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Preface

Semiconductor nanostructures occupy an intermediate position between bulk materials

and molecules and provide ample opportunities to discover unexpected phenomena and

to reveal new physical aspects. The discrete energy spectra of electrons, holes and

excitons due to the quantum confinement lead to the suppression of relaxation processes

that dominate in bulk materials, resulting in reduced homogeneous linewidth of relevant

transitions. The quantum confinement leads also to the relatively large oscillator strength

of the excitonic transitions. The wavefunction is extended coherently over a nanostructure

and all the atomic transition dipole moments within the wavefunction are added up

coherently. It is well-known that the Sommerfeld factor which represents the relative

importance of the continuum (unbound) exciton states is monotonically decreasing with

reducing the dimensionality of the system. Thus the discrete exciton states play the

essential role in the optical properties of semiconductor nanostructures. Thus we have

sharp optical transitions with large oscillator strength. This is the physical basis of the

recent remarkable progress in the linear and nonlinear optical spectroscopies of

semiconductor quantum dots.

Semiconductor nanostructures are attracting much interest as the most promising

device to implement the quantum information processing and the quantum computation.

The quantum coherence in nanostructures can be most elegantly manipulated by optical

means. Thus the excitons and multi-excitons in semiconductor nanostructures are the

most elementary objects in the quantum state control. Great progress has been made in

the last decade in the research of optical properties, relaxation and decoherence processes

in nanostructures. At the same time, the electron spin or the nuclear spin in semiconductors

is very promising to manipulate the quantum coherence due to their long coherence

times. The electron spin is reflected in the exciton polarization properties. The hyperfine

interaction between the electron spin and the nuclear spin would be enhanced due to the

quantum confinement of the electron wavefunction. Many interesting phenomena related

to this interaction have been discovered recently.

In addition to the enhanced exciton effect, the Coulomb interaction in semiconductor

nanostructures leads to strong correlation among electrons and holes. Recently, it has

been revealed that many-body interactions among carriers have specific spectral and

temporal signatures in nonlinear optical responses. As a consequence, new ultrafast



spectroscopic techniques combined with microscopic many-body theory have brought

dramatic progress in the study of many-body Coulomb interactions both in bulk and in

quantum confined structures. In particular, the role of Coulomb correlation among more

than two particles has been beautifully revealed in the last several years.

Another recent highlight in the nanostructure optics is the physics of microcavity

polariton. The striking aspect is the tunability of the exciton-photon coupling strength

from the weak perturbative regime to the strong normal mode coupling regime. Recent

experiments have revealed many interesting aspects of the nonlinear optical processes

associated with microcavity polaritons. Especially, the composite nanocrystal-microcavity

system is promising to realize the entangled states among several nanocrystals through

the whispering gallery modes in the strong coupling regime. Such an entangled state is

an indispensable step toward the quantum information processing. On the other hand, in

the weak or intermediate coupling regime of the light-matter interaction, there appears

an interesting feature in the resonant secondary emission, e.g. the coexistence of the

coherent part (Rayleigh scattering) and the incoherent part (photoluminescence) and the

interplay of disorder and polaritonic effects.

Last but not least, there is a fundamental interest in the ultrafast coherent phenomena

both in bulk semiconductors and in semiconductor nanostructures. The coherent nonlinear

pulse propagation and the carrier-wave Rabi flopping have been observed successfully

in the case of extremely strong pulse intensities. These studies have revealed a new

paradigm of the coherent light-matter interaction. Fundamentally new high-field effects

in semiconductor nanostructures have been predicted and are now being tested

experimentally.

The understanding of fundamental physics aspects of the optical coherence and

the spin coherence is now being revolutionized. This revolutional progress would bring

about breakthroughs in the field of the quantum information processing. In view of

these rapidly growing fields of research, we believe that it is timely to publish a book

which surveys the present status of our understanding of the quantum coherence, correlation

and decoherence in semiconductor nanostructures, putting emphasis on the basic physics

aspects.

Kyoto, Japan T. Takagahara

October 2002
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Chapter 1
Coherent nonlinear pulse propagation on a free-exciton

resonance in a semiconductor*

N.C. Nielsen, S. Linden, and J. Kuhl

Max-Planck-Institut für Festkörperforschung, D-70569 Stuttgart, Germany

J. Förstner and A. Knorr

Institut für Theoretische Physik, Technische Universität Berlin, D-10623 Berlin, Germany

S.W. Koch and H. Giessen

Department of Physics and Material Sciences Center, Philipps-Universität,
D-35032 Marburg, Germany

Abstract

The coherent exciton-light coupling in pulse propagation experiments on
the A-exciton resonance in bulk CdSe is investigated over a broad intensity
range. At low light intensities, polariton propagation beats due to interference
between excited states on both polariton branches are observed. In an
intermediate intensity regime, the temporal polariton beating is suppressed
in consequence of exciton–exciton interaction. At the highest light intensities,
self-induced transmission and multiple pulse breakup are identified as a
signature for carrier density Rabi flopping. Exciton–phonon scattering is
shown to gradually eliminate coherent nonlinear propagation effects due to
enhanced dephasing of the excitonic polarization. Calculations using the
semiconductor Maxwell–Bloch equations are in qualitative agreement with
the experimental data.

1.1 Introduction

The investigation of pulse propagation through opaque materials is of great importance

for the understanding of coherent nonlinear light–matter interaction. While the associated

*This article was originally published in Physical Review B 64, 245202 (2001). © American Physical
Society 2001. Reprinted with permission.

Quantum Coherence, Correlation and Decoherence in
Semiconductor Nanostructures
T. Takagahara (Ed.)
Copyright © 2001 American Physical Society. All rights reserved.
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optical effects are well established in atomic and molecular vapors – which can be

modeled by noninteracting two-level systems [1,2] – the situation is substantially modified

in semiconductors due to the Coulomb interaction between optically generated electron–

hole excitations [3–5]. However, many of the familiar coherent transient two-level

phenomena such as free induction decay, photon echo, and Rabi flopping have been

rediscovered in semiconductors [3,4,6]. For bound excitons in CdS, which are well

approximated by noninteracting two-level systems, even the appearance of self-induced

transparency (SIT) has been detected several years ago [7]. On the other hand, spatial

dispersion [8] and excitation-induced nonlinearities of the free-exciton resonance [6]

give rise to striking differences of the optical response in semiconductors when compared

with idealized two-level systems. In particular, numerical studies of pulse propagation

in semiconductors came to the conclusion that these many-body effects may prevent the

establishment of complete SIT on free-exciton resonances in condensed matter [9].

Only within simplified model systems can the phenomenon of excitonic SIT in resonantly

excited semiconductors be investigated analytically [10]. Nevertheless, Rabi flopping

of the carrier density, coherent long-distance propagation, and a high degree of transmission

have been predicted [11,12]. This so-called self-induced transmission regime was recently

discovered on the free-exciton resonance in CdSe [13].

In this chapter, we present a comprehensive analysis of subpicosecond pulse

propagation on the A-exciton resonance of CdSe. Our work clearly identifies coherent

exciton–light coupling over a broad intensity range and permits comparison with numerical

calculations based on the semiconductor Maxwell–Bloch equations. The increase of the

signal-to-noise ratio by approximately one order of magnitude as compared to the data

of Ref. 13 reveals interesting novel features of coherent light–matter interaction. In

particular, we were able to determine the pulse delay and the effective propagation

velocity in dependence on the pulse intensity and to measure the increasing suppression

of coherent nonlinear pulse propagation in the presence of phase-destroying exciton-

phonon scattering.

1.2 Theoretical background

In this section, we summarize known facts on pulse propagation in semiconductor bulk

material and outline their theoretical description. The transition from linear to nonlinear

optical phenomena around the band edge of a semiconductor occurs if the density of

optically generated excitons is large enough to allow interaction processes between

them.
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At low light intensities, the interaction between the optically generated excitons

can be neglected. In this case, the exciton–light system forms new quasiparticles, so-

called exciton-polaritons [14]. The exciton–radiation coupling causes an anticrossing

between the dispersion relations of the exciton and light, thus splitting the polariton

dispersion into an upper and a lower branch. If the frequency spectrum of a resonant

short pulse coherently excites a broad range of modes on both branches, the interference

of the excited polaritons at the end of the sample results in the formation of a pulse tail

whose shape exhibits a pronounced nonperiodic temporal beating. Several periods of

this polariton beating have been observed experimentally and proved excellent agreement

with linear dispersion theory for the excitonic resonance [15]. However, at increased

pulse intensities, the polariton beating is found to be suppressed due to incoherent

exciton–exciton interaction which yields dephasing of the excitonic polarization.

Experimentally, this suppression can be realized via a faster decay of the propagated

pulse tail as well as a reduction of the beat modulation depth [16]. Upon further increase

of the intensity, a new type of propagation-induced pulse shape oscillations occurs.

These oscillations are due to Rabi flopping of the carrier density. The corresponding

temporally interchanging absorption and gain during a full flopping period cause

modulations on the initial pulse shape [13].

To describe the pulse shape modulations over the whole intensity regime, the

transition between the linear and the nonlinear optical response must be treated theoretically.

This can be done by using material equations that describe the temporal and spatial

evolution of the material polarization and adding a wave equation for the calculation of

the optical field. While the dynamics of the optical field can be calculated within the full

wave [17] or the reduced wave equation [9,18], the corresponding polarization, which

acts as a source term in the wave equation, is calculated by the semiconductor Bloch

equations [3,4]. The semiconductor Bloch equations have been developed on different

levels of complexity for the interaction of optically excited electron–hole pairs. They

contain mean-field effects and correlations in the second-order Born approximation

(SOBA) (Refs 19–27) or in the coherent dynamics-controlled truncation scheme (DCTS)

[28–30]. A description of the related quantum kinetic phenomena can be found in

Ref. 4.

The DCTS is typically used in the weakly nonlinear intensity range to describe

coherent phenomena, especially bound states, whereas the SOBA can be applied to a

broad intensity range including the description of optical gain and Rabi flopping, at the

expense of higher-order correlations such as biexcitons. Here, we use both techniques

where they are appropriate in the description of pulse propagation phenomena. One

should note that the overlap between both sets of equations occurs in the low-density
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regime, if higher-order correlation functions are neglected in the DCTS and the low-

density limit is applied to the SOBA.

In the following we discuss the similarities and the differences of two-level systems

and semiconductors more formally in terms of the corresponding equations of motion

(compare Refs 1–3). The reduced wave equation (∂/∂z) Ω(t, z) = –i βP(t, z) [9] is used

for the description of the field envelope E in the form of the Rabi frequency Ω(t, z) =

(d/h) E(t, z) (d is the dipole moment). The source of the field is the polarization envelope

P and β is a constant determined by material properties such as dipole moments and the

refractive index. P is given by the off-diagonal density matrix element σ21 in the case

of a two-level system P = n0d σ21, where n0 is the number density, and by all wave

number transitions Pk in the case of a semiconductor P = (d/V) Σk Pk, where V is the

sample volume. In the case of linear optics, σ21 is determined by a simple oscillator

equation: σ̇ Δσ Ω21 21
1
2 =  +  i i  (Δ is the detuning). For semiconductors in the same

limit, the equations for Pk can be diagonalized within the exciton basis to a similar form,

where all exciton states λ contribute: Ṗλ  = iΔλ(z)Pλ + iΩλ. Restricting to the basic

excitonic state λ = 1s, the material equations are formally identical, despite the fact that

the dispersion Δ1s(z) of the 1s exciton has to be taken into account. Thus, in the case of

linear optics, the material equations for two-level systems and excitons are formally

similar and their coupling to the wave equation yields the discussed dispersion anticrossing

of two oscillators. Despite modifications due to spatial dispersion in a semiconductor,

both the two-level and semiconductor dynamics contain the temporal beating in the

pulse tail described above [31].

In the case of nonlinear optics of two-level systems, the only relevant nonlinearity

is the Pauli-blocking nonlinearity σ̇ 21 |nl  = –iΩσ22, where σ22 is the transient occupation

of the upper level. Without additional dephasing terms, the wave equation and the

density matrix σ describe the vanishing polariton beating and the formation of pulse

breakup due to Rabi flopping in two-level systems. Here, Rabi flopping is the transient

oscillation of σ22 between occupation zero and one: σ22(t) = sin2[Θ(t)/2]. The pulse area

Θ(t, z) is defined by the temporal integral over the Rabi frequency Ω(t, z): Θ(t, z) =

–

( , )
∞∫ ′ ′

t

t z dtΩ  = (d/h)
–

( , )
∞∫ ′ ′

t

E t z dt . The process of Rabi oscillation of the density

leads to a temporal interplay of absorption and amplification for pulses having an area

larger than or equal to 2π (high-intensity regime). In view of this, the coherent propagation

of a resonant light pulse in a noninteracting two-level system is determined by the area

theorem of McCall and Hahn [32,33]. According to the area theorem, a light pulse with

area Θ = 2π and hyperbolic secant envelope exhibits lossless soliton propagation on the

resonance (SIT) due to an exact cancellation of the absorption and amplification process
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(one complete Rabi flop). For input areas larger than 3π, repeated Rabi oscillations

cause pulse breakup into separate pulses with area of 2π. SIT and multiple pulse breakup

were pioneered in atomic vapor about 30 years ago and have been thoroughly investigated

in the 1970’s [34–36].

Concerning the nonlinear optics of free excitons in a semiconductor, many-body

effects have to be taken into account, which can be divided into mean-field and correlation

effects. Mean-field effects consist not only of the Pauli-blocking contributions, but yield

for the semiconductor coherent Coulomb renormalizations of the field as well as of the

single-particle energies. For instance, the field renormalization is given by the Coulomb-

mediated emission of all wave number transitions hΩk = 1
2 dE + Σq V|k–q|Pq, where Ωk

is the generalized Rabi frequency and Vk is the Coulomb interaction. For subpicosecond

to picosecond pulses in semiconductors such as CdSe or GaAs, this field correction

almost doubles the Rabi frequency compared to two-level systems [11,12]. As opposed

to a noninteracting two-level system, one would therefore expect almost twice as many

Rabi oscillations of the carrier density for a given pulse area. However, it must be noted

that the number of Rabi flops for a 2π pulse in a semiconductor (yielding always one

complete Rabi flop in a two-level system) varies as a function of the ratio of exciton

binding energy and peak Rabi frequency [37] and care has to be taken in the interpretation

of experiments. Numerical investigations of the corresponding semiconductor Bloch

equations in mean-field approximation for the polarization coupled to Maxwell’s wave

equation for the propagating light field demonstrated Rabi flopping, coherent long-

distance propagation, and a high degree of transmission already for pulse areas larger

than π [9,11,12]. Lossless propagation – as in the case of SIT in two-level systems –

was, however, excluded, even under idealized conditions where only mean-field effects

are taken into account.

The next step of sophistication in treating the semiconductor material equations

arises at the level where correlation effects are included. In principle, these effects

cannot be neglected in nonlinear optics because they compensate some of the mean-

field effects [19–27,38], especially energy shifts in stationary spectra. Using the SOBA,

it can be recognized that within the course of time the correlations drive the system into

a quasiequilibrium by carrier–carrier scattering and excitation-induced dephasing of the

macroscopic polarization. For instance, in the weakly nonlinear regime and for a single

circularly polarized pulse, the coupling of the one-exciton states to the free two-exciton

continuum yields optical dephasing. At high densities, correlation effects reduce the

coherent interaction effects such as exciton–polariton formation and Rabi oscillations.

However, several experiments and theories have shown that coherent mean-field effects

dominate the incoherent effects due to carrier-carrier scattering on sufficiently short
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time scales (compare the recent Ref. 39). As complete Rabi oscillations and SIT seem

not to be possible in semiconductors, the associated pulse propagation phenomena are

referred to as self-induced transmission [13].

1.3 Samples and experimental techniques

The experiments were performed on two CdSe bulk crystals grown by hot-wall epitaxy

on transparent BaF2 substrates [40]. We used an optically thin sample with Beer absorption

length αL = 1.7 to study propagation effects in the linear and the weakly nonlinear

regime and an optically thick sample with αL = 6.5 to investigate the characteristics of

high-intensity coherent nonlinear transmission. The c axis of CdSe was oriented

perpendicularly to the substrate. Thus, both the intrinsic A- and B-exciton resonances

could be excited with linearly polarized light normally incident to the samples (E ⊥ c).

Figures 1.1(a) and 1.1(b) show the corresponding linear absorption spectra at T = 8 K.

The thin CdSe sample exhibits a well-defined A-exciton resonance at λA = 684.6 nm

with a full width at half maximum of approximately 3 nm. The large A-exciton binding

energy Ex = 22.5 meV (offset between A exciton and continuum) implies a large transition

dipole moment and only weak interaction with the continuum states. The pronounced

Fig. 1.1(a), (b) Linear absorption spectra of the two CdSe samples at T = 8 K. (a) Thin sample:

αL = 1.7 at λA = 684.6 nm. (b) Thick sample: α L = 6.5 at λA = 683.8 nm. (c) Experimental setup

using 60–70 fs pulses tunable around 684 nm from an optical parametric amplifier (OPA). The

propagated pulses are time-resolved by cross correlation in a 2 mm thick β-barium-borate (BBO)

crystal and detected with a photomultiplier tube (PMT). [From N.C. Nielsen et al., Phys. Rev. B

64, 245202 (2001).]
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splitting of 72 meV between the A and B excitons can be attributed to strain in the CdSe

layer due to lattice mismatch with the BaF2 substrate and thermal expansion during the

growth process [41]. In the thick sample, however, strain relaxation prevented the

occurrence of increased A-B exciton splitting. Additionally, the A-exciton resonance,

situated at λA = 683.8 nm, shows substantial inhomogeneous broadening.

Figure 1.1(c) illustrates the experimental setup. We used 60–70 fs pulses tunable

around 684 nm with pulse energies of about 90 nJ from an optical parametric amplifier

(OPA) (Ref. 42) pumped by a regenerative Ti:sapphire amplifier (COHERENT REGA)

at a repetition rate of 200 kHz. Careful alignment of a prism compressor [43] made sure

that the pulses were almost chirp-free, which was essential for the subsequent propagation

experiment. The experimental configuration involves splitting of the linearly polarized

OPA output into two portions: One part (67%) was additionally attenuated and focused

with a f = 25 mm microscope objective (Ealing, NA = 0.15) onto the CdSe samples in

a cold finger cryostat (T = 8 K), while the second part (33%) passed through a variable

delay line. We determined the spot size on the sample via knife-edge test and assumed

an uncertainty of 20%. A first part of the transmitted pulses was spectrally recorded and

a second part time-resolved by cross correlation with output pulses from the OPA in a

2 mm thick β-barium-borate (BBO) crystal cut for type I phase matching. The intensity

cross-correlation signal may be written as

I I t I t dtsig
–

trans del( )  ( ) (  – ) ,τ τ∝
∞

∞

∫ (1.1)

where Itrans(t) and Idel(t) are the temporal profiles of the transmitted and the delayed

pulses, and τ is the pulse delay. A fast-scan sampling technique was adopted to measure

the cross-correlation signals: By means of the discrete translation of a stepper, we could

calibrate the oscillation of a shaker, which in turn periodically modulated the pulse

delay at a frequency of 70 Hz [44]. Thus, we achieved a high signal-to-noise ratio due

to short measurement cycles and averaging over many (up to 4000) scans. Careful

spectral and spatial filtering of the signal was found to be indispensable for the propagation

experiment. Insertion of narrow bandpass filters (IF filters) before the cryostat adjusted

the broad spectrum of the ultrashort OPA pulses to the A-exciton resonance of the CdSe

samples. Thereby, the incident pulses were stretched up to 220 fs for 3 nm bandwidth

and 800 fs for 1 nm bandwidth with roughly Lorentzian spectral shape. The theoretical

assumption of spatially homogeneous wave fronts was approximated by imaging the

transmitted beam onto a pinhole, cutting out a region of constant intensity.
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1.4 Results and discussion

In this section, the transition from linear to nonlinear pulse propagation on the free-

exciton resonance is discussed. Within this transition, two basic nonlinear effects are

observed: the exciton–exciton interaction induced damping of the temporal polariton

beating and the Rabi flopping related occurrence of temporal pulse breakup.

Excitation-induced suppression of temporal polariton beating

Figure 1.2(a) shows the experimental results of the propagation of 220 fs pulses resonantly

tuned to the A-exciton resonance of the thin CdSe sample with αL = 1.7 at T = 8 K. The

left column illustrates the temporal cross-correlation traces of the transmitted pulses,

whereas the right column shows the corresponding transmitted spectra behind the sample.

The lowest traces characterize the input pulse as measured after propagation through the

substrate alone. For producing the input pulse, we made use of a spectral filter with

3 nm bandwidth to ensure that both branches of the polariton dispersion were coherently

Fig. 1.2(a) Propagation of 220 fs pulses through the thin CdSe sample with αL = 1.7 for increasing

intensities I. λ = 684.6 nm, I0 = 0.06 MW/cm2, and T = 8 K. The normalized cross-correlation

traces are shown on a logarithmic scale at the left and the normalized transmitted spectra are

plotted on a linear scale at the right. (b) Numerical simulation using the semiconductor Maxwell–

Bloch equations in the dynamics-controlled truncation scheme. [From N.C. Nielsen et al., Phys.

Rev. B 64, 245202 (2001).]
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excited. In this manner, we obtained the above mentioned 220 fs pulses with roughly

single-sided exponential envelope. Going from bottom to top in the figure, the pulse

intensity is increasing from I0 = 0.06 MW/cm2 to 400 × I0 = 24 MW/cm2. The transmitted

pulses indicate the expected temporal polariton beating in the linear propagation regime:

Two distinct pulses, i.e., one full beat period, can be observed which are separated by

approximately 340 fs. Further polariton beats are suppressed because of inhomogeneous

broadening of the resonance and the short sample length [17]. With increasing input

intensity, the temporal beating decreases and almost vanishes at 118 × I0 = 7 MW/cm2.

Simultaneously, the spectral dip (right column), which originates from the excitonic

absorption, fades away. At an intensity of 236 × I0 = 14 MW/cm2, a shoulder with a

delay of 270 fs with respect to the pulse maximum develops on the trailing edge of the

transmitted pulse. Upon further increase of the intensity to 400 × I0 = 24 MW/cm2, the

delay of the shoulder shortens to approximately 180 fs. At the same time, the transmitted

spectra resemble the input spectrum and do not broaden, ruling out any perturbing

influence of self-phase modulation (SPM) (Ref. 45) from off-resonant states or the

substrate.

A theoretical model capable of explaining our experimental observations, especially

the suppression of the polariton beating, was developed recently [17] on the basis of the

semiconductor Maxwell–Bloch equations in the DCTS (see section 1.2). This model

can only be applied for the weakly nonlinear regime discussed here. The material

equations were evaluated for plane-wave propagation using a tight-binding approximation

for the band structure and one-dimensional Coulomb interaction [38]. Inhomogeneous

broadening of the resonance due to sample strain was additionally included in the model

by averaging the polarization calculated for Gaussian-distributed band gap energies.

Parameters for the CdSe material are given in Ref. 46. For comparison with the experiment,

the computed time-resolved signals were convolved with a 50 fs Gaussian pulse according

to Eq. (1.1). The initial pulse had a duration of 180 fs with a single-sided exponential

envelope. Results of the numerical simulation are depicted in Fig. 1.2(b). For linear

excitation, a single polariton beat can be observed about 310 fs after the pulse maximum.

At higher excitation densities, the theoretical cross-correlation traces exhibit the anticipated

suppression of the polariton beating both temporally and spectrally in full agreement

with our experiment.

The theoretical analysis shows that only one polariton beat period is found at low

intensities because beating at longer times is suppressed due to the inhomogeneous

broadening of the resonance. At increasing intensities, the excitonic polarization is

dephased caused by the coupling of excitons to unbound two-exciton states, i.e., to an

interaction-generated continuum. The observed shoulder at highest intensities
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(Fig. 1.2(a)) indicates a regime with higher-order nonlinearities. The forming of the

shoulder is a manifestation of the beginning of a first carrier density Rabi flop, with the

latter occurring at a higher frequency when the light field is intensified. Indeed, we find

a shorter delay of the shoulder with respect to the pulse maximum for the higher pulse

intensity. However, for increasing intensities, coherent pulse breakup cannot reveal

itself clearly in such a thin sample [1,47] and the low-intensity DCTS breaks down at

sufficiently high carrier densities. The cross correlation of a 200 fs pulse with a 50 fs

pulse is another limiting factor since it smears out the fine structure when Rabi flopping

induced pulse breakup exhibits more than one minimum. Furthermore, the effects of

Rabi flopping induced pulse breakup become much more pronounced for longer

propagation distances [13]. For these reasons, we choose a thicker sample as well as a

longer pulse duration and higher pulse intensities to investigate pulse breakup due to

Rabi flopping. Correspondingly, the theoretical description is carried out within the

SOBA.

Self-induced transmission and multiple pulse breakup

Using the thick sample with αL = 6.5 in the following studies, we turn our attention to

the high-excitation regime exclusively. Low-intensity light will no longer propagate

through the sample since the linear transmission is only 0.15%. We utilized a 1 nm

bandwidth filter in order to excite a narrow distribution of transitions within the A-

exciton resonance, thus reducing the influence of inhomogeneous broadening and of the

cross-correlation measurement. Figure 1.3 demonstrates that coherent nonlinear

propagation is indeed observable on the initial pulse shape at high pulse intensities.

Again, the plot shows temporal cross-correlation traces for increasing intensities from

bottom to top. The lowest trace illustrates the roughly single-sided exponential input

pulse with 800 fs duration. At an intensity I0 = 105 MW/cm2, the pulse transmitted

through the sample is already steepened, shortened, and shows a higher symmetry

compared with the original pulse shape. On closer inspection, the trace exhibits a slight

shoulder structure about 550 fs after the maximum. In addition, a large delay of

approximately 700 fs is measured with respect to the input pulse (evaluated at 50% of

the normalized signal height between the rising pulse edges). Increasing the intensity to

1.9 × I0 = 200 MW/cm2, the pulse reshaping and the shoulder structure become even

more pronounced. Both the temporal distance between the two pulse components and

the pulse delay reduce to approximately 400 and 470 fs, respectively. Upon further

increase of the intensity to 2.9 × I0 = 305 MW/cm2 and 4.2 × I0 = 440 MW/cm2, distinct

pulse breakups into several individual pulses are observed. At 2.9 × I0, the intensified
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second pulse is emitted about 320 fs after the main pulse component, and approximately

1000 fs after the maximum, a small third shoulder develops. At 4.2 × I0, three succeeding

peaks are clearly visible, which appear about 350, 690, and 1040 fs after the first peak.

As shown later, the pulse breakup is related to Rabi oscillations. In a simple model

based on the two-level solution for σ22 and using E I∝ , one expects the dynamics

of the pulse breakup to be roughly twice as fast at four times the intensity. The number

of peaks is correct, and the reemission frequency grows by a factor of 1.6 within the

covered intensity range. Moreover, the experimental results show that the delay between

the transmitted and the original pulses further reduces with increasing intensity. This

subject will be quantitatively discussed below. At the input intensity of 4.2 × I0, we

measured a total nonlinear transmission through the sample (corrected for surface

reflectivity) greater than 25%. Behind the pinhole, which was inserted to restrict the

signal detection to directly propagated and spatially homogeneous wavefronts, the

transmission degree reached 6.25% compared to a linear transmission of merely 0.15%

for αL = 6.5. In combination with these nonlinear transmission values, the data of

Fig. 1.3 prove the presence of self-induced transmission and multiple pulse breakup due

to coherent carrier density Rabi flopping.

Fig. 1.3 Propagation of 800 fs pulses through the thick CdSe sample with α L = 6.5 for increasing

intensities I. λ = 683 nm, I0 = 105 MW/cm2, and T = 8 K. The normalized cross-correlation traces

are shown on a linear scale. [From N.C. Nielsen et al., Phys. Rev. B 64, 245202 (2001).]
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In order to analyze the high-intensity dynamics in more detail, we plotted traces

transmitted through the thick sample on a logarithmic scale (Fig. 1.4(a)). Note that this

set of traces differs from that in Fig. 1.3, but demonstrates the excellent reproducibility

of our experimental data. Figure 1.4(b) shows the results of numerical calculations

based on the semiconductor Maxwell–Bloch equations. Here, we applied the slowly

varying envelope approximation (SVEA) of the field equation for numerical simplicity

[9], whereas the material equations include mean-field and correlation effects (diagonal

and nondiagonal dephasing as well as nonlinear polarization scattering) in the SOBA

for polarization and carrier distribution [19–27]. The resulting material equations are a

standard tool in semiconductor optics. For the CdSe material, we used parameters given

in Ref. 46, except for the inhomogeneous broadening which is numerically not tractable

because of the long propagation distance and the more involved material equations.

However, we believe that due to the longer pulse width, inhomogeneous broadening is

of minor importance. The theoretical analysis shows that the pulse breakup can be

Fig. 1.4 (a) Propagation of 800 fs pulses through the thick CdSe sample with αL = 6.5 for

increasing intensities I. λ = 683 nm, I0 = 150 MW/cm2, and T = 8 K. The normalized cross-

correlation traces are shown on a logarithmic scale. (b) Numerical simulation using the semiconductor

Maxwell–Bloch equations in the second-order Born approximation. [From N.C. Nielsen et al.,

Phys. Rev. B 64, 245202 (2001).]
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traced back to Rabi flopping of the carrier density in a highly excited semiconductor.

Increasing the intensity corresponds to a higher Rabi oscillation frequency and therefore

to a faster interplay of absorption and emission in the course of time, which modulates

the pulse shape. Our theoretical investigations yield that carrier–carrier scattering on the

time scale of the pulse duration is of minor importance in comparison to mean-field

effects which cover the main physics, similar to the recent results presented in Ref. 39.

In Fig. 1.4(a), we observe intensity-dependent multiple pulse breakup comparable

to the behavior in Fig. 1.3. The lowest input intensity is I0 = 150 MW/cm2. Interestingly,

the second Rabi flop for 1.8 × I0 = 270 MW/cm2 shows a double substructure which is

reproduced by the numerical simulation involving many-body interactions for a pulse

area Θ = 3.7π. Note that only the curves for 1.8 × I0 = 270 MW/cm2 and Θ = 3.7π are

directly comparable in this figure. According to Θ    ,∝ ∝E I Θ =1.5π corresponds to

0.3 × I0 and 5.6π corresponds to 4.1 × I0. Thus, the calculated traces represent the limits

wherein the experimental curves are set. The breakup into two pulses is reproduced for

the lowest input intensity I0 = 150 MW/cm2 and an area of 1.5π, respectively. Owing to

the fact that the input pulse shape of the numerical model differs slightly from the

experimental input pulse, the second peak is more pronounced in the theory. Also, the

temporal distance with respect to the maximum is smaller in the experiment because of

the higher excitation density, which results in a larger Rabi frequency and therefore

faster reemission from the sample. For a pulse area Θ = 5.6π, the calculated transmitted

pulse shows four separate peaks, whereas the experimental trace indicates breakup into

only three individual pulses. Most likely, the fourth pulse is already eliminated due to

increased incoherence in the sample, contrary to the measurement series depicted in

Fig. 1.3. The temporal spacing between the maximum and the succeeding peaks is

roughly the same as can be seen when comparing the upper curves in Figs 1.4(a) and

1.4(b), showing that the many-body calculation is able to produce the correct pulse

velocity over a long propagation distance in a broad range of intensities. Precursors,

which are purely propagation induced, can be seen both experimentally and theoretically

for each excitation density.

Clearly observable in experiment and theory is the reduced delay between transmitted

and input pulses for increased light intensities, indicating that the dynamical response

of the matter emerges earlier due to the larger pulse area and higher Rabi frequency. In

turn, this implies the definition of a higher effective propagation velocity veff through

the sample: veff = L /(τ1/2 + L /c0). Here, τ1/2 is the pulse delay measured at 50% of the

maximum signal height between the rising edges of the transmitted and the input pulses

and L is the sample thickness derived from the absorption length αL. Assuming an

absorption coefficient α ≈ 1 μm–1 [48], L is approximately 6.5 μm for the thick sample
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(αL = 6.5). The pulse delay and the effective velocity are plotted versus input intensity

in Fig. 1.5. The delay decreases from 840 fs for I = 78 MW/cm2 to below 400 fs for

I = 400 MW/cm2. The corresponding effective velocity veff is ranging from 0.025 c0 to

0.052 c0. In the literature for coherent nonlinear propagation in isolated two-level systems

[1,33], we find an estimate for the propagation velocity of 2π solitons veff =

c0 / (  +  )1
2 0n cpατ . For a pulse duration τp = 800 fs, the absorption coefficient from

above, and the refractive index n = ε b  with the background dielectric constant εb ≈ 9

for our material [48], a velocity of veff = 0.0081 c0 is calculated in this model. Considering

the mean-field correction for the excitonic many-body system (see section 1.2), we

expect a comparable velocity for a π pulse in our semiconductor system (one complete

Rabi flop). Extrapolating the intensity-dependent velocity curve to around 25 MW/cm2,

corresponding to an area of about π (as shown below), one would obtain a velocity in

the range of 0.015 c0 to 0.02 c0. This velocity is quite low and means that the light is

absorbed into the excited state and reemitted subsequently with an intensity dependent

delay given by the Rabi frequency. More elaborate, but different experiments in atomic

three-level systems have recently perfected the slowdown to a complete halt of the light

[49,50].

Fig. 1.5 Delay τ1/2 and effective propagation velocity veff for the propagation of 800 fs pulses

through the thick CdSe sample with αL = 6.5 at various input intensities I. λ = 683 nm and T =

8 K. [From N.C. Nielsen et al., Phys. Rev. B 64, 245202 (2001).]
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The simplified model which describes the dynamics of the pulse breakup allows

one to directly relate measured pulse intensities I to calculated pulse areas Θ. Due to the

mean-field correction, breakup into two (four) individual pulse components is supposed

to occur for incident 2π (4π) pulses. With respect to the measurement series depicted in

Fig. 1.3, using Θ  ,∝ I  we obtain an intensity of approximately 27 MW/cm2 for an
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area of π. Comparing experimental and simulated pulse traces in Fig. 1.4, where the

features of the 1.8 × I0 = 270 MW/cm2 curve are very well reproduced by the theoretical

curve calculated for a pulse area of 3.7π, we deduce I ≈ 20 MW/cm2 for Θ = π. Thus,

an intensity of about 25 MW/cm2 corresponds to an area of π for an 800 fs pulse in a

CdSe sample with αL = 6.5. Since the measured external intensity I = 1
2 0 0ε μ (Eout)

2

and the internal pulse area Θ ≈ (d/h) Ein τp, where the relation between the electric field

envelope inside and outside the sample is given by the Fresnel formula Ein/Eout =

2/(n + 1) with the refractive index n ≈ 3, the dipole moment amounts to d = 3.8 eÅ.

Taking the literature value for the longitudinal-transverse splitting energy of the

A exciton in CdSe ΔLT = 0.9 meV (compare Ref. 48) and using the relation ΔLT =

(2d2)/ ( )0
3ε εb Ba  (derived from Eq. (11.10) in Ref. 3) with the exciton Bohr radius

aB = 53 Å for an A-exciton binding energy Ex = 15 meV and the background dielectric

constant εb = 9, the dipole moment is calculated to be d = 1.8 eÅ. Considering the

uncertainty in quantifying the applied intensity and in relating this intensity to pulse

area, the agreement is fairly good. It will be interesting to investigate the exact influence

of the mean-field correction on the pulse area required for self-induced transmission [37].

Next, we discuss the influence of self-induced transmission on the spectral shape

of the propagated pulses. Figures 1.6(a) and 1.6(b) depict the transmitted spectra for low

and high input intensities (150 and 450 MW/cm2 with Θ = 1.5π and 5.6π, respectively).

At low intensities, the spectra represent symmetrical peaks in the experiment as well as

in theory. While the transmitted spectrum roughly coincides with the input spectrum in

theory, the experimental curve is slightly shifted and broadened towards the low-energy

side. The shift is certainly due to detuning of the excitation against the resonance in the

experiment as the maximum of the transmitted spectrum is found to be located exactly

on the edge of the inhomogeneously broadened A-exciton resonance of the thick sample

(λA = 683.8 nm). The spectral broadening emerges from spectral components at the low-

energy side of the resonance that do not interact with the system. At high intensities, the

transmitted spectra are asymmetrically broadened: The high- and low-energy sides

show a slowly decaying tail and a steep edge, respectively. Modulations occur in the

wings of the spectra, probably caused by the temporal modulation which leads to the

pulse breakup. In contrast to the good agreement of the spectral shape between experiment

and theory, the peak shifts of the spectra have opposite sign. We believe that this

behavior originates from the detuning towards higher energies in the experiment. At low

intensities, reemission of light following the temporal evolution of the excitonic polarization

occurs on the edge of the A-exciton resonance, featuring the highest transition dipole

moment. However, for increasing intensity, the exciting light field governs the spectral

range within the inhomogeneously broadened exciton resonance where coherent Rabi
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flopping proceeds. Thus, the theoretically predicted redshift could not be observed in

the experiment.

The fact that we do not observe spectral broadening at higher intensities and in

the case of pulse breakup is a strong indication against SPM due to other transitions

than the considered free excitons. This can be quantified by using the simplified formula

ΔΦ = (2π/λ) n2IL [45] with the nonlinear refractive index n2 ≈ 10–12 cm2/W for the

CdSe bulk material [51], I ≈ 25 MW/cm2 for a pulse area Θ = π, L ≈ 6.5 μm for the thick

sample, and λ = 683.8 nm. We obtain a nonlinear phase shift of ΔΦ ≈ 1.5 mrad, which

is two orders of magnitude less than the phase shift of 0.2 rad required for SPM [52].

The data presented in this chapter provide clear evidence for long-distance coherent

pulse propagation and high nonlinear transmission due to Rabi oscillations on the A-

exciton resonance in CdSe for pulse areas up to a multiple of π. In agreement with

Fig. 1.6 Transmitted spectra corresponding to the resonant propagation of 800 fs pulses through

CdSe at low and high intensities in the regime of self-induced transmission. The normalized

spectra are plotted on a linear scale with respect to the input spectrum (dotted line). (a) Experiment:

Thick sample with αL = 6.5 at T = 8 K, λ = 683.5 nm, I = 150 MW/cm2 (dashed line) and

450 MW/cm2 (solid line). (b) Theory: Numerical calculations using the semiconductor Maxwell–

Bloch equations in the second-order Born approximation, Θ = 1.5π (dashed line) and 5.6π (solid

line). [From N.C. Nielsen et al., Phys. Rev. B 64, 245202 (2001).]
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theoretical predictions, this finding demonstrates that even for excitation intensities in

the range of 100 MW/cm2, substantial coherence between the exciting laser field and

the excitonic polarization is maintained over several hundred femtoseconds despite

many-body interaction effects. Consequently, excitation-induced dephasing is less

important in progress of the applied pulses on the ultrashort time scale considered here.

Phonon-induced dephasing of the excitonic polarization

In order to investigate the influence of enhanced phase relaxation on the features of self-

induced transmission, we have performed pulse propagation experiments at varying

sample temperature. If the temperature is increased, phase-destroying electron/hole-

phonon scattering occurs that, for our purposes, primarily reduces the amplitude of the

excitonic polarization and the coherent interaction during the duration of the pulse. The

contribution of phonon scattering to phase relaxation grows linearly with T in the range

where acoustic phonon scattering dominates and even superlinearly for temperatures

which permit optical phonon scattering [53,54].

Figure 1.7 presents cross-correlation traces for 800 fs pulses transmitted through

Fig. 1.7 Propagation of 800 fs pulses through the thick CdSe sample with α L = 6.5 for increasing

intensities I (horizontal direction) and increasing temperature T (vertical direction). λ = 683 nm

and I0 = 105 MW/cm2. The normalized cross-correlation traces are shown on a linear scale. [From

N.C. Nielsen et al., Phys. Rev. B 64, 245202 (2001).]
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the thick CdSe sample (α L = 6.5) for varying intensities and temperatures. In the

horizontal direction, the intensity is varied from I0 = 105 MW/cm2 to 4.2 × I0 =

440 MW/cm2, corresponding to a doubling of the external electric field and the Rabi

frequency, respectively. In the vertical direction, the temperature is raised from bottom

to top from 10 to 70 K. The set of data in the bottom line depicts the development of

coherent multiple pulse breakup as already discussed above. The right column (highest

intensity) shows a remarkable reduction of the modulation depth with rising temperature.

Notice that the decay of the modulation depth with time caused by dephasing processes

is strongly enhanced for higher temperatures because of the additional contribution of

exciton–phonon scattering. For the highest intensity trace at T = 70 K (upper right), the

pulse is still transmitted, but the pulse breakup has almost completely vanished. Only a

weak second peak is barely visible. The coherently propagated amount of light evidently

has dropped compared to the value at T = 10 K owing to the interaction with phonons

which dephases the coherent polarization and supports the buildup of an incoherent

exciton population [55]. Thus, the dominant part of the transmission originates from

incoherent bleaching of the exciton transition, which explains the increased unmodulated

background level. Similarly, the dominance of the exciton-phonon coupling over the

exciton–light coupling arises from the growing delay between the input and the transmitted

pulses for elevated temperatures. The effect is reproduced in every single column,

however, phase relaxation due to phonon scattering manifests itself more strongly at

lower input intensities where the importance of the exciton–phonon interaction is enhanced

in comparison with the exciton-light coupling.

The observations discussed in this section are certainly not caused by the redshift

of the A-exciton resonance of approximately 9 meV within the viewed temperature

range. Due to the inhomogeneously broadened resonance of the thick sample, detuning

experiments at T = 10 K with the excitation shifted towards higher energies by more

than 7 meV showed only little influence on the features of coherent multiple pulse

breakup.

1.5 Conclusions

We have presented a comprehensive study of subpicosecond pulse propagation on the

A-exciton resonance in bulk CdSe. At low pulse intensities, polariton formation and the

corresponding interference effects result in temporal polariton beating. The linear polariton

concept begins to fail at higher excitation densities where the polariton beating is

suppressed in consequence of incoherent exciton–exciton interaction which causes

dephasing of the excitonic polarization. Self-induced transmission and coherent multiple
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pulse breakup due to Rabi flopping of the carrier density are prominent at pulse areas

beyond π. At intensities on the order of 100 MW/cm2, tight coherent control of the

temporal evolution of the excitonic polarization by the applied ultrashort pulse results

in a large amount of coherent nonlinear transmission and a high contrast ratio of the

pulse breakup. The experiments can be described theoretically using the semiconductor

Maxwell–Bloch equations, which accomplish the transition from linear to nonlinear

optics by taking into account many-body interactions consisting of mean-field and

correlation effects. Further findings such as the intensity to pulse area relation as well

as pulse delays and effective propagation velocities in dependence on the pulse intensity

yield quantitative agreement between the experiment and the semiconductor Maxwell–

Bloch theory. Increasing the phase relaxation rate by introducing exciton–phonon scattering

at elevated sample temperatures greatly diminishes the amplitude of the coherent excitonic

polarization, thus gradually destroying the contrast ratio of the Rabi flopping induced

pulse breakup.
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Abstract

Carrier-wave Rabi flopping occurs when the Rabi frequency becomes
comparable with the light frequency, while maintaining electronic coherence.
Exciting the model semiconductor GaAs, which has a band gap period of
2.9 fs, with optical pulses which are both, extremely short (5 fs) and extremely
intense (estimated Rabi periods <3 fs), we can meet this highly unusual
condition. After reviewing corresponding recently published experimental
spectra around the third harmonic of the band gap, we present additional
data on the transmitted fundamental wave and compare all with theory. The
relevance of these results for exploiting coherent effects in semiconductor
saturable absorbers for femtosecond mode-locked lasers is discussed.

2.1 Introduction

If a two-level system is excited by a resonant light field, a periodic oscillation of the

inversion can result [1,2]. This periodic oscillation between absorption and inversion is

known as Rabi oscillation and requires coherence of the two-level system. The frequency

of this oscillation, the Rabi frequency Ω R dE = ,–1h ˜  is proportional to the envelope of

the light field Ẽ  and to the dipole matrix element d of the optical transition. What

happens if the light intensity is so large that the period of one Rabi oscillation becomes

as short as a cycle of light (2.9 fs = h/Eg for the band edge of GaAs)? What happens if

one uses light pulses containing only one or two cycles of light?

These questions [3,4] are both of scientific as well as of some technical interest.

Scientifically, they bring us into a highly unusual regime of light–matter interaction in

solids as well as into a completely unexplored regime of nonlinear optics. The situation,

Rabi frequency equal to light frequency, for GaAs parameters actually means that the

Quantum Coherence, Correlation and Decoherence in
Semiconductor Nanostructures
T. Takagahara (Ed.)
Copyright © 2003 Elsevier Science (USA). All rights reserved.
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semiconductor turns into a metal after half an optical cycle (1.45 fs = 2.9/2 fs), returning

to a semiconductor after another 1.45 fs. Moreover, for semiconductors, this carrier-

wave regime connects two effects which are usually thought of as being unrelated,

namely (envelope) Rabi flopping on the one hand and Zener tunneling [5] on the other

hand. For envelope Rabi flopping, one assumes that the light frequency ω is much larger

than the Rabi frequency ΩR, i.e. ΩR � ω, which allows us to treat the problem within

a frame which rotates with the frequency of light (rotating wave approximation) [1,2].

For a semiconductor, this can lead to a periodic oscillation of the occupation of electron

states within the conduction (valence) band. Zener tunneling, on the other hand, occurs

for static electric fields, i.e. for ω = 0 or, equivalently, for ΩR � ω. In the presence of

a large electric field, an electron can tunnel from the valence band to the conduction

band. In the regime of carrier-wave Rabi flopping, i.e. for ΩR ≈ ω , these two known

pictures merge.

For parameters of the model semiconductor GaAs, the condition ΩR = ω corresponds

to electric field envelopes on the order of 2 × 109 V/m, equivalent to about one Volt per

lattice constant! The potential drop over one unit cell of the lattice is comparable to the

band gap (Eg = 1.42 eV for GaAs at room temperature) as well as to the width of the

conduction and valence band, respectively. Obviously, at this point, the light field can

no longer be considered as a perturbation.

What is the potential technical interest? Semiconductors are already widely used

as saturable absorbers in femtosecond lasers. This started with InGaAs multiple quantum

well samples [6], which were introduced into a solid state color center laser [7]. Usually,

semiconductor saturable absorbers work in the incoherent regime, i.e. one takes advantage

of the bleaching of absorption associated with the filling of available phase space in the

conduction band of the semiconductor. On a timescale of several tens of femtoseconds

and under these high carrier density conditions, coherent effects usually play only a

very minor role, if any at all. However, if one is interested in the generation of optical

pulses on a sub-10 fs scale, coherent effects will come into play – no matter whether

desired or not. Coherence effects in saturable absorption are obviously nothing else but

Rabi oscillations. The Rabi oscillation might lead to an attractive side effect. In order to

avoid Q-switching [8], one does not want bleaching to monotonously increase with light

fluence, but rather exhibit a maximum and decrease thereafter. For Rabi flopping, such

maximum automatically occurs at an envelope pulse area of 2π. If one wants to generate

optical pulses of only a few optical cycles in duration along these lines, one has to

understand the regime of carrier-wave Rabi flopping.

Let us quickly go through the history of conventional Rabi flopping in

semiconductors before we address carrier-wave Rabi flopping. Ref. [9] discussed Rabi
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flopping in the framework of the semiconductor Bloch equations. Two important changes

[2] with respect to the optical Bloch equations of the well-known two-level system [1]

arise. First, one has to deal with bands of states rather than discrete states. This aspect

is intrinsic to semiconductors and is somewhat similar to what is called inhomogeneous

broadening in atomic or molecular systems. Second, the Coulomb interaction among

charged carriers couples the various optical transitions. Within the mean-field (Hartree–

Fock) approximation, this interaction can be thought of in terms of an internal field. The

total electric field seen by the carriers is the sum of the external laser field and an

internal field which is given by a sum over all optical polarizations. We have called this

phenomenon local field effect [10]. This internal field is not necessarily small, it can

indeed become as large as the laser field itself [9] or even exceed it. In addition to this,

the Coulomb interaction also leads to scattering, i.e. to energy relaxation as well as to

phase relaxation [11,12]. For times of only few tens of femtoseconds, these processes

can no longer be described by simple time constants, electron-phonon [13–15] as well

as carrier–carrier [16,17] scattering become non-Markovian. In other words, the system

dynamics approaches again a Hamiltonian one. Using pulsed excitation, Rabi flopping

has been observed experimentally on excitons in semiconductors and semiconductor

quantum wells [18–20] as well as in microcavities [21]. All these Rabi floppings exhibited

periods in the range from 50 fs to 1 ps. Further theoretical [22] and experimental work

[23] focused on Rabi flopping of continuum states rather than excitons. Only recently,

Rabi flopping in single quantum dots was also discussed [24].

2.2 Carrier-wave Rabi flopping

The notion of carrier-wave Rabi flopping was first used by S. Hughes, who discussed an

ensemble of identical uncoupled two-level systems [3]. As one is interested in the

system’s dynamics on a timescale of one period of light or less, both, the rotating wave

approximation and the slowly varying envelope approximation [1] must obviously not

be used. His theoretical work as well as that of others [25] is based on the theoretical

framework of Ref. [26].

What are the anticipated signatures of carrier-wave Rabi flopping? The condition

Rabi period equal to the light period corresponds to a huge intensity (for a solid). While

it might be possible to reach this condition with pulses of several tens of femtoseconds

in duration, it is not very likely that the electronic system will remain coherent meanwhile.

Coherence, however, is a prerequisite for any type of Rabi flopping. Thus it seems

favorable to study excitation with very short pulses, ideally with only one or two cycles
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of light in duration. Remember that, for GaAs parameters, the period of light corresponding

to the room temperature band gap energy is 2.9 fs. To highlight the general aspects of

carrier-wave Rabi flopping, let us first review the behavior for an ensemble of uncoupled

and identical two-level systems, which is the level of sophistication of Refs [3,25, and

26]. For reference, Fig. 2.1(a) schematically depicts conventional Rabi flopping plotted

on the Bloch sphere, i.e. the Rabi period is much larger than the light period. For clarity,

we neglect any damping at this point. The components u and v of the Bloch vector (u,

v, w) correspond to twice the real and imaginary part of the optical transition amplitude,

respectively, w is the inversion of the two-level system [1]. In this representation, the

optical oscillation corresponds to an orbiting of the Bloch vector parallel to the equatorial

plane (uv plane) with the optical transition frequency Ω (here Ω = ω = 2π /2.9 fs), the

oscillation of the inversion to a motion in the vw plane. For a square-shaped pulse with

envelope pulse area Θ = 2π starting from the south pole, i.e. all electrons are in the

ground state (valence band), the Bloch vector spirals up to the north pole, i.e. all

electrons are in the excited state (conduction band) and back to the south pole. This

leads to a modulation of the real part of the optical transition amplitude u (Fig. 2.1(a)),

which is roughly similar to a quantum beating. Thus, the corresponding spectrum of the

polarization would exhibit two peaks centered around the transition frequency. Figure
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Fig. 2.1 (a) Scheme of the trace of the Bloch vector for conventional Rabi flopping. Pulse

duration is 20 optical cycles, envelope pulse area is Θ = 2π. (b) Same for carrier-wave Rabi

flopping. Pulse duration is 2 optical cycles, Θ = 4π. The optical pulse envelopes are indicated by

the grey areas.



Carrier-wave Rabi flopping in semiconductors 27

2.1(b) shows results for Θ = 4 π and for a much shorter pulse, such that the Rabi period

equals the light period. Two related aspects are obvious. First, though Θ = 4 π, the Bloch

vector does not come back to the south pole. In this sense, the usual definition of the

envelope pulse area Θ fails. Hence, also the area theorem of nonlinear optics, which is

based on this definition, fails. Despite this failure, we quote Θ for reference in this

article. Second, it is obvious that the optical polarization becomes strongly distorted

during the two cycles of the optical pulse (see u versus time in Fig. 2.1(b)). Thus,

harmonics are being generated, the most prominent of which, for an inversion symmetric

medium, is the third harmonic. For low intensities, this is nothing but the resonantly

enhanced third-harmonic generation. For very high intensities, i.e. for carrier-wave

Rabi flopping, one expects a double-peak structure around the third harmonic of the

transition frequency. Note that absolutely no harmonics are generated after the two

cycles of the optical pulse (see Fig. 2.1(b)). Here one merely has a free oscillation of the

optical polarization with the optical transition frequency of the two-level system Ω.

Experiments

From the above it has become clear that carrier-wave Rabi flopping needs short, i.e. one

or two optical cycles long, and very intense optical pulses. From the anticipated signal

levels and the anticipated damage thresholds of thin films of semiconductors, high

repetition rate laser systems are strongly favored. Thus, we perform our experiments

with 5 fs linearly polarized (p-polarization) optical pulses at 81 MHz (=1/12 ns) repetition

rate, which have recently become available [27]. Our home-built copy of this laser

system very nearly reproduces the pulse properties described in Ref. [27]. The typical

average output power of the laser is 120 mW.  Plate 1(a) shows a typical laser spectrum,

which has been obtained via Fourier-transform of an interferogram taken with a pyroelectric

detector, which is spectrally extremely flat. The Michelson interferometer used at this

point and for all results throughout this article is carefully balanced and employs home-

made beam splitters fabricated by evaporating a thin film of silver on a 100 μm thin

glass substrate. The Michelson interferometer is actively stabilized by means of the

Pancharatnam screw [28], which allows for continuous scanning of the time delay while

maintaining active stabilization. The remaining fluctuations in the time delay between

the two arms of the interferometer are around ±0.05 fs. The spectral wings which can

be seen in Plate 1(a) result from the spectral characteristics of the output coupler. The

measured interferometric autocorrelation depicted in Fig. 2.2(b) is very nearly identical

to the one computed from the spectrum (Plate 1(a)) under the assumption of a constant

spectral phase. This shows that the pulses are nearly transform-limited. The intensity
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profile computed under the same assumption is shown as an inset in Plate 1(b) and

reveals a duration of about 5 fs. As a result of the strongly structured spectrum (a

square-function to zeroth order), the intensity versus time shows satellites (a sinc2-

function to zeroth order). Using a high numerical aperture reflective microscope objective

[29], we can tightly focus these pulses to a profile which is very roughly Gaussian with

1 μm radius. This value has carefully been measured by a knife-edge technique at the

sample position (see Plate 4(a)). This sample position is equivalent to that of the second

harmonic (SHG) crystal used for the autocorrelation in terms of group delay dispersion.

In front of the sample, each arm of the interferometer typically has an average power of

about 8 mW. The resulting peak intensity of one arm can be estimated as

I0 –4 2
12 –2 = 

8 mW

(10 cm)

12ns
5fs

 = 0.6  10 W cm .
π

× (2.1)

This corresponds to a field envelope (in vacuum)

Ẽ I0
0

0
0

7 –1 = 2  = 2.1  10 V cm ,
μ
ε × (2.2)

or about one Volt per lattice constant a as mentioned in the introduction (a ≈ 0.5 nm).

To estimate the envelope pulse area Θ, one furthermore needs the dipole matrix element

d of the optical dipole transition. From the literature for GaAs we find d = 0.3e nm [30]

and d = 0.6e nm [20]. Choosing d = 0.5e nm in this article, this translates into an

envelope pulse area

Θ π =   5 fs = 8.1 > 2–1
0h d Ẽ × (2.3)

for one arm (I = 0.601 × I0 corresponds to 2π pulse area), and > 4π (two Rabi periods)

for two constructively interfering arms of the interferometer. For a resonant 5 fs pulse

and a 2.9 fs band gap period, this corresponds to a Rabi frequency which even slightly

exceeds the light frequency. It is also interesting to give a very rough estimate for the

excited carrier density under these conditions. The GaAs band-to-band absorption

coefficient is α = 104 cm–1. If all the light was absorbed according to this number –

certainly an upper limit – one arrives at a carrier density of

neh = α I0 × 5 fs /1.42 eV = 1.3 × 1020 cm–3. (2.4)

For constructive interference of the two arms of the interferometer, this number needs

to be multiplied by a factor of four. Thus, we can safely conclude that the highest carrier

densities approach 1020 cm–3. In the experiment, we use a 0.6 μm thin film of GaAs clad

between Al0.3Ga0.7 As barriers, grown by metal-organic vapor phase epitaxy on a GaAs



Carrier-wave Rabi flopping in semiconductors 29

substrate. The sample is glued onto a 1 mm thick sapphire disk and the GaAs substrate

is removed. Finally, a λ /4-antireflection coating is evaporated. The light emitted by this

sample, held under ambient conditions, is collected by a second reflective microscope

objective [29], is spectrally pre-filtered by a sequence of four fused-silica prisms, and

is sent into a 0.25 m focal length grating spectrometer connected to a liquid-nitrogen

cooled, back-illuminated, UV-enhanced charge-coupled-device (CCD) camera. For a

second set of experiments the transmitted light is dispersed in a miniature spectrometer

which allows to simultaneously cover the wavelength range from 500 nm to 1100 nm.

Let us first discuss results for single pulses only, i.e. we block one arm of the

interferometer. Figure 2.2 shows spectra at the third harmonic for different pulse intensities

I  in multiples of I0, as defined above. For the attenuation we have used metallic beam

splitters on 100 μm thin fused silica substrates, the dispersion of which has carefully

been compensated for by the extra-cavity sequence of four CaF2 prisms [27]. At low

intensity, i.e. for I = 0.017 × I0, we observe a single maximum around 300 nm wavelength

which is interpreted as the usual third-harmonic generation which is resonantly enhanced

by the GaAs band edge here. With increasing intensity, we find a second maximum

emerging at the long wavelength side, which gains more and more weight. At the

highest intensity, i.e. I = 0.779 × I0, the 10 × magnification reveals an additional smaller

maximum around 340 nm wavelength. In Ref. [4] we have interpreted this overall

behavior as a signature of carrier-wave Rabi flopping. Note that the intensities revealing

a double-peak structure in the third-harmonic spectrum correspond very well to our
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Fig. 2.2 Experiment: Spectra of light emitted into the forward direction around the third harmonic

of the GaAs band gap frequency. The spectra are shown on a linear scale, vertically displaced

and individually normalized (from top to bottom: maxima correspond to 5664, 439, 34, and

4 counts/s). Excitation with 5 fs pulses. The intensity I of the pulses is indicated.



30 O.D. Mücke, T. Tritschler and M. Wegener

above simple estimates, i.e. we estimated a full Rabi flop for an intensity of

I = 0.601 × I0.

In the second set of experiments we study the third-harmonic spectra for excitation

with phase-locked pulse pairs with time delay τ, i.e. we open both arms of the interferometer.

It is interesting to note that Θ is the same for τ = 0 and for e.g. τ equal to two optical

cycles – because the two optical fields simply add. Yet, the corresponding Rabi frequency

is larger for τ = 0. For low intensities (Fig. 2.4(a)), i.e. for small Rabi frequency as

compared to the light frequency, the third-harmonic spectrum is simply modulated as a

function of τ due to interference of the laser pulses within the sample leading to a period

of about 2.9 fs. In contrast to this, for higher intensities (Plate 2(b)–(d)) where the Rabi

frequency becomes comparable to the light frequency, the shape of the spectra changes

dramatically with time delay τ. For e.g. τ = 0 in Plate 2(b), the two pulses simply

interfere constructively and we find the same spectral double maximum structure as in

the single pulse experiments (Fig. 2.2). For larger τ, i.e. after one or two optical cycles,

this double maximum disappears and is replaced by one prominent and much larger

maximum. For the highest intensity, i.e. for Plate 2(d) – which corresponds to an

envelope pulse area Θ of more than 4π – the behavior is quite involved with additional

fine structure for | τ | < 1 fs. Note that the spectra for τ = 0 nicely reproduce the behavior

seen in Fig. 2.2.

Beside the interference of the laser pulses in the sample, at larger time delays

| τ | one additionally observes interference of the third-harmonic signals corresponding

to the two phase-locked pulses on the detector leading to periods around one femtosecond

in Plate 3. It can also be seen from Plate 3 that the splitting in the spectra gradually

approaches zero for large time delays.

We have also deliberately introduced positive or negative group velocity dispersion

by moving one of the extra-cavity CaF2 prisms in or out of the beam with respect to the

optimum position (not shown here, but depicted in Ref. [4]). Obviously, this leaves the

amplitude spectrum of the laser pulses unaffected. We find [4] that one quickly gets out

of the regime of carrier-wave Rabi flopping, i.e. both the splitting at τ = 0 as well as the

dependence of the shape on the time delay τ, quickly disappear with increasing pulse

chirp. This demonstrates that it is not just the large bandwidth of the pulses but the fact

that they are short – two optical cycles – which is important for the observation of

carrier-wave Rabi flopping.

In the theory section we will show that many aspects of our experiment are well

explained by the theory of carrier-wave Rabi flopping in a semiconductor. However, one

might argue that such splitting in the third-harmonic spectra (Fig. 2.2 and Plates 2 and

3) could possibly also arise due to a completely different effect, namely self-phase
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modulation of the laser pulse (which is known to result in spectral side maxima) within

the 0.6 μm thin but finite GaAs sample and subsequent conventional (off-resonant)

third-harmonic generation. This interpretation can easily be ruled out by measuring the

transmitted laser spectrum – which constitutes the third set of experiments. Plate 4

schematically shows the geometry. To vary the excitation intensity without having to

introduce filters (which would definitely require to change the dispersion compensation),

we simply move the sample in the z-direction through the fixed focus (z = 0) of the

microscope objective and collect the transmitted light with the fixed second microscope

objective. Not even at the highest intensities achievable (Plate 4(b)), we find any indication

for such effects (the laser spectrum is of course somewhat modified due to absorption

for photon energies above the band gap, which lies around 870 nm wavelength). However,

having done this, we have noticed some interesting details in the spectra. To enhance

their visibility we define a differential transmission, ΔT/T, as

ΔT
T

I z I z
I z

t t

t
 = 

( ) – (  = – )
(  = – )

,
∞

∞ (2.5)

where It(z) is the transmitted light intensity at sample position z. The condition z = – ∞
actually corresponds to z = –20 μm in the experiment, where the profile is so large that

we can safely assume that linear optics applies. Plate 5 shows corresponding results for

three different incident light intensities I in units of I0 as defined above. First, all results

are closely symmetric around z = 0, which indicates that changes in absorption dominate.

Changes in the refractive index might lead to focusing or defocusing of the beam which

would result in an asymmetric dependence on z (similar to the known so-called z-scan

technique e.g. described in Ref. [31]). Second, one can see a large increase in transmission

for wavelengths shorter than the GaAs band edge (approximately 870 nm) around z = 0

(Plate 5(a)). z = 0 corresponds to the highest intensity in each plot. The maximum

around 670 nm wavelength results from bleaching of the band gap of the Al0.3Ga0.7 As

barriers of the GaAs double heterostructure which accidentally coincides with the

pronounced maximum in the laser spectrum (Plate 1(a)) also around 680 nm. For larger

intensity, Plate 5(b), the transmission maximum around z = 0 flattens and we observe

pronounced induced absorption for wavelengths longer than the GaAs band edge. For

the highest intensity (Plate 5(c)), this induced absorption becomes the dominating feature

throughout most of the spectral range. Note that little if any induced transparency is

observed for wavelengths between 780 nm (170 meV above the unrenormalized band

gap Eg  = 1.42 eV) and 700 nm (350 meV above the unrenormalized band gap) while the

laser spectrum (Plate 1(a)) still has significant amplitude there. This indicates that these

states high up in the band-to-band continuum of GaAs must experience a much stronger
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damping (phase relaxation) and/or energy relaxation than those states near the band

gap. This point will become very important in the theory section.

Theory

To describe our experiments, one has to solve Maxwell equations coupled to the material

equations and investigate the light transmitted or emitted into the forward direction. Let

us consider wave propagation into the z-direction with 
r r
E D and  fields being polarized

along the x-direction with corresponding components E(z, t) and D(z, t), respectively.

The
r r
H B and the  fields are polarized along the y-direction with corresponding components

H(z, t) and B(z, t). Under these conditions, Maxwell equations (in S.I. units) immediately

give

∂
∂

∂
∂

E z t
z

B z t
t

( , )
 =  

( , )
– (2.6)

∂
∂

∂
∂

H z t
z

D z t
t

( , )
 = –

( , )
. (2.7)

In the semiconductor we further have

B(z, t) = μ0H(z, t) (2.8)

and D(z, t) = ε0E(z, t) + P(z, t), (2.9)

with the (real) medium polarization P(z, t). The electric field impinging onto the sample

from the vacuum on the left, i.e. from z = – ∞, is a plane wave and can be written as

E z t E t z c t z c( , ) = (  – / ) cos( (  – / ) + )0 0 0
˜ ω φ (2.10)

with the vacuum velocity of light c0 0 0 = 1/ ,μ ε  the (real) electric field envelope Ẽ,

the laser center frequency ω0 and the carrier-envelope offset (CEO) phase φ. Note that

φ would drop out when using the rotating wave approximation (RWA) and/or the slowly

varying envelope approximation (SVEA) [1]. In contrast to this, it is generally important

in the carrier-wave regime. Except for Plate 7 where we discuss this aspect explicitly,

we choose φ = 0. The material enters via the polarization P which has to be computed

microscopically from the underlying Hamiltonian H. Neglecting the Coulomb interaction

of carriers, any type of intraband optical processes, phonons and their coupling to the

carriers, suppressing spin indices and using the dipole approximation for the optical

transitions from the valence (v) to the conduction (c) band at wave vector 
r
k  we have [2]

H E k c c E k c c
k

c ck ck
k k k =  ( )  +  ( )† †Σ Σr r r
r r r

r r
v v v

–  ( ) ( , )(  + ).† †Σr r r r r
r

k
c ck k k ckd k E z t c c c cv v v

(2.11)
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Here E kc , ( )v
r

 are the single particle energies of electrons in the conduction and valence

band respectively (the band structure), and d kcv ( )
r

 is the (real) dipole matrix element

for an optical transition at electron wave vector 
r
k . Note that in our above discussion we

have used d d kc = ( ).v
r

 The creation c† and annihilation c operators create and annihilate

crystal electrons in the indicated band (c, v) at the indicated momentum (
r
k ).  The

optical polarization is given by

P z t
V

d k p k P z t
k

c c b( , ) = 1   ( )( ( ) + c.c.) + ( , )Σr
r r

v v (2.12)

where the optical transition amplitudes

p k c cc k ckv v
( ) = †
r

r r〈 〉 (2.13)

depend on time t as well as parametrically on the propagation coordinate z. As usual, the

sum in eq. (2.12) can be expressed via the combined density of states Dcv(E) as Σ r
k  ...

→ ∫ Dcv (E) . . . dE, which neglects all anisotropies. The background polarization Pb(z,

t) = ε0χb(z)E(z, t) = ε0(εb(z) – 1) E(z, t) accounts for all high energy optical transitions

not explicitly accounted for in eq. (2.11) and can be expressed in terms of the background

dielectric constant εb(z). The dynamics of p kcv ( ),
r

  as well as those of the occupation

numbers in the conduction band

f k c cc ck ck( ) = †
r

r r〈 〉 (2.14)

and in the valence band

f k c c
k kv v v( ) = †

r
r r〈 〉 (2.15)

are easily calculated from the Heisenberg equation of motion for any operator O according

to

  
–   = [ , ].i

t
Hh ∂

∂
O O (2.16)

Employing the usual anticommutation rules, i.e.

[ , ]  = ,      [ , ]  = ,†
+

†
+c c c cck ck kk k k kk

r r rr r r rr
′ ′ ′ ′δ δv v

(2.17)

and that all other anticommutators are zero, this leads us to the known Bloch equations

for the transition amplitude

∂
∂

⎛
⎝⎜

⎞
⎠⎟

∂
∂

⎛
⎝⎜

⎞
⎠⎟t

i k p k
t

p kc c + ( ) ( ) +  ( )
rel

Ω
r r r

v v = ( ) ( , )( ( ) – ( )),–1i d k E z t f k f kc ch
r r r

v v (2.18)

with the optical transition energy h
r r r

Ω( ) = ( ) – ( ),k E k E kc v  and for the occupation in

the conduction band
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∂
∂

∂
∂

⎛
⎝⎜

⎞
⎠⎟t

f k
t

f k d k E z t p kc c c c( ) +  ( )  = 2 ( ) ( , ) Im( ( )).
rel

–1
r r

h
r r

v v (2.19)

Here we have assumed a real dipole matrix element. (1 – ( ))f kv
r

 can be interpreted as

the occupation of holes and obeys an equation similar to f kc ( ).
r

The terms with subscript

“rel” have been added phenomenologically and describe dephasing and relaxation,

respectively. They will be discussed later. Note that the transition amplitude p kcv ( )
r

and the occupation factors f k f kc ( ) and ( )
r r

v  are easily connected to the components of

the Bloch vector (u, v, w) mentioned in the introduction via

u

w

p k

p k

f k f k

c

c

c

v
v

v

v

⎛
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⎠

⎟
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⎛

⎝
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⎜
⎜

⎞

⎠

⎟
⎟
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 = 

2Re( ( ))

2 Im( ( ))

( ) – ( )

r

r

r r
(2.20)

In the modeling excitation is with tpulse = 5 fs pulses, the envelope of which, Ẽ t( ),

is sech (t/t0)-shaped with t0 = 1/ (2 arcosh ( 2 )) pulset . Their center frequency is given

by hω0 = Eg. The phase φ between envelope and carrier-wave of the pulses is chosen to

be zero, i.e. the actual optical field is given by E(z = 0, t) = Ẽ t t( ) cos( ).0ω  Deviations

from these choices (Plate 7) are indicated. The relaxation terms in eqs (2.18) and (2.19)

are chosen as ∂
∂

⎛
⎝⎜

⎞
⎠⎟t

p k
T

p kc cv v( )  = – 1 ( ),
rel 2

r r
 with T2 = 50 fs, and ∂

∂
⎛
⎝⎜

⎞
⎠⎟t

f kc ( ) = 0.
rel

r

For the Maxwell part, a 0.6 μm thin slice of this ‘material’ with additional background

dielectric constant εb = 10.9 is sandwiched between a λ/4-antireflection coating (with

λ ε = 2.9fs/ )0
4c b  on the front side and a semi-infinite substrate with dielectric constant

ε = εb on the back. This corresponds to the sample geometry used in the experiment.

If an antireflection-coated sample is used, the light intensity ∝ nE2 in the medium

is the same as the light intensity in vacuum. Thus, the electric field and the envelope

pulse area inside the sample are attenuated by a factor of n .  The medium refractive

index n is very nearly similar to the background refractive index nb (for single two-level

systems). Thus, for convenience of the reader, we quote the incident (vacuum) envelope

pulse areas in multiples of n nb b. E.g.  = 2Θ π  in vacuum simply corresponds to 2π
envelope pulse area in the semiconductor.

Figure 2.3 shows results for identical two-level systems with a density of

1018 cm–3 and with transition energy Eg. The single maximum around the third harmonic

of the GaAs band gap splits into two maxima which shift symmetrically with respect to

the center frequency. In the theory, the energetic separation of the two maxima is

roughly given by the envelope pulse area, while it appears to be smaller in the experiment

(Fig. 2.2) by about a factor of two. Beside these similarities there are obvious deviations
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as well: In the experiment, we also observe one maximum at small pulse areas. There,

however, another maximum gradually grows on the long wavelength side as the pulse

area increases (Fig. 2.2).
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Fig. 2.3 Theory: Spectra of light emitted into the forward direction around the third harmonic of

the transition frequency. The spectra are shown on a linear scale, vertically displaced and individually

normalized. Resonant excitation with 5 fs pulses. The envelope pulse area Θ in front of the sample

is indicated. E.g. Θ π ε = 2 , with  = ,n nb b b  corresponds to an envelope pulse area of 2π inside

the sample for vanishing reflection losses.

In the following we demonstrate that the continuum of states of the semiconductor

significantly changes the above picture. For clarity, we show solutions of the Bloch

equations (no propagation effects) at this point. Corresponding results are depicted in

Plate 6. Here, ω denotes the (spectrometer) photon frequency, ω0 the laser center frequency

and Ω Ω = ( ) = ( ( ) – ( ))–1
r

h
r r

k E k E kc v  the transition frequency of one transition within

the band. Without band gap renormalization, it is clear that there are no states below the

band gap energy (dashed horizontal line); nevertheless, we depict these data. Again, the

laser center frequency is centered at the band gap energy, i.e. we have hω0 = Eg. The

laser spectrum is shown on the right hand side lower corner as the grey-shaded area. The

spectrum for hΩ = Eg  is also depicted by the white line. Obviously, it resembles the

results shown in Fig. 2.3 very closely, even though we do not account for propagation

effects here. For small envelope pulse area, Θ = 0.5π, we find a single rather narrow

maximum around ω/ω0 = 3 and Ω/ω0 = 1. Its width correlates with the width of the laser

spectrum. This single maximum is nothing but the usual, yet resonantly enhanced, third

harmonic generation. It experiences a constriction for Θ = 1.0π, which evolves into a

shape that resembles an anticrossing for Θ = 2.0π. Here, two separate peaks are only

observed in a rather narrow region around hΩ = hω0 = Eg, while for larger hΩ only a
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single maximum occurs. Also, we find that the contribution of larger frequency transitions

is by no means small. For e.g. hΩ = 2 eV transition energy, the signal is actually larger

than for the band gap, i.e. for hΩ = 1.42 eV. This trend continues for yet larger pulse

areas (see Θ = 4.0π in Plate 6). While there is considerable resonant enhancement (as

can be seen from Plate 6(a)), this enhancement becomes less important at large pulse

areas because the resonant transitions are completely saturated.

The actual spectra (compare eq. (2.12)) are the integral over the individual

contributions, multiplied with the combined density of states, over the relevant range of

transition energies. The bands themselves clearly have contributions even at hΩ = 5 eV.

If one would sum up all these contributions at e.g. Θ = 4.0π (Plate 6(d)), one no longer

gets two maxima but rather a single maximum around ω/ω0 = 3, which would no longer

be in agreement with the experiments. Thus, there must be a reason why the high energy

transitions do not contribute significantly. It was first pointed out to us by H. Haug [32]

that the reason might be that the high energy transitions are likely to have much shorter

dephasing times which significantly suppresses their contribution. Also, band gap

renormalization becomes quite significant at these very large carrier densities. If one

e.g. integrates the spectra from 1.2 to 1.6 eV transition energy hΩ with a constant

density of states (not shown), the experimental behavior is reproduced much better than

in Fig. 2.3. In particular, one gets a gradual growth of a second spectral maximum rather

than the sudden splitting observed for a single two-level system (Fig. 2.3). This

interpretation of short dephasing times of high energy transitions as a result of the large

excitation is consistent with our observations depicted in Plate 5, where we do not

observe any bleaching for these states either. Also, these short dephasing times of high

energy transitions might lead to induced absorption and, thus, negative values of ΔT/T

at wavelengths below the band gap in Plate 5 as well.

Finally, we depict in Plate 7 results obtained for sinc2-shaped pulses, which we

have smoothed by a Gaussian, i.e. E (t) ∝ sinc (t/t0) exp [–t2/ (2 )]Gauss
2τ  cos(ω0t + φ)

with t0 = tpulse/2.7831 and τGauss = 20 fs. Here, we do find a dependence of the third-

harmonic spectra on the CEO phase φ – in contrast to the sech2-pulses of Fig. 2.3 and

Plate 6. This influence becomes relevant when the contributions of the fundamental

wave and the third harmonic, i.e. when the contributions of the optical polarization

originating from ω/ω0 = 1 and ω /ω0 = 3, respectively, interfere. This is the case on the

lower left hand side of Plate 7(a)–(c), see black rectangles.

Further theoretical work to improve the agreement between experiment and theory

is in progress, both in our group as well as in several others (also see the contribution

of S. Hughes in this book). Two aspects seem very important in this context. First, it is

likely that, in the experiment, the pulses within the sample are modified with respect to
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the incident pulses. This might explain why the splitting between the two maxima in the

third-harmonic spectra of the experiment is roughly a factor of two smaller than expected

from the above modeling. Second, theory has to explain, why the damping of states far

above the band gap becomes as short as one femtosecond and below.

2.3 Conclusions

In conclusion, our experiments on carrier-wave Rabi flopping have, for the first time,

given access to semiconductor material dynamics on a timescale comparable to only

one cycle of light. Preliminary analysis shows that the optical transitions which are

several 100 meV above the band gap acquire dephasing times as short as 1 fs and below

(which is shorter than the transition period itself). This would lead to a partial collapse

of the band structure and, as a consequence of this, also to induced absorption at photon

energies below the gap – as is observed in the experiment. Also, the extremely large

electrical fields associated with the light field open new perspectives for studies on

light-matter interaction in a highly unusual regime in which the potential drop over a

single lattice constant is comparable to the band gap and the widths of the bands.
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Chapter 3
High-field effects in semiconductor nanostructures

S. Hughes*

Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK

Abstract

In this work we present a theoretical investigation of high electromagnetic
field interactions in semiconductor nanostructures, qualitatively recovering
several recent experimental observations, and predicting a few new ones. In
the linear optical regime, a space–time method for modeling nonperturbative
electron–hole wave packets in semiconductor quantum wells and wires is
introduced. The technique is computationally efficient, physically intuitive,
and can straightforwardly incorporate Coulomb, static, terahertz, and magnetic
fields to all orders. Various electro-optical and electro-magneto-optical
observables are obtained and a connection is made with recent measurements
using free-electron and MIR lasers. For the high-intensity nonlinear optical
regime, solutions of the semiconductor Bloch equations are shown including
the relevant scattering mechanisms. Several nonlinear optical phenomena
are predicted including excitonic trapping and adiabatic population transfer.
Finally, we solve Maxwell’s curl equations outside the slowly-varying
envelope approximation to demonstrate carrier-wave Rabi flopping, an effect
that was recently observed in GaAs using several-cycle extremely intense
optical pulses.

3.1 Introduction

Driven by the pursuit to understand the differences and similarities between the

semiconductor and atomic systems resonantly excited by laser pulses, the coherent

nonlinear dynamics of direct-gap semiconductors has been vigorously investigated over

the years. Moreover, with the ongoing advancement of short-pulse laser techniques and

excellent semiconductors samples, new classes of coherent dynamic phenomena have

* Present address: Galian Photonics, 300-1727 West Broadway, Vancouver BC, Canada V6J 4W6.
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Semiconductor Nanostructures
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been discovered recently including, for example, coherent exciton control [1,2], self-

induced transmission [3], and carrier-wave Rabi flopping [4]. Several of these effects

are discussed in other chapters of this book. Running in parallel have been new discoveries

in atomic optics such as population trapping using frequency modulated fields [5],

above threshold ionization and high-field harmonic generation (HHG) [6]. Collectively,

these phenomena may be classed as high or extreme electromagnetic (EM) field effects

in matter.

As the development of lasers continues to produce stronger and stronger fields,

we can now study high-field-matter interactions in the laboratory, even with air as the

matter, where the common theoretical techniques of nonlinear optics and perturbative

field expansions break down. Indeed, it is now well established that the extremely-high-

field physics of atomic ensembles presents many fascinating phenomena whereby the

response of matter to high fields cannot be described within perturbation theory. For

example, the process of HHG due to an intense atom-field interaction has received

substantial attention in recent years [6], and harmonically-generated X-ray transients as

short as 100 attoseconds have been predicted. For Rydberg atoms, higher frequency

harmonics are produced from continuum-state to bound-state transitions, in which electrons

release the energy absorbed from the field during its journey in the continuum. The

theoretical problem of HHG is most tactfully treated nonperturbatively by exploring the

wave packet motion by essentially-exact numerical methods.

In certain limits there is a one-to-one mapping between the theoretical description

of atoms and excitons–Coulombically bound electron–hole pairs in solids analagous to

Hydrogen; of course, the binding energies are substantially different. While the bound-

state to continuum-state transitions in atoms are typically in the eV regime, in

semiconductors these transitions are usually in the meV (THz) regime. Nevertheless,

with an increase in scientific research that utilizes free-electron lasers as well as THz

solid-state emitters, high-field THz and MIR spectroscopy is now timely entering similar

extreme regimes for semiconductors [7,8]. However, the frequencies and field strengths

(and thus ponderomotive energies) required are several orders of magnitude apart. For

this reason, high-field effects in semiconductors can be observed at field intensities

many orders of magnitude below what is required for the atoms. We present a new real-

space-time method to calculate dynamic electron–hole wave packets in semiconductors,

allowing the theoretical study of nonperturbative field regimes in a simplistic way. The

technique can incorporate a variety of fields, such as Coulomb, magnetic, THz, static,

all included exactly, in the two-particle low density limit. Experimental observables are

extracted and qualitatively compared to measurements reported in the literature, where

appropriate. Specific examples are presented for both quantum wells and quantum-well

wires.
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With regard to high-intensity ultrashort optical fields, Rabi oscillations of the

population between two states can be seen in the temporal evolution of a two-level atom

(TLA) [9]. Additionally, in the case of a sinusoidal frequency-modulated excitation,

square-wave oscillations of the population – periodic state trapping – as well as more

complicated and phase-dependent structures may appear [5]. In combination with other

well-known concepts such as adiabatic rapid passage, multiphoton resonances, and

Landau–Zener transitions, trapping was experimentally demonstrated in a TLA [10].

For two-band semiconductors, however, trapping and Rabi flopping are scarcely expected

due to Coulomb many-body complications and the valence/conduction band-continua

of free-carriers. At least this was the general consensus a few years ago. In semiconductors,

the two-level model (as a first approximation to a two-band description) is considered

inappropriate because Coulomb many-body interactions result in a renormalized Rabi

energy and bandedge, and excitation-induced dephasing. Nevertheless, as mentioned

before, multiple Rabi flopping on a semiconductor free exciton resonance has been

recently reported for both bulk [3] and quantum wells (QWs) [11]; these measurements

were successfully explained within the framework of the semiconductor Bloch equations

(see also Chapter 1). We exploit this effect further to show that one can achieve population

trapping dynamics in semiconductors using frequency-modulated or suitably-chirped

broadband optical pulses. Finally, we will solve Maxwell’s curl equations without

incorporating the slowly-varying envelope approximations to study carrier-wave Rabi

flopping of femtosecond optical pulses of only several carrier-cycles time duration [12].

Experimental evidence for this latter phenomenon was only just reported using thin film

GaAs and extremely short optical pulses [4], and is also discussed in Chapter 2 of this

book.

In the remainder of this chapter, we describe, in more detail, several high EM-

field effects in semiconductor nanostructures. First, in section 3.2 we will present the

general theoretical framework. In section 3.3 we investigate electron–hole wave packets

in the presence of large static, THz, and magnetic fields. In section 3.4 we solve the

semiconductor Bloch equations and quantum Bolzmann equations in the presence of a

frequency-modulated optical pulse, demonstrating exciton trapping and quasi-adiabatic

population transfer in a semiconductor quantum well. Section 3.5 deals with carrier-

wave Rabi flopping and ultrafast coherent effects outside the rotating-wave approximation.

In section 3.6 we give our conclusions and closing discussions.
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3.2 General theory

The role of this theory is to calculate the propagated electromagnetic fields or the

corresponding field correlation functions, and to make a connection to microscopic

processes, such as many-body and excitonic Coulomb interactions between electrons

and holes. In optical investigations of semiconductor structures, externally controlled

EM fields are applied to the semiconductor material. The fields which contain frequency

components close to the band edge of the semiconductor induce transitions of electrons

from the populated valence bands into the empty conduction bands, thus creating electron–

hole (e–h) excitations. On ultra-short time scales, e–h pairs decay by stimulated radiative

recombination, emitting optical radiation that interferes with the applied electromagnetic

fields. The EM field can subsequently be measured after its propagation through the

entire sample. Experimentally, only the changes of the electromagnetic field after its

propagation through the sample can be considered as a detector for microscopic processes

in the material. The measurements are usually performed in the reflection or transmission

geometry.

Therefore, our task is to solve Maxwell’s equations for the propagating total EM

fields with the respective initial conditions. The boundary conditions are dictated by the

geometry of the semiconductor structure, whereas the initial conditions are fixed by the

state of the sample before the arrival of the pulse (EM field). After the arrival of the

field, the semiconductor experiences electromagnetic sources caused by the e–h excitations.

These sources enter as macroscopic averages of the microscopic current, j, and charge

density, ρ, into Maxwell’s equations. These latter sources are calculated from the material

Bloch equations, discussed below.

In this work, we use excitonic units throughout; h = mr = e2/ε∞ = 1 where mr is the

reduced mass of the e–h pair. The speed of light in the crystal is related to the background

dielectric constant by c c = /  = /v ε ε ϑ∞ ∞  where ϑ is the fine structure constant.

The theory presented in this section will concentrate on semiconductor quantum wells,

since they will form the main focus of our chapter. For more theoretical details, we refer

the interested reader to the excellent textbook and review paper given in References [13]

and [14], respectively.

We assume a familiarity with second quantization for particles and begin our

dynamical description of optically excited carriers from the following Hamiltonian:

H = Hfp + Hcc + Hcl, (3.1)

where

H
k

k k k
k

k k kfp , ,
†

, , – ,–
†
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i i
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j
h

j jc c d dε ε (3.2)
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is the free-particle ( fp) Hamiltonian in the e–h picture. The terminology above is as

follows: k is the in-plane wavevector; i( j ) refer to the electron (hole) subband index;

ε i
e h
,
( )
k  is the electron (hole) single-particle energy (band structure); and c ci i,

†
,/k k  and

d di i,–
†

,–/k k  are the creation/annihilation operators for electrons and holes.

The second contribution in Equation (3.1) describes the carrier–carrier (cc)

interaction via the Coulomb potential V
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The final term accounts for the carrier–light (cl) coupling that we describe here within

the dipole approximation

H
k

k k k k k kcl
, ,

†
,–

† *
,– , = –  [ ( )  + ( ) ],Σ

i
i i i i i iE t c d E t d cμ μ (3.4)

where all intraband terms have been neglected. Equation (3.4) describes the interaction

in the z-direction (growth direction) localized dipolar plane with a classical optical

laser field at the position of the plane, which is given by the matrix element Ei(t) =

〈i | E(x, t) | i 〉, where | i〉 = ϕi(z) labels the confinement functions in the wells and μk is

the optical dipole matrix element between electron and hole states.

In the rotating wave approximation, it is advantageous to work with complex

fields. Outside the rotating wave approximation, we will use real fields (see later). The

particle current can be written in terms of the transition probability between different

e–h states (polarization functions)

j
t

z z d c
i i

e
i
h

i i =   ( ) ( ) ,
, ,– ,

∂
∂

〈 〉Σ
k k k kμ ϕ ϕ (3.5)

where that the polarization and the material current are related through j P = ˙ . To calculate

the particle current, we use the electron and hole distribution functions, f e and f h, and

the interband transition amplitude p as dynamic variables for the description of the

material system. These quantities are defined as

f c c f d d p d ci
e

i i i
h

i i i i i, ,
†

, , ,
†

, , – , = ,     = ,     = k k k k k k k , k k〈 〉 〈 〉 〈 〉 . (3.6)

The equations of motion can be subsequently obtained from the Heisenberg equations, e.g.

d
dt

f
i

c c Hi
e

i i  = 1 [ , ], ,
†

,k k k〈 〉 (3.7)
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and correspondingly for the other quantities.

In the time-dependent Hartree–Fock approximation [13], we obtain the following

semiconductor equations:

∂
∂

∂
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are the renormalized Rabi-frequencies and electron and hole energies, respectively, and

μcv,k is the transition dipole matrix element between the conduction (c) and valence (v)

bands. We refer to the above as the semiconductor Bloch equations (SBE) in analogy

with the well known atomic Bloch equations for the two level atom [9]. The correlation

terms ( |  | )corr, corr˙ ˙p f  will be discussed later. By obtaining a solution of the SBE, the

carrier density can be calculated from the electron (or hole) population through N =

2 ∑k fk, and similarly for the optical polarization, P = 2∑kμcv,kpk. The factor of two

accounts for spin and we have ignored some obvious normalization constants.

3.3 High-field electro-optics in quantum wells and wires

The aim of this section is to introduce a space-time method and apply it to study

semiconductor wave packet (WP) dynamics in the presence of extreme fields – electric

and (or) magnetic (dynamic and static). We will focus on e–h WPs that are dynamically

created by resonantly exciting a semiconductor with a short (but finite) optical pulse.

The pulse intensity is weak and thus we work in the linear regime for the optical field,
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but all other fields are treated nonperturbatively. This enables us to work in the low

density limit where many-body effects do not come into play. In the presence of large

THz, static, or (and) magnetic fields, one can explore WP motion and experimental

observables that are distinct to the semiconductor system. Additionally, semiconductor

studies in the dynamic extreme-field regime, although relatively new, offer several

advantages over atomic environments including the ability to change the masses and

dimensionalities of the system. At the outset, we emphasize that electro-absorption

studies in semiconductors are certainly not new. The influence of a strong constant

electric field F on the optical and electronic properties of semiconductors was brought

to the fore over four decades ago, beginning with the Franz–Keldysh effect in bulk

crystals [15]. For 2d semiconductors, such as quantum wells (QWs) [16], similar effects

occur for a field polarized in the plane, while the quantum-confined Stark effect occurs

for fields polarized in the growth direction. In 1d semiconductors, the Franz–Keldysh

effect was recently theoretically investigated [17,18] using the real-space technique

described below.

In the last few years there has been much interest in extending the semiconductor

electro-optical studies into the dynamic (i.e. THz) regime. Besides being of fundamental

interest, as highlighted in the introduction there are some very close analogies with

high-field effects in atoms, though this connection is sometimes rarely made in the

literature. An intuitive WP approach for modelling HHG in semiconductors was presented

in Reference [19]. From a nonperturbative theoretical perspective, several techniques

have been introduced, namely Green’s function [20] and non-equilibrium Green’s function

techniques [21] (both restricted their handling of excitons and dynamics), as well as full

scale numerical solution of the SBE in momentum space [22]. With regard to modelling

high magnetic field interactions, usually one has to resort to a specialized basis set or

(and) treat the Coulomb interaction perturbatively. In this work we set about solving the

problem using a real space and real time technique, specializing in the low density

regime (as in the above cases). The method (i) includes the fields (THz and magnetic)

and the Coulomb interactions nonperturbatively, (ii) is an order of magnitude faster than

the K-space SBE even without the magnetic field, and (iii) provides full spatial information

thus providing a nice link with transport and optical properties. We will first concentrate

on QWs, where the technique can be applied to recent free-electron laser studies and

manipulation of excitonic states–rovering the dynamic Franz–Keldysh effect [7,22]. We

will also model magneto-excitons and electro-magneto-excitons and explore their WP

motion. The present theoretical understanding of semiconductors in large magnetic

fields is limited since implementing the effects exactly with the Coulomb interaction is

very difficult if one works in energy space; besides side-stepping this problem, moreover,
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we show that in the presence of crossed magnetic and THz fields, WP stabilization can

occur. Additionally, we will explore extreme high-frequency induced sidebands that

show good trends with recent MIR experiments [8]. Lastly, we investigate the static and

dynamic Franz–Keldysh effect in semiconductor quantum-well wires.

Real space theoretical approach to electon–hole wave packets

High-field effects in atoms can be investigated nonperturbatively by numerically solving

an effective Schödinger equation

  
i

t
t

V t tr
( , )

 = [ –  – ( ) + ( )  ] ( , ),2
THz

∂
∂

⋅ΨΨ ΨΨr
r F r r� (3.14)

where r is the spatial position, ΨΨΨΨΨ(r, t) is the WP, FTHz(t) is the oscillating (THz) electric

field, and V is the Coulomb potential. A fully quantum method for integrating numerically

the above equation without using a restrictive basis expansion can be implemented by

employing the split-step method [23,24]. The essence of this method is to carry out the

action of the kinetic operator efficiently in Fourier space, while the action of the potential

operator is carried out in real space. (We will, however, take a different approach as the

split-step method cannot handle magnetic fields.) On the other hand, semiconductor

optical problems are usually tackled within the framework of the SBE as discussed

earlier [see Equations (3.8–3.10)]. In the low density regime, for a two subband model,

this leads to the following set of equations for the polarization only,

  

∂
∂

⋅p t
t

t p t i p t i t p tk
k k k k k kF

( )
 = – ( )  ( ) – ( ) + ( ) – ( ),THz � Δ Ω Γ (3.15)

where Δk = Ek – ωl + Eg, Eg is the band gap, ωl is the carrier frequency of the optical

pulse, and FTHz(t) is the applied field that can be polarized in any direction (see below).

Of course static effects can be described simply by dropping the time dependence of the

dynamic field. We work here within the slowly-varying envelope approximations where

the generalized Rabi frequency is ΩΩΩΩΩk(t) = μ εcv, Optk ˜ (t) + ∑qVk–q pq(t), with ε̃ Opt ( )t  the

slowly-varying optical field polarized in the QW plane. To account qualitatively for

Coulomb correlations, we assume the total dephasing rate of the optical polarization

Γ –1 = 500 fs, unless stated otherwise. This is a reasonable assumption provided the

input optical pulse is weak, which it is for the subsequent studies. The solution of the

SBE can then be solved in k space, and the total optical polarization is POpt(t) =

2 ∑kμcv,kpk(t). However we do not learn anything about the spatial dynamics; also, the

k equations are extremely difficult to solve with the THz field since the dynamical

components become anisotropic resulting in a major computational effort. Indeed, the
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solution alone with the THz field was only reported recently [22], and takes many days

to simulate even with fast computer processors. With the possible addition of a magnetic

field, the numerical problem becomes intractable, requiring a switch to a large number

of Landau basis states with some perturbation approximations [13]. This is essentially

because semiconductor physicists usually tackle most theoretical problems in energy

space because of translational invariance. On the contrary, we will show in this work

that the dynamics of semiconductor nanostructures excited hybridly by a weak sub-

picosecond laser and a strong EM field is ideally studied in terms of WPs. We highlight

that the pioneering work of Schmitt-Rink and co-workers into the semiconductor Stark

effect also approached the electro-optical problem from the real-space perspective,

essentially solving the stationary Schrödinger equation [16].

Assuming on-resonance excitation (zero detuning) we can rewrite the above equation

in real space,

  
i

P t
t

t i P t V P t tc
( , )

 = [–  +   ( ) – ] ( , ) – ( ) ( , ) + ( ) ( ),2
THz

∂
∂

⋅r
r F r r r rr� Γ Ω δv (3.16)

where P(r, t) is the e–h WP, Ωcv(t) is the Rabi frequency, and r = re – rh. The THz

driving field will form the source for an oscillating dipole; a subsequent displacement

of the WP from r = 0 means it is polarized. For simplicity we neglect the k-dependence

of the interband dipole moment, though it is straightforward to include. The optical

polarization is simply POpt(t) = 2μcvP(r = 0, t), while the THz-induced intraband dipole

moment

P r r rTHz ( ) =   *( , ) ( , ).t e dr P t P t∫ (3.17)

Therefore, for the emitted THz electric field (assuming a point source)

E ˙̇PTHz 0 THz( ) = – ( )/4t t r.μ π (3.18)

The structure of the Equation (3.16) is very similar to that for the atomic problem but

we have dephasing and an optical pulse; therefore the e–h WP is created dynamically

and relaxes dynamically (dephases). In the presence of a magnetic field, B, terms like,

for example, the momentum operator p i xx
2 2[ / ]∂ ∂  are replaced by [ px + eAx /c]2 [13]

(where Ax is the vector potential) and do not pose any further refinements on the

computational technique; relativistic correction terms can also be added. Thus, whether

one studies free carriers, excitons, THz field ionization, or magnetic field effects, the

computational technique is the same. This is in stark contrast to the k-space approach

where the numerics become increasingly more difficult with the various fields. We do

point out that the k-space approach is, however, much better suited to high-density and
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nonlinear optical studies, as demonstrated in many pioneering publications and in the

next sections, but intractable with very large electric and magnetic fields.

Employing weak input optical fields, one can obtain the material properties via

Maxwell’s equations by Fourier transforming the WP at r = 0 to the frequency domain

and dividing by the spectrum of the input pulse. Thus absorption and the refractive

index are, respectively, proportional to

Im[ ( )]/ | ( ) |  and Re[ ( )/ | ( ) | .Opt Opt
2

Opt Opt
2P Pω ε ω ω ε ω˜ ˜

Our numerical strategy is based on an exploitation of the finite-difference time-

domain [FDTD] [25] method and will be described in detail elsewhere; suffice to say

here that FDTD has recently became the state-of-the-art computational method for

solving Maxwell’s equations exactly. A similar computational technique is also given in

a recent textbook [26]. Essentially we replace the polarization equation by finite difference

approximations, and implement them on a computational cell like the Yee cell [25] used

in electrodynamics; in addition, the delta function is approximated as a narrow Gaussian

and its numerical accuracy is verified to be in excellent agreement with other techniques

in obtaining the excitonic and continuum properties for 1d, 2d, and 3d semiconductors.

We work in the symmetric gauge, and take material parameters typical of GaAs throughout

with a bulk exciton binding energy E0 = 4.2 meV, and a Bohr radius a0 = 140 Å.

Electro-magneto-optical simulations in quantum wells

Here we focus attential to a two-subband semiconductor QW excited by a short optical

pulse where the center of the pulse corresponds to time t = 0 fs. For the electric field we

choose a weak Gaussian pulse with a 40 fs FWe–2M irradiance. To explore several

applications of the real space method, we will investigate four separate semiconductor

excitations. (a) A short optical pulse only. (b) As in (a) but also with a static magnetic

field B n̂ = 0B z  with a corresponding Landau frequency of 4 meV [13] (≈ 1 THz); n̂ z

is a unit vector perpendicular to the QW plane (growth direction). (c) As in (a) but with

the addition of a THz electric field FTHz(t) = n̂ x F0 sin(Ωt + φ) with Ω = 4 meV and

phase φ (at the center of the optical pulse t = 0); F0 the magnitude of the THz field is

taken to be 5 kV/cm. And (d), as in (a) but with a mixed B-THz field applied, with

identical parameters as to the above.

In Fig. 3.1 we show a snapshot of the corresponding WPs at t = 1.8 ps after the

short pulse has gone. |P(r, t)| is a measure of the probability of finding an electron and

hole at position r at time t. Initially the WP is created at r = 0 to satisfy energy and

momentum requirements of a direct gap semiconductor. (Note that much larger spatial
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regions are accounted for computationally.) In Fig. 3.1(a) the WP is concentrated near

the center due to the Coulomb interaction, since there is a high probability of finding the

electron and hole at the same relative position (excitons). Figure 3.1(b) depicts the WP

undergoing circular motion about the growth direction, and small Landau structures

begin to appear at larger spatial positions Fig. 3.1(c) highlights a pronounced WP

distortion and interference because of broken symmetry, and side lobes can be seen in

the WP (these are formed by the combination of slow transverse spreading, the relatively

fast field driven motion in the polarization direction, and Coulombic rescattering) Fig. 3.1(d)

shows a unique spiralling interfering WP due to the combined THz and B fields.

Fig. 3.1 Wave packet, | P(r, t) |, at time t = 1.8 ps for various excitation regimes (a) optical pulse

only, (b) also with a B field, (c) with a THz field, and (d) with a mixed B-THz field. The spatial

dimensions are given in units of the exciton Bohr radius.
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To link the WP motion to familiar optical properties, in Fig. 3.2(a) we calculate

the familiar field-free absorption spectrum for a QW, namely a strong 1s exciton resonance

and a Coulombically-enhanced continuum; in the presence of a THz field we obtain the

dynamic Franz–Keldysh effect with oscillations above the band gap [7]. Note that we

have calculated the phase averaged WP results and thus the graphs represent the true

absorption. Different phases, in principle, can coherently control the WP’s motion. In

Fig. 3.2(b) we obtain Landau oscillations and an enhancement of the lowest lying
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exciton. For clarity, (B-induced) diamagnetic shift terms of the band gap are not shown,

though will depend on the helicity of the optical light pulse. To further highlight our

technique with larger fields, we also employ a 12 meV Landau frequency, polarized, as

before, in the growth direction. Substantial magneto-excitons are seen in the inset, with

peaks separated by the Landau energy. These recover the known solution that employs

many basis states in energy space [13], but without restrictions of perturbation theory

and working with complicated basis states. We next obtain the mixed B-THz-field

scenario resulting in interference between magneto-excitons (Landau levels) and nonlinear

THz interactions, shown in Fig. 3.2(c). In Fig. 3.2(d) we plot the emitted THz field

(from the oscillating dipole) in the presence of the THz driving field; a variety of

harmonics similar to HHG in atoms appears. In the presence of a THz field the extra

peaks correspond to the absorption of one optical photon and the absorption (or emission)

of one or more THz photons. In the mixed field case we obtain a novel magnetic-THz

Fig. 3.2 Optical polarization versus energy corresponding to the following: (a) with (dotted line)

and without a THz field; (b) with (solid line) and without a B field; (c) with (dotted line) and

without a mixed B-THz field; (d) emitted dipole field with a THz driving field only and a mixed

B-THz field (solid line).
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coupling regime; interestingly the harmonics are suppressed when we add a magnetic

field since WP stabilization occurs for longer times. This effect is consistent with the

Green’s function prediction [27] and all the physics can be explained from the WP’s

internal motion.

Next, we remove the time dependence of the oscillating THz field, e.g. F = F0 n̂ x ,

thus working in the regime of the static Franz–Keldysh effect. However, in addition we

add a magnetic field in the growth direction. In Fig. 3.3(a) we show an example of the

WP at time t = 1 ps. In this case, there is no longer a forced oscillating dipole though

the WP is undergoing B-field spiralling and e–h ionization through the applied dc field.

The corresponding absorption is shown in Fig. 3.3(b), demonstrating significant exciton

ionization and mixed Franz–Keldysh magneto-exciton features. We note that the emitted

THz field (see insert) shows no clear peaks beyond the dc signal which is due to the fact

that the static electric field is dominating the WP motion.
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Fig. 3.3 (a) Wave packet at time t = 1 ps for a static F-B field excitation. (b) Absorption spectrum

with (solid line) and without the mixed field. As an inset we show the emitted dipole field.

Before closing this subsection, we present an example of extreme high-frequency

THz optics by using a 5 THz frequency field with a 100 kV/cm peak amplitude. We have

also tried such a simulation using a momentum space approach and it is intractable, yet

the present method solved the problem in about 10–20 CPU time minutes on a standard

500 MHz UNIX workstation. In Fig. 3.4 we depict the WP at t = 0.5 ps as well as the

optical absorption and THz emission. Changes in the absorption 80 meV above and

below the band gap can be seen, and several broadband harmonics appear; both these

effects show similar trends with recent experiments studying extreme MIR interactions

in semiconductors [8]. We note that although the field is almost 10 times the QW

exciton binding energy, the Coulomb interaction still dominates the spatial interference
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patterns. We remark that at these field strengths the role of LO-phonons may become

important for a quantitative explanation of experimental measurements.

Fig. 3.4 (a) Absorption spectrum with (solid line) and without a large 5 THz-frequency field. (b)

Emitted dipole field. (c) Wave packet at time t = 0.5 ps.
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Static Franz–Keldysh effect in quantum wires

Semiconductor quantum wires offer a unique playground for investigating how electrons

and holes move in one dimension [28]. A surprising feature of the 1d system is the

inverse-square-root divergence of the joint density of states (DOS) at the band gap.

However, as pointed out in Reference [29], the Sommerfeld factor, which is the intensity

ratio of the optical density associated with excitonic scattering states to the free e–h pair

above the band gap, removes this divergence. Moreover, in contrast to the 2d and 3d

cases, the Sommerfeld factor is <1 for all frequencies above the band gap. Consequently,

the singular 1d-DOS does not show up at all in the linear absorption spectrum (even

with no dephasing).
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Although Franz–Keldysh effects in bulk crystals and quantum wells have been

actively investigated for a number of years, with regards to the theory of the Franz–

Keldysh effect in quantum wires, besides a study for field effects for currents applied in

the growth direction [30], no solution existed to the best of our knowledge until recently

[17], which is described below. However, Coulomb ionization effects have been and

remain to be intensely investigated for 1d atomic systems [31]. Although the 1d

semiconductor was originally a model system, both experimental [32] and theoretical

[33,34] studies on semiconductor quantum-well wires (QWWs) are receiving renewed

interest as a result of pronounced strides in growth technology resulting in high quality

samples with well defined characteristics.

Again we employ the real space approach. However, because we are dealing with

quantum wires, some modification of the polarization equation is required. Assuming

only the 1e subband (a) and various h subbands (b) (see below for more details):

i
t

P x t E
x

x i P x tab g ab  ( , ) =  –  +  –  ( , )
2

2
∂
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∂
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a
a ab (3.19)

where Pab is the induced polarization between two subbands a (electrons) and b (holes)

and F is the static field polarized along the wire axis; in general the total polarization

contains an infinite summation over all subbands, although accurate simplifications can

be made. As before, we choose an optical pulse that is excited resonantly with the band

gap.

For a tractable model for the QWW potential, we will assume that the electrons

and holes are confined laterally by a harmonic oscillator potential with a subband

spacing of Ωj=e,h. Furthermore, we assume essentially perfect confinement in the growth

direction (i.e. only one associated subband). The Coulomb interaction between charge

carriers thus becomes [30]
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where ψj( y) are the eigenfunctions [34] associated with the lateral carrier motion
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with μ the reduced mass, mj the mass of an electron or hole, and Hn the Hermite

polynomial.
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For the moment we concentrate on a two-subband semiconductor model (ab = 1e-

1hh) but will later discuss the role of multi-subbands as well as Coulomb mixing

effects. For the eigenfunction calculations we choose subband spacings of 3E0 for the

holes and 7E0 for the electrons, and mh = 5me. This results in holes that are more

strongly confined than the electrons which is typical of real QWWs. Since we are only

dealing with 1d, the computational technique is extremely efficient, requiring a few

seconds CPU time per run on desktop computers. We first calculate an absorption

spectrum with a dephasing time of 500 fs in the absence of an external field F. In Fig.

3.5(a) is shown various snapshots of the polarization WP (|P(x, t)|), while Fig. 3.5(b)

displays the corresponding absorption spectrum. In addition to a strong 1s exciton peak

we also obtain the 2s peak for larger dephasing times (see below) and verify that the

Coulomb interaction removes the singularity at the band gap associated with the 1d

Fig. 3.5 (a) Wave packet at several times (solid curve: t = 0 fs, dashed curve: t = 400 fs, and dotted

curve: t = 600 fs). (b) Optical absorption spectrum versus detuning from the band gap without

(solid line) and with inhomogeneous broadening (dashed line). The dotted curve has been shifted

vertically for clarity. The inset shows identical calculations but with a dephasing time of 2 ps. (c)

As in (a) but with a field energy (eFa0) of 0.8E0. (d) As in (b) but with a peak field energy of 0.8E0.
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DOS [13,29]. The 1s binding energy is about 11 meV, 2–3 times the bulk value. We also

show the absorption spectrum in the presence of 2-meV inhomogeneous broadening

[35] (dashed line). For this calculation we carried out a standard convolution with a

normalized Gaussian distribution after first obtaining the original absorption spectrum.

As an additional simulation, we also calculate an absorption spectrum with a long

dephasing time of 2 ps in the absence of an external field F, shown as an inset to Fig.

3.5(b); the 2s exciton is clearly resolved though inhomogeneous broadening apparantly

destroys any signatures of this resonance. The presence of inhomogeneous broadening

again suppresses the above gap oscillations. The WP snapshots again highlight the

physics; shortly after the pulse arrives there is a strong probability for the electrons and

holes to be Coulombically bound, hence the sharp peak near the center of the relative

motion space. At later times the WP spreads and quantum beating occurs between the

continuum states and the excitonic states. Ultimately, the WP speads out and dephases.

Next we add an electric field aligned along the QWW axis (x-direction). In Fig.

3.5(c) and 3.5(d) we respectively display WP snapshots and the resulting absorption

spectrum for a field energy of 0.8E0 (corresponding field strength of 2.4 kV/cm). These

energies are quoted in terms of eFa0, where E0 and a0 are the 1s Bohr radius and binding

energies, defined earlier. In addition to a reduction of the 1s oscillator strength (of about

50%) and complete ionization of the 2s exciton, the free carrier–continuum–portion of

spectrum exhibits pronounced oscillations that decrease in amplitude for higher energies.

The WP is now strongly distorted, asymmetric, and propagates off to the right.

Now we employ large static fields and compare to the free carrier results, with

energies greater than the quantum wire 1s binding energy. Specifically we adopt the

field energy of 4E0 (12 kV/cm). In this regime, complete exciton ionization is expected.

How do exciton effects modify the spectrum above the band gap since one expects

signatures of a singularity for the free carrier results? Figure 3.6(a) shows snapshots of

the WP at t = 0 fs and t = 400 fs; substantial interference effects are now evident for the

propagating WP. In Fig. 3.6(b) is shown the corresponding absorption spectrum. Very

large Franz–Keldysh oscillations now occur even in the presence of inhomogeneous

broadening. Figures 3.6(c) and 3.6(d) show identical calculations but without the Coulomb

interaction. Firstly a sharp discontinuity is not obtained as a result of field-induced

tunneling, although the spectrum does tend to rise more and more for frequencies

approaching the band gap. The oscillations have a slightly different frequency separation

and larger amplitude in the free carrier case since the Sommerfeld factor tends to inhibit

free particle absorption. The free-carrier WP smoothly propagates to the right, spreads,

and dephases. Further numerical investigation (see the inset to Fig. 3.6(d)) at even

higher fields results in a deeper modulation of the oscillations and an increase in the
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width of the oscillations. Moreover, field-induced transparancy can be achieved at particular

spectral positions; there is also a continuing shift of the free carrier spectrum to lower

energies (not shown). We note that the tunability of the peaks and the deep modulations

are unique for QWWs and cannot be obtained for 2d and 3d semiconductors because of

their relatively large background absorption (dependent on the DOS) and lower tunneling

rates. Indeed for QWs and bulk semiconductors the Franz–Keldysh oscillations are

typically rather small even for very large field strengths [13]. The reason for the present,

substantial oscillations is because ionization tuneling in 1d systems is apparantly much

easier. Further, the results obtained with a dephasing time of 2 ps or in the limit of no

background dephasing are almost identical to those above indicating that the broadening

is primarily due to field-induced tunneling. The broadening can be understood as an

Fig. 3.6 (a) Wave packet at several times (solid curve: t = 0 fs, and dashed curve: t = 400 fs).

(b) Optical absorption spectrum (with and without inhomogeneous broadening). (c) As in (a) but

without excitons. (d) As in (b) but without excitons; the inset shows the absorption spectra

obtained for the higher field strength of 16E0.
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uncertainty principle effect; soon after the excitons are created, they are destroyed by

field ionization, and hence the energy resonance is broadened by lifetime broadening [16].

Finally we employ a multi-subband model with 1 conduction subband (1e) and 4

valence subbands (1hh, 2hh, 3hh, 4hh). Since we are dealing with symmetric wires for

this study only two WPs contribute to the optical properties at low density, P11 and P13.

Consequently we now have to solve two polarization equations that are coupled through

the Coulomb matrix elements. Full Coulombic coupling is taken into account self-

consistently by calculating the appropriate Coulomb and interband matrix elements.

Figure 3.7(a) depicts the WP snapshots at t = 0 fs and t = 400 fs for both P11 and P13;

note that the scales are adjusted accordingly to account for the different dipole matrix

elements. The corresponding absorption spectra (Fig. 3.7(b)) now exhibit 2 peaks separated

by 6E0 (2 times the subband spacing). Figures 3.7(c) and 3.7(d) depict identical calculations

with the field strength of 4E0. Surprisingly the structure of the second allowed transition

Fig. 3.7 (a) Multi-subband WPs P11 and P13 at several times (solid line: t = 0 fs, and dashed line:

t = 400 fs. The dephasing time is 500 fs). (b) Optical absorption spectrum (with and without

inhomogeneous broadening). (c) As in (a) but with a peak field energy of 4E0. (d) As in (b) but

with a peak field energy of 4E0.
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is completely washed out and the results are almost identical to those shown in Fig.

3.6(d). Finally, in relation to high-field transport experiments [36,37], effects such as

transient velocity overshoot will not show up in our present study since we are dealing

with the optical properties – where the only contributing spatial dynamics is at x = 0.

Dynamic Franz–Keldysh effect in quantum wires

In this subsection we investigate effects that can occur when the applied driving field

becomes time dependent, that is when the QWW is subjected to intense THz-frequency

electric fields FTHz(t), similar to the QW case described earlier. The theoretical treatment

is identical to above, the only difference is that the applied electric field now oscillates

at THz frequencies, e.g. FTHz(t) = n̂ x F0 sin(Ωt + φ), with n̂ x a unit vector in the QWW

axis, and F0 is taken to be 8 kV/cm with a corresponding field energy E = 3E0.

In what follows, we use the multi-subband model with 1 conduction subband and

4 valence subbands (see above). We mention, however, that essentially all the important

dynamics can be obtained by assuming a two-subband semiconductor model (ab = le-

lhh) since P11 is by far the predominant WP for this particular study; the additional

subbands are included for completeness. The dephasing time is again 500 fs.

We first calculate absorption properties in the absence of an external field F(t).

Figure 3.8(a) shows the input pulse (dashed curve), transmitted pulse (solid curve), and

their ratio (dotted curve) which gives a measure of the spectral absorption. We note that

a proper cw absorption spectrum is not well defined in the presence of a fixed phase

THz field, so we choose the above approach to highlight phase effects. Although we

could do phase averaging as in the QW case we explicitly want to domonstrate coherent

control. Next we add a THz-frequency electric field aligned along the QWW axis (x-

direction). In Figs 3.8(b), 3.8(c) and 3.8(d) we show the input and transmitted irradiances

for Ω = 2 THz, 2.5 THz, and 3 THz, respectively; with the phase φ = 0. In Fig. 3.8(b),

not only do we see spectral gain (which is discussed in more detail below) but, in

addition to a reduction of the 1s oscillator strength, there is a clear absorption splitting

of the fundamental exciton resonance. A single THz photon resonance from this splitting

lies just below the band edge, that is the splitting energy plus a THz photon energy lies

just below the band gap. Therefore what we are obtaining here is analogous to the well

known Autler-Townes splitting for three-level atoms. The basic physics behind this

phenomenon is to introduce a third level to a two-level system whereby the third level

coherently couples to one of the other levels. Thus when two appropriately tuned fields

are applied, the usual absorption spectrum has a large dip in its absorption resonance

due to the coherent coupling to the third level. In the present case however the third level
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coherence is achieved via intraband coupling of the lowest (1s) and higher exciton states

lying just below the band edge. In essence the higher lying exciton states are now

coherently coupled to the lowest state by the THz field. To clarify this mechanism we

see that the region of induced transmission (local resonance minimum) gradually red

shifts proportionally with an increasing THz photon energy and eventually disappears

when the THz photon energy becomes greater than the 1s exciton binding energy; to

highlight the red shift, for clarity an arrow is shown in Fig. 3.8(d). This is expected as

there is no dipole coupling between exciton and continuum states, and the effect of the

higher subband does not play any significant role for our chosen QWW.

Now we investigate the observation of two-photon gain which results in a small

gain in the absorption spectrum. The resulting effects will be quite distinct from the

Fig. 3.8 (a) In the absence of F(t): Input pulse (dashed curve), transmitted pulse (solid curve), and

their ratio (dotted curve) which gives a measure of the absorption. (b) As in (a) with F(t) applied

and Ω = 2 THz. (c) As in (a) with F(t) applied and Ω = 2.5 THz. (d) As in (a) with F(t) applied

and Ω = 3 THz; the arrow shows the red shift of the local minimum (see text).
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above one-photon scenario as they will appear as large changes in the spectrum in the

region 2Ω above the 1s resonance in the continuum. Figures 3.9(a) and 3.9(b) respectively

show the Ω = 2 THz simulations with a phase of φ = 0 and φ = π /2. As can be recognized

the two-photon replica can be one of induced gain or induced absorption, depending on

the initial phase of the WPs.

In Figs 3.9(c) and 3.9(d) are shown snapshots of the polarization WP (|P11(x, t)|)

at the respective times of 200 fs (solid curve) and 600 fs (dashed curve). The snapshot

at time t = 200 fs depicts the WPs shortly after the optical pulse has gone where there

is a strong probability for the electrons and holes to be Coulombically bound. At later

times the WP spreads and quantum beating occurs between the continuum states and the

excitonic states, as in the QW case. Once again, since the WPs are highly anisotropic,

there is a net dipole moment which results in the emission of THz radiation, is discussed

below.

Fig. 3.9 (a) Input pulse (dashed curve), transmitted pulse (solid curve), and their ratio (dotted

curve) which gives a measure of the absorption. The THz frequency is Ω = 2 THz with φ = 0.

(b) As in (a) with φ = π /2. (c) Wave packet (P11) at several times (solid curve: t  = 200 fs, and

dashed curve: t = 600 fs) corresponding to (a). (d) WP (P11) at several times (solid curve: t = 200

fs, and dashed curve: t = 600 fs) corresponding to (b).
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In Fig. 3.10 we show the emitted THz field versus t for the phases (at t = 0, center

of the optical pulse) of φ = 0 (a) and π/2 (b), for the 2 THz field. Each transient is

approximately 2 ps in duration reflecting the combined effect of WP spreading and

dephasing. We note that the time t = 0 corresponds to the center of the optical pulse and

hence has a finite contribution. In the corresponding EM spectra (Figs 3.10(c) and

3.10(d)), a series of harmonics separated in frequency by approximately 2Ω appear in

the THz regime. (Of course they are not exactly spaced by 2Ω as here we are dealing

with broadband pulses and non-perturbative effects.) Once more, the spectra do not

seem to form any plateaus [38] (an extensive region of similar spectral intensity in

frequency extending well above the fundamental excitonic binding energy), as in the

QW study. But the range of additional frequency components is sufficiently large to

temper experimental investigations.

Fig. 3.10 (a) Emitted THz field as a function of time with φ = 0 and Ω = 2 THz. (b) As in (a) with

φ = π /2. (c) Corresponding spectrum to (a) [A log scale is used for clarity]. (d) Corresponding

spectrum to (b).

We now briefly summarize the THz-frequency driving results: for Rydberg atoms

[39], higher frequency harmonics are produced from continuum-state to bound-state

transitions, in which electrons release the energy absorbed from the field during its
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excursion in the continuum. A similar mechanism is at work here when the ponderomotive

energy of the e–h pair becomes comparable or greater than the bound states’ energy.

Infact, our value of F0 = 8 kV/cm was chosen to produce ponderomotive energies

comparable to the 1s binding energy.

3.4 Excitonic trapping, ultrafast population transfer, and Rabi flopping

Progress in the generation and exploitation of ultrashort sub-ps lasers in various regimes

of the EM spectrum has given rise to innovative methods for research on materials,

modern optoelectronics, and time-domain transient electrodynamics. In the nonlinear

optical regime, the continued development of high-intensity ultrashort optical pulses

combined with outstanding crystal growth techniques has led to a plethora of experimental

techniques to probe the coherent carrier dynamics of low dimensional semiconductors.

In this section we will explore Rabi flopping, excitonic-state trapping (EST), and

quasi-adiabatic population transfer (QAPT) dynamics. We discuss in detail conditions

to achieve EST and QAPT even when a broadband pulse excites both excitons and free

e–h pairs [40]. These effects are well known in atomic media [5], and coherent population

trapping effect has been widely used in adiabatic population transfer, electromagnetically

induced transparency, and velocity selective cooling. For solids, as pointed out recently

by using adiabatic population transfer between heavy- and light-hole bands (to mimic

a three-level atom) [41], the exact analog to the coherent-population-trapped state (dark

state) used in atomic physics is not possible in semiconductors, but similar physics can

indeed take place.

Theory of high optical field effects in quantum wells

In the following, the high-density regime comes into play because of intense optically-

excited e–h pairs. Therefore, the Coulomb scattering between the carriers must be taken

into account. In addition to the terms that result from the time-dependent Hartree–Fock

approximation, the carrier–carrier and carrier–phonon collisions drive the nonequilibrium

carrier distribution functions towards quasi-equilibrium Fermi functions and yield optical

dephasing. Subsequently, the carrier–carrier collisions (Coulomb correlation terms) are

calculated from the e–h quantum Boltzmann equations including also a correlation

field, nondiagonal dephasing, and polarization scattering [42,43]. The influence of carrier–

phonon interactions occurs over much longer time scales than those studied in this work

and can be safely neglected. The required contributions can be calculated by factorizing
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the relevant 6-particle expectation values [44] or within a Greens function method [45].

For our theoretical approach we again assume the validity of the rotating-wave

approximation and thus neglect the possibility of carrier-wave Rabi flopping [12] – a

subject discussed in the next section. We further assume a two-subband QW where each

e–h state within a certain band-structure with a wave number k contributes to the total

optical polarization, as described earlier.

Henceforth we work in k-space for obvious reasons. To this end, we solve self-

consistently the coherent SBE and the carrier–carrier correlations using the second-

order Born and Markovian approximation for carrier in- and out-scattering. These

contributions are well documented in the literature and essentially form the microscopic,

parameter-free counterpart to the relaxation-time approximation [42,45]. The correlation

contributions to the polarization function equations

˙ k k qk
q

k qp f p f pd|  = – ( , )  +  ( , , ) ,corr corr corr
nd

+Γ ΓΣ (3.22)

where the diagonal dephasing rate Γ corr
d , which accounts for loss of coherence of pk,

can be written

Γ corr
,

2
+ – – *( , ) = 2  | ( ) | [ (1 – )  +   (1 – ) – ]

, = ,

d a b bf W f f f f f p p

b a e h

k q
k q k q k k q k k qΣ

′ ′ ′ ′ ′↔

× ζ [εa(k) + εb(k′) – εa(| k + q |) – εb(| k′ – q |)]. (3.23)

While the non-diagonal scattering rate is given by

Γ corr
nd

, = ,

2
–

*
–( , , ) = 2  | ( ) | [ (1 – )  +   (1 – ) – ]k q q

k k k q k k k qf W f f f f f p p
b a e h

a b bΣ
′ ′ ′ ′ ′↔

× ζ [εa(k) + εb(k′) – εa(| k + q |] – εb(| k′ – q |)), (3.24)

where ζ(x) = πδ(x) + iP/x, (P denotes the Principal value), Wq is the screened Coulomb

potential (treated here within a quasi-static approximation), εa is the energy dispersion

of the electrons or holes, and the pp terms account for polarization scattering. The

essential point is that the nondiagonal dephasing reduces the dephasing rates in such a

way that coherent transient effects become important for light propagation studies.

Similarly, the correlation contributions to the density equations read

f f f f fa a a
k k kk k|  = ( , ) (1 – ) – ( , )corr

in
corr
in

corr
outΓ Γ

+ ( |  + . .) + (  + . .),*
corr

*p c c Q c ck k kΩ (3.25)

where Γ Γcorr
in

corr
out and  (a = e, h) are the expressions for in and out scattering, for

example
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Γ corr
in
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= ,
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k q k q k k qf W f f f
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′ ′ ′

× Re {ζ[εa(k) + εb(k′) – εa(| k + q |) – εb(|k′ – q |)]}, (3.26)
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b e h

a aW f f p p

× ζ* [εa(k) + εb(k′) – εa(| k + q |) – εb(| k′ – q |)], (3.28)

(if a = h, then ã e =  and vice versa) and Γ corr
out  is obtained by replacing f by 1 – f.

Besides optical absorption studies, nondiagonal dephasing has been shown to

remove the well known theoretical artifact of predicting absorption below the bandgap

in a semiconductor gain spectrum, that arises from a Lorentzian lineshape assumption

[43]. Previous simulations that incorporate the above scattering contributions have also

been successful, for example, in predicting four-wave mixing polarization times [45–

47]. This type of dephasing is also an important factor in explaining ultrafast nonlinearities

in semiconductor optical amplifiers and their microscopic origins [42,48,49]. It is equally

important to descibe Rabi flopping and the like that we address below.

Excitonic trapping and ultrafast population transfer

We assume input optical pulses of the form E(r, t) = ε̃ ω φ
Opt

– [ + + ( )]( )  + c.c.0 0t e i t k z t ,

polarized in the plane of the QW. Experimentally, InxGa1–xAs/GaAs QWs are advantageous

since with compressive strain one can increase the splitting of the heavy- and light-hole

exciton and thus neglect the light-hole states, therefore validating the two-band model.

In analogy with the atomic systems we modulate the input field by the phase factor φ(t)

= M sin (Ωmt), with M and Ωm the index and frequency of modulation. For a TLA (two-

level atom) the resonant part of the interaction Hamiltonian vanishes if M is chosen such

that the Bessel function J0(M) = 0, and one is left with the nonresonant rapidly oscillating

terms [5]. The solid-state community may recall that a somewhat similar criterion has

been derived to realize dynamic localization in infinite lattices driven by a harmonic

time-dependent electric field [50,51].

In the TLA it is further known that the two bare levels cross at the times tn = nπ /

2Ωm (n = integer). The crossing of energy levels occurs quite naturally in the instantaneous
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frame of the modulated field. The population distribution at the crossings can be understood

semiquantitatively by integrating numerically the time-dependent Schrödinger equation

or by employing Landau–Zener theory [5]. For semiconductors the situation is much

more complex, whereby the optical field provides coupling between two bands, and a

modulated near-resonant field leads to coupling of higher spectral components of the

field to larger k-states in the band, and the field components below the resonance

provide a nonresonant coupling to the excitonic transition. Moreover, the Coulomb

interaction yields exciton and plasma induced many-body effects. These conditions

prohibit us from having a simple set of criteria for trapping. Thus we propose here a

novel spectral distribution for the field which has its central frequency detuned far

below the excitonic resonance, and, by strategic sweeping of the instantaneous carrier

frequency, dynamical population trapping can be realized. As in the TLA case we do not

necessarily have to choose M to be strictly a zero of the Bessel function.

Concerning the modulation frequency, we choose Ωm = 8 meV unless stated

otherwise. For the unmodulated optical field, ε̃ Opt ( )t , we employ a 150-fs pulse excited

at the 1s exciton peak. In Fig. 3.11 we depict the spectral irradiance of the unmodulated

Fig. 3.11 Irradiance spectra for a frequency-modulated and unmodulated 150 fs optical pulse. The

solid, dashed, and chain lines correspond to M = 0, M = 14.9, and M = 30.6, respectively. Ex is the

bulk 1s binding energy.
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and frequency-modulated fields. With modulation, a much larger bandwidth can be

obtained with a series of larger peaks extending far below the exciton resonance; the

injected pulse profile is sufficiently broad to couple many different excitation modes.

One recognizes that the dominant spectral components are well below the band edge.

By increasing the index of modulation M, the spectral width of the pulse increases. In

contrast, without any modulation the spectrum of the excitation pulse is significantly

narrower and peaked at the central frequency as shown later. Although such a modulation

is difficult to obtain experimentally, one only requires about one approximate oscillation

to obtain the appropriate energy level crossings. Indeed one can also achieve trapping

using suitably chosen linear chirps (discussed below).

For an optical pulse with a Rabi energy of 30 meV, the area (integral of its Rabi

frequency over time) of the pulse is approximately 6π (irradiance, ~ 1 GW/cm2). Figure

3.12(a) shows the corresponding excitation-induced density for the QW optically excited

at the 1s exciton resonance using (i) an unmodulated input pulse [the solid curve depicts

the carrier-density showing the familiar Rabi flopping [9,52] of the density (complete

inversion is not possible due to Coulomb processes)]; and (ii) a frequency-modulation

of the input pulse for two different values of the index of modulation M: the dashed and

dotted curves are markedly different from the unmodulated case and display strong EST

and ultrafast QAPT. The values of M were chosen in accord with the original work in

atoms, while the pulse area was chosen to be large enough to drive the population into

trapping (it is also close to typical experimental values). During the time interval from

Fig. 3.12 (a) Pulse-induced carrier density (in units of inverse Bohr radius squared) as a function

of time with [dashed (M = 30.6), dotted (M = 14.9), and chain curves (M = 14.9, but with a

frequency modulation of Ωm/2) (see text)] and without frequency-modulation (solid curve). Excitonic-

state trapping and ultrafast population transfer is clearly discerned. (b) The polarization density

corresponding to the dashed case in (a) at several snapshots: t = –260 fs (solid curve), –80 fs

(dashed curve), 100 fs (dotted curve), and 280 fs (chain curve).
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about –160 fs to 160 fs, the population remains trapped in the exciton level, eventually

jumping out in the wake of the exciton-continuum quasi-adiabatic crossing. For the case

of Ωm /2 and M = 14.9 (chain curve), the trapping efficiency is much less as expected

and QAPT does not occur, since the crossing occurs just once and the on-resonance

field components are not sufficient to create the trapping-like feature; however, even in

a regime where the pulse irradiance is negligible there is some evidence for small

density changes at around 360 fs. In all cases there are signatures of phase intereference

due to coherent carrier evolution along different interfering pathways and excitation-

induced dephasing. We would like to point out that to obtain such good Rabi flopping

one must include dephasing at a microscopic level that includes both nondiagonal

dephasing and polarization scattering [42]; these contributions from carrier-carrier

scattering reduce the interband optical linewidths of the higher k-states and thus limit

the higher-energy continuum occupations in comparison to the pure dephasing [13].

Physically, this is important since the leading edge of the pulse, which is detuned below

the exciton resonance, prepares the system for the excitation of real population. A state

and energy-independent dephasing time would result in erroneous large dephasing of

the initially virtual excitation and therefore suppress the QAPT and EST.

To highlight the difference between the Rabi flopping and trapping we depict in

Fig. 3.12(b) the polarization density (WP), | P(r, t) |2 with r = re – rh at various temporal

snapshots. During the period –260 fs to 100 fs the population becomes strongly trapped

in the exciton state indicated in the figure by a high probability of finding the electron

and hole at the same relative position. However at the later time of 280 fs, after the

density increases rapidly (we mention that this increase is almost step-like in the absence

of dephasing), the excitonic probability decreases substantially and the WP spreads out

significantly, demonstrating that the population is no longer trapped. This drammatic

spreading of the WP arises due to the modulation and the resulting crossing of carriers

into the continuum. The above picture sheds much more light on the trapping scenario

than, for example, f e h
k

,  or pk, which do not clearly distinguish between Coulomb-

bound excitons and free carriers in the continuum. The spatial polarization dynamics at

r = 0 may in fact be probed experimentally using conventional four-wave mixing techniques.

We observe here a method to control, coherently, the excitonic WP by tailoring the

conditions of the energy level crossing. To probe the entire spatial dynamics one would

need to, e.g. couple a THz field with the optical field; this would involve a significantly

more complex analysis. We also mention that to directly detect density changes,

experimentally pulse-propagation studies are very difficult and one should, for example,

use the technique reported recently in Reference [11]. This allows for the detection of

density changes via simple differential transmission changes of a probe pulse.
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We now attempt to clarify the physics using a simple energy crossing model:

Adding a frequency-modulation to the excitation field is equivalent to modulating the

energy separation between the ground and exciton/continuum states. In Fig. 3.13 we

show, schematically, the various crossings of energy levels that lead to quasi-adiabatic

transfer of population at these crossings. The crossings “B–D” transform into anti-

crossings (solid lines) due to the coupling with the effective Rabi field. In contrast the

crossing at “A” is unaffected due to the weak coupling of the v ↔ c transition on the

leading edge of the pulse. The modulation of the dressed energy levels results from

transforming into a frame corresponding to the instantaneous field frequency, and are

given as ∑c = – [ Δ Δk
2 1 – ]x , ∑x = 0 and ∑v = – [  +  cos ( )]2Δ Ω Ωx m mM t , for the electrons

in the conduction band (c), excitonic state (x), and electrons in the valence band (v),

respectively. One can of course depict the diagram in reverse for the holes. Here Δ Δx
1 2 ( )k

denote the detuning of the central laser field frequency from the excitonic (continuum)

energy levels. The coupling of the field to the v ↔ x and v ↔ c transitions transforms

these crossings into avoided crossings. Initially the system will be off resonant and far

from any crossing; as the modulation changes, the population is swept through resonance

and it evolves quasi-adiabatically into the excitonic state where it displays the trapping

feature. The system further encounters two closely spaced crossings, resulting in an

enhanced step-like transfer of population into the continuum. The arrows in Fig. 3.13

indicate one possible temporal path (high probability) along which the electrons may

evolve ( 2Δ k  is fixed for simplicity). The detuning term Δ Δk
2 1 – x  is the difference

Fig. 3.13 Schematic of the energy level crossing that results from modulation of the field, where

“A–D” represent the various crossings. The crossings “B–D” transform into anti-crossings (solid

lines) due to the coupling with the field. The energy degeneracy is lifted due to the coupling and

is proportional to the coupling Ωk. In contrast the crossing at “A” is unaffected due to the weak

coupling of the v ↔ c transition on the leading edge of the pulse. The arrows depict the evolution

of the population (large black dots).
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between the continuum energy levels and frequency of the 1s exciton peak. One should

keep in mind, however, that the above model is grossly simplified and many-body

effects, included in our numerical results, will complicate things substantially; however

our quantitative theoretical study is in fairly good agreement with the above level

crossing model.

The essential difference in the trapping criterion between the atomic case and

semiconductor case lies in the frequency content of the exciting field. In the atomic case

the trapping-like phenomenon with nearly complete inversion results from correlated

sideband excitation of the atom [53]. The frequency components of the modulated field

excite the atom symmetrically about the atomic resonance, resulting in trapping. In the

semiconductor, a symmetric frequency content of the excitation does not lead to the

desired trapping due to its non-symmetric coupling to the band structure of the

semiconductor; effectively the high frequency components of the modulated pulse

selectively excite the continuum of states resulting in large carrier generation, thus

washing out the trapping. We circumvent this problem by using a modulated pulse with

its predominant frequency content away from the band edge.

Next we employ linear-chirped input pulses to discern if some of the same qualitative

trapping features (EST and QAPT) can also be obtained using suitably chosen chirp

parameters. To best immitate the frequency-modulated spectrum, we choose a frequency

chirp of the form: ω → ωx – 120 meV + act with ac being ±0.5 meV/fs. ε̃ Opt ( )t  is

identical to before. The chirped-pulse spectrum along with the unchirped spectrum is

displayed in Fig. 3.14(b). The pulse-induced density with positive ac is shown by the

dashed line in Fig. 3.14(a) which, although it does not show signs of trapping, does

show fast oscillations in the density as well as a rapid increase in the density near the

crossing time. For the negative ac (dotted curve) strong excitonic trapping is again

achieved and seems to maintain its trapped state since no further crossing takes place.

This is again clear from the simplified zero-order energy-level picture with appropriate

crossing of the 1s exciton state, ground crystal state, and continuum states. The slope

and sign of the chirp (ac) gives us a handle to selectively suppress or enhance the

excitonic transition. The trapping and population transfer are highlighted in Figs 3.14(c)

and 3.14(d) which show the wave-packets at the times –80 fs (solid curve), 100 fs

(dashed curve), and 280 fs (dotted curve) for both the negative and positive chirp pulse-

excitation. Population transfer is not expected for the negative-chirp case as the zero-

order energy-levels never cross.

Before finishing this section, we mention that coherent density oscillations, such

as Rabi flopping or trapping, may also be probed or exploited through a novel THz

emission scheme in dc-biased QWs [54,55].
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3.5 Carrier-wave Rabi flopping

Ultrashort optical pulses have allowed us to directly observe many fascinating nonlinear

optical propagation studies including Rabi flopping [9], self-induced transparency [56],

and photon echo [57]. From a theoretical viewpoint, all of the aforesaid can be described

quite adequately by employing the appropriate coupled matter-Maxwell equations within

the slowly-varying-envelope approximation (SVEA), e.g. the envelopes of the

electromagnetic field and polarization are assumed to vary little over an optical period

and wavelength. However, as optical pulses continue to get shorter and shorter, and

Fig. 3.14 (a) Pulse-induced carrier density as a function of time with [dashed (positive chirp) and

dotted (negative chirp) curves] and without (solid line) linear chirp. (b) Corresponding input pulse

spectra for (a), with the solid and dashed curves respectively representing unchirped and chirped

pulses. (c) The polarization density for the positive chirp corresponding to the dashed case in (a)

at several snapshots: –80 fs, 100 fs, and 280 fs. (d) The polarization density for the negative chirp

corresponding to the dotted case in (a) at several snapshots: –80 fs, 100 fs, and 280 fs.
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materials become smaller and smaller, the SVEA that adopts slowly-varying phase and

amplitude components may no longer be a good approximation.

As a matter of fact even with longer sub-ps pulses the theoretical description of

Rabi flopping in semiconductors within the SVEA becomes questionable since the

linear absorption lengths are typically comparable to the wavelength of light in the

material (at least when excitonic processes dominate the response, at low temperature).

Beyond that, for several-cycle optical pulses resonantly excited with atoms or

semiconductors, one may also need to account for the dynamics on a time scale of the

carriers themselves. The traditional analysis of Rabi flopping [52,58,59] assumes that

the optical-frequency components of the energy density do not contribute to the nonlinearity.

In this section, we return to the problem of Rabi flopping in a nonlinear optical material

and present a Maxwell–Bloch analysis beyond the SVEA to model pulses of only a few

optical-cycles time duration. In short, sub-carrier effects become important when the

light intensity is so large that the period of one Rabi oscillation becomes comparable

with the period of the excitation field. Apparent new features that arise in the full

Maxwell solution may be termed: carrier-wave Rabi flopping (CWRF) [12]. Although

this phenomenon was predicted for the TLA a few years ago, experimental signatures

have only recently been reported in thin film GaAs [4] (see also Chapter 2 of this book).

First, we describe some of the theory and simulation techniques required to account for

CWRF and describe sub-carrier nonlinear optical phenomena – a regime long thought

to be inaccessible. Then we investigate the simplified TLA and model pulse propagation

in optically thick media to demonstrate the clear breakdown of the area theorem, leading

to unstable temporal solitons. Finally, we solve Maxwell’s curl equations self-consistently

with the coherent semiconductor Bloch equations with dephasing, for semiconductor

QWs, and make a connection to the experimental measurements and possible future work.

Theory and computation of sub-optical-carrier pulse propagation

We employ a finite-difference time-domain [FDTD] [26,60,61] approach for solving the

full-wave Maxwell equations in one dimension, and a fourth-order Runge-Kutta method

to solve the optical Bloch or semiconductor Bloch equations. Although we employed an

FDTD approach earlier to model nonperturbative wave packets, we were still working

within the rotating-wave approximation for the polarization. We begin by describing the

simple atomic case to clarify the physics. A plane-wave pulse normally incident upon a

TLA material that is unbounded in the transverse direction is considered. Assuming

linear and nonlinear polarization, Maxwell’s curl equations can be written
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with By = μ0Hy, Dx = ε0Ex + Px, and Px = ε0 (  – 1)  + 0
2

nln E Py  (n0 is the background

refractive index). The nonlinear polarization Pnl = 2Nd Re[ρ12], where N is the density

of TLAs, and ρ12 is the off-diagonal density matrix element obtained from the optical

Bloch equations ρ̇ Ω12  = i n  – (Γ2 + iω12)ρ12 and ṅ i = 2 (  – )12 12
*Ω ρ ρ  – Γ1(n – 1).

These symbols have their usual meaning: Ω = dE is the Rabi frequency, n = (ρ11 – ρ22)

the population difference between the lower and upper states, ω12 the transition frequency,

and d the field-direction dipole moment. The phenomenological population and polarization

relaxation rates are given by Γ1 and Γ2, respectively. The initial field
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where E0 is the peak input electric field, τoff is the offset position of the pulse center (at

t = 0), τp = 2 arcosh (1/ 0.5 ) 0τ  is the FWHM of the pulse irradiance profile, n̂ x  is a

unit vector perpendicular to the direction of propagation, and ω is the central pulse

frequency.

For the semiconductor case, the approach is identical only we must solve the SBE

and replace Pnl above by POpt = 2 ∑kμcv,k Re[pk]. Since we must solve the equations

with at least 30 points per carrier wavelength of interest, the semiconductor problem

becomes a major computational tour-de-force. However, for fields propagating

perpendicular to a semiconductor QW the analysis becomes much easier and the qualitative

physics behind carrier-wave Rabi flopping can be explained by analyzing the reflection

or transmission of the excitation field, in combination with the material properties of the

medium.

Breakdown of the area theorem in a two-level atom

For this subsection, we model pulse propagation of various 2 lπ optical pulses (where l

is an integer) of 18 fs time duration (FWHM irradiance). We closely follow the details

in Reference [12]. For a pulse area of 2π the standard area-theorem results are recovered

in agreement with the work presented in Reference [60]. However, the standard results

for higher area pulses do not hold because of a strong reshaping of the individual optical

carriers. We predict that electric field time-derivative effects will lead to CWRF and
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subsequently to the formation of higher spectral components on the propagating

pulse.

Within the SVEA, it is well established that when the envelope of the pulse has

an area that is an integer number of 2π, then lossless propagation is possible. For a

2π–pulse, the rotating dipoles are exactly returned to their initial state while maintaining

the shape of the excitation pulse, and the hyperbolic secant solution propagates without

change at a velocity which can be substantially slower than the speed of light. This will

occur when E d0
2

0 = 2/π τ . Moreover, by virtue of the area theorem [9],

2lπ pulses are also asymptotic solutions to the coherent propagation problem, although

such pulses are not stable and will split up into multiple 2π–sech pulses, as a consequence

of multiple Rabi flopping. One other feature of coherent flopping is that coherence must

be maintained in the system. Hence we choose relaxation times much longer than the

input pulse duration, and adopt the following material and laser parameters: ω = ω12 =

0.6 × 1015 rads–1, τ0 = 10 fs, Γ Γ1
–1

2
–1 =  = 1 ns,n0 = 1, d = 2.65 eÅ, N = 2 × 1018 cm–3,

and toff is chosen appropriately to propagate the pulse in time from outside the computational

domain (see below).

The peak amplitude of the required pulse to achieve a 2π envelope area is

approximately 0.5 GV/m. Figure 3.15(a) shows an example of a propagating 2π–pulse

in the TLA-medium. The pulse initially propagates in the free-space region, and thereafter

enters the two-level medium at 20 μm; the pulse subsequently propagates the nonlinear

medium and exits into the free-space region again at 80 μm. The 2π–pulse simulation

approximately recovers the well known analytic results in agreement with Reference

[60]: the excitation drives a complete transition of the TLA from its ground state to its

excited state and back to its ground state while maintaining its shape. For comparison,

Fig. 3.15(b) shows the corresponding temporal development of the inversion n (solid

curve), electric field Ex (chain curve), and the polarization component Re[ρ12] (dotted

curve), at the fixed position of z = 21 μm that is near the input surface of the nonlinear

medium. Although the medium is completely inverted and returned to its initial state,

oscillation features at the zero points of the pulse arise due to the time-derivative

behavior of the input field (see also Reference [60]). For longer propagation distances,

these transient features cause local carrier modification though the envelope of the input

pulse is essentially unchanged. Maxwell’s curl equations also account for backwards

propagating fields which do not occur in the present study since the linear refractive

index is unity, and also because the absorption length is too large (thus the SVEA in

space is valid here).

Next we investigate 4π–pulse excitation, and to emphasize the effects of propagation

we have used a nonlinear medium length of 140 μm and N = 4 × 1018 cm–3. Figure
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3.16(a) depicts the electric field profile at the respective propagation times of 180 fs,

350 fs, and 525 fs. The driven density shows the expected two symmetric transversals

between the ground and excited state. As a consequence of driving 2 complete Rabi

flops (see Fig. 3.16(b)), the propagating pulse evolves into two separate pulses with

differing spectral profiles. Again this is in agreement with the standard SVEA results.

However, sub-carrier transient features arise once more due to the time-derivative nature

of the input field.

Fig. 3.15 (a) 2π–pulse propagation through the two-level system. The normalized electric field is

shown at the respective times of 140 fs (dotted curve), 275 fs (chain curve), and 415 fs (dashed

curve). (b) Normalized field (chain curve), inversion n (solid curve), and Re[ρ12] (dotted curve),

near the front face of the two-level material (z = 21 μm).
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What now happens when larger input areas are injected into the material so that

the area under the individual carriers may themselves cause Rabi flopping? The left-

hand side of Fig. 3.17 shows the time-dependent inversion, Ex, at z = 21 μm, for pulse

areas of 6π, 8π, 10π, 12π and 14π. The individual carriers now have a profound effect.

First, it is noted that incomplete Rabi flops occurs instead of the anticipated integer

number. For example, for the 10π–pulse case, 4.5 Rabi flops occur instead of 5. Complete

flopping is very difficult to achieve because of the transient features in the Bloch

equations beyond the rotating wave approximation. Second, local CWRF is clearly

discerned. One finds that Re[ρ12] follows Ex instantaneously so that its peak occurs at

the peak in the Ex time derivative.

Fig. 3.16 (a) As in Fig. 3.15(a) but for 4π–pulse propagation at the respective times of 180 fs,

350 fs, and 525 fs. (b) As in Fig. 3.15(b) but for 4π–pulse propagation.
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One consequence of CWRF is that carrier-wave reshaping is expected. To investigate

this, the right-hand side of Fig. 3.17 displays the pulse time-profile at the sample exit

face (z = 180 μm). Strong carrier-wave reshaping is indeed found in addition to a

significant interaction with the free-induction decay of the material. For the chosen

pulse and material parameters, it is not possible to achieve complete symmetric inversion

for areas of and above 6π–pulse excitation, and less than 100% inversion is obtained in

Fig. 3.17 The left graphs show 6–14π pulse-induced population difference near the front face of

the two-level material (z = 21 μm). The right-side graphs display the corresponding propagated

pulse (normalized electric field) at z = 180 μm.
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each swing of the pulse since the medium is responding rapidly to the variations in the

pulse shape and its time derivative. For the 10π–pulse, numerically it is found that an

11.4π–pulse approximately returns the inversion to the ground state while driving 5

density flops; however, these flops are far from symmetrical. The source for the CWRP

is due to fast oscillations in the polarization equations outside the rotating wave

approximation.

An experimental signature of such an effect could be seen, for example, on the

output spectrum of the propagated pulse. Figures 3.18(a) and 3.18(b) show, in comparison

to the input spectrum, the output irradiance of 0π– and 10π–pulses, respectively. Figure

3.18(a) reproduces the familiar 0π–pulse scenario in the resonant medium, showing the

characteristic spectral hole resulting from a beating structure in the time-dependence;

Fig. 3.18 (a) Input and output pulse irradiance-spectra for 0π–pulse propagation. (b) As in (a) but

for 10π–pulse propagation.
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the asymmetry is due to dephasing. (Note for numerical convenience in calculating the

Fourier transform of the rapidly-varying time-dependent field, Γ2 was increased to

1 ps–1 for this simulation.) However, Fig. 3.18(b) clearly shows the formation of higher

(and some lower) spectral components due to CWRF. We have verified computationally

that, if the input carrier frequency is increased by a factor of 10, then five symmetric

transversals occur between the ground and excited state and there is no evidence for

time-derivative features and no generation of these higher spectral features. This, of

course, is also true if one increases the time duration of the exciting pulses since

sufficient optical carriers will again be present to allow the validity of the SVEA in

time. That said, for increasing irradiances the area theorem will again breakdown.

Further, all the results obtained for the 18 fs pulse scale to much longer pulses, and

spectrally more narrow two-level systems if the irradiances increase or the carrier frequency

changes accordingly [62]. (This of course ignores exciton-induced dephasing.)

Carrier-wave Rabi flopping in semiconductors

Armed with the propagation results for the TLA, the problem we now face is what

happens to a semiconductor material when one excites the system resonantly with

extremely intense and extremely short optical pulses, in a regime where CWRF is

expected? Fortunately Reference [4] has already addressed this question, experimentally,

using 5 fs optical pulses with an area of up to 4π exciting thin film GaAs; see also

Chapter 2 in this book. Although these pulses are on the lower area limit to observe

the effects shown above, the experimentalists came up with an excellent idea to probe

the first signs of sub-carrier coherent density oscillations, by carefully measuring the

3rd-harmonic signal. Additionally, their experimental measurements were qualitatively

explained within a similar model to the above, applied to thin sample lengths

(l = 0.6 μm).

Theoretically, we investigate the many-body system by exploring what happens

to the several-cycle optical pulses when they propagate perpendicularly to a QW. This

simplifies the numerics considerably, by analysing a different excitation geometry, but

still allows us to simultaneously solve the coherent SBE with dephasing, in addition to

Maxwell’s curl equations. Additionally, our approach has not become a major computational

nightmare (which sometimes obscures the physics), but solvable on desktop computers,

and allows us to explore the important physical effects expected from the coherent SBE

without employing a rotating-wave approximation. Quantum kinetics will almost certainly

play an important role on these ultrashort time scales, but is ignored here for our simple
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semiconductor model study; the role of quantum kinetics will no doubt be reported in

the literature in the near future.

We take the following parameters for the laser and QW system: ω = Eg – E0,

where Eg is 1.42 eV (2.123 × 1515 rads–1), E0 = 16 meV is the (2d) QW 1s binding

energy for GaAs, μcv,k=0 = 5 eÅ (the k-dependence is modelled with a Kane dipole

matrix element), the QW thickness is 100 Å, τ0 = 5 fs, and Γ–1 = 100 fs. The other

material parameters for GaAs are defined earlier in the chapter. A SVEA 2-π pulse is

then obtained with a peak electric field of 5 × 108 V/m. Outside the SVEA we note that

the pulse described by Eq. (3.31) actually has an area of zero.

As a comparison, we first study the results for the simple TLA discussed earlier,

but with the parameters above. In Fig. 3.19(a) we show the reflected pulse profile with

an area of π and 4π, shown by the solid and dashed curves, respectively. For the lower

Fig. 3.19 (a) The reflected optical pulse exciting a two-level atom with a π (solid curve) and 4-

π pulse (dashed curve). (b) Population (thick solid curve) and Re[ρ12] versus time for the 4-π
pulse. (c) As in (b) but for the π pulse.
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field case, we obtain the familiar 3rd-order and 5th-order harmonic of the fundamental

carrier frequency. However, for the higher intensity field we clearly obtain a splitting of

the 3rd and 5th harmonic, that is characteristic of CWRF [4]; the same trend is also

captured by solving the Maxwell–Bloch system for a thin film and looking at the

emitted harmonic in the forward direction [4]. We also note that the oscillations of the

fundamental is an excellent probe for the carrier-wave Rabi flops. Moreover, we have

numerically verified that if the fundamental carrier (and transition) frequency is doubled,

then this spectral split-up of the harmonics is not obtained; hence we are at the threshold

to observe CWRF. We show the correspondong density changes and Re[ρ12] in Figs

3.19(b) and 3.19(c). While the lower field polarization simply follows the input field,

the higher field drives higher harmonics during the Rabi flopping within time scales that

are shorter than the optical carrier cycle. We note that complete Rabi flopping is not

obtained since we have employed a much larger dephasing rate. We also note the

appearance of fine structure within the 3rd harmonic split-up region, verifying that a

simple reflection analysis from a single QW is very sensitive to sub-carrier polarization

oscillations; however, we mention that the fine structure disappears if the dephasing

time is reduced to 50 fs or less.

Finally, we investigate the semiconductor case. In Fig. 3.20(a) we show the reflected

pulse obtained with (solid curve) and without (dashed curve) a Coulomb interaction

with a 4-π input pulse; in the latter case we immediately recognize a strong suppression

of the harmonic split up since the many-body system has lost its simple two-level

(homogeneously broadened) behavior and corresponds to that of an inhomogeneously

broadened system. Since the pulse is so broad, many momentum states are excited and

the higher ones do not exhibit clear Rabi flopping at all. Furthermore, even though the

occupation of the higher momentum states is quite small, their influence is large because

of the semiconductor density of states. Consequently, polarization components in the

higher momentum states have a pronounced contribution to the polarization. The same

arguments apply for the contributions to the total carrier density. With the inclusion of

the coherent Coulomb interactions, there is a renormalized Rabi frequency and transition

energy that we discuss below. The dotted curve also shows the reflected pulse for an 8-

π pulse, demonstrating that significant splitting occurs in the fundamental and harmonics,

making them somewhat indistinguishable; this demonstrates that (i) 4-π pulses are on

the threshold to observe CWRF, and (ii) perturbation theory break downs anyway for

very high intensity pulses such as those with areas greater than 4-π or so.

Although it has been shown elsewhere that, for much longer pulses, a typical 2-

π input pulse has an effective (renormalized) area of around 4π in a semiconductor; this

depends very much on the excitonic properties of the system and also on the spectral
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content of the excitation pulse. In the present case, although the lower momentum states

cause Rabi flopping akin to an area of 3–4 π, the higher states exhibit flopping similar

to that of a 2-π pulse; and the very high momentum states undergo adiabatic following

of the pulse which shows up in the total density through pronounced oscillations. Of

course, the pulse intensity in the QW is also reduced due to a finite reflection (though

this reduction is rather weak). The corresponding density and optical polarization are

shown in Figs 3.20(a) and 3.20(b), with and without the Coulomb interaction, respectively.

In the former case the Coulomb interaction firstly creates more carriers than in the later

case (through the renormalized Rabi energies), and also the polarization shows beating

behavior around 60 fs. With regard to band-gap renormalization we can estimate that at

the highest densities (≈ 1013 cm–2) a renormalization of about 100 meV occurs, though

this does not seem to strongly affect the main spectral peaks in the reflected pulse.
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Fig. 3.20 (a) The reflected optical pulse exciting a semiconductor quantum well with a 4-π pulse,

with (solid curve) and without (dashed curve) coherent Coulomb interactions. The reflected pulse

for an 8-π pulse is also shown by the dashed curve. (b) Carrier density (thick solid curve) and

optical polarization with Coulomb interactions (4-π pulse only). The scaling for the density and

polarization is in units of the 2d inverse Bohr radius squared, and the latter has been multiplied by

a factor of 4 for clarity. (c) As in (b) but without Coulomb interactions.
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The above analysis merely forms a starting point for solving the SBE outside the

slowly-varying envelope approximation for ultrashort, extremely intense pulses. As

highlighted earlier, clearly on these time scales one must account for quantum kinetics.

Additionally, for such short pulses, one should also take care to include the proper band

structure of the semiconductor, particularly at the higher momentum states. All this

together becomes a fascinating theoretical playground into which to model these new

excitation regimes using several-cycle optical pulses.

3.6 Conclusions

In summary, we have investigated several high-field excitation regimes in semiconductor

nanostructures. First, we have applied a real-space-time method to calculate electron–

hole wave packets in semiconductor quantum nanostructures, allowing the theoretical

study of nonperturbative field regimes in a very intuitive way. The technique can incorporate

a variety of fields, such as Coulomb, magnetic, THz, and static, in the low density limit.

Experimental observables were extracted and in qualitative agreement with recent

measurements. For quantum wells we studied a selection of high-field electro-optical

effects, including the dynamic Frenz–Keldsyh effect, THz harmonic generation, and

electro-magneto excitons. For quantum-well wires, we investigated the static and dynamic

Franz–Keldysh effects. In the static case, exciton ionization effects and large Franz–

Keldysh oscillations were highlighted by probing the electron-hole wave packet motion.

For reasonable electric field strengths substantial oscillations appear above the band

gap. Additionally, the Sommerfeld factor and field-induced tunneling significantly affect

the continuum portion of the absorption spectrum and continue to remove the well-

known divergence problem associated with the 1d DOS at all field stengths that we

employ. For very large fields, tunneling-induced transparancy occurs at certain spectral

frequencies. With a time-dependent field, several novel effects were obtained. For a

THz photon just below the 1s binding energy, a strong Autler–Townes splitting of the

exciton was obtained. By using coherent control, two-photon induced gain (or absorption)

can be achieved in the continuum. Also, the emission of phase-dependent spectra in the

THz regime was demonstrated, analogous to the high-field physics of atomic ensembles.

Second, we explored several nonlinear optical excitation regimes for semiconductor

quantum wells. We predict the possibility of exciton trapping and quasi-adiabatic population

transfer in a two-band semiconductor using frequency-modulated optical pulses. It is

proposed that the trapping feature arises out of an interplay of the dominant excitonic

resonance and the excitation by a sufficiently strong, broadband off-resonant pulse,
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with a weak yet broad spectral content to excite the continuum of states. The population

redistribution results from the crossing of energy levels. Besides being an intriguing

theoretical study, our results are timely with recent advances in frequency-modulated

spectroscopy techniques and the observation of multiple Rabi flopping on free exciton

transitions (see Chapter 1).

Third, an FDTD approach that utilizes the optical Maxwell–Bloch system, coupled

to Maxwell’s curl equations with a two-level atomic model for the polarization, was

employed to describe carrier-wave Rabi flopping. It is shown that the nonlinear behavior

is dependent not only on the electric field envelope but also on its propagating time-

derivative effects. Standard slowly-varying results for 2π– and 4π–pulses are essentially

reproduced with minor modifications due to local carrier effects. However, for higher

pulse areas, it is found that carrier-wave effects  become predominant, and a new, novel

type of sub-carrier Rabi flopping is demonstrated. These features are absent in the

standard area theorem and envelope-type models. Finally, we studied the semiconductor

quantum well excited perpendicularly with extremely short, intense optical pulses and

obtain clear spectral split-up of the first two harmonics for 4π–pulses that depends

sensitively on the coherent Coulomb interactions. The latter simulations show qualitative

trends with recent experiments (see Chapter 2), though a proper quantum kinetics

approach is required for a future detailed comparison between theories and experiments.

Collectively, these investigations highlight some very fascinating light–matter

interactions that are made possible by tremendous developments in short-pulse laser

techniques, semiconductor growth and spectroscopy. They also point out the many

similarities that continue to exist between high-field effects in semiconductors and

atoms. As theoreticians, we congratulate all the experimentalists working in both fields,

pushing the limits of light-matter excitation into ever shorter, ever intense, and hopefully

more exciting regimes.
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Abstract

The light emission after optical excitation in a semiconductor quantum
structure is dominated by exciton effects. For understanding the interplay
between homogeneous and inhomogeneous broadening of lines, excitons
in quantum wells with interface roughness are investigated theoretically.
Using the disorder eigenstates as basis, a density matrix theory is derived
for excitons in interaction with the light field and with acoustic phonons.
The secondary emission is decomposed into the coherent part (Rayleigh
scattering) and the incoherent part (photoluminescence). This distinction is
based on the speckle analysis. Quantum mechanical features such as level
repulsion and enhanced resonant backscattering are discussed. The
polarization dependence of the emission is related to the exchange (spin)
splitting of anisotropic exciton states. The interplay of disorder and polaritonic
effects is exemplified for the time-dependent emission.

4.1 Introduction

Excitons, i.e. Coulomb bound states of electron and hole, determine the optical properties

of semiconductors near the fundamental band edge. They show up as distinct lines in

absorption, reflection, and photoluminescence (PL). Their study formed for decades a

major part of optics in bulk semiconductors. With the arrival of semiconductor

nanostructures such as quantum wells (QW), quantum wires, and quantum dots, excitonic

effects became even more important, since the exciton binding energy is strongly enhanced.

As a handwaving argument, the kinetic motion is hindered by the confinement, while

the Coulomb attraction remains nearly unchanged [1]. Thus, undoped semiconductor
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nanostructures are an ideal playground for exciton physics. However, the definition of

the interfaces on an atomic scale is never as ideal as physicists would like it to be. Even

with the highly sophisticated molecular beam epitaxy (MBE), interface fluctuations of

one or a few monolayers can hardly be avoided. A further source of disorder is alloy

fluctuation if a ternary compound is used as barrier or well material.

These disorder effects determine the inhomogeneous broadening of the exciton

line seen in optical measurements, and even tend to dominate their linewidth in narrow

quantum structures. Rather than disregarding this unwanted feature, the exciton linewidth

in PL is usually taken as a quality measure of the growth process. However, a distinction

between inhomogeneous linewidth (disorder-induced) and homogeneous linewidth

(induced by inelastic scattering) is no possible from PL alone. A further indicator of

disorder is the Stokes shift between the peaks in PL and absorption (or rather

photoluminescence excitation, PLE). Another quite important effect brought in by disorder

is the breaking of the in-plane translational symmetry. Therefore, the center-of-mass

momentum (COM) of the exciton is no longer a good quantum number. Exciting the

sample with an electromagnetic plane wave, there is not only transmission and reflection

(specular optics), but coherent emission in other directions as well. This will be called

resonant Rayleigh scattering (RRS) in the following, and is due to elastic scattering of

excitons into different COM directions. However, also inelastic processes as phonon

emission and absorption or exciton-exciton interaction will redistribute the excitons

over COM momenta, and thus over emission angle. Here, luminescence is the appropriate

notion. For the sake of simplicity we will consider only low excitation where phonon

scattering dominates over Coulomb scattering.

In order to avoid any preconception, the notion of secondary emission has been

introduced to describe any emission outside the specular directions. This chapter is

devoted to elucidate carefully both scattering channels: elastic or Rayleigh, and inelastic

or luminescence. As we will show, this distinction is completely in line with a separation

of the secondary emission into coherent (with the exciting beam) and incoherent parts.

For few-level atoms, this is standard textbook knowledge [2]. However, in semiconductors

the microscopic processes are much more complex and rich.

While photoluminescence experiments form one of the backbones of semiconductor

optics, Rayleigh scattering measurements are relatively rare. Pioneering experiments

RRS in the frequency domain are due to Hegarty [3], showing clearly a sharp spike in

resonance with the exciting laser on top of a broad PL band. New interest evolved with

time-resolved light scattering experiments. Stolz [4] raised the question on how RRS

depends on polarization of excitation and emission. A new era was opened by experiments

with femtosecond time resolution in the Shah group [5,6]. Quite as a surprise, the
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secondary emission was seen to appear with a definite time delay compared to the

excitation pulse. Further, a beating of the signal with the heavy- to light-hole splitting

clearly indicated a coherent process. In Fig. 4.1, we display a measurement from [6]

together with a fit using an early version of theory [7]. The mechanisms and, in particular,

the delayed onset of secondary emission after resonant femtosecond excitation was the

subject of an intense debate in the last years [8–14]. For a more general review on the

experimental situation, see [15] and [16]. Right at the heart of any ultra-fast optical

experiment is the question of coherence and coherence loss (or dephasing). The quantum

coherence of excitons (or any other elementary excitation) in semiconductors is most

naturally studied with optical methods, because it is directly related to the coherence of

the emitted light. A specific example is the well established and widely used technique

of four-wave mixing, in particular the photon echo. An advantage is that the signal is

separated from the excitation direction. However, it is insensitive to the incoherent

emission, and intrinsically a nonlinear optical process. Therefore, experimental excitation

powers are quite large, and processes like exciton-exciton scattering contribute substantially

to, e.g., dephasing rates. An extrapolation to vanishing excitation densities is not an easy

task. With interferometric methods [17], the very existence of coherent emission (having

a fixed phase relation to the exciting wave) can be detected. However, again quantitative

information on the degree of coherence is hard to obtain.

Light scattering into non-specular directions is background-free, too. Only such

excitons which have experienced at least one real scattering process can be detected. For

non-resonant excitation, this implies energy relaxation, thus destroying the coherence

Fig. 4.1 Time-resolved secondary emission after pulsed excitation (120 fs FWHM), tuned

6 meV below the heavy-hole exciton of a 13 nm wide AlGaAs quantum well (dots, from [6]). The

full curve is calculated using a kinetic equation for excitons in momentum space, and treating the

disorder in the weak-memory approach; from [7].
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within the exciton system. Therefore, the emitted radiation is intrinsically incoherent.

For resonant excitation and in particular for short-pulse excitation, elastic Rayleigh

scattering and inelastic relaxation are superimposed. However, the coherently scattered

light is characterized by a fixed, but irregular pattern of destructive and constructive

interference, both with itself and with a phase-coherent reference pulse. Fluctuations

occur both in time and in space (direction) and will henceforth be referred to as speckles

[18]. It was the idea of Langbein [19,20] to introduce and establish the speckle analysis

in the secondary emission from semiconductors. For the first time, a clearcut and

quantitative determination of coherence became possible.

Let us compare the specific way the coherence is preserved or destroyed in the

exciton system. Scattering events by emission/absorption of phonons (or other excitons)

can happen at any intermediate time between generation and ultimate radiative decay.

Therefore, the related phase will differ from one single laser pulse to the next, disabling

any interference pattern. This leads to a speckle-free background intensity. In contrast,

disorder scattering is identical for all pulses, giving rise to an irregular but fixed phase

pattern. In fact it is this average over tens of thousands of individual femtosecond pulses

which makes the difference between inelastic and elastic scattering processes in view of

coherence. This pulse repetition is present in any ultra-fast (and also interferometric)

experiment – and is almost never mentioned explicitly. It is the basis for the method of

statistical speckle analysis [21] which will be presented in detail in section 4.6.

The theory starts with a description of excitons in a quantum structure with

interface disorder in section 4.2. For a summary of own work, see [22]. Starting with the

electron-hole Schrödinger equation in effective mass approximation, several well-justified

steps lead to a single-particle Schrödinger equation for the exciton center-of-mass (COM)

motion. It contains a random potential which is spatially correlated at least over distances

of the exciton Bohr radius. Compared to the monolayer fluctuation energy, the strength

of the potential is strongly reduced in energy. Both effects (correlation and reduction)

are related to the averaging effect of the electron–hole relative motion within the exciton,

which is displayed schematically in Fig. 4.2. Solving the Schrödinger equation in this

disordered potential landscape [23,24] allows to construct immediately the optical density

(OD) of the 1s exciton as seen directly in absorption or approximately in PLE.

While up to this point the exciton Schrödinger equation with disorder is completely

sufficient, the description of the emitted radiation and in particular the inclusion of

inelastic scattering effects calls for a deeper foundation. In section 4.3, we construct a

model Hamiltonian for excitons interacting with photons and phonons. In doing so we

use consequently the basis of disorder eigenstates. Thus, the disorder is included from

the very beginning, and in a non-perturbative fashion. Then, standard methods of density



Theory of resonant secondary emission 93

matrix theory are applied. The coupling to acoustic phonons is considered as major

source of dephasing, and treated in second Born approximation (section 4.4). The

interaction with the (quantized) light field allows to describe the emission in general.

Disregarding for the moment light propagation (polariton) effects, the secondary emission

follows straightforwardly from the exciton density operator. Its expectation value contains

a factorized part (product of polarizations) which is shown to be coherent with the

incoming light, and produces Rayleigh scattering (section 4.5). For the incoherent part,

a kinetic equation is derived and analyzed. The occupation of disorder eigenstates for

the exciton can be followed in time, or calculated under steady state conditions (section

4.7). This goes well beyond any kinetic equation formulated in terms of exciton distribution

as function of momentum, which we have tried in the beginning [7,25]. Some rather

intricate experimental findings can be explained: The non-monotonic Stokes shift with

temperature [26], the existence of a relaxation mobility edge [27], the deviation between

PLE and absorption, to mention a few. The price to be paid is of a technical nature: To

generate the eigenstates, huge matrix diagonalizations on a two-dimensional spatial

grid have to be performed. On top comes the solution of the kinetic equation. This

program has to be repeated a large number of times for different disorder realizations,

until smooth curves are obtained which can be compared to experiments with a macroscopic

excitation and detection spot.

The coherent part of the secondary emission is characterized by speckles. In

section 4.6, we derive the expressions for the speckle statistics and quote a simple

relation for the coherence degree in terms of intensity average and fluctuations [28].

The relation to interferometric setups is clarified. The issue of level repulsion in near-

field exciton spectra is addressed in section 4.8. According to random matrix theory, a

dip in the autocorrelation function (here of the optical spectrum) is expected. However,

the interplay with the potential correlation and the finite spectral resolution reshape the

feature into a shoulder. The agreement between simulation and recent experimental data

gives striking evidence for the quantum-mechanical level repulsion of localized excitons

2aB ζ

c.o.m. V(R)

2aB

Fig. 4.2 Schematic illustration of a quantum well with rough interfaces (island size ζ) and alloy

disorder. The averaging with the exciton relative wave function (radius aB) leads to an effective

single-particle problem with a smooth potential V(R) for the center of mass motion.
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[29]. The relation to oscillating features in the time-resolved Rayleigh scattering is

clarified [30]. The wave aspect of the exciton COM states is furthermore responsible for

the phenomenon of enhanced resonant backscattering as predicted in [31] (section 4.9).

However, the enhancement in the backscattered direction is found to be much less than

the factor of two often quoted in connection with (off-resonant) light scattering in

inhomogeneous media. Apart from full simulations in two dimensions (2D), standard

many-particle theory is applied to sum up ladder and maximally crossed diagrams, and

checked with a 1D calculation. At small dephasing rates, however, this well-known

diagrammatic approach misses the important feature of enhanced forward scattering.

The intimate relation between spin degree of freedom, light polarization, and

wave function anisotropy of excitons is investigated in section 4.10. Exchange (or spin)

splittings in the ensemble of localized exciton states are calculated. The secondary

emission shows a transfer of polarization into the counterpolarized channel, which,

however, is not related to spin relaxation. The correct description is spin beating, preserving

a high degree of coherence in both channels. These findings are fully substantiated by

time-resolved experiments [32]. In section 4.11, the quantum well containing localized

excitons is embedded into a dielectric medium, and the full vector Maxwell equations

are solved in the basis of disorder eigenstates. Spin splitting and polarization transfer

are now supplemented by radiative losses, which produces a clear non-exponential

decay in the time-resolved RRS signal.

4.2 Disorder eigenstates of excitons

Let us consider the exciton Schrödinger equation for a two-band model in effective

mass approximation,
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Ψα(re, rh) = 0. (4.1)

Apart from the standard kinetic term and the Coulomb attraction, we have introduced

the confinement potentials Wa(ra) (a = e, h) which describe the spatial variation of the

local band edges. The z-axis is taken along the growth direction. If interface roughness

dominates the disorder, it depends on the band edge difference between barrier and well

material Δa and the local well width Lz(ρρρρρ) = Lz  + ΔLz(ρρρρρ) (see Appendix A).

If the exciton binding energy is small compared to the (energetic) sublevel distance,

but also well above the disorder-induced broadening, only the lowest bound state 1s at
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the fundamental sublevel transition has to be considered. Consequently, the total wave

function can be factorized into

ΨΨΨΨΨα(re, rh) = ue(ze) uh(zh) φ1s (ρρρρρe – ρρρρρh) ψα(R), (4.2)

introducing the 2D center-of-mass coordinate R = (meρρρρρe + mhρρρρρh)/M with the exciton

kinetic mass M = me + mh. Both the confinement wave functions ua(za) and the relative

wave function φ1s(ρρρρρ) obey Schrödinger equations of the QW structure with (average)

thickness Lz  (see [1] for an introduction into the single-particle confinement). Finally

one is left with the COM equation
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Note that the 1s exciton energy hωx of the averaged QW is taken as zero of energy here

and in what follows. The normalization is taken over the in-plane area A, with orthogonality

relation

A∫ dR ψα(R) ψβ(R) = δα,β. (4.4)

The random COM potential resulting from well-width fluctuations is derived in Appendix

A and reads
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Due to the mass factors ηe = M/mh, ηh = M/me, different weight is given to the electron

and the hole contribution. Even if the band offset for the hole is less than the electron

one – as it is the case for the GaAs/AlGaAs system – the hole may dominate the

potential fluctuations: Due to its larger mass, the hole part in the exciton visits a smaller

volume, and averages not as efficient as the electron. Similar relations for alloy disorder

have been derived elsewhere [33].

A reasonable assumption for the well width fluctuations is

Δ Δ ζL L hz z( ) ( ) =  exp (– |  – | /2 )2 2 2R R R R′ ′ (4.6)

introducing a typical thickness fluctuation h and a correlation length ζ (typical island

size). The overline denotes the average over different disorder realizations within the

statistical ensemble. The convolution with the 1s wave function gives a final potential

correlation length ξ which depends on the (mass-weighted) exciton Bohr radius aB as

well. If aB > ζ holds, the potential Eq. (4.5) is constructed as a large sum of random
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independent contributions, and the central limit theorem holds: The potential values are

Gauss distributed with variance σ2 = V 2 ( )R . Evaluated for an exciton 1s wave function

of exponential type with Bohr radius aB > ζ, the result is (see Eq. (4.169))
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2 2
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2
 (( )  + 8  + ( ) )

h
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E E E E

B
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The energetic fluctuations of the COM potential are reduced by the ratio between the

statistically independent areas of size ζ2 and the exciton averaging area aB
2 . Therefore,

a direct assignment of σ or of the exciton linewidth to the energy fluctuations on an

atomic scale is not possible. In general, the confinement energies fluctuate on a much

larger energy scale than the resulting inhomogeneous exciton linewidth seems to predict.

Upon growth interruption in the MBE deposition, h is expected to decrease, whereas ζ
gets larger. Since the product h · ζ enters Eq. (4.7), it is not clear a priori if growth

interruption leads to a reduction of the linewidth or not [34].

In the opposite limit aB < ζ, the potential values are no longer Gauss distributed,

but attain discrete values. Correspondingly, the exciton line splits into a multiplet related

to different monolayer energies [35]. This may be achieved in high-quality samples with

growth interruption. Having in mind samples with dominant disorder effects, we do not

consider monolayer splitting in this review.

Equations (4.3) and (4.5) are the starting point for calculations on simulated

structures. One could use a model for the MBE growth to generate realistic interfaces

by Monte Carlo simulation [36,37]. If a specific roughness model is not of interest, it

suffices to use an artificially constructed random potential. The only ingredient is the

potential correlation function

g(R – R′) = V V( ) ( ).R R ′ (4.8)

In the numerical calculation, the choice is between exponential type correlation (resembling

the 2D exciton wave function) and a Gaussian shape, which emphasizes more the

random island structure. For the latter case, g(R) = σ2 exp(–R2/(2ξ2)) is used. Apart

from the chosen type, only two parameters characterize the potential: variance σ and

correlation length ξ. According to what has been said above, ξ cannot be smaller than

the (mass-weighted) exciton Bohr radius.

The first quantity of interest is the density of states (DOS) of COM excitons,

ρ ω δ ω ω
α α( ) = 1   (  – )

A
Σ , (4.9)

which gives the unbiased distribution of energy levels (εα ≡ hωα).

Introducing the Fourier-transformed wave function
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ψ ψα αk
k RR R =  ( ),

A

id e∫ ⋅ (4.10)

we can construct the optical density (OD) by weighting with the wave function squared

at k = 0,

D
A

( ) = 1    (  – )=0
2ω ψ δ ω ω

α α αΣ k . (4.11)

In the context of the (effective) one-particle problem Eq. (4.3), this is the spectral

function at zero momentum, D(ω) = Im Gk=0(z = ω – i0+), where Gk(z) is the one-

particle (disorder-averaged) Green’s function. More important, D(ω) is proportional to

the absorption lineshape of 1s excitons at normal incidence, as shown in more detail in

section 4.3. In a given potential realization, both expressions Eqs (4.9) and (4.11)

consist of a series of delta lines (or narrow peaks if a broadening is artificially introduced).

Only after performing a large number of simulation runs with different potential realizations,

a smooth curve results. For the absorption, this average corresponds to a transmission

experiment with large focus and a finite aperture. We will see in section 4.5 that other

quantities like the angle-resolved scattered intensity do not contain this kind of ensemble

average, and display an irregular spiky behavior (speckles).

Numerical results are shown in Fig. 4.3. We use Ec = h2ξ–2/2M as a measure of the
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Fig. 4.3 Optical density D(ω) for exponentially correlated disorder in 2D. (a) Different correlation

lengths ξ, expressed as Ec = h2ξ–2/2M over potential variance σ. Dashed curve – Gauss potential

distribution. (b) Comparison between simulation, coherent potential approximation, and selfconsistent

second Born approximation (for Ec /σ = 2 only).
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confinement energy of the lowest COM state in a typical potential minimum. The

Schrödinger equation can be rescaled by using appropriate units for energy and length

[30]. Then, it is only the ratio Ec /σ which determines the optical lineshape, Fig. 4.3(a).

Ec /σ = 0 describes classical excitons, where the OD coincides with the Gaussian potential

distribution function (dashed curve). For finite values of this ratio, the lineshape develops

a distinct asymmetry towards higher energies and gets narrower. This kind of motional

narrowing has been reported often in the literature (e.g. for 1D excitons in [38]). The

asymmetry can be understood by a simple perturbation theory argument: Starting with

exciton states in the plane-wave basis (having kinetic energy h2k2/2M), the disorder can

be considered as elastic scattering with the amplitude gk–k′, the Fourier transform of the

potential correlation function Eq. (4.8). Within second order perturbation theory, the

density of final states is regulating the strength of tails in the spectral function. The

(ideal) DOS vanishes below the zero-momentum exciton energy, and this argument

yields a broadening towards higher energies only. In reality, the DOS acquires a low-

energy tail, but still an asymmetry remains. Along these lines, we have started with a

phenomenological model to describe an asymmetric OD found in experiment [39]. A

distinct improvement is to implement a selfconsistency loop into second order perturbation

theory, which is the selfconsistent second Born approximation (SCSB). Introducing the

self-energy ∑k(z) via Gk(z) = 1/(z – hk2/2M – ∑k(z)), one has to solve

Σ Σ
′

′ ′k
k

k k k
SCSB

2 –( ) = 1    ( )z
A

g G z
h

. (4.12)

Although used several times for the determination of the OD [40], the results are rather

poor, Fig. 4.3(b). In particular, the SCSB is not able to describe the low-energy tail

reliably (it gives zero below a threshold energy). On the high-energy side, the agreement

is better, since perturbation theory is expected to work in this limit. We note in passing

that the momentum dependence of the self-energy is not very strong, and putting ∑k(z)

≈ ∑0(z) does not deteriorate the SCSB further. Another standard method for disorder

problems is the coherent potential approximation (CPA) [41]. We have modified the

CPA for including the potential correlation and got reasonable results both in 1D and 2D

[23], Fig. 4.3(b).

An explicit ensemble average can be carried out for the moments of the optical

density, which are defined as

M d D
A

d Hn
n

A

n =  ( )  ( ) = 1   ( ),∫ ∫ω ω ωh R R (4.13)

expressed through powers of the Hamilton operator H(R) of the COM Schrödinger

equation (4.3). The first three moments are M0 = 1 (normalization), M1 = 0, M2 = σ2, and
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coincide with those of the underlying potential distribution. The first non-classical

moment is M3 (for Gauss-type correlation: M3 = 3Ecσ2). Its positive value is another

hint on the asymmetry towards higher energies. Using computer algebra, we have

automatically generated up to 20 moments and tried to reconstruct the OD numerically.

Even after applying a resummation in the exponent (cumulant expansion), the results do

not converge, in particular for Ec /σ >1. In [42], this has been tried including the term M3

only, with pathological behavior such as negative portions in the OD.

It is only in 1D and for an uncorrelated potential, that exact (non-simulation)

results are available, using a method due to Halperin [43]. We have used these results

[44] as a benchmark for any of the other approximations just mentioned. All these

methods allow to calculate the OD, but if we are aiming at modeling luminescence or

Rayleigh scattering, a numerical generation of the eigenstates in a given realization is

indispensable.

For the numerics, the Laplacian in the 2D real-space Schrödinger equation is

discretized on a square grid Rj (step size Δ), which maps the problem to a 2D tight-

binding version of the Anderson model with diagonal (correlated) disorder. To generate

the disorder landscape, a real number Uj is attached to each grid point, with the Uj being

drawn randomly from a Gauss distribution with unity variance. The potential is then

generated by summing

V W Uj
k

j k k =  (  – )Σ R R (4.14)

with a smoothing function W(R). For Gauss and exponential correlation type, this reads

Gauss: W(R) = Δσ
ξ

π ξ2/ – /2 2
e R , (4.15)

Expon.: W(R) = Δσ
ξ

π ξ2/ – /e R . (4.16)

Fast Fourier transform speeds up the generation of the potential, as well as the conversion

of wave functions into k space. For more details on the numerical procedures, the reader

is referred to [22,33,45,46].

The distribution of oscillator strengths, ~ ψ α 0
2  is displayed in Fig. 4.4, c.f. [47],

and forms a special application of wavefunction statistics [48]. At energies well above

the line center (panels 5, 6, 7), the distribution falls monotonously, as large oscillator

strengths are rare. This can be attributed to the strong spatial oscillations of high-energy

wave functions. Remember that in an ideal ordered system, these states would carry no

oscillator strength at all (momentum selection rule k = 0). Using statistical arguments,

it can be shown that the oscillator strength distribution follows here a Porter–Thomas

law,
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(r, E) = δ ψ δ εα α(  – ) (  – )  1
, =0

2 – / ( )0r E
r

e r r E
k ∝ . (4.17)

Below the line center, exciton states are getting sparse and strongly localized. Going

deeper into the tail, the oscillator strength distribution narrows appreciably, panels 1, 2

in Fig. 4.4. This can be easily explained by optimum fluctuation theory [49,50]: At a

given energy in the tail, there are only a few specific disorder arrangements which give

the major contribution to the OD within exponential accuracy. To get the dominant state

ψOF(R), the potential in Eq. (4.3) has to be replaced by
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Fig. 4.4 Distribution of optical oscillator strengths rα ∝ ψ α ,0
2  in different energy windows.

Symbols in panels 6 and 7 are rescaled in order to show the Porter–Thomas law Eq. (4.17) as a

straight line (solid). Based on simulation data for a 5 nm AlGaAs QW with σ = 8 meV; after [47].
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V d g OF( )  –   (  – ) ( )2R R R R R⇒ ′ ′∫κ ψ , (4.18)

where κ is a Lagrange parameter. Thus, a nonlinear Schrödinger equation has to be

solved.

Note that around the line center (Fig. 4.4, panels 3, 4), the distribution is rather

broad and neither of the limiting cases discussed above applies.

4.3 Exciton Hamiltonian and density-matrix approach

For the narrow energy window around the 1s exciton, it suffices to construct an exciton

Hamiltonian from the underlying electron-hole picture. Traditionally, this is done by

defining creation and annihilation operators of excitons in plane-wave COM states.

Then, the disorder enters as an elastic scattering process, commonly treated in second

Born approximation. Our emphasis, however, is on a proper description of disorder

effects. Therefore, we prefer to work in the representation of disorder eigenstates and

assign to each of the states α an exciton creation operator Bα
† . Since the analysis is here

restricted to low optical excitation, Boson commutation rules for the Bα
†  and Bα can be

assumed.

The Heisenberg exciton operator Bα(t) describes a local oscillating dipole within

the quantum well. Therefore, it is the source of an emitted electromagnetic wave. We

use the terminology by Stolz [15] to express the field operator (positive rotating part

E α
(+) ≡ α) at a position r1 outside the sample as

α α α
ω μ Ψ( , ) =  
 |  – |

 ( = , = ) ( )1

2

2
1

r r
r r

r r r rt d
c

B tx c
e h∫ ′v . (4.19)

This holds for dipole-allowed optical transitions, where the exciton-light coupling is

proportional to the probability to find electron and hole at the same position. The

retarded time t′ = t – |r1 – r |/c accounts for the free propagation from the source at r to

the observation point at r1. In the far-field limit, the expansion | r1 – r | ≈ r1 – r1·r1/r1

holds and reduces the retarded time to t′ = t – r1/c + k · r/ωx, where the emission wave

vector is introduced as k = (r1/r1)(ωx /c). The retardation along the sample extension is

tiny (below 1 fs), and consequently the leading time dependence of the operator Bα(t′)
~ exp(i ωxt′) is sufficient to replace

Bα(t′) ≈ Bα(t – r1/c) eik · r, (4.20)

thus converting the retardation into a spatial interference pattern. Altogether, we have
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α α α
μ Ψ( , ) =   ( , ) (  – / )1

2

1
1r r r r k rt

k
r

d e B t r cc iv ∫ ⋅ . (4.21)

Summing over all states, we obtain

k k( ) =   ( ) (  – / )
2

1
1t k

r
M B t r cΣ

α α α (4.22)

with the definition of the state-dependent optical matrix element as

Mα(k) = μ Ψαc
id ev    ( , )∫ ⋅r r rk r . (4.23)

Due to the factorization Eq. (4.2), the matrix element can be simplified as

Mα(k) = μcv φ1s(0) Oeh ψαk, ψαk = ∫ ⋅d eiR Rk R ( )ψα , (4.24)

where R is as before the two-dimensional COM coordinate in the quantum well. Therefore,

in the Fourier-transformed wave function, only the in-plane component k|| of the light

wave vector k enters. Due to λ � Lz, the confinement overlap Oeh = ∫dz ue(z) e ik zz uh(z)

is nearly independent of kz.

Exciting the system with a coherent light field, we expect a nonvanishing expectation

value of the induced field, i.e. polarization

Pk(t) = 〈 〉 〈 〉Σk k† †( )  =  *( ) ( )t M B t
α α α . (4.25)

The brackets are understood as the quantum mechanical expectation value (over bath

variables etc.). This has to be distinguished from the disorder average which will be

denoted by overlining throughout this work. Another quantity of interest is the time-

resolved intensity

I t t t M M B t B tk k k k k( ) =  ( ) ( )  =  ( ) ( ) ( ) ( )† * †〈 〉 〈 〉Σ
αβ α β α β , (4.26)

which will be investigated in great detail in the following sections. The light propagation

from the sample to the detector placed at r1 is not of interest here. Therefore, we have

omitted in Eqs (4.25) and (4.26) the k2/r1 prefactor and the overall retardation –r1/c.

This is consistent with putting into the following Hamiltonian the light coupling as k

M Bα α
* †  plus Hermitian conjugate,

 = Σ Σ
α α α α α α α α αε  +  [  )  + ( ) ]† * † †B B M B M B

k k k(k k

+ (  + )  +  †
–

† †Σ Σ
αβ αβ α βq

q
q q q q q qt a a B B w a ah . (4.27)

Apart from the disorder effects which are implemented exactly into Eq. (4.27)
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using the disorder eigenstates of excitons, there are other (inelastic) scattering processes.

They give rise to dephasing, and contribute to the linewidth as homogeneous broadening.

In general, they can be described by a linear coupling to Bose fields aq
†  with dispersion

hwq. For the lowest exciton states under consideration here, scattering with acoustic

phonons is in most cases the dominant process. More details on the corresponding

exciton-phonon matrix elements tαβ
q  are given in section 4.4. The following derivation

applies quite generally to a Hamiltonian of type Eq. (4.27).

Equation (4.27) has to be supplemented by the Hamiltonian of the free light field

with photon dispersion

ωk = kc/n, n = ε b
2 . (4.28)

Here, n is the refractive index of the medium, and εb the background dielectric constant

in the gap region, excluding the 1s exciton contribution. We have chosen to drop this

part of the total Hamiltonian at the moment, since specific light field properties such as

polarization degree of freedom and spontaneous emission will be treated later in sections

4.10, 4.11, and Appendix C.

The central quantities within the density matrix approach are the (equal-time)

expectation values for the exciton density matrix

Nαβ(t) = 〈 〉B t B tα β
† ( ) ( ) (4.29)

and the polarization

Pα(t) = 〈 〉B tα
† ( ) . (4.30)

Their equations of motion are obtained from the time-dependence of the Heisenberg

operators –  = [ , ]† †i B Bth∂ α α  with the Hamiltonian Eq. (4.27):

(–ih∂t – εα + εβ) Nαβ = Σ
ρ ρα ρβ ρα βρ αρ βρ ρα βρq

q
q

q
q q

q
q

q (   +   –  – ), ,–
*

, ,–
*t T t T T t T t

+  ( ( )  – ( )  )† †Σ 〈 〉 〈 〉
k k

*
kk kM B M Bα β β α (4.31)

(–ih∂t – εα) Pα = Σ Σ 〈 〉
ρ ρα ρ ρα ρ αq

q
q

q

k k
˜ ˆ k (  + ) +  ( ), ,–

†t T t T Mq . (4.32)

This is the first step of an infinite hierarchy: The two- and one-operator expectation

values Nαβ and Pα couple to the so-called phonon-assisted density matrices [51],

Tρβ,q ≡ 〈 〉 ≡ 〈 〉a B B T a Bq q q
ˆ† †

,
† †,     ρ β ρ ρ , (4.33)

which involve three and two operators, respectively. Their equations of motion in turn

contain expectation values involving two phonon operators. In order to truncate the
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hierarchy, we factorize into exciton and phonon contributions [51–55], neglect the small

phonon distortion 〈 〉a aq q
†

–
†  [56], and use a Bose distribution for the phonons,

〈 〉′ ′a a nq q qq q
†  =  δ . (4.34)

The rationale for assuming the phonons to be in equilibrium is our restriction to the low-

excitation case and the fact that bulk-like phonons will easily dissipate energy into

regions far from the quantum structure under consideration. The resulting equations for

the phonon-assisted density matrices contain cross terms describing phonon-assisted

optical transitions. These are dropped, and we are left with

(–ih∂t – hwq – ερ + εβ) Tρβ,q = Σ
η ηρ ηβ βη ρη ((  + 1)  – )–n t N n t Nq

q
q

–q (4.35)

(–ih∂t – hwq – ερ) ˜
q q

qT n t Pρ η ηρ η,
– =  (  + 1) Σ . (4.36)

This equation of motion will be solved within the Markov approximation: The crucial

step is to observe that most expectation values involve rapidly varying phase factors

(εα ≡ hωα),

〈 〉 = +B P e N e T ei t i t i w t
α α

ω
αβ

ω ω
ρβ

ω ωα α β ρ β† + + (  – )
,

+ ( – )   ~ ,  ~ ,  ~ q
q . (4.37)

As shown in Appendix B, this can be used to obtain

Tρβ,q = i w n t Nπ δ ε ε
η ρ η ηρ ηβ  (  +  – ) (  + 1) –Σ h q q

q

–   (  +  – ) –i w n t Nπ δ ε ε
η η β βη ρηΣ h q q

q (4.38)

˜
q q q

qT i w n t Pρ η ρ η ηρ ηπ δ ε ε,
– =   (  +  – ) (  + 1)Σ h . (4.39)

These terms will contribute significantly to the dynamics of Nαβ(t) and Pα(t) only if the

leading frequencies coincide. For the first term on the r.h.s. of Eq. (4.38) and for Eq.

(4.39), the resonance condition is: εη ≈ εα. For non-degenerate exciton states, it is

reasonable to assume that this implies η = α. This argument yields the following

contributions to Eq. (4.31)  and (4.32) (with t tq
αβ βα
–  = )q*

t T i w n t N tρα ρβ ρ α ρα αβπ δ ε εq
q q q

q
,

2  (  +  – ) (  + 1) | | ( )→ h (4.40)

t T i w n t P tρα ρ ρ α ρα απδ ε εq
q q q

q˜
,

2  (  +  – ) (  + 1) | | ( )→ h . (4.41)

We combine these phonon emission processes with the corresponding contributions

from phonon absorption ( T̂ ) and obtain

Σ Σ→ ←ρ ρα ρβ ρα βρ ρ ρ α αβγ
q

q
q

q
q (  + )  

2
   ( ), ,–

*t T t T i N th (4.42)

Σ Σ→ ←ρ ρα ρ ρα ρ ρ ρ α αγ
q

q
q

q
q

˜ ˆ (  + )  
2

   ( ), ,–t T t T i P th , (4.43)
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where we have introduced the phonon scattering rates as

γ π δ ε ε δ ε ερ α ρ α ρ α ρα← Σ = 2   ((  + 1) (  +  – ) + (  –  – )) | |2
h

h h
q q q q q

qn w n w t . (4.44)

Qualitatively different is the second contribution to the r.h.s. of Eq. (4.38), because its

rapidly oscillating factors do not depend on α or β. The resonance condition is εα – εβ

≈ ερ – εη. The case {ρ, η} = {α, β} is excluded for wq ≠ 0 by the delta-function. Thus,

we expect this term to contribute only if εα = εβ and furthermore ερ = εη. Again, we

assume that this implies α = β and ρ = η:

t T i w n t N tρα ρβ αβ ρ α ρα ρρδ π δ ε εq
q q q

q
,

2  – (  + – )  | |  ( )→ h (4.45)

Σ Σ→ ←ρ ρα ρβ ρα βρ αβ ρ α ρ ρρδ γ
q

q
q

q
q (   +  )  –

2
   ( ), ,–

*t T t T i N th . (4.46)

Thus, this contribution turns out to be of in-scattering form. A corresponding term is not

present in the polarization equation (4.39).

Next, we discuss the mixed photon-exciton expectation values. We separate the

coherent polarization 〈 〉Bα
†  = Pα, which is driven by the macroscopic classical field

〈 k〉 = Ek(t), from a fluctuation term. The latter is evaluated analogously to the phonon-

assisted matrices in the Markov approximation, with photon distribution set equal to

zero, as we consider emission into the field vacuum. At this point, we have to express

the field operators via creation- and destruction operators of Bose type. Due to the

rotating wave approximation, this is a one-to-one correspondence, and gives a modified

commutator

[ ,  ] =  †
,k k k k k′ ′δ g (4.47)

with the coupling function gk (see Appendix C for details). Assuming the exciting field

to be directed along k0, Ek(t) = δ kk 0 0 ( )E t , the result is

〈 〉 ΣB P t E t i g M N tα α η η η αηδ π δ ε ω†
0 = ( ) ( ) +    (  – ) ( ) ( )

0k kk k k kh . (4.48)

This contributes to the equation of motion for Nαβ, Eq. (4.31), only if εη = εβ or η  = β.

Thus,

M B P t E t M i g M N tβ α α β β β αβδ π δ ε ω* †
0

*
0

2( ) ( ) ( ) ( ) + ( – ) | ( )| ( )
0

k k kk kk k k〈 〉→ h (4.49)

and

Σ 〈 〉 →
k kk k ( )   ( ) ( ) ( ) + 

2
 ( )* †

0
*

0M B P t E t M i r N tβ α α β β αβ
h . (4.50)

Here, we have introduced the rate for spontaneous radiative decay
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r g Mβ β β
π δ ε ω = 2    (  – ) | ( )|2
h

hΣ
k k k k , (4.51)

which is further evaluated in Appendix C.

With the total out-scattering rate defined as

2  =  +  Γ γα α β β αr Σ ← , (4.52)

the final result takes the form

∂t Nαβ(t) = (i(ωα – ωβ) – (Γα + Γβ)) Nαβ(t) + δαβ Σ ←ρ α ρ ρργ ( )N t

+  ( ) ( ) ( ) –  ( ) ( ) ( )*
0 0

* *
0 0

i P t M E t i P t M E t
h hβ α α βk k (4.53)

∂t Pα(t) = (iωα – Γα) Pα(t) + i M E t
h

 ( ) ( )0 0
*

α k . (4.54)

The polarization equation can be solved without problems,

P t dt e i M E ti t t
t

α
ω Γ

α
α α( ) =    ( ) ( )( – )( – )

0 0
*

–

′ ′′

∞∫ h
k . (4.55)

Obviously, the polarization decays with Γα, the dephasing rate (this was the reason for

introducing into Eq. (4.52) the factor of two).

For the nondiagonal density matrix Nαβ with α ≠ β, there is no inscattering term

in Eq. (4.53), and a careful inspection shows that the factorized ansatz

N t P t P tαβ α β α β( ) = ( ) ( ),   * ≠ . (4.56)

solves the equation of motion directly. Therefore, it is only the kinetic equation of the

diagonal density Nαα(t) which needs to be solved numerically,

∂t Nαα(t) = Sα(t) + Σ ←ρ α ρ ρρ α ααγ Γ ( ) – 2 ( )N t N t . (4.57)

Besides the phonon scattering rates (4.44) and radiative rates (4.51), we have introduced

the source term Sα(t) as

S t P t M E tα α α( ) = Im 2  ( ) ( ) ( )0 0h
* k . (4.58)

In standard time-resolved light-scattering experiments, a very short excitation pulse is

used (tP ~ 10 – 500 fs). In most cases, σtP � 1 holds, and the excitation is close to a

delta-like excitation E0(t) ≈ hΩ0 δ(t) on the scale of the inhomogeneous exciton line

(hΩ0 is the pulse area). Then, the polarization is simply

P t i M e ti t
α α

ω ΓΩ Θα α( ) = ( ) ( )0 0
( – )k , (4.59)

and the corresponding source term reads
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S t M tα αΩ δ( ) =  | ( )|  ( )0
2

0
2k . (4.60)

The expressions for stationary excitation are given in section 4.7. Numerical results for

different cases are presented in sections 4.4 and 4.6.

Some remarks are in place here. First, the exciton population Nαα = 〈 〉B Bα α
†  is

refilled from other states. Thus, it decays in general much slower than the off-diagonal

elements Nαβ, α ≠ β. Phonon scattering destroys the excitonic polarization, but, apart

from radiative recombination, the total number of excitons is conserved.

Second, it is important to notice that the kinetic equation (4.57) involves only

state-diagonal terms. Therefore, this kind of standard rate equation is not sufficient for

the initial phase of coherent decay, where the off-diagonal terms (i.e. the polarization)

are of central relevance.

Third, while the density matrix formulation is independent of the chosen basis in

principle, a state-diagonal kinetics can only be an approximation. We shall briefly

discuss the approximations involved in the derivation. Using the disorder eigenstates as

basis is quite plausible. This eliminates off-diagonal components due to disorder scattering,

which would be present in a plane-wave basis. The weakest point in the derivation

above is to replace (approximate) energy conservation εη = εα by the condition η = α.

For infinite systems, states are arbitrarily close in energy, and this simple identification

by itself is questionable. However, in Eqs (4.38), (4.39) and (4.45), the energy-dependent

factor is weighted with phonon matrix elements t tρα ρη
q q* . This factor assures that ψ α

2  and

ψ η
2  both have a substantial overlap with ψ ρ

2 , which, in turn, implies that the states α
and η are localized in the same spatial region. It will be discussed in detail in section 4.8

that two states which are localized in the same spatial region and which have nearly the

same energies are almost certainly the same states (level repulsion).

Fourth, even with the diagonal assumption accepted, the present kinetic equation

(4.57) for Nαα is much more rich compared to a rate equation formulated in terms of an

energy- (or momentum-) dependent exciton occupation, as treated in [57]. It is just the

local spatial surrounding of a given state which determines its character: There are

states being able to emit phonons easily, and others where the decay rests upon the

radiative rate, and this may happen within the same energy window. A splitting of the

exciton states into two groups according to this idea has been tried in [58], and some

puzzling features seen in experiment could be explained.

Fifth, the specific way of selecting fully resonant terms in the phonon scattering

and the subsequent Markov approximation has produced only strictly energy conserving

processes. In a complete treatment, each exciton level is not only polaron shifted but

gets phonon satellites with spectral weight on the expense of the sharp main line. Taking

fully into account these subtle quasiparticle effects opens the way to understand a
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partial phase loss – even without a real phonon scattering to be happen. This has been

called pure dephasing in the literature [59,60]. The coupling strength of acoustic phonons

with excitons in GaAs, however, is not sufficient to influence the Rayleigh scattering

markedly in this way, not to speak on luminescence which is much less sensitive. This

is quite different in the strongly localized situation of quantum dots [61].

4.4 Exciton kinetics with acoustic phonon scattering

The dominant dephasing mechanism in excitonic resonant secondary emission from

QW is acoustic phonon scattering with deformation-potential coupling [62]. Interaction

with optical phonons is efficient at excitations above the band gap only. At higher

excitation intensities, exciton-exciton scattering and the interaction of excitons with

free carriers will take over [60].

First, we discuss the differences of QW and bulk material qualitatively. In the

simple case of a single isotropic bulk band, the deformation-potential coupling is

H
q

u
D a e h c.ph a e h m s

a
i a =   

2
( + . )

= ,

†Σ Σ ⋅
q q

q rh
Ωρ , (4.61)

in terms of the particle position ra (a = e, h), and second-quantized generation and

annihilation operators aq
†  and aq for longitudinal acoustic phonons with linear dispersion,

wq = usq. Note that in the electron-hole language used throughout, the deformation

potentials Da are negative quantities (De = Dc and Dh = –Dv in the standard terminology).

The sample volume, the mass density, and the speed of sound are Ω, ρm, and us, respectively

[63–66].

For free carriers having a kinetic energy of the order of kBT, the scattering efficiency

of thermal acoustic phonons and the phonon-emission probability are both given by the

squared matrix element (proportional to q and thus to kBT via the phonon dispersion),

and therefore vanishingly small in the low-temperature limit. Thus, other scattering

processes, in particular piezo-electric scattering with squared matrix elements ~ 1/q,

dominate for T → 0.

This argument applies to excitons in bulk material as well. Phonons interact with

the constituents separately. Their momenta can be rather large (~1/aB) even for low-

energy excitons. However, the momentum transfer is supplied by the center-of-mass

motion, which, again, limits it to k ~ k TB .

The situation is qualitatively different for quantum structures such as quantum

wells. Only the in-plane momentum is a conserved quantity. The vertical confinement
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in a well of width Lz provides at no cost in energy momentum differences up to about

qz ≈ 2π /Lz. The deformation potential scattering of free carriers and excitons is thus

enhanced relative to the bulk case [67].

For the following derivation of the kinetic equation for the exciton population, we

neglect the anisotropy and multi-band character of the valence-band maximum and

simply sum the interaction (4.61) for both constituents. On the one hand, this simplifies

the notation. On the other hand, it reflects the fact that for many materials only the

isotropic total deformation potential is known. The deformation potential matrix element

for scattering between disorder eigenstates is [67]

t
w

u
d d D e D e

s m
e h e h e

i
h

i
e h

e h
αβ β αρ Ω

Ψ Ψq q q r q rr r r r r r = 
2

 ( ) (  + ) ( )2
*

h ∫∫ ⋅ ⋅ . (4.62)

Within the factorization approximation, Eq. (4.2), this takes the form [68]

t
w

u
D K q D K q

s m
e e z e h h z hαβ α βρ Ω

χ η χ η ψ ψq q
qq q = 

2
( ( ) ( / ) + ( ) ( / ))  ( )2 || || ||

h
⋅ . (4.63)

The mass factors ηa have been defined in Eq. (4.5). The dependence on the disorder

COM eigenstates is via the Fourier-transformed overlap

( ) =  ( ) ( )
||

||–ψ ψ ψ ψα β α βq
* q RR R Rd e i ⋅∫ . (4.64)

Note that ( )
||

ψ ψα β q → δαβ for q|| → 0. Further, the Fourier transforms Ka and χ of the

squared confinement and relative wavefunctions ue h,
2  and φ1

2
s , respectively, enter:

K q dz u z e d r r ea z a
iq z

s
iz( ) = ( ) ,   ( ) = ( ) 2 –

||
2

1
2 – ||∫ ∫ ⋅χ φq q r . (4.65)

In order to illustrate the dependence on geometry and material parameters, we

give explicit expressions using the infinite-barrier limit for the confinement function,

and an exponential for the exciton relative motion, respectively,

u z
L

z
L

K q
q L q L

q La
z z

a z
z z z z

z z

( ) = 2  cos ,   ( ) = 
(2/ ) sin ( /2)

1 – ( /2 )2

π
π

⎛
⎝

⎞
⎠ ;

φ π1
– /( ) = 2 1  ,s

B

r a

a
e Br χ( ) = (1 + ( /2) ) .|| ||

2 –3/2q q aB (4.66)

Decay rates for a typical QW system are given in Fig. 4.5. The top panel shows

the phonon scattering rates at T = 4 K, while the middle panel displays the radiative

rates, Eq. (4.176). Their largest values are found near the line center [47]. The phonon
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rates increase rapidly with increasing energy. This reflects primarily the increasing

final-state density. A comparison of the absolute values shows that only for low-energy

excitons the radiative decay can be faster than phonon scattering. In particular at elevated

temperatures, where phonon absorption and stimulated emission dominate, the total

dephasing rate is mainly due to phonon scattering. The optical density is shown in the

bottom panel. The low-energy part results from few strongly absorbing states and exhibits

some structure, whereas the high-energy part is the sum of very many small contributions.

In order to illustrate the broadening due to dephasing, a dashed curve obtained with a

uniform Gauss broadening is shown for comparison. Concerning the numerics, a single

realization consisted of 128 × 128 sites with step size Δ = 1.65 nm, covering an area of

(211 nm)2. Altogether, 186 realizations have been added for the bottom panel. Covering

thus a total area of (3 μm)2, this is close to a wide-focus spectrum. Note that for the sake

of clarity, data points from 10 realizations only are displayed in the two upper panels.

Fig. 4.5 Distribution of phonon rates (top panel) and radiative rates (middle panel) for a 5 nm wide

AlGaAs quantum well at T = 4 K. Each dot refers to a given COM eigenstate. The bottom panel

shows the corresponding optical density. Full curve – each state contributes with a Lorentzian of

half width hΓα. Dashed curve – with uniform Gauss broadening of variance 0.2 meV. (Model

calculation by courtesy of G. Mannarini).
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The kinetic Eq. (4.57) has been applied to many questions related to the energy

relaxation and thermalization of an exciton population. In most cases, only the dynamics

of the diagonal density matrix was considered. It is quite plausible that the spectrally

resolved secondary emission at time t is given by

I t M N t( , ) =   (  – ) ( )2ω δ ω ω
α α α αΣ , (4.67)

which might be decomposed into a Rayleigh (coherent) and photoluminescence

(incoherent) contribution, as detailed in section 4.5. More precise expressions for the

frequency resolved spectra are derived in section 4.7. Within a similar reasoning, the

optical density (absorption) is given by

D M( ) =   (  – )2ω δ ω ω
α α αΣ . (4.68)

Depending on the experiment under consideration, different source terms resp. initial

occupations of the exciton states have to be considered when solving the kinetic equation:

(i) Hot excitation into continuum states with rapid energy relaxation by LO phonon

emission and exciton formation within less than 20 ps. All exciton states are filled with

approximately equal weight. Here, the entire emission is incoherent luminescence (PL).

(ii) Resonant but broad-band excitation gives a population of optically active excitons

with initial weight given by their squared optical matrix element. (iii) Monochromatic

resonant excitation is described by an initial population at a single energy.

Photoluminescence excitation experiments (PLE) combine a resonant excitation

at frequency ω0 with a possible spectral resolution in the detection (frequency ω). In the

present framework,

I t M N tPLE
0

2( , , ) =   (  – ) ( ),ω ω δ ω ω
α α α αΣ (4.69)

which has to be calculated with the source term Sα = E M0
2 2

0  (  – )α αδ ω ω . Finally, the

resonant secondary emission is obtained from the PLE spectrum at ω = ω0. An example

of such calculations is given in Fig. 4.6. The red-shift of luminescence relative to

absorption is called Stokes shift in analogy to Raman scattering. It depends on temperature

and vanishes at elevated temperatures. The Stokes shift is not always a monotonous

function of temperature: With decreasing temperature, a blue-shift of the PL follows

sometimes the usual red-shift. This anomaly has been seen experimentally and analyzed

theoretically [26] using the exciton kinetics (4.57). In contrast, the peak of the PLE

signal is often shifted to energies above the absorption peak, as seen in Fig. 4.7.

Qualitatively, the temperature dependence of the PLE line can be described as disappearance

of the low-energy wing with decreasing temperature. This has been explained in terms

of an effective mobility edge for exciton relaxation [27,69]. Excitons generated below
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the effective mobility edge are strongly localized in local potential minima. During their

finite lifetime, they are unable to reach other minima lower in energy which would

contribute to low-energy detection. Obviously, the position of the effective mobility

edge depends on temperature and exciton lifetime.
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Fig. 4.6 Results from simulations based on Eq. (4.57) for various steady-state spectra of a

GaAs/AlxGa1–x As QW system. From top to bottom: Optical density or absorption (OD),

photoluminescence (PL) for broad resonant excitation, and resonant secondary emission (RSE),

all in arbitrary units. The spikes due to individual eigenstates can be seen since the simulation area

was restricted to (2 μm)2; from [70].
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Fig. 4.7 Calculated PL (left) and PLE (right) for a strained InxGa1–x As/GaAs sample with strong

disorder. A strong Stokes shift of PL and a moderate blue-shift of PLE are seen; from [26].
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4.5 Coherent and incoherent emission in the time domain

The distinction between coherent and incoherent secondary emission and the related

subject of quantum coherence are hotly debated issues of both fundamental and, possibly,

practical importance. Losing phase coherence is generally associated with processes

changing the energy of the particle under consideration. For the present case, these are

phonon-scattering events. We do not want to discuss fundamental questions of decoherence

in quantum systems nor present sample-specific results, but rather focus on the experimental

possibilities to measure the degree of coherence quantitatively, and the opportunities

which this opens. Some examples will show that the separation of coherent and incoherent

secondary emission yields information which otherwise would not be accessible.

A good starting point for a quantitative theory of the coherent and incoherent

secondary emission is a detailed discussion of the intensity Ik(t) in direction k at time

t after a short-pulse excitation at t = 0 [21,30]. Initially, the sample is excited coherently:

All excitonic oscillators are in phase with each other and with the exciting light pulse.

Here, we consider a single quantum well sitting in a uniform dielectric background.

This allows to neglect reabsorption or propagation effects (see section 4.11 for relaxing

this restriction). As shown explicitly in section 4.3, the electric field k at the detector

is directly proportional to the polarization in the sample at the same wave vector. In

terms of the disorder eigenstates, the quantum mechanical expectation value is

Pk(t) = 〈 〉k
*

t  = μcv φ1s(0)Oeh Σ ∫ ⋅
α α αφ  ( )  ( ) ( )–d f e P tiR R Rk R . (4.70)

We include a function f(R) describing the spot whose emission is collected.

For a discussion of the dependence of P on k and t, we assign to each COM

eigenstate an exciton position Rα, e.g., by the expectation value of the position operator.

The precise definition does not matter, as we will only consider functions of Rα which

vary smoothly with a characteristic length of the order of the wavelength of the light λ.

The latter is assumed to be large compared to the scale of the disorder and to the exciton

COM extension, λ � Λ. For typical single QW with Λ below 100 nm, this condition is

easily fulfilled.

Separating rapidly and slowly varying factors, we obtain

P t e f M P ti
k

k R R( ) =   ( ) ( )– *Σ ⋅
α α α α

α (4.71)

with the optical matrix element at zero momentum, Mα ≡ Mα(k = 0). With the explicit

solution Eq. (4.59) for delta-like excitation and assuming normal incidence for the

excitation, k0 = 0, we have
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P t i f e M e ei i t t
k

k RR( ) =   ( ) | |   0
– 2 –Ω

α α α
ω Γα α αΣ ⋅ (4.72)

(t ≥ 0 is understood within the remainder of this section.) The sum involves many

complex numbers. Therefore, the central limit theorem is applicable, and the fields are

Gaussian distributed. For each disorder realization, the expectation value Pk(t) varies

strongly with k and t. It also varies from one potential realization to the next. We have

shown in [30] that an angular average over k directions (speckle average) is equivalent

to an ensemble average over disorder realizations. At small times t ≈ 0 and observation

along the normal direction, k ≈ 0, all contributions are in phase and add up to the strong

reflected/transmitted beam. Outside this region, however, the average of the expectation

value (4.72) vanishes. It is the fluctuation which remains and shows up as finite intensity.

This behavior for the Rayleigh part has been called non-ergodic by Shah and coworkers

[17].

As an illustration, we consider the following toy model: The dephasing rates Γα

are replaced by an average value Γ, and the optical density is assumed to have Gaussian

shape with spectral variance σ1. This yields for the ensemble average

P t i f e et t
k k̃( ) ~   0

– –1
2 2

Ω σ Γ (4.73)

with the Fourier transform ˜
kf  of the focus f (R). Clearly, this describes the reflected/

transmitted beam centered at k = 0 with width given by the inverse focus size. The

ensemble-averaged polarization disappears with a characteristic time given by the inverse

width of the optical density, i.e. 1/σ1 in this example. For the ensemble average of the

squared expectation value, however, we find in this model a finite result

| ( )|  ~  2
0
2 –2P t e t

k Ω Γ , (4.74)

which depends neither on the direction k nor shape or width of the optical density.

Next, we discuss the time-dependent intensity

I t f f e M M B t B ti
k

k R RR R( ) =  ( ) ( )   ( ) ( )– ( – ) * †Σ ⋅ 〈 〉
αβ α β α β α β

α β . (4.75)

The frequency-resolved counterpart is derived in section 4.7. The expectation value Nαβ

= 〈 〉B Bα β
†  will factorize for two spatially well separated eigenstates: Nαβ ≈

〈 〉 〈 〉B B P Pα β α β
† *  = . When we add and subtract the factorized expectation value, the

double sum splits naturally into two contributions,

I t I t I tk k( ) = ( ) + ( ):coh inc

I t f e M P t P ti
k

k R
kRcoh – * 2 2( ) = |  ( ) ( ) |  =  | ( )|Σ ⋅

α α α α
α , (4.76)

I t f f M M N t P t P tinc

,

* *( ) =  ( ) ( )  ( ( ) – ( ) ( ))Σ
≈αβ α β α β αβ α β

β αR R
R R . (4.77)
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We have written the restriction Rβ ≈ Rα explicitly, even though it is fulfilled automatically:

As shown in Eq. (4.56), the off-diagonal elements of the density matrix factorize, Nαβ(t)

= Pα(t) P tβ
* ( )  for α ≠ β. Consequently, only the diagonal terms contribute, and we may

define an incoherent exciton density via

N t N t P tα αα α
inc 2( ) = ( ) – | ( )| . (4.78)

Thus, the incoherent contribution to the emission takes the form

I t f M N tinc 2 2 inc( ) =  ( ) | |  ( )Σ
α α α αR . (4.79)

It is quite instructive to formulate the kinetic equation for the incoherent density directly.

The source Eq. (4.58) is replaced by a single out-scattering term from the coherent part

| Pα(t) |2,

∂ Σ Σ← ←t N P t N t N tα β α β β β α β β α αγ γ Γinc 2 inc inc =   | ( ) |  +  ( ) – 2 ( ) . (4.80)

After short-pulse excitation, first the polarization is excited, followed by an increase of

the incoherent density on the expense of phonon scattering, as seen in Fig. 4.8. Obviously,

the incoherent contribution is independent of the detection direction, whereas the coherent

contribution varies strongly with k. These strong fluctuations (speckle) reflect the

interference between the field components originating from different eigenstates which

is a coherent process [18,71,72]. In contrast, the incoherent emission comes from summing

Fig. 4.8 (a) Calculated coherent ( I coh ,  dashed) and incoherent (I inc, dot-dashed) contributions to

the speckle-averaged emission ( I , solid line) following resonant excitation of a 1.2 nm wide

In 0.5Ga0.5As/GaAs quantum well with σ = 8.5 meV at 5 K on a logarithmic scale; from [21].

(b) Relative weight of coherent (dark gray) and incoherent (light gray, PL) emission at various

temperatures. Optical density (ABS) for comparison; from [70].
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up the contributions from the individual exciton states independently, since the phase

information got lost during the phonon scattering process.

Restoring the full k-dependence in the matrix elements, we rewrite the time-

resolved coherent emission Eq. (4.76) after short-pulse excitation as

I t M M e i t
kk k k

0
coh

0
2 *

0
( – ) 2( ) =   ( ) ( ) Ω

α α α
ω Γα α| |Σ . (4.81)

If needed, the focus function f (R) can be included in the integral defining the optical

matrix element, Eq. (4.24). As before, the momentum k0 denotes the direction of the

incoming light. It is instructive to write Eq. (4.81) as a double sum over states,

I t M M M M e ei t t
kk k k k k

0
coh

0
2 *

0
*

0
( – ) –( + )( ) =  ( ) ( ) ( ) ( ) Ω

αβ α α β β
ω ω Γ Γα β α βΣ . (4.82)

Treating for the moment the dephasing rates as state-independent (which we know is a

poor approximation), we can recast Eq. (4.82) into a compact shape using the completeness

of states ψα(R),

I t e d d e e et i it H H i
kk

k R R R R k R RR R
0

0coh
0
2 –2 – ( – ) ( ( )– ( )) ( – )( ) =       Ω Γ ∫∫ ′ ⋅ ′ ′ ⋅ ′ . (4.83)

Again, the COM Schrödinger Hamilton operator H(R) has been invoked, Eq. (4.3). The

initial behavior (t → 0) is governed by moment-like expressions. In contrast to Eq.

(4.13), however, we have two different spatial arguments: The coherent emission falls

into the realm of two-particle Green’s functions, while the optical density is related to

the one-particle Green’s function. For t = 0, a Kronecker symbol in momentum follows

easily, I Akk kk0 0
coh

0
2 2(0) =  Ω δ , which is the specular emission. This argument relies on

the completeness of states. If by purpose the excitation pulse does not cover spectrally

all optically active states, a nearly instantaneous appearance of the RRS is expected.

This has been confirmed in a sample with monolayer-split excitons, where only one

sub-ensemble has been excited [14].

Continuing with Eq. (4.83), there is no first-order contribution in time due to

V ( ) = 0R , and the emission in non-specular direction starts with

I t A e t d gt
k k R R≠ → ⋅ ∫0

coh
0
2 –2 2(   0) =       ( )Ω Γ . (4.84)

This is the famous quadratic rise of the coherent emission (see Fig. 4.1). Therefore, it

may happen that the incoherent emission dominates at very early times, since it rises

linearly in time (at least within the Markov approximation for phonon scattering). It is

rather cumbersome to proceed with the series expansion of I tkk 0

coh ( ) . However, in the

classical limit where the Hamilton operator reduces to the potential V(R), all averages

can be performed directly [7], yielding
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I t A e e d et – t g t
class
coh

0
2 –2 + ( )( ) =      ( – 1)

2 2 2Ω Γ σ ⋅ ∫ R R . (4.85)

Here, for simplicity, the momentum dependence has been dropped after observing

k ≠ k0.

The speckle average in the coherent intensity singles out the diagonal part α = β
in Eq. (4.82), since all other terms have random phases (strictly speaking, this holds

only for times t σ >1). Therefore, at later times we are left with the simple form,

I t M M e t
kk k k

0
coh

0
2

0
2 –2( ) =   ( ) ( )  Ω

α α α
ΓαΣ | | , (4.86)

which exhibits a non-exponential decay. In the subsequent sections, several of the

expressions listed here will be taken as starting point.

4.6 Speckle measurement and interferometry

We saw in section 4.5 that the k dependence allows to separate the coherent from the

incoherent scattering intensity. The latter is k-independent, whereas the former fluctuates

strongly with k. Both real and imaginary part of the emitted field are Gaussian distributed

(central limit theorem) and uncorrelated. This implies an exponential distribution for

the absolute squares (intensity). Note that the Jacobian ∂Ik/∂ |Ek | cancels the two-

dimensional volume element in the complex plane, and we consider detection of a

single polarization direction. Adding up the non-fluctuating incoherent intensity, the

total intensity exhibits a displaced exponential distribution [20],

 (I ) = θ(I – I inc) e

I

I I I– ( – )/

coh

inc coh

. (4.87)

A full analysis using the variation of Ik(t) with either observation direction k or time t

for constructing the intensity distribution (histogram) has been performed [21]. However,

Langbein et al. [20] noted that there is a much easier way to extract the degree of

coherence

c I

I I
 = 

 + 

coh

coh inc
(4.88)

from the data: It suffices to evaluate the averages of intensity and intensity fluctuations

which leads for ideal detectors to the remarkably simple relation

c
I

I I = 1 – .2 2
(4.89)
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Again, the clue is the exponential distribution of the coherent intensity. In contrast, the

incoherent contribution Iinc is not fluctuating, since an average over many laser shots is

involved. This is the meaning of the quantum mechanical expectation value (bath variables),

which is denoted by brackets in the present text. We reiterate that overlining marks an

average over ensembles or speckles (direction k). A decomposition of the measured

time-resolved emission into the coherent and incoherent parts along this line is displayed

in Fig. 4.9.

Fig. 4.9 Coherent ( Icoh ,  dashed) and incoherent ( I inc ,  dotted) contributions to the speckle-

averaged resonant secondary emission ( I , solid line) from an 8 nm wide GaAs/AlGaAs single

quantum well with a small inhomogeneous broadening of 0.85 meV, see inset. The separation is

obtained from the experimentally determined coherence degree as a function of time; from [20].
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On a semilogarithmic plot, the distribution (4.87) forms a triangle, horizontally

displaced from the origin by Iinc. Due to finite temporal and spatial resolution, the width

of the experimentally obtained speckle distributions is less than ideal. A triangular

shape with a rounded vertex is obtained, Fig. 4.10, and the expression (4.89) would lead

to an underestimation of the degree of coherence. This can be avoided by a more

detailed analysis of the resolution-modified speckle distribution [28]. From its very

shape, the actual resolution parameter can be revealed, and the underlying full coherence

degree can be reconstructed.

Quantitative speckle analysis has been used to extract the coherence degree of the

secondary emission and to study the energy dependence of the phonon scattering rate

[20]. Another application is the study of the loss of spin polarization [73]. Additional

insight into the anisotropy of disorder localized wave functions can be obtained from
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cross-correlations of speckle intensities [74], which show up also in the (speckle-averaged)

polarization degree (see section 4.10).

Alternatively, the degree of coherence can be determined using interferometric

(IF) measurements, which actually predated the speckle analysis. In a nutshell,

interferometric experiments study a superposition of the excitation pulse E0(t) = I e i t
0

0ω

with the secondary emission. The former is attenuated by a factor α and phase-shifted

by a time-delay τ,

I t E t h c.k k
IF

0( ) = ( (  – ) + )  ( . )〈 × 〉α τ

=   + 2 ( ) cos( (  – ) + ) + ( ) + ( )2
0 0

coh
0 0

coh incα α ω τ ϕI I I t t I t I tk k . (4.90)

The phase ϕ0 summarizes constant phase factors.

The time-dependent intensity can be detected e.g. via frequency up-conversion

[16]. An oscillatory behavior with respect to the delay τ proves the presence of a

coherent component. A quantification of the latter is obtained if the attenuation α is

adjusted to maximize the fringe contrast between maxima and minima,

F
I I

I Ik
k k

k k

 = 
|  – |

|  + |

IF
max

IF
min

IF
max

IF
min

. (4.91)

The maximal contrast is reached at α2I0 = I coh + Iinc and is given by
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Fig. 4.10 Intensity distribution of the emission at a delay time of 5 ps from Fig. 4.9, and analytical

fit (full curve); from [28].
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F t
I t

I t I tk
k

k

( ) = 
( )

( ) + ( )

coh

coh inc . (4.92)

It shows the same speckle as the intensity itself [75]. In this sense, interferometric

measurements and the method of speckle statistics are equivalent. The contrast Fk(t) can

be anything between one (for an exceptionally strong speckle) and zero (in between

speckles). The message is that interferometric methods are not conclusive if only one

scattering direction is investigated. Only after singling out mean value and variance of

the interferometric amplitude from an average over directions, the degree of coherence

(4.88) can be extracted. To characterize the statistical ensemble of exciton states, statistical

methods of evaluation are indispensable. Measuring a single speckling trace (over time)

is not conclusive at all, and a comparison with simulations on a few disorder realization

is not meaningful either [76]. Using two phase-locked excitation pulses gives additional

information (coherent control) on the secondary emission, but is hampered by the

speckle statistics, too [77].

While the analysis and understanding of the speckled nature of any resonant

emission is of great practical importance, we will for the rest of this review concentrate

on speckle-averaged quantities.

4.7 Frequency-resolved secondary emission

Up to now we were concerned with equal-time expectation values which is sufficient if

no spectral resolution of the intensity is wanted. Now, if a spectrometer is placed into

the outgoing direction k, we need two different times for the field (or exciton) operators.

With a spectrometer resolution of ΔS we have for the spectrally resolved (Fourier-

limited) light intensity at time t [15] (compare Eq. (4.75))

Ik(ω, t) = Δ ω Δ ω Δ
S

t
i t t

t
i t tdt e dt eS S   

–
1

( – )( – )

–
2

(– – )( – )1 2

∞ ∞∫ ∫ (4.93)

Σ 〈 〉
αβ α β α β ) ( ) ( ) ( )* †

1 2M M B t B t(k k .

The double-time expectation value is found from an equation of motion with respect to

one time only. We apply –i∂t Bα
†  = (ωα + iΓα) Bα

†  + E f0
* ( )(t)Mα(k0)/h to connect the

temporal evolution to quantities with equal times. For the case t1 > t2 we find

〈 〉B t B t P t P t e N t P t P ti t t
α β α β

ω Γ
αβ α β

α α†
1 2 1

*
2

( – )( – )
2 2 2( ) ( )  = ( ) ( ) + [ ( ) – ( ) ( )]1 2 * (4.94)

and correspondingly for t1 < t2

〈 〉B t B t P t P t e N t P t P ti t t
α β α β

ω Γ
αβ α β

β β†
1 2 1

*
2

(– – )( – )
1 1 1( ) ( )  = ( ) ( ) + [ ( ) – ( ) ( )]2 1 * . (4.95)
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The term within square brackets has been shown to be diagonal (α = β, see Eq. (4.56))

and equal to the incoherent density, Eq. (4.78), which simplifies the two-time expectation

value to

〈 〉B t B t P t P t e e N t ti t t t t
α β α β αβ

ω Γ
αδ α α†

1 2 1
*

2
( – ) –  | – | inc

1 2( ) ( )  = ( ) ( ) + (min ( , ))1 2 1 2 . (4.96)

Obviously, the polarization product (first term) has a different time dependence compared

to the remainder, and this splitting of terms coincides with the separation into coherent

(or Rayleigh) part and incoherent (or luminescence) part.

We concentrate on the incoherent part first. Assuming a slow temporal variation

of the incoherent density on the scale of both the dephasing rate Γα and the spectrometer

resolution ΔS, we may approximately take Nα
inc  at the (measurement) time t when

inserting Eq. (4.96) into Eq. (4.93). Carrying out both time integrations, we end up with

I t M M N t S

S
k k kinc * inc

2 2( , ) =  ( ) ( ) ( ) 
 + 

(  – )  + (  + )
ω Γ Δ

ω ω Γ Δα α α α
α

α α
Σ . (4.97)

Dephasing and spectrometer resolution contribute additively to the Lorentz broadening.

Neglecting both quantities leads to the simple result quoted in section 4.4,

I t M N tk kinc 2 inc( , ) =  | ( )| ( )  (  – )ω π δ ω ω
α α α αΣ . (4.98)

However, from the derivation it is quite clear that a perfect spectrometer (ΔS = 0 in Eq.

(4.93)) would spoil any time resolution.

Only for stationary excitation, E0(t) = E0 exp(–iω0t), Eq. (4.98) is fully consistent.

To derive the source Eq. (4.58) in the kinetic equation, we first quote the polarization for

stationary excitation,

P t B t E e
M

i
i t

α α
ω α

α αω ω Γ( ) = ( )  = 1 ( )
 –  – 

†
0

0

0

0〈 〉
h

k
, (4.99)

ending up with the time-independent source term

S
E

Mα α
α

α α

Γ
ω ω Γ

 = 
2

 | ( )|  
(  – )  + 

0
2

2 0
2

0
2 2h

k . (4.100)

If dephasing is small, this simplifies to

S E Mα α α
π δ ω ε = 2  | ( )|  (  – ).0

2
0

2
0h

hk (4.101)

For the coherent (or Rayleigh) part, we assume stationary excitation from the

outset and use Eq. (4.99) to carry out the time integrations in Eq. (4.93) directly, with

the result

I
E M M M M

i i
S

S
kk

k k k k
0

coh

0
2 2

0
2

2

*
0

*
0

0 0
( ) = 

(  – )  + 
   

( ) ( ) ( ) ( )
(  –  – )(  –  + )

ω Δ
ω ω Δ ω ω Γ ω ω Γαβ

α α β β

α α β βh
Σ . (4.102)
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Note the strict resonance with the incoming light field: Under steady-state illumination,

the Rayleigh scattering has no broadening related to dephasing. The decay rates Γα

enter only the sum which gives the weight of the sharp resonance peak. In contrast, the

luminescence is spectrally broad due to both inhomogeneous (ωα distribution) and

homogeneous effects (Γα). The schematic sketch in Fig. 4.11 serves to illustrate these

findings. This clear distinction in the spectral regime has been used first by Hegarty [3]

to extract the Rayleigh spectrum from the total secondary emission. What is called

Rayleigh intensity in the following is just the integrated strength of this emission as a

function of excitation frequency,

I
M M M M

i ikk

k k k k
0

Ray
0

*
0

*
0

0 0
( ) =  

( ) ( ) ( ) ( )

(  –  – )(  –  + )
ω ω ω Γ ω ω Γαβ

α α β β

α α β β
Σ . (4.103)

Fig. 4.11 Schematic illustration of the secondary emission spectrum under monochromatic excitation

at hω0. Sharp spike – resonant Rayleigh scattering, broadened by the spectrometer resolution ΔS.

The optical density (dashed curve) is shown for comparison.
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(The prefactor πE0
2 2/h  has been omitted for brevity.) The speckling behavior (dependence

on scattered direction k) resides in the factor M Mα β
* ( ) ( )k k  ~ ψ ψα βk k

* . Again, the

angular average over the speckles can be replaced by an ensemble average. A careful

analysis of Eq. (4.103) follows in section 4.9 on enhanced resonant backscattering.

A simplification is possible if the inhomogeneous broadening exceeds the dephasing,

which resembles the long-time limit in the time-resolved emission, Eq. (4.86). Then, the

diagonal terms α = β are expected to dominate the double sum, and we are left with
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I
MRay

0

4

0
2 2( ) =  

(0)
(  – )  + 

ω
ω ω Γα

α

α α
Σ . (4.104)

As a rule, if only a speckle-averaged quantity is considered, we may safely neglect the

momentum dependence of the optical matrix elements, putting Mα(k) ≈ Mα(0). The

strict small-damping limit reads

I
MRay

0

4

0( ) =  
(0)

  (  – )ω Γ π δ ω ω
α

α

α
αΣ . (4.105)

The signal emitted in transmission direction k0 itself contains the coherent polarization

only once, and allows to define the linear optical susceptibility from the ratio Pα(t)/

E0(t) as

χ ω ω ω Γα
α

α α
( ) =  

| ( ) |
 –  – 0

0
2

0
Σ M

i
k

. (4.106)

Its imaginary part gives the absorption (or optical density). Dropping the dephasing Γα

and some nearly constant prefactors, we recover the simple expressions Eq. (4.11), resp.

Eq. (4.68) for normal incidence.

The Rayleigh signal in comparison to the optical density shows two modifications

(see Fig. 4.6): (i) The optical matrix element enters the Rayleigh signal in fourth power,

which essentially reduces the high-energy tail in the OD and gives a narrowing of the

spectrum. (ii) The dephasing rate in the denominator emphasizes states down in the tail

– they need a longer time to dephase. This is the main reason for the distinct red shift

of the RRS spectrum compared with the OD. Both peak shift and line narrowing have

been found experimentally [15,78]. The enormous scatter in the dependence of Γα

versus εα (see Fig. 4.5) prevents a simple interpretation as Γ(E). In his seminal work on

resonant Rayleigh scattering, Hegarty [3] did not take into account this statistical effect,

but was still able to extract a consistent physical picture from the data. Based on our

present experience, we claim that deducing dephasing rates from a comparison of

frequency-resolved spectra (PLE vs. RRS) is nearly impossible without a detailed

simulation.

4.8 Signatures of level repulsion

Optical near-field techniques which have been introduced recently allow a spectroscopy

of excitons on a microscopic scale. With these methods, it became possible to ‘zoom’

into the inhomogeneous exciton spectrum and to resolve a multitude of single lines,
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each corresponding to an individual localized state. Knowing about the quantum-

mechanical effect of level repulsion, we have proposed some years ago a spectral

correlation technique which allows to get statistical information on the exciton

eigenenergies, as fingerprint of their quantum-mechanical localization [79]. Only recently,

this suggestion has been followed with specifically tailored experiments [29,80,81].

The energy-level statistics is a tool which was developed in the 1930s for the

analysis of the spectra of highly excited nuclei. These spectra present many narrow

resonances which seem to be distributed at random on the energy axis. For such complex

systems a detailed modeling of the system Hamiltonian would be an extremely difficult

task. However, an analysis of statistical properties, such as the level spacing distribution,

bears very general information about the quantum-mechanical nature of the system. The

level spacing distribution is defined as ensemble average

C E E( ) =  (  – (  – ))Δ δ Δ ε ε
αβ α βΣ . (4.107)

The general finding was that this quantity displays a dip for ΔE → 0 suggesting that

energy levels cannot be arbitrarily close to each other. This result reflects a general

property of quantum mechanical systems: In the absence of special symmetries which

induce degeneracy, the energy levels tend to repel each other. The simplest example of

this general behavior is the avoided level crossing which takes place for example in the

case of two interacting quantum states as the detuning is varied. In the case of nuclear

spectra as well as in other complex systems, like for example in the optical spectra of

large molecules, a very successful method is the random matrix theory (RMT) [82]. The

RMT approach assumes that the elements of the Hamiltonian matrix are random numbers

taken from a given ensemble. Because no further assumptions are made, the results have

a universal character and apply to a large variety of complex systems. RMT with real

symmetric matrices having Gauss distributed elements, the so-called Gauss orthogonal

ensemble, has been very successful in reproducing the level statistics of, e.g., nuclear

spectra and of other complex systems.

In this section, we consider the concept of level repulsion (LR) in the context of

localized excitons. We will develop the basic LR formalism and present sample numerical

results to illustrate the behavior for the case of the exciton COM. We then discuss recent

experimental results where the numerical simulations have provided clear evidence for

quantum mechanical LR.

In order to gain an intuitive picture of LR in the case of the Schrödinger problem

with disorder, we must keep in mind that each wave function is characterized by a

localization length Λ and therefore by a finite spatial extension. If two wave functions

are at least partially overlapping, then the requirement of orthogonality implies that one
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of the two must be changing sign in space more frequently than the other. This implies

a larger kinetic energy, and consequently a shift in the energy compared to the other

state. On the other hand, wave functions which are well separated in space have an

exponentially vanishing overlap and can therefore be quasi degenerate. This argument

is illustrated in Fig. 4.12. It suggests that the level repulsion is essentially a local

property of a disordered system.

Fig. 4.12 Three localized states from the 1D Schrödinger problem are plotted together with the

disorder potential. Each wave function is vertically displaced by its eigenenergy. Wave functions

(a) and (b) have a non-negligible overlap and exhibit level repulsion, as opposite to wave functions

(a) and (c) which are quasi degenerate.
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For the present applications, it is only the statistics of the optically active states

which matters. Therefore, we define the optically weighted level spacing distribution in

analogy with Eq. (4.107) as

R E
A

M M E( ) = 1    (  – (  – ))2 2Δ δ Δ ε ε
αβ α β α βΣ , (4.108)

where A denotes the quantum well area and Mα are the optical matrix elements as

defined in Eq. (4.23). With the definition of the optical density without ensemble averaging,

Eq. (4.68), the previous expression can be rewritten as a convolution of experimental (or

theoretical) spectra,

R E A dE D E D E E( ) =  ( ) (  – )Δ Δ∫ ′ ′ ′ . (4.109)

The statistics in Eq. (4.108) includes pairs of overlapping states as well as pairs which

are far apart in space. We expect the statistical weight of the latter pairs to dominate if

the system size is larger than the typical localization length of the optically active states.
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Therefore, the quantum-mechanical level repulsion is expected to appear as a small

feature superimposed to a large background originating from counting all the energy-

uncorrelated pairs of eigenstates. In order to isolate the LR feature we subtract the

uncorrelated counterpart of Eq. (4.109),

R E dE D E D E E0 ( ) =   ( )  (  – )Δ Ω Δ∫ ′ ′ ⋅ ′ , (4.110)

and obtain the level autocorrelation function as the difference

Rc(ΔE) = R(ΔE) – R0(ΔE). (4.111)

The contributions from pairs of non-overlapping states cancel out in the level autocorrelation

Rc(ΔE). The autocorrelation is thus expected to provide information on the level repulsion.

A detailed analysis of the autocorrelation function depending on the amplitude

and correlation length of the disorder potential has been presented in [30]. All the

ensemble averaged results related to the COM Schrödinger equation depend on the

dimensionless parameter Ec /σ upon scaling, as already pointed out in section 4.2. An

analysis of the autocorrelation function Rc(ΔE) as a function of ΔE/σ is presented in Fig.

4.13. Numerical simulations have been performed for a 1D system of 2 μm size with σ
= 1 meV for various values of Ec /σ. The classical limit Ec /σ → 0 can be obtained

analytically,

R E d
g

E
g
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A

( ) = 1

2 (  – ( ))
 exp – 

4(  – ( ))2

2

2
Δ

π σ
Δ
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⎞
⎠⎟

R
R R

R E A Ecl
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2

2( ) = 
2
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4

Δ
σ π

Δ
σ

⎛
⎝

⎞
⎠ . (4.112)

The autocorrelation Rc has a maximum at ΔE = 0 and negative wings for larger energy.

This shape reflects the spatial correlation of the potential since in this limit, the energy

levels are just the potential values. The positive values reflect that positions which are

close in real space (distance ≤ ξ) have very similar potential values. The negative values

at large ΔE show that it is very unlikely for them to have vastly different potential

energies. The curves are plotted by rescaling the vertical axis with the potential correlation

length ξ. A feature common to the numerical simulations with Ec /σ ≠ 0 is the delta peak

at ΔE = 0, corresponding to the correlation of each level with itself. The integral of the

autocorrelation function, including this δ-contribution, equals zero by definition. The

first case shown in Fig. 4.13(a) has Ec /σ = 1 and is close to the white-noise limit, in

which the role of the spatial correlation is negligible. Strong level repulsion is seen: The

autocorrelation function is negative for all values of the energy difference. An important
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feature displayed by the numerical result is the apparent sharp drop or even singularity

at ΔE → 0. For larger values of ΔE the shape of the autocorrelation function bears

similarity with the RMT result. At present, we have no analytical result which reproduces

this behavior. The exponential decay of the localized wave functions at large distance

and the orthogonality argument suggest that there might be a logarithmic singularity for

vanishing energy spacing, induced by the level-repulsion effect between wave functions

with an exponentially small overlap. This result represents a significant difference with

respect to the RMT, where the autocorrelation function drops linearly for ΔE → 0. The

discrepancy originates from the substantial difference between the present tight-binding

matrix with disorder on the diagonal only, and a full random matrix. Obviously, the

Anderson problem is not properly described within RMT.

Fig. 4.13 (a) Autocorrelation function Rc(ΔE) computed for a 1D case for different values of

Ec/σ. The thin line is the classical limit Ec /σ → 0. (b) Computed Rayleigh scattering signal

corresponding to the five cases depicted in panel (a); from [30].
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The intermediate situations with 1 > Ec /σ > 0 can be looked at as a quantum-

mechanical LR effect superimposed onto the classical autocorrelation function. This

produces a dip at ΔE → 0, as in the white-noise case, but closely matches the classical

limit for larger energy spacing. This behavior results in a peak at ΔE ~ Ec, which might

be interpreted as an average energy spacing between successive excited states localized

in the same local minimum of the spatially correlated potential. This intuitive picture

must however be considered with caution, since the localization length Λ strongly

increases as a function of energy, eventually resulting in localized states spanning

several potential minima. We expect a spatial correlation length of 30–300 nm in realistic

situations of excitons in QWs, see Fig. 4.15 below. Therefore, an intermediate situation

like the ones depicted in Fig. 4.13(a), is expected to occur.
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In the last decade, many experiments have been performed revealing the localized

exciton structure on the sub-micron scale and providing at the same time spectral

information [29,80,81,83–88]. Some of these works have dealt specifically with the

concept of level repulsion. Recently, we were able to provide strong evidence for quantum-

mechanical LR by comparing our numerical simulations to a statistical analysis of

spectra measured by means of near-field scanning optical microscopy (NSOM) at low

temperatures [29]. The investigated sample was a 3 nm thick GaAs/Al0.5Ga0.5As single

QW with rather strong disorder. The near-field PL spectra at a sample temperature of 20

K were recorded with high spatial and spectral resolution (150 nm and 100 μeV,

respectively). The spectra are dominated by a set of spectrally sharp and intense emission

lines. In contrast, the spatially averaged PL spectrum is characterized by a 15 meV

broad structureless emission band. The near-field spectra were measured on the same

spot for different excitation powers coupled into the fiber ranging from 4 nW to 4 μW.

The spectral structures are practically unchanged within this intensity range. This rules

out biexcitonic effects which might show up as an (unwanted) feature at the biexciton

binding energy in the spectral autocorrelation. We note in passing that level-correlation

spectroscopy in the high-density regime could be of interest by itself. The data shown

are taken at an excitation of 800 nW. A set of 432 photoluminescence spectra spanning

a rectangular region of 3 × 5 μm2 has been collected.

The simulation has been carried out on a 2D square domain with 130 nm lateral

size, corresponding roughly to the experimental resolution. The spatial correlation of

the potential has been simulated with an exponential smoothing function Eq. (4.16).

This choice is justified assuming that the 1s exciton wave function is exponential. The

potential correlation length ξ is expected to be of the order of the exciton Bohr radius.

Using simulated spectra for the optical density for a large number of disorder realizations,

the autocorrelation function has been generated according to Eqs (4.109), (4.110) and

(4.111). The experimental spectra have been processed accordingly. In the numerical

calculations, a Lorentz broadening of the spectra has been introduced, in order to

account for the homogeneous exciton linewidth and for the finite energy resolution of

the experiment. The parameters σ and ξ have been adjusted to fit the experimental

autocorrelation curve, obtaining σ = 5.3 meV and ξ = 17 nm. The results are shown in

Fig. 4.14. The agreement between theory and experiment is extremely good. Note that

we have compared a calculation of the optical density with experimental results for the

PL. This, however, is only a difference in the prefactors (exciton occupation), while the

level structure is a persistent feature in all autocorrelation spectra.

The dashed curve shows the theoretical result without introducing a Lorentz

broadening. Here, the level repulsion appears as a dip for ΔE → 0, in analogy with the
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intermediate case in Fig. 4.13. Due to the Lorentz broadening, the delta function and the

level repulsion dip are smeared out, and only a shoulder remains in the autocorrelation

function. The broadening used for the theoretical curve is consistent with the linewidth

of the spikes as measured in the individual near-field spectra. In absence of quantum

mechanical level repulsion, we would expect a classical result in which Rc(ΔE) is

determined by the correlations of the potential only. This result is shown in Fig. 4.14 as

a dotted line for comparison. The marked difference with the experiment, shown in

detail in the inset, supports the interpretation in terms of quantum mechanical level

repulsion.

The magnitude of the level repulsion dip is related implicitly to the spatial extension

of the relevant COM wave functions. However, with the present model, and knowing the
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Fig. 4.14 The autocorrelation function Rc(ΔE ) at T = 20 K is shown for the experimental data

(circles), the Lorentz-convoluted numerical simulation (solid curve), the classical limit (dotted

curve), and the raw numerical simulation (dashed curve). Level repulsion is evident from the

shoulder around 3 meV (circles, solid curve). The arrow on the vertical axis denotes the δ-function

part of the dashed curve. Inset: Difference between Rc(ΔE) and the classical limit Rc
cl (ΔE).

Circles – experiment, solid curve – simulation; from [29].
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values of the parameters σ and ξ, it is possible to extract more detailed wave function

informations. As an example, we evaluate the exciton localization length Λα of state ψα

via the participation ratio [89]

Λ ψα α
– 4 =  ( )D d∫ R R . (4.113)

(D denotes the system dimensionality.) Figure 4.15 shows the distribution of Λα across

the exciton spectrum. The dots are computed from 10 potential realizations, while the

line is an optically weighted average. Two features can be extracted from this plot. First,

the exciton localization length is much larger than the potential correlation length ξ =

17 nm, proving that the wave functions are localized over several minima of the disorder

potential. Second, the localization length Λα varies strongly as a function of energy, and

even for a given energy it is broadly distributed. Obviously, the idea of a unique exciton

localization length for a given system, often claimed in the exciton literature, is

inappropriate.

Fig. 4.15 Exciton localization length Λα (circles). The full curve is the optically-weighted average

of Λα as a function of energy. Bold curve – averaged exciton optical density. All data refer to the

simulation of Fig. 4.14.
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Signatures of the LR can also be found in the time-resolved RRS signal (see Eq.

(4.82) in section 4.5). Here we point out the relation between the time-dependent scattered

intensity and the LR feature. It has been shown [30] that the speckle-averaged RRS can

be expressed in terms of the autocorrelation function as Fourier integral,
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I t dE R E Etc
Ray ( ) =  ( ) cos( )∫ . (4.114)

Figure 4.13(b) shows the time-dependent RRS signal calculated for different values of

Ec/σ in rescaled units, in correspondence to the respective autocorrelation functions of

Fig. 4.13(a). Since Γα = 0 has been assumed, each curve approaches a finite value at

long times,

I t
A

M LDRay 4
opt(   ) = 1    → ∞ ≡Σ

α α . (4.115)

The optical length Lopt can be interpreted as the average localization length of the

optically active exciton states. The white-noise case, Ec /σ = 1, in Fig. 4.13(b) starts with

the expected quadratic rise and increases monotonically up to the optical length. For

large σt, the rise is very slow, as a consequence of the logarithmic feature at small

energy spacing in Rc(ΔE ) as seen in Fig. 4.13(a). This slow rise is therefore a first

signature of LR. In contrast, a Gauss distribution of classical oscillators without any

spatial correlation produces a RRS signal IRay(t) ∝ 1 – exp(–α2t2), which approaches its

long-time limit exponentially fast. The opposite situation, represented by the classical

limit, displays a maximum at σt ~ 1 and decays to zero as (σt)–D. The classical limit can

be interpreted as a situation in which the particle has infinite mass and is infinitely

localized, thus justifying a vanishing optical length. The intermediate situations display

a non-monotonic behavior after the first maximum, which initially follows the classical

result. This feature results from the Fourier transform of the maximum at finite ΔE

present in Rc(ΔE) and can be considered a feature of LR in a situation with spatially

correlated disorder potential, as we expect for excitons in QWs. Such a level-repulsion

interpretation of time-resolved spectra has been suggested in two recent works [90,91].

It must be noted, however, that there are two basic problems: The first one is related to

the difficulty of separating the coherent RRS signal from the total emitted intensity. In

[90], it was assumed that at short times the RRS dominates the secondary emission,

while in [91] a speckle interferometry was performed to select that part of the emitted

intensity which is coherent with the incoming laser pulse. The other, more basic problem,

is related to polariton effects [92,93], which are discussed in section 4.11. Here we just

remark that multiple photon absorption and emission between different localized exciton

states may give rise to multiple interference and thus to oscillations in the time-resolved

signal. The radiative coupling constant Γ0 in a single GaAs QW is of the order of a few

tens of μeV, therefore considerably smaller than the energy range of LR features in

Rc(ΔE). In this case we expect polariton effects to be negligible. They become more

pronounced in multiple QWs [92,93]. An unambiguous demonstration of LR signatures
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in the time-resolved RRS signal thus requires measurements on a single QW in order to

minimize polariton effects, and a robust method for sorting out the coherent RRS

component from the secondary emission. Such an experimental evidence, to our knowledge,

is still to come.

4.9 Enhanced resonant backscattering

One feature common to many cases of wave propagation in disordered systems is

enhanced backscattering (EBS) [76]. If a monochromatic wave is scattered off an

ideally static random medium, the angle-dependent scattered intensity displays speckles.

In most experimental situations, however, a speckle average is introduced when measuring

the angle-dependent intensity. This average can be due to the finite angular and frequency

resolution in the experiment, and to a possible time evolution of the scattering medium

during the measurement. As a result of this averaging, and for a non-resonant isotropic

medium, the scattered intensity is nearly constant over the solid angle with, however,

the remarkable exception of a narrow cone around the backscattering direction. Within

this cone an increase of the scattered intensity is generally observed, peaking at the

backscattering direction where a factor-of-two enhancement can be reached. The reason

for this enhancement is usually explained within a perturbation picture [94–96]. The

enhancement is then an interference effect in the coherent superposition of different

scattering paths inside the medium. More precisely, for each multiple-scattering path

the time-reversed path also contributes to the total scattered intensity and the two have

a relative phase which tends to zero for angles close to the backscattering direction k =

– k0, independently of the disorder configuration. Thus the coherent summation of all

pairs of time-reversed paths implies a factor-of-two enhancement in the backscattering

direction. This ideal situation is never realized in practice, since single scattering events

do not have a time-reversed equivalent, and contribute with an angle-independent intensity

background. This very simple picture suggests also that the angular width of the EBS

peak is proportional to the inverse of the average distance between the entrance- and

exit-point into and from the disordered medium.

The EBS has been directly observed in a wide variety of systems. Light scattering

experiments have revealed EBS in suspensions of microspheres in water [94–96], two-

dimensional organic systems, and ultra-cold atom gases. Moreover, EBS was observed

in the scattering of ultrasonic acoustic waves and of elastic waves in crystals. The

concept of EBS is also relevant in the scaling behavior of the low-temperature conductivity

of metals (weak localization) and, in three dimensions, in the metal-insulator transition.
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Anderson localization can be interpreted as a result of EBS. In a system having

infinite spatial extension, a wave originating at one point has higher probability of being

scattered backwards than being diffused in other directions. This implies a vanishing

probability of diffusing over long distances, which means localization. The difference to

a system with boundaries is that for the latter the wave enters the system at a given time

and eventually leaves it at a later time, giving rise to scattering paths rather than to

localized modes. Excitons are produced by optical excitation and eventually recombine

to give rise to secondary emission. In this sense, the light scattering on QWs is analogous

to wave scattering from a random medium with boundaries. The multiply-scattered

wave is the microscopic exciton polarization while the optical excitation and recombination

play the role of the initial and final events of all multiple-scattering paths within the

system. Thus we expect EBS to occur for excitons in disordered QWs, and the angular

pattern of the scattered light to carry a corresponding signature.

The exciton, however, presents substantial differences with respect to the usual

EBS systems. The perturbation picture mentioned above was developed for weak, isolated

scatterers with mean free path much larger than the wavelength. In our disorder model,

scattering is strong and each position acts as scattering site. Furthermore, dephasing and

radiative damping introduce an ‘external’ characteristic time besides the scattering time.

In what follows, we will address these issues and characterize the excitonic EBS

with the help of both numerical simulations and a perturbation-theory approach [31].

First, we present the result of a simulation based on Eq. (4.3) which shows EBS to occur

for typical exciton parameters, in a simulated RRS experiment with resonant steady-

state excitation. Then we make a connection with the perturbation theory of EBS in

terms of two-particle diagrams which has been developed by Vollhardt and Wölfle [97]

and is widely used to describe EBS.

Figure 4.16 shows the computed optical density and the RRS signal at normal

incidence for parameters characteristic of a high-quality GaAs/AlGaAs QW. Panel (b)

is a (kx, ky) contour plot of the scattered intensity at fixed frequency denoted by the dot

in panel (a). Three relevant features can be extracted: First, the bright spot at the

incoming wave vector represents the intensity in the reflected direction. Second, a

bright ring at larger wave vectors is determined by the exciton dispersion relation εx +

h2k2/(2M) = hω and simply reflects the resonant nature of the scattering process. The

third and most important feature is a broad enhancement of the intensity centered at k

= – k0 constituting the EBS. Figures 4.16(c) and (d) show the RRS intensity as a

function of kx (ky) for ky = 0 (kx = 0), respectively. The backscattering appears in Fig.

4.16(c) as a small peak opposite to the sharp reflected peak at k0, while the plot in Fig.

4.16(d) is symmetric around ky = 0. A similar behavior is found for other values of the
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frequency of the incident field, with the exciton dispersion ring moving to different

wave vectors according to the dispersion relation. The intensity enhancement is by far

smaller than the factor of two expected from standard EBS theory. As shown below, this

is partly due to the dominance of the single-scattering paths contributing a structureless

background to the total scattered intensity.

Fig. 4.16 (a) Computed exciton optical density. The dot refers to the energy value considered in

the other panels. (b) Contour plot of the RRS intensity in the k-plane for fixed ω and for a two-

dimensional white-noise disorder potential with σ = 0.4 meV. A square region of 2.6 μm lateral

size is sampled with a grid of 128 × 128 points. The incident field is a plane wave at k0 = (– 4.4, 0)

μm–1. The scattered intensity has been averaged over 5 × 104 configurations which realizes the

average over speckles. (c) and (d) are plots of the RRS intensity taken along the horizontal and

vertical line on panel (b), respectively.

In a two-dimensional heterostructure, excitons interact with the external

electromagnetic field if their momenta are within the light cone defined by k ≤ K0 = ω/c,

R
R

S 
in

te
n

si
ty

 (
a

rb
. 

u
n

.)

O
p

tic
a

l d
e

n
si

ty
 (

a
rb

. 
u

n
.)

–0.6 –0.4 –0.2 0.0 0.2 0.4
Energy (meV)

(a)

–60 –40 –20 0 20 40 60
kx (μm–1)

(c)

(b)

60

40

20

0

–20

–40

–60

k y
 (

μm
–1

)

RRS intensity (arb. un.)

(d)



Theory of resonant secondary emission 135

which corresponds to the whole external solid angle. For GaAs with fundamental gap of

about 1.5 eV, K0 = 8 μm–1. The angular width of the EBS feature in Fig. 4.16 is larger

than the actual light cone, in sharp contrast to e.g., diffuse light scattering in classical

disordered media, where the EBS peak has an angular width of a few degrees or less. In

the present case, it can be argued that the EBS feature is related to the average extension

of the exciton wave function or localization length Λα. The width of the EBS peak in k

space is then expected to be roughly the inverse of the localization length Λα of states

in resonance with the incident field. Typically, in the center of the optical line, we have

Λ · K0 � 1, thus explaining the very broad EBS peak. Facing such an unfavorable

situation, a method to detect EBS in QWs is to measure an anisotropy of the speckle-

averaged emission intensity around k = 0, for light incident at a fixed angle away from

the normal.

Let us relate the present theory to the self-consistent perturbation approach in

terms of two-particle diagrams, formulated by Vollhardt and Wölfle to describe the

Anderson transition [97]. The resolvent expression for the coherent (and speckle-averaged)

intensity Eq. (4.103) can be written as

Ik k k k k k, ,
+

,
–

0 0 0( )= ( ) ( )ω ω ω , (4.116)

where ± are the retarded and advanced propagators of the exciton COM motion in the

disorder potential, and the overlining denotes the average over the statistical disorder

ensemble. It is then possible to formally express the intensity (4.116) as a two-particle

diagram expansion in terms of the disorder potential strength and the averaged exciton

propagator

k k k k,k, ( ) = ( )′
± ±

′ω ω δG (4.117)

as well as the one-particle self-energy ∑k(z), defined as usual via (see section 4.2)

G z
z k M zk

k

( ) = 1
 – /2  – ( )2h Σ , (4.118)

where z is defined on the complex frequency plane. The retarded and advanced quantities

are obtained by letting z → ω ± i0, respectively.

The first- and second-order diagrams are displayed in Fig. 4.17(a). The total wave

vector at each vertex is conserved, and each loop implies a sum over wave vectors. As

an example, the first-order diagram in Fig. 4.17(a) is

I G G g G Gk k k k k k k,
(1) + –

k–
+ +

0 0 0 0
 =  . (4.119)

From now on, within this section, the ω dependence is omitted in our notation, unless

necessary. A diagram entering the scattering matrix Tk k, 0
 is reducible if cutting one
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retarded and one advanced propagator line breaks it into two separate diagrams. Otherwise,

it is called irreducible. The total scattering matrix is then expressed by means of a

Bethe-Salpether equation in terms of the irreducible vertex Tk k,
irred

0
, consisting of all

possible irreducible diagrams:

T T T G G Tk k k k k k k k k k k, ,
irred

,
irred + –

,0 0 0
=  +  Σ

′ ′ ′ ′ ′ . (4.120)

In practice, only some classes of irreducible diagrams are taken into account in the

irreducible vertex. Also, the Gk
±  are not the exact one-particle propagators, but should

be determined in a self-consistent way by those diagrams only which enter the two-

particle expansion. More specific, self-consistency is provided by satisfying the Ward

identity

Σ Σ Σ
′ ′ ′ ′k k

k k k k k
+ –

,
irred + – –  =  (  – )T G G . (4.121)

In the present analysis, we will follow a simpler approach which consists in

explicitly summing two classes of diagrams in the expansion for the full vertex Tk k, 0
.

Fig. 4.17 (a) The first two orders of the diagram expansion of the RRS intensity. The upper

(lower) full lines denote G+ (G–) propagators while the dashed lines stand for the Fourier transform

gq of the potential correlation function (4.8). (b) Diagram expansions of the ladder and maximally

crossed contributions to the scattering matrix.

(a)

(b)

k k0

k k0
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In addition, we introduce a phenomenological damping term γ0 by replacing ω ± i0 with

ω ± iγ0 in the definition of retarded and advanced quantities. This damping accounts in

a simplified way for the radiative recombination rate as well as for the dephasing

processes and cannot be neglected if we wish to obtain quantitative information from

the present theory. In order to fulfill the self-consistency between one- and two-particle

propagators, the Ward identity can be rewritten in the following form

Σ Σ Σk k k k k k k0 0 0
+ –

0
+ –

, –  = 2   i G G Tγ , (4.122)

which has the advantage of being expressed in terms of the full vertex Tk k, 0
 instead of

the irreducible one. We note in passing that Eq. (4.122) is an optical theorem, relating

the forward scattering cross section to the total scattered intensity. Another important

feature is that Eq. (4.122) admits nontrivial solutions only for γ0 > 0, suggesting that a

finite damping is an essential element of the present perturbation approach.

In order to compare the perturbation result to a full numerical calculation, we

consider white-noise disorder in 1D. In this case, the potential correlation function is

expressed in terms of the white-noise energy and length units E1, l1 as

g x x V x V x E l x x(  – ) = ( ) ( ) = (  – )1
2

1′ ′ ′δ , (4.123)

where E1 = h 2
1
2/(2  )M l . Then, the Fourier-transformed potential correlation gq = E l1

2
1

is constant, simplifying the subsequent analysis. We take into account the ladder (L)

diagrams and the maximally crossed (X) ones, which are depicted in Fig. 4.17(b). The

ladder series, e.g., follows from solving the Bethe-Salpeter Eq. (4.120) with Tk k,
irred

′ →
gk–k′. These diagram series are expected to give the dominant contributions to the

scattered intensity, as pointed out in [97]. Further, we neglect the k dependence in the

exciton self-energy Σ ±
k ( )ω . Then, the summations for Lk k, 0

 and Xk k, 0
 can be performed

analytically, resulting in

T L X
A

B
A

k k Bk k k k k k, , , 2
0

2 20 0 0
= + = 

1 + ( )
( )

 + 
( )

(  + )  + ( )
ω

ω
ω

ω
. (4.124)

A(ω) and B(ω) are explicit analytical expressions depending on ∑(ω) and γ0. The EBS

stems from the second part (maximally crossed series) which is peaked at k = – k0,

whereas the ladder contribution (first part) is k-independent. The ‘1’ appearing in the

numerator of the ladder sum originates from the single scattering contribution, given by

the first-order term in Fig. 4.17(b). Without that term, an intensity enhancement in the

backscattering direction by exactly the well-known factor of two would result. In the

light-scattering experiments mentioned above, the single-scattering contribution is either

negligible or does not appear in the measurement due to polarization selection rules

[94–96]. In the present case, the single-scattering contribution cannot be neglected and
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leads to a substantial reduction of the enhancement factor, thus explaining in part the

result of our numerical simulation.

For a semi-quantitative description, we start with the self-energy ∑(ω) in the self-

consistent second Born approximation Eq. (4.12),

Σ
Σ

SCSB 1
3/2

SCSB
0

( ) = –
( / )

2 ( ) –  – 
ω

ω ω γ
E

i

h
, (4.125)

which is k-independent. We then evaluate the T matrix (4.124), while adjusting for each

ω the imaginary part of the self-energy to satisfy Eq. (4.122). The real part of ∑(ω) is

left unchanged. Results of the perturbation analysis are shown in Fig. 4.18 and compared

with a full numerical simulation. The agreement is quite satisfactory, both for the

optical density and for the Rayleigh signal. It must be said, however, that the present
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Fig. 4.18 Enhanced backscattering in 1D with white-noise disorder (E0 = 0.35 meV, γ0 = 0.1E0).

Full curves – numerical simulation, dashed curves – perturbation approach (see text). (a) Optical

density. (b) and (c) Rayleigh intensity as a function of k for two energies denoted by the arrows

labeled (i) and (ii) in panel (a).
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perturbation approach is successful only thanks to the finite damping γ0. In the perturbation

treatment, the EBS peak becomes infinitely narrow for γ0 → 0, whereas the corresponding

exact result still displays a finite EBS width, related to the inverse of the average exciton

localization length at the given energy. We argue that in presence of a finite damping,

the EBS peak width is dominated by γ0 (inverse exciton dissipation length) rather than

by 1/Λ (localization). An even more striking discrepancy between the perturbation

approach and the exact result is the following: In the limit γ0 → 0, the intensity as a

function of k should be inversion symmetric around k = 0, while Eq. (4.124) is obviously

not. For the proof of the exact property, we write the scattered intensity as resolvent in

terms of exciton COM eigenstates (compare Eq. (4.103)),

I
i ik k

k k k k
,

,
*

,

0

, ,
*

0
0

0 0( ) =  
 –  –  –  + 

ω
ψ ψ

ω ω γ
ψ ψ

ω ω γαβ

α α

α

β β

β
Σ . (4.126)

For small values of γ0, this expression is dominated by the diagonal contribution α = β,

thus

Ik k k k,
diag

0
,

2
,

2
0 0

( ) =   | |  | |  (  – )ω π
γ ψ ψ δ ω ω

α α α αΣ . (4.127)

The mentioned symmetry I Ik k k k, – ,0 0( ) = ( )ω ω  follows from the reality of the exciton

COM wave functions in real space. As expected, the numerical simulations in the limit

of small damping display this symmetry. This means that in addition to the EBS peak,

a forward scattering enhancement around the reflected direction (k = k0) appears, which

has no counterpart in the perturbation approach.

We conclude that the perturbation expansion presented here, although providing

a suggestive interpretation of the EBS mechanism, is only valid in presence of not too

small damping, which means in the diffusive regime. In the strongly localized regime,

however, it fails to describe certain essential properties of EBS. A quantitative information

on the exciton localization length Λ can, at present, only be obtained by comparing

experimental data with a full simulation result.

4.10 Spin- and polarization-dependent emission

Up to this point, the spin degree of freedom of electrons was of no importance, and has

been neglected. In the present section, however, the spin content of the exciton states

plays the decisive role. Since spin and orbital momentum are coupled in the valence

band, there is a specific connection between spin and polarization, which will be detailed

in the following. Without disorder, there are simple selection rules for the two optically
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active excitons: Circularly polarized light excites only one exciton state having a definite

spin. Therefore, any cross-polarized emission seems to indicate a spin relaxation among

the exciton states. Following this argument, the cross-polarized emission has been often

considered to be fully incoherent [4]. The spin transfer between exciton states was

measured and modelled using rate equations [5,98]. Within a momentum-state

representation for the exitons, transition rates have been introduced phenomenologically,

being understood as incoherent spin relaxation.

However, things change if disorder is included in a proper way: Due to the

exchange interaction, the true exciton eigenstates refer to linear polarization, and the

spin is no longer a good quantum number. Using the speckle analysis, we could show

that the cross-polarized emission can have nearly the same coherence degree as the co-

polarized one [32]. Then, the correct paradigm to explain the experimental findings is

spin beating within a fully coherent exciton doublet, and not spin relaxation. In what

follows we give a comprehensive outline of these effects which relate wave function

anisotropy, spin content, and polarization direction in the secondary emission of localized

excitons. This is in full agreement with results by Gammon et al. [80,85] who have

analyzed exchange splittings of individual exciton lines using high spatial and spectral

resolution.

In the spirit of the effective mass approximation in direct-gap semiconductors, it

is sufficient to concentrate on the band edge states at the Γ point. The conduction band

forms a Kramers doublet of s-like symmetry, | +1/2〉 = | S, ↑〉 and | –1/2〉 = | S, ↓〉. The

labels ±1/2 refer to the total angular momentum. Due to the confinement in the quantum

well, the p-like valence band states are split into heavy-hole and light-hole states (the

spin-split band is even further away). Concentrating on the upper one in GaAs, the

heavy-hole band, the basic Bloch states are | +3/2〉 = | X + iY, ↑〉/ 2  and | –3/2〉 = | X

– iY, ↓〉 / 2 . The electron-heavy-hole basis contains now four states which can be

labelled with total momentum L = +2, +1, –1, –2. Since optical transition do conserve

spin, only L = ±1 are radiative. This property is found in the exciton states as well: two

states are bright, the other two are dark. The optically allowed states have the following

dipole matrix elements,

  
L S e X iY ic c = +1 :    = 1

2
 , |  |  + ,  =  1

2
 (1, , 0)� v v〈 ↑ ↑〉r μ (4.128)

  
L S e X iY ic c = –1 :    = 1

2
 , |  |  – ,  =  1

2
 (1, – , 0)� v v〈 ↓ ↓〉r μ

where μcv = e 〈S | x | X〉.
Now, the four-fold degeneracy (L = ±1, ±2) is lifted via the exchange interaction

[99]. It is traditionally divided into a short-range part and a long-range part. The latter
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is nothing else than the (non-retarded) interaction with the radiation field and acts on the

bright states alone. It falls off as 1/R3 in real space [67], which corresponds to k+1 in

momentum space.

We concentrate on the dominant exchange splitting between degenerate states

sharing the same COM wave function. The two bright states are coupled via a Hermitian

2 × 2 matrix with the exchange energy on the diagonal,

W O d kc s ehα απ μ φ ψon
1

2 2 =  [  (0) ]   | |  v ∫ k k , (4.129)

and off-diagonal,

W O d k ik k ec s eh x y
i

α α
θ

απ μ φ ψ Δαoff
1

2 2 2 2 =  [  (0) ]   | |  (  + ) /   /2v ∫ ≡k k h . (4.130)

The new eigenenergies are labeled with (±),

ε εα α α α
( ) on off =  +   | |± ±W W , (4.131)

and the corresponding exciton states read

ψ ψα α
θ θα α( ) + – = ( ) 1

2
 ( |  = +1   |  = –1 )± 〉 ± 〉R e L e Li i . (4.132)

Constructing the dipole vector of the new states using Eq. (4.128) and Eq. (4.132),

μμμμμ(+) = μcv (cos θα, – sin θα, 0),
(4.133)

μμμμμ(–) = μcv (i sin θα, i cos θα, 0),

it is clear that (–θα) gives the (in-plane) orientation of the exciton dipole. Going back to

the definition Eq. (4.130), one can see that this orientation is directed along one of the

main axis of the COM wave function. For an isotropic wave function, Eq. (4.130)

vanishes identically, giving a zero spin splitting Δα. Thus, spin effects in the exciton are

intimately related to anisotropies in the spatial COM wave function. Detailing all prefactors

[98,100], one ends up with

Δ
φ
φ

Δα α = 3
8

(0)

(0)
 | |1

QW

1
bulk

2

bulks

s
LT I

⎡

⎣
⎢

⎤

⎦
⎥ , (4.134)

with Iα being the integral in Eq. (4.130). Δ LT
bulk  is the longitudinal-transverse polariton

splitting frequency in the bulk. If it comes to numbers, the diagonal energy (shift

between dark and bright states) is of the order of 100 μeV, while the exchange splittings

hΔα are much less, typically 10 μeV [85].

The corresponding exchange coupling between spatially separated exciton states

leads in principle to another energy correction and wave function mixing, in analogy to
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the Foerster energy transfer. However, since the interaction falls off rapidly in space,

and the energies are not degenerate, the induced energy changes are much less than the

numbers given above, and may be neglected. This will be quantified in section 4.11 on

polariton effects, where all couplings are included. In Ref. [67], a phonon-assisted

Foerster transfer has been considered which might play a role in the (incoherent) relaxation

of localized excitons.

Next we evaluate the optical matrix elements. For the strong localization under

study in the present section, we are led to neglect the momentum dependence in the

COM wave functions. However, direction and polarization of incoming/outgoing light

beams need thorough analysis. We write the wave vector of the light wave in the farfield

limit in spherical coordinates (z is the growth direction of the QW),

k = k (sin ϑ cos φ, sin ϑ sin φ, cos ϑ). (4.135)

The two possible polarization vectors are conveniently written as

eTE = (–sin φ, cos φ, 0),

eTM = (cos ϑ cos φ, cos ϑ sin φ, – sin ϑ)
(4.136)

and called transverse electric (TE, with electric field in the x-y-plane) and transverse

magnetic (TM, with electric field in the plane of incidence). The scalar product with the

dipole Eq. (4.133) leads to the following form of the optical matrix elements

M M M M

M i M M i M

TM TE

TM
a

TE
a

α α α α α α

α α α α

θ φ ϑ θ φ

θ φ ϑ θ φ

,+ ,+

,– ,–

 = – cos(  + ) cos  ,     = –sin(  + ) ,

 = –  sin( + ) cos  ,     =+ cos( + ) ,
(4.137)

The polarization-independent part Mα is the optical matrix element defined in Eq.

(4.24), taken at k ≈ 0. In what follows we consider nearly normal incidence by putting

cos ϑ = 1 (note that ϑ is the internal angle of incidence). The label TM should then be

better called parallel (to the direction given by φ), and TE perpendicular.

Neglecting incoherent processes, the intensity of resonant Rayleigh scattering

after a short-pulse excitation of unit strength is given by Eq. (4.82). In the present case,

each state index α has to be supplemented by the label (±) of the bright states, according

to Eq. (4.132). Writing the spin-split energies explicitly, we have

Iout,in(t) = Ω
αβ α α β β

ω Δ ω Δα α β β
0
2

, = 1

out* in out in* ( + /2– – /2)      Σ Σ
±l m l l m m

i l m tM M M M e . (4.138)

We are not interested in the speckling of the emitted intensity, but rather concentrate on

speckle-averaged quantities. Correlations between speckles in different polarizations

have been studied in [74]. As shown before, averaging over the angular speckles is
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equivalent to the ensemble average over disorder realizations. Here, we take advantage

of the very different energy scales involved: The hωα ≡ εα have a spread of σ, which

corresponds to the inhomogeneous linewidth and is of the order of a few meV in

standard samples. For times σt/h > 1, destructive interference will kill all terms α ≠ β
in Eq. (4.138). However, due to the much smaller spin splittings (10 μeV), different l =

±1 and m = ±1 are still active on a picosecond time scale and result in a damped

oscillatory time dependence. We stress that this kind of spin beating is present already

without any magnetic field.

Thus, keeping only α = β in Eq. (4.138) and inserting the matrix elements Eq.

(4.137), we arrive at

I t M t||,||
0
2

4 2 2( ) = 
2

  (1 + cos (2(  + )) + sin (2(  + )) cos( ))
Ω

θ φ θ φ Δ
α α α α αΣ

I t M t⊥ Σ,||
0
2

4 2( ) = 
2

  sin (2(  + )) (1 – cos( ))
Ω

θ φ Δ
α α α α . (4.139)

The linear polarization degree is defined as

φ
lin ||,|| ,||

||,|| ,||
 = 

 – 
 + 

I I
I I

⊥

⊥
. (4.140)

It can be written in compact form as

 ( ) = cos (2(  + ))  + sin (2( + )) cos( )lin 2 2
φ α α αθ φ θ φ Δt t〈 〉 〈 〉 , (4.141)

where we have introduced in this section a notation for the ensemble average of any

quantity weighted with the matrix element in fourth power,

Σ
Σ

⋅ ⋅ ⋅ 〈⋅ ⋅ ⋅〉α α

α α

    =    
4

4

defM

M
. (4.142)

In general, the polarization degree (4.140) depends on the direction φ which is given as

a label. To be definite, we choose the crystallographic axis [110 ] as φ = 0. For a random

orientation of all wave functions, we get simply

Random: lin(t) = 1
2

 + 1
2

 cos( )〈 〉Δ α t , (4.143)

independent of the direction φ. In particular, at large times a constant polarization of

exactly 50% survives.

In Fig. 4.19, the time-resolved polarization degree is displayed, measured on a

6 nm wide AlGaAs quantum well [32]. The sample was placed in a cryostat at a temperature

of 5 K. The excitation pulse (2 ps duration) was centered at the lowest heavy-hole

exciton transition. Note that the incoherent contribution from the intensity data has been
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subtracted before deducing  (t), applying the speckle analysis [20]. The inhomogeneous

broadening gives a FWHM of 6 meV in the Rayleigh spectrum. Therefore, the limit σt

� 1 is reached after a few picoseconds. The experimental data show a distinct dependence

of lin
φ  on observation angle, pointing to a non-random orientation of the COM wave

functions. This preferential orientation may result from e.g. steps or elongated islands

on the interfaces which have a preferential alignment. The data at large times exhibit a

maximum polarization for φ = 0°. Since only the first term in Eq. (4.141) survives at t

→ ∞, we are led to the conclusion that the preferential orientation is along [110 ] (θα

= 0). This is in accordance with experimental information on step orientation on the

[100] GaAs surface [85]. Then, with 〈sin(θα)〉 = 0 we arrive at

Fig. 4.19 Polarization degree as a function of time for linear and circular polarization. Experimental

data (symbols) are compared with model calculations (curves), using the simulation results in Fig.

4.20 for an anisotropically correlated landscape; from [73].
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 ( ) = 1
2

 (1 + cos( ) )lin
φ αΔt t〈 〉 + 1

2
 cos(4 ) cos(4 )(1 – cos( ) )φ θ Δα α〈 〉t . (4.144)

Two different averages determine the time dependence: The plain average with cos(Δαt),

and one weighted with cos(4θα). The underlying d-like symmetry of the spin-splitting

is obvious from the cos(4φ) dependence. Introducing C4 = 〈cos(4θα)〉, the polarization

at large times reduces to
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 (   ) = 1
2

 (1 + cos(4 ) )lin
4φ φt C→ ∞ (4.145)

and can be used to determine C4. The parameter C4 quantifies the preferential orientation

since C4 = 0 holds for random orientation, and C4 = 1 for a strictly uniaxial one. The

measured data of Fig. 4.19 gave a value of C4 = 0.37.

For circular polarization σ+, σ–, the polarization vectors are defined as eσ± = (eTM

� ieTM)/ 2 . According to this definition, σ+ excites the spin-up transition only (for

normal incidence). The matrix elements can be evaluated with Eq. (4.137) as

M e M M l e Ml
i

l
i

α
σ θ φ

α α
σ θ φ

α
α α+ + ( + ) – – ( + ) = / 2 ;    =  / 2 . (4.146)

Putting again α = β in Eq. (4.138), all phase factors in Eq. (4.146) cancel, and we obtain

I t M t++
0
2

4( ) = 
2

  (1 + cos( ))
Ω

Δ
α α αΣ

I t M t–+
0
2

4( ) = 
2

  (1 – cos( ))
Ω Δ

α α αΣ
(4.147)

for the co- and cross-circular polarized intensity, respectively. The degreee of circular

polarization takes the simple form

  = 
 – 
 + 

 = cos( )circ ++ –+

++ –+

I I
I I

t〈 〉Δα . (4.148)

Please note that for circular polarization, the orientation of the COM wave functions has

no influence since both angles θα, φ dropped out completely. The polarization degree

(rightmost panel in Fig. 4.19) starts again with unity at t = 0 and changes sign at a finite

time, clearly indicating a spin beating. At times large compared to the inverse spin

splitting, the polarization degree vanishes completely.

The essential link between experiment and theory (i.e. simulation) is the distribution

of spin (or exchange) splittings,

p0(Δ) = 〈δ(Δ – Δα)〉. (4.149)

In the case of spectral selective excitation, a proper window of eigenvalues has to be

considered as well. Exchange splittings for excitons within artificially constructed

anisotropic quantum boxes have been calculated by Ivchenko and coworkers [101]. In

a disordered quantum well, we are faced with a full potential landscape, and must

proceed to an ensemble language. Such a distribution of exchange splittings has been

defined and evaluated by Nickolaus et al. [100] and Maialle [102], using the topological

method of minimum counting in a disordered landscape introduced to quantum well

physics by Wilkinson and coworkers [103]. One, at first glance, surprising finding is
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that almost all potential minima are anisotropic and lead to finite spin splittings – even

within an isotropically correlated landscape (no preferential orientation). We have extended

the minimum counting model to an anisotropically correlated landscape in [32]. Now,

the potential correlation contains two different correlation lengths ξ, η. For simplicity,

we consider a Gauss type correlation,

V x y V x y
(  = ( , )) ( ) = exp –

2
 – 

2
2

2

2

2

2R 0 σ
ξ η

⎛
⎝⎜

⎞
⎠⎟

. (4.150)

While the Wilkinson model allows to obtain analytical expressions for the splitting

distributions, a full quantum-mechanical calculation is superior. We present here results

of corresponding simulations carried out on anisotropic potential landscapes of type Eq.

(4.150) [73]. For the linear polarization, we need in addition to the plain splitting

distribution Eq. (4.149) the cosine weighted variant

p4(Δ) = 〈cos(4θα) δ(Δ – Δα)〉, (4.151)

which contains the information on wave function orientation θα as well. If the orientation

were independent of the spin splitting, the shape of p4(Δ) would coincide with p0(Δ).

However, Fig. 4.20 demonstrates that this is not the case: The cosine weighting shifts

the Δ-distribution to slightly larger values. This was to be expected since in the preferential

direction, we expect larger wavefunction anisotropies and, therefore, a larger spread in

exchange splittings. In general, the anisotropic correlation tends to enhance the spin

splitting compared to the isotropic case with a comparable correlation length lcorr =

ξη  (not shown).
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Fig. 4.20 Distribution p0(Δ) of the exchange splittings, derived from a simulation with an

anisotropically correlated disorder (η/ξ = 0.5). The distribution p4(Δ) is weighted with cos(4θα).



Theory of resonant secondary emission 147

Integrating p4(Δ) over Δ gives the angular average C4 = 〈cos(4θα)〉. We have used

the value of C4 = 0.37 as extracted from the polarization data for adjusting the ratio ρ
= η/ξ. Test runs for the simulation gave best results for ρ = 0.50. The zero-crossing of

the circular polarization degree,

 ( ) = cos )  =  ( ) cos( )circ

0
0t t d p t〈 〉

∞

∫(Δ Δ Δ Δα , (4.152)

sets the scale for the average spin splitting. Taking from the data 37 ps for the zero

crossing, we found reasonable agreement by adjusting the correlation lengths to ξ =

30 nm and η = 15 nm. A potential variance of σ = 3 meV has been taken to reproduce

the spectral width. With these input data, the simulation produced an average spin

splitting of 〈hΔα〉 = 31 μeV. The comparison of the calculated polarization degree

(curves) in Fig. 4.19 with the measured data is not perfect but underlines the relevance

of the model. While the correlation product ξη is only vaguely related to the (average)

island size, its ratio ρ gives a clear indication of the aspect ratio of the elongated islands.

The preferential orientation along [110 ] could be extracted unambigously, which is

corroborated by findings from scanning tunneling microscopy, as reported in [85].

4.11 Polariton effects in the secondary emission

The Rayleigh scattering model adopted so far treats the exciton-photon coupling in

second Born approximation, Eq. (4.82). In physical terms, this corresponds to neglecting

the multiple photon emission and reabsorption events that may occur up to infinite order

before a photon is finally emitted out of the system. The scattered electric field at the

QW boundary is assumed to be proportional to the macroscopic exciton polarization,

which implies a direct relation between the emitted intensity and the exciton density

matrix. A full treatment requires that the electric field and the macroscopic polarization

are related to each other via Maxwell’s equations, using a material susceptibility based

on the exciton COM Schrödinger equation. The mixed exciton-radiation modes arising

from the coupled Maxwell-Schrödinger system of equations are called polaritons, and

the scheme is known in the literature as the polariton model.

The polariton concept is of central importance for exciton optics in semiconductors.

A comprehensive review has been given by Andreani [99], covering all the relevant

aspects for bulk semiconductors as well as for nanostructures in the absence of disorder.

Polaritons have a dramatic effect in bulk semiconductors. As a consequence of the

translational invariance, each polariton mixes a single exciton state and a single photon

mode with the same wave vector, in close analogy to a pair of coupled harmonic
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oscillators. The polariton dispersion differs substantially from the original exciton and

photon dispersions, displaying an avoided crossing. Bulk polaritons are steady-state

modes with virtually infinite lifetime (were it not for interactions with phonons and/or

impurities, and with the system boundaries).

For excitons in systems of lower dimensionality, polariton effects are less prominent.

In a QW (without disorder) a single exciton is coupled to a one-dimensional continuum

of photon modes, resulting in a polariton self energy whose imaginary part gives the

radiative decay rate. It is nonzero only within the light cone k ≤ K0 = (ω/c) ε b . For

k > K0 the z component of the polariton wave vector is imaginary, giving rise to an

evanescent mode (or surface polariton) outside the QW. The exciton radiative broadening

in typical GaAs QW structures amounts to a few tens of μeV. The energy shifts are of

the same order, and are irrelevant in most experimental situations.

Since spatial symmetry is absent for localized excitons in a disordered QW, they

can couple to all photon modes. A fundamental question with respect to polaritons

arises: Can the optical response of the system be described still in terms of localized

exciton states, perhaps with small corrections for radiative damping and shifts? Or is the

exciton–photon coupling dominant, and the entity which is going to be localized is the

polariton? In his review work [99], Andreani considers the relevance of the polariton

concept in terms of temporal and spatial coherence. Temporal coherence requires the

characteristic energy for the polariton coupling to be much larger than typical energies

governing the time-evolution of the bare exciton. Spatial coherence, in a similar way,

requires the exciton state to be coherent over a length exceeding the photon wavelength

λ. If these two conditions are satisfied, polaritons are the basic entities to start with.

Aiming at the relevance of the polariton picture for exciton localization, we

restrict ourselves to zero temperature and neglect all homogeneous broadening effects

other than radiative broadening. Therefore, we have to identify the exciton coherence

length with the COM localization length Λ. The characteristic polariton coupling energy

in QWs is the radiative broadening of the free exciton at zero momentum Eq. (4.177),

Γ π
ε μ φ0

0 2
1
2 2 = 2   (0) 

h
K

O
b

c s ehv . (4.153)

This should be compared to the inhomogeneous energy distribution of localized excitons,

i.e. to σ (or better the OD linewidth). For typical GaAs QWs, hΓ0 ranges between 20

and 60 μeV, whereas the inhomogeneous exciton linewidth is in most cases larger than

100 μeV. Correspondingly, Λ � λ holds, and localized exciton states should be practically

unaffected by the polariton coupling. However, any speculation on temporal and spatial

coherence should be supported by a quantitative estimate.
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The spin-splitting and the resulting polarization dynamics of the scattered field

were already discussed in section 4.10 in terms of the long-range part of the exchange

interaction. A full polariton treatment, which we are going to present here, automatically

includes this coupling. Furthermore, retardation effects in the propagation along the

QW are properly accounted for [99,104].

A formal theory for exciton–polaritons in QWs including disorder has been first

developed by Citrin [105], including a nonlocal exciton susceptibility (resolvent of the

exciton COM Schrödinger equation) and spin degrees of freedom as essential ingredients.

The Maxwell boundary conditions are implemented via the transfer-matrix technique.

Left and right propagating fields for the two polarizations have to be calculated from

equations which couple all values of the in-plane wave vector k. This is a very demanding

task with huge matrices. Therefore, Citrin resorted to a simple disorder model of circular

‘islands’, which excludes, however, any spin splitting (being related to an anisotropic

COM wave function). The theory has been extended recently by Grote et al. [106] to

include (i) excited exciton states, (ii) a disorder model in complete analogy to section

4.2, and (iii) multiple quantum wells (MQWs). For the numerical calculations, however,

the authors have decided to average the nonlocal exciton susceptibility over azimuthal

angles in k space. This removes again the polarization mixing, and partially smoothes

out the speckle features. Despite these simplifications, the measured RRS dynamics of

MQWs with a large number of QWs can be successfully reproduced, presumably due to

dominating polariton effects in that case.

In what follows, we will develop a full Maxwell-Schrödinger formalism for excitons

in a disordered QW, using again a representation in disorder eigenstates. By means of

numerical simulations for single QWs, we discuss the following points: (i) radiative

lifetimes and shifts of localized exciton states and the RRS dynamics, (ii) polarization

mixing in RRS, (iii) polariton coupling between different localized states in view of the

persistence of individual localized exciton states.

The starting point for a polariton theory in QWs is the (nonlocal) linear exciton

susceptibility which is a tensor for the three spatial directions x, y, and z. For the heavy-

hole exciton in a single QW and using the disorder eigenstates ψα(R), we have

  

ˆ R R
R R

�( , , , , ) = (0)   
( ) ( )
 –  – 0

 ( ) ( )  

1 0 0

0 1 0

0 0 0

2
1

2
+′ ′
′

′ ×
⎛

⎝

⎜
⎜

⎞

⎠

⎟
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Σz z
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ψ ψ
ω ω

ρ ρ
α

α α

α
v

h h
.

(4.154)

Its diagonal form follows by summing the outer product of polarization vectors Eq.

(4.128) over the two bright states. Note that the z component of the electric field is not
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coupled to the excitonic polarization for heavy-hole excitons in GaAs. The susceptibility

(4.154) is nonlocal both in the z and in the in-plane coordinate R, but factorizes as a

consequence of the factorization ansatz Eq. (4.2), with ρ(z) = ue(z) uh(z) for the given

subband pair. Equation (4.154) is completely equivalent to the resolvent expression

with the COM Hamiltonian as used in [105,106]. The generalization to a MQW structure

is straightforward: Susceptibilities of type Eq. (4.154) with a QW index, centered at the

respective z-position, are simply added. Assuming no vertical correlation between different

QWs, one would construct each QW with a different potential realization. This point,

which has been overlooked by previous authors, will be addressed at the end of this

section. For simplicity, we assume a uniform background dielectric constant εb, thus

neglecting the effect of the sample surface and of the dielectric mismatch between

barrier and well material.

The Maxwell equation for the electric field  can be written as

∇ × ∇ × [     ( , , ) –   ( , , )
2

2R Rz
c

zbω ω ε ω

  
+ 4    ( , , , , )   ( , , )  = 0π ω ω∫ ′ ′ ′ ′ ⋅ ′ ′ ]d dz z z zR ˆ R R R� � . (4.155)

We define the in-plane and z-components of the electric field as  = (E, Ez). Since Ez is

not coupled to the exciton, it can be eliminated from Eq. (4.155). We also Fourier-

transform to reciprocal space as E(R, z) = ∑k Ek(z) exp(ik · R). After some algebra, the

resulting equation for the in-plane component E reads

– 1 + 1  – 

 – 
  ( )2

2

2
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2
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∂
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,π ε
K
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b

Σ
′ ′ ′∫ ′ ′ ⋅ ′

k k k kˆ E� , (4.156)

where kz = K k0
2 2 –  is the z-component of the wave vector of light. As the boundary

condition, we assume a plane wave E k 0
 to enter from the left, z < 0. From now on we

omit the ω-dependence in the notation, unless necessary. At this point, instead of solving

Eq. (4.156) directly, we prefer to adopt the scattering approach proposed by Martin and

Piller [107]. A background Green’s function Ĝ k ( )z  is defined as the solution of the lhs

of Eq. (4.156) with an inhomogeneity 1̂ δ(z), and with outgoing boundary conditions.

It can be obtained analytically,

Ĝ (k z i
K k

K k k k

k k K k
ik z

z

x
2

x y

x y y
2 z) = 

2

 – –

–  –
 exp( |  |)

0
2

0
2

0
2

⎛
⎝⎜

⎞
⎠⎟

. (4.157)
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Next, Eq. (4.156) is written as a Dyson equation,

  
E E Ĝ ˆ Ek k k

k k k k( ) = ( ) + 4      (  – )  ( , )  ( )(0) 0
2

,z z
K

dz dz z z z z z
b

π ε Σ
′ ′ ′∫ ′ ′′ ′ ⋅ ′ ′′ ⋅ ′′� , (4.158)

where E k
(0) (z) is the incoming field in the dielectric background. If the wavelength is

much larger than the QW thickness, ρ(z) = Oeh δ(z) can be used to simplify the Dyson

equation (4.158),

E E Ĝ Ek k k

k k
k k =  + 2   

 –  – 0
   (0)

0 0

*

+Γ
ψ ψ

ω ωα

α α

α
K

i
Σ
′

′
′⋅ , (4.159)

where all the quantities are defined at the QW position z = 0. The prefactors have been

combined into the rate Eq. (4.153).

Equation (4.159) describes the electric field at the QW position once the incoming

field E k
(0)  is known. In absence of disorder, the susceptibility would be diagonal in k,

and for each k the 2 × 2 tensor Ĝ k  could be diagonalized. Two polarization modes TE

and TM of the electric field are obtained which would be conserved in the propagation.

In the presence of disorder, however, different momenta in Eq. (4.159) are coupled, and

a global diagonalization is prevented since TE and TM refer to the direction of k.

Consequently, polarization mixing arises for any initial orientation of the field, as already

shown in section 4.10. If we neglect in the background Green’s function (4.157) the

retardation by letting K0 → 0 in K0
2 Ĝ k , the long-range exchange interaction matrix of

section 4.10 appears. Then, however, the imaginary part is lost which is responsible for

the finite radiative lifetime, as seen below.

In order to proceed, we project Eq. (4.159) on the exciton COM eigenstates using

their completeness, obtaining

E E
Ĝ

Eα α β

αβ

β
βω ω

 =  +  
 –  – 0

(0)
+Σ

i
, (4.160)

where

E E Ĝ Ĝ
k k k k k k kα α αβ α βψ Γ ψ ψ =  ,  = 2     0 0

*Σ ΣK . (4.161)

Equation (4.160) clarifies the concept of polariton coupling between localized exciton

states. In absence of polariton coupling, the input field is scattered by each COM

localized state directly into the outgoing field, independently of the other states. Polariton

coupling is responsible for the reabsorption of the scattered photons by other exciton

states, due to the nondiagonal terms in Ĝ αβ . These multiple scattering processes influence

the RRS dynamics and the polarization mixing. The polariton coupling might, in principle,

introduce a long-range spatial coherence along the QW plane [92,106]. In a single QW,
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we expect this modification to become substantial only if the radiative coupling hΓ0 is

at least comparable to the exciton inhomogeneous broadening, as already stated. In

order to test this hypothesis we derive a solution of Eq. (4.160) based on a full-scale

numerical simulation. Introducing Eα = (ωα – ω – i0+) Ẽ α , we can rearrange Eq.

(4.160) as

[  –  – ]   =  +    (0)ω ωα αα α α β α αβ βĜ Ẽ E Ĝ Ẽ⋅ ⋅Σ
≠

. (4.162)

The polariton problem in the form of Eq. (4.162) is easier to handle. By diagonalizing

the 2 × 2 matrices Ĝ αα , two complex eigenenergies ω ωα α α
± ±Σ =  +  are obtained,

where the sign label refers to the two main axes of the COM wave function (section

4.10). The real and imaginary part are the radiative shift (exchange splitting) and the

radiative recombination rate of each exciton doublet, Σ ± ± ±
α α αΔ Γ =  + i .

For the simulation, we take a Gauss-correlated COM potential and parameters

corresponding to a 15 nm wide GaAs QW with high-quality interfaces. The COM

Schrödinger equation is solved on a grid in real space, and E(0) and Ĝ  are generated in

the basis of the eigenstates so obtained. Finally, Eq. (4.162) is solved as a linear

inhomogeneous set of equations. We point out that the numerical results shown are the

solution of a full 2D problem. An azimuthal average of the response function [106] is

not justified. It would remove completely all polarization-mixing effects which are

found experimentally [32].

Calculated radiative shifts and rates are shown in Fig. 4.21. As expected, the

radiative rates (oscillator strengths) are largest at the exciton peak, reaching values

comparable to hΓ0. The strong energy dependence of Γ α
±  implies in the time domain a

RRS signal which decays nonexponentially (see Fig. 4.22), since the most radiative

states recombine first, and the decay is slowed down. The radiative shifts are comparable

to hΓ0 at the exciton resonance, while the spin splitting (  – )Δ Δα α
+ –  is smaller by a

factor of ten. At higher energies, the shifts increase more or less as a square root of

energy. To explain this behaviour we note that the corresponding disorder eigenstates

are composed primarily of plane waves of given k ∝ ω α . Further, in a perfect planar

thin QW both the LT splitting and the bright-dark splitting increase linearly with k

outside the light cone. Eq. (4.162) has been numerically solved for many disorder

realizations. The input field was x-polarized and proportional to δ k k, 0
. The time-dependent

scattered field has been obtained by Fourier transforming Eα(ω) and averaging over the

realizations. Figure 4.22(a) shows the time-dependent scattered intensity for both

polarizations (parallel and perpendicular relative to the input field). We compare these

results with the zeroth-order solution used in section 4.10. Including here the light-cone

correction, this reads in the present language
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E E Ĝ Eα α α αα αΓ ω ω =  +  [  –  – ]   (0)
0

–1 (0)i ⋅ , (4.163)

and includes the dominant diagonal spin splitting and radiative width. The full solution

of Eq. (4.162) accounts additionally for the mixing of different COM wave functions,

thus answering the question on the persistence of exciton localization in contrast to

polariton localization or even delocalization. As the comparison between zeroth order

and full results in Fig. 4.22 shows, the differences are not significant, and we conclude

on the absence of strong polariton effects which would modify the wave functions. The

nonexponential decay is clearly seen in both cases, and the perpendicularly polarized

component rises slowly on a timescale of the inverse spin splitting. The linear polarization

degree (Fig. 4.22(b)) starts with unity, falls below 0.5 before reaching the asymptotic

value 0.5 from below, a clear signature of beating in the inhomogeneous ensemble. Note

that in the present case, an isotropically correlated landscape has been used.

So far we have discussed the simple case of a single QW in a homogeneous

dielectric medium. Polariton effects can be modified by the presence of dielectric interfaces.

Both the sample surface [108] and the dielectric mismatch between well and barrier

material [109] can influence the polariton dispersion. Since, however, the polariton

effect is small for a single QW, these modifications could be accounted for by an

effective renormalization of the coupling constant Γ0. A completely different picture

holds for QWs embedded in a multilayered dielectric structure which has by purpose

strong resonances close to the exciton energy, as in a microcavity [110,111]. The other
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Fig. 4.21 (a) Computed polariton shifts Δ α
± . (b) Computed radiative rates Γ α

± . The simulation

refers to a Gauss-correlated disorder potential with σ = 0.3 meV and ξ = 10 nm. The polariton

coupling is hΓ0 = 0.02 meV.
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case where polariton effects are expected to be important is that of a multiple quantum

well structure. Especially if the MQW period is small compared to the wavelength of

light or close to a Bragg configuration, the electromagnetic field couples exciton states

in different QWs into macroscopic superpositions, thus strongly enhancing the effective

radiative coupling. Beatings are expected in the time-dependent RRS signal, corresponding

to a multiple peak structure in the polariton spectrum. These effects have been

Fig. 4.22 (a) Speckle-averaged time-resolved RRS signal for a linearly-polarized input field in

normal direction. Both parallel and perpendicular polarized scattered intensities are plotted.

(b) Speckle-averaged polarization degree of the scattered field. In both plots, full and dashed

curves refer to the full polariton result Eq. (4.162) and to the zeroth-order approximation Eq.

(4.163), respectively. The following parameter values have been used in the simulation: σ = 0.3

meV, ξ = 10 nm, and hΓ0 = 20 μeV.
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experimentally observed and predicted in various fashions [92,93,106]. One important

aspect, however, has always been overlooked here, namely the possibility of vertical

disorder correlations within the MQW stack [112]. There is not much known on the

correlation of the interface roughness between successive QWs as a result of the epitaxial

growth process (sometimes called heritage). While some correlation is to be expected

when growing thin barriers, the assumption of all QWs having the same disorder landscape

is highly unrealistic. Depending on the amount of vertical correlation, polariton effects

will change dramatically. For a strict correlation, each QW has identical COM localized

states. The radiative modes are then formed by a symmetric linear superposition of all

these identical states, giving rise to a coupling enhancement by roughly a factor of N2

(N is the number of QWs). Already for medium vertical correlation, the localized states

are expected to differ substantially between different QWs, and the enhancement effect

ceases. While some theories [92] assume implicitly a full correlation between QWs, in

other work the assumption made for the vertical correlation are not reported. To our

knowledge, the influence of vertical disorder correlation on the secondary emission

from MQWs has never been addressed theoretically. We believe that comparing the

experimental data with a theory that includes such features would be of great help to

understand growth-induced disorder correlations.

Appendix A: Potential variance

The quantum well with rough interfaces is characterized within the effective mass

approximation by the confinement potential for electrons and holes (a = e, h), written

as

Wa(ρρρρρ, z) = Δa [Θ(z – Lz  – h2(ρρρρρ)) – Θ(z –h1(ρρρρρ))]. (4.164)

Here, Δa is the band edge difference between barrier and well material, and h1(ρρρρρ), h2(ρρρρρ)

define the local variation of the lower and upper interface, respectively. The confinement

wave functions are constructed from the in-plane averaged situation with well width

Lz ,

–
2

  + ( )  ( ) = ( )
2 2

2
h
m

d
dz

W z u z E u z
a

a a a a
⎡
⎣⎢

⎤
⎦⎥

. (4.165)

First-order perturbation theory of Eq. (4.1) with the factorized two-particle wave function

Eq. (4.2) gives then a correction

V d dz u z W z W z
a e h

a s a a a a( ) =   ( (  – )) ( ) [ ( , ) – ( )]
= ,

2
1
2 2R R R R R∫ ∫′ ′ ′Σ η φ η . (4.166)
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For small deviations hj(R) from the average h j ( )R  = 0, we may expand

Wa(R, z) – W za ( ) = Δa [δ(z) h1(R) – Δ(z – Lz ) h2(R)]. (4.167)

The roughness of the interfaces enters the potential with a weight proportional to u za
2 (  = 0)

and u z La z
2 (  = ) . Only for a symmetric quantum well, the result depends on the well

width fluctuation ΔL(R) = h2(R) – h1(R) alone,

V d u L
a e h

a s a a( ) =   ( (  – )) (0) ( )
= ,

2
1
2 2R R R R R∫ ′ ′ ′Σ η φ η Δ . (4.168)

Introducing the first-order correction of Eq. (4.165),

′ ≡E
dE

d L
ua

a

z
a a   = –  (0)2Δ , (4.169)

leads to the final result Eq. (4.5) in section 4.2.

Appendix B: Weak-memory and Markov approximation

As initial condition for the equations of motion (4.35) and (4.36), it is quite natural to

assume 〈 〉a B B tq
† †

0α β  = 0 at a time t0 just before the excitation pulse arrived. The formal

solutions are then

T t i dt e n t N t n t N t
t

t
i w t t

q qρβ η

ω ω
ηρ ηβ βη ρη

ρ β
,

( + – )( – ) – –( ) =    ((  + 1) ( ) – ( ))
0

q
q qq

h ∫ ′ ′ ′Σ ′

˜
q

qqT t i dt e n t P t
t

t
i w t t

qρ η
ω

ηρ η
ρ

,
( + )( – ) –( ) =    (  + 1) ( )

0
h ∫ ′ ′Σ ′ . (4.170)

Plugging this into Eqs (4.31) and (4.32), we obtain quantum kinetic equations with

memory: The right hand sides depend on all times in the past [113].

The weak-memory approximation starts with the observation that – in the absence

of the exciton–phonon interaction – the density matrices Nαβ(t) and Pα(t) were proportional

to exp(i(ωα – ωβ)t) and exp(iωαt), respectively. Thus, terms exp(–i(ωη – ωβ)t′)Nηβ(t′)
and exp(–iωη t′) Pη(t′) in Eq. (4.170) are taken to be slowly varying in time. Corresponding

factors are pulled in front of the integral. The remaining integrations can be done

analytically,

1  = 1 – 
 + 0

0

0( – )
( – )

+i
dt e e

it

t
i t t

i t t

∫ ′ ′ Δω
Δω

Δω
, (4.171)

yielding, e.g.,
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˜
q

–q

q

q

T t n t P t e
w iq

i t t w

ρ η ηρ η

ω ω

ρ η

ρ η

ω ω,

( – )( + – )

+( ) =  (  + 1) ( ) 1 – 
(  +  – ) + 0

0

Σ . (4.172)

This level represents the weak-memory approach [7,114], where the sudden switch-on

of the excitation pulse is still remembered. In a last step, the Markov approximation is

completed by letting t0 → – ∞,

1 – 
 + 0

1
 + 0

 = – ( ) +  1( – )

+ +

0e
i i

i
i t t Δω

Δω Δω
πδ Δω Δω→ ⎛

⎝
⎞
⎠ . (4.173)

Only now, the energy-conserving delta function evolved which is at the heart of Fermi’s

Golden Rule. The additional principle-value parts give rise to the polaron shifts of the

exciton levels. For acoustic phonons, these are small and thought to be included into the

eigenvalues εα = hωα. This yields Eq. (4.38) and Eq. (4.39).

Appendix C: Radiative rates

Here, explicit results for the radiative rate are derived following Andreani [115]. To do

this properly, one has to include the polarization degree of freedom of the photons,

together with the detailed spin degeneracy of the exciton states. For not overloading the

general derivation, we did not pay attention to these refinements when starting with the

Hamiltonian Eq. (4.27).

Rewriting Eq. (4.51) for the radiative rate,

r g Mα ν ν α α
π δ ε ω = 2    (  – ) | ( ) |

, ,
2

h
hΣ

k k k k , (4.174)

we have summed over the polarization directions ν = TE, TM (transverse electric,

transverse magnetic) with respect to the quantum well plane. For the heavy-hole exciton

states under consideration, no contribution polarized along the growth direction z appears

[116]. The coupling strengths for TE mode is given by

gk
k

,TE  = 
π ω
ε Ωβ

h
, (4.175)

with Ω as the 3D normalization volume. For the TM mode, the analysis of the heavy-

hole matrix element gives an additional factor of cos2θ = k kz
2 2/  (see section 4.10). The

summation in Eq. (4.174) has to be performed over the full 3D photon momentum k =

(k||, kz). The energy conserving delta function is used for the summation over kz and

produces a square root density-of-states, K0 / K k0
2

||
2 – . Consequently, the in-plane

momentum k|| is restricted to lie within the light cone K0c/ ε b  = ωα ≈ ωx:
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r
A

K k

K K k
K kα α

Γ Θ
ψ=

2 (  – )

 – 
 (  – /2) | |0 0

2
||
2

0 0
2

||
2 0

2
||
2 2

||
||

Σ
k k . (4.176)

A is the normalization area within the quantum well plane. The prefactor 2Γ0 is just the

radiative rate of a plane-wave exciton state ψ δQk Q k|| ||
 = ,A  at zero COM momentum,

Q = 0. Combining the prefactors in Eqs (4.24) and (4.175), we have

Γ π
ε μ φ0

0 2
1
2 2 = 2    (0) 

h
K

O
b

c s ehv . (4.177)

Strictly speaking, Eq. (4.176) holds if the wave function is isotropic within the light

cone. This is not a serious restriction, since usually the wave function extension in

Fourier space (~1/Λα) is much larger than K0. Note, however, that the anisotropy in the

entire momentum space determines the exciton spin splitting, which is treated in section

4.10. As explained there, each COM eigenstate of the exciton has four nearly degenerate

spin states, two of them are radiative (bright states). The expressions given here describe

the radiative decay rate of the bright states alone. If the two dark states are in equilibrium

with the bright ones, the total decay rate will decrease. There are good arguments and

experimental results [5] that this transfer (true spin relaxation) is a relatively slow

process, at least at the low excitation densities being considered here. A further refinement

appears for a MQW structure, where a dramatic shortening of the decay times may

occur (giant oscillator strength). Indeed, the radiative rate of excitons is not a function

only of the exciton parameters, but depends on the specific photon mode structure in the

sample as well (section 4.11).

For a well localized exciton state, | |
||

2ψ αk  is practically constant within the light

cone and can be taken outside the integral, which then can be obtained analytically,

r C C Kα αψ π Γ =   |  | ;     = 2
3||=0

2
0⋅ k 0

2 . (4.178)

To give numerical values, Andreani derived hΓ0 = 26 μeV for a 10 nm wide GaAs

quantum well (an error of 1/2 appearing in [115] has been corrected later [99]). With Ex

= 1.58 eV and n ≡ ε b  = 3.6, we have K0 = 0.0288 nm–1 and end up with C = 7 · 106

s–1 nm–2. The dependence on well width is mainly through the exciton relative wave

function. If assumed to be of exponential type, we have φ π1
2 2(0) = 2/( )s Ba . Plugging in

the exciton Bohr radius for a 5 nm GaAs quantum well, we obtain hΓ0 = 34 μeV and C

= 9.3 · 106 s–1 nm–2, respectively.

In view of the parameter uncertainities and refinements in theory, calculating

radiative exciton rates is not an easy task. E.g., the value 17 · 106 s–1 nm–2 quoted in our

earlier work for the 5 nm QW [46,68] – applying a formula given by Bockelmann [117]

– was an overestimation by a factor of two.
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The radiative rates in Fig. 4.5 (middle panel) have been generated using the full

expression (4.176). Compared with the approximate ones, Eq. (4.178), an increase of

the values is obtained (not shown), in particular at higher energies where the wave

functions are less localized.
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Abstract

Optically excited semiconductors provide an ideal model system for the
study of many body interactions. Recent breakthroughs in theory and
experiment have revealed unique signatures of individual Coulomb-correlated
many-body interactions, up to the six-particle level. Experiments are
performed using ultrafast spectroscopy, so that the Coulomb-correlated
quasi-particles can be measured on time scales short compared with their
dephasing times. The simultaneous progress in theory and experiment in
this field has resulted in a burst of collaborative activity, yielding detailed
understanding of the influence of each many-body term. In this work we
present the new experimental and theoretical techniques which have allowed
such rapid progress. We also summarize the results which have been achieved
thus far, and present the outstanding questions which are the subject of
current study.

5.1 Introduction

The interactions among quasi-particles underlie many of the important problems in

condensed matter physics, including superconductivity, the quantum Hall-effect,

magnetism, and nonlinear optics (NLO). Particularly at low temperatures, such interactions

are poorly represented by classical approximations, and bear distinct signatures of

quantum mechanical phase. Only a quantum system can exist in a coherent, correlated

state, that is, in a superposition of eigenstates with well-defined relative phases. The

entanglement in such a state gives rise to the properties necessary for quantum computation.

In condensed matter, the Coulomb force is responsible for interparticle correlations

which may extend over thousands of lattice sites. That same Coulomb force is also the

cause of dephasing, by which initially coherent excitations evolve into incoherent

Quantum Coherence, Correlation and Decoherence in
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superpositions. The dynamics of quantum coherence and dephasing are of central

importance in condensed matter physics. However, the many-body interactions which

underlie these processes are extremely complex and not easily modeled theoretically.

Recently, simultaneous advances in theory and experiment have demonstrated that

individual many-body interactions have specific spectral and temporal signatures in

semiconductor nonlinear optical response. As a result, new ultrafast spectroscopic

techniques combined with microscopic many-body theory have brought dramatic progress

in the study of many-body Coulomb interactions both in bulk and in quantum confined

systems. In particular, the role of Coulomb correlations among more than two particles,

which was inaccessible to both theory and experiment before 1994, has been beautifully

revealed in the last several years.

This chapter will be devoted to a review of recent research into such “high order”

Coulomb correlations (HOCs). Section 5.2 outlines the basic physics of ultrafast excitation

and the measurement of Coulomb correlations in semiconductors, and defines the state

of the field before the advent of techniques specific to measurements of high-order

correlations. Section 5.3 reviews the theoretical advances which have led to a new

microscopic understanding of nonlinear optical response. Section 5.4 presents the results

of series of recent experiments, from which the roles of four- and six-particle Coulomb

correlations can be explicitly identified by comparison with microscopic theory. Finally,

section 5.4 outlines possible directions for future work.

5.2 Ultrafast spectroscopy of semiconductor nanostructures as probes of

Coulomb correlations

Optically excited semiconductors provide an ideal laboratory for investigating correlated

many-body quantum kinetics. Almost perfect samples are available, including both very

pure bulk materials and well-controlled quantum well heterostructures. The variety of

high quality semiconductor heterostructures is constantly increasing, and now comprises

samples with a wide range of band gaps, exciton binding energies, and degrees of

Coulomb correlation. In addition to the most commonly used III-V materials (GaAs and

InxGa1–xAs) which have band gaps ranging from 0.8 to 1.5 eV, high purity heterostructures

of the larger gap II-VI (CdSe, CdS, ZnSe) materials are now becoming available. II-VI

materials allow the study of dynamics in systems with very strongly bound excitons, as

well as spectrally resolved bi-excitons. Optically excited semiconductors are also excellent

testing grounds from the theoretical point of view, because the low temperature ground

state (full valence band, empty conduction band) is very well understood via effective
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mass and mean-field theories. Therefore, although the semiconductor in its ground state

is a true correlated many-body system, the single-particle excitations near the band gap

provide a well-defined and completely uncorrelated starting point for the dynamics.

From this ground state, optical excitation creates electron–hole pairs which become

correlated via the Coulomb interaction. These interparticle correlations are induced by

the laser field, and are thus experimentally controllable, in contrast with the strong

ground state correlations present in systems such as superconductors. The combination

of high purity samples and external control of correlations has placed the field of time-

resolved nonlinear optical spectroscopy of semiconductors in an exceptional situation.

Very precise experimental data can be compared with first principles theory, providing

the opportunity for insights into many-particle interactions which are extremely difficult

to obtain in most condensed matter systems. In the following paragraphs we outline the

physical processes taking place upon excitation of a semiconductor with a short optical

pulse.

In order to obtain maximal information about correlated many-body states, it is

necessary to perform spectroscopy on time scales short with respect to the dephasing of

those correlations, typically on the fs or ps scale. The field of a laser pulse on this time

scale is typically expressed as (t) = E(t)eiω t + c.c., where the time dependence of the

field is separated into a “slow” envelope E(t) and a fast oscillation at the carrier frequency,

ω. Upon excitation of a semiconductor with an above-gap ultrafast pulse, a series of

interactions take place by which the initially created polarization evolves toward

equilibrium. The initial excitation of electron–hole pairs follows the carrier wave, creating

a coherently oscillating macroscopic polarization. Immediately thereafter, exciton–exciton,

electron–electron, and electron–phonon scattering begin to randomize the relative phases

of the oscillations, gradually dephasing the macroscopic polarization. The dephasing

time, T2, is very much dependent on both the energy distribution of the photo-carriers

and on the temperature of the sample. For excitons at low temperature T2 can be several

picoseconds, while for electrons high in the band T2 is only some tens of femtoseconds.

Once the phase coherence is destroyed, carriers continue to interact via both Coulomb

and electron–phonon scattering, typically taking hundreds of femtoseconds to evolve

from non-thermal energy distributions to quasi-equilibrium Fermi–Dirac distributions.

Finally, e–h recombination occurs on a nano-second time scale, returning the semiconductor

to its ground state. In the following section we outline the theoretical formulations

which describe the creation and interaction of electron–hole pairs (details may be found

in a number of excellent reviews, for example Haug and Koch [1]). In so doing we

encounter the many-body problem in optically excited condensed matter.
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Overview of the semiconductor equations of motion with optical excitation

Consider a two-band semiconductor, which has a Hamiltonian of the form
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Here the “a”s are creation and annihilation operators in the bands indexed by λ, and V

gives the Coulomb interaction. The first term in equation (5.1) describes the dispersion

of the conduction and the valence bands, while the second contains both inter- and intra-

band Coulomb terms. The driving optical field is most commonly treated in the rotating

wave and dipole approximations, so that we can write the interaction of electrons and

photons as

ˆ ˆ ˆ ˆ ˆH E t c E t cI k c k k k c k k k = –  [ ( )  + *( ) ],
+

,
* +Σ μ μv vv v (5.2)

where c and v represent the annihilation of particles in the conduction and valence

bands, respectively. The total Hamiltonian, ˆ ˆ ˆH==H +H ,el I  has no known solutions, and

approximations are necessary at this point.

The general approach for describing the optical properties of a many-particle

system is to determine the expectation values of observables through the density matrix

operator, ρ, which is written as a Fourier sum, ˆ ˆρ ρ( ) =  ( ).t tk kΣ  For optical measurements

the observable of most importance is the macroscopic interband polarization, Pk, whose

expectation value is given by 〈 〉P Tr Pk k k = ( )ρ̂  (Shen, [2]). In the two parabolic band

model, the matrix elements of ρ̂k  are the expectation values of two particle operators,

thus
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Here nek and nhk represent electron and hole populations, while the off-diagonal components,

p, describe interband polarizations (also known as electron–hole transition amplitudes).

In order to obtain the equation of motion for the macroscopic polarization, one must

start with the Heisenberg equation of motion for the two-particle operators, i.e.,

–
ˆ ˆ ˆi
t

Hh
∂
∂
ρ

ρ = [ , ], (5.4)

Even in the absence of driving fields, the equation of motion for any two-particle

observable will contain four-particle operators due to the Coulomb terms in H. In the

presence of a driving field, E(t), the equation of motion for the kth component of

polarization reads as follows.
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Here εek and εhk are the single-particle electron and hole energies. Equation (5.5) shows

that the polarization is driven by three source terms – the dipole coupling to the electric

field (μE), the Pauli blocking (terms proportional to nμE ), and the (four-particle) Coulomb

interactions among particles. Thus, to solve the equations of motion for the two-particle

operators, one must write the equation of motion for the four-particle terms, which in

turn contain six-particle operators, leading to an infinite hierarchy of coupled equations.

This behavior is a fundamental problem of many-body systems – in all cases one must

select appropriate approximations to truncate the hierarchy. Experimental tests of many-

body approximation schemes are typically very difficult to obtain. However, ultrafast

spectroscopy measures directly the time evolution of the macroscopic polarization, on

time scales short compared with the correlation decoherence times, thus accessing

directly the Coulomb correlations. Polarization selection rules and variation of excitation

intensity allow significant experimental control of the types and densities of excited

populations, and thus of the relative strength of Coulomb correlations. As a result,

carefully controlled spectroscopy techniques measure quite directly the many-body

Coulomb correlations, and can readily distinguish the contributions of two-particle

correlations, four-particle correlations (4PC), and even higher-order contributions. The

details of these techniques and their results will be presented in section 5.4. In the next

section we review initial theoretical approaches to semiconductor NLO response, including

the role of two-particle Coulomb correlations.

Non-interacting and Hartree–Fock approximations

The simplest approximation one could make to equation (5.5) would neglect Coulomb

interactions altogether, treating the carriers as entirely noninteracting and driven only

by the external electric field. For semiconductors this noninteracting electron approximation

fails quite dramatically even in describing linear absorption, which is dominated by the

presence of bound excitons below the gap, and which is strongly enhanced by the

presence of Coulomb interactions even in the continuum. (The Coulomb-induced

“Sommerfeld enhancement” of the linear absorption gives a 10% enhancement above

the noninteracting absorption even at a photon energy which is 50 exciton Rydbergs

above the gap (Elliott, [3]; Tanguy, [4]).) One important situation in which the non-
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interacting theory does apply is that of high density electron–hole plasmas, such as

would be created by intense optical excitation well above the gap, or by phonon-induced

ionization of excitons in samples at room temperature. In this case, the e–h plasma

screens the Coulomb interaction so significantly that the non-interacting limit is nearly

recovered.

The most straightforward approximation scheme including Coulomb interactions

is the time-dependent Hartree–Fock/random phase approximation (HF-RPA). In this

approximation all four-particle expectation values are factorized into products of two-

particle expectation values. For example,

〈 〉 ≅ 〈 〉 〈 〉′ ′ ′ ′c c c c c c n pk k q k k k k k k k q k e k k k q k
+

–
+ + +
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The HF-RPA yields a closed set of equations of motion for the expectation values of

polarization, p ck k k = ,+〈 〉v  and population, n c c ne k k k h k k k,
+

,
+ = ,  = ,〈 〉 〈 〉v v  and neglects

all higher-order Coulomb correlations (Lindberg and Koch, [5]; Haug and Koch, [1]).

The resulting equations of motion for the two particle observables are known as the

semiconductor Bloch equations (SBE) by virtue of their similarity to the well-known

Optical Bloch equations for two-level (atomic) systems. We reproduce the SBE here, as

they are the starting point for analysis of the vast majority of optical experiments in

semiconductors.

∂
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The Coulomb interaction influences the SBE in two ways. First, the original

single particle energies, εi, are renormalized to e V n i e hi k i k
q

k q i q, , | – | ,   +  ,  = , .≡ ε Σ  This

shifting of the energies ultimately induces an alteration in both band gap and band

curvature, known as band gap renormalization (BGR). In addition, the coupling of the

electrons and holes to the driving electric field is altered, as indicated by the generalized

Rabi frequency, ωR, which replaces the bare Rabi frequency as follows:

ω μR k c
q k k q qE V p, , | – |

1  +  .≡ ⎡
⎣⎢

⎤
⎦⎥≠h v Σ

Note that although the SBE appear superficially to be diagonal in the momentum index

k, in reality the Coulomb terms in the generalized Rabi frequency and the renormalized

particle energies lead to a coupling of all momentum states. The SBE describe quite

well a number of experiments in ultrafast spectroscopy, and yield a straightforward

interpretation of the physical origins of NLO signals. The first term in equation (5.6)
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describes the coupling of the polarization to the combined external electric field and the

internal Coulomb fields from other dipoles. The second term includes the influence of

e–h populations on absorption (Pauli blocking) – showing that electrons cannot make

transitions into already occupied states. If the Coulomb interaction is set to zero in the

SBE, one recovers the optical Bloch equations for free carrier transitions (non-interacting

limit). The homogeneous parts of the SBE (no driving electric field) reproduce the

famous Wannier equations describing the energies of electron–hole pairs, but with the

e–h Coulomb interaction renormalized by the carrier occupation factors. Finally, equation

(5.7) shows how the time evolution of the electron and hole populations is driven by the

combination of external and internal fields.

Beyond the coherent SBE: screening and scattering

The physics of the coherent regime, in which the e–h pairs retain the phase of the laser,

is often well described by the semiconductor Bloch equations without scattering terms.

However, the processes of carrier–carrier scattering and carrier–phonon scattering, which

lead to dephasing and energy rearrangement, are not included in the derivation of the

SBE. In practice, these interactions can be included in the fit to experimental data at

various levels of approximation. Most frequently, scattering terms are included in a

relaxation time approximation, in which phenomenological terms dp/dtcoll and dn/dtcoll

are added to equations (5.6) and (5.7).

Collisional interactions can be understood more completely by approximating the

first-order corrections to the SBE. This may be done by evaluating the equation of

motion of the correlated part of the four-particle Coulomb term which is factorized in

the HF/RPA. In the last step of such an evaluation all six- and four-particle terms are

factorized into products of two-particle terms. From this analysis one obtains the complete

Boltzmann collision rates for electron–electron and electron–hole scattering. The rates

describe the effective scattering into and out of each state k (Lindberg, [5]). If the initial

carrier distribution is in the form of a Fermi–Dirac distribution, the terms of the Boltzmann

equation cancel, giving no net scattering into or out of a given state. Because the full

scattering rates derived in this manner are very complicated and highly nonlinear, it is

far more common to treat both dephasing and energy relaxation by describing them with

simple phenomenological rates, γp and γn. The dephasing rate, γp, is often taken to be

independent of the distribution. For the population scattering processes, which tend

toward Fermi distributions within the respective bands, a linear approximation of the

scattering integrals can be extremely useful if the initial distribution is not too far away

from a Fermi distribution. This gives a population scattering rate of the form:
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and neglects the population distribution dependence of the rate term, γn. It should be

noted that any Boltzmann approach to scattering requires the use of the Markov and

Second Born approximations, in which collisions are treated as instantaneous and memory

effects are neglected. Although these are excellent approximations over long times,

measurements on time scales short compared to the natural oscillation times of the bath

(determined by the plasma frequency for carrier–carrier scattering, and the phonon

frequency for carrier phonon interactions) reveal significant departures from the Boltzmann

limit.

At high excitation density screening of the Coulomb interaction must be taken

into account. Screening is an inherently four-particle process, and is thus not included

at any level in the SBE. However, a number of studies have included screening

phenomenologically by replacing the unscreened Coulomb potential with a screened

interaction, Vs, in equations (5.6) and (5.7). The most commonly used screening model

for this purpose is the Linhard dielectric function, treated quasistatically. This gives a

screened Coulomb potential which is strongly dependent on the density of excited

carriers, through both the screening length and the plasma frequency (Lindberg, [6]).

The inclusion of screening alters the effects of all the Coulomb factors in the semiconductor

response, including BGR, the Rabi frequency, and the exchange interaction.

Ultrafast optical measurement techniques

A number of ultrafast spectroscopic techniques have been developed which allow both

tests of the validity of the HF/RPA and the study of higher-order correlations. Most

prominent among these are four-wave mixing (FWM) and pump/probe (P/P) spectroscopy,

both of which allow access to the time evolution of the macroscopic polarization, and

thus give results which can be directly compared with the equations of motion (5.6) and

(5.7). A schematic of the experimental arrangement for these techniques is shown in

Fig. 5.1. For all ultrafast time-resolved experiments the original short pulse from the

laser is split into two parts, with a precisely controllable delay. In P/P an intense pump

beam excites the semiconductor, which is then probed by a much weaker probe pulse.

The pump-induced changes in the probe absorption spectrum are measured as a function

of pump–probe delay. Pump–probe spectroscopy is particularly useful for measuring

the incoherent parts of the dynamics, such as the inelastic scattering which results in

thermalization and cooling of an initially non-thermal carrier distribution. Four-wave
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mixing is the most common technique for measurements of coherent and dephasing

dynamics. In FWM, the first pulse (along k1) creates a coherent macroscopic polarization.

The second pulse (k2) then interferes with this polarization, creating a coherent population

grating from which a second k2 photon can scatter. The emitted signal in the momentum

conserving 2k2 – k1 direction is studied as a function of time delay between pulses.

Initial work studied simply the total FWM intensity as a function of delay, however

significantly more information can be extracted from the FWM signal by resolving its

spectral and/or temporal profile. The signal emitted along 2k2 – k1 is calculated by

performing a perturbative expansion of the equations of motion (e.g. (5.6) and (5.7)) in

the exciting fields. This takes the form:

P = χE + χ(2)E2 + χ(3)E3 + . . . ≡ P (1) + P (2) + P (3) + . . . (5.8)

k1

k2

Δt

k1 P/P

ks1 = 2k2 – k1 FWM

ks2 = 3k2 – 2k1 SWM

Fig. 5.1 Experimental arrangements for ultrafast spectroscopy. For P/P the probe beam k1 is much

weaker than the pump beam, k2. For four-wave-mixing (FWM) and six-wave-mixing (SWM) k1

and k2 are of equal intensity. The P/P, FWM, and SWM signals may be spectrally resolved by

sending them to a spectrometer with multichannel detection. FWM and SWM may be temporally

resolved by upconverting the emitted signal with part of the original laser pulse.

The FWM signal is of leading order in E 3 (two photons from k2, one photon from k1)

and can have as its origin any of the nonlinear sources in the equation of motion (5.5)

– these include the Pauli blocking as well as the Coulomb coupling. Typically theoretical

predictions are made in the leading order alone, however recent work demonstrates that

even at low densities the fifth-order contributions to the FWM signal are non-negligible

(Wegener, [7]; Haase, [8]).

The most straightforward interpretation of FWM is obtained in a non-interacting

electron approximation (setting V = 0 in equations (5.6) and (5.7)), and reads the FWM

signal as a direct measure of the dephasing time, T2 (Yajima and Taira, [9]). The second

pulse simply samples the remaining coherence present from the first excitation, and the

total intensity in the FWM direction decays with a time constant equal to T2/2. The

noninteracting electron model predicts that the FWM signal should be emitted
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instantaneously upon the arrival of pulse two, should have an spectral profile identical

to that of pulse two, and should be completely absent if pulse two precedes pulse one

(negative time delay). Although the noninteracting interpretation of FWM data is still

quite commonly used, FWM signals in condensed matter are actually far more complicated

and contain significantly more dynamical information. In particular, the polarization is

driven by an effective local field, consisting of the sum of the external driving field and

the internal Coulomb sources. Local field effects strongly alter the FWM, causing both

a non-zero signal at negative time delay and a change in the real-time profile of the

emission (Leo, [10]; Kim, [11]; Weiss, [12]; Chemla and Bigot, [13]). As shown in

Figs 5.2 and 5.3, the local field contributions to the FWM signal dominate at low

excitation densities, leading to two distinct components in the FWM emission, one

instantaneous (due to Pauli blocking effects) and one delayed, due to the slow build up
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Fig. 5.2 Time-resolved FWM signal from a 17 nm GaAs quantum well at 10 K. (a) is measured

with co-polarized excitation, (b) with cross-polarized excitation. Note that the emission often

appears as two well-separated pulses – the first is due to Pauli blocking nonlinearities, while the

second results from the Coulomb interaction. Adapted from reference [11].
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of the internal polarization. Local field effects are included in the SBE at the two-

particle level.
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Fig. 5.3 Ratio of the contribution of the Coulomb interaction and Pauli blocking to the FWM

emission, as a function of the density of carriers. Adapted from reference [13].

The role of screening in NLO response was demonstrated in 1993–1994 through

studies of the polarization and density dependence of P/P and FWM signals (Lindberg,

[14]). The polarization dependence of these signals stems from the selection rules

indicated schematically in Fig. 5.4. Circular polarization allows selective excitation of

E

CB

VB

Jz = +/– 1/2

k

“Heavy holes”
Jz = +/– 3/2

“Light holes”
Jz = +/– 1/2

+1/2 –1/2

+3/2 –3/2

+1/2 –1/2

σ – ΔJz = –1 σ + ΔJz = +1

Fig. 5.4 Band structure and selection rules for zinc-blende semiconductors. Note that in a quantum

well or mechanically strained bulk sample, the heavy hole and light hole bands split in energy.

Thus, excitons of only one type may be excited if the binding energy and hh-lh splittings are larger

than the laser bandwidth.
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one spin sub-band, thus differentiating between those many-body processes which are

spin dependent (such as Pauli blocking) and those which are spin independent, such as

screening and other carrier–carrier scattering processes.

An important result of Coulomb screening is density dependence of the dephasing

rates which arise in the screened HF approximation (Haug, [15]). P/P and FWM

measurements demonstrate commensurate decreases in dephasing time and increases in

exciton linewidth with increasing excitation density (Wang, [16]) (See Fig. 5.5). This

“excitation induced dephasing” (EID) gives an additional driving nonlinearity in the

equations of motion, leading to a delayed FWM signal from spatial modulation in the

exciton dephasing rate, as well as to FWM signals at negative times (Wang, [17]).

Fig. 5.5 Differential transmission signal from P/P spectroscopy in an 0.2 μm GaAs sample at low

temperature. The DTS signal at the hh is very well modeled by the difference of two Lorentzians

(dotted line) indicating that the pump excitation is causing a broadening of the exciton line,

consistent with excitation induced dephasing. Adapted from reference [16].
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Polarization resolution is critical in resolving the EID contribution to FWM, as

this term cancels for perpendicular linear k1 and k2, while for parallel linear polarizations

the EID signal is non-zero, and can even be dominant (Hu, [18]). EID-induced signals

can thus be distinguished from local field contributions, which are polarization independent.
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Screening effects for carriers high in the band have also been studied by FWM.

Spectrally resolved experiments in bulk germanium revealed that co- and cross-linearly

polarized excitation yield dramatically different FWM emission even for excitation in

the continuum of states 7 Rydberg above the direct gap (Rappen, [19]). Careful theoretical

analysis using nonequilibrium Green’s functions to calculate the dephasing rates in the

second-order Born approximation was performed. This analysis revealed that vertex

and exchange contributions, which had been neglected in previous work, were very

important in the balance of continuum and excitonic contributions to the emission.

5.3 Beyond the screened HF approximation – theoretical approaches to

many-body correlations

Though very successful in many cases, the semiconductor Bloch equations represent an

inherently mean field theory. The polarization of each exciton (or electron–hole pair)

interacts with an effective electric field made up of the external applied field and the

average polarization field created by other excitons. Thus, although the SBE provide a

good description of the interaction of Coulomb correlated electron–hole pairs with

photons, they do not include correlations between two or more electron–hole pairs.

With the advent of higher quality samples and more precise experimental techniques, it

became clear that such high-order correlations could cause important, or even dominant,

contributions to the optical nonlinearity of semiconductors. The limitations of the SBEs

are particularly apparent for excitation at the excitonic resonance, at low temperatures

and low densities. Under these circumstances excitons do not interact with a sufficient

fraction of their neighbors over the time scales measured by a short pulse for mean field

theories to be appropriate, and screening of the Coulomb interaction is not sufficient to

dampen correlations. Thus, a theory is required which does more than add relaxation or

screening terms to the SBE – one must account for the Coulomb interaction consistently

to arbitrary order.

Biexcitons and few-level theories

The most obvious example of dominant four-particle correlations is the bound biexciton

– a singlet four-particle state analogous to H2. Biexcitons have been well known in large

gap semiconductors, such as the I-VII and II-VI series, for many years (Mysyrowicz,

[20]; Hannamura, [21]). Such materials have relatively small dielectric constants, and

thus exceptionally large exciton binding energies (Ry~200 meV in bulk CuCl, as opposed
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to only about 4.2 meV in bulk GaAs). The biexciton binding energies are similarly

enhanced in large gap materials – in CuCl the biexciton binding energy is 28 meV – and

thus the biexcitonic resonance is quite easily observed in two-photon absorption. Large

gap materials excited near the excitonic resonance are often modeled as few-level

systems, ignoring both continuum of unbound electron–hole pairs and the interactions

among excitons. (The simplest such models treat three levels – ground state, excitonic

state, and bound biexcitonic state.) This few-level approach has been quite successful in

describing coherent NLO processes in CuCl on the ns time scale (Maruani, [22]; Chemla,

[23]).

More recently it has become clear that biexcitonic states play an important role

even in III-V semiconductors, where the biexcitonic binding energy is only ~1 meV –

no larger than the typical exciton linewidth, and thus the biexciton cannot be spectrally

resolved. Evidence of bound biexcitons in GaAs/AlGaAs quantum well structures was

found nearly simultaneously in P/P (Bar-Ad, [24]) and FWM (Lovering, [25]) experiments.

An example of the exciton/biexciton oscillations seen in P/P is shown in Fig. 5.6.
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Fig. 5.6 Exciton–biexciton oscillation observed in a GaAs quantum well using the P/P technique,

with cross-circular polarization of pump and probe. Adapted from reference [26].

Polarization-selective experiments are key to resolving the role of the bound

biexciton, since it requires two electrons of opposite spin to form a singlet state, and

thus can only be created when photons of both σ + and σ– polarization are present. (It

is possible, in principle, to form a bound biexciton from an electron–hole population

which has only one spin state, via spin flip processes. Spin flips are typically quite slow

in semiconductors, however, and do not contribute to coherent signals on short time

scales.) Although the NLO response of GaAs including biexcitonic states was initially

modeled using the phenomenological few-level approach, this rapidly becomes extremely

complicated due to the large number of states which are energetically close. (A description
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of the overall lineshapes and beat phases in polarization resolved FWM experiments

required a model based on a ten-level system!) (Mayer, [27]; Denton, [28]). Ultimately,

such a phenomenological model is clearly not adequate. As well as being very complex

for systems with weakly bound excitons, it treats the bound biexciton as the only four-

particle correlation, and ignores others that can be of equal importance. Full understanding

of the nonlinear optical response requires a formalism which treats n-particle interactions

in a consistent way.

The dynamics-controlled truncation scheme

Several such theoretical approaches have been developed. The first originated in the

context of molecular systems (Spano, [29], [30]; Dubovsky, [31]; Leegwater, [32];

Mukamel, [33]), while others are based on diagrammatic techniques (Maille, [34]) or

the development of correlation functions in the basis of n-exciton eigenstates (Ostereich,

[35]). I will focus in this chapter on the formalism most commonly used at present,

known as the dynamics-controlled truncation scheme (DCT). The DCT naturally extends

the density-matrix approach of the SBEs, and provides an expansion in terms of the

most easily controlled experimental variable – the driving optical field.

The semiconductor ground state is well understood, and Coulomb correlations

among electrons and holes arise due to optical excitation of quasi-particles above the

gap. It is therefore appealing to consider Coulomb correlations via an expansion in

powers of the driving optical field. Axt and Stahl showed in 1994 that such an expansion

allows a systematic decoupling of the infinite hierarchy of equations of motion generated

by equation (5.5) (Axt, [36]). The essence of the theorem underlying the truncation is

as follows. Let Ân  be an n-point operator in normal order according to the electron–

hole representation, and let ne (nh) denote the number of electron (hole) operators

contained in Ân , such that n = ne + nh. It then follows, for a system initially in the

ground state and governed by the Hamiltonians in equations (5.1) and (5.2) that 〈 〉Ân

is of order Em, with m ≥ max {ne, nh}. Thus, the nonlinear response of a semiconductor

material to a given order in the electric field is influenced by only a FINITE number of

density matrices. This theorem allows a systematic truncation of the infinite many-body

hierarchy once the desired order in the electric field has been chosen. One arrives at a

closed set of equations of motion which allow the calculation of the system response

exactly (for a given order in the driving field). It is critical to note that the desired order

in the electric field is used only to select those density matrices which contribute to the

equations of motion. Once the equations of motion are determined, they are solved to

infinite order in the field.
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Consider, for example, the results of the DCT truncation at the χ(3) level. These

are critical as χ(3) gives the leading order contribution to both P/P and FWM signals.

The truncation theorem indicates that we need consider only those density matrices for

which there are no more than three operators of any one type (electron or hole). One

obtains the form of the relevant density matrices from equations (5.4) and (5.5) by

constructing the equations of motion for the two-point operators corresponding to

populations and polarizations. The equations of motion for the n-particle operators all

take the form

i
A
t

A QA Ah h
∂
∂

ˆ
ˆ +  = .Ω (5.9)

Here the ΩA give the resonances of the operator (e.g. excitonic or biexcitonic energies)

while the QA make up the sources – including the driving field, Pauli blocking, and

Coulomb interactions. The equation of motion for the polarization, written p h e2
1

1 2=〈 〉
in the electron–hole representation, is found to be
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Here we define the following two four-point operators;
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The S operator describes an electron screened transition – that is, the correlated destruction

of an electron–hole pair with the scattering of another electron. By the same logic, T

describes a hole-screened transition. From the equations of motion for the electron and

hole densities, ne and nh, we obtain three more four-point functions.
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N represents correlated excitonic occupations, while K and L represent conduction and

valence band density–density correlations. Note, however, that K and L are not included

in the χ(3) truncation, as both have ne or nh > 3. Finally, in the equations of motion for

the four-point operators, N, S, and T, we obtain two more density matrices which

contribute at the χ(3) level. The first such operator is

B h e h e24
13

1 2 3 4 = 〈 〉 , (5.13)
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which represents the correlated destruction of two e–h pairs – or the coherent two-

photon (biexciton) emission. The second is a six-point term, Z, which represents exciton-

two-exciton transitions, and which is written

Z e h h e h e146
235

1
+

2
+

3 4 5 6 = .〈 〉 (5.14)

The coherent limit

There are five high order Coulomb operators (B, N, S, T, and Z) whose equations of

motion must be solved simultaneously in order to obtain the exact χ(3) result. However,

Axt and Stahl (Axt, [37]) showed that under perfectly coherent circumstances, the entire

dynamics at the χ(3) level can be calculated in terms of biexcitonic (B) and excitonic (p)

transition amplitudes, while all other operators can be factorized into products of p and

B, and thus appear only as dependent variables. The exact factorized solutions for N and

Z coincide to lowest order in the exciting fields with the results of the HF/RPA, that is,
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The RPA decoupling is incorrect even to lowest order in the field for the matrices S, T,

and B.

In the coherent limit one obtains particularly simple equations of motion – just

two coupled equations for B and P. Though the restrictions of the perfectly coherent

limit tend not to apply to real systems, some factorizations are more robust than others.

In particular, the factorizations of S and T tend to hold true even for small deviations

from the coherent limit, while the factorizations of N and Z break down. Nevertheless,

a large fraction of the experiments in which four-particle correlations are evident agree

well with the predictions of the χ(3) coherent limit.

The DCT scheme can certainly be applied at the χ(5) level and beyond (Victor,

[38]). However, the twenty-two dynamical variables required in the general χ(5) case

render the problem quite numerically intractable. As is the case for χ(3), factorization at

the χ(5) level in the coherent limit reduces the number of independent dynamical variables

dramatically. In this limit only p, B, and W remain, where W describes the triexcitonic

emission, W h e h e h e246
135

1 2 3 4 5 6 .≡ 〈 〉

Interpreting and solving the equations of the DCT

In studying the roles of n-particle correlations, it is often useful to separate explicitly the
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contributions of HF/RPA terms from those which are due to high-order Coulomb

contributions. This is most easily done by constructing operators representing the

differences between full n-particle terms and their HF factorized approximations. We

will designate these “high-order correlation” terms with a bar. Thus, the correlated part

of the two-photon emission is given by

B h e h e h e h e h e h e24
13

1 2 3 4 1 2 3 4 1 4 3 2 =  –  + .〈 〉 〈 〉 〈 〉 〈 〉 〈 〉 (5.16)

It should be noted that B  is a rapidly oscillating, phase-sensitive quantity, and contains

contributions from both the bound biexcitonic states and from the unbound two-exciton

continuum. B  is the only four-particle term needed to describe the χ(3) system in the

absolute coherent limit (where N, Z, S, and T can be factorized). In this case the coupled

equations of motion for p and B  are as follows:
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and
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Here the γ represent damping constants, while ωg is the optical gap, V12 is the Coulomb

potential and V(12 | 34) = V14 + V23 – V13 – V24.

Equations (5.17) and (5.18) show quite clearly the role of the high-order Coulomb

correlations in the χ(3) coherent limit. The pair transitions, p, are driven by four types of

sources: (1) a linear source, (∝ μE) that starts the dynamics when the semiconductor is

initially excited, (2) sources that arise due to the Pauli exclusion principle (∝μEp*p),

(3) Hartree–Fock Coulomb nonlinearities (∝ Vp*pp) representing the mean field part of

the dynamics, and (4) genuine many-body correlations (∝ Vp* B ). Note that discrete

(bound biexciton) as well as continuum two-exciton states appear in the equation for

ΩB, and their relative weight is determined by equation (5.19).

For systems not in the coherent limit, it is necessary to include in the equations

of motion both the four-particle term N, which describes pair occupations, as well as the

six-particle term Z, which describes exciton-to-exciton transitions. The contributions to

N beyond the mean field limit are given by

N N p p e h h e e h h e14
23

14
23

1
2*

4
3

1
+

2
+

3 4 1 2 3 4 =  –  =  – * .〈 〉 〈 〉 〈 〉 (5.20)



184 S.R. Bolton

N  describes two physically different aspects of the dynamics – (1) coherences between

different pair states related to intersubband and intraband transitions and (2) incoherent

occupations of pair states. Writing the expression for N  in the form

N p p p p = (  – ) (  – )+〈 〈 〉 〈 〉 〉 (5.21)

suggests the interpretation of N  as the fluctuation in the exciton transition amplitude,

p. The physical meaning of this dualism is exactly the same as in the well-known case

of the optical field, where fluctuations of the field amplitude are by definition identified

as the incoherent part of the intensity.

Finally, the correlated part of the six-point density matrix, Z ,  is written
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Z  accounts for the correlated part of transitions from incoherent exciton densities to

two-pair states. Z  belongs to the incoherent part of the dynamics, because it can only

have finite values in the presence of incoherent densities. Nevertheless, as a transition

density, Z  has some properties of coherent variables, e.g., it oscillates at optical frequencies

and is therefore phase sensitive. In atomic physics it is well known that contributions

corresponding to Z  yield excited state absorption. Dephasing induced resonances are

also related to transitions of the Z  type (Dick, [39]; Abram, [40]).

The solutions to the coupled equations of motion in the DCT are obtained numerically

by first formally inverting the equations of motion for B N,  and Z , leaving only a

single equation of motion for p. This results in a memory kernel representation based on

Green’s functions (Axt, [41]). For example, in the coherent limit the equation for B

may be solved using the Green’s function GB of ΩB as
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Equivalent memory kernels may be generated for the other four-particle terms. In

any case, the price to be paid for a formulation where only the two-point function, p,

enters explicitly is that the equations become non-local in time. As a result of this non-

locality the four-particle interactions are often referred to as “memory effects” in the

literature.
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The effective polarization model

Although the DCT is complete and internally consistent, full numerical solutions based

on this model can be both time consuming and complex. For the χ3 case in the coherent

limit, one can derive an “average polarization” or “effective polarization” model (EPM),

which takes the form of a nonlinear Schrodinger equation. The EPM provides significant

insight into how processes not included in the SBE influence FWM and P/P measurements,

in particular demonstrating the polarization dependencies which are so critical in NLO

experiments. The first step for both full numerical solutions of the DCT and for the

EPM is to expand both the excitonic and biexcitonic polarizations in the basis of exciton

eigenfunctions, φα, that is:

P p p k
k

k k =   =  ( ),Σ Σμ φ
α α α (5.24)

Substituting this expression into the equations of motion (5.17) and (5.18) for p and B

leads to a nonlinear Schrodinger equation which contains sums over states in all of the

Coulomb source terms. However, if we assume that the system is excited by an ultrashort

pulse with significant bandwidth, we can replace the true polarizations pk and Bk  by

“averaged” (over states) quantities  and , so that all sums over states are converted

into averages as well. In the coherent limit the populations are related to polarizations

via n k pi k( ) ~ ,2  and the EPM equations of motion read:
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Here + and – represent the separate spin 1/2 manifolds excited by σ+ and σ– polarized

light. The results of the EPM can be interpreted in a very straightforward fashion. The

first line reproduces the results of the SBE approximation (this is what would be obtained

from equation (5.6) if an averaging over states were performed). The next two lines

contain the contributions of the exciton–exciton screening, exciton–exciton exchange,

exciton–biexciton interaction. It is important to note that the EPM equations contain the

polarization selection rules. Neither the HF terms nor the excitonic exchange terms
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couple the + and – spin manifolds. Thus, in the HF approximation one would predict no

coherent contributions to the pump–probe signal for counter-circularly polarized pump

and probe. The only contributions to counter-polarized P/P signals originate in the

excitonic screening and the exciton–biexciton interactions.

The V for each term in equation (5.25) can be calculated explicitly if necessary

(Schafer, [42]). More often the results of the EPM are used for direct comparisons with

experiment, in which case the V are treated as free parameters which may be fit to the

data to discern the relative contributions of various four-particle terms to the signal. It

should be noted that the EPM equations pertain only to the ideal coherent limit, and thus

do not contain dephasing rates. The excitonic dephasing rate, γ, and the biexcitonic

dephasing rate, Γ, must be obtained from other models or extracted from experimental

data.

Phonons

For samples at higher temperatures, it is clear that any description of the dynamics must

include exciton–phonon couplings as well as Coulomb interactions. The introduction of

phonons brings a number of important changes. For example, in a perfectly coherent

system with only Coulomb interactions, there is no mechanism by which occupation

densities may have longer lifetimes than transition densities. Phonons provide the relevant

microscopic basis for such an evolution of transition densities into occupation densities,

which then become independent dynamical quantities with independent lifetimes.

It is possible to take a DCT approach to the phonon assisted dynamics, via the

addition of a phonon Hamiltonian ˆ ˆ ˆH a a
q q q qphonon

+ =  (  + 1/2)Σ hω  to equations (5.1) and

(5.2), followed by an expansion in terms of the number of phonon operators (Axt, [43]).

Density matrices with different numbers of phonon operators are dynamically coupled,

however, so that after the electronic branch of the hierarchy has been truncated one is

still left with an infinite hierarchy of phonon-assisted densities. Thus far, this dilemma

has only been solved in particular special cases, for example, by factorizing all doubly

assisted quantities in the following manner:

〈 〉 → 〈 〉′ ′ˆ ˆ ˆ ˆa a X n Xq q q q q
+

,δ (5.27)

Here X is any electronic operator, and nq gives the thermal occupation of the phonon

mode. Note that using the thermal occupation for the phonon distribution in this manner

neglects hot phonon effects, treating the phonon system as a simple bath. A comparison

of the relative contributions of phonon and Coulomb couplings for pump–probe signals

in the spectral region of the biexciton has been completed using this scheme in a one-
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dimensional model. This work demonstrated that phonon coupling is considerably less

important than Coulomb coupling for all conditions studied (Axt, [43]). Thus, it is

generally sufficient to calculate many-body effects at the excitonic resonance without

the phonon contribution, and this is certainly appropriate for low-temperature experiments,

where T < 50 K.

5.4 Experimental studies of high-order Coulomb correlations

With the development of more precise experimental techniques and more sophisticated

theory, it became increasingly clear that the role of high-order Coulomb correlations in

semiconductors was both significant and experimentally accessible. The surprising

experimental appearance of the bound biexciton in GaAs was nearly coincident with the

development of the DCT theory in 1992–1994, beginning a surge of effort to understand

the role of many-particle correlations in semiconductor NLO response. It is significant

to note that essentially every paper demonstrating progress in this field is the result of

close collaboration between theoretical and experimental teams.

The fully coherent regime

Initial work on high-order Coulomb correlations focussed on the fully coherent regime,

in which the only independent dynamical variables are the excitonic and biexcitonic

polarizations (  and ).p B  Early work by Schafer et al. evaluated the polarization dependence

of FWM emission near the excitonic resonance in the fully coherent regime (Schafer,

[42]). Comparison of experimental results in GaAs with this theory demonstrated that

the diffraction of internal, induced fields completely dominates the FWM signal. In

particular, the spectral profile of FWM emission was nearly perfectly predicted by the

EPM model, neglecting the PSF nonlinearity. (The spectral signature of Coulomb

interactions in this case is a FWM profile at zero delay with the asymptotic form

(ω – ω0)4.) Once again, noninteracting few-level models, which assume the dominance

of the external fields, were demonstrated to be completely inappropriate for describing

the relevant physics of FWM. Schafer et al. spectrally resolved the weak biexcitonic

resonance using cross-linear polarized excitation in FWM. For cross-linear excitation

the excitonic screening contribution to FWM vanishes, and biexcitonic contributions

become dominant. By careful study of the dependence of the FWM signal on detuning

from the excitonic resonance, Schafer et al. concluded that the biexciton has a considerably

shorter dephasing time than does the exciton, although the precise details of the dephasing

time were not determined.
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Spectrally resolved FWM studies performed in ZnSe quantum wells also revealed

the importance of the four-particle contributions (Haase, [44]). These experiments,

however, could be compared very precisely with the results of the microscopic DCT (in

which the correlations are computed directly from the known properties of the sample,

rather than introduced as free parameters as in the EPM). ZnSe has a number of very

advantageous properties for such studies. First, the hh-exciton is 25.6 meV below the

band edge, thus hh-excitons can be excited by ultrashort pulses without the introduction

of any free carriers or lh-excitons, which significantly complicate the dynamics in lower

gap semiconductors (such as GaAs and InGaAs). Furthermore, the biexciton resonance

in ZnSe is spectrally well resolved from the hh-exciton (biexciton binding energies

range from 4.5 meV in quasi-bulk structures to 7.3 meV in a 2.8 nm well) allowing

detailed comparisons of excitonic versus biexcitonic emission. Finally, ZnSe has a very

high optical nonlinearity, which allows high quality measurements to be performed in

heterostructures containing only a single quantum well – thus eliminating both the

distortions which can result from propagation through optically thick media and the

inhomogeneous broadening present in multi-QW samples. A comparison of experimental

FWM data at low excitation densities with the results of the microscopic DCT theory is

shown in Fig. 5.7. The dramatic dependence of the FWM emission on excitation
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Fig. 5.7 Experimental FWM spectra, (a) measured in a ZnSe 4.8 nm single quantum well at a time

delay of Δ t = 0, for a pump power of 100 μW. Data are compared with the results of the

microscopic DCT theory, (b) at the coherent χ(3) level. From top to bottom, the curves are for the

following excitation polarizations (k1k2): xx, σ + x, σ + σ–, xy yσ–, xσ–. Note that the data are

presented on a logarithmic scale, and show remarkable agreement with the theory over more than

three orders of magnitude! Adapted from [44].
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polarization is evident, as is the superb agreement of theory with the experimental data

for every polarization configuration.

For higher excitation densities Haase et al. observed clear violation of the χ(3)

selection rules and the onset of χ(5) –level processes (Haase, [8,44]). For example, at the

χ(3) level the polarization configuration k1 = x, k2 = σ+ (known henceforth as xσ+)

cannot produce a bound biexcitonic signal, as this would require two photons of opposite

circular polarization from k2. On the other hand, a fifth-order contribution in which

three photons come from beam 1 (final wave vector: 2k2 – k1 + k1 – k1) does allow a

bound biexciton. The onset of the χ(5) processes can be clearly evaluated by examining

the magnitude of signals of this type. More recent studies of the intensity dependence

of signals obtained in FWM from ZnSe have demonstrated that substantial contributions

above third order are generated even at the lowest excitation levels available in current

experiment (Haase, [8]).

It is important to note that the DCT theory with truncation at χ(3) reproduces very

precisely the experimental FWM spectra even in the regime where χ(5) processes become

important. This is possible because the DCT uses χ(3) to select the relevant many-

particle correlations, but then solves the coupled equations of motion to infinite order in

the driving field. These results demonstrate that the correlations present in the χ(3)

truncation in the coherent limit ( p B and )  are sufficient to describe the NLO response

of semiconductors under a significant range of excitation conditions.

In GaAs the excitons are so much less bound than in ZnSe that precise comparisons

with microscopic theory prove challenging. However, exciton-exciton correlations can

be enhanced by the application of a large magnetic field (Kner, [45]). With the application

of such a field, the lowest energy excitons remain Lorentzian, while additional resonances

appear at the origins of the Landau levels. The magnetic field does not change the nature

of the Lorentzian excitons, but it strongly affects their internal structure, contracting the

wave functions by a factor ∝ | B |1/2 perpendicular to the field, and by a factor ln | B |

parallel to it. This contraction of the excitons yields a dramatic enhancement of the

exciton–exciton correlation, demonstrated by the rise of the negative time FWM signal

with increasing B shown in Fig. 5.8. It should be noted that these experiments are

performed with co-circularly polarized excitation, thus the Coulomb-correlation induced

signal is due to exciton–exciton (XX) interactions in the two-exciton continuum, rather

than to bound biexcitonic states. The data are compared to a version of the EPM in

which the polarization is expanded on the magnetoexciton eigenfunctions. The XX

correlations beyond the SBE dominate the negative time signal, as shown in Fig. 5.9.

The inclusion of screening in the model causes the negative time signal to vanish

smoothly with increasing density, in complete agreement with experiments in which the

density of free carriers is increased.



190 S.R. Bolton

Fig. 5.8 FWM in a 0.25 μm GaAs layer at low temperature, as a function of applied magnetic

field. From bottom to top B = 0, 2, 4, 6, 8, and 10 T. Note the rise in the negative time signal with

increasing B field, demonstrating the enhancement of four-particle Coulomb correlations. Excitation

is co-circularly polarized, and the carrier density is approximately 1015 cm–3. Adapted from

reference [45].
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Four-particle correlations enhanced by B field have also been used to study the

sensitivity of exciton–exciton correlations to temperature. Experiments show the 4PC

signal to be strikingly temperature dependent, changing by more than a factor of three

when the temperature is raised from 2 to 44K, as shown in Fig. 5.10 (Kner, [46]). This

behavior is reproduced by the EPM model when a phenomenological parameter, γB, is

introduced to describe the dephasing of the exciton–exciton correlation function. Increasing

temperature in the experiment gives changes in emission nearly identical to those produced

by increasing γB in the EPM. It is surprising that such a small change in T should

produce such dramatic changes in 4PC, as the occupation number of LO phonons varies

only very slightly over this temperature range, and theoretical work shows that phonon-

induced transitions are relatively unimportant at these temperatures (Axt,[43]). A similar

extreme sensitivity of the dephasing of four-particle correlations to the density of free-

eh pairs was obtained by Kner et al. when the spectral overlap of the exciting pulses

with the e–h continuum was increased.

Detailed studies of exciton and bound biexciton dephasing have been performed
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using FWM in a single GaAs quantum well with very narrow exciton linewidth (hh-

exciton linewidth = 0.075 meV at 20K) (Langbein, [47]). This work indicates that

exciton and biexciton dephasing are very similar over the temperature range 2–80K, and

also that at higher temperatures, exciton and biexciton scattering events are highly

correlated. The contrast between these results and those of Kner et al. may be due to

sample quality effects, which have been shown to be critical in the magnitude of biexcitonic

contributions to FWM (Schafer, [42]). Alternatively, the disagreement may originate in

differences in the structure of four-particle correlations in the 3D GaAs system at high

magnetic field vs. those in the 2D GaAs quantum well studied by Langbein et al.

The experiments of Kner et al. demonstrate the importance of exciton–exciton

correlations for FWM polarizations in which the bound biexciton is forbidden. For

polarizations in which the bound biexciton is created, it is often thought that a few-level

model including both exciton and biexciton levels will sufficiently describe the NLO

response. This has been shown to be far from correct in recent work by Axt el al. [48],

where the coherent χ(3) DCT was used to predict the spectra of FWM signals. For every

choice of excitation condition, the signals at negative delay were accurately reproduced

by the theory only if the influence of the correlations in the two-exciton continuum were

included. In particular, the correlated two-exciton continuum contributions strongly

compensate the mean field Coulomb contributions, as had been predicted in several
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Fig. 5.9 EPM calculation of FWM emission for a single excitonic resonance, assuming co-circularly

polarized excitation by delta function pulses in bulk GaAs. Note that the negative time signal is

completely dominated by four-particle exciton–exciton correlations (XXC), has a small contribution

from the Hartree–Fock Coulomb term (BCI) and has no contribution from Pauli blocking (BC)

sources. Adapted from reference [46].



192 S.R. Bolton

–10 –8 –6 –4 –2 0 2 4 6 8 10
Time delay (ps)

(a)

γB = 0

γB = 2γP

B = 6.0 Bc

TI
-F

W
M

 –4 –2 0 2 4
Time delay (ps)

(b)

Fig. 5.10 (a) FWM data in bulk GaAs at high magnetic field (B = 10T) as a function of temperature.

From top to bottom temperatures are 2K, 16K, 29K, and 44K. (b) Calculation of the FWM signal

in the EPM: the solid line is for four-particle correlation dephasing rate, γb twice the excitonic

dephasing, γp, while the dashed line is for γb = 0. Note that increasing the dephasing rate of the

four-particle correlations destroys the negative time signal in the same manner as increasing

temperature in the experimental data. Adapted from reference [46].



Higher-order Coulomb correlation effects in semiconductors 193

earlier theoretical studies (Ostereich, [49]; Axt, [41]). Models neglecting the influence

of the correlated two-pair contribution consistently overestimate the ratio of exciton to

biexciton emission by about one order of magnitude, while also missing significant

spectral features originating in competition between the mean-field Coulomb nonlinearity

and the two-pair transitions.

Although FWM has been the primary tool for the study of exciton–exciton

correlations in the coherent regime, these correlations also play a significant role in

P/P spectroscopy. When the intense pump pulse precedes the probe (positive time delay),

the P/P signal is dominated by incoherent population effects, for which the coherent χ(3)

theory is clearly inappropriate. However, when the probe precedes the pump a P/P

signal is obtained which derives from the nonlinear interaction of the pump field with

the coherent macroscopic polarization created by the probe. In this regime coherent

signals due to four-particle correlations are to be expected, and these can be modeled by

DCT or EPM approaches. In fact, the coherent P/P signal predicted at the SBE level for

counter-circularly polarized excitation is zero, thus measurements of the coherent P/P

signal allow background free observations of the high-order Coulomb terms.

One prominent aspect of negative time P/P signals is the coherent oscillatory

structures observed in the spectral and temporal domains. These result from four-photon

processes, in which pump photons are scattered into the probe direction, k1 (= k1 + k2 –

k2; with k1 and k2 being the respective wavevectors of the probe and pump beam). The

superposition of the first-order transmitted probe and the delayed coaxial third-order

scattered pump signals leads to oscillations in the spectral domain. In a non-interacting

model the spectral period of these oscillations is predicted to be ΔE = h/Δt. However, the

presence of Coulomb correlations significantly alters the coherent oscillations, as observed

in resonant excitation on ZnSe (Neukirch, [50]). Figure 5.11 shows a comparison of the

P/P signal with the EPM theory for counter-circularly polarized excitation. At negative

delay the oscillatory structure below the excitonic resonance (Ex) shows two deviations

from the SBE predictions: it has significantly higher contrast than the oscillations above

Ex, and it has a spectral period which is always smaller than h/Δt. Both of these features

are completely explained by the presence of 4PC interactions. For counter-circular

polarization the EPM model gives only two driving terms, as shown in equation (5.28),

which describes the evolution of the third-order polarization in the probe direction.

∂
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Fig. 5.11 Differential transmission data (upper panel) and EPM theory (lower panel) for P/P

spectroscopy in a ZnSe 5 nm single quantum well. The excitonic resonance is at 2.825 eV, the

biexciton at 2.818 eV. Note the excellent agreement between theory and experiment in the coherent

(Δt < 0) regime. Adapted from reference [50].
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Here the indices + and – label the polarization states, and t and p indicate test (probe)

and pump, respectively. ωo is the laser frequency, while Ωx and Ωxx are the exciton and

biexciton resonances. The first driving term is proportional to the excitonic screening,

Vs, while the second originates in the exciton–biexciton interaction,VB, and contributes

only for counter-circular polarization. The calculation shown in Fig. 5.11 contains only

the exciton–biexciton interaction contribution, and clearly demonstrates that this particular

4PC correlation dominates the P/P response at negative delay. Again, the power of NLO

spectroscopy to isolate the particular contributions of high-order Coulomb correlations

is demonstrated by this result.

A similar study of polarization-resolved P/P response in a ZnSe microcavity has

shown the dominance of the exciton–biexciton interaction in that instance as well (Neukirch,

[51]). In a microcavity, the EPM model must be complemented with a resonance equation

for the intracavity electric field. This approach takes into account the coupling of cavity

electric field modes with excitons to yield cavity polaritons, which have mixed light/

exciton character. The dominance of the biexcitonic contribution to the P/P spectra, as

well as the appearance of a new resonance in counter-circularly polarized excitation in

the microcavity, provide unambiguous evidence of polariton–biexciton transitions. It

should be noted that the observation of a spectrally resolved polariton–biexciton transition

requires a material with biexciton binding energy larger than all system inherent damping

constants, and thus would be impossible to achieve in GaAs. Nevertheless, studies of

P/P signals in GaAs microcavities have shown indirect evidence of exciton–biexciton

interactions, such as the nonlinear increase of normal mode splitting observed with

counter-circularly polarized excitation (Fan, [52]).

The coherent limit also pertains in P/P for the case of excitation in the gap below

Ex. In this case the excitation does not produce an incoherent population of electron–

hole pairs, but rather generates only virtual transitions and coherent polarizations, whose

phase is determined by that of the laser. The presence of these virtual excitations causes

a shift of Ex known as the optical Stark effect (OSE). Careful study of the polarization

dependence of the OSE in high quality InGaAs quantum wells demonstrated a dramatic

effect of high-order Coulomb correlations, as shown in Fig. 5.12. While for counter-

circularly polarized excitation the OSE is a redshift, for all other polarization configurations

the exciton experiences a blueshift (Sieh, [53]). Comparison of these data with a full

two-dimensional tight-binding calculation based on the coherent χ(3) DCT shows that

the Hartree–Fock terms (Pauli blocking and first-order Coulomb interaction) give a blue

shift for any polarization configuration, while the high-order Coulomb correlations

always give a redshift. For counter circular polarization the HF terms are zero, and thus

the correlation-induced redshift becomes evident. DCT calculations show that even in
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the absence of a bound biexciton this correlation induced redshift persists. Importantly,

the redshift disappears in the calculations when the second Born and Markov

approximations are included. Thus, the redshift is an inherently non-Markovian signature,

and has at its origin correlation-induced Coulomb memory effects.

Fig. 5.12 Differential absorption data from a heterostructure of 8.5 nm In0.4Ga0.96As quantum

wells, as a function of excitation polarization. Data are shown for Δt = 0, for excitation 4.5 meV

below the 1s hh-exciton resonance. Adapted from reference [53].
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Optical experiments have been the most frequent tools for studies of high-order

Coulomb correlations, however other coherent electromagnetic techniques can also

probe these interactions. The emission of THz radiation from optically excited

semiconductors is one such testing ground, which has demonstrated the importance of

Coulomb correlations beyond the SBE even for responses of only second-order in the

driving field. Theoretical and experimental studies were performed of the intraband

current in a semiconductor superlattice with narrow minibands under static electric field

bias (Axt, [54]; Haring Bolivar, [55]). This experiment is expected to be particularly

sensitive to Coulomb interactions, as the shape of the Wannier–Stark ladder is strongly

influenced by excitonic interactions, giving a set of anticrossings of the excitonic state

with the Stark ladder states as the static field is increased. The SBE approach predicts

that the THz emission well after excitation with a short pulse is essentially independent
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of Coulomb interactions – giving a THz signal which oscillates at the frequency

corresponding to the single-particle energy separation. The DCT, by contrast, predicts

excitonic effects that dominate for long times, yielding THz emission frequencies which

correspond to the excitonic interband transitions. Full experimental tests of the emitted

THz frequencies as a function of applied field demonstrate that the emission is indeed

governed by excitonic contributions, in agreement with the DCT theory.

Contributions from incoherent densities

Although it is well known that scattering among carriers creating incoherent populations

takes place whenever a semiconductor is excited above a gap, departures from the

coherent χ(3) limit did not become apparent in studies of high-order Coulomb correlations

for several years. There are two issues which must be examined: the role of incoherent

HOC terms such as N and Z  in measurements dominated by coherent effects (wave

mixing, pump–probe oscillations, optical Stark effect) and the contribution of HOCs to

signals most sensitive to incoherent populations (e.g. resonantly excited P/P at positive

delay). In the first case, it is reasonable to ask whether departures from the coherent

limit of the DCT can be detected at all – do incoherent populations contribute to

coherent signals? The answer to this question is, certainly, yes. In the 4PC theory the

polarization, p, is driven by terms of the form Np N E or ,  which oscillate at optical

frequencies and are phase sensitive due to the p or E factors. The first clear-cut experiments

where such incoherent contributions to the coherent signal were observed was a study

of the transient polarization state of FWM signals in a ZnSe single quantum well

(Haase, [56,57]). In this experiment, the FWM emission is projected on different

polarization states (x, y, σ+, σ–, and linear polarization at 45 degrees with respect to x)

by means of a sequence of two Pockels cells and a polarizer. The projected component

is then either time-resolved, via upconversion with the residual 800 nm beam of the

exciting laser, or spectrally resolved, using a spectrometer and CCD. Such measurements

fully determine the FWM emission to within an overall phase factor. Figure 5.13 shows

the comparison of the measured polarization component Re(Ey) with calculations based

on the full DCT theory. The polarization of the incident beams is k1 = x, k2 = σ+. It is

immediately clear that the coherent limit theory, including only p and B ,  fails to

describe the experimental data, while the inclusion of the four-point correlation N ,

which describes incoherent densities, yields excellent agreement with the experiment.

The contribution of N  to the emission is density dependent. As expected, the

coherent limit agrees best with the data at low excitation densities, giving nearly perfect

agreement for areal carrier densities of order 108/cm2. With only one order of magnitude
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increase in density the coherent limit starts to break down, and the contributions of N

emerge. These results demonstrate that the ellipticity of the emitted FWM signal is a

very sensitive probe of high-order Coulomb correlations. This measurement technique

yields distinct signatures for each of the three 4PC which contribute at χ(3): the biexciton

amplitude, the exciton–exciton scattering continuum, and the incoherent densities/amplitude

fluctuations. These terms contribute in a phase-sensitive manner, and may interfere, as

in the interference of N  with the correlated part of the exciton – exciton scattering

continuum observed by Bartels et al. [57].

For P/P measurements at positive delay, it is evident that the signal must include

the effects of incoherent populations. Bartels et al. [58]) performed a study of differential

transmission signals in semiconductors based on the DCT. Their data was modeled

using p, B  and N  as source terms, and included both heavy- and light-hole excitation.

They found that the phase of the positive time oscillations induced by heavy-hole–light-

hole beats was highly sensitive to high-order correlations. More surprisingly, Bartels et

al. demonstrated a dramatic influence of Coulomb interaction sources on the long-lived

positive time P/P signal. This signal is usually interpreted in the HF model as due to

Pauli blocking – simply the occupation of states by an incoherent population. Bartels et

al. showed that the signal is in fact completely dominated by the Coulomb sources, with

Pauli blocking giving significant contributions only exactly at the HH exciton resonance.

More recent work on P/P signals in GaAs has demonstrated the importance of four-
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Fig. 5.13 Temporally (left panel) and spectrally (right panel) resolved FWM emission from a

ZnSe 4.8 nm single quantum well at 7K, with xσ + excitation polarization. The real part of the

component of the emission polarized along the y-direction is shown here. Data are compared with

theory based on the microscopic DCT. The thin lines show the results of the theory in the coherent

limit, while thick lines show the results including the incoherent contribution, N .  Adapted from

reference [56].
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particle Coulomb correlations in coupling the HH and LH excitons – evidenced by

bleaching at both exciton resonances after resonant pumping of either one (Meier, [59]).

This work also shows evidence of a mixed LH–HH biexciton.

Contributions beyond the four-particle level

As discussed in section 5.3, the full χ(3) DCT theory includes one six-particle correlation,

Z ,  which describes transitions from incoherent exciton densities to correlated two-pair

states. FWM and P/P measurements have thus far been very well described by the χ(3)

theory including only p, B N, and .  However, it is expected that signals requiring more

photons in their lowest order would be more sensitive to higher-order correlations.

Recently, six-wave mixing experiments performed in the ZnSe quantum well

system with spectral and polarization resolution have shown the first evidence of six-

particle contributions. Six-wave mixing is a six-photon process of at least fifth order in

the electric field, and is observed in the momentum conserving 3k2 – 2k1 direction. (See

Fig. 5.1.) (Bolton, [60]) In contrast to FWM experiments performed on the same sample

at the same density, the measured SWM emission departs significantly from the results

of the χ(3) DCT including only p, B ,  and N .  Figure 5.14 shows that the four-particle

theory underestimates the strength of the biexcitonic contribution by almost two orders

of magnitude, and introduces temporal beats in the excitonic emission which are absent

in the experimental data. The excitation configuration for these data is x, y, y. The

inclusion of the six-particle term, Z ,  in the DCT theory completes the χ(3) level without

approximation, and vastly improves the agreement between SWM experiment and theory.

This work demonstrates that SWM is a sensitive probe for Coulomb correlations beyond

the 4PC level, which typically are invisible in FWM emission. (It has been verified that

the inclusion of Z  gives negligible changes to the predicted FWM emission.) It is

particularly interesting to note that Z  suppresses the temporal beats introduced to the

signal by N  for the x, y, y polarization configuration. Similar effects are observed in

other polarization configurations, where there is frequently strong competition between

the contributions of N  and Z  sources. This competition is somewhat analogous to the

competition between Coulomb mean-field and two-exciton continuum sources observed

in FWM.

It is possible to use the DCT theory to examine the relative contributions of the

bound-biexciton and unbound two-exciton contributions to the SWM signal. Keeping

only one contribution or the other in the Z  part of the dynamics gives very poor

agreement with the data. In fact, the incoherent discrete transitions contribute not only

at the biexcitonic energy (which is expected) but also at the exciton energy. A delicate
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Fig. 5.14 Six-wave mixing (SWM) data and theory for a ZnSe single quantum well, measured at

10K with xy excitation polarization. The component of the emission polarized along y is shown

here. The excitonic resonance is at 2.825 eV, and the biexciton at 2.818. Data are compared with

the results of the DCT theory (lower panel) at three different levels: (a) coherent limit,

(b) including N ,  (c) including N  and the six-particle term, Z .  Adapted from reference [60].
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balance between the discrete biexciton and two-pair continuum contributions of Z  is

critical to SWM response (Axt, [61].

Contributions beyond the χχχχχ (3) truncation

As has been shown in many of the studies discussed above, the use of the χ(3) truncation

to select the relevant n-particle density matrices often gives excellent agreement with

experiment, even when higher-order terms in the driving field are clearly relevant.

(Indeed, in SWM the leading order in the field is χ(5), yet the full χ(3) DCT scheme gives

good agreement with experiment.) Recently, however, careful studies of P/P spectra in

InGaAs quantum wells as a function of polarization, excitation density, and detuning

have indicated the necessity of using a full χ(5) truncation for high density excitation

(Meier, [62]). In the coherent limit the χ(5) truncation contains three independent variables:

p, B ,  and W (the triexcitonic transitions). Calculations demonstrate that the contributions

of triexcitonic transitions are negligible, but that the full fifth-order equations of motion

for p and B  must be included in order to obtain agreement with the data. These

equations of motion have the general form

∂
∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

p
t

i
p E Eb p p p p pp Bpp Bp p B B

V p B p p p B B pB

p
 = 

 +  – ( *  + * *  +  + * * + * )

+ ( *  + * * *  + * )
,

ω μ μ

∂
∂
B
t

i B E p p BB = [  + (  + * )]ω μ

where ωp and ωb are the energies of a single and a two-exciton state, respectively. b

gives the strength of the Pauli blocking nonlinearity, while V describes the Coulomb

interaction. For comparison, note that within the χ(3) limit, the NLO response is due to

the Pauli blocking (μEbp*p) and Coulomb interaction induced (Vp*B) contributions

only, which involve single- and two-exciton excitation to lowest orders.

5.5 Future directions

The work discussed here has gone a long way towards elucidating the role of high-order

Coulomb correlations in semiconductor NLO response. The DCT formalism has proven

excellent for studies of highly correlated states at low and intermediate excitation densities

in the vicinity of the absorption edge. As long as coherence dominates, the DCT allows

for quantitative analysis of experiments, and permits identification of clear signatures of

each Coulomb correlation. Recent work by Meier et al. [63] has taken the DCT well



202 S.R. Bolton

into the incoherent limit, considering the influence of a completely incoherent population

of electron–hole pairs on the P/P spectrum of the exciton. In this work the population

was assumed to be in thermal equilibrium, and distinct signatures of high-order correlations,

including Z ,  were predicted for the P/P spectra.

Despite the success of the DCT in describing highly correlated states, however, it

only addresses half of the problem of the dynamics of optically excited semiconductors.

The processes of scattering, energy relaxation, and dephasing are not included in the

DCT, because scattering cannot be described via a perturbative expansion in the driving

fields. Thus, although the DCT can describe initial coherent dynamics, and now is

beginning to be used to describe the influence of the final, equilibrium populations, it

cannot even begin to describe the evolution from initially coherent states through

incoherently relaxing distribution functions to an ultimate quasi-thermal population.

Simultaneous with the recent burst of activity on HOCs, however, there has been

dramatic progress in understanding scattering processes in semiconductors. These processes

have been illuminated by ultrafast measurements made on time scales short compared

to the natural scattering times. In such regimes the Markovian approximation fails, and

a real-time non-equilibrium Green’s function (NGF) approach must be used to understand

the memory structure of the relaxation process (see, for example, Chemla, [64] and

references therein). This approach has been tremendously successful in modeling ultrafast

measurements of nonequilibrium populations, including phonon-scattering and carrier–

carrier scattering based relaxation process (Wehner, [65]; Bar-Ad, [66]). In nearly all

cases, however, the NGF approach is restricted to a second-order Born approximation,

and does not include Coulomb correlation effects. Thus very little is known about the

effects of high-order Coulomb correlations on scattering and relaxation, and the NGF

formalism is valid only for processes high in the electron–hole continuum or at very

high densities, where Coulomb correlations are negligible.

The work to join these two regimes and thus to bring light to the fundamental

scattering processes at the band edge is just beginning. A first step was taken by Schafer

et al. [67], who have obtained a formalism which includes both the DCT and the NGF

as limiting cases. In order to achieve this synthesis, it was necessary to approximate the

full two-time Green’s functions with single-time density matrices (an approximation

which is exact only in the coherent limit). Despite the fact that this formalism does not

give a fully consistent picture at intermediate densities, it agrees very well with an

initial experiment on dephasing of exciton populations with significant four-particle

correlations in high magnetic fields. It seems likely that work to bring together the

understanding of HOCs with that of incoherent scattering will be extremely fruitful and

will continue for many years.
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Finally, we should keep in mind that the many-body problem is ubiquitous in

condensed matter systems, and shows itself in nearly every calculation. In the future it

is likely that the understanding of Coulomb correlations we have gained in semiconductors,

a particularly clean “model” system, will be extended to other materials with exciting

new results. Work using ultrafast spectroscopic techniques in materials with highly

correlated ground states (superconductors, magnetic systems, quantum Hall liquids) is

just beginning.
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Abstract

In this chapter we discuss the physics of spin in semiconductor quantum
dots as measured through optical spectroscopy. We treat photoluminescence
spectroscopy of single quantum dots in detail. Optical selection rules connect
the electronic spin to the exciton polarization properties. Exchange and
Zeeman interactions lead to fine structure of the localized exciton. We
consider these interactions in detail for the cases of the exciton and the
trion (the singly charged exciton). We also discuss the hyperfine interaction
between the electronic and nuclear spins. Under certain experimental
conditions the nuclear spin can become optically pumped into a high
polarization state, which significantly affects the optical spectrum through
the Overhauser effect. Fluctuations of nuclear spin polarization lead to
relaxation of the electronic spin, which is measurable in the optical spectrum
through the Hanle effect.

6.1 Introduction to spin in the optical spectrum

Recent interest in the physics of spin in semiconductor nanostructures is driven largely

by materials research developments in the growth of quantum dots (QDs) and a concurrent

flurry of activity in high spatial and spectral resolution spectroscopy of individual QDs.

As examples, the extremely sharp spectral lines measured in single dot spectroscopy

have led to direct observations of fine and hyperfine splittings and related phenomena

in optical spectra. The application of coherent and quantum optical techniques have

resulted in the demonstration of quantum superposition states composed of the pseudo-
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spin states of excitons in individual QDs. These materials science breakthroughs have

opened up new technological frontiers, such as the possibility of constructing a quantum

information processor out of solid state materials. These new materials and techniques

have generated a surge of new opportunities in a subfield that began in the late 1960s

with studies of shallow donors in bulk semiconductors.

There is a need for a broad introduction to the topic of spin in quantum dots for

those researchers and students entering the field. In this chapter, we introduce the

central physical concepts and results. Rather than provide an exhaustive review, we

highlight important concepts in an introductory manner with experimental or theoretical

results to illustrate our points. We focus primarily on the use of continuous wave (cw)

photoluminescence spectroscopy as a tool for probing spin energy levels and dynamics.

The research examples we have chosen come mostly from the natural QDs formed by

well width fluctuations. However, our intention is to focus on the fundamental physics

that is common to all quantum dots.

Quantum dots are particles of semiconductor crystals, often embedded in a barrier

material, with dimensions that are small enough (10–100 nm) such that quantum

confinement plays a central role in their physics. Their discrete energy spectra and

relatively wide energy level spacings minimize many of the relaxation processes that

dominate in bulk or two-dimensional samples, resulting in homogeneous linewidths

that are generally narrower in quantum dots. Optical oscillator strengths are also relatively

large, and in combination with narrowband lasers tuned to the discrete optical transitions

of quantum dots, both linear and nonlinear spectroscopies are highly effective.

In the last decade, researchers around the world have studied several broad varieties

of quantum dots. Self-assembled dots grown on a solid semiconductor surface with gas-

phase epitaxial techniques are the variety of quantum dots most widely studied by

optical means [1]. Part of the technological impetus for research in growth and spectroscopy

of self-assembled dots is to develop highly efficient near-infrared laser diodes. Other

types of quantum well-based dots that depend for their confinement on strain or surface

vacuum-level barriers have also been investigated [2]. Colloidal nanocrystals, whose

fabrication depends heavily on advances in inorganic synthesis, have been the subject of

wide ranging spectroscopic and structural investigations [3]. Several laboratories, including

our own, have achieved wide success in research on the spectroscopy of a type of

quantum dot defined by changes in the well width in a GaAs quantum well, arising in

part from monolayer-high interface islands [4]. In this chapter, we will consider primarily

this type of natural dot.

Spectroscopy provides a powerful probe of spin and its interactions in

semiconductors. Common optical spectroscopies include photoluminescence (PL),
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absorption, and nonlinear techniques. Magnetic resonance techniques include electron

spin resonance (ESR) and nuclear magnetic resonance (NMR). In quantum dots with a

strong optical response (III-V and II-VI semiconductors with a direct band gap), PL has

been extremely useful because of its sensitivity and experimental simplicity. Unlike

ESR, PL can be used to study undoped samples. In some cases, optical spectroscopy can

be combined with magnetic resonance to provide an extremely powerful hybrid technique.

PL and its variations are the most widely used techniques in semiconductor spectroscopy,

and their application to the study of spin states of quantum dots will be the emphasis of

this chapter.

Spin leads to several important features and phenomena in the optical spectra.

One of the most obvious effects of spin in the optical spectra is the existence of spin

degeneracies or near degeneracies (fine structure) in the optical transitions. This fine

structure is often studied as a function of magnetic fields.

A relatively recent and powerful development is the use of microscopic techniques

to measure the optical spectra of individual QDs. Inhomogeneous broadening in quantum

dot ensembles is much larger than the homogeneous linewidths of individual dots and

therefore masks many interesting features. The spectral linewidth of PL from a single

QD can be as narrow as a few tens of μeV [5] and could approach a μeV in self-

assembled QDs [6,7], which is less than many of the splittings caused by spin interactions.

Therefore, this technique, in combination with high resolution laser spectroscopy, presents

the opportunity to measure directly the fine structure of the spectral lines arising from

spin and gain a more complete understanding of the nature and magnitude of spin

phenomena in QDs. An introduction to single QD spectroscopy will be presented in

section 6.2.

The origins of the fine structure splittings arise from interactions that affect the

different spin components differently. These interactions consist of the spin–orbit

interactions, exchange interaction between the electrons and/or holes, the Zeeman

interactions between spin and the applied magnetic field, and the hyperfine interaction

between the spins of the electron and those of the nuclei. One of the most powerful

features of single QD spectroscopy is that these splittings can be measured directly, thus

allowing new opportunities to explore the nature, the magnitudes, and the impact of

these spin interactions. In section 6.3 we will discuss the fine structure arising from the

exchange and the Zeeman interactions.

It should be realized that fine structure in the spectrum could arise from splitting

in the initial and/or final states of the transition. For example a trion singlet transition

has a two-fold degeneracy in both the excited state and the ground state. In contrast, in

the exciton transition the ground state is just the exciton vacuum, and the fine structure
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of the exciton transition is the same as the fine structure of the exciton quantum state

itself. In section 6.4 we will consider the fine structure of the trion and its PL spectrum.

Another powerful feature of optical spectroscopy is the intimate connection between

the polarization of light and the polarization of angular momentum in matter. This

connection is central to many of the topics discussed in this chapter. Although optical

fields do not couple directly to spin, they provide an indirect probe because of coupling

between the spin and orbital degrees of freedom. In fact, the PL polarization has historically

provided the primary experimental window into the physics of the spin in semiconductors

[8]. Optical selection rules connect the electron spin to the optical polarization in the

spectra. Because of this connection, the polarization of the emitted light contains

information about the population and nature of spin states, and their mixture through the

interactions. One advantage of polarization spectroscopy is that it is not necessary to

resolve the individual substates. In PL polarization spectroscopy the polarization is

measured as a function of magnetic field, of detection frequency, excitation frequency,

and so on.

This relationship between spin and polarization also works the other way – the

selection rules can be used to selectively excite certain spin states. This leads to the

opportunity to optically pump the spin system into a highly non-thermal spin state,

which enables the study of spin physics even if the fine structure splitting is much less

than kBT, or even if it is zero. For example, although the exciton is only partially spin

polarized when in thermal equilibrium, it can be optically pumped to nearly 100%

polarization. At a magnetic field of 1 T the Zeeman splitting of an exciton in a GaAs QD

is about 100 μeV, which is a fraction of kBT at normal helium temperature (at T = 4K,

kBT = 300 μeV). To optically orient the exciton it is necessary for the recombination

time to be much faster than the spin-flip processes that would tend to thermalize the

exciton substates. Optical pumping, in combination with polarization spectroscopy of

the emission, leads to the extremely powerful technique known generally as optical

orientation [8]. This field was developed in atomic systems [9], and applied to bulk

semiconductors starting in the late 1960s [10]. An excellent review is given in [11].

Because the exciton can be put into a nonthermal spin polarization state with a

steady-state probability that depends on the spin relaxation rate, this rate can be measured

through optical orientation methods. One common approach for doing this is through

the Hanle depolarization effect [11]. This involves the measurement of the rate that the

PL polarization is lost as a transverse magnetic field is increased under optical pumping

conditions. The physics of spin relaxation and the Hanle effect will be discussed in

sections 6.3 and 6.6.

The electronic spin also interacts with the underlying nuclear spin within the QD
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through the hyperfine interaction. The interaction of an electron with a single nuclear

spin is relatively weak. However, as mentioned above, under optical pumping conditions

the electron spin polarization becomes highly nonthermal, and the Overhauser effect

leads also to a highly polarized nuclear spin system. As much as 70% of the nuclear spin

in a QD has been pumped into orientation [12]. With such a large number of nuclear

spins oriented within the electron wave function, the average hyperfine interaction

becomes much larger, and the resulting hyperfine splitting can be the dominant fine

structure splitting [12,13]. The physics of the Overhauser effect in QDs will be discussed

in section 6.5.

The average of the hyperfine field can become important under certain conditions,

but even when the average field is zero, fluctuations in the hyperfine field are important.

In fact, fluctuations in the hyperfine field can become the dominant spin relaxation

mechanism in QDs because the spin relaxation processes connected with spin–orbit

interactions are suppressed there. Essentially, the orbital degrees of freedom of the

electron and hole become frozen by the complete quantum confinement and do not react

as strongly to fluctuations of the environmental fields (e.g. phonons and charge fluctuations)

that usually interact with the orbital part of the wavefunction. This is understood in

quantum mechanical terms through the development of gaps in the energy spectrum of

the electronic system. Unlike a higher dimensional electron, which has a continuum of

states into which it can scatter, a fully confined electron must be excited across a gap.

Secondly, the spin–orbit matrix elements are reduced; for example, because of mismatches

between the length scale of the electron wavefunction and the acoustic phonons [14,15].

As a result of the reduction of spin relaxation mediated by spin–orbit interactions,

fluctuations in the hyperfine fields play a more important role. The dominant effect in

the measured spectra is typically the inhomogeneity in hyperfine fields from dot to dot,

or over time in the same QD. The physics of spin relaxation will be discussed in section 6.6.

To summarize, we will first give a brief overview of the structure and spectra of

QDs and the technique of single QD spectroscopy in section 6.2. Then we will discuss

in turn: the fine structure of excitons in section 6.3, of trions in section 6.4, the hyperfine

interaction of excitons and electrons with nuclear spins in section 6.5, and the relaxation

of electron spin in section 6.6.

6.2 Photoluminescence spectroscopy of quantum dots

Natural (interface fluctuation) QDs

In a quantum dot, carriers are localized in all three spatial dimensions. There are a
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number of different QD systems being studied [1], but much of the physics and experimental

methodology is general. In most QDs, confinement results from a bandedge offset

between the dot material and the surrounding matrix, which is usually a semiconductor

of higher bandgap. In optically excited QDs, bound electron–hole pairs (excitons) are

produced. In QDs with weak lateral confinement, such as the natural QDs to be discussed

throughout this chapter, the exciton binding energy is larger than the confinement energy,

and it is the center-of-mass wavefunction of the exciton that is localized. Localization

changes the energy spectrum of the exciton from a continuum into a set of discrete

levels (Fig. 6.1). As a result, there is a qualitative change in the relaxation dynamics of

the exciton [16,17,18]. It should be noted that there are strong similarities in the properties

of electrons or excitons bound to shallow donors and those localized in QD potentials.

This analogy is important because there has been extensive work on shallow impurities

in bulk semiconductors [19], and many of the basic concepts and techniques in the field

of quantum dots were developed during these earlier studies. In this section, we discuss

the morphological properties and coarse energy level structure of natural quantum dots.

Fig. 6.1 Schematic diagram of energy levels of QD with fine structure showing exchange splittings

in anisotropic disk-like QD.
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Excitons in a natural quantum dot are confined in three dimensions by an imperfect

GaAs quantum well (Fig. 6.2(a)). Vertical confinement (in the epitaxial growth direction)

is provided by the quantum well barriers (AlxGa1–xAs), while lateral confinement in the

quantum well plane results from natural variations in the effective thickness of the

GaAs quantum well. This confinement results from the level mismatch between quantum

well subbands in regions of the well with different thickness (Fig. 6.2(b)). Natural

QDs are also often named ‘interface fluctuation quantum dots’, or simply ‘interface

dots’ [4].
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During growth of a quantum well by molecular beam epitaxy (MBE), large

monolayer-high islands develop at the well–barrier interfaces during interrupts of a

minute or more under an arsenic flux. Much of this roughness persists at an interface as

subsequent layers are grown. During growth interrupts, the islands can grow to lateral

sizes larger than the Bohr diameter of the exciton (~20 nm in GaAs) and an order of

magnitude larger than the well width, leading to a disk-like shape. Figure 6.3 shows the

top surface of a GaAs quantum well imaged with scanning tunneling microscopy (STM).

As seen in the figure, the structures tend to be elongated along the [ ]110  crystal axis.

The potential barrier formed by the monolayer-high steps is an order of magnitude

less than that for the AlxGa1–xAs potential barriers in the vertical direction. Therefore

the QD, though providing strong confinement in the vertical direction, is weak in the

lateral directions. As a useful approximation, the energy spectrum of the QD can be

separated into energies associated with the vertical and lateral dimensions. The strong

confinement along the z-axis governs many of the properties of the exciton, such as the

g-factor and exchange Coulomb energies. The low energy excited states are determined

primarily by the lateral size and shape of the QD and have energy splittings on the order

of a few meV. Because the light-hole exciton is shifted up by tens of meV, the spectra

and other properties of these low energy QD states are derived primarily from the lowest

energy heavy hole subband of the quantum well, and light-hole mixing is weak.
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Fig. 6.2 Schematic diagram of (a) 3 nm quantum well with large monolayer-high islands at the

interfaces that lead to confinement of the exciton and (b) The corresponding lateral confinement

potentials associated with the interface islands.
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It should be mentioned that there are several complications to the simple picture

of lateral confinement discussed above. In addition to the large, monolayer-high islands

at the interfaces, there also exists atomic-scale roughness [20,21,22], probably due to

exchange of Ga and Al atoms as the interface is being formed [23,24]. The exciton

energy is affected by this small-scale roughness, which will also lead to localization if

there are fluctuations in the density of this small-scale roughness on the scale of the

exciton Bohr diameter or larger. The same holds true of the barriers composed of

AlxGa1–xAs rather than pure AlAs [25]. Correlation of the interface steps on the top and

bottom interfaces of a well will also affect the optical properties [26]. Excitons localized

by impurities will contribute sharp lines to near-field spectra. However, this will be a

small contribution in undoped samples (<2 μm–2) because of the small background

density of impurities in this system (<1015 cm3).

Early spectroscopic studies revealed strong inhomogeneous broadening and

identified its origin as interface roughness [27]. Exciton localization, which has been

studied since the early 1980s [27,28], can change the dynamics of the exciton considerably

[16,17]. It was discovered that localization leads to a strong decrease in the homogeneous

linewidth, or equivalently, an increase in the dephasing time of the exciton, which

occurs because the exciton cannot interact as strongly with its environment. A mobility

edge was discovered, corresponding to an energy at which the excitons become mobile

and the homogeneous linewidth increased dramatically [16,17].

Fig. 6.3 STM image of GaAs surface showing the large monolayer-high islands. The islands tend

to be elongated along the [110] axis. From [41].
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Microscopic and optical near-field spectroscopy have led to a more detailed

understanding of these phenomena in the localized limit, and it has become clear that in

certain cases, excitons localized by interface roughness can be modeled through QD

potentials (Fig. 6.2). Investigation of this system is rewarding, not only because it

provides a useful model system for the study of QD physics, but also because the new

perspective obtained through recent single exciton spectroscopies enhances the study of

real quantum wells started two decades ago [27,28].

Photoluminescence spectroscopy of single QDs

In linear optical spectroscopy, photon absorption excites an electron across the band gap

of a semiconductor, from the valence band into the conduction band. The Coulomb

attraction between the electron and the hole leads to the formation of an exciton, which

is the elementary optical excitation of a semiconductor. Like the hydrogen atom in

atomic and molecular physics, the exciton is the simplest and most-studied two particle

complex in the field of semiconductor spectroscopy. The analogy between them is

close – a light negative particle and a heavier positive particle orbit on another. Multiple

exciton complexes (biexcitons, triexcitons, etc.) also form readily as a consequence of

using high intensity lasers. The biexciton is the semiconductor counterpart of the hydrogen

molecule. In the last five years, singly charged excitons (trions) confined in heterostructures

have also become a topic of intense interest. In the molecular analogy, negative trions

(two electrons and a hole) and positive trions (two holes and an electron) may be

compared to the atomic hydrogen negative ion (H–) and the molecular hydrogen positive

ion (Η 2
+ ), respectively.

Laser light with photon energy above the bandgap of the barrier material containing

the quantum dots is directed at the sample. (Resonant excitation will be discussed

below.) The electron–hole pairs have excess kinetic energy that is lost through emission

of phonons. Spin polarization arising from circularly polarized excitation is also lost.

Some fraction of the carriers drift into the QD confinement potential, where they form

excitons or other bound complexes. The discrete energy levels of the quantum dots are

spaced by several meV, and relaxation into the lowest dot levels requires emission of

acoustic phonons. Photoluminescence is then emitted from the lowest dot levels. In an

experiment with continuous lasers, there is a steady cascade of carriers relaxing through

the various energy levels of the sample. Because photon emission is a comparatively

slow process, it is possible for two or more excitons to collect within a single dot. At

higher laser powers, one often observes a red-shifted biexciton peak or higher energy

multi-exciton peaks produced by recombination from higher orbital states of the QD.
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In a typical experiment the sample is contained within a liquid helium cryostat,

and the excitation laser is brought toward the sample at slightly off normal incidence.

The incoming beam may be sent through a polarization-modifying optic and a focusing

lens. The photoluminescence is collected and collimated with a large f-number lens,

after which optical elements may be inserted in order to determine the polarization of

the PL. The PL is refocused onto the slit of a grating spectrometer. If necessary, the

beam diameter and refocusing angle can be adjusted in order to match the f-number of

the spectrometer grating. A photomultiplier or avalanche photodiode is used for single

channel detection, while a CCD array detector may be used to collect the whole dispersed

photoluminescence spectrum simultaneously. Single channel detection allows phase

sensitive detection which is important in polarization spectroscopy. Multi-channel detection

is highly advantageous for the weak PL signals in single QD spectroscopy.

Before discussing the energy levels and PL spectra of individual quantum dots,

we briefly consider the coarse features of ensemble spectra for these dots, which are

derived from GaAs quantum wells. Typical samples are grown by MBE with two minute

growth interrupts under arsenic at each of the quantum well interfaces. A common

structure in our work consists of five GaAs/Al0.3Ga0.7As wells of different width, ranging

from 3 nm to 14 nm. The luminescence peaks in the spectrum arise primarily from the

lowest heavy-hole exciton states of each well. The spectrum for each well consists of

two (and sometimes more) broad peaks with an energy splitting corresponding to a

difference in well width of approximately one monolayer. The inhomogeneous linewidth

of each peak results from the distribution in width and shape of the particular regions in

which the excitons are confined (Fig. 6.2), which in turn governs the lateral confinement

strength. The detailed features of these ensemble spectra have been extensively studied [29].

Many details of quantum dot energy levels are hidden when studying the spectra

of ensembles, due to the large inhomogeneous distribution of dot size, shape, and other

morphological features. Using high spatial resolution spectroscopy [30,31,32,33,34,35]

to study few or even a single quantum dots, it becomes possible to uncover the detailed

features that were previously hidden. In order to study individual quantum dots, it is

necessary to reduce the size of the region in which the PL is excited or from which it is

detected. One approach is to use a low temperature microscope [30,32] or even a

scanning near-field optical microscope [33,35] to focus to micron or submicron laser

spots. A less technically-demanding approach is to obtain spatial selectivity by effectively

shrinking the size of the sample rather than the size of the light source. Optical lithography

can be used to fabricate submicron mesas containing small numbers of quantum dots

[36,37]. The etched regions contain no dots and if the mesas are well-separated, it is

straightforward with a typical laser spot size to excite only a single mesa. Another
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approach has been to fabricate submicron apertures in a thin aluminum film, through

which a laser can excite a small collection of QDs [34]. The effect of using successively

smaller aperture sizes is shown in Fig. 6.4. As the apertures become smaller, the broad

inhomogeneous peak profile breaks up into a collection of much sharper lines. Each of

these lines arises from a single exciton localized within a quantum dot potential defined

by the interface structure. From this experiment, we see that the exciton energies are

clustered within the broad ensemble monolayer peaks split by the difference in quantum

well width, and that within each of these groupings, the excitons have an additional

distribution in energy due to variations in their confinement energy via their lateral size

and other perturbations.
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Fig. 6.4 Photoluminescence of 3 nm thick GaAs/Al0.3Ga0.7As quantum well grown with 2 min.

growth interrupts at the interfaces. The PL was excited and detected through an aperture with

diameter listed. Monolayer high islands lead to the splitting of the ensemble spectrum

(bottom spectrum) into lines associated with either 10 or 11 monolayer well width. With decreasing

aperture diameter these inhomogeneously broadened lines break up into a decreasing number of

single exciton lines arising from single QD-like potentials. From [41].

PL excitation spectroscopy of single QDs

Beyond the use of high spatial resolution, it is possible to further reduce the number of

QDs that contribute to a PL spectrum through selective excitation of specific dots with
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a tunable laser. The laser is scanned in frequency until it excites a local excited state of

a QD, which relaxes rapidly through phonon emission to the ground state and produces

a single PL line at lower energy. A photoluminescence excitation (PLE) spectrum is

observed by monitoring a single PL line at fixed energy while scanning the excitation

laser [31,34]. PLE gives the excited state spectrum of a quantum dot and can be performed

on each of the sharp lines in a PL spectrum. An example of such a spectrum for 10-

monolayer GaAs/Al0.3Ga0.7As single quantum well is shown in Fig. 6.5. This spectrum

shows discrete absorption resonances and the onset of a continuum about 11 meV above

the PL line [5].

Fig. 6.5 PL intensities as a function of both spectrometer and laser frequency. A horizontal slice

gives a PL spectrum for a given laser frequency and a vertical slice gives a PL excitation spectrum

at a given detection frequency. The arrow points to the QD PL excitation spectrum displayed in

Fig. 6.7. Adapted from [41].

The excitation spectrum provides an important fingerprint with considerable

information about the QD potential. From PLE spectra, the lateral sizes of the QDs can

be estimated. First, we note that the vertical size and depth of the potential are those of

the quantum well, in this case 11 monolayers and about 300 meV, respectively. The

potential depth in the lateral dimensions is about 11 meV and is given approximately by

the energy between an exciton in an 10 and an 11 monolayer quantum well (Fig. 6.2).

By fitting the lateral size and shape to calculated values, the entire QD spectrum can be
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fitted in principle. However, it should be noted that this is a complicated calculation that

has not been done with a realistic potential. It is possible to make a rough estimate of

the widest lateral dimension using a one-dimensional particle in a box calculation using

the energy measured between the exciton ground state and the first excited state, assuming

that the potential is rectangular and that motion in the two lateral dimensions is separable.

This calculation leads to a size of 40 nm for the QD whose spectrum is plotted in Fig.

6.5 and a size of about 100 nm for the average energy splitting (~1 meV) in the PLE

spectra for this sample. Because of the small lateral potential depth, low temperatures

are necessary to observe zero-dimensional behavior (11 meV corresponds to 130K).

6.3 Exciton fine-structure (spin and sublevels)

There is an internal (“spin”) degree of freedom associated with the Bloch function that

exists in addition to those degrees of freedom associated with the envelope functions,

and within each exciton spectral line there exists fine structure (sublevels). In a disk-like

QD the projection of the heavy-hole exciton’s spin on the strong quantization axis (z-

axis) is the sum of the electron (Sz = ±1/2) and heavy hole (Jz = ±3/2) spin projections

(Fig. 6.6(a)) [38,39,40]. This leads to four exciton sublevels: a degenerate doublet with

spin projection along the z-axis (±1) which is optically active (bright) and another

doublet (±2) that is optically inactive (dark) (Fig. 6.6(b)). However, even at zero field

this degeneracy is often lifted by the exchange interaction into two closely spaced

doublets [41] (Fig. 6.6(c)). Furthermore, the energy splitting and mixing of the spin

states can be controlled by external magnetic fields through the Zeeman interaction. All

these states play a key role in the fundamental physics of semiconductors, such as

exciton dynamics, spin relaxation [42] and the Overhauser effect [13]. Therefore, it is

important to have a good qualitative and quantitative understanding of these energy

splittings. Previous work studied the fine structure of excitons in wide GaAs quantum

wells [43,44,45] and several quantum dot systems [46,47].

Exchange interaction

The electron–hole exchange interaction is enhanced by the spatial confinement of electrons

and holes into the same volume by the barriers of the QW structure. That is why the

dark/bright exciton splitting (δ0) is larger than in bulk [43,45]. In the disk-like natural

QDs, the magnitude of the exchange splitting is dominated by the vertical confinement.

However, lateral anisotropy leads also to a small splitting of the bright exciton doublet
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in a QD due to the long-range part of electron–hole exchange interaction [48,49,50].

This splitting would be absent in islands having cylindrical shape. Moreover, the

polarization of the emission changes from circular to linear in anisotropic QDs. Van

Kesteren et al. [44], using optically detected magnetic resonance spectroscopy, first

observed such behavior in Type II quantum wells. This behavior was observed for

localized states in normal Type I GaAs quantum wells (similar to those studied here) by

Blackwood et al. [43], using ensemble magneto-PL. The magnitude of the splitting

observed by Blackwood et al. is about the same as that measured directly for the exciton

ground states in single QDs, and likely has the same origin.

To explain these observations, we need to consider the spin states of the exciton

at zero field. In bulk GaAs the Hamiltonian describing exchange is given by [44]

ˆ ˆ ˆ ˆ ˆH a J S b J S
i x y z

h i e i h i e iexchange
bulk

= , ,
, , ,

3
, = –  (  + ),Σ (6.1)

where Ĵ hj and Ŝej are the projections of the hole spin operator J = 3/2 [51] and the

electron spin operator S = 1/2 correspondingly on the crystal lattice cubic axis. In a

quantum well (or natural QD), confinement shifts the light-hole exciton to energies

Fig. 6.6 Schematic diagram of (a) the lowest energy QD electron and hole states, (b) the same

states in the exciton basis, and (c) the exciton energy levels including the exchange interaction.
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much higher than the exchange energies, and the light- and heavy-hole excitons are

largely decoupled. In this case the exchange interaction in the heavy-hole exciton can be

written with the help of projection, Ŝhj  of an effective spin 1/2 operator, the Hamiltonian

can be rewritten as [44]

ˆ ˆ ˆ ˆ ˆ ˆ ˆH a J S b J S c S S
i x y z

i h i e i i h i e i
i x y z

i e i h iexchange
= , ,

, , ,
3

,
= , ,

, , = –  (  + )   .Σ Σ≈ (6.2)

In this representation the heavy-hole wave functions | Jz = ±3/2〉 transform to the pseudospin

| Sh,z = �1/2〉 wave functions as done in [40]. This transformation changes the sign of

the sum in the second equality. It also keeps the total angular momentum projection of

the bright exciton state onto the z-axis as | M | = 1.

Historically, two different approaches have been developed in the literature for

the transformation from the heavy-hole wave function to the pseudo-spin representation.

Besides the Ivchenko–Pikus representation that we used above, there is another in

which the | Jz = ±3/2〉 heavy-hole wave function transforms to the pseudo-spin | Sh,z =

±1/2〉 wave function as introduced by Van Kesteren [44]. To switch from one representation

to the other, one should replace ˆ ˆS Sh h, , by –α α  in the Hamiltonian. Here we use the

Ivchenko–Pikus representation.

It is convenient to parameterize the coefficients in terms of the energy splittings

of the exciton states in an anisotropic QD [40]:
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where we have products of the Pauli matrices (  = 2 )( , )
( , ),ˆ ˆσ α α

e h
e hS  acting on electron

and heavy-hole spin variables, and δ0,b,d are the exchange interaction constants in anisotropic

QDs (Fig. 6.6).

Equation (6.3) can be written explicitly with the exciton states (| +1〉, | –1〉,
| +2〉 and | –2〉) as a basis, giving [46]:

Ĥ

b

b
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d
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0 0 –

δ δ

δ δ

δ δ

δ δ

⎛

⎝

⎜
⎜
⎜
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⎟
⎟
⎟
⎟⎟

. (6.4)

Diagonalization of Eq. (6.4) gives the zero field energy levels and states shown in

Fig. 6.6(c). The degeneracy of these levels is split due to the exchange interaction into

two closely spaced doublets. As can be seen from Eq. (6.4), δ0 is the energy splitting

between the dark (| ±2〉) and bright (| ±1〉) sublevels, and δb(δd) is the energy splitting

between the bright (dark) sublevels themselves. For the weak disk-like QDs considered
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here, the magnitude of δ0 depends most strongly on the well width. For a 2.8 nm

quantum well this splitting is about 150 μeV [43].

The weak lateral confinement plays a minor role except for the case in which the

shape of the lateral confinement is not axially symmetric. In this case, δb ≠ 0, and the

remaining degeneracy is lifted. More explicitly, in a quantum well the Bloch functions

of the optically active states have symmetries like

| +1  = (|  + )(| )

| –1  = (|  – )(| )
,

〉 〉 ↑ 〉 ↓

〉 〉 ↓ 〉 ↑

X iY s

X iY s
(6.5)

where the first and second parentheses contain Bloch functions of the heavy-hole and

electron, respectively. Directions of the two perpendicular axes (X and Y) in the QW

plane can be selected arbitrarily. These Bloch functions contain the spatial and spin

functions and determine the circularly polarized selection rules.

Within the elongated QD the bright states are mixed together by the long-range

part of the exchange interaction, which is sensitive to shape, and become

|  = (| +1  + | –1 )/ 2 ,   |  = – (| +1  – | –1 )/ 2 .X Y i〉 〉 〉 〉 〉 〉 (6.6)

where X and Y are no longer arbitrary directions. For example, in ellipsoidal QDs they

coincide with the major and minor axis of an ellipsoid. In rectangular QDs they coincide

with the side directions. In our sample they are [110] and [110] directions, and the

exciton states are dipole active along these axes.

To summarize, this mixing leads to three observable effects. First, there is energy

splitting of the two bright states. Second, the mixing of the two bright states leads to

linear polarization. Third, the spin states of the electron are mixed and any projection of

the electron and hole spins is no longer a good quantum number. As a result only

coherent superpositions of these eigenstates have a magnetic moment (e.g. | X〉 + i | Y〉,
etc), which oscillate with frequencies δ0,b,d /h. An external longitudinal magnetic field

restores the circular polarization and the spin of the electron when the field is sufficiently

strong so that the Zeeman interaction is much larger than the exchange interaction.

Long-range exchange interaction

The formalism of the last section provides a parameterization of the exchange splittings.

We now discuss the magnitude and origin of the bright state splitting (δb). It turns out

that calculations of the magnitude of the long range exchange interaction can account

for the experimental results. The magnitude of splitting between the bright and the dark

states (δ0) will be discussed in the next section.
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When individual QDs are resolved in single QD spectroscopy and the PL is

analyzed with linear polarizers, it is found that the sharp lines often are strongly polarized

doublets with splittings on the order of tens of μeV, as expected from the discussion

above (Fig. 6.7), and with small differences in the intensities [41].
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Fig. 6.7 PL and PLE spectrum of the QD indicated by the arrow in Fig. 6.5. E0 is the ground state

PL while E1 – E4 are the first four excited states as measured by excitation spectroscopy. Polarization

configurations are for excitation and detection both along x′ or y′ ([110] crystal axes). The inset

shows an expanded view of two of the PLE resonances. From [41].

More information is gained from the polarization dependence of the PL excitation

spectra. Two linearly polarized PL excitation spectra of the QD of Fig. 6.7, in which the

polarization of the laser and the detected PL are parallel and along the 〈110〉 crystallographic

orientations, are shown in Fig. 6.7. It is seen that each of the excitation resonances is

also a linearly polarized doublet. The sign and magnitude of the splittings vary from line

to line (inset to Fig. 6.7).

The spectra shown in Fig. 6.7 were taken with polarizations along the 〈110〉 axes.

If the polarization of exciting and emitted light are rotated to lie along the 〈100〉 axes,

this complete polarization is no longer observed. With polarizations along the 〈100〉
each component of the doublet is observed in both parallel polarization configurations,

and intensities in the crossed configurations are comparable to the parallel. From this it

was concluded that the polarization of the QD is linearly polarized with principal axes
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along the 〈110〉. This result is not surprising in view of the elongation of the typical

interface islands along the [110] axis as seen in Fig. 6.3.

There are differences in the PL intensities for the two polarizations of the exciton

ground states (≤20%) and much larger differences for some of the excited states (Fig.

6.7). These results likely arise from mixing of the light and heavy holes due to the QD

potential [52,53,50].

The fine structure splittings seen in Fig. 6.7 arise from the exchange interaction

between the electron and hole as mentioned above. The long-range part of this interaction

is sensitive to the shape of the wavefunction. Explicit calculations of the magnitude of

the energy splitting due to the long-range exchange interaction were carried out using

a simple model for the exciton in an elongated rectangular quantum dot, which though

small for narrow quantum wells does lead to a significant polarization for some excited

states [48,49,50]. In this model the exciton is localized laterally in a rectangular potential

with dimensions Lx and Ly. Results for the fine structure splitting [δb) as a function of

Ly, keeping Lx fixed, are reproduced in Fig. 6.8. The calculated results for both the

magnitudes and signs of the fine structure splittings are in relatively good agreement

with the experimental data [48].

Fig. 6.8 Calculated fine structure splitting arising from the long range part of the exchange

interaction as a function of the elongation of a rectangular QD potential. The z- and x-dimensions

are kept fixed at Lz = 2.8 nm and Lx = 95 nm, respectively. Results are shown for the lowest energy

exciton (11), corresponding to E0, and excited states (nm), n,m >1. From [48].
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A more complete theoretical study of this effect that included also the mixing of

the heavy and light hole was published recently [50]. By including this mixing it was

possible to account for the observed differences in intensity in the different spectral

lines. Agreement of this theory with experiment was found.

An intuitive picture of the long range exchange interaction can be obtained from

the following. The magnitude of the exchange term is given by

δ ε
ψ ψ ψ ψ

b
e h e he dr dr

r r r r
r r

 ~   
( ) ( ) ( ) ( )

|  – |

2 * *

∫∫ ′ ′ ′
′ , (6.7)

which can be separated into a short range and long range part [50,54]. The long range

part corresponds physically to the Coulomb interaction between different unit cells in

the QD. In lowest order in a multipole expansion, it reduces to the interaction between

transition dipole moments [50]:

δ ε σ σ σ σb
LR

r r
t e h t e h ct

t

e e
ct

e f r r f r r u
n n

r r
u

e
 =   ( , ) ( ,  

[1 – 3 ]

|  – 

2
* *

, ,
e

Σ
≠ ′ ′ ′′ ′ ⋅

′
)

|

r
r r

r
v v

3
(6.8)

where fτ,σ(re, re) are the envelope functions, 
r
n  is the unit vector between dipole positions,

and
r
uct ,vσ  is the transition dipole moment between electron and hole Bloch functions

(φcτR(r)),

r r r
u d r r r R rc c R Rτ σ τ σφ φ,

3 * = ( ) (  – ) ( ).v v∫ (6.9)

Equation (6.8) for the long range part of the exchange lends itself to a useful

classical analogy. This equation is the interaction energy between two polarization

densities arising from the transition dipoles. Takagahara [50] has plotted the polarization

densities for several of the exciton transitions for a QD modeled on the one discussed

in Fig. 6.7.

Taking this classical model a little further, one can describe the long range part of

the exchange interaction in terms of the interaction of the polarization density associated

with the transition dipole moment with a depolarization field, a concept often used in

the physics of dielectrics [55]. Eq. (6.8) can be written as [54]

δ b
LR drE r P r ~ ( ) ( ),dep∫ (6.10)

in which Edep(r) is the depolarization field that accompanies the transition dipole density

of the exciton. Equation (6.10) is the electrostatic equation for the depolarization energy

associated with a dielectric medium. This formalism provides an intuitive method for

visualizing the long-range exchange interaction in terms of a depolarization field associated
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with a dipolar field, in analogy with the picture often used for a dielectric medium in a

capacitor or the optical phonon in a polar medium [54]. The additional energy of the

depolarization field can be visualized as an interaction between surface charges set up

by the depolarization field (see Fig. 6.9). This electrostatic picture is also helpful in

understanding the large exchange shift (of order 1 meV) in the energy of the z-polarized

light-hole exciton compared to the x- or y-polarized light-hole exciton in a 2-D quantum

well [56]; the depolarization of a dipole density normal to a thin dielectric layer is large

and constant, whereas that for polarization in the plane is small. Similar pictures are

used in other areas of physics also. For example, depolarization fields are helpful in

intuitively understanding the increase in energy of the longitudinal optical phonon with

respect to the transverse phonon in polar materials. In fact, it is possible to intuitively

understand the anisotropy in LO-TO splitting in quantum wells in terms of their

depolarization field [57]. It is also useful in the case of intersubband transitions of the

quasi-2D electron gas in quantum wells [58].

E1

x

y

y
x E0

(E0)x
(E0)y

(a)

(b)

(c)

(E1)x
(E1)y

Fig. 6.9 (a) Schematic energy level diagram showing the order of the fine structure splitting of the

first two optically allowed exciton states. Diagrams of the dielectric response associated with a

polarized exciton for both the (b) lowest exciton state and the (c) first excited exciton state. This

picture leads to an appreciation of the relative magnitudes of the energy associated with the

depolarization field and explains the flip in sign of the fine structure splitting for the two states.
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This picture allows one to understand intuitively why the energy of the exciton

depends on the shape of the quantum dot. The exciton polarized along the long axis of

the dot will have a smaller depolarization field and therefore a smaller energy than that

polarized along the short axis. In a similar manner the larger splittings of the excited

states and the reversal in sign can be understood (Fig. 6.9).

The diagonal part of the exchange interaction in Eq. (6.4), the term that gives the

splitting between the bright and dark states (δ0), is dominated by the short range part of

the exchange interaction. This corresponds to the part of the exchange Coulomb interaction

within a single unit cell and summed over all unit cells with a weight determined by the

exciton envelope function [50,43]:

δ τσ τ σ0
3 *  ( , ) ( , ).∝ ∫ ′ ′d rf r r f r r (6.11)

In the next section we show how this exchange parameter can be measured directly in

tilted magnetic fields.

Zeeman interaction

Let us consider the dynamics of a spin’s motion in a magnetic field, B. The magnetic

moment, M, of the spin, S, interacts with the magnetic field. This interaction is described

by the Hamiltonian,

ˆ M̂B ŜBH gBZeeman  = – ( ) = ( ),μ (6.12)

where

μ μB
e

e
m c

eV
T

eV T = 
| |

2
  5.795 10    60 /–5h ≈ ⋅ ≈

is the Bohr magnetron, and g is the particle’s g-factor. For free electrons the electron g-

factor g ≈ 2. Often M̂ Ŝ = – μ B g , but in the general case of low symmetry structures the

g-factor may be an anisotropic tensor of the second rank with elements whose magnitudes

depend on the composition and size of the structure.

The interaction of the magnetic moment with the magnetic field leads to spin

precession around the direction gB with a frequency, Ω = μBgB/h:

d
dt

)
)S
S = [   ].ΩΩ × (6.13)

The spin precession of particles is also affected by the magnetic fields of other

particles, and in general the field is the vector sum of the external field and the local

field. For the electron spin, these local fields are the exchange fields of holes, other
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electrons and paramagnetic impurities, as well as the hyperfine field of nuclei. The

average value of these fields leads also to the spin precession of the carriers, and their

fluctuating parts result in spin polarization relaxation. Spin–orbit interactions also affect

the spin relaxation because the elastic or inelastic scattering of the particles changes

their spin orientation. Here we consider the effect of the external field and the average

of the exchange field. Fluctuations in the local fields will be treated in sections 6.5

and 6.6.

In the presence of both exchange and an external magnetic field, the total spin

Hamiltonian is ˆ ˆ ˆH H H =  + exchange Zeeman . In the bulk the Zeeman Hamiltonian is given

by

ˆ ˆ ˆ ˆH g S J qJ BB
i x y z i

e
e i h i h i iZeeman

bulk
= , , , , ,

3 =   [  – 2 (  + )] .μ κΣ (6.14)

where ge is the electron g-factor and κ and q are the Luttinger parameters that describe

the Zeeman effect in the degenerate valence band of zinc-blende semiconductors. Bi is

the projection of the magnetic field along the crystal axes. Confinement shifts the light-

holes to energies large compared to the Zeeman energies, and the spin hole operator

projection, Ĵ Jh j, (  = 3/2) can be replaced by a pseudo-spin heavy-hole operator projections

Ŝ Sh j, (  = 1/2) , as discussed above on the exchange interaction. As a result, the Zeeman

Hamiltonian in the Ivchenko–Pikus representation is written as:

ˆ ˆ ˆ ˆ ˆH g S g S B
B

g gB
i x y z i

e
e i i

hh
h i i

B e e h h
Zeeman = , , , , =   (  + )  = 

2
  (    +   ).μ

μ
σ σΣ

r

⋅ ⋅ ⋅ (6.15)

The g-factor tensor ( )g  has only diagonal terms in the reference coordinate system

given by the symmetry axes of the QD, in our case the crystal axes [001], [110], and

[110]:
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where g g g gx
e

y
e

x
hh

y
hh = , and ,  are usually negligibly small [44]. The direct measurements

of the perpendicular component of g-factor show that it is ten times smaller than its

longitudinal components [60].

Using the same basis as in Eq. (6.4), (| +1〉, | –1〉, | +2〉 and | –2〉), this can be

written explicitly as
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where we take 
r
B  in the x-z plane, and θ is the angle between 

r
B  and the z-axis. g gz

e
z
hh( )

is the g-factor of the electron (heavy hole) in the z-direction and g gx
e

x
hh( )  is the g-factor

of the electron (heavy hole) in the x-direction.

In the Faraday (θ = 0) and Voigt (θ = 90°) configurations the total Hamiltonian

can easily be diagonalized. It can be seen that in the Faraday configuration the bright

and dark states mix only among themselves while in the Voigt geometry all four states

mix together. This means that in the Faraday configuration only the two bright states are

observed (Fig. 6.10(a)), while in the Voigt configuration dark and bright mixtures can

be observed as the magnetic field is increased (Fig. 6.10(b)). The reason for not observing

splittings in the latter geometry for the high energy peaks (bright-related states) or low

Fig. 6.10 PL spectra of a single QD as a function of magnetic field in the (a) Faraday geometry

and the (b) Voigt geometry.
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energy peaks (dark-related states) is mainly due to the decrease in the heavy hole g-

factor (i.e.  << )g gx
hh

z
hh .

Furthermore, by working at other polar angles (θ) it is possible to observe all four

transitions (Fig. 6.11) and to obtain all the above parameters in Eqs. (6.4) and (6.17).

For example we can fix the magnitude of the magnetic field and measure all four states

as a function of θ. This is shown in Fig. 6.11 for a fixed magnetic field of 4.0T, where
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Fig. 6.11 PL spectra of a single QD in a tilted magnetic field as a function of the polar angle (θ)

at B = 4 T. In the Faraday geometry (θ = 0) only the two bright states are detected (up arrows), but

as the angle is increased the dark-related transitions (down arrows) are turned on.

the bright-related transitions are indicated with upward arrows while the dark-related

transitions are indicated by downward arrows. Figure 6.12 is a summary plot of the

energies obtained after removing the diamagnetic shift. Open symbols are the bright-

related states data while solid symbols are the dark-related energies. The lines show the

theoretical fittings obtained by numerical diagonalization of the Hamiltonians,
ˆ ˆH Hexchange Zeeman +  in Eqs (6.92) and (6.17), correspondingly. The parameters utilized
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in this fitting, for a 3.4 nm quantum well, are δo = (125 ± 9)μeV, δb = (0 ± 25)μeV, and

δd = (0 ± 12.5)μeV for the exchange energies and gz
e  = (0.20  0.05),± gx

e = (0.2 ± 0.1),

gz
hh  = (–1.85  0.05)±  and gz

hh  = (0.0 ± 0.01), for the g-factors. In Fig. 6.13 we depict

the magnetic field (B) and polar angle (θ) dependence of the exciton states as well as the

ground state (vacuum state, | 0〉). As can be seen, the angle dependence shown in Fig.

6.12 is mainly due to the highly anisotropic heavy-hole g-factor. The heavy hole g-

factor value in this system varies from –1.85 in the Faraday geometry to approximately

zero in the Voigt geometry (but not exactly; see [60]).

After studying several dots we conclude that the g-factor variation from dot to dot

is about ±15% and that their values are in good agreement with previous results for

quantum wells of the same size [59,60], which indicates that the lateral confinement of

the interface fluctuations do not influence the g-factors as strongly as the vertical

confinement. Similarly, δo does not vary significantly from dot to dot with fixed well

width and is in good agreement with previous measurements done in quantum wells

[43]. This can be understood by considering that the value of δo is given by the overlap

of the electron and hole wave function [50] and this overlap is basically ruled by the

strong confinement in the quantum well direction (lateral confinement is much weaker).

Furthermore, as can be seen in Fig. 6.14, the agreement of the values obtained in this

work for δo as a function of well width with previous calculations [43] is good, indicating

once more the negligible effect of the lateral confinement on δ0. It is also worth mentioning
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Fig. 6.12 Peak energies as a function of the angle of the magnetic field relative to the z-axis.

Taken from the data represented in Fig. 6.11.
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that, in contrast to ensemble measurements [43], single dot spectroscopy allows a direct

measurement of the fine structure splittings, which provide a more accurate and objective

determination of the exchange energies. Because δb depends on the in-plane elongation

of the dot, its value varies significantly from one dot to another. Typical values for δb are

in the tens of μeV [41]. No finite values for δd were observed in this study. In the case

of self assembled dots [46] the g-factors and exchange energies (δo, δb and δd) are

affected by confinement in all three directions since the lateral confinement is comparable

to the vertical one.

Pseudo-spin model

In the special cases of zero magnetic field or with field along the z-axis, the bright and

dark states can be separated into two independent two-level systems, and each can be

described simply with the use of a pseudo-spin 1/2 model [61]. The essence of this

model is that any two-level system can be modeled as a quasiparticle having pseudo-

Fig. 6.13 Schematics of the exciton states as a function of magnetic field strength in the Faraday

configuration and as a function of the polar angle at a constant magnetic field. Notice the decrease

of the exciton g-factor in the Voigt geometry mainly due to the decrease of the heavy hole g-factor.

Faraday
X

Voigt

δ0

g  gz
hh

z
e±

g  gx
hh

x
e±

〈0|

B θ



Electronic and nuclear spin in the optical spectra 233

spin 1/2 and can be represented as a vector in physical space [62]. We outline this useful

model.

It is natural to consider the bright states with angular momentum projection +1

and –1 as the states having up | z, +1/2〉 and down | z, –1/2〉 projections of the pseudo-

spin onto the z-axis in the pseudo-spin space (x, y, z). The z-component, Sz, of the mean

(ensemble averaged) pseudo-spin characterizes the population difference between +1

and –1 exciton states and determines the degree of circular polarization of the PL;

P
I I

I I
Sc z = 

 – 

 + 
 = 2 .

+ –

+ –

σ σ

σ σ

The exciton states, | Y〉 = –i(| + |〉 – | –1〉)/ 2  and | X〉 = (| +1〉 + | –1〉)/ 2  (dipole

active along the [110] and [110] axes), are described by the x-component of pseudo-

spin, | x, –1/2〉 or | x, +1/2〉, respectively. For example, the state | x, +1/2〉 = (| z, +1/2〉
+ |z, –1/2〉)/ 2  corresponds to (| +1〉 + | –1〉)/ 2  = | X 〉. The x-projection of the mean

pseudo-spin determines the degree of linear polarization with respect to the [110]/

[110] axes;

P
I I

I I
Sl x = 

 – 

 – 
 = – 2 .

110 110

110 110

The states, | X′〉 = (| X〉 + | Y 〉)/ 2  and | Y′ 〉 = (– | X 〉 + | Y 〉)/ 2 , polarized along

the [100] and [010] directions, correspond to y-components of pseudo-spin +1/2 and

–1/2. Hence the y-projection of mean pseudo-spin gives the PL polarization with respect

to the [100]/[010] axes:

Fig. 6.14 Comparison between experiments and theory of the exchange energy δ0 as a function of

quantum well width.
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P
I I
I I

Sl y′  = 
 – 
 + 

 = 2100 010

100 010
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Polarization of excitons along the [001]-axis (usually giving rise to circularly polarized

light) is known as orientation, while those polarized in the [001] plane (usually giving

rise to linearly polarized light) is known as alignment.

The Hamiltonian describing this two-level system of bright states is the sum of

the exchange and Zeeman terms

ˆ ˆ ˆ ˆH b x z = 
2

 (  + ) = 
2

   ,ext
h hω σ Ω σ ΩΩ σσ⋅ (6.18)

where ωb = δb /h, and we have included a magnetic field along the z-axis (Faraday

geometry) with Larmor frequency, Ω μext  = (  + ) /B z
e

z
hhg g B h . The polarization dynamics

of bright excitons in the presence of both magnetic field and anisotropic exchange can

be described classically as the precession of the pseudo-spin vector in an effective

magnetic field, 
r
Ω  = (ωb, 0, Ωb) – that is, the vector sum of the external field and an

effective exchange field – with the familiar equation of motion, Eq. (6.13). Thus pseudo-

spin, and therefore the optical polarization, can be physically understood in a highly

intuitive way in terms of the evolution of this vector in space. Figure 6.15 is a schematic

representation of the process.

z

r
Ωext
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0
r
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r
Ω

Fig. 6.15 Schematic illustration of pseudo-spin model. 
r
Sx

0  is the initial pseudospin vector under

[110] linearly polarized excitation; Sx and Sz are the components of the average pseudo-spin [61].

Consider, for example, excitation by light linearly polarized along the [110] axis.

It creates excitons in the | X〉 = (| +1〉 + | –1〉)/ 2  state. Using the pseudo-spin model

we can say that the quasiparticles with initial pseudospin state | x, +1/2〉 are excited.

Thus the mean pseudo-spin 
r
S  is created initially along the x-axis (  = )0

r r
S Sx . It rotates

around the total vector 
r
Ω ω Ω = ( , 0, )extb  with Larmor frequency Ω Ω ω =  + ext

2 2
b . If

the exciton lifetime is much longer than the inverse of this Larmor precession frequency,

the average value of the spin component perpendicular to 
r
Ω  vanishes. Only the spin

projection of 
r
S  onto 

r
Ω  is conserved, S = (S(0)ΩΩΩΩΩ)ΩΩΩΩΩ/Ω2.



Electronic and nuclear spin in the optical spectra 235

The steady-state pseudo-spin 
r
S  determines the polarization of PL by the relations,

Pc = 2Sz, Pl = –2Sx, Pl′ = 2Sy, which are the same as those for excitation. One can see

from Fig. 6.15 that the Sx component decreases when external field (Ωext ≠ 0) is applied,

as does Pl (alignment decreases). Simultaneously the z-component of pseudo-spin appears

in magnetic field, and Pc appears in the PL emission (circular polarization of excitons).

We can say that the alignment is converted into orientation. In a similar way one can

consider the excitation by circularly polarized light (orientation) creating initially the

quasiparticles with pseudo-spin along z-axis | z, +1/2〉. The steady-state orientation of

excitons is absent (Sz = 0) in zero external field due to fast precession (with frequency

ωb) in the effective field of anisotropic exchange interaction. The external field restores

the orientation of excitons. Simultaneously the Sx component appears. This leads to the

appearance of linear polarization of exciton PL. Thus, in this case we have the conversion

from orientation into alignment.

With this model one can get simple relations between the polarization of the

exciton PL ( , , )P P Pl l c′  and the polarization of exciting light for the case of arbitrary

polarization of incident light ( , , )0 0 0P P Pl l c′  (see Fig. 6.15 for a graphical derivation).

Here we show these relationships for circular and linear excitation (Pc
0  and Pl

0 ,

respectively). Sy (and therefore, Pl ) are orthogonal to the effective magnetic field and

averages to zero.

P P P Pl l
b

b
c l

b

b

 =  
 + 

,     = –  
 + 

0
2

2
ext
2

0 ext
2

ext
2

ω
ω Ω

ω Ω
ω Ω
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l c
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Ω
ω Ω

ω Ω
ω Ω

(6.20)

This simple model has been used to describe experimental results [61] (see also

[63,64]). The model allows one to find the value of the exchange splitting of the bright

states, characterizing the fine structure of bright excitons. Typical values are of the order

of a few μeV for type-II quantum wells and tens of μeV for type-I quantum wells. In the

more tightly confined self-assembled QDs, values on the order of 100 μeV have been

reported [64,65].

A magnetic field in the Faraday geometry restores the optical orientation (circular

polarization) of exciton states and simultaneously suppresses the optical alignment

(linear polarization) of excitons. As a result the degree of circular polarization of the PL

under circularly polarized excitation (orientation of excitons) is also restored. Similarly,

the magnetic field decreases the linear polarization of PL under linearly polarized

excitation (alignment of excitons). In the intermediate field region the bright states are

not purely circular or linear, but some superposition. In this case the new effect of
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conversion of orientation to alignment and vice versa is possible, as can be seen from

Figs 6.16(a)–(d) [61,63,64]. Namely, the excitation by circular polarized light induces

the linearly polarized PL (orientation-to-alignment conversion), whereas the linearly

polarized excitation leads to circularly polarized PL (alignment-to-orientation conversion).
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Fig. 6.16 Effect of magnetic field in Faraday geometry on optical orientation and alignment of

excitons localized in type-II GaAs/AlAs superlattices [61]. (a) optical orientation: circular polarizer

and circular analyzer, (b) orientation-to-alignment conversion: circular polarizer and linear analyzer,

(c) optical alignment: linear polarizer and linear analyzer, (d) alignment-to-orientation conversion:

linear polarizer and circular analyzer.

We considered the case of bright excitons above, however, the same can be done

for the dark states. The electron-hole exchange interaction also mixes the +2 and –2

dark states. Therefore, spin orientation of dark excitons is suppressed in zero magnetic

field as it was in the case of bright excitons, and a magnetic field in Faraday geometry

will restore the polarization of dark excitons. However, this effect is difficult to observe
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because dark states do not contribute directly to PL due to selection rules. Nonetheless,

the fine structure of dark states has been found in self-organized InP/InGaP QDs containing

additional electrons as discussed in section 6.4 [65].

Relaxation

Relaxation can be introduced into the pseudo-spin model providing an intuitive way to

picture finite relaxation (or linewidth) versus precession. The evolution of the pseudo-

spin vector, S, is described by the equation of motion in the total effective magnetic field
r
Ω  = (ωb, 0, Ωext ), with relaxation included through phenomenological damping terms,

d
dt s

S S S S S
 = [   ] –  + 

 – 
.0ΩΩ × τ τ (6.21)

The relaxation terms are governed by the lifetime of the (nonequilibrium) exciton

(τ), and the spin relaxation between the two levels (τs). In the case of the bright exciton

doublet the spin relaxation time is the effective spin relaxation time which includes

scattering via the dark states as intermediate states [42]. S0 is the spin polarization

generated by excitation. This well known Bloch equation is often used to describe the

suppression of optical orientation by an external magnetic field (Hanle effect).

The average spin for arbitrary directions of initial polarization and external magnetic

field is found from Eq. (6.21) under the steady-state condition, d
dt
S  = 0 :

S
S S S

 = 
 + ( )  + [   ]

1 + ( )
,

2

2
i i s i s

s

T T

T

ΩΩ ΩΩ ΩΩ ×
Ω

(6.22)

where the total spin relaxation time is Ts s
–1 –1 –1 =  + τ τ . The steady-state polarization of

the pseudo-spin, in the absence of precession, depends on the ratio of the exciton

lifetime to the spin relaxation, Si = S0/(1 + τ /τs). For example, if the exciton lifetime is

long, spin flip processes will lead to low average pseudo-spin polarization. Equation

(6.22) connects the average and initial value of exciton pseudo-spin, or in other words,

the polarization of the photoluminescence with initial polarization of carriers created by

the exciting light. The two-level description remains appropriate if mixing with the dark

states remains negligible, i.e. in tilted fields we must have, Ω⊥
ext  << δ0/h. Otherwise, the

dynamics of the coupled four-level system must be considered. Also, if the external

field becomes large then the spin relaxation rates for the pseudo-spin components

parallel and perpendicular to the magnetic field may differ, in which case the above

vector equation (6.21) must be replaced by equations of motion for the individual vector

components.
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Polarization including finite relaxation

It is obvious that fine-structure splitting in a homogeneously broadened spectral line is

resolved only when the fine structure splitting is larger than the homogeneous linewidth.

The homogeneous linewidth is determined by the total relaxation rate of the pseudo-

spin (  =  = (  + )–1 –1 –1γ τ τh hTs s  where τ is the lifetime and τs is the spin relaxation

time), if there is no pure dephasing. Therefore, thinking in terms of the pseudo-spin

vector, well resolved fine structure splitting occurs when the precession frequency of

the vector is larger than the relaxation rate of the pseudo-spin. We will show how to

calculate the polarization of the pseudo-spin in this case of only partially resolved fine-

structure splitting.

An exciton with initial polarization ( )
r
Si  precesses around the effective field, 

r
Ω

= (ωb, 0, 0). Here we make the external field equal to zero for clarity. If ω b sT >> –1 then

we can neglect relaxation, and we obtain the picture described previously. In this case,
r
Ω  is aligned along the x-axis at zero field, and the average of the pseudo-vector over

many precession periods is aligned along the x-axis. Therefore, the polarization is

linear. The emission spectrum would consist of a linearly polarized doublet with splitting

(ΔE = hωb).

However, if ω b sT –1≤ , then the exciton pseudo-spin does not complete a precession

period before it relaxes or recombines, and the emitted light is no longer purely linear,

but elliptical. Of course, we must average over many optical lifetime cycles in the

measurement of the spectrum. This corresponds to averaging over the distribution in

exciton lifetimes, W(t) = τ–1exp(–t/τ). Thus, taking the example of circularly polarized

generation, the emission polarization is a mixture of polarizations, with an average

circular polarization given by

P S S t W t dt
S

T

S

T
c z z

i
b

z
i

b s

z s

b s
 = 2  = 2  cos ( ) ( )  = 

2

1 + ( )
 = 

2 (1 + / )

1 + ( )
0

2

0 –1

2

∞

∫ ω
ω

τ τ
ω

.

The average linear component is found in a similar fashion. The same result can

be obtained directly from Eq. (6.22).

Therefore, the average emitted polarization is mixed and dependent on the initial

polarization when the linewidth is comparable to the anisotropic exchange splitting. The

classical picture is that of a spin generated along z, beginning to precess, but recombining

before completing a period and before losing its polarization; and then being regenerated

along the z-direction. After averaging over many cycles the average spin is determined

by the phase angle, ωbτ. In the limit when the exchange splitting is much less than the

linewidth, the emission has the same polarization as the excitation.
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In an inhomogeneous system of quantum dots in which the anisotropic exchange

splitting varies and is greater or less than the linewidth, each line will have a polarization

dependence that depends on how well the lines are resolved; i.e. on the relative magnitudes

of ωb and the homogeneous linewidth, γ. To find the polarization of the ensemble of

QDs, the result for an individual QD is averaged over the distribution in exchange

energies. In addition, if the average lifetime varies appreciably from dot to dot, this also

is averaged over. This may explain the result that, although an ensemble measurement

can give little linear polarization, some individual exciton lines can be strongly linearly

polarized with a doublet structure [41].

We note that the average over lifetime is an example of the general theoretical

concept of the correlation time (τc). Often it is useful to consider the microscopic

evolution of the spin under a specific interaction (perhaps modeled as a precession in an

effective magnetic field as is done here). However, the finite lifetime, or more generally,

the random fluctuation of the environment of the QD allows only a limited time for this

coherent evolution to proceed. It could be that the microscopic origin of this dephasing

process is complicated or not important. In this case random fluctuations often are

introduced phenomenologically in a way similar to that above. The exciton lifetime,

then, is replaced with a correlation time, which may or may not be microscopically

derived. Examples of this will be given in sections 6.5 and 6.6.

Hanle effect

It is interesting to compare the polarization behavior of the exciton with the well-known

Hanle effect of electron spin in semiconductors in a transverse magnetic field. As we

have just discussed, the polarization dependence varies as the line splitting becomes

larger than the homogeneous linewidth. Thus, a useful cw method to measure the relaxation

time (and/or the precession frequency – that is, the anisotropic exchange interaction or

g-factor) is to measure the polarization as the splitting is changed – typically by changing

a magnetic field. This effectively compares the spin relaxation rate ( )–1Ts  with the

frequency of spin precession in a magnetic field (Ω). For an electron (e.g., in bulk GaAs

[11]) the usual Hanle effect is obtained by turning on a transverse magnetic field. In this

case the initial polarization is circular (along the z-axis) and perpendicular to the total

magnetic field (along the x-axis). Equation (6.22) reduces to

S
T

S
z xz

s s
 = 1

1 + ( ) 1 + /
;     for   || ;   || .

2
0

0Ω τ τ S ˆ ˆΩΩ (6.23)

The dependence of the polarization on magnetic field is Lorentzian with halfwidth

given by ΩTs. The two lifetimes (τ and τs) can be found from the measured halfwidth
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and the zero-field polarization. Unfortunately, the role of the transverse magnetic field

is played by the anisotropic exchange interaction, which is fixed in the case of the

exciton. Moreover, an external transverse field would lead to mixing of the bright and

dark states and a breakdown in the 2-level model.

In the next section we will consider a QD doped with a single electron. In this

case the electron’s lifetime can be much longer because the spin is in the ground state

instead of the exciton state, and the total spin relaxation rate can be dominated by pure

spin relaxation. In any case, if the measurement is made over an inhomogeneous ensemble

of spins, Eq. (6.23) must be averaged over the distribution in frequencies or lifetimes.

This becomes especially relevant for the ground state spin of trions or electrons bound

to dilute concentration of donors where the spin lifetimes can become very long. As will

be discussed in section 6.6, in that case the Hanle lineshape is typically inhomogeneously

broadened by the distribution in the internal hyperfine fields.

6.4 Trions (singly charged excitons)

We have discussed excitons and their pseudo-spin states in a neutral QD. We now

consider the optical properties of a QD doped or otherwise charged with a single

electron. This case is interesting, in part, because here it is the ground state of the QD

that has a spin 1/2; therefore, its spin lifetime is not dominated by the exciton’s

recombination time and can become much longer. Furthermore, the QD can be excited

optically into a charged exciton state (trion) and the electron’s spin state probed and

controlled optically, for example, through optical pumping. We will show that one

important difference between a neutral and charged exciton is that the charged exciton

lacks an exchange interaction in its singlet state, which is the lowest energy trion state.

This is especially important in view of the fact that much of the fine structure dynamics

of a QD exciton is dominated by its large exchange interaction. After a brief overview

of the optical study of this system we consider the physics of the optical fine structure

and polarization. A charged QD is in many ways analogous to a neutral donor-bound

exciton, and we will take advantage of this close analogy to extend our treatment to the

study of electrons bound to shallow donors, primarily in section 6.6, when we consider

relaxation in detail.

Trions in natural QDs

Recent spectroscopic work on trions in quantum wells and quantum dots is the result of

a natural progression from the study of two-dimensional electron gases in quantum
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wells, carried to the limit of a single electron. At low density, individual electrons in a

quantum well are sufficiently well-separated that collective effects are unimportant and

spectroscopic features reflect properties of isolated electrons and their optically-excited

trions. An excitation or emission spectrum for a quantum well with low electron density

shows characteristic peaks for both trions and excitons. The main task for early investigators

studying these systems was to identify characteristic signatures that allowed the two

species to be distinguished. Although the negatively charged trion in semiconductors

was originally predicted in 1958 by Lampert [66], a proper identification of the X– was

not achieved until the early 1990s in quantum well structures doped with electrons

[67,68,69]. The excess electrons were introduced by remote doping, which consists of

introducing donors in the barrier (e.g., silicon donors in AlGaAs barriers). Since then,

extensive work has been carried out on the two dimensional (2D)X– in wide quantum

wells and more recently on the zero dimensional X– in QDs [70,71,72,73,74,75,76].

An obvious although not unique signature for the presence of quantum well trions

in an absorption or photoluminescence spectrum is a doublet arising from the simultaneous

presence of excitons and trions. This structure emerges out of the broad peak of a two-

dimensional electron gas as electrons are removed from the quantum well, a change that

may be observed through photo-depletion of charge in the quantum well [77,78], through

depletion by an electrical bias [68], or by a decrease in modulation doping densities [79].

Recently, investigations of trions in quantum wells have been pushed into the

regime of narrow wells, where monolayer variations in well thickness lead to confinement

of trions in all three dimensions. Figure 6.17 shows typical photoluminescence spectra

for four modulation-doped GaAs quantum wells with different widths. The spectra were

obtained under experimental conditions (excitation laser wavelength and power density)

chosen so that each well simultaneously displays features due both to neutral excitons

and trions. For the narrower wells, one also observes the monolayer splittings discussed

in section 6.2. In Fig. 6.17, these splittings are indicated separately above the spectrum

for each quantum well.

The trion peak is redshifted from that of the exciton by the trion binding energy,

which corresponds to the reduction in the exciton’s energy due to the presence of an

electron. The trion binding energy is a strong function of the well confinement strength,

increasing by a factor of 3 in going from a bulk GaAs sample to a 2.8 nm quantum well.

This dependence is shown in the inset in Fig. 6.17. The reason for the increase in

binding energy is the stronger Coulomb interactions imposed by the closer proximity of

the constituent charges, with the electron–hole attraction dominating the repulsion between

like-charged carriers.

The power density and wavelength of the excitation laser affect the relative number
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of electrons and excitons and the absolute number of excess electrons in a quantum

well. For excitations below the barrier bandgap, high laser powers tend to increase the

number of electron–hole pairs relative to excess electrons, enhancing the exciton spectral

features. When electron hole pairs are excited above the barrier bandgap, they often

separate due to local electric fields, neutralizing ionized donors or acceptors as well as

the charges in the wells, with the result that trion spectral features are diminished [77].

Additional signatures, including optical polarization, temperature dependence,

magnetic field shakeup processes and laser excitation dependence, make a convincing

argument for the presence of trion ensembles in quantum wells. At low temperature in

a magnetic field, the ground state electrons are thermally polarized, and optical selection

rules permit transitions involving only a specific optical polarization. A zero-field
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polarization effect for positive trions and excitons has also been reported [78], which

allows them to be distinguished from negative trions. The temperature dependence of

peak intensities is a straightforward signature for the weakly-bound trion. Typical binding

energies for trions in quantum wells are 1.1–3.5 meV, and so they ionize at temperatures

much lower than for excitons. Nevertheless, the most important discovery for a clear

distinction between positively and negatively charged trions has been the observation of

shakeup transitions [80,81], which also allows a proper distinction with respect to

excitons bound to donors.

Fine structure in single trion spectroscopy

Three-dimensionally confined trions may be studied by resolving photoluminescence

from narrow GaAs quantum wells through apertures in a metal shadow mask. As with

excitons, monolayer fluctuations in well thickness may confine trions to produce the

discrete spectral lines expected in quantum dots. In the smallest apertures, sharp lines

from individual zero-dimensional excitons and trions are apparent, and one can no

longer distinguish the broad inhomogeneous trion and exciton features of the ensemble

spectra. As in the case of ensemble measurements, identification of trions becomes an

issue, and in the same way, magnetic fields and temperature dependencies provide an

important identification tool. Shown in Fig. 6.18(a) are PL spectra obtained in the

Faraday geometry (i.e. magnetic field perpendicular to the quantum well plane: along

the z-axis) at several field strengths. As can be seen from this figure, in the absence of

a magnetic field these PL spectra are characterized by two predominant transitions that

correspond to the recombination of an exciton (X) and a trion ( )–Xs  from the lower

monolayer. In this magnetic field geometry all lines split into doublets with the same

magnetic field dependence (diamagnetic shifts, g-factors, etc). When the temperature is

raised (Fig. 6.18(b)), the trion-related lines decrease, similar to the result with ensemble

measurements. By 30K all lines related to the trion are gone, which is a signature for the

weakly-bound trion.

Although the temperature dependence provides an identification of the trion, the

magnetic field dependence in different geometries is the one that provides the clearest

signatures for a trion. In order to understand these differences, it is helpful to study the

energy level diagram for trions and excitons (Fig. 6.19). As discussed earlier, the optically-

excited exciton exhibits fine structure at zero field, with two closely spaced pairs of

states (bright | M = ±1〉 and dark | M = ±2〉) split by the exchange energy δ0, where M

is the momentum projection on the quantization axis. The peak separations observed in

the spectrum are due solely to the excited state structure, since there is only a single
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vacuum ground state level. Unlike the exciton, the lowest optically-excited trion state

(the “singlet”) consists of just two spin states, corresponding to the two orientations of

the unpaired hole (|  = |  = 3/2 )–X Ms 〉 ± 〉 . Because the two electrons are paired, there are

no further exchange splittings. The ground state associated with the trion is a single

unpaired conduction electron and also exhibits a spin doublet structure (| e〉 = | M =

±1/2〉). The structure in the optical spectrum therefore reflects the level spacings in both

the ground (electron) and excited (trion single) states.

Both the exciton and the trion thus have four possible recombination channels,

shown as down arrows in Fig. 6.19. Considering the selection rule (ΔM = ±1), we expect

two allowed transitions (solid lines) and two forbidden transitions (dotted lines) for

each in the Faraday geometry or at zero field. Faraday geometry and zero-field PL

spectra, each containing peaks from a trion and an exciton, are shown in Figs 6.18(a)

and 18(b). In these spectra, it is difficult to distinguish the exciton from the trion,

because the lower component of the exciton fine structure doublet is not observed. On

the other hand, when the magnetic field has a component parallel to the quantum well

plane, the eigenstates evolve into mixtures of the basis states | M〉, allowing all four
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Fig. 6.18 Single dot magneto-photoluminescence of trion singlet ( )–Xs  and exciton (X) transitions

in the Faraday geometry (a) at several magnetic fields and 5K (b) at 6.0 T as a function of

temperature.
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transitions to be observed for both species. A Voigt geometry spectrum is shown in Fig.

6.20. Here, the lower fine structure component for the exciton is seen clearly. The trion

peak appears just slightly broadened, due to a small unresolved Zeeman splitting
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Fig. 6.19 Schematic diagram of the excited and ground states involved in the exciton (X) and trion

singlet ( )–Xs  transitions studied as a function of magnetic field (B) strength and orientation. The

solid arrows indicate bright-related transitions while the dotted arrows indicate dark-related transitions.
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Fig. 6.20 Single dot magneto-photoluminescence in the Voigt geometry.
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The full dependence of the PL peak positions on the magnetic field polar angle

(θ) makes the distinction between excitons and trions quite clear (Fig. 6.21). In Fig. 6.21

we indicated bright-related transitions by open symbols and dark-related transitions by

solid symbols. The similarity of the two species’ spectra in the Faraday geometry

(θ = 0°) is seen clearly, as is the contrast between the exciton fine structure splitting and

the small trion Zeeman splitting in the Voigt geometry (θ = 90°) [Note that the effective

trion g-factor (Fig. 6.21) goes to zero around 85°]. For intermediate angles, where both

bright and nominal dark transitions are observed, there is a clear qualitative difference

in behavior, the origin of which is evident from the energy level diagrams. For the

exciton, the dark Zeeman components have a larger effective g-factor that is offset to

lower energies (by the exchange energy δ0) from the bright states. In contrast, the trion

dark transitions have the highest and lowest energy (see Fig. 6.21), because they correspond

to transitions between Zeeman components of the trion and the ground state electron,

that add together in the same direction (i.e. both “spin up” or both “spin down”).
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bright-related (open symbols) transitions for the (a) trion and (b) exciton at constant field of
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The mathematics describing the dependence of the fine structure of the X as a

function of the polar angle (θ) was already discussed in section 6.3 [Eqs (6.4) and

(6.15)]. In the case of the trion we need a Hamiltonian describing the mixing of the

excited (| )–Xs 〉  and another one for the mixing of the ground state (| e〉).
In the case of the Xs

– , the Hamiltonian can be written as

ˆ ˆH
B

g
B g g

g g
X

B h h B z
hh

x
hh

x
hh

z
hhs  = 

2
     = 

2
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(6.24)

We also assume that the in-plane elongation of the quantum dot does not affect significantly

the in-plane g-factors, which is a good assumption for this system. Similarly, the final

state Hamiltonian is:

ˆ ˆH
B

g
B g g

g g
e

B e e B z
e
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e
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e

z
e

 = 
2

     = 
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After diagonalizing both matrices and taking all possible differences between the different

eigenvalues, we obtain the expression for the Xs
–  bright-related and dark-related transition

energies ( , ):E EX
b

X
d

s s

E
B

g g g gX
b B

z
hh

x
hh

z
e

x
e

s
 =  

2
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⋅
⋅ ⋅ ⋅ ⋅

μ
θ θ θ θ

(6.26)
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The dashed lines shown in Figs 6.21(a) and 6.21(b) are the fits to the data using

expressions (21) and (22) in the case of the Xs
– , and using Eqs (6.4) and (6.17) for the

X (section 6.3). The values utilized in the fitting of the Xs
–  data were gz

e  = (0.20 ±
0.05), gx

e  = (0.2 ± 0.1), gz
hh  = (–1.85 ± 0.05) and gx

hh  = (0.0 ± 0.1). In the case of the

X the parameters obtained were δo = (157 ± 9)μeV, gz
e  = (0.20 ± 0.05), gx

e  = (0.2 ± 0.1),

gz
hh  = (–2.00 ± 0.05) and gx

hh  = (0.0 ± 0.1).

As shown in Fig. 6.22, and as in the case of the exciton (see Fig. 6.13), the polar

angle (θ) dependence of the trion transitions is mainly given by the highly anisotropic

heavy hole g-factor, which affects the excited state. The ground state is not affected

within the accuracy of our experiment.

The rich single dot magneto-photoluminescence spectra obtained for both the X–

and X provide detailed information on their internal structure, and the lack of exchange

splitting provides a signature for clear identification of charged and uncharged quantum

dots.
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Optical orientation of negatively charged excitons

As mentioned before, the spin properties of negatively charged excitons in nanostructures

are reminiscent of excitons bound to neutral donors D0X in bulk GaAs-type semiconductors.

The ground state of both have two electrons in a singlet state and a single hole spin that

determines the polarization of the complex. Compared to bulk GaAs, the optical orientation

of trions in nanostructures can be traced over a large temperature range due to the

increased binding energy and the suppressed spin relaxation of holes due to heavy hole

– light hole subband splitting. We shall consider now the optical polarization of three-

dimensionally confined trions (and/or D0X complexes) in nanostructures. In this case

the hole spin relaxation is suppressed and the trion can be polarized.

There is a striking difference between the optical polarization of trions and that of

excitons (considered in IIID). The exciton spin projections are determined by the spin

projections of both the electron and hole making up the exciton. However, the spin

projection of the trion singlet is determined only by the hole, because the electron spins

are antiparallel. Moreover, if the trion is excited through the optical generation of an

exciton followed by localization into a QD charged with a single electron, the hole spin

Fig. 6.22 Schematics of the trion states as a function of magnetic field strength in the Faraday

configuration and as a function of the polar angle at a constant magnetic field. Notice the decrease

in the heavy hole g-factor in the Voigt geometry, while the electron g-factor remains constant.
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projection of the trion provides information about the spin projection of the electron and

the exciton (both bright and dark) before the formation of the trion [65]. The kinetics of

the formation depends strongly on the spatial confinement within the dot. If the particles

are confined within a QD with radius less than the exciton Bohr radius it is a three-

particle problem from the start. We consider here the opposite case, which is the one

realized experimentally when the size of lateral confinement is much larger than the

characteristic size of single electron and exciton Bohr radius (~10 nm). These dots can

be imagined as large areas (islands) of quantum wells. This happens for naturally grown

GaAs QDs (Fig. 6.2(a)) and for self-organized InP/InGaP QDs [65]. In this case the

excitons and single electrons behave like independent quasiparticles before the trion

formation. The hole spin memorizes their spin polarizations at the moment of binding,

and therefore contains the prehistory of the exciton and single electron spins. The PL

polarization is determined in this case by the bright and dark excitons, with the dark

states polarized opposite to the bright ones.

A simple example illustrates this point (see Fig. 6.23). The σ+-light creates the

free bright excitons | +1〉 = | +3/2, –1/2〉. If the hole spin in the exciton relaxes faster than

the electron spin, then there are both | +1〉 = | +3/2, –1/2〉 bright excitons and | –2〉 = |

–3/2, +1/2〉 dark excitons. Binding of a | +1〉 = | +3/2, –1/2〉 exciton with a | +1/2〉
electron creates the singlet trion with total momentum +3/2 (the electron spins are

antiparallel). The recombination of such a complex leads to the σ+ PL. In contrast, the

dark exciton forms the –3/2 trion that emits a σ– photon, which is opposite to the

Fig. 6.23 Illustration of optical pumping of the trion in the absence of exchange mixing. (a) In

step 1, circularly polarized light creates a spin polarized free exciton, which is then bound into

trion state in step 2, and then emits light with same polarization in step 3. (b) Alternatively, after

excitation, the hole of the exciton flips its spin and transfers to a dark state before being bound into

the trion state. The PL emission has the opposite polarization in this case.
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polarization of the incident light. Thus, the contributions of optically active and forbidden

excitons have opposite signs.

If the trion formation time is long enough (much longer than h/δb, h/δd), the

excitons lose their orientation in zero magnetic field as a result of the anisotropic

exchange interaction, which mixes the +1 and –1 bright exciton states (and the +2 and

–2 dark exciton states) (section 6.3). Therefore, at zero field the trion polarization

depends mainly on the polarization of the single electron at formation. The magnetic

field in Faraday geometry restores the orientation of excitons in a way similar to that

described in section 6.3. However, the trion polarization changes with magnetic field in

a way different from that of the exciton (see Fig. 6.24 and compare it with Fig. 6.16(a)).

The magnetic field restores first the optical orientation of dark excitons (usually δd <

δb), and the degree of circular polarization ρc becomes more negative (B ~ 100 G for

Fig. 6.24). The orientation of optically active excitons is restored at a higher magnetic

field value (B ~ 2 T on Fig. 6.24), which causes the degree ρc to increase. Thus, the

dependence, ρc(B), is nonmonotonic, with the orientation of bright and dark excitons

being restored at different magnetic field values. This enables one to separate the

contributions of single electrons, bright excitons and dark excitons to the trion PL.
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Fig. 6.24 Circular polarization of bright and dark (inset) trion PL as a function of the longitudinal

magnetic field in the Faraday polarization. From [65].

We would like to calculate now the degree ρc of circular polarization of trion PL

when the trion is formed in the singlet state from bright excitons with orientation
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where N±1 (N±2) are the population of bright (dark) excitons in the | ±1〉 (| ±2〉) state,

and N↑(↓) is the population of single electrons with spin up (down), respectively. The

population of the | ±3/2〉 trions, N+3/2 and N–3/2, are proportional to N+1N↑ + N+2N↓ and

N–2N↑ + N–1N↓, respectively. Taking into account the fact that the | ±3/2〉 trions emit

δ±-light, one can find the PL polarization degree
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where the polarization of trions is

P
N N
N NT

+ = 
 – 
 + 

,3/2 –3/2

+3/2 –3/2

and Nb = N1 + N–1 and Nd = N–2 + N2 are the total populations of the bright and dark

excitons, respectively. Under σ+-excitation, the hole state | +3/2〉 and electron state

| –1/2〉 are created preferentially. One may then expect that P Pc
b

s > 0,  < 0. Usually the

hole spin relaxes faster than the electron one; therefore N–2 > N+2, and the dark excitons

are polarized negatively (  < 0)Pc
d , in agreement with the qualitative discussion given

above.

The magnetic field dependence of ρc(B) is determined by the magnetic field

dependence of the bright P Bc
b ( ) and dark P Bc

d ( )  excitons as a result of anisotropic

exchange mixing of the | +1〉 and | –1〉 bright states and the | +2〉 and | –2〉 dark ones. If

the excitons take a long time (much longer than h/δb, h/δd) before forming a trion, the

polarizations, P Bc
b ( ) and P Bc

d ( ) , are given by the first equation in Eq. (6.20):
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where P Pb d
0 0,  are the bright and dark exciton polarization in the absence of anisotropic

splitting. The Zeeman splitting of dark states is h Ω μd B z
e

z
hg g B = (  – ) . We fit the data



252 D. Gammon et al.

in Fig. 6.24 according to Eqs (6.28) and (6.29) [65]. Using the electron gz
e  = 1.6 and

hole gz
h  = – 2.9  [82] g-factors, we estimate δb ~ 100 μeV, δd ~ 2 μeV.

We have considered the effect of optical orientation of trions formed by optically

oriented electrons and excitons. Unlike the case of excitons considered in section 6.3,

the effects of optical alignment with linearly polarized light are absent for trions because

the electron-hole spin correlation is destroyed under trion singlet formation.

6.5 Hyperfine interaction

When a magnetic field is applied in the Faraday geometry (along the z-axis) the spectral

lines show both Zeeman-like splittings that increase linearly with field (at sufficiently

high fields) and diamagnetic shifts that increase quadratically with field. However, the

behavior is more complicated under closer inspection, especially at low fields. This

richness arises from additional effects associated with exchange and hyperfine interactions,

and from competition between the interactions. Previously, we considered exchange

and Zeeman interaction – we now include the hyperfine interaction between the electron

and nuclear spins.

Hyperfine effects can become important under excitation with circularly polarized

and nearly resonant excitation. The circularly polarized light creates spin polarized

electrons because of spin-orbit interaction and the resulting selection rules. The excitation

must be quasi-resonant so that the electron polarization remains during the time it takes

the exciton to relax into the luminescing QD state and recombine. The nuclear spin

polarization, IN, is created through the dynamic part of the contact hyperfine interaction

and is very large compared to that expected at thermal equilibrium. The spin-polarized

electron has a relatively small probability of flipping a nuclear spin during each optical

cycle, however, because the nuclear spin lifetimes are so much longer than the electron

lifetime, the nuclear spin system can be pumped into a high state of polarization. The

hole spin is not affected because its Bloch wave function is p-like with nodes at the

positions of the nuclei, and so the holes do not interact directly with the nuclear spin.

A large average nuclear polarization, 〈IN〉, exerts an effective magnetic field back

on the electron through the average part of the contact hyperfine interaction. This effect

can be understood by considering the static spin-dependent terms in the exciton

Hamiltonian, where we discuss only the Faraday geometry with 
r r
B B zext ext = .

〈 〉 〈 〉 〈 〉  〈 〉ˆ ˆ ˆ ˆH H H Hspin
exciton

exchange Zeeman hyperfine =  + + (6.30)

The first term is due to the exchange interaction. The second term is the Zeeman term
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and depends on the g-factors for the electron and hole. The third term is the hyperfine

term, averaged over the nuclear spin, and describes the effect that the average nuclear

spin polarization has on the electron spin.

〈 〉 〈 〉ˆ ˆ ˆH A I g BN z z
e B

z
e

z
e

Nhyperfine  = 1
2

   = 
2

 ,σ μ σ (6.31)

where 〈Iz〉 is the average spin of the polarized nuclei, and the average hyperfine constant

A describes the electron spin interaction with all nuclei in the unit cell (A ≈ 90 μeV in

GaAs [19]). The hyperfine term has been rewritten in terms of an effective internal

nuclear magnetic field, B A I gN N z
e

B = / ,〈 〉 μ  that gives a Zeeman-like spin splitting

(Overhauser shift) but does not contribute to the diamagnetic field. Note that a small g-

factor leads to a large average hyperfine field. If the nuclear spins are disordered, BN = 0.

Diagonalization of the average spin Hamiltonian, 〈 〉Ĥ Nspin
exciton , gives the fine

structure of the exciton level in the Faraday geometry:

E h E hb d± ±± ±(1)
0 1

2 2 (2)
0 2

2 2 = 1
2

 (  + ),     = 1
2

 (–  + ),δ δ δ δ (6.32)

where hn = μBgnBext + (–1)nA〈Iz〉, g g gn z
hh n

z
e =  – (–1) , and n = 1 or 2. The splitting of

both the bright (n = 1) and dark (n = 2) exciton doublet states, ΔE(1),(2) = E E+
(1),(2)

–
(1),(2) – ,

is determined by the sum (h1,2) of an external magnetic field and the effective magnetic

field of the nuclei, as well as the anisotropic exchange interaction, δb,d. To fully describe

the electronic spectra we must find the average nuclear spin polarization, 〈Iz〉, which is

determined by the balance between dynamical nuclear polarization and depolarization.

These processes are governed by fluctuations of the electron and nuclear polarization

from their average values and will be discussed later.

The PL spectrum of a single QD at several fields for σ+ polarized excitation is

shown in Fig. 6.25. With narrow spectral lines it is possible to measure the energy

splittings even at small fields. The energies of the two lines of the doublet as a function

of applied magnetic field are plotted in Fig. 6.26. There is an overall energy shift that

can be traced to the diamagnetic shift, but also there is energy splitting which has a

complicated dependence on field. And there is lack of symmetry in the energies with a

change in the sign of the applied field. Moreover, if the excitation polarization is changed

to σ–, the spectra change dramatically. However, the peak energies are symmetric under

the simultaneous inversion of both the excitation polarization and magnetic field E(σ+, Bext)

= E(σ–, – Bext).

The origin of this behavior is more easily recognized by plotting separately the

average energy of the doublet and its splitting. The average energy of the doublet shows

a quadratic dependence on external field that is independent of polarization of the
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exciting light (Fig. 6.26: inset). However, the energy splitting depends strongly on the

exciting polarization as shown in Fig. 6.27. The splitting shows roughly a linear dependence

on field as expected for the Zeeman effect, but with a constant offset from the origin

with magnitude Bn = ±1.2T along the horizontal axis (ΔE = ±90 μeV along the vertical);

where the sign depends on the polarization of the exciting light. Moreover there is a

strong nonlinear dependence on field around Bext = 0 (Fig. 6.27: upper inset).

The Overhauser effect leads to the offset in magnetic field observed in the measured

spin splitting. A large optically pumped nuclear polarization (65%) gives rise to a large

ΔE σ+ exc./π det.
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Fig. 6.25 Photoluminescence spectra of exciton as a function of external magnetic field. At

nonzero fields, circular excitation (σ+) and linear detection (π) was used. At Bext = 0 both excitation

and detection was with vertical (solid) or horizontal (dashed) linear polarization. Inset: energy

level diagram of the QD fine structure at zero field. From [13].
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internal magnetic field of BN = 1.2T. The sign of the nuclear polarization, and therefore

the sign of the field offset, depends on the sign of the circular polarization of the

exciting light. The diamagnetic shift is independent of polarization because the internal

field affects only the splitting.

Note that the Overhauser effect has been found also in self-assembled InP/InGaP

quantum dots [83,84], using the optical orientation technique. The characteristic nuclear

fields acting on bright and dark excitons are 1 kG and 100 G, respectively. The different

field values result from different g-factors of bright (gh – ge) and dark (gh + ge) states

(see Eq. (6.25)).

This initial discussion provides a good understanding at high magnetic fields but

does not explain the nonlinear dependence at low fields. For this it is necessary to

consider the dynamics of the nuclear spin system and the hyperfine interaction in more

detail, which we do now. It turns out that at low fields nuclear dipole-dipole interactions

as mediated by the electrons destroy the nuclear polarization.

400

200

0

–200

En
e

rg
y 

(μ
e

V
)

300

200

100

0
E a

ve
 (

μe
V

)

σ+

σ–

Diamagnetic
shift

–4 –2 0 2 4
Bext(T)

σ+ exc.

δ0

Bright

Dark

–4 –2 0 2 4
Bext (T)

Fig. 6.26 Peak energies of the spectral lines for σ+ excitation as a function of external magnetic

field. The lines are calculated values of the bright (solid) and dark (dashed) energies. Inset: the

average of the two components of the doublet, showing a quadratic dependence on Bext (diamagnetic

shift). Values for σ+ and σ– excitation show no difference, as expected. From [13].
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Hyperfine interaction: static and dynamic

All the major mechanisms of electron spin relaxation active in the bulk and in QWs are

suppressed in quantum dots, as we will discuss in the next section. As a result the

hyperfine interaction of localized electrons with nuclear spin plays the major role in the

electron spin relaxation in QDs. For free electrons the interaction with nuclei leads to

an electron spin relaxation time on the order of 3 × 10–5 s even at helium temperatures.

Localization enhances the overlap of the electron on individual nuclear spins and the

contact hyperfine interaction of the electron spin with macroscopic numbers of nuclear

spins has a significant effect both on the exciton fine structure and the dynamics of

electron and exciton spin polarization.

The contact hyperfine interaction between the electron and the nuclear spins is

given by

ˆ R Î ˆH Ah f
j

j
j

j e = 
2

  | ( ) | ( ),0 2v Σ ψ σσ (6.33)

where v0 0
3 = a  is the volume of the unit cell, Ij and Rj are the spin and coordinate of the

jth nucleus (I = 3/2), | ψ (r) |2 is the electron density at the jth nuclear site and the sum

goes over all nuclei. Aj is the constant of the hyperfine interaction:

A
I

uj B I
j

j j = 
16

3
 | ( ) |

0

2π μ μ
v

R (6.34)

| u(Rj) |
2 is the square of Bloch function, and μ I

j  is a magnetic moment of a nucleus with

number j. In zinc-blende semiconductors the contact interaction with nuclei is important

for electrons because the Bloch amplitude has s-symmetry and | u(Rj) |
2 >> 1. The hole

Bloch functions at the Γ-point of the Brillouin zone has p-symmetry, | u(Rj) |
2 = 0 and

the contact hyperfine interaction is not important for holes. The spin-spin interactions

between the electron and nuclei are conveniently written as

( ) = ( ) + ( ) + ((  –  – )) – ( ),Î ˆ I ˆ Î Î I ˆ Ij e e j e j e e eσ σ σ σ σ σ〈 〉 〈 〉 〈 〉) ( 〈 〉 〈 〉 〈 〉 (6.35)

where the first two terms describe the electron and nuclear spin motion in the average

magnetic fields of the nuclei and electron respectively, and the third one describes the

interactions between fluctuations of the electron and nuclear spin polarization. If the

average nuclear and electronic spin 〈I〉 and 〈σe〉 align along the magnetic field (z-

direction, 〈I〉 = 〈Iz〉 and 〈σe〉 = 〈 〉σ z
e ) , the electron is affected by an effective magnetic

field, BN, arising from the nuclear spins, that was introduced in Eq. (6.31),

B
A I

g
N

N

z
e

B
 = ;

〈 〉
μ

(6.36)
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where the hyperfine constant A was introduced in Eq. (6.31) (A = ∑jA
j, where the sum

goes over all nuclei in the unit cell), and likewise, the nuclei are affected by the mean

hyperfine field of the electron:

B IA
e
j

j

I
j z

e = 
2

 | ( )|0
2

μ ν ψ σR ˆ〈 〉 . (6.37)

As we showed above, under conditions of polarized nuclei, their effective magnetic

field BN leads to the additional splitting of the exciton sublevels known as the Overhauser

shift.

The third term in Eq. (6.35), which describes the interactions between fluctuations,

can be presented in the form

(  –  – ( )) + 
 + 
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where ˆ ˆ ˆ ˆ ˆ ˆI I i I I I Ij
x
j

y
j

x
j

y
j

z
j

± ± =   , and , , ( )  are the projections of the nuclear spin. The

fluctuations of the hyperfine field arising from the nuclear spins lead to the broadening

of electron spin sublevels. In zero magnetic field and in the absence of nuclear polarization,

the hyperfine magnetic field acting on an electron averaged over time or over an ensemble

of dots is zero. However, fluctuations of this field from dot to dot or from one time to

another in the same QD do not vanish. The magnitude of this fluctuation can be estimated

by straightforward calculation of the second order correlation function of the Hamiltonian

that describes the hyperfine interaction (Eq. 6.33). Neglecting correlations between

different nuclear spins and considering their directions as random we obtain the expression

for the electron level broadening δs:

δ ν ψs
j

j j jd r A I I2
0

4 3 2 =  | ( ) |   ( ) (  + 1),∫ r Σ (6.39)

where the sum goes over all nuclei in the unit cell. δs is the inhomogeneous linewidth

arising from fluctuations of the hyperfine energy from dot to dot or in the same dot at

different times. We can also view h/δs as the time for the spin precession of a localized

electron in a typical fluctuation of the nuclear hyperfine field, and thus it is the characteristic

time for the ensemble electron spin relaxation.

If the time of electron interaction with the nuclei, τc, is significantly shorter than

h/δs, the rate of electron spin relaxation is reduced below (δs/h)2τc. As a result, h/δs is

the shortest time in the theory of electron spin dephasing by nuclei in an ensemble

of localized electrons. This time is proportional to the square root of the QD volume,

and for the typical GaAs QD is of order 1–10 ns (in GaAs Σ
j

 (A j)2I j(I j + 1) =

3.8 · 10–3 (meV)2).
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Dynamical polarization of nuclei: Overhauser effect

The interaction between the z-components of the electron and nuclear spin fluctuations

(  – )(  – ( ))ˆ ˆI Iz
j

z z
e

z
e 〈 〉 σ σ  does not change the average values of the spin z-component.

However, the term

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ

I I
I I

x x
e

y y
e

j e j e
σ σ σ σ

 +  = 
 + 
2

+ – – +

generates flip–flop transitions and leads to the polarization flow between the nuclear

and electron spin systems. This is the process for nuclear dynamical polarization, which

is responsible for the creation of the average magnetic field arising from the nuclei BN.

The rate of flip–flop transitions in an external magnetic field depends strongly on

the electron’s interactions with its surrounding media. The huge difference in Zeeman

energy of nuclei and electrons usually requires some type of assisting process to conserve

the total energy of the system, such as an emission/absorption of phonons (see, for

example, [85]), photons or inelastic scattering with charge carriers. The rate of dynamic

nuclear polarization can be described by the following equation:

∂
∂
〈 〉 〈 〉 〈 〉I
t

W B I Q S ST
flip–flop

 = – ( )[  – (  – )] (6.40)

where W(B) is the transition rate of a flip–flop process,

S
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e = – 1

2
 tanh

2
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⎝
⎞
⎠ (6.41)

is the equilibrium value of the electron spin at temperature T, and

Q
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2 2〈 〉 〈 〉

〈 〉 〈 〉
〈 〉 〈 〉 (6.42)

In GaAs, where the nuclear spins have I = 3/2, Q ≈ 5. In the case when the electrons are

completely depolarized (〈S〉 = 0), and from Eq. (6.33) the nuclear polarization in steady

state is given by

〈 〉I QS
Q g B

kTT
e = –  = 

2
 tanh

2
.

μ⎛
⎝

⎞
⎠ (6.43)

One can see that the steady-state value of dynamic nuclear polarization is determined by

the large splitting of the electron spin sublevels instead of the small splitting of the

nuclear spin sublevels in the same magnetic field (the Overhauser effect). In optical

orientation conditions, 〈S〉 >> ST, and one can usually neglect the equilibrium electron

polarization in Eq. (6.40): then 〈I〉 = Q〈S〉 (see also [86,87]).
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The energy of the electron nuclear system is not conserved during the flip–flop

processes. These transitions are possible because the electron and nuclear interactions

are a function of time. In this case the probability depends on the duration time of this

interaction (τc) and the precession frequency of the electron in the magnetic field (Ωe),

and can be written as (see the Appendix),

W B N c

e c
( )  

1 + ( )
,

2

2
≈

ω τ
Ω τ

(6.44)

where

ω
μ

N
I eB

I
 = 

2 〈 〉
h

is the average precession frequency of a nuclear spin in the hyperfine field of the

localized electron (Eq. (6.37)), and Ωe = μBgeB/h is the electron spin precession frequency.

Equation (6.44) shows that the rate of nuclear dynamical polarization decreases drastically

when the Zeeman splitting of the electron spin sublevel is larger than its broadening

((Ωeτc) > 1). The role of the large magnetic field can be played by the exchange electron-

hole interaction (δ0), which splits the bright and dark exciton levels. The experimental

appearance of the suppression of the dynamical polarization of the nuclear spin due to

this effect will be discussed next.

Nuclear dipole–dipole interactions

The kinetic equation (40) does not take the nuclear spin interactions into account. The

nuclear spins interact with each other as magnetic dipoles with the Hamiltonian,

H
I r

I I
I r I r

r
d d

I
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where r1,2
3  is the vector describing the relative positions of nuclei. This Hamiltonian

does not conserve the total spin of nuclei; it is transferred to the crystal lattice. As a

result, the coupling of neighboring nuclear spins through the dipole–dipole interaction

leads to nuclear spin depolarization. In a magnetic field larger than the dipole field,

Bext > BL ~ 0.15 mT, the energy of the nuclear dipole–dipole interaction is not enough

to drive the transition between the two nuclear spin sublevels split by the Zeeman

energy (μIBL/I << μIBext /I, where μI is the magnetic moment of the nucleus), and this

mechanism should be negligible. However, fluctuations of the z-component of the electron

polarization can provide the necessary energy, leading to depolarization of the total
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nuclear spin, even in a relatively strong magnetic field. Calculations show that the

nuclear dipole–dipole interaction weakly mixes the wave functions of different nuclear

spin projection states, of order BL/Bext [13]. Transitions between these mixed states are

induced by the hyperfine magnetic field of the electrons, Be
j , acting on the nucleus, j,

during the interaction time, τc, leading to the following rate of nuclear depolarization:

∂
∂
〈 〉 〈 〉I
t

W I
B

B
L

rel

2

ext
2 = – (0)   ,ξ (6.46)

where ξ is a numerical coefficient of order 1, and W(0) = ω τN c
2  from Eq. (6.44). As a

result, the full equation describing the rate of dynamic nuclear polarization should be

written as

d I
dt
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where

ξ̃ ξ ξ Ω τ =  
(0)
( )

 = [1 + ( ) ]2W
W B e c . (6.48)

In calculating the dynamical polarization of nuclei by localized electrons, for example,

an electron bound to a donor in bulk GaAs, one can always neglect the second term in

Eq. (6.48). In a small magnetic field (B ≤ BL) the correction of ξ is nonessential because

(Ωeτc)
2 ~ (μBgeBLτc /h)2 <<1. In a high magnetic field (B >> BL) the contribution of the

local fields to Eq. (6.47) is negligible. In this case the steady-state value of the nuclear

spin is given by the following equation:

〈 〉
〈 〉

I Q
S B

B BL

 =  
 + 

.ext
2

ext
2 2ξ

(6.49)

One can see that nuclear polarization reaches its maximum value in magnetic fields

Bext > BL.

The situation changes dramatically if the nuclear polarization is created by localized

excitons in disk-like QDs; in particular, the region where the nuclear dipole–dipole

interaction suppresses the dynamical nuclear polarization is greatly extended. This is

because, in this case, Ωe in Eqs (6.44) and (6.48) is determined by the exchange field of

the hole (δ0/h) instead of an external magnetic field. As a result, ξ in Eq. (6.49) is

replaced by ξ̃  = ξ[1 + (δ0τc /h)2] ≈ ξ(δ0τ0 /h)2 ≈ 105ξ, and the nuclear spin polarization

is suppressed up to magnetic fields significantly larger than the characteristic magnetic

field of the nuclear dipole–dipole interactions (BL). The width of the dip seen in the

Overhauser shift of natural QDs (see upper inset to Fig. 6.27) is 300 times wider than
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in bulk GaAs [13]. In Ref. [13] the correlation time was taken as τ τb d , and from a

fit to the data was found to be ~3.5 ns.

Fig. 6.27 Energy splitting for both σ+ and σ– excitation as a function of external magnetic field.

Curves are calculated values. Upper inset: Higher resolution data for the region around Bext = 0,

showing the dip in the energy splitting. Lower inset: Energy splitting at Bext = 1 T as a function

of the sweep rate of a transverse rf field through the nuclear spin resonances. At a rate of (3 s)–1

the optical alignment rate equals this external heating rate. From [13].
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The nuclear polarization, and therefore the Overhauser shift, can be erased by applying

a transverse magnetic field of approximately 1 G with a radio frequency (RF) that is

resonant with the nuclear magnetic resonances (Fig. 6.28) [88]. By sweeping the RF

field through the As and the Ga resonances while the PL spectrum is obtained, the

Overhauser shift is almost completely erased, and the Zeeman splitting reverts to what

it would be in the absence of the Overhauser effect.
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The capability to monitor the nuclear polarization through the Overhauser shift

and to depolarize it with the RF field provides the opportunity to do nuclear magnetic

resonance (NMR) spectroscopy on individual QDs, as shown in Fig. 6.28. The Overhauser

shifts measured as the RF field is stepped through the As and the Ga resonant frequencies

gives NMR spectra associated with a single QD. This can be done for several QDs

simultaneously because we can measure the PL lines from several QDs simultaneously

in the same optical spectrum. In some cases there are shifts in the NMR frequencies that

may arise from Knight shifts [89]. Knight shifts are shifts in the nuclear spin resonance

due to an effective magnetic field associated with the electronic spin through the hyperfine

Fig. 6.28 Energy splitting in a single QD PL spectral line in a longitudinal external magnetic field

of Bext = 1T excited with either σ+ or σ– excitation polarized light with (dashed lines) and without

(solid lines) a transverse RF magnetic field continuously scanning through all the Ga and As

nuclear magnetic resonances. (b) and (c) NMR spectra from a QD, showing both the 75As and 69Ga

resonances, respectively, at Bext = 1T. From [88].
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interaction. Furthermore, there are large differences in linewidths from dot to dot that

are not understood.

Because of the local nature of the hyperfine interaction, the NMR spectroscopy is

sensing only those nuclei within the wave function of the QD exciton, corresponding to

approximately 104 nuclei [88]. The capability to measure the NMR spectra associated

with individual QDs provides a very local probe of strain and composition. Many

fascinating questions remain about the dynamics of the exciton and nuclear spin that

perhaps can be addressed with the new perspectives obtained from such experiments.

6.6 Spin relaxation

A phenomenological description of spin relaxation was given in section 6.3. Here we

consider the origin of spin relaxation for a localized electron. In contrast to previous

sections we do not treat excitons but focus entirely on electrons. An electron spin in a

remotely doped QD (or neutral donor) can be probed through the trion (or neutral

donor-bound exciton) PL transition.

The interaction of the magnetic moment with a magnetic field leads to spin

precession around the vector, gB, with a frequency, Ω = μBgB/h. Other interactions can

be treated as local, fluctuating magnetic fields. The average value of these fields leads

also to spin precession of the carriers, and their fluctuating part results in spin relaxation.

Spin-orbit interactions lead to spin relaxation because the elastic or inelastic

scattering of the particles changes their spin orientation. For the electron spin, other

interactions arise from the exchange fields of holes, other electrons and paramagnetic

impurities, and from the hyperfine field of the nuclei. We will show that for an electron

localized in a QD (or donor), the interaction with the hyperfine field of the nuclei limits

the electronic spin lifetime. Because the precession periods of the nuclei are so much

longer than the electron recombination and spin relaxation times, the nuclei are effectively

frozen during the electron’s lifetime. However, fluctuations in the nuclear polarization,

either from QD to QD or from one optical cycle to the next in the same QD, lead to an

inhomogeneous broadening of the lifetime that dominates the measured spin lifetime.

At the end of the section we show how this time is measured via the Hanle effect.

Spin relaxation: spin–orbit interactions

Spin–orbit interactions generate the dominant spin relaxation mechanisms of free carriers

in bulk semiconductors and 2D QW heterostructures. This interaction is described by
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various terms in an effective mass Hamiltonian that depend on the symmetry of the

crystal lattice and on the heterostructure potential. It strongly affects the motion of free

electrons and holes. For example, the energy dispersion of holes in zinc-blende

semiconductors depends on the hole spin projection on the wave vector k, as described

by the Luttinger Hamiltonian, as a result of the strong spin–orbit interaction in the

valence band. This strong spin–orbit coupling leads to very fast spin relaxation of the

hole that accompanies its momentum relaxation.

The spin–orbit interaction also lifts the spin degeneracy of the free electron states

in the conduction band of bulk zincblend semiconductors, which do not have a center of

inversion symmetry. This splitting is proportional to the third power of the electron

wavevector projections, kα(α = x, y, z), along the cubic crystal axes [100], [010], and

[001] and depends strongly on the vector direction. The spin–orbit interaction leads to

the electron spin precession (Eq. (6.13)) in an effective magnetic field [90]

B e e ex y zDr x y z y z x z x yk k k k k k k k k∝( (  – )  + (  – )  + (  – ) ),2 2 2 2 2 2

where eα are the unit vectors along the cubic crystal axes.

In asymmetrical quantum wells with different hetero-interfaces, or with an external

or built-in electric field normal to the QW plane, the spin-orbit interaction leads to an

effective magnetic field (the Rashba field) that acts on the spin of two-dimensional

electrons. This field is proportional to BRas ∝ [n × k] [91], where n is the polar vector

normal to the QW plane and k is the two-dimensional wave vector of the electron.

There are two relaxation mechanisms of the spin polarization of free electrons

connected with the spin–orbit interactions. The first one, the Elliott–Yafet (EY) mechanism,

is connected to the spin-flip transitions that result from momentum changing scattering

processes. The second one, the D’ykonov–Perel (DP) mechanism, is connected with the

precession of the electron spin in the effective magnetic field connected with the spin–

orbit interaction between the two scattering events. The DP mechanism of the electron

spin relaxation is dominant in semiconductors with high mobility.

For a localized electron (or hole) the direction and the value and direction of its

spin averaged over a unit cell depends on the position of the cell in the localization

volume as a result of the spin–orbit interaction. The distribution of the electronic spin

density and orientation varies from state to state. However, these dependences do not

change with time. As a result, the spin relaxation of the localized states arising from

spin–orbit interaction occurs only via transitions between the different quantum size

levels; for example, phonon assisted or free electron gas assisted transitions. For electrons

these spin relaxation processes have been analyzed by Khaetzkii and Nazarov [92], and

for excitons by Takagahara [50]. The exciton spin relaxation time in natural GaAs
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quantum dots for inter-level one-phonon transitions has been estimated to be 100 ps at

a temperature of T = 30K. The transitions between the degenerate spin sublevels of the

same localized state are allowed only through excited quantum size levels via the two-

phonon-assisted real or virtual transitions. The time of these processes has been estimated

in Ref. [93] to be on the order of 1–9 ns at T = 30K. The number of phonons and the rate

of phonon-assisted recombination therefore depends strongly on temperature: the rate

of one-phonon and two-phonon processes decreases with temperature as T and T2,

respectively (see also Ref. [94]). The exciton relaxation in QDs is mainly connected

with the relaxation of holes. For localized electrons this time is significantly longer and

exceeds microseconds; the spin–orbit interaction in the conduction band is of order one

hundred times weaker than in the valence band [92]. As a result, the hyperfine interaction

with the spin of the nuclei becomes a dominant mechanism for spin relaxation of

localized electrons.

Spin relaxation: hyperfine interaction

The interaction of localized electrons with nuclei was studied early on for electrons

localized at donors in bulk semiconductors (see, for example, [8,95]). There, the electron

interacts with a large number of nuclei and feels the hyperfine magnetic field of the

nuclei, BN, (Eq. 6.36) located in the region where the electron is localized; this, of

course, is also true for electrons localized in QDs. The interaction time of the electron

and nuclear spin for donor-localized electrons is usually limited by the time of shallow

donor ionization, or by tunneling between donors. This can be considered as the correlation

time for the electron spin motion, τc (see the Appendix). For quantum computation and

spin storage it is important to have a large value of τc, and therefore, to eliminate

tunneling and ionization, and to maximize this time, we will consider only the electrons

localized in QDs or on shallow donors at sufficiently low temperature.

Electron spin relaxation via its interaction with the spins of the nuclei in QDs and

donors is facilitated by the disparity of the characteristic time scales of the three processes

that determine the relaxation: (1) the period of electron precession in the frozen fluctuation

of the hyperfine field of the nuclei, (2) the period of the nuclear spin precession in the

hyperfine field of the electron, and (3) the nuclear spin relaxation time in the dipole–

dipole field of its nuclear neighbors. Estimates of these time scales can be made for the

case of GaAs, whose hyperfine constants are well known. For QDs containing 105

nuclei they are: ~ 1ns, ~ 1μs and ~100μs, respectively. Below we describe the electron

spin relaxation as a precession in the quasi-stationary frozen fluctuation of the hyperfine

field of the nuclear spins without and with external magnetic field. In a strong external
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magnetic field the precession of the nuclear spins does not affect the electron spin

motion, and the model of the frozen fluctuation of hyperfine fields of nuclei is limited

only by nuclear dipole–dipole interactions. These interactions do not conserve the total

nuclear spin, and the third time scale provides a natural limit to the coherence of the

electron-nuclear spin system.

The effective nuclear hyperfine field, BN, acting on a localized electron spin is the

sum of contributions from a large number of nuclei:

B R ÎN
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where 〈. . .〉N  denotes the quantum mechanical average (trace) over the nuclear wave

function, and ge is the isotropic electron g-factor. Note that the nuclear field introduced

in Eq. (6.36) is the statistical average of Eq. (6.50) over the distribution function that

reflects the probability of different nuclear spin configurations. Usually the nuclear spin

temperature is rather high so that the nuclear spins are uncorrelated. The magnitude and

direction of this hyperfine field are randomly distributed, and described by a Gaussian

probability density distribution function:
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where ΔB is the dispersion of the nuclear hyperfine field distribution, which is determined

by the following equation:
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where the sum in this equation goes over only those nuclei in a unit cell, and VL =

∫⎛
⎝⎜

⎞
⎠⎟

d r r3 4
–1

( )ψ is the typical localization volume of the electron. In GaAs, I = 3/2,

for all nuclei, ∑j(A
j)2 ≈ 1.2 · 10–3 meV2 and ΔB = 54G.

The equation of the spin’s motion in a fixed magnetic field, B, is given by:

S(t) = (S0 · n)n + {S0 – (S0 · n)n} cos ωt + [{S0 – (S0 · n)n} × n] sin ωt, (6.53)

where S0 is the initial spin, n = B/B is a unit vector in the direction of the magnetic field,

and ω = μBgeB/h is the Larmor frequency of the electron precession in this field. The

equation also describes the coherent electron spin precession in a single QD due to the

magnetic field, BN of the frozen fluctuation of the nuclei (n = BN/BN, and ω = μBgeBn/

h). Averaging Eq. (6.53) over the magnetic field distribution of Eq. (6.51), we obtain the
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time dependence of the ensemble averaged electron spin polarization in the absence of

an external field [93]:
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averaged over a large number of measurements. Here

T
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h h
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is the ensemble dephasing time which arises from the random electron precession

frequencies in the randomly distributed frozen fluctuation of the nuclear hyperfine field

in the dots. This time is on the order of 1 ns for GaAs quantum dots with 105 nuclei. The

spin dephasing time is proportional to VL . One can see that the average electron

polarization relaxes to 10% of its original value after a time equal to the dephasing time

and then increases to a steady-state value of 33% of its initial polarization.

A strong external magnetic field, B, (B >> BN) significantly changes the process

of electron spin relaxation. In this large field the Zeeman splitting of the electron spin

levels is larger than their inhomogeneous broadening in the hyperfine nuclear magnetic

field. The total magnetic field acting on the electron is now effectively directed along

the external magnetic field. The nuclear hyperfine fields only perturb the precession

frequency of the electron spin about the external magnetic field direction.

Consider, now, the effect of a strong external magnetic field on the electron spin

polarization. The motion of the spin in the total magnetic field is again described by Eq.

(6.53) where, now, n = (B + BN/| B + BN|. Averaging Eq. (6.53) over the ensemble, using

the distribution of nuclear magnetic fields in Eq. (6.51), we obtain:
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where b = B/B is a unit vector along the external magnetic field, and Rk
α are the time

dependent coefficients, with explicit dependence on the parameter, β = B/ΔB, which one

can find in Ref. [93]. Equation (6.56) simplifies considerably in strong magnetic fields.

In the limit β >>1 Eq. (6.56) can be written:
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One can see that in strong magnetic fields, B >> ΔB the component of spin along B is

conserved, while its two transverse components precesses with a frequency ωB = μBgeB/h

and decay as a result of the inhomogeneous broadening of the levels in the random

magnetic field of nuclei, respectively. The dephasing arises from the dispersion of the

nuclear field along the external magnetic field, which leads to an inhomogeneous dispersion

of the electron precession frequency.

In a strong external magnetic field (B >> ΔB) the average electron spin is directed

along this strong field, independent of the nuclear hyperfine fields (BN << B). Although

the nuclei precess with different frequencies in the inhomogeneous electron field, the

electron is affected only by the component of the nuclear field along the external field.

As a result the nuclear magnetic field acting on the electron spin is frozen for times

much longer than TN. Thus a frozen fluctuation model of the nuclear hyperfine field is

valid when describing the dephasing dynamics of the electron spin polarization in an

ensemble of quantum dots in strong magnetic fields. As we mentioned above this

consideration is limited by the condition of sufficiently low temperature and by the time

scale of the nuclear dipole–dipole interaction.

In each QD, the motion of the electron spin in the “frozen” hyperfine field of the

nuclei is coherent. The dephasing is a result of inhomogeneous broadening of the

electron spin levels in the ensemble of quantum dots. This makes it possible to recover

the transverse electron spin polarization using the spin echo technique, which also can

be used for quantum computation [96].

Hanle effect for localized electrons

We previously considered the Hanle effect for the neutral exciton pseudo-spin in section

6.3. For the exciton case the circular polarization of the PL is simply related to the z-

component of the pseudo-spin. One can also measure the Hanle effect in a doped n-type

system and thereby probe the spin relaxation of electrons through the recombination of

the electrons with a photo-excited hole. If the hole spin relaxes quickly to an unpolarized

state, the Hanle effect in the polarization of the PL is determined by the dynamical

behavior of the electron spin as governed by the Bloch equation (6.21). One can also

probe the spin dynamics of an electron in an isolated neutral donor or in a doped QD

through the polarization of the PL, but not necessarily so directly. The polarization of

the PL is proportional to the spin polarization of the trion (or neutral donor-bound

exciton) which is related to the polarization of the electron through the dynamics of the

trion (donor-bound exciton) formation or through exchange interactions (see section

6.4). Nevertheless, the spin dynamics of the localized electron can be described by the
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Bloch equation (6.21), and in some cases, directly determines the PL polarization. The

initial electron spin polarization for the ground state of a neutral donor or doped QD

results from optical pumping of the ground state spin. Experimentally, this requires the

hole spin flip rate in the optically excited state to be faster than the electron spin flip rate

as discussed in section 6.4.

Spin relaxation can be viewed as the result of the action of random local magnetic

fields on the electron spin [97] and depends both on the amplitude of the random field

and on its fluctuation rate (τc). In the limit of short correlation time (the so-called

motional narrowing case) the precession period of the electron spin in the local field

(  = /g )–1ω μf B NBh  is much longer then the characteristic time of the random field

fluctuation (τc). The dynamic averaging of local random fields takes place and the spin

relaxation slows down: τ ω τs f c
–1 2≈ . In this case, the transverse magnetic field that

depolarizes the electron spin in Voigt geometry (Hanle effect) satisfies the condition,

Ω τ τext
–1 –1 –1   =  + ≥ Ts s , and the magnetic depolarization curve (Hanle curve) has a

Lorenzian shape (see Eq. (6.55)). This situation is typical for spin relaxation of free

electrons (see above) as well as for the donor-bound electrons with relatively larger

donor concentration (Nd ≈ 1016 cm–3) in bulk GaAs at low temperature [8]. In the latter

case the hyperfine interaction with lattice nuclei is responsible for relaxation; the random

nuclear fields in the vicinity of the donor sites are averaged as a result of fast jumps of

electrons from donor to donor. The fast jumps (short τc) strongly suppress the spin

relaxation of the donor bound electrons, leading to an extremely long spin relaxation

time [98]. This case may be important in the field of spintronics where it is necessary

to obtain giant spin diffusion and drift lengths.

The limit of long correlation times (  > )–1τ ωc f  is realized for electrons localized

in QDs (or on shallow donors) with low concentrations at sufficiently low temperatures

such that the jumping of spins between the localized states becomes much slower. In

this case the role of the correlation time is played by the electron lifetime, and relaxation

of an ensemble of electron spins can be determined by fluctuations in the local precession

frequency (ωf) as it was described in Eq. (6.55).

Hanle studies of self-assembled QDs in the steady-state regime and using the

quantum beat spectroscopy have been reported in Ref. [65,99] and Ref. [100], respectively.

Unfortunately, no work was done on specific spin relaxation mechanisms in the papers

cited above. One of the problems is related to the high anisotropy of self-assembled

QDs, leading to anisotropy of all the main parameters that determine the Hanle effect

(g-factor anisotropy and/or anisotropy of spin lifetimes). Also, the main parameters can

vary from dot to dot, which induces additional inhomogeneous broadening.

The simplest case that is free of the above complications and has been realized
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experimentally [101] is the spin relaxation of donor bound electrons in bulk n-GaAs

with Nd ~ 1014 cm–3. The shallow donor impurity in GaAs is spherically symmetric with

good accuracy, and its binding energy has rather small inhomogeneous broadening (if

compensation is not too high). This is especially true for low-doped GaAs samples

where the distance between isolated donors greatly exceeds the Bohr radius of electron.

In this case the electrons are trapped on donors at low temperatures and spend a relatively

long time (long correlation time limit τ ωc f > )–1  before escaping as a result of ionization,

tunneling, hopping, or recombination with holes. The electron spin system breaks up

into an ensemble of individual donor-bound electrons, and the electronic spin relaxation

is the result of dephasing of the ensemble spin by the randomly distributed hyperfine

fields as we discussed in above. In this case the longitudinal external field (the Faraday

geometry) eliminates spin relaxation, and the transverse field (the Voigt geometry)

depolarizes electrons when it overwhelms the local field, i.e. Ω ≥ ωf.

In Fig. 6.29, polarization data taken in the Faraday (upper curve) and Voigt

(bottom curve) geometry in n-GaAs are shown [101]. One can see that the longitudinal

field increases the electron polarization by a factor of 2.5 whereas the transverse magnetic

field decreases the electron polarization (Hanle effect) down to zero. The characteristic

transverse and longitudinal magnetic field values that decrease and increase, respectively,

the electron polarization are similar in Fig. 6.29 and equal to ≈ 54G which corresponds

to an inhomogeneous dephasing rate of 5 ns. This number is in good agreement with the

theoretical value of Td (see Eq. (6.55)) calculated for a shallow donor in GaAs.

Fig. 6.29 The magnetic field dependence (open circles) of the circular polarization in Voigt (lower

points) and Faraday (upper points) geometries. W = 40 mW/cm2, T = 4.2K. Polarization degree is

normalized to the zero field values, ρ(0) = 2%. The dashed and solid lines are the theoretical

dependences of the electron spin calculated from Eq. (6.57) with the only fitting parameter,

τc = 17 ns.
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To describe the average electron spin polarization in the low concentration limit

we consider the evolution of the electron spin, 
r
Sn , localized at the nth donor. It is

described by the Bloch equation (6.21) with the precession frequency, 
r r r
Ω Ω ωn fn =  + ext .

During the correlation time (τc) the electron spin dynamics are determined by the

external and the local nuclear magnetic fields only. However, each electron sees a

different static nuclear hyperfine field, described by a Gaussian distribution (Eq. (6.51))

with a dispersion, Δ = 54G, given by the root-mean-square of the random nuclear field.

Averaging the (Lorentzian) solution to the Bloch Eq. (6.21) over the nuclear magnetic

field distribution (see section 6.6) results in the theoretical dependence of circular

polarization on the longitudinal and transverse magnetic field that are presented in Fig.

6.29 by dashed and solid lines, respectively. The only fitting parameter for the curves in

Fig. 6.29 is τc = 17 ns, which satisfies the static condition, τ ωc f > –1 . This value is

determined by the processes of donor electron ionization, recombination, exchange

scattering by free electrons, etc. The good agreement between experiment and theory

confirms that the interaction with nuclei is the main mechanism of the electron spin

relaxation for the localized carriers.

6.7 Conclusions

In this chapter we have discussed the most important features in the optical spectra of

quantum dots that arise from spin. We have discussed how the recent introduction of

single quantum dot spectroscopy and the ability to probe individual excitons has made

it possible to measure the fine-structure of single excitons. We have discussed how this

fine structure and the polarization depends on the exchange interaction, on the Zeeman

interaction, and on the hyperfine interaction. We also considered how spin relaxation

occurs and one way that it can be measured through the Hanle effect.

Of course there are many experimental techniques that we did not discuss that

also are interesting and important. The most obvious are time-resolved techniques. One

popular method in time resolved spectroscopy is that of quantum beats. In this approach

the energy splitting of two fine-structure states can be measured as a beating frequency,

either in the signal intensity as a function of the delay time between two pulses, or in the

time-development of the PL after a laser excitation pulse. As an example we refer to the

experiment of Bonadeo et al. [102], in which the fine structure splitting of the two

bright states of a single quantum dot was measured as a beating frequency in the

spectrum. As expected, the beating frequency and the rate at which the beats decay

(dephasing rate) are in good agreement with the fine structure splitting and the linewidths
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as measured in frequency-domain PL excitation spectroscopy. This experiment is discussed

in the following chapter.

There has been, and continues to be, a great deal of work on bulk semiconductors

and more recently on quantum wells. It is interesting to consider what the new opportunities

might be in QDs. One example, recently discussed by Korenev [87], is the phase

transition of the nuclear spin of a QD into a self-polarized state. Nuclear self-polarization

was predicted long ago in bulk semiconductors, but has not yet been detected, possibly

because of the difficulty in obtaining the predicted conditions (very low temperatures

under optical pumping conditions). The required conditions are much more relaxed in

a QD. The essence of this theory is that the nuclear polarization depends strongly on the

splitting of the exciton spin levels. In turn, the splitting is sensitive to the nuclear

polarization by the average hyperfine nuclear field. Under certain conditions the positive

feedback becomes strong enough to produce self-polarization. Moreover, the nonlinear

behavior can bring about bistability in the system that should manifest itself in hysteretic

behavior of nuclear polarization versus magnetic field. A self-polarized QD would look

like a tiny nuclear magnet that could be used to control electron spin or possibly

decoherence in future quantum mechanical devices.

Another exciting direction is toward the design and demonstration of QD structures

that have special functionality. One example is the possibility of designing a quantum

bit for exploring the concepts in quantum information science. There has been considerable

progress on the coherent control of excitons in single quantum dots which themselves

can act as qubits (see Chapter 7). The problem with excitons is that they are excited

states of the quantum dot, and so their coherence time is ultimately limited by recombination

(radiative lifetime). One possible way around this problem is to design a system in

which a spin degeneracy in the ground state can act as the qu-bit. This can be done by

putting a single electron in a quantum dot and using its two spin states as the qu-bit. The

qu-bit could be optically controlled by using the trion as an intermediate state in what

would then be a three level system. In such a system it would be possible to optically

control and probe the ground state spin coherence of individual electrons. The spin

coherence would have a relatively long decoherence time, because it is in the ground

state and because of the relative insensitivity of spin to environmental noise.

These examples of current research ideas illustrate the exciting opportunities that

exist in the field. We anticipate that there will continue to be much activity as QD

materials and experimental methodologies are further developed.
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Appendix Relaxation of the nuclear spin due to the fluctuating electronic spin

We will derive Eq. (6.44) for the nuclear relaxation rate. Let us consider the relaxation

rate of the nuclear polarization, W(B), in a random, rapidly alternating hyperfine field of

a localized electron. For simplicity we assume at the beginning that there is not an

external magnetic field acting on the electron spin, and that the random hyperfine field

of the electron is perpendicular (for example, along the y-axis) to the nuclear spin (for

example, along the z-axis) (see Fig. 6.30). After the time, t, the z-projection of the

nuclear spin decreases by the value I(0)(ωN1t)
2/2 = I(0)ϑ2/2. At the same time, the

nuclear spin gains an x-projection equal to I(0)ϑ. However, the average value of this

projection is equal to zero because the positive and negative values of ωN occur with

equal probability. Averaging over random directions of the hyperfine electron field leads

to the additional factor 2/3 in the time dependence of z-projection of the nuclear spin

because the z-projection of the hyperfine field does not lead to its relaxation, and the

contribution of its X and Y projection are equal to each other, so that

〈 〉 〈 〉 〈 〉 〈 〉 〈 〉ω ω ω ω ωN Nx Ny Nz N
2 2 2 2

1
2 =  +  +  = 3 .

Fig. 6.30 Schematic of precession of the nuclear spin in the hyperfine field of the electron spin.
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Now let us consider the result of a hyperfine field rotation caused by the rotation

of the electronic spin in an external magnetic field along the z-axis: 
r
ω N t1 ( )  =

ω Ω ΩN x ye t e t1 ( sin  +  cos )
r r

. One can write with the same accuracy:
r r r r
I t I I t I t I e I t e I t ex y z x x y y( ) = [( (0) – ( ( ) + ( ))/(2 (0)))  + ( )  + ( ) ]2 2

where



274 D. Gammon et al.

I t I t dt I
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x N
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e

e
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Ω

One can get the average loss of the nuclear polarization during the time of coherent

precession in the random field of the electron after averaging this expression over the

exponential distribution ( –1τ c  exp(–t/τc)) of the acting time of the random field:

〈 〉Δ
ω

Ω τ
Ω τI
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t
dtz
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which leads to the resulting expression in the case of filling factor 1:

dI
dt

I Iz z

c

N c

e c
 =  = – 

(0)

1 + ( )
.1

2

2

〈 〉Δ
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ω τ
Ω τ

Therefore the relaxation rate (W), which is defined by 
dI
dt

W Iz
z = – 〈 〉Δ , is

W B N c

e c

N c

e c
( ) = 

1 + ( )
 = 2

3 1 + ( )
1

2

2

2

2

ω τ
Ω τ

ω τ
Ω τ

This concludes the derivation of Eq. (6.44).
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Abstract

Semiconductor quantum dots (QDs) represent the simplest nanostructures
where the 3D quantum confinement imposed on the electron and hole
motion leads to strongly modified electronic and optical properties. The
most remarkable feature that makes QDs so desirable for future generations
of optical, electronic and quantum logic devices is their fully quantized
atomic-like energy structure (although they normally contain 103–106 atoms).
Compared to atoms and ions that can only be captured for a limited period
of time via sophisticated cooling and trapping techniques, QDs are structurally
robust and are backed by a strong industrial base for semiconductor processing.
An understanding of the fundamental physical origin of the electronic and
optical properties associated with quantum confined systems is a prerequisite
for more advanced research activities aimed at devices. Studies of simple
QD structures are also a stepping stone to designing and understanding
more sophisticated QD-based nanostructures, such as QD molecules and
coupled QD arrays. This chapter reviews and discusses physics of QDs
based on various optical spectroscopy experiments performed at the single
QD level. The discussions will be focused on a particular model gallium
arsenide (GaAS) QD system in which the experimental efforts of the authors
reside. Of specific interest is the optical response from single QD excitons
and correlated exciton–exciton molecules (biexcitons) as a result of coherent
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optical excitation. Such coherent preparation and manipulation of QD states
are among the core elements for devices utilizing quantum phase, such as
quantum computers based on optically driven QDs [1–4]. Experiments
show that the single QD exciton and biexciton states can be coherently
manipulated in a similar way to atoms. Two single excitons confined to the
same dot that are distinguishable can be optically entangled. The discrete
QD energy structure due to quantum confinement substantially reduces the
elastic scattering of excitons/biexcitons and therefore the coherences within
a single exciton or between the constituent excitons of a biexciton are
maintained during the exciton/biexciton lifetime. Discussions on the direct
spectroscopic signatures of these relatively long-lived coherences under
fully resonant optical excitation are the central part of sections 7.2 to 7.6.
Section 7.7 will describe theoretically an implementation of a real quantum
algorithm based on optically driven single QD excitons and biexcitons.

7.1 Introduction

This section starts with an overview of semiconductor QDs. Excitons and biexcitons, of

importance to the optical response of single QDs, are briefly introduced. A simple

model used to successfully explain many experiments in various QD systems is discussed.

Optical spectroscopy techniques of relevance are described at the end of this section.

Semiconductor QDs

A semiconductor QD is a simple nanostructure that normally contains 103–106 atoms

and thus the Bloch functions do not deviate very much from the bulk case. However, the

envelope of the electron/hole wavefunction is strongly modified due to the finite size of

the structure, giving rise to a discrete density of states.

To avoid surface states which trap electrons/holes and degrade the electrical and

optical properties, semiconductor QDs must be produced so that they are passivated by

a surrounding medium [5]. By engineering the passivating medium, the boundary condition

of the dots can be altered, providing further control of the quantum confinement and the

energy structure.

The two dominant technologies for the production of quantum dots are chemical

synthesis and epitaxy. Chemically synthesized QDs are also known as nanocrystals [5].

Typically, II-VI materials, such as CdSe, CdS, CoO and ZnS, form the QD core and are

passivated to form a core-shell structure [6–8]. Some techniques for engineering the

size and shape of nanocrystals have been developed [9–12]. Nanocrystals are also

incorporated into other structures, such as a variety of polymers as well as thin films of

bulk semiconductors [13], and packed into QD lattices [14]. The epitaxial growth of
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QDs is dominated by molecular beam epitaxy (MBE). MBE grown QDs are mostly

from III-V group materials, such as GaAs, InGaAs, InAs and InP, and occasionally from

other groups, such as PbSe and CdSe. The MBE technique allows for control within one

or two monolayers in the growth direction. Nearly perfect heterojunctions produced this

way give good passivation and therefore most MBE grown nanostructures are free from

surface states. These heterojunctions provide quantum confinement along the growth

direction. In the plane of the epilayer, quantum confinement is produced either by

naturally formed interface fluctuations [15–18], self-organization [19–22] or via patterning

and lithography [23–28]. There are also attempts to produce coupled QD structures and

QD superlattices using the MBE technique [29–36].

The optical response from semiconductor QDs is directly mediated by the effect

of quantum confinement on the motion of the electrons and holes. It therefore contains

rich physics that can be extracted using various optical spectroscopy techniques. An

overview of QD optical spectroscopy research will be given below.

The unique optical properties of QDs have led to QD-based semi-classical light

sources such as lasers [37–43] and LEDs [44,45], and non-classical light sources, such

as single photon trains [46–51] and entangled photon pairs [52]. QDs, especially

nanocrystals, were used in biological labeling [53,54]. Lundstrom et al. [55] showed

that excitons in QDs can be engineered to store information. Using quantum dots as spin

memory in the Coulomb blockade regime was proposed by Recher et al. [56]. Photovoltaic

cells were produced from nanocrystals [57,58]. In a proposal by Aguado et al. [59],

double quantum dots can be used as quantum noise detectors in mesoscopic conductors.

Using the hyperfine interaction between the electron spin and lattice nuclear spin,

optical NMR was achieved with high spatial resolution (within a single nanodot) [60,61]

and can be used as a sensitive probe of defect nuclei. Based on their atomic-like coherent

nonlinear response (see sections 7.2 to 7.6), many authors have identified optically

driven QDs as potential candidates of fundamental information carriers (quantum-bits,

or qubits) in quantum computing and quantum information processing [1,3,4].

For more complete reviews on the fabrication and application of QDs, see References

[5,22,62–64].

Excitons and biexcitons

In bulk semiconductors, due to the Coulomb interaction between optically excited electrons

and holes, the excitonic effects dominate the optical response below the bandedge. As

has been shown by many authors [65–67], under the effective mass approximation

(EMA), an exciton can be regarded as a well-defined single quasi-particle containing an
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electron and a hole. Its envelope function can be separated into the center-of-mass

(COM) motion (plane wave in bulk semiconductors) and the relative motion between

the electron and the hole. The equation that determines the electron-hole relative motion

is called the Wannier equation which has a solution that resembles the electron–positron

relative motion in a positronium atom. The Bohr diameter (a0) of the exciton, determined

by material parameters such as the effective mass of the electron and hole, must be

significantly larger than the lattice constant for the EMA to hold. This is indeed the case

for most materials. For example, GaAs has an a0 of about 250 Å, compared to the lattice

constant of 5.6 Å. This type of exciton is known as the Wannier exciton. In the case that

a0 is comparable to or smaller than the lattice constant, the Frenkel limit is reached and

the problem is treated differently [68].

In semiconductor QDs, an interacting electron–hole pair is subject to 3D quantum

confinement. Complete localization of the exciton takes place when the Bohr diameter

is comparable to the QD size. The problem is, in general, nontrivial to solve. Three

regimes have been identified to simplify this problem using perturbation theory [62]. In

the weak confinement regime, the quantum confinement is treated as a perturbation on

the electron–hole Coulomb interaction that gives rise to excitons. In the strong confinement

regime, the electron and hole motions are solved separately under the QD confinement

and the Coulomb interaction then acts as a perturbation. The intermediate regime,

however, requires non-perturbative methods. Despite these complications, in each of the

three cases, the lowest single electron–hole pair levels are discrete and are referred to as

QD exciton states. Each state represents a well defined single particle. For more details

on the general treatment of excitons in QDs, see References [62–64].

The above analysis assumes that only the Coulomb attraction within each particular

electron–hole pair state needs to be considered. These discrete states are the eigen-states

of the system where only one bound electron–hole pair is created. In the case that two

excitons are excited, the Coulomb interaction between the two electron–hole pairs

needs to be included. Therefore the energy of the two-exciton state does not equal the

sum of the two single exciton states. The difference reflects the interaction energy

between the two excitons. In the perturbation theory, it appears as a higher-order correction

and is therefore referred to as a higher-order Coulomb correlation [69]. Its sign and

strength is determined by factors such as the electron/hole effective mass ratio, the

quantum confinemeent and the spin of the electrons and holes.

The problem of the stable binding of the exciton–exciton molecule (with negative

binding energy) has a rich history that will be briefly reviewed in section 7.5. Such a

bound molecule is referred to as a biexciton. In the presence of strong confinement, the

spatial separation between the electron-hole pairs is greatly reduced, leading to enhanced
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binding energy. The exciton and biexciton binding energies become comparable. In this

case, the problem must be considered as a four-body (two electrons and two holes)

problem, as opposed to a two-body (two excitons) problem. We will focus on the lowest

such four-body state in a quantum dot.

Modeling single QDs

Due to the discrete nature of the energy structure, the modeling of QDs is relatively

simple compared to higher-dimensional systems despite many variables, such as the

shape and the size of the QDs. This section takes a well-studied GaAs QD system as an

example. Other types of dots can be modeled similarly.

Figure 7.1 shows a schematic of this GaAs QD structure formed by large scale

interface disorder in a GaAs layer MBE grown between Al0.3Ga0.7As barriers [18]. The

growth conditions and an example of topographical images of the interfaces can be

found in Reference [70]. The response from two quantum well regions that differ in

thickness by one monolayer is well separated in energy due to the difference of confinement

in the growth (z) direction. Experimental studies are focused on the wider monolayer

(islands) which occupies a few percent of the total area [70].

Al0.3 Ga0.7As

GaAs Exciton

Al0.3 Ga0.7As

10 to 100 nm

z

x

Fig. 7.1 The schematic for a QD naturally formed by interface disorder. The monolayer fluctuations

form islands that lead to the localization of excitons. The size of the islands is on the order of tens

of nanometers. The growth direction is represented by z.

While the GaAs layer is typically tens of angstroms thick, the lateral size of the

islands due to the monolayer fluctuations is about tens of nanometers [70]. Therefore,

the quantum confinement in the lateral direction is not as strong as in the case of, for

example, self-assembled QDs. However, evidence for complete localization of excitons

and biexcitons has been found using different approaches, including the quantification

of the confinement energy [18], the direct microscopy image of excitons via the emission

[15,71] and resonant coherent nonlinear response [72] of excitons (see sections 7.2 and

7.5). Evidence for localized complex states containing more than two excitons are not

observed, possibly due to the limited confinement (see, for example, References [73,

74] for studies of such states in self-assembled QDs).
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The level diagrams that include the crystal ground state (exciton vacuum), the two

lowest orthogonal heavy-hole bright exciton states and the bound biexciton state of

relevance to optical studies are shown in Fig. 7.2.

ΔE ΔE

μb– μb+σ+ σ–

|b 〉

|+〉

μ+g

|g 〉

μ–g

|–〉

(a) (b)

B

X

G

μbx μby
Πx Πy

Πx Πy
|y 〉|x 〉

μyg

|g 〉

|b 〉

μxg

Fig. 7.2 Model for an elongated single GaAs QD. Symbols G, X and B denote the ground, the

exciton and the biexciton states respectively. ΔE is the biexciton binding energy. The optical

selection rules for various transitions with (a) and without (b) an external magnetic field applied

in the Faraday configuration are indicated. Πy (Πx) is linear polarization perpendicular (parallel)

to the QD elongation in the plane of the GaAs layer. Without the magnetic field, the two exciton

states are excited using linearly polarized light and are labeled as | x〉 and | y〉. The magnetic field

diminishes the mixing within the heavy hole states. The transitions become circularly plarized.

The exciton states are represented by | +〉 and | –〉. The transition frequency and dipole moment of

various transitions are denoted by ωij and μij respectively, where i and j are the final and initial

states of the dipole transition.

In the ideal situation, the optical transitions for QDs of zinc-blende semiconductors

such as GaAs are circularly polarized, as indicated by the solid arrows in Fig. 7.2(a).

The right-hand circularly polarized (σ+) transition leading to the | +〉 exciton state is

between the spin-up state of the s-like conduction bandedge (  = + )1
2m j  and the heavy-

hole bandedge state with m j  = + .3
2  The left-hand circularly polarized (σ–) transition

leading to the | –〉 exciton state, however, is between the m j  = – 1
2  conduction bandedge

state and the m j  = – 3
2  heavy-hole bandedge state. For the GaAs interface fluctuation

QDs under study, however, the QDs are elongated along the [110] axis due to the

dynamics in the growth, leading to band mixing and modified optical selection rules due

to the long range part of the exchange interaction. This problem has been considered in

detail in References [67,75–77]. It is found that the two excitonic states become mixed

and the optical transitions become linearly polarized [70,77,78]. This is shown in Fig.

7.2(b). An external magnetic field applied in the Faraday configuration can be used to

restore the circularly polarized optical selection rules, as will be shown in section 7.2.

The experimental studies of optical selection rules for exciton transitions will be discussed

in sections 7.2 and 7.6. The optical selection rules involving the biexciton state are given

σ– σ+
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in section 7.5. These selection rules are not unique to the GaAs interface fluctuation

QDs but are generic to other QD systems with identical asymmetry [49,77–79].

Quantum coherence and quantum computing based on optically driven QDs

Quantum computing proposals in References [1–4] have considered the model in Fig.

7.2 as the simplest system able to implement two-qubit operations, taking advantage of

two excitons coupled via the Coulomb interaction. Each exciton is considered as a basic

unit to carry one bit of quantum information (qubit). A feasible scheme of building two-

qubit quantum logic gates and implementing a simple quantum algorithm will be discussed

in section 7.7. While in this chapter we focus on coupled excitons confined to a single

QD, such studies serves as a starting point to understand the more general scalable

systems consisting of excitons confined to coupled QDs.

Of particular relevance are various optically induced quantum coherences in a

single QD system, including both the exciton dipole coherence (coherence between the

exciton and ground states, or coherence between the biexciton and exciton states) and

the nonradiative coherence between the two excitons, such as the coherence within the

excitonic doublet or the ground-biexciton coherence. The latter type of coherence is

nonradiative because it cannot be induced using one photon and must rely on two-

photon processes (see Fig. 7.2) and the transition between the two states involved is

dipole forbidden. Both types of coherences will be discussed in this chapter. Experiments

show that they can be optically manipulated.

These quantum coherences are essential in any proposal for quantum computing,

including those based on optically driven quantum dots, and therefore the ability to optically

induce these coherences must be carefully explored. As one of the core requirements for

quantum computing [80–82], these coherences must be manipulated in a controlled

fashion in order to prepare arbitrary coherent superposition states within each qubit and

between qubits. The decay of these coherences leads to an accumulation of errors in the

operation. It is therefore critical to understand the decoherence dynamics of QDs.

Optically induced coherence between two states degrades over time by two

mechanisms. First, the amplitude of either state could reduce to zero due to relaxation

to other states in the system. The rate at which this event happens is half the energy

relaxation rate Γ (Γi denotes the energy relaxation rate of state | i 〉; Γij denotes the

energy relaxation rate from state | i 〉 to state | j 〉). In the second process, known as pure

dephasing, the coupling of the states to other modes (e.g., phonons in solids) leads to a

change of the relative phase between the two states without decay of the individual

probability amplitudes. This random change in phase over time can cause a rapid
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decoherence at a rate of γ i j
ph  even though the amplitude of each state is relatively long-

lived. These two decoherence processes are illustrated in Fig. 7.3 and detailed discussions

can be found in References [83–85]. γij is used to denote the total rate (including both

process) of decoherence between states | i 〉 and | j 〉

γ γij
i j

i j
ph = 

2
 + 

2
 + 

Γ Γ
(7.1)

where the factor of two takes into consideration that the decoherence is determined by

the state amplitude, not the probability amplitude, which is the absolute value of the

state amplitude squared.

(a)

(b)

Fig. 7.3 The two decoherence mechanisms: (a) Energy relaxation and (b) pure dephasing. The

curves contain the amplitude as well as phase information of a particular quantum state. In pure

dephasing, the relative phase between two states experiences random changes over time.

It has been shown in higher dimensional semiconductor structures, such as bulk

and quantum wells, that pure dephasing due to exciton-phonon and exciton–exciton

interaction dominates the decoherence even at relatively low temperature [86,87]. For

QD systems, however, the discrete density of states substantially reduces the phase-

changing elastic scattering between excitons/biexcitons and phonons. In addition, the

isolation of QDs dramatically decreases the probability of scattering between uncorrelated

excitons, leading to relatively long-lived coherences [49,88,89]. In this chapter,

experimental studies verify that these optically induced coherences are maintained during

the exciton/biexciton lifetime, dramatically different from those of bulk and quantum

well structures.

Single QD optical spectroscopy

The physics behind the unique optical properties of QDs can be extracted using various

optical spectroscopy techniques based on the strong light-QD interaction. For many
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applications, it is essential that QDs be addressed individually, requiring that optical

spectroscopy be performed at the single QD level.

Most QD systems available, however, have a relatively high dot density and a

large amount of inhomogeneous broadening of transition energies due to the distribution

of QD sizes. In traditional diffraction limited far-field optical spectroscopy, spectra of

many dots merge together, preventing the extraction of information related to each

individual QD. In recent years, however, several techniques yielding submicron spatial

resolution have been developed. Some are based on near-field techniques using either

coated fiber tips or masks with apertures [15,23,70,72,90]. Some are based on traditional/

confocal far-field microscopy in combination with low-density sample [50,74,91] or

mesa structures fabricated using lithography [73,92,93]. Others used a solid immersion

lens to achieve sub-wavelength resolution [51,71]. As a result, only a limited number of

QDs are subject to optical excitation. Since each QD in general has its own distinct

resonance frequency, individual dots can be resolved spectrally. Relying on these

techniques, sharp spectral features due to single QDs have been observed in different

types of systems, including nanocrystals [94,95], interdiffusion QDs [23], self-organized

QDs (see, for example, References [49,73,78,90–92,96–98]), cleaved-edge QDs [26,32]

as well as interface fluctuation QDs [15,16,18,99]. These single QD studies confirm

that the transition energies are discrete and the greatly reduced exciton scattering rates

due to localization lead to sharpened homogeneous linewidths compared to higher

dimensional structures. For most of the studies on GaAs interface fluctuation QDs of

relevance to this chapter, single QD resolution is achieved using an aluminum mask

with a series of submicron sized apertures as detailed in [18].

Among the variety of optical spectroscopy techniques, photoluminescence (PL)

is the most widely used. In PL, the nonresonantly excited electron–hole pairs either in

the continuum of a dot or in the barriers of the quantum well nonradiatively decay and

the energy can be captured in the confined QD exciton/biexciton states. They then

radiatively recombine by emitting photons. A quantitative interpretation of the PL process

is complicated due to the many unknowns in the nonradiative relaxation processes of

the carriers [100]. Nevertheless, by monitoring the frequency of these emitted photons

using a spectrometer, PL spectra provide information about the eigen-energies of QDs

in a very straightforward way.

A simple variation of PL spectroscopy is PL excitation (PLE), in which the

absorption spectrum of the optical excitation field is indirectly measured by recording

the intensity of the PL at a particular energy as a function of the excitation frequency.

This is very useful in studying a QD system because by monitoring the emission from

the QD ground state populated due to the relaxation from the excited states driven by
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the optical field, PLE maps out its excited state spectrum [16,70,90,101]. Again, due to

the unknowns in the nonradiative relaxation processes, it is difficult to gain a quantitative

understanding of exciton decay dynamics from such experiments.

For a direct and quantitative measure of absorption of various states, resonant

linear absorption spectroscopy can be used. However, observing linear absorption from

a single QD requires extremely high signal-to-noise ratio. It is not until recently that

such experiments are successfully performed in single dots [102,103]. These experiments

will be discussed in section 7.2. The linear absorption coefficient of a QD state is

directly related to the transition dipole moment and dephasing rate, the most important

parameters of a single QD transition.

Nonlinear optical spectroscopy, on the other hand, explores the optical nonlinearities

in semiconductor QDs and provides a measure of many additional critical parameters.

In higher dimensional structures, complicated optical nonlinearities are expected, such

as phase space filling and screening, most of which are due to many-body interactions

(see Reference [104]). Although QD systems are considerably simpler, the atomic-like

energy structure of a QD (verified using linear measurements such as PL and PLE) does

not guarantee an atomic-like nonlinear optical response due to the complications of

solid-state systems. The presumed atomic-like nonlinear optical response of QDs [104]

must be subject to experimental verification. Investigations along this direction are

therefore important, especially when optical nonlinearities involving quantum coherences

of importance to devices such as QD-based quantum logic gates are concerned. In this

regard, nonlinear optical spectroscopy becomes an ideal testbed for such speculations

[72,88,89,105–107].

For example, it is interesting to attempt to measure in a QD system novel phenomena

observed in atomic systems, such as Rabi oscillations [106,108], Mollow splitting/AC

Stark shift [85,109,110] and Zeeman coherence [89], some of which are prerequisites

for quantum logic operations. Nonlinear optical studies on single QDs require relatively

large transition strength (oscillator strength) to give a reasonable signal-to-noise ratio

and have currently only been achieved in single GaAs interface fluctuation dots.

Among many useful nonlinear optical techniques [100] employed in the investigation

of semiconductor nonlinearites, we will focus on the differential transmission (DT)

technique in which the third order nonlinear optical fields are homodyne-detected. The

homodyne-detection improves the signal-to-noise ratio over the direct detection of the

nonlinear response that occurs, for example, in either self-diffracted or phase-conjugated

four-wave-mixing (FWM). Both frequency and time domain (transient) DT experiments

are performed in interface fluctuation QDs. The experimental setup is shown in Fig. 7.4,

using either two tunable continuous-wave (CW) lasers (for frequency domain DT) or
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pulsed picosecond (PS) lasers (for transient DT), labeled as E1(Ω1) and E2(Ω2). In

degenerate DT experiments, the two fields are from the same laser source and are

therefore degenerate in frequency. For the nondegenerate DT, however, the two beams

come from two independently tunable lasers. The two CW lasers are frequency stabilized

to about 4 neV and their mutual coherence bandwidth is measured to be ~ 20 neV, much

smaller than the dephasing rates in typical QD systems (tens of μeV in energy units).

Therefore, for CW measurements, the two fields are considered mutually coherent

(within the decay of optically induced coherences). The two PS fields come from 76

MHz tunable mode-locked dye lasers with time-resolution of about 6 picosecond

determined by the pulse width.

E2(Ω2)

E1(Ω1)

AOM

AOM

Lock-in

E1
NL

E2
NL

Fig. 7.4 DT experimental setup. The two beams labeled as E1(Ω1) and E2(Ω2) are either from one

laser (degenerate) or two independently tunable lasers (nondegenerate). The two beams are amplitude

modulated using acousto-optic modulators (AOM). The signal depending on both E1 and E2 is

homodyne detected with transmitted E1 or E2 (can be experimentally chosen) at the difference

frequency of the amplitude modulation using a lock-in amplifier.

In both CW and transient experiments, individual QDs are resonantly excited. To

detect the third order nonlinear optical response as a result of such exitation, E1 and E2

are amplitude modulated and the optical response is homodyne detected with the transmitted

Ei (i = 1, 2) at the difference frequency of the amplitude modulation using a lock-in

amplifier.

Such experiments are not sensitive to the second order nonlinear optical response.

In the weak field limit and keeping only the first order (linear) and third order nonlinear

optical response (denoted by E (1) and E (3) respectively), the total photo current from a

square-law photo-detector when detecting Ei is proportional to

  |  +  + |  2Re ( ) + 2Re( ( )*) + |  + |(1) (3) 2 (3) * (3) (1) (1) 2E E E E E E E E Ei i i� (7.2)

where E (3) � E (1)� Ei for typical QDs and thus | |1
(3) 2E  is neglected. The second term

can also be neglected compared to the other terms. In addition, since the lock-in amplifier
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only keeps the signal component at the modulation difference frequency, it is not sensitive

to the last term in Eq. (7.2) (note that E Ei E ii
(1)

=1
2 (1) = ,Σ χ  where χ Ei

(1)  is the linear

response function due to Ei). Therefore, only the first term of Eq. (7.2) needs to be

retained. In order to get the difference frequency, E(3) in the first term must be of the

form i E E i j
E E E j i

j j i
χ

,
* ,

(3) 2| | (   ≠  and note that iE (3) is proportional to the third order

optically induced polarization P (3) for an optically thin sample). The signal that is

homodyne-detected with Ei becomes

Ii
NL

E E Ej, j i
  Im( )

,
*

(3)∝ χ (7.3)

Here, χ(3) represents the resonant third order susceptibility. Depending on the

excitation (CW or PS, degenerate or nondegenerate) and detection (E1 or E2) scheme of

a specific measurement, the χ(3) responsible for the nonlinear signal may contain terms

that are due to not only incoherent nonlinearities involving exciton population, such as

state-filling (saturation), but also various coherent effects, such as population pulsation

[88], Zeeman coherence [89,111] and two-photon coherence [112]. These experiments

will be detailed later in this chapter.

The technique discussed above can also be understood as a measure of the change

of the intensity of the transmitted beam (which is being homodyne-detected) induced by

the presence of the other beam (differential transmission). As a convention, the phase-

sensitive electronics within the lock-in amplifier are set such that an induced transmission

appears positive.

A few important points about CW and transient DT are summarized below:

1. Due to the discrete nature of the QD energy structure, with a CW or transform

limited PS laser field, it is possible to create only one localized exciton at a time (the

bandwidth of a femtosecond pulse, however, would be too large to avoid other

localized states).

2. Radiative as well as nonradiative coherences can be optically induced and then

probed using CW DT and therefore their decoherence dynamics can be measured.

3. In the nondegenerate case, two laser fields can be tuned to resonantly excite two

energetically distinguishable transitions, providing information regarding the coupling

between states. This will be shown in sections 7.5 and 7.6.

4. Transient DT has lower spectral resolution compared to CW DT due to the larger

bandwidth, but it can be used for time resolved experiments using another degree of

freedom, the delay between the pulses E1 and E2. The choice of pulse width (6 ps)

represents a compromise between two competing constraints: too much bandwidth

resulting from a shorter pulse will cause excitation of multiple QD states, whereas
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a longer pulse will diminish the temporal resolution necessary to see decay dynamics,

which is on the order of tens of picoseconds.

While most of the experiments in this chapter are in the weak field limit, an

exception will be discussed in section 7.4, where the intensity of one beam is made high

to induce a large probability amplitude of the exciton state of a QD (leading to Rabi

oscillations). The analysis becomes very different since the higher order nonlinear

optical response becomes significant and must be kept to all orders. Details will be

given in section 7.4 and can also be found in Reference [85].

7.2 Single exciton optical spectroscopy

In this section, experiments that characterize single QD excitons are discussed. While

the focus will be on GaAs interface fluctuation QDs, progress made in other types of

QDs of relevance will also be discussed. It is found that the single exciton states in

various QD systems are indeed localized and discrete. The energy structure as well as

the linear and coherent nonlinear optical response of single excitons are atomic-like.

PL and PLE

The initial evidence for single localized exciton states in QD systems was found in PL

spectra taken under high spatial resolution. Specifically, extremely sharp and isolated

PL peaks identified as arising from single QD exciton recombination were observed in

a variety of systems [15,16,18,23,26,32,49,73,78,90–92,94–99]. A typical PL spectrum

taken from GaAs interface fluctuation QDs confined to a 42 Å well with a spatial

resolution of 500 nanometers is shown in Fig. 7.5.

Further evidence showing that each peak in the PL spectra indeed arises from the

recombination of a two-level quantum mechanical system (as opposed to a classical

anharmonic oscillator) was demonstrated by Michler et al. [46], Becher et al. [50] and

Zwiller [51] by analyzing these emission peaks using the technique of correlated photon

counting. For a true two-level system, the emitted photons should obey nonclassical

sub-Poissonian statistics and show photon antibunching, as can be determined by the

second order intensity correlation function. This is due to a dead-time between successive

photon emission events and has no classical counterpart. Photon antibunching was

indeed observed in nanocrystals [46] and self-assembled InAs QDs [50,51], showing

the nonclassical nature of various single QD systems. Experimental confirmation of

photon-antibunching in single GaAs interface fluctuation QDs, however, has not been
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attempted largely because the shorter exciton lifetime in these systems requires the

correlated photon counting apparatus to have a time resolution that is difficult to achieve

(much better than 20 picoseconds).

Fig. 7.5 Photoluminescence taken through a 0.5 μm aperture of a GaAs interface fluctuation QD

sample. The spectrum corresponds to the wider region of a 42 Å well.
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PL excitation spectrum of a QD is expected to show discrete excited states followed

by a continuum, similar to that of an atomic system. This was demonstrated in all QD

systems studied at the single QD level (see, for example, References [16,70,90,101]). A

typical PLE spectrum is shown in Fig. 7.6 (open circle) for a GaAs interface fluctuation
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Fig. 7.6 PL and PLE spectra of a typical QD. The solid dots represent the PL spectrum of a typical

QD in a 42 Å growth interrupted GaAs/Al0.3Ga0.7As well. The open circles represent its excitation

spectrum. The polarization of the excitation beam is πx. The inset shows the fine structure splitting

of the first excited state at ε1, with the excitation polarization indicated. The fine structure splitting

in the PL state ε0 is not resolved by the spectrometer. The figure is taken from Reference [105].
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QD emitting at ε0 (the emission spectrum is represented by solid circles). The spacing

between the excited states and the PL state can be used to estimate the size of a QD with

the knowledge of the band structure of the QD material and the passivating medium.

These estimates are typically consistent with direct structural measurements based on

techniques such as STM [18].

For an ideal dot, each peak is two-fold degenerate due to the spin degeneracy. As

discussed in section 7.1, the shape of the QD is often asymmetric in many systems, such

as interface fluctuation QDs, some types of self-assembled QDs [49,77–79] and

nanocrystals with controllable shape [9–12], leading to a fine-structure splitting and

modification of optical selection rules due to a nonzero exchange interaction and band

mixing. As an example, the inset of Fig. 7.6 shows the fine structure splitting of the first

excited state at ε1. The two sub-transitions are orthogonally linearly polarized.

The nonradiative relaxation between an excited state and ground exciton state

preserves exciton spin, i.e., the excitation of the excited states using Πx (Πy) polarized

light only leads to Πx (Πy) polarized luminescence from the ground exciton state, as has

been shown in interface fluctuation QDs [70] and self-assembled QDs [113]. This

suggests that the spin relaxation of excitons is much slower than both the radiative

recombination of the ground exciton state and the nonradiative relaxation between the

excited exciton state and ground exciton state.

The QD can be excited resonantly into a coherent superposition of these two

nearly degenerate excited states. A coherent manipulation of such a superposition using

two time-delayed pulses leads to a control of the excited state population, which can

then be monitored via the PL from the ground exciton states [105], such experiments

will be detailed in section 7.3. In Reference [49], a coherent superposition of the two

nearly degenarate ground exciton states was induced using quazi-resonant excitation of

the QD into a exciton-phonon complex. The two decay paths to the crystal ground state

are not distinguished and cause single photon interference in the spontaneous emission,

giving rise to quantum beats in time-resolved PL. This coherent superposition within

the exciton doublet also leads to unique signatures in coherent nonlinear response from

single QDs, as will be detailed in section 7.6.

Linear absorption from single QD excitons

The strength of the QD-light interaction is determined by the electric dipole moment.

One of the simplest ways to measure the dipole moment is to observe the amount of

resonant laser light absorbed by the quantum dot. An accurate measurement can only be

obtained from experiments performed on the single QD level. Linear absorption of a
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single QD is weak and rides on a large transmission background. Such measurements

therefore require an excitation beam with extremely stable intensity, and have only been

achieved in GaAs interface fluctuation QD systems. In these experiments, the excitation

laser is linearly polarized such that it only excites one of the exciton doublet. Specifically,

the vertically polarized exciton transition of a QD is selected using Πy polarized light,

providing a measure of the dipole moment, �yg = 〈y | � | g〉 (�xg is measured using Πx

polarized light in a similar way).

In principle, a determination of the transition strength of a resonantly excited

confined excitonic state using PLE can be obtained but would require knowledge of the

coupling strength between the initial state and the final state (the luminescing state). In

addition, all of the emitted photons would need to be counted in a time integrated

experiment. Coupling strengths of this type are not typically known, and confidence

that all of the emitted photons from a single QD have been measured is difficult to

obtain.

Direct linear absorption monitors the transmission of a CW laser as its wavelength

is scanned through a QD resonance. A typical coarse wavelength scan over the spectrum

of the entire lower energy monolayer of a 6.2 nm growth interrupted quantum well

obtained from a ~0.4 μm aperture is shown in Fig. 7.7. The degenerate CW DT from the

same aperture is shown in Fig. 7.7 for spectral comparison. A detailed discussion of DT

measurements will be given in the next section. The laser was Πy polarized, so that only

| g〉 → | y〉 transitions were probed. Individual QD states appear as sharp dips in the

transmission spectrum of the laser shown in the middle panel of the figure; these dips

are evident as resonances in the CW DT spectrum.

The spatial resolution of these measurements (~500 nm) is larger than both the

center-of-mass wavefunction of the system [18,71] (~40 nm lateral extension) and the

Bohr radius of the exciton (a0 ≈ 10 nm), allowing the quantum dots to be treated as point

particles. Under this assumption, combined with resonant excitation of only the | g〉 →
| y 〉 transition, absorption from a single QD can be written as

α δ α
δ γ

( ) = 
1 + ( / )

0
2

α μ
ε γ0

2

0
 = 

| |Ω
cn Aaph

(7.4)

where δ is the laser detuning from the QD resonance, γ is the dephasing rate (1/T2),

Ω/(2π) is the laser frequency, ε0 is the background dielectric constant, and Aap is the

area of the aperture. The total transmitted optical power, T, is then given by T = T0 – Tabs

= T0(1 – α) where Tabs is the power absorbed by the QD. The above equation assumes
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the excitation stays in the linear regime and the third order nonlinear absorption is much

smaller than the linear absorption.

Higher resolution spectra of individual QD absorption resonances can be fit for

both the linewidth (γ) and line strength (α0) using T = T0(1 – α(δ)). As shown by Eq.

(7.4), the half-width at half maximum is exactly the dephasing rate, γ, whereas α0 is a

function of both the dephasing rate and the dipole moment, allowing for an accurate

measurement of the dipole moment for each resonance studied. This method ignores the

contribution of reflections from the QD to the transmitted lineshape, since the spectral

dependence of the reflectance from a single QD is expected to be small compared to that

of the absorbance.

The measured absorption for a typical single QD state is plotted at the top of Fig.
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Fig. 7.7 Direct absorption from single QD states. The spectra are obtained by tuning the laser

wavelength. The high resolution spectrum of a typical resonance (top) can be fit to the Lorentzian

lineshape of Eq. (7.4), giving the dipole moment and linewidth shown. The bottom curve is the

degenerate DT spectrum and will be discused in the next subsection. Data are taken from the 62

Å well of a growth interrupted GaAs QD sample.
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7.7. α = 1 – T/T0 is the quantity plotted where T0 is the background (off-resonace)

transmission and T is the overall measured transmission. The dephasing rate is found to

be hγyg = 13.7 ± .4 μeV, corresponding to a dephasing time of 48 ps. The fractional

absorption for this state is α 0 –.012
+.007 = .039 .  Using an aperture diameter of 385 nm and

an index of refraction of 3.66, the dipole moment is found to be μ = 60 –11
+6  Debye,

corresponding to an oscillator strength of f = 65–23
+13  (where f m eyg = 2 /0

2 2Ωμ h  and m0

is the free electron mass). The notation X dl
du

–
+  denotes lower (dl) and upper (du) error

bars on X. The errors on the linewidths are simply from the statistical error in the

nonlinear fitting procedure. The origin of the error in the fractional absorption and the

dipole moment is due to uncertainty in the aperture area as well as potential etaloning

effects in the sample. Measurements on ~10 additional resonances revealed linewidths

ranging from 12 → 29 μeV and dipole moments ranging from 50 → 100 Debye (oscillator

strengths from 45 → 180).

By comparison, Reference [72] examined the 6.2 nm QW of a growth-interrupted

sample using CW DT. The dephasing rates (hγ) were found to be in the range 17 → 29

μeV, in excellent agreement with those measured using direct absorption and PL.

The large magnitude of the dipole moment is a manifestation of the mesoscopic

enhancement of the coupling to the light field expected from semiconductor nanostructures.

Theoretical predictions of the dipole moment for quantum dots formed by interface

fluctuations agree well with the measured values presented here, though calculations

for the exact structure of a growth-interrupted 6.2 nm QW have not been carried out.

Andreani calculates a dipole moment of 67 Debye [114] for a 4 nm quantum well width

and 40 nm quantum dot diameter, and Takagahara [115] calculates a dipole moment of

81 Debye for a 3 nm quantum well width and 30 nm quantum dot diameter. For comparison,

atomic optical dipole moments are typically of order e × abohr ≈ a few Debye. The larger

dipole moment associated with these interface fluctuation quantum dots is critical to

achieving the QD-cavity strong coupling regime in semiconductor microcavities [114,116].

The absorption described here allows for a straightforward calculation of the

steady state occupation probability for an exciton in the QD, ρyy. Assuming that these

states are not broadened by extra dephasing processes (γ = Γ/2), a linewidth of hγ =

15μeV leads to 1/Γ ≈ 22 ps. With an absorbed power of Tabs = T0α ≈ 200 pW, ρyy = .017,

implying that the QDs are occupied by, on average, much less than one exciton.

CW and transient nonlinear optical response from single QD excitons

In this section, the simplest CW and transient DT experiments performed on single QDs

are discussed. Nonlinear optical response at the single QD level was only measured in
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GaAs interface fluctuation QDs. Copolarized laser fields E1 and E2 are used for resonant

excitation of one of the two excitonic doublet transitions in a single QD and show that

the single exciton behaves like an atom in the nonlinear regime. The exciton lifetime

and dephasing rate are measured. These experiments are originally reported in References

[88,107,117].

CW coherent nonlinear optical response from single excitons

By using narrow-band mutually coherent CW fields (see section 7.1 for specification of

the lasers), single exciton states can be unambiguously selected. Experiments are usually

done in the weak field (χ(3)) limit for easier interpretation of the results.

The two CW laser fields are colinearly polarized in these experiments and no

external magnetic field is applied. For QDs that are asymmetric (such as the GaAs

interface fluctuation QDs), only one of the linearly polarized exciton doublet transitions

is excited. Figure 7.8 is a degenerate spectrum taken through a typical ~0.5 μm aperture,

showing the response from many dots (42 Å well). In Fig. 7.9(c), the dotted curve are

the fine degenerate DT spectra of a typical single QD exciton.

1621 1622 1623 1624
Energy (meV)

Fig. 7.8 Degenerate DT spectrum of a typical aperture at zero magnetic field. The two beams are

colinearly polarized. Data are taken from the 42 Å well of a growth interrupted GaAs quantum

well sample. Taken from Chen et al. [89].

It is shown in [85] that by homodyne detecting E2 in a simple two level system,

the third order nonlinear optical signal is due to two distinct quantum mechanical

perturbation pathways. In the incoherent pathway, the first field creates an exciton

population and therefore saturates the transition, causing a reduced absorption of E2.

This process is incoherent since it contributes even if the excitation fields are incoherent.

Contribution from the second pathway, which leads to population pulsations as discussed

by Meystre and Sargent in Reference [85], is due to the interference between the two
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fields leading to the excitation of an exciton grating that scatters E1 into E2. It follows

that this process requires the two fields to be coherent.

Assuming the fields are Πy polarized and excite the | y〉 state only, a derivation

similar to Reference [88] yields a coherent nonlinear optical signal (detecting E2)
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where A = | μyg |4 | E1E2 |2, Δ1 = Ω1 – ωyg, Δ2 = Ω2 – ωyg · ωyg is the center frequency of

the exciton transition. γyg and Γyg represent the dephasing and energy relaxation rate of

the excitonic dipole respectively.

For the degenerate configuration, the two contributions become exactly the same

with a Lorentzian squared lineshape determined by the dephasing rate, γyg. In the

nondegenerate case, however, the lineshape of the incoherent terms is purely characterized

by γyg, but the population pulsation term is determined by both γyg and the exciton

energy relaxation rate, Γyg. Note in the single exciton case, the two decay rates are

related by γ γyg yg yg
ph = /2 + Γ  (see Reference [85] and section 7.1), where γ yg

ph  is the

pure dephasing of the exciton dipole coherence as discussed in section 7.1. Therefore,

by examining the DT spectrum it is possible to evaluate both γyg and Γyg , and thus study

the role of pure dephasing.

The nondegenerate DT lineshape is sensitively to the relative contribution from

pure dephasing. Solid curves in Fig. 7.9(a) and (c) show the calculated signal for two

cases as a function of scanning Ω2 while Ω1 is fixed at various frequencies. In the case

that γ yg
ph

yg = 10 ,Γ  the incoherent component of the signal is much broader than the

coherent one, as can be clearly seen Fig. 7.9(a). As E1(Ω1) is tuned across the exciton

resonance, the narrow coherent component tracks it. In the second case, where γ yg
ph  = 0,

the two components are comparable in linewidth, leading to an interference lineshape,

as shown in (b) of Fig. 7.9.

The experiments shown in Fig. 7.9(c) suggests that pure phase changing interactions

in a quantum dot are not the main sources of decoherence, due to the strong localization

and isolation. The exciton dipole coherence is maintained within the exciton lifetime.

The exciton dephasing rate can be extracted from the Lorentzian-square shaped degenerate

spectrum to be γyg ~ 19 ± 3 ps–1, consistent with linear absorption measurements discussed

in section 7.2. Measurements on other dots typically fall between 10–50 ps–1. From the

above data,  Γyg can also be obtained although its determination needs to rely on fitting

a complex nondegenerate spectrum. For this particular dot, Γyg ~ 32 ± 1 ps–1.
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By combining the CW DT and near-field microscopy, the nonlinear optical response

can be imaged. Compared to STM images in Reference [70] which report on the structure

of the interface fluctuation QDs, images based on coherent nonlinear optical response

of QDs are direct evidence of strong localization of the center of mass wavefunction of

excitons [72]. An example of such an image is shown in Fig. 7.10. This spectroscopy

(both linear and nonlinear spectroscopy) and microscopy combination offers even more

possibilities. For example, the spatial and spectral correlation of QDs in a system can be

studied using these techniques. Phenomena such as level repulsion predicted by Runge

and Zimmermann [118] has been observed in disordered GaAs systems [119–121].

Transient nonlinear optical response from single excitons

Differential transmission can also be obtained by exciting single QD states with pulsed

lasers. A typical spectrum, obtained by scanning the center wavelength of the ~6 ps

(degenerate in energy) E1 and E2 fields at zero delay, is shown at the top of Fig. 7.11(a).

The Πy co-polarized E1 and E2 fields travel through a submicron aperture, and the third

order nonlinear signal is homodyne detected with E2. Narrow lines from individual QD

–4 –2 0 2 4 –4 –2 0 2 4 –4 –2 0 2 4
Δ2 (γ units) Δ2(γ units) Δ2(γ units)

(a) (b) (c)

Fig. 7.9 Nondegenerate CW DT of a typical single QD exciton. (a) and (b) are calculations for

two cases, γ yg
ph  = 10Γyg and γ yg

ph = 0, respectively. Dotted curves are the degenerate DT spectra.

The others are nondegenerate DT spectra as a function of Ω2. Ω1 is fixed at the positions indicated

by the arrows. Δ2 is the detuning of E2 from the resonance center. (c) Experimental data taken from

a typical QD exciton from the 42 Å growth interrupted GaAs well. Beams are colinearly (Πy)

polarized. The nonlinear optical signal is homodyne detected with E2. Taken from Bonadeo et al.

[88].
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(a)
(b)

–80 –40 0 40 80
Detuning (μeV)

Fig. 7.10 Near-field microscopy and coherent nonlinear optical spectroscopy. (a) The image of

the degenerate DT response of a typical QD obtained at low temperature using a near-field

scanning optical microscope. Both laser fields are fixed at the center of the resonance. The image

is 2 μm by 2 μm. (b) The degenerate coherent nonlinear optical spectrum of the same dot. E1 and

E2 are spatially placed at the center of the image in (a). Data are taken from the 62 Å GaAs well

with growth interruptions.

Fig. 7.11 Transient DT from single QD states. The transient DT spectrum obtained at zero probe

delay is compared to the CW DT spectrum in (a). The decay of the DT from a single state as the

probe delay is varied is shown in (b). All data is obtained with a ~ 0.5 μm aperture. Data were

taken from the 42 Å growth interrupted GaAs quantum well.
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states have a width of approximately 350 μeV, the transform limited bandwidth of a

6 ps pulse. Further confirmation that the narrow resonances observed in the PS DT of

Fig. 7.11 correspond to excitons localized to single QDs comes from a comparison with

degenerate CW DT, shown below the PS DT in Fig. 7.11(a). By fixing the PS laser

position at one of these resonances (e.g. state C), one can therefore resonantly excite

and probe a single excitonic QD state.

The decay of the DT as the delay is scanned with the laser frequency fixed at the

state labeled C is shown in Fig. 7.11(b). An analysis of the DT signal from a two-level

system consisting of only the ground state and the | y〉 single exciton state yields

DT t e dtyg
i t  Im[ ( ) ]

–

(3) 2∝
∞

∞

∫ ρ Ω

∝(  – ) ( )(0) (0) –ρ ρ θ τ τ
gg yy e ygΓ (7.6)

for the dependence of the DT on the delay. The integration is carried out over one pulse

and δ-function pulses have been used. τ is the E1 – E2 delay and θ(t) is the Heavyside

(step) function. Coherent artifact terms within a pulse width of zero delay are ignored.

Thus, the decay of the homodyne detected DT is simply a measure of the exciton

lifetime, T1 = 1/Γyg.

The DT vs. probe delay in Fig. 7.11(b) is fit to a single exponential, giving a

lifetime for state C of 41.2 ± 2 ps. Data within one pulse width (6 ps) from zero delay

is omitted from the fit. The decay of the DT from other single QD states investigated

have all been consistent with exponential decay with lifetimes in the range 25–50 ps.

The exciton relaxation rate can be written Γ = Γsp + Γnr, where Γsp and Γnr account

for radiative (spontaneous emission) and nonradiative decay processes, respectively.

Calculations in interface fluctuation QDs find radiative lifetimes of about 75 ps for a

5 nm thick QW and a lateral extent of about 40 nm [122], about 100 ps for a 3 nm thick

QW and a lateral potential depth of 8 meV [123], 175 ps for a 10 nm thick QW and a

lateral extent of about 50 nm [124], and 27 ps for a 3 nm thick QW and a lateral extent

of about 35 nm [125]. Note that the first three of these values are radiative lifetimes,

whereas the last value (by Takagahara) is an overall relaxation rate, including both

radiative recombination and phonon assisted exciton migration. In Takagahara’s model,

phonon assisted decay is the dominant decay channel, whereas the radiative lifetime

alone is calculated to be about ~200 ps. The measured lifetimes are systematically

smaller than the calculated radiative lifetimes, indicating that nonradiative decay may play

an important role in the decay of excitons confined by interface fluctuations in thin QWs.

From both the CW and transient DT results, it can be concluded that the pure

dephasing of the exciton dipole coherence is at most comparable to the exciton energy
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relaxation. This is distinct from higher dimensional structures such as bulk and wide

quantum wells without growth interrupts, in which the extended nature of the excitonic

states makes them more susceptible to interacting with the lattice and with other excitons,

leading to a quick loss of the optically induced coherence before the decay of the

exciton [86].

Magneto-excitons

An external magnetic field provides an extra important experimental knob in exploring

the physics behind the QD optical properties. It has been essential in studying the

exciton g factor, diamagnetism and dark states.

In the Faraday configuration, both the heavy-hole and the conduction band split

under nonzero magnetic field, leading to a Zeeman splitting as well as a diamagnetic

shift of the exciton doublet of a QD. More importantly, the magnetic field diminishes

the band mixing and restores the circularly polarized optical selection rules for excitonic

transitions, as shown in Fig. 7.2. This behavior was indeed observed in many QD

systems, including self-assembled QDs [78,79,93,113] and interface fluctuation QDs

[77,126]. Zeeman splitting in these systems is easily resolved, providing a direct measure

of exciton g factor. The diamagnetic shift of the excitons is a direct result of the

perturbation to the exciton envelope function by the magnetic field and is sensitive to

the size of exciton wavefunction. In References [127,128], it has been shown that the

size of a QD estimated using the magnitude of its diamagnetism is consistent with that

determined by other means (such as STM).

Figure 7.12(a) is the PL spectra of a typical GaAs interface fluctuation QD as a

function of the magnetic field, showing a Zeeman splitting and a diamagnetic shift. The

optical selection rules are determined by analyzing each emission peak, which is found

to be circularly polarized. The exciton g factor and diamagnetic coefficient for this

particular QD are found to be ~1.2 and 25 μeV/T2 respectively. Details of such

measurements are discussed in Reference [126]. Similar information can be obtained

using degenerate DT. This is shown in Fig. 7.12(b), where co-circularly polarized E1

and E2 are used.

The direction of the magnetic field relative to the growth direction of a QD

system can be arranged to break the symmetry and introduce band mixing [79,129]. The

two optically forbidden (dark) transitions between the heavy hole and the conduction

levels (angular momentum change by 2h) become optically active. Bayer et al. has

shown in [129] in a self-assembled quantum dot system that by tilting the magnetic field

away from the growth direction, the transition energies of all four possible transitions
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Fig. 7.12 Optical spectroscopy of magneto-excitons. (a) PL and (b) degenerate CW DT spectra of

a typical QD as a function of an external magnetic field, showing Zeeman splitting and diamagnetic

shift. The higher (lower) energy state is determined to follow σ+ (σ–) polarized selection rules. In

(a), the spectrometer accepts linearly polarized light and therefore is sensitive to both states. In (b),

E1 and E2 are co-circularly polarized (either σ+ or σ–). Data were taken from the 42 Å growth

interrupted GaAs well. Taken from Reference [111].

as a function of the field strength can be mapped. By doing that, both the electron and

hole g factors were extracted. In the Faraday configuration, only the exciton g factor,

which is a combination of electron and hole g factors, can be obtained.

One of the particularly interesting phenomena under the static magnetic field is

known as the Overhauser effect [130,131] and is a result of the hyperfine interaction

between the electron spins and the nuclear magnetic moments of the lattice. With a

circularly polarized CW excitation beam, an optically induced steady state population

of spin oriented electrons creates a local magnetic field, which polarizes the lattice

nuclear magnetic moments via the hyperfine interaction. The depolarization of the

nuclear spin is typically very long, allowing for an effective nuclear magnetic field to

build up. The total mangetic field acting on the exciton becomes a combination of both

the external static magnetic field and the effective nuclear field. The effective nuclear

field is zero if an unpolarized excitation beam is used. The difference of the exciton

transition energy between the polarized and unpolarized excitation cases is the Overhauser

shift. This effect was clearly observed in GaAs interface fluctuation QDs and was used

to realize optical nuclear-magnetic-resonance (NMR) [60,61]. Since the optical excitation

and therefore the nonzero net hyperfine interaction can be confined within a particular

dot, the spatial resolution of the optical NMR measurements can be exceptionally high.

These experiments are discussed in a separate chapter in this book (see Chapter 6).
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7.3 Coherent optical control of single exciton states

In section 7.2, it was shown that the linear and coherent nonlinear optical response from

single QDs resemble those of atoms in many ways. Single QD excitons under resonant

excitation can be regarded as two-level quantum mechanical systems, exhibiting behaviors

that have no classical analog (such as photon antibunching in emission and Rabi oscillations

in excitation, see section 7.4). This implies the possibility of controlling single exciton

states via constructive and destructive quantum interference using coherent and resonant

optical fields, in ways analogous to those employed in atomic and molecular systems

[132–139].

Early experiments in higher dimensional semiconductor materials have shown

that the photocurrent [140], electron-LO-phonons scattering [141], charge oscillations

[142], cyclotron emission [143], exciton population and/or orientation [144–146], coherent

acoustic phonon [147], exciton-polariton [148] and the electron-plasmon [149] can be

controlled using coherent optical fields. This section discusses the simplest scheme in

which a coherent optical manipulation of single exciton state population is realized

[105] in interface fluctuation QDs. Identical experiments have also been reported for

self-assembled QDs [150–152].

A typical GaAs QD is chosen for this study, whose PL, PLE spectra are shown

previously in Fig. 7.6. The fine structure splitting of the first excited states at ε1 is

~60 μeV. The transition frequencies of these substates, | x〉 and | y〉 are ωxg and ωyg. This

is shown in Fig. 7.13(a). Coherent optical control and wavepacket interferometry were

achieved using a sequence of two phase-locked laser pulses with a controllable delay

Spectro-
meter

τ

τc

τt

|y〉
|x〉

|y〉
|x 〉

ωyg
ωxg

Crystal ground

Excited
exciton

Ground
exciton ε0

ε1

(a) (b)

Fig. 7.13 Wavepacket interferometry setup. (a) Two optical pulses excite the excited states | x〉 and

| y〉 at ε1, which relax nonradiatively to the ground exciton states. The photons due to the recombination

of the ground exciton states are detected. (b) Wavepacket interferometry setup. The two pulses

with controlled delay τ are produced by sending a laser beam into this subwavelength-stable

Michelson interferometer. The total delay τ is controlled by two components, a coarse delay (τc)

and fine delay (τf) provided by a mechanical and piezoelectric translation stages respectively,

giving τ = τc + τf.
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relative to one another [153–157] (see Fig. 7.13(b)). The laser is tuned to the | x〉 and

| y〉 states at ε1 and has a 420 μ eV bandwidth (5-ps pulsewidth), broad compared to the

| x〉 and | y〉 splitting but sufficiently narrow so as not to excite other higher excited states

of the QD.

In the low excitation limit (only single photon processes are considered) and for

a delay of τ between the two pulses, the total excited state wavefunction is a coherent

superposition of the excited state wavefunctions created by both pulses with a time

evolution:

| Ψ(t, τ)〉 = | Φ(I)(t)〉 + |Φ(II)(t + τ)〉 (7.7)

where | Φ(i)(t)〉 is the excited state wavefunction generated by the pulse i (i = I or II).

Equation (7.7) represents the sum of two quantum mechanical paths connecting the

initial and final states. Quantum interference between these two paths is observed by

measuring the excited state population generated by the pulse pair as a function of the

time delay between the two pulses. The population is proportional to

–

( , ) | ( , )

∞

∞

∫ 〈 〉Ψ τ Ψ τt t dt

= [ |  + |  + 2Re ( )|  + ) ]

–

(I) (I) (II) (II) (I) (II)

∞

∞

∫ 〈 〉 〈 〉 〈 〉Φ Φ Φ Φ Φ Φ τt t dt( (7.8)

As τ is changed, the first two terms in this expression remain unchanged while the last

term oscillates as the interference between the two quantum mechanical paths goes

from constructive to destructive.

The last term in Eq. (7.8) is the cross-correlation function of the excited state

wavefunction generated by the first and second pulses. A measurement of this function

yields important information about the temporal evolution of the wavefunction and is

the basis for wavepacket interferometry. A complete characterization (amplitude and

phase) of the wavefunction generated by one pulse can be obtained if the wavefunction

generated by the other pulse is known. In the case that both pulses are identical, Eq.

(7.8) becomes the auto-correlation function of the excited state wavefunction and allows

us to extract the decoherence time of the system as well as the dynamics of the

wavefunction’s temporal evolution.

In the following, three experiments are discussed with increasing degrees of

complexity in the final state wavefunction. In these experiments, the excited state population

including the quantum interference effect is measured by monitoring the PL from the

exciton ground states at ε0 (see Fig. 7.13(a)), to which the state | x〉 and | y〉 states at ε1

decay via acoustic phonon emission [18]. The quantum interference can be controlled
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by changing the delay τ and, as will be shown below, the polarization between the

pulses. The control of τ is accomplished by sending a laser pulse through a subwavelength-

stable Michelson interferometer, as shown in Fig. 7.13(b).

In the simplest experiment, both pulses (E1(t) and E2(t)) are co-polarized along

the x-axis (see lower inset of Fig. 7.14) and thus only excite the | x〉  state. The excited

state wavefunction created by both pulses is | Φ(I)(t)〉 = | Φ(II)(t)〉 = 〉 |–e c xi t
x

xgω . The

constructive and destructive interference between | Φ(I)(t)〉 and | Φ(II)(t + τ)〉 leads to

oscillations of 〈Ψ(t, τ) | Ψ(t, τ)〉 as a function of τ according to Eq. (7.8), which causes

similar oscillations of the PL intensity from states at ε0. Such oscillations around τ ~

40 ps are shown in the upper inset of Fig. 7.14. The oscillation period is the inverse of

2πωxg. The oscillation amplitude as a function of τ is shown in Fig. 7.14 as large filled

circles. The auto-correlation function of the laser pulse is represented by open circles.

Strong oscillations persist after the duration of the first pulse.

The reduction in the amplitude of the oscillations for increasing pulse delay

observed in Fig. 7.14 is a consequence of the decoherence processes discussed earlier.
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Fig. 7.14 The amplitude of the oscillations in PL as a function of τ (large filled circles) when both

pulses are co-polarized along the x-axis, thus exciting just the | x〉 state (lower inset). This measures

the auto-correlation function of the excited state wavefunction. The details of the oscillations due

to quantum interference are represented by small dots which can only be resolved with an expanded

scale. The upper inset show such an expansion around τ ~ 40 ps (corresponding to the shadowed

region in the main plot). The amplitude of the oscillations shows an exponential decay over time.

The auto-correlation function of the pulse is also plotted for reference (open circles). Figure is

taken from [105].



Coherent optical spectroscopy and manipulation of single quantum dots 309

A calculation using the density matrix equations which includes dephasing of the optically

induced quantum coherence shows that the time integrated PL intensity as a function of

τ is I Txg( ) (1 + cos ( )exp(– / )),1
2 2τ ω τ τ∝  where 1/T2 is the dephasing rate. As seen in

Fig. 7.14, the envelope of the oscillation fits an exponential decay and provides an

alternative way of measuring T2. In this particular case, T2 ~ 40 ps, in excellent agreement

with the value obtained from the PLE linewidth (  = 39ps).–1γ xg  The loss of coherence

limits the ability to coherently manipulate the wavefunction for time scales > T2.

In the second experiment, the polarization of the co-polarized pulse sequence

with respect to the sample’s eigen-axis (see lower inset in Fig. 7.15(a)) is rotated to

generate a non-stationary (time dependent) wavefunction composed of a superposition
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Fig. 7.15 Auto-correlation and cross-correlation function. (a) The excited state auto-correlation

function of the excited state wavefunction, as in Fig. 7.14, but for both pulses co-polarized and

rotated to equally excite both the | x〉 and | y〉 states. The temporal evolution shows oscillations of

the wavefunction between | x〉 and | y〉. The oscillation period corresponds to the inverse of the

difference frequency between the ωxg and ωyg. (b) The cross-correlation function between two

excited state wavefunctions generated by orthogonally linearly polarized optical pulses. The relative

phase of the two superposition of states produced by each pulse differs by π. The top inset in each

figure shows the corresponding calculations in the absence of dephasing. The PL is detected near

45° relative to the y-axis to ensure that the emission is proportional to the total population and not

just the population in one eigenstate. Figure is taken from [105].
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of states | x〉 and | y〉. The polarization of the pulses is adjusted to compensate for the

difference in the oscillator strength of the x- and y-transition to equally excite both

states. The wavefunction generated by each pulse is now

| ( )  = | ( )  = |  + |(I) (II) – –Φ Φ ω ωt t e c x e c yi t
x

i t
y

xg yg〉 〉 〉 〉 (7.9)

where the coefficients cx and cy are similar in magnitude and are defined to be real. The

nonstationary dynamics of the excited state wavefunction are seen as a slow oscillation

that modulates the rapid oscillation shown in the upper inset of Fig. 7.15(a). More

specifically, the auto-correlation function of the excited state wavefunction (see Eq.

(7.8)) shows how it oscillates between two orthogonal states, | x〉 + | y〉 and | x〉 – | y〉, as

the envelope function goes from a maximum to a minimum as a function of time. The

slow oscillation period, Tosc = 69 ps, as determined, by this experiment (the main plot

of Fig. 7.15(a)), is in excellent agreement with the fine structure splitting. Again, the

exponential decay of the envelope is due to the loss of coherence.

In the third experiment, the polarization of the first pulse is rotated by π/2 relative

to the previous experiment (see the lower inset of Fig. 7.15(b)) and therefore generates

a wavefunction where the relative quantum phase between | x〉 and | y〉 is shifted by π
relative to that created by the first pulse. That is, the first pulse leads to | Φ(I)(t)〉 =

c e x c e yx
i t

y
i txg yg– –|  + |ω ω〉 〉  while the second pulse leads to | Φ(II)(t)〉 = c e xx

i txg– |ω 〉  +

c e y ey
i t iyg– | .ω π〉  The quantum interferogram shown in Fig. 7.15(b) now reports on the

cross-correlation function of the two wavefunctions as described by Eq. (7.8). The plot

shows a minimum at t = 0 and a maximum at t = Tosc/2, 180circ out of phase with the

second experiment.

In these experiments, the relative quantum phase of the superposition of states is

controlled and a simple target wavepacket is produced by varying the polarization of the

excitation pulses. This demonstrates the feasibility of more complex wavefunction

engineering in single quantum dots.

7.4 Rabi oscillations of single quantum dots

Results presented thus far in this chapter have shown that many different optical properties

of excitons confined to single QDs can be understood in terms of the discrete-level

model of Fig. 7.2. These experiments used weak optical fields, characterized by a Rabi

rate for a CW field that is smaller than the QD dephasing rate, or a time-integrated Rabi

rate for the fields in the transient experiments that was smaller than π. Strongly-driven

QDs, on the other hand, should show evidence of Rabi oscillations if the two-level

model is an appropriate description.
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Rabi oscillations are one of the most fundamental strong-field phenomena observed

in resonantly driven two-level systems. They are a direct result of the nonlinearities

inherent in a two-level system and have no classical analog [158]. They were first

described in the context of nuclear magnetic resonance [159,160], and observed in

atoms soon after the development of laser spectroscopy [161,162]. Rabi oscillations are

more difficult to observe in the solid state due to the fast decoherence times of solids

compared to atoms and molecules. With the advent of femtosecond spectroscopy, Rabi

oscillations in semiconductors were predicted [163], and experimental evidence has

been reported in free-carrier transitions in bulk [164], excitonic transitions in QWs

[165–168], and most recently in impurity-doped systems [169]. For QDs, Rabi oscillations

are only observed in interface fluctuation QD systems so far [106].

Rabi oscillations in delocalized excitonic systems are complicated by the presence

of many-body effects, especially at high excitation intensity. These effects modify the

discrete-level model used to understand the optical properties of excitonic transitions

[87]. However, an isolated discrete-level model is expected to be more accurate for an

exciton confined to a QD due to its decreased interactions with its local environment.

The observation of Rabi oscillations from QDs would not only further the

understanding of the optical properties of localized excitons, but also make possible the

control of the state of excitation of an individual quantum dot. A π-pulse corresponds to

one-half of a Rabi oscillation, and can be used to fully invert a two-level system. In the

case of excitons in quantum dots, a π-pulse represents the creation of an exciton with

unity probability. Pulse areas less than π can be used to create coherent superpositions

of the crystal ground state (no exciton state) and the one exciton state. This type of

coherent control of the state of a quantum dot has potential applications for QD-based

optoelectronic nanoscale devices, wavefunction engineering with QDs, and quantum

computing. In particular, a quantum-controlled NOT gate as described in [1,170] is

based on the ability to shape the state of excitation in single QDs with π-pulses and

π/2-pulses.

Rabi oscillation theory for two-level systems

A pulsed pump field (E1) nearly resonant with a two-level system turned on at t = 0 will

induce coherent oscillations of the populations of both the ground and excited state as

a function of pulse area, Θ. It is defined as

Θ( ) = ( )

–

t t dt

t

∞
∫ ′ ′ (7.10)
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where the Rabi rate, ( ) = ( ) + ,2 2t R t δ R(t) is the on-resonance Rabi frequency,

and δ is the laser detuning. For the data shown in this section, δ = 0, so (t) = R(t).

These oscillations persist for times shorter than the lifetime of the excited state, T1 = 1/Γ,

and can be expressed simply as sin2(Θ(t)/2) for the excited state (exciton) population. A

straightforward way to detect the oscillations is to measure the absorption of a weak

probe beam (E2). A DT measurement that homodyne-detects the nonlinear optical signal

with E2 and corresponds to the probe transmission with the pump on minus the probe

transmission with the pump off, will show Rabi oscillations because the DT is proportional

to the exciton population.

The experiment performed measures the change in transmission of E2 induced by

E1. A strong E1 field can contribute to excess detector noise as well as mix with the E2

at the detector leading to an undesirable background signal. To avoid these complications,

the Πx transition of the exciton fine structure doublet is probed while the Πy transition

is pumped. A linear polarizer in front of the detector is set to block the pump (E1).

Neglecting spin relaxation within the exciton doublet (which can be confirmed via other

means), this configuration only allows for detection of signal that is based on a

nonequilibrium population distribution created by the pump, followed by absorption of

the weak probe (E2). There are no terms homodyne detected with the pump or zero

delay coherent artifact terms to complicate the analysis. The binding energy of the

biexciton state keeps the exciton to biexciton transition well detuned from the resonant

ground state to exciton transition (see section 7.5). Though the biexciton level is never

directly probed in these strong-field experiments, the presence of the Coulomb correlation

between the | y〉 exciton and the | x〉 exciton is responsible for the observation of cross-

polarized signal [89,171]. The DT is monitored as a function of pump (E1) power, and

uses degenerate E1 and E2 fields, since the splitting ωyg – ωxg ≈ 20 μeV is much less than

the laser bandwidth.

The pump pulse E1(t) = 1/2(E1(t)e–iΩt + c.c.) ŷ  is used to excite the single QD

exciton, ρyy(t), which then decays back to the crystal ground state, ρgg, at the relaxation

rate, Γyg. Here, Ω1 = Ω2 ≡ Ω. The weak probe pulse E2(t) = 1/2(E2(t)e
–iΩt + c.c.) x̂

(delayed with respect to the pump by a time τ) upon absorption by the excitonic resonance

creates an induced nonlinear optical polarization field, P(NL)(t) = 1/2(P(NL)(t)e–iΩt +

c.c.) x̂,  where

P t E t t t e dtNL

t

gg xx
i t txg( )

–

2
( – )( – ))  ( )( ( ) – ( )) .( ∝ ′ ′ ′ ′

∞

′∫ ρ ρ δ γ (7.11)

where δ = Ω – ωxg is the laser detuning. The quantity (ρgg(t) – ρxx(t)) is the nonequilibrium

population induced by the pump, zeroth order in the probe. Thus, ρxx(t) is zero since the
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pump is Πy polarized. Time-integrated homodyne detection of the polarization field

with the probe field is given by

DT P t E t dtNL  ) ( )

–

( )
2∝

∞

∞

∫ ( (7.12)

Equations (7.11) and (7.12) are used in this section to numerically calculate the theoretical

DT signal from a two-level excitonic system, assuming that δ = 0, and the pump and

probe field amplitudes are real and described by hyperbolic secants. The decay rates are

chosen to be 1/Γyg = 1/γyg = 1/γxg = 35 ps (similar to measured rates shown in section

7.2). The DT can be measured as a function of pump pulse area, accomplished by

evaluating Eq. (7.12) for a range of pump field amplitudes and a probe delay less than

the lifetime but larger than the pulsewidth. Calculations of the DT for three different

probe delays, 10 ps, 15 ps, and 20 ps, all clearly show that Rabi oscillations should be

observed with this type of experimental configuration from an ideal two-level system.

Strong-field differential transmission: Rabi oscillations of single QD excitons

The strong-field response of a single QD exciton based on the DT configuration discussed

above was investigated monitoring the DT of E2 as a function of both the probe delay

(τ) and the pump field strength (E1).

Figure 7.16 shows the DT as a function of probe delay, for various E1 powers,

obtained by tuning the center wavelength of the laser to the QD state under investigation.

Each case may be separated into a part driven by the pulse which is consistent with Rabi

rotation in a two-level system, and a part after the pulse duration which is due to

relaxation. The decay time at the lowest power is a measure of 1/Γyg for the | y〉 exciton

state. The level of excitation induced by the E1 is given approximately by sin2 (Θ(t)/2).

Thus, the differential probe (E2) absorption (transmission) is minimal (maximal) for

Θ(t) = π, 3π, 5π, . . . For a pump (E1) pulse with a power that corresponds to Θ(∞) = π,

the DT signal increases until the pump pulse is completely gone, then it decays at the

relaxation rate. For powers that correspond to π < Θ(∞) < 2π, the DT signal increases,

then decreases as the exciton is stimulated back to the crystal ground state. The remaining

probability of finding an exciton then decays to the ground state at the usual relaxation

rate. At Θ(∞) = 2π, sin2(Θ(∞)/2) = 0, so the exciton that was created with unity probability

by the first half of the pump (E1) pulse is then stimulated (or driven) back to the crystal

ground state by the second half of the pulse. This type of behavior is exactly what is

shown by the data to the left in Fig. 7.16. The data is an indication that the pump pulse

can be tuned to have pulse areas between zero and 2π.
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The calculated DT as a function of probe delay on the right of Fig. 9.16 clearly

illustrates the predicted DT as a function of probe (E2) delay in the presence of a strong

E1 pulse. Here, the power of E1 is indicated in each plot by the total pulse area, Θ(∞).

The calculation is based on a numerical solution of Eq. (7.11) and Eq. (7.12) from the

density matrix equations with a hyperbolic secant pump pulse used as the source term.

The calculation for each plot of Fig. 7.16 is obtained with a constant pulse area while

the probe delay is varied. The relaxation rate for the calculation was taken from a fit to

the low power data. The agreement between the measured DT and the calculated DT

further establishes that the data is consistent with the onset of Rabi oscillations.

The Rabi oscillations can be seen more explicitly by examining the DT as a

function of E1 power for fixed probe delays. For probe delays such that T < τ < 1/Γyg,

the DT should show oscillations as the pump (E1) field strength is increased, since the

level of excitation is proportional to sin2(Θ(∞)/2) for probe delays longer than the pulse

width.

Measured DT Calculated DT

4.4 kW/cm2

8.0 kW/cm2

29 kW/cm2

59 kW/cm2

π/2

π

3π/2

2π

–50 0 50 100 150 200
Probe delay (ps)

–50 0 50 100 150 200
Probe delay (ps)

Fig. 7.16 DT vs. probe (E2) delay for various pump (E1) powers, obtained from a typical QD in

the 42 Å well. The experimental data is shown on the left, with the peak intensity for the E1 pulse

shown in the upper right of each plot. The calculated DT is shown to the right, with the E1 power

expressed as a total pulse area in the upper right of each plot. The vertical axis is the same for all

the data plots, and for all the theory plots. The shaded region shown with each plot is the pulse

autocorrelation (for a constant power pump), in arbitrary vertical units. Taken from Stievater et al.

[106].
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Figure 7.17(a) shows the data obtained from a single excitonic QD resonace. The

DT is measured at two different probe delays, τ ≈ 11.5 ps, and τ ≈ 18.5 ps. The x-axis

is the square root of the measured optical power, proportional to the amplitude of the

electric field at the QD. Both delay values show an oscillatory behavior, with the first

peak corresponding to a pump (E1) pulse with Θ(∞) ≈ π , the first trough corresponding

to Θ(∞) ≈  2π and so on. The oscillations imply that the excitation of the | y〉 QD exciton

can be coherently controlled by the strength of the pump pulse, and are consistent with

the DT shown as a function of delay in Fig. 7.16. The pulse can be tuned to have pulse

areas between zero and 2π.

The oscillation period in Fig. 7.17(a) is proportional to μyg, the | g〉 → | y〉 dipole

moment. Measuring this dipole moment from the data is therefore predicated upon an
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Fig. 7.17 (a) Rabi oscillations of a single QD state. Measured DT vs. pump (E1) field amplitude

for τ ≈ 10.5 ps and τ ≈ 18.5 ps. Both probe delays show behavior consistent with Rabi oscillations.

Data are taken from a typical QD in the 42 Å well. (b) Calculated DT in the presence of delocalized

excitons. By including a density dependent scattering rate from delocalized excitons in the QD

relaxation rate, the qualitative features of the decay in (a) can be reproduced. Taken from Stievater

et al. [106].
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accurate knowledge of the pump field shape and amplitude inside the sample. Using Eq.

(7.10) and the Poynting theorem for a field inside a dielectric, the average pump power

incident on the cryostat (before chopping) can be related to the pulse area using a

refractive index of 3.6, a beam waist of 20 μm (diameter) and T = 3 ps. This yields a

dipole moment of about 78 Debye for this state. This value compares well with predictions

of dipole moments for interface fluctuation QDs with similar sizes, as discussed in

section 7.2.

Understanding the decay: coupling to delocalized excitons

Though the data in Fig. 7.17(a) show the oscillatory behavior expected for a two-level

quantum system, the strength of the oscillations decreases faster as a function of pulse

area than predicted by the simple two-level model. Numerical calculations based on Eqs

(7.11) and (7.12) were re-evaluated for the full four-level system of Fig. 7.2, with a

biexciton binding energy of 3.5 meV (see section 7.5). The results of these calculations

showed that the inclusion of the biexciton state alone cannot explain the loss of signal.

Also, calculations including center-of-mass excited states with reasonable state separations

of ~meV did not result in a decay of the oscillations consistent with the data.

In ensemble measurements, an increase in the exciton relaxation rate with relatively

high pump power has been observed [172]. An increase in relaxation rate with pump

intensity could be due to a local heating effect, or could arise from exciton–exciton

interactions. The former is unlikely due to the low average powers used for these

measurements. Though these dots are adequately described as simple isolated systems

at the low excitation intensities typically used for spectroscopy in the χ(3) limit, exciton–

exciton interactions may become significant at higher excitation level due to their weak

lateral confinement. Indeed, PL imaging studies of narrow GaAs/AlGaAs quantum

wells find broad resonance features (degenerate with sharp PL lines) that emerge with

an increase in power, and show data that suggests the presence of delocalized excitons,

especially in the interface fluctuation type of structures [71,173]. Also, biexponential

photon echo decays attributed to a class of delocalized excitons nearly degenerate with

localized excitons have been observed in similar structures [172]. Though direct

spectroscopic evidence of such states is absent when the QDs are probed with high

spatial resolution with weak fields, they may indirectly affect the QD resonances by

creating potential scattering channels, especially when strongly excited. A QD characterized

by stronger confinement may turn out to be less susceptible to these effects.

The role of those delocalized excitons has been investigated by adding an equation

of motion for an incoherent population of delocalized states. The equation of motion for

the delocalized exciton density is taken to be
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ṅ
I t

ndel del del
del = –  +

( )Γ Ω
α

h
(7.13)

The properties of delocalized excitons relating to Coulomb scattering and the absorption

coefficient were assumed to be close to the two dimensional case for the interface

fluctuation structures. The following is an analysis of the effect of delocalized states on

the Rabi flop experiment discussed in the previous section.

The lifetime of these delocalized states is assumed to be about 100 ps, based on

measurements from a 4.5 nm QW [174]. The absorption coefficient for the delocalized

excitons is taken to be αdel = 0.1%. This value is approximated from the measured value

of 5 × 10–3 in a 8.0 nm QW [175], with the additional assumption that our value would

be smaller because the QD resonances are in the tail of the absorption continuum of

these delocalized states [18]. The peak laser intensity is given by I t E( ) = 1
(0) sech2 (t/T).

For the peak intensity of 4.4 kW/cm2 (approximately a π /2-pulse, see Fig. 7.16) the

delocalized exciton density is only about 8 × 107/cm2, consistent with an overall optical

response that is dominated by the QD resonance.

The localized excitons can scatter with the delocalized excitons and a density

dependent relaxation term results. Such nearby states could also contribute to a shift in

the exciton resonance frequency. However, the density dependent scattering was found

to be more effective in causing the damping in the DT and thus the effects of the shift

were neglected. The density dependent relaxation rate is modeled as

Γ Γyg ygt bn t( ) =  + ( )(0)
del (7.14)

where b = 0.75 × 10–7 μeV cm2 [174,176,177] and hΓyg
(0)  = 10 μeV, taken from the low

power measurements of the relaxation rate of the QD state. For peak intensities

corresponding to a 2π-pulse for the data in Figs 7.17 and 7.16, the relaxation rate would

increase by about a factor of eight, according to Eq. (7.14).

Even if the total population of delocalized excitons is small, the DT can be

sensitive to a change in the scattering rate of few tens of μeV for the localized exciton.

Figure 7.17(b) shows the calculated DT in the presence of scattering from delocalized

excitonic states, which reproduces the qualitative features of the data in Fig. 7.17(a).

For the purpose of one-bit rotation, the pulse area only needs to be between 0 and

2π. As long as the effects from delocalized states are negligible within  this excitation

range, there would be no concerns from a quantum logic operation standpoint. For QD

structures that are more isolated, such as self-assembled QDs and nanocrystals, it is

expected that the delocalized states be greatly suppressed, making it possible to achieve

full Rabi oscillations with pulses greater than 2π. To date, however, Rabi oscillations

have not been observed in those structures, possibly because of their relatively small

dipole moments which require a π pulse to have very high field intensity.
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7.5 Biexcitons in single QDs

So far, only studies on one of the exciton doublets in a dot have been discussed. Since

the two orthogonally polarized ground state excitons, once excited, are both confined to

the same QD with size comparable to the exciton Bohr diameter, it is predicted that they

strongly interact via Coulomb coupling. Due to this interaction, the total energy of the

bound two-exciton state, or the biexciton state, differs from the sum of individual

transition energies by ΔE, defined as the biexciton binding energy.

The history of the concept of biexcitons goes back to 1947, when Hylleraas and

Ore [178,179] predicted the existence of a stable bound positronium molecule (with

negative binding energy). This was then extended by Lampert and Moskalenko [180,181]

in predicting bound exciton–exciton molecules in semiconductors, similar to the

positronium case except that the mass of the electrons and positrons (holes) in solids is

different (under the effective mass approximation). Various calculations for the 3D case

based on variational methods have shown that the ratio between the biexciton and

exciton binding energies is a function of the ratio between the electron and hole effective

masses [182–187], known as the Haynes’ rule [188]. The exciton–exciton binding problem

in quantum wells, quantum wires and quantum dots is dealt with in [189–196]. It is

shown that quantum confinement increases the electron/hole overlap and therefore | ΔE |

increases (ΔE becomes more negative) as long as the confinement size is not too much

smaller than the exciton Bohr diameter; when the size of the biexciton envelope function

becomes too small, the Coulomb repulsive core of the four particle system takes over,

leading to a rapid decrease of | Δ E | towards zero and then an increase as ΔE crosses the

zero from negative to positive [190].

Experimental evidence of biexcitons based primarily on PL has been found in

various QD systems, including self-assembled QDs (see for example, References [74,79])

and interface fluctuation QDs [16,173]. It was found that the 3D quantum confinement

leads to enhanced exciton–exciton binding. This section, however, will focus on coherent

and resonant manipulation of the biexciton states. The coherent nonlinear optical

spectroscopy of biexcitons at the single QD level has only been achieved in GaAs

interface fluctuation QD systems [112]. Due to the discrete nature of the density of

states, the coherent optical response from a single QD biexciton is expected to be

similar to that of a diatomic molecule following the model discussed in Fig. 7.2.

Coherent nonlinear optical spectroscopy of single QD biexcitons is important

since it directly probes the coherences between the two correlated excitons, which

cannot be studied using PL-based techniques. In the language of quantum computing,

these are the coherences between two qubits. One such example is the two-photon



Coherent optical spectroscopy and manipulation of single quantum dots 319

coherence (TPC) between the ground and the biexciton states introduced in section 7.1.

The relatively long dipole coherence of excitons discussed in the previous sections does

not guarantee a long-lived TPC, due to the exciton–exciton Coulomb interaction that is

not present when only a single exciton is involved in the optical excitation. Therefore,

an explicit measurement of the TPC decay dynamics is important. We show in this

section that the TPC of the interface fluctuation QDs has a decay rate comparable to that

of the exciton dipole coherence.

Other important parameters include the biexciton lifetime and the biexciton transition

dipole moment. The role of the exciton–exciton Coulomb correlation to these parameters

can be explored using nonlinear optical spectroscopy.

Excitation of single QD biexcitons using CW fields

Biexcitons can be formed using nonresonant optical excitation. The PL from the biexciton

recombination can be monitored to provide evidence for the presence of the biexciton

state. In PL spectroscopy, a single QD biexciton is formed by capturing two nonresonantly

excited electron–hole pairs. The recombination of a biexciton is a stepwise process. In

the first step, the biexciton recombines to form an exciton by emitting a photon. In the

second step, the resulting exciton radiatively recombines. The two photons are of different

energies; the first photon is lower in energy by | ΔE | due to the exciton–exciton binding.

Since it takes two electron–hole pairs to form a biexciton and an exciton is formed in a

dot primarily by directly capturing one e–h pair, the emission intensity of the biexciton-

to-exciton transition depends nonlinearly (quadratically in the ideal case) on the excitation

intensity whereas the emission intensity of the exciton recombination depends linearly

on the excitation intensity. This has been considered as the main signature of the existence

of biexciton states in various QD systems [16,73,77,78,93,173,197].

An example is shown in Fig. 7.18 for a 42 Å growth interrupted GaAs quantum

well. The inset is the PL spectrum from a 0.5 μm region of the sample. The excitation

field is tuned to 1632 meV (continuum of the QDs of interest). The low energy portion

of the spectrum is magnified by a factor of 10 for clarity. The integrated PL intensity of

three peaks at energies εX, εB and εB2 as a function of the excitation intensity is plotted

on a log-log scale. The peaks at εB  and εB2 show quadratic behavior and are attributed

to the biexciton-to-exciton recombination. The peak at εX, however, shows linear

dependence and is therefore from the exciton recombination. εB and εB2 are energetically

below εX and in the low energy tail of the overall response, suggesting that the exciton–

exciton binding energy is negative. It is, however, not possible in this measurement to

determine which exciton emission peak and biexciton-to-exciton emission peak are
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from the same dot. In other words, the binding energy cannot be precisely determined

using only nonresonant PL spectroscopy.

Fig. 7.18 Integrated PL intensity of peaks εX, εB and εB2 as a function of the excitation intensity.

Data are taken from a 42 Å growth interrupted GaAs quantum well.
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The resonant excitation of a single QD biexciton can be achieved using two-

photon absorption, i.e., the system can simultaneously absorb two photons from the

same laser beam to form a biexciton using the exciton state as a virtual intermediate

state. In this case, the absorption spectrum consists of not only the exciton resonance

but also a degenerate two-photon absorpton resonance | ΔE/2 | below the exciton resonance

(half of the total biexciton energy). In the case that | ΔE | is substantially larger than the

linewidth of the resonances, the excitation beam cannot be simultaneously resonant

with both dipole transitions involving the ground, biexciton and the intermediate exciton

states. In other words, the virtual intermediate state is far off the real exciton states. The

degenerate two-photon absorption is therefore extremely weak.

The two-photon absorption cross-section can be increased dramatically by using

two photons of nondegenerate energies, one near the exciton transition and the other

near the exciton-to-biexciton transition. This can be achieved using the excitation scheme
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of nondegenerate DT. In this configuration, the excitation of the biexciton via the virtual

intermediate state becomes enhanced because the virtual state now lies close to the real

exciton state. In addition, an extra contribution involving a real excitation of the exciton

population becomes significant due to the resonance condition.

Both two-photon absorption processes give rise to nonlineear optical signal in the

CW DT experiment, where E1 and E2 are tuned to the ground-to-exciton and exciton-to-

biexciton transitions respectively (inset of Fig. 7.19). The | y〉 exciton state is chosen by

using Πy polarized beams and the differential transmission of E2 is monitored. Both

contributions are negative, meaning that the transmission (absorption) of E2 is decreased

(increased) due to E1. Taking the second contribution as an example, the presence of E1

creates real exciton population, causing induced absorption of E2, which is absent

without E1.
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Fig. 7.19 DT spectra of a typical single QD biexciton. (a) PL spectrum taken from a 0.5 μm

aperture. (b) Degenerate CW DT spectrum taken from the same aperture. (c) Nondegenerate CW

DT spectra demonstrating the coupling between the resonances at εX and εB, which are identified

as coming from the exciton-to-ground and biexciton-to-exciton transitions respectively. In curve

A, B, E and F (C, D, G and H), E1 (E2) is fixed at εX (εB) and E2 (E1) is scanned. In curve A, B,

C and D (E, F, G and H), the differential transmission of E2 (E1) is monitored. Dots are experimental

data and solid lines are theoretical calculations. Data are taken from the 42 Å GaAs growth

interrupt well. Taken from Reference [112].



322 Gang Chen et al.

This coherent nonlinear optical signal, labeled as I NL
2  (the subscript indicates

that E2 is monitored) can be calculated based on the equations of motion [198]. The two

contributions mentioned above are a result of following two distinct perturbation paths

leading to the third order polarization between the exciton and the biexciton state. The

one that involves the real excitation of the exciton population via | E1 |2 is known as the

stepwise contribution and follows the path of

. (7.15)

It is incoherent because the phase of E1 disappears in the modulus squared. The contribution

involving a virtual intermediate state, however, follows the path of

ρ ρ ρ ρgg
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→ → → (7.16)

It is coherent and is due to the nonradiative two-photon coherence (between the ground

state and biexciton state) induced jointly by E1 and E2. For this term to contribute, the

two fields must be mutually coherent within the decay bandwidth of the two-photon

coherence.

The calculation yields
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where α = | μbxμygE2E1 |2, Δ1 = Ω1 – ωyg and Δ2 = Ω2 – ωby. μij is the dipole moment.

It is interesting to point out that if the differential transmission of E1 instead of E2

is monitored, only the two-photon coherence contributes to the coherent nonlinear

signal. This is because, in this case, | E2 |2 cannot create a real exciton population since

E2 is greatly detuned from the ground-to-exciton transition by | ΔE |. The perturbation

path is
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Therefore, by detecting E1, the signal that is due exclusively to the coherent pathway is

measured. The strength of I N L
1  is similar to the coherent (second) term in Eq. (7.17).

The importance of the two-photon coherence can be examined by comparing

I IN L N L
1 2 and . If the two-photon coherence decay is fast (γbg � Γyg), then I N L

2  would

be dominated by the incoherent (first) term and I N L
1  would be much smaller than I N L

2 .

Figure 7.19(b) is the degenerate DT spectrum taken from the same set of dots as

in Fig. 7.18 with both beams Πy polarized, selecting only the | y〉 states. The PL spectrum

is shown again in (a) for comparison.  The single exciton state | y〉 at εX will be focused

on in the search for the exciton-to-biexciton resonance using nondegenerate CW DT.

All experimental data are plotted as dots in Fig. 7.19(c). Solid lines are theoretical

calculations based on Eqs (7.17), (7.19) and (7.6). As discussed in section 7.1, due to the

QD elongation in the interface fluctuation QD systems, the resonant excitation of the

biexciton state follows Πx – Πx (or Πy – Πy) polarization [77,78,171]. For these

nondegenerate experiments, E1 and E2 are both Πy polarized. Detailed discussions of

the optical selection rules of biexcitons confined to asymmetric QDs will be presented

later in this section.

In the first experiment, the DT spectrum is taken as a function of Ω2 with hΩ1

fixed at εX. The differential transmission of E2 is monitored. The excitonic optical

nonlinearities led to peak B of Fig. 7.19(c) when E2 is tuned to εX, as expected. However,

due to the nondegenerate two-photon absorption discussed above, a negative resonance

(induced absorption of E2) at εB is observed, as indicated by A in Fig. 7.19(c). Recall

that the same resonance exhibits a quadratic PL dependence on excitation density.

Therefore, this resonance can be unambiguously attributed to the exciton-to-biexciton

transition in  the same QD that gives the excitonic recombination peak εX. The exciton–

exciton binding energy can be extracted by taking the difference between εB and εX,

yielding a ΔE of –3.360 ± 0.001 meV, about two orders of magnitude larger than the

excitonic linewidth. The binding energy ΔE is in general a function of the QD size,

shape, the electron-to-hole mass ratio and the dielectric constant ratio between the QD

material and the barrier material. The calculation in Reference [189] shows that for an

ideal 40 Å GaAs quantum well, the biexciton binding energy is about –1.5 meV. The

measured | ΔE | is more than two times larger than this value, indicating a strong effect

of the disorder and localization on the biexciton binding energy. This value is also larger

than other experimental results on GaAs quantum wells with comparable well width. In

this case, the quantum confinement reduces the spatial separation between the electron–

hole pairs and enhances their mutual attraction [190].

Also by monitoring the differential transmission of E2, but now fixing hΩ2 at εB

and scanning Ω1, it can be verified that the exciton resonance at εX is the only state that
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couples to the state at εB. This is shown in curve C and D of Fig. 7.19(c). Again, curve

D shows induced absorption of E2. The absence of signal in curve C is because the

exciton-to-biexciton transition cannot be directly accessed without excitation involving

the ground state.

In the next set of experiments, the differential transmission of E1 is monitored.

The corresponding spectra under various conditions are shown in E, F, G and H of Fig.

7.19(c).

In E, I N L
1  is plotted as a function of Ω2 near εB with hΩ1 fixed at εX. hΩ2 can also

be tuned to εX, recovering the excitonic coherent nonlinear optical response, as shown

in curve F. In curve G and H, however, Ω2 is fixed at εB and Ω1 is tuned around εX. The

response in curve E and H is predominantly positive, corresponding to reduced absorption

of E1, opposite to that of curve A and D. The lineshapes are in excellent agreement with

Eq. (7.19), as shown by the solid curves.

This signal in curves E and H results entirely from the two-photon coherence. Its

strength is measured to be of the same order as that of curves A and D and shows that

the decoherence rate of the biexciton (γbg) is comparable to the exciton relaxation rate

(Γyg). A more quantitative discussion is given below. Combining the signal strength of

I N L
1  and I N L

2  and the decay parameter derived above, the exciton-to-biexciton transition

dipole moment can be studied. This will be discussed later in this section.

The two-photon coherence and stepwise exciton population are also the sources

for the conventional degenerate two-photon absorption (as discussed earlier), where one

color excitation is used and the two-photon absorption resonance appears | ΔE/2 | below

the exciton resonance. At this spectral position, the two-photon coherence as well as the

incoherent population term is significantly reduced due to the off-resonant condition.

This can be seen by setting Ω1 = Ω2 in Eqs (7.17) or 7.19), yielding a coherent nonlinear

optical signal that is maximum midway between the two resonances [190] but is greatly

reduced in magnitude (compared to the fully resonant case) by (ΔE/2γ)2 � 2500. Similar

calculations were carried out in Reference [190]. Brunner et al. [16] reported a nice

experiment where the degenerate two-photon absorption resonance leading to the excitation

of a localized biexciton in a disordered GaAs quantum dot is identified by detecting the

subsequent PL. Such an experimental scheme, however, does not allow for the

determination of the portion in the signal that is due to the two-photon coherence which

makes it difficult to obtain information on the decoherence of the biexciton state. Due

to the limited signal-to-noise ratio for degenerate DT measurements, the two-photon

resonance between εB and εX is not observed in Fig. 7.19(b) for dots under investigation

(cases where the two-photon resonance is strong enough to be observable are discussed

in Reference [72]). The observation of two-photon peak for these particular dots (where
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the ratio between the fully resonant peak signal of curve E and the laser transmission,

ΔT/T, is about 10–4) would require the ratio between the noise (shot noise and the noise

from the transmitted field that is homodyne detected) and laser transmission be of order

10–8, which is difficult to achieve. It has been shown in this section that the nondegenerate

and fully resonant two-photon absorption, however, leads to a greatly enhanced signal

stength. This allows for a study of the biexciton decoherence dynamics, which will be

detailed in the next section.

Dephasing of biexcitons

The previous section has discussed the excitation of single QD biexcitons via resonant

nondegenerate two-photon absorption and the subsequent coherent nonlinear optical

response. From these data, information regarding the dephasing dynamics of the

biexcitonic system can be extracted. This type of information is critical for QD-based

quantum information processing, where long-lived quantum coherence is an essential

element.

As discussed in section 7.2, in higher dimensional semiconductor systems and in

the absence of disorder, the excitonic and biexcitonic states are characterized by extended

Bloch wavefunctions, which make them susceptible to purely phase changing interactions

with other excitons (excitation induced dephasing, EID [87]) as well as with the surrounding

crystal, leading to relatively fast dephasing of various coherences [199], even though

the excitonic and biexcitonic lifetimes are relatively long. In QD structures, 3D confinement

results in strong localization of the exciton/biexciton wavefunction and therefore reduces

the potential for interactions with the crystal. Since the density of states becomes

discrete and the excitation is resonant, EID type of interactions do not dominate in

experiments using narrow-band weak-field CW excitation, although evidence for such

interactions resulting from excitation of more extended excitonic states was found in

strong-field PS spectroscopy discussed in section 7.4. It is therefore expected that the

broadening of the biexcitonic state is dominated by energy relaxation in the weak field

limit.

From Eqs (7.17) and (7.19), it is straightforward to extract the decay parameters

of the biexcitonic system by studying the lineshape of the curves in Fig. 7.19. Specifically,

by setting Δ1 = 0 in Eq. (7.19), the lineshape for the experiment producing curve E of

Fig. 7.19(c) can be expressed as

I
i

i
NL

ug bg
1 2

2
  Im

[  – ]
,∝ α

γ γ Δ
(7.20)
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a simple Lorentzian with half width half maximum determined by the two-photon decay

rate γbg. Using the experimental data, it is found that γbg = 22.0 ± 0.7 ps–1, comparable

to the exciton dipole coherence decay rate of γyg = (19.5 ± 4.8 ps)–1 and exciton relaxation

rate of Γyg = (13.3 ± 5 ps)–1 obtained by repeating the analysis seen in section 7.2 on the

excitonic features in (b) and B and F of (c) in Fig. 7.19.

Analysis of the induced absorption lineshape in curve A of Fig. 7.19(c) based on

Eq. (7.17) gives γby of 10.5 ± 1 ps–1. Based on the model of Fig. 7.2 and an approximation

involving weak Markovian scattering of excitons [200, 201], the biexciton–exciton

dipole coherence decay rate

γ γ γ γ γby bg yg bg ygR =  +  – 2 (7.21)

where R denotes the correlation between the phase changing scattering events of two

different excitons confined in a QD. This correlation term is to account for the fact that

the phase changing scattering events for state | b〉 and state | y〉 may not be completely

unrelated. Taking the experimental values for γyg, γbg and γby, we note that the correlation

term is negligible. This is because pure dephasing events are insignificant. It is therefore

inferred that the biexciton state is radiatively broadened, as expected.

Assuming only radiative broadening of the biexciton state, the biexciton lifetime

can be inferred. However, the experiments discussed above are not suitable for a direct

measurement of the biexciton lifetime, since the decay of the biexciton population does

not enter until the fourth-order in the perturbation chain and these experiments measure

the third order response. In the next section, transient DT methodology is used to

directly measure the biexciton lifetime.

The dephasing dynamics discussed above are independent of the excitation density

within the χ(3) limit, verifying that excitation-induced-dephasing type of interactions are

insignificant for CW experiments due to the discrete density of states which results

from the quantization of the confined exciton/biexciton center of mass motion.

Direct measurement of biexciton lifetime

The biexciton lifetime is Γ Γ Γb by bx
–1 –1 = (  + )  according to Fig. 7.2 (assuming that

radiative recombination dominates). Γby or Γbx represents the rate that a biexciton decays

to produce an exciton and a photon. From a physics standpoint, it is interesting to study

how Γby or Γbx compares to Γyg or Γxg, since this ratio contains rich physics related to,

for example, the superradiant effect and the coherent volume concept of localized

biexcitons [197,202]. For excitons in higher dimensional systems, such as bulk crystals,

it is often assumed intuitively that the presence of one exciton does not affect the
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recombination of the other (due to relatively weak binding energy) and therefore the

biexciton lifetime is half the single exciton lifetime (assuming Γyg = Γxg). This intuition,

however, does not include the supperradiant effect which greatly enhances biexciton

recombination rate when the exciton–exciton separation is much smaller than the

wavelength of the emitted light. Citrin et al. [202], however, pointed out that the radiative

lifetime of localized biexcitons in quantum wells is longer than the single exciton

lifetime, despite the inclusion of the supperradiance. The predicted ratios of the biexciton

to the exciton lifetimes in single QDs are presently not in agreement [190, 197, 203].

Experimental studies on bulk or quantum wells show that the biexciton lifetime

is half of the exciton lifetime (see References [180,204]), seemingly in agreement with

the simple intuition discussed in the previous paragraph. But it was pointed out later in

Reference [197] that such experiments measure a biexciton lifetime that is due to not

only the radiative recombination but also the biexciton dissociation. The measured ratio

of 0.5, therefore, does not represent the ratio of the radiative part of the biexciton and

exciton lifetimes. Recent results from high quality QWs show that the radiative biexciton

lifetime is in fact almost equal to the single exciton lifetime [201]. For QD systems, the

biexciton dissociation is suppressed and the measured biexciton lifetime is assumed to

be radiative. In Reference [197], Bacher et al. measured the ratio of the biexciton and

exciton lifetimes to be slightly larger than 1 for CdSe/ZnSe QDs grown by migration

enhanced epitaxy.

In light of the discrepancy discussed above, measurements of biexciton lifetime

of GaAs interface fluctuation QDs become intriguing. One straightforward way to

measure the biexciton lifetime, as used in Reference [197], is to time resolve the biexciton

PL emission. For GaAs interface fluctuation QDs, however, the shorter lifetimes impose

a stringent requirement on the time resolution of the experimental apparatus. The direct

measure of the biexciton lifetime discussed below is based on transient DT which

measures effects due to real population in the biexciton level, ρbb.

In this measurement, a significant exciton population (for example, | y〉 exciton)

is created using a strong prepulse, Epre(Ωpre), of order ~ π. In section 7.4, it was shown

that such an effective preparation of | y〉 population is possible in GaAs interface fluctuation

QD systems. After a few picoseconds, E1 and E2 are tuned to excite the | y〉 → | b〉
transition and are arranged in the copolarized DT configuration to measure the biexciton

population ρbb
(2)  decay rate. The two-level system | y〉 → | b〉 in this case is analogous to

the | g〉 → | y〉 two-level system (studied in section 7.2 using two-beam transient DT)

except that | g〉 does not decay whereas | y〉 does.

Figure 7.20(a) shows the three beam transient DT spectrum taken under identical

conditions as the spectra in Fig. 7.11(a), except for the addition of the prepulse. The Πy
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polarized Epre is tuned to dot C (see Fig. 7.11) as indicated by the arrow in Fig. 7.20(a).

The DT from dot C in the presence of the prepulse appears to be slightly negative (gain

of E2), indicating an efficient population transfer from the crystal ground state to the

exciton state by the prepulse.
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Fig. 7.20  Single QD transient degenerate DT with prepulse. (a) Same as Fig. 7.11(a) but with a

strong Πy prepulse tuned to the excitonic state C. The | y〉 → | b〉 biexcitonic transition can be

clearly seen 3.3 meV lower in energy than the | g〉 → | y〉 excitonic transition. (b) The E1 and E2

are fixed in energy at the biexciton transition energy as the E2 delay is scanned. The biexciton

lifetime 1/Γb is found from fitting Eq. (7.22). Data are taken from the 42 Å growth interrupt well.

The biexciton lifetime can be measured by fitting the decay of the DT as E2 delay

is increased with both Ω1 and Ω2 fixed at the biexcitonic resonance (Ω1 = Ω2 = ωby) and

the prepulse fixed at the excitonic resonance (Ωpre = ωyg) of dot C. The third order

polarization that gives rise to the signal field that is homodyne detected with the E2 is

given by P(3)(t) ∝ ( ( ) + ).(3)r
μ ρby yb t c.c.  Again assuming δ-function pulses and keeping

only those terms for the DT of E2 more than a pulse width from zero delay, the time-

integrated homodyne detected signal is then

DT yy bb  (  – ) ( )(0) (0)∝ ρ ρ θ τ

× ⎛
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This equation assumes for simplicity that Γby = Γbx, so that Γb = 2Γby. Note that the

signal depends on the population difference (  – )(0) (0)ρ ρyy bb  which is zero without the Πy

prepulse tuned to the excitonic transition.

The DT obtained in this way can be biexponential due to decay of both the | b〉 and

| y〉 states. In the case that the biexciton relaxation rate is determined by the individual

exciton relaxation rates, such that Γby ≈ Γyg and Γbx ≈ Γxg, then Γb ≈ 2Γyg. In this case,

Γb /2(Γb – Γyg) ≈ 1, and the decay of the DT is a single exponential with decay rate Γb.

Figure 7.20(b) shows the decay of the DT obtained from this three-beam technique.

The data is fit to Eq. (7.22), where 1/Γyg = 41.2 ps for state C (see Fig. 7.11(b)). The fit

is shown in the plot and yields 1/Γb = 24 ± 5 ps. The ratio between the biexciton and

exciton lifetimes for this particular dot is close to 0.5.

This result is different from that of Reference [197]. This difference could be due

to the different types of QDs studied and the strength of the confinement. However, it

agrees with Reference [203], which predicted a biexciton to exciton radiative lifetime

ratio of 0.5 in self-assembled QDs. More precise measurements in various QD systems

are therefore still needed for further understanding of the physics behind the radiative

recombination of single QD biexcitons.

Biexcitonic transition dipole moment

Another important parameter is the exciton-to-biexciton transition dipole moment or

oscillator strength. Takagahara [190] has calculated this transition strength using variational

methods and found that both the excitonic and biexcitonic dipole moments increase as

the QD size increases (but not deviating from the strong confinement regime) due to the

increasing number of unit cells involved. The ratio between the biexcitonic and excitonic

oscillator strength was also calculated. For a GaAs/Al0.3Ga0.7As QD size of tens of

nanometers, this ratio is between 1 and 2 [190].

Independent measurements based on linear absorption from single quantum dot

excitons give a ground state to exciton dipole moment of order 50–100 Debye (compared

to a few Debye for atomic systems) depending on dot size (see [102] and section 7.2).

From the theory above for the biexciton, it is clear that with knowledge of the decay

rates and by comparing the signal strength obtained at the biexciton to that obtained at

the exciton in Fig. 7.19(c), it is possible to infer the ratio of the dipole moments.

Taking the decay parameters extracted from the previous section, the expected

ratio of the resonant signal at εB and εX in this experiment is a function of | μyb /μgy |,

which can then be determined from the experimental value. It is found that | μyb /μgy | =

1.15 ± 0.30. This shows that the excitation of one exciton in a dot does not cause a
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significant change in the dipole of the other exciton despite the strong Coulomb correlation.

The biexciton dipole is slightly larger than the exciton dipole, in agreement with calculations

in Reference [190].

Optical selection rules

The predicted optical selection rules (OSRs) for biexcitons in quantum dot systems

were discussed in section 7.1. For asymmetric QDs, the exciton and consequent biexciton

transitions are colinearly polarized at zero magnetic field and cross-circularly polarized

under nonzero magnetic field. It has been shown above that the GaAs interface fluctuation

QD biexcitons based on Πy–Πy two-photon excitation agree with this prediction (without

an external magnetic field). These optical selection rules were also confirmed in self-

assembled InxGa1–xAs/GaAs QDs [79,128] and CDSe/ZnSe QDs [77,78].

The optical selection rules for a typical GaAs interface fluctuation QD at zero

magnetic field are illustrated by the DT measurements shown in Fig. 7.21(a) and (b). A

QD with a relatively large exchange splitting is chosen. Top curves in Fig. 7.21(b) are

the degenerate DT spectra showing the fine structure splitting and the linearly polarized

optical selection rules for the exciton transitions. Using nondegenerate CW DT by

fixing Ω1 at the center of one of the exciton states (with a matching polarization) and

monitoring E2, the resonances due to the biexciton state are identified, as shown in Fig.

7.21(a). It is found that the excitonic and the subsequent biexcitonic transitions are co-

linearly polarized. By making E2 orthogonal to E1, no signal is observed. The bottom

curves of Fig. 7.21(b) are obtained by fixing E2 at one of the biexciton resonances

(again, with matching polarization) and tuning the co-linearly polarized E1 around the

exciton transitions.

Shown in Fig. 7.21(c) and (d) are similar experiments in the presence of the

external magnetic field. It was found that the excitonic and the subsequent biexcitonic

transitions become cross-circularly polarized. For (c), Ω1 is fixed at the center of the

exciton resonance with matching circular polarization, and E2 is scanned around the

biexciton transition with opposite circular polarization. The signal drops to zero by

making the two fields co-circularly polarized. This is consistent with the model shown

in the inset.

7.6 Optically induced two exciton-state entanglement

In the previous section, the optically induced two-photon coherence reprsents a coherent

superposition state of the form: | ψ〉 = a | 00〉 + b | 11〉, a linear combination of the ground
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Fig. 7.21 Optical selection rules in typical QDs. Top curves of (b): degenerate spectra of exciton

transitions showing the fine structure splitting without the external magnetic field. For the open

(solid) circles, the two beams are Πx (Πy) polarized. (b) for the open (solid) circles, Ω1 is fixed at

the center of the Πx (Πy) exciton transition, Ω2 is scanned around the exciton-to-biexciton transition

and both beams are Πx (Πy) polarized. Bottom curves of (a): for the open (solid) circles, Ω2 is

fixed at the center of the Πx (Πy) biexciton transition, Ω1 is tuned around the exciton resonances.

(c) and (d) are similar experiments for another dot with the magnetic field turned on (1.1 T). The

higher (lower) energy exciton is σ+ (σ–) polarized. By using E1 to excite one of the exciton states,

the exciton to biexciton transition is observed with E2 orthogonally polarized with respect to E1.

The optical selection rules identified in these experiments are consistent with the model shown in

the insets. Data are take from the 42 Å growth interrupt well.
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state (| 00〉, both electrons in the valance band, | g〉 of Fig. 7.2) and the biexciton state

(| 11〉, both electrons excited, | b〉 of Fig. 7.2). Considering that the absence and presence

of an exciton can be regarded as a pseudo-spin [67], this coherence is analogous to a

Bell state in a system consisting of two entangled spin- 1
2  particles: a | ↓↓〉 + b | ↑↑〉. In

this section, a similar experiment based on nondegenerate DT is discussed in which a

coherence of the form | ψ〉 = a | 10〉 + b | 01〉 is optically induced in GaAs interface

fluctuation QDs [89]. | 01〉 and | 10〉 represent the | –〉 and | +〉 (or | x〉 and | y〉) single

exciton states of Fig. 7.2 respectively. This is analogous to an entangled state a | ↓↑〉 +
b | ↑↓〉 of two spin- 1

2  particles.

The ability to optically produce such entangled states is essential for the preparation

of an arbitrary coherent superposition state of two qubits. It is also a prerequisite to a

full demonstration of a quantum controlled-NOT gate. This can be understood by

considering an initial state of the system being a product state of two qubits, | 10〉 + | 11〉,
where the first and second bits are the target and control bits respectively. By applying

a quantum controlled-NOT operation, the state becomes an entangled state | 10〉 + | 01〉.
Thus, a successful controlled-NOT operation relies critically on the ability to entangle

two qubits.

In the case of two excitons confined to a QD, the two qubits are coupled via the

Coulomb interaction. As a result, the excitation of one exciton affects the transition

energy of the other, as has been explicitly shown in the previous section. This allows for

a controlled excitation of one exciton depending on which state the other exciton is in.

This coupling allows for inducing entangled states of two excitons using coherent

optical excitation.

To differentiate the two single exciton transitions not only by their orthogonal

polarizations but also via transition energies, an external magnetic field is applied to

fully split the two transitions. The degenerate DT spectra of the interface fluctuation QD

to be studied in this section as a function of the magnetic field have been previously

shown in Fig. 7.12. The exciton transitions become nondegenerate due to Zeeman

splitting and they become σ+ and σ– polarized.

In the following measurements, the σ– polarized E1(Ω1) and the σ+ polarized

E2(Ω2) are tuned to excite the σ– and σ+ exciton transitions respectively (see the inset

of Fig. 7.23). Because of the large exciton–exciton binding energy, the excitation of the

biexciton state can be effectively neglected. This excitation scheme therefore produces

an interesting scenario: if the σ– exciton is resonantly excited by the σ– polarized E1,

then the excitation of the σ+ exciton can be neglected due to the exciton–exciton Coulomb

interaction (leading to a shift of ΔE in transition energy for the σ+ exciton). Similarly,

if the σ+ exciton is resonantly excited, then the σ– exciton cannot be effectively excited.
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Since E1 and E2 are mutually coherent, the system is expected to exist in a coherent

superposition of the two possibilities. This is illustrated in Fig. 7.22. At any given time,

at most one exciton exists because this experimental configuration prevents the excitation

of the biexciton state.

|–1/2, +3/2 〉
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Fig. 7.22 A view of the exciton–exciton entanglement in the electron–hole picture.

In the two-exciton basis (see Fig. 7.2), this is equivalent to a coherent superposition

within the exciton Zeeman doublet and is thus referred to as Zeeman coherence. In the

weak field, the wavefunction of the system becomes

| �〉 = C0 | 00〉 + C+ | 10〉 + C– | 01〉 (9.23)

where the biexciton state does not contribute, making it nonfactorizable. In the following,

it will be shown that a relatively long-lived Zeeman coherence would give rise to unique

features in the CW DT spectrum and the measurements show that as a result of coherent

excitation by E1 and E2, C– and C+ indeed have a well-defined phase relation within the

exciton lifetime.

In these experiments, differential transmission of E2 is monitored. By monitoring

DT of E1 instead of E2, no new information can be obtained, unlike in the resonant

excitation of biexciton. This is because states | +〉 and | –〉 are symmetric with regard to

the ground state | g〉, whereas states | +〉 (or | –〉) and | b〉 are not.

Based on the equations of motion for the three level model containing the ground

and the two single exciton states (the biexciton state is not excited), it is found that the

Zeeman coherence contributes significantly to the DT signal provided that the pure

dephasing of the Bell state | ψ〉 = a | 10〉 + b | 01〉 is not too large. This contribution is a

result of a two-photon excitation between the σ– and σ+ exciton states using a virtual

intermediate state near the ground state and follows

(7.24)→→ →

→
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A second contribution to the coherent nonlinear optical signal comes from a real

depletion of the ground state by E1, which causes a reduced absorption of E2. The

perturbation path is

(7.25)

Similar to the biexciton case, the first path is fully coherent and requires that E1

and E2 be mutually coherent within the decay of the Zeeman coherence. The second

path, however, contributes even if the light sources are incoherent.

The DT signal (monitoring E2) containing both components is calculated based

on the above perturbation paths
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where β = | μ+gμ–gE1E2 |2, Δ1 = Ω1 – ω–g and Δ2 = Ω2 – ω+g.

Based on Eq. (7.26), the Zeeman coherence contribution has a unique lineshape

which is distinct from the depletion contribution and is used as a signature of its

presence. This signature (theory) is shown in the spectra in Fig. 7.23 as a function of Ω2,

with Ω1 fixed at various frequencies around the σ– exciton transition.

There are two features that are unique for the signal caused by the Zeeman

coherence, as shown in Fig. 7.23(a). First, as Ω1 is moved off the center of the σ–

exciton resonance, a derivative-like lineshape develops. Secondly, the peak of the Zeeman

coherence component moves in the same direction as the fixed Ω1. This is because the

σ–-to-σ+ two-photon transition via a virtual intermediate state near the crystal ground is

resonant when Ω2 – Ω1 matches ω+g – ω–g. Therefore, as Ω1 is moved lower (higher) in

energy, Ω2 also needs to move to a lower (higher) position for maximum signal.

The | g〉 depletion component of the signal is shown in Fig. 7.23(b). It stays at the

σ+ resonance and only decreases rapidly in strength as Ω1 is moved. The reason that the

signal peak does not move is because the reduced absorption of E2 is due to a real

ground state population depeletion caused by | E1 |2. Only the amount of depletion

depends on Ω1. As Ω1 is moved off the center of the σ– resonace, the strength of the

| g〉 depletion of decreased rapidly. However, it is not important whether the depletion is

created resonantly or not; E2 still just maps out the σ+ resonace.
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Similar to an exciton dipole coherence, the nonradiative Zeeman coherence could

in principle decay rapidly due to pure dephasing even though the exciton lifetime is

relatively long. Figure 7.23 has assumed zero pure dephasing of the Zeeman coherence.

By adding pure dephasing, its contribution to the signal would broaden out and drop

rapidly in strength. Figure 7.24 shows explicitly how pure dephasing of the Zeeman

coherence affects the overall DT signal.

The above analysis is based on the three-level model consisting of the | g〉, | +〉 and

| –〉 states. Without the exciton–exciton Coulomb interaction, the above approximation

would be invalid. This is because in that case, E1 and E2 would also be resonant with the

σ– σ+
Deg

(a)

(b)

(c)

–8.0 –4.0 0.0 4.0
E2 Detuning (in units of γ–g)

σ–
σ+

E1 E2

Fig. 7.23 Calculations for the contributions of the Zeeman coherence and the ground state depletion

to the coherent nonlinear optical signal. Curves labeled as σ– and σ+ are the degenerate CW DT

of the two exciton states. For all other curves, the σ– polarized E1 and σ+ polarized E2 excite the

σ– and σ+ exciton transitions respectively, as shown in the inset. The biexciton level is far off

resonance and does not contribute to the nonlinear optical response. E1 is fixed in frequency for

each spectrum but is tuned to various frequencies around the σ– resonance, as indicated by the

arrows. E2 is tuned and the spectra are obtained as a function of Ω2. The energy axis is in units of

γ–g. It is assumed that the pure dephasing is zero: γ–g = γ+g = 1, Γ–g = Γ+g = 2 and γ– + = 2. (a) and

(b) are the Zeeman coherence and incoherent ground state depletion contributions respectively. (c)

is the total signal. Taken from Reference [111].
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σ+-to-biexciton and σ–-to-biexciton transitions, respectively. A full calculation including

all four levels reveals a cancellation between different perturbation paths, resulting in a

zero signal (for both the depletion and the Zeeman coherence components) when monitoring

the differential transmission of E2 (or E1). This can be easily understood by noting that,

in the absence of exciton–exciton Coulomb coupling, the two exciton transitions are

essentially independent. The excitation of the σ– exciton by E1 would not have any

effect on how E2 interacts with the σ+ exciton, leading to zero differential transmission

of E2.

Therefore, by studying the CW DT lineshape, we are able to not only identify the

Zeeman coherence contribution and study its dephasing but also confirm the strong

exciton–exciton Coulomb interaction in a QD.

Figure 7.25 shows the experimental results, which lead to the following conclusions:

1. The strong signal indicates that the involvement of state | b〉 is minimal. Thus, the

two excitons must be strongly correlated by the Coulomb interaction, in agreement

with the large biexciton binding energy measured in section 7.5.

2. The Zeeman coherence contributes significantly to the DT signal, suggesting that

the pure dephasing of the Zeeman coherence is not significant. From the lineshape,

the total Zeeman coherence dephasing rate is estimated to be around (20 ps)–1.

Fig. 7.24 Theory for the total DT signal under various Zeeman coherence dephasing rates. In each

group of curves, E1 is tuned to various positions, similar to Fig. 7.23. In (a), the decay parameters

are the same as in Fig. 7.23(c) (γ– + = 2). In (b), γ– + = 4 and in (c) γ– + = 10. The depletion

contribution does not vary between cases. The differences in the spectra reflect the change of the

Zeeman coherence contribution due to the change of γ– +.

(a)

(b)

(c)

–6.0 –4.0 –2.0 0.0 2.0 4.0 6.0
E2 Detuning (in units of γ–g)
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3. The contribution from the Zeeman coherence indicates that due to the excitation by

E1 and E2, the wavefunction of Eq. (7.23) is indeed a coherent superposition.

Due to the weak-field excitation condition to stay in the χ(3) regime, as appropriate

for spectroscopy studies where Eq. (7.26) is valid, the probability amplitude of the

ground state is nonzero. The entanglement is therefore not maximal. We now quantify

the optically induced two-exciton entanglement. In other words, we quantify all the

amplitudes in Eq. (7.23), estimate the upper limit the biexciton level could have contributed

and quantify how nonfactorizable the wavefunction is.

The signal strength of both the degenerate and nondegenerate response is used to

validate the assumption that the two-exciton level does not contribute to our experiment.

Any such contributions would give rise to a reduction in nondegenerate signal strength.

A full cancellation of the signal takes place in the non-interacting case mentioned

before, where the biexciton level would contribute with a state amplitude Cb = C–C+ /C0,

leading to a factorizable wavefunction. By comparison with the theory, when Eq. (7.26)

is modified to include the fourth level, the data then shows that the reduction is indeed

σ– σ+

Degenerate B = 1.3 T
T = 5.0 K

Non-degenerate

E1
σ –

E2
σ +

1629 1629.1 1629.2
Energy (meV)

Fig. 7.25 Experimental results that correspond to the theory in Fig. 7.23. Taken from Reference

[89].
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negligible within an experimental error of 5%, meaning that the biexciton level contributes

less than Cb = 5% × C–C+/C0. From the detected signal strength, we are able to obtain

| C+ | = 0.30 ± 0.05 and | C– | = 0.30 ± 0.05. The state amplitude of state | b〉, | Cb |, is

therefore less than 0.005 (0.1 would make the total wavefunction factorizable). The

value of | C0 | is 0.9. The density matrix for the two-exciton system is then established,

from which the entropy of entanglement, E, is calculated to be E = 0.08 ± 0.02, indicating

quantum entanglement. The entropy of entanglement goes between zero and one, with

zero for product states and one for maximally entangled states. For its definition, see

Reference [205].

This number is relatively small compared to what has been achieved in an ion trap

[206] (where E of 0.5 is reported) and reflects the weak-field condition of our experiment.

For an entanglement with C0 = 0 and the eventual application to a quantum logic device,

the experiments would be done using high intensity coherent transient excitations with

a pulse area of order π. This is feasible considering the successful demonstration of

single QD Rabi oscillations discussed in section 7.4 despite the effects from delocalized

excitons at high excitation intensity.

7.7 Single quantum dot as a prototype quantum computer

In the preceding sections, we discussed the laser manipulation of spin-polarized optical

excitations in a semiconductor nanodot with the aim of its application to the realization

of a quantum computer. In this section, we give a simple theoretical description of how

a prototype quantum computer using a single dot would function. The basic element of

a quantum computer is represented by a quantum unit of information, or qubit. In our

case, the presence and absence of the exciton in a quantum dot constitutes a qubit and

the up and down spin excitons in the same dot yield two qubits with a strong mutual

interaction. With laser control of these two excitons in a dot, we have the makings of a

two-qubit quantum computer. The examples of coherent control of these excitons,

experimentally realized and explained in the previous sections, can already be seen as

elementary quantum operations. The exciton Rabi rotations  described in section 7.4, for

instance, constitute the important single qubit manipulations. We shall show here how

in principle the basic manipulations can be organized to run a quantum algorithm. A

single quantum dot and a train of polarized pulses can in fact be used to implement an

algorithm and solve efficiently a given problem. A numerical simulation of the time

series of the exciton dynamics under optical control in a sequence of operations to solve

the Deutsch–Jozsa problem [207] in a 2-qubit dot is given below to illustrate the basic

physics of the prototype quantum computer and to furnish a test of the design.
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Since the recent dramatic development of the theory of quantum computing, there

have been a great variety of suggestions of implementation and a number of experimental

demonstrations [81]. Among those based on semiconductors, quantum dots are favored

for the confinement of single electron spin [208] and for the intersubband transitions

with far infrared light [209,210] as the qubit. The use of optical control of excitons

across the band gap in dots for quantum operations was suggested by Troiani et al.

[211]. A theory of the spin excitons in quantum computing and of the physical

implementation of quantum algorithms in a dot using ultrafast optical pulses was

investigated in Ref. [4]. Several ideas for a scalable quantum computer involving excitons

in different dots and optical quantum control were proposed [3,212,213]. In all of these

schemes, each dot hosts a single qubit, and quantum gates are realized using interdot

interactions such as the Förster mechanism [213], the exciton–exciton dipole interaction

enhanced by an external electric field [3], or a cavity mode [212]. In some proposals the

use of charged excitons, utilizing optical control of dots doped each with a single

electron, are proposed [2,214]. For an illustration of basic quantum computing, it is

sufficient to discuss here only the case of a single undoped dot hosting two qubits

provided by two cross-polarized excitons.

The quality of the quantum information of the exciton depends on its coherence,

i.e., the phase relation between the initial and final states of the light excitation. On one

hand, the decoherence time of an exciton in a dot is of the order of tens of picoseconds.

On the other hand, the resonant excitations require the operation time to be longer than

the inverse of the transition energy difference (several meV in a dot). A solution to these

two contradictory requirements can be given by the shaping of the optical pulses,

thereby removing the second requirement of precise resonance. We address below the

issue of how to design pulses for the realization of a given quantum transformation in

the shortest time as possible.

Basic operations for quantum computation

The first requirement is two quantum states to represent a qubit. In a dot with two

antiparallel spin excitons, the two qubit states | x, y〉, where x, y = 0 or 1, are mapped

onto the four excitonic states as the ground state | 0〉 ≡ | 0, 0〉, the σ+ exciton state

| +〉 ≡ | 1, 0〉, the σ– exciton state | –〉 ≡ | 0, 1〉 and the lowest biexciton state | + –〉
≡ |1, 1〉.

Any quantum computing algorithm can be constructed out of a number of single

qubit operations and a logic operation between two qubits [81]. A commonly used

single qubit operation to mix the two qubit states is the Hadamard transformation,
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A common quantum logic gate is the controlled-NOT gate (C-NOT) which changes,

say, the first qubit (the target) depending on the state of the second qubit (the control).

If the second qubit is 0, the first is unchanged and if the second is 1, the first bit is

flipped. The matrix transformation in the basis {| 00〉, | 10〉, | 01〉, | 11〉} is

1 0 0 0

0 1 0 0
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0 0 1 0
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(7.28)

Optical pulses can directly perform Rabi rotations with generators σx and σy but

rotations with generator σz need to be built as a combination of σy and σx. In our design

of the laser implementation of a quantum algorithm we try to decompose the required

global transformation directly in rotations generated by σy and σx for both single qubit

and conditional operations without appealing to Hadmard or C-NOT. The general single

qubit operation is implemented by two-color light driving combined Rabi rotations of

both the exciton transition and the biexciton transition (say, between | 0〉 and | +〉 and

between | –〉 and | + –〉) through the same angle,

cos( /2) –sin( /2) 0 0

sin( /2) cos ( /2) 0 0

0 0 cos( /2) –sin( /2)

0 0 sin( /2) cos ( /2)

.

α α

α α

α α
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⎢
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⎢
⎢
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⎥
⎥
⎥
⎥
⎥

(7.29)

The C-NOT gate is replaced by a controlled π rotation (C-ROT). If the σ+ exciton is the

target and σ– exciton is the control, C-ROT is accomplished by a σ+ polarized light

driving a π Rabi rotation of the biexciton transition [209]. The matrix transformation is

1 0 0 0

0 1 0 0

0 0 0 –1

0 0 1 0

.

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

(7.30)

The Deutsch–Jozsa problem

The two-qubit Deutsch–Jozsa problem [207] is particularly instructive both for its simplicity

and for the use of fundamental quantum operations. It has been implemented by nuclear
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magnetic resonance (NMR), which represented the first experimental realization of a

two qubit quantum computer [215,216].

For a single bit variable x = {0,1}, there are four possible single-bit functions:

f1(x) = 0 and f2(x) = 1 belong to the class of constant functions and f3(x) = x and f4(x) =

1 – x to the class of balanced functions. In the Deutsch–Jozsa problem we are given a

closed box, which we can imagine, for instance, to be an unknown subroutine in a

Fortran program able to calculate this function. The problem consists in determining

whether the given subroutine calculates a constant or balanced function. Classically, the

only way to find out if the function is constant or balanced is to calculate the function,

for both the 0 and 1 input values, and then compare the results.

The solution of the Deutsch–Jozsa problem in a quantum computer illustrates the

parallel processing of the qubits in the evaluation of the function. Here we are not

demonstrating the power of the quantum computer over the classical one, which is

meaningful only for a sufficiently large number of qubits [81]. First, the single bit

variable x has to be changed to a quantum bit | x〉, which enables us to prepare arbitrary

linear superpositions of 0 and 1. Our variable qubit is the presence or absence of a σ–

exciton. This qubit is manipulated by a Rabi rotation through a required angle using σ–

polarized light. Second, we replace the classical subroutine with a quantum subroutine

given by a unitary transformation which parallel-processes all possible values of x. The

solution of the problem involves the use of a second qubit |y〉, which is given in our

single dot quantum computer by the presence or absence of a σ+ exciton. The complete

solution consists fo three steps:

(i) Encoding. It transforms the initial ground state dot into an input state:

| in  = 1
2

(– | + –  + | +  – | –  + | 0 ) = 1
2

(– | 11  + | 10  – | 01  + | 00 ).〉 〉 〉 〉 〉 〉 〉 〉 〉

This is accomplished by the single-qubit –π/2σ+ rotation and π/2σ– rotation.

(ii) Calling Quantum Subroutine. We apply the unitary transformation U f j  associated

with the given function fj. The explicit form of this unitary transformation acting

on the two qubit | y, x〉 can be written as

U y x R y xf x
f y

j
j| ,  = ( ) | , .1–2 ( )〉 〉π

This is a conditional π Rabi rotation acting on qubit x (σ– exciton), conditioned on

the effect of fj on the qubit y (σ+ exciton). For the constant functions this corresponds

to an in-phase π pulse for the excitonic and biexcitonic transitions, while for the

balanced functions the two π rotations are opposite in phase.
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(iii) Decoding. By applying π/2 rotations of both circular polarizations, the final state

is the ground state if the function is a constant and the | +〉 state if the function is

balanced. The final measurement involves only the second qubit | y〉, i.e., the σ+

exciton, and can be made with the cross-polarization probe or with the emitted

photon polarization.

Figure 7.26 shows for a constant ( f2) and a balanced ( f3) function the same circuit

diagram of the operations and the two desired sequence of states of the two excitons

following each operation. The evolution of the qubits through the Deutsch–Jozsa algorithm

is shown in Fig. 7.27 as the real parts of the coefficients cj(t) in the time evolution of the

state

| ψ(t)〉 = c0(t) | 0〉 + c–(t) | –〉 + c+(t) | +〉 + c+–(t) | – +〉.
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Fig. 7.26 Circuit diagram for the solution of the Deutsch–Jozsa problem for the balanced function

f3 (upper row) and for the constant function f2 (lower row). Notice that in the final state the second

qubit | y〉, associated with the σ+ exciton, determines if the function is balanced or constant, the

first qubit | x〉 being always | 0〉. In the case of f1 and f4, the final states differ only by a global π
phase.

In order to check the contribution to the unintended dynamics of the states out of the

computational space we added two parallel-spin biexciton states | + +〉 and | – –〉,

Decoding
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calculated at 13 meV above the | – +〉. We used pulses with a peak electric field

corresponding to a 0.2 meV Rabi energy, smaller than the separation between the

exciton and the biexciton resonances which we assumed to be 1 meV. An ideal case with

no dephasing is considered and the Rabi rotations are realized with spectrally narrow

pulses. We pack the pulses with a maximum overlap at 10% of the peak electric field

without substantial degeneration of the results.

Fast quantum computing by pulse shaping

The simulation given above assumes spectrally narrow pulses and, therefore, the total

time needed to run the quantum computer of 100 ps is long compared to the measured

dephasing time of the exciton. If the finite lifetime of the exciton due to spontaneous

emission were included in the simulation of Fig. 7.27, it is evident that the quality of the

Fig. 7.27 Real parts of the coefficients cj(t) in | ψ 〉 = c0(t) | 0〉 + c+(t) | +〉 +c–(t) | –〉 + c+ –(t) | +–〉
during the quatum computation. Encoding (0–20 ps), starting from the | 0〉 we obtain | in〉. U fi

(20–80 ps). Composed by two π pulses, one at the excitonic transition and one at the biexcitonic

transition. For f2 both the pulses correspond to +π. For f3 the biexcitonic transition is +π while the

excitonic transition is –π. Decoding (80–100 ps), the output is – | 0〉 for the constant function f2
and – | +〉 for the balanced f3. Taken from Reference [4].
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operations would be so degraded as to make the results of the constant and balanced

cases indistinguishable. The quantum operations of the state vector have to be made

faster.

A faster control of the quantum system can be realized using somewhat more

complex optical pulses. This idea, commonly referred to as pulse shaping, exploits the

amplitude and phase spectral distributions of the pulses to realize efficient quantum

control. We consider here a simple pulse shaping technique by the phase-locking of two

subpicosecond laser pulses with different energies. This pulse design technique is

experimentally realizable [217] and is particularly illustrative for its simplicity in the

design of the fast control of excitons and biexcitons in quantum dots.

We can start by writing the Hamiltonian of the four-level systems coupled to an

external electromagnetic pulse with σ+ polarization, treated classically, in the form

H

t

t

f t

f t

+

+

+
*

+

– +

+
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–+

=

0 ( )/2 0 0

( )/2 0 0
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(7.31)

where Ω+(t) = d+E+(t) represents a time dependent Rabi energy provided by an optical

pulse. The dipole moment of the exciton | +〉 is denoted by d+ and f is a correction factor

to the dipole moment in the exciton-biexciton transition matrix element due to Coulomb

interaction. The amplitude of the electric field E+(t) = +
– ( )( ) +t e ei t iω φ  is assumed to be

slowly varying. As in the atomic case, the condition on the frequency ω+ � d+ + enables

the rotating wave approximation used in H+ above. Thus, the counter-rotating terms,

such as H0,–
+

+
* = /2,Ω  are set to zero. In the interaction representation, Õ = ΛOΛ†

denotes the transformed operator from O, with Λ(t) = eiH t0 ,  where H0 is a diagonal

matrix with elements (0, ε+, ε–, ε–+). The time evolution operator at the end of the pulse

Uσ can be written as

˜
˜

U Te
i dtV tσ

σ
+

1
2 –=

– + ( ),∞
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∫ (7.32)
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and Δ = ε+ + ε– – ε– + is the biexciton binding energy. When only circularly polarized
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light is used, Eq. (7.33) shows that the four-level system behaves as a double two-level

system, the first two-level transition (exciton transition) being represented by |0〉 → |+〉
and the second (biexciton transition) by | –〉 →  | – +〉.

Consider now the desired operation where the exciton transition is a Rabi rotation

through angle α and the biexciton transition a Rabi rotation through α′,

Ũ j
σ

α α

α α

α α

α α

+ =

cos( /2) –sin( /2) 0 0

sin( /2) cos ( /2) 0 0
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0 0 sin( /2) cos( /2)

.
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The most direct solution for the realization of this transformation would be a two-pulse

combination,

E t e et s i t
+ 0

–( / ) –( ) = 
2

0+ω + .1
–( / ) – +1

2
1+e et s i t iω φ (7.35)

If the two pulses are resonant respectively with the two transitions, i.e. ω0+ = ε+ and ω1+

= ε– + – ε–, and are sufficiently narrow in frequency, the pulse resonant with the exciton

transition would have a negligible effect on the biexciton transition and vice versa.

However, this has been shown above to be costly in time. The problem is to find a

composite pulse which would take much less time with tolerable deterioration of quality

of the transformation.

For the quality of the transformation, we follow Ref. [218] in defining the fidelity

of the transformation as

F U Ui in = | | | | ,in
† 2〈 〉ψ ψ˜ (7.36)

where Ui is the ideal unitary operation, Ũ  is the unitary transformation generated by the

optical pulses, and the overline denotes the average over all the possible initial states.

The operator Ũ Ui
†  is denoted by I for short. The average over all the possible states

is done by considering an initial state with arbitrary complex coefficients | ψin〉 =

∑j cj | j〉 with the normalization constraint ∑j | cj |2 = 1. The fidelity can be then written

in the form

F c c c c I I
i jkl

i j k l i j lk =  * * *Σ (7.37)

and, in the four-level system considered here, the overline average is then on a

hypersphere S in C8 determined by the normalization conditon. This average
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* *S d c d c d c d c c c c c
S

i j k l∫  is easily evaluated in polar coordinates and gives

F I I I I I
i

ii
i j

ii j j i j i j = 1/10  | |  + 1/20 (  + ).2 * *Σ Σ
≠

(7.38)
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The difference of the coefficients from those of Ref. [218] is due to their additional

restrictions on the coefficients cj. Our choice gives a more stringent estimate of the error

in the operations.

There are three different approaches to pulse design for a quantum operation.

(i) Approximation by the Area Theorem. In the limit of very long pulses, the area

theorem [108] determines the intensity of a Gaussian pulse that has to be used for

a given rotation α

0
+

 = .α
πs d

(7.39)

For a single two-level system the pulse width s in Eq. (9.39) can be made arbitrarily

small, but in the four-level case we are strongly limited by the resonance condition

to 1/s, 0d+ � Δ. In order to shorten the time duration of the whole pulse, an

intuitive approach would be to allow the two components of Eq. (7.35) to overlap

in frequency but keep each satisfying the area theorem.

(ii) The average Hamiltonian method. The cumulant expansion (also known as the

Magnus expansion [219]) of the evolution operator Ũ j
σ+  in Eq. (9.32) is given by

[220]

˜
˜ ˜

U ej

i V Vσ+ 1 2= .
–

2
( + +...)

(7.40)

The first term of the expansion corresponds to a time average of the interaction

Hamiltonian,

˜ ˜V dtV t1

0

 = ( ).

∞

∫ (7.41)

The second term is given by

˜ ˜ ˜V
i

dt dt V t V t

t

2

0 0

 = 
–
4

 [ ( ), ( )].

∞

∫ ∫ ′ ′ (7.42)

Keeping only the first term in the exponent constitutes the average Hamiltonian

approximation. An estimation of the error in the truncation of the cumulant expansion

is given by the second term.

(iii) Numerical approach. The parameters in Eq. (7.35) are varied to find the maximum

fidelity. To lessen the numerical effort, physical considerations guide the reduction

of the number of parameters varied. The first two approximation methods are also

useful as starting points.
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Examples of pulse design

We illustrate the above methods for a single qubit operation, i.e., a parallel rotation of

both the exciton and biexciton transitions. For simplicity, let f = 1 and s1 = s. Both

theoretical estimates and experimental measurements have the f value not far from

unity. In any case, the extension to f ≠ 1 can be made in a similar manner to the treatment

on the conditional rotation given below. We consider a composite pulse by superposing

and phase-locking the two pulses as in Eq. (7.35) with 0 = 1 and ω0+ = ε+ and ω1+ =

ε+ – Δ. It remains to choose a value for 0(s) by each of the three methods above and

tests its efficacy by evaluating the fidelity of the operation.

In Fig. 7.28(a) the fidelity for α = α′ = π rotation is plotted as a function of the

temporal width of the Gaussian pulse s. The corresponding value for the peak of the

Rabi energy Ω0 = d+ 0(s) is given in Fig. 7.28(b). The value of the biexcitonic binding

energy Δ is 1 meV. The results by the area theorem approximation are shown as the

dashed lines. The fidelity is close to unity only for s � 1/Δ, corresponding to a region

where the frequency selectivity is preserved. If for instance a 98% Fidelity is required,

the area theorem approach will lead to optical pulses with s > 4 ps. The area theorem is

not the best procedure of time optimization for single-qubit operations.
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Fig. 7.28 (a) Fidelity as a function of the temporal width of the Gaussians s for a parallel rotation

of α = α′ = π. (b) Peak value of the Rabi energy Ω0 = d+ 0(s). Dashed lines: the area theorem

approximation. Dotted lines: the average Hamiltonian appproximation. Solid lines: numerical

maximization of the fidelity.
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Applying the average Hamiltonian approximation to the restricted pulse specified

above leads to the single-qubit rotation Ũ σ+  in the form of Eq. (7.34) with chosen

values for α = α′ and for s, leading to 0 given by

0
+

–( /2) )
 = 

(1 + 
.2

α
π Δs d e s

(7.43)

The Gaussian term in the denominator on the right gives a correction to the area theorem,

Eq. (7.39). The results are shown as dotted lines in Fig. 7.28(b). The resultant fidelity

by the average Hamiltonian method is shown as dotted lines in Fig. 7.28(a). Note that

it is possible to obtain  a 98% Fidelity using much shorter pulses, of the order of 100 fs.

In the limit of very short pulses this corresponds to spectrally very broad pulses which

do not distinguish between the two transitions but yield a nearly parallel rotation.

The results of the numerical maximization using one variable 0 by Brent’s method

[221] are plotted as solid lines. They may be used as the standard to which the other two

methods are compared. The optimal curve 0(s) deviates considerably at short times

from the area theorem approximation but is close to the average  Hamiltonian approximation

throughout the whole range of s.

The second example is a conditional operation for two qubits, viz., a σ+ biexcitonic

transition without affecting the excitonic | +〉 → | 0〉, i.e., a rotation Ũ j  in Eq. (7.34)

with α = 0 and α′ = π. For the combined pulse in Eq. (7.35) we consider now φ = π, and

again 0 = 1 and ω0+ = ε+, ω1+ = ε+ – Δ.

From the average Hamiltonian approximation (the first order term in the cluster

expansion), we obtain relations for the three parameters of the pulse 0, s and s1 for the

desired rotations,

α π Δ = (  – ),+ 0 1
–( /2)1

2
d s s e s (7.44)

′α π Δ = (  – ).+ 0 1
–( /2)2

d s se s (7.45)

For a given value of s1, the other two parameters may be solved in the case with α = 0

and α′ = π,

s s e s = ,1
–( /2)1

2Δ (7.46)

0 + 1
–( /2)= / (  – ).

2π Δd s se s (7.47)

In the limit of large Δ the solution gives s → 0 eliminating the term resonant with the

excitonic transition and 0 1 +  /→ π s d  in accordance with the area theorem for the

biexcitonic transition. For Δ ≠ 0 this system has always a solution for any α ≠ α′.
In Fig. 7.29 we show (a) the fidelity and (b) the peak Rabi energy for the α = 0

and α′ = π transformation, for all three methods. The area theorem approximation
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amounts to taking a single pulse resonant with the biexciton transition. For the numerical

maximization we maximize the fidelity for a given s1 value as a function of s and 0

using the downhill simplex method [221]. We see clearly that the average Hamiltonian

again gives a very good approximation: the deviations from the numerical maximization

are negligible in most of the region. Also in this case we see that the use of a composite

pulse provides a considerable saving in the time for the operation.

Fig. 7.29 (a) Fidelity as a function of the temporal width s1 of the biexciton Gaussian component

in the composite pulse for a rotation of α′ = π only for the biexciton transition. (b) Peak value of

the Rabi energy. Dashed lines: the area theorem approximation with a single pulse resonant with

the biexciton transition. Dotted lines: the averaged Hamiltonian approximation. Solid lines: numerical

maximization of the fidelity.
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We can visualize the conditional dynamics of the four level system as two

pseudospins evolving in the Bloch sphere. The two pseudospins 
r
SX  and 

r
SXX  are

associated with the excitonic | 0〉 → | +〉 and biexcitonic | –〉 → | – +〉 transitions,

respectively. The initial state for the exciton pseudospin is taken to be the ground state,

while for the biexciton pseudospin we assume the initial state | –〉. This choice is

arbitrary, the calculation of the fidelity given above shows indeed that the transformation

is realized independently of the initial state. A shaped pulse with s = 0.56 ps and s1 =

1.05 ps, φ = π and Ω0 = 2 meV is used. We see that the pseudospin associated with the

biexciton transition 
r
SXX  realizes the π rotation. The pseudospin associated with the
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exciton transition instead evolves in the Bloch sphere in a loop that brings it back to the

initial state at the end of the pulse. This fulfills the requirement of the controlled π
rotation of the σ+ exciton only when the σ– exciton is present, but leaving it back in its

initial state when the σ– exciton is absent. A simple intuitive picture is given by the

frequency spectrum of the pulse in Eq. (7.35), shown in Fig. 7.30(c). The two phase-

locked components have opposite phases and the chosen s and s1 control the interference

in the electric field giving a zero amplitude at the exciton resonance and a finite value

at the biexciton resonance. We can therefore say that the ultrafast manipulation of the

qubits is carried out using constructive and destructive light interference. This simple

interpretation is equivalent to the average Hamiltonian approach.

Fig. 7.30 Dynamics of spectral shaping. (a) Energy schematics for the transitions generated by a

σ+ pulse. (b) Evolution of the exciton 
r
SX  and biexciton 

r
SXX  pseudospins on the Bloch sphere

under a shaped pulse. (c) Fourier transform of the shaped pulse and its components.

Fast control applied to the Deutsch–Jozsa algorithm

We are now ready to check the effects of the pulse shaping remedy on the implementation

of the Deutsch–Jozsa algorithm in the quantum dot. We plot in Fig. 7.31 the same

coefficients as in Fig. 7.27 but we limit now the total time for the operation to be below

10 ps, i.e., the algorithm must be run one order of magnitude faster than in the ideal case
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of Fig. 7.27. The first column shows the effect on the dynamics when all the pulses’

temporal widths are reduced by a factor ten and the Rabi energy consequently increased

according to the prescriptions of the Area Theorem Approximation. As expected, the

frequency selectivity is lost and the possibility of discriminating between constant and

balanced function is definitively lost. The effect of the shaping in the computation is

shown in Column 2. The possibility of distinguishing between the balanced and the

constant function is recovered. The details of the pulse sequence for the shaped and

unshaped cases are given in Fig. 7.32 and Table 7.1.
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Fig. 7.31 Real parts of the coefficients cj(t) in | ψ〉 = c0(t) | 0〉 + c+(t)| +〉 + c–(t) | –〉 +c+ –(t) | + –〉
during the quantum computation. Encoding (0–20 ps), starting from the | 0 〉 we obtain | in 〉. U fi

(20–80 ps). Decoding (80–100 ps), the output is – | 0 〉 for the constant function f2 and – | + 〉 for

the balanced f3. Taken from Reference [4].

The first two columns of Fig. 7.31 do not include the effects of dephasing. In

order to check the robustness of the use of composite pulses in the presence of dephasing,

we include the spontaneous emission in the simulation by adding the Lindblad operators

in the equation of motion for the density matrix [222]
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d
dt

i H L L L L L L
j

j j j j j jρ ρ ρ ρ = – [ , ] +  – 
1
2

 – 1
2

.
=1

4
† † †

h
Σ ⎛

⎝
⎞
⎠ (7.48)

where,

L1 = | 0 + |,Γ 〉〈 L2  = | 0 – |,Γ 〉〈

L3 = | + – + |,Γ 〉〈   = | – – + |,4L Γ 〉〈 (7.49)

Fig. 7.32 Slowly varying envelopes of the pulse sequences used in the quantum computation for

the solution of the DJ problem in Figs 7.27 and 7.31. The dotted (solid) line indicates σ+ (σ–)

circular polarization. The two rows labeled by ωi refers to the resonance frequency of the pulses:

ω1 = ε+ = ε–, ω2 = ε+ – Δ+ – = ε– – Δ+ –.
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Γ = 15 μeV being chosen to approximate the measured dephasing time [88]. These

operators represent all the possible spontaneous emission pathways in the four-level

system. There are many equivalent ways to solve the master equation in terms of a

nonlinear stochastic differential equation for a normalized state vector | ψ〉. We choose

to use the quantum state diffusion (QSD) equation [223,224]

|  = – |d i H dtψ ψ〉 〉
h

+   – 1
2

 – 
1
2

|† † †Σ
j j j j j j jL L L L L L dt〈 〉 〈 〉 〈 〉⎛

⎝
⎞
⎠ 〉ψ

+  (  – ) |Σ
j j j jL L d〈 〉 〉ψ η (7.50)

Table 7.1 Pulse sequences used in the computation, (1) and (2) indicate the two components of a

shaped pulse of the form (t) = 1(t) + 2(t) = 0 ( –( / ) –2
1 1e t s i t i– ω φ + ).–( ) –1

2
2 2e t/s i t+iω φ  The area

θ is defined as hθ = ∫ d (t) dt. d 0 is 0.2 meV in the long pulses case and 2 meV for short and

shaped pulses. The pulse sequence of U Uf f1 4
( )  is identical to the U Uf f2 3

( )  except for a change

of sign in the phase φj.

Pol φj ωj Long pulses Short pulses Shaped pulses

ps (θ) ps (θ) ps (θ)

ENCODING

I (1) σ+ –π/2 ω1 2.92 (π/2) 0.29 (π/2) 0.15 (0.81)

I (2) σ+ –π/2 ω2 2.92 (π/2) 0.29 (π/2) 0.15 (0.81)

II (1) σ– π/2 ω1 2.92 (π/2) 0.29 (π/2) 0.15 (0.81)

II (2) σ– π/2 ω2 2.92 (π/2) 0.29 (π/2) 0.15 (0.81)

DECODING

I (1) σ+ π/2 ω1 2.92 (π/2) 0.29 (π/2) 0.15 (0.81)

I (2) σ+ π/2 ω2 2.92 (π/2) 0.29 (π/2) 0.15 (0.81)

II (1) σ– π/2 ω1 2.92 (π/2) 0.29 (π/2) 0.15 (0.81)

II (2) σ– π/2 ω2 2.92 (π/2) 0.29 (π/2) 0.15 (0.81)

U f2

I (1) σ– –π/2 ω1 5.83 (π) 0.58 (π) 1.05 (5.68)

I (2) σ– π/2 ω2 0.56 (3.03)

II (2) σ– –π/2 ω2 5.83 (π) 0.58 (π) 1.05 (5.68)

II (1) σ– π/2 ω1 0.56 (3.03)

U f3

I (1) σ– –π/2 ω1 5.83 (π) 0.58 (π) 1.05 (5.68)

I (2) σ– π/2 ω2 0.56 (3.03)

II (2) σ– π/2 ω2 5.83 (π) 0.58 (π) 1.05 (5.68)

II (1) σ– –π/2 ω1 0.56 (3.03)
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where 〈L〉 = 〈ψ | L | ψ〉 and ηj are independent complex random variables. The density

matrix can be expressed as ρ = M | ψ〉 〈ψ | where M denotes ensemble average and the

expectation value of any operator O is given by M 〈ψ | O | ψ〉. Inclusion of dephasing in

this way reduces the fidelity of the operation but we can see from column 3 in Fig. 7.31

that it is still possible to distinguish between the constant and balanced functions within

a margin of error less than 10%.

7.8 Summary

The optical response of single semiconductor QDs, particularly the GaAs interface

fluctuation QDs, is reviewed in this chapter. The lowest exciton and biexciton states that

are well localized in these QDs are coherently manipulated using both CW and transient

optical fields. The Rabi oscillations of excitons are demonstrated. It is found that the

decoherence of single QDs is dominated by energy relaxation and the pure-dephasing

due to exciton-phonon and exciton–exciton elastic scattering is insignificant. The 3D

confinement enhances the biexciton binding energy. Due to the exciton–exciton Coulomb

correlation in a dot, the resonant energy of one exciton depends on whether the other

exciton is excited or not, allowing for optically inducing two-exciton entangled states.

The experiments discussed in this chapter have addressed the key issues related to

quantum computing based on optically driven QDs.

The simplest prototype two-bit quantum computer based on laser manipulation of

the excitons and the biexciton in QD is proposed. Shaping of femtosecond laser pulses

keeps the computation within the time of environmental degradation of the quantum

information. Numerical simulation of the complete solution of a simple basic problem

demonstrates the feasibility of this primitive quantum computer. These results pave the

way to resolving basic physics issues in the realization of larger quantum computers

based on the strength of semiconductor and laser technologies.

To build a scalable computer based on this way of operation, it is necessary to be

able to produce coupled QD arrays in the future. In addition, it is desired that the

decoherence rate be further reduced. The studies discussed in this chapter show that the

decoherence is limited by the energy relaxation. The double ground states of a charged

QD have long energy relaxation time (lifetime) and can be used to achieve along

decoherence time. In such proposals, the coherence between the two ground states (0

and 1 of a qubit) is manipulated optically via the trion states (charged exciton states) and

the spectroscopic techniques presented in this chapter apply.
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Abstract

Coupling nanocrystals synthesized through colloidal chemistry or nanostructures grown

by molecular beam epitaxy to whispering gallery modes in a dielectric microsphere

forms a unique composite semiconductor-microcavity system. In a low-Q regime, enhanced

spontaneous emission has been demonstrated in CdSe/ZnS core/shell nanocrystals

embedded in the interior surface of a polystyrene microsphere, providing important

information on radiative dynamics in these quantum dots. In a high-Q regime, the good

cavity limit in cavity QED, in which absorption or emission occurring in a single

quantum dot can significantly affect the dynamics of the composite quantum dot-

microcavity system, has been reached by coupling the nanocrystals to whispering gallery

modes in a fused silica microsphere. Studies of homogeneous linewidth of the CdSe/

ZnS core/shell nanocrystals using high resolution spectral hole burning has also shown

the suppression of dephasing associated with electron–phonon interactions due to complete

quantization of acoustic phonon modes in the colloidal quantum dots. While excessive

pure dephasing in CdSe/ZnS core/shell nanocrystals has thus far prevented us from

achieving the strong-coupling limit in cavity QED, this limit should be readily achievable

with a composite nanocrystal-microsphere system where nanocrystals are nearly lifetime

broadened.

8.1 Introduction

Spontaneous emission represents one of the most visible and fundamental manifestations

of the dynamical interaction between matter and vacuum. The possibility of modifying

spontaneous emission with an optical microcavity was first pointed out by E. Purcell

[1]. Studies in this area, broadly referred to as cavity QED, have traditionally focused
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on atomic systems. Experimental investigations using composite atom-cavity systems

have led to beautiful demonstration of effects such as enhanced or inhibited spontaneous

emission, Jaynes–Cummings energy ladder, single-atom masers and lasers, and have

led to applications in quantum measurement, quantum entanglement, and more recently

quantum information processing [2–7]. The tremendous progresses achieved in atomic

cavity QED have also stimulated considerable interest in cavity QED in quantum dot

(QD) systems that feature atomic-like discrete energy levels. In addition to applications

such as microlasers, QD-microcavity systems avoid the difficulty of center-of-mass

motion inherent in atomic cavity QED and can thus scale up to a relatively large

mesoscopic system, for example, with an array of QDs coupling strongly to a cavity

mode.

For a simple system where a two-level dipole transition couples to a resonant

optical microcavity, dynamics of spontaneous emission can be categorized into two

different regimes. In the limit that g < (κ, γ) where κ is the cavity decay rate, γ is the

dephasing rate of the optical transition, and g is the coherent dipole coupling rate

between the optical transition and the resonant cavity mode, enhanced or inhibited

spontaneous emission is expected and the system remains in a weak-coupling regime.

In comparison, when g is large compared to both κ and γ, the system reaches a strong-

coupling regime. In this regime, the interaction between the optical transition and the

cavity mode becomes so strong that spontaneous emission becomes reversible and a

single photon can drastically change the dynamics of the system. The strong coupling

regime, which is easy to specify but is extremely difficult to achieve, is essential for

many applications of cavity QED systems, especially for quantum information processing

and for generating quantum entanglement [4–9].

Two important cavity parameters for cavity QED are the cavity Q-factor and the

effective cavity mode volume. The Q-factor determines the cavity decay rate. The

effective mode volume, V0, defined as the spatial integral of the field intensity, normalized

to unity at the maximum, determines the strength of the vacuum electric field (or the

electric field generated by a single photon in the cavity mode) given by [10]

E Vvac 0 0 = /2hω ε . (8.1)

Since g = μEvac/h where μ is the dipole moment for the relevant optical transition,

cavities with high Q-factor and small mode volume are necessary for achieving the

strong-coupling regime.

A variety of monolithic semiconductor microcavities, including micro-pillar Fabry-

Perot cavities, microdiscs, and photonic crystals, have been used for cavity QED studies

in a QD system [11–16]. While enhanced spontaneous emission has been demonstrated
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in these systems, experimental efforts toward achieving the strong coupling regime

using monolithic semiconductor microcavities have thus far been hindered by inadequate

cavity Q-factors.

Dielectric microspheres, especially fused silica microspheres, are uniquely suitable

to applications in cavity QED. In a dielectric microsphere, light can circulate along the

curved surface through total internal reflection to form a whispering gallery mode

(WGM). Lower order WGMs in these microspheres can feature both small mode volume

and unprecedented high cavity finesse [17]. A composite semiconductor-microsphere

system, where semiconductor nanostructures couple to WGMs in a dielectric microsphere,

can take advantage of the extreme photonic confinement in the dielectric microsphere

and also allows the flexibility of separate engineering of photonic and electronic

confinement. Semiconductor nanocrystals, such as core/shell CdSe/ZnS nanocrystals

synthesized through colloidal chemistry, as well as nanostructures grown by molecular

beam epitaxy (MBE) can be incorporated in these composite microcavity systems.

In this chapter, we will discuss our recent experimental efforts in using the composite

semiconductor-microsphere system for cavity QED of QDs. Basic properties of WGMs

in a dielectric microsphere will be briefly reviewed in section 8.2. Composite systems

combining a fused silica microsphere and a MBE-grown nanostructure will be discussed

in section 8.3. Many of the difficulties encountered in these systems can be avoided

when a composite nanocrystal-microsphere system is used. Cavity QED of core/shell

CdSe/ZnS nanocrystals in both low-Q and high-Q regimes will be discussed in detail in

section 8.4. Since excessive pure dephasing in nanocrystals is presently the main obstacle

for achieving the strong coupling regime, high-resolution hole burning studies on dephasing

processes in these nanocrystals will also be discussed in this section. A brief summary

will be presented in section 8.5.

8.2 Whispering gallery modes in a dielectric microsphere

In this section we review briefly basic properties of WGMs in a dielectric microsphere,

including mode structures and Q-factors of fused silica microspheres. More detailed

discussions on properties of WGMs can be found in [18,19].

Whispering gallery modes in a dielectric sphere are solutions to Maxwell’s equations

∇ × (∇ × E) – (ω/c)2 ε(r)E = 0 (8.2)

where ε(r) is the dielectric constant. We assume ε = 1 outside the sphere and ε > 1 but

constant inside the sphere. The transverse electric (TE) modes are described by
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E(r) = φ(r) Xlm (θ, φ) (8.3)

where Xlm = [l(l + 1)]–1/2LYlm is the vector spherical harmonic with L = r × i∇. The

radial distribution is determined by
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with Φ = rφ(r). The transverse magnetic (TM) field modes are described by
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again with Φ = rφ(r). Inside the sphere φ(r) is a spherical Bessel function and outside the

sphere φ(r) is an outgoing spherical Hankel function. For each l, the electromagnetic

boundary condition leads to a characteristic equation whose roots determine the discrete

resonant frequency ωplm of the WGMs where p is the principal or the radial mode

number.

Whispering gallery modes can also be understood by using an analogy between

Maxwell’s equations and the Schrödinger equation. If one views [1 – ε(r)] as an analogue

of a potential, the region with ε > 1 then behaves like an attractive potential well. For

the electric field distribution along the radial direction, the effective potential is the sum

of the attractive well due to the dielectric sphere and a repulsive angular momentum

barrier as shown in Eq. (8.4). Whispering gallery modes are then the quasi-bound

solutions confined near the surface of the sphere with the confinement potential due to

the discontinuity in the dielectric constant across the surface of the sphere. This also

naturally leads to the analogy between WGMs and atomic wave functions: p – 1

corresponds to the number of nodes in the electric field along the radial direction, l

corresponds to the angular momentum quantum number, and m corresponds to the

azimuthal angular momentum quantum number. One can also estimate l by assuming

that the round-trip optical path length equals lλ where λ is the wavelength in vacuum.

For light rays with near glancing incidence, this yields

l ≈ r0nω/c (8.7)

where r0 and n are the radius and refractive index of the sphere, respectively. In this

regard, we also refer l as the orbital mode number.

Whispering gallery modes with p = 1 and m = ±l are essentially a ring circling on



370 Hailin Wang

the equator (θ = π/2) and are confined within a wavelength of the sphere surface. For

these WGMs the effective mode volume scales approximately with r0
2 λ  and can be

much smaller than the volume of the sphere. Vacuum field strength of order 300 V/cm

can be achieved at the surface of a fused silica microsphere with r0 = 5 μm and with λ
near 600 nm.

Whispering gallery modes with p = 1 and | m | < l are also confined near the sphere

surface but has l – | m | +1 major lobes in its angular intensity dependence, centered at

θ = π/2 and extending to θ = π/2 ± cos–1 (m/l). For a prefect sphere, TE or TM modes

with the same p and l but different m are degenerate. A small ellipticity in typical fused

silica microspheres, however, removes this azimuthal degeneracy.

We now discuss in more detail WGMs in fused silica microspheres. Fused silica

microspheres can be fabricated by fusing the tip of an optical fiber or a silica wire with

a focused CO2 laser beam. The size of the sphere can range from a few to a few hundred

μm. Figure 8.1 shows the optical image of a fused silica microsphere. The sphere

remains attached to a fiber stem for easy manipulation and is slightly deformed due to

the presence of the fiber stem. The ellipticity can range from 0.1% to more than 3%. In

addition to CO2 laser beams, microtorches have also been used to fabricate fused silica

microspheres.

Whispering gallery modes in a fused silica microsphere can be conveniently

excited through frustrated total internal reflection. Efficient excitation of WGMs with

Fig. 8.1 A fused silica microsphere with a radius near 50 μm attached to a fiber stem. The

microsphere is fabricated by fusing the end of a fiber tip with a focused CO2 laser beam.
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lower p can be achieved by using an angle of incidence near the critical angle between

a high index optical prism and the sphere. Figure 8.2 shows the mode structure of a

sphere with r0 = 70 μm where we measured the intensity of the scattering light from the

excited WGMs as a function of the excitation laser wavelength. The free spectral range

(FSR) of the WGMs for this sphere is 1 nm and is determined by FSR = λ2/2πn r0 with

n = 1.452. The two peaks within one FSR shown in Fig. 8.2 correspond to WGMs with

p = 1 and 2, respectively. Each peak in Fig. 8.2(a) also contains a number of much

sharper resonances as shown in an expanded plot in Fig. 8.2(b). These resonances

correspond to WGMs that have the same p and l but different m. The frequency separation

between two neighboring azimuthal modes can range from 0.001 nm to 0.5 nm depending

on the ellipticity and the size of the sphere. The total number of p modes and m modes

that can be excited in a given excitation configuration can be controlled by varying the

angle of incidence and the laser beam profile. The spectral linewidth of the WGM

resonance shown in Fig. 8.2(b) corresponds to a Q-factor of 106 and is limited by the

output coupling loss through the high index prism. Q-factors near 109 were obtained

when we introduced a greater gap between the sphere and the prism.
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Fig. 8.2 Whispering gallery modes excited through frustrated total internal reflection for a fused

silica microsphere with a radius of 70 μm. An expanded plot of the peak near 799.3 nm in (a) is

displayed in (b).

There are several mechanisms that limit the finesse of a fused silica microsphere.

If one considers a fused silica microsphere with r0 = 100 μm and λ near 600 nm, the

absorption and scattering loss of high purity fused silica limits the Q-factor to near 1010.

Examination of the surface of fused silica microspheres using atomic force microscopy

revealed nearly atomically smooth surface with surface fluctuations on the order of a

few tenth of nm in height and with a correlation length of several nm. The resulting

surface scattering also limits the Q-factor to near 1010 [20,21]. Another important limiting
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factor for the cavity finesse is surface adsorption of water vapors, which can reduce the

Q-factor to below 109 [20,21]. Intrinsic diffraction or tunneling loss, which depends

exponentially on the sphere size, does not become important as long as r0/λ > 5. The

unprecedented high cavity finesse along with the extremely small mode volume makes

fused silica microspheres a highly promising optical microresonator for use in cavity

QED of QDs as well as atoms and molecules [22–27].

8.3 Composite system of dielectric microsphere and MBE-grown

nanostructure

In this section we discuss a composite semiconductor-microsphere system where optical

excitations in a MBE-grown semiconductor nanostructure are coupled to WGMs in a

fused silica microsphere. This system takes advantage of the high-Q WGMs in a fused

silica microsphere and at the same time can use a variety of well-developed and well-

characterized MBE-grown semiconductor nanostructures.

The experimental setup is shown schematically in Fig. 8.3. The composite system

consists of a microsphere in contact with a semiconductor sample [26,27]. A high index

prism is placed on the other side of the microsphere for excitation and output coupling

of WGMs. The prism is mounted on a piezoelectric translation stage that can adjust the

gap between the prism and sphere. The entire setup is attached to the cold finger of a

cryostat. To characterize the mode structure of the composite system, we have used in

our initial experiments an inhomogeneously broadened GaAs/AlGaAs quantum well

CW laser

Prism

PTS

Sample

Cryostat

Coupled PL

Uncoupled PL

Fig. 8.3 Schematics of the experimental setup for coupling optical excitations in a MBE-grown

nanostructure to WGMs in a fused silica microsphere. The optical prism is mounted on a piezoelectric

translation stage (PTS). (From [27] with permission.)
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(QW) sample that contains 8 periods of QWs with well width of 13 nm and barrier

width of 15 nm.

For photoluminescence (PL) measurements, the QW sample was excited above

the band gap with a continuous wave (CW) laser. Excitonic PL coupled into the WGMs

(referred to as the coupled PL) were collected via output coupling through the high

index prism. The coupled PL came out of the prism with a refraction angle greater than

that of the uncoupled PL (PL not coupled into the WGMs), as indicated in Fig. 8.3.

Figure 8.4 shows spectra of both uncoupled and coupled PL obtained at 10 K. The

coupled PL spectra with TE and TM polarization feature periodic mode structures with

a FSR of 1.5 nm, determined by the radius (r0 = 47 μm) of the microsphere.
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Fig. 8.4 Uncoupled PL spectrum (a) and coupled PL spectra (b and c) from a composite system

of a GaAs/AlGaAs QW and a fused silica microsphere. The data were obtained at 10 K. (From

[27] with permission.)

As we have discussed in section 8.2, WGMs in a dielectric sphere are characterized

by radial mode number p, orbital mode number l, and azimuthal mode number m. As

shown in Fig. 8.4, within each FSR there are several modes with different p, with the p

= 1 mode featuring the greatest coupling efficiency. Additional PL studies performed at
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higher spectral resolution also showed that each peak in the coupled PL spectra in Fig.

8.4 consists of a number of sharper resonances corresponding to WGMs with different

m, similar to that shown in Fig. 8.2 [26]. The spectral linewidth of these WGM resonances,

however, is limited by the spectrometer resolution (0.01 nm).

To achieve adequate spectral resolution and especially to determine the Q-factor

of the combined system, we have used the resonant light scattering technique, in which

WGMs near the equator of the microsphere were launched directly via frustrated total

internal reflection, as discussed in section 8.2. Emissions or scatterings from these

WGMs were collected away from the reflection direction of the incident laser beam.

Whispering gallery resonances with spectral linewidth of order 0.004 nm were observed

for the combined semiconductor-microsphere system, corresponding to a Q-factor of 2

× 105, compared to a Q-factor of 108 that is easily attainable for the fused silica microsphere

even after repeated measurements [27]. The significant Q-spoiling observed is in part

due to the refractive loss in the contact area between the QW sample and the sphere

since the QW sample has an index of refraction greater than that of the fused silica

microsphere and is also in part due to the scattering loss occurring in the contact area.

Both of these loss mechanisms can, however, be avoided or significantly reduced if one

uses as the semiconductor sample a tip with a dimension small compared with the

optical wavelength. In spite of the Q-spoiling, the Q-factor of the combined system is

still significantly greater than that of monolithic planar semiconductor microcavities or

semiconductor microdisks.

A major difficulty in using the above composite microcavity system for cavity

QED is that for typical MBE-grown nanostructures, the sample is at the very tail of the

evanescent field of the WGMs such that the dipole coupling rate between the optical

transition and the resonant WGM is relatively small. To determine the dipole coupling

rate, we have attempted to measure Q-spoiling of the combined QW-microsphere system

induced by absorption of excitons in the QW sample. For these measurements, we have

selected microspheres that have WGMs resonant with the heavy hole (hh) excitonic

transition in a QW sample containing a single 17 nm GaAs well. The absorption linewidth

of the hh exciton resonance at 10 K is 0.3 nm. Since evanescent fields of WGMs decay

exponentially away from the sphere surface, we chemically etched the GaAs capping

layer of the sample down to approximately 25 nm thick to position the GaAs well nearly

32 nm away from the sample surface (there is a 7 nm AlGaAs barrier between the GaAs

capping layer and the GaAs well). Spectral linewidth of 0.004 nm was observed for

WGMs resonant with the hh excitonic transition. The same spectral linewidth, however,

was also observed for WGMs below, at, or above the hh exciton absorption resonance

[27]. The absence of absorption-induced Q-spoiling implies that the absorption loss due
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to the dipole coupling between the exciton and the resonant WGM is small compared

with refractive and scattering losses occurring in the contact area.

For a microsphere in vacuum and for WGMs that are near glancing incidence, the

field penetration depth into the vacuum is given by λ π/2  – 12n . While the actual

penetration depth when the microsphere is in contact with a semiconductor sample

requires a detailed calculation of the WGM field distribution including the proper

boundary condition, for a simple estimate we take the penetration depth in the sample

to be λ πS n/2  – 12  where λs is the wavelength in the sample (the refractive index of

the sample is 3.5). At λ = 800 nm this yields a penetration depth of only 35 nm. For the

sample used in our study, the distance between the center of the QW and the sample

surface is nearly 40 nm, leading to a reduction of a factor of 3 in the dipole coupling

rate.

While the above experimental studies clearly indicate that PL from a semiconductor

sample can couple efficiently into the WGMs of the composite semiconductor-microsphere

system, to further increase the dipole coupling between excitons and relevant WGMs,

one needs to use nanostructures where the active medium such as a QW or a QD can be

positioned within a few nm from the microsphere surface. For GaAs-based nanostructures,

a capping layer at least 25 nm to 40 nm thick is necessary in order to avoid severe

nonradiative surface effects that can result in a drastic broadening of the exciton resonance

[28]. However, for nanostructures such as II-VI nanocrystals, efficient surface passivation

can be achieved by a capping layer of only 1 nm thick. Furthermore, a composite

nanocrystal-microsphere system, in which chemically-synthesized colloidal QDs are

coupled to WGMs of a dielectric microsphere, also avoids the refractive loss occurring

in the contact area between a microsphere and a planar MBE-grown nanostructure.

Properties of composite nanocrystal-microsphere systems will be discussed in detail in

the next section.

8.4 Composite system of dielectric microsphere and semiconductor

nanocrystals

Recent advances in colloidal chemistry have led to the fabrication of high quality

semiconductor core/shell nanocrystals [29–31]. In these nanocrystals, a nearly defect

free core such as CdSe is capped by a thin layer (~1 nm) of a semiconductor with greater

bandgap such as ZnS. These core/shell nanocrystals feature much improved quantum

yield compared with earlier generations of semiconductor nanocrystals.

A composite nanocrystal-microsphere system overcomes many of the difficulties

encountered in the composite system of microsphere and MBE-grown nanostructure
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discussed in the previous section and provides a nearly ideal model system for cavity

QED of QDs. On one hand, extremely high-Q factor and small cavity mode volume can

be easily obtained. On the other hand, discrete acoustic phonon modes in colloidal QDs

can lead to suppression of dephasing associated with electron–phonon interactions. In

this section we will discuss in detail cavity QED studies in a low-Q regime where

polystyrene spheres were used and in a high-Q regime where fused silica microspheres

were used. This is followed by discussions on dephasing processes in CdSe/ZnS core/

shell nanocrystals since dephasing in these QDs is presently the primary limiting factor

for achieving the strong-coupling regime.

Coupling nanocrystals to a dielectric microsphere: low-Q regime

In a low-Q regime, the cavity decay rate is large compared with both the dipole coupling

rate and the dephasing rate of the relevant optical transition. Enhanced spontaneous

emission is expected in this regime when the cavity is resonant with the relevant optical

transition. The enhancement in the spontaneous emission rate or the radiative decay rate

is characterized by the Purcell factor given by Fp = Γc /Γr where Γc is the radiative decay

rate into a cavity mode and Γr is the radiative decay rate in a homogeneous dielectric

medium. The cavity-induced relative change in the total decay rate, Γt = Γnonr + Γr,

where Γnonr is the nonradiative decay rate, however, also depends on the relative contribution

of Γr and Γnonr and is given by

ξ
Γ Γ

Γ Γ Γ Γ = 
 + (1 + )

 + 
 – 1 = 1

1 + /
nonr

nonr nonr

F
F

p r

r
p

r
, (8.8)

since Γnonr is not affected by the cavity. The manifestation of enhanced spontaneous

emission depends on the ratio Γnonr /Γr, thus providing valuable information on the

underlying radiative dynamics that is otherwise not available from conventional time-

resolved PL studies.

For cavity QED studies in the low-Q regime, CdSe/ZnS nanocrystals were doped

in the interior surface of a polystyrene sphere [32]. No indications of degradation due

to the doping process have been observed. An inset in Plate 8 shows the optical image

of a typical nanocrystal-doped polystyrene sphere. For studies presented in this chapter

polystyrene spheres with a diameter of 15 μm were used. Separate control experiments

also used spheres with a diameter of 100 μm (no enhanced spontaneous emission was

observed with these large spheres). CdSe/ZnS core/shell nanocrystals used in our study

were fabricated by using a high temperature organometallic synthesis developed earlier

[29,30]. The nanocrystals feature an average room-temperature quantum yield of

40%~50%. Three groups of nanocrystals with average core radius R of 2 nm, 2.7 nm,
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and 4.5 nm were used. The average core radii were determined from PL spectra and are

consistent with results of transmission electron microscopy. Plate 8 shows the PL spectrum

obtained at 10 K from nanocrystals with R = 2.7 nm embedded in a polystyrene sphere.

The linewidth of the narrowest WGMs, as shown in the inset, is 0.2 nm, corresponding

to a Q-factor of 3000.
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Fig. 8.5 Time-resolved PL from CdSe/ZnS core/shell nanocrystals in free space. (a) At 10 K.

(b) Temperature dependence for nanocrystals with R = 4.5 nm. Solid, dashed, and dotted curves

are obtained at 10 K, 20 K, and 35 K, respectively, with the amplitude normalized to the same peak

intensity. The inset in (b) shows schematically the excitonic energy structure for CdSe nanocrystals

near the band edge. (From [32] with permission.)

If one assumes that optical dipoles are randomly orientated, resonant with the

cavity mode, and positioned at the maximum of the vacuum electric field, and that the

homogeneous linewidth of the relevant optical transition is smaller than the cavity

linewidth, the Purcell factor is then given by [1]

Fp = QDλ3/4π2n3V0, (8.9)

where D is the mode degeneracy. For a 15 μm sphere, using Q = 3000, λ = 620 nm, n

=1.5, D = 2, and V0 = 35 μm3, we obtain Fp = 0.3. The actual effective Purcell factor is

smaller due to the spatial and spectral distributions of nanocrystals in the measurement.

Using statistical average similar to that used in Ref. 9, we obtain an effective Purcell

factor of 0.2.

Time-resolved PL was carried out by using correlated photon counting. The

excitation pulses, obtained by frequency-doubling a mode-locked Ti: Sapphire laser,
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were centered near λ = 400 nm with a reduced repetition rate of 500 kHz. A photomultiplier

tube was used as the detector with a system response near 1.5 ns. Experimental results

presented were obtained at excitation levels where behaviors of time-resolved PL are

independent of the input pulse energy.

While high quality colloidal QDs feature atomic-like discrete energy structures,

radiative dynamics, especially the physical nature of band edge PL, in these QDs is very

complex [33,34], which can greatly complicate the manifestation of cavity QED processes

in these nanocrystals. Figure 8.5 shows time-resolved PL obtained in free space. At 10

K decay times of PL range from of order 1 ns to a few hundred ns.

The complex behavior of multiple decay components shown in Fig. 8.5 is in part

due to the exciton energy structure in nanocrystals. The energy structure of band edge

excitons in CdSe nanocrystals, drawn schematically in the inset of Plate 8, is characterized

by five levels with angular momentum projection Fm = ±2, ±1L, 0L ±1U, 0U, where U and

L denote upper and lower states with the same Fm [33]. Within the effective mass

approximation (EMA), transitions from the crystal ground state to states ±2 and 0L

(dashed lines) are dipole-forbidden, while transitions to states ±1L, ±1U and 0U (solid

lines) are dipole-allowed. In addition to direct radiative recombination, phonon-assisted

optical transitions from both dipole-allowed and dipole-forbidden transitions can also

contribute to the PL. In principle, each direct or phonon-assisted transition can lead to

a single or multiple decay components in the time-resolved PL with the decay including

both radiative and nonradiative processes.

For a collection of nanocrystals with a large inhomogeneous linewidth, PL at a

given wavelength can result from a number of direct and indirect transitions near the

band edge. Little information on details of the underlying radiative dynamics can be

extracted from the conventional time-resolved PL since it is difficult to correlate decay

components with a specific optical transition. In order to reduce contributions from

higher excited states, time-resolved PL presented here was obtained at the lower energy

end of the PL spectrum unless otherwise specified.

Figure 8.6 shows time-resolved PL of nanocrystals embedded in polystyrene

spheres. In each sub-figure, the lower curve is obtained at a wavelength resonant with

a WGM while the upper curve is obtained at a wavelength near but is off-resonant (~3

Å away) with the given WGM. A spectral bandwidth of 1 Å is used for these studies in

order to separate the resonant and off-resonant contributions. Note that in free space,

behaviors of time-resolved PL within a narrow spectral range of 5 Å are nearly identical.

An example of the relevant wavelength positions is also shown in an inset in Plate 8.

The enhancement in PL decay rates when the PL is resonant with a given WGM occurs

for only one PL component.
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The relative enhancement in the PL decay rate shown in Fig. 8.6 depends sensitively

on temperature and especially nanocrystal sizes. This is not due to changes in the

underlying Purcell factor. As long as the homogeneous linewidth is small compared

with the cavity linewidth, Fp is determined by the properties of the cavity and remains

nearly the same for all measurements in Fig. 8.6. For a relatively small Fp (~0.2), a clear

signature of relative changes in the total decay rate can be observed only when Γr is

greater than or at least comparable to Γnonr, as indicated by Eq. (8.8).

We attribute the PL component that exhibits pronounced cavity-induced enhancement

in the total decay rate to optical emissions from states ±1L, the lowest dipole-allowed

transition. For these states, Γnonr includes contributions from thermal activation to higher

excited states, decay to states ±2, and possibly relaxation to surface states. The decay

into the ±2 states requires spin flipping of excitons, which is shown to be extremely

slow in recent studies using time-resolved Faraday rotation [35]. At low temperature,

thermal activation from the ±1L to ±1U states is also slow because of the large energy

separation (>10 meV) between these states. In comparison, for states with energies

Fig. 8.6 Time-resolved PL from CdSe/ZnS core/shell nanocrystals embedded in a polystyrene

sphere at spectral positions resonant (the lower curve in each figure) or off-resonant (the upper

curve in each figure) with given WGMs. The measurements were carried out at the lower energy

side of the respective PL spectra. For each figure, the amplitude is normalized to the same

peak intensity. (a) At 10 K. (b) At 20 K. Results of numerical fits to PL from nanocrystals with

R = 4.5 nm are shown as squares and are discussed in the text. (From [32] with permission.)
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The size and the temperature dependence of the enhanced spontaneous emission

process shown in Fig. 8.6 further supports the above assignment on enhanced spontaneous

emission from the lowest dipole-allowed transition. The enhancement in PL decay rates

can only be observed in relatively large nanocrystals (R = 2.7 and 4.5 nm but not R = 2

nm). Earlier theoretical calculations have shown that the relative oscillator strength for

the ±1L states increases with increasing nanocrystal size whereas the relative oscillator

strength for the ±1U states decreases with increasing nanocrystal size [33]. When the

nanocrystal size decreases from more than 3 nm to 1.5 nm in radius, radiative lifetime

1/Γr for the ±1L states increases from 10 ns to 100 ns [34]. The ratio Γr /Γnonr for the ±1L

states is thus expected to decrease with decreasing nanocrystal size. Hence, smaller

nanocrystals should feature a smaller ξ as well as a smaller relative contribution from

the ±1L states to the overall PL, leading to negligible enhancement in total PL decay

rates as observed for nanocrystals with R = 2 nm.

Figure 8.6 also shows that at low temperature ξ for nanocrystals with R = 4.5 nm

exhibits only a weak temperature dependence while much stronger temperature dependence
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Fig. 8.7 Time-resolved PL from CdSe/ZnS core/shell nanocrystals embedded in a polystyrene

sphere obtained near the center of the respective PL spectra and with the amplitude normalized to

the same peak intensity. Results obtained at a wavelength resonant with a given WGM and at a

nearby wavelength but off-resonant with the WGM are shown in each figure and are nearly the

same. (From [32] with permission.)

higher than the ±1L states, rapid relaxation into lower energy states occurs since in this

case the relaxation does not require spin flipping. For these higher excited states, Γnonr

is much greater than Γr. No significant cavity-induced relative increase in the decay

rates is expected for PL from these higher excited states. This is also confirmed by the

observation that for all the nanocrystals we have used, no pronounced enhancement in

PL decay rates was seen for PL obtained at the center or at the higher energy side of the

PL spectra (see Fig. 8.7) where contributions from higher excited states become much

more important.
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of ξ is observed for nanocrystals with R = 2.7 nm. This size variation in the temperature

dependence of ξ is expected since larger nanocrystals are expected to feature a greater

ratio of Γr/Γnonr. For very large nanocrystals, the contribution to the total decay rate

from temperature dependent nonradiative decay processes is relatively small. This is in

agreement with the temperature dependence of the time resolved PL obtained in free

space. As shown in Fig. 8.5(b), within the first 20 ns, relatively weak temperature

dependence was observed in the time resolved PL in free space for nanocrystals with R

= 4.5 nm. In comparison, much stronger temperature dependence was observed in

similar measurements for nanocrystals with R = 2.7 nm (not shown).

The observation of the pronounced cavity-induced enhancement in the total decay

rate along with the weak temperature dependence in both ξ and Γt for nanocrystals with

R ≈ 4.5 nm indicates that in these large nanocrystals and for the ±1L transition, Γr is

considerably greater than Γnonr. For a more quantitative analysis, we have used two

exponential components to fit the PL in the first 150 ns of the time resolved PL. For

nanocrystals off-resonant with the relevant WGM, the decay time for the first decay

component is 1/Γt = 8.7 ns and 8.1 ns at 10 K and 20 K respectively (the decay time for

the second and slower component is of order 30 ns at 10 K). Whereas for nanocrystals

resonant with the relevant WGM, the decay time for the first decay component is 1/Γt

= 7.3 ns and 6.8 ns at 10 K and 20 K respectively. These results yield ξ = 0.2 and 0.19 at

10 K and 20 K, respectively, approaching the theoretically expected Fp and also indicating

that the underlying decay process is primarily radiative in origin. For very large nano-

crystals, radiative decay time, 1/Γr, for the lowest dipole-allowed transition is theoretically

expected to be of order 10 ns, in general agreement with the experimental result.

The above experimental studies on cavity QED of nanocrystals in the low-Q

regime have shown enhanced spontaneous emission from CdSe/ZnS core/shell nanocrystals

and have demonstrated the feasibility of using whispering gallery optical microcavities

to manipulate and control spontaneous emission in these nanocrystals. These studies

also provided valuable and much needed information on radiative dynamics in these

remarkable QDs. For large nanocrystals (R~4.5 nm), population decay of the underlying

optical transition is primarily radiative in origin in spite of the complex energy structure

and relaxation processes, which is important for the use of these QDs for cavity QED

in the strong coupling regime.

Coupling nanocrystals to a dielectric microsphere: high-Q regime

While the composite system based on polystyrene microspheres is suitable for the

demonstration of enhanced spontaneous emission, the Q-factor of this system is relatively
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small. To achieve much greater Q-factors, we have carried out experimental studies

using composite systems based on fused silica microspheres. The high-Q microcavity

system has enabled us to reach the good cavity limit in cavity QED, in which absorption

or emission occurring in a single nanocrystal can significantly affect the dynamics of

the composite nanocrystal-microsphere system [36].

Plate 9 shows the image of a fused silica microsphere with CdSe/ZnS core/shell

nanocrystals deposited on the surface of the microsphere through solution deposition, in

which nanocrystals suspended in a solution of chloroform were used. The bright red PL

from nanocrystals on the sphere surface can be seen clearly. A portion of the PL spectrum

from a composite nanocrystal-microsphere system is shown in Fig. 8.8. The spectrum

was obtained at room temperature and the nanocrystals were excited above the band gap

with an excitation wavelength of 532 nm. A high-index optical prism was also used to

couple WGMs out of the microsphere. The PL spectrum shows a FSR of 0.7 nm. For the

two peaks within one FSR in Fig. 8.8, we assign the stronger and the weaker peaks to

the p = 1 and p = 2 modes, respectively, since the p = 1 mode has the best mode

matching with nanocrystals on the sphere surface. Each peak in Fig. 8.8 also contains

several WGMs with different m. These modes, however, are not resolved in the figure

due to the limited spectrometer resolution.
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Fig. 8.8 Photoluminescence spectrum of a composite nanocrystal-microsphere system where the

sphere radius is near 50 μm and the average core radius of the CdS/ZnS core/shell nanocrystals is

2 nm. (From [36] with permission.)

Resonant light scattering techniques similar to that discussed in section 8.2 and

section 8.3 were used to characterize the Q-factor of the composite nanocrystal-fused

silica microsphere system. Figures 8.9(a) and 8.9(b) show the resonant scattering spectra
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obtained far below the band gap and near the absorption line center of the nanocrystals,

respectively. The mode spacing in Fig. 8.9(a) corresponds to separation between two

adjacent azimuthal modes. Near the absorption line center, the spectral linewidth of the

WGM is 4 × 10–4 nm, corresponding to a Q-factor of 1.6 × 106. In comparison, below

the band gap, the linewidth decreases to 5 × 10–6 nm, corresponding to a Q-factor of 1.6

× 108, as shown in the inset in Fig. 8.9(b). This linewidth is limited by the scanning step

size of the tunable diode laser used in the measurement. The difference in the Q-factors

obtained far below and at the absorption line center is primarily due to absorption of

nanocrystals coupling to the relevant WGM. Separate time-domain ring-down spectroscopy,

which can provide a more accurate measure of Q-factors, has further shown that the Q-

factor of the composite nanocrystal-fused silica microsphere system is limited to a few

times of 108 by surface adsorption of chloroform used in the nanocrystal deposition

process [36]. Note that CdSe nanocrystals can also be chemically linked to the surface

of glass spheres via mercaptosilances [37,38]. However, compared with the solution

deposition, chemical processing involved in the linking process results in much lower

cavity Q-factors.
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Fig. 8.9 Resonant scattering spectra from a composite nanocrystal-microsphere system where the

sphere radius is near 50 μm and the average core radius of the CdS/ZnS core/shell nanocrystals is

4.5 nm. (a) Below the band gap of the nanocrystals. (b) Near the exciton absorption line center.

The inset in (b) also shows a resonance in (a) obtained with greater spectral resolution. (From [36]

with permission.)

While theoretical models that include relevant electron–electron interactions are

needed in order to provide a satisfactory description of interactions between a QD and

a resonant cavity mode, at the low excitation limit a simple coupled oscillator model

widely used for composite atom-cavity systems can provide an adequate description.
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The equation of motion for the coupled oscillator model in the low excitation limit is

given by [2]:

α̇  = –(iωc + κ)α + gβ (8.10a)

β̇  = –(iω0 + γ)β – gα (8.10b)

where α is the expectation value of the annihilation field operator for the cavity mode

at the position of the QD, β is the expectation value of the Pauli lowering operator σ–

for the QD transition, ωc and ω0 are the resonant frequencies of the cavity and the

relevant dipole optical transition in the QD, respectively. Excitations of the coupled

oscillator system can be characterized by the two normal modes of the system.

We discuss here two different limits in the weak coupling regime. In the low-Q

limit, i.e. κ >>(g, γ), the coupling between a QD and a resonant cavity mode leads to

enhanced decay of the QD-like normal mode. The decay rate of the QD-like mode is

given by

′γ γ κ =  + 
2g

(8.11)

where 2g2/κ is the enhancement in the spontaneous emission rate of the QD. This result

is the same as that obtained by Purcell but is expressed in a different form. In comparison,

in the limit that. γ >> (g, κ), the coupling between a QD and a resonant cavity mode

modifies the decay rate of the cavity-like normal mode. The spectral linewidth of the

cavity-like mode in the weak excitation limit is given by:

′κ κ γ =  + 
2g

. (8.12)

Spectral broadening of the WGM due to the QD absorption is thus given by g2/γ. In

atomic cavity QED, g2/γκ is defined as the critical atom number since it determines the

number of atoms needed in the cavity in order to significantly affect the dynamics of the

composite system. For a QD system, we define g2/γκ as the critical QD number.

For WGMs with p = 1 and m = ±l, the effective mode volume at λ = 600 nm is

of order 1000 μm3 for a sphere with r0 = 50 μm. The dipole coupling rate g/2π is then

of order 100 MHz for a nanocrystal on the sphere surface where we have used a dipole

moment of 3 × 10–19 C·Å for the relevant optical transition. To account for the broadening

of the WGM due to nanocrystal absorption shown in Fig. 8.9(b), we estimate the

number of nanocrystals resonantly coupling to the WGM to be of order 2 × 104 where

we have assumed a homogeneous linewidth of order 10 meV for CdSe/ZnS core/shell

nanocrystals at room temperature.

At very low temperature, the extremely high-Q factor along with the small effective
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mode volume of lower order WGMs allows us to reach the good cavity limit where the

critical QD number becomes smaller than 1. For a simple estimate, we take the

homogeneous linewidth at low temperature to be 0.04 meV (corresponding to γ/2π = 5

GHz). The increase in the WGM spectral linewidth due to absorption from a single

nanocrystal is then 2 MHz, compared with the bare cavity linewidth κ/2π ≈ 1 MHz. In

this case, the critical QD number is 0.5. Note that much greater dipole coupling rates

and thus much smaller critical QD number can be achieved by using spheres with

smaller radii since g is inversely proportional to V0 . The extreme sensitivity of

WGMs to effects of single nanocrystals should open up a new avenue for probing

dynamics, decoherence, and individual quantum transitions in a single QD. In the limit

that the bare cavity decay rate is small compared with the spontaneous emission rate

into the relevant cavity mode, laser emission from a single QD also becomes possible.

For nanocrystals whose dephasing is entirely due to radiative decay, γ/2π is of

order 10 MHz where we have assumed a radiative lifetime of order 10 ns. In this limit,

g > (γ, κ) can be easily achieved with microspheres with a relatively large size. Since

cavity QED studies in the low-Q regime in the preceding sections have already indicated

that population relaxation in large CdSe/ZnS nanocrystals for the relevant optical transition

is primarily due to radiative decay, whether the strong coupling regime can be achieved

with the composite nanocrystal-microsphere system discussed here depends on the

details of pure dephasing processes in these nanocrystals.

Dephasing in semiconductor nanocrystals

A resonant optical excitation creates an excited state population and also induces an

optical polarization. Dynamics of this optical excitation is characterized by relaxation

of the population as well as decay of the induced optical polarization, i.e. dephasing.

Population relaxation processes are expected to contribute to dephasing with a dephasing

rate given by Γ/2 where Γ is the population decay rate. Pure dephasing processes that

do not involve population or energy relaxation can also contribute to dephasing and can

be a dominant contribution to dephasing.

Pure dephasing can arise from coupling of excitonic states with a continuum of

acoustic phonons [39]. To elucidate this, we show schematically in Fig. 8.10 eigen

states of a coupled exciton–phonon system where we assumed that mixing of electronic

states due to electron–phonon coupling can be ignored. In this limit, the exciton–

phonon coupling leads to a shift in the equilibrium position of lattice vibrations and a

temperature-independent polaron shift of the exciton energy [40]. The ground and excited

states of the coupled exciton–phonon system can be described (in terms of eigen functions
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of the uncoupled system) by | φg > | ϕm(x) > and | φe > | ϕn(x – a) >, where ϕm(x) is the

wave function for a phonon state with m phonons, x is the phonon coordinate with a

being a relative shift in the equilibrium position induced by the exciton–phonon coupling,

and φg and φe are the wave functions of the electronic ground and excited states, respectively.

The dipole matrix element between the ground and excited states of the coupled system

is then < φg | r | φe ><ϕm(x) | ϕn(x – a) >. The optical transition can now take place

between states involving different phonon numbers since <ϕm(x) | ϕn(x – a) > ≠ 0 even

when m ≠ n and can be viewed as transitions between two quasi-continuous manifolds,

as illustrated in Fig. 8.10. For discrete acoustic phonon modes, this will lead to phonon

side bands in absorption and emission spectra similar to well-known longitudinal optical

phonon side bands [40]. For a continuum of acoustic phonon modes, these side bands

will overlap and merge together. The resulting spectral broadening of the optical transition

depends on the relative strength of relevant transitions but does not involve population

relaxation of the excitonic states.

|e>

+

|g>
Phonons

|e>|φn(x – a)>

|g>|φm(x)>

Fig. 8.10 A schematic showing that electron–phonon coupling can lead to acoustic phonon sidebands

in absorption spectra.

Pure dephasing associated with the electron-phonon interactions cannot be

suppressed by the discrete electronic energy levels in a QD. Recent experimental studies

using stimulated photon echoes have shown that pure dephasing due to electron phonon

interactions can be a dominant contribution to dephasing in MBE-grown QDs [41,42].

This pure dephasing process, however, can be suppressed if the phonon modes are

completely discrete. In this regard, high quality semiconductor nanocrystals can in

principle feature dephasing rates that are limited by the radiative lifetime and can be

much smaller than that of the corresponding MBE-grown QDs.

While extensive studies of semiconductor nanocrystals have led to considerable

understanding of the electronic and optical properties of these nanocrystals, dephasing

in these nanocrystals still remains poorly understood. Two different experimental

approaches have been used so far in order to determine the homogeneous linewidth of

semiconductor nanocrystals: single-nanocrystal measurements on spatially isolated

nanocrystals or nonlinear optical measurements such as photon echoes and spectral hole
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burning in a collection of inhomogeneously broadened nanocrystals. Resolution limited

homogeneous linewidth of 120 μeV in CdSe nanocrystals has been observed by using

single-nanocrystal PL spectroscopy [43]. Earlier studies of stimulated photon echoes

have suggested a linewidth of order 10 meV for CdSe nanocrystals [44]. More recent

accumulated photon echo studies in CdSe nanocrystals embedded in glass matrix have

revealed size-dependent linewidth between 100 and 200 μeV, limited by surface relaxation

processes [45].

To probe homogeneous linewidth of a collection of inhomogeneously broadened

nanocrystals, we have used the technique of high resolution spectral hole burning [46].

The frequency domain hole burning measurement can be carried out at very low excitation

level (~1 W/cm2) and can also avoid the problem of spectral diffusion encountered in

earlier single-nanocrystal PL studies by using a relatively fast modulation rate.

Two tunable diode lasers were used for the hole burning study. The pump-beam

was modulated with an acousto-optic modulator (AOM) at frequencies up to 100 kHz.

A lock-in amplifier was used to detect the change in the transmission of the sample

induced by the pump beam. The spectral resolution of the measurement is limited by the

spectral linewidth of one of the diode lasers (~100 MHz). Due to the limited tuning

range of the diode lasers, large nanocrystals with R = 4.5 nm were used. The nanocrystals

were dispersed in a thin polystyrene film, which was then deposited on a sapphire disk.

The sample was mounted on the cold finger of a continuous flow cryostat. For

measurements below 4 K, a liquid helium immersion cryostat was used.

Figure 8.11 shows the differential transmission spectrum of the sample at 10 K as
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Fig. 8.11 Hole burning spectrum of CdSe/ZnS core/shell nanocrystals with R = 4.5 nm obtained

at 10 K. Two acoustic phonon sidebands are located 0.67 meV and 1.5 meV away from the hole

burning resonance to both the lower and higher energy side. (From [46] with permission.)
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a function of the detuning, δ, between the pump and probe beams with the two beams

collinearly polarized. A pronounced resonance appears at the zero detuning, indicating

that the resonance is due to the spectral hole burning created by the pump beam. Similar

results were also obtained at other pump energies with the spectral position of the

resonance occurring at the zero detuning. In addition to the spectral hole, the differential

transmission spectrum also shows two pronounced sidebands at an energy Ea = 0.67

meV away from the spectral hole and at both lower and higher energy side of the

spectral bole burning resonance. Barely resolved but clearly visible are also two broader

sidebands at roughly Eb = 1.5 meV away from the spectral hole.

There can be two contributions to the differential transmission: a coherent

contribution and an incoherent contribution [47]. The coherent contribution arises from

coherent wave mixing between the pump and probe beam. The amplitude of the coherent

response scales with 1/(δ + iΓ) where Γ is the population decay rate of the excitation.

This coherent response is not observed in our measurements since the spectral linewidth

of the pump laser used in our study far exceeds Γ. The incoherent contribution arises

from the bleaching of the nanocrystal absorption induced by the pump beam, which

gives rise to the hole burning resonance as well as the sidebands in the different transmission

spectrum.

The hole burning response shown in Fig. 8.11 is due to the lowest dipole-allowed

excitonic transition in the nanocrystals. In steady state the amplitude of the nonlinear

response scales with inverse of both the population decay rate and dephasing rate of the

optical excitation. Since higher energy optical transitions are expected to feature greater

dephasing and population decay rates, contributions to the nonlinear response from

these optical transitions should be negligible.

The sidebands in Fig. 8.11, whose energy positions are symmetric with the spectral

hole burning resonance, arise from acoustic phonon sidebands involving absorption or

emission of discrete acoustic phonons in nanocrystals. The energy positions of these

phonon sidebands are in good agreement with the energies of spherical and torsional

acoustic phonon modes determined in earlier studies based on Raman scattering [48,49].

The acoustic phonon sidebands, especially the sideband with 1.5 meV away from the

hole burning resonance shown in Fig. 8.11, are much broader than the spectral hole

burning resonance. The phonon sidebands in this case are more likely the results of

multiple phonon modes instead of single phonon modes. For nanocrystals with a radius

of 4.5 nm, energy spacing between different acoustic phonon modes can be as small as

0.1 meV.

Figure 8.12 shows the temperature dependence of the homogeneous linewidth

derived from the hole burning response. For an inhomogeneously broadened system and
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in the limit of third order nonlinear response, the width of the spectral hole burning is

twice the homogeneous linewidth of the corresponding optical transition. The data

shown in Fig. 8.12 were obtained with a 100 kHz modulation frequency for the pump

beam to eliminate effects of spectral diffusion of optical excitations at relatively slow

time scales. Very low incident pump and probe intensities (Ipump < 1.5 W/cm2 and Iprobe

< 0.15 W/cm2) were also used in order to avoid power broadening of the spectral hole

burning response.

Fig. 8.12 Temperature dependence of the homogeneous linewidth of CdSe/ZnS core/shell

nanocrystals with R = 4.5 nm. The linewidth was obtained from a Lorentzian fit to the hole burning

resonance. (From [46] with permission.)
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Figure 8.12 reveals a nonlinear temperature dependence of the homogeneous

linewidth, in contrast to the usual linear dependence for excitons in a QW or a bulk

system. This nonlinear temperature dependence reflects effects of the quantization of

acoustic phonon modes. For a discrete acoustic phonon mode, the lowest order electron–

phonon interaction that can result in dephasing is a two-phonon process that involves

both absorption and emission of a phonon. We have attempted to fit the temperature

dependence by including the contributions of two acoustic phonon modes at Ea = 0.67

meV and Eb = 1.5 meV. The numerical fit shown in Fig. 8.12 is described by [50]

γ = γ0 + A sinh–2 (Ea/2kBT) + B sinh–2 (Eb/2kBT) (8.13)

where γ0 =16 μeV, A = 1.5 μeV and B = 2.35 μeV. The phonon energy used in the above

numerical fit should be viewed as the average energy of a group of acoustic phonon

modes. Note that homogeneous linewidth obtained above is considerably smaller than

that reported in previous single-nanocrystal PL studies. The PL studies are resolution-

limited and are complicated by spectral diffusion processes.
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The homogeneous linewidth obtained from the hole burning study corresponds to

the linewidth of the zero acoustic phonon line and demonstrates the suppression of the

pure dephasing process associated with electron–phonon interactions. In the absence of

the phonon quantization, pure dephasing associated with a continuum of acoustic phonon

sidebands can be a dominant contribution to the intrinsic dephasing rate. For CdSe

quantum dots, theoretical studies indicate that these phonon sidebands lead to an absorption

linewidth on the order of a few meV at low temperature [51,52]. As shown in Fig. 8.11,

the spectral linewidth of the overall phonon sidebands in the differential transmission

response is in good agreement with the above theoretical expectation. Contributions

from these phonon sidebands also lead to sub-picosecond dephasing time observed in

time domain measurements, as shown in previous photon echo studies. The time domain

studies, however, were not able to clearly resolve the discrete acoustic phonon sidebands.

The homogeneous linewidth of the zero acoustic phonon line, however, is still

much greater than that expected from the population relaxation time. Time-resolved PL

studies shown in Fig. 8.6 have shown that the population decay time for the relevant

optical transition is of order 10 ns, corresponding to a homogeneous linewidth of order

0.1 μeV (or 20 MHz). This large difference between γ and Γ/2 reveals significant

contributions from pure dephasing processes to the homogeneous linewidth even when

the acoustic phonons are completely discrete. The underlying physical mechanism for

the excessive pure dephasing still remains unclear at this point. The excessive pure

dephasing has thus far prevented us from achieving the strong coupling regime in cavity

QED with CdSe/ZnS nanocrystals.

8.5 Summary

In this chapter we have discussed cavity QED studies using a composite semiconductor-

microsphere system. We found that the use of semiconductor nanocrystals in the composite

system can overcome many of the difficulties encountered in composite systems that

use MBE-grown nanostructures. Enhanced spontaneous emission has been demonstrated

in CdSe/ZnS core/shell nanocrystals embedded in a polystyrene sphere. The manifestation

of the enhanced spontaneous emission process in the low-Q regime has also provided

important information on radiative dynamics in these nanocrystals. Coupling nanocrystals

to a high-Q fused silica microsphere system, we have reached the good cavity limit

where the critical QD number is smaller than 1. In this limit, dynamics of a QD-

microcavity system is sensitive to absorption or emission occurring in a single QD.

Using high-resolution spectral hole burning, we have shown that dephasing

associated with electron–phonon interactions can be suppressed by the complete
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quantization of acoustic phonon modes in colloidal QDs. Residual excessive pure dephasing

processes in CdSe/ZnS nanocrystals, however, have thus far prevented us from achieving

the strong coupling regime of cavity QED. Since the composite nanocrystal-microsphere

system can feature cavity finesse approaching 106, the strong coupling regime should be

readily achievable with a composite nanocrystal-microsphere system when nanocrystals

that are nearly lifetime broadened become available.

Finally, we note that the strong coupling regime in cavity QED of QDs, while

extremely difficult to achieve, will open up a new frontier for manipulating and controlling

optical interactions in a mesoscopic quantum system. As an example, quantum

entanglement of two colloidal QDs can be created through the exchange of a photon in

a WGM between the two QDs. Successive photon exchange processes can also lead to

entanglement of an array of QDs, providing a potential model systems for quantum

information processing [9].
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Chapter 9
Theory of exciton coherence and decoherence in

semiconductor quantum dots
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Abstract

Semiconductor quantum dots are considered as a promising candidate to
implement the quantum state control and the quantum information processing.
The discrete energy level structures due to the three-dimensional confinement
is favorable to realize an ideal two-level system, namely, the ground state
and an excited state, whose superposition states can be manipulated by
optical means. Also the exciton states have a huge transition dipole moment
(~ 100 Debye) for typical size of quantum dots. The most prominent
manifestation of the quantum coherence is the Rabi oscillation which
represents the coherent evolution of the excitonic dipole moment. This is a
key operation in the quantum state manipulation and has been achieved
successfully by several groups. Here the excitonic Rabi splitting and Rabi
oscillation in a single quantum dot are discussed theoretically and their new
features due to the quantum interference are clarified. The mechanisms of
the population relaxation and dephasing (decoherence) of excitons are
discussed. A quantitative theory of the exciton dephasing due to the electron-
phonon interaction is developed based on the Green function formalism
and is extended for application to the case of dephasing of the general non-
radiative coherence.

9.1 Introduction

Coherent manipulation of quantum states is a critical step toward many novel technological

applications ranging from manipulation of qubits in quantum logic gates [1–5] to controlling

the reaction pathways of molecules [6]. Both Rabi oscillation and quantum interference

play central roles in coherent control. In strong excitation regime, Rabi oscillation

provides a direct control to the excited state population of a quantum system through the

Quantum Coherence, Correlation and Decoherence in
Semiconductor Nanostructures
T. Takagahara (Ed.)
Copyright © 2003 Elsevier Science (USA). All rights reserved.
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input area (i.e., time integrated Rabi frequency) of a single excitation pulse [7]. On the

other hand, in weak excitation regime, the quantum interference of probability waves

excited with phase-tailored pulse pairs is utilized for wavefunction manipulation in

atoms [8,9], molecules [6], and semiconductor heterostructures [10,11]. Atomic like

states of semiconductor quantum dots have been envisioned to be the building blocks of

solid-state quantum computer [1]. This technological motivation intensifies research

efforts in coherent phenomena of semiconductor quantum dots. Numerous fundamental

coherent properties common to ideal quantum systems such as atomic-like spectra [12–

16], entanglement [17,18], photon anti-bunching [19,20], modification of spontaneous

emission rate by a micro-cavity [21] and coherent wavefunction manipulation by using

quantum interference [22,16] have been recently demonstrated in various type of

semiconductor quantum dots. However, there have been very few investigations on Rabi

oscillation in semiconductor quantum dots. This fundamental coherent phenomenon

stands as a principal criterion in establishing analogy among the fundamentally different

quantum states of atomic/molecular systems [23–29] and semiconductors [30–32].

Furthermore, a recent theoretical investigation [33] predicted a dramatic change of

quantum interference patterns when the excitation strengths of the phase-tailored pulse

pairs become strong enough to induce nonlinear effects of Rabi oscillation in excited

state population. Very recently, the exciton Rabi splitting has been observed in the

luminescence spectrum of a single InGaAs quantum dot [34] and the exciton Rabi

oscillation has also been observed in the pump-probe spectroscopy of a single GaAs

quantum dot [35]. Also the predicted new quantum interference phenomena have been

observed successfully in a single InGaAs quantum dot [36].

In this Chapter, we will discuss the theoretical aspects of the Rabi splitting and

Rabi oscillation of excitons in semiconductor quantum dots, clarify their characteristic

features and predict new aspects in conjunction with recent experiments. We will also

discuss the mechanisms of the exciton decoherence in semiconductor quantum dots and

clarify the ultimate limit of the exciton decoherence time.

9.2 Exciton Rabi splitting in a single quantum dot

Now we consider a two-level system under a strong resonant excitation and study its

emission spectrum. This was studied by Mollow [37] for the first time and a triplet

structure was discovered in the emission spectrum which is now interpreted in terms of

the dressed state (see section 9.3). The relevant Hamiltonian is given by

H = | 2〉E2〈2 | + | 1〉E1〈1 | – μ  cos ωt  = H0 – μ  cos ωt , (9.1)
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where | 2〉(| 1〉) denotes the upper (lower) level, E2(E1) the energy of the upper (lower)

level, μ is the dipole moment operator between | 1〉 and | 2〉, ( )ω  the electric field

amplitude (frequency) of the excitation light and H0 is defined by the first two terms.

The equation of motion of the density matrix is given by

d
dt

i Hρ ρ Γρ = – [ , ] = ,
h

(9.2)

where Γρ represents the relaxation terms symbolically. More explicitly, they are written

as

ρ̇ Ω ρ ρ κρω ω
11 21

–
12 22 = (  – ) + ,i e ei t i t (9.3)

ρ̇ Ω ρ ρ κρω ω
22 21

–
12 22 = – ( – ) – ,i e ei t i t (9.4)

ρ̇ Ω ρ ρ ω κ ρω
12 22 11 0 12 = (  – ) + (  – /2) ,i e ii t (9.5)

ρ̇ Ω ρ ρ ω κ ρω
21

–
22 11 0 21 = – ( – ) + (– – /2) ,i e ii t (9.6)

where the rotating wave approximation is used, κ denotes the radiative decay rate of the

upper level and κ/2 is the decay rate of the coherence between the upper and lower

levels, hω0 = E2 – E1, and Ω = 〈1 | μ | 2〉  /(2h) is assumed as a real number. Separating

out the oscillating part as

ρ ρ ρ ρω ω
12 12 21

–
21( ) = , ( ) = ,t e t ei t i t˜ ˜ (9.7)

we have

˙ ˜ ˜ρ Ω ρ ρ κρ11 21 12 22 = (  – ) + ,i (9.8)

˙ ˜ ˜ρ Ω ρ ρ κρ22 21 12 22 = – ( – ) – ,i (9.9)

˜̇ ˜ρ Ω ρ ρ Δω κ ρ12 22 11 12 = (  – ) + (– – /2) ,i i (9.10)

˜̇ ˜ρ Ω ρ ρ Δ ω κ ρ21 22 11 21 = – ( – ) + (  – /2) ,i i (9.11)

with Δ ω ω ω =  – .0  The emission spectrum under the cw excitation is calculated as

follows: the stationary state of the system is determined and the emission spectrum from

the stationary state is calculated. By noting the conservation of the probability, namely,

ρ11 + ρ22 = 1, we choose ρ ρ ρ22 12 21, , ˜ ˜  as independent variables and we have

˙ ˜ ˜ρ Ω ρ ρ κρ22 21 12 22 = – ( – ) – ,i (9.12)

˜̇ ˜ρ Ω Ω ρ Δω κ ρ12 22 12 = –  + 2  + (– – /2) ,i i i (9.13)

˜̇ ˜ρ Ω Ω ρ Δ ω κ ρ21 22 21 =  – 2  + (  – /2) .i i i (9.14)

The stationary state is obtained by putting ˙ ˜̇ ˜̇ρ ρ ρ22 12 21 =  =  = 0  and will be denoted by
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ρst. Now we derive the expression of the emission spectrum from the stationary state.

First of all, the emission spectrum from the | 2〉 level is calculated as

I ( ) = | 1| | 2 | (  – )  | 1| | 2 | 1
( – )  + 

2
0

2

0
2 2

ω μ δ ω ω μ
ω ω γ

〈 〉 〈 〉∝

∝
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

∞

∫ Re  1| |2 2 | |1

0

– ( – )0 0dt e e e
i iH t H t i t〈 〉 〈 〉μ μ ω γh h

= Re 1| (|2 2 | ) |1 ,

0

– ( – )0

∞

∫
×⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dt e e
i H t i t〈 〉 〈 〉μ μ ω γh (9.15)

where H0
×  represents the motion as the density matrix and is defined by H0

× ρ = [Η0, ρ]

and γ is is the population decay rate of the upper level | 2〉. Equation (9.15) gives the

emission spectrum from the pure state | 2〉 〈2 |. Extending the above formalism, the

emission spectrum from the stationary state ρst is calculated by replacing | 2〉 〈2 | by ρst

as
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= | 1| |2 | Re 2 1
–  + 

2 1 12

0

〈 〉μ
γ ω

ρ
i Hi

st

h
× )(⎡

⎣
⎢
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⎦
⎥
⎥

(9.16)

with

ρ ρ ρst st st| 2 1| = |1 1| + |2 1|.22〉 〈 〉 〈 〉 〈12 (9.17)

This emission spectrum shows a triplet structure as demonstrated by Mollow [37] for

the first time.

The above formulation is given for a two-level system. In recent experiments on

a single semiconductor quantum dot [34], the strong excitation is resonant with an

excited exciton state and the emission from the exciton ground state is monitored. Here

we have to consider at least three levels, namely, the ground state denoted by | 1〉, the

excited exciton state | 2〉 and the exciton ground state | 3〉. The level scheme and the

relaxation pathways of population are shown in Fig. 9.1. The corresponding equations

of motion for the density matrix are given by

˙ ˜ ˜ρ Ω ρ ρ κ ρ κ ρ11 21 12 21 22 31 33 = (  – ) +  + ,i (9.18)
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˙ ˜ ˜ρ κ κ ρ Ω ρ ρ22 21 23 22 12 21 = – (  + )  + (  – ),i (9.19)

ρ̇ κ ρ κ ρ33 31 33 23 22 = –  + , (9.20)

˜̇ ˜ρ Ω ρ ρ Δω γ ρ12 22 11 12 12 = (  – ) + (– – ) ,i i (9.21)

˜̇ ˜ρ Ω ρ ρ Δω γ ρ21 22 11 12 21 = – ( – ) + (  – ) ,i i (9.22)

˜̇ ˜ρ ω ω γ ρ Ω ρ13 3 13 13 23 = (– ( – ) – )  + ,i i (9.23)

˜̇ ˜ρ ω ω γ ρ Ω ρ31 3 13 31 32 = ( (  – ) – )  – ,i i (9.24)

˙ ˜ρ ω ω γ ρ Ω ρ23 3 0 23 23 13 = ( (  – ) – )  + ,i i (9.25)

˙ ˜ρ ω ω γ ρ Ωρ32 3 0 23 32 31 = (– ( – ) – )  – ,i i (9.26)

where the energies of | 1〉, | 2〉, and | 3〉 levels are taken as 0, hω0 and hω3, respectively,

γij is the dephasing rate of the off-diagonal coherence ρij, Ω has the same meaning as

before, κij is the population decay rate from the level | i〉 to the level | j〉 and the

oscillating part is separated out as

ρ ρ ρ ρω ω
12 12 21

–
21( ) = , ( ) = ,t e t ei t i t˜ ˜

ρ ρ ρ ρω ω
13 13 31

–
31( ) = , ( ) = .t e t ei t i t˜ ˜ (9.27)

It can be seen that the components ˜ ˜ρ ρ13 31, , ρ23 and ρ32 are completely decoupled from

ρ11, ρ22, ρ33, ˜ ˜ρ ρ12 21 and  because there is no optical field connecting the levels | 1〉 and

| 2〉 with the level | 3〉. Thus to obtain the stationary density matrix, we need to take into

account only ρ11, ρ22, ρ33, ˜ ˜ρ ρ12 21 and . Because of the conservation of probability,

namely, ρ11 + ρ22 + ρ33 = 1, the stationary density matrix ρst can be obtained from
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Fig. 9.1 An energy level scheme. The non-radiative relaxation pathways of population are depicted

by dashed lines. Solid lines represent optical transitions.
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The emission spectrum from the stationary state is given by (16). Since the transition

dipole moment μ has matrix elements 〈1 | μ | 2〉, 〈1 | μ | 3〉 and their conjugates, there

can be an interference between the emission from the level | 2〉 and that from the level

| 3〉. However, when the transition energies hω0 and hω3 are much different, the interference

can be neglected and one of the transitions can be treated separately. In the following,

the emission spectrum from the level | 3〉 will be studied. The spectrum is given by

I dt e e
i H t st i t( ) = Re  1| ( ) | 1  

0

– ( – )0ω μ ρ μ ω γ
∞

∫
×⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

〈 〉h

→
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

∞

∫ ×
 | 1| |3 | Re  3| ( |3 1|) |1  2

0

– ( – )0〈 〉 〈 〉 〈 〉μ ρ ω γdt e e
i H t st i th

= | 1| | 3 | Re 3 1
–  + 

 3 12

0

〈 〉μ
γ ω

ρ
i Hi

st

h
× ( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 (9.29)

with

ρ ρ ρ ρ ρst st st st st|3 1| = |1 1| + |2 1| + |3 1| = |3 1|,13 23 33 33〉 〈 〉 〈 〉 〈 〉 〈 〉〈 (9.30)

where ρ ρ13 23 =  = 0st st  as mentioned above. Equation (9.29) indicates that the spectrum

can be obtained as the Fourier–Laplace transform of the component ρ31(t) of the density

matrix which evolves from the initial state ρst | 3〉 〈1 |. 1/ (  + )0s Hi
h

×  can be calculated

by noting that ρ̃31  and ρ32 are coupled together in (24) and (26). Restricting to these two

components, we have

1
 + 

 = 
 +  – (  – )

 +  – (  – )0

13 3

23 0 3

–1

s H

s i i

i s ii
h

×

⎛
⎝⎜

⎞
⎠⎟

γ ω ω Ω

Ω γ ω ω

= 1
( )

 +  – (  – ) –

–  +  – (  – )

23 0 3

13 3
D s

s i i

i s i

γ ω ω Ω

Ω γ ω ω
⎛
⎝⎜

⎞
⎠⎟

(9.31)

with

D(s) = (s + γ13 – i ( – )3ω ω )(s + γ23 – i(ω0 – ω3)) + Ω2, (9.32)

where the bases of the 2 × 2 representation are ρ̃31  and ρ32. Then the emission spectrum

in Eq. (9.29) can be written as

| 1| |3 |  Re 
 + (  – –  + )

( (  – ))
.2

33
23 0 3〈 〉μ ρ

γ ω ω ω ω
ω ω

st i
D i

(9.33)
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The evolution of the emission spectrum with the detuning ω ω– 0  of the excitation

light is exhibited in Fig. 9.2. The relevant parameters are chosen as

hκ21 = hκ23 = 10 μeV, hκ31 = 5 μeV, h(ω0 – ω3) = 20 meV,

hγ12 = hγ13 = hγ23 = 50 μeV, hΩ = 100 μeV,

Δω = ω ω–  = – 0.4 meV0 (a), – 0.2 meV (b), 0 meV (c), 0.2 meV (d), 0.4 meV (e).

(9.34)

At the resonance ( ω ω–  = 0,0  Fig. 9.2(c)) double peaks with equal intensity appear at

ω = ω ± Ω, when γ13, γ23 << Ω. This feature can be seen readily from the denominator

in (9.33). For the positive detuning (  > ,0ω ω  Fig. 9.2(d), (e)), the lower energy peak

has a larger intensity compared to the higher energy peak. The situation is reversed for

the negative detuning (Fig. 9.2(a), (b)). These features can be understood in more detail

in terms of the dressed exciton states.

Fig. 9.2 The evolution of the emission spectrum of a three-level system in Fig. 9.1 is plotted

for several values of the detuning ω ω– 0 : (a) – 0.4 meV (b) – 0.2 meV (c) 0 meV (d) 0.2 meV

(e) 0.4 meV.
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9.3 Dressed exciton state

In the photon number picture where the number of photons in the excitation light is

denoted by n, | 1, n〉 and | 2, n – 1〉 have almost the same energy in the case of resonant

excitation, i.e., ω ω 0≅ . In this representation the two states are coupled together and

the relevant Hamiltonian is written as
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h h

h h

ω Ω

Ω ω

–

– 0

⎛
⎝⎜

⎞
⎠⎟

. (9.35)

The energy eigenvalues and the corresponding eigenstates are given by

E± ± = 
2

[  +   (  – )  + 4 ],0 0
2 2h ω ω ω ω Ω (9.36)

φ±
± ± = |1,  + |2,  – 1 ,1 2c n c n〉 〉 (9.37)

c c1 1
2 0

2
0 = 

(   (  – ))
,    =  

  (  – )
2

± ±Ω
δ δ ω ω

δ ω ω
δm

m
m

(9.38)

with

δ ω ω Ω = (  – )  + 40
2 2 . (9.39)

These states in (9.37) are usually called the dressed exciton state, namely the exciton

state dressed with photons [38]. The emission from the state | 3, n – 1〉 occurs to the final

states | φ±〉, leading to a doublet structure in the spectrum. The emission intensity is

proportional to | |1
2c ±  because the component of the level | 1〉 in the final states is

relevant. From the expression in (9.38), we see that for the positive detuning

(  > ), | |  > | |0 1
+ 2

1
– 2ω ω c c  and that the intensity of the lower energy peak is stronger

than that of the higher energy peak. For the negative detuning the situation is reversed.

These arguments explain the numerical results in Fig. 9.2. Recently, a systematic study

on the detuning dependence of the emission spectrum from an InGaAs single quantum

dot was reported by Kamada et al. [34] and the above features were successfully confirmed.

9.4 Exciton Rabi oscillation in a single quantum dot

It is important to examine the quantum mechanical interference between two perturbations

induced by external stimuli such as optical pulses. In order to observe the quantum

mechanical interference, the two external perturbations should be mutually coherent.

For example, in the usual pump–probe experiments, the incoherent change in the system

induced by the pump pulse is probed by the change in the transmission spectrum of a

weak probe pulse. In this case the mutual coherence between the pump and probe pulses

is not relevant. However, the importance of the relative coherence of the excitation

pulses was demonstrated for the first time in the coherent destruction of the excited state

population [10]. In the latter case, a phase-locked pulse pair was used to excite and

deexcite the system. The dynamical evolution in the system depends sensitively on the
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relative phase of two excitation pulses. This sensitivity can be manifested even when we

observe an incoherent quantity such as the time-integrated luminescence intensity, as

will be discussed later. These coherent optical phenomena can be observed most clearly

in semiconductor quantum dots compared with other higher-dimensional structures

such as quantum wells and bulk materials, because the energy levels are completely

discrete and the contribution from nearby levels and continuum states can be reduced

much in quantum dots.

In a semiconductor quantum dot the exciton dephasing time is about several tens

of picoseconds [12] and the population lifetime is of the order of several hundreds of

picoseconds [39]. Thus the coherent dynamics can be observed by using picosecond

pulses. If we can observe directly the temporal variation of the excited state population,

it can be claimed that the Rabi oscillation is observed in the time-domain. However, this

is difficult especially for the case of a single quantum dot because of the weakness of

the signal. Instead of this direct measurement, the time-integrated emission intensity

can be measured as a function of the delay time between two phase-locked pulses.

Although this is an indirect measurement, the results of this measurement reveal clearly

the quantum mechanical interference arising from the Rabi oscillation. In the following

we discuss the coherent optical phenomena in a quantum dot extending the concept of

the wave-packet interferometry initiated by Bonadeo et al. [22] to the strong excitation

regime. Here we consider a three-level system in Fig. 9.1 and the semi-classical radiation

fields which are almost resonant with the transition between | 1〉 and | 2〉. For a phase-

locked pulse pair with the same amplitude, the electric field can be written as

E(t) = ε(t) cos ωt + ε(t – td) cos ω(t – td)

= 1
2

 ( ( ) + (  – ) ) + . .,–ε ε ω ωt t t e e c cd
i t i td (9.40)

where ε(t) is the pulse envelope and is assumed in a hyperbolic secant form with a pulse

width parameter tp:

ε ε( ) =  sech .0t
t

t p

⎛
⎝⎜

⎞
⎠⎟

(9.41)

The basic equations of motion for the density matrix are given by

˙ ˜ ˜ρ κ ρ κ ρ Ω ρ Ω ρ11 21 22 31 33 12 21 =  +  – *( )  + ( ) ,i t i t (9.42)

˙ ˜ ˜ρ κ κ ρ Ω ρ Ω ρ22 21 23 22 12 21 = – (  + )  + *( )  – ( ) ,i t i t (9.43)

ρ̇ κ ρ κ ρ33 23 22 31 33 =  – , (9.44)

˜̇ ˜ρ Ω ρ ρ Δ ω γ ρ12 11 22 12 12 = – ( ) (  – ) + (– – ) ,i t i (9.45)
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˜̇ ˜ρ Ω ρ ρ Δω γ ρ21 11 22 12 21 = *( ) (  – ) + (  – ) ,i t i (4.46)

˜̇ ˜ρ Ω ρ ω ω γ ρ13 23 3 13 13 = ( )  + (– ( – ) – ) ,i t i (9.47)

˜̇ ˜ρ Ω ρ ω ω γ ρ31 32 3 13 31 = – *( )  + ( (  – ) – ) ,i t i (9.48)

˙ ˜ρ Ω ρ ω ω γ ρ23 13 3 0 23 23 = *( )  + ( (  – ) – ) ,i t i (9.49)

˙ ˜ρ Ω ρ ω ω γ ρ32 31 3 0 23 32 = – ( )  + (– ( – ) – ) ,i t i (9.50)

with

Δω ω ω Ω
μ

ε ε ω =  – ,   ( ) = 
1| | 2

2
 ( ( ) + (  – ) ),0

–t t t t ed
i td

〈 〉
h

(9.51)

where the notations are the same as in (9.18)–(9.26), the oscillating part is separated out

as in (9.27) with replacing ω  by ω and Ω(t) is a complex quantity even when 〈1 | μ | 2〉
is a real number. Here ρ13, ρ23 and their complex conjugates are not excited and remain

zero when starting from the initial state such as ρ11 = 1 and ρij = 0 for other combinations

of i, j and thus can be discarded in the following calculations. The population ρ33 of the

state | 3〉 is fed by the population ρ22 of the state | 2〉 through the non-radiative processes.

The measured quantity is the time-integrated intensity of luminescence from the exciton

ground state | 3〉, namely

Γ ρ31

0

33  ( ),

∞

∫ dt t (9.52)

where Γ31 is the radiative decay rate of the state | 3〉. This quantity can be shown to be

proportional to

0

22 ( ).

∞

∫ dt tρ (9.53)

The proof goes as follows. With the notation of the Laplace transform defined by

f s dt e f tst[ ] = ( ),

0

–

∞

∫ (9.54)

the quantity in (9.52) is written as Γ31ρ33[0]. From the Laplace transform of (9.44) we

find that

ρ κ
κ ρ33

23

31
22[0] =  [0]. (9.55)

This equation shows that the quantity in (9.52) is proportional to (9.53). It is advantageous
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for the numerical calculation to replace (9.52) by (9.53) because the lifetime of the state

| 3〉 is in general longer than that of the state | 2〉 and the time-integration of (9.53) is

much time-saving.

Before exhibiting numerical results, we examine analytical expressions for the

case of weak excitation where the perturbational calculation is applicable. First of all,

we obtain

ρ̃ τ Ω τγ Δω τ
12

0

– ( + )( – )( ) = –  ( ),12t i d e

t

i t∫ (9.56)

ρ̃ τ Ω τγ Δω τ
21

0

– ( – )( – )( ) =  *( ).12t i d e

t

i t∫ (9.57)

Substituting these into (9.43), we have

ρ̇ κ ρ Ω τ Ω τγ Δω τ
22 2 22

0

– ( + )( – )( ) = – ( ) + *( ) ( )12t t t d e

t

i t∫

+ ( ) *( ),
0

– ( – )( – )12Ω τ Ω τγ Δω τt d e

t

i t∫ (9.58)

and then

ρ Ω Ωκ γ Δω
22

0

1
– ( – )

1

0

2
–( + )( – )

2( ) = *( ) ( )2 1

1

12 1 2t dt e t dt e t

t

t t

t

i t t∫ ∫
⎡

⎣

⎢
⎢
⎢

+ ( ) *( ) ,1

0

2
–( – )( – )

2

1

12 1 2Ω Ωγ Δωt dt e t

t

i t t∫
⎤

⎦

⎥
⎥
⎥

(9.59)

where κ2 = κ21 + κ23. The time-integrated luminescence intensity is proportional to the

Laplace transform ρ22[0] and is given by

ρ κ Ω Ωγ Δω
22

2
0

1

0

2
–( + )( – )

1 2[0] = 2  Re  *( ) ( ) .

1

12 1 2

∞

∫ ∫
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

dt dt e t t

t

i t t (9.60)

In the limit of a short pulse, i.e., t p  << , 12
–1 –1γ Δω , we can approximate as ε(t) ∝ δ(t)

and we have

ρ22[0] ∝ 1 + exp[–γ12td] cos ω0td. (9.61)

This indicates that the time-integrated luminescence intensity shows a fine oscillation
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with the optical frequency ω0 and the envelopes of its maximums and minimums decay

with the exciton dephasing rate γ12. In the following, the time-integrated luminescence

intensity as a function of the delay time td will be called simply the correlation trace.

In order to calculate the correlation trace in the case of stronger excitation, we have to

solve numerically the equations of motion for the density matrix:

d
dt

i t i t
i t i t

i t i t i
i t i t

  = 

0 – *( ) ( )
0 – (  + ) 0 *( ) – ( )
0 – 0 0
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(9.62)

9.5 Bloch vector model

First of all, we notice a simple model which enables us to have simple physical

interpretations of numerical results. As mentioned before, in semiconductor quantum

dots, the exciton dephasing time is about several tens of picoseconds (ps) and the

population lifetime is about several hundreds of ps. In this situation, the relaxation

processes can be neglected for typical values of the pulse width about a few ps and the

delay time between two phase-locked pulses less than a few tens of ps and we can

introduce a simple Bloch vector model [40]. When only the two levels | 1〉 and | 2〉 are

included and the relaxation terms are dropped, the equations of motion in (9.62) can be

reduced to

˙ ˜ ˜ρ Ω ρ Ω ρ11 12 21 = – *( )  + ( ) ,i t i t (9.63)

˙ ˜ ˜ρ Ω ρ Ω ρ22 12 21 = *( )  – ( ) ,i t i t (9.64)

˜̇ ˜ρ Δωρ Ω ρ ρ12 12 11 22 = – – ( )(  – ),i i t (9.65)

˜̇ ˜ρ Δωρ Ω ρ ρ21 21 11 22 =  + *( )(  – ).i i t (9.66)

Then introducing the Bloch vector defined by

r
ρ

ρ
ρ
ρ

 = 
x

y

z

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

(9.67)

with

ρ ρ ρ ρ ρ ρ ρ ρ ρx y zi =  + ,  = (  – ),  =  – ,12 21 21 12 22 11˜ ˜ ˜ ˜ (9.68)
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we have an equation of motion given by

d
dt

G  =   
r r r
ρ ρ × (9.69)

with the gyration vector defined by

r
G

t t

i t t = 

( ) + *( )

( *( ) – ( )) .
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Ω Ω

Δω
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⎟⎟

(9.70)

For the pulse shape in (9.41), we have

r
G

t

t

t
t

t t
t d

t t
t d

p

d

p

d

p
 = 

[sech  + sech  cos ]

– sech  sin 
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–
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Ω ω

Ω ω
Δ ω
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⎜
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⎟
⎟
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(9.71)

with Ω0 = 〈1 | μ | 2〉ε0/h,  where 〈1 | μ | 2〉 is assumed to be real. Thus the magnitude and

the direction of the gyration vector are sensitively dependent on the delay time td of the

second pulse.

In order to introduce the concept of the pulse area, we deal with a case of constant
r
G  vector. Then the equations of motion are given by

ρ̇ ρ ρx z y y zG G =  – , (9.72)

ρ̇ ρ ρy x z z xG G =  – , (9.73)

ρ̇ ρ ρz y x x yG G =  – . (9.74)

This set of equations can be solved by the Laplace transform with an initial condition

that ρx(0) = ρy(0) = 0 and ρz(0) = – 1 and we have

ρ22

2 2

2
2( ) = 

 + 
 sin 1

2
 | | t

G G

G
G t

y z [ ] (9.75)

with

G G G G G Gx y z
2 2 2 2 2 =  +  + ,   | | = . (9.76)

Thus the population of the excited state | 2〉 oscillates with a period of 2π/| G |. When

Δω = 0 or Gz = 0, namely the excitation light is resonant with the transition between | 1〉
and | 2〉, the system is completely excited to the level | 2〉 at the time of | G | t = π, 3π,

5π, . . . . From this we can infer that the quantity | G |t can be interpreted as the pulse

area which indicates the rotation angle of the Bloch vector [7].
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Now we note that the population lifetime of the excited exciton state is much

longer than the typical pulse width. Then for small values of td, the population of the

excited exciton state and the time-integrated luminescence intensity can be approximated as

ρ22(t) ∝ e–γtρ22 (just after pulses) (9.77)

and

0

22 22( )  (just after pulses),

∞

∫ ∝dt tρ ρ (9.78)

where γ is the population decay rate. Thus the time-integrated luminescence intensity is

proportional to ρ22 (just after pulses) and can be approximated by using (9.75) as

∝
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

∞

∞

∫ sin  1
2

  | ( ) | .2

–

d Gτ τ (9.79)

This dependence is plotted in Fig. 9.3 as a function of the total pulse area defined by

–

| ( ) |

∞

∞

∫ d Gτ τ . (9.80)

Fig. 9.3 The time-integrated luminescence intensity as a function of the pulse area.
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The pulse-area dependence of the luminescence intensity was observed for the first time

by Gibbs [26] for Rb atoms and the oscillatory behaviors were confirmed, although the

actual luminescence intensity does not vanish at the pulse area of integer multiples of
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2π due to the presence of relaxation channels. Under the resonant excitation (Δω = 0)

and for ωtd = 2nπ

r
G

t
t

t t
tp

d

p

 = 
0

–[sech  + sech ]

0

0

Ω⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

(9.81)

and we have

–

0 | ( ) | = 2 .

∞

∞

∫ dt G t t pπ Ω (9.82)

On the other hand, for ωtd = (2n + 1)π

r
G

t
t

t t
tp

d

p

 = 
0

–[sech  – sech ]

0

0

Ω⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

(9.83)

and we have

–

 | ( ) |  0

∞

∞

∫ ≅dt G t (9.84)

for td � tp. Thus the pulse area increases from 0 to 2πΩ0tp and decreases from 2πΩ0tp
to 0 continuously with the change of 2π in ωtd. When 0 < 2Ω0tp ≤ 1, the total pulse area

increases from 0 to a value less than π and then decreases to 0 with the change of 2π in

ωtd  and the corresponding change of the luminescence intensity shows a single peak

according to Fig. 9.3. The change of 2π in ωtd  corresponds to a change of 2π/ω in td
which is nothing but one optical cycle and is of the order of a few femtoseconds. When

1 < 2Ω0tp ≤ 2, the total pulse area increases from 0 to a value more than π but less than

2π and then decreases to 0 with the change of 2π in ωtd and the corresponding change

of the luminescence intensity shows double peaks. In a similar way, we find that when

n – 1 < 2Ω0tp ≤ n, the luminescence intensity shows n peaks with the change of 2π in

ωtd. Thus the time-integrated luminescence intensity shows a fine oscillation in the

femtosecond range. With increasing time delay td between two phase-locked pulses, the

temporal overlap between two pulses becomes incomplete, leading to a smaller number

of peaks within the change of 2π in ωtd. But more details cannot be discussed within the

qualitative arguments based on the approximate expression in (9.79).
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9.6 Numerical results and discussion

With increasing excitation intensity, there appear two characteristic features: one is a

modulation of the envelopes of the maximums and minimums and the other is a change

in the fine oscillation in the femtosecond range. Typical numerical results of the correlation

trace are shown in Fig. 9.4 for increasing excitation intensities. The relevant parameters

in (9.62) are chosen as

tp = 6 ps, κ21tp = κ23tp = 0.01, κ31tp = 0.005,

γ12tp = γ13tp = γ23tp = 0.06, ω = ω0,

Ω0tp = 0.2(a), 0.6(b), . . . (9.85)

One of the most prominent features in Fig. 9.4 is the sudden shrinkage of the interval

between the maximum and the minimum envelopes at Ω0tp = 1.0, which corresponds to

the case that the pulse area of each pulse is π. The first pulse turns around the Bloch

vector from the south pole to the north pole and the second pulse comes in after

relaxation processes. In the case that the second pulse is in phase with the first pulse, the

Bloch vector rotates in the same direction as for the first pulse and returns to the

neighborhood of the south pole because the second pulse has also a pulse area of π. In

the case that the second pulse is out of phase relative to the first pulse, the Bloch vector

rotates in the backward direction, returning to the vicinity of the south pole. Then the

time-integrated luminescence intensity is almost the same for both cases, leading to the

shrinkage of the interval between the maximum and the minimum envelopes as in Fig.

9.4(d). When the pulse area deviates from π, the incidental coincidence of the Bloch

vector position after the passage of a pulse pair does not occur between the in-phase and
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Fig. 9.4 The correlation traces for the three-level system in Fig. 9.1 for several values of the

excitation intensity. Only the envelopes of maximums and minimums are plotted.

Ti
m

e
-in

te
g

ra
te

d
 P

L 
in

te
n

si
ty

 (
a

rb
. 

u
n

its
)

0 10 20 30 40 50 60
Delay time (ps)

(m) Ω0 tp = 6.0

50

40

30

20

10

0



Theory of exciton coherence and decoherence 413

the out-of-phase cases. From the above reasoning, the collapse of the maximum and the

minimum envelopes is expected to occur periodically at Ω0tp = 1.0, 2.0, . . . These

features can be confirmed in the systematic changes in Fig. 9.4, although at higher

excitation intensities the excited state population accumulates due to the presence of

relaxation processes and the above effect becomes smeared.

The modulation of the envelopes, which is seen clearly in Figs 9.4(l) and (m), can

be interpreted as a kind of beat oscillation. Under the strong excitation, the dressed

exciton state is formed and the doublet splitting occurs in the exciton state and also in

the ground state. Thus the situation is similar to that discussed in section 9.7 where

closely separated two levels are simultaneously excited and the luminescence from the

exciton ground state is time-integrated. The difference is that the doublet splitting is

induced here by the excitation pulse itself and its magnitude is time-dependent. As a

consequence, the period of the beat-like oscillation in Figs 9.4(l) and (m) cannot be

identified definitely.

The changes of the correlation trace in the femtosecond range are exhibited in

Fig. 9.5 for various excitation intensities and for two typical delay times. As discussed

above, there appear n peaks within one optical cycle for the range of n – 1 < 2Ω0tp ≤ n

and for td < tp such that the overlap between two phase-locked pulses is significant. For

larger values of td, the number of peaks is reduced within the change of td of one optical

cycle.

Another interesting feature is related to the detuning of the excitation light denoted

by Δω = ω – ω0, where hω0 is the energy difference between the excited state and the

ground state. Figures 9.6 and 9.7 exhibit the detuning dependence of the envelopes of

the maximums and minimums of the correlation trace in the coarse time range. The

relevant parameters are chosen as

tp = 6 ps, κ21tp = κ23tp = 0.01, κ31tp = 0.005,

γ12tp = 0.08 (9.86)

and for Fig. 9.6

(ω – ω0) tp = 0.1, 0.4, 0.8, 1.2, Ω0tp = 0.2 (9.87)

and for Fig. 9.7

(ω – ω0) tp = 0, 0.1, 0.4, 0.8, Ω0tp = 0.8. (9.88)

In the case of weak excitation (Fig. 9.6), a modulation in the envelopes appears at large

detuning but the peak of the maximum envelope remains at td = 0 ps. On the other hand,

in the case of stronger excitation (Fig. 9.7), with increasing detuning, there appears a
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Fig. 9.5 The correlation traces in the femtosecond range around  td = 10 ps and 30 ps for Ω0 tp =

0.2, 0.8 and 2.0.
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Fig. 9.6 Detuning dependence of the envelopes of maximums and minimums of the correlation

trace for Ω0 tp = 0.2.

dip around td = 0 ps. This feature can be understood most clearly in terms of the simple

Bloch vector model. The Bloch vector rotates around the vector 
r

G , starting from the

south pole. But the gyration vector 
r

G  is not lying in the horizontal plane due to the

presence of detuning. The main concern is the z-component of the Bloch vector after the

passage of a phase-locked pulse pair which determines the time-integrated luminescence

intensity. The motion of the Bloch vector is exhibited in Fig. 9.8 for the case of detuning

(ω – ω0)tp = 0.8 and for the maximum points at td = 0 ps and 14 ps, as indicated by

circles in Fig. 9.7. The z-component of the Bloch vector after the passage of the pulse



416 T. Takagahara

pair takes the maximum value at td = 14 ps instead at td = 0 ps, leading to the larger time-

integrated luminescence intensity at td = 14 ps. The situation is the same also for the

negative detuning.

As mentioned before, when 1 < 2Ω0tp ≤ 2, there appear two peaks in the correlation

trace within the change of 2π /ω in td . When the excitation light is exactly resonant with

the exciton transition, the double peaks are symmetric with equal intensity irrespective

of the value of td (not shown). However, in the presence of detuning, the double peaks

appear asymmetric and its shape changes with increasing coarse delay time td, eventually

merging into a single peak as shown in Fig. 9.9, where the simple Bloch vector model

in (9.69) is used instead of (9.62) and the relevant parameters are chosen as
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Fig. 9.7 Detuning dependence of the envelopes of maximums and minimums of the correlation

trace for Ω0 tp = 0.8.
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tp = 6 ps, Ω0tp = 0.8, (ω – ω0)tp = ±0.8. (9.89)

For the positive detuning, the left peak diminishes with increasing delay time, whereas

for the negative detuning the right peak loses its intensity. These features can be understood

in terms of the motion of the Bloch vector which is sensitively dependent on the

temporal evolution of the magnitude and direction of the gyration vector 
r
G . The evolution

of the Bloch vector for the case of positive detuning (ω – ω0)tp = 0.8 is shown in Fig.

9.10. The left column is the same as in Fig. 9.9. The middle column corresponds to the

Fig. 9.8 The time-evolution of the Bloch vector at the detuning of (ω – ω0)tp = 0.8 and corresponding

to the maximum points at td = 0 ps and 14 ps as marked by circles in Fig. 9.7.
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Fig. 9.9 Detuning dependence of the correlation trace in the femtosecond range for Ω0tp = 0.8 and

(ω – ω0)tp = ±0.8 around the delay time td of 0 ps, 2 ps, 5 ps and 10 ps. The arrows indicate the

diminishing peaks.
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Fig. 9.10 The time-evolution of the Bloch vector corresponding to the points indicated by circles

in the left column. The middle (right) column corresponds to the left (right) peak indicated by

circles. The correlation traces in the left column are the same as in Fig. 9.9 for Ω0tp = 0.8 and

(ω – ω0)tp = 0.8.
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left peak in the left column, while the right column to the right peak in the left column.

In the middle column, the Bloch vector starts from the south pole and turns around,

returning to the vicinity of the south pole. This means that the population of the excited

exciton state is rather small after the passage of the phase-locked pulse pair and

correspondingly the time-integrated luminescence intensity is rather small. On the other

hand, in the right column for the right peaks the Bloch vector does not return to the

neighborhood of the south pole and its z-component retains a larger value after the

passage of the pulse pair, indicating a larger value of the time-integrated luminescence

intensity. Thus the asymmetry of the double peaks in the femtosecond time range can be

understood in terms of the motion of the Bloch vector. The situation is the same for the

negative detuning except that the relative weight of the left and right peaks is interchanged.

9.7 Wave packet interferometry

Coherent optical control of the wavefunction in a single quantum dot was initiated by

Bonadeo et al. [22]. In their experiments, an island-like structure in a single quantum

well (QW) due to the fluctuation of the QW thickness was used and was regarded

effectively as a quantum dot. That island-like structure is usually elongated along the

[110] direction [41]. As a consequence of the long-range part of the electron-hole

exchange interaction [42], the exciton states show the doublet splitting. Each doublet

consists of orthogonally polarized exciton states with an energy splitting of the order of

several tens of μeV. In the experiments an exciton doublet was excited by a phase-

locked pulse pair and the time-integrated intensity of luminescence from the exciton

ground state was measured. The typical energy level structure is depicted in Fig. 9.11.

Now we present a theoretical framework to describe these experiments. The polarization

|
2x>|

|
3>|

|
2y>|

|
1>|

yx

Fig. 9.11 An energy level scheme. The non-radiative relaxation pathways of population are depicted

by dashed lines. Solid lines represent optical transitions. | 2x〉 (| 2y〉) denotes the exciton state

polarized in the x-(y-)direction.
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direction of the orthogonally polarized exciton states will be denoted as x- or y-direction.

The electric field of the phase-locked pulse pair is written as
r r r
E t t t t t t td d( ) = ( ) cos  + (  – ) cos (  – )1 2ε ω ε ω

= 1
2

 ( ( ) + (  – ) )  + 1
2

 ( ( ) + (  – ) ) 1 2
–

1 2
–r r r r

ε ε ε εω ω ω ωt t t e e t t t e ed
i t i t

d
i t i td d

with
r r r r
ε ε ε ε1 1 2 2( ) = ( ),   (  – ) = (  – ),t e t t t e t td d (9.90)

where
r r
e e1 2 and  are the polarization unit vectors and ε(t) is the common pulse envelope

assumed in a hyperbolic secant form as in (9.41). The electric dipole interaction term

can be written as

–   ( ) = – ( )  – ( )  + . .
r r

h hμ Ω Ωω ω⋅ E t t e t e c cx
i t

y
i t

with

Ω
μ

ε ε ω
x

x
x x d

i tt e t e t t e d( ) = 
2

 ( ( ) + (  – ) ),1 2
–

h
(9.91)

Ω
μ

ε ε ω
y

y
y y d

i tt e t e t t e d( ) = 
2

 ( ( ) + (  – ) ),1 2
–

h
(9.92)

where μi, e1i and e2i (i = x, y) are the Cartesian components of the dipole moment

operator and the polarization unit vectors. With these notations the equations of motion

of the density matrix for the four levels | 1〉, | 2x〉, | 2y〉 and | 3〉 in Fig. 9.11 are given by

ρ̇ Ω ρ Ω ρ Ω ρω ω ω
11

* –
1,2 2 ,1

* –
1,2 = – ( )  + ( )  – ( )i t e i t e i t ex

i t
x x

i t
x y

i t
y

+ ( )  + (  + ) + ,2 ,1 21 2 ,2 2 ,2 31 33i t ey
i t

y x x y yΩ ρ κ ρ ρ κ ρω (9.93)

ρ̇ Ω ρ Ω ρ κ κ ρω ω
2 ,2

* –
1,2 2 ,1 21 23 2 ,2 = ( )  – ( )  – (  + ) ,x x x

i t
x x

i t
x x xi t e i t e (9.94)
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i t
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ρ̇ κ ρ κ ρ ρ33 31 33 23 2 ,2 2 ,2 = –  + ( + ),x x y y (9.96)
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ρ̇ Ω ρ Ω ρ ω ω γ ρω ω
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where the same notations are used as in (9.18)–(9.26) and hωi (i = 2x, 2y, 3) is the

energy of each level relative to the ground state | 1〉. It is easily seen that the components

ρ13, ρ31, ρ2x,3, ρ3,2x, ρ2y,3 and ρ3,2y are completely decoupled from other components and

they do not have non-zero values for the initial condition that ρ11(0) = 1 and ρij (0) = 0

for other combinations of i and j. Thus those components will be dropped in the following.

It is convenient to separate out the major oscillating factor as

ρ ρω
1,2 1,2 = ,x

i t
xe ˜ ρ ρω
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ye e˜ ˜ (9.110)

Then the relevant equations of motion for ten components are given as

d
dt

M  = ρ ρ (9.111)

with

ρ =t (ρ11, ρ2x,2x, ρ2y,2y, ρ33, ρ1,2x, ρ1,2y, ρ2x,1, ρ2y,1, ρ2x,2y, ρ2y,2x), (9.112)
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α12 = –iΔω – γ12, β12 = –i(Δω + Δ) – γ12, δ22 = –iΔ – γ22, (9.114)

Δ = ω2x – ω2y, Δω = ω – ω2x. (9.115)

Now in order to examine the correlation trace in the weak excitation case, the

perturbative calculation will be carried out. Starting from the initial state that ρ11 = 1

and other ρij = 0, we have

ρ̃ τ Ω τΔω γ τ
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0

–( + )( – )( ) = –  ( ),12
x

t

i t
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In the second-order perturbation, we obtain
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with κ2 = κ21 + κ23. In order to see the qualitative features, we consider optical pulses

with short duration compared with relevant relaxation times and assume as E(t) ∝ δ(t).

Then the time-integrated luminescence intensity is proportional to

0

2
(2)

2 ,2
(2) ( ( ) + ( )),2

∞

∫ dt t tx y yxρ ρ (9.120)

and is calculated as
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y dy e e e e e td (9.121)

Since for the doublet states |2x〉 and |2y〉 the magnitude of |〈1 | μx | 2x〉|2 and

|〈1 | μy | 2y〉 |2 is almost equal to each other, the above expression is proportional to

I t e e e t e e e td x x
t

x d y y
t

y d
d d( ) = 1 + cos  + cos .1 2

–
2 1 2

–
2

12 12γ γω ω (9.122)

When the pulse pair is polarized in the same direction along the half way between the

x-axis and the y-axis, namely
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e e e ex y x y1 1 2 2 =  =  =  = 1
2

, (9.123)

we have

I t e t td
t x y

d d
d( ) = 1 + cos 

 + 
2

 cos 
2

 .– 2 212γ ω ω Δ (9.124)

Thus the time-integrated luminescence intensity shows a beating with a period of 2π/Δ
due to the simultaneous excitation of the doublet with energy separation of Δ. On the

other hand, when the pulse pair is orthogonally polarized, namely

e e e ex y x y1 1 2 2 =  =  = –  = 1
2

, (9.125)

we have

I t e t td
t x y

d d
d( ) = 1 – sin 

 + 
2

 sin 
2

 .– 2 212γ ω ω Δ (9.126)

Thus the beating structure shows a node at td  = 0 in the case of orthogonal polarization,

whereas it shows a peak in the case of parallel polarization.

For stronger excitation, we have to calculate numerically the luminescence intensity

based on (9.111). Results are shown in Figs 9.12 and 9.13 for respective cases of the

parallel and orthogonal polarization of the phase-locked pulse pair. The relevant parameters

are chosen as

tp = 6 ps, κ21tp = κ23tp = 0.01, κ31tp = 0.005,

γ12tp = 0.08, γ22tp = 0.03, Δtp = (ω2x – ω2y)tp = 2.0,

 Δω tp = (ω – ω2x)tp = – 1.0, 〈1 | μx | 2x〉 = 〈1 | μy | 2y〉 = μ,

Ω0tp = 
με 0

h
t p  = 0.2, 1.0, 2.0, 4.0. (9.127)

With increasing excitation intensity, the sinusoidal beating structure deforms due to

incoherent processes via accumulated population in the excited states. Since both | 2x〉
and | 2y〉 levels show the Rabi splitting, the interference pattern in the correlation trace

becomes much involved.

9.8 Effect of two-photon coherence

So far we have considered single exciton states in a quantum dot. However, with increasing

excitation intensity, we have to take into account two-exciton states. It is easily expected

that the behavior of the quantum interference will be modified significantly by the two-
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Fig. 9.12 Correlation traces for a four-level system in Fig. 9.11. The phase-locked pulse pair is

polarized in the same direction along the half way between the x-axis and the y-axis.

photon coherence via two-exciton states. This feature is important in achieving the

exciton entangled state [17] because the contribution from two-exciton states cannot be

precluded only by the large detuning. In fact, under the pulse excitation, the contribution

from off-resonant levels is much emphasized and cannot be neglected since the intrinsic
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spectral broadening of the pulse induces the excitation of those states. In order to see

typical behaviors, we add a two-exciton state denoted by m in Fig. 9.14. The state m is

assumed to be excited by the combination of two photons with x- or y-polarization. This

Fig. 9.13 Correlation traces for a four-level system in Fig. 9.11. The phase-locked pulse pair is

polarized orthogonally along the half way between the x-axis and the y-axis.
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selection rule corresponds to the two-exciton state with the total angular momentum J

= 0 [43]. The level | 3〉, namely, the exciton ground state is not coupled with other levels

coherently via optical fields. By the same reasoning as in section 9.7, the components

of the density matrix of the form ρ3j or ρj3 ( j = 1, 2x, 2y, m) are completely decoupled

from other components. Thus 17 members out of 25 components of the density matrix

are relevant in the equations of motion. The explicit expression of the equations of

motion is rather lengthy and is omitted. In this case also, the calculated quantity is the

time-integrated luminescence intensity from the exciton ground state.

Fig. 9.14 An energy level scheme. The state | m〉 is added to the level scheme in Fig. 9.11. The

non-radiative relaxation pathways of population are depicted by dashed lines. Solid lines represent

optical transitions.

m>|
|

2 x>|
|

x y

2 y>|
|

3>|
|x y

1>|
|

A model calculation is carried out to see the excitation intensity dependence of

the correlation trace as shown in Fig. 9.15. The relevant parameters are chosen as

tp = 6 ps, κ21tp = κ23tp = 0.01, κ31tp = 0.005, κm2tp = 0.01,

γ12tp = 0.08, γ22tp = 0.03, γm1tp = 0.08, γm2tp = 0.1,

Δtp = (ω2x – ω2y)tp = 2.0, Δωtp = (ω – ω2x)tp = – 1.0, 
( – 2 )

 = –1.0,
2E E tm x p

h

〈1 | μx | 2x〉 = 〈1 | μy | 2y〉 = 〈2x | μx | m〉 = 〈2y | μy | m〉 = μ,

Ω
με

0
0 =  = 0.2, 1.0, . . . ,t tp ph

(9.128)

where κm2 denotes the population relaxation rate from the state | m〉 to the exciton state
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| 2x〉 or | 2y〉 (κm,2x = κm,2y = κm2) and γm2 is the dephasing rate of the coherence between

| m〉 and | 2x〉 or | 2y〉 (γm,2x = γm,2y = γm2). A remarkable feature is that a quantum-beat

like behavior appears even when the single polarization component is excited, namely,

the phase-locked pulse pair is polarized in the same direction, e.g., x- or y-direction. The

Rabi oscillation is induced not only between the ground state and the exciton state but

also between the exciton state and the two-exciton state with respective oscillation

frequencies. As a result of interference between two Rabi oscillations, the exciton

population shows a beating modulation and the time-integrated intensity of luminescence

from the exciton ground state exhibits a beating feature as a function of the delay time

between two phase-locked pulses. In the weak excitation case, the excitonic transition

is mainly excited and a simple behavior of exponential decay is apparent. With increasing

excitation intensity, the transition between the exciton state and the two-exciton state is

also induced and the interference mentioned above tends to manifest in the form of a

beating structure in the correlation trace. The frequency difference between two Rabi

oscillations is determined mainly by the biexciton binding energy BXX = Em – 2E2x (or

E2y). The period of the beating is given by 2πh/BXX, as can be guessed from the arguments

in (9.124). The actual beating behavior in the correlation trace is sensitively dependent

on the relative phase of the Rabi oscillation between the ground state and the exciton

state and that between the exciton state and the two-exciton state. It is interesting to note

that in the case of Ω0tp = 2, which corresponds to a pulse area of 2π, a simple behavior

of exponential decay is recovered as shown in Fig. 9.15(d). This is understood as

follows.

Fig. 9.15 Correlation traces for a five-level system in Fig. 9.14. The phase-locked pulse pair is

polarized in the same direction along the x-axis.
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The system evolves from the ground state, namely the Bloch vector starts from

the south pole and turns around by 2π radian, returning to the vicinity of the south pole.

This situation is similar to the case of small angle rotation of the Bloch vector under the

weak excitation in which only the excitonic transition is excited. Thus the correlation

trace exhibits an exponential decay as in the weak excitation case. On the basis of the

same arguments, we expect to observe an exponential decay of the correlation trace in

the case of Ω0tp = 4, which corresponds to a pulse area of 4π, since the Bloch vector

returns to the neighborhood of the south pole as in the case of Ω0tp = 2. Contrary to this

expectation, however, the correlation trace exhibits a complicated beating behavior as

shown in Fig. 9.15(h). In this case the exciton population accumulates within the pulse

duration due to the presence of relaxation channels and the coherence induced by the

second pulse via this exciton population gives rise to a complicated interference

pattern.

Now we consider the case in which the first pulse is polarized along the half way

between the x-axis and the y-axis and the second pulse is polarized perpendicular to

that. In the weak excitation case, the correlation trace shows a typical beating feature

with exponential decay and is almost the same as in Fig. 9.13, since the two-exciton

state | m〉 is not excited. With increasing excitation intensity, the envelope of the correlation

trace begins to deviate from a sinusoidal beating behavior and exhibits a seemingly

irregular pattern as shown in Fig. 9.16. In a typical case of Ω0tp = 2, the fine time

behavior in the femtosecond range of the correlation trace is quite interesting as exhibited

in Fig. 9.17. Around the coarse time delay of 0 ps, there appear four peaks within one

optical cycle (~3 fs) corresponding to the interference among four optical transitions,

namely the 2x and 2y exciton transitions and the 2x-m and 2y-m transitions between

the exciton state and the two-exciton state. With increasing delay time td, the

interference fades away and the four peaks within one optical cycle of td merge into two

peaks.

In the case of parallel polarization in which the phase-locked pulse pair is polarized

in the same direction along the half way between the x-axis and the y-axis, the overall

beating features of the coarse time envelope and the fine time behaviors are exhibited in

Figs 9.18 and 9.19, respectively. The seemingly irregular pattern in the case of higher

excitation intensity are similar to those in Fig. 9.16. These studies will provide important

informations on physical conditions to realize the exciton entanglement in a single

quantum dot. Actually there are several bound and even continuum two-exciton states

and these would contribute significantly to the quantum interference phenomena. Studies

on the effects of these states are left for the future.
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9.9 Exciton dephasing in semiconductor quantum dots

A resonant optical excitation creates an excited state population and also induces an

optical polarization. Dynamics of this optical excitation is characterized by relaxation
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Fig. 9.16 Correlation traces for a five-level system in Fig. 9.14. The phase-locked pulse pair is

polarized orthogonally along the half way between the x-axis and the y-axis.
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Fig. 9.17 Correlation traces in the femtosecond range around td = 0 ps, 5 ps, 10 ps, 15 ps, 20 ps

and 30 ps corresponding to the case of Ω0tp = 2.0 in Fig. 9.16.
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of the population as well as decay of the induced optical polarization. In lower dimensional

semiconductors, electronic confinement leads to qualitative changes in population

relaxation including spontaneous emission and exciton-phonon scattering, as shown in
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Fig. 9.18 Correlation traces for a five-level system in Fig. 9.14. The phase-locked pulse pair is

polarized in the same direction along the half way between the x-axis and the y-axis.
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Fig. 9.19 Correlation traces in the femtosecond range around td = 0 ps, 5 ps, 10 ps, 15 ps, 20 ps

and 30 ps corresponding to the case of Ω0tp = 2.0 in Fig. 9.18.
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extensive recent studies [44]. These population relaxation processes are expected to

contribute to dephasing with a dephasing rate given by half the population decay rate.

Pure dephasing processes that do not involve population or energy relaxation of excitons

can also contribute to dephasing. Pure dephasing, which is a well-established concept

for atomic systems, remains yet to be investigated in lower dimensional semiconductors

due to a lack of direct comparison between dephasing and population relaxation and

between theory and experiment. Studies of pure dephasing processes in lower dimensional

semiconductors will renew and deepen our understanding of dephasing of collective

excitations in solids, although several seminal studies were done on the exciton dephasing

in quantum well (QW) structures [45–48].

Narrow GaAs QWs grown by molecular beam epitaxy (MBE) and with growth

interruptions have provided a model system for investigating dephasing processes in

lower dimensional semiconductors. In these narrow QWs, fluctuations at the interface

between GaAs and AlGaAs lead to localization of excitons at monolayer-high islands.

These localized states can be regarded effectively as weakly-confined quantum dot

(QD)-like states. One dimension of the confinement is defined by the width of the QW,

while the other two lateral dimensions are defined by the effective size of the islands.

To avoid inhomogeneous broadening due to well-width and island-size fluctuations,

earlier studies have used photoluminescence (PL) and PL excitation with high spatial

resolution to probe excitons in individual islands [49,12,13]. As a result, a very narrow

linewidth of about several tens of μeV was observed. Without additional information on

population relaxation, it was suggested that at very low temperature dephasing of excitons

in these structures is due to radiative recombination, while at elevated temperatures

dephasing is mainly caused by thermal activation of excitons to higher excited states

[12]. However, this interpretation is not complete since both of the suggested processes

belong to the longitudinal decay processes and the dephasing rate is in general composed

of half the longitudinal decay rate and the pure dephasing rate. In order to examine the

presence of pure dephasing in this system, we carried out nonlinear optical measurements

of the exciton dephasing in GaAs QD-like islands based on the three-pulse stimulated

photon echo method [50]. This method enables the simultaneous measurement of the

dephasing rate and the population decay rate. At very low temperatures the observed

dephasing rate Γ⊥ is very close to half the population decay rate Γ|| /2, suggesting that

dephasing is caused mainly by the population decay. With increasing temperature the

dephasing rate increases much faster than the population decay rate. At elevated

temperatures (>30 K), dephasing rates become much greater than Γ|| /2, indicating a

dominant contribution of pure dephasing. Thus our measurements revealed convincingly

the presence of pure dephasing process that dominates excitonic dephasing at elevated

temperatures.
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The observed strong increase of the pure dephasing rate above 30 K suggests that

interactions between excitons and low-energy acoustic phonons play an essential role in

the pure dephasing process. In this chapter, we present a theoretical model that takes

into account the interaction between excitons and acoustic phonons and can explain

satisfactorily the magnitude as well as the temperature dependence of the dephasing

rate. Our model generalizes the Huang–Rhys theory of F-centers [51–53] to include

mixing among the ground and excited exciton states through exciton–phonon interactions

[54] and as a result enables us to identify the elementary processes of exciton pure

dephasing.

9.10 Green function formalism of exciton dephasing rate

As discussed in the last section, the strong increase of the exciton dephasing rate above

30 K suggests the important role of the low-energy acoustic phonons in determining the

dephasing rate. The exciton dephasing rate can be estimated most directly from the half-

width at half maximum (HWHM) of the absorption spectrum which can be calculated

from the Fermi golden rule as

I f V g E E
f

R g f( ) = 2  Av.  | | | | (  +  – ),2h
h

hω π δ ωΣ 〈 〉 (9.129)

where VR is the electromagnetic interaction, | f 〉 and | g〉 denote the final exciton state

and the initial ground state, respectively, including the phonon degrees of freedom and

Av. means the average over the thermal equilibrium state of phonons. This expression

can be rewritten as

I dt e g V i H t V i H t gi t
R e R g( )  Re  Av. exp exp – ,

0

–h
h h

ω ω∝ [ ] [ ]⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

∞

∫ (9.130)

where He and Hg are the Hamiltonians in the excited state and the ground state, respectively.

This can be confirmed by inserting a closure relation between two VR’s. Equation

(9.130) is a Fourier–Laplace transform of a correlation function. In order to proceed

further, the Hamiltonians will be specified as

H b bg  =  ,†Σ
α

α α αωh (9.131)

H E i i b b M b be
i

i =  | | +   +  (  + ),† †Σ Σ Σ〉 〈
α

α α α
α

α α αωh (9.132)

where the index α denotes the acoustic phonon mode, Ei the energy of the exciton states

and Mα is the exciton–phonon coupling matrix within the exciton state manifold. This

is a generalization of the Huang–Rhys model of F-centers [51] to include mixing among
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the exciton state manifold which is reflected in the matrix form of Mα. In the following,

we take into account only the exciton–phonon coupling which is linear with respect to

the phonon coordinates. Even within this range, however, the well-known deformation

potential coupling and the piezoelectric coupling are included. Thus our Hamiltonian is

sufficiently general. We note that in the elementary processes of the exciton–phonon

interaction the crystal momentum conservation needs to be satisfied in directions where

the translational invariance holds. The dephasing process becomes prominent in systems

with three-dimensional (3D) electronic confinement because the 3D confinement relaxes

the crystal momentum conservation and also suppresses exciton population relaxation

[55,56] due to the exciton–phonon interactions.

Hereafter the three terms of He in (9.132) will be denoted, respectively as

H H H Ve e g =  +  + .0 (9.133)

Then the Laplace transform of exp [(i/h)Het] can be expanded as

0

– exp [( / ) ]

∞

∫ dt e i H tst
eh
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For example, the third term on the right hand side of (9.134) can be expressed in the

convolution form as

i dt dt e V e V e

t t

H H t t H H t t H H ti
e g

i
e g

i
e g

h
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2
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1 2
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Substituting this term for exp[(i/h)Het] in (9.130) and noting the commutability between

He
0  and Hg and between Mα and Hg. we have

g V i H t V i H t gR e R gexp exp –
h h[ ] [ ]

→ ⎛
⎝

⎞
⎠ [ ] [ ]∫ ∫ exp (  – ) exp (  – )

2

0

1

0

2
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1 2
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R e eh h h
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α β
α β

× [ ] × [ ] [ ] exp   0 exp (  – ) (  + ) exp (  – )0
2 1

†
1 2

i H t V g i H t t b b i H t te R g gh h hα α

× [ ] [ ] (  + ) exp exp – 0†
2b b i H t i H tg gβ β h h

, (9.136)
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where | 0 〉 denotes symbolically the thermal equilibrium state of phonons. The phonon

part of (9.136) can be written as

0 exp (  – ) (  + ) exp (  – ) (  + )1
†

1 2
†i H t t b b i H t t b bg gh h[ ] [ ]α α β β

× [ ] [ ] exp exp – 02
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1 2
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1 2
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with
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Since the exciton–phonon interaction Hamiltonian V is linear with respect to the

phonon coordinates, the terms of odd powers in V in (9.134) vanish in the final expression.

The next non-vanishing term is the fourth order term in V and this has three contraction

diagrams as depicted in Fig. 9.20. For example, the term corresponding to Fig. 9.20(c)

can be written as
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On the other hand, the diagrams in Figs 9.20(a) and (b) can be incorporated into the

zeroth order and second order terms, respectively, by renormalizing the exciton propagator

and the self-energy, as will be shown below.

First of all, we introduce the Green function defined by

G s
s H si

e
0
(2)

0
0
(2)( ) = 1

– – ( )h Σ

Fig. 9.20 Possible diagrams of the fourth order term in (9.134). A solid (dashed) line denotes the

exciton (phonon) propagator (from Takagahara [54]).

(a)

(b)

(c)
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where Σ 0
(2)  has a meaning of the second order self-energy and G0

(2)  represents the

exciton propagator in the phonon field. The diagram in Fig. 9.20(a) is included in this

Green function. Using this propagator, we improve the second order self-energy as

Σ Σ(2)
2

0
(2)

0
(2)( ) =  [ (  + ) + (1 + ) (  – )]s

i
M N G s i N G s i M

h
⎛
⎝

⎞
⎠ α α α α α α αω ω (9.142)

and including this self-energy into the denominator, we obtain the improved Green

function as

G s
s H si

e

(2)
0 (2)

( ) = 1
– – ( )

.
h Σ (9.143)

This Green function incorporates the diagram in Fig. 9.20(b). Thus only the diagram in

Fig. 9.20(c), namely an irreducible diagram, should be included in the fourth order.

Now, using the exciton propagator in (9.143), we calculate the self-energy including

the fourth order irreducible diagram, namely

Σ Σ Σ(2) (4)
2

(2) (2)( ) + ( ) =  [ (  + ) + (1 + ) (  – )]s s i M N G s i N G s i M
h( ) α α α α α α αω ω
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+ (1 + Nα)(1 + Nβ)MαG(2)(s – iωα)MβG(2)(s – i(ωα + ωβ))MαG(2)(s – iωβ)Mβ}

(9.144)

and incorporating this self-energy into the denominator, we have the improved Green

function as

G s
s H s si

e

(4)
0 (2) (4)

( ) = 1
– – ( ) – ( )

.
h Σ Σ (9.145)

We can extend this procedure up to the higher order iteratively.

As a consequence, we find
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with

Σ Σ Σ Σ( )  = ( ) + ( ) + ( ) + . . . ,(2) (4) (6)s s s s

where the self-energy parts can be represented by irreducible diagrams as shown in Fig.

9.21.

Fig. 9.21 Irreducible diagrams corresponding to the self-energy terms of the second, fourth and

sixth order with respect to the exciton–phonon interaction (from Takagahara [54]).

∑(2) =

∑(4) =

∑(6) = +

++

The optical absorption spectrum is calculated from (9.146) by putting s as

s → iω + δ,

where δ is a half of the population decay rate of the exciton state excluding the contribution

from the acoustic phonon-mediated relaxation, because such contribution is automatically

included in the self-energy part ∑(s). More concretely, δ should include the radiative

decay rate, the trapping rate to some defects and the rate of exciton migration to neighboring

islands. The latter two processes are phonon-mediated but should be included in δ
because they are not taken into account in the present Green function formalism. δ can

be estimated from the observed population decay rate subtracting the phonon-assisted

population decay rate within an island which can be calculated theoretically as given in

section 9.15.
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In order to examine the convergence of the above procedure, we have estimated

the Green function up to the sixth order and compared the optical absorption spectrum

and its HWHM by calculating

I(2)(ω) = Re[Av. 〈g | VRG(2)(s = iω + δ)VR | g〉],

I(4)(ω) = Re[Av. 〈g | VRG(4)(s = iω + δ)VR | g〉],

I(6)(ω) = Re[Av. 〈g | VRG(6)(s = iω + δ)VR | g〉]. (9.147)

Typical results are shown in Fig. 9.22. The relevant parameters are explained in

section 9.12. The size parameters of a quantum disk for Fig. 9.22 are a = 20 nm and b

= 15 nm. It is seen that the percentage difference of the dephasing rates calculated from

G(2) and G(4) is about 15–20%, whereas that calculated from G(4) and G(6) is about

several %. Hence we carry out the calculation up to the fourth order and estimate the

dephasing rate from the HWHM of I(4)(ω).

Fig. 9.22 Temperature dependence of exciton dephasing rates calculated by including the self-

energy terms up to the second, fourth and sixth order denoted as G(2), G (4) and G (6), respectively.

The size parameters of the quantum disk are the same as in Fig. 9.23 (from Takagahara [54]).
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9.11 Exciton–phonon interactions

The microscopic details of the interaction Hamiltonian between the exciton and the

acoustic phonons will be described. In GaAs/AlGaAs QWs, the elastic properties of
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both materials are not much different and thus the bulk-like acoustic phonon modes can

be assumed as the zeroth order approximation. Hereafter the phonon modes will be

specified by the wavevector 
r
q . The interaction between electrons and acoustic phonons

arises from the deformation potential coupling and the piezoelectric coupling [57].

The dominant interaction term of the deformation potential coupling is given as

H
q
uV

D a a D a a e b bDF
r q

c cr cr r r
iqr

q q =  
| |

2
 (  + ) (  + ),

,

† †
–
†Σ h

ρ v v v (9.148)

where a(a†) denotes the annihilation (creation) operator of the electron in the conduction

(c) or valence (v) band, b(b†) is the annihilation (creation) operator of the acoustic

phonon, Dc(Dv) the deformation potential of the conduction (valence) band, u the sound

velocity of the longitudinal acoustic (LA) mode, V the quantization volume, ρ the mass

density and the vector symbols of 
r r
r q and  are dropped.

The piezoelectric coupling is given as

H
ee

q u q V
q q q q q q ePZ

r q
x y z y z x z x y

iqr = –
8

2 | |
 (  +  + )

,

14
2

Σ π
ε ρ ξ ξ ξh

×  (  + ) (  + ),† †
–
†a a a a b bcr cr r r q qv v (9.149)

where ε(e14) is the dielectric (piezoelectric) constant and 
r
ξ  is the polarization vector of

the acoustic phonon modes. In this case the transverse acoustic (TA) mode as well as the

longitudinal acoustic (LA) mode contribute to the coupling. The polarization vectors for

the LA mode and the two TA modes with a wavevector 
r
q  are given as

r r
ξ( ) = ( , , )/| |,LA q q q qx y z
r
ξ( 1) = ( , – , 0)/  + ,2 2TA q q q qy x x y

r r
ξ( 2) = (– , – ,  + )/| |  + .2 2 2 2TA q q q q q q q q qx z y z x y x y (9.150)

Then the matrix element of the interaction Hamiltonian between two exciton

states given by

|  = ( , ) | 0
,

†X F r r a ai r r i e h cr r
e h e h

〉 〉Σ v (9.151)

and

|  = ( , ) | 0
,

†X F r r a af r r f e h cr r
e h e h

〉 〉Σ v (9.152)

is calculated as

〈 〉 〈 〉X H X
q

u V
D X e Xf DF i

q LA
c f

iqr
i

e| |  =  
| |

2
 ( | |Σ h

ρ

– | | ) (  or  + 1),D X e X N Nf
iqr

i q q
hv 〈 〉
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〈 〉X H X
ee

q u q V
q q q qf PZ i

q
x y z y z x| |  = –

8
2 | |

 (  + 
,

14
2

Σ
σ σ

π
ε ρ ξ ξh

+ ) ( | |  – | | )  (  or  + 1)ξ z x y f
iqr

i f
iqr

i q qq q X e X X e X N Ne h〈 〉 〈 〉 ⋅

(9.153)

with

〈 〉X e X d r d r F r r e F r rf
iqr r

i e h f e h
iqr r

i e h
e h e h| |  =  ( , ) ( , ),( ) 3 3 * ( )∫ ∫ (9.154)

where σ = LA, TA1 and TA2 and the factor N Nq q(  + 1) corresponds to the phonon

absorption (emission) process.

The parameter values employed for GaAs are Dc = –14.6 eV, Dv = –4.8 eV [58],

uLA = 4.81 · 105 cm/s, uTA = 3.34 · 105 cm/s, e14 = 1.6 · 10–5 C/cm2 and ε = 12.56 [59].

9.12 Excitons in anisotropic quantum disk

Now the theoretical formulation has been completed. In a more concrete calculation, we

have to specify a model for the QD-like island structures. The extremely narrow linewidth

of exciton emission was observed for the first time in QW samples [49,13,12]. The

lateral fluctuation of the QW thickness gives rise to an island-like structure. The localized

excitons at such structures can be viewed as the zero-dimensional excitons. In these

samples, the confinement in the direction of the crystal growth is strong, whereas the

confinement in the lateral direction is rather weak. Furthermore, the island structures

were found to be elongated along the [110] direction [41]. Thus these island structures

can be modeled by an anisotropic quantum disk. In order to facilitate the calculation, the

lateral confinement potential in the x and y directions is assumed to be Gaussian as

V r V
x
a

y
b

V r V
x
a

y
be e h h( ) =  exp – – , ( ) =  exp – – ,0

2 2
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(9.155)

where the lateral size parameters a and b can be fixed in principle from the measurement

of morphology by e.g., STM but are left as adjustable parameters. The exciton wavefunction

in such an anisotropic quantum disk can be approximated as

F r r C l l m m
x
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x
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y
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e h e h
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with

ϕ π
0 ( ) = 2  cos ,z

L
z

Lz z

⎛
⎝

⎞
⎠ (9.157)

where C(le, lh, me, mh) is the expansion coefficient, Lz is the QW thickness, the factor

1/2 in the exponent is attached to make the probability distribution | F(re, rh) |
2 to follow

the functional form of the confining potential and αx and αy indicate the degree of the

electron-hole correlation and are determined variationally. The electron-hole relative

motion within the exciton state is not much different from that in the bulk because the

lateral confinement is rather weak. As a result, the parameters αx and αy are weakly

dependent on the lateral size. Because of the inversion symmetry of the confining

potential, the parity is a good quantum number and the wavefunction can be classified

in terms of the combination of parities of x yl l m me h e h+ + and . The exciton ground state

belongs to the (even, even) series, where the first (second) index indicates the parity

with respect to the x(y) coordinate. As can be seen easily, the optically allowed exciton

states belong to the (even, even) series and other exciton states associated with (even,

odd), (odd, even) and (odd, odd) series are dark states. In actual calculations, terms up

to the sixth power are included, namely, 0 ≤ le + lh, me + mh ≤ 6  to ensure the

convergence of the calculation.

The potential depth for the exciton lateral motion can be guessed from the splitting

energy of the heavy hole excitons due to the monolayer fluctuation of the QW thickness.

The value of |  + |0 0V Ve h  is typically about 10 meV for the nominal QW thickness about

3 nm [41,50]. Of course, even if V Ve h
0 0 +  is fixed, each value of V Ve h

0 0 and  cannot be

determined uniquely. Here we employ Ve
0  = – 6  meV and Vh

0  = – 3 meV throughout

this paper, referring to the experimental results and assuming V Ve h
0 0 :  = 2 :1.

A typical example of the exciton level structure is shown in Fig. 9.23 for a =

20 nm and b = 15 nm. The disk height, namely the QW thickness, is fixed at 3 nm

throughout this chapter. The transition intensities of optically active exciton states are

plotted by solid lines and the corresponding radiative lifetime is also given alongside.

The dark exciton states are exhibited by triangles slightly above the horizontal axis to

indicate the energy positions. In the calculation of the optical absorption spectrum in

(9.130), the lowest 13 exciton levels are taken into account including the dark exciton

states because this number of levels is sufficient for converged results.

9.13 Temperature-dependence of the exciton dephasing rate

First of all, we are interested in the lineshape of the calculated absorption spectrum. The

lineshape of the exciton ground state is plotted in Fig. 9.24 for a quantum disk model
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in section 9.12 at 10K and 50K. The squares show the calculated spectra and the circles

are the Lorentzian fit. At low temperatures, the spectra can be fitted very well by the

Lorentzian as expected. At elevated temperatures, however, the lineshape deviates from

the Lorentzian and shows additional broadening. In any case, the dephasing rate, i.e.,

the HWHM of the absorption spectrum can be estimated unambiguously. In addition, it

is interesting to note the red shift of the exciton peak position about several tens of μeV

relative to the purely electronic transition energy indicated by the origin of energy. This

is caused by the lattice relaxation energy given by (4.5) in Ref. [57].

The size dependence of the dephasing rate is shown in Fig. 9.25 for the size

parameters of (a, b) = (12 nm, 10 nm), (20 nm, 15 nm) and (30 nm, 20 nm). In this size

range the dephasing rate is larger for smaller sizes. This can be considered to be caused

by the enhanced coupling strength between the exciton and acoustic phonons since the

confinement effect on the spectral density of acoustic phonon modes is not significant

in this size range. From the comparison of these results with experimental data, we can

guess the likely size of the quantum disk. Hereafter we employ the size parameters of

(a, b) = (20 nm, 15 nm).
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Fig. 9.23 Exciton energy levels in a GaAs quantum disk with parameters of a = 20 nm, b = 15 nm,

Lz = 3 nm, Ve
0  = 6 meV and Ve

0  = 3 meV (see the text). The origin of energy is taken at the exciton

ground state. The dark exciton states are denoted by triangles slightly above the horizontal axis

(from Takagahara [54]).
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Fig. 9.24 Absorption spectra of the exciton ground state at (a) 10K and (b) 50K for the quantum

disk in Fig. 9.23 (from Takagahara [54]).

Fig. 9.25 Dephasing rates are plotted as a function of temperature for the exciton ground state in

three quantum disks with size parameters of (a, b) = (12 nm, 10 nm), (20 nm, 15 nm) and (30 nm,

20 nm) and the disk height of 3 nm (from Takagahara [54]).
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The calculated dephasing rate is plotted in Fig. 9.26 as a function of temperature

with experimental data [50]. As mentioned in the Introduction, the difference between

the dephasing rate Γ⊥ and half the population decay rate Γ|| /2 indicates the pure dephasing

rate. It is seen that the overall agreement between the theory and experiments is satisfactory

concerning both the absolute magnitude and the temperature dependence. Furthermore,

in the theory, we can separate out the contribution of the deformation potential coupling

to the exciton dephasing and this part is shown by the arrow denoted as “Def. pot.”. The

remaining part is coming from the piezoelectric coupling and the interference term

between the two couplings. But this part is simply denoted as “Piezo.” in Fig. 9.26. It

is seen that the deformation potential coupling is dominantly contributing to the pure

dephasing.

Fig. 9.26 Calculated dephasing rates of the exciton ground state are shown with experimental data

(Ref. [50]) as a function of temperature. A quantum disk model is employed with the same

parameters as in Fig. 9.23. The pure dephasing rate is decomposed into the contribution from the

deformation potential coupling denoted as Def. pot. and that from the piezoelectric coupling and

the interference term denoted as Piezo (from Takagahara [54]).
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In order to see the reason in more detail, we look into the matrix elements of the

exciton–phonon interactions. In Fig. 9.27, we plot the angular average of squared matrix

element of the exciton–phonon interaction defined by

f q d i V q jij
α

αΩ(| |) = | | ( ) | | ,2∫ 〈 〉 (9.158)
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where α = LA or TA, the indices i and j denote the exciton state and for the case of α =

TA the contribution from both TA1 and TA2 modes in (9.150) is combined. VLA includes

the contribution from both the deformation potential coupling and the piezoelectric

coupling, whereas VTA contains only the contribution from the piezoelectric coupling. In

the inset, the energy level scheme is shown for the lowest four exciton states including

the dark exciton states. From the comparison between Fig. 9.27(a) and Fig. 9.27(b), we

see that the contribution from LA phonons is more than one order of magnitude larger

than that from TA phonons. Furthermore, it is important to note that the wavevector of

the most efficiently coupled phonons is roughly determined by max. (1/aB, 1/L), where

aB is the exciton Bohr radius and L is the typical size of the lateral confinement. The

vanishing z-component of the wavevector is favored because the common envelope

function in (9.157) is assumed for both the electron and the hole and they are uncorrelated

in the z-direction. The relevant wavevector is about 106 cm–1 for GaAs islands. Hence

the corresponding phonon energy is rather small (<1 meV), since the phonon energy

versus wavevector (| q |) relation is hω = 0.32(0.22) | q | (meV) for the LA (TA) modes

Fig. 9.27 Angularly averaged squared matrix elements of the exciton–phonon interaction are

plotted as a function of the phonon wavevector for (a) the LA phonons and (b) the TA phonons.

The horizontal (vertical) axis is scaled by 106 cm–1 ((μeV)2). The employed GaAs quantum disk

is the same as in Fig. 9.23. The lowest four exciton states are numbered consecutively including

the dark exciton states (from Takagahara [54]).
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with | q | scaled in units of 106 cm–1. This property will be invoked later in discussing

the correlation between the temperature dependence of the exciton dephasing rate and

the strength of the quantum confinement.

We have also calculated the dephasing rate of the excited exciton states. The

results are shown in Fig. 9.28 for the lowest four optically active exciton states. In the

calculation for the excited exciton states, the value of δ in (9.147) is assumed to be the

same as for the exciton ground state because the relevant relaxation processes may be

dependent on the exciton state but the absolute magnitude of δ is rather small. The

dephasing rate is in general larger for the higher-lying exciton states. But this tendency

is not monotonic as seen by the reversed order of magnitude between the second and

third exciton states.
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9.14 Elementary processes of exciton pure dephasing

Now we discuss the mechanism of exciton pure dephasing. Generally speaking, pure

dephasing means the decay of the dipole coherence without change in the state of the

system. Any real transition to other states leads to the population decay. Thus the pure

dephasing is caused by virtual processes which start from a relevant state and through

Fig. 9.28 Calculated dephasing rates of the lowest four optically active exciton states are shown

as a function of temperature of the same quantum disk as in Fig. 9.23 (from Takagahara [54]).
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some excursion in the intermediate states return to the same initial state. These virtual

processes give rise to the temporal fluctuation of the phase of wavefunction. Previously

this kind of temporal phase fluctuation was treated by a stochastic model of random

frequency modulation [60] and the resulting pure dephasing was discussed in the context

of resonant secondary emission [61].

Here we treat these processes microscopically. There are two kinds of such virtual

processes which contribute to the pure dephasing. The first kind of process is induced

by the off-diagonal exciton–phonon interaction. Those processes start from the exciton

ground state, pass through excited exciton states and return to the exciton ground state.

The second kind of process is induced by the diagonal exciton–phonon interaction and

the relevant state remains always within the exciton ground state. These processes are

shown schematically in the inset of Fig. 9.29. The contribution to the pure dephasing

from the second kind of process can be singled out theoretically by carrying out the

calculation which includes only the exciton ground state. That contribution is denoted

|
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Fig. 9.29 Calculated dephasing rates of the exciton ground state are shown with experimental data

(Ref. [50]) as a function of temperature for the same quantum disk as in Fig. 9.23. The pure

dephasing rate is decomposed into the contribution from the diagonal exciton–phonon interaction

denoted as Intra-exciton ground state and that from the off-diagonal interaction and the interference

term denoted as Excited exciton states (from Takagahara [54]).
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by “Intra-exciton ground state” in Fig. 9.29. The remaining part denoted as “Excited

exciton states” comes from the first kind of process and the interference between the

two kinds of processes. It is seen that the “intra-exciton ground state” (diagonal) processes

contribute substantially to the pure dephasing but the contribution from the off-diagonal

processes is not negligible. This feature can be understood from Figs 9.27(a) and 9.27(b)

since the squared matrix element within the exciton ground state denoted by f11
α  is

much larger than other squared matrix elements. As a result, the “intra-exciton ground

state” processes contribute significantly to the pure dephasing.

9.15 Mechanisms of population decay of excitons

The possible mechanisms of the population decay will be discussed. Experimentally,

two decay time constants were observed [50]. The slow time constant (~200 ps) is

almost independent of temperature suggesting the radiative decay as its mechanism. In

fact, the calculated radiative lifetime of the exciton ground state is around 200 ps as

shown in Fig. 9.23. On the other hand, the fast time constant (~30 ps) is weakly

dependent on temperature. The likely mechanisms are the thermal activation to excited

exciton states and the phonon-assisted migration to neighboring islands. In this section

we present detailed calculation of these relaxation rates and examine the significance of

these mechanisms.

Phonon-assisted population relaxation

The phonon-assisted transition rate to other exciton states is calculated as

P wi
j i

ij =  ,Σ
≠

(9.159)

where wij is the transition rate from the exciton state i to other exciton state j. Here Pi’s

are calculated for the lowest four optically active exciton states and are plotted in Fig.

9.30 as a function of temperature. The same quantum disk model as in Fig. 9.23 is

employed and the same 13 exciton levels are included in the calculation. Since the

energy difference between exciton levels is less than several meV, it is sufficient to take

into account only the one-phonon processes. For the exciton ground state, the transition

rate is about several μeV. For the excited exciton states, the transition rates are about one

order of magnitude larger than that of the exciton ground state. In general, the higher-

lying exciton states have a larger population decay rate. But this trend is not monotonic

as seen by the reversed order of magnitude between the second and third exciton states.
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It is interesting to note that the linear temperature dependence is clearly seen.

This indicates that the energy of relevant acoustic phonons is rather small as shown in

Figs 9.27(a) and 9.27(b) and the high temperature approximation holds as

1
– 1

  .
/e

k T
k T

B
Bh hω ω≈ (9.160)

This is the origin of the linear temperature dependence.

Phonon-assisted exciton migration

The excitons localized at island structures can migrate among them accompanying

phonon absorption or emission to compensate for the energy mismatch. Since the energy

mismatch is typically about a few meV, the acoustic phonons are dominantly contributing

to the exciton migration process. Now let us consider two island sites at Ra and Rb and

assume that the island at Rb is larger in size and has a localized exciton state of lower

energy than in the island at Ra. Then we consider the phonon-assisted exciton migration

from the site Ra to the site Rb, namely a transition of

Fig. 9.30 Phonon-assisted population decay rates of the lowest four optically active exciton states

are plotted as a function of temperature for the same quantum disk as in Fig. 9.23 (from Takagahara

[54]).
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| Ra; nq〉 → | Rb: nq + 1〉,

where nq indicates the occupation number of an acoustic phonon mode with wavevector
r
q . As discussed previously [62], there are three elementary processes of this transition;

1. | ;   | ;  + 1R n R na q
H

b q
ep〉 〉,→

2. | ;   | ;  + 1  | ;  + 1 ,R n R n R na q
H

b q
H

b q
ep ss〉 〉 〉→ →

3. | ;   | ;  | ;  + 1 ,R n R n R na q
H

b q
H

b q
ss ep〉 〉 〉→ →

where Hep(Hss) represents the exciton–phonon interaction (inter-site transfer) Hamiltonian.

The first process is a direct process through the overlap between exciton wavefunctions

at two island sites which is strongly dependent on the distance between two islands.

Thus this process contributes only for the case of short distance. On the other hand, the

second and third processes are indirect ones which can contribute to the exciton transfer

even for the case of long distance.

The inter-site transfer Hamiltonian Hss is caused by the electron–electron interaction

and is calculated as

J(Ra, Rb) = 〈Ra | Hss | Rb〉

=   ( , ; ) ( , ; ) [ ( , ; , )
, ,

,
*

,Σ Σ
r r r r

c e h a c e h b e h e h
e h e h

F r r R F r r R V c r r c r r
′ ′ ′ ′ ′ ′ ′ ′ ′ ′τ σ τ σ τ σ τ σv v v v

– ( , ; , )],V c r r r c re h h eτ σ σ τv v′ ′ ′ ′ (9.161)

where the localized exciton at the site Ri is described as

|  =  ( , ; ) | 0
, ; , ,

†R F r r R a ai r r c e h i c r r
e h e h

〉 〉Σ
τ σ τ σ τ σv v (9.162)

with an envelope function F corresponding to (9.156), and the suffix τ(σ) denotes the

Wannier function index of the conduction (valence) band, e.g., the total angular momentum.

The first term in (9.161) represents the electron–hole exchange interaction and the

second term corresponds to the Coulomb interaction. Because of the localized nature of

the Wannier functions, we can approximate as

V c r r r c r e
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with
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–
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,
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(9.164)

r r r
μ φ φτ σ τ σc c R Rd r r r R rv v =  ( ) (  – ) ( ),3 *∫ (9.165)

where φcτ(vσ)R(r) is a Wannier function localized at the site R. Hereafter the vector

symbols will be dropped because of no fear of confusion. The Coulomb term decreases

rapidly when | Ra – Rb | exceeds the lateral size of the exciton wavefunction. On the

other hand, the exchange term contains the dipole–dipole interaction and has a long-

range character decreasing as | Ra – Rb |
–3. Thus the exchange term contributes dominantly

to the inter-site exciton transfer when | Ra – Rb | is larger than the lateral size of the

confining potential.

The exciton transfer probability is calculated as

w R R R n H R na b b q ep a q(  ) = 
2

  ;  + 1| | ; → π
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σ
h
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X a X b q

σ
σδ ωh

(9.166)

where EX(Ri) is the energy of a localized exciton at the site Ri and the summation

concerning the acoustic phonon mode σ is taken over the LA, TA1 and TA2 modes in

(9.150).

In the exchange matrix element in (9.163), the first (second) term is usually called

the short- (long-)range part of the exchange interaction. The contribution from the long-

range part can be rewritten into a more tractable form as [63]
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(9.167)

where the integration with respect to ′re  is carried out over the whole space excluding
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a small sphere around the point re and this is indicated by a primed integral symbol.

Then making use of a relation for an arbitrary vector field 
r
Q r( )

′
′ ′

′
′

′ ′
′∫ ∫d r

Q r
r r

Q r d r
Q r
r rr r r r

3 3 grad div
( )
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4
3
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( )

| – |
,

r
r

r
π

(9.168)

we can rewrite (9.167) as
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where in the second term within the parentheses the integration can be performed over

the whole space because the singularity of | – |–1r re e′  is integrable. By a partial integration,

we have the expression of the long-range exchange term as

–
4
3

 (   ) ( , ; ) ( , ; ), ,
3

,
*

,
π μ μτ σ σ τ τ σ τ σc c c a c bd r F r r R F r r Rv v v v⋅ ′ ′ ′ ′∫

+  div ( ( , ; ) ) div  
| – |

 ( , ; ) .3
,

*
,

3 ,
,∫ ∫ ′ ′ ′ ′

⎡
⎣⎢

⎤
⎦⎥

′ ′
′ ′d r F r r R d r

r r
F r r Rr c a c r

c
c bτ σ τ σ

σ τ
τ σμ

μ
v v

v
v
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The short-range exchange term is simply written as

V c r r c r r d r F r r R F r r Rc a c b( , ; )  ( , ; ) ( , ; )0 0 0, 0
3

,
*

,τ σ τ σ τ σ τ σv v v v′ ′ ∫ ′ ′ (9.171)

and the Coulomb term is calculated by

–  ( , ; ) 
| – |

 ( , ; ).3 3
,

*
2

,∫ ∫d r d r F r r R e
r r

F r r Re h c e h a
e h

c e h bτ σ τ σεv v (9.172)

Combining three terms (9.170), (9.171) and (9.172), we can estimate the exciton transfer

matrix element in (9.161).

It is to be noted that when the Coulomb term and/or the exchange term are of

comparable magnitude to the energy difference between localized exciton states at Ra

and Rb, the eigenstates should be mixed states of two localized excitons and a simple

picture of exciton transfer between two sites cannot be applied. Thus we have to check

the inequality

| J (Ra, Rb) | � | EX(Ra) – EX(Rb) |

before we apply the exciton transfer model. We can check numerically that the matrix

element | J(Ra, Rb) | is typically about several tens of μeV except for a very close pair
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of islands, whereas | EX(Ra) – EX(Rb) | is about a few meV for typical sizes of islands.

Thus the simple picture of exciton transfer can be applied safely.

In order to see the typical behavior of the exciton migration rate, we employ two

quantum disk islands characterized by Lz = 3 nm and the lateral size parameters of (a,

b) = (20 nm, 15 nm) and (30 nm, 20 nm) and consider the migration between two

exciton ground states whose energy difference is 0.68 meV. The exciton migration rate

depends on the distance between two islands, the geometrical configuration of two

islands and on the direction of exciton polarizations. In Figs 9.31(a) and 9.31(b), the

migration rate is plotted as a function of the center-to-center distance between two

islands. In Fig. 9.31(a), two islands are aligned such that the longer axes of two ellipses

are coincident with each other. In this configuration, the migration rate is larger for the

exciton polarization along the longer axis than for the exciton polarization along the

shorter axis because of the larger interaction through the surface charges. In Fig. 9.31(b),

Fig. 9.31 Phonon-assisted migration rate from the exciton ground state in a quantum disk of (a,

b) = (20 nm, 15 nm) to the exciton ground state in a quantum disk of (a, b) = (30 nm, 20 nm) is

plotted as a function of the center-to-center distance between two quantum disks at temperatures

of 10K, 30K and 50K. In (a) ((b)), two disks are aligned such that the longer (shorter) axes of two

ellipses are coincident with each other and the distance is measured along the longer (shorter)

axis. The exciton polarization in two disks is aligned along the x or y direction and this is indicated

by x – x or y – y polariz., where x(y) denotes the direction of the longer (shorter) axis of the ellipses

(from Takagahara [54]).

50K

30K

10KM
ig

ra
tio

n
 r

a
te

 (
m

ic
ro

 e
V

)

100

80

60

40

20

0
50 60 70 80 90 100

Distance (nm)

(a)

35 45 55 65 75
Distance (nm)

(b)

X-X polariz.

y-y polariz.

50K

30K

10K

M
ig

ra
tio

n
 r

a
te

 (
m

ic
ro

 e
V

)

70

60

50

40

30

20

10

0

(20, 15) nm

(30, 20) nm

(20, 15) nm (30, 20) nm

x-x polariz.

y-y polariz.



458 T. Takagahara

two islands are aligned such that the shorter axes of two ellipses are coincident with

each other. In this configuration, the migration rate is larger for the exciton polarization

along the shorter axis than for the exciton polarization along the longer axis. The

absolute magnitude of the exciton migration rate is about several tens of μeV.

We have also estimated the migration rate between the exciton ground state and

the excited exciton states. The results are shown in Fig. 9.32 for the transition from the

exciton ground state of an island with (a, b) = (20 nm, 15 nm) to the second optically

active exciton state in an island with (a, b) = (30 nm, 20 nm). The configuration of two

islands is the same as in Fig. 9.31(a). This migration process is associated with phonon

absorption (~2.11 meV) in contrast to the case in Fig. 9.31. As a result, the migration

rate is several tens times smaller than in Fig. 9.31(a). In addition, the distance dependence

is not monotonic. This feature arises from the interference among three terms in (9.166)

and may be sensitively dependent on the spatial profile of the exciton wavefunction.

Fig. 9.32 Phonon-assisted migration rate from the exciton ground state in a quantum disk of

(a, b) = (20 nm, 15 nm) to the second lowest optically active exciton state in a quantum disk of

(a, b) = (30 nm, 20 nm) is plotted as a function of the center-to-center distance between two

quantum disks at temperatures of 10K, 30K and 50K. The configuration of two disks is the same

as in Fig. 9.31(a) (from Takagahara [54]).

M
ig

ra
tio

n
 r

a
te

 (
m

ic
ro

 e
V

)

X-X polariz.

y-y polariz.

50K

30K

10K

(20, 15) nm

2.5

2

1.5

1

0.5

0

(30, 20) nm

50 60 70 80 90 100
Distance (nm)

From the above considerations we can identify the likely mechanism of the

population decay of the exciton ground state as the combination of thermal activation to

the excited exciton states within an island and phonon-assisted exciton migration to

neighboring islands.
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9.16 Recent progress in studies on exciton decoherence

Very recently, a very long exciton decoherence time (~ nanosecond) at low temperatures

has been reported by Borri et al. [64] for InGaAs quantum dots and by Birkedal et al.

[65] for InAlGaAs quantum dots. These measurements are based on the time-domain

spectroscopy, e.g., four-wave mixing. In the previous reports, the homogeneous linewidth

of excitons in quantum dots is about a few tens of μeV even at low temperatures and is

one order of magnitude larger than the above values. The origin of this discrepancy is

considered as follows. A quantum dot is very sensitive to its environments, especially to

the charge distribution and the spectral position of excitons is temporally fluctuating.

These were observed in phenomena of the blinking or intermittent emission from excitons

[66] and the spectral wandering of the exciton emission [67]. Thus in the CW measurements

the spectral fluctuation contributes significantly to the homogeneous linewidth. On the

other hand, the measurements in the time-domain spectroscopy are carried out much

faster than the time-scale of the spectral diffusion and the contribution from the

environmental fluctuations can be much reduced. In fact, the measurements of the

exciton linewidth in CdSe/ZnS core/shell nanocrystals based on the spectral hole burning

were reported [68] and the dependence on the modulation frequency was demonstrated.

The reported exciton decoherence time about 1 nanosecond can be considered as lifetime-

limited. Thus the ultimate decoherence time would be about 1 ns, as far as optically

active excitons in semiconductor quantum dots are used as qubits in the quantum state

manipulation.

9.17 Theory of dephasing of nonradiative coherence

So far we have discussed a theory of exciton dephasing based on the exciton–phonon

interactions. In general we are interested in the dephasing of quantum coherence between

two levels, e.g., two different exciton levels. This coherence can be induced by the V-

shaped or Λ-shaped Raman-type two-photon transitions [69]. If the two levels belong to

the ground sublevels, a direct optical transition is forbidden between them and a long

dephasing time of the coherence is expected. Here we extend the formulation in the last

section 9.10 to the general case. Denoting the coherence between a pair of levels | ei〉
and | ej〉 by | ei〉 〈ej |, we consider the time-evolution with the total Hamiltonian:

exp –    | | = | | .
–i H t e e e e e ei j

Ht
i j

Hti i

h
h h×[ ] 〉 〈 〉 〈 (9.173)

If this quantity shows a time-dependence such as
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~ | |– –e e eij ijt i t
i j

γ ω 〉 〈 (9.174)

with hωij = Ei – Ej, where Ei(Ej) is the energy of the level | ei〉 (| ej〉), we introduce the

Fourier–Laplace transform by
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(9.175)

and we can estimate the dephasing rate γij of the coherence by the HWHM(Half Width

at Half Maximum). In the case of the exciton dephasing, substituting | ei〉 〈ej | by | e〉 〈g |

where | e〉 is an exciton state and | g〉 is the ground state, we reproduce the formulation

in section 9.10. In this section also, we consider the dephasing due to the electron–

phonon interactions and decompose the total Hamiltonian as

H = He + Hg + V, (9.176)

where He denotes the electronic part, Hg the phonon Hamiltonian and V is the electron–

phonon interactions. Then the Laplace transform is expanded as
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where ρ0 = | ei〉 〈ej | ρph and ρph is the phonon density matrix at the thermal equilibrium.

For example, the third term corresponds to the time-dependent expression:
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Since He and Hg commute with each other, we have
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In general, the electron–phonon interaction has a form given by
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where b bα α( )†  is the second-quantized annihilation (creation) operator of phonons, the

index α denotes the wavevector or mode index of phonons and Mα is the coupling

operator among the electronic levels. For example, the first term in (9.178) can be

written as
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Taking the trace of this expression concerning the phonons, we have
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where nα is the phonon occupation number and hωα is the energy of phonons with the

mode index α. Substituting these into (9.181) and again taking the Laplace transform,

we have
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where ρe = | ei〉 〈ej |. In a similar way, the second, third and fourth terms in (9.178) can

be written as
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These terms can be summarized as
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and ∑(2)(s) has a meaning of the self-energy in the second order as depicted in Fig. 9.33.

The scheme of the double Feynman diagram is used to describe the time-evolution of

the density matrix, where the upper (lower) line represents the time-development of the

ket (bra) part of the density matrix. In a similar way, the higher-order terms in (9.177)

∑(2) ρ

ρ

ρ

ρ

ρ

Fig. 9.33 The second order self-energy terms for the density matrix in the scheme of the double

Feynman diagram. The dashed lines represent the exciton–phonon interaction.
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can be calculated. The odd order terms with respect to V× disappear because the trace

over the phonon degrees of freedom vanishes. Thus the next higher-order terms are

given by the fourth order terms whose typical diagrams are shown in Fig. 9.34. However,

those diagrams in Figs 9.34(a)–(c) can be classified into the type of diagrams in Fig.

9.35 and can be included by renormalizing the propagator as
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Fig. 9.34 Fourth order diagrams for the density matrix in the scheme of the double Feynman

diagram.
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Furthermore the diagrams in Figs 9.34(d)–(f) can be included by renormalizing the

propagators in the self-energy diagrams ∑(2). Thus the irreducible fourth order diagrams

are typically given in Figs 9.34(g)–(j). The systematic improvement of approximation

can be carried out as follows. First of all, the second order self-energy part ∑(2) is

calculated according to (9.187) and the renormalized propagator is calculated by (9.188).

Then using this propagator the second order self-energy term ∑(2) and the fourth order

self-energy term ∑(4) are calculated. Including these self-energy terms, we calculate the

improved propagator as

1
 +  – ( ) – ( )

.
(2) (4)s H s si
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× Σ Σ (9.189)

In this way we can improve successively the propagator (Green function). The lowest

reasonable approximation is given by
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Fig. 9.35 A schematic representation of diagrams which are composed of series repetition of the

second-order self-energy diagrams in Fig. 9.33.
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Using this expression, the dephasing rate of the quantum coherence between any two

levels can be calculated, although only the electron–phonon interactions are taken into

account. We are often interested in the dephasing processes under strong excitation,

namely when a few electron-hole pairs are present in a quantum dot. Even under such

a situation, the present formulation can be applied simply by extending the basis

states, such as | ei〉 and | ej〉, to many particle states. These extensions are left for future

studies.

9.18 Summary

We have discussed the Rabi splitting and Rabi oscillation of excitons in semiconductor

quantum dots and clarified their new characteristic features. These coherent optical

phenomena are not restricted to semiconductor quantum dots and the newly predicted

features would be observed also in atoms and molecules. The universality of the phenomena

ensures the possibility for application to the quantum state control and the quantum

information processing by optical means. We have discussed also the mechanisms of

exciton dephasing in semiconductor quantum dots and clarified that the pure dephasing

is significant at high temperatures due to the exciton–phonon interactions. The exciton

decoherence time at low temperatures is ultimately limited by the radiative lifetime

about a nanosecond. If a single quantum-state operation can be carried out within 100

femtoseconds, we can achieve about 10,000 quantum operations within the decoherence

time. This may be an advantage of the quantum state manipulation by using optical

pulses. However, the quest for a material with longer decoherence time is still going on.
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The spin degrees of freedom are considered as a promising candidate (see, for example,

Chapter 6 of this volume by D. Gammon et al.).
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301, 336, 397, 459
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four-wave mixing, 174, 177

high energy transitions, 36

inhomogeneous broadening, 57, 81
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ponderomotive energy, 63
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quantum dots, 284
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decoherence, 288, 324, 339, 395–470, 459
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Half-width at half maximum (HWHM), 436,

442, 446, 460

Hamiltonians:
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carrier-wave Rabi flopping, 71–83

quantum wells, 63–5

High-Q regime, 366, 367, 376, 381–5

High-resolution spectral hole burning, 366,

386–90
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see also Quantum interference
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460–2

Larmor frequency, 234, 266

Laser spectroscopy, 209, 215, 218, 241–2

Lasers:

femtosecond mode-locked, 23, 24–5, 27–

8, 30–1, 35–6, 168

free-electron, 40

MIR, 40
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modeling, 40, 41, 45, 47–59
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Luminescence see Photoluminescence
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trions, 243–6, 250–2
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high-field effects, 43–5, 49
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carrier-wave Rabi flopping, 26–7, 32–3

counterpolarization, 94

linear, 146, 234, 235–6, 238

optical spectra, 210, 235–6

quantum wires, 54
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transfer



Index 481

Porter–Thomas law, 99–100

Potential correlation function, 96–9, 136, 146

Poynting theorem, 316

Prisms, 29, 30, 372–3, 382
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Quantum disks, 444–51, 452–3, 457–8
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1

Plate 1 Experiment: (a) measured laser spectrum, (b) measured interferometric autocorrelation.

The red curve in (b) is the autocorrelation computed from the spectrum, (a), under the assumption

of a constant spectral phase (no chirp). The inset in (b) depicts a 4.8 fs full width at half maximum

real time intensity profile computed under the same assumptions.
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2

Plate 2 Experiment: Same as Fig. 2.2, however, using pairs of phase-locked 5 fs pulses. The signal

around the third harmonic of the band gap is depicted versus time delay τ  in a false color plot

(note the saturated color scale on the right hand side). (a)–(d) correspond to different intensities

I as indicated. I refers to one arm of the interferometer.
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Plate 3 Experiment: Similar to Plate 2(c) with I = 0.120 × I0, however, for a larger range of the

time delay τ. Around τ = 0 the interference of the laser pulses within the sample dominates, while

we additionally observe interference of the third-harmonic signals corresponding to the two phase-

locked pulses on the detector for larger | τ |.
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Plate 4 (a) Scheme of the z-scan experiment (the measured radii are fitted with r(z) =

0.97 m 1 + 0.12  ( / m) ),2μ μ⋅ z  (b) transmitted light intensity on a logarithmic scale versus sample

position z for the highest intensity available I = 1.752 × I0 (referring to z = 0). Note that no

sidebands are generated around z = 0.
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Plate 5 Differential transmission ΔT/T as a function of the sample coordinate z for three different

incident intensities I (referring to z = 0). (a) I = 0.145 × I0, (b) I = 0.518 × I0, (c) I = 1.752 × I0.
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5

Plate 6 Theory: False color plot of the intensity as a function of photon frequency ω and transition

frequency Ω. The center frequency ω0 of the optical pulses (see grey areas on the RHS) is centered

at the band gap frequency, i.e. we have hω0 = Eg. The spectrum for a transition right at the band

gap, i.e. hΩ = Eg, is highlighted by the white curve. The diagonal dashed line corresponds to Ω =

ω. Excitation with sech2-shaped 5 fs pulses. The envelope pulse area Θ is indicated and increases

from (a) to (d).
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Plate 7 Theory: As Plate 6, however for sinc2-shaped tpulse = 5.6 fs pulses with envelope pulse area

Θ = 4.0π. The optical phase φ, i.e. the phase between carrier envelope and carrier-wave, is

parameter. Note that significant changes occur within the black rectangles. This might be observable

in future experiments. (a) φ = 0.00π, (b) φ = 0.10π, and (c) φ = 0.25π. The corresponding electric

fields versus time are depicted on the RHS. The red curves are the field envelopes.
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Plate 8 Photoluminescence spectrum from CdSe/ZnS core/shell nanocrystals with R = 2.7 nm

embedded in the interior surface of a polystyrene sphere. The right inset shows an optical image

of a doped polystyrene sphere. The left inset shows an expanded plot of the spectrum near 622 nm.

The arrows in the inset indicate the spectral positions used for the time-resolved PL in Fig. 8.7.

(From [32] with permission.)
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Plate 9 An optical image of a fused silica microsphere with CdSe/ZnS core/shell nanocrystals

deposited on the surface of the microsphere. The radius of the microsphere is near 50 μm.
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