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Series Editors’ Foreword

The series Advances in Industrial Control aims to report and encourage technology
transfer in control engineering. The rapid development of control technology has an
impact on all areas of the control discipline. New theory, new controllers, actuators,
sensors, new industrial processes, computer methods, new applications, new design
philosophies…, new challenges. Much of this development work resides in
industrial reports, feasibility study papers and the reports of advanced collaborative
projects. The series offers an opportunity for researchers to present an extended
exposition of such new work in all aspects of industrial control for wider and rapid
dissemination.

So very often, “industrial control” is taken to be synonymous with “process
control”, a domain perceived to be dominated by continuous-time processes. This
identification is possibly reinforced by so many undergraduate control courses
starting from the description and analysis of such systems with first- and
second-order dynamical models. In reality, almost all continuous-time systems have
to be switched on and off so these systems are embedded in a framework of
conditional logic and are really hybrid systems. Looking just a little wider it is not
difficult to find examples, indeed whole fields of systems, that are purely discrete.
Nowhere is this more true than in the field of consumer electronics and digital
control systems. Key components of these electronic systems are microprocessors,
and a wide variety of programmable logic devices the latter evolving out of
transistor-based application-specific integrated circuits. Given the importance
of these devices it is a little surprising not to find this applications area having more
profile in the activities and publications of the control community. As a corrective
to this, the Series Editors of the Advances in Industrial Control monograph series
are pleased to welcome this contribution Prototyping of Concurrent Control
Systems Implemented in FPGA Devices by Remigiusz Wiśniewski, of the Institute
of Electrical Engineering, University of Zielona Góra, Poland.

Dr. Wiśniewski’s monograph opens with useful illustrations of the differences
between sequential operations and concurrent operations before developing the
major theme of the volume, concurrent control systems. The early chapters
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introduce two mathematical tools that are going to be instrumental in developing
the prototyping methods. First is the theory and notation of Petri nets (Chap. 2)
where the concepts of interpreted Petri nets are explained and illustrated. This is
followed by graph theory (Chap. 3) and hypergraph theory (Chap. 4) with some
original properties and theorems attributed to the author being presented. These are
the mathematical tools that Dr. Wiśniewski uses in the remainder of the monograph
to devise prototyping methods for concurrent control systems. The ultimate
objective of this development phase is the application to programmable devices and
in particular field programmable gate array devices. As the monograph progresses,
Dr. Wiśniewski uses various easily understood real-world examples to illustrate
concepts and techniques. These include a milling machine application, traffic lights,
a beverage production process, and a smart home application. These examples help
to leaven the use of the rather abstract mathematical tools that the modeling and
analysis of discrete systems demands and makes the monograph an attractive
addition to the Advances in Industrial Control series.

As has already been mentioned, monograph contributions to the discrete sys-
tem’s literature are not very frequent, but the reader may also find these Advances in
Industrial Control monographs of interest:

• Modelling and Analysis of Hybrid Supervisory Systems by Emilia Villani,
Paulo E. Miyagi and Robert Valette (ISBN 978-1-84628-650-6, 2007);

• Deadlock Resolution in Automated Manufacturing Systems by ZhiWu Li and
MengChu Zhou (ISBN 978-1-84882-243-6, 2008); and, from the Advanced
Textbooks in Control and Signal Processing series:

• Modelling and Control of Discrete-event Dynamic Systems by Branislav Hrúz
and MengChu Zhou (ISBN 978-1-84628-872-2, 2007).

Industrial Control Centre Michael J. Grimble
University of Strathclyde Michael A. Johnson
Glasgow, Scotland, UK
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Preface

This book is an attempt to overcome the gap between science and practice in the
field of concurrent control systems specified by Petri nets. It combines theoretical
aspects of concurrent systems (with the reference to algorithms and their compu-
tational complexity) supplemented with practical implementation and reconfigura-
tion of a given system in an FPGA device.

We indented this book to be useful to CAD researchers, engineers, and designers
of concurrent systems. The content of the book includes theoretical background and
practical applications, especially regarding implementation and partial reconfigu-
ration of FPGAs. The book may also be useful for students of electrical engi-
neering, computer science, and discrete mathematics.

Almost all of the proposed algorithms and methods were implemented within the
system Hippo developed at the University of Zielona Góra. Some of ready-to-use
tools are available online at: www.hippo.iee.uz.zgora.pl.

I am grateful to:

• M. Wiśniewska for her love, exceptional support, and invaluable patience;
• A. Karatkevich for the support on almost all topics of the book, including

verification of algorithms, theorems, and proofs;
• M. Adamski for fruitful discussions and for the inspiration regarding hyper-

graphs and perfect graphs;
• G. Benysek for the support on the preparation of this book;
• I. Grobelna for the perfect cooperation on the field of concurrent systems;
• G. Bazydło and G. Łabiak for the support and valuable discussions;
• L. Titarenko and A. Barkalov for the verification of the book content;
• M. Szajna for verifying English.

The results presented in Chap. 4 were obtained in cooperation with
M. Wiśniewska and M. Adamski. Examples of the milling machine and smart home
system are elaborated by I. Grobelna.

Zielona Góra Remigiusz Wiśniewski
June 2016
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Chapter 1
Introduction

1.1 Context and Motivation

Control systems surround us everywhere. They can be found in almost all areas of
human life, such as medical care [4, 24, 26], transportation and automotive [19, 122,
129], artificial intelligence and robotics [36, 37, 83, 93], manufacturing [25, 64, 77],
data and process mining [23, 53, 82, 134], digital devices and embedded systems
[2, 34, 56, 80, 89, 106, 117, 142, 151], banking [6, 40, 115, 130], security and
safety [49, 90, 91, 105].

Formally, a control system is a system, that is responsible for control and man-
agement of another system (often called as an operational system) [43, 52, 142].
Based on the set of input values (I ) and the set of logic conditions (X ), the control
system sends proper control signals (Y ) to the operational system. Additionally, a
set of output values (O) is generated. The sets of inputs and outputs are used for
communication with the environment of the whole system [142], however the opera-
tional part may also react on the external input signals (marked asData) and produce
output values (denoted as Results). The basic concept of the control and operational
systems is illustrated in Fig. 1.1.

In the sequential control systems, the subsequent sets of operations for the oper-
ational system are computed and generated in a sequence. For example, a central
processor unit (CPU) operates in this way, managing instructions to be handled [101,
126]. The most popular model of sequential control systems nowadays is a finite-
state machine (FSM), also known as a finite-state automaton [8, 9, 39, 52, 148]. The
typical FSM is a model of behavior that consists of a set of states, a set of transitions
between the states, and a set of actions [9, 142].

Let us demonstrate the idea of sequential computation. An RSA algorithm is
one of the most popular public-key cryptosystems [114]. In the initial stages of
the method, the product of the two primes n = p ∗ q and Euler totient function
φ = φ(p) ∗ φ(q) = (p − 1) ∗ (q − 1) are calculated [114]. Figure1.2a presents a
pseudo flowchart, where particular instructions are performed sequentially. Initially,
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the first prime (p) is loaded (read) to the the control system. Analogically, the second
prime (q) is loaded when the previous instruction is completed. Furthermore, the
product of two primes is obtained. In the fourth step, the Euler totient function is
calculated. Please note, that we just show the idea of sequential computation, thus
all the presented actions are simplified and treated as a single instruction.

A concurrent control system can be seen as an extension of a sequential con-
trol system. The sets of operations for the operational system (or systems) may be
computed and generated either sequentially or concurrently.

Figure1.2b shows the idea of concurrent computation. In the presented example,
both primes used in the RSA algorithm are read at the same time. Furthermore, the
computation of their product, as well as calculation of the Euler totient function
is performed simultaneously. Of course, proper synchronization between particular
actions ought to be assured. For example, the computation of the product of the
primes should be done only if both numbers have been loaded to the concurrent
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control system. Since synchronization is a very important aspect of prototyping of
concurrent control systems, we will discuss it in more detail later.

Generally, a concurrent system is composed of the set of processes (components)
that are executed at the same time. Each of them usually performs a particular task
(or tasks). Such a situation is mostly known from the concurrent programming [13],
where the required solution is solved by distributed computers (microprocessors).
However, modelling of the whole system involves several problems regarding shared
resources or synchronization of concurrent components. The classic design principle
was initially formulated in [45, 59, 61], with further extensions oriented on particular
language or prototyped system [3, 7, 13, 46, 67, 113, 124, 140].

In case of digital devices, a concurrent control system is often formally specified
by a Petri net. This mathematical tool permits for easy and comfortable description
of the prototyped design. First proposed in [109], Petri nets are still being developed
and used in a various fields of science and industrial applications [41, 63, 79, 95,
97, 107, 123, 133, 137, 152].

Very often (but not always) prototyping of concurrent controllers specified by a
Petri net involves splitting of the system into separate subsystems [35–37, 93, 97,
117]. If so, the control system is decomposed into a set ofmodules. Loosely speaking,
decomposition usually divides the system into separate sequential components [57,
70, 97, 141]. The obtained modules can be implemented independently in various
devices or digital systems [36, 37, 93, 117]. Moreover, decomposition is used in
encoding of states of logic controllers implemented with programmable devices [22,
32, 33, 103, 128, 151].

The commonly used decomposition methods of concurrent control systems base
on a linear algebra (place invariants analysis) [81, 84, 85, 132, 144, 149]. The fun-
damental computation technique can be found in [85], where as authors stated a
simple and fast algorithm to obtain all invariants in a Petri net was proposed. Indeed,
the presented technique is relatively fast and can be successfully applied to most
concurrent systems described by Petri nets. However, there are serious limitations
of methods that use linear algebra to decompose the concurrent system. First of all,
the number of invariants may be exponential [31, 85]. It means that some systems
described by Petri nets cannot be decomposed with the above technique because the
algorithm is not able to find the solution in a reasonable time [144]. Furthermore, the
obtained components ought to be verified in order to eliminate spurious solutions
that may occur during the computation of invariants [118, 119, 144]. Finally, linear
algebra technique searches for all the possible decomposition variants of the concur-
rent system, thus an additional selection of achieved modules has to be performed
[120, 121, 141].

Beside the decomposition of the system, linear algebra is mainly used in the
analysis of the concurrent controller described by a Petri net [76, 81, 88, 104, 118,
119]. First of all, this process permits to avoid redundancy (unreachable states),
deadlocks, and reinitialization of the operation during its execution in the prototyped
system [70, 118]. So-called liveness and safeness are crucial properties that are
examined during the analysis of the concurrent controller specified by a Petri net [11,
17, 18, 71]. Furthermore, concurrency and sequentiality relations can be checked.
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Those relations are especially useful in the selection of concurrent (or sequential)
areas of the system.

Similarly to the decomposition, the main bottleneck of the analysis is exponential
number of states that may occur in the design. Therefore, very often additional
methods are applied prior to the main analysis of the system. For example, reduction
techniques simplify the initial Petri net [14–16, 70, 97, 108, 150], while formation
of the reduced set of reachable states permits to save time and space required for
the analysis [14–16, 30, 65, 70, 73, 97, 108, 131, 135, 151]. However, very often
formation of the reduced graph does not preserve the full information about the
concurrency relation in the prototyped system [70].Moreover, the size of the reduced
graph can be still too large to be computed [50].

From the prototyping point of view, concurrent control systems can be divided
into two main groups:

• Distributed concurrent control systems, generally implemented in more than one
device. For example, it can be a set of connected Programmable Logic Controllers
(PLCs), each of devices performs a sequential task [27, 72, 78, 138], a computer
cluster (a set of connected computers distributed over the world [20, 110]), or a
composition of various devices (for example, a composition of a microcontroller
and a programmable device). Usually (but not always), each of the devices that
composes the distributed system works in a different time domain, that is, each
device uses its own clock signal [54, 127]. Therefore, distributed devices ought to
be synchronized in order to work properly [55, 57, 74, 117].

• Integrated concurrent control systems, generally implemented in a single device,
that supports concurrency (for example, digital circuits such asApplication Specific
Integrated Circuits (ASICs) [86, 142] or Programmable Logic Devices (PLDs) [1,
68, 69, 87, 142, 146]). Since the controller is implemented in a single device, its
modules usually share the same clock signal, thus the synchronization between
them is much easier than in case of distributed systems.

Various synchronization techniques of concurrent systems can be found in the
literature. Among others, the general synchronization concepts are presented in [32,
34, 57, 58, 62, 74, 96, 127, 148]. An interesting idea addressed for distributed
systems is shown in [96], where a controller is prototyped as a globally asynchro-
nous locally synchronous (GALS) system. The proposed synchronization technique
assures proper functionality of the decomposedmodules that are working in different
time domains (which means that decomposed modules are implemented in devices
oscillated by various clock signals). Another method can be found in [57], where
modifications in the structure of synchronized components or application of addi-
tional synchronization modules are proposed. A general synchronization technique
oriented on amodel driven architecture (MDA) is presented in [34]. Since MDA is a
universal modelling technique [99], the concept of the communication channels [29]
can be applied either to the distributed or integrated system [34].

Integrated concurrent control systems are often oriented on the implementation
in the programmable device. Especially Field Programmable Gate Arrays (FPGAs)
are considered. High performance, flexibility, and configurability resulted in their
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application in various aspects of human life, such as medicine [102, 125], cryptology
[28, 44, 48, 98, 100], aerospace engineering [111], image processing [12, 38, 66],
reconfigurable computing [60], measurement [94] and—of course—in concurrent
control systems [2, 21, 42, 92, 139].

Latest FPGA devices, apart from the traditional static configuration of the entire
system, offer much more sophisticated mechanisms. Partial reconfiguration allows
replacement of selected parts of the system, without having to reprogram the en-
tire structure of the FPGA [5, 147]. The system may be partially reconfigured in
two ways: statically or dynamically. Especially, the second option seems to be very
interesting, since it permits to replace a portion of the device without stopping it. It
means, that during the dynamic partial reconfiguration a part of the controller can
be modified, while the rest of the system is still running. However, preparation of
the system intended for further partial reconfiguration requires a different approach
compared to the traditional prototyping flowof integrated concurrent controllers. The
reconfigurable area of the system ought to be selected carefully with paying special
attention to the shared resources. Unfortunately, since partial reconfiguration is a rel-
atively new idea, there is a lack of publications that formulate a precise prototyping
flow intended for the concurrent control systems implemented in an FPGA with a
possibility of further static or dynamic reconfiguration. The existing flows are rather
dedicated for the particular exemplary controllers or involve additional specialized
computer-aided tools to the prototyping process [10, 21, 47, 51, 75, 112, 116, 136,
143, 145].

Summarizing the above presented discussion, it can be stated that there are gaps
in the existing methods of decomposition, analysis, and prototyping of concurrent
control systems. Looking in more detail, two major aspects can be noticed:

• The main bottleneck of the decomposition and analysis of a concurrent control
system specified by a Petri net is computational complexity of algorithms. In most
cases such complexity is exponential, which means that the solution may never be
found. Thus, the existing methods balance between optimal results and reasonable
computational time.

• There is a lack of a dedicated prototyping flow of concurrent control systems
specified by a Petri net intended for implementation in an FPGA and further partial
reconfiguration of the design.

The aim of the book is to introduce concurrent control systems and to discuss
solutions of effective prototyping, analysis, and decomposition of such systems.
In the book, classical approaches based on linear algebra, as well as novel algorithms
(with application of perfect graphs or hypergraphs) are analyzed and discussed in
detail. Especially, the presented decomposition method based on the perfect graphs
theory (Chaps. 3 and 6) may be very useful, since it offers obtaining exact results in
polynomial time. On the other hand, not all systems can be decomposed with this
algorithm, thus an alternate method based on the hypergraph theory is proposed as
well. Furthermore, application of hypergraphs in the analysis of concurrency and
sequentiality is proposed. Hypergraphs offer unique properties of the prototyped
system in comparison to the traditional invariants analysis (Chaps. 4 and 5).

http://dx.doi.org/10.1007/978-3-319-45811-3_3
http://dx.doi.org/10.1007/978-3-319-45811-3_6
http://dx.doi.org/10.1007/978-3-319-45811-3_4
http://dx.doi.org/10.1007/978-3-319-45811-3_5
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The main purpose of the book is to present prototyping methods of concur-
rent control systems, intended for implementation in FPGAs with a possibility
of further partial reconfiguration of the controller. A concurrent system is repre-
sented by an interpreted Petri net, which naturally reflects concurrent and sequential
relationships of a modelled controller. Furthermore, the system is decomposed into
sequential components. Three alternative decompositionmethods are presented in the
book (Chap.6). Each of decomposed modules is described with the use of hardware
description languages (HDLs) such as Verilog or VHDL in terms of logic synthesis
and further implementation in reconfigurable programmable systems. Themodelling
methods of concurrent systems in HDLs are shown for further implementation of the
design in reconfigurable programmable devices (Chap.8).

Finally, the complete prototyping flow of a concurrent control system intended for
implementation in the FPGA with a possibility of further partial reconfiguration is
proposed. Two different approaches are introduced. The first one is dedicated for the
static partial reconfiguration of the design, while the second focuses on the dynamic
partial reconfiguration of the concurrent control system (Chaps. 7 and 9).

1.2 Outline of the Book

The book is organized into ten chapters.
This chapter introduces concurrent control systems and elucidates the subject

matter of the book.
Chapter2 gives an overview of interpreted Petri nets as a specification of con-

current control systems. Computational complexity of algorithms is also briefly dis-
cussed.

Chapter3 presents notations related to the graph theory. Furthermore, perfect
graphs and comparability graphs are introduced. Author’s theorems, proofs, and
algorithms with detailed analysis of their computational complexity are presented.

Chapter4 relates to the hypergraph theory. Beside well-known notations, new
definitions, properties, theorems, and algorithms are introduced and analyzed in
detail.

Chapter5 deals with analysis of concurrent control systems. At the beginning,
the most popular analysis method of the dynamic behavior of the net, based on the
state equations and integer linear algebra (p-invariants computation) is presented.
Furthermore, advanced methods of analysis of concurrency and sequentiality in a
system are presented.New algorithms (especially related to the graph and hypergraph
theories) are introduced.

Chapter6 focuses on the decomposition of concurrent control systems. Three
different decomposition methods are presented and compared in terms of their effi-
ciency and computational complexity. Similarly to the previous chapter, algorithms
are described in detail and illustrated by examples.

Chapter7 gives prototyping techniques of concurrent systems. Algorithms and
properties shown in previous chapters are applied in order to design a controller

http://dx.doi.org/10.1007/978-3-319-45811-3_6
http://dx.doi.org/10.1007/978-3-319-45811-3_8
http://dx.doi.org/10.1007/978-3-319-45811-3_7
http://dx.doi.org/10.1007/978-3-319-45811-3_9
http://dx.doi.org/10.1007/978-3-319-45811-3_2
http://dx.doi.org/10.1007/978-3-319-45811-3_3
http://dx.doi.org/10.1007/978-3-319-45811-3_4
http://dx.doi.org/10.1007/978-3-319-45811-3_5
http://dx.doi.org/10.1007/978-3-319-45811-3_6
http://dx.doi.org/10.1007/978-3-319-45811-3_7
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described by an interpreted Petri net. Initially, the classical approach, where a con-
current system is implemented as a single module, is presented. Further, a solution
based on the decomposition of a controller is proposed.

Chapter8 shows modelling methods of concurrent control systems. It is assumed
that the systemhas been already prototypedwith the use of ideas presented inChap.7.
A controller is modelled as a finite-state machine and described with Hardware
Description Languages (in particular Verilog HDL is used) for further logic synthesis
and the system implementation in programmable devices.

Chapter9 finalizes the prototyping flow of concurrent control systems. The
description of programmable devices and Field Programmable Gate Arrays is pre-
sented. Furthermore, partial reconfiguration of a concurrent control system is intro-
duced. Unique methods of static and dynamic partial reconfiguration of concurrent
controllers implemented in an FPGA device are shown.

Chapter10 concludes the prototyping methods shown in the book. The main con-
tributions and results are summarized. Finally, other possible applications of the
proposed methods and algorithms are suggested.
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142. Wiśniewski R (2009) Synthesis of compositional microprogram control units for program-
mable devices. Lecture notes in control and computer science, vol 14. University of Zielona
Góra Press, Zielona Góra
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Chapter 2
Related Work

Let us now formally specify a concurrent control system by an Interpreted Petri
net, which is a powerful mathematical tool and naturally reflects concurrency in
prototyped systems. Note, that the prototyping, analysis and decomposition methods
presented in the book apply to the integrated concurrent control systems (cf. Chap. 1).
Therefore, unless otherwise stated, we use the simple notations concurrent control
system, concurrent controller in reference to this particular group.

2.1 Petri Nets and Interpreted Petri Nets

This section introduces basic definitions and notations regarding the Petri nets [5, 7,
8, 10, 13, 15, 17, 19, 23–25, 27–31, 33–35, 39].

Definition 2.1 A Petri net is a 4-tuple:

PN = (P, T, F,M0), (2.1)

where

• P is a finite set of places,
• T is a finite set of transitions,
• F ⊆ (P × T )

⋃
(T × P) is a finite set of arcs,

• M0 is an initial marking.

Set P ∪ T is a set of nodes of a Petri net.

© Springer International Publishing Switzerland 2017
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Definition 2.2 (Marking) State of a Petri net is called a marking, which can be seen
as a distribution of tokens in the net places. If a place contains one or more tokens, it
is called a marked place. A marking can be changed by means of firing (execution)
of a transition.

Definition 2.3 (Transition firing) A transition t can be fired if every of its input
places contains a token. Transition firing removes a token from every input place of
t and adds a token to every output place of t .

An exemplary Petri net PN1 (taken from [14, 37]) is shown in Fig. 2.1. The net
contains six places P = {p1, . . . , p6} and three transitions T = {t1, t2, t3}.
Definition 2.4 (Input and output places) Place p is an input place of transition t , if
(p, t) ∈ F . Place p′ is an output place of transition t , if (t, p′) ∈ F . The set of input
places of transition t is denoted by •t , while t• denotes the set of output places of t .

Definition 2.5 (Input and output transitions) Transition t is an input transition of
place p, if (t, p) ∈ F . Transition t ′ is an output transition of place p, if (p, t ′) ∈ F .
The set of input transitions of place p is denoted by •p, while p• denotes the set of
output transitions of p.

Definition 2.6 (Reachable marking) AmarkingM ′ is reachable frommarkingM , if
M ′ can be obtained from M by a finite sequence of transition firings. When marking
M is not specified explicitly, a reachable marking of a net is understood as a marking
reachable from its initial marking M0.

A state of a Petri net is obtained by a distribution markers (tokens) on the places.
Figure2.2 illustrates all the possible markings of PN1. There are three reachable
markings in the presented net, that can be reached by consecutive firing of transitions
t1, t2 and t3. Changes between particular states for this net can be simply denoted as:

M0
t1−→ M1

t2−→ M2
t3−→ M0.

Fig. 2.1 An exemplary Petri
net PN1

p1

t1

p3

t3

p2

t2

p5

p4

p6
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Fig. 2.2 All reachable
markings of PN1 p1,p2,p6

p2,p3,p4

p1,p3,p5

t3

M0

t2

t1

M1

M2

The state M0 consists of three places p1, p2 and p6, which means that those
places are initially marked. After firing of the transition t1, tokens from its input
places (p1 and p6) are moved to the output places (p3 and p4) of t1 and the net
reaches marking M1. Please note that token at place p2 remains unchanged. State
M1 enables transition t2, which execution leads to the third marking M2. At this state
three places are marked: p1, p3 and p5. Finally, firing of t3 returns tokens into the
initial marking M0.

Definition 2.7 (Enabled transitions in a given marking) For a Petri net, transition
t is enabled in marking M if ∀p ∈ •t : p ∈ M , that is, all its input places are
simultaneously marked in M . Any transition enabled in M can fire, changing the
marking M to M ′. M[t> denotes that t is enabled in M , while M[> indicates the
set of all enabled transitions in M .

For PN1, transition t1 is enabled inM0, which is denoted byM0[t1>. Furthermore,
firing of t1 changes an initial marking M0 to M1. Such a situation is represented as
M0[t1>M1. Similarly, M1[t2>M2. Finally, M2[t3>M0 moves tokens to the initial
state.

Definition 2.8 (Liveness) A transition t is live if for every reachable marking M , t
can be fired inM or in amarking reachable fromM . A Petri net is live if all transitions
in the net are live.

Definition 2.9 (Safeness) A place of a net is safe if there is no reachable marking
such that the place contains more than one token. A Petri net is safe if each place in
the net is safe.

The characterization of liveness and safeness has been studied by the researches
all over the world. Fundamental theory regarding liveness and safeness of Petri nets
was introduced in [6, 16]. Such analysis was extended in [15]. Finally, advanced
algorithms allowing checking liveness and safeness of particular subclasses of Petri
nets were proposed in [2–4, 21, 40].

Let us point out that analysis of liveness and safeness is out of the scope of
this monograph. In our opinion, existing theorems and algorithms (especially those
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presented in [2–4, 15, 16, 21, 40]) exhausted this subject enough. Therefore, we
decided to focus on the concurrency and sequentiality aspects of analysis of Petri
nets.

Definition 2.10 (Reversibility) A Petri net is reversible if for each marking M , the
initial marking M0 is reachable from M . In other words, Petri net is reversible if it
can always reach its the initial state.

Definition 2.11 (Well-formed net) A Petri net is well-formed if it is live, safe and
reversible.

Definition 2.12 (Conservativeness) A Petri net is conservative if all the reachable
markings contain the same number of tokens.

Definition 2.13 (Pure net) A Petri net is pure if it has no self-loops.

Definition 2.14 (Path, strong connectedness) A path in a Petri net PN is a sequence
of nodes, connected by arcs. A net is strongly connected if for any pair (ni , n j ) of
its nodes there is a path leading from ni to n j .

Theorem 2.1 [3] Let PN be a live and safe Petri net. Then PN is strongly con-
nected.

Petri net PN1 is live, safe and conservative, therefore it is well-formed.Moreover,
the net is pure and conservative, since all the markings contain exactly three tokens.
PN1 is strongly connected, because for any pair of nodes there is a path that connects
them.

Definition 2.15 (Interpreted Petri net) An interpreted Petri net is a well-formed
Petri net, defined as a 6-tuple:

PN = (P, T, F,M0, X,Y ), (2.2)

where:

• P is a finite set of places,
• T is a finite set of transitions,
• F ⊆ (P × T )

⋃
(T × P), is a finite set of arcs,

• M0 is an initial marking,
• X = {x1, x2, . . . , xm} is a binary vector of logic inputs,
• Y = {y1, y2, . . . , yn} is a binary vector of logic outputs.

Interpreted Petri nets are very often used to specify the real-life controllers. The
system communicates with the environment via input and output signals. The inputs
are associated with transitions while its outputs are bounded to places. The transition
is enabled if all the transition inputs are active (or condition tied to the transition is
fulfilled). Therefore, input signals may preserve the net conflict-free. We shall show
such a situation later in this section. Notice, that from the definition an interpreted
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Fig. 2.3 A model of a milling machine

Petri net is well-formed, thus it is live, safe and reversible. It implies important
additional properties. For example, based on the Theorem 2.1, each interpreted net
is strongly connected.

Let us illustrate interpreted Petri nets by a real-life example. Figure2.3 shows
a modified system of the milling process, initially proposed in [38]. The main aim
of the presented machine is to cut the square shapes from the wooden plank. The
process is driven by a logic controller, specified by an interpreted Petri net PN2,
shown in Fig. 2.4.

There are 14 input signals denoted by x1, . . . , x14, and 14 output signals marked
as y1, . . . , y14. Placement of a wooden plank on the tray (indicated by the sensor x14)
starts the whole process. First, the plank is moved (output signal y1), until reached
the right position (signalized by x1). Simultaneously, a drill (y2) is being set into the
starting position (x2). Next, the machine starts cutting the required shape from the
wood (in the presented example—a square). The move of the drill is denoted by y4
(immersion into the wood), y5 (the drill moves to the right), y6 (the drill moves to
the down), y7 (the drill moves to the left), y8 (the drill moves to the top), y9 (the drill
goes up, to the initial position). Reaching the remaining positions is signalized by
sensors x3, x4, x5, x6, x7 and x8, respectively. At the same time, while the shape is
drilled, three concurrent actions are performed: a vacuum cleaner is turned on (y3),
and two assembly holes are drilled (signals y10, y11 and y12, y13. Finally, the drilled
shape is moved to the platform (y14) to the tray. When the plank is taken away (x14),
the system is ready for the further actions.

The net PN2 consists of |P| = 21 places and |T | = 17 transitions. It is live, safe,
reversible, and strongly connected. However, it is not conservative, since firing of t1
moves and splits a single token from p1 into p2 and p4.

Figure2.5 shows another real-life example of a concurrent control system. The
picture illustrates an advanced traffic lights system, driven by the FPGA device.
There are three independent traffic lights that control particular lanes for cars (turning
left, going straight, turning right). Additionally, two traffic lights for pedestrians are
considered. In our consideration a simplified version of the controller (initially shown
in [36]) will be presented. Assume, that all the car lanes operate in the same manner
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Fig. 2.4 An interpreted Petri
net PN2 that controls the
milling machine
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Fig. 2.5 Traffic lights
system

and they are treated as a single traffic light. Similarly, both traffic lights for pedestrians
are coupled. Such a system can be easily described by an interpreted Petri net (PN3),
as it is presented in Fig. 2.6. Initially, the red lights for cars (place p4, output RC )
and for pedestrians (place p6, output RP ) are active. If there is no request from
pedestrians to cross the street (latched input signal req is inactive), the system enters
the state, when the green light for cars (place p2, output GC ) is shown (note, that
the red light for pedestrians prevents collision). Such a situation takes place until a
pedestrian wishing to cross the street pushes the button (signal req), which results in
firing the transition t2. Next, the yellow light for cars (place p3, output YC ) is flashed
and the system goes back to the initial state. Since signal req is active, the transition
t4 is enabled and executed. The green light for pedestrians is shown to cross the street
(it is assumed, that signal req is zeroed). The system returns to the initial state and
the whole procedure is repeated.

Fig. 2.6 An interpreted net PN3 that controls the simplified version of traffic lights
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Petri net PN3 consists of |P| = 6 places and |T | = 5 transitions. It is live, safe,
and reversible. The net is not conservative, because firing of t1 consumes two tokens
(from places p1 and p4), while only one token is moved to p2.

Note that place p1 has two output transitions: p1 •= {t1, t4}. Such a situation is
called conflict in a Petri net. In case of interpreted Petri nets, it can be easily resolved
by the input signals. In the particular example, signal req indicates, which transition
is enabled. If there are no conflicts in the net, it is called conflict-free Petri net. For
example, PN1 is conflict-free, because each place has exactly one output transition.

It is assumed that interpreted Petri nets shown in this book are free of conflicts. It
means that either the net is conflict-free, or such a conflict is resolved by the input
signals. Furthermore, any Petri net that is live, safe and conflict-free can be classified
as an interpreted Petri net. Thus, PN1 = (P, T, F,M0,∅,∅) is an interpreted Petri
net, but the sets of its input and output signals are empty: X = Y = ∅. Of course one
may say that a controller specified by such a net does not have any sense, since there
is no communication with the environment. Obviously it is true. However, such nets
can be successfully applied for theoretical purposes or at those prototyping stages
(mainly analysis, cf. Chap.5), where input and output signals are not considered.

Definition 2.16 (Concurrency in interpreted Petri nets) Two places are concurrent
if they are marked simultaneously at some reachable marking.

Definition 2.17 (Sequentiality in interpreted Petri nets) Two places are sequential
if they cannot be marked simultaneously, i.e., there is no marking that contains both
places.

It is assumed, that (in case of interpreted Petri nets) concurrency and sequentiality
are complementary, i.e., particular place is either concurrent or sequential to the other
place.

Definition 2.18 (Reachability set, concurrency set) Reachability set or concurrency
set of a concurrent control system is the set of its reachable states (markings).

Reachability (concurrency) set, beside obvious concurrency analysis, can be also
used to verify the correctness of the system behavior [11]. Popular representation of
such a set is reachability graph.

Definition 2.19 (Reachability graph) Reachability graph of a concurrent control
system is the directed graph of its reachable states, and the direct transitions between
them.

Figure2.2 (shown at the beginning of current chapter) presents an exemplary
reachability graph for Petri net PN1 (from Fig. 2.1).

Petri nets are classified according to their structure. In our consideration we use
the following classification of a Petri net (taken directly from [25]):

1. State Machine (SM),
2. Marked Graph (MG),

http://dx.doi.org/10.1007/978-3-319-45811-3_5
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3. Free-Choice net (FC-net),
4. Extended Free-Choice net (EFC-net),
5. Simple Net (SN), also known as Asymmetric Choice net (AC-net).

Let us define each of the presented subclasses.

Definition 2.20 (State machine, SM-net) A state machine is a Petri net for which
every transition has exactly one input place and exactly one output place, i.e., ∀t ∈
T : | • t | = |t • | = 1.

Definition 2.21 (Marked graph, MG-net) A marked graph is a Petri net for which
every place has exactly one input transition and exactly one output transition, i.e.,
∀p ∈ P : | • p| = |p • | = 1.

Definition 2.22 (Free-choice, FC-net) A free-choice net is a Petri net for which
every outgoing arc from a place is unique or is a unique incoming arc to a transition,
i.e., ∀p ∈ P : |p • | ≤ 1 or •(p•) = {p}.
Definition 2.23 (Extended free-choice net, EFC-net) An Extended Free-Choice net
is a Petri net for which every two places having a common output transition, have all
their output transitions in common, i.e., ∀pi , p j ∈ P : pi •∩p j• �= 0 ⇒ pi• = p j•.
Definition 2.24 (Simple net, SN) A Simple net is a Petri net for which every two
places having a common output transition, one of them has all the output transitions
of the other (and possibly more), i.e.,∀pi , p j ∈ P : pi •∩p j• �= 0 ⇒ (pi• ⊆ p j•)
or (pi• ⊇ p j•).

All the nets, that do not belong to any of above subclasses are just classified as
Petri nets (PNs). For the interpreted Petri nets, we shall use the same abbreviations for
their subclasses. For example an interpreted Petri net that is classified as an EFC-net,
will be shortly classified as an interpreted EFC-net.

Particular subclasses are structured as follow: SM and MG are simplest possible
structures of a Petri net. FC is a generalization of SMs and MGs. It means that each
net that belongs to SM is also classified as an FC-net. Similarly, each MG is an FC-
net, as well. Furthermore, EFC is a generalization of FC, while SN is a generalization
of EFC. Finally, PN is a generalization of SN. Figure2.7 illustrates the hierarchy of
subclasses of Petri nets.

Fig. 2.7 Subclasses of Petri
nets

PNSNEFC-net

FC-net

SM MG
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Recall net PN1, shown in Fig. 2.1. Every place of PN1 has exactly one input
transition and exactly one output transition (there are no multiple arcs outgoing from
places). It means that such a net belongs to MG. Moreover, it is automatically clas-
sified as FC-net, EFC-net, SN, and PN, as well. Similarly, net PN2 is also classified
as MG-net, but PN3 belongs to SN.

Classification of a Petri net may be useful during analysis of the net [25]. For
example, liveness, safeness of some subclasses (SM, MG, FC, EFC) can be checked
polynomially [2–4, 15, 16, 21].

Definition 2.25 (State machine component) A state machine component (SMC,
SM-component, S-component) of a Petri net PN=(P, T, F,M0) is a Petri net
S=(P ′, T ′, F ′,M0) such that:

1. S is an SM-net,
2. S is strongly connected,
3. P ′ ⊆ P ,
4. T ′ = •P ′ ∪ P ′•,
5. F ′ = F ∩ (P ′ × T ′) ∪ (T ′ × P ′),
6. S contains exactly one token in M0.

Figure2.8 shows all the state machine components that can be obtained in the
net PN1. There are four SMCs, consisting of the following places: S1 = {p1, p4},
S2 = {p3, p6}, S3 = {p2, p5}, S4 = {p4, p5, p6}.
Definition 2.26 (SM-decomposition) State machine decomposition (SM-
decomposition, S-decomposition) of a Petri net PN = (P, T, F,M0) is a set S
of elements (often called components or modules) S = {S1, . . . , Sn} such that each
place pi ∈ P is a place of exactly one component Sj ∈ S. Each component Sj is an
SM-net. If the particular place exists in more than one component, it is replaced by
a place not belonging to P , called a non-operational place (NOP).
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t3

t2
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p6

p1

t1 t2
p4

t1

p3
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(b) (c) (d)(a)

t3

p2

t2

p5
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Fig. 2.8 All the SMCs of PN1
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Definition 2.27 (Non-operational place, NOP) Let PN be a Petri net and let S be
a set of SMCs achieved during SM-decomposition of PN . If place p ∈ P exists in
more than one S ∈ S, it is replaced by a non-operational place (NOP) in all S ∈ S,
but one. The set P ′ = {pi , . . . , p j } of places of the same component S ∈ S can be
replaced by a single NOP if there exists a path in P ′ leading from pi to p j . Then,
all transitions and arcs between pi and p j are removed, as well. A NOP is initially
marked if any place substituted by it is initially marked.

Let us explain decomposition and NOPs by examples. Petri net PN1 can be
decomposed into three components: S={S1, S2, S3}, where S1 = {p1, p4}, S2 =
{p3, p6}, and S3 = {p2, p5}. This is the only one possibility to decompose PN1.
There are no places that exist in more than one component, thus there is no need to
apply non-operational places.

Consider Petri net PN4 shown in Fig. 2.9a. There are six places in the net P =
{p1, . . . , p6} and four transitionsT = {t1, . . . , t4}. The net is safe, live, and reversible.
There are three SMCs in the PN4: S1 = {p1, p3, p4}, S2 = {p2, p3, p4, p6}, S3 =
{p5, p6}.

Figure2.9b illustrates one of the possible decompositions of PN4. In the presented
example, two NOPs are applied, therefore the final set of decomposed components
consists of the following places: S1 = {p1, p3, p4}, S2 = {p2,NOP1, p6}, S3 =
{p5,NOP2}.

The first non-operational place (NOP1) is used in module S2. It substitutes places
p3 and p4 that already exist in the first component S1. All the transitions and arcs

p1

t1

p3

t2

t3

p2

t1

NOP1

t3

p6

t4

p4

p5

t4

t3

NOP2

p2p1

t1

p3

t2

p5p4

t3

p6

t4

(a)
(b)

Fig. 2.9 Petri net PN4 (a) and decomposed PN4 (b)
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belonging to the path connecting such places are removed as well. Furthermore,
NOP2 replaces p6 in the third component S3, since p6 already exists in S2.

Let us point out that there are more ways to decompose PN4, depending on
the application of non-operational places. For example, the alternative decompo-
sition of the net may consists of the following components: S1 = {p1,NOP1},
S2 = {p2, p3, p4,NOP2}, S3 = {p5, p6}, while NOP1 substitutes places p3, p4, and
NOP2 replaces p6.

More information about decomposition of Petri nets as well as decomposition
algorithms can be found in Chap.6.

Definition 2.28 (SM-cover) State machine cover (SM-cover, S-cover) of a Petri net
PN = (P, T, F,M0) is a set C of state machine components C = {S1, . . . , Sn} such
that each place pi ∈ P is a place of at least one component Sj ∈ C.

SM-cover is very often confused with SM-decomposition. The main difference
is that the particular place may exist in more than one component that belongs to the
SM-cover. In opposite, the set of decomposed modules contains each place of the net
exactly once. There are known conversion methods between SM-decomposition and
SM-cover. Such a transformation can be done relatively easy, unless the conditions
of the existence of SM-decomposition (or SM-cover) are not satisfied. More details
can be found in [20].

Let us now introduce theorems regarding SM-decomposition and SM-cover. A
very important relation between SM-cover and well-formed EFC-nets was shown in
[9] (initially proposed for FC-nets in [15]):

Theorem 2.2 [9] Well-formed EFC-nets are covered by SM-components.

Since every interpreted EFC-net is well-formed, we immediately have

Theorem 2.3 Interpreted EFC-nets are covered by SM-components.

Proof Follows directly from Definition 2.15 and Theorem 2.2. �

Furthermore, the existence of SM-decomposition of a net depends on its safeness,
which was proved in [20]:

Theorem 2.4 [20] For a Petri net exists an SM-decomposition, if and only if PN
is safe.

Since every interpreted Petri net is safe by definition, we obtain a very important
statement:

Theorem 2.5 For an interpreted Petri net there always exists an SM-decomposition.

Proof Follows directly from Definition 2.15 and Theorem 2.4. �

http://dx.doi.org/10.1007/978-3-319-45811-3_6
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2.2 Computational Complexity of Algorithms

This section briefly introduces some preliminaries regarding computational com-
plexity of algorithms. The presented notation we shall use during analysis of the
computational complexity of algorithms shown in Chaps. 3–6.

The computational complexity presented in this book refers to the time complexity.
Therefore, unless otherwise stated, we shall estimate the amount of time that is
required in order to solve the problem.Note that only basic assumptions are presented.
The detailed descriptions regarding computational complexity of algorithms can be
found in [1, 12, 18, 22, 26, 32].

• Time computational complexity of an algorithm refers to the maximum number
of interactions (steps) that the algorithm uses on a given size of a given input.
Formally, time complexity of algorithm A is the function f : N → N , where
f (n) is the maximum number of interactions (steps) that A uses on any input of
length n [32].

• Big-O notation is used to estimate the upper bound for the number of interactions
(steps) executed by an algorithm. Formally, for f (n) = O(g(n)) we say that g(n)
is an upper bound for f (n), where f (n) is the maximum number of interactions
of an algorithm [32]. Note, that Big-O refers to the worst-case complexity of the
algorithm.

• Polynomial bound of an algorithmmeans that the upper bound of the algorithm can
be represented in the form nc for c greater than 0 [32]. In other words, algorithm
for which the number of interactions is estimated as f (n) = O(nc) for c > 0 is
bounded by a polynomial in the size of inputs n.

• Exponential bound of an algorithm means the bounds in the form cn for c > 1.
In other words, algorithm for which the number of interactions is estimated as
f (n) = O(cn) for c > 1 is bounded by an exponential in the size of inputs n.

• Total polynomial time, polynomial complexity or just polynomial time means that
the total run-time of an algorithm to generate all solutions (outputs) is bounded by
a polynomial in the size of the input (cf. [18]).

• Exponential complexity or just exponential time means that the total run-time of
an algorithm to generate all solutions (outputs) is bounded by an exponential in
the size of the input (cf. [18]).

• Polynomial delaymeans that an algorithm generates results in such a way, that the
time between subsequent outputs is bounded by a polynomial in the size of the
input (cf. [12, 18]). We will say, that subsequent outputs are generated (computed,
calculated) in polynomial time.

http://dx.doi.org/10.1007/978-3-319-45811-3_3
http://dx.doi.org/10.1007/978-3-319-45811-3_6
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Chapter 3
Perfect Graphs and Comparability Graphs

3.1 Preliminaries

Definition 3.1 (Graph) A graph or undirected graph is defined by a pair

G = (V, E), (3.1)

where

V = {v1, . . . , vn}, is a finite, nonempty set of vertices;
E = {E1, . . . , Em}, is a finite set of unordered pair of vertices, called edges.

We assume that a graph has no loops or multiple edges. For further purposes,
an undirected edge incident with vertex u and vertex v is denoted by {u, v} (or
occasionally just uv). We say that two vertices are adjacent (neighbors) if they are
joined by an edge.

Please note, that simple notation graphs we use in reference to undirected graphs,
in which the set of edges consists of unordered pairs of vertices. On contrary, directed
graphs are composed of ordered pairs of vertices are called digraphs [13, 24], intro-
duced later in this chapter.

Definition 3.2 (Vertex degree) A degree of a vertex vi denoted by deg(vi ) is the
number of edges incident with vi . Theminimum degree among all vertices is denoted
by δ(G), while �(G) is the largest such number [13].

An exemplary undirected graph G1 is shown in Fig. 3.1 (left). The presented
graph consists of |V | = 6 vertices: V = {v1, . . . , v6} and |E | = 7 edges: E =
{E1, . . . , E7}. Each edge forms a set of unordered pairs of vertices: E1 = {v1, v2},
E2 = {v1, v6}, E3 = {v2, v3}, E4 = {v2, v4}, E5 = {v2, v5}, E6 = {v3, v4} and
E7 = {v4, v5}.

© Springer International Publishing Switzerland 2017
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Fig. 3.1 Exemplary graph
G1 (left) and its
complementary graph G1
(right)

The minimum degree of G1 is equal to δ(G) = deg(v6) = 1, while its maximum
degree �(G) = deg(v2) = deg(v4) = 3.

Definition 3.3 (Complement graph) A complement graph G = (V, E) of a graph
G = (V, E) is a graph with the same set of vertices, and the set of edges E =
{(u, v) ∈ V × V | u �= v and (u, v) /∈ E}. In other words, two vertices of G are
connected by an edge if they are not adjacent in G.

The complement graph G1 of a graph G1 is shown in Fig. 3.1 (right). The set of
vertices remains unchanged, thus |V | = 7. There are totally |E | = 8 edges in G1.
Particular edges connect vertices that are not neighbors in G1.

The minimum degree of G1 is equal to δ(G) = deg(v2) = 1, while its maximum
degree �(G) = deg(v6) = 4.

Definition 3.4 (Subgraph) A subgraph G ′ = (V ′, E ′) of graph G is a graph, where
V ′ ⊆ V and E ′ ⊆ E [3].

Definition 3.5 (Induced subgraph) A graph G ′ is called an induced subgraph of G
if for any pair of vertices u and v of G ′, (u, v) is an edge of G ′ if and only if (u, v)

is an edge of G.

Fig. 3.2 Induced subgraph
G ′

1 of a graph G1
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Figure3.2 shows an exemplary induced subgraph G ′
1 = (V ′, E ′) of G1. The set

of vertices contains |V ′| = |V |\{v4} = 5 vertices, while the set of edges is reduced
to |E ′| = |E |\{E4, E6, E7} = 4 edges.

One of the graph representations is an incidence matrix. The rows of the matrix
refer to edges, while the columns are related to graph vertices. If an incidence matrix
element equals 1, the j th edge ( j ∈ 1, . . . , m) is incident to the i th vertex (i ∈
1, . . . , n). Otherwise, the element equals 0

M =
{
1 if vi ∈ E j

0 if vi /∈ E j
, (3.2)

Incidence matrix MG1 of graph G1 is shown in Fig. 3.3. Graph G1 consists of six
vertices, represented by matrix columns. Similarly, seven edges are represented by
rows of the matrix.

Another common representation of a graph is a neighborhood matrix (also called
anadjacencymatrix). It is a symmetric matrix including relations between particular
vertices. The i th row and j th column of the matrix determine the number of edges
joining the i th and the j th vertices.

Neighborhood matrix NG1 for graph G1 is presented in Fig. 3.4.

Definition 3.6 (Clique) A clique of graph G is a subset of vertices Q ⊆ V , such
that any two vertices of Q are connected by an edge. A maximal clique is a clique
that cannot be extended by any other vertex. A clique number of G is equal to the
maximum cardinality of the clique in G and is denoted by ω(G). Clique cover is
the set of cliques that cover all the vertices of a graph. A clique cover number is the
smallest number of cliques that are needed to cover all the vertices and is denoted
by θ(G) [11].

Fig. 3.3 Incidence matrix
MG1 of graph G1

v1 v2 v3 v4 v5 v6

MG1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0
1 0 0 0 0 1
0 1 1 0 0 0
0 1 0 1 0 0
0 1 0 0 1 0
0 0 1 1 0 0
0 0 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

E1
E2
E3
E4
E5
E6
E7

Fig. 3.4 Neighborhood
(adjacency) matrix of graph
G1

v1 v2 v3 v4 v5 v6

NG1 =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 0 1
1 0 1 1 1 0
0 1 0 1 0 0
0 1 1 0 1 0
0 1 0 1 0 0
1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

v1
v2
v3
v4
v5
v6
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Fig. 3.5 Cliques of a graph
G1

There are totally four cliques in graph G1. The clique number of G1 is equal to
ω(G1) = 3. There are two cliques with the maximum cardinality: Q1 = {v2, v3, v4}
and Q2 = {v2, v4, v5}. Each of the remaining two cliques contain two vertices:
Q3 = {v1, v2}, Q4 = {v1, v6}. Figure3.5 illustrates the cliques of G1. Notice, that
vertices {v2} and {v4} are shared between two cliques: Q1 and Q2. The clique cover
number of this graph is equal to θ(G1) = 3, since it is the smallest number of cliques
to cover all the vertices. Such a cover can be achieved by cliques {Q1, Q2, Q4}.
Definition 3.7 (Compatibility relation of vertices) Two or more vertices of a graph
G are compatible (or in compatibility relation) if they are not incident to the same
edge. In other words: two or more vertices are in compatibility relation if they are
not connected by any edge.

Definition 3.8 (Independent set, stable set) A set I ⊆ V is an independent set (also
called stable set) of a graph G if all vertices that belong to I are compatible. Set I is
called maximal if no I ′ ⊃ I is an independent set of G [16]. A stability number of
a graph is the number of vertices in an independent set of maximum cardinality and
is denoted by α(G) [10].

There are five maximal independent sets of G1: I1 = {v1, v4}, I2 = {v1, v3, v5},
I3 = {v2, v6}, I4 = {v3, v5, v6}, and I5 = {v4, v6}. The stability number of G1 is
α(G) = 3.

Obtaining all independent sets in a graph, as well as generating its all cliques are
well-known combinatoric problems [6, 16, 21, 23]. Furthermore, such problems are
complementary, since an independent set refers to a clique in a graph complement and
vice versa. Generally, both problems are classified as NP-complete, which means,
that there is no known polynomial time algorithm to solve the task [1, 16, 23].

The basic algorithm for computation of all cliques in a graph simply uses back-
tracking concept (cf. [1]), like classic Bron–Kerbosh method [4]. The particular
cliques are obtained by recursively adding adjacent vertices to the set and checking
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Fig. 3.6 A possible coloring
of graph G1

if the set still forms a clique. The extension of such a method uses a technique called
pivoting that avoids searching for non-maximal cliques [23]. Another enhancement
of the classical Bron–Kerbosh method uses vertex ordering to reduce the recursive
calls of algorithm (cf. [4, 23]).

Definition 3.9 (Graph coloring) A graph coloring is the assignment of one selected
color to each vertex such that no two adjacent vertices share the same color [8]. A
chromatic number of a graph is equal to the smallest number of colors by which the
graph can be colored and is denoted by χ(G).

Coloring is closely related to independent sets of a graph. In fact, coloring splits
the graph vertices into independent sets. However, particular vertices may occur
in different independent sets, which are not allowed in the case of classical graph
coloring, where only one color is assigned to the vertex.

The smallest number of colors by which G1 can be colored is equal to χ(G) = 3.
Figure3.6 shows one of the possible coloring of G1 (particular colors are denoted
by a variable k):

• first color (k = 1): {v1, v4},
• second color (k = 2): {v2, v6},
• third color (k = 3): {v3, v6}.

Note, that there exist other versions of coloring of G1. For example, alternate
assignments of colors of G1 may result in the following coloring:

• first color (k = 1): {v1, v3, v5},
• second color (k = 2): {v2},
• third color (k = 3): {v4, v6}.

Obtaining the chromatic number of a graph as well as optimal coloring (with the
smallest number of colors) are NP-complete problems. Therefore, existing methods
balance between optimal results (exact algorithms) and reasonable time (approximate
solutions) [1, 13, 15, 18, 24]. Both groups have advantages and weak points.
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Exact methods, like classical sequential backtracking algorithm (cf. [1]), search
recursively the whole set of results to find the best solution. Unfortunately, they run
in exponential time, which means that the solution may be never found.

Approximate graph coloring algorithms usually base on the greedy algorithm [15,
18]. The methods search for the local optimum to find the best solution, however
they do not guarantee optimal results. The most popular approximate graph coloring
methods apply heuristic vertex ordering, like Largest-first or Smallest-last. Such
ideas may increase the chance for finding the best solution, but they still do not
assure it [15].

From the above we see, that in the general case, the problem of graph coloring
requires a compromise between optimal results and computational time. However,
there exists a special group of graphs called perfect graphs, where such a problem
can be solved polynomially.

3.2 Perfect Graphs

This section deals with a special class of graphs. A brief overview and examples of
perfect graphs are given. Perfect graphs have unique properties. For example, the
recognition of a perfect graph, obtaining its clique number or its chromatic number
as well as the graph coloring are computable in polynomial time [7, 10, 20, 22].

Definition 3.10 (Perfect graph) A graph G is perfect if, for every induced subgraph
G ′ of G, χ(G ′) = ω(G ′) [7].

Note, that the above definition implies another property: for every induced subgraph
G ′ of G, the condition θ(G ′) = α(G ′) also ought to be fulfilled [19].

Recall graph G1 shown in Fig. 3.1 (left). As it was already shown, a chromatic
number of this graph is equal to its clique number χ(G) = ω(G) = 3. Moreover, its
clique cover number is equal to the stability number: θ(G) = α(G) = 3. Further-
more, every induced subgraph of G1 holds these properties, which means that G1 is
perfect.

Let us now analyze a complementary graph G1 of G1, shown in Fig. 3.1 (right).
From the earlier analysis, we know that there are |I | = 5 maximal independent
sets in G1. Since each maximal independent set of a graph refers to a clique in its
complement, we immediately know that there are |Q| = 5 cliques in G1. All the
cliques of G1 are presented in Fig. 3.7 (left). A clique number of this graph is equal
to the stability number of G1: ω(G1) = α(G1) = 3. The smallest number of colors
by which G1 can be colored is χ(G1) = 3, as shown in Fig. 3.7 (right). It means, that
its chromatic number is the same as clique number: χ(G1) = 3χ(G1). Furthermore,
every induced subgraph G ′

1 of G1 also satisfies this property. Therefore, both graphs
G1 and its complement G1 are perfect.

In fact, there is a theorem that proves our analysis:
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Fig. 3.7 Cliques (left) and possible coloring (right) of graph G1

Fig. 3.8 Graph G2

Theorem 3.1 The complement of a perfect graph is perfect as well (cf. [19]).

Figure3.8 shows another graph. G2 contains |V | = 10 vertices, connected by
|E | = 15 edges. The chromatic number ofG2 is equal toχ(G2) = 3, as it is presented
in Fig. 3.9 (left). Colors split the graph vertices into three maximal independent sets:
I1 = {v1, v3, v8}, I2 = {v2, v4, v9}, I3 = {v5, v6, v7}. Furthermore, there are totally
|Q| = 5 cliques of G2: Q1 = {v1, v2, v10}, Q2 = {v2, v3, v6}, Q3 = {v3, v4, v7},
Q4 = {v4, v5, v8}, Q2 = {v1, v5, v9}. The cliques of G2 are shown in Fig. 3.9 (right).
The cardinality of all the cliques is the same and the clique number of G2 is equal to
ω(G2) = 3. It means, that the condition χ(G2) = ω(G2) is satisfied.

Let us now analyze an induced subgraph of G2. Figure3.10 (left) illustrates
induced subgraph G ′

2 of initial graph G2 by the set of vertices {v6, v7, v8, v9, v10}.
According to the perfect graph theorem, the chromatic number of this subgraph
should be equal to its clique number. Subgraph G ′

2 can be optimally colored with the
use of χ(G ′

2) = 3 colors, as it is presented in Fig. 3.10 (right). On the other hand, the
cardinality of all the cliques of G ′

2 is equal to ω(G ′
2) = 2. Clearly, each edge of the

graph forms a maximal clique, that cannot be extended. It means, that for the induced
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Fig. 3.9 Coloring (left) and cliques (right) of graph G2

Fig. 3.10 Induced subgraph
G ′

2 of G2 (left) and its
coloring (right)

subgraph G ′
2, the chromatic number is not equal to the clique number. Therefore,

graph G2 is not perfect, and hence neither its complement.

3.3 Comparability Graphs

The class of comparability graphs is the subclass of perfect graphs. It means, that
comparability graphs have all the properties of perfect graphs, and in addition, they
reveal some unique ones.
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Before we formally define a comparability graph, let us introduce auxiliary nota-
tions and definitions [2, 5, 10, 13, 14, 17, 22, 24].

Definition 3.11 (Digraph) A digraph (directed graph) is defined by a pair:

D = (V, F), (3.3)

where:

V = {v1, . . . , vn}, is a finite, nonempty set of vertices;
F = {F1, . . . , Fm}, is a finite set of ordered pair of vertices, called edges.

By a definition, a digraph has no loops or multiple arcs [13]. For further purposes,
directed edges are denoted by (u, v) or just −→uv (to simplify enumerations of edges),
where u is the first vertex (tail), and v is the second vertex (head) of an edge [2, 5].

Definition 3.12 (Path) A path in a digraph is a sequence of vertices [v1, . . . , vl ] of
length l such that for every i ∈ (1, . . . , l) there is an edge (vi−1, vi ) ∈ F [10]. A
path is simple if each vertex occurs at least once [10]. A path is trivial if l = 0.

Definition 3.13 (Cycle) A cycle in a digraph is a sequence of vertices [v1, . . . , vl ]
such that for every i ∈ (1, . . . , l) there is an edge (vi−1, vi ), and additionally
(vi , v1) ∈ F [10, 14]. A digraph is acyclic if it does not contain any cycles.

Definition 3.14 (A transitive digraph) A digraph is transitive if, whenever (u, v)

and (v, z) are directed edges, (u, z) is also a directed edge [12].

Definition 3.15 (A reversal digraph) Let D = (V, E) be a digraph, then digraph
D−1 = (V, E−1) is reversal of D, where E−1 = {(u, v) | (v, u) ∈ E}.
Definition 3.16 (Topological ordering) A topological ordering of a digraph D =
(V, F) is a linear ordering of the vertices [v1, v2, . . . , vn] which is consistent with
F , that is

Fig. 3.11 Exemplary
directed graph D1
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∀(i, j ∈ n) : −−→viv j ∈ F =⇒ i < j (3.4)

An ordering which fulfills (3.4) is called a topological sorting of D [10].

An exemplary digraph D1 is shown in Fig. 3.11. It consists of six vertices V =
{a, b, c, d, e, f } denoted by subsequent letters of alphabet, and six directed edges
E = {−→ba, −→ae,

−→
f a,

−→
eb , −→ec ,

−→
de}. A sequence of vertices [a, e, b] forms a cycle in D1,

since there exist edges: −→ae,
−→
eb ,

−→
ba. An exemplary simple path may be formed by a

sequence of vertices [ f, a, e, c].
Definition 3.17 (Comparability graph) An undirected graph G = (V, E) is a com-
parability graph (also called a transitively orientable (TRO) graph) if there exists an
orientation (V, F) of G that satisfies the following condition:

F ∩ F−1 = ∅,

F ∪ F−1 = E,

F2 ⊆ F,

(3.5)

where F2 = {(u, z) | (u, v) , (v, z) ∈ F for some vertex v}.
The relation F is a strict partial ordering of V comparability relation of which is

E , and then F is called a transitive orientation of G [10].
In other words, a graph is a comparability graph if its edges can be oriented in

such a way, that the resulting digraph is transitive and acyclic [12].

Definition 3.18 (Binary orientation Γ ) A binary orientation Γ of an undirected
graph G = (V, E) is defined as follows [10]:

(u, v) Γ (u′, v′) ⇔
{
either u = u′ and v v′ /∈ E
or v = v′ and u u′ /∈ E .

(3.6)

It is said, that (u, v) directly forces (u′, v′) whenever (u, v) Γ (u′, v′) [22].

Definition 3.19 (Implication classes) Let Γ ∗ be the reflexive, transitive closure of
Γ (cf. [10]). Then, Γ ∗ is an equivalence relation on E and partitions E into the impli-
cation classes of G. Furthermore, edges (u, v) and (y, z) are in the same implication
class if there exists a sequence of edges [10]:

(u, v) = (u0, v0) Γ (u1, v1) Γ · · · Γ (uk, vk) = (y, z), with k ≥ 0. (3.7)

Graph G3 shown in Fig. 3.12 (left) is a comparability graph. It can be transitively
oriented, as it is illustrated in Fig. 3.12 (right). The orientation of particular edges is
as follows:−→ea ,

−→
ab,

−→
eb ,

−→
cb ,

−→
cd ,

−→
ed . Note, that reverse orientation of edges also results

in a TRO graph: −→ae,
−→
ba,

−→
be ,

−→
bc ,

−→
dc,

−→
de.

Let us now analyze graph G4 presented in Fig. 3.13 (left). An attempt of transitive
orientation is shown in Fig. 3.12 (right). Starting from the edge

−→
ab, particular edges
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Fig. 3.12 Graph G3 (left) and its transitive orientation (right)

Fig. 3.13 Graph G4 (left) and attempt of its orientation (right)

are oriented as follows: −→ae,
−→
bc (directly forced by

−→
ab),

−→
de (forced by −→ae). There is

no possibility to make an orientation of the remaining edge {c, d}. Orientation −→
cd is

forced by
−→
cb , while the reverse orientation

−→
dc is forced by

−→
de. On the other hand,

both orientations violate the condition (3.5). Sequence
−→
dc,

−→
cb requires an orientation

of a missing edge
−→
db. Similarly, orientations

−→
cd and

−→
de forces an orientation −→ce of

non-existing edge. Therefore, graph G4 is not a comparability graph.
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3.4 Recognition and Coloring of Comparability Graphs

In this section, the ideas of comparability graph recognition and coloring are shown.
Most popular methods are briefly described. Further, we introduce a novel technique
for recognition of comparability graphs. Finally, we propose a combined solution that
enables the computation of TRO and the assignment of colors to particular vertices
simultaneously.

3.4.1 Recognition of Comparability Graphs

According to the definition, a graph is a comparability graph if it can be transitively
oriented. Existing algorithms strictly rely on this property. Particularly, implication
classes are enumerated. A graph is not a comparability graph, if there is an attempt to
force a direction −→

vu of an already oriented edge −→uv in a particular implication class
[10]. Most known (classical) recognition methods apply a depth-first search (DFS)
algorithm (cf. [1]). The idea bases on the decomposition of the graph vertices into
implication classes, by a recursive orientation of subsequent edges [9, 10, 22]. At the
beginning, an initial edge is selected arbitrary. Furthermore, an implication class Bi

containing such an edge is enumerated, as well as a class containing reverse ordering
Bi

−1. According to (3.5), a graph can be transitively oriented if F ∩ F−1 = ∅. Since
Bi ∈ F , the condition Bi ∩ B−1

i = ∅ also must be satisfied. If the property is violated,
the graph is not a comparability graph [10].

Another interesting approach was shown in [12], where a lexicographic
breadth-first search (BFS) search algorithm is used (cf. [1, 12]). The method also
decomposes the set of vertices into partition classes. Additionally, an operation called
pivoting (cf. [12]) is used to split vertices into particular partition classes according
to their adjacency.

Let us introduce an alternate version of comparability graph recognition. Algo-
rithm3.1 computes the transitive orientation F of an undirected graph G = (V, E).
The algorithm explores subsequent edges with the use of a modified BFS method.
Subsequent transitive orientations are added to set F , while set E (a copy of E) holds
unexplored edges.

Initially, edge {u, v} is selected arbitrary. Its orientation −→uv is added to the queue
Q. In the further steps, the inner while loop is executed. First, edge −→uv is dequeued
from Q. The existence of a reverse orientation −→

vu in the set F means that there
is an attempt to force already oriented edge and G is not a comparability graph.
Otherwise, −→vu is added to F , while {u, v} is removed from set E . Afterwards, edges
directly forced by −→uv are explored. For each vertex z that is adjacent to u or v (but
their common neighbors, except directly forced edges by−→

vz or−→zu), an oriented edge−→uz (or−→zv , respectively) is selected. If such an orientation has not been already added
to the queue nor to set F , it is enqueued to Q. The inner while loop is executed until
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Algorithm 3.1 Computation of a TRO of an undirected graph
Input: An undirected graph G = (V, E)

Output: A transitive orientation F of G
1: E ← E
2: F ← ∅
3: Q.clear()
4: do
5: select arbitrary edge {u, v} ∈ E
6: Q.push (

−→uv)

7: while Q is not empty do
8: −→uv = Q.pop()
9: if −→

vu ∈ F then
10: Output ‘Not a comparability graph’
11: return ∅
12: end if
13: F = F ∪ −→uv

14: E = E \ {u, v}
15: for each z=Ad j (u) such that [z �=Ad j (v) or −→

vz ∈ F] do
16: if −→uz /∈ {F ∪ Q} then Q.push (

−→uz)

17: end for
18: for each z=Ad j (v) such that [z �=Ad j (u) or −→zu ∈ F] do
19: if −→zv /∈ {F ∪ Q} then Q.push (

−→zv)

20: end for
21: end while
22: while E �= ∅
23: return F

the queue is empty. The outer do…while loop repeats the above procedure for all
unexplored edges of G, that is, while there are remaining edges in E .

Note, that the initial orientation of edge {u, v} is essential for the whole transitive
orientation. There is a possibility to reverse the orientation (−→vu, instead of−→uv). Such a
modification results in a reverse orientation of all remaining edges, which are forced
by −→

vu.
In opposition to the already known TRO algorithms, the presented solution does

not enumerate implication classes, nor partitions vertices into subsets.
Let us illustrate the above algorithm by an example. From the previous analysis we

know, that graph G1 is perfect. Now we check, whether it is a comparability graph.
At the beginning E = E = {{v1, v2}, {v1, v6}, {v2, v3}, {v2, v4}, {v2, v5}, {v3, v4},
{v4, v5}}, F = ∅, Q = ∅.

Let us start the procedure by selecting of {v1, v2}. Orientation −−→v1v2 of such an
edge is added to queue Q. In the inner do…while loop −−→v1v2 is dequeued and added
to set F , while {v1, v2} is removed from E . At the first for each loop, edge −−→v1v6 is
added to Q, since z = v6 is the only neighbor of v1. Execution of the second for each
loop results in a queue of three edges: −−→v3v2,

−−→v4v2,
−−→v5v2. At this point E = {{v1, v6},

{v2, v3}, {v2, v4}, {v2, v5}, {v3, v4}, {v4, v5}}, F = {−−→v1v2}, Q = {−−→v1v6,
−−→v3v2,

−−→v4v2,−−→v5v2}.
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Fig. 3.14 Transitive orientations of G1 (left) and G1 (right)

At the second execution of the inner do…while loop, edge {v1, v6} is explored.
Since F does not contain −−→v6v1, orientation

−−→v1v6 can be successfully added to F , and
{v1, v6} is removed from E . At this stage no edges are queued, since edge {v1, v2}
has been already explored and v6 does not have any neighbors but v1. Similarly, the
exploration of the three further edges results in adding −−→v3v2,

−−→v4v2,
−−→v5v2 to set F and

removing {v2, v3}, {v2, v4}, {v2, v5} from E , but no more edges are enqueued. Thus,
the first execution of the outer do…while loop is finished. At this stage E = {{v3, v4},
{v4, v5}}, F = {−−→v1v2,

−−→v1v6,
−−→v3v2,

−−→v4v2,
−−→v5v2}, Q = ∅.

Further execution of the algorithm results in exploration of the remaining edges
of E . Notice, that edge {v3, v4} can be oriented in any way. Let us make an orientation−−→v3v4, which directly forces the remaining unexplored edge {v4, v5} by the second for
each loop to the orientation −−→v5v4.

Finally, the algorithmfinishes exploration of all edgeswith a successful orientation
of G1. The transitive orientation F = {−−→v1v2,

−−→v1v6,
−−→v3v2,

−−→v4v2,
−−→v5v2,

−−→v3v4,
−−→v5v4} is

shown in Fig. 3.14 (left).
A complementary graph G1 of G1 is also transitively orientable: F = {−−→v1v3,

−−→v1v4,−−→v6v3,
−−→v1v5,

−−→v6v4,
−−→v6v2,

−−→v6v5,
−−→v3v5}, as illustrated in Fig. 3.14 (right).

Let us now analyze the computational complexity of the presented algorithm.
Clearly, both while loops (outer do…while and inner while) are executed |E | times,
once for each edge of the graph. Furthermore, each of the for each loops is executed
for all neighbors of a vertex, thus its complexity is at most O(�(G)), where �(G)

is the maximum degree of vertices in G. Thus, the time complexity of the whole
algorithm is bounded by O(|E | ∗ �(G)).

Theorem 3.2 Comparability graph recognition with application of the Algorithm3.1
is bounded by O(|E | ∗ �(G)), where �(G) is the maximum degree of a vertex.
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3.4.2 Coloring of Comparability Graphs

Let D = (V, F) be a directed and acyclic digraph.A strict partial ordering of vertices,
namely u > v, can be associated to the orientation F if and only if there exists a
nontrivial path in F from u to v. Furthermore, a height function h can be defined on
V in such a way:

h(v) =
{
0 if v is a sink (that is, if ∀ u = Ad j (v) : −→

vu /∈ F),
1 + max{h(u) | −→

vu ∈ F} otherwise.
(3.8)

Function h returns a proper (and optimal) vertex coloring of G = (V, F) (cf. [10,
22]). Thus, height h(v) assigns a color to vertex v. In other words, a color of a vertex
in a comparability graph is strictly associated to its height.

Let us now extend Algorithm3.1 by adding a computation of vertices height.
Algorithm3.2 searches for a transitive orientation F and simultaneously calculates
height h of vertices of an undirected graph G = (V, E). It is considered, that h is
designed as a vector of heights of all vertices. Particular vertices are enumerated
in a lexicographic order, that is, h[1] refers to the height of vertex a (or v1), h[2]
means the height of b (or v2), and so on. Moreover, set T holds a reverse topological
ordering of vertices V , that is, −→uv ∈ F =⇒ T (u) > T (v). It is updated each time
an oriented edge is added to F . Such an ordering is essential for the computational
complexity of the whole algorithm, which we shall show later.

Essential function IncHeight is executed each time an oriented edge −→uv is added
to F . Such a function is called only if a height of u is not greater than height of v.
If so, the height of u is increased and the function is recursively executed for each
neighbor z of u such that −→zu ∈ F .
A pseudo-code of IncHeight is shown as Algorithm3.3. Before calculation of the
computational complexity of function IncHeight, let us introduce axillary lemmas.
At the beginning we shall prove that the existence of partial ordering between any
three vertices is strict at any stage of execution of Algorithm3.2 for any graph, not
only a comparability graph. Further, the number of recursive calls of an algorithm
Algorithm3.3 is estimated.

Lemma 3.1 Let {u, v, z} be vertices of an undirected graph G = (V, E), and
{{u, v}, {u, z}} ∈ E. Now, suppose execution of Algorithm3.2. If there exists an
orientation −→uv ∈ F, then it is not possible to make an orientation −→zu, unless (v, z) ∈
E, even if G is not a comparability graph.

Proof Suppose that {v, z} /∈ E and {u, z} has not been oriented yet. Then addition
of −→uz to set F directly forces execution of the first for each loop of the algorithm,
where orientation −→uz is added to the queue and later to F . Existence of the reverse
orientation −→zu ∈ F immediately stops execution of the algorithm. �

Lemma 3.2 The number of recursive calls of Algorithm3.3 for a single vertex is at
most equal to its degree.
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Algorithm 3.2 Transitive orientation and simultaneous coloring of a graph
Input: An undirected graph G = (V, E)

Output: If G is transitively orientable: heights (coloring) of all vertices

1: T ← V
2: E ← E
3: F ← ∅
4: Q.clear()
5: for each v ∈ V do h[v]=0
6: end for
7: do
8: select arbitrary edge {u, v} ∈ E
9: Q.push (

−→uv)

10: while Q is not empty do
11: −→uv = Q.pop()
12: if −→

vu ∈ F then
13: Output ‘Not a comparability graph’
14: return h
15: end if
16: F = F ∪ −→uv

17: E = E \ {u, v}
18: T [v].erase()
19: T [u+1].insert(v)
20: if h[u] ≤ h[v] then h = IncHeight(z,u,h,V ,T ,F)
21: for each z=Ad j (u) such that [z �=Ad j (v) or −→

vz ∈ F] do
22: if −→uz /∈ {F ∪ Q} then Q.push (

−→uz)

23: end for
24: for each z=Ad j (v) such that [z �=Ad j (u) or −→zu ∈ F] do
25: if −→zv /∈ {F ∪ Q} then Q.push (

−→zv)

26: end for
27: end while
28: while E �= ∅
29: return h

Algorithm 3.3 Increasing of a vertex height during transitive orientation
Input: Vertices u, v, height h, sets V , T , transitive orientation F
Output: Updated heights of u and each its neighbor z such that −→zu ∈ F

1: function IncHeight(u,v,h,V ,T ,F)
2: h[u]=h[v]+1
3: for each z ∈ T such that z = Ad j (u) and −→zu ∈ F do
4: if h[z] ≤ h[u] then h = IncHeight(z,u,h,V ,T ,F)
5: end for
6: return h
7: end function
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Proof Let {u,v,z} be vertices of an undirected graph G = (V, E), and let −→zu ∈ F .
Let us suppose exploration of an edge {u, v}with an orientation−→uv, and let us assume
call of function IncHeight to increment the height of u. Since −→zu ∈ F , recursive call
of IncHeight to increment the height of z is executed. However, from Lemma 3.1
we know, that existence of orientations −→uv and −→zu directly forces existence of edge
{v, z}, whichmeans, that v must be a neighbor of z. Furthermore, all recursive calls of
IncHeight are executed only for neighbors of the initial vertex. Reverse topological
ordering T of vertices assures, that particular vertices are updated only once (vertices
are visited subsequently, starting from one of the highest ordering which prevents its
further exploration). Therefore, the total number of recursive calls of IncHeight for
the single vertex u of Algorithm3.2 is at most equal to its degree. �

Finally, we can estimate the computational complexity of the whole algorithm.
Clearly, the execution of function IncHeight can be done in O(�(G)) time. Since
each of the for each loops is also bounded by O(�(G)), we can form the following
theorem:

Theorem 3.3 Comparability graph recognition and simultaneous coloring is
bounded by O(|E | ∗ �(G)), where �(G) is the maximum degree of a vertex.

Proof Follows directly from Theorem 3.2, and Lemma 3.2. �
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Chapter 4
Hypergraphs and Exact Transversals

4.1 Main Definitions and Properties of Hypergraphs

A hypergraph can be seen as a generalization of a graph [1, 4, 7, 8]. Its edges, called
hyperedges, may be incident to an arbitrary number of vertices [5, 15].

Definition 4.1 (Hypergraph) Hypergraph H is defined by a pair

H = (V, E), (4.1)

where
V = {v1, . . . , vn} is an arbitrary, non-empty set of vertices;
E = {E1, . . . ,Em} is a set of hyperedges, subsets of V .

For example, let V = {v1, v2, v3, v4, v5, v6} and E = {E1,E2,E3}, where
E1 = {v1, v2, v3}, E2 = {v1, v5, v6} and E3 = {v4, v5}. Then H1 = {{v1, v2, v3},
{v1, v5, v6}, {v4, v5}} is a hypergraph on V , with the set of hyperedges E .

Similarly to graphs, one of the most popular representations of hypergraphs is
an incidence matrix, with rows referring to hyperedges, and columns to vertices. If
a matrix element equals 1, j-th hyperedge (j ∈ 1, . . . ,m) is incident to i-th vertex
(i ∈ 1, . . . , n). Otherwise the element equals 0

A =
{
1 if vi ∈ Ej

0 if vi /∈ Ej
, (4.2)

Incidence matrix AH1 for hypergraph H1 is shown in Fig. 4.1. Six rows of the
matrix refer to hypergraph vertices and three columns represent its edges.

Definition 4.2 (Simple hypergraph) Hypergraph H = (V, E) is simple if for an
arbitrary hyperedge Ei ∈ E , there is no hyperedge Ej ∈ E such that Ei ⊂ Ej.
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Fig. 4.1 Incidence matrix
AH1 of hypergraph H1

Let graph G(H) = (V,S) be a prime graph of a hypergraphH = (V, E) with the
same set of vertices pairwise connected by edges in such a way that S = {(v, v′) ∈
V 2 : v �= v′ and v, v′ ∈ E for some E ∈ E} (cf. [12]).
Definition 4.3 (Conformal hypergraph) A hypergraph H is conformal if all the
maximal cliques of its prime graph G(H) are edges of H (cf. [5]).

Hypergraph H1 is simple and conformal. Hypergraph H2 = {{v1, v2, v3},
{v1, v5, v6}, {v3, v4}, {v3, v4, v5}} is not simple. Hypergraph H3 = {{v1, v2, v3},
{v1, v5, v6}, {v3, v4, v5}} is simple but not conformal, since maximal clique
{v1, v3, v5} of its prime graph is not an edge of H3.

Definition 4.4 (Dual hypergraph) A dual hypergraphH∗ = (E,V) of a hypergraph
H = (V, E) is a hypergraph, whose vertices E correspond to the edges of H, and
hyperedges V correspond to the vertices of H. An incidence matrix AH∗ for dual
hypergraph H∗ is the transposed incidence matrix AH of hypergraph H.

Hypergraph H∗
1 = (E,V) dual to H1 contains three vertices E = {e1, e2, e3}

and six hyperedges V = {V1, . . . , V6}, where V1 = {e1, e2}, V2 = {e2}, V3 = {e1},
V4 = {e3}, V5 = {e2, e3}, and V6 = {e2}. Clearly,H∗

1 is neither simple nor conformal.

Definition 4.5 (Compatibility relation of vertices) Two or more vertices of a hyper-
graphH are compatible (or in compatibility relation) if they are not connected with
any edge.

Definition 4.6 (Independent set) A set I ⊆ V is an independent set of a hypergraph
H if all vertices that belong to I are compatible. Set I is called maximal if no I ′ ⊃ I
is an independent set ofH [9].

Let I denote the family of all maximal independent sets of the hypergraph H.

Definition 4.7 (Compatibility hypergraph)Acompatibility hypergraphHC = (V, I)
of H is a simple hypergraph with the same set of vertices V , and edge family {I: I
is a maximal independent set of H}.

A compatibility hypergraph of H1 is a hypergraph HC
1 = {{v1, v4}, {v2, v4, v6},

{v3, v4, v6}, {v2, v5}, {v3, v5}}. Its incidence matrix is shown in Fig. 4.2.

Definition 4.8 (Transversal) A transversal [2, 3, 5, 11, 13] of a hypergraph H =
(V, E) is a set T ⊆ V that has nonempty intersection with every edge: ∀E ∈ E :
|E ∩ T | ≥ 1. A minimal transversal is such a transversal which contains no other
transversal of H
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Fig. 4.2 Incidence matrix of
hypergraph HC

1

A transversal of a hypergraph is also called hitting set or vertex covering [5].

Definition 4.9 (Exact transversal) An exact transversal [9, 17, 18] of a hypergraph
H = (V, E) is a set X ⊆ V that has exactly one intersection with every edge of a
hypergraph: ∀E ∈ E : |E ∩ X| = 1.

There are five exact transversals of a hypergraph H1: {{v1, v4}, {v2, v4, v6},
{v3, v4, v6}, {v2, v5}, {v3, v5}}. Please note, that those five sets exactly match edges
of compatibility hypergraph ofH1. Furthermore, there are three exact transversals of
a hypergraph HC

1 : {{v1, v2, v3}, {v1, v5, v6}, {v4, v5}}, which exactly refer to edges
of its primary hypergraph H1. We will analyze this interesting property later.

Let us now point out some properties of hypergraphs that are obvious andwell known
(cf. [5, 6, 9, 12, 13, 17]):

Corollary 4.1 Let I denote the family of all maximal independent sets of the
hypergraph H = (V, E). Then each independent set has at most one intersection
with every edge E ∈ E of a hypergraph: ∀ I ∈ I : |I ∩ E| ≤ 1.

Corollary 4.2 Each exact transversal ofH is also an independent set of H.

Corollary 4.3 Let X denote the family of all exact transversals of the hypergraph
H, and let HC = (V, I) denote the compatibility hypergraph ofH. Then X ⊆ I.

In 1994 an essential paper regarding exact transversals was published. In [9] it
was proved that subsequent minimal exact transversals in an exact transversal hyper-
graph are computed in polynomial time. However, the number of all minimal exact
transversals may be exponential, thus calculation of all solutions is also classified as
exponential.

Definition 4.10 (Exact transversal hypergraph, xt-hypergraph) An exact transver-
sal hypergraph (or just xt-hypergraph) is a hypergraph in which all minimal transver-
sals are also exact transversals [9].

An extension of an exact transversal hypergraph is another structure, called
c-exact hypergraph, or just exact hypergraph. It was initially used in [19] and for-
mally defined in [18].

Definition 4.11 (Compatible exact hypergraph, c-exact hypergraph) A compatible
exact hypergraph (or just c-exact hypergraph) is a hypergraph in which any set
of compatible vertices (not connected with an edge) belongs to at least one exact
transversal.
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Hypergraph H1 is a compatible exact hypergraph. Moreover, its compatibility
hypergraph, HC

1 is also c-exact.

A c-exact hypergraph is a generalization of an xt-hypergraph. In this case, the con-
dition that each minimal transversal is also an exact transversal does not have to be
satisfied. However, any subset of vertices which are in a compatibility relation (i.e.,
not connected by any edge) must belong to at least one exact transversal. Hence,
each vertex of the c-exact hypergraph must belong to at least one exact transversal.

Clearly, both types of hypergraphs (xt-hypergraph and c-exact hypergraph) are
simple. Notice, that empty sets such as ∅ and {∅} are also classified as xt and c-exact
hypergraphs.

Next sections present main properties of c-exact hypergraphs in more details.
Furthermore, computational complexity of some problems related to the c-exact
hypergraphs is analyzed and discussed.

4.2 Properties of C-Exact Hypergraphs

In this section the most interesting properties of c-exact hypergraphs, that have been
never published in the literature before are presented.

At the beginning, we show that the compatibility hypergraph of a c-exact hyper-
graph can be achieved as a calculation of all exact transversals. Moreover, if the
c-exact hypergraph is conformal, its compatibility hypergraph is c-exact, as well.

Theorem 4.1 Let H = (V, E) be a c-exact hypergraph. Then each maximal inde-
pendent set I of H is also an exact transversal ofH.

Proof From the definition of c-exact hypergraphwe know that each set of compatible
vertices form at least one exact transversal. This means that each independent set I
ofH must belong to at least one exact transversal X ofH, in such a way, that I ⊆ X.
Thus, I is maximal if and only if I = X. ��
Theorem 4.2 Let H = (V, E) be a c-exact hypergraph, let HC denote the compat-
ibility hypergraph of H, and let X denote the family of all exact transversals of H.
Then HC = (V,X ).

Proof Follows directly from Corollaries4.2, 4.3, and Theorem 4.1.

From the above theorems and Corollary4.1, we can easily observe the following
properties of a c-exact hypergraph:

Corollary 4.4 Let I denote the family of all maximal independent sets of the c-exact
hypergraphH = (V, E). Then each independent set has exactly one intersection with
every edge E ∈ E of a hypergraph: ∀ I ∈ I : |I ∩ E| = 1.

Since each maximal independent set of a c-exact hypergraph is also an exact
transversal, we immediately have
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Corollary 4.5 Let X denote the family of all exact transversals of the c-exact
hypergraph H = (V, E). Then each exact transversal has exactly one intersection
with every edge E ∈ E of a hypergraph: ∀ X ∈ X : |X ∩ E| = 1.

Theorem 4.3 Let H = (V, E) be a c-exact and conformal hypergraph, let HC =
(V,X ) denote the compatibility hypergraph ofH, and let (HC)C denote the compat-
ibility hypergraph of HC . Then H = (HC)C .

Proof From the definition of an exact transversal, we know thatX is exact if ∀E ∈ E :
|E∩X| = 1.On the other hand, fromCorollary4.5wehave that∀X ∈ X : |X∩E| = 1.
It means that each set E ∈ E is an exact transversal (and maximal independent set) of
HC . SinceH is conformal, no more independent sets exist inHC andH = (HC)C .��
Theorem 4.4 Let H = (V, E) be a c-exact and conformal hypergraph, let HC

denote the compatibility hypergraph ofH. Then HC = (V,X ) is also c-exact.

Proof In the proof of the Theorem4.3 we have shown that each hyperedge of H
refers to an exact transversal (and maximal independent set) ofHC . Clearly, sinceH
is conformal, no more independent sets exist inHC . Therefore, any set of compatible
vertices in the hypergraphHC must form an exact transversal, which means thatHC

is c-exact. ��
HypergraphH1 is c-exact and conformal. Therefore, its compatibility hypergraph

HC
1 is also c-exact. Furthermore, siceHC

1 is conformal, its compatibility hypergraph

(HC
1 )

C
should be also c-exact. In a fact, a hypergraph (HC

1 )
C = H1 is c-exact.

4.3 Algorithms Related to C-Exact Hypergraphs

This section focusses on the computational complexity of algorithms related to
c-exact hypergraphs. Such properties were initially described in [18]. Now, we shall
extend them and prove formally.

At the beginning we will show that subsequent exact transversals of a c-exact
hypergraph can be computed in polynomial time. Notice, that due to the unique
properties of c-exact hypergraphs, such a problem can be presented in a different
way (like maximal independent set/minimal transversal computational complexity,
cf. [6, 10, 16, 18]).

Let us introduce additional notation. A reduced (or induced) hypergraph (by a
vertex vr) H−vr = (V ′, E ′) of H = (V, E) is a hypergraph with reduced sets of
hyperedges and vertices: ∀E ∈ E (E �� vr ⇒ E ∈ E ′) and ∀v ∈ V (�E ∈ E \E ′ : v ∈
E ⇒ v ∈ V ′). In other words, H−vr contains all edges of initial hypergraph H that
do not contain vertex vi. Furthermore, H−vr contains only these vertices of H that
do not belong to any of reduced edges. HypergraphH−vr can be simply achieved by
removing all edges that contain vertex vi and all vertices that are incident to them.
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Lemma 4.1 LetH = (V, E) be a c-exact hypergraph, then the reduced hypergraph
(by a vertex vr) H−vr = (V ′, E ′) is also c-exact.

Proof IfH−vr = {∅}, the hypergraph is obviously c-exact, so for the rest, we exclude
this case.

It is clear, that reduced hypergraph H−vr contains only those vertices of H that
are compatible with vr . All hyperedges that contain vr are removed and all vertices
that belong to those edges are removed as well.

On the other hand, all remaining vertices of H−vr could not belong to any of
the removed edges. Obviously, they are adjacent to the same hyperedges as before
reduction. Moreover, those edges also remain untouched. Furthermore, it is easy to
see, that compatibility relations between any set of vertices in the hypergraph H−vr

remain unchanged. Clearly, any transversal X ′ = X\{vr} ofH−vr formed during the
reduction is still exact. SinceH is a c-exact hypergraph, where any set of compatible
vertices belong to at least one exact transversal, the reduced hypergraph H−vr must
also be c-exact. ��
Lemma 4.2 An exact transversal in a c-exact hypergraph can be computed in poly-
nomial time.

Proof Consider a method shown in Algorithm4.1 that generates a single exact
transversal Xvi in a hypergraphH containing n vertices and m edges. The algorithm
starts from a vertex vi.

Algorithm 4.1 Computation of a single exact transversal
Input: A c-exact hypergraph H
Output: An exact transversal Xvi

1: Xvi = ∅
2: v = vi
3: while H �= ∅ do
4: Xvi = Xvi ∪ {v}
5: H = H−vi

6: if H �= ∅ then
7: select any vertex v ∈ V
8: end if
9: end while
10: return Xvi

From Lemma4.1 it is easy to see that Algorithm4.1 permits us to find a sin-
gle transversal in a c-exact hypergraph. The consecutive vertices are added to the
transversal Xvi at each execution of the while loop. This process is repeated until the
hypergraph is completely reduced, which means that set Xvi forms an exact cover
(cf. [14]).

The main loop of the presented algorithm is executed at most n times. Clearly, the
operation H = H−vr (reduction of hyperedges and all vertices that belong to them)
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is computable in time O(mn). Thus, the runtime of the whole algorithm is bounded
by O(mn2). ��
Theorem 4.5 Subsequent exact transversals in a c-exact hypergraph can be com-
puted in polynomial time.

To clarify the proof, we will operate on the algorithm that generates all subse-
quent exact transversals. Notice that Algorithm4.2 calculates all exact transversals
in a c-exact hypergraph. The subsequent transversals are generated in polynomial
time. Notice, that the total number of all exact transversals in a hypergraph can be
exponential [9].

Proof Let us extend previous method of a single exact transversal computation.
Algorithm4.2 generates subsequent exact transversals in a hypergraphH containing
n vertices and m edges.

Algorithm 4.2 Computation of subsequent exact transversals
Input: A c-exact hypergraph H, partial exact transversal Xd
Output: Subsequent exact transversals

1: if H = ∅ then
2: output Xd
3: return
4: else
5: select edge Ee that contains the fewest vertices
6: for all vi such that vi ∈ Ee do
7: Xd = Xd ∪ {vi}
8: H = H−vi

9: call recursively Algorithm3.2
10: end if

The presented method operates in the similar manner as Algorithm4.1, however
after finding the first exact transversal, it still looks for the subsequent transversals.
The selection of an edge with the fewest vertices and loop for are essential steps of
the algorithm. The subsequent recurrences are executed for the subsequent vertices vi
that belong to Ee. Notice, that any pair of vertices vi ∈ Ee are incompatible, because
they are connected by an edge. Simply, the selection process of an edge that contains
the fewest vertices can be executed in time O(mn) (we assume that calculation of
the number of vertices in each edge is needed). As it was already shown (see proof
of Lemma4.2), the reductionH = H−vi is also performed in time O(mn). Thus, the
runtime of a single recurrence is quadratic (O(mn)).

The maximum number of recursive calls is equal to n. If hypergraphH is empty,
it means that the transversal was found and the algorithm recursively returns to a
higher level. Summarizing, it is easy to see, that the next exact transversal will be
computed in a linear recursive calls of the algorithm (O(n)). Thus, the subsequent
transversals are calculated in time O(mn2). This means that the subsequent exact
transversals in a c-exact hypergraph can be computed in polynomial time. ��
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The method is similar to the general algorithm of exact covering calculation, pro-
posed by Knuth in [14], where effective implementation in programming languages
is presented as well. Knuth proved that such an algorithm enables finding all the
exact transversals in any hypergraph (cf. [14]). We showed, that in the case of exact
hypergraphs, the subsequent exact transversals are found in polynomial time, which
is not possible in general case of hypergraphs [5, 9].
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Chapter 5
Analysis of Concurrent Control Systems

5.1 State Equation and Place Invariants

The dynamic behavior of Petri nets can be expressed by the set of algebraic equations
[24]. In such an approach, the net is represented by a matrix. Particular markings
(represented by nonnegative integers) can be achieved by solving the linear equations
[19, 21, 28]. At the beginning, let us introduce necessary definitions [9, 15, 19–21,
24, 28]. Please note, that all presented notations refer to pure and safe Petri nets.

Definition 5.1 (Incidence matrix of a Petri net) An incidence matrix of a Petri net
PN = (P,T ,F,M0) with n = |P| places and m = |T | transitions is an Am×n matrix
(where m refers to rows, and n refers to columns) of integers, given by

aij =

⎧
⎪⎨

⎪⎩

−1, (pi, tj) ∈ F

1, (tj, pi) ∈ F

0, otherwise

.

A cell aij of matrix A is connected with place pi and transition tj. The columns of
the matrix correspond to places, while the rows refer to transitions of a Petri net (in
some notations such values are reversed).

Recall Petri net PN1, presented in Fig. 2.1. The incidence matrix APN1 for this net
is shown in Fig. 5.1.

It is easy to notice that i-th rowof the incidencematrix indicate the input and output
places for the transition i. For example, transition t2 moves tokens from places p2
and p4 to p1 and p5. Similarly, j-th column of the matrix refers to the input and output
transitions for the place pj. For example, place p3 achieves a token by firing transition
t1, while execution of t3 removes it.
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Fig. 5.1 Incidence matrix
APN1 for Petri net PN1

p1 p2 p3 p4 p5 p6

APN1 =

⎡
⎣

−1 0 1 1 0 −1
1 −1 0 −1 1 0
0 1 −1 0 −1 1

⎤
⎦

t1
t2
t3

From the mathematical point of view, k-th marking (denoted asMk) in a safe Petri
net can be seen as a n × 1 binary vector

−→
Mk , where n means the number of places

of the net. The i-th entry of
−→
Mk indicates whenever the place is marked after k-th

firing of transitions in firing sequence. We shall denote the particular k-th firing by
σk (and a corresponding binary vector by −→σk ), while the whole firing sequence is
marked by σ . Changes between consecutive markings may be calculated from the
linear equation −→

Mk = −−→
Mk−1 + AT • −→

σk , (5.1)

where Mk is the destination marking (reachable from Mk−1), and AT is transposed
incidence matrix of a Petri net.

Let us explain the above equation by an example. Recall all the reachablemarkings
of PN1, shown in Fig. 2.2. Such markings can be expressed by the binary vectors−→
M0 = [110001]T , −→

M1 = [011100]T , −→
M2 = [101010]T . Assume, that we try to

compute the value of state M2. Such a marking is reachable from M1 by firing t2,
which means that −→σ2 = [010]T for T = {t1, t2, t3}. Thus, the state equation can be
expressed as follows:

−→
M1 + AT • −→

σ2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
1
1
1
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 1 0
0 −1 1
1 0 −1
1 −1 0
0 1 −1

−1 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

•
⎡

⎣
0
1
0

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
1
1
1
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
−1
0

−1
1
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
1
0
1
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −→
M2.

Finally, we can formally define the state equation of a Petri net for the destination
marking Mk that is reachable from M0.

Definition 5.2 (State equation of a Petri net) A state equation of a Petri net is defined
as a linear equation −→

Mk = −→
M0 + AT • −→

x (5.2)

http://dx.doi.org/10.1007/978-3-319-45811-3_2
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where:

• M0 is an initial marking,
• Mk is a destination marking, that is reachable fromM0,
• AT is a transposed incidence matrix of a Petri net,
• −→x is the Parikh vector of a firing sequence σ such that M0σMk .

For the net PN1 computation of the stateM2 from the initial markingM0 requires
a firing sequence of transitions t1 and t2, thus

−→
x = [110]T . The state equation for

M2 is calculated as follows:

−→
M0 + AT • −→

x =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1
0
0
0
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 1 0
0 −1 1
1 0 −1
1 −1 0
0 1 −1

−1 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

•
⎡

⎣
1
1
0

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
1
0
1
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −→
M2.

Definition 5.3 (Place invariant) Place invariant (p-invariant) of a Petri net PN is a
vector −→y of nonnegative integers that solves the equation

−→
y • AT = 0, (5.3)

where
−→
y �= 0 and A is an incidence matrix of a Petri net. Each entry of −→y refers to

a place of PN . The set of places that correspond to nonzero values of a p-invariant
is called its support and shall be denoted by I . A p-invariant is minimal if no proper
nonempty subset of its support is a support of another p-invariant [20, 24].

Place invariants computation is nowadays one of the most popular analysis meth-
ods of a Petri net. Among the others, p-invariants are used to validate important
properties of Petri nets, such as boundness and necessary condition of liveness [20,
24]. Furthermore, they can be applied to the prototyping flow of concurrent systems
in various areas, like manufacturing [11], robot-control applications [22] or trans-
portation [13, 23]. In this book we shall show that p-invariants are also useful in
prototyping of concurrent controllers implemented in reprogrammable devices, such
as FPGAs.

Let us now present the most popular algorithm of place invariant computation.
The method was initially shown in [20]. It is based on the integer linear algebra, and
permits to obtain all the p-invariants of a Petri net.
The whole procedure can be divided into the following steps [20]:

1. Initialization: Form a unit matrix Q = [D|AT ]. Initially, D is equal to an identity
matrix In, wheren is the number of places of thePetri net.MatrixAT is a transposed
incidence matrix of a Petri net with rows corresponding to places i = {1, . . . , n}
and columns j = {1, . . . ,m} referring to the transitions of Petri net, where m is
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equal to the number of transitions of the Petri net. Matrix Q is a base for further
linear computation.

2. Minimal invariants computation: For each column j repeat the procedure:

(a) Find row pairs that annul the j-th column (i.e., their sum is equal to 0) and
append it to the matrix Q.

(b) Delete all rows of Q in which the intersection with j-th column is not equal
to 0.

(c) Eliminate non-minimal invariants by reducing redundant rowsofQ (i.e., rows
that binary cover the other ones).

The above algorithm assures obtaining all the minimal invariants in a Petri net
[20]. The final results can be achieved from the matrix D, which rows correspond to
the obtained invariants.
It is assumed, that only minimal place invariants are taken into account in case of
analysis and decomposition of concurrent control systems described in this book.
Therefore, from this point, short notation place invariant refers to a minimal place
invariant, unless stated otherwise.
Let us explain the algorithm by an example. Figure5.2 shows the initial unit matrix
Q for the Petri net PN1. There is also current support value of invariants presented.

At the first interaction of the algorithm, transition t1 is examined. Four rows (first,
third, fourth, and sixth) of the matrix are removed fromQ, while row pairs that annul
the first column (t1) are appended to Q. Notice, that the second and the fifth rows of
the matrix remain untouched. The result of such an operation is illustrated in Fig. 5.3.

Transition t2 is checked at the second interaction of the algorithm. Similarly to
the examination of t1, four rows (first, second, third, and the last one) are removed
from the matrix, and four new values are added to Q. Figure5.4 shows the resultant
matrix. Notice, that the last row binary covers the first and the second one. Therefore,
it is reduced from the matrix Q.

At the third interaction, the last transition is examined. No further operation is
performed, since intersection of t3 with all the rows is equal to 0. Finally, five place
invariants have been obtained

• −→y1 = [100100], (with support of the set of places) I1 = {p1, p4},
• −→y2 = [001001], I2 = {p3, p6},

p1 p2 p3 p4 p5 p6 t1 t2 t3 current support

Q =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 −1 1 0
0 1 0 0 0 0 0 −1 1
0 0 1 0 0 0 1 0 −1
0 0 0 1 0 0 1 −1 0
0 0 0 0 1 0 0 1 −1
0 0 0 0 0 1 −1 0 1

⎤
⎥⎥⎥⎥⎥⎦

{p1}
{p2}
{p3}
{p4}
{p5}
{p6}

Fig. 5.2 The initial matrix Q of Martinez–Silva algorithm for Petri net PN1
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p1 p2 p3 p4 p5 p6 t1 t2 t3 current support

Q =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 −1 1
0 0 0 0 1 0 0 1 −1
1 0 1 0 0 0 0 1 −1
1 0 0 1 0 0 0 0 0
0 0 1 0 0 1 0 0 0
0 0 0 1 0 1 0 −1 1

⎤
⎥⎥⎥⎥⎥⎦

{p2}
{p5}

{p1, p3}
{p1, p4}
{p3, p6}
{p4, p6}

Fig. 5.3 Matrix Q of after the first interaction of an algorithm

p1 p2 p3 p4 p5 p6 t1 t2 t3 support

Q =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 1 0 0 0 0 0
0 0 1 0 0 1 0 0 0
0 1 0 0 1 0 0 0 0
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
1 0 1 1 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

{p1, p4}
{p3, p6}
{p2, p5}

{p1, p2, p3}
{p4, p5, p6}

{p1, p3, p4, p6}

Fig. 5.4 The output matrix Q of Martinez–Silva algorithm for Petri net PN1

• −→y3 = [010010], I3 = {p2, p5},
• −→y4 = [111000], I4 = {p1, p2, p3},
• −→y5 = [000111], I5 = {p4, p5, p6}.
Let us now present invariant analysis result for the other concurrent control systems.
A model of milling machine presented in Fig. 2.4 and described by the interpreted
Petri net PN2 results in eight invariants

• −→y1 = [111001000000000000011], I1 = {p1, p2, p3, p6, p20, p21},
• −→y2 = [100111000000000000011], I2 = {p1, p4, p5, p6, p20, p21},
• −→y3 = [111000111111100000011], I3 = {p1, p2, p3, p7, . . . , p13, p20, p21},
• −→y4 = [100110111111100000011], I4 = {p1, p4, p5, p7, . . . , p13, p20, p21},
• −→y5 = [111000000000011100011], I5 = {p1, p2, p3, p14, p15, p16, p20, p21},
• −→y6 = [100110000000011100011], I6 = {p1, p4, p5, p14, p15, p16, p20, p21},
• −→y7 = [111000000000000011111], I7 = {p1, p2, p3, p17, p18, p19, p20, p21},
• −→y8 = [100110000000000011111], I8 = {p1, p4, p5, p17, p18, p19, p20, p21}.
Furthermore, three p-invariants are achieved during analysis of the concurrent con-
troller of traffic light system illustrated by the net PN3 from Fig. 2.6

• −→y1 = [011100], I1 = {p2, p3, p4},
• −→y2 = [000011], I2 = {p5, p6},
• −→y3 = [111010], I3 = {p1, p2, p3, p5}.
Place invariant usually (but not always) indicate sequential areas of the prototyped
control systems. Thus, they are closely related to the state machine components. We

http://dx.doi.org/10.1007/978-3-319-45811-3_2
http://dx.doi.org/10.1007/978-3-319-45811-3_2
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(a) (b) (c)

Fig. 5.5 Example of exponential explosion in place invariants computation

shall enhance such a property in Sect. 5.3, where the sequentiality relation between
places in a Petri net is analyzed.
The main bottleneck of place invariants analysis is exponential computational com-
plexity [20, 33]. Let us illustrate such a problem by an example. Consider three Petri
nets shown in Fig. 5.5. The left-most one (a) results in nine place invariants. Its slight
modified version is presented in the middle (b). Addition of three places and one
transition extends the number of achieved p-invariants to 27. Further enhancement
of the net by additional three places (c) results in 81 place invariants.

5.2 Concurrency Analysis

Recall Definition2.16 fromChap.2. It says, that two places of an interpreted Petri net
are concurrent if there exists a state, where both places are marked simultaneously.
Such a property can be easily and efficiently represent by an undirected graph. Let
us define such a structure.

Definition 5.4 (Concurrency graph) Concurrency graph GC = (P,E) of an inter-
preted Petri net PN = (P,T ,F,M0,X,Y) is a graph which vertices refer to the
places of the net. Two vertices are connected by an edge if corresponding places are
concurrent in PN , i.e., there exists a reachable marking, where both places are simul-
taneously marked. The relation represented by the set of edges is the concurrency
relation and is denoted as ||.

Figure5.6 (left) shows an exemplary concurrency graph GC1 for Petri net PN1

(from Fig. 2.1) and its neighborhood matrix (right). Six vertices correspond to the
places of the Petri net. Each two vertices are connected by an edge if they are
concurrent. There are totally nine edges inGC1 , that refer to the concurrency relation.

http://dx.doi.org/10.1007/978-3-319-45811-3_2
http://dx.doi.org/10.1007/978-3-319-45811-3_2
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p3

p4

p5

p6

p1

p2

p1 p2 p3 p4 p5 p6

NGC1
=

⎡
⎢⎢⎢⎢⎢⎣

0 1 1 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0
0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

p1
p2
p3
p4
p5
p6

Fig. 5.6 Concurrency graph for PN1 (left) and its neighborhood matrix (right)

Such a relation can be clearly illustrated by an adjacency matrix of the concurrency
graph, as it is presented in Fig. 5.6 (right). For example place p1 is concurrent to four
places: p2, p3, p5, p6, which can be shortly denoted as p1||p2, p1||p3, p1||p5, p1||p6.

More complicated example is shown in Fig. 5.7, where adjacency matrix of con-
currency graph GC2 for the net PN2 is presented. There are 20 places in the net that
correspond to the rows and columns of thematrix. Please note that concurrency graph
consists of |E| = 68 edges.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21

NGC2
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p1
p2
p3
p4
p5
p6
p7
p8
p9
p10
p11
p12
p13
p14
p15
p16
p17
p18
p19
p20
p21

Fig. 5.7 Neighborhood matrix of concurrency graph for PN2
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Fig. 5.8 Incidence matrix of
a concurrency hypergraph
for PN1

p1 p2 p3 p4 p5 p6

AHC1
=

⎡
⎣
1 1 0 0 0 1
0 1 1 1 0 0
1 0 1 0 1 0

⎤
⎦

M0
M1
M2

A generalization of the concurrency graph is a concurrency hypergraph, initially
introduced in [32] and formally defined in [31]. Similar to the graph, vertices of the
concurrency hypergraph refer to the places of the Petri net. However, its hyperedges
may by incident to more than two vertices.

Definition 5.5 (Concurrency hypergraph) Concurrency hypergraphHC = (P,M)

of an interpreted Petri net PN = (P,T ,F,M0,X,Y) is a hypergraph, which vertices
refer to the places of the net. The set of hyperedges corresponds to all reachable
markings in the Petri net: M = {M0, . . . ,Mk−1}, where M0 is an initial marking,
and k is the number of all reachable markings in PN .

Clearly, concurrency hypergraph refers to the concurrency set (cf. Definition2.18)
of a Petri net. Therefore, it can be directly obtained from the reachability graph (cf.
Definition2.19) of the net.

Figure5.8 illustrates the concurrency hypergraph for the net PN1. There are six
vertices that refer to the net places: P = {p1, . . . , p6}. Three hyperedges directly
correspond to all reachable markings: M = {M0,M1,M2}.

Let us nowpresent a universal algorithm for obtaining the concurrency hypergraph
for a Petri net. The method based on the typical idea of computation of all reachable
markings in the Petri net, taken from [5].

Algorithm 5.1 Computation of the concurrency hypergraph for a Petri net
Input: Petri net PN = (P,T ,F,M0)

Output: Concurrency Hypergraph HC = (P,M)

1: H ← {M0}
2: Q.push({M0})
3: while Q is not empty do
4: {M} = Q.pop()
5: for all t ∈ M[> do
6: generate M ′ withM[t>M ′
7: if M ′ /∈ H then
8: Q.push({M ′})
9: H = H ∪ {M ′}
10: end if
11: end for
12: end while

Unfortunately, the number of reachable markings in the Petri net may be expo-
nential with respect to the size of the net (expressed for example by the number of

http://dx.doi.org/10.1007/978-3-319-45811-3_2
http://dx.doi.org/10.1007/978-3-319-45811-3_2


5.2 Concurrency Analysis 67

places). Such a situation is called state explosion problem [27]. For example, the
number of hyperedges in the concurrency hypergraphHC2 of the net PN2 is equal to
|M| = 70, which is more, than the number of edges in the corresponding concurrency
graph (|E| = 68).
Let us illustrate Algorithm 5.1 by an example. Recall interpreted Petri net PN3 from
Fig. 2.6. The initial marking of the traffic light system involves the following places:
M0 = {p1, p4, p6}. Such a state forms the first edge of the concurrency hypergraph
HC3 and is enqueued in Q. At the first interaction of the while...do loop, M0 is
dequeued for the analysis. There are two transitions enabled in this stateM0[t1>M1

and M0[t4>M2, where M1 = {p2, p6} and M2 = {p4, p5}, respectively. Since both
markings have not been included in the concurrency hypergraph, they are enqueued
in Q and added to HC3 . At the second execution of the while...do loop, marking M1

is dequeued. There is only one enabled transition at this state: M1[t2>M3, where
M3 = {p3, p6}. MarkingM3 is enqueued inQ and added toHC3 . Further interactions
of the while...do loop include analysis of enqueued markings: Q = {M2,M3}, but
no more hyperedges are added toHC3 . Therefore, the final concurrency hypergraph
consists of four hyperedges, as it is shown in Fig. 5.9.

There are several techniques, that can be used to avoid the state explosion during
formation of the reachability set. Let us briefly present the most popular ones. The
idea of net reduction considers simplification of the initial concurrent system, by
application of fusion of series (or parallel) of places (or transitions) [1, 24]. Such a
method is especially valuable in the analysis of the behavior of a Petri net, since it
preserves liveness and safeness of the initial system [2–4, 15, 24, 26, 35]. However,
it is not directly oriented on the reachability set formation, but can be useful in
conjunction with other techniques.

Other popular method of analysis bases on the generation of the reduced reach-
ability graph [2–4, 6, 14–16, 24, 26, 29, 30, 35]. The aim of this technique is
to reduce the time and the space during formation of the reachability graph [12].
Unfortunately, very often formation of the reduced graph does not preserve the full
information about the concurrency relation between particular places [15].Moreover,
the size of the reduced graph can be still to large to be computed [12].

The above techniques (reduction of the initial net, formation of the reduced reach-
ability graph) are not considered in this book. However, in some cases they can be
successfully applied to the presented analysis and decomposition methods of con-
current systems [1, 15, 31, 32, 34, 35]

Fig. 5.9 Incidence matrix of
a concurrency hypergraph
for PN1

p1 p2 p3 p4 p5 p6

AHC3
=

⎡
⎢⎢⎣
1 0 0 1 0 1
0 1 0 0 0 1
0 0 0 1 1 0
0 0 1 0 0 1

⎤
⎥⎥⎦

M0
M1
M2
M3

http://dx.doi.org/10.1007/978-3-319-45811-3_2


68 5 Analysis of Concurrent Control Systems

Instead, we will present other method of concurrency (and further sequentiality)
analysis. The idea relies on the structural concurrency relation in the net and was
initially proposed in [17] with further enhancement in [18].

Definition 5.6 (Structural concurrency relation) Structural concurrency relation
||A ⊆ P×P on the set of placesP of an interpretedPetri netPN = (P,T ,F,M0,X,Y)

is the smallest symmetric relation such that

1. ∀p, p′ ∈ P : (p ∈ M0 ∧ p′ ∈ M0) ⇒ (p, p′) ∈ ||A;
2. ∀t ∈ T ∀(p, p′) ∈ t• : p �= p′ ⇒ (p, p′) ∈ ||A;
3. ∀p ∈ P ∀t ∈ T : ((∀p′ ∈ •t : (p, p′) ∈ ||A) ⇒ (∀p′′ ∈ t• : (p, p′′) ∈ ||A)).

The three rules presented above permit to obtain a structural concurrency relation
of the net. The first one simply checks the initial state, since any two places marked
atM0 are structurally concurrent. The second condition states, that transition output
places are structurally concurrent. The third rule implies that if all the input places
of the transition are structurally concurrent to a particular place, then all the output
places of such a transition are structurally concurrent to this place.

Algorithm 5.2 presents the idea of computation of ||A of a Petri net. The compu-
tational complexity of the algorithm is bounded by O(x5), where x is the number of
places and transitions of the net [17]. Further estimations and improvements of the
algorithm have shown, that such a complexity can be even decreased for EFC-nets
to O(x3) [18].

Algorithm 5.2 Computation of the structural concurrency relation ||A
Input: Petri net PN = (P,T ,F,M0)

Output: Concurrency relation ||A ⊆ P × P
1: ||A = {(p, p′) : (p ∈ M0 ∧ p′ ∈ M0)} ∪ ⋃

t∈T t• × t•
2: repeat
3: R = ||A;
4: T = T
5: while T �= ∅ do
6: choose t ∈ T
7: P := {p′ ∈ P : ∀p ∈ •t (p, p′) ∈ ||A}
8: ||A := ||A ∪ {(p, p′), (p′, p) : p ∈ t•, p′ ∈ P}
9: T = T \{t}
10: end while
11: until R = ||A

Unfortunately, the structural concurrency relation does not always coincide with
real concurrency relation. Consider the net presented in Fig. 5.10 (a), taken from
[17]. Its concurrency graph is shown in Fig. 5.10 (b), while ||A relation is illustrated
in Fig. 5.10 (c). Clearly, ||A contains redundant pairs of places that are not concurrent.
Particulary, {(p1, p4), (p2, p4), (p3, p4)} ∈ ||A, while none of those are in concurrency
relation ||. Thus, for this net we have || �= ||A. Moving on, there are two important
theorems that state about coincidence of relations || and ||A:
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p2 p3 p4

t4 t5 t6

p1

t1 t2 t3

p1 p2

p4 p3

p1 p2

p4 p3

(a) (c)(b)

Fig. 5.10 Example of a net (taken from [17]) where ||A does not coincide with ||

Theorem 5.1 [18] For every net system, || ⊆ ||A. �

Theorem 5.2 [18] The relations || and ||A coincide for live and bounded EFC-nets.
Since every interpreted Petri net is live and safe (and therefore bounded), we have

immediately the following:

Theorem 5.3 The relations || and ||A coincide for interpreted EFC-nets.

Proof Follows directly from Theorem5.2. �

5.3 Sequentiality Analysis

Based on Definition2.17, two places are sequential if there is no state where both
places are marked simultaneously. Similarly to the concurrency, such a property can
represent by an undirected graph.

Definition 5.7 (Sequentiality graph) Sequentiality graph GS = (P, E) of an inter-
preted Petri net PN = (P,T ,F,M0,X,Y) is a graph, which vertices refer to the
places of the net. Two vertices are connected by an edge if corresponding places are
sequential in PN , i.e., they are not simultaneously marked in any reachable marking.

Sequentiality graphGS1 forPN1 and its neighborhoodmatrix is shown in Fig. 5.11.
Six edges illustrates the sequentiality relation in the net. Since concurrency and
sequentiality relation are complementary, graph GS1 is complementary to GC1 and
vice versa. Let us formally define such a property.

Definition 5.8 (Complement of a concurrency/sequentiality graph) Let GC =
(P,E) be a concurrency graph of an interpreted Petri net PN = (P,T ,F,M0,X,Y),
and let GS = (P, E) be a sequentiality graph of PN . Then, GC = GS and E = E .
Similarly, GS = GC and E = E.

http://dx.doi.org/10.1007/978-3-319-45811-3_2
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p3

p4

p5

p6

p1

p2

p1 p2 p3 p4 p5 p6

NGS1
=

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎦

p1
p2
p3
p4
p5
p6

Fig. 5.11 Sequentiality graph for PN1 and its neighborhood matrix

Definition 5.9 (Structural sequentiality relation) Structural sequentiality relation of
an interpreted Petri net PN = (P,T ,F,M0,X,Y) is the smallest symmetric relation
such that ∀p, p′ ∈ P : (p, p′) /∈ ||A ⇒ (p, p′) are in the structural sequentiality
relation (are structurally sequential).

Recall Theorem5.1. It states, that for every net system, || ⊆ ||A. That is, the real
concurrency relation is a subset of the structural one. Since concurrency and sequen-
tiality relations are complementary, we can formulate a very important property

Theorem 5.4 For every net system, the structural sequentiality relation is a subset
of the real sequentiality relation. �

Proof Follows from Theorem5.1 and Definition2.15. �

Note, that sequentiality relation is closely related to state machine components.
Each place of the particular component is sequential to the other places that belong to
such SMC. Let us formally define the set of all SMCs as a sequentiality hypergraph.
Such a structure was initially proposed in [31], now we will define it more formally.

Definition 5.10 (Sequentiality hypergraph) Sequentiality hypergraphHS = (P,S)

of an interpreted Petri net PN = (P,T ,F,M0,X,Y) is a hypergraph, which vertices
refer to the places of the net. The set of hyperedges directly corresponds to all state
machine components in the Petri net: S = {S1, . . . , Sl}, where l is the number of all
SMCs in PN .

An incidence matrix for the sequentiality hypergraph HS1 is shown in Fig. 5.12.
Each hyperedge refer to an SMC, thus there are four state machine components in
PN1.

Furthermore, Fig. 5.13 illustrates a matrix of sequentiality hypergraph HS2 for
PN2. Please note, that there are only |S| = 8 edges inHS2 , since concurrency hyper-
graph for this net contains 70 hyperedges.

http://dx.doi.org/10.1007/978-3-319-45811-3_2
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p1 p2 p3 p4 p5 p6

AHS1
=

⎡
⎢⎢⎣
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 1 1

⎤
⎥⎥⎦

S1
S2
S3
S4

Fig. 5.12 Incidence matrix of a sequentiality hypergraph for PN1

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21

AHS2
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1
1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 0 0 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1
1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1
1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

S1
S2
S3
S4
S5
S6
S7
S8

Fig. 5.13 Incidence matrix of a sequentiality hypergraph for PN2

Finally, let us introduce a very important association between support of a place
invariant and a state machine component in a Petri net. Clearly, both sets are closely
related. However, not all obtained p-invariants refer to proper SMCs. Invariants are
calculated basing only on the structure of the net, thus markings are not taken into
account. For example, invariant−→y4 in net PN1 supports places p1 and p2 (cf. Fig. 5.4).
Both places are initially marked and they are concurrent. Therefore, such an invariant
does not form a proper SMC.

Indeed, an SMCcorresponds to the support of the p-invariant that contains a single
token in the initial marking. Such a relation was theoretically proved in [10], while
its practical application can be found in [7, 8, 25]. Let us formulate it formally for
the interpreted Petri nets.

Theorem 5.5 A state machine component of an interpreted Petri net corresponds
to the support of place invariant containing exactly one token in the initial marking.

Proof Follows directly from Proposition 5.7 [10]. �

There are four place invariants in PN1 (cf. Fig. 5.4) that contain exactly one token
in the initial marking:−→y1 ,−→y2 ,−→y3 ,−→y5 . According to the above theorem, their supports
I1 = {p1, p4},{p3, p6}, I2 = {p2, p5}, I3 = {p1, p2, p3}, I5 = {p4, p5, p6} correspond
to the SMCs in this net. Indeed, four hyperedges ofHS1 directly refer to the supports
of the obtained invariants.

Furthermore, all eight supports of invariants of PN2 contain exactly one token in
the initial marking. Therefore, they correspond to the edges of HS2 .
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5.4 Properties of Concurrency and Sequentiality
Hypergraphs

This section presents properties and associations between concurrency and sequen-
tiality hypergraphs of an interpreted Petri net.

At the beginning, let us introduce the essential theorem regarding exact transver-
sals in a concurrency hypergraph and state machine components of an interpreted
net. Similar property was initially proposed in [31], but restricted to MG-nets only.
Let us extend it for any well-formed Petri net.

Theorem 5.6 An exact transversal of the concurrency hypergraph of a well-formed
Petri net directly refers to the set of places of a state machine component in this net.

Proof Let HC = (P,M) be a concurrency hypergraph of a well-formed Petri net
PN = (P,T ,F,M0), and let X be an exact transversal of H.

To prove the whole theorem, we shall prove, that X satisfies all six conditions of
the set of places that form a state machine component (according to Definition2.25).

From the definition of an exact transversal we know, that X intersects each hyper-
edge of the concurrency hypergraph. Since HC is a hypergraph on vertices P and
hyperedges M, the set X contains places of a Petri net that intersects each marking
exactly once. It implies properties directly referring to the definition of state machine
component

(a) all the places of X are sequential, since they are not marked simultaneously (1st

condition of an SMC),
(b) X ⊆ P (3rd condition),
(c) only one place of X is initially marked at M0 (6th condition).

On the other hand, we know that PN is well-formed, thus it is live, safe and
reversible. It means that each marking is reachable from any other marking. Thus,
each place of X is reachable from any other place (since it intersects each marking
exactly once). It finally implies the remaining conditions of SMC

(d) X is strongly connected (2nd condition),
(e) there exists a set of transitions T ′ ∈ T that permits to obtain each reachable

marking (4th condition),
(f) there exists a set of arcs F ′ ∈ F that connects all the places X and transitions T ′

(and thus permits to obtain each reachable marking, 5th condition).

Since all the conditions are satisfied, exact transversal X directly refers to the set of
places of an SMC. �

Since every interpreted Petri net is well formed, we have immediately the follow-
ing:

Theorem 5.7 An exact transversal in the concurrency hypergraph of an interpreted
Petri net forms an edge in the sequentiality hypergraph.

http://dx.doi.org/10.1007/978-3-319-45811-3_2
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Proof Follows directly from Theorem5.6 and Definition 2.15. �

Based on the above theorem we can easily observe the following association
between concurrency and sequentiality hypergraphs:

Theorem 5.8 An exact transversal in the concurrency hypergraph of an interpreted
Petri net forms an edge in the sequentiality hypergraph.

Proof Follows directly from Theorem5.7 and Definition 5.10. �

There are four exact transversals in PN1:X = {X1, . . . ,X4}, where X1 = {p1, p4},
X2 = {p2, p5}, X3 = {p3, p6} and X1 = {p4, p5, p6}. They refer to the four SMCs,
that can be obtained in such a net (cf. Fig. 2.8). Furthermore, all of achieved exact
transversals directly correspond to hyperedges of the sequentiality hypergraph (cf.
Fig. 5.12).
Assume, that the concurrency hypergraph of an interpreted Petri net is c-exact. Now
we can notice very interesting properties and associations between concurrency and
sequentiality hypergraphs

Theorem 5.9 Let HC be a c-exact concurrency hypergraph of an interpreted Petri
net PN, and let HS denote the sequentiality hypergraph of PN. Then, HS is a com-
patibility hypergraph of HC: HS = HC

C.

Proof Follows directly from Theorems4.2 and 5.8. �

Theorem 5.10 Let HC be a c-exact and conformal concurrency hypergraph of an
interpreted Petri net PN, and let HS denote the sequentiality hypergraph of PN.
Then, HC = (HC

C)
C = (HS)C .

Proof Follows directly from Theorems4.3 and 5.9. �

Theorem 5.11 Let HC be a c-exact and conformal concurrency hypergraph of an
interpreted Petri net PN, and letHS denote the sequentiality hypergraph of PN. Then
HS is also c-exact.

Proof Follows directly from Theorems4.4 and 5.9. �

Finally, we can state the following theorem:

Theorem 5.12 LetHS be a c-exact sequentiality hypergraph of an interpreted Petri
net PN, and let HC denote the concurrency hypergraph of PN. Then HC = (HS)C .

Proof Follows directly from Theorems 4.4 and 5.9. �

Concurrency hypergraph HC1 of PN1 is c-exact. Therefore, the sequentiality
hypergraph HS1 of PN1 is a compatibility hypergraph of HC1 , and can be obtained
by calculating of all exact transversals inHC1 . However,HC1 is not conformal, thus
HS1 is not c-exact.

http://dx.doi.org/10.1007/978-3-319-45811-3_2
http://dx.doi.org/10.1007/978-3-319-45811-3_2
http://dx.doi.org/10.1007/978-3-319-45811-3_4
http://dx.doi.org/10.1007/978-3-319-45811-3_4
http://dx.doi.org/10.1007/978-3-319-45811-3_4
http://dx.doi.org/10.1007/978-3-319-45811-3_4
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Fig. 5.14 Incidence matrix
of a sequentiality hypergraph
for PN3

p1 p2 p3 p4 p5 p6

AHS3
=

⎡
⎣
0 1 1 1 0 0
0 0 0 0 1 1
1 1 1 0 1 0

⎤
⎦

S1
S2
S3

Concurrency hypergraph HC2 of PN2 is c-exact. It means, that the sequential-
ity hypergraph HS2 of PN2 can be directly obtained by computation of all exact
transversals inHC2 . Additionally, HS2 is conformal. Therefore, the compatibility of
the sequentiality hypergraph results in the initial concurrency hypergraph HC2 .
Let us point out the importance of Theorem5.12. The presented property is especially
valuable in the analysis of the interpreted Petri nets. It permits for the inverse compu-
tation of the concurrency set (and thus reachability set) directly from the sequentiality
hypergraph. Let us explain it by an example.

As it was already shown, there are three invariants in the simplified traffic light
system illustrated by PN3. Their supports refer to the following sets of places: I1 =
{p2, p3, p4}, I2 = {p5, p6}, I3 = {p1, p2, p3, p5}. All the above sets contain exactly
one token in the initial markingM0 = {p1, p4, p6}. Therefore, they correspond to the
state machine components in PN3. Indeed, the sequentiality hypergraphHS3 for this
net contains three SMCs, as it is shown in Fig. 5.14.

Hypergraph HS3 is conformal and c-exact. Therefore, we can obtain the con-
currency hypergraph of PN3 by calculation of all exact transversals in HS3 . There
are four exact transversals in HS3 : X = {X1,X2,X3,X4}, where X1 = {p1, p4, p6},
X2 = {p2, p6}, X4 = {p4, p5} and X1 = {p3, p6}, respectively. Notice, that each of the
above sets directly corresponds to the reachable marking in PN3 (cf. Fig. 5.9).
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Chapter 6
Decomposition of Concurrent Control
Systems

This chapter deals with decomposition of concurrent control systems. The main aim
of such a process is to split the control algorithm into sequential subsystems. Each
of decomposed modules can be implemented separately, even with application of
various devices. Furthermore, the functionality of the particular sequential subsystem
can be reconfiguredwithout touching the rest of the device. Three SM-decomposition
methods are shown in the chapter. All of them refer to the concurrent control systems
described by an interpreted Petri net. The first one is based on the classical linear
algebra and place invariants computation. The second method uses perfect graph
theory, while the remaining one applies calculation of exact transversals.

Each of the presented decomposition concepts has advantages and weak points.
However, regardless of which method is used, each of them leads to the same goal—
decomposition of a concurrent controller into sequential modules. Sometimes, par-
ticular method is unable to find the solution, for example due to the computational
complexity. It is assumed, that alternative decomposition method should be used
instead.

Notice, that according to Definition2.26, each place of the initial net belongs to
exactly one of the decomposed SMCs. If a place exists more than one SMC, it is
replaced by a NOP. Furthermore, various SM-decompositions may exist for a single
net. Thus, it is assumed that themain criterion of the presentedmethods is theminimal
number of decomposed SMCs. In case of methods based on p-invariants and exact
transversals the minimal number of SMCs is achieved during the additional selection
process. We shall present a modified selection method taken from [21] (with further
enhancement in [14–16, 20, 23]). Of course, one may easily modify the proposed
algorithms and adjust selection process for own purposes by applying any of known
algorithms thus solving the set covering problem [3–6, 8, 10, 17].
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6.1 SM-Decomposition Based on Place Invariants

According to Theorem5.5, an SMC in the interpreted net corresponds to the support
of p-invariant, that contains exactly one token in the initial marking. Let us apply
such a property in SM-decomposition of a concurrent control system described by an
interpreted Petri net. At the beginning, we shall present the idea of the decomposition.
Next, we explain such a method by examples.

6.1.1 The Idea of Method

The decomposition of the interpreted Petri net PN = (P, T, F, X,Y, M0) into the
set of SMCs S = {S1, . . . , Sn} is divided into the following steps:

1. Calculation of the set of place invariants in the interpreted Petri net. The set
of p-invariants may be obtained by any known linear algebra technique. In our
examples we shall use the algorithm that is presented in Chap.5. Let us denote
supports of the achieved set by I = {I1, . . . , Ik}, where k is the number of all
obtained p-invariants.
Note, that if the algorithm is unable to obtain the set of invariants due to the time
complexity, other decomposition method should be used instead.

2. Formation of the set S. The set S is obtained directly from the set I. Each support
of the invariant I ∈ I is examined whether it contains exactly one token in the
initial marking M0. If so, it forms a proper SMC and is added to the set S. Finally,
S = {S1, . . . , Sm}, where m is the number of all obtained SMCs.

3. Verification if all the places of the net are covered by elements from S. Such a
verification is necessary in order to check if PN can be decomposed with the use
of p-invariants to avoid spurious solutions (cf. [12, 13]). If the place p ∈ P is not
covered by any S ∈ S, the method stops execution. It means that the algorithm is
unable to find the solution and a different decomposition method should be used.

4. Selection of state machine components in S. This stage is divided into the fol-
lowing substeps [21]:

(a) Formation of the selection hypergraph HL = (S, P). Vertices of HL refer
to the obtained state machine components, while its edges correspond to the
net places.

(b) Cyclic reduction of dominated edges and dominating vertices in HL . This
stage can be divided into three sub-steps that are executed until no more
elements or sets can be reduced [10]:
• Essential vertices: If an edge contains only one vertex, it is an essential
vertex. Essential vertices ought to be a part of the final solution of selection
process.

http://dx.doi.org/10.1007/978-3-319-45811-3_5
http://dx.doi.org/10.1007/978-3-319-45811-3_5


6.1 SM-Decomposition Based on Place Invariants 79

• Reduction of dominating hyperedges: An edge can be reduced (removed)
from HL if it contains (or is equal to) another hyperedge. Simply, pi is
reduced by p j if pi ⊇ p j .

• Reduction of dominated vertices: If a vertex is incident to the same edges
as another vertex, it does not influence the final result and can be reduced
fromHL . In otherwords, Si is reduced by Sj if∀p ∈ P: Sj ∈ p ⇒ Si ∈ p.

• Reduction of empty edges and isolated vertices: If after the reduction of
dominated vertices or dominating edges an edge remains empty, it can be
removed from the hypergraph. Similarly, isolated vertices are removed as
well.

The above reduction technique is taken from [10], where the idea of cyclic
reductionwas used in Boolean logic formula minimization. It was an integral
part of Espresso system [11], but has wide application fields, for example, as
a part of Quine–McCluskey algorithm [2]. The main benefit of the presented
method is its computational complexity. The whole process is bounded by a
polynomial in the number of elements and sets [10].

(c) Computation of the minimal transversal T inHL . Obtained transversal indi-
cate elements of S that ought to be selected.

(d) Remove SMCs from S that are not indicated by T . After removing of the
redundant SMCs, set S contains only selected components. Therefore, the
selection process is finished.

5. Replacement of repeated places by NOPs. Finally, places (or set of places) that
exist in more than one SMC are replaced by nonoperational ones. Such a modifi-
cation is necessary in order to prevent proper functionality of the controller and
prohibit execution of the same action by various components. It is assumed, that
replacement of repeated places is up to the designer. However, it can be easily
done automatically, based on the preset criteria. In our considerations we just use
the simplest method by replacing places according to the lexicographical order
(straight or reverse) of SMCs.

Let us analyze the computational complexity of the above algorithm. Clearly,
the whole procedure is exponential. The main bottleneck is tied to the computation
of place invariants. As it was shown in Sect. 6.1 the number of invariants may be
exponent. Another computational weakness of the above method can be found in
selection process. Finding of the minimal transversal in some cases may also be
exponential.However, applicationof the cyclic reduction technique reduces the initial
hypergraph, so theminimal covering can be found relatively easily [10]. Furthermore,
if the selection hypergraph is a c-exact hypergraph (or even an xt-hypergraph), the
whole selection process turns out to be polynomial (cf. [15, 16, 23]). In such a case,
the first exact transversal is searched (since it is minimal one, as well).
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6.1.2 Examples

Let us now explain the idea of SM-decomposition based on the p-invariants by
examples.We shall use the nets presented inChap.2.At the beginning relatively small
nets PN1 and PN3 are decomposed. Then, we will move to the more complicated
system of milling process specified by PN2. Note, that we use already achieved
results for place invariants computation shown in Chap.5.

Let us decompose the net PN1 from Fig. 2.1. There are five p-invariants in PN1

with the support: I1 = {p1, p4}, I2 = {p3, p6}, I3 = {p2, p5}, I4 = {p1, p2, p3},
I5 = {p4, p5, p6}. Four of them form a proper SMC, while I4 does not, since places
p1 and p2 are both initially marked. Therefore, S = {S1, . . . , S4}, where:
• S1 = I1 = {p1, p4},
• S2 = I2 = {p3, p6},
• S3 = I3 = {p2, p5},
• S4 = I5 = {p4, p5, p6}.

All six places of PN1 exist in achieved SMCs, therefore this net can be decom-
posed with application of p-invariants.

Next, the selection process ought to be executed. Selection hypergraph HL1 =
(S, P) consists of six vertices that represent the obtained SMCs and four hyperedges
that correspond to the places of the net. Figure6.1 (left) shows an incidence matrix
ofHL1 . Clearly, columns of the matrix correspond to the SMCs, while rows refer to
places of PN1.

In the subsequent step, a cyclic reduction is applied. Let us analyze it step-by-
step. There are three essential vertices in HL1 : S1, S2, S3. They cannot be reduced
and they ought to be a part of the final solution. Reduction of dominating hyper-
edges removes p4, p5, and p6 from the hypergraph, since p4 ⊇ p1, p5 ⊇ p2, and
p6 ⊇ p3, respectively. Further reduction of dominated vertices remains HL1

untouched. Finally, place S4 is isolated, thus it is removed from the HL1 .
No more places, nor edges are reduced in further execution of the cyclic reduc-

tion. Figure6.1 (right) illustrates the final result of this operation. There is only one
transversal in the reducedHL1 and it consists of three elements: T = {S1, S2, S3}. It
means, that those three SMCs are the result of the selection process.

Finally, places that exist in more than one SMC ought to be replaced by NOPs.
Since each place belongs to exactly one S ∈ S, there is no need to apply nonoper-
ational places. Eventually, PN1 is decomposed into three SMCs: S = {S1, S2, S3},

Fig. 6.1 Incidence matrix of
HL1 before (left) and after
cyclic reduction (right)

S1 S2 S3 S4

AHL1
=

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1
0 1 0 1
0 0 1 1

⎤
⎥⎥⎥⎥⎥⎦

p1
p2
p3
p4
p5
p6

S1 S2 S3

AHL1
=

⎡
⎣
1 0 0
0 1 0
0 0 1

⎤
⎦

p1
p2
p3

http://dx.doi.org/10.1007/978-3-319-45811-3_2
http://dx.doi.org/10.1007/978-3-319-45811-3_5
http://dx.doi.org/10.1007/978-3-319-45811-3_2
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Fig. 6.2 Incidence matrix of
HL3 before (left) and after
cyclic reduction (right)

S1 S2 S3

AHL3
=

⎡
⎢⎢⎢⎢⎢⎣

0 0 1
1 0 1
1 0 1
1 0 0
0 1 1
0 1 0

⎤
⎥⎥⎥⎥⎥⎦

p1
p2
p3
p4
p5
p6

S1 S2 S3

AHL3
=

⎡
⎣
0 0 1
1 0 0
0 1 0

⎤
⎦

p1
p4
p6

where S1 = {p1, p4}, S2 = {p3, p6}, S3 = {p2, p5}. Achieved components are
graphically illustrated in Fig. 2.8a–c.

Let us now decompose a simplified traffic light system specified by the Petri net
PN3 shown in Fig. 2.6. Three place invariants can be obtained in the net. Each of
them refers to a proper SMC, since their supports contain exactly one token in the
initial marking

• S1 = I1 = {p2, p3, p4},
• S2 = I2 = {p5, p6},
• S3 = I3 = {p1, p2, p3, p5}.

Each of six places of PN3 exists in at least one S ∈ S, thus the net can be
decomposed with the use of place invariants.

Clearly, the selection hypergraph HL3 consists of |S| = 3 vertices and |P| = 6
edges, as it is shown in Fig. 6.2 (left). Note, that all three vertices are essential (due
to hyperedges p1, p4 and p6). Thus, the final solution must contain all the obtained
SMCs. Indeed, the minimal transversal contains three elements in the reduced hyper-
graph shown in Fig. 6.2 (right).

Finally, nonoperational places ought to be applied in order to exchange places that
exist in more than one SMCs. Let us use lexicographic order. That is, the first SMC
remains untouched. If a place exists in the subsequent components it is replaced by
a NOP. Furthermore, the second SMC is analyzed. Similarly, if a place that exists in
such an SMC also belongs the subsequent SMCs, it is exchanged by a nonoperational
place.

In the presented example, S1 and S2 remain unchanged, because set S2 does not
contain any elements from S1. However, in case of S3, three places ought to be
replaced: p2, p3 (exist in S1), and p5 (exists in S2). Note, that p2 and p3 can be
replaced by a common NOP. Therefore, the final set S of decomposed SMCs is as
follows:

• S1 = {p2, p3, p4},
• S2 = {p5, p6},
• S3 = {p1,NOP1,NOP2}.

The decomposed net is shown in Fig. 6.3. The first component (a) controls the
lights for cars. The second one (b) is in charge of turning lights for pedestrians.
The third SMC (c) can be seen as a semaphore between the lights for cars and for

http://dx.doi.org/10.1007/978-3-319-45811-3_2
http://dx.doi.org/10.1007/978-3-319-45811-3_2
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Fig. 6.3 Decomposed net PN3 (method based on the place invariants computation)

pedestrians. It assures proper functionality of the whole system and ensures that the
crossroad is collision-free.
Let us now analyze more complicated example. We shall decompose the milling
process, specified by PN2 (cf. Fig. 2.4). Eight invariants can be obtained in the net.
All of them are marked exactly once in M0, thus the set S of SMCs consists of eight
elements as follows:

• S1 = {p1, p2, p3, p6, p20, p21},
• S2 = {p1, p4, p5, p6, p20, p21},
• S3 = {p1, p2, p3, p7, p8, p9, p10, p11, p12, p13, p20, p21},
• S4 = {p1, p4, p5, p7, p8, p9, p10, p11, p12, p13, p20, p21},
• S5 = {p1, p2, p3, p14, p15, p16, p20, p21},
• S6 = {p1, p4, p5, p14, p15, p16, p20, p21},
• S7 = {p1, p2, p3, p17, p18, p19, p20, p21},
• S8 = {p1, p4, p5, p17, p18, p19, p20, p21}.

Clearly, all places of PN2 exist in SMCs, therefore the net can be decomposedwith
the linear algebra technique. A selection hypergraph HL2 for the achieved compo-
nents consists of |S| = 8 vertices and |P| = 21 hyperedges, as it is shown in Fig. 6.4
(left). There are no essential vertices in HL2 . Reduction of dominated hyperedges
removes fourteen edges from the hypergraph:

• p1 (because p1 ⊇ p2),
• p3 (because p3 ⊇ p2),
• p5 (because p5 ⊇ p4),
• p8 (because p8 ⊇ p7),
• p9 (because p8 ⊇ p7),
• p10 (because p10 ⊇ p7),
• p11 (because p11 ⊇ p7),
• p12 (because p12 ⊇ p7),
• p13 (because p13 ⊇ p7),

http://dx.doi.org/10.1007/978-3-319-45811-3_2
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S1 S2 S3 S4 S5 S6 S7 S8⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p1
p2
p3
p4
p5
p6
p7
p8
p9
p10
p11
p12
p13
p14
p15
p16
p17
p18
p19
p20
p21

S1 S2 S3 S4 S5 S6 S7 S8⎡
⎢⎢⎢⎢⎢⎣

1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎦

p2
p4
p6
p7
p14
p17

Fig. 6.4 Incidence matrix of HL2 before (left) and after cyclic reduction (right)

• p15 (because p15 ⊇ p14),
• p16 (because p16 ⊇ p14),
• p18 (because p18 ⊇ p17),
• p19 (because p19 ⊇ p17),
• p20 (because p20 ⊇ p2).
• p21 (because p21 ⊇ p2).

No further cyclic reduction can be applied to HL2 . The final result of the cyclic
reduction is presented in Fig. 6.4 (right). There are only six hyperedges in the reduced
hypergraph, since fourteen edges have been removed.

The final solution of the selection process is obtained by computation of the
minimal transversal in the reduced hypergraph. Notice, that there are more than one
minimal transversal. Each of them refers to the minimal covering of the reduced
HL2 . In our consideration, we shall include a transversal composed by the following
SMCs: T = {S1, S3, S6, S7}.

Finally, repeated places ought to be replaced by NOPs. This time we use a reverse
lexicographic order for choosing the particular SMCs. That is, the set S7 remains
unchanged, while replaced places are subsequently removed from components S6,
S3, and eventually from S1. The decomposed net is shown in Fig. 6.5.

The final set of decomposed sub-nets contains the following components:

• S7 = {p1, p2, p3, p17, p18, p19, p20, p21},
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Fig. 6.5 Decomposed Petri net PN2

• S6 = {NOP1, p4, p5, p14, p15, p16},
• S3 = {NOP2, p7, p8, p9, p10, p11, p12, p13},
• S1 = {NOP3, p6}.

In the above SMCs, particular NOPs substitute the following places:

• NOP1 = {p1, p20, p21},
• NOP2 = {p1, p2, p3, p20, p21},
• NOP3 = {p1, p2, p3, p20, p21}.

Notice, that all three NOPs are initially marked. It is caused by place P1, which
is substituted in all of components, except S7.

Let us nowanalyze achieved components. Thefirst one (S7) controls themovement
of the wooden plank (signal y1) and further drilling of assembling holes (y12) on the
one side of the plank. The holes on the reverse side of the plank are drilled (y10) by
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the process executed by the second component (S6). Additionally, such an SMC is in
charge of setting up the main drill into the adequate position (sensor x2). The process
controlled by the third component (S3) cuts out the proper shape from the wooden
plank. Finally, the last SMC (S1) simply controls a vacuum cleaner (y3).

Note, that the above diversification of the initial net permits for easy and com-
fortable modification of the functionality of the prototyped Petri net. For example, if
there is a need to exchange the shape that is cut out from thewooden plank, only com-
ponent S3 ought to be modified. Furthermore, there is a possibility to replace such
a component with another, where different functionality is specified (for example
cutting of the different shape). We shall show such a possibility in Chap. 9.

6.2 SM-Decomposition Based on Graph Theory

This section presents an innovate decomposition method, where comparability
graphs are applied. The algorithm bases on the formation of the concurrency graph
according to the structural concurrency relation. Next, if the graph is a comparability
graph, it is colored in order to obtain decomposed state machine components.

The idea was initially proposed in [22]. We shall extend the method by simulta-
neous orientation and coloring of the concurrency graph. Furthermore, the idea of
addition of nonoperational places is introduced.

Note, that presented decomposition method applies algorithms already shown in
this book (especially referring to perfect graphs and structural concurrency relation).
We also introduce an algorithm to supplement the achieved components by NOPs.

6.2.1 The Idea of Method

The decomposition of the interpreted Petri net PN = (P, T, F, X,Y, M0) into the
set of SMCsS = {S1, . . . , Sn}with the application of comparability graphs is divided
into the following steps:

1. Computation of the structural concurrency relation ||A for PN . This step is
executed according to Algorithm 5.2 presented in Chap. 5.

2. Formation of the concurrency graph GC . Based on the achieved structural con-
currency relation, the concurrency graph GC is formed. Simply, vertices of GC

refer to the net places, while edges correspond to the obtained relation ||A. That is,
two vertices of GC are connected by an edge if they are structurally concurrent.
Recall Theorem5.4. It states, that for any net, a structural sequentiality relation
is a subset of the real one. It means, that any set of places that are sequential
in GC , are also in a real sequential relation. However, in some cases, structural
concurrency relation is not enough to perform the decomposition process based
on the comparability graphs. We shall explain it further, in more details.

http://dx.doi.org/10.1007/978-3-319-45811-3_9
http://dx.doi.org/10.1007/978-3-319-45811-3_5
http://dx.doi.org/10.1007/978-3-319-45811-3_5
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3. Transitive orientation and coloring of GC . At this stage, GC is transitively
oriented and simultaneously coloring, according to Algorithm 3.2 presented in
Chap.3. It is an essential step of the whole decomposition process. If there exists
a TRO in GC , decomposition can be continued. Otherwise, a different decompo-
sition method ought to be applied.

4. Formation of the set S of decomposed components. Clearly, each set of places
obtained during coloring of GC forms a sequential component S in S. However,
some of achieved components may be not strongly connected. If the set S contains
a place with unconnected input or output transitions, it is supplemented by non-
operational places, according to Algorithm 6.1. Simultaneously, the verification
of achieved components is performed. The algorithm checks whether the set of
unconnected input transitions and the set of unconnected output transitions are
mutually exclusive empty (that is, one of the set is empty while the second is not
empty). If so, the algorithm terminates execution, since the proposed decompo-
sition method cannot be used. Otherwise, if all the components are successfully
supplied by NOPs, the decomposition procedure finishes.

The achieved set S consists of decomposed state machine components. In opposite
to the decomposition based on the place invariants, there is no need to perform
additional selection process. If the structural concurrency relation coincides with
real concurrency relation, the number of achieved components exactly composes the
initial net.
Algorithm 6.1 supplies the achieved state machine components by non-operatio-
nal places. First, each of obtained SMCs is examined if it is strongly connected.
The algorithm searches for unconnected transition inputs and unconnected transition
outputs. Clearly, if the net contains such transitions, it ought to be supplemented by a
NOP. All the unconnected output transitions and all the unconnected input transitions
of the particular component are tied to the same NOP.

Clearly, Algorithm 6.1 supplies only one nonoperational place to the single com-
ponent. Therefore, the achieved results may be different than the SMCs obtained
during the decomposition methods based on the place invariants or hypergraph the-
ory, where multiple NOPs can be assigned to one component.
Let us analyze the computational complexity of the whole decomposition method.
Computation of the structural concurrency relation and formation of the concurrency
graph GC is bounded by O(x5), where x is the number of places and transitions in
the net [7] (cf. Chap. 5).

Simultaneous transitive orientation as well as coloring of GC is performed in
O(|E | ∗ Δ(GC)) by Theorem3.3. Since E ⊆ P × P and Δ(GC) < n, we shall
enhance the upper bound to O(n3), where n is the number of places in the net
(n = |P|).

Finally, execution of Algorithm 6.1 includes checking each of the achieved com-
ponents. The total number of SMCs is equal to |S|, thus the outer for all loop is
executed at most n times, where n is the number of places in the net. The inner
(for all loop) is bounded by O(n ∗ m), since it searches for unconnected input and

http://dx.doi.org/10.1007/978-3-319-45811-3_3
http://dx.doi.org/10.1007/978-3-319-45811-3_5
http://dx.doi.org/10.1007/978-3-319-45811-3_3
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Algorithm 6.1 Supplementation of the components by NOPs

Input: An interpreted Petri net PN = (P, T, F, M0, X, Y ), concurrency graph GC = (P, ||A) of
PN , set S obtained during coloring of GC

Output: If PN is correctly decomposed: a set S supplemented by NOPs
1: for all S = (P ′, T ′, F ′, M ′

0) ∈ S do
2: i = 1
3: I ← ∅
4: O ← ∅
5: for all p ∈ P ′ do
6: for each t ∈ •p such that •t = ∅ do I = I ∪ {t}
7: for each t ∈ p• such that t• = ∅ do O = O ∪ {t}
8: end for
9: if [I �= ∅ or O �= ∅] then
10: if [I = ∅ or O = ∅] then
11: notify: “The net cannot be decomposed.”
12: return
13: else
14: P ′ = P ′ ∪ {NOPi }
15: for each t ∈ O do t• = {NOPi }
16: for each t ∈ I do •t = {NOPi }
17: if M ′

0 = ∅ then M ′
0 = {NOPi }

18: i ← i + 1
19: end if
20: end if
21: end for

output transitions. Thus, the computational complexity of Algorithm 6.1 is bounded
by O(n2 ∗ m).
Reassuming, the complexity of the whole decomposition method involves:

• Formation of the concurrency graph GC , bounded by O(x5).
• Transitive orientation and coloring of GC , bounded by O(n3).
• Verification and supplementation by NOPs, bounded by O(n2 ∗ m).

Clearly, the computational complexity depends on the first step of the method.
Therefore, we can finalize our analysis by the following statement: the computa-
tional complexity of the decomposition method based on the comparability graphs
is bounded by O(x5), where x is the number of places and transitions in the net.

6.2.2 Examples

Let us now explain the idea of SM-decomposition based on the comparability graphs
with examples. Similarly to the previous section, the nets presented in Chap.2 will
be used.

Let us start with the decomposition of PN1. The concurrency graph GC1 of such
a net is shown in Fig. 6.6 (left). There is also an attempt of a transitive orientation

http://dx.doi.org/10.1007/978-3-319-45811-3_2
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Fig. 6.6 An attempt concurrency graphs orientation for PN1 (left) and PN3 (right)

presented. Note, that edges {p3, p4} and {p3, p5} cannot be transitively oriented. Ori-
entation−−→p3 p4 forces direction of a missing edge−−→p4 p5. On the other hand, orientation−−→p4 p3 forces orientation

−−→p5 p3. However,
−−→p5 p3 forces the existence of a missing edge−−→p5 p2. Therefore, GC1 is not a comparability graph and cannot be decomposed with

the proposed method.
Figure6.6 (right) illustrates an attempt of transitive orientation of the concurrency

graph GC3 of the simplified traffic light system from the net PN3. Such a graph can
be successfully oriented. Therefore, the decomposition process can be performed.
Coloring of GC3 results in three components S = {S1, S2, S3}:
• S1 = {p2, p3, p4},
• S2 = {p1, p5},
• S3 = {p6}.
Let us now apply Algorithm 6.1 to obtain the final decomposition results. The first set
S1 remains unchanged, since achieved component is strongly connected. Therefore,
S1 forms a proper state machine component.

Two unconnected transitions are obtained during analysis of S2. The output of
t1 and input of t3 are not linked to any place of S2: O = {t1}, I = {t3}. Thus, a
nonoperational place NOP1 is added to S2, such that: t1• = NOP1 = •t3.

Only one place p6 is a member of S3. Clearly, its input transition I = {t5} as
well as output transition O = {t4} are unconnected. Similarly to S2, Algorithm 6.1
supplies the net by one nonoperational place, such that t4• = NOP2 = •t5.

Since all the components have been successfully supplied by NOPs, the algorithm
finishes its execution. Finally, the set S consists of the following components:

• S1 = {p2, p3, p4},
• S2 = {p1, p5,NOP1},
• S3 = {p6,NOP2}.

The result of decomposition is shown in Fig. 6.7. Note, that the achieved SMCs are
different from the results obtained during decomposition based on the place invariants
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Fig. 6.7 Decomposed Petri net PN3 (method based on the comparability graphs)

(Fig. 6.3). Let us clearly point out that both decomposed versions are correct and can
be successfully implemented either as a distributed or integrated control system.
The difference may influence (in case of distributed systems) the arrangement of the
executable actions or (in case of integrated systems) the utilization of the devices
[1, 18].

Let us briefly analyze the achieved decomposition of PN3. Similarly to the invari-
ant decomposition, the first component S1 controls the lights for cars. However, S2 is
in charge of proper synchronization of the whole system (common transitions with
S1 and S3), and additionally turns on and off green light for pedestrians. Finally, the
last component S3 controls red light for pedestrians.

Let us now decompose PN2. We shall not present graphical illustration of the
concurrency graph GC2 and its TRO due to the large number of edges (|E | = 68).
However, GC2 can be transitively oriented. Furthermore, the four disjoint sets of
places are obtained during coloring of GC2 :

• S1 = {p1, p4, p5, p17, p18, p19, p20, p21},
• S2 = {p2, p3, p14, p15, p16},
• S3 = {p7, p8, p9, p10, p11, p12, p13},
• S4 = {p6}.

The first of the achieved components forms a strongly connected SMC, thus there
is no need to apply nonoperational places to S1. However, the analysis of S2 results
in supplementation of this sub-net by a place NOP1, such that t15• = NOP1 = •t1.
Similarly, the third and fourth components are also complemented by one NOP:
t15• = NOP2 = •t4 (for S3) and t15• = NOP3 = •t4 (for S4). Note, that all three
NOPs are marked, since they substitute initially marked place p1.

Finally, the set of decomposed components is as follows:

• S1 = {p1, p4, p5, p17, p18, p19, p20, p21},
• S2 = {p2, p3, p14, p15, p16,NOP1},
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• S3 = {p7, p8, p9, p10, p11, p12, p13,NOP2},
• S4 = {p6,NOP3}.

The achieved solution is very similar to the one obtained during place invariants
computation and presented in Fig. 6.5. However, in the above results, the first com-
ponent S1 is in charge of setting up the main drill to the adequate position (sensor x2)
instead of controlling the movement of the wooden plank (signaled by y1), which is
done by the second component S2. The remaining actions performed by those two
components, as well as actions executed by S3 and S4, are exactly the same.

6.3 SM-Decomposition Based on Hypergraph Theory

A decomposition method based on the hypergraph theory includes formation of the
concurrency hypergraph and further computation of exact transversals. Similarly to
the idea includingplace invariants computation, the selectionof achieved components
ought to be performed.

Let us show the main idea and then illustrate it with examples.

6.3.1 The Idea of Method

The decomposition idea of the interpreted Petri net PN = (P, T, F, X,Y, M0) into
the set of SMCs S = {S1, . . . , Sn} based on the hypergraph theory is divided into
the following steps:

1. Formation of the concurrency hypergraph HC of PN . This step is executed
according to Algorithm 5.1 presented in Chap.5.

2. Computation of all exact transversals in HC and formation of the set S. Accord-
ing to Theorem5.7, an exact transversal refers to an SMC in the concurrency
hypergraph. Therefore, each of achieved exact transversals forms a component
in the set S. Finally, S = {S1, . . . , Sm}, where m is the number of all obtained
SMCs.

3. Verification if all the places of the net are covered by elements from S. The
verification is necessary in order to check, whether PN can be decomposed with
the computation of exact transversals in the concurrency hypergraph. If the place
p ∈ P is not covered by any S ∈ S, the method stops execution. It means that
the algorithm is unable to find the solution and different decomposition method
should be used instead.

4. Selection of state machine components inS. This stage is performed in the exactly
same manner, as the selection of SMCs during the decomposition with the usage
of place invariants (cf. Sect. 6.1.1, step 6.1.1):

(a) Formation of the selection hypergraph HL = (S, P).

http://dx.doi.org/10.1007/978-3-319-45811-3_5
http://dx.doi.org/10.1007/978-3-319-45811-3_5
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(b) Cyclic reduction of dominated edges and dominating vertices in HL .
(c) Computation of the minimal transversal T in HL .
(d) Remove SMCs from S that are not indicated by T .

5. Replacement of repeated places by NOPs. Similarly to the method based on
p-invariants, nonoperational places are inserted in order to exchange places that
exist in more than one SMC (cf. Sect. 6.1.1, step 6.1.1).

Note, that the third and fourth steps of the presented algorithm are exactly the same
as in case of the method based on the place invariants computation.
Let us analyze the strong points and disadvantages of the above method.

Clearly, the main weakness of the algorithm is its computational complexity. The
first two steps (formation of the reachability set, obtaining of all exact transversals)
cannot be executed polynomially, since the number of reachability markings and the
number of SMCs may be exponential. Thus, for some nets the final decomposition
result could not be reached.

On the other hand, the obtained components are always proper and correct. In
opposite to the place invariant computation, each of achieved SMCs contains exactly
one initially marked place. Furthermore, the selection process (as well as replace-
ment with NOP places) allows for choosing of the different solutions (i.e., different
components among all of the achieved SMCs), which is not possible in case of the
method based on the comparability graphs.

6.3.2 Examples

Let us explain the presented decomposition method with examples. Since steps 3
and 4 of the algorithm are exactly the same as for the method based on the place
invariants, we shall introduce an additional real-life system for beverage production
and distribution.

Initially, PN1 will be decomposed. An incidence matrix of concurrency hyper-
graphHC1 for this net is presented in Fig. 5.8 (Chap.5). There are four exact transver-
sals inHC1 : X1 = {p1, p4}, X2 = {p3, p6}, X3 = {p2, p5}, X4 = {p4, p5, p6}. Each
of them refers to a proper state machine component, thus the set S of all achieved
components contains four SMCs as follows:

• S1 = X1 = {p1, p4},
• S2 = X2 = {p3, p6},
• S3 = X3 = {p2, p5},
• S4 = X4 = {p4, p5, p6}.

Note, that achieved SMCs are exactly the same, as in case of the method based
on the place invariants computation (cf. Sect. 6.1.2). Therefore, the selection process
leads to the final results. The initial net is decomposed into three components: S =
{S1, S2, S3}, where

http://dx.doi.org/10.1007/978-3-319-45811-3_5
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Fig. 6.8 A beverage production and distribution system

• S1 = {p1, p4},
• S2 = {p3, p6},
• S3 = {p2, p5}.

Note, that graphical illustration of the decomposed components is presented in
Fig. 2.8a–c.

Let us now decompose more complicated concurrent control system.We shall use
a modified example taken from [19] (with minor changes shown in [9, 20]). Assume
a concurrent control system for beverage production and distribution illustrated in
Fig. 6.8. Let us briefly explain its functionality.

At the beginning, the system remains in an idle state, until the start button is
pressed (signal x1). It initializes the production process.

Two valves (y10 and y11) are opened until the containers are filled up with liquid
ingredients, which is noticed by sensors x5 and y7, respectively. If any of the con-
tainers is filled up, the ingredients are warmed up (action y1 for Container 1 and y2

http://dx.doi.org/10.1007/978-3-319-45811-3_2
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for Container 2) to achieve the adequate temperature, which is signalized by sensors
x2 and x3.

Simultaneously to the above procedure, two cups are placed on the cart (y3),
which is signalized by sensor x4. If both cups are already placed, the cart is moving
to the left, until reaching sensor x13. After that, the cart is waiting until the beverage
production process is ready.

If the warm-up process is finished in both containers, their valves are opened
(y5 and y6). The warmed components are poured to the third container, where both
types of ingredients are mixed (output y4) in order to achieve the final beverage. The
liquid is prepared, until both containers are empty (sensors x6 and x8). Additionally,
the mixer is controlled by a clock. If awaited time is elapsed, then sensor x9 is
activated.

Fig. 6.9 Net PN6 that specifies the beverage production and distribution system
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Fig. 6.10 Incidence matrix of a concurrency hypergraph for PN5

If all three sensors (x6, x8 and x9) are active, it means that the beverage is ready.
Then, two valves y7 and y8 are opened. The liquid is being transferred to the cups
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located on the cart. Each cup is filled independently, until the upper limit is reached
(notified by sensors x10 and x11, respectively).

Finally, after the completion of both processes, the cart is ready for distribution
of the beverage. It goes back (y9) to the initial position, which is signaled by sensor
x12. Both cups are removed from the cart (y13) and the system is ready for further
actions awaiting for pressing of the button y1.

The specification of the above system by an interpreted Petri net PN6 is shown in
Fig. 6.9. There are twenty places and sixteen transitions in the net. Clearly, PN6 is
an MG-net, which is live, safe, and reversible.

Let us now decompose PN5. There are |M| = 44 reachable markings in the net.
Therefore, the concurrency hypergraphHC5 contains 20 vertices and 44 hyperedges.
Figure6.10 presents an incidence matrix of HC5 .

At the second step of the decomposition algorithm, all exact transversals are
computed. There are six exact transversals in HC5 . Each of them refers to a proper
SMC

• S1 = {p1, p2, p5, p8, p10, p11, p15, p17, p19, p20},
• S2 = {p1, p3, p6, p9, p10, p11, p15, p17, p19, p20},
• S3 = {p1, p4, p7, p13, p15, p17, p19, p20},
• S4 = {p1, p2, p5, p8, p10, p12, p16, p18, p19, p20},
• S5 = {p1, p3, p6, p9, p10, p12, p16, p18, p19, p20}.
• S6 = {p1, p4, p7, p14, p16, p18, p19, p20},

Clearly, all places are covered by SMCs. Let us now perform the selection process.
The selection hypergraph HL5 = (S, P) consists of six vertices and twenty edges.
The incidence matrix of such a hypergraph is presented in Fig. 6.11 (left). During
the cyclic reduction, HL5 is reduced to the hypergraph shown in Fig. 6.11 (right).

The first minimal transversal in HL5 includes the following vertices: T1 =
{S1, S3, S5, S6}, Therefore, The set of SMCs after the reduction process contains
four components as follows:

• S1 = {p1, p2, p5, p8, p10, p11, p15, p17, p19, p20},
• S3 = {p1, p4, p7, p13, p15, p17, p19, p20},
• S5 = {p1, p3, p6, p9, p10, p12, p16, p18, p19, p20}.
• S6 = {p1, p4, p7, p14, p16, p18, p19, p20},

This time, let us adjust replacing repeated places by NOPs manually. Notice,
component S1 mainly controls a part of the system related to the left side of the
system, that is Container 1 a further filling of the left cup on the cart. Similarly,
component S5 is in charge of a proper functionality of the right side of the system
(actions related to Container 2, filling of the right cup on the cart). Furthermore,
S6 controls the area related to the cart (its movement, releasing, and placement of
cups). Let us use the above analysis in order to achieve the final decomposition (also
illustrated in Fig. 6.12)

• S1 = {NOP1, p2, p5, p8, p10, p11, p15, p17},
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S1 S2 S3 S4 S5 S6

AHL5
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 0 0 1 0 0
0 1 0 0 1 0
1 1 0 1 1 0
1 1 0 0 0 0
0 0 0 1 1 0
0 0 1 0 0 0
0 0 0 0 0 1
1 1 1 0 0 0
0 0 0 1 1 1
1 1 1 0 0 0
0 0 0 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p1
p2
p3
p4
p5
p6
p7
p8
p9
p10
p11
p12
p13
p14
p15
p16
p17
p18
p19
p20

S1 S2 S3 S4 S5 S6

AHL5
=

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 1 0 0
0 1 0 0 1 0
1 1 0 0 0 0
0 0 0 1 1 0
0 0 1 0 0 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

p2
p3
p11
p12
p13
p14

Fig. 6.11 Incidence matrix of HL5 before (left) and after cyclic reduction (right)

• S3 = {p1,NOP2, p13,NOP3},
• S5 = {NOP4, p3, p6, p9,NOP5, p12, p16, p18}.
• S6 = {NOP6, p4, p7, p14,NOP7, p19, p20}.

Notice, that places NOP1, NOP4, and NOP6 are initially marked. As assumed, the
first component S1 of the decomposed net (Fig. 6.12a) controls the area of the system
that is related to the first container. It manages an input valve of Container 1 and
adjusts its filling. Furthermore, the SMC also manages pouring of the beverage into
the first cup on the cart. Additionally, such a process is in response of proper mixing
of the ingredients.

The second component S5 manages the second container (Fig. 6.12b). It also
controls the filling of the second cup on the cart.

The third component S6 controls movement of the cart (Fig. 6.12c). Additionally,
it removes and places both cups from/on the cart.

Finally, the last component S3 (Fig. 6.12d) is in response of the beginning of the
whole process (place p1). It also connects the first (S1) and third (S5) components
by place p13.

Note, that hypergraphHC5 is c-exact. Therefore, achieved exact transversalsX =
{X1, . . . , X6} form a proper sequentiality hypergraph HS5 , which is also c-exact.
Moreover, further computation of all exact transversals inHS5 results in the primary
hypergraph HC5 .
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(a) (b) (c)

(d)

Fig. 6.12 Decomposed net PN6 (a beverage production and distribution system)
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SMCs selection. In: Technological innovation for collective awareness systems, Springer, pp
249–256

17. Stoll R (1979) Set theory and logic. Dover Publications, New York
18. Tkacz J, Adamski M (2012) Macrostate encoding of reconfigurable digital controllers from

topological Petri net structure. Przeglad Elektrotechniczny 2012(8):137–140
19. Valette R (1978) Comparative study of switching representation tool with GRAFCET and Petri

nets. Nouv Autom 23(12):377–382
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Chapter 7
Prototyping of Concurrent Control Systems

7.1 Prototyping Flow of the Concurrent Systems

The prototyping flow of concurrent controllers involves several steps that lead to
the final implementation as an integrated or distributed system. Such a goal can be
achieved in various ways, cf. [14–17, 39, 44, 49, 58, 62, 63].

In our considerations we shall present a modified prototyping flow proposed in
[30]. Such a technique joins all the important designing aspects of concurrent con-
trol systems, such as specification, decomposition (with further synchronization of
achieved components), modeling, and implementation.

The general prototyping guidelines for the concurrent control systems can be
divided into the following steps:

1. Specification of the concurrent control system by an interpreted Petri net.
2. Decomposition and synchronization of the concurrent control system.
3. Modeling of the decomposed modules.
4. Verification of the prototyped system.
5. Implementation of the concurrent control system.

Let us briefly describe each of the above steps.

7.1.1 Specification by an Interpreted Petri Net

Initially, the concurrent control system is specified by an interpreted Petri net
(Fig. 7.1). Based on the informal descriptions, the controller is designed by the net
containing places and transitions. Simultaneously marked places (states of the Petri
net) permit for concurrent execution of actions. Indeed, the set of outputs (actions)
of the system is associated to the net places, while the set of inputs (conditions) is
tied to the transitions. Clearly, the particular action (output) is executed only if the

© Springer International Publishing Switzerland 2017
R. Wiśniewski, Prototyping of Concurrent Control Systems
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Fig. 7.1 Specification of the concurrent control system by an interpreted Petri net

place associated to it is marked. Since more than one place can bemarked at the same
time, there is a possibility that two or more actions are executed simultaneously.

Once the concurrent control system is specified by an interpreted Petri net, it is
possible to perform formal verification of the controller [13, 22, 25, 27, 35, 59]. The
specification of the system is formally verified with the use of the model checking
methods [9–11, 19, 24, 26, 31, 38, 47, 51]. Such a process assures that the prototyped
system meets all the user-defined requirements [28, 29].

Please note, that although the formal verification is recommended in the proto-
typing flow of the concurrent control systems, it is an optional step. Therefore, it
shall not be considered in the further prototyping flows analyzed in the book.

7.1.2 Decomposition of the System

Decomposition permits to divide the initial system into separate modules. The most
popular technique, called SM-decomposition, splits the controller into sequential
automata (Fig. 7.2). Thus, each of the module can be implemented in a separate
device, such as a microcontroller [4, 5], an integrated microcomputer platform [48],
a programmable logic controller (PLC) [1, 40, 52], or a programmable logic device
[3, 6, 37, 66]. The detailed description of the SM-decomposition can be found in
Chap.6, where three decomposition methods are proposed.

http://dx.doi.org/10.1007/978-3-319-45811-3_6
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(a) (b) (c)

(d)

Fig. 7.2 Decomposition of the concurrent control system into sequential automata

In order to provide proper functionality of the whole system, the achieved SM
components ought to be synchronized. Assume that a single transition is shared
between two or more components. Clearly, before its firing it should be enabled in
all the shared components.

Proper synchronization of decomposed modules is a real challenge for designers.
Indeed, there are various techniques that attempt to solve such a problem [23, 32,
36, 44, 45, 60, 61].

A general synchronization concept for distributed systems is shown in [45]. The
idea bases on the systems prototyped as globally asynchronous locally synchronous
(GALS). The decomposed modules are working in various time domains, that is, they
are oscillated by the different clock signals.

The synchronization techniques of distributed concurrent control systems are also
shown in [30]. The proposed solution applies additional places and transitions (to
synchronize two components) or additional synchronization modules (for more than
two components).

In our considerations (cf. Sect. 7.2) we shall focus on the integrated concurrent
control systems. Moreover, all the decomposed components operate in the same time
domain. It means that all SMCs are oscillated by the same clock signal. Therefore,
synchronization is much simpler than in case of distributed systems and it can be
easily automated (cf. Sect. 7.2.2).
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Fig. 7.3 Modeling of the decomposed and synchronized concurrent control system

7.1.3 Modeling of the Decomposed Modules

Each of the decomposed SM components can be modeled separately, with the use
of different techniques. Depending on the target device, it is modeled according to
the required rules (Fig. 7.3). For example, a module oriented for implementation in
programmable devices is represented as a finite-state machine by a description in the
hardware description languages (HDLs, cf. Chap. 8), while an SMC dedicated for
a microcontroller is described by a specific programming language [30].

7.1.4 Verification of the System

Verification of the decomposed system is performed in order to achieve the prop-
erly working controller. The system is usually checked by emulation or software
simulation (Fig. 7.4). Such a step can be additionally supplemented by the formal
verification techniques [30].

Note that verification of the system checks whether the controller is properly
prototyped. This step is executed after the decomposition and modeling just before
the final implementation. Verification is often confusedwith validationwhich checks
whether the adequate controller is designed:

http://dx.doi.org/10.1007/978-3-319-45811-3_8
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(a) (b) (c)

(d)

Fig. 7.4 Software simulation of the prototyped concurrent control system

• “Verification: Are we building the system right?” [21].
• “Validation: Are we building the right system?” [21].

Validation should be performed at each step of the prototyping flow. More infor-
mation about verification and validation can be found in [21].

7.1.5 Implementation of the System

Finally, the concurrent system is physically implemented (programmed). Particular
modules are realized with the use of various devices (distributed system) or in a
single device (integrated system). Note that in case of programmable devices such
as FPGAs, additional steps (logic synthesis and implementation) are ought to be
performed (cf. Chap. 9).

7.2 Prototyping of Integrated Concurrent Control Systems

This section presents the prototyping guidelines for integrated concurrent control
systems. It is assumed that the whole system is oscillated by the same clock signal. It
is especially important due to the synchronization of the decomposed components.
The prototyping method is oriented for further implementation of the system in
programmable devices (mainly FPGA) with a possibility of partial reconfiguration
of the controller (cf. Chap. 9).

http://dx.doi.org/10.1007/978-3-319-45811-3_9
http://dx.doi.org/10.1007/978-3-319-45811-3_9
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The prototyping flow of the integrated concurrent control system is similar to the
one presented in the previous section. Initial steps (specification, decomposition)
are executed in exactly the same manner. However, synchronization of the system is
much easier than in case of distributed systems. Since all the decomposed components
share the same clock signal, they can be simply synchronized by additional signals
(cf. Sect. 7.2.2). Furthermore, modeling of all components is performed with the use
of FSMs described in hardware languages (cf. Sect. 7.2.3).

The proposed prototyping flow of integrated concurrent control systems is per-
formed in the following steps:

1. Specification of the concurrent control system by an interpreted Petri net.

(a) Formation of an interpreted Petri net based on the informal description of
the concurrent control system.

(b) Formal verification of the interpreted Petri net (optional).
(c) Analysis of the interpreted Petri net (optional).

2. Decomposition and synchronization of the concurrent control system.

(a) Decomposition of the concurrent control system.
(b) Synchronization of the decomposed components.

3. Modeling of the concurrent control system.

(a) Modeling of the decomposed modules as Moore automata (FSMs).
(b) Description of the FSMs in hardware languages.

4. Verification of the prototyped system (software simulation).
5. Implementation (programming) of the concurrent control system.

(a) Logic synthesis of the prototyped system.
(b) Logic implementation of the system.
(c) Programming data (bit-stream) generation.
(d) Physical implementation of the system.

Let us describe the above flow illustratingwith a real-life example of the simplified
version of the smart home system initially shown in [30].

7.2.1 Specification by an Interpreted Petri Net

Based on the informal descriptions, the system is specified by an interpreted Petri
net. This step is executed in exactly the same way, as it was shown in the previous
section. Let us illustrate it with an example.

Consider a smart home system shown in Fig. 7.5 that controls the entrance of the
car to the garage. Pressing of the button on the remote control by the driver (signal x1)
initializes the processing of the system. Three actions are performed simultaneously:
both wings of the front gate start opening (output signals y2 and y4, respectively),
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Fig. 7.5 The idea of the smart home system (entering of the car to the garage)

while the driveway lights are turned on (y1). Each wing of the gate is being opened
until the proper sensor is reached (x2 for the left wing and x4 for the right one).

Once the front gate is opened, the car is able to enter the home driveway. Mean-
while, the garage door is being opened (y6). Notice that driveway lights are still
turned on.

Finally, when the car enters the garage (x8), the driveway lights are turned off
(y1 = 0). The wings of the front gate (y3, y5) and garage door are being closed until
they reach the proper position (x3, x5 and x7, respectively).

The above system controls only entering of the car to the garage. However, it
is easy to extend the specification of the controller in order to handle the opposite
direction (pulling the car out of the garage).

Figure7.6 shows the specification of the presented system by an interpreted Petri
net PN7. The net consists of 14 places and ten transitions. It is live, safe, and
reversible. The net is classified as a marked graph (MG).

Once the system is described by a Petri net, the validation ought to be performed.
It should answer for the following question: “Does the achieved interpreted Petri net
reflect the design assumptions”? Usually, the designer (or tester) checks whether the
specified netmeets all the assumed needs. For example, validation includes checking,
if both wings of the front gate are open, until the car enters the driveway, etc.

Additionally, the system can be formally verified with the use of model checking
technique. Note that opposite to validation such a process checks if the prototyped
Petri net was properly designed [10] (analyzing, for example, reachability, liveness,
safeness, etc.).
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Fig. 7.6 An interpreted Petri
net PN7 of the smart home
system
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Optionally, the analysis of the net can be performed with the use of algorithms
presented in Chap.5. This step is especially useful in case of further partial recon-
figuration of the system (cf. Chap. 9). In the presented example, analysis of PN7

results in the following information:

• There are totally 15 reachable markings in the net.
• There are totally 9 place invariants in the net.
• There are totally 9 state machine components in the net.

http://dx.doi.org/10.1007/978-3-319-45811-3_5
http://dx.doi.org/10.1007/978-3-319-45811-3_9
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• The concurrency graph of the net is a comparability graph.
• The concurrency hypergraph of the net is c-exact.
• The sequentiality hypergraph of the net is c-exact.

7.2.2 Decomposition and Synchronization of the System

The decomposition of the system is performed according to the rules shown in
Chap.6. Each of the achieved SMCs performs the sequential algorithm.

Figure7.7 shows the decomposition results of PN7 with the application of perfect
graphs. There are three modules (components) in the decomposed net. Additionally,
three NOPs were supplied during the decomposition process.

In order to ensure proper functionality of the system, the decomposed modules
ought to be synchronized. As it was already mentioned, it is assumed that the whole
system works in the same time domain and it is oscillated by the common clock
signal (Fig. 7.8).

The synchronization concept is shown in Algorithm 7.1. The process includes
analysis of all the transitions that are shared between two or more components.
Additional signals z1, . . . , zi are used in order to synchronize shared transitions
(where i is the number of all synchronization signals). Transition t in the particular
component is synchronized by a logical conjunction of signals generated by input
places of t in the remaining components.

Let us illustrate the synchronization idea by an example. There are four transitions
to be synchronized (t1, t4, t6, t10) in the decomposed net PN7. The algorithm starts
with transition t1. This transition is shared by all three SMCs, however, only p1 ∈ P .
Therefore, new output signal z1 is assigned to p1 and added to the set of outputs of
S1. According to the Algorithm 7.1, transition t1 is synchronized in two remaining
components (S2 and S3) by the logical conjunction of signals x1&z1, as it is shown
in Fig. 7.9.

Next, transition t4 is synchronized. It is shared by two components, S2 and S3.
Synchronization signals z2 and z3 are assigned to both input places: p5 and p4,
respectively. Furthermore, z3 is assigned to synchronize t4 in the component S2,
while z2 is added to S3.

Transitions t6 and t10 are synchronized similarly. Finally, seven synchronization
signals are added to the decomposed net, while input and output sets of particular
SMCs are extended by the following signals (inputs and outputs of components are
denoted by their number):

• S1: X1=X1 ∪ {z5, z7, z8}, Y1=Y1 ∪ {z1, z4, z6}.
• S2: X2=X2 ∪ {z1, z3, z4, z6, z8}, Y2=Y2 ∪ {z2, z5, z7}.
• S3: X3=X3 ∪ {z1, z2, z4, z5, z6, z7}, Y3=Y3 ∪ {z3, z8}.
Figure7.9 shows decomposed and synchronized net PN7. At this stage, the system

is additionally validated by the designer if it meets all the expected needs [21].

http://dx.doi.org/10.1007/978-3-319-45811-3_6
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Algorithm 7.1 Synchronization of decomposed modules (single time domain)
Input: The set of decomposed components S ∈ S of PN = (P, T, F,M0, X, Y )
Output: Set S supplied by the synchronization signals
1: i = 1
2: for each t ∈ T do
3: if [t is shared between two or more components S ∈ S] then
4: Z ← ∅
5: for each p ∈ •t such that p ∈ P do
6: if [there is already assigned synchronization signal zk to p] then
7: Z=Z ∪ {zk}
8: else
9: add new synchronization signal zi and assign it to p
10: Z=Z ∪ {zi }
11: i = i + 1
12: end if
13: end for
14: for each S = (P ′, T ′, F ′,M0, X ′, Y ′) ∈ S such that [t ∈ T ′] do
15: xt=[logical conditions assigned to t ∈ T ′]
16: for each zk ∈ Z do
17: if [zk is assigned to •t ∈ P ′] then Y ′=Y ′ ∪ {zk}
18: else
19: X ′=X ′ ∪ {zk}
20: xt=xt & zk
21: end if
22: end for
23: end for
24: end if
25: end for

7.2.3 Modeling of the Decomposed Modules as FSMs

Each of the decomposed modules is modeled independently as a sequential automa-
ton. Usually, the traditional finite state machine is used (Mealy or Moore machine
[42, 43]). Additionally, advanced modeling techniques can be applied, such as func-
tional or structural decomposition of the sequential automaton (please do not con-
fuse with decomposition of concurrent systems). The first one bases on the functional
description of the automaton and splits it into smaller sub-functions [18, 20, 33, 34,
41, 46, 50, 53–57]. The second method operates on the structure of the sequential
controller [7, 8, 12, 65]. More details about both techniques of sequential automaton
prototyping and modeling can be found in [64].

In our considerations, we shall use the traditional Moore FSM [43]. Formally, the
Moore automaton is defined as a 6-tuple [64]:

S = (A, X,Y, f, h, a0), (7.1)
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where:

• A is a nonempty finite set of states;
• X is a finite set of inputs;
• Y is a finite set of outputs;
• f : S×X → A is the transition functionwhich determines the next state a∗ ∈ A
depending on the current state a ∈ A and on the value of the input x ∈ X ;

• h : A × X → Y is the output function which determines the current output
y ∈ Y , based on the current state;

• a0 ∈ A is the initial state of an automaton.
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Clearly, places of the decomposed SMC correspond to the states of the automa-
ton. Therefore, we shall directly use place names to indicate particular state of the
automaton. Furthermore, the sets of SMC inputs and outputs directly refer to the set
of automaton inputs and outputs.

The automaton is usually specified formally as a transition table or in a graph-
ical form, as a state diagram. We shall use both techniques in the example. Recall
decomposed and synchronized net PN7 that specifies the smart home system
(Fig. 7.9). The initial system was decomposed into three components (modules).
Let us describe each of them as aMoore automaton (Moore FSM). The set of states of
achieved
automata are as follows:

• S1 : A1 = {p1, p8, p11, p14} (initial state: p1).
• S2 : A2 = {NOP1, p3, p5, p6, p7, p10, p13} (initial state: NOP1).
• S3 : A3 = {NOP2, p2, p4,NOP3, p9, p12} (initial state: NOP2).

Particular modules contain the following set of inputs and outputs:

• S1 : X1 = {x1, x7, x8, z5, z7, z8},Y1 = {y1, y7, z1, z4, z6}.
• S2 : X2 = {x1, x4, x6, x5, x8, z1, z3, z4, z6, z8},Y2 = {y4, y5, y6, z2, z5, z7}.
• S3 : X3 = {x1, x2, x3, x8, z1, z2, z4, z5, z6, z7},Y3 = {y2, y3, z3, z8}.
Figure7.10 shows the state diagrams for all the decomposed components (the

most left diagram refers to the component S1, the middle to S2, while the right one to
S3). All the components are modeled as Moore automata (Moore FSMs). Sign “&”
means the logical conjunction of signals.

Equivalent transition tables for all the SMCs are shown in Table7.1. The presented
table joins three transitions tables (for component S1, S2 and S3, respectively).

Note that in both the presented forms of FSMs the transitions between states are
executed only if the assigned condition is fulfilled, otherwise the automaton remains
in the particular state.
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Fig. 7.10 State diagrams (Moore FSMs) of the decomposed smart home system
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Table 7.1 Transition table (Moore FSMs) of the decomposed smart home system

Module Current state Condition Next state Outputs

S1 p1 x1 p8 z1
p8 x8&z5 p11 y1, z4
p11 x7 p14 y7
p14 z7&z8 p1 z6

S2 NOP1 x1&z1 p3 –

p3 x4 p5 y4
p5 z3 p6 z2
p6 x6 p7 y6
p7 x8&z4 p10 z5
p10 x5 p13 y5
p13 z6&z8 NOP1 z7

S3 NOP2 x1&z1 p2 –

p2 x2 p4 y2
p4 z2 NOP2 z3
NOP3 x8&z4&z5 p9 –

p9 x3 p12 y3
p12 z6&z7 NOP2 z8

Similarly to the previous steps, the modeled automata are ought to be validated.
Next, the prototyped FSMs are written in hardware languages. The detailed descrip-
tion of this step is presented in Chap.8.

Note, that there exist tools that permit modeling FSMs in a graphical form.
For example, Active-HDL from Aldec permits direct specification of the sequential
automaton as a state diagram [2]. However, the model is translated to the hardware
languages (Verilog or VHDL).

7.2.4 Verification of the System (Software Simulation)

Once the FSMs are described in hardware languages, they are verified by a software
simulation. This step is executed similarly to the traditional flow.The particular inputs
are stimulated by user-defined values, while the outputs are achieved according to
the functionality of the prototyped system.

Figure7.11 presents the results of software simulation of the smart home system
performed by the tool Active-HDL from Aldec. The behavior of the controller is
illustrated by signals that change values in time. Initially, reset is activated and
the system is zeroed. When this signal is turned off, the systems starts working
according to the concept shown in Fig. 7.5 and specified by an interpreted Petri net
PN7 (Fig. 7.6). Thus, after pressing of the button (x1 = 1), three operations are
executed simultaneously: y1, y2, y4, and so on.

http://dx.doi.org/10.1007/978-3-319-45811-3_8


7.2 Prototyping of Integrated Concurrent Control Systems 113

Fig. 7.11 Simulation of the prototyped smart home system

7.2.5 Implementation of the System

The final implementation of the prototyped concurrent control system consists of
additional sub-steps, including logic synthesis, logic implementation, and generation
of the final bit-stream, that is, the portion of data that is sent in order to program the
device (for example, in case of an FPGA). Particular actions are executed strictly
according to the vendor of the targeted device [3, 6, 66]. The detailed description
of the implementation of the concurrent control systems in the FPGA is shown in
Chap.9.
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Chapter 8
Modelling of Concurrent Systems in
Hardware Languages

The presented techniques include various modelling ideas presented among others in
[1, 3, 6–8, 10, 11, 13, 14, 17, 21, 24]. In our considerations we shall use the Verilog
language [12, 16, 18, 19, 22]. However, it can be easily transformed into VHDL
(Very High Speed Integrated Circuits Hardware Description Language) [5, 25]. It is
assumed, that Reader is familiar with the basic notations of the Verilog language.

Both modelling concepts are illustrated by the examples of real-life systems,
specified by the interpreted Petri nets. Note, that the detailed descriptions of applied
examples are shown in previous chapters.

It is assumed that the prototyped system is oscillated by a rising edge of an external
clock signal (denoted as clk). Moreover, the system is zeroed by an asynchronous
external reset signal.

8.1 Traditional Modelling of Concurrent Systems
in Hardware Description Languages

The traditional modelling concept relies on the behavior of the concurrent control
system [4, 20, 24]. We shall show the modelling techniques, starting from the very
simple examples of an interpreted Petri net.

Initially, themain definitions are presented (for inputs, outputs, transitions, places,
etc.), as well, as the description of the basic behavior of the net (transitions firing,
movement of the tokens). Then,we shallmove on to themore complicated interpreted
Petri nets, such as description of the concurrency in the system (more than one input
or/and output places of a transition) or description of conflicts (more that one input
or/and output transitions of a place).

© Springer International Publishing Switzerland 2017
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8.1.1 The Basic Assumptions

Let us start with the basic assumptions that we use in further description of the inter-
preted Petri net in the Verilog language. Note, that places of the net contain tokens.
Therefore, they ought to be considered as registered values, that is, declared as reg
signals. Moreover, their changes (that is assignments to the registers) are done by the
procedural assignments within the @always block. Furthermore, we shall oscillate
all the registers by the external clock signal (active on the rising edge). The whole
system is zeroed by an external and asynchronous reset signal.

Transitions of the described interpreted Petri net just perform simple combina-
tional logic, i.e., wire signals. Thus, their modifications can be simply reached by
the continuous assignments, that is assign statements.

Finally, outputs of the system are related to the particular places of the net. There-
fore, they are described by the continuous assignments, similarly to the transitions.

8.1.2 Description of Transitions, Places, Outputs

Let us now show the description of the system specified by an interpreted Petri net
in the Verilog language. Figure8.1 shows a sample net. There are two places p1, p2
and two transitions t1, t2, while p1 is initially marked. The presented net is live, safe,
and reversible (thus it is well-formed, and can be considered as an interpreted Petri
net). Clearly, the net is classified as an SM-net.

Two outputs y1, y2 are assigned to places p1, p2 (respectively), while the input
signal x1 determines firing of both transitions. Note, t1 is enabled, when x1 = 1,
while t2 is enabled, when x1 = 0 (denoted as x1). The initial declaration of the above
attributes in the Verilog code looks as follows:

Fig. 8.1 Sample basic Petri
net
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1 // descriptions of all outputs and inputs:
2 output y1 ,y2; // outputs of the net
3 input x1; // input of the net
4 input clk , reset; // external clock and reset
5

6 // description of the internal signals:
7 wire t1 ,t2; // declaration of transition t1
8 reg p1 ,p2; // declaration of places p1 and

p2

Let us now describe the behavior of the net. We shall divide the code into three
main parts. The first one regards transitions (and input signals that are associated to
them), the second part focuses on the places, while the last one on the outputs of the
system.

There are two transitions in the net. The first one (t1) is enabled, when p1 is marked
and the condition x1 = 1 is fulfilled. Therefore, such a transition can be expressed
as a logical conjunction: t1 = x1&p1. Since it is a simple combinational logic, it is
described by an assign statement. Similarly, t2 is designed as a logical conjunction
of the negation of x1 and p2:

1 assign t1 = x1 & p1; // logical conjunction of
x1 and p1

2 assign t2 = ∼x1 & p2; // logical conjunction of
x1 and p2

Notice, that the movement of tokens between places are strictly determined by fir-
ing of transitions. Such operations can be described by a logical equations. However,
places are declared as registers. Thus, procedural assignments ought to be applied.
Moreover, the registers ought to be oscillated by a clock. To achieve it, we shall use
an external clock source (signal clk). Additionally, active reset signal sets the net
into the initial state (initial marking).

To achieve the logical equations for the places, two aspects should be considered.
Clearly, a particular place becomes marked if one of its input transitions is fired.
However, if the place is currently marked, the token remains untouched in such a
place, unless one of its output transitions is fired. It means, that the place is marked
either if it contains a token and its output transition is not fired or its input transition
is fired:

1 always@(posedge clk or posedge reset)
2 begin
3 if (reset) {p1 ,p2}<=2’b 10;
4 else
5 begin
6 p1 <= p1 & ∼t1 | t2;
7 p2 <= p2 & ∼t2 | t1;
8 end
9 end

Finally, output signals are described.Note, that outputs are always tied to particular
places. Therefore, they can be realized as a continuous assignment:
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1 assign y1 = p1; // output y1 is active only if p1
is marked

2 assign y2 = p2; // output y2 is active only if p2
is marked

Let us combine all the above codes. The complete Verilog module description of
the interpreted Petri net presented in Fig. 8.1 joins all the above partial ones, that is,
descriptions of the transitions, places and outputs:

1 module net(y1 ,y2 ,x1 ,clk ,reset);
2

3 output y1 ,y2;
4 input x1;
5 input clk , reset;
6

7 wire t1 ,t2;
8 reg p1 ,p2;
9

10 // equations for transitions (continuous
assignments):

11 assign t1 = x1 & p1;
12 assign t2 = ∼x1 & p2;
13

14 always@(posedge clk or posedge reset)
15 begin
16 if (reset) {p1 ,p2}<=2’b 10;
17 else
18 begin
19 // equations for places (procedural assignments):
20 p1 <= p1 & ∼t1 | t2;
21 p2 <= p2 & ∼t2 | t1;
22 end
23 end
24

25 // equations for outputs:
26 assign y1 = p1;
27 assign y2 = p2;
28

29 endmodule

8.1.3 Description of Concurrency

Let us now describe more complicated example, presented in Fig. 8.2. The net
consists of four places (with assigned five output signals to them) and three transitions
that are fired according to the two input signals. Note, that in opposite to the previous
example, there is a concurrency in the net. Places p1 and p3 are concurrent, as well
as p2 and p4.
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Fig. 8.2 Sample basic Petri
net

Declaration of themodule ports (inputs and outputs) and internal signals is similar
to the previous example:

1 // descriptions of all outputs and inputs:
2 output y1 ,y2 ,y3 ,y4 ,y5;
3 input x1 ,x2;
4 input clk , reset;
5

6 // description of the internal signals:
7 wire t1 ,t2 ,t3;
8 reg p1 ,p2 ,p3 ,p4;

Let us now analyze the behavior of the transitions. The first one (t1) is enabled
when p1 and p3 contain tokens, and additionally, the condition x1 = 1 is fulfilled.
Thus, the logical conjunction of t1 can be specified as follows: t1 = x1&p1&p3.
Transition t2 is enabled when p2 is marked and if x1 = 0. Finally, simultaneous
marking of p4 and the activation of signal x2 (that is, x2 = 1) enables t3:

1 assign t1 = x1 & p1 & p3; // conjunction of x1
and p1 and p3

2 assign t2 = ∼x1 & p2;
3 assign t3 = x2 & p4;

Similarly to the previous example, the logical equations for the places are formed
with the use of procedural assignments. Note, that reset signal returns the controller
into the initial state, where places p1 and p3 are marked simultaneously:

1 always@(posedge clk or posedge reset)
2 begin
3 if (reset) {p1 ,p2,p3 ,p4}<=4’b 1010;
4 else
5 begin
6 p1 <= p1 & ∼t1 | t2;
7 p2 <= p2 & ∼t2 | t1;
8 p3 <= p3 & ∼t1 | t3;
9 p4 <= p4 & ∼t3 | t1;
10 end
11 end
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The outputs are associated to the places, therefore they are simply described by
continuous assignments:

1 assign y1 = p1;
2 assign y2 = p2;
3 assign y3 = p3;
4 assign y4 = p3;
5 assign y5 = p4;

Eventually, the final description of the net combines all the above codes:

1 module net_concurrency(y1 ,y2 ,y3 ,y4 ,y5 ,x1 ,x2 ,clk ,
reset);

2

3 output y1 ,y2 ,y3 ,y4 ,y5;
4 input x1 ,x2;
5 input clk , reset;
6

7 wire t1 ,t2 ,t3;
8 reg p1 ,p2 ,p3 ,p4;
9

10 assign t1 = x1 & p1 & p3;
11 assign t2 = ∼x1 & p2;
12 assign t3 = x2 & p4;
13

14 always@(posedge clk or posedge reset)
15 begin
16 if (reset) {p1 ,p2,p3 ,p4}<=4’b 1010;
17 else
18 begin
19 p1 <= p1 & ∼t1 | t2;
20 p2 <= p2 & ∼t2 | t1;
21 p3 <= p3 & ∼t1 | t3;
22 p4 <= p4 & ∼t3 | t1;
23 end
24 end
25

26 assign y1 = p1;
27 assign y2 = p2;
28 assign y3 = p3;
29 assign y4 = p3;
30 assign y5 = p4;
31

32 endmodule

8.1.4 Description of Conflicts

Conflicts is the remaining aspect of the interpreted Petri net, that has not been
shown in the above descriptions. Note, that all the conflicts must be resolved at the
prototyping stage, in order to classify the net as an interpreted one (cf. Chap.2).

http://dx.doi.org/10.1007/978-3-319-45811-3_2
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Fig. 8.3 Sample basic Petri
net

Consider the interpreted Petri net shown in Fig. 8.3. There are three places and
four transitions in the net. Each of three outputs is directly assigned to one of the
net places, while three inputs (x1, x2, x3) determine enabling and further firing of the
transitions.

Let us now analyse the behavior of the net. At the initial marking, t1 or t2 is
enabled. The enabling of those transitions is mutually exclusive, since the input
signal x1 resolves the conflict for this particular situation. Transition t1 is enabled,
when x1 = 1, while t2 is enabled when x1 = 0. The remaining two transitions (t3 and
t4) are simply formed as a logical conjunction of their input places and conditions

1 assign t1 = x1 & p1;
2 assign t2 = ∼x1 & p1;
3 assign t3 = x2 & p2;
4 assign t4 = x3 & p3;

Furthermore, place p2 becomes marked, if t1 fires. The similar situation is with p3.
A token is moved to such a place, when t2 is fired. However, there are two incoming
arcs to p1. It means, that such a place ismarked either, when t3 or t4 is fired. Therefore,
we shall use the logical disjunction to describe the equation for this place (and any
other place that is an output of more than one transition). Additionally, when p1 is
marked, the token is kept-up in such a place unless t1 or t2 is enabled:

1 p1 <= p1 & ∼t1 & ∼t2 | t3 | t4;
2 p2 <= p2 & ∼t3 | t1;
3 p3 <= p3 & ∼t4 | t2;

Clearly, the equations for the output signals are formed in the same manner as in
previous examples. The final description of the whole net is as follows:
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1 module net_conflicts(y1,y2 ,y3 ,x1 ,x2 ,x3,clk ,reset);
2

3 output y1 ,y2 ,y3;
4 input x1 ,x2 ,x3;
5 input clk , reset;
6

7 wire t1 ,t2 ,t3 ,t4;
8 reg p1 ,p2 ,p3;
9

10 assign t1 = x1 & p1;
11 assign t2 = ∼x1 & p1;
12 assign t3 = x2 & p2;
13 assign t4 = x3 & p3;
14

15 always@(posedge clk or posedge reset)
16 begin
17 if (reset) {p1 ,p2,p3}<=3’b 100;
18 else
19 begin
20 p1 <= p1 & ∼t1 & ∼t2 | t3 | t4;
21 p2 <= p2 & ∼t3 | t1;
22 p3 <= p3 & ∼t4 | t2;
23 end
24 end
25

26 assign y1 = p1;
27 assign y2 = p2;
28 assign y3 = p3;
29

30 endmodule

8.1.5 Examples

The techniques presented in the previous sections allow the description of an inter-
preted Petri net, including concurrency and conflict resolving. Let us now show
more descriptions of interpreted Petri nets in the Verilog language. We shall use the
concurrent control systems from the previous chapters.

Recall the smart home system specified by the interpreted Petri net PN7 shown in
Fig. 7.6. Note, that there is a concurrency but there are no conflicts in the net. Listing
8.1 presents a Verilog code for PN7.

Listing 8.1 Description of the home system specified by the net shown in Fig. 7.6

1 module home_system(y,x,clk ,reset);
2

3 output [1:7] y;
4 input [1:8] x;
5 input clk ,reset;
6

http://dx.doi.org/10.1007/978-3-319-45811-3_7
http://dx.doi.org/10.1007/978-3-319-45811-3_7
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7 reg [1:14] p;
8 wire [1:10] t;
9

10 assign t[1]=x[1]&p[1];
11 assign t[2]=x[2]&p[2];
12 assign t[3]=x[4]&p[3];
13 assign t[4]=p[4]&p[5];
14 assign t[5]=x[6]&p[6];
15 assign t[6]=x[8]&p[7]&p[8];
16 assign t[7]=x[3]&p[9];
17 assign t[8]=x[5]&p[10];
18 assign t[9]=x[7]&p[11];
19 assign t[10]=p[12]&p[13]&p[14];
20

21 always@(posedge clk or posedge reset)
22 begin
23 if (reset) p<=14’b 10000000000000;
24 else
25 begin
26 p[1]<=p[1]&∼t[1]|t[10];
27 p[2]<=p[2]&∼t[2]|t[1];
28 p[3]<=p[3]&∼t[3]|t[1];
29 p[4]<=p[4]&∼t[4]|t[2];
30 p[5]<=p[5]&∼t[4]|t[3];
31 p[6]<=p[6]&∼t[5]|t[4];
32 p[7]<=p[7]&∼t[6]|t[5];
33 p[8]<=p[8]&∼t[6]|t[1];
34 p[9]<=p[9]&∼t[7]|t[6];
35 p[10]<=p[10]&∼t[8]|t[6];
36 p[11]<=p[11]&∼t[9]|t[6];
37 p[12]<=p[12]&∼t[10]|t[7];
38 p[13]<=p[13]&∼t[10]|t[8];
39 p[14]<=p[14]&∼t[10]|t[9];
40 end
41 end
42

43 assign y[1]=p[8];
44 assign y[2]=p[2];
45 assign y[3]=p[9];
46 assign y[4]=p[3];
47 assign y[5]=p[10];
48 assign y[6]=p[6];
49 assign y[7]=p[11];
50 endmodule

Since there are 14 places and ten transitions in the net, they are grouped and
declared as vectors p and t, respectively. Similarly, inputs and outputs of the net are
also defined as vectors y and x.

Listing 8.2 presents the Verilog model of a simplified traffic lights system. The
controller was described by the interpreted Petri net PN3 and it was initially shown
in Fig. 2.6.

http://dx.doi.org/10.1007/978-3-319-45811-3_2
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Listing 8.2 Description of the simplified traffic lights in the Verilog code

1 module traffic_lights_simple(GC ,YC ,RC ,GP ,RP ,req ,clk ,
reset);

2

3 output GC ,YC ,RC ,GP ,RP;
4 input req;
5 input clk ,reset;
6

7 reg [1:6] p;
8 wire [1:5] t;
9

10 assign t[1]=p[1]&p[4]&∼req;
11 assign t[2]=p[2]& req;
12 assign t[3]=p[3];
13 assign t[4]=p[1]&p[6]& req;
14 assign t[5]=p[5];
15

16 always@(posedge clk , posedge reset)
17 begin
18 if (reset) p<=6’ b100101;
19 else
20 begin
21 p[1]<=p[1]&∼t[1]&∼t[4]|t[3]|t[5];
22 p[2]<=p[2]&∼t[2]|t[1];
23 p[3]<=p[3]&∼t[3]|t[2];
24 p[4]<=p[4]&∼t[1]|t[3];
25 p[5]<=p[5]&∼t[5]|t[4];
26 p[6]<=p[6]&∼t[4]|t[5];
27 end
28 end
29

30 assign GC=p[2];
31 assign YC=p[3];
32 assign RC=p[4];
33 assign GP=p[5];
34 assign RP=p[6];
35

36 endmodule

The places and transitions are declared as vectors. However, input and output
signals are not grouped into vectors because of their unique names. Note, that input
signal req resolves conflict in the net.

Finally, we shall show the description of the milling machine illustrated by the
interpreted net PN2 (cf. Fig. 2.4). Listing 8.3 presents the Verilog model of such a
net.

The input and output signals are grouped into vectors, as well as internal signals
representing places and transitions. Note, that assignments to the output signals are
concatenated.

http://dx.doi.org/10.1007/978-3-319-45811-3_2
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Listing 8.3 Description of the milling machine in Verilog

1 module milling_net(y,x,clk ,reset);
2

3 output [1:14] y;
4 input [1:14] x;
5 input clk ,reset;
6

7 reg [1:21] p;
8 wire [1:17] t;
9

10 assign t[1]=x[14]&p[1];
11 assign t[2]=x[1]&p[2];
12 assign t[3]=x[2]&p[3];
13 assign t[4]=p[3]&p[5];
14 assign t[5]=x[3]&p[7];
15 assign t[6]=x[5]&p[9];
16 assign t[7]=x[6]&p[10];
17 assign t[8]=x[7]&p[11];
18 assign t[9]=x[8]&p[12];
19 assign t[11]=x[9]&p[14];
20 assign t[12]=x[10]&p[15];
21 assign t[13]=x[11]&p[17];
22 assign t[14]=x[12]&p[18];
23 assign t[15]=p[6]&p[13]&p[16]&p[19];
24 assign t[16]=x[13]&p[20];
25 assign t[17]=∼x[14]&p[21];
26

27 always@(posedge clk or posedge reset)
28 begin
29 if (reset) p<=14’b 10000000000000;
30 else begin
31 p[1]<=p[1]&∼t[1]|t[17];
32 p[2]<=p[2]&∼t[2]|t[1];
33 p[3]<=p[3]&∼t[4]|t[2];
34 p[4]<=p[4]&∼t[3]|t[1];
35 p[5]<=p[5]&∼t[4]|t[3];
36 p[6]<=p[6]&∼t[15]|t[4];
37 p[7]<=p[7]&∼t[5]|t[4];
38 p[8]<=p[8]&∼t[6]|t[5];
39 p[9]<=p[9]&∼t[7]|t[6];
40 p[10]<=p[10]&∼t[8]|t[7];
41 p[11]<=p[11]&∼t[9]|t[8];
42 p[12]<=p[12]&∼t[10]|t[9];
43 p[13]<=p[13]&∼t[15]|t[10];
44 p[14]<=p[14]&∼t[11]|t[4];
45 p[15]<=p[15]&∼t[12]|t[11];
46 p[16]<=p[16]&∼t[15]|t[12];
47 p[17]<=p[17]&∼t[13]|t[4];
48 p[18]<=p[18]&∼t[14]|t[13];
49 p[19]<=p[19]&∼t[15]|t[14];
50 p[20]<=p[20]&∼t[16]|t[15];
51 p[21]<=p[21]&∼t[17]|t[16];
52 end
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53 end
54

55 assign y={p[2],p[4],p[6:12] ,p[14],p[15],p[17],p
[18],p[20]};

56

57 endmodule

8.2 Modelling of Concurrent Systems as a Composition
of Sequential Automata

This section describes the modelling idea of concurrent control systems seen as a
composition of sequential automata. It is assumed that the initial controller has been
already split into sequential modules with the use of decomposition methods shown
in Chap.6. Furthermore, the proper synchronization of the achieved components is
assured, according to the technique proposed in the previous chapter (cf. Sect. 7.2.3).

We shall begin with the basic description of an FSM in the Verilog language.
Next, a few examples will be shown. All of them based on the real-life concurrent
control systems presented in the previous chapters.

8.2.1 Description of an FSM in Verilog

Let us start with the basic assumptions regarding description of a Moore FSM in
Verilog. Figure8.4 shows the sample specification of a synchronous reversible
counter. Two outputs y2 and y1 indicate the current (binary) value of the counter,
while input x specifies the counting direction: forward (x = 1) or reverse (x = 0).

Clearly, the counter requires at least two registers for encoding of four internal
states. In our considerations we shall use the Gray code. Furthermore, D flip-flops
with the asynchronous reset are used (taken directly from the Xilinx primitives and
denoted as FDC [23]). The typical prototyping method of the Moore FSM [2, 9, 15,
22] leads to the following equations of the excitation functions for flip-flops:

• d1 = q2 ⊕ x,
• d2 = q1 ⊗ x,

where d1, d2 denote registers inputs, q1, q2 refer to their outputs, sign ⊕ means logic
exclusive-or (xor), while ⊗ denotes its logical complement (xnor).

Furthermore, the equations for the outputs are as follows:

• y1 = q2 ⊕ q1,
• y2 = q2.

http://dx.doi.org/10.1007/978-3-319-45811-3_6
http://dx.doi.org/10.1007/978-3-319-45811-3_7
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Fig. 8.4 Sample basic Petri
net

The final structural diagram of the counter is shown in Fig. 8.5. Let us describe such
a model with the use of Verilog language. Listing 8.4 shows the sample code of the
counter realized in a structural way.

Listing 8.4 Description of the counter in Verilog (structural)

1 module counter_structural(y1 ,y2 ,x,clk ,reset);
2

3 output y1 ,y2;
4 input x;
5 input clk , reset;
6

7 wire d1 ,d2;
8 wire q1 ,q2;
9

10 assign d1=x^q1;
11 assign d2=x^∼q2;
12

13 FDC fd1 (q1 ,clk ,reset ,d1);
14 FDC fd2 (q2 ,clk ,reset ,d2);
15

16 assign y1=q1^q2;
17 assign y2=q2;
18

19 endmodule

Both flip-flops are described as an instantiation of the primitive FDC from the
Xilinx library. Equations for register inputs, as well as equations for the outputs are
realized by the continuous assignments.

The above code presents the structural description of the FSM in Verilog. Alterna-
tively, an automaton can be realizedwith the use of behavioral statements. Listing 8.5
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Fig. 8.5 Sample basic Petri net

presents an exemplary behavioral description of the counter in theVerilog code.Note,
that such a description can be performed in a different way. In our considerations we
use case statement.

Listing 8.5 Description of the counter in Verilog (behavioral)

1 module counter (y1 ,y2 ,x,clk ,reset);
2

3 output y1 ,y2;
4 input x;
5 input clk , reset;
6

7 reg [1:0] state ,next; // declaration of current
and next states

8 parameter a0=2’b00 , a1=2’b01 , a2=2’b11 , a3=2’b10;
//Gray code

9

10 always @(posedge clk or posedge reset)
11 if (reset) state <= a0;
12 else state <= next;
13

14 always @(state or x) // computation of the next
state

15 case(state)
16 a0: next <= (x)?a1:a3;
17 a1: next <= (x)?a2:a0;
18 a2: next <= (x)?a3:a1;
19 a3: next <= (x)?a0:a2;
20 default: next <= a0;
21 endcase
22

23 assign y1=( state==a1|| state==a3)?1’b1:1’b0;
24 assign y2=( state==a2|| state==a3)?1’b1:1’b0;
25

26 endmodule

The behavioral description of an FSM includes three main blocks, two of them
are procedural, while the remaining one is continuous. The first procedural block is
active on the rising edges of the clock and reset signals. It zeroes the system (if reset
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is active) or switches the current state of the automaton into the next one. The second
always block performs assignments of the next state, based on the input signal and
current state. Finally, the continuous assignments perform the equations for outputs.

Note, that there is a possibility for specific encoding of the states. In the above
example, particular states of the automaton are encoded with the use of Gray code.

Note, that both presented FSM descriptions (structural and behavioral) are fully
synthesizable and can be successfully used in the prototyping flow of the concurrent
control systems presented in this book. However, in the further examples we shall
use the behavioral description of FSMs.

8.2.2 Examples

Let us now present examples of concurrent control systems described in Verilog
as a composition of sequential automata. At the beginning, the smart home system
shall be presented. According to Fig. 7.10 (or Table7.1) there are three FSMs in the
decomposed system. Let us apply the technique presented in the previous section to
describe the first state machine component in the Verilog language.

Listing 8.6 Description of the first component of the smart home system

1 // Description of the first component:
2 module S1 (y1 ,y7 ,z1 ,z4 ,z6 ,x1 ,x7 ,x8 ,z5 ,z7 ,z8 ,clk ,

reset);
3

4 output y1 ,y7 ,z1 ,z4 ,z6;
5 input x1 ,x7 ,x8 ,z5 ,z7,z8 ,clk ,reset;
6

7 reg [1:0] state=0,next =0;
8 parameter p1=2’b00 , p8=2’b01 , p11=2’b11 , p14=2’

b10;
9

10 always@(posedge clk or posedge reset)
11 if (reset) state <= p1;
12 else state <= next;
13

14 always@(state or x1 or x7 or x8 or z5 or z7 or z8
)

15 case (state)
16 p1:next <= (x1)?p8:p1;
17 p8:next <= (x8&&z5)?p11:p8;
18 p11:next <= (x7)?p14:p11;
19 p14:next <= (z7&&z8)?p1:p14;
20 default:next <=p1;
21 endcase
22

23 assign z1=( state==p1)?1’b1:1’b0;
24 assign y1=( state==p8)?1’b1:1’b0;
25 assign z4=( state==p8)?1’b1:1’b0;

http://dx.doi.org/10.1007/978-3-319-45811-3_7
http://dx.doi.org/10.1007/978-3-319-45811-3_7
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26 assign y7=( state==p11)?1’b1:1’b0;
27 assign z6=( state==p14)?1’b1:1’b0;
28

29 endmodule

Listing 8.6 shows the sample code of S1. Note, that there are six additional syn-
chronization signals (three outputs: z1, z4, z6 and three inputs: z5, z7, z8). Such signals
are used for proper communication with other two components (cf. Sect. 7.2.2).

Internal states of the automaton are encoded with the use of Gray code. Their
labels (names) refer directly to the places in the decomposed Petri net. Therefore,
the initial state is denoted as p1 (a place that holds a token in the initial marking).

Listing 8.7 presents the Verilog description of two remaining components. They
are modelled in the same manner as the first SMC. Note, that in both components
three registers are applied to keep the value of automaton states.

Listing 8.7 Description of the remaining components of the home system
1 // Description of the second component:
2 module S2(y4 ,y5,y6,z2,z5 ,z7,x1,x4,x5 ,x6,x8,z1,z3 ,z4,z6,

z8 ,clk ,reset);
3

4 output y4 ,y5,y6,z2,z5 ,z7;
5 input x1,x4,x5,x6,x8,z1,z3,z4,z6,z8,clk ,reset;
6

7 reg [2:0] state=0,next =0;
8 parameter NOP1=3’b000 , p3=3’b001 , p5=3’b011 , p6=3’

b010 , p7=3’b110 , p10=3’b111 , p13=3’b101;
9

10 always@(posedge clk or posedge reset)
11 if (reset) state <= NOP1; else state <= next;
12

13 always@(state or x1 or x4 or x5 or x6 or x8
14 or z1 or z3 or z4 or z6 or z8)
15 case (state)
16 NOP1:next <=(x1&z1)?p3:NOP1;
17 p3:next <=(x4)?p5:p3;
18 p5:next <=(z3)?p6:p5;
19 p6:next <=(x6)?p7:p6;
20 p7:next <=(x8&&z4)?p10:p7;
21 p10:next <=(x5)?p13:p10;
22 p13:next <=(z6&&z8)?NOP1:p13;
23 default:next <=NOP1;
24 endcase
25

26 assign y4=( state==p3)?1’b1:1’b0;
27 assign z2=( state==p5)?1’b1:1’b0;
28 assign y6=( state==p6)?1’b1:1’b0;
29 assign z5=( state==p7)?1’b1:1’b0;
30 assign y5=( state==p10)?1’b1:1’b0;
31 assign z7=( state==p13)?1’b1:1’b0;
32

33 endmodule
34

35 // Description of the third component:

http://dx.doi.org/10.1007/978-3-319-45811-3_7
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36 module S3 (y2,y3,z3 ,z8,x1,x2,x3 ,x8,z1,z2,z4 ,z5,z6,z7,
clk ,reset);

37

38 output y2 ,y3,z3,z8;
39 input x1,x2,x3,x8,z1,z2,z4,z5,z6,z7,clk ,reset;
40

41 reg [2:0] state=0,next =0;
42 parameter NOP2=3’b000 , p2=3’b001 , p4=3’b011 , NOP3=3’

b010 , p9=3’b110 , p12=3’b100;
43

44 always@(posedge clk or posedge reset)
45 if (reset) state <= NOP2; else state <= next;
46

47 always@(state or x1 or x2 or x3 or x8 or z1
48 or z2 or z4 or z5 or z6 or z7)
49 case (state)
50 NOP2:next <=(x1&z1)?p2:NOP2;
51 p2:next <=(x2)?p4:p2;
52 p4:next <=(z2)?NOP3:p4;
53 NOP3:next <=(x8&z4&z5)?p9:NOP3;
54 p9:next <=(x3)?p12:p9;
55 p12:next <=(z6&&z7)?NOP2:p12;
56 default:next <=NOP2;
57 endcase
58

59 assign y2=( state==p2)?1’b1:1’b0;
60 assign z3=( state==p4)?1’b1:1’b0;
61 assign y3=( state==p9)?1’b1:1’b0;
62 assign z8=( state==p12)?1’b1:1’b0;
63

64 endmodule

Finally, the main module of the decomposed system ought to be prepared. Such
a module (often called top module) contains instantiations of all three components.
Listing 8.8 presents the description of the main module for the decomposed smart
home system.

Listing 8.8 Description of the main (top) module of the home system
1 //Main module:
2 module home_system_decomposed (y,x,clk ,reset);
3

4 output [1:7] y;
5 input [1:8] x;
6 input clk ,reset;
7

8 wire z[1:8];
9

10 S1 SMC1 (y[1],y[7],z[1],z[4],z[6],x[1],x[7],x[8],z
[5],z[7], z[8],clk ,reset);

11 S2 SMC2 (y[4],y[5],y[6],z[2],z[5],z[7],x[1],x[4],x
[5],x[6], x[8],z[1],z[3],z[4],z[6],z[8],clk ,
reset);

12 S3 SMC3 (y[2],y[3],z[3],z[8],x[1],x[2],x[3],x[8],z
[1],z[2], z[4],z[5],z[6],z[7],clk ,reset);

13

14 endmodule
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Let us now present the description of the simplified traffic lights system. Recall the
results of decomposition based on the comparability graphs (cf. Fig. 6.7). In order
to describe the decomposed system in Verilog, proper synchronization ought to be
assured. Figure8.6 shows decomposed and synchronized net PN3.

There are three components in the decomposed net and five synchronization sig-
nals. Note, that the second module (Fig. 8.6) contains a conflict which is resolved by
the input signal req. Listing 8.9 presents a sample Verilog code of all the components
of the decomposed traffic light system.

Listing 8.9 Description of the decomposed components of the traffic light system

1 module S1 (GC ,YC ,RC ,z1 ,z3 ,req ,z2 ,clk ,reset);
2

3 output GC ,YC ,RC ,z1 ,z3;
4 input req ,z2 ,clk ,reset;
5

6 reg [1:0] state=0,next =0;
7 parameter p4=2’b00 , p2=2’b01 , p3=2’b11;
8

9 always@(posedge clk or posedge reset)
10 if (reset) state <=p4; else state <=next;
11

12 always@(state or req or z2)
13 case (state)
14 p4:next <=(! req&&z2)?p2:p4;
15 p2:next <=(req)?p3:p2;
16 p3:next <=p4;
17 default:next <=p4;
18 endcase
19

20 assign {RC ,z1}=( state==p4)?2’b11:2’b00;
21 assign GC=( state==p2)?1’b1:1’b0;
22 assign {YC ,z3}=( state==p3)?2’b11:2’b00;
23

24 endmodule
25

26 module S2 (GP ,z2 ,z5 ,req ,z1 ,z3 ,z4 ,clk ,reset);
27

28 output GP ,z2 ,z5;
29 input req ,z1 ,z3 ,z4 ,clk ,reset;
30

31 reg [1:0] state=0,next =0;
32

33 parameter p1=2’b00 , NOP1=2’b01 , p5=2’b10;
34

35 always@(posedge clk or posedge reset)
36 if (reset) state <=p1; else state <=next;
37

38 always@(state or req or z1 or z3 or z4)
39 case (state)
40 p1:next <=(! req&&z1)?NOP1:(req&&z4)?p5:p1;
41 NOP1:next <=(z3)?p1:NOP1;

http://dx.doi.org/10.1007/978-3-319-45811-3_6
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42 p5:next <=p1;
43 default:next <=p1;
44 endcase
45

46 assign z2=( state==p1)?1’b1:1’b0;
47 assign {GP ,z5}=( state==p5)?2’b11:2’b00;
48

49 endmodule
50

51 module S3 (RP ,z4 ,req ,z2,z5 ,clk ,reset);
52

53 output RP ,z4;
54 input req ,z2 ,z5 ,clk ,reset;
55

56 reg state=0,next =0; parameter p6=1’b1 , NOP2=1’b0;
57

58 always@(posedge clk or posedge reset)
59 if (reset) state <=p6; else state <=next;
60

61 always@(state or req or z2 or z5)
62 case (state)
63 p6:next <=(req&&z2)?NOP2:p6;
64 NOP2:next <=(z5)?p6:NOP2;
65 default:next <=p6;
66 endcase
67

68 assign {RP ,z4}=( state==p6)?2’b11:2’b00;
69

70 endmodule

(a) (b) (c)

Fig. 8.6 Synchronized net PN3 after the decomposition (comparability graphs)



136 8 Modelling of Concurrent Systems in Hardware Languages

Finally, the main module joins all three components. Listing 8.10 illustrates the
Verilog code of the top module for the decomposed traffic light system.

Listing 8.10 Description of the main module of the decomposed traffic light system

1 module traffic_lights_simple_dec (GC ,YC ,RC ,GP ,RP ,req
,clk ,reset);

2

3 output GC ,YC ,RC ,GP ,RP;
4 input req;
5 input clk ,reset;
6

7 wire z[1:5];
8

9 S1 SMC1 (GC ,YC ,RC ,z[1],z[3],req ,z[2],clk ,reset);
10 S2 SMC2 (GP ,z[2],z[5],req ,z[1],z[3],z[4],clk ,

reset);
11 S3 SMC3 (RP ,z[4],req ,z[2],z[5],clk ,reset);
12

13 endmodule
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Chapter 9
Implementation of Concurrent Control
Systems in FPGA

9.1 Introduction to the Programmable Devices

The idea of digital circuits and programmable devices dates back to the late 1940s,
when the first transistor was prototyped as a point-contact device, initially formed
from germanium. Such an invention was essential for further logic devices. The next
decade benefitted from the development of the first digital gates and circuits–so-
called transistor–transistor logic (TTL) device. Such devices consist of up to sixteen
input/output pins. Each of them performs a simple digital function. For example the
device 7400 contained four 2-input NAND gates, 7404—six NOT inverters, and so
on [22]. Those circuits were the first devices called Application Specific Integrated
Circuit (ASIC). Logic functions of such a device were fixed and unchangeable.

Initially, an ASIC contained dedicated logic values and could not be reconfig-
ured [22]. Nowadays, such an abbreviation is typically used in reference to devices
developed by a single company and designed as a specific-performance circuit [23].

The first programmable deviceswere introduced in the 1970s. Such circuits, called
as programmable logic devices (PLDs), were built as a fixed array of AND (OR)
functions driving a programmable array of OR (AND) functions [22]. Initially, they
were used to implement simple combinational logic, however, later registered and
tri-state outputs were added.

Programmable logic devices can be generally divided into three main groups:
programmable read-only memory, PROM, programmable logic array, PLA and pro-
grammable array logic, PAL. The main differences between those devices relay in
their structures (fixed/programmable array of AND/OR gates), speed and configura-
bility [22, 35]. A sample structure of a PLD (PAL) is presented in Fig. 9.1 [35].

An extended version of PLDs was presented in early 1980s. A typical complex
PLD (CPLD) simply consists small PLD blocks (also called simple programmable
logic device, SPLD) linked to the interconnect arrays. Themanufacturing technology
of CPLDs depends on the vendor, however, the idea is the same: all the programmable
macrocells (and SPLDs) share the common interconnect array.

© Springer International Publishing Switzerland 2017
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Fig. 9.1 Sample structure of
the PLD predefined link

programmable link

The typical macrocell contains AND-ORmatrix. Usually, it is a simple PLD, such
as PAL or PLA device. Additionally, a macrocell consists of programmable flip-
flops, and logic elements (for example multiplexers, XOR gates). Since macrocells
surround the interconnect array, they are fully configurable. Unfortunately, it is not
always possible to implement large and complex functions, thus they ought to be
decomposed [11, 19]. Figure9.2 shows the typical structure of a CPLD.

Field programmable gate arrays (FPGAs) were introduced in mid-1980s. A typ-
ical FPGA consists of a matrix of programmable logic blocks (note, that the name of
such a block differs depending on the device vendor). Their structure (logic blocks
surrounded by “a sea” of programmable interconnections [22]), performance and
very high configurability (even with a possibility of partial reconfiguration) resulted
in application in various aspects of human life, such as medicine [28, 31], cryptol-
ogy [9, 13, 15, 26, 27], aerospace engineering [29], image processing [7, 10, 18],
reconfigurable computing [17], measurement [25] and—of course—in concurrent
control systems [3, 8, 12, 24, 34].

Next section dealswith FPGAs inmore details.We shall show the structure of such
devices (mainly based on the Xilinx Virtex-5 family). Moreover, the idea of partial
reconfiguration (static and dynamic) of an FPGA will be presented and explained.
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Programmed Interconnect Array

Input/Output Pins Input/Output Pins

Input/Output Pins Input/Output Pins

PLD PLD

PLDPLD

Fig. 9.2 Structure of CPLD

9.2 Field Programmable Gate Arrays

Figure9.3 illustrates the general structure of the FPGA. Note, that there are differ-
ent names for internal elements of the FPGA, since each vendor usually uses own
notations [1, 2, 20, 22, 35, 39]. Therefore, all the references in this book concern
Xilinx FPGAs [39] (more precisely: most descriptions and resource analysis are
based on the Virtex-5 family [44], which is used as a referred device for synthesis,
implementation and partial reconfiguration of concurrent control systems).

The main “heart” of an FPGA is the matrix of configurable logic blocks (CLBs).
The CLBs form an array of rows and columns as illustrated in Fig. 9.3. Such elements
are connected via programmable interconnects [22]. Furthermore, additional storage
blocks, called Block RAMs (BRAMs), are located in the device. The communication
with the environment is assured by an Input and Output (I/O) blocks.

The description of the FPGA is structured as follows: initially, brief overview of
BRAMs and I/O blocks is given. Then, we shall show the CLB structure in more
details.

Block RAMs (also called dedicated memory blocks) are a portion of storage
elements in the FPGA. Theirmain advantage is configurability and size. For example,
BRAM in Virtex-5 FPGA is able to store up to 36K bits of data. Furthermore, each
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Fig. 9.3 General structure
of an FPGA

Bl
oc

k 
RA

M
s

I/
O

 B
lo

ck
s

CLBs

CLBs

Bl
oc

k 
RA

M
s

CLBs

CLBs

CLBs

CLBs

memory block can be configured independently, composing of various numbers of
microoperations andmicroinstructions, depending on the designer’s needs. Typically,
BRAMs are located in columns, across the device (cf. Fig. 9.3). Therefore, they can
be accessed relatively fast from the combinational logic (CLBs) without additional
delays. Note, that Xilinx block RAMs are synchronous, thus clock signal ought to
be delivered.

The connectivity between the FPGA and other elements of the prototyped system
is assured by an Input/Output blocks (also called as an I/O logic). An essential role of
such blocks is to assure the proper power supply standard [39]. IOBs are organized
into banks. Each bank can be configured independently, thus there is a possibility of
different I/O standards usage, depending on the standard or voltage needs.

An early CLB contained a simple multiplexer, a flip-flop and a 3-input look-
up table (LUT). In a fact, LUT was able to perform any combinational function
restricted up to three inputs and one output (more complicated functions ought to
be decomposed). Furthermore, each LUT was connected with a storage element
(flip-flop) and multiplexer. Therefore, sequential logic could be realized as well.

Later, 4-input LUTs were introduced. These elements provide a base for popular
Xilinx families, such as Spartan-3E or Virtex-II Pro [42, 43]. In opposite to the
early versions, the structure of CLB was changed. Each block was divided into four
interconnected elements, called slices. The slices were additionally grouped in pairs,
organized as columns with independent carry chains [42].

Figure9.4 presents a simplified structure of a slice that contains two 4-input look-
up tables. Each LUT is able to perform any logic function up to four input variables.
Outputs of both LUTs are connected to the additional carry and arithmetic logic,
multiplexers, and two flip-flops. The registers can be programmed as a typical D-
type flip-flop (with either synchronous or asynchronous set and reset signals) or as
a transparent latch [42]. The arithmetic logic contains various logic gates dedicated
for arithmetic operations, while carry chain provides signals from the previous and
to the next slice in the column.

Another modifications to the CLBs were made starting from the 5-series FPGAs.
Each CLBwas divided into two slices. The first one is located in the bottomwhile the
remaining one resides in the top of the block. Both slices are linked to the common
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Fig. 9.4 Simplified structure of a slice (4-input LUTs)

programmable interconnections matrix. Additionally, slices are organized in rows
and columns. Let us describe such a localization in more details, since it is essential
for the understanding of partial reconfiguration of the device.

Figure9.5 illustrates the organization of slices and CLBs in the Virtex-5 FPGA.
Note, that position of each slice in the device is denoted by coordinates “X” and
“Y”. Starting from the left-down piece of the FPGA, the first slice (in the bottom
of a CLB) is denoted by “X0Y0”. The upper slice in this block has the same “Y”
coordinate, while “X” is increased by one. The coordinates of the remaining slices
are calculated in the similar way [44]. For example, slices located in the block on
the right from the one already described are denoted by “X2Y0” (the bottom slice)
and “X3Y0” (the upper slice). Slices of the upper CLB have the coordinates “X0Y1”
(bottom one), “X1Y1” (upper), and so on.

Note, that there are two carry chains that intersect each CLB. Such chains con-
nect all the slices located in the same column, that is, slices sharing common “X”
coordinate.

Figure9.6 shows a simplified structure of a slice of theVirtex-5 FPGA. The typical
slice consists of

• four 6-input look-up tables,
• four storage elements (configured as a D-type flip-flops or latches),
• multiplexers,
• carry and arithmetic logic.

Note that there are two types of slices in the Virtex-5 FPGA. The typical one is
called SliceL. However, some slices support additional functions, such as storing data
(as a distributed random-access memory, RAM) or as a shift registers. Those slices
are denoted as SliceM.

There are six independent inputs and two independent outputs for each LUT.
The performance of both outputs depends on the type of realized logic functions. If
the look-up table performs a combinational logic of all six inputs, only one output
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Fig. 9.5 Organization of slices and CLBs in the Virtex-5 FPGA
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is used. However, there is a possibility to implement two arbitrary five-input logic
functions sharing common variables in the single LUT. In such a case, both outputs
are used [44].

9.3 Implementation of Concurrent Controllers in FPGA

This section deals with the implementation of the concurrent control systems in
an FPGA device. It is assumed that Reader is familiar with the prototyping flow
of concurrent controllers (cf. Chap. 7) and FPGA preliminaries (introduced in the
previous section).

Note, that meaning of the terms such as logic synthesis, logic implementation
may be slightly different, depending on the vendor of the destination FPGA and the
applied software. In our considerations all the descriptions regard Xilinx FPGAs
(Virtex-5 family) and Xilinx ISE Design Suite (version 14.7). Please also note, that
prototyping flows for other vendors (such as Altera or Atmel) or with the use of
different software (like Vivado Design Suite) may be slightly different, however the
implementation idea of concurrent control systems (as well as the concept of partial
reconfiguration of such controllers) is exactly the same.

Figure9.7 shows the prototyping flow of the concurrent control system (left)
with enumerated stages of the implementation in an FPGA (right). Based on the
description of the system in hardware languages (cf. Chap. 8), the design is logically
synthesized and implemented. Then, the programming data (called bit-stream) are
generated and the FPGA can be physically configured. Let us briefly present each of
the implementation stages.

Logic synthesis of the prototyped concurrent control system is a process that con-
verts the controller into the specific net-list files. In other words: synthesis transforms
the design into a gate-level representation [33].

Implementa�on

Verifica�on

Modelling

Decomposi�on

Specifica�on

Bit-stream genera�on

Logic implementa�on

Logic synthesis

FPGA

Fig. 9.7 The prototyping and implementation flows of the concurrent control system

http://dx.doi.org/10.1007/978-3-319-45811-3_7
http://dx.doi.org/10.1007/978-3-319-45811-3_8
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The resulting net-lists may be written in various formats. In our considerations
we shall use an native generic circuit, NGC format. Moreover, particular modules of
the prototyped system can be synthesized separately, producing independent NGC
files. We shall use this property during the partial reconfiguration of the concurrent
control systems (cf. Sect. 9.4).

The synthesis process permits estimation of the required hardware resources that
are needed in order to implement the system (or particular module). Such values are
simply expressed in utilized slice LUTs and slice flip-flops of the destination FPGA.

Logic implementation consists of three main substages, called translate, map and
place and route. The first one merges all the net-lists obtained during the synthesis
process and produces the logical description of the system in a form of primitives,
that is, hardware elements of the destination device. At this step, the constraint data
ought to be provided. Such data contain information about the placement of particular
input/output signals, definition of I/O standards and voltage, timing of clock signal(s),
and so on [40]. Typically, constraints are specified in a user constraint file, UCF. The
second substage of the logic implementation distributes the prototyped system over
the target FPGA. Finally, the placement and routing of the design is performed. At
this step, the timing constraints are verified, in order to satisfy the required user
expectations [40].

Bit-stream generation simply produces the portion of data, that is used for config-
uration of the destination device. In the traditional prototyping step (without partial
reconfiguration) such a file contains the full description of the FPGA. Note, that the
size of the typical bit-stream file exceeds one million bits. For example, the FPGA
XC5VLX50 (Virtex-5 family, a part ofML501 Evaluation and Development Platform)
requires 1 569 676 bits to configure the device. Such a portion of data ought to be
sent to the FPGA each time the new version of the concurrent control system is pre-
pared by designers. However, there is a technique that allows reducing the size of the
configuration file. Furthermore, there is even a possibility to exchange a part of the
device, while the rest of the FPGA remains untouched. The next sections proposes
partial reconfiguration of the concurrent control systems implemented in the FPGA.

9.4 Partial Reconfiguration of Concurrent Controllers

This section deals with partial reconfiguration of concurrent control systems imple-
mented in an FPGA. First, a short overview of such a concept is given. Next, two new
prototyping flows of concurrent control systems are proposed. The first one includes
static partial reconfiguration of such systems, while the second bases on the dynamic
partial reconfiguration of concurrent controllers. Both techniques are illustrated by
examples of systems specified by the interpreted Petri nets.
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9.4.1 The Idea of Partial Reconfiguration of an FPGA

Partial reconfiguration of field programmable gate arrays is relatively new concept.
However, most of popular FPGAs that are currently available on the marked support
partial reconfiguration (cf. [4, 41]). In opposite to the traditional designing flow, the
whole version of the prototyped system is usually implemented only once. Further
changes of the FPGA restricts to the particular area of the device, previously selected
by the designer.

Let us illustrate the concept of the partial reconfiguration. Figure9.8 shows a
piece of the FPGA device. Assume, that a part of the implemented system (denoted
by blocks to be reconfigured) ought to be replaced by a newer version. Partial recon-
figuration permits exchanging only this area of the device, while the rest of the
implemented design (marked as other blocks used by the prototyped system) remains
untouched.

Looking from the perspective of the design functionality, partial reconfiguration
can be split into two main parts [35]:

• Static partial reconfiguration—the FPGA is stopped during the reconfiguration
process. While the partial portion of data is sent into the device, the rest of the
FPGA is in the shutdown mode (not active). The device is brought up after the
partial configuration is completed.

• Dynamic partial reconfiguration—the FPGA is active (not stopped) during the
reconfiguration process. While the part of the device is being reconfigured, the
rest of the FPGA is still running. In other words, dynamic partial reconfiguration
permits configuration of the FPGA without stopping of the device.

Next sections present the prototyping flows for both: static and dynamic partial
reconfigurations of concurrent control systems implemented in the FPGA device.
The proposed methods are illustrated by examples of real-life controllers.

Fig. 9.8 The idea of the
partial reconfiguration of the
FPGA
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Note, that proposed ideas rely on the specification of the system as an interpreted
Petri net and the further decomposition of the controller into separate modules. Other
reconfiguration techniques of concurrent controllers can be found in [6, 8, 14, 16,
21, 30, 36, 38].

9.4.2 Partial Reconfiguration of Concurrent Systems

Figure9.9 shows the idea of the proposed partial reconfiguration of a concurrent
control system. It is assumed, that there are at least two versions of the prototyped
system. The first one (main version) is implemented in the FPGA only once. Other
versions (called contexts) are used in order to exchange the part of the device.

The presented technique strongly relies on the decomposition of the controller.
Indeed, contexts are just different versions of the decomposed module that is to be
replaced. We shall denote such a module as a reconfigurable module. In the other
words, reconfigurable module is a module of the prototyped system, that contains at
least two (or more) contexts.

Figure9.10 shows a sample concurrent control system, decomposed into four
modules. Assume, that Module C is a reconfigurable module and there are three
contexts. The first context is implemented during the initial configuration of the
FPGA. After that, the device is partially reconfigured with the use of contexts of
Module C. Note, that it is possible to return back to the initial version of the system,
because the first context of the module is also available for partial reconfiguration.

The part of the system that remains unchanged shall be called core. Simply, the
core refers to all the modules that are not partially reconfigured. In case of the
system presented in Fig. 9.10, modules A, B and D form a core, since they are not
reconfigurable modules.

Note, that the number of inputs and outputs of the reconfigurable module in all its
contexts should be constant. Thus, all the input and output signals that are utilized
by any version of this particular module ought to be specified in all the contexts. We
shall explain such a situation later, by an example.

FPGA

Prototyped system Contexts of reconfigurable modules

Implementa on 
of the full bit-stream

Implementa on of 
the par al bit-streams

Fig. 9.9 The idea of the partial reconfiguration of the concurrent control system
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Fig. 9.10 Sample controller
with reconfigurable Module
C and three contexts

Module A

Module B

Module DModule C
(First context)

Module C
(First context)

Module C
(Second context)

Module C
(Third context)

Depending on the type of the partial reconfiguration, the design flow is slightly
different. Let us analyze both, static and dynamic partial reconfiguration prototyping
flows of concurrent control systems in more details.

9.4.3 Static Partial Reconfiguration

The proposed prototyping flow of concurrent control systems for further static partial
reconfiguration in the FPGA includes the following steps:

1. Specification of the first version of the concurrent control system (concurrent
controller) by an interpreted Petri net.

2. Decomposition and synchronization of the concurrent controller.
3. Modelling of the first version of the concurrent controller.
4. Verification of the first version of the concurrent controller.
5. Preparing of the additional contexts for each of reconfigurable modules.

For each new context:

(a) Specification of the new context of the reconfigurable module.
(b) Modelling of the new context of the reconfigurable module.
(c) Verification of the concurrent controller with the new context.
(d) Validation of the previous contexts.

6. Implementation of the concurrent controller with additional contexts as a system
for further partial reconfiguration:

(a) Logical synthesis of the core of the concurrent controller.
(b) Logical synthesis of each context of each reconfigurable module.
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(c) Assignment of the area of the FPGA for reconfigurable modules.
(d) Logical implementation of the core together with all contexts.
(e) Generation of bit-streams for each versions of the controller.
(f) Physical implementation of the FPGA by the core and by the first context

(contexts) of reconfigurable modules.

7. Partial reconfiguration of the FPGA with the use of selected contexts.

The initial four steps are executed exactly in the same manner as in case of
the prototyping flow proposed for integrated concurrent control systems in Sect. 7.2.
Clearly, thefirst version of the controller includes the core of the system. Furthermore,
it consists of the first context of modules, that are to be partially reconfigured.

The fifth step of the above flow is an essence of the static partial reconfiguration
of the concurrent control systems. For each reconfigurable module, new context
(or contexts) are prepared. There are no restrictions regarding number of places
or transitions, however, it is important to keep proper synchronization with other
modules. A new contextmay be easily specified by aMoore automaton and described
in HDLs, according to the guidelines shown in Chap.8. Next, the context is verified
togetherwith the remaining logic (core) of the prototyped system (newcontext simply
replaces the previous version of modified module). This procedure is repeated for
each reconfigurable module and for each new context. Note, that adding a new
version of the reconfigurable module requires validation of its previous contexts.
For example, additional input/output signals have to be updated in all the previous
versions of the reconfigurable module.

Once the contexts for reconfigurable modules are ready, the whole system ought
to be prepared for further partial reconfiguration. Initially, the core of the system is
synthesized. Such a process requires to specify the reconfigurable modules as Black
Boxes [41], that is, empty modules with input and output ports declaration. The logic
of reconfigurable modules are synthesized separately. Therefore, for each context of
each module an independent net-list file in an NGC format is achieved (cf. Sect. 9.3).

The logical implementation of the concurrent control system for further partial
reconfiguration mainly relies on the assignment of the FPGA area to be used by
reconfigurable modules. The selection is performed for each reconfigurable mod-
ule separately. Figure9.11 shows a sample assignment of the logic elements to the
reconfigurable module module_C. In this particular example, three pairs of SliceL
and SliceM blocks are utilized. Note that assignment of the area for reconfigurable
modules directly influences the size of the partial bit-stream file.

Further logical implementation and generation of the bit-streams are fully auto-
mated. As a result, the set of configurable files are produced. Indeed, for each con-
text of each module two bit-streams are generated. The first one contains information
about the whole system (full bit-stream), while the second one is used for further par-
tial reconfiguration (reduced bit-stream). It means, that any version of the concurrent
control system can be initially implemented in the FPGA.

http://dx.doi.org/10.1007/978-3-319-45811-3_7
http://dx.doi.org/10.1007/978-3-319-45811-3_8
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Fig. 9.11 Assignment of the FPGA area for reconfigurable module

Partial reconfiguration of the already implemented system can be done at any time.
However, it is recommended to reset the concurrent controller to avoid malfunctions
[41]. Since other contexts of reconfigurable modules contain various internal states,
combinational and sequential logic, it may lead to unexpected behavior of the system.
Therefore, such modules should be reset to the initial state.

Let us now show the static partial reconfiguration of concurrent control systems by
examples. Recall the milling machine presented in Fig. 2.3 and specified by the inter-
preted Petri net P N2 (Fig. 2.4). Decomposition and synchronization of the system
lead to four state machine components shown in Fig. 9.12.

The third component S3={NOP2, p7, p8, p9, p10, p11, p12, p13} is responsible for
cutting the proper shape from the wooden plank. At the initial specification, the
square is cutout by moving the drill in a given sequence. Figure9.13 introduces a
new version for the third module. The presented context is responsible for cutting out
the “U-shape” from the plank. After immersion into the wood (y4), the drill moves
to the right (y5), until reaching the position indicated by sensor x15. Then, the drill
goes down, to the right (y5), to the top (y8) and once more to the right. The remaining
positions are signalized by sensors x17, x16 and x4, respectively. The subsequent drill
movement is exactly the same as in the first context. It goes down (y6), to the left
(y7) and to the top (y8), according to sensors x5, x6, and x7. Finally, the drill moves
up (y9) to its initial position.

http://dx.doi.org/10.1007/978-3-319-45811-3_2
http://dx.doi.org/10.1007/978-3-319-45811-3_2
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Fig. 9.12 Decomposed and synchronized net P N2

The second context of the third component contains twelve places and twelve
transitions. Note, that shared transitions t4 and t15 remain unchanged. Moreover,
synchronization signal z6 is now generated by place p32.

The movement of the drill is coordinated by three sensors x15, x16 and x17 that
were not used in the previous version. Therefore, those inputs ought to be added to
the specification of the first context.

The logic synthesis and implementation of the described concurrent control sys-
tem result in four configuration files:
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Fig. 9.13 Second context of the reconfigurable module of the milling machine

• Full bit-stream for the first context.
• Full bit-stream for the second context.
• Partial bit-stream for the first context.
• Partial bit-stream for the second context.

Finally, the system is physically implemented in anFPGAwith the use of oneof the
full bit-streams. Assume, that first context is downloaded to the device. The milling
machine cutouts the squares from a given wooden plank. Further reconfiguration
with the partial bit-stream for the second context changes the functionality of the
controller. Now, the system cutouts the “U-shape” from the wood. Such a process
is performed until the FPGA is partially reconfigured again, this time with the first
context. Of course, it is possible to add some other contexts. For example, the milling
machine can be used for cutting of the “L-shape” [37] or any other required shapes.
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9.4.4 Dynamic Partial Reconfiguration

The idea of dynamic partial reconfiguration is different from the static one. The
system is still running, while the part of the design is exchanged. Therefore, there
are additional conditions and restrictions that ought to be fulfilled. Let us analyze
such requirements in more details.

Looking from the functionality of the prototyped system, the main problem that
ought to be solved is the selection of a reconfigurable area. Of course, it is possible to
reconfigure whole modules, however it does not make much sense. Note, that in case
of a controller specified by a Petri net, places of the decomposed module intersect
all the markings (cf. Chap. 5). Therefore, there are no markings, where places of the
particular SMC can be dynamically reconfigured without stopping of the system. On
the other hand, all the places of the decomposed module are in sequential relation
(cf. Chap. 5). This property can be successfully applied to perform dynamic partial
reconfiguration. Simply, the module that contains reconfigurable area is divided into
two parts: dynamic and static. The first one consists of places that are to be exchanged,
while the second part remains unchanged. The reconfiguration process can be safely
performed, because both parts are sequential. Thus, the first part is reconfigured
while the controller executes actions in the static part.

Due to the requirements of the dynamic partial reconfiguration, both parts must
be described as additional modules. Moreover, additional synchronization signals
ought to be supplied to the system. Note, that it is assumed that the part of only one
of decomposed modules is reconfigured dynamically.

The proposed prototyping flow of concurrent control systems for further dynamic
partial reconfiguration in the FPGA includes the following steps:

1. Specification of the first version of the concurrent control system (concurrent
controller) by an interpreted Petri net.

2. Decomposition and synchronization of the concurrent controller.
3. Preparing of the reconfigurable area in one of the decomposed modules:

(a) Selection of the reconfigurable area.
(b) Supplementation of the system by reconfiguration signals:

• Reconfiguration request (denoted by Rec or rec),
• Reconfiguration allowed (denoted by Ral or ral).

(c) Splitting of themodule into static anddynamic submodules (parts) according
to the performed selection.

(d) Configuration of the Reset signal in the dynamic submodule.

4. Modelling of the first version of the concurrent controller.
5. Verification of the first version of the concurrent controller.
6. Preparing of the additional contexts for the dynamic submodule:

(a) Specification of the new context of the dynamic submodule.
(b) Modelling of the new context of the dynamic submodule.

http://dx.doi.org/10.1007/978-3-319-45811-3_5
http://dx.doi.org/10.1007/978-3-319-45811-3_5
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(c) Verification of the concurrent controller with the new context.
(d) Validation of the previous contexts.

7. Implementation of the concurrent controller with additional contexts as a system
for further partial reconfiguration:

(a) Logical synthesis of the core of the concurrent controller.
(b) Logical synthesis of each context of each dynamic submodule.
(c) Assignment of the area of the FPGA for dynamic submodule.
(d) Logical implementation of the core together with all contexts.
(e) Generation of bit-streams for each versions of the controller.
(f) Physically implementation of the FPGA by the core and by the first context

(contexts) of dynamic submodule.

8. Partial reconfiguration of the FPGA with the use of selected contexts.

Let us describe the above prototyping flow in more details. Additionally, we shall
illustrate it by an example. The first two steps are executed in exactly the samemanner
as in the case of the traditional prototyping methodology. The concurrent controller
is specified by an interpreted Petri net which is decomposed with the application of
one of the methods proposed in Chap. 6.

Figure9.14 (left) shows an exemplary concurrent control system specified by an
interpreted Petri net P N8. The net contains six places and four transitions. There
are six outputs Y={y1, . . . , y6}, each of them executed in a particular place. The
decomposition (and further synchronization) of P N8 results in two SMCs, as it is
presented in Fig. 9.14 (right). The first module contains places S1={p1, p3, p4, p5},
while the second consists of S2 = {p2,NOP1, p6}.

Third step is the most important stage of the whole designing flow since it strictly
influences the further dynamic reconfiguration of the concurrent system. The recon-
figurable area (also denoted a as dynamic part) should be chosen very carefully
with paying special attention to the other (concurrent) modules to the one that con-
tains places to be dynamically exchanged. It is strongly recommended to select the
dynamic part between the transitions that are shared by other decomposed modules.
Clearly, all the remaining places of the selected module form the static part (do not
confuse with the static reconfiguration described in the previous section). Note, that
the analysis of the concurrency and sequentiality properties (shown in Chap. 5) may
help greatly in the selection of the dynamic part.

In the presented example, we shall dynamically reconfigure a fragment of the
first module (S1). Let us form the dynamic part from places p4 and p5. Thus, the
static part consists of places p1 and p3. Note, that input and output transitions of the
dynamic part are shared by both SMCs.

Once the reconfiguration area of the concurrent controller is selected, the addi-
tional reconfiguration signals ought to be supplemented. The first one, reconfigura-
tion request signal (denoted by Rec or rec) should be delivered to all of the decom-
posed SMCs. It assures proper functionality of the controller during the dynamic
reconfiguration process. Loosely speaking, reconfiguration request prevents the sys-
tem from entering the places that are concurrent to the reconfigurable area. In the

http://dx.doi.org/10.1007/978-3-319-45811-3_6
http://dx.doi.org/10.1007/978-3-319-45811-3_5
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Fig. 9.14 Interpreted Petri net P N8 (left), decomposed and synchronized (right)

presented example, rec is added to both modules as an additional condition for tran-
sition t2 (Fig. 9.15).

The dynamic reconfiguration can be safely performed as soon as the reconfigu-
ration allowed signal is active. Such a signal is set in all places that belong to the
static part.

The general idea of splitting the module into static and dynamic parts is shown
in Fig. 9.16. Note, that Reset signal is additionally gated by both reconfiguration
signals (Rec and Ral) in order to satisfy the Xilinx requirements (Reset signal should
be applied to the dynamic part of the system once the reconfiguration finishes [41]).

Splitting of the module into static and dynamic submodules are relatively easy.
The process is very similar to the state partitions of an FSM shown in [5]. Both sub-
modules (static and dynamic) are supplemented by nonoperational places. Simply,
the first one (NOPS) replaces the dynamic part in the static submodule, while the
second one (NOPS) exchanges the static part in the dynamic submodule. Note, that
static submodule is a part of core, since new contexts are prepared only for dynamic
submodule.

Figure9.17 shows the first module (S1) of decomposed P N8 split into static
(upper) and reconfigurable submodules (lower). The static submodule contains
places SS={p1, p3,NOPR}. The additional place NOPR in this submodule replaces
the reconfigurable part (places p4 and p5) that are located in the second submodule.
The dynamic submodule consists of places SR={NOPS, p4, p5}. Place NOPS replaces
the static part of S1, that is, places p1 and p3. The synchronization between both sub-
modules is assured by signals achieved during decomposition of the system. Thus,
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Fig. 9.16 The idea of splitting the module into static and dynamic submodules

z3 is added as a condition to synchronize t2 in the dynamic submodule, while z4
(together with z5) synchronizes t4 in the static submodule.

According to the Xilinx outlines [32, 41], the reconfigurable part of the system
ought to be reset after the partial programming. Therefore, Reset in the dynamic
submodule is additionally gated by the reconfiguration signals, as it is shown in
Fig. 9.16.

At the next stage of the proposed prototyping flow, the whole system is modelled
in the hardware description languages. Note, module S1 is split into two submodules:
static and dynamic. Both of them are described according to the guidelines shown
in Chap.8, as it is shown in Listing 9.1.

http://dx.doi.org/10.1007/978-3-319-45811-3_8
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Listing 9.1 Description of the module S1 (P N8) with static and dynamic submodules
module S1(y1 ,y3 ,y4 ,y5 ,z1,z3 ,z4,ral ,clk ,reset ,z2,z5 ,rec);

output y1,y3 ,y4,y5 ,z1,z3 ,z4,ral;
input clk ,reset ,z2 ,z5,rec;

S1_static S1_s (y1 ,y3,ral ,z1 ,z3 ,clk ,reset ,z2,z4 ,z5,rec);
S1_dynamic S1_d (y4 ,y5 ,z4 ,clk ,reset|(ral&rec),z3 ,z5 ,rec);

endmodule

module S1_static(y1,y3 ,ral ,z1 ,z3 ,clk ,reset ,z2 ,z4,z5 ,rec);
output y1,y3 ,ral ,z1 ,z3;
input clk ,reset ,z2 ,z4,z5 ,rec;

reg [1:0] state=0,next =0;
parameter p1=2’b00 , p3=2’b01 , nop_r=2’b11;
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always@(posedge clk or posedge reset)
if (reset) state <=p1; else state <=next;

always@(state or z2 or z4 or z5 or rec)
case (state)

p1:next <=(z2)?p3:p1;
p3:next <=(! rec)?nop_r:p3;
nop_r:next <=(z4 && z5)?p1:nop_r;
default:next <=p1;

endcase

assign {y1,z1}=( state==p1)?2’b11:2’b00;
assign {y3,z3}=( state==p3)?2’b11:2’b00;
assign ral=(state==p1 || state==p3)?1’b1:1’b0;

endmodule

module S1_dynamic(y4,y5 ,z4 ,clk ,reset ,z3 ,z5,rec);
output y4,y5 ,z4;
input clk ,reset ,z3 ,z5,rec;

reg [1:0] state=0,next =0;
parameter nop_s=2’b00 , p4=2’b01 , p5=2’b11;

always@(posedge clk or posedge reset)
if (reset) state <= nop_s; else state <=next;

always@(state or z3 or z5 or rec)
case (state)

nop_s:next <=(z3 && !rec)?p4:nop_s;
p4:next <=p5;
p5:next <=(z5)? nop_s:p5;
default:next <=nop_s;

endcase

assign y4=(state==p4)?1’b1:1’b0;
assign {y5,z4}=( state==p5)?2’b11:2’b00;

endmodule

Once the concurrent control system is verified, new contexts of the dynamic
submodule is prepared. In our example we shall exchange places p4 and p5 by
three other places: p7, p8, and p9, as it is presented in Fig. 9.18. Moreover, three new
output signals are added to the system: y7, y8,s and y9. The new context is verified
together with the core. Next, validation of the previous contexts should be performed.
Note, that outputs y7, y8, y9 ought to be added to the previous context of the dynamic
submodule.

Finally, the system is implemented, according to the guidelines shown in the
previous section. Partial reconfiguration of the dynamic submodule is performed
dynamically. It means, that core is still working, executing other operations of the
concurrent control system.
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Fig. 9.18 Second context of
the dynamic submodule
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From the technical point of view, the reconfiguration process is handled by two
additional signals:Reconfiguration request (Req) andReconfiguration allowed (Ral).
The request for the dynamic reconfiguration is providedby the inputRec signal,which
should be active during the whole configuration process. Active Ral signal notifies
that the system is ready for downloading of the partial bit-stream.

Let us now emphasize the benefits of dynamic reconfiguration of concurrent con-
trol systems by a real-life example. Recall the milling machine presented in the
previous section. Now, we shall try to dynamically reconfigure the part of the sys-
tem that is responsible for cutting shape from the wooden plank (module S3), as it
is denoted in Fig. 9.19. Note, that placing and removing the wooden plank (y1 and
y14, respectively) are performed sequentially to the selected area. We shall take an
advantage of this dependency and functionality of the controller will be dynamically
reconfigured during the preparation of the wooden plank, which takes a while. Note,
that additional reconfiguration signal rec is added to the transition t4 in all four
components.

The selected area for further partial reconfiguration includes seven places
{p7, . . . , p13}, that together with NOPS form the dynamic submodule of S3. The
static submodule consists of only two places: NOP2 and NOPR. Splitting of the com-
ponent S3 into submodules is illustrated in Fig. 9.20. Note, that although NOP2 is
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Fig. 9.19 The selected area for partial reconfiguration of the milling machine

a nonoperational place from the point of view of the functionality of the milling
machine, now it generates the Ral signal in order to coordinate the reconfiguration
process. Moreover, an additional synchronization signal s6 is added to the logical
conjunction of signals assigned to the transition t4 in the static submodule.
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Fig. 9.20 Splitting of S3
into static (left) and dynamic
(right) submodules
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Once the modelling and verification of the first version of the system is finished,
a new context is added. Figure9.21 presents an alternative version of the dynamic
submodule. Similarly to the idea shown in the previous section, the new context
changes the form that is cutout from the wooden plank into the “U”-shape. Since
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Fig. 9.21 New contexts of
the dynamic submodule
(cutting “U” shape)
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new input and output signals are added to the system, the previous contexts ought
to be updated. Further synthesis and logic implementation of the controller results
in four bit-streams. Two of them contain full data, while the remaining two—partial
data. The partial reconfiguration is performed dynamically, during replacement of
the wooden plank. Additional signal rec prevents from unexpected behavior of the
system if the reconfiguration process takes more time.
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Chapter 10
Conclusions

Prototyping of control systems is almost always related to concurrency. For example,
execution of tasks in traditional computers, phones, or tablets are usually split into
multi-threads, computed by several microprocessors. However, proper designing of
controllers oriented on concurrency involves application of advanced algorithms and
techniques in order to prepare the system.

This book proposes the complete prototyping flow of concurrent control systems
implemented in the FPGA. The system is initially specified by an interpreted Petri
net, which naturally reflects concurrency and sequentiality relations in the design.
Besides the traditional analysis methods (liveness, safeness), additional techniques
are proposed. Chapter5 shows the known and introduces new analysis algorithms
regarding concurrency and sequentiality.

Further decomposition of the system splits the controller into sequential automata.
Algorithms proposed in Chap. 6 can be applied depending on the required needs. For
example, linear algebra and hypergraphs theory assure the minimal possible num-
ber of decomposed components, however exponential complexity of such methods
may lead to the situations, where the solution cannot be found. On the other hand,
the application of comparability graphs reduces the computational complexity to
polynomial, but not all Petri nets can be decomposed with the use of this technique.

Once the system is decomposed, the achieved components ought to be properly
synchronized. Since the whole controller is implemented in a single FPGA device,
all the modules operate in the same time domain (that is, use the same clock signal).
Therefore, the synchronization algorithm presented in Sect. 7.2.2 is universal and
can be applied to any integrated concurrent control system prototyped according to
the guidelines proposed in this book.

Modelling of the decomposed components can be performed in various ways.
Section8 proposes the application of traditional finite state machines, but any form
of sequential automata can be used. The modelled components are described with
the use of hardware languages, such as Verilog or VHDL.
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Finally, the system is logically synthesized and implemented. These steps are
strictly executed according to the requirements of the vendor of the supplied device.
In the descriptions shown in Chap.9, Xilinx FPGAs were selected as representative.

The main benefits of the proposed prototyping flow are emphasized in Sect. 9.4,
where innovate techniques of partial reconfiguration of concurrent controllers are
shown. The complete bit-stream of the system is downloaded to the FPGA only once.
Further modifications to the controller are done with the use of partial bit-streams
which means, that only a portion of data is sent to the FPGA. Two reconfiguration
techniques are proposed in the book. The first one, called static partial reconfigura-
tion allows easy and comfortable reconfiguration of any modules of the prototyped
system. However, the controller cannot perform any action during the configura-
tion process. Dynamic partial reconfiguration requires additional modifications to
the prototyped system, as it is shown in Sect. 9.4.4, but the benefits are much more
fruitful. The part of the system is reconfigured, while the remaining modules of the
controller are still working, executing the assigned tasks.

In the author’s opinion, the main contributions and results presented in this book
are the following:

• Formulation of the novel prototyping flow of the concurrent control system ori-
ented on further dynamic partial reconfiguration.

• Formulation of the novel prototyping flow of the concurrent control system ori-
ented on further static partial reconfiguration.

• Formulation of the novel decomposition algorithm of concurrent control system
described by an interpreted Petri net based on comparability graphs. The method
includes supplementation of the decomposednet by nonoperational places (NOPs).
The main advantage of the presented method is its polynomial computational
complexity, however not all the systems can be decomposed with the application
of comparability graphs.

• Formulation of novel methods regarding concurrency and sequentiality analysis
in the system described by an interpreted Petri net.

Looking intomore details, the contributions regarding algorithms (with their com-
putational complexities estimation), theorems, lemmas and proofs can be summa-
rized as follows:

• Formulation of the novel algorithm for simultaneous recognition and color-
ing of comparability graphs, supplemented by adequate theorems, lemma and
proofs regarding its computational complexity (cf. Sect. 3.4: Algorithm 3.2, The-
orems3.2, 3.3 and Lemma3.1).

• Formulation of formal algorithms, novel theorems and proofs regarding exact
transversals and c-exact hypergraphs (cf. Chap. 4: Algorithms 4.1 and 4.2, Theo-
rems4.1, 4.2 and 4.3).

• Formulation of novel theorems regarding the analysis of concurrency and sequen-
tiality in a concurrent control system described by an interpreted Petri net
(cf. Chap. 5: Theorems5.4, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11 and 5.12).
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• Formulation of the novel synchronization algorithm for a decomposed concurrent
control system intended for further implementation in a single device (decomposed
components are oscillated by the same clock signal, cf. Chap. 7: Algorithm 7.1).

Certainly, most of prototyping techniques presented in this book are not limited
to controllers implemented in the FPGA. The proposed methods and algorithms
combine various scientific areas: distributed systems, electronics (FPGAs and pro-
grammable devices), computer science (algorithms for soft computing), mathematics
(perfect graphs, hypergraphs, Petri nets).

For example, the analysis and decomposition methods shown in Chaps. 5 and 6
can be easily adopted to the prototyping flow of distributed controllers. Such systems
require decomposition in order to split the system into the components located over
various devices (such as computers, microprocessors, programmable devices, etc.).
Clearly, the decomposition methods shown in the book can be used in such cases.
However, synchronization between the decomposed components usually requires
different techniques. In case of a distributed control system, particular modules are
oscillated by different clocks, thus they work in different time domains.

The proposed algorithms for partial reconfiguration (Chap.9) can be used for any
system that is implemented in FPGA. Of course, the prototyping technique may
be different. However, the main reconfiguration idea remains the same. Especially
dynamic partial reconfiguration requires similar changes to the system (splitting into
static and reconfigurable parts).

Finally, algorithms regarding comparability graphs and c-exact hypergraphs can
be applied in various disciplines beside computer science and electronics (mainly
mathematics, biology, chemistry). Unique properties of such structures permit solv-
ing some tasks polynomially that are exponential in general case. It seems that the
development of the presented algorithms may lead to further improvements and
enhancements.
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