � V . These two kinds of environment-assisted incoherent tunneling take place in the
limit of small and large EJ, respectively.

The duality of the Josephson junction, though a powerful tool to analyze the limiting
cases, is not exact. The point is that the region of validity of the Hamiltonian, Eq. (6.84),
is limited by low energies ��ωp: indeed, it disregards excited states in each washboard
potential well. Its dual counterpart, Eq. (6.80), does not suffer from such limitations. There
is another system that is described by the Hamiltonian in Eq. (6.84) in a much wider energy
region. This is a thin superconducting wire. The discrete variable N in this case yields the
number of windings of the superconducting phase along the wire. The thin wire can be
approximated by or realized as a chain of a large number of Josephson junctions considered
in Section 3.6.2, the discrete variable being the number of vortices enclosed by the chain.
The transitions between neighboring N are commonly called phase slips. Therefore, the
above duality substitutions may be used to relate the physics of the superconducting wire
and a single Josephson junction in a wider energy interval [146].

6.4 Electrons moving in an environment

In Section 6.3, we have given a simple theory of electron tunneling in the presence of
an electromagnetic environment. The basic assumption was that the tunneling transitions
between all electron states eventually feel the same environment and are characterized with
the same P(E) function. This is certainly true for a circuit-like environment model where
all electrons tunneling to a certain electrode feel the same (fluctuating) potential: that of
the electrode. The physical foundation for such a model is (as discussed in Section 6.1.2)
that the electrons in a metal usually propagate much slower than the electricity. This is why
the electrons near a tunnel junction all feel the potential that is constant in space.

In this section, we will concentrate on the setups where electrons can take over the elec-
tromagnetic field propagating in a medium and/or move with comparable speed [147]. In
this case, the interaction between environment bosons and electrons assumes the following
general form:

Ĥint =
∑

q

U (q)
k,k′ â

†
k âk′ b̂

†
q + h.c., (6.88)

where q labels the electromagnetic modes and k, k′ label the electron states. The previously
used environment model corresponds to the diagonal U (q)

k,k′ = δkk′U
(q)
k , with U (q)

k being
equal for all states k of the same lead.

Control question 6.6. How is this specific form of interaction related to the
assumption of the constant-in-space potential?

The presence of non-diagonal terms in Eq. (6.88) indicates that the electromagnetic
environment may cause transitions between the states k, k′ of the same lead that do not
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involve any tunneling. These terms are responsible for electron energy relaxation and
decoherence, which we consider in Section 6.8. Here, we concentrate on the effect of the
environment on the electron tunneling and demonstrate that in these setups it can still
be described by an effective impedance and the associated energy loss function P(E).
The effective impedance incorporates the distributed impedance Z (ω; r , r ′) in the medium
(see Section 6.1.2) and the electron propagation, and in principle depends on the elec-
tron states before and after tunneling. The effective “energy loss” function P(E) does
not have to be positive as previously: it appears to describe both inelastic and elastic
tunneling and cannot be directly associated with a positive probability of an inelastic
process.

The concept of effective impedance glues together the dissipative quantum mechanics
and several important topics of quantum transport, such as Luttinger liquids, Altshuler–
Aronov corrections, and escaping the Coulomb blockade, traditionally treated as separate
subjects. We address these topics in the following subsections.

To understand the concept of effective impedance, let us restrict ourselves to the first
non-vanishing (second) order in perturbation theory in U (q). Second-order processes
involve a (virtual) emission/absorption of an environmental boson in the course of tun-
neling and give the corrections to the elastic tunneling rate in the “absence” of the
environment. The corrections are independently contributed to by all boson modes, so
it suffices to look at a single mode with energy �ω0. For simplicity we assume vanish-
ing temperature and that the interaction with the environment takes place in the left lead
only. An electron tunnels from a certain state filled state r in the right-hand lead to states
k in the left; this tunneling is described by the tunneling Hamiltonian ĤT =∑

k Tkâ†
k âr

(see Section 3.2.7). Let us first concentrate on the inelastic correction. The state after
the tunneling comprises an emitted boson and an electron on the left in the state k,
Er = Ek + �ω0. The intermediate virtual state always involves another electron state k1.
If k1 is empty in the initial state, it is filled in the virtual state reached by the electron
transfer from r to k′. If k1 is filled in the initial state, the virtual state is reached by the
emission of the boson, which also promotes an electron from k1 to k (see Fig. 6.12).
The resulting amplitude is contributed to by both virtual states and does not depend on the
filling of k1:

Am =
∑
k1

Tk1

1

Ek + �ω0
Uk,k1 . (6.89)

Squaring the amplitude and summing up over k, we produce the correction to the tunneling
rate from state r involving the sum over three states k, k1, and k2 as follows:

(δ�r )in = 2π

�

∑
k,k1,2

Tk1 T ∗k2
Uk,k1U∗k,k2

δ(Er − Ek − �ω0)�(Ek)

(Ek + �ω0 − Ek1 )(Ek + �ω0 − Ek2 )
. (6.90)

In our search for the effective impedance, we look at the following function:

πX (ε) = 1

Ek + ε + i0− Ek2

Uk,k1U∗k,k2

ε − �ω0 + i0

1

Ek + ε + i0− Ek1

.
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The imaginary part is related to dissipation and consists of three δ-functions concentrated
at ε = �ω0, ε = Ek2 − Ek , and ε = Ek1 − Ek . The imaginary part defines an effective
one-boson energy “loss” function P1(ε), given by

P1(ε) = Im X (ε) = P (in)
1 + P (el)

1 ,

P (in)
1 ∝ δ(ε − �ω); P (el)

1 ∝ δ(Ek + ε − Ek1,2 ),

that, similarly to Eqs. (6.48) and (6.50), Eq. (6.77) determines the overall correction to the
rate given by

δ�r = 2π

�

∑
k

Tk1 T ∗k2

⎛
⎝ ∞∫

0

δ(Ek + ε − Er )dεP1(ε)− δ(Ek − Er )

∞∫
0

dεP1(ε)

⎞
⎠ .

The term P (in)
1 in P1 reproduces the derived inelastic correction given by Eq. (6.90) and

can be readily associated with the probability of energy loss �ω0 as before. However, there
are other terms, P (el), that are specific for the present situation. The energy loss for these
terms correspond to the transitions between the electron states k and k1,2. However, this
energy loss is compensated by the equal energy mismatch between states r and k. There-
fore, the terms give the elastic transitions between states r and k1. This mixing between
boson and electron transitions, and correspondingly between the inelastic and elastic pro-
cesses, is typical for the situation considered and is related to the mixing of two excitations:
bosons and electron–hole pairs. Therefore, the effective P1(ε) is not immediately related
to a positive probability of the energy loss, and in fact does not have to be positive, as is
clear from Eq. (6.91). The effective impedance Zeff(ω) is related to P1(E) in the usual way
(see Eq. (6.71)). In general, the impedance depends on too many details, such as the states
k1,2 involved, to be of practical value.

The effective impedance does become useful in the semi-classical picture of tunneling
outlined in the following. Let us consider electrons propagating in a medium (generally
with scattering) that consists of two leads separated by a tunnel barrier (see Fig. 6.12(a)).
The overall tunneling rate is composed of the products of individual amplitudes. Each indi-
vidual amplitude corresponds to tunneling at a given point R at the barrier. This tunneling
is between the electron states coming into the vicinity of point R and leaving it at certain
velocity directions in the left and in the right lead, v

(L,R)
c , v

(L,R)
l . For brevity, let us mark

an individual amplitude of this kind with a composite index j comprising R, v
(L,R)
c,l . Let us

note that fixing the initial (final) velocity at a given point determines an electron trajectory
going from (coming to) the point. This is why there are two trajectories associated with
each index j , one in the left lead r (L)

j (t), and one in the right one, r (R)
j (t). The trajectories

hit the barrier at the same point at t = 0, r (R,L)
j (t = 0) = R. If an electron tunnels from the

left to the right lead at the time moment τ , its coordinate at the time moment t is given by
either r (L)

j (t − τ ) (t < τ , before the tunneling) or r (R)
j (t − τ ) (t > τ , after the tunneling).

Generally, the total tunneling rate is contributed to by products of all individual
amplitudes at different time moments:

� ∝
∑
j , j ′

∫
dt1 dt2(· · · ) Tj (t1)T ∗j ′(t2).
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�Fig. 6.12. Effective impedance incorporates information about the electron motion and the extended
impedance in the medium. (a) Electron trajectories in the left and right leads for the tunneling
event taking place at position R. Thick black line denotes the tunnel barrier. (b) Time–space
diagram for the effective impedance Zeff(t2 − t1).

In the semi-classical scheme, the interference between different j is disregarded: the semi-
classical approximation requires that the electron crosses the barrier at a certain point R
with certain velocity directions before and after tunneling. The total rate is thus a sum of
partial rates, � j . Each partial rate is characterized by the corresponding amplitude Tj , and
can be considered separately from all other partial rates.

The semi-classical approximation does not require that the time moments t1, t2 at
which the barrier is crossed are the same. The resulting partial rate thus comes about
from the interference of two tunneling amplitudes Tj at the time moments t1,2 integrated
over all possible t1,2. This allows us to incorporate the time-dependent phase shifts of
the tunneling amplitudes, Tj → Tj eiφ j (τ ), and define the effective energy loss function
Pj (E) = ∫

dteiEt/�〈eiφ j (τ )eiφ j (τ+t)〉, in very much the same manner as we did in Sec-
tion 6.2.5 (see Eqs. (6.57) and (6.58)). The Pj (E) depends now on the index j , and can,
in principle, be different for different tunneling points R j and/or velocities. The correlator
of φ j is determined by the response function which (apart from the frequency factors, see
Eq. (6.59)) coincides with the effective impedance sought.

To obtain this function, we concentrate on electron tunneling from the left to the right
lead. We note that such tunneling at point R j at time moment t can be described in two
equivalent ways. (i) The creation of an electron on the right and a hole on the left. In
this case, we have no excitation before the moment t . At a later time, both quasiparticles
follow the outgoing trajectories r (L,R)

j in the corresponding leads. (ii) The annihilation
of an electron coming from the left and a hole coming from the right. In this case, both
quasiparticles follow incoming trajectories and there are no excitations after the moment t .
We choose to present the tunneling at the later time moment t2 as an annihilation and the
tunneling at the earlier time moment t1 < t2 as a creation.
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Now we can evaluate the phase shift at the later time moment as a reaction to the tun-
neling at the earlier time moment. The created electron and hole produce a time- and
coordinate-dependent potential	(t , r). Since the electron and hole move along trajectories
r (R,L)

j (t), their total charge is given by q1(t , r) = e(δ(r − r (R)
j (t − t1))− δ(r − r (L)

j (t −
t1)))�(t − t1) and gives rise to the following potential:

	(t , r) =
∫

dt ′dr ′Z (t − t ′; r , r ′)q1(t ′, r ′)

= e(Z (t − t ′; r , r (R)
j (t ′ − t1))− Z (t − t ′; r , r (L)

j (t ′ − t1))). (6.91)

The phase shift for the tunneling at time moment t2 is accumulated by the corresponding
electron and hole that move along the incoming trajectories in the potential created. It is
given by

φ j (t) = e

�

∫ t2

−∞
dt(	(t , r (L)

j (t − t2)−	(t , r (R)
j (t − t2))

= e

�

∫ t2

−∞
dt dr 	(t , r)q2(r , t), (6.92)

with q2 = e(δ(r − r (L)
j (t − t2))− δ(r − r (R)

j (t − t2))). Combining Eqs. (6.91) and (6.92),
we obtain the following response function:

χ (t2 − t1) =
t2∫

t1

dt

t2∫
t1

dt ′
∫

dr dr ′q2(t , r)q1(t ′, r ′)Z (t − t ′, r , r ′).

Switching to the frequency representation, we arrive at a compact formula to be used
further:

Zeff(ω) = ω2
∫

dr dr ′PA(−ω, r)Z (ω, r , r ′)PR(ω, r ′). (6.93)

Here, the retarded and advanced particle propagators, PR,A are defined as follows:

PR,A =
∫

dt eiωt�(±t)(δ(r − r (R)
j (t))− δ(r − r (L)

j (t))), (6.94)

incorporating the electron motion along the trajectories r (L,R)
j . We stress the correspon-

dence of PR,A with the electron propagator P(t ; r , r ′) that has been heavily used in
Section 6.1.2. As a reminder, the propagator yields the probability of finding an electron at
point r provided it was at point r ′ at time 0. Since we are considering the rate in the lowest
order in tunneling amplitudes, we should neglect the tunneling in the propagator: the elec-
tron stays in the left/right lead if it is initially in the left/right lead. Then the correspondence
is given by

PR(ω, r) = P (R)(ω; r , R j )− P (L)(ω; r , R j ), (6.95)

PA(ω, r) = P (R)(−ω; R j , r)− P (L)(−ω; R j , r). (6.96)

Control question 6.7. Can you prove the above correspondence?
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Equations (6.95) and (6.96) allow us to evaluate the effective impedance and the corre-
sponding modification of the tunneling rate if we know the electron motion (P (R,L)) and
the electrical response (Z (ω, r , r ′)) in the medium. They work not only for a ballistic elec-
tron motion where it moves along a certain trajectory, but also for diffusive motion. In this
case, the expressions for PR,A are averaged over the trajectories so that the propagator P
satisfies the diffusion equation (see Eq. (6.31)).

Before we go to concrete examples, let us explain why we chose to present the tunnelings
at t1,2 as creation/annihilation of electron/hole pairs. It seems that a more natural alternative
for, say, tunneling at time moment t2 would be to look at an electron that is on the left at
t < t2 and on the right at t > t2. This does not work, leading as it does to an incorrect
and divergent expression for the effective impedance. The point is that an electron moving
in a medium loses energy. Realistically, it will stop doing so if its energy approaches EF.
However, this is not incorporated in our approach, and an electron that exists all the time
would suffer an infinite energy loss. One would have to correct this, introducing extra terms
that cancel divergencies and eventually reproduce Eq. (6.93). The choice we made is the
simplest way to avoid such corrections.

6.4.1 Escaping the Coulomb blockade

Let us consider tunneling through a tunnel junction of conductance GT into an island
(Fig. 6.13(a)) separated from a lead by a constriction of resistance R (GT R � 1). If we
disregard the electron motion through the island to the lead, the tunneling electron feels the
impedance Zc(ω) = R/(1− iωτRC ), τRC ≡ RC . As we have learned in Section 6.3, in this
case the dynamical Coulomb blockade strongly suppresses the tunneling at low energies
and completely suppresses it at zero energy: the low-voltage zero-temperature conductance

C

R

GT

island

escape route

tunneling
1

2

(a) (b)

E

1

1000
ECδs

Ec/(R1GQ)

G
T
(E

)/
G

T

δs /(R1GQ)

�Fig. 6.13. Escaping Coulomb blockade. (a) Electrons can cross the constriction (R) that provides a resistive
environment, thereby escaping the Coulomb blockade in the island. (b) Log-log sketch of the
energy-dependent conductance. The curves correspond to different environment resistances
R1 � G−1

Q � R2. Due to the escape, the conductances are finite at vanishing energy.
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is given by GT(V ) � GT(eV τRC/�)RG Q , GT(0) = 0. It is intuitively clear that the elec-
tron motion can change this. At a sufficiently long time scale τd, the electron leaves the
island and the resistive constriction behind. Therefore it escapes the Coulomb blockade set
by the impedance R. Since long time scales correspond to low energies, we expect GT(0)
to remain finite.

The effective impedance allows us to quantify this escape. To evaluate this, let us note
that both electric potential and probability are conveniently constant over the island. Thus
we can average both PA,R(r) and Z (r , r ′) over the island. The averaged PR gives the
probability of finding an electron in the island at time moment t if it tunnels there at
time moment 0. This probability falls off exponentially with time, exp(−t/τd), there-
fore PA = (−iω + 1/τd)−1 = PR(−ω). The time constant τd has been already evaluated
in Subsection 3.2.7: it is the inverse of the rate �given given by 3.35, τd = Re2/δS. It
might seem that now we can plug in Zc and P to Eq. (6.93). However, the extended
impedance at such low frequencies is also affected by the electron motion, as discussed
in Section 6.1.2. Adapting Eq. (6.28) to the present situation, we obtain the true impedance
Z (ω) = 1/(−iωC − iωe2/δS(1+ iωPR)). Let us note now that electrons propagate slower
than electricity, τd � τRC , or, in other terms, EC � δS. Under this condition,

Z (ω)PR ≈ Zc(ω)
1

−iω
. (6.97)

One can say that the electron motion corrections cancel each other in Z and PR, a fact that
we will use several times in this section.

Control question 6.8. Can you explicitly prove Eq. (6.97)?

We thus end up with Zeff = Zc(−iω)PR(−ω). This finally brings us to

Zeff(ω) = iωR

(iω + τd)(1+ iωτRC )
.

The effective impedance vanishes at zero frequency. According to the general classifica-
tion of environments outlined in Section 6.2, this brings us to the superohmic regime,
where the Anderson catastrophe is gone so we expect a finite probability of elastic tunnel-
ing. Accordingly, the ratio of zero-voltage and high-voltage tunnel conductances is finite,
GT(0)/GT = exp(− ∫∞

0 GQRe Z (ω)dω/ω). Explicitly,

GT(0)

GT
=

(
δS

2EC

)RGQ

. (6.98)

In a low-resistance environment, the conductance renormalization is not only finite but
small, GT(0)/GT = 1− RGQ ln(2EC/δS) (Fig. 6.13(b)). Comparing this with the usual
expression for the environment-suppressed tunneling, we see that the voltage-dependent
conductance saturates at eV � �τd � (G/GQ)δS. In the opposite case, RGQ � 1, the
suppression is large and the saturation takes place at eV � δS.

We have assumed here that the constriction of resistance R can be treated as an ohmic
resistor. While it is always a correct assumption at R � RQ, it is not compatible with the
coherent transport through the constriction in the opposite limit. Indeed, if the transport
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is coherent, the constriction is simply another tunnel junction of resistance R. We have
addressed the zero-voltage conductance of such a setup in Chapter 3 in the context of elas-
tic co-tunneling to obtain (Eq. (3.57)) GT(0)/GT � (RGQ)(δS/EC). The suppression is in
place; it is expressed in the same parameters as, but eventually is much smaller than, that
for our escape model, Eq. (6.98), with an ohmic resistor. Indeed, the finite low-voltage
conductance corresponds to the elastic scattering through the whole setup: the tunnel junc-
tion, the island, and the constriction. Since the ohmic resistor at RGQ � 1 is essentially
incoherent, this suppresses the elastic scattering by a factor that is large in comparison with
that for a coherent tunnel constriction.

6.4.2 Luttinger liquids

Here we consider tunneling to and in Luttinger liquids. The Luttinger model describes an
infinite one-dimensional gas of interacting electrons without scattering. In the context of
quantum transport, such a gas can be realized in a sufficiently long waveguide supporting a
single transport channel. This is why long one- or few-channel ballistic wires, where inter-
action effects are important, are commonly termed Luttinger liquids. “Liquid” here stresses
the role of interaction as opposed to an almost non-interacting “gas.” In Section 6.1.2 we
have evaluated both the electron motion and the extended impedance in a Luttinger liq-
uid, expressing them in terms of the parameters of the model: the Fermi velocity vF the
and geometric capacitance per unit length, C̃ . We are thus ready to evaluate the effective
impedance and its effect on the tunneling.

Tunneling in one-channel wires may be arranged according to three distinct setups (see
Figs. 6.14(a), (b), and (c), (c′)). Let us start with setup A, in which an electron tunnels from
an external electrode (black in the figure) to the point x = 0 somewhere in a (formally infi-
nite) Luttinger liquid. We disregard the interaction in the electrode, which allows us to
concentrate on the impedance and the electron motion in the liquid. Owing to the homo-
geneity of the liquid, the effective impedance can be represented by Fourier components
of PR,A and Z :

Zeff = −ω2
∫

dk

2π
PA(−ω,−k)Z (ω, k)PR(ω, k). (6.99)

After tunneling from the external electrode, the electron moves with equal probability in
one of the two opposite directions. Let us consider the one with positive velocity. The
trajectory is given by x(t) = vFt in the liquid (right-hand electrode). Equation (6.94)
then yields PR,A(ω, k) = (∓iω + 0∓ ikvF)−1. Combining this with Eq. (6.35) for the
impedance, and integrating over k, we obtain a frequency-independent effective impedance
ZA, given by

GQ ZA = (g + 1/g − 2)

2s2
, (6.100)

where we introduce a dimensionless parameter

g ≡ vF

vp
≡

√
(C̃ − C̃ ′)/C̃ ,
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�Fig. 6.14. Tunneling in Luttinger liquids. Three distinct setups are shown. External metal electrodes are
shown in black. (a) Setup A, to the middle. (b) Setup B, backscattering. Strictly, the third setup
comprises two almost identical setups: (c) setup C, to the ends, and (c′) setup C′, between the
ends. Parts (d), (d′), (e), and (f), taken from Ref. [148]: illustrate the experiment and are
explained in the text.

standard in the theory of Luttinger liquids. For repulsive interaction between electrons,
0 < g < 1. A small g value signals large interactions, while g = 1 corresponds to a non-
interacting gas. Indeed, ZA = 0 at g = 1, and tunneling is purely elastic, as it should be in
the absence of interactions. The constant 2s gives (spin) degeneracy of the electron modes:
if, for example, a large magnetic field completely polarizes electrons in the wire, 2s = 1.
The modification of tunneling for sufficiently low energies is the same as for the resistor
model described in Section 6.3 (see, for example, Fig. 6.9). The voltage-dependent tunnel-
ing conductance at vanishing temperature and the temperature-dependent conductance at
zero voltage obey a power law, as follows:

GT(V1)

GT(V2)
=

(
V1

V2

)GQ ZA

,
GT(T1)

GT(T2)
=

(
T1

T2

)GQ ZA

.

The tunneling is suppressed as the energy decreases.
Setup B in Fig. 6.14(b) is the tunneling between electrons propagating in opposite direc-

tions. Since an electron turns back in the course of such process, it is in fact backscattering.
Such backscattering can be induced by any weak defect in or close to the wire. It can be
seen as a (small) reduction of the two-terminal conductance of the wire due to the defect,
given by

dI

dV
= 2s

2
GQ − GB(V ), (6.101)

where the first term presents the conductance of an ideal wire.
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Control question 6.9. Explain Eq. (6.101) making use of Fig. 1.8: what is
the difference in the chemical potentials of the electrons propagating in different
directions?

To evaluate the effective impedance, let us associate the electrons propagating in a
positive (negative) direction with a left (right) lead, so that the trajectories are given by
x (R,L)(t) = ±vFt . This yields PA(ω, k) = (−iω + 0+ kvF)−1 − (−iω + 0+ kvF)−1, and
integration over k in (6.99) yields

GQ ZB = 2(g − 1)

2s
. (6.102)

Since g < 1, this effective impedance is negative. The backscattering is thus increased at
decreasing energy, GB � V GQ ZB , in distinction from all tunneling processes considered
earlier in this book. This may sound unusual, before we recognize that the increase in
backscattering implies a decrease in the wire conductance: in all cases, an environmental
effect tends to quench low-energy conductance, either that of a tunnel junction or of the
wire. The backscattering can be regarded as tunneling provided it is weak enough, i.e.
GB � GQ. Since the backscattering grows with decreasing energy, this condition is broken
at sufficiently low energy. Starting with this energy, a weak defect would provide a strong
effect: it effectively breaks the free electron propagation in the wire, separating it into two
weakly connected pieces.

This brings us to setup C, or, to put it in strict terms, to two almost equivalent setups C
and C′ (shown in Figs. 6.14(c) and (c′)). For setup C, an electron tunnels from the external
electrode to the end of the wire rather than to the middle of it. We cannot immediately make
use of Eq. (6.99) since the wire is not homogeneous: near the end, both Z and PR,A depend
on both coordinates r , r ′ rather than on their difference only. The effective impedance is
evaluated after performing a symmetry trick; the calculation is given as Exercise 6.6, and
yields

GQ ZC = (1/g − 1)

2s
. (6.103)

This impedance is positive and gives the power-law suppression of the tunneling at low
energies. Let us consider the situation when the tunneling commences between the ends of
two Luttinger liquids (setup C′ shown in Fig. 6.14(c′)). We note that in the framework of the
Luttinger model the extended impedance is local in space: charge in one of the wires does
not induce any voltage in another wire. This is a consequence of both the local capacitance
model in use and the fact that electrons do not go between the wires. Looking at the general
relations in Eqs. (6.93) and (6.95), we recognize that the effective impedance is contributed
to separately by two pieces, each arising from integration over the coordinates in the left or
right wire. Each piece is the same as in setup C. We conclude that the effective impedance
doubles in comparison with setup C, ZC′ = 2ZC.

Control question 6.10. Suppose the wires separated by the tunnel barrier are not
identical so that Fermi velocities in the wires differ. What is ZC′ in this case?



509 6.4 Electrons moving in an environment
�

Exercise 6.6. The extended impedance in setup C is a function of both coordinates,
x , x ′ > 0, which is obtained by the solution of differential equations given in Sec-
tion 6.1.2 with boundary condition j(0) = 0, since both electric and particle current
must vanish at the end of the wire. Use symmetry arguments to prove that

Z (x , x ′) = Zh(x − x ′)− Zh(x + x ′),

Zh being the extended impedance of the homogeneous Luttinger liquid that depends on
the difference of the coordinates only. Draw an analogy with the image charge method
in electrostatics. Use the above relation to derive ZC.

What happens to all the tunneling effects mentioned if we increase the number of prop-
agating channels in the wire while keeping the same geometric capacitance? An estimate
can be obtained from Eqs. (6.100), (6.102), and (6.103) by formally setting 2s to the (large)
number of channels. It may seem that interaction effects are increased: g ≈ 0 at 2s →∞.
However, all impedances given here come with 2s in the denominators so ZA,B,C � GQ in
the limit of a large number of transport channels. We conclude that interaction is weak in
this limit.

Finite size, low energies

So far we have assumed the wire to be infinite. In practice, it must end somewhere, and the
range at which electrons propagate without scattering would hardly exceed a few microns.
It is important that the finite size gives rise to a new low energy scale at which either elec-
trons or electricity propagate along the full length L of the wire, Elow � � max(vp, vF)/L .
This energy scale limits the applicability of the power laws at low energy, while at higher
energies they are valid until the energy reaches EF. The fate of the wire at energies �Elow is
governed by the general laws of quantum transport and the contacts to the leads. If the con-
tacts are good, resembling the QPC situation, the wire can be regarded as a single scatterer
with no appreciable energy dependence of the conductance. If the increased backscattering
is still small, the wire is close to an ideal QPC. If contacts are bad, the piece of the wire
becomes a quantum dot with the level spacing��vF/L and Coulomb energy EC = e2/C̃ L .

Carbon nanotubes

It might seem that a Luttinger liquid can be easily made by electrostatic shaping of a 2DEG:
one would just use two wide top electrodes separated by a narrow gap. Many attempts to
make long ballistic wires indeed concerned superconducting heterostructures. However, it
appears to be very difficult to provide no backscattering at sufficient length. Since inter-
action effects tend to increase the backscattering at low energies, a long wire is cut into a
collection of weakly connected pieces by occasional weak defects.

Nature and technology provide a better material for quantum wires: carbon nanotubes.
Carbon comes in the form of graphite: a collection of weakly coupled atom-thick layers
of carbon. (One easy draws a line with a graphite pencil because the cohesion between
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the layers is small.) Single-wall carbon nanotubes are thin (≈1 nm in diameter) cylinders
obtained by “wrapping” of a single layer. A tight, chemically pure carbon lattice makes
the nanotubes effectively defectless, this allows for the observation of the Luttinger liquid
exponents. Owing to a peculiar band structure of a single graphite layers, the electrons
propagating in the carbon nanotubes possess extra degeneracy, so that 2s = 4.

Experiment

We illustrate Luttinger liquids where three power-law exponents corresponding to ZA, ZC,
ZC′ have been cleverly measured with the same device [148]. A carbon nanotube was
placed on a substrate to touch four metal electrodes. An AFM (atomic force microscope)
tip was used to affect the nanotube. At the first stage of the experiment, a buckle was made
in the middle of it (see Fig. 6.14(d)). Later, the nanotube was pushed further in the same
direction by the tip applied to the buckling point. Thereby the nanotube was torn into two
pieces that then bounced back to cross in the middle of the structure (see Fig. 6.14(d′)).

The contacts between the nanotube and the metals are effectively of tunneling nature.
This is why below the low energy scale Elow the nanotube is a double quantum dot sub-
jected to Coulomb blockade. Since the device is short, this low-energy scale is not at
all small in absolute units: EC/kB � 70 K, a temperature too high for a typical quan-
tum transport experiment. However, this leaves a wide energy range from Elow to EF in
which to observe the Luttinger exponents. In practice, the measurements stopped at room
temperature and the corresponding voltages.

In the first stage, the two-terminal conductance of the device was dominated by the
tunnel barriers between the tube and the metal electrodes: this corresponds to setup A.
The temperature dependence (lower curve in Fig. 6.14(e)) of the conductance gave the
power GQ ZA = 0.26 (referred to as α in the figure); this yields g = 0.26. One can exclude
the contact resistance by making a four-terminal measurement that concentrates on the
resistance of the middle of the nanotube. This resistance is at least 30 times smaller, but
still lower than G−1

Q . This proves that the buckle is eventually quite a strong defect: it must
work as a tunnel barrier, so we have setup C′. The corresponding effective impedance was
measured to be GQ ZC′ = 1.4; this is in excellent agreement with g = 0.26 extracted from
the two-terminal measurement.

Tearing the nanotube decreased the resistance by factor of 4 at room temperature. It
was thus dominated by the tunnel junction at the crossing. This is a junction between two
nanotube pieces similar to the buckle junction. However, the exponent obtained from the
differential conductance measured differs by a factor of 3, GQ Zeff = 0.50. The point is that
now the junction is at a significant distance from the ends of the torn pieces. The electrons
tunneled between the “bulk” parts of the nanotube pieces. This suggests that Zeff = 2ZA,
in agreement with the experiment.

Bosonization

The fundamental difference between bosons and fermions is somehow smeared in a strict
one-dimensional geometry since the particles in these situations cannot get around each
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other. This enabled the so-called bosonization technique that works in one-dimensional
setups and allows for an efficient and compact description of Luttinger liquids and eval-
uation of the exponents. The first step of bosonization is similar to the quantization of
electric circuits: electrical excitations in the Luttinger liquid are quantized and represented
as a set of bosons. During the second step, the electron creation/annihilation operators
are represented as exponents of the boson fields: bosonization makes the electrons redun-
dant. In our opinion, at this point the level of the theoretical abstraction gets too high.
Although we appreciate the elegance of bosonization, we review Luttinger liquids with
earthly techniques that easily reveal the links to other quantum transport setups. An inter-
ested reader can find an excellent compact review of bosonization aimed at Luttinger
liquids and adjacent phenomena of quantum transport in Ref. [149].

6.4.3 Altshuler–Aronov corrections

Let us turn to tunneling into extended metals where electron transport is diffusive. Such
tunneling should also be affected by a dynamical Coulomb blockade. From what we know
about the phenomenon, it is safe to assume that it is governed by an effective impedance.
This impedance can be estimated as the resistance R of a metal piece adjacent to the
point of tunneling. If the metal is “good,” so the electron transport in there is coher-
ent, such a resistance must be small, not exceeding G−1

Q . In this case, the effect of a
dynamical Coulomb blockade is small, being a correction �RGQ to the tunneling rate
for non-interacting electrons.

But what does “adjacent” mean? In classical transport, “adjacent” would imply a close
proximity: that at atomic scale or perhaps at the scale of the mean free path. In 1979,
Altshuler and Aronov [150] addressed the interaction correction to tunneling rate to find
that this is not so: the scale defining “adjacent” is typically much bigger than the mean free
path and can depend on the energy of the tunneling electron. This work became one of the
pillars of mesoscopics and the reference point for quantum transport.

As discussed, an energy scale defines a time scale that gives rise to two space scales:
Ldiff and Lel characterizing the propagation of electrons and electricity, respectively. Thus,
we can proceed with the effective impedance method described since it can account for
phenomena taking place at both scales. We will make full use of the relations from
Section 6.1.2. In a common metal, Ldiff � Lel. This scale separation allows for simpli-
fication of Eq. (6.93); as we note in Section 6.4.1, we can replace the extended impedance
Z (ω; r , r ′) by its electric-circuit approximation Zc(ω; r , r ′), given by∫

dr ′ Z (ω; r , r ′)P(r ′, R) ≈ Zc(ω; r , R),

R being the point where the tunneling takes place. Expressions for Zc in different
geometries can be found in Section 6.1.1. The effective impedance becomes

Zeff =
∫

dr PA(−ω; R, r)Zc(ω; r , R).

For homogeneous media, one may use the representation in terms of Fourier components.
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We start with three-dimensional geometry: tunneling takes place at the surface of a semi-
infinite metal with conductivity σ . Combining Eqs. (6.22) and (6.31), we get

Zeff = 2
∫

dk
(2π )3

−iω

σ (−iω + Dk2)k2
→ Re Zeff = 1

πσ

√
ω

2D
. (6.104)

The factor of 2 accounts for the fact that the metal is semi-infinite. According to the gen-
eral classification of environments, we are in a superohmic regime. Employing Eq. (6.78)
yields δGT(V )/GT(0) = 2(GQ/σπ )

√
eV/2�D. This prediction4 made in Ref. [150] gave

an explanation of the experiments [151], 152].
To interpret this effective impedance, let us first perform some elementary electricity

theory. Let us imagine an ideally conducting sphere of radius r embedded into the metal
such that its center coincides with the point of tunneling. If we apply a voltage to the sphere
and ground the metal, the resistance equals 1/2πσd.

Control question 6.11. Can you reproduce the above formula for the resistance?

The effective impedance thus equals the effective resistance of the metal with a piece
of size ∼Ldiff removed. This is consistent with the escaping Coulomb blockade consid-
ered earlier in this section: the resistance covered by the propagating electrons does not
contribute to the effective impedance.

The three-dimensional geometry is slightly confusing since, in this case, the electricity
propagates instantly, Lel = ∞. In two-dimensional geometry – tunneling into a film – the
correction is obtained using the impedance expression in Eq. (6.23) instead of Eq. (6.22).
The electric field in two-dimensional geometry diffuses with diffusion coefficient D∗ =
1/R̃C̃ , so the electrical scale is estimated as Lel � √D∗/ω. The effective impedance does
not depend on frequency and is given by

Zeff = R̃

2π
ln

(
D∗

D

)
.

This is the impedance of a circle of the film that has a radius Lel and a hole in the center,
Ldiff being the radius of the hole.

This finally defines “adjacent” as far as the effective impedance is concerned: within Lel,
beyond Ldiff.

If we go to one-dimensional geometry – an RC-line – the resistance is proportional to
the length scale, and since Lel � Ldiff, the resistance of a piece “removed” by the electron
diffusion is irrelevant. The effect of the dynamical Coulomb blockade is not affected by
the diffusion and is given by Eq. (6.76).

We start this paragraph with an explicit warning: it contains plausible, but wrong,
statements to illustrate the subtleties of interaction corrections. The resistance of a dif-
fusive sample is due to scattering at impurities. At least in the Born approximation, the

4 In addition to the contribution of electrical excitations, Ref. [150] also gives the contribution of slow modes
of another kind – spin excitations, not considered in this book. The spin-excitation contribution has a similar
structure, but is usually numerically small and vanishes at scales exceeding the spin-flip length.
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scattering at each impurity can be regarded as a kind of tunneling between electrons cross-
ing the impurity position in different directions. We have already used this analogy when
describing backscattering in a Luttinger liquid. It is plausible that the rate of this tun-
neling, 1/τp, is also affected by the dynamical Coulomb blockade, perhaps at diffusive
length. Since the conductivity is inversely proportional to the rate, we expect an interac-
tion correction to the conductance, δσ/σ � −RGQ, R being the resistance at the scale
Ldiff. Indeed, such interaction corrections are present, have this order of magnitude, and
have been derived by Altshuler and Aronov [153]. What is wrong is our reasoning: the
conductivity corrections are of a more subtle nature. Indeed, if we run an actual cal-
culation with Eq. (6.93) at the diffusive scale, the effective impedance turns out to be
zero: the trajectories of the electron and the hole describing scattering on the impurity are
spread over the same volume, resulting in zero total charges q1,2. The conductance cor-
rections cannot be caught with the trajectory method in use: they arise from the trajectory
branching mentioned in Section 2.6.2. We will come back to this question at the end of
Section 6.5.

6.5 Weak interaction

Having given so much attention to tunneling in the previous three sections, we would
like to depart from it now and discuss interaction effects in nanostructures with more
transmissive channels. As opposed to tunneling, we cannot now analyze strong and weak
interactions on an equal footing: we stick to the simpler case of weak interaction. This,
however, is a quite natural case in transmissive nanostructures. As we have seen in
many examples in Section 6.4, the interaction strength is characterized by an effective
impedance, where ZGQ � 1 corresponds to a weak interaction. Multi-channel transmis-
sive nanostructures exhibit large conductance; we are decisively in the G � GQ limit. If
we associate the effective impedance with the nanostructure conductance, we understand
that Coulomb interaction is always weak in this case. We could have called this section
“Weak Coulomb blockade,” as some other authors have. However, for us the word “block-
ade” does not obviously imply the degree of strength involved; much like the words “dead”
or “pregnant.”

In this section, we mostly employ a rather heuristic renormalization analysis introduced
in Section 6.2.5. Although it may miss some of the details, it enables us to deliver the main
message: weak interaction can lead to large consequences; its effect does not have to be
limited to small corrections to the non-interacting picture. The large consequences, how-
ever, will take place at a very low energy scale only. We start by studying a transmission
renormalization by an ohmic environment and describe the related evolution of transmis-
sion distribution. If part of a nanostructure provides such an environment for another part,
Coulomb blockade is given a chance: the transport can be suppressed completely at suffi-
ciently low energies, and Section 6.5.2 tells us when this happens. Coulomb blockade is
elucidated for a single-node setup: analysis of more complicated setups leads us to a study
of Altshuler–Aronov corrections to conductivity.
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�Fig. 6.15. (a) Ohmic resistor R provides an electromagnetic environment for a junction with arbitrary
transmission eigenvalues. (b) The interaction causes the flow of transmission eigenvalues towards
T = 0 at decreasing energy. The curves, from bottom to top, correspond to Tp(Ecut) ranging from
0.1 to 1 with step 0.1.

6.5.1 Arbitrary transparency

Let us consider a setup similar to that studied in Section 6.3: a junction in series with an
ohmic resistor representing the effect of an electromagnetic environment (Fig. 6.15(a)). It
is convenient to assume that the resistance of this ohmic resistor R is much smaller than
the resistance G−1 of the junction: in this case, the electron transfers through the junction
are conveniently separated from the dynamics of the electric field fluctuations, which are
determined by the smaller resistor. In other words, the junction does not make an environ-
ment for itself. We are interested in a sufficiently transmissive junction: it is described by a
scattering matrix ŝ, and there is at least one transmission eigenvalue Tp � 1. This implies
G � GQ, so that the effect of Coulomb blockade is automatically weak: RGQ � 1.

We would like to employ the renormalization procedure similar to that used in Sec-
tion 6.2.5. The idea of the renormalization is to incorporate the interaction effects into the
energy dependence of the scattering matrix of the junction. At each step of the renormal-
ization we thus conveniently deal with a nanostructure to be described in the framework
of the scattering approach of Chapter 1: the only effect of the interactions is the energy-
dependence of the scattering matrix. This convenience is only allowed if the interaction is
weak.

We start at sufficiently high energy Ecut, at which the interaction effects may be disre-
garded. For our setup, this energy is set by the RC-time of the circuit, Ecut � �/RC . Let us
work with a conveniently dimensionless energy scale ζ = ln(Ecut/E) that changes from 0
to∞ while E changes from Ecut to 0. The renormalized scattering matrix ŝ(ζ ) is evaluated
by small steps; each step reduces the energy by dE . At each step, we start with ŝ(E) and
consider its change due to the boson modes with energies in the interval (E − dE , E). This
gives us ŝ(E − dE): the renormalization procedure amounts to a differential equation – the
flow equation.

To start with, let us look at a single channel and the corresponding 2× 2 scattering
matrix:

ŝ =
(

r teiφ

t ′e−iφ r

)
. (6.105)
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Here, we have incorporated the electrical fluctuations induced by the resistor R into the
phase factor of the transmission amplitudes; the phase operator φ̂ is linear in boson oper-
ators. We proceed as in the Section 6.2.5, separating φ into “slow” and “fast” parts, the
latter being contributed by the boson modes in the energy interval (E − dE , E). Adapting
the work flow of Section 6.2.5 for our case (Eq. (6.64)), we obtain the renormalization of
the phase factor F ≡ exp(iφ) as follows:

F → F〈eiφf〉 = Fe−〈φ2
f 〉/2 ≈ F

(
1− 〈φ

2
f 〉

2

)
;

dF

F
= −GQ R

2

∫ E

E−dE

dE

E
= −GQ R

2
dζ .

The change of the scattering matrix δ ˜̂s is thus given by

δ ˜̂s = −GQ R

2
dζ

(
0 teiφ

t ′e−iφ 0

)
= (τz ŝτz − ŝ)

GQ R

4
.

The problem in hand is that the renormalized ŝ + δ ˜̂s is not a scattering matrix since it does
not satisfy the unitarity condition. Indeed, the correction represents the average over some
scattering matrices, and such an average is generally not a unitary matrix. We circumvent
this problem by taking instead of ŝ + δ ˜̂s the closest matrix ŝ + δŝ that obeys the unitary
condition. For any δ ˜̂s,

δŝ = δ ˜̂s − ŝ(δ ˜̂s)†ŝ. (6.106)

Exercise 6.7. Prove Eq. (6.106) using the following definition of distance between
arbitrary matrices Â, B̂ in the matrix space dist( Â, B̂) = Tr(( Â − B̂)( Â − B̂)†).

Bringing everything together, we obtain the following flow equation for the scattering
matrix:

dŝ

dζ
= GQ R

8

(
τz ŝτz − ŝτz ŝ†τz ŝ

)
.

This equation can be simplified if we are just interested in the flow of the transmission
eigenvalue Tp. Squaring the non-diagonal elements of the matrix, we obtain

dTp

dζ
= −GQ R Tp(1− Tp). (6.107)

We can now generalize to a multi-channel junction by stating that Eq. (6.107) holds for
any transmission eigenvalue of the junction.

If all transmission eigenvalues Tp � 1, this reproduces the earlier results concerning
tunneling, Tp ∝ EGQ R . We see that for higher transmission the effect of interaction is
slowed down by a factor of (1− Tp). In particular, ideal transmission, Tp = 1, is not renor-
malized at all. However, for any transmission less than unity the interaction effect is the
same: at sufficiently low energies, the transmission vanishes. The flow of different values
of Tp is plotted in Fig. 6.15(b). For the first time, Eq. (6.107) has been derived for an
arbitrary one-channel scatterer in a weakly interacting (g ≈ 1) Luttinger liquid [154].
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Exercise 6.8. Check that in this limit Eq. (6.107) is consistent with the exponents in
Eqs. (6.102) and (6.103) for tunneling and backscattering in a Luttinger liquid.

The flow relation in Eq. (6.107) gives rise to a set of interesting and somehow unexpected
results. Since the full counting statistics in the scattering approach is defined by the set of
transmission eigenvalues, the flow relation defines the interaction effect on the statistics.
If we recall the definitions of Landauer conductance (G = GQ

∑
p Tp) and Fano factor

(F =∑
p Tp(1− Tp)/

∑
p Tp), we discover the link between the interaction effect on the

conductance and the shot noise as follows:

dG(E)

d ln E

1

G(E)
= GQ RF . (6.108)

To check this experimentally, one measures voltage (or temperature) dependence of
conductance and shot noise of the same junction in a controlled environment. Such
experiments have been recently performed [155].

Control question 6.12. Can you describe the interaction correction to the Fano factor?

The transmission distribution is an important property of a G � GQ conductor. It is
worth studying how it changes under the effect of interaction [156]. Simply from the fact
that all transmission eigenvalues approach zero, one would conjecture that, at a sufficiently
developed interaction effect, any junction would eventually become a tunnel junction, with
conductance decreasing as G ∝ (E/Ecut)GQ R . It turns out that this is one of the two possi-
ble scenarios. The alternative scenario is that a junction becomes a double tunnel junction,
with conductance decreasing with a doubly smaller exponent, G ∝ (E/Ecut)GQ R/2.

To comprehend this result, we note that the flow equation can be explicitly integrated as
follows:

Tp(E) = Tp(Ecut)ξ

1− Tp(Ecut)(1− ξ )
; ξ ≡

(
E

Ecut

)GQ R

.

The transmission distribution at a given energy is thus given by

ρE (T ) = ξ

[ξ + T (1− ξ )]2
ρEcut

(
T

ξ + T (1− ξ )

)
. (6.109)

Let us take a distribution that has an inverse square-root singularity at T → 1, ρEcut (T ) =
a/
√

1− T . Substituting this into Eq. (6.106), we obtain in the low-energy limit:

ρE (T ) = a

√
ξ

T 3(1− T )
, (6.110)

which is the transmission distribution of a double tunnel junction with identical conduc-
tances of the constituting tunnel conductors (see Section 2.6.1). The conductance is indeed
proportional to

√
ξ = (E/Ecut)GQ R/2. One also checks that the transmission distribution

given by Eq. (6.110) is not affected by the flow apart from the overall coefficient.
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We have learned in Section 2.6 that the transmission distributions of various conductors
can be subdivided into two large classes. The conductors of the first class have no transmis-
sions at T close to unity. In the low-energy limit they thus become tunnel junctions. The
conductors of the second class, diffusive conductors among them, are characterized by
an inverse square-root singularity in a transmission distribution at T → 1. They become
tunnel junctions in the low-energy limit.

To understand the result heuristically, let us note that the “normal” exponent GQ R cor-
responds to tunneling through the whole nanostructure in a single leap. An alternative is
to do take two leaps: get to the “middle” of the nanostructure first, and then tunnel out
to another lead. Such two-leap tunneling occurs, for example, in the course of resonant
tunneling in quantum dots. Each leap transfers charge e/2 through the whole circuit, so
the corresponding exponent is halved. This explanation suggests that the conductors of the
second class always have a “middle”: some states (similar to Fabry–Perot resonances in
a double junction) provide an intermediate stop for electrons tunneling in two leaps. The
scattering approach does not explicitly imply that a nanostructure has a “middle”: its only
manifestation is the inverse square-root singularity already mentioned.

We also note that the second scenario only holds while the renormalized conduc-
tance remains large, G(E)� GQ. When it approaches GQ, there are only a few effec-
tive transport channels left, so the quasicontinuous transmission distribution no longer
makes sense. As the energy scale decreases further, the conductor behaves as a tunnel
junction.

Exercise 6.9. Find the conductance of a diffusive conductor subject to interaction as
a function of the scale ξ . (Hint: use Eq. (6.109)). Estimate the energy scale at which
G(E) � GQ.

6.5.2 Coulomb blockade at large conductances

Let us note that in Section 6.5.1 we concentrated on the renormalization of the junction,
while the shunting resistor R was assumed to be ohmic, not changing its resistance with the
energy scale. Although this is instructive and relevant in a number of cases, this does not
seem to conform to equality principles. The resistor could itself be a coherent conductor; in
that case, it will behave in a way similar to the junction already considered, and therefore
should be subject to equal treatment.

To restore the equality, we now turn to a setup where a single node is connected to a
number of leads by arbitrary connectors labeled k, each of which is characterized by its
own set of transmission eigenvalues T [k]

p (see Fig. 6.16(a)). Let us count a channel per spin

direction, so that the conductance of each connector is given by G[k] = (GQ/2)
∑

p T [k]
p .

For two leads, we find a direct correspondence to the previous setup: one of the connectors
can be chosen to represent the junction and the other to represent the resistor R. We thus
see that in the present setup one part of the nanostructure presents an electromagnetic
environment for another part.
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�Fig. 6.16. Coulomb blockade at large conductances. (a) Node connected to the leads by arbitrary
connectors. Section 6.5.2 addresses whether this island is in the Coulomb blockade regime. (b)
The flow of the total conductance of the island versus energy. There are two possible scenarios: (i)
Coulomb blockade takes place at ẼC (lower solid curve). (ii) Finite conductance renormalization at
E = 0 (upper solid curve). E = ETh at the dotted line. Dashed line represents the would-be
renormalization flow of the upper curve at δS = 0.

Let us define the total conductance of the node as G =∑
k G[k] = (GQ/2)

∑
p Tp,

where the sum is over all transmission eigenvalues in all connectors. If G � GQ, we recog-
nize that we are dealing with a Coulomb island from Chapter 3. The transport through the
island is suppressed at an energy scale � EC. We also indicate that G � GQ – the require-
ment of good isolation – is vital for a well developed Coulomb blockade, and something
bad happens to it otherwise. In this subsection, we thus investigate the Coulomb island
setup in the opposite limit G � GQ to find out the exact fate of this phenomenon.

We proceed by assuming that all transport channels form a common environment with
an effective impedance G−1 felt by each channel. Adapting Eq. (6.107) to the present
situation, we immediately obtain

dTp

dζ
= −GQ

G
Tp(1− Tp) = −2Tp(1− Tp)∑

p Tp
. (6.111)

The difference from Section 6.5.1 is that the effective impedance is also subject to the
renormalization. It increases with decreasing energy, so we expect the flow to “accelerate.”

The equation is simple enough to solve. As in Section 6.5.1, each transmission
eigenvalue evolves with scale ξ as follows:

Tp(E) = Tp(Ecut)ξ

1− Tp(Ecut)(1− ξ )
; 0 > ξ (E) > 1. (6.112)

Unlike in Section 6.5.1, the scale ξ becomes a complicated function of energy, given by

dξ

dζ
= − GQ

G(ζ )
= − 2∑

p Tp(E)
. (6.113)
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Substituting Eq. (6.112) into Eq. (6.113) and integrating the resulting differential equation
yields an explicit relation for ξ (E):

ln

(
Ecut

E

)
= −1

2

∑
p

ln(1− Tp(1− ξ )), (6.114)

where Tp are taken at high energy Ecut. The transmissions vanish at ξ → 0. Equa-
tion (6.114) implies that this takes place at a finite energy given by

ẼC = Ecut

∑
p

√
1− Tp.

This is the manifestation of flow acceleration already mentioned: the transport is blocked
at finite energy ẼC rather than in the limit of vanishing energy.

Since the transport is blocked, we recover the Coulomb blockade. The energy scale
obtained is simply the effective charging energy of the island renormalized by a large
conductance. Since the number of effective channels is of the order of G/GQ, the effective
charging energy is exponentially small in comparison with the charging energy EC in the
limit of good isolation; thus,

ẼC

EC
� G exp(−αG/GQ), (6.115)

α � 1 being a dimensionless coefficient characterizing the type of connector.

Exercise 6.10. Assume that all connectors are of the same type and are characterized
by the same transmission distribution, or, alternatively, by the function I(φ) (see the
first part of Eq. (2.94)). Demonstrate that

α =
∫ π

0 dφI(φ)

2I ′(0)
.

In particular, α = 1 if all connectors are of tunnel nature and α = π2/4 if all connectors
are diffusive. We learned in Chapter 4 that the large conductance is subject to interference
fluctuations of magnitude �GQ: these are termed the universal conductance fluctuations
(UCFs). Owing to the exponential dependence on conductance, the UCFs of the effective
charging energy are large, of the order of ẼC itself.

The renormalization method provides only a crude estimate of ẼC and says little about
the details of Coulomb blockade at large conductances. For example, at G � GQ the
energy of the Coulomb island depends on the charge q induced by a gate electrode:
E(q) = EC(q/e)2 at |q| < e/2, periodic in q with period E . The renormalization method
does not pick up on this dependence. In the tunnel limit, the exact solution of the problem
was sought for almost 20 years, and it was finally obtained in 2007 [157]. According to to
Ref. [157], the main contribution to q-dependent energy is cos-shaped; this resembles the
ground state of the Cooper-pair box (Section 3.5.1) in the limit of large Josephson energy:

E(q) = 4E∗(1− cos(q/e)); E∗ = ẼC(G/πGQ)2.
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Our considerations of the Coulomb setup are not yet complete: we have to take into
account the effects of electron motion. Most importantly, the electrons can escape the island
and are no longer subject to interactions. For our setup, this implies that the renormaliza-
tions should stop at the energy scale ETh = (G(E)/GQ)δS related to the escape time, G(E)
being the renormalized total conductance of the node.

If the energy ETh is reached before ẼC, the Coulomb blockade does not take place.
Instead, the renormalizations of the total conductance stop at G(E � ETh); this value
remains unchanged at lower energies [158]. This is an alternative scenario of low-energy
behavior: the transport is not blocked (Fig. 6.16(b)). The transition between the two
scenarios takes place at G(E) � GQ; this yields

ẼC � δS.

This also agrees with our picture of quantum dots: for a good quantum dot, the (effective)
charging energy should exceed the level spacing. The same criterion can be expressed in
terms of high-energy total conductance G (see Eq. (6.115)): the Coulomb blockade only
develops if

G

GQ
<

1

α
ln

(
EC

δS

)
;

the energy should exceed mean level spacing. Since the logarithm is never large (say,
<10), the existence domain of the Coulomb blockade does not exceed several conductance
quanta. Far beyond the domain, the interaction correction to the high-energy conductance
is finite and may be small:

G(0)− G(Ecut) = −FGQ ln

(
EC

δS

)
,

where F is the Fano factor of the connectors.

6.5.3 Altshuler–Aronov corrections to the conductivity

Up to now, we have successfully dealt with the interaction corrections in simple circuits:
those with one node and no nodes. To extend this reasoning to a larger network, one
ascribes a fluctuating voltage to each node and evaluates the effect of the fluctuations on
transport properties of the network, eventually using the renormalization technique. The
correlation function of the voltage fluctuations is readily obtained from an elementary net-
work analysis in which all connectors are replaced by the corresponding conductances.
The fluctuations in different nodes correlate, and this causes a difficulty. Namely, in this
case, the effect of the fluctuations cannot be ascribed to a scattering matrix of a single
connector and the corresponding transmission coefficient. The correlation of voltages in
different nodes leads to the correlation of transmissions in different connectors and there-
fore complicates a purely scattering approach. One can still proceed by quantum circuit
theory, ascribing a matrix Ǧ(t , t ′) to each node. The voltage fluctuations set up extra cor-
relations between Ǧ in different nodes. While these correlations can be evaluated, they
cannot be understood as a renormalization of the corresponding Landauer connectors.
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�Fig. 6.17. Aronov–Altshuler corrections to the conductivity as a result of interference (see the text for an
explanation).

This is why the interaction corrections in several-node circuits have not yet been suf-
ficiently investigated. Fortunately the situation is understood in the limit of a very large
network containing many nodes. We know that a sufficiently large circuit with approx-
imately equal elements can be regarded as a diffusive conductor. The same applies to
a sufficiently large part of it. Therefore, one may concentrate on interaction corrections
to the transport taking place inside an extended diffusive conductor. These are called
Altshuler–Aronov corrections to the conductivity [153, 159].

Why conductivity and not conductance? We have seen in Section 6.5.2 that the interac-
tion corrections cease at an energy scale ETh while persisting at higher energies. The same
applies to Althshuler–Aronov corrections. In a diffusive conductor, E � ETh gives rise to
a space scale L E � √�D/E that is much smaller than the conductor dimension. The cor-
rections are formed at the scale L E and are non-local at this scale. However, if we look at
electron propagation at scales�L E but still smaller than the conductor dimension L , the
correction amounts to a change of the diffusion coefficient, or conductance. If kBT � ETh,
the energy scale of the corrections is defined by temperature. One observes the effect as
a temperature-dependent contribution δσ to the conductivity of the sample. Such a scale
separation allows us to see the effect even in bulk samples where the electron propagation
over the whole sample is not coherent. Coherence is only required at the L E scale.

The diffusive conductor can be described in the framework of the Usadel equation for
Keldysh 2× 2 Green’s functions Ǧ(t , t ′; r) augmented by fluctuating voltages V̌ (t , r) that
also retain the Keldysh index to take into account the non-commutativity of the operators
V̂ (t , r). The equation is then averaged over the voltage fluctuations using SV (ω; r , r ′) =
〈V (t , r)V (t ′, r ′)〉ω. The resulting equation is for the “slow” Green’s functions Ǧ(ε; r) that
change at a scale �Lε . If more microscopic details are required, this procedure can be
done at the level of the Eilenberger equations [160]. The practical implementation of this
scheme requires us to cope with numerous technical difficulties, so we do not outline it
here. Rather, we give a qualitative estimation of the effect, and at a later stage we quote
Ref. [159] for the final exact result.

The Altshuler–Aronov corrections result from the interference of two electron propa-
gation amplitudes, one of which is affected by interaction with the voltage fluctuations
(Fig. 6.17). Both amplitudes go from point 1 to point 2; the unaffected amplitude is
reversed since it is complex-conjugated. The affected amplitude is constructed as follows:
the electron propagates to point 3 where it emits a virtual boson (dashed line) with energy
�ω, and propagates further in a virtual state (dotted line). It picks up the same boson at
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point 4 and propagates in the usual way to point 2. The resulting probability for it to get
from point 1 to 2 is contributed by all possible pairs of the amplitudes. However, the max-
imum contribution is achieved when the two amplitudes correspond to the propagation
over the same path, in a direct and reverse direction, respectively. This path corresponds
to a classical trajectory (see also Section 4.4.7). It looks like the amplitudes of opposite
directions are attracted to one another, eventually sticking together. If we let them stick,
the resulting arrangement includes five classical trajectories: shown as double lines in fig.
6.17. The electron propagates between 1 and 5 and between 6 and 2, following the usual
classical trajectories. Its propagation between 5 and 6 is a correction to this common dif-
fusive transport. The correction is thus determined by three trajectories: from 3 to 5, from
4 to 6, and from 6 to 5. These trajectories are less usual since one of the paired amplitudes
corresponds to a virtual state shifted in energy by �ω. Because of the uncertainty relation,
the time spent on these trajectories is restricted by �1/ω. Therefore, they persist at the
space scale

√
D/ω. There occurs trajectory branching at points 5 and 6; as discussed in

Section 6.4.3, such branching is vital for the correction under consideration. This makes
the Althshuler–Aronov corrections to the conductivity distinct from those to the density of
states. Another difference is the space scale: while the correction to the density of states
is accumulated at scales exceeding the diffusion length, the corrections to the conductivity
are produced at the space scale not exceeding

√
D/ω.

The energy of the virtual photons emitted/adsorbed can be arbitrarily high. However,
it cannot be much smaller than kBT , where such emission–absorption processes are
already allowed by energy conservation. If the contribution to the correction increases
with decreasing energy, we expect the main contribution to come from �ω � kBT . The
relevant spatial scale is therefore the thermal length LT ≡ √�D/kBT . Similar to all inter-
action corrections of this chapter, its relative magnitude is determined by a resistance; in
this case, the resistance of the conductor at the LT scale:

δσ

σ
� GQ R(L = LT).

This sets the dependence of the Altshuler–Aronov correction on the effective geometry of
the conductor. In one dimension, the resistance increases with increasing LT (and tempera-
ture), R ∝ LT. In two dimensions, it does it very slowly, R ∝ ln(LT). In three dimensions,
the resistance decreases, R ∝ 1/LT. So we can present the estimation as δσ � GQ(LT)2−d ,
where d is the effective dimension.

Control question 6.13. How is it that δσ does not depend on the resistance in the
estimation?

Control question 6.14. In one dimension, the correction increases with decreasing
temperature. Take a finite wire of length L . What is the maximum decrease of the wire
conductance, and at which temperature is it achieved?

We recall that the effective dimension is defined by LT and thus changes with tempera-
ture. Consider the geometry of Fig. 6.3. At the highest temperatures, LT � Lz , resulting
in 3d correction. At lower temperature scales, corresponding to Lz � LT � L y and
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L y � LT � Lx , the geometry is 2d and 1d, respectively. At lowest temperature, LT � Lx ,
the correction disappears.

The exact expression, valid for any dimension d = 1, 2, 3, is given by [159]

δσ

σ
= − 2

d

∫
dω ω

∂

∂ω

(
ω coth

�ω

kBT

)

× Re
∫

dq
(2π )d

GQ Z (ω, q)
Dq2

(−iω + Dq2)3
. (6.116)

The integration here is over ω (the frequency of the boson involved) and q (corresponding
to the vector distance between points 3 and 4). There are three diffusion-like denominators
in Eq. (6.112) corresponding to the three classical trajectories in Fig. 6.17. The impedance
takes into account the electron motion (see Section 6.1.2). One can reduce it to the circuit-
theory impedance using the trick given in Eq. (6.97). We also note that the impedance
Z (ω, q) should be taken at the diffusive length scale

√
D/ω rather than at a more natural

scale of electricity propagation. This is why we can forget about the latter larger scale,
treat the electricity propagation as instantaneous, and use Eq. (6.22) for any dimension.
After these substitutions, the integration is readily performed to yield the exact numerical
coefficients:

δσ = GQ(LT)2−d ×
⎧⎨
⎩
−1.56 d = 1
−1/π ln(LT/ l) d = 2
0.097 d = 3.

(6.117)

We disregard interactions with the slow spin fluctuations taken into account in Ref. [159].
The Altshuler–Aronov corrections are routinely observed in the temperature-dependent
resistance of diffusive conductors; see Fig. 6.23d for an illustration.

6.6 Fermionic environment

In this section, we consider interaction-related phenomena that cannot be naturally ascribed
to a bosonic environment, for example, that of electrical excitations. These phenomena
concern a quantum system with discrete states – a quantum dot or a qubit – brought into
interaction with electrons of a metal; this is why we talk about a fermionic environment.
We will discuss the Fermi edge singularity, the Kondo effect, and the concrete implemen-
tation of the latter involving a spin-doublet state in a quantum dot. The phenomena of the
set have had a long history of research in condensed matter physics before the emergence
of the field of quantum transport. They appear in a variety of solids and solid-state trans-
port situations. In addition, models of the phenomena have attracted considerable interest
from the purely theoretical community since they provide examples of problems where our
understanding of interactions in a many-body system can progress far beyond the pertur-
bative analysis. Eventually, all the models can be solved exactly, in ways both complicated
and ingenious. Needless to say, in this book we have to restrict ourselves to (the simplest)
quantum transport setups and elementary perturbation theory. We will show that the phe-
nomena are generic for quantum transport, and that the flexibility and controllability of
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�Fig. 6.18. Fermi edge singularity (FES). (a) A simple setup for FES: electrons from a channel tunnel to a
localized state at energy εd. (b) Interaction in the final state: the electron in the localized state
creates potential U(x) affecting the scattering in the channel. (c) FES tunneling rate exhibits a
power-law energy dependence. It is either suppressed or enhanced at low energy. (d) The
quantum dot setup for Exercise 6.11.

the setups can bring some new functionalities to the extensively studied phenomena. The
main feature of the fermionic environment is its ability to generate low-energy excitations
or slow modes – electron–hole pairs, which sometimes can be conveniently regarded as
boson modes. This is why at the very theoretical and qualitative level, there is no sharp
difference between fermionic and bosonic environments. For example, one can make good
use of the general classification of environments derived from the spin-boson model.

6.6.1 Fermi edge singularity

The name “Fermi edge singularity” (FES) is only partially self-explanatory: it only makes
clear it has something unusual to do with electrons close to the Fermi surface. The name
originates from the apparent singularities in X -ray absorption spectra in metals at fre-
quencies matching the energy difference of a quasilocalized state and the Fermi energy of
electrons [161].

Let us consider the FES in a simple quantum transport setup (see Fig. 6.18(a)). We have
a localized state – a place for an electron – in the vicinity of a quantum channel. The
electrons are allowed to tunnel between the channel and the localized state. Let us set up
a charge qubit: the localized state can be either empty (qubit state “0”) or occupied (qubit
state “1”). To prevent double occupancy of the localized state, we work with a single spin
direction and discuss the effect of spin later.

If we disregard interactions, the system is described by the following (and at this stage
rather superfluous) Hamiltonian:

Ĥ = Ĥel + Ĥd + Ĥtun;

Ĥel =
∑

k

εk â†
k âk , Ĥd = εdd̂†d̂, (6.118)

Ĥtun =
∑

k

(
Tkd†ak + T ∗k â†

k d̂
)

.
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Here, â†
k âk are creation/annihilation operators in electron states in the channel, labeled with

wavevector k and having energies εk (counted from the Fermi energy). Operators d̂† and
d̂ are creation/annihilation operators in the localized state, and Tk are the tunneling matrix
elements (see Eq. (3.30)).

We are interested in the tunneling rate from “0” to “1.” The Fermi Golden Rule (see also
Eq. (3.33)) readily yields

�(εd) = 2π

�

∑
k

|Tk |2 f (εk)δ(εk − εd) = �̃�(−εd),

a featureless energy-independent rate we worked with when studying transport in quantum
dots (see Section 5.4).

How does the interaction affect this rate? In principle, the system is in an electromag-
netic environment: there is Coulomb interaction between electrons of the channel, and
perhaps there is also interaction with electrical excitations of the external circuit. We have
studied these effects in the previous sections and found that the rate is surpressed. There is
one detail that we have missed in the previous sections and that becomes important now.
Namely, we have assumed that some time after the tunneling process is accomplished, the
electromagnetic excitations have gone and the environment returns to the initial state. This
is certainly the case if the tunneling takes place between bulk metals. This is also true if
the tunneling takes place at a localized state in the vicinity of an ideally screening metal:
the charge of the electron in the occupied state does not influence the electron states in the
metal. However, if the screening is not ideal, as in the case of sufficiently narrow constric-
tion, the charge in the occupied state produces a potential U (x) that affects the scattering
of the electrons in the channel (Fig. 6.18(b)). The potential persists as long as the localized
state is occupied, long after all the relaxation processes in the electromagnetic environment
have taken place. This is the point we missed in our previous discussion, and now we are
going to concentrate on this effect of interaction in the final state.

The effect is straightforward to model: we add the following term to the Hamiltonian:

Ĥint =
∑
k,k′

Uk,k′ â
†
k âk′ d̂

+d̂,

where Uk,k′ are the matrix elements of the potential U (x). The product of the d-operators
makes sure that the potential exists in state “1” only: indeed, d̂+d̂ = 0 in state “0” and
d̂+d̂ = 1 in state “1.” As a concrete model, let us assume that the potential is spread over
a finite length a that exceeds the electron wavelength �k−1

F . In this case, the potential is
too smooth to cause scattering between left- and right-going electrons in the channel: its
only effect on the scattering is the extra phase shift χ acquired by an electron passing the
localized state, given by

χ = − 1

�vF

∞∫
−∞

dx U (x).

Note that Uk,k′ is proportional to the Fourier-component of U (x) that falls off at k − k′ �
a−1; we model this with a sharp cut-off at |k − k′| = a−1, Uk,k′ = χ�vF�(|k − k′| −
a−1)/V . Here V is the “normalization volume” used to convert between discrete and
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continuous k,
∑

k = V
∫

dk/2π . The parameter a also defines an upper cut-off energy in
our problem, Ecut = �vF/a. We will concentrate on lower energies, assuming |εd| � Ecut.

Let us start with small U ,χ and compute the correction to the tunneling matrix element
∝U . The uncorrected matrix element is between the initial state, where the channel elec-
trons are in the ground state and the localized state is empty, “0”, and the final state, where
the localized state is occupied, “1,” and there is a hole at k with the energy matching εd,
εk = εd. The correction corresponds to a more complicated sequence of events. First, an
electron from k′ tunnels to the localized state. The energy of this intermediate virtual state
with respect to the initial state is thus given by −ε(k′)+ εd. Then the interaction term with
Uk′,k transfers the hole from k′ to k. The initial and final states are thereby the same, and
the correction is obtained by summing up over all k′:

Am = Tk + δAm; δAm = −
∑

k′
Tk′Uk′,k�(−εk′ )

−εd + ε(k′)

= Tk
χ

�vF

k+1/a∫
k−1/a

dk

2π

�(−εk′ )

�vF(k′ − kF)− εd
= Tk

χ

2π

0∫
εd−Ecut

dE

E − εd

= −Tk
χ

2π
ln

(
Ecut

|εd|
)

.

Some technical comments are necessary when working with the above calculation. The
anticommutation of fermionic creation/annihilation operators is important for the sign
of correction; to achieve this, we made use of (â†

k′ âk)(d̂†âk′ ) = −d̂†âk â†
k′ â
′
k = −d̂†âk ,

which is valid if k′ is filled. We have neglected the k-dependence of Tk , Tk ≈ Tk′ . We
switched to integration over energy and performed it with logarithmic accuracy; such
low accuracy makes irrelevant the exact form of the cut-off of Uk,k′ in k-space. We
have dealt with the singularity at E = εd by taking the principal value of the integral.
It is essential that the potential Uk,k′ is in state “1” only: if it were not, we would
see the contribution from an alternative intermediate state. If the potentials were the
same in “0” and “1” states, the contributions would cancel each other out, signaling no
interaction.

Now we can discuss the result. Remarkably, it displays a logarithmic divergency at low
|εd| that may make the correction large. Our previous experience suggests that we can
implement a renormalization scheme: we compute the tunnel matrix element in small steps,
taking into account at each step the contribution of k′ in the energy interval E − dE <
ε(k′) < E . This results in a simple flow equation given by

dTk(ζ )

dζ
= − χ

2π
Tk(ζ ),

which brings the power-law energy dependence to the matrix element, Tk(ε) ∝
(|ε|/Ecut)χ/2π . It is important to note that at low energies the matrix element can be sup-
pressed, as well as enhanced, depending on the sign of χ , resulting in a power-law energy
dependence of the rate with either positive or negative exponents (Fig. 6.18). Positive U
(negative χ ) results in enhancement.
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There are logarithmic corrections of another type to be taken into account. They manifest
as the Anderson orthogonality catastrophe discussed in Section 6.2.3. Let us recognize
that the FES also incorporates the concept of two vacuums, ground states of the electron
systems, corresponding to states “0” and “1.” The interaction in the final state causes the
vacuums to differ from one another, so that the overlap of the two is given by 〈10|01〉 �= 1.
Let us implement a renormalization scheme to compute this overlap, taking into account
the electron states within the energy interval (E − dE , E). In the first order in Uk,k′ , the
“1” vacuum acquires an admixture of the states with a single electron–hole excitation,
|k, k′〉 ≡ â†

k âk′ |00〉,
|01〉 = |00〉 −

∑
k,k′

Uk,k′

ε(k)− ε(k′) |k, k′〉.

The correction to the overlap is the sum of the squares of all admixture coefficients, that is,
it is quadratic in Uk,k′ . Concentrating on the electron–hole pairs in the energy interval (E ,
E − dE), we arrive at the following flow equation:

d|〈00|01〉|2
dζ

= −αcl|〈00|01〉|2; αcl = χ2

2π2
.

This indeed signals the orthogonality catastrophe: the overlap between two vacuums
vanishes in the limit of vanishing energy, |〈00|01〉|2 = (ε/Ecut)αcl . The coefficient αcl

is equally contributed by left- and right-going electrons since they acquire the same
phase shift χ . So far we have disregarded electron spin, now we can easily take it into
account: each spin direction contributes to αcl independently, and this doubles αcl for
spin-degenerate electrons. We note that, unlike for the tunnel matrix element exponent,
the overlap exponent is due to electron states that are not necessarily involved in the tun-
neling into the localized state. For instance, the localized state may get an electron from
another lead or from another state: even in this case, the rate will be affected by the overlap
exponent.

Now we can combine both the renormalization of the matrix element and the vacuum
overlap into a single expression for the rate:

�(εd) = �(−εd)�̃

( |εd|
Ecut

)(χ/π )+(χ2/2π2)

. (6.119)

In principle, the whole discussion has so far been restricted to perturbations, that is,
to small χ and, correspondingly, to small exponents. It is feasible that at bigger χ the
exponents deviate from the values given; for example, there could be sinχ instead of χ .
An exact solution of the problem [161] shows that this does not happen: the exponent stays
as given for any χ . Since the χ are phase shifts, the exponent must be 2π -periodic in χ ;
this is achieved by bringing them to the interval (−π ,π ).

We see that the FES exponent can be of either sign, giving both suppression and enhance-
ment of the tunneling rate at low energies (Fig. 6.18). Let us see how we can reconcile the
FES with the general classification of environments. Comparing the rate expressions given
by Eqs. (6.55) and (6.119), we understand that, in general, the FES is at the ohmic border-
line, the ohmic exponent being given by α = (1/2)(1+ χ2/2π2 + χ/π ). This establishes
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equivalence between bosonic and FES fermionic environments, which is sometimes use-
ful in applications. For example, non-interacting fermions correspond to an ohmic bosonic
environment with α = 1/2. The equivalence also allows for the qualitative analysis of the
resulting qubit flipping between “0” and “1.” For example, the qubit undergoes a Schmid
transition at χ ≈ 2.3 corresponding to α = 1.

We have understood the FES for a simple setup. It turns out that it can be read-
ily understood for any nanostructure conforming to a scattering matrix [162]. Let the
nanostructure be described by a scattering matrix ŝ0 in the state “0.” When the local-
ized state is occupied, the induced potential changes the scattering in the nanostructure,
so the corresponding scattering matrix becomes ŝ1. The difference brought by the induced
potential – the interaction in the final state – is characterized by the “ratio” of the matri-
ces, a unitary matrix R̂ = ŝ−1

0 ŝ1. As for any unitary matrix, it can be diagonalized as
follows:

Rα,β ←
∑

j

v( j)
α exp(iχ j )v

( j)∗
β ,

where α,β label incoming channels and j labels eigenvalues exp(iχ j ) and eigenvectors of
the matrix.

The overlap exponent αcl is given in terms of the eigenvalues, αcl =∑
j (χ j/2π)2,

and does not depend on the details of tunneling, as expected. As for the details, all
incoming electrons can eventually tunnel into the localized state; the probability of this
occurring generally depends on the channel. To account for this, one introduces channel-
dependent tunnel matrix elements Tα . Within this quite general setup, the tunnel rate is
given by

�(εd) =
∑

j

� j

(
εd

Ecut

)χ j /π
(
εd

Ecut

)αcl

, (6.120)

where partial rates � j ∝∑
α |Tαv( j)

α |. Since different eigenvalues correspond to different
exponents, the above rate is dominated by a single term with the most negative χ j .

Control question 6.15. What is the correspondence between the general rate given in
Eq. (6.120) and the simple setup result in Eq. (6.119)?

Exercise 6.11. Consider a quantum dot housing a localized state (Fig. 6.18(d)). Elec-
trons can tunnel to the dot from one-channel leads on the left and on the right. If the
dot is occupied, the reflection amplitude in the left and in the right lead acquires extra
phase factors eiφL,R , respectively. Find the energy-dependence of the tunneling rates.
Take electron spin into account.

To our knowledge, the FES phenomenon has been observed in the context of quantum
transport in Refs. [162] and [163]. It appears to be a promising goal for future experimen-
tal research, especially in view of the proposal of tunable FES exponents elaborated in
Ref. [164].
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6.6.2 Kondo effect

The Kondo effect is usually considered in the context of spin. Indeed, Kondo’s discov-
ery resolved a long-standing puzzle concerning enhanced electron scattering by magnetic
impurities. However, the Kondo effect is more general and always manifests itself in the
presence of degenerate discrete quantum states interacting with many degrees of freedom.
Unusual and controllable degeneracies can be created in various quantum transport setups.
Therefore it is necessary for our purposes to outline the Kondo effect in the most general
terms possible.

We have exemplified many times in the book the paradigm of quantum transport: any
nanostructure at sufficiently low energies becomes a single scatterer and can be completely
characterized by its scattering matrix. The reason is that at low energies the nanostructure
is void. The internal degrees of freedom, if present, are “frozen out”: it costs energy to
excite them, and this energy is not available at sufficiently low temperature/voltage. The
ground state of the nanostructure, as well as the whole setup, is the ground state of the
electron gas.

This may change if the nanostructure is designed to have a degenerate ground state. This
is surely possible if we make an isolated nanostructure. It will display discrete quantum
states, and will become a kind of qubit. It may be tricky to set several such states at the
same energy, but no fundamental law prohibits this. If we bring the qubit into contact with
the leads and let electrons scatter at it, the paradigm of quantum transport seems to be
violated: the electron scattering may switch the qubit states for no cost, while the qubit
retains its internal degree of freedom.

The driving force behind the Kondo effect is the instability of the situation created
thereby. The origin of the instability is not obvious and its discovery by Kondo [165] (see
also Ref. [166]) came as a big surprise. The instability develops at low energy and essen-
tially changes the properties of the qubit, entangling it with the electrons of the leads. The
development of the instability and the fate of the nanostructure may follow several scenar-
ios, but in generic situations at least the nanostructure is void again, and the validity of the
paradigm is restored. This can happen in two ways: either the qubit is uncoupled from the
nanostructure and would not be switched by scattering, or it is coupled so strongly that its
degeneracy is lifted.

Let us understand quantitatively the origin of the phenomenon. We start with a generic
nanostructure described by a scattering matrix sαβ in channel space indexed by Greek let-
ters. At the moment, we are not interested in how the channels are distributed over the
reservoirs. To this end, we can diagonalize the scattering matrix and neglect the phase
shifts obtained. This amounts to setting sαβ = δαβ . Now we connect the qubit. We allow
for an arbitrary number of quantum states and label them with Latin letters. If the qubit is
connected, the electron can enter channel α while the qubit is in state a and scatter to chan-
nel β, switching the qubit to state b. Let the corresponding scattering amplitude be itβb,αa .
The factor i is a convenient choice: tβb,αa is Hermitian by virtue of unitarity condition.
While the coupling is weak, the corresponding amplitudes are small, |tβb,αa |2 � 1.

This looks very much like the scattering approach for non-interacting electrons, with
an extra scattering matrix index corresponding to the qubit state. It is important to note
that this is not so: the electrons do interact. Given two electrons and the qubit in state a,
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initial virtual final

a c b

α β

χ

a c bα β

χ

αβ

�Fig. 6.19. The sequences of the states – electron-like and hole-like – contributing to the renormalization of
the scattering amplitude tβb,αa.

the first electron may switch the qubit to state b and thereby make its presence felt by the
second one. We are going to show that this leads to renormalization of the tunneling ampli-
tudes. It is convenient to derive the renormalization using Hamiltonians; let us associate
the Hamiltonian (see Eq. (6.118)) given by

Ĥint = −
∑
k,k′

∑
α,β,a,b

�√
VvαFv

β
F

tβb,αa |b〉〈a|â†
k,β âk′,α ,

with the introduced tunneling amplitude, where vαF are the Fermi velocities in the channels.
Let us look at the sequences of states (see Fig. 6.19) that give the second-order correc-

tion to the amplitude tβb,αa . The initial state is an electron in channel α at an energy close
to the Fermi surface. There are two types of virtual state: electron-like and hole-like. The
electron-like state is achieved by transferring the electron from α to another channel χ
and switching the qubit to state c. Since the energies of the virtual state are not limited by
energy conservation, the electron can be quite far from the Fermi surface. Then the electron
is transferred to channel β and the qubit is switched to b. The hole-like state is obtained
by extracting the electron from channel β and switching the qubit to c, while nothing hap-
pens to the original electron. Only at the next stage does this electron annihilate the hole
in χ , switching the qubit to b. Anticommutation of electron creation/annihilation operators
accounts for the negative sign of the hole-like contribution. The final states are the same
for both types. To obtain to the flow equation, in full accordance with the renormalization
schemes considered previously, we take into account the contribution of the interme-
diate states in an energy interval (E − dE , E) at each small renormalization step. This
yields
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dtβb,αa

dζ
= 1

2π

(
tβb,χctχc,αa − tχb,αctβc,χa

)
. (6.121)

One can rewrite Eq. (6.121) in more compact form treating tβb,αa as a matrix in the space
of both channels and qubit states, tβb,αa → t̂ . It is helpful to introduce the operation of

partial transpose that transposes the channel indexes only, t̂ → tαb,βa . Using this notation,
the equation becomes

dt̂

dζ
= 1

2π

(
t̂2 −

(
t̂
)2

)
.

This flow equation differs from those given earlier in the book: it is not linear and also
has a peculiar index structure. This structure means that simple solutions that correspond
to separation of the channel and qubit indexes are of no use. For example, we could try
tβb,αa ∝ δab (the electrons do not switch the qubit) or tβb,αa ∝ δαβ (the electrons do not
change channels while scattering). In both cases, the amplitudes do not flow, dt̂/dζ = 0.

Control question 6.16. Can you see this from Eq. (6.121)?

This is why the general solution of the equation is not known.
To find a meaningful partial solution, we recall the discussion of entanglement in Sec-

tion 5.2.1. We can regard the Hermitian matrix of the amplitudes as a kind of Hamiltonian,
and its eigenvectors as a kind of wave function. There is a natural bipartition in this space:
that into channels and qubit states, so the concept of entanglement should make sense. Let
us try a maximally entangled wave function |�〉 incorporating Nch channels and Nq qubit
states. Since it is maximally entangled,∑

a

�∗αa�βa = δαβ/Nch;
∑
α

�∗αa�αb = δab/Nq.

Let us take a traceless matrix that has this |�〉 as an eigenfunction, with an eigenvalue t ,
as follows:

t̂ = K

(
t |�〉〈�| − t

Nch Nq
1̂

)
, (6.122)

where K ≡ 1/(1− 1/Nch Nq), and the second term is to make sure that Tr ( t̂ ) = 0.
Substituting this into Eq. (6.121), we obtain a simple flow of t , given by

dt

dζ
= K

2π
t2. (6.123)

If high-energy t(ζ = 0) = t0 is positive, it grows with decreasing energy. The interaction –
the Kondo effect – efficiently increases electron scattering till it reaches the strong coupling
regime at t � 1. Let us note that Eq. (6.123) is solved by t(ζ ) = (2π/K )(ζK − ζ )−1. This
diverges at ζK = ζ . While the divergence itself is fake, arising from the fact that the validity
of renormalizations is restricted to small t , its position gives a good estimation of the energy
scale at which t becomes �1. Comparing with t(ζ = 0), we find this Kondo energy to be

TK � Ecute
−2π/K t0 . (6.124)
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The energy dependence can be represented as follows:

t(E) = 2π

K

1

ln(E/TK)
at E � TK,

which conveniently does not contain the cut-off energy.
If the initial t0 is negative, strong coupling does not occur and t(E) slowly vanishes at

low energies. Its energy dependence is given by the same expression, but with negative ζK,
and, correspondingly, with TK that are much larger then Ecut, E . The qubit is thus uncou-
pled from the nanostructure in the low-energy limit. This situation is termed asymptotic
freedom, and is relatively uninteresting, so we concentrate on the opposite, strong-coupling
regime.

One should not take for granted that the partial solution described gives the flow of scat-
tering amplitudes in all possible situations. The solution of the renormalization equation is
determined by initial conditions that may be quite complicated, involving many channels
and not having to satisfy Eq. (6.122). Only simple models with symmetry properties, like a
classic example considered below, immediately result in a flow similar to that exemplified
above. Roughly, a general initial condition may be presented by a large linear combina-
tion of terms like Eq. (6.122) with different eigenvalues. The terms with larger eigenvalues
grow faster and also may suppress the growth of less successful terms. Finally, the strongest
(and frequently simplest) survives and determines the relevant scattering amplitudes. This
justifies the use of simple models.

To enable the Kondo renormalization, the qubit states do not have to be precisely degen-
erate: it is only required that their energy splitting is much smaller than the running energy
scale E . If the splitting is less than TK, it does not prevent the transition to the strong-
coupling regime. If the splitting is bigger than TK, the renormalization stops at the splitting
energy. It may be that the lowest split levels are still degenerate: the renormalization then
proceeds with a “reduced” qubit.

Magnetic impurity

Let us illustrate this with the most usual realization of the Kondo effect in solids: a magnetic
impurity with spin 1/2 in a metal. Near the impurity, the plane waves of the electrons in
the metal can be expanded in spherical harmonics: this gives a discrete set of transport
channels labeled by discrete values of angular momentum, L = 0, 1, ... A small impurity is
felt by s-waves (L = 0) only. So, effectively we have two channels corresponding to two
spin directions of the electron. In terms of the general model, Nch = Nq = 2, K = 4/3.
The scattering leading to the Kondo effect is due to an exchange interaction between the
impurity and electron spins. The rotational symmetry in spin space sets the form of this
interaction as follows:

t̂ = − t

3
(σ el · σ i),

which is luckily of the form given in Eq. (6.122). The eigenfunction of t̂ is a maxi-
mally entangled state: spin singlet |�〉 = (| ↑〉el| ↓〉i − | ↓〉el| ↑〉i)/

√
2. Positive t values

correspond to antiferromagnetic coupling: it is energetically favorable. Therefore, at a
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sufficiently small energy scale (temperature) TK given by Eq. (6.124), with Ecut � EF,
the impurity crosses to the strong-coupling regime.

What happens to the impurity in this regime? We may give a quick sketch as follows. An
electron from the channel with a spin opposite to that of the impurity sits at the impurity,
forming a singlet state with bound energy �TK. The degeneracy is thereby neutralized.
Owing to this, at low energy E � TK, all other electrons pass the impurity without spin
switching – they only acquire phase shifts while traversing it. The phase shifts at Fermi
energy can be found from the Friedel sum rule (see Eq. (1.149) and discussion there) and
correspond to the fact that the extra electron neutralizing the impurity spin is accommo-
dated below the Fermi surface. The phase shifts are χ = π for both electron directions.
The exact solution confirms this [167].

It might seem that these phase shifts cannot be observed. However, the scattering the
impurity provides to the electron flow comes about from the interference of all spheri-
cal harmonics, and is thereby sensitive to the phase shift χ of the s-wave. The scattering
cross-section is given by σ = 4πk−2

F sin2(χ/2); this gives a contribution to the scattering
rate 1/τp = vFciσ , ci being the impurity concentration. Note that χ = π corresponds to
the maximum possible scattering rate (1/τ )u = 4πvFci/k2

F = ci/(2ν�). The contribution
of magnetic impurities to the resistance of a material thus grows with decreasing tempera-
ture – this was the puzzle resolved by Kondo.

We introduce two phenomena (spin-flip and energy exchange) that will become important
in Section 6.8 and concern the effect of the impurity on the electrons scattered.

Spin-flip

If the electrons can flip the spin of the impurity, this provides a mechanism of spin relax-
ation. In distinction from the spin-scattering considered in Chapter 1, this spin-flip is
incoherent, involving the change of the impurity state. Above the Kondo energy scale,
the contribution to the spin-flip rate is given by

1

τsf
= (1/τ )u

t2(E)

12
; t(E)� 1. (6.125)

The spin-flip rate thus grows slowly with lowering temperature, achieving values
�(1/τ )u at E � TK. At lower temperatures, the spin-flip ceases since the impurity spin
is neutralized.

Two-electron energy exchange

We have mentioned at the beginning of this subsection that the electrons interact through
the switching of the qubit: the electron that enters first may change the qubit state and
thereby change the scattering state of the following electron. This leads to an energy
exchange of the two scattered electrons. Two electrons coming with energies E ± Ei will
go away with energies E ′ ± Ef if E = E ′ conform to energy conservation. A consideration
of a two-electron wave function after the scattering event yields that small energy transfers
are strongly preferred: � � (Ei − Ef)−2.
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For a spin 1/2 impurity, the rate at t � 1 is given by [168]

�r =
(

t

3

)4 (1/τ )u

2π2

[
1

(Ei − Ef)2
+ 1

(Ei + Ef)2

]
δ(E − E ′). (6.126)

Similar to the spin-flip rate, the energy exchange rate ceases at T < TK.

Exotic Kondo

A spin-1/2 impurity provides the single most common scenario of the Kondo effect. We
will review its realization in quantum dots in Section 6.6.3. There is a large set of different,
more exotic and interesting, Kondo scenarios that find a place in quantum transport. Unfor-
tunately we cannot discuss them here and advise the reader to review Refs. [169]–[173] and
references therein.

6.6.3 Quantum dot according to Anderson

A quantum dot with an odd number of electrons must be degenerate with respect to spin
and is typically in a spin-doublet state. Bringing it in contact with the leads creates a Kondo
setup. Forming an analogy with a spin-1/2 impurity, we expect the spin degeneracy to be
lifted at a sufficiently low energy scale �TK. Remarkably, the lifting of the degeneracy
results in an increased transmission of the dot, which can reach an ideal value of a quantum
point contact. At least theoretically, the conductance of a quantum dot versus gate voltage
at very low temperature and voltage should display an alternating conductance pattern:
G = GQ in odd diamonds and G ≈ 0 in even diamonds (see Fig. 6.20).

We will analyze this quantitatively in the framework of the Anderson model. P. W.
Anderson provided many seminal contributions, moving far ahead of the research fron-
tiers of the time. In particular, he proposed a basic model for the Kondo effect in quantum
dots long before quantum dots had ever been thought about. The Anderson model was
to provide a minimum microscopic description for a magnetic impurity in a metal. Its
adaptation for the dot setup is as follows [175]. There is a single spin-degenerate level in
the dot, its position εd with respect to the Fermi level can be tuned with a gate voltage. The
charging energy U makes the double occupancy of the dot energetically unfavorable. The
Hamiltonian of the dot is thus given by

Ĥd = εdn̂d + U

2
n̂d(n̂d − 1),

where the total number of electrons n̂d in the dot is contributed to by both spin direc-
tions, n̂d = d̂†

↑d̂↑ + d̂†
↓d̂↓, d̂σ being the electron annihilation operators in the dot. Energy

consideration yields nd = 1 in the interval 0 < εd < −U , nd = 0 if εd > 0, and nd = 2 if
εd < −U (Fig. 6.20). There is no difficulty in applying the Anderson model for multi-
electron dots: for a given odd diamond, one just considers a level being filled and
disregards all other levels. The nd in this case is the number of electrons in the level being
filled.
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regime. (b) Experiment from Ref. [174]. Conductance versus gate voltage at different
temperatures. The rise of conductance with temperature manifests the Kondo effect. Curves are
for different temperatures, ranging from 100 mK to 3800 mK.

The dot is coupled to two single-channel leads, the annihilation operators in the left
(right) lead being âkσ (b̂kσ ), σ =↑,↓. The tunnel matrix elements Ta,b couple the electron
states to the dot level, so the total Hamiltonian is given by

Ĥ = Ĥel + Ĥd + Ĥtun;

Ĥel =
∑
kσ

εk â†
kσ âkσ +

∑
kσ

εk b̂†
kσ b̂kσ ; (6.127)

Ĥtun = Ta

∑
kσ

â†
kσ d̂kσ + Tb

∑
kσ

b̂†
kσ d̂kσ + h.c.

These tunnel matrix elements are related to the transport rates from the level to the cor-
responding leads: �a,b = πTa,bν/�. In distinction from the Fermi edge singularity model,
the tunnel matrix elements do not depend on the dot occupation. The condition of good
isolation requires � � U , which we will assume.

Control question 6.17. Can you argue why the good isolation is required and describe
the physics of Anderson model in the opposite limit?

The apparent difference to the original Anderson model is the presence of two leads and
two tunneling couplings. However, there is a hidden symmetry in the model that eradicates
even this difference. We can redefine the channels by making a unitary transformation with
a 2× 2 matrix V̂ , as follows:
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f̂kσ

ĝkσ

)
= V̂

(
âkσ

b̂kσ

)
; V̂ ≡ 1

Td

(
Ta Tb

Tb −Ta

)

(Td ≡
√

T 2
a + T 2

b ). Then only channel g will couple the dot level with the tunnel matrix
element Td , while channel f does not even know that the dot is present. This trick allows
for a comprehensive evaluation of the transport between the leads.

Let us start by evaluating the co-tunneling amplitude: the correction to the transmission
amplitude in the second order in Td. This correction is obviously absent in the f channel.
In the g channel, it is contributed by two virtual states: one where the dot is empty (energy
denominator E−) and another where the dot is filled with two electrons in singlet state
(energy denominator E+). For all initial and final configurations of electron and dot spins,
the correction is given by

t̂ = −i
�

2

(
1

E+
+ 1

E−

)
(σ el · σ i )+ i

�

2

(
1

E+
− 1

E−

)

≡ −i
t

3
(σ el · σ i)+ it1.

Since we are interested in transmission from the left to the right, we shall transform back
to the channels â, b̂ with the help of 2× 2 matrix V̂ as follows:

δŝ = V̂−1
(

t̂ 0
0 1

)
V̂ = t̂

T 2
d

(
T 2

a TaTb

TaTb T 2
b

)
.

The non-diagonal element gives the transmission from the left to the right, with and without
spin-flip. Squaring the amplitude elements, we obtain

Gcot = GQ
4�a�b

(�a + �b)2

t2
0/3+ t2

1

4
= GQ�

2�a�b

(
1

E2+
+ 1

E2−
+ 1

E+E−

)
. (6.128)

Control question 6.18. Can you explain Eq. (6.128)? What is the probability of
flipping the electron spin while transmitting?

Now let us take the Kondo effect into account. The phase shift t1 is not affected by
Kondo renormalization, while t grows as described in Section 6.6.2. The strong-coupling
regime is achieved at the Kondo energy scale:

TK =
√

U��

2
exp

(
− πE+E+

(E+ + E−)��

)
. (6.129)

The factor in the exponent is obtained from Eq. (6.124), while the prefactor may be
obtained by a renormalization calculation in higher orders or just from the exact solution
of the Anderson model [167].

Now we are ready for conductance in the strong-coupling regime TK. We recall that the
f channel gets π -shift, while the g channel does not: this sets the scattering matrix in this
basis. Transforming back to â, b̂, we find the scattering matrix to be

ŝ = V̂−1
( −1 0

0 1

)
V̂ = 1

T 2
d

(
T 2

b − T 2
a −2Ta Tb

−2Ta Tb T 2
a − T 2

b

)
.
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Squaring the non-diagonal elements gives the conductance in the Kondo regime:

G = GQ
4�a�b

(�a + �b)2
; G = GQ at �a = �b.

The transmission is thus ideal for symmetric couplings. The asymmetry-related coefficient
is the same as for the height of the resonant peaks in the double junction (Section 1.6) and in
resonant tunneling through a single level (Section 5.4). This is not surprising since it relates
to the same interference trick: neither effect destroys the tunnel barriers, but overcomes
them by a fine phase tuning. The difference is that the Kondo effect provides the same
phase shift over a wide interval of gate voltages. A cartoon is that the Kondo effect “pins”
the resonance to the Fermi level.

An interesting regime in the Anderson model takes place at the cross-overs between
the even and odd numbers of electrons in the dot. The cross-over takes place at �E �
��, where Coulomb peaks are observed at temperatures ���. At lower temperature, the
conductance in these regions saturates, and the average number of electrons nd in the dot
continuously changes from 0 to 1 for the left peak or from 1 to 2 for the right one (Figs.
6.20(a) and (b)). This number, in chemical terms, is the valence of the dot, and its non-
integer values indicate a mixed-valence regime.

If we assume that the phase shift in channel g is given by the Friedel sum rule, we
reproduce the zero-voltage conductance in the mixed-valence regime:

Gmv = GQ
4�a�b

(�a + �b)2
sin2(πnd/2). (6.130)

For symmetric couplings, it changes from 0 deep in even diamonds to GQ in the middle of
the odd diamond.

Experiment

It might seem easy to observe the Kondo effect in quantum dots: just put an odd number
of electrons inside and measure the conductance. However, TK is exponentially small at
small conductances, and such small energy scales are beyond reach. One tries to lower
the tunnel barriers separating the dot from the leads, but one should be cautious not to
raise tunnel conductances to the values of the order of �GQ. In this case, Coulomb peaks
are broad, tunneling involves many dot levels, and the discrete states in the dot become
questionable: there is no qubit required anymore. This is why the Kondo effect can only
be observed in a relatively narrow interval of tunnel conductances, and such observa-
tion requires quite some art and diligence. Even in this case, the quantitative comparison
with theory frequently remains questionable. The theoretical Kondo effect requires scale
separation: TK � Ecut. In solids, these scales differ by four to six orders of magnitude.
In quantum dots, experimental TK values are comparable with the cut-off scales �, EC,
and δS.

An experimental criterion for the Kondo regime is the conductance increase with lower-
ing temperature. Let us look at the conductance traces in Fig. 6.20(b) [174]. The quantum
dot has been made in a GaAs-based heterostructure by combining lithographic and etch-
ing techniques. The size of the dot is about 100 nm so it is expected to contain �50
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electrons. Nevertheless, there is a clear distinction between even and odd diamonds, and
within a single odd diamond the dot can be described by the Anderson model: the authors
of Ref. [172] provide a detailed comparison with theory on this basis. The ratio �/U
was about 1/7, indicating a well isolated dot. The highest temperature still exceeds ��.
Two broad Coulomb peaks are seen separating the odd diamonds from even ones. First,
with lowering temperature, the conductance decreases everywhere except at the peaks.
At further decreasing temperature, the conductance saturates in the even diamonds and
at the outer edges of the Coulomb peaks, indicating the mixed-valence regime. Remark-
ably, the conductance begins to grow in the middle of the odd diamond: this indicates the
Kondo effect. Even at the lowest temperature, the conductance traces in Fig. 6.20(b) do
not resemble those in Fig. 6.20(a). This is not surprising, given the fact that TK is deter-
mined by Eq. (6.129) and exponentially depends on the gate voltage. It reaches a deep
minimum, �40 mK, in the middle of the diamond, so the lowest temperature still exceeds
TK there. The scale of the conductance is also affected by the asymmetry of the tunnel
couplings.

Control question 6.19. What is the ratio �a/�b expected from the experimental
results?

Another popular criterion of the Kondo regime is a narrow peak in differential con-
ductance at zero voltage [174]. The width of the peak gives the experimental estimation
of TK.

6.7 Relaxation and decoherence of qubits

The final two sections of this book are about relaxation and decoherence. We have already
mentioned these issues in the book, and we had to: these phenomena actually separate
quantum and classical transport. We know already that the environment can strongly influ-
ence properties of electrons in nanostructures and qubits since it can absorb energy from
them: this is the relaxation. The environment can also affect the behavior of electrons and
qubits without changing their energy – it is enough to change their phase: this is called
decoherence for qubits and is usually called dephasing for electrons. We start from the
discussion of relaxation and dephasing in classical physics. Turning to quantum mechan-
ics, we analyze in detail decoherence and relaxation for a simplest quantum system – a
qubit. Both are caused by an environment, so we talk about various types of environments
and what decoherence they cause. We reveal the connections between the collection of
quantum information and decoherence by addressing continuous weak linear measurement
(CWLM) of a qubit.

The most qualitative results of the present section will be used in Section 6.8 in the dis-
cussion of the more involved issues of relaxation and dephasing of electrons that propagate
in metals.
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6.7.1 Classical versus quantum

Importantly, decoherence and relaxation (dissipation) are not specific to quantum mechan-
ics: they occur in classical systems as well. We understand the significance of dissipation
in classical physics very well. If we start with a pure classical mechanics, in either New-
tonian or Lagrangian formulation, the energy of a body or a system of bodies is always
conserved: there is no dissipation in these theories, and this is the point at which they
have to be adjusted to describe the real world. If any process is allowed by the laws of
mechanics, the time-reversed process is also allowed. In the real world, this is never the
case. Some dissipation is always present in the form of friction. The microscopic origin
of the friction force lies in the interaction of a body with other degrees of freedom – with
the environment. The environment can take very different natures: the surface irregularities
at atomic scale are responsible for dry friction of a body moving over a table; a particle
flowing in air experiences collisions with air molecules; a ship rises on the waves of the
sea. The nature of an environment is not really important. The only information required
is the friction force provided by an environment. This in most cases is proportional to the
velocity, γ ẋ .

The effect of this friction force is best illustrated with an example of a classical oscillator.
Without friction, a free oscillator performs a periodic motion, with frequency equal to its
eigenfrequency ω0. The amplitude of these oscillations persists in time. In the presence of
friction, if it is weak enough, γ � mω0, the motion is still almost periodic, and the ampli-
tude decreases with time as exp(−γ t/m), m being the mass of the oscillator. For strong
friction, γ � mω0, the motion is aperiodic – the particle merely relaxes to the equilibrium
position. In either case, after some time the oscillator dissipates all energy and stops. This
time, τd, is determined by the friction coefficient, τd ∼ m/γ . The motion in the presence of
friction is not time-reversible – the time-reversed motion would mean that the amplitude is
increased with the time to infinity, corresponding to taking energy from the environment.

How does decoherence or dephasing appear in the context of a classical oscillator? If
the amplitude is extinguished by dissipation, the phase goes as well. If the friction is
strong, we cannot talk at all about the phase since there are no oscillations. Such radi-
cal decoherence is easy to understand. But there can be decoherence without an amplitude
change and with no relation to dissipation. Let is take a high-quality oscillator and keep
the amplitude of the oscillations constant with an external energy source: a clock. Owing
to the general imperfectness of this world, the frequency of the oscillator does not remain
constant in time but exhibits small fluctuations around the average ω0: ω(t) = ω0 + h(t),
|h(t)| � ω0. While the amplitude remains constant, the frequency fluctuations randomize
the phase. On average, the phase equals ω0t , as for an ideal oscillator. Importantly, the
fluctuations of the phase do not remain small like the frequency fluctuations: they grow
with time. Their precise behavior is determined by the statistics of h(t). Let us assume
that h(t) obeys Gaussian statistics and that the correlator of h(t) at different time moments
is given by 〈h(t1)h(t2)〉 = h2 F((t1 − t2)/th). Here, h2 is the instant variance of h(t) and
th is a correlation time of the fluctuations, F(0) = 1, that vanishes at the values of argu-
ment �1. The simplest form of this relation is white noise, 〈h(t1)h(t2)〉 = Shδ(t1 − t2),
Sh = h2th

∫
dx F(x), which works at time scales�th .
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We integrate the equation for the phase ϕ̇ = ω0 + h(t) to get ϕ(t) = ω0t + ∫ t
0 h(t ′)dt ′

(we have arbitrarily put ϕ(0) = 0). Let us compute the variance of the phase, 〈δϕ2(t)〉 ≡
〈ϕ(t)2〉 − 〈ϕ(t)〉2, assuming t � th :

〈δϕ2(t)〉 =
∫ t

0
dt1

∫ t

0
dt2〈h(t1)h(t2)〉

≈
∫ t

0
d((t1 + t2)/2)

∫ ∞
−∞

d(t1 − t2)h2 F((t1 − t2)/th) = Sht ,

where we extend the integration over the time difference to ±∞ since t � th . We come
to an important conclusion that, in the limit of large t , the phase variance is proportional
to the time interval. Actually, this is a consequence of the central limit theorem – the
sum of a large number of random independent quantities (in our case, h(t) at different
time moments) has a Gaussian distribution, no matter what was the distribution of each
of the quantities. The fluctuations grow proportionally to the square root of the number
of the quantities. Thus, the fluctuations of the phase grow as

√
t . At sufficiently long

times they exceed 2π – the phase acquired over a period. This defines the decoherence
time τϕ .

We can quantify this by looking at the correlations of the oscillator displacement x(t) =
x0 cos(ϕ(t)) at different times (assuming ω0t � 1):

〈x(0)x(t)〉 − 〈x(0)〉〈x(t)〉 = (x2
0/2)

〈
eiϕ(0)e−iϕ(t)

〉
= (x2

0/2)e−〈(ϕ(0)−ϕ(t))2〉/2 ≡ e−t/τϕ , 1/τϕ = Sh/2. (6.131)

We made use of the fact that the phase fluctuations are Gaussian in handling the average of
the exponents: this is the classical analog of the quantum relation given by Eq. (6.11). We
see that the decoherence time determines the decay of the correlation function. We stress
again that no relaxation occurs in this case: the amplitude of the oscillations x0 stays the
same at all times, as does the energy of the oscillator.

There is another way to arrange decoherence without amplitude decay. It is related
to ensemble averaging rather than to fluctuations in time. Let us take an ensemble of
many oscillators with constant amplitudes. They have slightly different frequencies ωi ,
distributed around ω0 with a variance h2

0, h0 � ω0. The frequencies do not fluctuate in
time. Let us suppose that the oscillators are small so we cannot measure the signal of
each while we can follow the total of their displacements, X (t) =∑

i xi (t). The oscillators
start in phase, so X (t) = N x0. Clearly, after time �1/h the oscillators are no longer in
phase and the total signal is therefore reduced. To quantify, we average it over the normal
distribution of h, as follows:

〈X (0)X (t)〉 = N x2
0

∫
dh

h0
√

2π
e−h2/2h2

0 eiht = N x2
0 e−t2h2

0/2.

Similarly to the correlator in Eq. (6.131), the total signal decays exponentially with time
owing to the decoherence of different oscillators.
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Control question 6.20. Suppose the frequencies of the oscillators of the ensem-
ble also experience fluctuations in time. How should we identify the dominating
decoherence mechanism from the measurements of X (t)?

We know that both relaxation and decoherence are classical effects. How do they work in
quantum systems? Relaxation is accompanied by an energy loss. For quantum systems, this
implies the transitions between quantum states of different energy. These states could either
belong to a continuous spectrum, like those of electrons tunneling in the environment, or
be discrete, like those of qubits. Upon a transition, the wave function of the system changes
considerably, so its phase changes as well. Therefore, relaxation is always accompanied by
decoherence.

As in classical physics, one can also have decoherence without relaxation. This is a dis-
tortion of a phase of the wave function not accompanied by the change of probabilities
of being in certain eigenstates. This phase can be, for example, the relative phase of two
coefficients in a linear superposition of states with different energies, such as in a qubit.
The phase of the electron waves can also be distorted without appreciable change of the
electron energy. Such decoherence manifests itself in the destruction of quantum interfer-
ence of electron waves at the same energy, such as that seen in the Aharonov–Bohm effect.
Characteristic times for relaxation and decoherence are denoted by τr and τϕ , respectively.
Since dissipation is always accompanied by decoherence, but not vice versa, we always
have τϕ ≤ τr/2.

Although relaxation and decoherence are two distinct phenomena, they can be described
in the framework of the same model. We have seen at the beginning of this chapter that
dissipation can be included in quantum mechanics as an interaction with an environment
represented as a set of external (bosonic) degrees of freedom. A general Hamiltonian would
read as follows:

Ĥ = Ĥq + Ĥenv + Ĥr + Ĥϕ ;

Ĥq =
∑

n

En|n〉〈n|, Ĥenv =
∑

k

�ωk b̂†
k b̂k ,

Ĥr =
∑

n′ �=n,k

Vnn′k |n〉〈n′|b̂k + h.c.,

Ĥϕ =
∑
nk

Vnk |n〉〈n|b̂k + h.c.

Here Ĥq is the Hamiltonian of the quantum system (En being the energy levels) and Ĥenv

represents the environment as a set of harmonic oscillators labeled k with frequencies �ωk .
Two other terms give the coupling between the system and the environment. The contribu-
tion Ĥϕ only has terms diagonal in n; it leaves the system in the same state |n〉, although
it emits/absorbs a boson to/from the environment. Therefore, these couplings are not asso-
ciated with the energy transfer and are responsible for decoherence. In contrast, Ĥr terms
contain off-diagonal matrix elements responsible for the transitions between the different
states of the system. The energy is transferred between the system and the environment in
the course of such transitions: this models the relaxation.
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6.7.2 Relaxation and decoherence in a qubit

Let us specialize to the case of a qubit – a two-level system with states |+〉 and |−〉 that
have energies ±�/2. We take the simplest model, given by

Ĥ = (�/2+ ε̂‖) (|+〉〈+| − |−〉〈−|)+ ε̂⊥ (|+〉〈−| + |−〉〈+|) , (6.132)

where ε̂‖,⊥ are the fields linear in boson operators:

ε̂‖,⊥ =
∑

m

ε
(m)
‖,⊥b̂†

m +
(
ε(m)

)∗
‖,⊥ b̂m .

We did not explicitly write the energy of the environment. The terms with � describe the
Hamiltonian of the qubit, ε̂⊥ represents the coupling with the diagonal, and ε̂⊥ represents
the coupling with the off-diagonal matrix elements. Therefore the fields ε̂‖,⊥ are responsi-
ble for the decoherence and relaxation, respectively. Note that� comes in the combination
�/2+ ε̂‖: the latter acts as a fluctuating part of the energy splitting in the qubit. Since the
working frequency of the qubit is determined by this energy splitting, the field ε‖ gives the
frequency fluctuations, precisely like in the model of classical decoherence considered in
Section 6.7.1. Both fields ε̂‖,⊥ have the dimension of energy. A simplification of the model
is that we represent the relaxation by a single field: there could be two, corresponding to
two possible matrix elements |+〉〈−|, |−〉〈+|. The model formulated is a straightforward
extension of the spin-boson model of Section 6.2. There, we were concentrating on quan-
tum and non-perturbative effects, while here we have a simpler task, solved using the Fermi
Golden Rule and some classical reasoning.

Control question 6.21. A spin qubit in a constant magnetic field B||z is subject to
an environment that produces a fluctuating magnetic field. Can you express ε‖ and ε⊥
in terms of the components of the fluctuating field? How many field components are
responsible for the relaxation?

Control question 6.22. The Hamiltonian of the spin-boson model, Eq. (6.38), can be
brought to the form given in Eq. (6.132) by diagonalizing the qubit Hamiltonian. What
are the fields ε̂‖,⊥ in terms of F̂?

The coupling to the environment is described by the coefficients ε(m)
⊥,‖, or, in other words,

by the shifts of the corresponding oscillators. We know from Sections 6.1 and 6.2 that,
fortunately, we do not need the details of the coefficients. What we need to know is a single
function of frequency defining the spectral density of the field correlations: the (quantum)
noise of the corresponding field. If the environment is at equilibrium characterized by
temperature T , the noise is given by (see Eq. (6.9))

S(ω) = NB(ω)sign(ω)Sq(|ω|), (6.133)

NB(ω) ≡ 1

exp(�ω/kBT )− 1
.
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�Fig. 6.21. Relaxation and decoherence in qubit setups. See (a) Exercise 6.12, (b) Exercise 6.13,
(c) Exercise 6.14.

where Sq is temperature-independent and is immediately related to the imaginary part of
the corresponding response function, Sq(ω) = 2�χ (ω). At vanishing temperature, S(ω) =
�(−ω)Sq(|ω|). All fluctuations at vanishing temperature are quantum; this explains why
we use the subscript “q” for Sq.

Let us look at the relaxation of the qubit due to the field ε⊥. At vanishing temperature,
the environment cannot emit energy, and thus the only transitions are from state |+〉 (higher
energy) to state |−〉 (lower energy). The inverse relaxation time is just the transition rate,
given by the Fermi Golden Rule:

1

τr
≡ �↓ = 2π

�

∑
m

|εm |2δ(�− �ωm) = S⊥(−�/�)/�2. (6.134)

At finite temperature, both absorption and emission are possible. At equilibrium, the up
and down transition rates are related as follows:(

�↓
�↑

)
= 1

�2

(
S⊥ (−�/�)
S⊥ (�/�)

)
=

(
NB (�/�)+ 1

NB (�/�)

)
�↓(T = 0). (6.135)

This guarantees that the equilibrium probabilities, p±, of finding the qubit in either state
obey a Boltzmann distribution given by p+/p− = exp(−�/kBT ).

Exercise 6.12. Let us consider a rectangular quantum dot of dimensions Lx , L y placed
between the plates of a capacitor C ′ (see Fig. 6.21 (a), gray rectangle). The wave func-
tions of the levels and the energies are given by Eqs. (4.17) and (4.18). A single electron
is in the dot. Evaluate the relaxation rate for the transition between the first excited
(nx = 2, ny = 1) and the lowest levels. For this: (i) express the field ε⊥ in terms of the
voltage in the node; (ii) find the susceptibility χ (ω) for this voltage, disregarding C ′ in
comparison with C ; (iii) find the noise of ε⊥.

Let us turn to decoherence. The decoherence is determined by diagonal matrix elements
of the interaction, and for them ε̂‖ appear to be the fluctuating corrections to the level
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spacing �. Let us start with the assumptions that this correction can be handled like a
classical noisy variable and that we have white noise given by

〈ε‖(t)ε‖(t ′)〉 = S‖(0)δ(t − t ′). (6.136)

This white noise induces the change in phase of a superposition of the qubit states:

ϕ(0)− ϕ(t) = 2

�

∫ t

0
ε‖(t ′)dt ′ (6.137)

(the factor of 2 comes from the fact that the fluctuation in the level spacing is 2ε). Thus,
in the long-time limit, the phase fluctuations are given by 〈δϕ2〉 = 4S(0)‖t/�2 (again, in
accordance with the central limit theorem, they grow as t). Recalling Eq. (6.131), we obtain
the decoherence time:

1

τϕ
= 2

�2
S‖(0). (6.138)

Exercise 6.13. A Cooper-pair box (see Section 3.5.1) is biased as shown in
Fig. 6.21(b). This provides us with an opportunity to tune the effective Josephson
energy (see Eq. (3.75)). However, the resistor R in the bias line provides flux fluctu-
ations that result in decoherence. Quantify the decoherence rate assuming the limit of
small Josephson energy, so that the Hamiltonian of the CPB is given by Eq. (3.84).

In fact, noise produced by an environment is not always white. Its spectral density
depends on the frequency, and changes at frequencies of order of ω � kBT/� accord-
ing to Eq. (6.133). While low-frequency fluctuations (�ω � kBT ) are not distinguishable
from a classical fluctuating signal, the high-frequency ones (�ω � kBT ) are essentially
quantum. Which frequencies are relevant for the determination of the decoherence time?
Eventually, they are determined by the decoherence time itself: one can digest it, for exam-
ple, by inspecting the Fourier transform of Eq. (6.131). In particular, if kBT � �/τϕ the
noise creating the decoherence is classical at the relevant frequencies; this justifies our
starting assumptions. If 1/τϕ , evaluated using Eq. (6.138) the previous formula, appears to
be bigger or comparable with kBT/�, something goes wrong: most likely, the interaction
with the environment at quantum level drastically changes the properties of the qubit.

Even at low frequencies,�kBT/�, there may be a substantial frequency-dependence of
the noise, in which case the noise is colored rather than white. In this case, the correlator
of the phase factors is no longer a simple exponential function. The time-dependent time
variance is given by

〈(ϕ(0)− ϕ(t))2〉 =
∫

dω

π�2

4 sin2(ωt/2)

ω2
S(ω),

and may be a complicated function of time. Still, the estimate of τϕ is the time at which the
variance becomes of the order of unity, and this time determines the relevant frequencies
of the noise. Thus we can estimate the decoherence time using a simple self-consistency
relation without making complicated integrals:

1

τϕ
= 2

�2
S‖

(
ω = 1

τϕ

)
. (6.139)
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This is derived from Eq. (6.138) by taking the noise at a relevant frequency scale, the scale
to be determined from the same equation. The results depend essentially on the form of
the function S‖(ω) in the limit of small frequencies, which is the subject of the general
classification of environments outlined in Section 6.2.4

Let us go through the classification of environments, specifically looking at the deco-
herence. Inspecting Eq. (6.46), we understand that P1(E) � Es corresponds to S(ω)‖ �
(kBT/�)(ω/ωc)s+1. Here ωc is not a cut-off frequency; rather, it is a constant of proper
dimension to characterize the intensity of the noise. Solving the above self-consistency
relation yields

1

τϕ
� (kBT/�)

(
�ωc

kBT

)1+1/s

.

For s < −1 (a sub-ohmic environment), the decoherence rate 1/τϕ decreases at low
temperatures, as one expects from the decreasing noise. However, it decreases slower than
the temperature itself. For example, 1/τϕ ∝ T 2/3 for s = −3/2. This indicates a prob-
lem at low temperatures, T � �ωc/kB: the estimate of the decoherence rate exceeds the
temperature scale, and quantum effects cannot be disregarded. Indeed, we have seen in
Section 6.2.4 that at low energies a qubit in a sub-ohmic environment is no longer a qubit.
The strong interaction with the environment makes it a classical memory cell.

Exercise 6.14. A charge qubit is placed into a capacitor C connected to an RC-line
(Fig. 6.21(c)) with resistance R̃ and capacitance C̃ per unit length. Give an estimation
of the decoherence rate. Give the condition of importance of the quantum effects.

For s = −1 (an ohmic environment), the fluctuations of ε‖ are white-noise-like, and
1/τϕ ∝ α(kBT/�). The importance of the quantum effects thus depends on the strength of
the coupling α. The decoherence is due to classical noise only for a weak ohmic environ-
ment α � 1. We recall we have studied this situation in the context of the phase diffusion
(Eq. (6.62)).

The environments with s > −1 are super-ohmic. If −1 < s < 0, the decoherence rate
quickly drops with decreasing temperature. For example, 1/τϕ ∝ T 2 if s = −1/2. For
super-ohmic environments with s > 0, the self-consistency relation gives the only solu-
tion: 1/τϕ = 0, no decoherence. In fact, some decoherence must be present since the noise
is present. The estimation implies that the decoherence is incomplete. The variance of the
phase does not grow unrestricted with time, but rather saturates at a finite value. Therefore
the memory of the initial phase persists.

How are the relaxation and decoherence reflected in the equations describing the dynam-
ics of the qubit density matrix? The dynamics of diagonal elements ρ++ = p+, ρ−− = p−
are not affected by decoherence and are governed by simple master equations as follows:

dp+
dt
= −�↓ p+ + �↑ p−,

dp−
dt
= −�↑ p− + �↓ p+.

(6.140)
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The decoherence affects the evolution of the non-diagonal element as follows:

dρ−+
dt
=

(
i
�

�
− �↑ + �↓

2
− 1

τϕ

)
ρ−+. (6.141)

We see that the non-diagonal element is damped under stationary conditions; this damping
is due to both the relaxation transitions and the intrinsic decoherence rate 1/τϕ . One can
use the damping time as a definition of decoherence time in accordance with the classical
reasoning that the amplitude damping kills the phase as well. A reverse situation can be
envisaged: if 1/τϕ � �↑,↓, the non-diagonal matrix element will vanish long before the
relaxation takes place. If an initial condition is a quantum superposition of two qubit states,
the coherence of the superposition is lost at the time scale τϕ , without a change in the
probabilities of finding the qubit in either state.

6.7.3 Decoherence and measurement

The traditional concept of projective quantum measurement allows us to construct an ade-
quate model for the loss of quantum information and therefore the irreversible aspects of
quantum mechanics. However, it cannot immediately explain what happens to a qubit in the
process of an actual data acquisition. The imaginable projective measurement instantly sets
a qubit in one of the two states: this implies strong coupling with the measuring device. We
know that a realistic measurement cannot be instant since the signal fluctuates and has to
be averaged over a large time interval to achieve a decent measurement accuracy. Also, it is
better if the coupling between the qubit and the measuring device is weak, and the response
of the device is usually linear in input signal. If we want a model to incorporate all these
features, we come to the concept of continuous weak linear measurement (CWLM) (see
Refs. [176]–[178]) – a long word combination to make sure that nobody confuses it with
the projective measurement.

We consider here the simplest CWLM setup. Since the measuring system – a
detector – is linear, it can be described by a large combination of boson modes, like any
other environment considered in this section. The output of the detector is represented by
the output variable Ô, which is a field linear in boson operators. For convenience, we
make it dimensionless. We understand that this is a matter of choice: the output of a real-
istic detector may be voltage, current, or any other physical quantity, but we can always
express it in dimensionless units. The detector is designed to measure the z component of
the qubit pseudospin in the basis of the qubit Hamiltonian. To this end, its coupling to the
qubit is given by

Hint = σ̂z ε̂‖.

The field ε̂‖, which is again linear in boson operators, is called the input variable.5 Let
us note that it is the same field that is responsible for the decoherence of the qubit (see
Eq. (6.132)) so we just re-use the notation.

5 Not to be confused with the detector input: that is σ̂z , and the input variable is coupled to it.
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What is the detector response to the qubit pseudospin? To quantify it, we regard first the
qubit pseudospin as a classical input signal, σ̂z → σ . Then we can compute the response
using the Kubo formula (see Eq. 6.16)):

〈Ô〉 = i

�

0∫
−∞

dt [Ô(0), ε̂‖(t)] ≡ Aσ .

The average output signal thus amplifies (with coefficient A) the component of the qubit
pseudospin. Let us note that for a general linear detector there is also a reverse susceptibility
given by

A′ = i

�

0∫
−∞

dt [Ô(0), ε̂‖(t)].

The reverse susceptibility indicates that if we do something with the detector output – for
example, connect it to another stage of amplification or to a plotting device – we influence
the input, which is not good. In our case, this would create an undesired extra field on
the qubit, h(z) ∝ A′. For these reasons, practical amplifiers have to have a good separation
between output and input, |A| � |A′|. In more philosophical terms, this is a condition to
regarding the output signal as classical information. As discussed in Section 5.2, classi-
cal information can be read/copied further without distorting the source, that is the input
signal. This is also how we see. A signal source produced in our eye on most occasions
is not influenced by the fact that we close our eyes, as it would be for the case of an
appreciable A′.

So, we require |A| � |A′|. We note that this is incompatible with the condition of ther-
mal equilibrium frequently assumed in this chapter. Indeed, thermal equilibrium would
imply A = A′. It is also clear that a system in thermal equilibrium is never a practical
amplifier, which would require the dissipation from an external energy source to do their
job. Therefore, we cannot use the fluctuation–dissipation theorem to relate the noises and
susceptibilities. We can still use Eq. (6.17), since it does not require thermal equilibrium.
At zero frequency,

A ≈ A − A′ = (2/�)Im SO‖(0).

The symmetrized correlator of the noises is given by S(s)
O‖ = Re SO‖(0).

Let us understand that we cannot measure this average signal 〈Ô〉 = Aσ instantly. The
output signal is subject to noise, typically to white noise. To approximate the average, we
accumulate the signal. We integrate it over a time interval (t0, t0 + τ ) and divide it by the
duration τ of the measurement, Ō = ∫ t0+τ

t0
O(t)dt/τ : this makes a single measurement.

The measurement result Ō is randomly changing from measurement to measurement and
obeys a normal distribution with variance SO/τ and average Aσ ; thus,

P(Ō) = 1√
πτ SO

exp

(
− (Ō − Aσ )2τ

2SO

)
.

The accuracy thus improves with increasing duration. How long should we measure in
order to resolve two qubit states σz = ±1? The average outputs are separated by 2A; this
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is to be compared with the signal variance. We conclude that the qubit states can only
be resolved if the duration of measurement exceeds a typical “measurement time” τm =
SO/A2, which characterizes the detector speed.

The essence of CWLM theory is that this “measurement time” cannot exceed one-half
of the decoherence time of the qubit, that being determined by the noise S‖. Suppose one
tries to design a faster detector, either by boosting its sensitivity A or by reducing its output
noise. Unfortunately, a by-product of the design efforts is the increased decoherence of the
qubit.

This is quantified by an inequality involving the characteristics of the mentioned
detector: the noise of the output variable SO, the noise of the input variable S(s)

O‖, the
symmetrized noise correlator S‖, and the response of the detector:

S‖SO ≥ |SO‖(0)|2 =
(

S(s)
O‖

)2 +
(

�A

2

)2

. (6.142)

Since the decoherence time is given by Eq. (6.138), this proves τϕ ≤ 2τm. In other words,
an accurate measurement results in full decoherence of the qubit. This makes the connec-
tion with the concept of projective measurement: the wave function is always scrambled
by an efficient data acquisition.

Exercise 6.15. Prove the inequality given in Eq. (6.142) using the representation of
the fields involved in terms of boson creation/annihilation operators. Make use of the
Cauchy–Schwartz inequality: if a set of positive numbers Pk defines an inner product
of two complex vectors (A, B) =∑

k A∗k Bk Pk , |(A, B)|2 ≤ (A, A)(B, B).

One can quantify this in more detail by studying the joint statistics of the qubit and output
signal. It is convenient to define it in terms of the integrated output x(t) = ∫ t

0 dt1O(t1).
Suppose the density matrix of the qubit is ρ̂(0). The joint density matrix of the qubit and
integrated output x , ρ̂(x , t), yields the probability of finding value x of the output and the
qubit in a certain state at time moment t . If the qubit is not coupled to the detector, this
matrix obeys a diffusion equation ṗ = −(SO/2)p′′, conforming to the normal distribution
of the output with the variance SOt increasing in time. Coupling to the qubit makes it a
drift-diffusion equation: 〈x〉 = ±At , depending on the qubit state. Combining this with the
qubit dynamics from Eq. (6.140), we come to the following evolution equations:

ṗ+ = −(SO/2)p′′+ − Ap+ − �↓ p+ + �↑ p−;

ṗ− = −(SO/2)p′′− + Ap− − �↑ p− + �↓ p+; (6.143)

dρ−+
dt
= −(SO/2)p′′− +

(
i
�

�
− �↑ + �↓

2
− 1

τϕ

)
ρ−+,

where we set SO‖ = 0 in the final equation. This is to be solved with initial conditions
ρ̂(0, x) = ρ̂(0)δ(x). The solution is of the form of two Gaussian packets that get wider as
a result of diffusion and drift in opposite directions with velocities ±A.
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Exercise 6.16. Suppose initially the qubit is in the equal-weight superposition of
qubit states, ρ̂(0) = σx . Find the solution of the equation for p±(x), disregarding the
relaxation. From this, find the joint probability P(x1, x2) of the results of two succes-
sive measurements of the duration τ . Hint: the result is a superposition of two normal
distributions.

The result of Exercise 6.16 provides a quantitative illustration of the quantum non-
demolition measurement (see Section 5.6.2) with a linear detector. If the duration of each
measurement τ � τm, the results spread over a wide range and barely correlate: the mea-
surement is too short to be complete. In the opposite limit, the distribution of the results is
concentrated near ±A and they do correlate: the result of the second measurement is the
same as the result of the first one with an overwhelming probability.

Exercise 6.17. Consider Eqs. (6.143) at a time scale bigger than the relaxation time,
assuming �↑ = �↓. What is the average result of the measurement and its varia-
tion if the measurement duration τ � 1/�. How does it compare to a projective
measurement?

6.8 Relaxation and dephasing of electrons

Let us turn now to the relaxation and decoherence of the delocalized quantum states –
electron waves. Mostly we will discuss electrons in extended diffusive conductors where
these processes have been thoroughly investigated both theoretically [159] and experimen-
tally. Traditionally, the process called decoherence for qubits is known as dephasing if
we talk about electrons. The point is that an apparent “decoherence” of electron waves in
G � GQ conductors can be brought about by spin-orbit interaction, magnetic field, and
even by the energy difference, as in superconductors. These mechanisms have been stud-
ied in Chapters 2 and 4, and have nothing to do with an environment or inelastic processes
of any kind. The term “dephasing” is thus reserved for environment-induced effects.

We start this section with a short discussion to elucidate the link between the propagation
time of electrons in a nanostructure and the relaxation or dephasing rate; this is important
for manifestations of relaxation and dephasing. We list the mechanisms of the phenomena
in Section 6.8.1. The most important (and interesting) mechanism is that arising from volt-
age fluctuations, so we discuss them in detail in Section 6.8.2. Finally, in Section 6.8.3 we
present the recent experimental data supporting and illustrating the theory given in the rest
of this section.

Relaxation and decoherence for qubits and for electrons are very similar, at least at the
quantitative level. However, their common manifestations are different. The relaxation or
decoherence of a qubit is usually seen in a time domain: the qubit is manipulated and
then measured over a time interval. The relaxation or decoherence becomes visible if the
corresponding time becomes of the order of the duration of the time interval.
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It might seem that the same should hold for electrons. Consider, for example, the interfer-
ence between two electron waves of the same energy with amplitudes A1,2 that traverse an
Aharonov–Bohm interferometer. Part of the current in this device will reflect this interfer-
ence, δ I ∝ Re(A1 A∗2). Suppose the wave in one of the arms is subject to an environmental
effect of some kind such that it picks up a random fluctuating phase shift ϕ(t). This phase
shift will enter the current, δ I ∝ cos(ϕ(t)). Let us now average over the fluctuating phase.
Since the variation of the phase grows with time (see, for example, Eq. (6.131)), we con-
clude that the interference current is averaged out at the time scale τϕ . This would imply
that it is possible to observe interference effects only in the course of a sufficiently fast
measurement of the duration not exceeding τϕ . They would average out at a bigger time
scale. This is not what we observe in practice or read in this book. What is wrong with the
above reasoning?

What is wrong is that we have forgotten that both waves are coherent before entering the
interferometer and that the result of the interference, the current, is formed right after they
leave the device to enter a lead. The detected phase shift is thus the difference of the phases
before entering and after leaving the device,�ϕ = ϕ(tl)− ϕ(te). The relevant time scale is
not the observation time. Rather, it is the time tl − te = td required to cross the interferom-
eter. The resulting interference current survives the averaging over the fluctuations, though
it is suppressed by the following factor:

δ I ∝ 〈ei(ϕ(tl)−ϕ(te))〉 = exp

(
− td
τϕ

)
.

This only vanishes if the electron loses phase while in the interferometer.
The same applies to relaxation. Let us recall the setup studied in Section 2.4. There,

we considered a double junction in two limiting situations. If there is no inelastic scat-
tering, the filling factor in the node was a superposition of the two in the leads, fN(E) =
(G1 fL(E)+ G2 fR(E))/(G1 + G2), G1,2 being the junction conductances. It displayed a
two-step structure as a function of energy, the steps being at the chemical potentials of the
leads. If the inelastic scattering dominates, the filling factor is a smooth function of energy,
a Fermi distribution at increased temperature (see Eq. (2.65)).

What separates these two limiting situations? Suppose we can characterize the relaxation
of electrons inside the node with a single relaxation time τr. If the dwell time τd of the
electrons in the node is short, there is no chance that the electrons experience the relaxation
and one can disregard it. The filling factor exhibits two steps. Otherwise, there is no chance
of the electrons leaving the island without interacting with other electrons, and the filling
factor is smooth. As we remember, the dwell time corresponds to the Thouless energy of
the setup, �/τd = ETh = (G/GQ)δS.

To observe the relaxation, one characterizes the energy-dependent filling factor in the
node or in a node of a more complicated nanostructure. The most straightforward way
to do this is with a non-invasive voltage probe of very low conductance connecting the
node to the third lead biased at voltage V3 (filling factor f3(E) = �(eV3 − E) at vanishing
temperature). The current through such a probe is given by

eIp(V3) =
∫

dE( fN(E)−�(eV3 − E))G(E − eV3), (6.144)
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where G(E) is the energy-dependent conductance of the probe, which should be suffi-
ciently small not to perturb the current balance in the node. If G(E) = const., as we
frequently assume, this does not work: the probe would just measure the voltage in the
node, giving no information. If we know the precise shape of G(E), however, we do have
a chance to measure Ip. Equation (6.144) can be represented in terms of the Fourier trans-
forms of the functions involved, Ip(t) = G(t) fN(t). So, we find fN(t) = Ip(t)/G(t) and
run the inverse Fourier transform to determine fN(E).

Exercise 6.18. Prove Eq. (6.144) and explain in terms of Fourier transforms why it
gives no information about fN(E) if G(E) = const.

We conclude that, for a nanostructure of a given size, the importance of dephas-
ing/relaxation is simply determined by the ratio τϕ/τd of the dephasing time to the
dwell time in the nanostructure. This is a yes/no issue: the dephasing/relaxation is either
important or not. Correspondingly, the transport is either incoherent or coherent.

A more interesting picture emerges in extended conductors – we concentrate on diffu-
sive ones. The dephasing time sets a length scale Lϕ =

√
Dτϕ . The transport is coherent

at scales shorter than Lϕ and incoherent at scales larger than Lϕ . Thouless proposed a
convenient scheme to comprehend this. Let us subdivide a large conductor into smaller
sub-conductors, each of size Lϕ . This subdivision depends on the effective geometry that
in turn is determined by the ratio of Lϕ to the dimensions of the conductor. A film of thick-
ness less than Lϕ is 2d; a wire with transverse dimensions less than Lϕ is 1d. Let us note
that each sub-conductor – an elementary nanostructure – is on mesoscopic border, that is,
the dwell time in a subconductor equals the dephasing time.

Let us look at the weak localization correction to the conductance. For a coherent con-
ductor, (δG)WL ∼ GQ (see Section 4.4). A long incoherent conductor is presented as a
chain of coherent conductors each of size Lϕ . Summing up the resistors in series, we find
that the weak localization correction of the entire wire is of the order of GQLϕ/L . It is cer-
tainly reduced in comparison with the coherent case, but it survives and can be observed:
this is a neat way to see coherent effects in incoherent conductors.

To make it quantitative, let us recall Eq. (4.127), which expresses the weak localization
correction in terms of the cooperon propagator:

δσWL(B) = −GQ D

∞∫
0

dt Pcoop(r, t ′ + t ; r, t ′) (3 exp(−t/τSO)− 1) .

The propagator with delay t accounts for the electron trajectories that come back to the
same point after time t . To account for the fluctuating phase picked up along the trajec-
tory, we multiply the propagator Pcoop(t ′ + t , t) by the factor exp(−t/τϕ). To use such a
simple suppression factor is a gross simplification. We have seen in Section 6.7.2 that this
generally does not work for colored noise. We will see further why this simplification is
sufficient. Performing the integration over time, we find that the decoherence “rate” due
to a magnetic field, 1/τH , and the dephasing rate, 1/τϕ , always add up. The correction to
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�Fig. 6.22. Weak localization correction to the conductance of a 1d wire versus magnetic field. Curves:
(i) τϕ/τSO = 0.1; (ii) τϕ/τSO = 1; (iii) τϕ/τSO = 10.

the total conductance in 1d geometry is obtained by replacing 1/τH by 1/τH + 1/τϕ and
is given by

δGWL = GQ
Lϕ
L

1

2

(
1√

1+ (τϕ/τH )
− 3√

1+ (τϕ/τSO)+ (τϕ/τH )

)
. (6.145)

The weak localization correction displays an interesting pattern as a function of magnetic
field B ∝ 1/

√
τH . If τϕ � τSO, it gives a broad dip of the width τH � τϕ . Upon decreasing

the dephasing rate, the curve crosses over to a superposition of a narrow peak τH � τϕ and
a broad (τH � τSO) dip (see Fig. 6.22).

Exercise 6.19. Obtain a similar relation for 2d geometry, concentrating on the mag-
netoconductance δGWL(0)− δGWL(B). Make use of Eq. (4.127). Assume that the
effect of magnetic field can be incorporated into τH (this is not correct if the magnetic
field is perpendicular to the plane of the film, but suits for a parallel field).

6.8.1 Mechanisms of relaxation and decoherence

Let us list the relevant dissipation mechanisms in metallic solids that cause both dephasing
and relaxation.

In any solid, the electron relaxation can be mediated by the electron–phonon interaction:
the energy is transferred from electrons to the vibrations of the crystalline lattice. We have
not discussed this interaction, although it is very important in solid state physics. The point
is that the electron–phonon scattering rate strongly depends on energy,

1

τd
� λ E

�

(
E

�ωD

)2

, (6.146)
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where λ is a dimensionless electron–phonon coupling constant (typical value λ ∼ 0.2) and
ωD is the Debye frequency. The maximum phonon energy is estimated as 100 K. Typical
electron energies are of order of temperature. At 100 K the relaxation rate is therefore of the
order of energy, and the electrons are barely coherent. At room temperature, the phonons
are not only a powerful source of relaxation, but also the scattering on phonons dominates
the resistance. However, at moderately low temperatures of 1 K the phonon relaxation rate
is already small, 107–108 Hz; usually it cannot compete with other inelastic processes and
may be safely disregarded. Phonons do not provide any special dephasing mechanism that
is more intensive than the relaxation: the dephasing and relaxation rates are of the same
order of magnitude.

At low temperatures, the electron–electron scattering thus becomes more important. In
this case, the energy is not transferred from the conductor, but is merely redistributed
between the electrons. At low energy scales, the electrons do not significantly change their
momentum in the course of such scattering. In this case, the scattering is reduced to the
interaction of an electron, with voltage fluctuations produced by all other electrons. The
fluctuations vary slowly both in space (at scales �k−1

F ) and in time. For the sake of a
crude estimation, we can approximate the voltage noise inside the conductor by that of an
effective resistance R,

〈V̂ (t)V̂ (t ′)〉ω � max(kBT , �ω)R.

Let us recall from Section 6.7.2 that, for both decoherence and relaxation, the rate is deter-
mined by the spectral density of energy fluctuations. Since for charged electrons the energy
fluctuations are just given by δE = eV , we can estimate the rates as follows:

1

τr,ϕ
� E

�
GQ R, (6.147)

where E denotes a scale of electron energy corresponding to either temperature or volt-
age difference across the nanostructure. We see from this that the voltage fluctuations are
an intrinsic mechanism of the dissipation in quantum transport. Any resistance eventually
brings about dephasing and relaxation. If the electron propagation is coherent throughout
the whole nanostructure, or the nanostructure is at the border between coherent and inco-
herent regimes, we estimate R as the resistance of the whole nanostructure. At the border,
the rates should be of the order of the dwell time in the nanostructure, that is, τr,ϕETh � �.
Combining this with Eq. (6.147), we find that the incoherent regime takes precedence if
the electron energy scale exceeds Ein, that is

Ein � ETh
G

GQ
�

(
G

GQ

)2

δS,

G being the conductance of the nanostructure. This estimation is applicable at G � GQ,
and in this case the resulting energy scale Ein � ETh. This scale defines the mesoscopic
border (see Fig. 1 in the Introduction to this book). For extended conductors, the effective
resistance is a resistance of a small part of the conductor: we will analyze this in detail in
Section 6.8.2.

Finally, there are various spin-dependent effects. The elastic part of the spin-dependent
scattering is provided by spin-orbit interaction and does not lead to any dissipation. As we
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have seen, it leads to apparent decoherence, changing the interference corrections at the
length scale of LSO. This is to be contrasted with scattering on stray magnetic impurities,
which are commonly present in all but very clean samples. We mentioned in Section 6.6.2
two things the impurities do to electrons: spin-flips and two-electron energy exchange.
Those are sources of dephasing and relaxation, respectively. As seen from Eqs. (6.125) and
(6.126), the upper boundary of these rates is given by the unitary rate, 1/τu = ci/(2ν�), ci

being the impurity concentration.

Control question 6.23. The density of states in a metal is given by ν = 0.1 eV per
atom. There is one magnetic impurity per 106 atoms of the metal. What is the upper
boundary of the dephasing rate?

At temperatures T � TK, the spin flip rate is stronger than the relaxation rate so the
impurities produce more dephasing than relaxation. It is expected that both rates cease
below the Kondo temperature, but for many magnetic atoms the Kondo temperature is in
the millikelvin range, so they remain active in spoiling the electron coherence. Although
magnetic impurities are certainly an extrinsic source of dissipation, and might seem easy
to excise, in practice they remain the most important factor determining dephasing and
relaxation in metals (see Section 6.8.3).

6.8.2 Voltage fluctuations

Let us discuss the voltage fluctuations as a source of relaxation and dephasing in extended
diffusive conductors. We give here a set of qualitative estimations and quote Ref. [159] for
exact results.

Let us estimate the relaxation time first. The electron that experiences an energy loss �ω

does it at a time scale ω−1. During this time interval, it propagates a distance of the order
of
√

Dω. The effective resistance defining the voltage fluctuations is thus the resistance of
a piece of conductor of this size. Let us, in addition, assume that the typical energy loss is
of the order of the energy itself, and the typical energy is of the order of temperature. This
brings us to the following estimation:

1

τr
� kBT

�
GQ R(LT), (6.148)

where R(LT) is the resistance of a piece of conductor of size LT = √�D/kBT (called
the thermal length). Naturally, the rate should be smaller than the energy loss involved,
and this holds as long as R(LT)� G−1

Q . Let us now recall that the resistance depends on
the length scale differently in different effective geometries: R(L) ∝ L in one dimension;
R(L) ∝ const. in two dimensions, and R(L) ∝ L−1 in three dimensions. This implies that
the temperature dependence of the relaxation rate is also different for different dimen-
sions, 1/τr ∝ T d/2, d = 1, 2, 3, In all dimensions, the rate decreases with decreasing
temperature.
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However, in one dimension the rate decreases slower than temperature and becomes of
the order of kBT at a certain temperature T̃ . At this temperature, the effective resistance
R(LT) becomes of the order of G−1

Q . This indicates a problem and signals a cross-over
to a different transport regime: that of strong localization (see Section 4.5). The cross-
over is difficult to quantify, as are the details of the transport in this regime. However,
the big picture is clear: the extended conductor is subdivided into the subconductors of
R � GQ. The Coulomb blockade catches up, so each subconductor becomes a Coulomb
island. Thus, at lower temperatures we are dealing with a strongly disordered Coulomb
array, and we expect an insulator in the limit of vanishing temperature.

Control question 6.24. Can you express T̃ for one dimension in terms of the resis-
tance R̃ per unit length? And in terms of the total resistance of the wire and the average
level spacing δS in the wire?

It may seem that the same problem with the rate getting too high would take place
in three dimensions upon increasing temperature. However, it is clear that the estimation
for the 3d rate is obtained in diffusive limit. This restricts its validity to energy scales
kBT � 1/τp and corresponding space scales much longer than l. At the scale of the mean
free path, the effective resistance of a 3d metal is still smaller than G−1

Q , so no problems
arise.

Let us turn to dephasing. In this case, we do not care about the energy loss. Along the
lines of Section 6.7.2, we regard the voltage noise as classical Nyquist noise:

〈V (t)V (t ′)〉 = kBT Rδ(t − t ′),

where R is the effective resistance. This leads to a familiar estimation, 1/τϕ �
(kBT/�)(GQ R), but what shall we take now for the resistance? If the length of the nano-
structure were shorter than the dephasing length, a good decision may be to take the full
resistance of the structure. For extended conductors, the electrons can only explore a small
part of it before they lose the information on the initial phase. The distance covered in the
course of the diffusive motion during the time τϕ is Lϕ = (Dτϕ)1/2. Since the electrons
can only see this part of the conductor, the effective resistance should be taken at the scale
Lϕ . We thus make the following estimation:

1

τϕ
� kBT

�
R

(
Lϕ =

√
Dτϕ

)
GQ, (6.149)

which is a self-consistent equation for τϕ similar to Eq. (6.139). Let us look at its solutions
in various effective geometries.

In one dimension (a wire), R ∝ L , and thus 1/τϕ ∝ T 2/3. Following the general classifi-
cation of environments, we conclude that the voltage fluctuations in diffusive wires provide
a sub-ohmic environment with s = −3/2. Let us contrast the relaxation and dephasing
rates in one dimension as follows:

1

τϕ
= kBT

�

(
T

T̃

)−1/3

;
1

τr
= kBT

�

(
T

T̃

)−1/2

. (6.150)



556 Interaction, relaxation, and decoherence
�

We see that the dephasing rate is faster: the electrons lose the phase first and only later equi-
librate their energy. We also see a problem at sufficiently low temperatures; this is expected
for sub-ohmic environments. The dephasing rate becomes of the order of temperature at
the same temperature as the relaxation rate. We recall that this indicates transition to the
strong localization regime.

In two dimensions, the estimation yields

�

τϕ
� kBT

�
GQ R� ln(Lϕ/LT ) � kB T

�
GQ R� ln

(
1

G Q R�

)
, (6.151)

R� being the sheet resistance of the film. This signals an Ohmic environment and white
noise. The log factor accounts for the fact that the dephasing is contributed to by all the
frequencies: from 1/τϕ up to kBT/�. The dephasing rate prevails the relaxation in two
dimensions by this factor.

In three dimensions, the self-consistency equation formally has the solutions 1/τϕ ∝
T−2, which does not make any sense: this would imply infinitely strong dephasing at
zero temperature. Indeed, we formally obtain kBT � 1/τϕ , which means that the scale
for the resistance has been chosen incorrectly. As a matter of fact, the dephasing is
contributed to by frequencies not exceeding kBT/�. So we have to take R(LT) for the
effective resistance. The estimation for the dephasing rate is the same as for the relaxation
rate, 1/τϕ � 1/τr ∝ T 3/2. This implies that in three dimensions the dephasing is always
accompanied by relaxation.

Let us provide some quantitative details of relaxation using the voltage fluctuations.
The inelastic scattering can be described by a master equation for the energy-dependent
electron filling factor f (E) ( f̃ ≡ 1− f ) as follows:(

∂ f (E)

∂t

)
in
=

∫
dω

(
−Sr(ω) f (E) f̃ (E + �ω)+ Sr(−ω) f (E + �ω) f̃ (E)

)
, (6.152)

where Sr(ω) gives the spectral intensity of the voltage fluctuations. The first term gives the
rate of transitions from the electron states with energy E to the states with energy E + �ω

and comes with the corresponding filling factors. The second term describes the reverse
transitions from E + �ω to E , corresponding to the energy change −�ω.

In turn, the voltage fluctuations originate from the (virtual) electron transitions. We know
that in thermal equilibrium conditions a noise and a susceptibility are related by Eq. (6.9).
Since we are considering the relaxation, we must be ready for an electron distribution that
differs greatly from the Fermi one. In this case, the situation can be characterized with
an analog of the boson non-equilibrium distribution function that is contributed by the
electron transitions with given energy transfer �ω and all possible energies E :

Nnq(ω) ≡ 1

�ω

∫
dE f (E) f̃ (E − �ω) �= NB(ω) if f (E) �= fF(E).

We choose Nnq(ω) in such a way that the spectral density is related to a susceptibility by
a non-equilibrium analog of Eq. (6.9):

Sr(ω) = 2�χr(ω)Nnq(ω).
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Exercise 6.20. Consider a wire connected to two reservoirs biased at voltage difference
V (eV � kBT ). The length of the wire is small in comparison with L r ≡ √Dτr, so
the electron distribution is a two-step function (see Eq. (2.14)). Compute Nnq(ω) in
all points of the wire. Compare Nnq(ω) with NB(ω) at small ω, and give the effective
temperature at all points of the wire.

The susceptibility χr(ω) depends on frequency only. It is given in terms of the extended
impedance Z(ω, q) and the diffuson propagators that account for the electron motion:

2�χr(ω) = GQ

∫
dq

(2π )d
Re Z (ω, q)

ωDq2

| − ω + Dq2|2 � GQ R(L = √
D/ω).

Similar to the case of Altshuler–Aronov corrections to the conductivity (see Section 6.5.3),
the diffusion guarantees that the relevant space scale is

√
D/ω. Therefore we can regard

the electricity propagation as instant and use Eq. (6.97) to replace the impedance with its
circuit-theory value.

When applying the inelastic collision term, it is usual that the energy-dependent elec-
tron filling factor varies in space. Indeed, the non-equilibrium conditions can only be
maintained with a constant flux of electrons from different reservoirs with different fill-
ing factors. The filling factor near the entrance to a reservoir matches that in the reservoir,
so it has to change across the sample. To account for this, one plugs the inelastic collision
term given in Eq. (6.152) into the diffusion equation:

∂ f (E , r)

∂t
= ∇(D∇ f (E , r))+

(
∂ f (E , r)

∂t

)
in

.

The solution varies at a typical space scale L r = √Dτr, provided it is longer than the sam-
ple size. This is a much longer scale than

√
D/ω entering the susceptibility, so the filling

factor does not change at distances �√D/ω. This justifies the above local approximation:
the spectral intensity at a point r is determined by Nnq at the same point.

The inelastic collision term given by Eq. (6.152) is generally too complicated to be
characterized with a single rate τr. So we cannot readily improve the qualitative estimations
we did before, except in some special cases. To construct one of these special cases, let us
add only a few excited electrons with energy E to the metal in the ground state. Since the
hot electrons are few, they do not significantly change the spectral intensity, so it is given
by the equilibrium expression Sr = −2�χr�(−ω). We evaluate the transition rate of an
electron with energy E to all other states with energy E > 0 as follows:

1

τee(E)
=

∫ E

0
dω 2�|χr(ω)|.

Exercise 6.21. Compute the rate 1/τee(E) for d = 1, 2, 3. Use the expressions for the
extended impedance found in Section 6.1.2. What is the average energy loss during the
transition?

Let us discuss the quantitative details of dephasing. It is not a priori obvious that one
can characterize all manifestations of the dephasing with a single rate 1/τϕ corresponding
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to white noise and exponential dephasing. It is necessary to concentrate on a concrete
manifestation, and the most natural one is the magnitude of the weak localization correc-
tion. This can be expressed in terms of the cooperon propagator. To evaluate the effect
of voltage fluctuations, one includes the fluctuating voltage V (t , r) in Eq. (4.60) for the
cooperon:(

∂

∂t
+ i2eV (t , r)− D

(
∇r + i

2e A
c

)2
)

P B B′
coop = δ(r− r′)δ(t − t ′). (6.153)

This equation for the cooperon has to be solved and then averaged over the voltage fluc-
tuations, assuming the classical Nyquist noise. This is a rather complicated mathematical
problem that allows for an elegant solution [159]. In one dimension, this yields (assuming
τϕ � τSO)

δG1d = −2−1/2GQ
Lϕ
L

Ai(τϕ/2τH )

Ai ′(τϕ/2τH )
,

where Ai(x) is the Airy function, and 1/τϕ is given by Eq. (6.150) with kBT̃ =
(π/8)GQ RδS (see Control question 6.24).

It turns out that the combination of Airy functions can be approximated by a square root
with accuracy 4%. This justifies Eq. (6.145) and also the gross approximation made for the
single dephasing rate.

In two dimensions, the method yields the exact coefficient for the estimate given in
Eq. (6.151): (

1

τϕ

)
2d
= kBT

�

GQ

R �
ln

(
1

G Q R�

)
.

6.8.3 Experiments

As mentioned in Section 6.8.2, the weak localization correction is sensitive to the dephas-
ing time. The magnitude and the temperature dependence of this correction therefore
reveals the dephasing time and its temperature dependence. We illustrate this with a recent
experiment conducted by Pierre et al. [179]. The authors have painstakingly measured the
zero-voltage resistance of a large series of long metal wires made of copper, silver, and
gold, while varying magnetic field and temperature. While this does not sound like an
extremely novel and promising project, the results were not at all boring.

The wires were really long at nano-scale; their lengths ranged from 100 to 400 μm, with
the total resistance in the kilo-ohm range. The magnetic-field dependence of the resistance
exhibited a narrow dip. This is a manifestation of the weak localization correction, its sign
indicating that the dephasing length Lϕ exceeds LSO. Both lengths were extracted from
fits with Eq. (6.145) (see Fig. 6.23(a)). The coherence length Lϕ never exceeded 20 μm so
that the transport over the whole wire was never coherent. The wire consisted of at least 20
coherent subconductors.

The authors reported a striking dependence of the coherence time on the chemical purity
of the materials used. The wires made from 99.999% and 99.9999% pure silver were easy
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�Fig. 6.23. Experiments on dephasing [179]. (a) Weak localization correction seen in a magnetoresistance
trace. The dephasing length Lϕ is extracted from the fit. (b) In “good” samples, the temperature
dependence of the dephasing time mostly follows a T−2/3 law (dashed lines in this log–log plot).
The deviations above 1 K are due to phonons. (c) In “bad” samples (white symbols), the
dephasing time apparently saturates at low temperatures owing to spin-flip at magnetic
impurities. (d) Temperature dependence of the resistivity is governed by Altshuler–Aronov
corrections, Eq. (6.117).

to distinguish from other measurement results. This degree of purity is very difficult to
control, so the results vary significantly for formally identical samples. The samples can
be divided into two groups: “good” ones and “bad” ones.

The “good” samples showed an unsaturating increase of τϕ with decreasing temperature
(see Fig. 6.23(b)) down to the lowest temperatures accessible (�40 mK). At tempera-
tures <1 K, the power-law dependence 1/τϕ ∝ T 2/3 has been confirmed in accordance
with Eq. (6.143). This proves that the dominant dephasing mechanism is indeed related
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to voltage fluctuations. For temperatures above 1 K, the temperature dependence becomes
steeper and eventually crosses over to 1/τϕ ∝ T 3, signaling electron–phonon scattering.

Control question 6.25. Suppose the T−2/3 law holds at arbitrarily low temperatures.
At 40 mK the dephasing length in a 200 μm sample was measured to be Lϕ = 20 μm.
At which temperature does it become of the order of the sample length?

“Bad” samples showed the saturation of τϕ at low temperature (see Fig. 6.23(c)). Less
pure samples tended to be “bad,” indicating the role of impurities, presumably magnetic
ones. The main contribution to the dephasing is thus the spin-flip scattering at these impu-
rities. An extra piece of evidence is a non-monotonous dependence of τϕ (lowest curve
in Fig. 6.23(c)). This is consistent with the Kondo amplification of the spin-flip scatter-
ing. As an extra check, the samples were doped by manganese (magnetic impurities with
TK = 40 mK). This led to an increased dephasing rate as expected. The coherence was
thus destroyed by a very low concentration of the magnetic impurities that did not pro-
duce a noticeable effect on the resistance of the samples. The temperature dependence of
the resistance was dominated by interaction effects and can be accurately described by the
Altshuler–Aronov relation, Eq. (6.117), for the 1d case.

The spin-flip scattering is predicted to freeze out below TK. This was not seen in the
experiment presented. Different magnetic impurities have different TK, some TK being
exponentially small. This may mask the quenching of the spin-flip dephasing rate. Recent
work addresses this issue [180].

Let us describe an experiment on the relaxation of the electron distribution function
[181]. The setup (Fig. 6.24(a)) consists of a 20 μm long metallic silver wire between
two reservoirs biased at voltage U , and a local probe electrode to which a voltage V is
applied. The probe was a tunnel junction (RT � 100 k�) in series with a rather resistive
(R � 1.5 k�) aluminum wire. The probing can be done in two ways. At small magnetic
field, the aluminum wire is in a superconducting state. At equilibrium (U = 0), the tunnel
differential conductance peaks sharply at V = ±�/e,� being the superconducting energy
gap. A two-step structure in the non-equilibrium wire results in four peaks: at ±�/e and
at U ±�. The actual electron distribution function is determined by the deconvolution of
the tunnel conductance.

This method does not work at higher magnetic fields >0.1 T since the superconduc-
tivity in the aluminum wire is destroyed. The alternative method exploits the dynamical
Coulomb-blockade effect (see Section 6.3), which is quite noticeable owing to the large
normal resistance of the aluminum wire. At equilibrium (U = 0), the dynamical Coulomb
blockade gives rise to a conductance dip at V = 0. For the two-step distribution, it gives
rise to two dips of approximately half the magnitude, at V = 0 and V = U (Fig. 6.24(b)).

Two samples of different purity (99.9999% and 99.999%) have been measured. The pure
sample (sample 2) showed a sharp two-step distribution function (Fig. 6.24(c)). This indi-
cated that the relaxation time was bigger than the dwell time td = L2/D � 20 ns in the
wire. The fit with the 1d relaxation rate, Eq. (6.145), was satisfactory. The impure sample
(sample 1) had the same resistance and dwell time. The contribution of voltage fluctua-
tions to the relaxation rate is therefore expected to be the same. However, the distribution
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�Fig. 6.24. Experiments on relaxation. (a) The probe junction in series with the aluminum resistor R is used
to measure the electron distribution in the silver wire biased with U. (b) The principle of the
measurement of the electron distribution function. The Coulomb-blockade singularity splits if a
sharp two-step structure is present. (c) The distributions measured in impure and pure samples.
The relaxation rate is enhanced by magnetic impurities. (d) Magnetic field has no visible effect on
the distribution in the pure sample, but sharpens it in the impure sample.

function in the impure sample was much more smooth: no obvious two-step structure
was observed. The attempt to fit the curve with Eq. (6.145) indicated a 20 times faster
relaxation rate.

A plausible source for the enhanced relaxation are the magnetic impurities present in
the impure sample. To check this hypothesis, the authors took measurements in a high
magnetic field. The traces of the differential conductance of the tunnel junction are pre-
sented in Fig. 6.24(d). The distribution function in the pure sample did not depend on the
magnetic field as expected for the relaxation due to voltage fluctuations. In contrast, the
distribution function has definitely sharpened in the impure sample. Indeed, the relaxation
rate due to magnetic impurities is expected to be reduced by the applied magnetic field.
In this case, there is a preferential direction for impurity spins. To flip the spin, the elec-
trons must give Zeeman energy EH = gμB B to it (EH = 0.18 meV at B = 1.5 T). This
energy must be provided by the voltage source, so one expects the reduction of the relax-
ation rate at eU < EH , as seen in the experiment. No significant reduction of the relaxation
rate has been observed at larger U = 0.3 mV. As far as detailed comparison with theory is
concerned, good fits require an order of magnitude larger concentration of magnetic impu-
rities than expected from material analysis of the samples and from the measurements of
dephasing. So the electron relaxation still presents puzzles and requires more experimental
and theoretical research, along with most of the topics of quantum transport covered in
the book.



A Appendix A Survival kit for advanced
quantum mechanics

A.1 Green’s function of the Schrödinger equation

The wave function of a particle, �(r, t) is determined from the Schrödinger equation. Its
absolute value squared gives the probability of finding a particle at point r at the time
moment t . A more informative quantity is the Green’s function of the Schrödinger equation,
given by G(r, t ; r′, t ′). Its absolute value squared gives the conditional probability: the prob-
ability of finding the particle at (r, t), provided it was at the point r′ at time moment t ′. The
Green’s function solves the time-dependent Schrödinger equation with the delta-function
source on the right-hand side as follows:

i�
∂G

∂t
− ĤrG = δ(t − t ′)δ(r− r′), (A.1)

where Ĥr is the Hamiltonian of the free particle (see Eq. (1.4)) at point r. Integrating
Eq. (A.1) from t = t ′ − 0 to t = t ′ + 0, we find

G(t = t ′ + 0)− G(t = t ′ − 0) = − i

�
δ(r− r′). (A.2)

The Green’s function experiences a jump at t = t ′. Two of the solutions are particularly
useful. The retarded Green’s function GR describes the evolution forwards in time. It
is only non-zero at t > t ′. Using the completeness of the basis ψn(r) of the stationary
Schrödinger equation, we obtain

GR(r, t ; r′, t ′) =
∑

n

∫ ∞
−∞

dω

2π
e−iω(t−t ′) ψn(r)ψ∗n (r′)

�ω − En + i0

= − i

�

∑
n

e−iEn (t−t ′)/�ψn(r)ψ∗n (r′)�(t − t ′), (A.3)

where En is the energy of the state described by the wavefunction ψn . Note that the inte-
grand of Eq. (A.3) is analytical in the upper half-plane of the complex variable ω; this
guarantees that the function is retarded. Similarly, the advanced Green’s function is the
solution of Eq. (A.1) which vanishes at t > t ′. It can be represented as the following
integral:

GA(r, t ; r′, t ′) =
∑

n

∫ ∞
−∞

dω

2π
e−iω(t−t ′) ψn(r)ψ∗n (r′)

�ω − En − i0
, (A.4)

and the integrand is analytical in the lower half-plane.



563 A.2 Second quantization
�

Equations (A.3) and (A.4) are convenient for a finite system with discrete quantum states
|n〉. For an infinite system, the Green’s functions must be expressed via scattering states
(see, for example, Ref. [182]).

It is convenient to view the Green’s function as a matrix in space-time. The unit matrix
is the delta-function, and the Green’s function is the inverse of the evolution operator
K̂ R,A = i�∂/∂t − Ĥr ± i0, where the upper and lower signs correspond to the retarded and
advanced Green’s functions, respectively. In matrix notation, K̂ R,AGR,A = 1, the operator
K̂ is a diagonal matrix given by

K̂ (r, t ; r′, t ′) ≡ K̂ (r, t)δ(r− r′)δ(t − t ′),

and the matrix product means the integration over the intermediate coordinate and time.
This relation facilitates writing down the perturbation series for the Green’s function.

If the Hamiltonian contains a weak perturbation V̂ , Ĥ = Ĥ0 + V̂ , the retarded Green’s
function of the perturbed system is given by

GR= (K̂ R)−1 = (K̂ R
0 − V̂ )−1 =

[
K̂ R

0

(
1− (K̂ R

0 )−1V̂
)]−1

=
(

1− (K̂ R
0 )−1V̂

)−1
(K̂ R

0 )−1 =
[
1+ GR

0 V̂ + GR
0 V̂ GR

0 V̂ + · · ·
]

G R
0

= GR
0 + GR

0 V̂ GR
0 + GR

0 V̂ GR
0 V̂ GR

0 + · · · , (A.5)

where K̂ R
0 = i�∂/∂t − Ĥr − i0 and G0 = K̂−1

0 . A similar relation holds for the advanced
Green’s function.

For practical applications of this scheme, one needs some advanced methods. The meth-
ods used in this book are explained in Section 2.3 (the Keldysh approach and semi-classical
methods) and in Section 4.4 (diffuson–cooperon expansion).

A.2 Second quantization

• Electrons are identical quantum-mechanical particles obeying Fermi statistics. The
wave function of several electrons is antisymmetric – it changes sign every time we
interchange two electrons.
• The Fock space is the space of all antisymmetric solutions of the Schrödinger equation,

containing solutions for N electrons with all possible N (including N = 0). An element
of the Fock state |n1, n2, . . . 〉 is labeled by the occupation numbers of the states 1, 2, . . . :
0 if the state is empty and 1 if it is occupied. A special element of the Fock state is a
vacuum, |0, 0, . . . 〉, when there are no particles in the system.
• The states of the Fock space can be obtained from the vacuum by application of a num-

ber of creation operators. The creation operator â†
i adds an electron into the state |i〉,

described by the wavefunction ψi (r), as follows:

â†
i |n1, . . . , ni−1, 0, ni+1, . . . 〉 = ± |n1, . . . , ni−1, 1, ni+1, . . . 〉 ,

â†
i |n1, . . . , ni−1, 1, ni+1, . . . 〉 = 0,

(A.6)
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where the sign is positive (negative) for an even (odd) number of particles in all the
states k with k < i .
• The conjugated annihilation operator âi takes an electron out of the same state:

âi |n1, . . . , ni−1, 1, ni+1, . . . 〉 = ± |n1, . . . , ni−1, 0, ni+1, . . . 〉 ,
âi |n1, . . . , ni−1, 0, ni+1, . . . 〉 = 0.

(A.7)

• Creation and annihilation operators obey the anticommutation rules:

[
â†

i , â j

]
+ ≡ â†

i â j + â j â
†
i = δi j ;

[
â†

i , â†
j

]
+ =

[
âi , â j

]
+ = 0. (A.8)

• The operator â†
i âi describes the number of electrons in state |i〉. The average of this

operator gives the average number of particles ni in the state |i〉.
• Any operator can be expressed in terms of the creation and annihilation operators. For

example, the Hamiltonian of non-interacting electrons has the form Ĥ =∑
i Ei â

†
i âi .

• Field operators create/annihilate a particle at a certain space point:

ψ̂(r) =
∑

i

ψi (r)âi ; ψ̂†(r) =
∑

i

ψ∗i (r)â†
i . (A.9)

The anticommutation rules for the field operators are given by[
ψ̂†(r), ψ̂(r′)

]
+ = δ(r− r′),

[
ψ̂†(r), ψ̂†(r′)

]
+ =

[
ψ̂(r), ψ̂(r′)

]
+ = 0. (A.10)

• The Hamiltonian is expressed in terms of the field operators as follows:

Ĥ =
∫

dr ψ̂†(r)

[
− �

2

2m
∇2 +U (r)

]
ψ̂(r)

+ 1

2

∫
dr dr′ ψ̂†(r)ψ̂†(r′)V (r− r′)ψ̂(r′)ψ̂(r),

where V is the electron–electron interaction.
• For bosons (phonons or photons), the many-body wavefunction is symmetric. The

creation and annihilation operators for bosons, defined as

b̂†
i |n1, . . . , ni , . . . 〉 =

√
ni + 1 |n1, . . . , ni + 1, . . . 〉 ,

b̂i |n1, . . . , ni , . . . 〉 = √ni |n1, . . . , ni − 1, . . . 〉 , (A.11)

obey the following commutation rules:

[
b̂i , b̂†

j

]
− ≡ b̂i b̂

†
j − b̂†

j b̂i = δi j ;
[
b̂†

i , b̂†
j

]
− =

[
b̂i , b̂ j

]
− = 0. (A.12)

• The field operators are defined in the same way as for fermions, and obey the commuta-
tion (rather than anticommutation) relations. All the operators are expressed via the field
operators in the same way as for the case of fermions.
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A.3 WKB approximation

• The WKB (Wentzel–Kramers–Brillouin), or semiclassical, approximation applies when
typical scales of the potential greatly exceed the wavelength of a particle.
• The wavefunction of an electron for one-dimensional motion in a smooth potential U (x)

is given by

ψ(x) = C√
p

exp

(
± i

�

∫
p dx

)
.

Here p(x) = √2m(E −U (x)) is the classical momentum of the electron. The ± signs
in the exponent must be chosen from the boundary conditions (wavefunctions do not
grow at infinity).
• If the electron performs a finite motion, the position of its energy levels are determined

by the Bohr–Sommerfeld quantization condition,∮
p dx = 2π�(n + 1/2), n = 0, 1, 2, . . . , (A.13)

where the integral is calculated over the period of the classical (finite) motion of the
electron.
• The semiclassical probability of transmission through a potential barrier is given by

T = exp

(
−2

�

∫
|p|dx

)
, (A.14)

where the integral is taken over the classically forbidden region – where the momentum
p is imaginary.



B Appendix B Survival kit for
superconductivity

This survival kit is intended to provide basic knowledge of superconductivity necessary for
understanding the material of the book. We recommend Refs. [41], [56], and [183] to the
reader who wishes to acquire a deeper understanding of superconductivity concepts.

B.1 Basic facts

• Below a certain temperature Tc (the superconducting transition temperature), the elec-
trical resistance of some metals vanishes. In particular, the most commonly used
superconductors are aluminum and niobium; alkali, noble, and magnetic metals never
become superconducting. The highest transition temperature found among pure metals
is about 9 K for niobium; among “usual” superconducting compounds it is 39 K for mag-
nesium diboride. There are compounds with even higher transition temperatures, of over
100 K, known as high-temperature superconductors. They possess unusual symmetries,
which lead to very uncommon physical properties. We do not consider them in this book.
• Superconductors are ideal diamagnets: weak magnetic fields do not penetrate the bulk

of superconductors (Meissner effect). A high magnetic field destroys superconductivity.
This critical field, Hc, can vary from 1 G (approximately 10−4 T) for tungsten to 1980 G
for niobium.
• There is a narrow layer at the boundary of the superconductor where an external mag-

netic field decreases exponentially to zero value in the bulk. The characteristic length of
this decay δp, known as the penetration depth, is temperature-dependent and diverges at
the transition temperature proportionally to (Tc − T )−1/2.
• The transition to the superconducting state is a second-order phase transition in zero

magnetic field. It may become a first-order phase transition in finite magnetic fields.
• In the superconducting state, the specific heat depends exponentially on the temperature,

C ∝ exp(−�/kBT ), kBT � �. At the transition point, the specific heat experiences a
jump.

B.2 Microscopic theory of superconductivity

The microscopic theory of superconductivity was independently proposed by Bogoliubov
and Bardeen, Cooper, and Schrieffer; it is commonly known as BSC theory, referring to
the latter three authors.
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• Conceptually, superconductivity is similar to superfluidity in helium-4: at low temper-
atures, liquid helium flows along capillaries without friction. Superconductivity can be
interpreted as superfluidity of Cooper pairs – pairs consisting of two electrons.
• To form a pair, or indeed a bound state, one needs a mechanism that provides attraction

between electrons – this attraction has to overcome the Coulomb repulsion. In met-
als, this attraction comes from the electron–phonon interaction. The phonon-mediated
attraction between electrons has the form of a local interaction, Ve−ph = −(2λ/ν)δ(r1 −
r2), where λ is the electron–phonon interaction constant. The attraction is effective only
at frequencies lower than the typical phonon frequency ωD. If this attraction compen-
sates for the Coulomb repulsion, the net interaction between the electrons is attractive,
and the metal undergoes a transition into a superconducting state at low temperatures.
• The ground state of two electrons with attraction is a bound state with energy E = −2�,

with

� = �ωD exp(−1/λ). (B.1)

This quantity has an extremely important role in the theory of superconductivity and is
known as the superconducting energy gap.
• The superconducting gap is related to the temperature Tc of the superconducting tran-

sition. The microscopic theory yields that, at zero temperature, � = 1.76kBTc. It is
temperature-dependent and vanishes at the transition temperature as (Tc − T )1/2.
• The order parameter characterizing the superconducting phase transition is a complex

number with the absolute value equal to the gap � and the phase ϕ. This is why the
superconducting phase transition can be regarded as spontaneous breaking of the gauge
invariance.
• In the ground state, a superconductor can support current – a supercurrent. Super-

current is non-dissipative and is related to the gradient of the superconducting phase,
j s = ens(vs − (e/mc)A), where ns and vs = (�/2m)∇ϕ are the superfluid density and
superfluid velocity, respectively, and A is the vector potential due to the external mag-
netic field. In the bulk of the superconductor, the supercurrent vanishes. If there is a
phase difference between two pieces of superconductor, there is a supercurrent flowing
between them – this is the Josephson effect; see Section 1.8.
• The excitation spectrum of a superconductor has the following form:

εp =
√
�2 + ξ2

p, (B.2)

where ξp are the excitation energies for quasiparticles (electrons and holes) in a normal
metal. There are no excitations with energy below�. In particular, if a superconductor is
brought into contact with a normal metal, electrons from the normal metal with energies
below � cannot penetrate the superconductor.
• The BCS density of states for the excitations has the following form:

νBCS(E) =
∑
p
δ
(

E −
√
�2 + ξ2

p
)
∝ θ (E −�)√

E −� . (B.3)

It vanishes inside the gap and diverges at E = �.
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• The size of a Cooper pair, estimated from the uncertainty relation as ξ ≡ δr ∼ �/δp ∼
�vF/�, for vF ∼ 106 m/s and �/kB ∼ Tc ∼ 10 K, becomes ξ ∼ 1 μm, which is much
bigger than the mean distance between electrons. Thus, one cannot imagine Cooper pairs
as rigid small ball-like structures. Instead, one may think of superconducting correlations
between electrons at the distance of the order of ξ – the superconducting correlation
length. For example, if a superconductor is brought into contact with a normal metal,
electrons at a distance ξ from the superconductor would still feel the correlations – this
is the proximity effect; see Section 2.8.
• The dimensionless ratio of penetration depth to correlation length κ = δp/ξ is respon-

sible for the behavior of the superconductor in a magnetic field. For κ < 1/
√

2 (Type I
superconductors), the energy of the interface between the superconductor and the nor-
mal metal is positive. In the opposite case, κ > 1/

√
2 (Type II superconductors), the

interface energy is negative.
• In Type II superconductors, the proliferation of normal metal pieces in a magnetic field

becomes energetically favorable. An external magnetic field in a huge range penetrates
the superconductor as narrow filaments – known as Abrikosov vortices. The superfluid
velocity circulates around the vortex core (of the size of ξ � δp). Each vortex carries
precisely one flux quantum 	0, this being a consequence of the fact that the phase shift
around a closed contour (in this case, drawn around a vortex) is a multiple integer of 2π .
The vortices usually form a triangular lattice.



C Appendix C Unit conversion

For nanostructures, appropriate units of energy are millivolts (meV) and appropriate units
for length are nanometers (nm). Below, we express other units and important scales in
terms of these two.

• Conversion between energy, frequency, and temperature.
We use the expressions eV = �ω = kBT .

meV THz K

1 meV 1 1.52 11.6
1 THz 0.66 1 7.61
1 K 0.086 0.13 1

• Electron charge and conductance quantum:
e2 = 1.44× 103 meV nm;
GQ ≡ e2/π� = 6.97× 105 m/s = 7.75× 10−5 S;
RQ ≡ G−1

Q = 12.9 k�.
• Fermi velocity, typical values:

for aluminum, vF = 2× 106 m/s; �vF = 1.3× 103 meV nm;
for a carbon nanotube, vF = 8× 105 m/s, �vF = 5.3× 102 meV nm.

• Capacitance: 1 aF = 10−18 F = 23.04 nm.
• Speed of light as conductance: c = 3.33× 10−2 S; vacuum impedance 4π/c = 377�.
• Electron mass:

free electrons, �
2/m = 755 meV/nm2;

Ga As, �
2/m = 1.13× 104 meV/nm2.

• Flux quantum: 	0 ≡ π�c/e = 2.07× 103 T nm2.
• Bohr magneton e�/2mc:

free electrons, 5.78× 10−2 meV/T;
GaAs, 0.86 meV/T.
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Andreev conductance, 101, 174, 200, 201, 204, 292

ballistic, 103
diffusive, 200
double junction, 180
tunnel junction, 103
two ballistic contacts, 181

Andreev reflection, 98–104
multiple, 109–112, 293
single connector, 204
two-electron tunneling, 292

arrays
Josephson arrays, 278–287
tunnel junction arrays, 220–223, 228, 248, 251,

253, 372
avoided crossing, 306, 307, 319

background charge, 217
BCS density of states, 197, 289, 290
beam splitter, 56, 57, 59, 61
Bell inequalities, 397
Bell parameter, 392, 393
billiard, 311, 312, 331
binomial distribution, 45, 46
BKT transition, 285–287
Bloch frequency, 276
Bloch sphere, 376, 377, 399
Boltzmann equation, 130–133, 137, 142, 143, 373
bosonization, 511
break junction, 112, 113
Breit–Wigner formula, 423
Brownian motion, 307, 332

canonical ensemble, 320–323
capacitance matrix, 217, 218, 278
capacitive response, 84
carbon nanotubes, 509, 510
chaotic cavity, 182, 325, 327
charge quantization, 211, 212, 215–217, 238, 270
charge qubits, 404, 427, 432, 433, 436
charge soliton, 221
charge-vortex duality, 212
charging energy, 211, 221

charge qubits, 432, 433
charging energy matrix, 217, 218, 221
Cooper-pair box, 266–268, 270, 271, 274
environment, 491, 493, 496, 519
flux qubits, 439
insulators, 372
isolated island, 213
Josephson arrays, 278, 279, 282, 283, 296
Josephson junction, 268
quantum dots, 411, 412, 415, 520, 534
RC-time, 216
SET, 224, 237, 243, 249, 253
single-electron box, 215
spin qubits, 445
tunnel junction arrays, 223
two islands, 219

circular ensembles, 308
COE, 308, 309, 325, 326, 329, 330
CSE, 308, 309, 325, 326
CUE, 308, 325, 326, 329, 330

CNOT gate, 378, 380, 404, 405, 445
co-tunneling current, 256–258, 293, 427
co-tunneling rate, 255, 258, 424, 427
coherent state, 474
coherent tunneling, 274, 275, 471
collision integral, 132
commutation relations, 268

charge and phase, 267, 268, 458
shifted oscillators, 473

conductance quantization, 22, 23, 115
conductance quantum, 21, 36, 38, 73, 114, 188, 216,

315, 365, 366, 493
connector, 155, 156, 171, 172, 184, 189,

517, 519
action, 165, 167, 172–175, 209, 348, 355
diffusive, 185
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finite-element separation, 166
full counting statistics, 207–210
leakage current, 167
matrix current, 164–168, 172–174, 176, 189, 348
quantum corrections, 348, 355, 357, 358
spin currents, 189–193
superconductivity, 196–200, 202–204
transmission distribution, 176–178, 184

continuous weak linear measurement, 538, 546
Cooper-pair box, 212, 265–267, 269–271, 295, 519

charge qubit, 432, 433
Cooper-pair tunneling, 494, 495, 497
cooperon, 316, 341–343, 345, 346, 352, 354–356,

358, 361–363, 551, 558
Coulomb blockade, 181, 211, 214, 231, 234, 237,

249, 264, 287, 293, 519, 555
carbon nanotubes, 510
double quantum dots, 428
environment, 488
escaping, 504, 505, 512
FCS, 233, 244
Josephson effect, 264, 265, 436
large conductances, 217, 513, 514, 517, 519, 520
many islands, 217, 220, 221, 223, 228, 230
memory cell, 245
parity effect, 289
quantum dots, 310, 407, 412, 414, 422
quasiparticles, 289
SET, 224–226, 237, 240, 241, 249, 250, 252, 258
single-electron box, 214, 215
turnstile, 246

Coulomb diamonds, 211
Coulomb shards, 228
NSN SET, 292
parity effect, 288
quantum dots, 412, 423, 424
SET, 226, 227, 238, 239

Coulomb gap, 372, 373
Coulomb oscillations, 211, 240
Coulomb shards, 228, 230, 246, 413
Coulomb staircase, 211, 240–242
counting statistics, see full counting statistics
current conservation

circuit theory, 155, 160, 162, 177, 178, 184, 195,
197, 200, 201

scattering theory, 51, 52, 58, 121, 129
superconductivity, 155

current copier, 253
CWLM, see continuous weak linear measurement

decoherence, 541
classical physics, 539, 540
diffusive conductors, 345–347, 350, 351, 358, 359,

361, 362, 500, 549–552, 554
quasiparticle leakage, 167, 194, 197
qubit, 381, 398, 433, 435, 438, 442, 446, 457, 485,

538, 542–546, 548

density matrix, 138
charge qubit, 413, 430, 431
entanglement, 389, 394, 396
environment, 464, 545, 548
equation of motion, 212, 296–298
extended, 139
phase qubit, 438
quantum state tomography, 405, 406
reduced, 394, 395
spin qubit, 452

density of states, 12, 17, 134, 136, 311
BCS, 197, 289, 290
Coulomb gap, 372, 373
insulators, 371
proximity effect, 196–198

dephasing, 538, 549, 551–556, 558, 560
classical, 539

depletion layer, 15, 16
diabatic manipulation, 403
diagram technique, 139, 337
diffusion coefficient, 134, 312, 332, 340, 452, 466,
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diffusive wires, 47, 48, 331, 555
diffuson, 316, 339–343, 345, 352, 354–356, 358, 362,

363, 557
discrete levels, 309, 310, 319, 406, 409, 415, 439
disorder, 29, 30, 35–37, 127, 128, 171

background charges, 223
diagram technique, 338, 339
interference, 360, 363
localization, 365, 366, 368, 369, 371
persistent currents, 319–321
quantum dots, 312, 313, 315
spin qubit, 452
2DEG, 15
white noise, 132, 143

distribution function
Boltzmann equation, 130–133
DMPK equation, 331–335
double junction, 157, 170
Eilenberger equation, 147
equilibrium, 7
FCS, 42, 58
level spacings, 301, 303
one-dimensional, 135, 136, 560, 561
Poisson kernel, 325, 327
Porter–Thomas, 305
reservoirs, 19, 33, 51, 168, 415, 488
spin currents, 190

distribution of transmission eigenvalues, 35, 36, 124,
172, 174, 175, 180, 326, 327, 336

DMPK equation, 331, 333–335, 358, 363, 364, 367,
368

doping, 14, 279
double quantum dots, 428
drift-diffusion equation, 133–135, 137, 144, 548
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dynamical phase, 66, 67, 71, 73, 75, 76

effective temperature, 159, 302, 307, 557
Eilenberger equation, 142–144

supercurrent, 147, 148, 152
Einstein relation, 134
elastic co-tunneling

quantum dots, 423–425
SET, 251, 252, 263, 291, 506

electron–electron interaction, 48, 213, 407, 410, 415,
457, 487

electron–phonon interaction, 552
entanglement, 387, 393–396, 433, 531
environment, 457, 471

classification, 479
decoherence, 381
fermionic, 523, 524
Josephson junction, 277, 293, 494–499
ohmic, 479, 480, 483–486, 498, 528, 545, 556
quantum dots, 411, 415
qubit relaxation, 447, 471, 483, 538, 542–544
single-mode, 489
spin-boson, 471, 472, 475
subohmic, 480, 545, 555
superohmic, 481, 484, 492
transition rate, 477, 478
tunneling, 487–489, 499, 500, 508, 513

EPR quantum key distribution, 390
exchange field, 114, 116, 118, 119, 122, 151
exchange interaction, 116, 445, 451, 453, 454, 456,

532
excitons, 220, 252, 253

Fano factor, 47, 93, 174, 180, 187, 208, 209, 331, 516,
520

FCS, see full counting statistics
Fermi edge singularity, 523, 524, 535
ferromagnet, 116, 121, 187–189
filling factor, see distribution function
finite-element approach, 157
fluctuation-dissipation theorem, 47, 61, 92, 547
Fokker–Planck equation, 307, 332
friction, 470–472, 539
Friedel sum rule, 94, 533, 537
full counting statistics, 41, 58, 89, 97, 168, 170, 173,

174, 516
Coulomb blockade, 233, 243
density matrix, 297
Keldysh formalism, 139, 143
multi-terminal, 205
third cumulant, 46, 48, 49, 244

gauge-invariant phase, 66, 282
Gaussian ensembles, 300, 307–309

GOE, 300, 301, 303, 314, 316, 323

GSE, 300, 302, 303, 314, 316
GUE, 300–304, 307, 314, 316, 323

giant magnetoresistance, 187
Green’s function

circuit theory, 163–165, 167–171, 191, 195, 197,
198, 201, 205, 206, 209

diffuson, 339, 343
Keldysh, 138, 140, 141
non-crossing approximation, 337–339
semiclassical, 137, 141, 142, 144–153, 161, 163,

168

Hadamard gate, 382, 388, 390
hopping conduction, 368

impedance, 465, 468
Bloch oscillations, 276
effective impedance, 500, 502, 504–506, 508,

510–513, 518
large frequencies, 467
Luttinger model, 469, 470, 509
metals, 466
ohmic, 490
RC-line, 491, 492
single-mode, 489
tunneling, 489
voltage correlations, 467

incoherent tunneling, 274, 499
inductive response, 84, 467
inelastic co-tunneling

NSN SET, 290
quantum dots, 413, 426
SET, 251
SSS SET, 293

Josephson effect, 105, 107, 108, 211, 212, 264, 265,
269

Josephson frequency, 108, 112, 276, 293, 497
Josephson junction, 106, 212, 265, 267, 268

charge qubits, 432
current-biased, 266, 270, 274
environment, 494–499
flux qubits, 439, 441
phase qubits, 436

Keldysh approach, 138, 139
Keldysh contour, 138, 139
Kondo effect, 457, 523, 529, 531, 532, 534–538
Kubo formula, 464, 547

Landauer formula, 21, 24, 34, 38, 41, 45, 46, 83, 94,
121, 125, 126, 173, 315, 328, 423

multi-terminal, 50, 51, 55
Laplace equations, 134, 155, 156
leakage currents, 159, 162, 167, 168, 172, 175, 198,

199
level correlation function, 314, 315, 317, 322
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level statistics, 309, 311, 313–315, 320, 322, 323
Levitov formula, 43, 44, 46, 58, 59, 103, 168, 173,

174, 205, 209, 244
localization length, 364, 365, 367, 370, 371
Luttinger liquid, 470, 506, 509–511, 513, 515
Luttinger model, 469, 470, 506, 508
Lyapunov exponent, 312

macroscopic quantum tunneling, 212, 274, 277, 436
magnetic impurity, 532, 534, 554
magnetopolarizability, 321–323
master equation, 231, 232, 297

FCS, 233
quantum dots, 413, 416, 418, 419, 427
qubit, 545
two states, 238, 261

matrix current, 144, 145, 151, 159, 161–164, 166,
175, 195, 196, 201

matrix voltage, see Green’s function
maximally entangled state, 389–395, 532
mean free path, 84, 133, 320, 334, 339, 363

diffusion, 133, 135, 144, 145, 147, 151, 167, 193,
313, 340, 341, 343, 357, 469

localization, 363, 367
relaxation, 555

mean level spacing, 213, 311, 313–315, 344, 366,
367, 428, 520

memory cell, 237, 245, 246, 248, 250, 471, 482
mini-gap, 198
Mott’s law, 371, 373

noise
colored, 551
Nyquist–Johnson, 47
quantum, 90–93
shot, 47, 174, 326, 331, 516
voltage fluctuations, 496–498, 520, 521, 549,

553–556, 558, 560, 561
white, 484, 539, 544, 556, 558

NSN SET, 290, 291, 294
nuclear spin, 452, 453, 455

offset charge, 218, 248
optimal fluctuation, 368
orthogonality catastrophe, 457, 475, 478, 479, 527

pair correlation function, 303
parametric statistics, 305–307
parity effect, 212, 287–289
parity tunneling, 291, 292, 294
percolation, 371, 372
Perron–Frobenius operator, 312, 315, 317
persistent current, 106, 318–323
phase diffusion, 484, 545
phase qubits, 436, 439
phase shifts

Aharonov–Bohm, 65, 66, 71, 114, 282

averaging, 126–128, 176, 205
combining scattering matrices, 76
distribution, 179
double junction, 126
dynamical, 64, 65, 78
environment, 457
interference, 71, 264, 360, 533
qubit operations, 383, 403, 404

phase slips, 499
photon-assisted tunneling, 88, 93, 401
plasmon, 272, 274, 276, 277, 467, 470, 497
Poisson distribution, 44, 46–48, 311, 314, 474, 490
Poisson kernel, 325
Porter–Thomas distribution, 305
proximity effect, 196, 197, 202
pseudorate, 297, 298

QPC, see quantum point contact
quantronium, 433–435, 441
quantum computer, 374, 375, 378, 380, 381, 406, 407,

445, 446
quantum dots

chaotic, 312, 313, 315
discrete levels, 214, 309, 310, 313, 406
disordered, 312, 317
elastic co-tunneling, 423, 425, 426
interactions, 409, 412
Kondo effect, 534, 537
large conductances, 520
single-electron tunneling, 412, 420
single-photon source, 397
spin qubit, 445, 446, 452

quantum information, 381, 386–388, 390, 396, 397,
546

quantum non-demolition measurement, 441, 549
quantum phase transition, 278, 279, 284
quantum point contact, 17, 21, 23, 55

connector, 174, 180
detector, 429, 446
kinetic inductance, 84
non-ideal, 357
spin filter, 115
supercurrent, 106

quantum search, 381, 384–386
quantum state tomography, 405, 406
quantum teleportation, 387–390, 396, 397
quasicharge, 270, 275, 276
quasiparticle poisoning, 292

Rabi oscillations, 401, 435, 454, 455
Ramsey sequence, 402
random matrix, 194, 299

Hermitian, 300–302, 305, 306, 313, 314, 316
unitary, 308, 324, 325, 351
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read-out, 380–382, 384, 387, 388, 430
charge qubit, 431, 432, 434, 435
flux qubit, 440, 441, 443
phase qubit, 436–438
spin qubit, 446, 447, 449–451, 456

reduced density matrix, 389
reflection coefficient, 10, 35, 93, 103, 332
reflection matrix, 32, 119, 395
relaxation, 457, 541, 561

classical physics, 539, 540
electrons, 549, 550, 552–556, 558, 560, 561
quantum dots, 414–416, 418–420, 427
qubit, 441, 442, 538, 542, 543, 545, 546

renormalization technique, 485, 486, 496, 514–520,
526, 527, 530, 532, 536

resonant manipulation, 399, 400, 402, 403, 435, 444
resonant pair tunneling, 294
resonant tunneling, 68, 69, 181, 244, 407, 413, 422,

425, 426, 517, 537
rotating wave approximation, 399
rotation by pulse, 399

scaling, 365, 367, 484–486
scattering matrix

combining scattering matrices, 76, 78
scatterers connected to a node, 80
spin, 118

scattering rate, 132, 533, 552
Schmid transition, 481, 499, 528
self-averaging, 126–128, 154, 171, 176, 365, 368
shake-up, 457, 473–475, 477, 478, 495
side bands, 86–88
single-electron pump, 247, 248
single-electron tunneling

environment, 487, 488
quantum dots, 413, 427
SET, 212, 246, 250, 258, 260–262

spectral rigidity, 305
spin accumulation, 120–122, 169, 189–193
spin blockade, 450, 451, 454
spin current, 120–122, 189, 192
spin echo, 402, 403, 456
spin filter, 115
spin qubit, 450
spin relaxation, 188, 190, 192, 193, 446–450, 452,

453, 533
spin singlet, 396, 410, 450, 451, 532
spin triplet, 410
spin-boson model, 471–473, 481, 485, 487, 488, 524,

542
spin-flip, 120, 453, 536, 554
spin-orbit interaction, 114, 117, 346, 447

cooperon, 315, 316, 340, 341
decoherence, 123, 190, 345, 359, 549, 553
random matrix, 300, 314, 316
scattering matrix, 118, 119

SQUID, 107, 108, 320, 437, 444

SSS SET, 293, 294
strong localization, 299, 363, 555, 556
subgap structure, 110
supercurrent, 106–108, 146, 147, 150, 151, 153–155,

204, 293, 294, 434, 495, 496
SWAP gate, 382, 383, 445

thermometer, 240
Thouless energy, 197, 315–317, 321, 347, 350, 362,

367, 550
Tien–Gordon effect, 85, 88, 89
Toffoli gate, 379, 380
transfer matrix, 78–80, 331
transmission coefficient, 10, 11, 18, 23, 24, 35, 53, 67,

68, 111, 136, 178, 446, 520
transmission matrix, 32, 37, 78, 79
transport spectroscopy, 413, 421, 422, 426
tunneling Hamiltonian, 235, 236, 253, 255, 295, 500
tunneling rates

connector, 87
quantum dots, 414–416, 419, 448, 449
SET, 224, 233–235, 249, 261

turnstile, 237, 246–248, 251
two-dimensional electron gas, 14, 15, 117
two-electron tunneling, 292

unitary mixer, 127, 128, 171
universal conductance fluctuations, 70, 71, 74, 330,

337
Usadel equation, 144–146, 172, 174, 183, 198

discretization, 166–168
leakage currents, 161, 162, 197
supercurrent, 151, 154

variable range hopping, 371
variational principle, 164, 165, 175, 209
voltage probe, 52–54, 199, 550
von Neumann entropy, 394
vortex, 212, 282–287

vortex–antivortex pairs, 286

weak antilocalization, 123
weak localization

Aharonov–Bohm effect, 71, 74
chaotic cavities, 326, 327, 329
dephasing, 551, 552, 558
diffusive conductors, 336, 337, 342, 345, 347–351,

354–362
DMPK equation, 331, 335

Wiedemann–Franz law, 136
Wigner lattice, 222
Wigner representation, 141
Wigner–Dyson distribution, 303

Zeeman splitting, 114–117, 151, 314, 315, 319, 410,
452

Zener tunneling, 404
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