

Software Engineering:
Effective Teaching and Learning
Approaches and Practices

Heidi J. C. Ellis
Trinity College, USA

Steven A. Demurjian
University of Connecticut, USA

J. Fernando Naveda
Rochester Institute of Technology, USA

Hershey • New York
InformatIon scIence reference

Director of Editorial Content: Kristin Klinger
Director of Production: Jennifer Neidig
Managing Editor: Jamie Snavely
Assistant Managing Editor: Carole Coulson
Typesetter: Kim Barger
Cover Design: Lisa Tosheff
Printed at: Yurchak Printing Inc.

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue, Suite 200
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

and in the United Kingdom by
Information Science Reference (an imprint of IGI Global)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 0609
Web site: http://www.eurospanbookstore.com

Copyright © 2009 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in any form or by
any means, electronic or mechanical, including photocopying, without written permission from the publisher.

Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or companies does
not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

Software engineering : effective teaching and learning approaches and practices / Heidi J.C. Ellis, Steven A. Demurgian, and J. Fernando
Naveda, editors.

 p. cm.

 Includes bibliographical references and index.

 Summary: "This book presents the latest developments in software engineering education, drawing contributions from over 20 software
engineering educators from around the globe"--Provided by publisher.

 ISBN 978-1-60566-102-5 (hardcover) -- ISBN 978-1-60566-103-2 (ebook)

 1. Software engineering--Study and teaching. 2. Computer software--Development--Study and teaching. I. Ellis, Heidi J. C. II.
Demurjian, Steven A. III. Naveda, J. Fernando.

 QA76.758.S646254 2008

 005.1'07--dc22

 2008022554

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book set is original material. The views expressed in this book are those of the authors, but not necessarily of
the publisher.

If a library purchased a print copy of this publication, please go to http://www.igi-global.com/agreement for information on activating
the library's complimentary electronic access to this publication.

Foreword ... xv
Preface ...xvii
Acknowledgment .. xxv

Section I
Introduction

Chapter I
Software Engineering Education: Past, Present, and Future ... 1
 Gregory W. Hislop, Drexel University, USA

Section II
Student Learning and Assessment

Chapter II
Constructive Alignment in SE Education: Aligning to What? ... 15
 Jocelyn Armarego, Murdoch University, Western Australia

Chapter III
On the Role of Learning Theories in Furthering Software Engineering Education 38
 Emily Oh Navarro, University of California, Irvine, USA
 André van der Hoek, University of California, Irvine, USA

Section III
Innovative Teaching Methods

Chapter IV
Tasks in Software Engineering Education: The Case of a Human Aspects of Software
Engineering Course ... 61
 Orit Hazzan, Technion - IIT, Israel
 Jim Tomayko, Carnegie Mellon University, USA

Table of Contents

Chapter V
Speaking of Software: Case Studies in Software Communication ... 75
 Ann Brady, Michigan Technological University, USA
 Marika Seigel, Michigan Technological University, USA
 Thomas Vosecky, Michigan Technological University, USA
 Charles Wallace, Michigan Technological University, USA

Chapter VI
Novel Methods of Incorporating Security Requirements Engineering into Software
Engineering Courses and Curricula .. 98
 Nancy R. Mead, Software Engineering Institute, USA
 Dan Shoemaker, University of Detroit Mercy, USA

Section IV
Project-Based Software Engineering

Chapter VII
The Software Enterprise: Preparing Industry-Ready Software Engineers ... 115
 Kevin A. Gary, Arizona State University, USA

Chapter VIII
Teaching Software Engineering in a Computer Science Program Using the Affinity
Research Group Philosophy .. 136
 Steve Roach, The University of Texas at El Paso, USA
 Ann Q. Gates, The University of Texas at El Paso, USA

Chapter IX
A Framework for Success in Real Projects for Real Clients Courses ... 157
 David Klappholz, Stevens Institute of Technology, USA
 Vicki L. Almstrum, The University of Texas at Austin, USA
 Ken Modesit, Indiana University – Purdue University Ft. Wayne, USA
 Cherry Owen, The University of Texas of the Permian Basin, USA
 Allen Johnson, Huston-Tillotson University, USA
 Steven J. Condly, HSA Learning & Performance Solutions, USA

Chapter X
Experiences in Project-Based Software Engineering: What Works, What Doesn’t 191
 Steven A. Demurjian, University of Connecticut, USA
 Donald M. Needham, United States Naval Academy, USA

Section V
Educational Technology

Chapter XI
Applying Blended Learning in an Industrial Context: An Experience Report 213
 Christian Bunse, International University in Germany, Germany
 Christian Peper, Fraunhofer Institute Experimental Software Engineering, Germany
 Ines Grützner, Fraunhofer Institute Experimental Software Engineering, Germany
 Silke Steinbach-Nordmann, Fraunhofer Institute Experimental Software Engineering,
 Germany

Chapter XII
Integrated Software Testing Learning Environment for Training Senior-Level Computer
Science Students ... 233
 Daniel Bolanos, Universidad Autonoma de Madrid, Spain
 Almudena Sierra, Universidad Rey Juan Carlos, Spain

Section VI
Curriculum and Education Management

Chapter XIII
Software Engineering Accreditation in the United States ... 251
 James McDonald, Monmouth University, USA
 Mark J. Sebern, Milwaukee School of Engineering, USA
 James R. Vallino, Rochester Institute of Technology, USA

Chapter XIV
Software Engineering at Full Scale: A Unique Curriculum .. 265
 Jochen Ludewig, Universität Stuttgart, Germany

Chapter XV
Continuous Curriculum Restructuring in a Graduate Software Engineering Program 278
 Daniela Rosca, Monmouth University, USA
 William Tepfenhart, Monmouth University, USA
 Jiacun Wang, Monmouth University, USA
 Allen Milewski, Monmouth University, USA

Chapter XVI
How to Create a Credible Software Engineering Bachelor’s Program: Navigating the
Waters of Program Development .. 298
 Stephen Frezza, Gannon University, USA
 Mei-Huei Tang, Gannon University, USA
 Barry J. Brinkman, Gannon University, USA

Chapter XVI

Section VII
Professional Practice

Chapter XVII
Ensuring Students Engage with Ethical and Professional Practice Concepts 327
 J. Barrie Thompson, University of Sunderland, UK

Chapter XVIII
An International Perspective on Professional Software Engineering Credentials 351
 Stephen B. Seidman, University of Central Arkansas, USA

Compilation of References .. 362

About the Contributors ... 393

Index .. 403

Foreword ... xv
Preface ...xvii
Acknowledgment .. xxv

Section I
Introduction

Chapter I
Software Engineering Education: Past, Present, and Future ... 1
 Gregory W. Hislop, Drexel University, USA

There is a strong and growing global demand for skilled software engineers. The institutions that educate
software engineers are evolving and changing to meet this need. This chapter provides an overview of
this effort to develop software engineering education. It discusses the historical development of soft-
ware engineering education, provides some perspective on current status, and identifies some of the
challenges faced by software engineering educators. The intended audience for this chapter is anyone
interested in software engineering education who has not participated in the developments to the present
time. The goal is to provide a summary background of how the discipline has evolved and pointers to
key publications that are part of that history. Since this chapter surveys foundational topics in software
engineering education, many of the topics touched on in this chapter are covered in more detail in other
chapters of this volume.

Section II
Student Learning and Assessment

Chapter II
Constructive Alignment in SE Education: Aligning to What? ... 15
 Jocelyn Armarego, Murdoch University, Western Australia

Practitioner studies suggest that formal IT-related education is not developing the skills and knowledge
needed by graduates in daily work. In particular, a shift in focus from technical competency to the soft
and metacognitive skills is identified. This chapter argues that a framework for learning can be developed

Detailed Table of Contents

that more closely models the experiences of practitioners, and addresses their expectations of novice
Software Engineers. Evaluation of a study incorporating three Action Research cycles shows that what
is needed is a mapping between the characteristics of professional practice and the learning model that
is applied. The research shows that a relationship also exists between learner and learning model, and
that this relationship can be exploited in the development of competent discipline practitioners.

Chapter III
On the Role of Learning Theories in Furthering Software Engineering Education 38
 Emily Oh Navarro, University of California, Irvine, USA
 André van der Hoek, University of California, Irvine, USA

Learning theories describe how people learn. There is a large body of work concerning learning theories
on which to draw, a valuable resource of which the domain of software engineering educational research
has thus far not taken full advantage. In this chapter, the authors explore what role learning theories could
play in software engineering education. The authors propose that learning theories can move the field of
software engineering education forward by helping us to categorize, design, evaluate, and communicate
about software engineering educational approaches. They demonstrate this by: (1) surveying a set of
relevant learning theories, (2) presenting a categorization of common software engineering educational
approaches in terms of learning theories, and (3) using one such approach (SimSE) as a case study to
explore how learning theories can be used to improve existing approaches, design new approaches, and
structure and guide the evaluation of an approach.

Section III
Innovative Teaching Methods

Chapter IV
Tasks in Software Engineering Education: The Case of a Human Aspects of Software
Engineering Course ... 61
 Orit Hazzan, Technion - IIT, Israel
 Jim Tomayko, Carnegie Mellon University, USA

The field of software engineering is multifaceted. Accordingly, students must be educated to cope with
different kinds of tasks and questions. This chapter describes a collection of tasks that aim at improving
students’ skills in different ways. The authors illustrate their ideas by describing a course about human
aspects of software engineering. The course objective is to increase learners’ awareness with respect
to problems, dilemmas, ethical questions, and other human-related situations that students may face in
the software engineering world. The authors attempt to achieve this goal by posing different kinds of
questions and tasks to the learners, which aim at enhancing their abstract thinking and expanding their
analysis perspectives. The chapter is based on the authors’ experience teaching the course at Carnegie-
Mellon University and at the Technion – Israel Institute of Technology.

Chapter V
Speaking of Software: Case Studies in Software Communication ... 75
 Ann Brady, Michigan Technological University, USA
 Marika Seigel, Michigan Technological University, USA
 Thomas Vosecky, Michigan Technological University, USA
 Charles Wallace, Michigan Technological University, USA

In this chapter, the authors describe their recent efforts to generate and use case studies to teach com-
munication skills in software development. They believe their work is innovative in several respects. The
case studies touch on rhetorical issues that are crucial to software development yet not commonly associ-
ated with the field of software engineering. Moreover, they present students with complex, problematic
situations, rather than sanitized post hoc interpretations often associated with case study assignments.
The case study project is an interdisciplinary collaboration that interweaves the expertise of software
engineers and technical communicators. Their software engineering and technical communication cur-
ricula have been enhanced through this cross-fertilization.

Chapter VI
Novel Methods of Incorporating Security Requirements Engineering into Software
Engineering Courses and Curricula .. 98
 Nancy R. Mead, Software Engineering Institute, USA
 Dan Shoemaker, University of Detroit Mercy, USA

This chapter describes methods of incorporating security requirements engineering into software engi-
neering courses and curricula. The chapter discusses the importance of security requirements engineering
and the relationship of security knowledge to general computing knowledge by comparing a security
body of knowledge to standard computing curricula. Then security requirements is related to standard
computing curricula and educational initiatives in security requirements engineering are described, with
their results. An expanded discussion of the SQUARE method in security requirements engineering case
studies is included, as well as future plans in the area. Future plans include the development and teaching
of academic course materials in security requirements engineering, which will then be made available
to educators. The authors hope that more educators will be motivated to teach security requirements
engineering in their software engineering courses and to incorporate it in their curricula.

Section IV
Project-Based Software Engineering

Chapter VII
The Software Enterprise: Preparing Industry-Ready Software Engineers ... 115
 Kevin A. Gary, Arizona State University, USA

This chapter describes the development of a learning-by-doing approach for teaching software engineer-
ing called the Software Enterprise at the Polytechnic Campus of Arizona State University. The Capstone
experience is extended to two one-year projects and serves as the primary teaching and learning vehicle

for best practices in software engineering. Several process features are introduced in an attempt to make
projects, or more importantly the experience gained from project work, more applicable to industry
expectations. At the conclusion of the Software Enterprise students have an applied understanding of
how to leverage software process as a tool for successful project evolution. This chapter presents the
Software Enterprise, focusing the presentation on three novel aspects: a highly iterative, learner-cen-
tered pedagogical model, cross-year mentoring, and multiple projects as a novel means of sequencing
learning objectives.

Chapter VIII
Teaching Software Engineering in a Computer Science Program Using the Affinity
Research Group Philosophy .. 136
 Steve Roach, The University of Texas at El Paso, USA
 Ann Q. Gates, The University of Texas at El Paso, USA

This chapter describes a two-semester software engineering course that is taught in a computer science
program at the University of Texas at El Paso. The course is distinguished from other courses in that it
is based on the Affinity Research Group (ARG) philosophy that focuses on the deliberate development
of students’ team, professional and technical skills within a cooperative environment. To address the
challenge of having to teach professional and team skills as well as software engineering principles,
approaches, techniques, and tools in a capstone course, the authors have defined an approach that uses
a continuum of instruction, practice, and application with constructive feedback loops. The authors
hope that the readers will benefit from the description of the approach and how ARG components are
incorporated into the course.

Chapter IX
A Framework for Success in Real Projects for Real Clients Courses ... 157
 David Klappholz, Stevens Institute of Technology, USA
 Vicki L. Almstrum, The University of Texas at Austin, USA
 Ken Modesit, Indiana University – Purdue University Ft. Wayne, USA
 Cherry Owen, The University of Texas of the Permian Basin, USA
 Allen Johnson, Huston-Tillotson University, USA
 Steven J. Condly, HSA Learning & Performance Solutions, USA

This chapter demonstrates the importance of Real Projects for Real Clients Courses (RPRCCs) in com-
puting curricula. Based on the authors’ collective experience, advice for setting up an effective support
infrastructure for such courses is offered. The authors discuss where and how to find clients, the types
of projects that they have used, and how to form and train teams. The authors also investigate the va-
riety of standards and work projects that they have used in their courses and explore issues related to
assessment and evaluation. Finally, the chapter considers the benefits of an RPRCC-centric approach
to computing curricula.

Chapter X
Experiences in Project-Based Software Engineering: What Works, What Doesn’t 191
 Steven A. Demurjian, University of Connecticut, USA
 Donald M. Needham, United States Naval Academy, USA

Project-based capstone software engineering courses are a norm in many computer science (CS) and
computer science & engineering (CS&E) accredited programs. Such cap-stone design courses offer an
excellent vehicle for educational outcomes assessment to support the continuous improvement process
required for accreditation. A project-based software engineering capstone course near the end of a
student’s program can span the majority of CS and CS&E program objectives, providing a significant
means to assess attainment of these objectives in a single course location. One objective of this chapter
is to explore the role of a project-based, software engineering course in accreditation. An additional
objective is to relate over twelve combined years of experience in teaching such a course, and in the
process, highlight what works and what does not. The authors candidly examine both the successes and
the failures that they have encountered over the years, and provide a roadmap for other instructors and
departments seeking to institute such courses.

Section V
Educational Technology

Chapter XI
Applying Blended Learning in an Industrial Context: An Experience Report 213
 Christian Bunse, International University in Germany, Germany
 Christian Peper, Fraunhofer Institute Experimental Software Engineering, Germany
 Ines Grützner, Fraunhofer Institute Experimental Software Engineering, Germany
 Silke Steinbach-Nordmann, Fraunhofer Institute Experimental Software Engineering,
 Germany

With the rapid rate of innovation in software engineering, teaching and learning of new technologies have
become challenging issues. The provision of appropriate education is a key prerequisite for benefiting
from new technologies. Experience shows that typical classroom education is not as effective and efficient
as it could be. E-learning approaches seem to be a promising solution but e-learning holds problems
such as a lack of social communication or loose control on learning progress. This chapter describes a
blended learning approach that mixes traditional classroom education with eLearning and that makes use
of tightly integrated coaching activities. The concrete effects and enabling factors of this approach are
discussed by means of an industrial case study. The results of the study indicate that following a blended
learning approach has a positive impact on learning time, effectiveness and sustainability.

Chapter XII
Integrated Software Testing Learning Environment for Training Senior-Level Computer
Science Students ... 233
 Daniel Bolanos, Universidad Autonoma de Madrid, Spain
 Almudena Sierra, Universidad Rey Juan Carlos, Spain

Due to the increasingly important role of software testing in software quality assurance, during the last
several years, the utilization of automated testing tools, and particularly those belonging to the xUnit
family, has proven to be invaluable. However, as the number of resources available continues increasing,
the complexity derived from the selection and integration of the most relevant software testing principles,
techniques and tools into an adequate learning environment for training computer science students in
software testing, increases too. This chapter introduces an experience of teaching Software Testing for a
senior-level course. In the elaboration of the course a wide variety of testing techniques, methodologies
and tools have been selected and seamlessly integrated. An evaluation of students performance during
the three academic years that the course has been held show that students’ attitudes changed with a high
or at least a positive statistical significance.

Section VI
Curriculum and Education Management

Chapter XIII
Software Engineering Accreditation in the United States ... 251
 James McDonald, Monmouth University, USA
 Mark J. Sebern, Milwaukee School of Engineering, USA
 James R. Vallino, Rochester Institute of Technology, USA

This chapter provides a brief history of the accreditation of software engineering programs in the United
States and describes some of the experiences encountered by programs in achieving their accreditation
and by program evaluators in reviewing those programs. It also describes how the accredited programs
have addressed the most difficult issues that they have faced during the accreditation process. The au-
thors have served as leaders of the accreditation efforts at their own institutions and as ABET program
evaluators at several other academic institutions that have achieved accreditation. The objective of this
chapter is to provide those software engineering programs that will be seeking accreditation in the future
with some of the experiences of those who are familiar with the process from both the programs’ and
the evaluators’ points of view. Leaders of programs that are planning to request an accreditation review
will be well prepared for that review if they combine the information contained in this chapter with the
recommendations contained in Chapter XVI of this text.

Chapter XIV
Software Engineering at Full Scale: A Unique Curriculum .. 265
 Jochen Ludewig, Universität Stuttgart, Germany

In 1996, a new Software Engineering curriculum was launched at Universität Stuttgart. It was based on
many years of practical experience teaching computer science and also on experience in industry where
most of our graduates will find jobs. While the topics of this curriculum are not very different from those
of computer science, there is much more emphasis on problem solving, software construction, and project
work. In 2009, our traditional curriculum leading to the so called diploma (equivalent to a master’s de-
gree) will be replaced by a new curriculum according to the bachelor and master concept. This chapter
describes both the old and the new curriculum, and discusses problems and achievements.

Chapter XV
Continuous Curriculum Restructuring in a Graduate Software Engineering Program 278
 Daniela Rosca, Monmouth University, USA
 William Tepfenhart, Monmouth University, USA
 Jiacun Wang, Monmouth University, USA
 Allen Milewski, Monmouth University, USA

The development, maintenance and delivery of a software engineering curriculum present special chal-
lenges not found in other engineering disciplines. The continuous advances of the field of software
engineering imposes a high frequency of changes reflected in the curriculum and course content. This
chapter describes the challenges of delivering a program meeting the needs of industry and students. It
presents the lessons learned during 21 years of offering such a program, and dealing with issues pertaining
to continuous curriculum and course content restructuring, and the influence of the student body on the
curriculum and course content. The chapter concludes with the authors’ recommendations for those who
are seeking to create a graduate program in software engineering, with a special note on the situations
where an undergraduate and graduate program will need to coexist in the same department.

Chapter XVI
How to Create a Credible Software Engineering Bachelor’s Program: Navigating the
Waters of Program Development .. 298
 Stephen Frezza, Gannon University, USA
 Mei-Huei Tang, Gannon University, USA
 Barry J. Brinkman, Gannon University, USA

This chapter presents a case study in the development of a Software Engineering (SE) Bachelor’s De-
gree program. It outlines issues in SE program development, various means to address those issues, and
explains how the issues were addressed in the initial and ongoing development of an undergraduate SE
program. By using SEEK and SWEBOK as requirements sources to define what an undergraduate soft-
ware engineer needs to know, the authors walk through the creation of a sample curriculum at a small,
comprehensive university in the United States. Both the current and initial curricula are presented. The
chapter discusses many items to consider in the process of planning and launching a new BSSE program,
such as accreditation, curriculum guidelines, sources of information, and potential problems.

Section VII
Professional Practice

Chapter XVII
Ensuring Students Engage with Ethical and Professional Practice Concepts 327
 J. Barrie Thompson, University of Sunderland, UK

The teaching and learning of aspects related to ethics and professional practice present significant chal-
lenges to both staff and students as these topics are much more abstract than say software design and
testing. The core of this chapter is an in-depth examination of how ethics and professional practice can

be addressed in a very practical manner. To set the scene and provide contextual information the chapter
commences with information on an international model of professionalism, a code of ethics for Software
Engineers, and different teaching and learning approaches that can be employed when addressing ethical
issues. The major part of the chapter is then devoted to detailing a particular teaching and leaning ap-
proach, which has been developed at the University of Sunderland in the UK. Finally conclusions, views
on the present situation and future developments, and details of outstanding challenges are presented.

Chapter XVIII
An International Perspective on Professional Software Engineering Credentials 351
 Stephen B. Seidman, University of Central Arkansas, USA

This chapter provides an international perspective on professional software engineering credentials. It
distinguishes between professional licensing, certification, and other forms of credentials. It compares
and contrasts several major approaches to professional credentials: broad-based certifications, national
examinations, and job frameworks. Examples of credentials in each category are discussed in detail.
The chapter also discusses efforts to develop international standards for these credentials. The chapter
concludes with a brief description of the current landscape of professional software engineering cre-
dentials.

Compilation of References .. 362

About the Contributors ... 393

Index .. 403

 xv

Foreword

“It is not enough to aim; you must hit.” - Italian Proverb

“Software engineering – the “engineering” of software – is part process, part technology, part resource
management, and, debatably, until recently, part luck – which make interesting challenges for educators
at the undergraduate or graduate level. Learning to be a software engineer – learning about software
– learning about engineering (the former, a nebulous topic, the latter an equally nebulous attitude of
professionalism) form the target that educators are aiming to hit. Unfortunately, with constant “innova-
tions” in methodologies, technologies, and programming languages, this is a moving target.

“The great aim of education is not knowledge but action.” Herbert Spencer (1820-1903)

Simply put, the aim of this book is to better prepare educators to better prepare students to be better
software engineers. The material in the 18 chapters of this book hits the mark by providing proven am-
munition for student learning and assessment, curriculum development, innovative teaching methods,
and project approaches that solidify classroom concepts, as well as instill an engineering mindset with
respect to responsibility, ethics, certification and licensing. It provides a synergistic experience base that
can serve the ongoing and future needs of software engineering educators.

“Nothing can add more power to your life than concentrating all your energies on a limited set of tar-
gets.” Nido Qubein

To paraphrase Yogi Berra, “Software engineering is 90% aptitude, and the other half attitude.” In my
opinion, one of the main challenges facing software engineering educators today is finding a formula
for a curriculum that balances theory and application – that channels a student’s aptitude and enhances
their ability and capability to be a software engineer. As stated earlier, software is a nebulous topic – not
all software applications require the same engineering tradeoffs, but there are key engineering concepts
that can be distilled from the experience of others, as captured in the chapters of this book, which will
help guide educators in defining and refining software engineering curriculum.

“Aim for success, not perfection. Never give up your right to be wrong, because then you will lose your
ability to learn new things and move forward with your life.” Dr. David M. Burns

xvi

Perfection is the seductive goal of all software engineering projects - yet perfection has a price
that can stand in the way of a successful software solution. The readers of this book will clearly learn
new things that I am convinced will lead to success in the classroom that will, in turn, lead to more
successful engineering graduates, that will, in turn lead to more successful engineering projects.

In closing, there is one phrase that I first heard used jokingly when I entered the job market only
4 years after the term “Software Engineering” was coined – “Ready, Fire, Aim.” At the time, I did
not appreciate its profound applicability to the real world. Software Engineering is the real world.
Academia is not, and there lies the challenge that this book addresses. Metaphorically speaking, the
material in this book will help educators get ready for software engineering students to learn as well
as the educators themselves to teach (by providing a survey of existing learning theories and blended
learning approaches as they apply to software engineering education), it will help give educators the
ammunition they need to build their software engineering programs and capstone projects (leading
to accreditation and more “experienced” students, who can better communicate and work in teams),
and finally, it better prepares the students to successfully hit the (moving) target (by giving them an
appreciation of ethics and professionalism that they can take outside the classroom).

Will Tracz, PhD
Lockheed Martin Fellow
Editor ACM Software Engineering Notes

 xvii

Preface

Software plays an ever increasing role in society today. In fact, software is a factor in almost all aspects
of life including health care, entertainment, transportation, communications, and finance, among others.
Our dependency on software today is such that the spread of a computer virus can bring our way of life
to a standstill for a significant period of time. Demand for an increasing number of software professionals
has been cited in business and government circles for at least two decades, with no leveling in sight. In
addition, the methods, approaches and tools used to produce the software on which we so much depend
are also undergoing rapid expansion. As a result, academic institutions are facing an increasing pressure
to produce a greater number of students that are competent software developers.

Software engineering and software development education currently face many challenges. The ever
expanding area of software engineering knowledge makes educating the next generation of software
engineers a challenge. In addition, the current generation of students has very different interaction pat-
terns than prior generations, making assessing learning difficult. The increasing role that software plays
in our lives today (e.g., grid computing, ubiquitous computing, wearable computing, bioinformatics,
etc.) requires educators to adapt their education coverage to include these new applications. In addition,
many academic institutions must face these challenges within the constraints of program accreditations,
university mission, demographics, and even political environments. Clearly, identifying successful
approaches to handling these problems is essential to aid software engineering educators. This book
contains a generous collection of approaches that represent best practice for software engineering edu-
cation including student assessment and learning, innovative teaching methods, project-based software
engineering, professional practice and ethics, curriculum management and certification and licensing.

This book will be useful to both academicians and practitioners. Academic readers will gain an un-
derstanding of proven practices used in software engineering education that could be employed at their
institutions. Industry readers will benefit from an understanding of the synergies between educational
practices and real-world software development. All readers will gain an international view of software
engineering education. Educators can use the book as a reference for adopting novel teaching techniques
and for improving their teaching across a variety of computing courses.

The book is organized into seven sections that cover student learning and assessment, innovative
teaching methods, project-based software engineering, educational technology, curriculum and education
management, and professional practice. Below we provide a brief summary of the chapters.

I. Hislop
In order to provide context for the remainder of the book, the introductory chapter by Dr. Hislop

provides an overview of the history and current state of software engineering education. Software en-
gineering is a relatively new discipline and software engineering education is even newer. Dr. Hislop

xviii

discusses the issues that have shaped the development of software engineering education including the
genesis of a new discipline, the organizational location of software engineering, licensing, certification,
and accreditation. The issue of community where software engineering educators can exchange ideas and
collaborate is also discussed. In addition, the development and state of curriculum is presented including
a discussion of a range of educational venues from entire software engineering programs to individual
software engineering courses in other computing degrees.

II. Armarego
An appreciation of learning theory is vital to understanding how best to educate students. In fact,

experience has shown that an organized and controlled approach to educating software engineers is more
successful than ad hoc approaches. However, the software engineering education community has been slow
to explore the application of various learning theories to education. Correctly applied, learning theories
could improve the state of software engineering education by allowing educators to design, evaluate and
communicate about educational approaches, allowing the best approaches to be identified.

In the first chapter of the section on Student Learning and Assessment, “Constructive Alignment
in SE Education: Aligning to What?”, Dr. Armarego argues that learning should fit both the learner as
well as the discipline being learned. The chapter explores the alignment between the practices utilized
in the software engineering discipline and the models of learning that are used by students to absorb
software engineering knowledge in academic institutions. Dr. Armarego discusses the development of
a framework for learning that models experiences of software practitioners and suggests that the learn-
ing model used for education be characterized and mapped to fit the professional practice. The chapter
includes the results of a study which indicates that tailoring the learning models used in academia today
holds the potential for improving student software engineering learning.

III. Navarro
Continuing on the role of learning theory in software engineering education, Chapter III “On the

Role of Learning Theories in Furthering Software Engineering Education”, by Drs. Navarro and van
der Hoek discusses the possible uses of learning theory in software engineering education. This chap-
ter provides a survey of existing learning theories and comments on their use in software engineering
education. The authors categorize the current educational approaches in software engineering according
to the theories. An example approach which uses an interactive, graphical game to teach software en-
gineering process is used to demonstrate how learning theories can successfully be applied to software
engineering education.

IV. Hazzan
The section on Innovative Teaching Methods begins with a discussion of one of the aspects of

software engineering that is perhaps most difficult to convey to students, that is, the human perspective
including teamwork, conflict resolution, and problem solving from different perspectives. Hazzan and
Tomayko present an approach to educating students to the human aspects of software engineering in
Chapter IV titled “Tasks in Software Engineering Education: The Case of a Human Aspects of Software
Engineering Course”. The approach enhances abstract thinking and expands analysis perspectives of
students using a question and task-based approach. The chapter presents a categorization of ten differ-
ent types of tasks that can be used throughout a course in order to make students more aware of the
human-related problems, dilemmas, ethical questions, and other situations that students may face in the
software engineering world. The categorization of tasks is based on the authors’ experience in teaching
a Human Aspects of Software Engineering course at two different institutions, one located in the United

 xix

States and one located in Israel. The chapter presents examples of each category of task and describes
the use of the example within a course.

V. Brady
Chapter V titled “Speaking of Software: Case Studies in Software Communication” also addresses

the human aspect of software engineering education, specifically both oral and written communication.
Typically, communication is given little direct attention in software engineering courses and programs.
Teaching communication is difficult and communication in the software workplace is very complex and
fraught with subtlety.

Drs. Brady, Seigel, Vosecky, and Wallace are an interdisciplinary team containing both technical writ-
ers and software engineering educators that has created an approach to teaching communication skills to
software engineering students using case studies. The case studies are based on experiences of software
engineering students in a capstone course and are used in the pedagogical sense. These real case studies
provide students a complex situation in which to learn and understand communication.

VI. Mead
In this final chapter for Innovative Teaching Methods, titled “Novel Methods of Incorporating

Security Requirements Engineering into Software Engineering Courses and Curricula,” Drs. Mead and
Shoemaker explore the inclusion of security requirements engineering into software engineering courses
and curricula. Security engineering has emerged as a vital national and international concern, part of
almost every application designed and developed. These authors explore the integration of security into
the earliest stage of the process, namely requirements engineering. The authors identify that security is
often considered at either the system level (e.g., authentication, firewalls, etc.) or in isolation from overall
system requirements elicitation. To bolster this assertion, the authors provide a careful and detailed analy-
sis of Computing Curricula 2005: The Overview Report, trying to understand the way that security can
mesh with the desired outcomes of CC2005. The authors propose and discuss the inclusion of security
into curricula, ranging from undergraduate project-based courses to graduate courses on secure systems
development to usage of processes such as comprehensive, lightweight application security process
(CLASP) and security quality requirements engineering (SQUARE). The bulk of the chapter presents a
detailed approach using SQUARE, detailing specific curricula, course content, projects, and so on.

VII. Gary
The fourth section of the book, Project-Based Software Engineering, supports the old undisputable

proverb that states that “Experience is the best teacher.” Academics and industry professionals agree
that students that graduate with a better understanding of the real world have a better chance of early
success in their careers. With the increasing popularity of software engineering course offerings embed-
ded in a variety of computing degrees, inevitably, one must wonder how someone in a classroom could
teach students how the real world works. While it is impossible to teach experience, it is possible to
teach through experience. This observation has guided the development of many software engineering
courses being taught today.

In Chapter VII titled “The Software Enterprise: Preparing Industry-Ready Software Engineers”
Arizona State University’s Dr. Gary, describes an innovative approach to learning-by-doing called the
Software Enterprise. Under this model, students enroll in two consecutive yearlong software develop-
ment capstone courses where they learn through experience software engineering’s best practices. At
the completion of the software enterprise students have an experiential understanding of how software
process can be used to manage the evolution of software artifacts. While this chapter may be quite

xx

helpful to those new to teaching software engineering, due to the interesting way in which the software
enterprise brings together so many aspects of the software development lifecycle in two consecutive
courses, even experienced instructors may learn a thing or two.

VIII. Roach
In the second chapter for Project-Based Software Engineering, titled “Using the Af.nity Model in

the Capstone Project Course: Teaching Software Engineering in a Computer Science Program,” Drs.
Roach and Gates describe their approach for a two-semester software engineering sequence that uses
an approach that stresses cooperative (team-based) learning of professional and technical skills. This
sequence, underway at University of Texas at El Paso (UTEP), offers a combined two-course sequence
taken by students in their final year of study, combining fundamental software engineering topics with
the development of communication and team skills, which includes a practical exposure to the software
engineering code of ethics and professional practice. Unlike the approach as given in Chapter X, where
the capstone project succeeds a much earlier exposure to software engineering principles and practices,
this course offered in the Computer Science department at UTEP assumes the opposite – coupling the
first exposure of software engineering with the capstone project experience. The authors explore their
approach by detailing the curricula, student and faculty responsibilities, project and course requirements,
project management, course deliverables, and so on. The authors have evaluated their unique sequence
through a combination of surveys that has collected data from alumni and employers; they have had many
positive results and feedback. The authors conclude with a discussion of future trends ranging from the
high-level (The President’s Council of Advisors on Science and Technology reports on the importance
of networking and information technology (NIT) systems and the workforce required to support them)
to emerging technology trends (service-oriented architectures) and their impact on curricula.

IX. Klappholz
Clearly, the software industry prefers to hire students who have real-world experience as such stu-

dents are well-rounded and can more quickly contribute to a project. The presence of an actual client
can motivate students and provide direction for a project. However, involving students in projects with
real-world clients can pose problems such as locating clients, client communication issues, setting rea-
sonable scope for a project, creating functional teams, assessing the project and more.

Drs. Klappholz, Almstrum, Modesitt, Johnson and Condly present advice for involving students in
projects with real clients in Chapter IX “A Framework for Success in Real Projects for Real Clients
Courses”. The authors discuss the importance of using real-world projects and present a taxonomy of
issues related to involving students in real projects for real clients courses. The authors discuss issues
related to client interactions including locating appropriate clients, project-related issues including
appropriate projects and scope, team-related issues including team formation and operation, product-
related issues including deliverables, and issues related to assessment and evaluation. The approach
was developed based on experiences with real-world projects with real customers at a wide variety of
U.S. institutions.

X. Demurjian
Continuing in the project area, Drs. Demurjian and Needham discuss the successful and unsuccess-

ful characteristics of a project-based capstone software engineering course in Chapter X, “Experiences
in Project-Based Software Engineering: What Works, What Doesn’t”. The authors present the results
of 12 combined years of experience in offering project-based courses at two different U.S. institutions.
They demonstrate how such courses can be used to support ABET accreditation by providing educa-

 xxi

tional outcomes assessment. Understanding that obtaining accreditation assessment data can be time
consuming, the authors offer guidance to instructors to help manage the assessment data collection. In
addition, the authors discuss project attributes and suggest that projects be flexible in order to allow
them to be adapted to instructor background. Team size and communication is also addressed and the
authors provide a rubric for assessing individual student effort within a team. Future plans include using
mixed teams of CS and IT majors.

XI. Bunse
In this first chapter in the Educational Technology section of this book, titled “Applying Blended

Learning in an Industrial Context: An Experience Report,” the authors Drs. Bunse Peper, Ochs, Grützner,
and Steinbach-Nordmann, explore the usage of blended learning in software engineering education, con-
tinuing the investigation of practice-based software engineering in a classroom setting. Blended learning
is a technique that combines multiple teaching methods into a single setting, providing a unique perspec-
tive and learning experience for students. In this chapter, the authors report on their efforts in blended
learning for model-based and object-oriented development with UML, providing an experience which
combines self-directed study, collaborative learning, learning with an on-line tutor, social learning, and
traditional classroom delivery. The unique aspect of this chapter is that these experiences are related for
both an academic and an industrial setting. The work includes a strong case study (questionnaire), data
collection, and data analysis of blended learning, offering conclusions based on these results, and explor-
ing future trends such as the use of wikis, podcasts, Weblogs, and virtual learning environments.

XII. Bolanos
Chapter XII, titled “Integrated Software Testing Learning Environment for Training Senior-Level

Computer Science Students,” completes the Educational Technology section, Drs. Bolanos and Sierra
explore a methodology for software testing that targets senior-level computer science students. The
educational technology component in this chapter is to establish an environment that allows actual test-
ing, including: test plans, test case designs, a suite of testing automation tools, analysis and reporting
of test results, software configuration management tools (for multiple testing iterations), and a software
execution and deployment tool. This is accomplished via an actual, custom, multi-tiered, client server
software application developed for this purpose, allowing for a full range of testing (e.g., unit testing,
integration testing, functional testing, etc.). As with the prior chapter, the authors rely on a voluntary
evaluation survey (93% surveys returned for an average of 150 students taking the course per year) to
assess their course, and feed back results into future offerings. In the future, the authors expect constant
change, as the underlying development technologies evolve, and more and more testing tools become
available.

XIII. McDonald
The history of undergraduate software engineering education in the US reached a critical milestone

when the first baccalaureate programs received ABET accreditation in 2001. Since then an increasing
number of undergraduate software engineering programs are seeking ABET’s recognition. But for many
program leaders, accreditation is still an intimidating event.

For many program leaders and their faculty, a program accreditation exercise goes more or less like
this: About a year prior to the accreditation visit, the program leader must first get the faculty to under-
stand why self-assessment should not be an activity that is counted in 5-year cycles but rather, an activity
that happens almost daily, and is a natural part of teaching. Then, one lucky faculty member is sent to
at least one ABET workshop to learn about accreditation. Upon returning, the terrified faculty member,

xxii

now the in-house accreditation expert, calls an emergency meeting no one wants to attend, but everyone
attends for fear of being assigned to a laborious (and unfair) accreditation task. The race is then set and
faculty and staff rush to collect data and make some sense of it. The accreditation expert earns a couple
of course releases to help the program documents in order. About a month or so prior to the visit there
are numerous faculty meetings spiced up with incredibly long and fruitless arguments, and endless visits
to the department’s copier. The week before the ABET team arrives, tempers run high as the program
leader and the accreditation expert put the final touches on what they hope will be a great event.

But preparing for an accreditation visit does not have to be an ordeal. In Chapter XIII, the first in
the Curriculum and Education Management section of the book, titled “Software Engineering Ac-
creditation in the United States”, McDonald, Sebern and Vallino explain in simple terms many of the
issues involved in an accreditation. The authors cover issues such as making sense of ABET’s criteria,
outcomes and objectives, and data collection. One of the most valuable features of this chapter is the
way in which the authors, who collectively account for years of experience as program evaluators, pro-
gram leaders, and in-house accreditation experts; present numerous topics of interest combining their
viewpoints succinctly and straightforwardly.

XIV. Ludewig
Software Engineering curricula can resemble vanilla ice cream: they all are called by the same name,

but their flavors are quite different. The history of software engineering education is crowded with
curricula whose flavors range from strong computer science with nuances of software engineering, to
software engineering smeared with heavy blobs of computer science caramel, to the purest unadulterated
software engineering. Regardless of their structure, these curricula serve their intended audiences and
meet the academic mission of their respective universities.

In Chapter XIV “Software Engineering at Full Scale: A Unique Curriculum”, Dr. Ludewig describes
the evolution, content and structure of a software engineering curriculum developed at Universität Stutt-
gart. The software engineering program Dr. Ludewig describes is somewhat unique in Germany in that,
according to his account, no other university in his native Germany has a complete software engineering
curriculum. It is based on a principle of individual responsibility and consists of a defined set of initial
courses followed by allowing the student great flexibility in the latter courses. In addition, there is only
a single set of exams per semester and students are allowed to attend the course in one semester and
take the exam for that course the next year or even later.

XV. Rosca
Anyone who has had the opportunity to build an academic program from scratch can identify them-

selves with the challenges of building the program, and the thrill of seeing its student body grow over
the years. While creating a graduate level software engineering program is a formidable task, keeping it
up-to-date and maintaining its integrity are essential to ensuring the program’s success over the years.
Dedicated faculty must constantly weigh market needs against academic and technical developments such
as changes in technology, innovations in software development and maintenance processes, or new soft-
ware design trends. Then, they must determine how to bring about change to the graduate program.

In Chapter XV titled “Continuous Curriculum Restructuring in a Graduate Software Engineering
Program”, Drs. Rosca, Tepfenhart, Wang, and Milewski share with the reader their extensive experi-
ence maintaining a master’s level program at Monmouth University over the program’s 21 year history.
Due to continuous advances in the engineering of software, the authors assert that maintenance of a
software engineering graduate program offers challenges not found in other engineering programs. In
addition, the authors discuss their experience maintaining their graduate program factoring in student

 xxiii

input while coexisting with their department’s baccalaureate program in software engineering. Readers
of this chapter will benefit from the authors experience maintaining Monmouth University’s graduate
software engineering degree over its 21-year history.

XVI. Frezza
It was at a NATO conference in 1968 in Garmisch, Germany, where the term Software Engineering

was first mentioned in a formal setup. At the time, the term was more a statement of aspiration than
a fact. The field of computing as we know it today was still in gestation. Sixteen years later the U.S.
Department of Defense awarded Carnegie Mellon University the contract to establish the Software
Engineering Institute (SEI) with the intent to “Advance the practice of software engineering because
quality software that is produced on schedule and within budget is a critical component of U.S. defense
systems.” One of the ways in which the SEI accomplished its mission was to enable universities to
develop masters degrees in software engineering. But no one was yet talking of undergraduate degrees
in software engineering. It was not until 1996 when the first undergraduate degrees in software engi-
neering were born in the US. Since then an increasing number of schools are taking a serious look at
undergraduate software engineering.

In Chapter XVI, Frezza and his colleagues describe in great detail the many issues that surrounded
the development of a “Credible Software Engineering Bachelors Program.” The intriguing use of the
word “Credible” should spike the reader’s interest in this chapter because, with declining enrollments
in computer science in the US and Canada, schools are being tempted with the concept of re-baptiz-
ing existing computer science programs as software engineering hoping to capitalize on the upward
trend of enrollments in software engineering. As Frezza and his colleagues explain, building a credible
undergraduate degree in software engineering requires effort, compromise, and dedication. But more
importantly, it requires academic integrity.

XVII. Thompson
The final section of the book is titled Professional Practice. Ethics is one important component of

the aspect of professional practice for software engineers. The topic of ethics is especially important
to software engineering students who will enter a global environment of software development. Upon
graduating from an academic program, students must understand their responsibilities with respect to
professional practice as well as the role of ethics.

Dr. Thompson addresses the issue of teaching ethics in software engineering education in Chapter
XVII, “Ensuring Students Engage with Ethical and Professional Practice Concepts”. Dr. Thompson
provides an overview of two widely used codes of ethics, the IFIP Harmonization of Professional Stan-
dards and the ACM and IEEE-CS software engineering code of ethics and professional practice. The
author then presents an approach to teaching ethics and professional practice in a practical manner which
has resulted in increased enthusiasm on the part of students. Dr. Thompson provides insights into effec-
tive teaching of ethics including that the education be relevant to the students’ discipline, all instructors
should be competent to teach ethics, teaching should respect the values of different people groups and
that the teaching of ethics should be pervasive throughout the curriculum.

XVIII. Seidman
The final chapter of the book, titled “An International Perspective on Professional Software Engineer-

ing Credentials”, supplies an international perspective on professional software engineering credentials.
Dr. Seidman provides an overview of forms of credentialing including professional licensing, certifica-
tion and more. The chapter explains approaches to professional credentialing used world-wide including

xxiv

broad-based certifications, national examinations, and job frameworks and discusses international efforts
to develop standards for these credentials. Dr. Seidman concludes that credentialing software engineer-
ing professionals should be distinct from a specific product or tool and that credentialing will become
increasingly important as the role of software in society continues to grow.

This book is an aggregation of classroom techniques and experiences garnered from around the
world that have been proven successful in educating software engineers. It contains a collection of
best practices in the field of software engineering teaching and learning, providing an understanding of
the effective educational approaches used in software engineering education. It provides guidance to
educators who are already teaching software engineering education or are considering establishing or
expanding software engineering education within their institutions. In addition, the book can be used as
a resource by software engineering educators to learn and adopt new educational practices to improve
education. The diversity of topics and approaches presented provides a broad and international perspec-
tive on software engineering education.

 xxv

Acknowledgment

We would like to acknowledge and thank the following list of reviewers:

Name Affiliation Country
Almstrum, Vicki University of Texas at Austin USA

Armarego, Jocelyn Murdoch University Australia
Bolanos, Daniel Autonoma University of Madrid Spain
Bourque, Pierre University of Quebec Canada
Brinkman, Barry Gannon University USA
Carrington, David University of Queensland Australia

Condly, Steve University of Central Florida USA
Duggins, Sheryl Southern Polytechnic State University USA
Dupuis, Robert University of Quebec Canada

Hazzan, Orit Technion - Israel Institute of Technology Israel
Henderson, Pete Butler University USA

Horton, Tom University of Virginia USA
Kaner, Cem Florida Institute of Technology USA

Klappholtz, David Stevens Institute of Technology USA
Lethbridge, Tim University of Ottawa Canada

Liu, Chang Ohio University USA
Ludewig, Jochen Universität Stuttgart Ger

Lutz, Mike Rochester Institute of Technology USA
James McDonald Monmouth University USA

Murphy, Mike Southern Polytechnic State University USA
Navarro, Emily University of California Irvine USA
Owen, Cherry University of Texas of the Permian Basin USA

xxvi

Phat, Vinh Cogswell Polytechnical College USA
Roach, Stephen University of Texas at El Paso USA
Rosca, Daniela Monmouth University USA
Seidman, Steve University of Central Arkansas USA
Shoemaker, Dan University of Detroit Mercy USA

Sobel, Ann Miami University USA
James R. Vallino Rochester Institute of Technology USA
Wallace, Charles Michigan Technological University USA

Section I
Introduction

 �

Chapter I
Software Engineering Education:

Past, Present, and Future

Gregory W. Hislop
Drexel University, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

The demand for skilled software developers is
growing at an extraordinary rate as software is
being used in an ever widening set of domains. The
increase in the use of the internet, the phenomenal
rate of growth of available data, and new develop-
ments such as biosensors, grid computing, and
cognitive machines require software engineers
who can correctly engineer and modify these
kinds of systems within budget and at a reason-

Abs TRACT

There is a strong and growing global demand for skilled software engineers. The institutions that educate
software engineers are evolving and changing to meet this need. This chapter provides an overview of
this effort to develop software engineering education. It discusses the historical development of soft-
ware engineering education, provides some perspective on current status, and identifies some of the
challenges faced by software engineering educators. The intended audience for this chapter is anyone
interested in software engineering education who has not participated in the developments to the present
time. The goal is to provide a summary background of how the discipline has evolved and pointers to
key publications that are part of that history. Since this chapter surveys foundational topics in software
engineering education, many of the topics touched on in this chapter are covered in more detail in other
chapters of this volume.

able cost. As a result, educational institutions are
under increasing pressure to produce educated and
capable software engineers. However, educational
institutions face many challenges in producing
these software engineers that extend far beyond
curriculum issues. Software engineering is still a
discipline trying to define itself and find a place
among the set of computing and engineering
disciplines. As such, this chapter will address a
mix of issues related to three themes:

�

Software Engineering Education

• Context: The external issues that have
influenced the development of software
engineering education including the issue
of organizational location of software engi-
neering within a college or university, poli-
tics related to emergence of a new discipline,
licensing, certification, and accreditation.

• Community: The collaboration, coop-
eration, and sharing of information among
software engineering educators.

• Curriculum: The content and organization
of degree programs and individual software
engineering courses in other computing
degrees.

The chapter is organized by looking at these
issues historically, in the present, and for the
future.

The intended audience for this chapter is any-
one interested in software engineering education
who has not participated in the developments to
the present time. The goal is to provide a summary
background of how the discipline has evolved
and pointers to key publications that are part of
that history.

DEVELOPMENT OF sOFTWARE
ENGINEERING As A DIsCIPLINE

The problems of developing software were noticed
as soon as significant software development activi-
ties began. The notion of software engineering as
a solution to this problem is commonly dated to
the NATO conference on this topic held in 1968
(Naur & Randell, 1969). Versions of the confer-
ence report and the report of a second conference
held a year later are available at http://homepages.
cs.ncl.ac.uk/brian.randell/NATO/.

This conference is noteworthy for the extent
to which the range of topics currently recognized
as central to software engineering were clearly
identified even in this early effort. Organization
of software development activities was clearly

understood, at least from a waterfall model per-
spective. Key software engineering problems such
as scale and complexity were clearly recognized,
as were difficulties in estimation, and even the
potential for things like construction of software
from components.

A review of this material is helpful to make
the point that software engineering has a core
set of issues and problems that are stable over
some extended period of time, and across very
substantial technology changes. On the other hand,
this same review is striking in indicating how
modest progress has been in addressing software
engineering issues decisively.

Although there is broad agreement on the need
for solutions to the issues software engineering
addresses, the question of whether software en-
gineering should be a discipline has been a more
divisive question. Almost 40 years after the NATO
conference, computing professionals have not
reached consensus on how to organize computing
knowledge or the computing professions.

In academic discussions of the disciplines, the
key issue for software engineering has been the
relationship of software engineering to computer
science. This debate has often been described
using Venn diagrams to question whether the
two disciplines intersect, are disjoint, or whether
one is a subset of the other. A more recent set
of diagrams in Computing Curricula 2005: The
Overview Report (ACM & IEEE, 2005) clearly
shows the disciplines as distinct but with sub-
stantial intersection.

Beyond academic circles, the separation of
computing disciplines is generally ignored. The
use of job titles and professional designations is
almost completely ad hoc. With regard to soft-
ware engineering, there is “no standard defini-
tion for this term when used in a job description.
Its meaning varies widely among employers.”
(ACM & IEEE, 2005, p. 15) Like any comput-
ing profession label, the term is applied with
no particular concern for formal education or
certification of the person involved. While the

 �

Software Engineering Education

designation of someone as a “systems analyst” or
“systems administrator” might be expected to be
a flexible choice, the designation of someone as
an “engineer” is generally much more restricted
due to the licensing implications associated with
engineering. This sense of restriction clearly does
not apply to “software engineer” as the term is
commonly used today.

Although there is still variation in approach
to organizing the computing disciplines, since
the NATO conference, and particularly in the
last 20 years, there has been great progress in
establishing software engineering. A variety of
authors have discussed this progress, with Ford
and Gibbs (1996) providing a very complete
discussion from the perspective of maturity as
a profession. The infrastructure elements of the
model they propose for characterizing a mature
profession are shown in Table 1. By the measures
of this model, software engineering has made
substantial progress but still has considerable
room to develop.

This combination of substantial accomplish-
ment with continuing need for development and
lingering resistance to the very idea of software
engineering as a separate discipline may simply
be a reflection of the relative newness of software
engineering. A discussion of software engineering
from the perspective of the history of science by
Mahoney notes that “its practitioners disagree
on what software engineering is, although most

of them freely confess that, whatever it is, it is
not (yet) an engineering discipline.” (Mahoney,
2004, p. 8).

Mahoney concludes his analysis with the ob-
servation that “software may be fundamentally
different from any of the artifacts or processes
that have been the object of traditional branches
of engineering.” He further suggests that perhaps
architecture rather than engineering should be
looked at more closely as a model for the software
profession and notes that the same NATO confer-
ence recognized as a starting point for software
engineering also contained a proposal for “soft-
ware architecture” as the appropriate model for
addressing the issues related to software.

To summarize, software engineering is built
around a stable, well-defined set of issues. Over
recent decades, software engineering has come
to exhibit many of the characteristics of a mature
profession. At the same time, the set of computing
disciplines continues to evolve, and a lively and
sometimes contentious discussion about software
engineering is part of that evolution.

DEVELOPMENT OF sOFTWARE
ENGINEERING EDUCATION
PROGRAMs

Software engineering was already a curriculum
topic by the late 1960’s, and over time, many

Table 1. Infrastructure elements of a mature profession

Initial Professional Education

Accreditation

Skills Development

Certification

Licensing

Professional Development

Code of Ethics

Professional Society

�

Software Engineering Education

computer science programs developed single
courses related to software engineering either
in the form of team project courses or survey
courses of software engineering topics. These
individual courses have continued to be a staple
of computer science programs and many are still
offered today.

It was about 10 years after the NATO con-
ferences before the first software engineering
degree programs began to appear. The first pro-
grams in the U.S. appeared at the Masters level,
with early efforts including degrees at Seattle
University, Texas Christian University, and the
Wang Institute. Tomayko (1998) provides a good
summary of the early years of software engineer-
ing education in the U.S, and notes that the first
efforts were largely triggered by a response to
local industry need.

The next growth phase for software engineer-
ing education was precipitated by the funding
of the Software Engineering Institute (SEI) at
Carnegie Mellon University by the U.S. Depart-
ment of Defense. The SEI started an initiative
on software engineering education almost im-
mediately. This was a powerful catalyst since
it provided funding specifically focused on SE
education. More generally, the Department of
Defense is an important source of funding for
research unrelated to education across a variety
of science and engineering areas. Any interest in
software engineering education by the SEI was
bound to attract substantial attention.

The results of the SEI effort included a cur-
riculum model for a Master of Software Engi-
neering degree, a variety of reports on software
engineering as a profession, and a fairly extensive
set of curriculum modules that were made pub-
licly available (Ardis & Ford, 1989). The SEI also
organized a variety of meetings and workshops
that allowed people from different institutions to
compare notes and share ideas on software engi-
neering education. Two of these efforts evolved
into the Working Group on Software Engineering
Education and Training and the Conference on

Software Engineering Education and Training,
both of which continued long after the SEI had
ceased its education initiative around 1994.

Development of undergraduate programs
significantly lagged development of Masters pro-
grams in the U.S. Development of undergraduate
programs proceeded much more quickly in other
places, particularly in the U.K and Australia.
Cowling (1998), for example, provides a detailed
discussion of the development and evolution of
one such program. In part, this more rapid growth
seems to have been a result of differences in the
approach to licensing engineers, which is a key
question for an undergraduate degree with a title
including “engineering.” In particular, the U.S.
system is heavily dependent on having appropri-
ate exams, while the U.K. and Australia place
more emphasis on completion of a degree. This
latter approach makes it easier to accommodate
a substantially different kind of engineering such
as software engineering that deals with non-physi-
cal artifacts.

The slower development of undergraduate
programs may have been influenced by the SEI
focus on Master’s level education. While the
SEI applied some effort toward development of
undergraduate education (Ford, 1991a, 1994),
not much progress had been made at the time the
SEI education initiative ended. Interested faculty
members picked up the undergraduate issues in
a volunteer continuation of the SEI software en-
gineering working group. This effort resulted in
an early set of curriculum guidelines (Bagert et
al, 1999), and many of the participants were key
contributors to the SE 2004 curriculum model
(ACM & IEEE, 2004).

The first U.S. BSSE program began in 1996
at Rochester Institute of Technology as described
by Lutz and Naveda (1997). Others soon followed
and the number of U.S. programs has continued
to grow. There are currently over 30 U.S. BSSE
programs. While growth has not been explosive,
it has been steady even during the recent years of
substantial downturn in the number of students

 �

Software Engineering Education

majoring in computing disciplines. The chapter
in this volume by McDonald, et al provides some
details of this growth in the context of accredita-
tion.

It has been common for the U.S. institutions
to encounter organizational difficulties or other
road blocks in establishing SE degree programs.
For many years, this has been a regular discussion
topic at meetings of faculty interested in software
engineering. It also appears repeatedly in various
surveys and discussions of software engineer-
ing education. For example, Fairley (1986) notes
several examples where graduate programs in
software engineering could not be established
due to various clashes of perspective or interests
of relevant stakeholders.

In this text, the chapter by Frezza, et al includes
a discussion of some of the typical political issues
that arise in establishing undergraduate software
engineering degree programs.

THE COMMUNITY OF sOFTWARE
ENGINEERING EDUCATORs

Software Engineering is still a new discipline, but
substantial results have been achieved already.
Degree programs are in place, undergraduate
and graduate curriculum models have been de-
veloped. In the U.S., ABET accreditation criteria
for Software Engineering have been approved and
13 degree programs have been accredited.

Such activity requires sustained, coordinated
effort across multiple institutions as well as in-
volvement of professional societies. During much
of this development, the software engineering
education community was quite cohesive, with a
cadre of active members that provided infrastruc-
ture and guidance during the maturation process
of software engineering education. Some of the
more effective activities and community support
mechanisms have been:

•	 CSEET, The Conference on Software En-
gineering Education and Training. The first
SEI Conference on Software Education was
held in April 1987. This conference series
continued after the SEI education initiative
ended and it is still held annually. Attendance
has always been modest, but that reflects the
relatively small community of SE educa-
tors. The conference provides a significant
gathering place for institutions offering SE
programs. Other conferences, notably IEEE
Frontiers of Education, SIGCSE, and the an-
nual ASEE Conference also provide outlets
for software engineering education pub-
lications. Some SE conferences including
the International Conference on Software
Engineering also include education tracks
in some years.

•	 WGSEET, the Working Group on Software
Engineering Education and Training. Started
in early 1990s, as part of the SEI software
engineering education initiative (the “and
Training” was appended to the name some
years after the start). This group continued
to meet after active SEI support ended.
Volunteers met twice a year, usually before
the CSEET and IEEE Frontiers in Education
conferences to address development of soft-
ware engineering education. The WGSEET
meetings produced an early version of a
software engineering undergraduate cur-
riculum model, and reports on successful
academic-industry collaborations.

More importantly, the WGSEET provided a
general forum for community development and
exchange of ideas. This forum created common
understanding and fostered interactions that were
instrumental in producing many publications on
software engineering education. The WGSEET
activity also provided a key feed into curriculum
modeling and accreditation activities, and
facilitated creation of other projects such as

�

Software Engineering Education

SWENET, the Network Community for Software
Engineering Educators.

•	 SWEEP: In 1998-1999, the ACM and IEEE-
CS sponsored the Software Engineering
Education Project (SWEEP). This group
worked to create guidelines for undergradu-
ate Software Engineering curricula and
a draft set of accreditation guidelines for
undergraduate software engineering pro-
grams. Members of SWEEP started work
that evolved into the Software Engineering
curriculum model (ACM & IEEE, 2004).

•	 SWECC: The Software Engineering Co-
ordinating Committee was part of a joint
effort by the ACM and IEEE-CS to promote
SE as a profession. This effort provided the
starting point for development of an SE Code
of Ethics, and an SE Body of Knowledge
project. The ACM withdrew from the group
as part of the decision to take a position
against licensing of software engineers.

•	 SE 2004: The undergraduate SE Curriculum
Model grew out of some of the earlier efforts
mentioned above. But it was a clear step
beyond those efforts in having endorsement
of the IEEE-CS and the ACM. In addition,
it benefited from the more formal and more
broadly based development process that has
evolved over the history of the computing
curricula volumes.

•	 SWEBOK: The Guide to the Software En-
gineering Body of Knowledge, was started
as a project by SWECC in 1998. The inten-
tion “is to provide a consensually validated
characterization of the bounds of the soft-
ware engineering discipline and to provide
a topical access to the Body of Knowledge
supporting that discipline.” (SWEBOK,
2004, p. xvii). To provide a starting point,
the SWEBOK drew on prior SE standards
efforts supported by the IEEE. In addition,
the SWEBOK is notable for the effort to be

transparent and provide a consensus result
based on broad participation.

•	 FASE: The Forum for Advancing Software
Engineering, is an online newsletter that
includes announcements, reports, and short
articles of interest to software engineering
educators. It was published monthly for many
years, and archived articles are maintained
online.

•	 SWENET: The Network Community for
Software Engineering Education, was an
NSF project that produced a repository of
publicly available software engineering
course modules (Hislop, Lutz & Sebern,
2006). SWENET also supported several
workshops that were effective community
building exercises for software engineering
educators. The project ended in 2005, but
the repository is still supported.

The list above represents an impressive effort
given the modest size of the software engineering
community. At the same time, it is clear that some
of the mechanisms that served well in the past
have not kept up with the changes and growth in
the software engineering community.

For example, WGSEET, The Working Group
on Software Engineering Education and Training
has ceased to exist. An effort to replace WGSEET
with SEECo, an Education Community within
the IEEE CS Technical Council on Software
Engineering, has not been a success. Similarly,
SEPLA, the Software Engineering Program
Leaders Association, was started as a spin-off of
WGSEET to allow department chairs and program
directors to interact. The group has a low activity
listserv, but has never really been active. Finally,
FASE, the online software engineering education
newsletter, was published regularly for over 10
years. But FASE has been largely inactive for the
last several years because few people are choosing
to submit any material for distribution.

These changes can be taken as reflections of
the success of software engineering. Many of the

 �

Software Engineering Education

original goals of SE educators such as creating
curriculum models and developing accreditation
standards have been accomplished. These ef-
forts now have mainstream support of the major
computing professional societies. As such, the
efforts will be widely visible, and maintained
over time.

On the other hand, it seems that the community
of software engineering educators has lost some
of the supporting structure that mechanisms like
WGSEET and FASE once provided. The oppor-
tunity for informal interaction among interested
faculty members was a valuable side effect of
those efforts. Given that the total number of SE
degree programs worldwide is still not very large,
it seems that looking for additional opportunities
for informal community interaction might be
valuable in the future too.

ACCREDITATION, CERTIFICATION,
AND LICENsING

Accreditation has been a clear success for software
engineering in the U.S. Accreditation criteria
were developed in 1998-1999 and the first degree
programs were accredited in 2003. At present 13
programs are accredited, and more are expected
to complete this process over the next several
years.

SE accreditation is handled by the Engineering
Accreditation Commission (EAC) of ABET, the
accrediting body for engineering and technology
in the U.S. After the SE accreditation effort be-
gan, ABET merged with CSAB, the accrediting
body for computer science. With the merger of
CSAB, ABET created a Computing Accreditation
Commission (CAC). The CAC currently handles
accreditation of computer science, information
systems, and information technology.

By curricular content, software engineering
clearly has strong overlap with the CAC disci-
plines. On the other hand, it makes sense to place
software engineering with the other engineering

disciplines in the EAC. As it happens, this issue
was decided simply by the sequence in which the
events happened to occur (accreditation criteria
development followed by the merger).

Licensing has been and remains a controversial
issue for software engineering. Although licensing
(or chartering in the U.K.) has proceeded relatively
smoothly in the U.K. and Canada, there has been
little progress in the U.S. Without regard to the
question of whether software engineers should
be licensed, there are several difficult issues as-
sociated with licensing.

Perhaps the most important question overall
is the body of knowledge that provides the basis
for license. Opinions diverge on whether software
engineering knowledge is mature enough to sup-
port licensing in a meaningful way. That is, will
a licensed practitioner in software engineering
have the knowledge needed to protect the public
from software risks, or, is the body of software
engineering knowledge not mature enough to
support meeting this responsibility? Shaw (1990)
discusses this issue with a broad perspective of
how a software engineering discipline might
emerge. In a more recent discussion Shaw reit-
erates this argument with the comment: “…pro-
fessional licensing carries a commitment to the
public that we can achieve a level of practice that
provides certain safety and utility properties of
the product, but such a level of practice is not yet
routinely achieved” (Shaw, 2000, p. 375).

It is also important to note that much of the
attention to licensing has revolved around the dif-
ficulty of bringing the software community into
the engineering community. This plays out in a
variety of ways, including the following:

•	 Software engineering is not accepted by
many engineers in traditional engineering
disciplines as being a “real” engineering
discipline

•	 Traditional engineering disciplines deal with
engineering of physical products, and core
knowledge of traditional engineering is built

�

Software Engineering Education

on the assumption that all engineers need to
deal with aspects of chemistry and physics
and a fundamental set of engineering topics
such as statics and dynamics. For the U.S.,
where licensing relies in part on examina-
tion, this means that existing exams focus
on content that is not part of the software
engineering curriculum

•	 Software engineering education has largely
grown from computer science and other
computing programs. Most of the faculty
members in these programs are not engi-
neers by training, and many of the comput-
ing programs are not housed in colleges
of engineering. In fact, many computing
programs are at institutions that do not offer
any engineering programs. The notion of an
engineering license that might limit ability
of graduates to develop software is at least
a potential threat to these other computing
programs.

A good discussion of these issues in the Ca-
nadian context is provided by Parnas (2002). A
companion piece by McCalla (2002) provides
some contrasting coverage of the Canadian situ-
ation.

The licensing issue has been a difficult one
for the computing professional societies too. The
ACM in particular has adopted a clear position
opposing licensing of software engineers at the
present time. Details of this position are contained
in White and Simons (2002) and Knight and
Leveson (2002).

In recent years, the issue of licensing has been
relatively quiet. Within the U.S, only Texas has
allowed licensing for software engineers. Other
states have not followed this lead. However, the
promise of ubiquitous software, the ever increas-
ing integration of software in engineered products,
and the broad economic dependence on software
clearly indicate that the issues that have raised the
question of licensing will become more pressing

not less. At present, it is not clear how these ques-
tions will be addressed.

Somewhat connected to the licensing issue is
the question of broad certifications for software
engineering. There have been a variety of efforts
of this sort, including the IEEE-CS Certified
Software Development Professional program.
Certifications such as this seem likely to expand
in the future as one approach to helping employers
understand the knowledge and skills of potential
employees.

The chapter by Seidman in this text provides
an international perspective on the development
and status of certification and licensing for soft-
ware engineering.

TEACHING sOFTWARE
ENGINEERING

Software engineering degree programs share
many topics with CS and as such, share many of the
challenges in teaching and learning. At the same
time, many of the areas that make SE unique also
present different challenges in teaching. These
factors include software scale and complexity,
engineering notions of design under cost and
quality constraints, and substantial human issues
that affect various parts of SE.

Many problems and best practices in SE are
driven by the large scale and great complexity in
software systems. This creates particular chal-
lenges in teaching SE since it is difficult to give
students exposure to large systems in an academic
program. The number of hours and intense immer-
sion required to grasp a large system is beyond
many students in the early years of a program,
and difficult to fit in the limited hours and term
schedules throughout a degree program. Until
students gain some understanding of scale and
complexity, it is difficult for them to really ap-
preciate the problems that SE attempts to address.
The chapter by Ludewig in this volume presents
one approach that helps students gain experience
with larger software systems.

 �

Software Engineering Education

Software engineering focuses heavily on
group-based work. This is reflected by an emphasis
on team work and team projects in SE education.
Section IV of this text includes a series of chapters
that address various aspects of project-based work.
The team emphasis is one mechanism to allow
students to get experience with larger software
systems.

Team projects are one example of a broader
emphasis on preparing students for practice. As an
engineering discipline, SE has a strong emphasis
on application of knowledge, and preparation for
professional practice. The chapter by Armarego in
this volume explores one approach to ensuring that
SE education lines up with practice. Other chapters
in Section VI discuss issues of professionalism
and preparation for professional practice.

Software engineering also involves a variety
of human issues that range well beyond working
in teams. In this volume, the chapter by Brady et
al focuses particularly on the issue of communica-
tion about software. The chapter by Hazzan and
Tomayko provides a survey of SE activities and
topics with an emphasis on the human component.
The broad sweep of topics addressed by these
chapters plus the chapters on project-based work
clearly shows that SE has a human component
different from most of the traditional engineer-
ing disciplines.

The challenges in teaching SE are being
worked on as research projects by many SE
faculty members. Funding for these efforts is
competitive, but available from several sources.
The most important funding source in the U.S.
is the National Science Foundation, primarily
through funding for research and development
related to undergraduate education. As mentioned
earlier, the focused funding once provided by
the Department of Defense through the SEI is
no longer available, although the Department of
Defense did recently fund an effort to create a
new Masters level curriculum model for Software
Engineering. Various other federal agencies and
foundations provide occasional grants that impact
software engineering education.

The combination of technical foundations and
the emphasis on the issues outlined above makes
teaching of SE particularly challenging. It also
implies that qualifications for SE faculty mem-
bers have distinct requirements, particularly with
regard to the importance of having faculty with
professional experience. This is a difficult issue
since the pool of candidates with academic cre-
dentials and professional experience is relatively
limited. The chapter by McDonald discusses this
issue from an accreditation perspective, and Rosca
et all address the issue of hiring and retaining
faculty members with the right combination of
qualifications.

Ass Ess MENT OF THE
CURRENT sTATUs OF sOFTWARE
ENGINEERING EDUCATION

There is no regular census of software engineering
programs worldwide, although there have been
a variety of efforts to track the degree programs
at both the undergraduate and master’s level
including Knoke (1998), Modesitt, et al (2000),
and Bagert (Bagert & Ardis, 2003; Bagert &
Chenoweth 2005). As of 2007, there were at least
32 undergraduate software engineering programs
and 53 MSSE programs in the U.S. alone. The
worldwide numbers would at least double these
counts. There are also 3 Ph.D. programs in soft-
ware engineering in the U.S.

Software engineering programs in the U.S.
have not been immune to the downturn in student
enrollment experienced by computing programs
since about 2000. There are no reliable numbers
to measure the extent of downturn for software
engineering, but there is extensive anecdotal
evidence that it has been substantial, although
perhaps not as great as for computer science. It
would be difficult to know how to interpret en-
rollment data in any case since fully two thirds
of the BSSE programs have been started in the
years since 2000. The more interesting question

�0

Software Engineering Education

Table 2. BSSE degree programs at U.S. institutions
Auburn University Milwaukee School of Engineering

Butler University Mississippi State University

California Poly – San Luis Obispo Missouri Tech

Capitol College Monmouth University

Champlain College Montana Tech

Clarkson University Penn State University – Erie

Cogswell College Rochester Institute of Technology

Colorado Tech Rose-Hulman Institute of Technology

Drexel University San Jose State University

Embry-Riddle Aeronautical Univ. South Dakota State University

Fairfield University Southern Polytechnic State Univ.

Florida Institute of Technology University of Michigan-Dearborn

Gannon University University of Texas at Arlington

Indiana Wesleyan University University of Texas at Dallas

Iowa State University University of Wisconsin-Platteville

Michigan Tech Vermont Technical College

is how the BSSE programs will fare after the
inevitable upswing in number of students seek-
ing computing majors occurs. It is also a positive
sign that institutions have continued to start BSSE
programs during this period of lowered student
interest in computing majors.

The set of U.S. institutions currently known
to offer BSSE degrees is presented in Table 2.
It is interesting to consider some of the overall
characteristics of this group of institutions that
might have made them early adopters in develop-
ment of the BSSE.

For example, over a third of these institutions
are technology focused colleges or universities.
On the one hand, this might make a BSSE an easy
fit. On the other hand, most of these institutions
already have multiple computing degrees, which
could make for sharp differences of opinion about
the wisdom of adding yet another computing
degree.

A second characteristic is that a number of
these institutions have close connections with
businesses in their local market. This is certainly

true of some of the technical institutes, but also
true of institutions like Monmouth and some of
the branch campuses of the public institutions.

It is also interesting to note that the list has a
mix of institutional types in terms of the Carnegie
Foundation’s classification scheme (Carnegie
2007). For example, there are four BSSE insti-
tutions (Auburn, Drexel, FIT, and Iowa) in one
of the “Research University” categories and a
good selection of institutions across the range of
Master’s and Baccalaureate categories.

While there is a relatively broad set of insti-
tutional types, institutions with highly ranked
computer science departments are not present.
For example, in considering the top 36 computer
science departments according to the Taulbee
Survey (Zweben 2007), none of the host institu-
tions for those departments offer BSSE degrees,
even though several of them, including Carnegie-
Mellon and the University of Maryland, have very
active software engineering research groups.
Since the strong reputation of these institutions
generally gives them freedom to enter new areas,

 ��

Software Engineering Education

the absence of BSSE programs probably results
from a choice rather than constraints that prevent
pursuing the BSSE.

FUTURE OF sOFTWARE ENGINEERING
EDUCATION

In thinking about what lies ahead for software
engineering education, there are several perspec-
tives that might be taken. For example, one set of
challenges has been outlined by Lethbridge, et al
(2007) as follows:

1. Making programs attractive to students,
2. Focusing education appropriately,
3. Communicating industrial reality more ef-

fectively,
4. Defining curricula that are forward-look-

ing,
5. Providing education for existing practitio-

ners,
6. Making software engineering education

more evidence-based,
7. Ensuring that software engineering educa-

tors have the necessary background, and
8. Raising the prestige and quality of software

engineering educational research.

This is an excellent list, and clearly contains
a variety of important challenges for software
engineering education. It is interesting to note
though, that most of the items in this list apply
fairly well to all, or at least several, of the comput-
ing disciplines. This is particularly true if viewed
in terms of not just computer science but also the
newer disciplines like information technology.
Even items 6, 7, and 8 apply more broadly if the
words “software engineering” are removed. (For
example, in IS for item 6 and IT for item 7.)

One possible conclusion from this set of chal-
lenges is that the future of software engineering
education is unavoidably linked to the other

computing disciplines. To a large extent the group
shares common challenges, and all will rise or
fall depending on how well those challenges
are addressed. In spite of a history of tensions
among the computing disciplines, cooperation,
where possible, is much more likely to result in
advances for all.

Another perspective on the future would be
to look at the model proposed by Ford shown
in Table 1. While there is substantial reason to
look favorably on the progress made against this
framework, there is still much to be done in most
of these categories. Software engineering clearly
has not reached the level of a “mature” profession
as defined by the Ford model. It seems that this
should be viewed as a comment on the relative
newness of the discipline, and certainly not as
a sign of failure. At the same time, it implies
that the SE education community needs to keep
advancing the discipline and not be content with
the accomplishments thus far achieved.

A more difficult perspective to assess is the
ongoing evolution and tension among disciplines,
particularly between computer science and soft-
ware engineering. The continuing skirmishes
that seem typical as new software engineering
programs begin, and the absence of BSSE pro-
grams in institutions with highly ranked computer
science programs, are two good indicators that
this evolution is not complete. One root issue is
the fact that a large percentage of CS graduates
go on to careers as practitioners rather than scien-
tists. This raises the question of whether growth
in SE programs will come largely at the expense
of CS programs. That possibility would present
difficulties for both disciplines.

Within the community of software engineering
educators, the sense of cohesion maintained during
the 1990’s seems to be substantially diminished. In
part that reflects success in achieving initial goals
such as accreditation. However, for a community
that is still quite small this is cause for concern. As
additional institutions offer software engineering
degree programs, it is important that they have

��

Software Engineering Education

a community to join. Without that, it is difficult
to see how software engineering will continue to
evolve as a cohesive academic discipline.

Finally, in spite of good progress on the cur-
riculum front, the world continues to change. SE
2004 is already over 3 years old and a round of
updates will need to begin soon. For example, the
chapter by Mead in this volume discusses aspects
of system security that require increased atten-
tion in SE programs. Other issues that need to be
addressed include changes in the way software
systems are constructed, growth of various forms
of parallel and distributed processing, and the
expanding range of devices that contain software.
Approaches to software process continue to ex-
pand as does the range of application domains with
special considerations. There is also an increasing
demand that students have better non-technical
skills including communication and group inter-
action skills. Addressing this range of issues will
require concerted effort of the community of SE
educators for years to come.

REFERENCEs

ACM & IEEE (2005). Computing Curriculum
2005: The Overview Report. IEEE Computer So-
ciety and Association for Computing Machinery.
Piscataway, NJ: IEEE CS Press

ACM & IEEE (2004). Computing Curricula, Soft-
ware Engineering 2004: Curriculum Guidelines
for Undergraduate Degree Programs in Software
Engineering. IEEE Computer Society and As-
sociation for Computing Machinery. Piscataway,
NJ: IEEE CS Press

Ardis, M. A., & Ford, G. A. (1989). SEI Report
on Graduate Software Engineering Education.
TR CMU/SEI-89-TR-21. Pittsburgh PA: Carnegie
Mellon University.

Bagert, D. J. & Ardis, M. A. (2003). Software en-
gineering baccalaureate programs in The United

States: An Overview. Proceedings, Frontiers
in Education Conference, pp. S3C-1 to S3C-6.
Piscataway, NJ: IEEE CS Press.

Bagert, D. J., & Chenoweth, S. V. (2005). Future
growth of software engineering baccalaureate
programs in the United States, Proceedings, ASEE
Annual Conference. Portland, Oregon.

Bagert, D. J., Hilburn T. B., Hislop, G. W., Lutz, M.,
McCracken, M., & Mengel, S. (1999). Guidelines
for Software Engineering Education Version 1.0
Technical Report CMUISEI-99-TR-032. Pitts-
burgh PA: Carnegie Mellon University.

Carnegie (2007). The Carnegie Classification of
Institutions of Higher Education. Stanford, CA:
The Carnegie Foundation for the Advancement of
Teaching. Retrieved January 15, 2008 from http://
www.carnegiefoundation.org/classifications/

Cowling, A.J. (1998). The First Decade of An
Undergraduate Degree Programme in Software
Engineering. Annals of Software Engineering,
6(1-4), 61-90.

Fairley, R. (1986). The role of academe in software
engineering education. Proceedings of the 1986
ACM Fourteenth Annual Conference on Com-
puter Science. p. 39-52. New York: ACM Press.

Ford, G. & Gibbs, N. (1996) A Mature Profession
of Software Engineering. Software Engineering
Institute. Technical Report CMU/SEI-96-TR-04.
Pittsburgh, PA: Carnegie Mellon University.

Ford, G. A. (1994). The Progress of Undergradu-
ate Software Engineering Education. SIGCSE
Bulletin. 26,4. New York: ACM Press.

Ford, G. A. (1991a). The SEI Undergraduate
Curriculum in Software Engineering. Proceed-
ings, 22nd SIGCSE Technical Symposium on
Computer Science Education. pp. 375–385 New
York: ACM Press.

Ford, G. A. (1991b) SEI Report on Graduate Soft-
ware Engineering Education. CMU/SEI-91-TR-2.
Pittsburgh, PA: Carnegie Mellon University.

 ��

Software Engineering Education

Hislop, G. W., Lutz, M. J., & Sebern, M. J. (2006).
Sharing Software Engineering Curriculum Ma-
terials. Proceedings, ASEE 2006.

Knoke, P. J. (1998). Graduate SE Program Survey
Results And Evaluation, Forum for Advancing
Software engineering Education (FASE), Vol. 8,
No. 9. (electronic newsletter) <http://www.cs.ttu.
edu/fase/v8n09.txt>

Knight, J. & Leveson, N. (2002). Should Software
Engineers be Licensed? Communications of the
ACM. 45(11), 87-90. New York: ACM Press.

Lethbridge, T. C., Diaz-Herrera, J., LeBlanc, R.
J., & Thompson, J. B. (2007). Improving software
practice through education: Challenges and future
trends. In 2007 Future of Software Engineering.
International Conference on Software Engineer-
ing. pp. 12-28. Piscataway, NJ: IEEE CS Press.

Lutz, M. J. & Naveda, J. F. (1997). The Road Less
Traveled: A Baccalaureate Degree In Software
Engineering. Proceedings, SIGCSE Technical
Symposium. p. 287-291. New York: ACM Press.

Mahoney, M.S. (2004) Finding a History for
Software Engineering. IEEE Annals of the His-
tory of Computing. p. 8-19. Piscataway, NJ: IEEE
CS Press.

McCalla, G. (2002). Software Engineering Re-
quires Individual Professionalism. Communi-
cations of the ACM. 45(11), 98-101. New York:
ACM Press.

Modesitt, K. L., Bagert, D. J., Werth, L., & Knoke,
P. J. (2000). Annual Survey of International Soft-
ware Engineering Academic Programs - Progress

Report Number 2. Forum for Advancing Software
engineering Education (FASE), Vol. 10, No. 11.
(electronic newsletter) <http://www.cs.ttu.edu/
fase/v10n11.txt>

Naur, P. & Randell, B. eds. (1969) Software En-
gineering: Report on a Conference Sponsored
by the NATO Science Committee, Garmisch,
Germany, 7th to 11th October 1968. Scientific
Affairs Division, NATO.

Parnas, D. L. (2002). Licensing Software Engi-
neers in Canada. Communications of the ACM.
45(11), 90-98. New York: ACM Press.

Tomayko, J. E. (1998). Forging a Discipline: An
Outline History of Software Engineering Edu-
cation. Annals of Software Engineering, 6(1-4),
3-18.

Shaw, M. (1990). Prospects for an Engineering
Discipline of Software. IEEE Software. 7(6), 15-
24. Piscataway, NJ: IEEE CS Press.

Shaw, M. (2000). Software Engineering Educa-
tion: A Roadmap. Proceedings of the Confer-
ence on The Future of Software Engineering.
373-380.

SWEBOK. (2004). Guide to the Software En-
gineering Body of Knowledge. Piscataway, NJ:
IEEE CS Press.

White, J. & Simons, B. (2002). ACM’s Position
on Licensing of Software Engineers. Commu-
nications of the ACM. 45(11), 91-92. New York:
ACM Press.

Zweben, S. (2007). 2005-2006 Taulbee Survey.
Computing Research News. pp. 7-22.

Section II
Student Learning
and Assessment

 ��

Chapter II
Constructive Alignment in

SE Education:
Aligning to What?

Jocelyn Armarego
Murdoch University, Western Australia

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abs TRACT

Practitioner studies suggest that formal IT-related education is not developing the skills and knowledge
needed by graduates in daily work. In particular, a shift in focus from technical competency to the soft
and metacognitive skills is identified. This chapter argues that a framework for learning can be developed
that more closely models the experiences of practitioners, and addresses their expectations of novice
software engineers. Evaluation of a study incorporating three action research cycles shows that what is
needed is a mapping between the characteristics of professional practice and the learning model that
is applied. The research shows that a relationship also exists between learner and learning model, and
that this relationship can be exploited in the development of competent discipline practitioners.

INTRODUCTION

In the late 1960s those involved in the develop-
ment of software agreed that one mechanism for
dealing with intrinsic difficulties (eg complexity,
(in)visibility, and changeability (Brooks, 1986))
was to embed its production within an applied
science environment. Royce (1970) was the first
to note explicitly that an engineering approach
was required. The implication of this alignment

was that, like other engineering endeavours,
methods, tools and procedures must be applied
in a systematic way to contribute to the overall
purpose of the process, control it and enable the
development of a quality product.

This interest in engineering is mirrored in the
education of software developers, with initially an
exponential growth in offerings of undergraduate
software degrees within an engineering envi-
ronment. Increasingly, education for software

��

Constructive Alignment in SE Education

development focuses on process and repeatability,
modelling scientific and engineering methodolo-
gies. The underlying assumption of this approach
is that ‘good’ software development is achieved
by applying scientific investigative techniques
(Pfleeger, 1999).

Practitioner-based studies (eg., Trauth, Far-
well, & Lee, 1993; Lethbridge, 2000; Lee, 2004)
assist us in building a profile of a practicing IT
professional. The synthesis of these is that the
skills and knowledge required to be active as
competent practitioners are multidisciplinary:
industry requires professionals who integrate
into the organisational structure, and, rather than
cope specifically with today’s perceived problems,
have models, skills and analytical techniques
that allow them to evaluate and apply appropri-
ate emerging technologies and to manage the
process of delivering solutions. More broadly,
software technology is seen as a rapidly shifting
landscape: new methods, tools, platforms, user
expectations, and software markets underscore
the need for education that provides professionals
with the ability to adapt quickly.

Developing Education-
Learner-Practitioner Alignments1

Freed (1992) coined the term ‘relentless inno-
vation’ to describe the capacity to invent and
implement new ideas that will impact on every
facet of life. Oliver (2000) suggested the rate of
innovation is so prolific that most of the knowl-
edge which will be used by the end of the first
decade of the twenty-first century has yet to
be invented. The speed with which technology
evolves, the multiplicity of its impact on society
and the ramifications of that impact mean that
metacognitive and knowledge construction skills
as well as adaptability become vital for profes-
sionals working with technology. Professional
practitioners with such skills become agents of
change (Garlan, Gluch, & Tomayko, 1997).

However, the basic features of most engineer-
ing training programmes have hardly been chal-
lenged since engineering schools were established
(Mulder, 2006). In general this education is based
on a normative professional education curriculum,
in which students first study basic science, then
the relevant applied science (Waks, 2001), so
that learning may be viewed as a progression to
expertise through task analysis, strategy selection,
try-out and repetition (Winn & Snyder, 1996). The
risk is that strict adherence to engineering and
science methodologies hampers the quintessential
creativity of the design process for software (Lu-
bars, Potts, & Richer, 1993; Maiden & Gizikis,
2001; Maiden & Sutcliffe, 1992; Thomas, Lee,
& Danis, 2002).

The aim of this chapter therefore is to explore
the degree of alignment between the actuality of
practice in the discipline and the models of learn-
ing provided in formal education for software
development. An overview of both the dominant
pedagogy for formal education in IT disciplines,
and practitioner studies undertaken over the last
15 years establishes a base for this exploration.

An Action Research project, undertaken within
Murdoch University’s Software Engineering (SE)
programme, provided the context for developing
a model for alignment between formal education
for SE and industry requirements. In order to
achieve this, several techniques, including cur-
riculum mapping and discipline decoding, were
applied during the project to establish and then
evaluate the alignments identified. The chapter
continues by exploring the importance of align-
ment between student and learning environment,
so that the eventual outcome, affinity between
discipline, learning environment and graduate
practitioner may be achieved.

CONTEXT

The context for the Action Research2 project was
the SE programme within the School of Engineer-

 ��

Constructive Alignment in SE Education

ing. In an attempt to align the characteristics of
the discipline with appropriate learning environ-
ments, and to address knowledge gaps identified
by practitioners, interventions based on different
learning models were embedded in the curriculum
over three cycles:

•	 Cycle 1: The Cognitive Apprenticeship
(Brown, Collins, & Duguid, 1989) model as
a mechanism for enabling authentic learning
and facilitating knowledge transfer.

•	 Cycle 2: Problem-based learning (PBL)
(Barrows & Tamblyn, 1980) as the basis for a
model that focuses on students dealing with
ill-structured problems by taking control of
their learning. The model developed and
applied in this cycle also addresses issues
of enabling creativity within a supportive
learning environment (Armarego, 2005).

•	 Cycle 3: A hybrid model developed on the
basis of reflection on the interventions of the
previous two cycles. Based on the construc-
tivist paradigm, this Studio Learning model
exploits the reflective practitioner (Schön,
1983) concept of professional learning by
incorporating some elements of Cognitive
Apprenticeship with components of prob-
lem-based learning and creativity-enhanc-
ing strategies. The focus is on the longer-term
success of the learning strategies identified
as appropriate for SE education (Armarego,
2007a; Armarego & Fowler, 2005).

The SE curriculum at Murdoch is an integrated
one – all courses are prescribed, therefore a very
precise understanding of what knowledge students
have constructed is available. As Armarego (2002)
indicates, initial changes were made only to the
‘capstone’ course. However, issues identified in
the evaluation (see Armarego, 2004) indicated
changes were required earlier in the curriculum.
Cycles 1 and 2 of the project addressed this aspect
by focussing on changing student perception of
‘appropriate’ learning of SE. Cycle 3 consolidated

the evolved learning model and extended it, not
only to all SE learning within the curriculum,
but to the final years of all engineering learning
(Armarego & Fowler, 2005) in the School.

CHARACTERIsTICs OF THE
DIsCIPLINE

The Engineering of software

The alignment of software development with sci-
ence and engineering has been seen as a means to
leverage from the ‘status’ of these domains: the
profession of scientifically trained engineer came
into existence in the 18th and 19th centuries as
a product of the Enlightenment3. For engineers
it meant rethinking traditional technologies in
order to rationalise and optimise them. However,
Mulder (2006) notes that engineers sometimes
failed to recognise that the issue at stake was not
always a scientifically-/mathematically-solvable
optimisation problem, but a choice between ir-
reconcilable norms and values.

The implication of the alignment of software
development with science and engineering is that,
like other engineering endeavours, methods, tools
and procedures must be applied in a systematic
way to contribute to the overall purpose of the
process, control it and enable the development of
a quality product.

However, by the late 1960s philosophers such
as Habermas (1972) criticised the ideological
character of science-based technology – success-
ful technologies were seen to challenge society
and affect it as a whole. A deep understanding of
the motives and desires of people who would be
relating to the new technology, developed through
interaction, was critical.

The Crafting of software

Software development has also been described as
a ‘craft’. The negative connotations of this label

��

Constructive Alignment in SE Education

include an inability to consistently guarantee a
quality product, fit for the purpose for which it was
developed, produced on time and within budget.
The rates of successful projects reported in the
mid 1990s are not significantly higher than those
reported in the 1970s and 1980s (Mann, 1996),
and continue to be low in the 2000s.

There are positive implications as well for the
label ‘craft’. Each system is considered a unique
synergy between the hardware, software and
organisational context in which it will be used.
This viewpoint suggests that the development
process cannot be repeatable, as the forces at play
will differ for each context: continually chang-
ing as understanding of the characteristics of
the developing system grows in all stakeholders.
From this perspective software is a collaborative
invention. Its development is an exploratory and
self-correcting dialogue (Bach, 1999), based on
insight-driven knowledge discovery (Guindon,
1989) facilitated by opportunistic behaviour
(Guindon, 1990; Visser, 1992).

EDUCATION FOR THE DIsCIPLINE

Hannafin (1997) and Reeves (1994) suggest that
several dimensions are relevant in the description
of learning systems:

•	 Epistemological foundations: Are concerned
with theories about the nature of knowledge,
and describe the world view to be dissemi-
nated. At one extreme (objectivism), content
aims to be comprehensive and accurate,
and based on advice from experts in the
field. At the other (constructivism), content
reflects the spectrum of views in the domain,
providing multiple perspectives/options for
constructing knowledge.

•	 Psychological foundations: Represent be-
liefs about how individuals think and learn.
On this continuum, shaping desirable behav-
iours via stimuli, feedback, reinforcement

etc at one pole contrasts with a cognitivist
emphasis on mental models and the connec-
tions between them. The type of knowledge
to be constructed is seen to drive the learning
strategy employed.

•	 Philosophical foundations : Emphasise how
to-be-learned domains are represented and
affordances provided to support learning.
An instructivist foundation stresses the im-
portance of goals and objectives drawn from
the domain. Constructivist foundations, on
the other hand, stress the primacy of learner
intentions, experience and metacognitive
strategies through a rich environment that
can be tailored to individual needs.

These dimensions describe the nature of learn-
ing, the methods and strategies employed, and the
ways in which the discipline should be organised
and made available to the learner.

Although any software development project is
acknowledged as knowledge-intensive, with many
concepts developed to ease or guide the process-
ing of knowing (Robillard, 1999), and learning
(Klemola & Rilling, 2002), what is actually
taught within a discipline is a complex synthesis
deriving from the ideology of the discipline, the
context of the learning and the ‘tools’ used to
facilitate that learning, all, in theory, influenced
by the needs of practitioners in the discipline.
Figure 1 describes a conceptual framework that
identifies the elements of this synthesis: the bodies
of knowledge (BoKs) and model curricula are a
distillation of expert opinion and domain-specific
texts. The breakdown is seen to cover the areas
discussed in texts and standards, either identically,
or, as noted in the SoftWare Engineering Body of
Knowledge (SWEBoK), derived from these and
other sources to reflect a consensus and identify
mature and stable concepts (Sawyer & Kotonya,
2000) in the discipline.

At the same time, a perspective (composed
of the epistemological, psychological and philo-
sophical foundations noted above) also exerts

 ��

Constructive Alignment in SE Education

influence on each of the domain, BoKs etc and
theories of learning. Within the IT disciplines this
has led to multiple approaches to its definition
and study: the work of Iivari (1991) and Glass
(1992) identified and categorised these, based on
epistemological and ontological positions taken.
The implication of this is a different understanding
of the discipline and education for it dependent
on the stance (perspective) adopted. This poses
a serious challenge for the learning of software
development practice.

The accepted view, that a science/engineer-
ing approach will ensure quality, influences the
learning of SE: by implication a scientific/en-
gineering education is seen as the mechanism
to train students to be competent practitioners.
The same is true outside the science/engineer-
ing academic faculties: Benson (2003) notes that
within the emerging information systems (IS)
discipline of the 1970s, academics were migrants
to the discipline, with an overwhelming majority
having qualifications in other areas, most often
computer science. Practitioners also relied heavily
on scientific, mathematic and engineering disci-
plines, many with engineering and manufacturing
backgrounds.

These influences are mirrored in attempts at
developing model curricula, with the occasional
addition of guidelines addressing generic attri-
butes. Shackelford (2005) provides an overview
of what might be considered computing today
(the space for SE is illustrated in Figure 2). At a
fundamental level, the assumptions made on, for
example, the nature of the system or the impor-
tance of its context, and the nature of knowledge,
influence the perspective taken and how the work
is undertaken. However, each of the volumes of
the Computing Curriculum (CC-CS (Engel &
Roberts, 2001), CC-IS (Gorgone et al., 2002) and
CC-SE (LeBlanc & Sobel, 2004)), which help
determine the learning situation for a discipline,
applies the same model and draws on the same
types of sources.

Within the broad IT specialisations in general,
the underlying assumption is that the world works
rationally and that therefore ‘good’ software de-
velopment is achieved by applying (from a choice
of) scientific investigative techniques. In this
positivist approach, borrowing from the physical
sciences, software developers build models based
on: theoretical and scientific knowledge; engi-

Figure 1. Influences on the learning environment for SE

�0

Constructive Alignment in SE Education

neering knowledge – experiential and including
what skills are needed, how tools work together,
what has/has not worked in the past; biomedical
and epidemiological knowledge – experiential,
this captures evidence about causation and social,
economic and institutional knowledge – who
and what are involved in what we are observing
(Pfleeger, 1999). By these means the ‘scientific’
software developer seek relationships that add
to an understanding of what makes software
good. These are applied to increase the number
of times good software is produced, based on
a cause-effect search: if s/he can find out what
process activities, tools, measurements cause
good software s/he can build an effective software
process that will produce good software every
time (Pfleeger, 1999).

Also applied within IS education such ap-
proaches lean towards project management-based
methods, techniques and tools, and, while success-
ful in creating a range of artefacts, do not succeed
in the development of management information
systems (Banks, 2003). Banks concludes that
the weakness inherent in approaches which lend
themselves to ‘cookbooks’ with clearly defined

problems, rigid method and limited range of out-
comes but tangible skills in students is the lesser
regard for real-world influences and pressures.

Therefore, while a review of major model cur-
ricula for software development (ie IS, CS and SE)
shows that, in general terms, a graduate should
emerge from formal education with knowledge
of the basic software development processes (and
therefore, in theory be able to produce successful
software), this does not acknowledge either the
multi-disciplinary skills highlighted by practitio-
ners as missing in formal education4 or the generic
intellectual abilities and skills which, although
highly valued by employers, are sometimes given
only ‘lip service’ in tertiary education curricula
(Bentley, Lowry, & Sandy, 1999).

DIsCIPLINE DECODING

One of the primary motivations for the develop-
ment of models of teaching and learning in which
practitioners can be more involved in the research
on how people think and how students learn has
been a concern with the disciplinary nature of

Figure 2. SE computing space (Shackelford, 2005) [©2005 ACM and IEEE. Reprinted by permission]

 ��

Constructive Alignment in SE Education

learning. The result of the decoding process is a
model of the skills identified as necessary within
a discipline.

Disciplines differ in the strategies and the
‘ways of thinking’ practitioners apply. However,
although these are essential for both understanding
the discipline and acting within it, they are not
usually presented to students explicitly. Parnas
and Clements (1986) suggest that, given an ir-
rational design process (ie all design processes),
the documentation should make it appear as
though it were rational. They justify this faking
of the appearance of rationality through the need
to make the eventual maintenance task easier,
as well as enabling new members of the design
team to absorb knowledge about the project more
easily. However, as some research (eg., Nguyen
& Swatman, 2000) suggests, the process to such
simplification is hidden and leads to unreal ex-
pectations in novice undertakings. According to
Middendorf and Pace (1986), this dichotomy has
led to a gap between strategies for learning and
the skills necessary in specific disciplines.

Therefore, although practitioner studies agree
that the base case of content knowledge is cov-
ered in models used in university programmes,
a closer look reveals the depth of the mismatch
between practitioner needs and formal education
for software development.

Practitioner Perspectives

In his Point/Counterpoint discussion, Bach (1997)
stated that one reason SE is not more seriously
studied is the common industry belief that most of
the books and classes that teach it are impractical
An overview of the studies undertaken to gain
a practitioner perspective indicates that such an
indictment is not too far from the mark.

Most of the studies noted below address the
requirements for software development activities
by examining the general importance of specific
topics, as perceived by different stakeholders.
Since different approaches are taken in gaining

this knowledge from different target groups: sur-
veys, focus groups, fora or interviews applied to
experienced practitioners, managers, recruitment
staff, students and recent graduates, as well as
examination of job advertisements over the dis-
ciplines of IS, CS and Engineering, some insight
into the practitioner perspective is possible.

In IS practitioner studies since the early 1990s
(eg., Trauth et al., 1993; Parker et al., 1999; Lee,
2004) a long term shift from programming and
other technical subjects to business analysis and
people-oriented skills is significant – a change in
emphasis to both generic attributes and managerial
knowledge. From the student perspective, aware-
ness of the need for ‘career resilience’ has surfaced
(Waterman, Waterman, & Collard, 1994), while
a technology-relevant degree is less necessary.
Lee (1999) concluded that academic programmes
should emphasise information searching and prob-
lem formulation (as opposed to problem solving
alone) so that students can deal more effectively
with the challenges of industry. He noted that
interpersonal communication accounts for the
most important means of knowledge transfer in
technological work, with team members as the
most utilised inter-personal information source.

From a later study Lee found that one of the
reality shocks involved in the socialisation of
new graduates to work was the onus of teaching
themselves what they needed to know in order to
perform the task successfully. He concludes

...educators should also help students to develop
their initiatives and abilities to deal with ill-struc-
tured problems. This would require approaches
which emphasize independent learning and col-
laborative teamwork. (Lee, 2004, p 135)

Fewer studies address the skills and knowl-
edge needed in SE and CS. Turley and Bieman
(1995) examined professional Software Engineers
in an attempt to identify the competencies and
demographics that contribute to ‘excellence’ in
performance. They provide a set of thirty eight

��

Constructive Alignment in SE Education

competencies that express a broad range of be-
haviours required of an IT professional engaged
in the creation of software products (as opposed
to maintenance, management etc). They identify
four categories of competencies which differenti-
ate between exceptional (XP) and non-exceptional
(NXP) performers (see Table 1). Of the statisti-
cally significant competencies associated with
exceptional performance most are seen to cluster
around the theme of external focus, with only
Mastery of Skills and Techniques as a self-directed
(internal) skill. Earlier Turley (1991) concluded
that education needed to support the development
of differential skills (namely interpersonal skills
and personal attributes) through the creation of
learning situations that stress these. Lethbridge
(2000) also examined the industry perception:
his aim was to gain a practitioner ranking of
the usefulness of specific topics compiled from
the curricula of (emerging) SCE (Software and
Computer Engineering) and CS, the influence
of these on respondents’ career and how much
they had learned formally compared to what

was required as a professional. Of relevance to
our consideration, Lethbridge computed overall
importance of topics, based on the average of both
importance of details and influence. The results of
his work indicate the existence of significant gaps
between formal learning and importance on the
job. Of the top ten topics exhibiting considerable
gap, 50% reflect ‘soft’ knowledge (eg negotiation
(84% gap), leadership (73%), ethics and profes-
sionalism (62%)).

Studies in the Australian context support
these findings. Respondents to a study by Scott
and Yates (2002) noted that learning profes-
sion-specific content provides the ‘scaffold’ for
the important task of career-long professional
learning: the skills to undertake this are of great
importance, with the ability to know when and
when not to deploy technical expertise, and how
to continuously update it, the keys to successful
professional practice.

From Scott and Wilson (2002)’s work, the
finding is that, while the successful professional
must possess a high level of profession-specific

Competency XP Rank NXP Rank

Task Accomplishment
Mastery of Skills & Techniques 4

Personal Attributes
Driven by a desire to contribute
Perseverance
Maintains ‘Big Picture’ view
Desire to do/bias for action
Driven by a sense of mission
Exhibits and articulates strong beliefs and convictions
Proactive role with management

5
XP
XP
3
2

3
NXP

Situational Skills
Responds to schedule pressures by sacrificing parts of the design process 2

Interpersonal Skills
Seeks help from others
Helps others
Willingness to confront others

1
1

4

Numbers indicate ranking based on statistical significance results of a t-test. Items not numbered are the result of a discriminant
analysis based on Q-sort results. Competency element in italics indicates both tests identify this as significant.

Table 1. Turley rankings: Competencies by participant category

 ��

Constructive Alignment in SE Education

technical expertise, such skills have little value
without other skills:

...when the unexpected occurs, what is most tell-
ing is being able to tolerate the uncertainty and
ambiguity of the situation, having well developed
reciprocal networks upon which to call to iden-
tify potentially relevant solutions, being able to
‘read’ the total technical and social components
of a troubling situation, and then being able to
apply a high level of appropriate technical skill in
partnership with other team members to resolve
the situation. (Scott & Wilson, 2002, p 6)

The synthesis of these studies implies a need
to enable students to not only learn to use past
experience on a general level, but to also be able
to deal with each new problem situation in its
own terms, requiring certain generic intellectual
abilities and skills. Gott et al (1993) posit that
this adaptive/generative capability suggests the
performer not only knows the procedural steps
for problem solving but also understands when to
deploy them and why they work. The implication
of this is effort spent on higher (metacognitive)
learning skills, including abstraction and reflec-
tion. However, merely applying knowledge has
been identified as the aim of undergraduate edu-
cation, so that generally only the lower three (ie
foundational) levels of Bloom (1956)’s taxonomy
of cognitive learning have been chosen as educa-
tional objectives, since they represent

what knowledge may be reasonably learned during
an undergraduate education, (Sobel, 2003, p 6),

effectively ignoring the development of higher
level skills (analysis, synthesis, evaluation) in
formal (undergraduate) education. This runs
counter to Thomas et al (2002)’s suggestion of
a (critically) widening gap between the degree
of flexibility and creativity needed to adapt to a
changing world and the capacity to do so.

ALIGNING EDUCATION TO
PRACTICE

Reigeluth (1997) argues that the current para-
digm of education is based on standardisation,
conformity and compliance, geared to the mass
production of industrial age manufacture. This
does not equate with the needs of the late 20th/early
21st century job market, which revolves around
problem solving, teamwork, communications,
initiative taking and diverse perspectives. What
this implies is a lack of coincidence between the
actuality of practice in the discipline and the
instructional design supposed to model it – sug-
gesting the need for a new paradigm, based on
customisation, diversity and initiative, to suit the
needs of the information age.

Felder and Brent (2005) assert that traditional
engineering education does little to provide stu-
dents with the systemic perspective on individual
subjects (a global perspective) they need to func-
tion effectively, and the ones who take too long
to get it by themselves are at risk academically.
They see most engineering instruction oriented
toward students with specific traits – introverts
(favouring lecturing and individual assignments
rather than active class involvement and coop-
erative learning), intuitors (preferring emphasis
on science and math fundamentals rather than
engineering applications and operations), think-
ers (favouring objective analysis rather than in-
terpersonal considerations in decision-making),
and judgers (preferring emphasis on following
the syllabus and meeting assignment deadlines
rather than on exploration of ideas and creative
problem solving). Holt and Solomon (1996) point
out that, while engineering education relies heavily
on problem solving and engineering science, it
limits the opportunities of all learners to develop
the skills required for proficiency in two key ar-
eas: design and invention (requiring a divergent
approach), and business management (requiring
accommodative skills). The work of Lumsdaine
and Lumsdaine (1995) suggests that between 20%

��

Constructive Alignment in SE Education

and 40% of student intake to engineering is lost
through not catering for students with strengths
in communications and team work or creative
problem solving, synthesis and design.

In SE, Glass (1995) suggests that discipline and
creativity are the odd couple of software develop-
ment – the discipline imposed by methodology,
for example, forms a frame for the opportunistic
creativity of design. The educational dilemma
becomes one of providing a base that enables
software developers to both create and engineer
the systems they build: to be adaptable to the
changing environment that is inevitable in their
chosen discipline. However, criticism has arisen
regarding engineering graduates’ ability to be
creative (Cropley & Cropley, 1998). The need
for flexibility, fluency and originality in day-to-
day dealings, which typically define the creative
effort (Guilford, 1967), is seen as lacking from
their education.

The inadequacy of formal education in train-
ing competent practitioners, then, may be partly
explained by the ‘incorrect’ learning environ-
ment that results from the poor fit between the
characteristics of the discipline identified by
practitioners and those of the learning model. A
solution can be proposed through the develop-
ment of a new framework for SE education. This
framework should:

• Be based on constructivist theory (as more
suitable for learning in domains involving
ill-structured problems (Spiro, Feltovich,
Jacobson, & Coulson, 1991) with a focus on
strategic knowledge to enhance knowledge
construction and transfer. This includes
metacognitive strategies for directing,
monitoring and evaluating learning.

• Be placed within a situated experiential
learning environment where authenticity
(with rich contextual information) is ex-
ploited (Dreyfus & Dreyfus, 1986). Focusing
on the solution of authentic problems as a
context for learning provides students with

entry to the community of practice to which
they will belong.

• Provide the student with a learning environ-
ment that has an emphasis on modelling
practice, making tacit knowledge explicit
and thus empowering students to think
independently.

Several learning models apply these concepts.
As noted previously, the project looked specifi-
cally at Cognitive Apprenticeship and problem-
based learning as exemplars. However, there is
a suggestion in the literature that efforts to help
students learn at Bloom’s higher-order levels may
be impeded by a mismatch between the kinds of
thinking actually required in specific disciplines
and generic formulae for encouraging higher-or-
der thinking (Middendorf & Pace, 1986). In the
final analysis, applying generic learning models
(even non-traditional ones) for situated, higher-
order learning that is student-centred may run
counter to an important strand in the current think-
ing about teaching. This stresses the disciplinary
nature of knowledge. As a tool for learning, the
model must be adapted to the discipline. The de-
velopment of a curriculum map aligns the needs
of the discipline with the educational strategies
to address these concerns.

Curriculum Mapping for
Constructive Alignment

As both curriculum development and learning
theory move away from behavioural to cognitivist
and constructivist approaches in order to address
the needs of both the discipline and changing
context for the discipline, the value of alignment
is enhanced.

The basis of a framework for a learning en-
vironment is a ‘constructive alignment’ (Biggs,
1999) of objectives, teaching context and assess-
ment tasks. Based on the discussions of Brown,
Bull, and Pendlebury (1997), aligning these
components achieves the following aims: the

 ��

Constructive Alignment in SE Education

educational expectation (learning objective) is
mapped to learning activities likely to achieve
these (teaching context) while assessment tasks
focus on the quality of the learning process. A
model of alignment, based on the work of the
engineering subject centre of the learning and
teaching support network (LTSN, 2002), was ap-
plied within the research project (see Figure 3).

In order to facilitate all the alignments re-
quired, a map of the curriculum for SE at Murdoch
University was constructed. Curriculum mapping,
as an evaluative tool attributed to English (1978),
has been used primarily in schools, with limited
use in higher education. English advocated the use
of mapping to ensure that the constructive align-
ment described above - alignment of declaration,
delivery, learning and assessment of individual
skills - is achieved.

The outcome of these initial phases, examin-
ing curricula and learning models, and decoding
the discipline through a meta-analysis of prac-
titioner perspectives, was to confirm the need
to build into the curriculum a focus on generic
and soft skills as part of the outcomes of each
course within the programme, to address both
practitioner and discipline needs. To maximise
effectiveness, these had to be embedded into

the knowledge base constructed by the students
during their learning. This has the advantage of
enabling students to develop the requisite skills
situated within the learning context but, of course,
required extensive adaptation of the existing
learning environment.

Within the project undertaken, curriculum
mapping was tackled course by course, commenc-
ing with the initial SE course offered (identified
as ENG260), which addresses Requirements
Engineering. This was categorised firstly by the
broad area of curriculum and then by the learning
outcomes to be addressed. The map was based on
scrutiny of documentation related to the course;
in particular syllabus and course outline informa-
tion provided to students at the commencement
of the semester. These detail topics to be covered,
assessment elements and criteria and expected
demonstrable outcomes. The data gleaned from
all of these were initially mapped to Murdoch’s
generic graduate outcomes, and then, as progress
was made in developing the activities to address
the learning outcomes identified, to these as well.
Figure 4 shows the mapping necessary for align-
ment. The Learning Objectives are determined
from the appropriate BoKs and model curricula,
tempered by our understanding of the needs of

Figure 3. Alignment between outcomes and assessment (adapted from LTSN, 2002)

��

Constructive Alignment in SE Education

practitioners in our context. The topics addressed
(indicated as Domain) are mapped to Murdoch’s
Graduate Attributes. The Problem(s) identify
the activity that will address these objectives.
Because the course has been presented within
a PBL environment (and hence problem-driven)
these are never lectures nor simply assessment

items or tutorial/laboratory exercises. Students
engage with the required content through identify-
ing, exploring and subsequently solving specific
problem scenarios. These scenarios are exposed
progressively by means of triggers (Figure 5 is
one example – at this point students have no prior
knowledge of SE estimation techniques).

Figure 4. (excerpt from) Learning objectives - ENG260

 ��

Constructive Alignment in SE Education

Curriculum mapping may therefore be consid-
ered a traceability exercise: each ‘requirement’
(learning objective) is designed for (triggering
one or more problem component/learning object)
and may lead to an artefact (an assessment ele-
ment). The appropriate learning environment is
determined by the ‘fit’ of all components to the
course and ultimately the overall programme
(thus placing emphasis on alignment of elements
identified in Figure 1 with those in Figure 3).

It should be noted that the development of the
learning environment was continuing throughout
the project: the initial model – based on Cognitive
Apprenticeship, evolved to a model based on PBL
(CreativePBL) and finally to Studio Learning. As
Figure 3 indicates, alignment feedback informs
the refining of the intended learning outcomes,
and hence the learning activities, for subsequent
offerings of the course. In this context, ongoing
project evaluation indicated the process-oriented
approach advocated in PBL acted as an alignment
inhibitor by reinforcing the perception of RE is a
smooth process of sequential stages – the contin-
gency measures advocated by Andresen, Boud,
and Cohen (1995) as needing to be available in
the creative nature of design, could not be easily
incorporated.

A learning model based on the ‘studio’ ap-
proach (itself modelled on the 19th century
atelier-based training at the Parisian Ecole des
Beaux-Arts), that also emphasised the development

of reflective skills and sensibilities (Schön, 1983)
was implemented as the learning environment
of choice. This Studio Learning model incorpo-
rates some elements of Cognitive Apprenticeship
with components of problem-based learning and
creativity-enhancing strategies. The model sup-
ports the idea that learning is defined in terms of
dynamic sets of relationships whose interactions
and interdependencies create and control condi-
tions that are supportive of specified concepts
within a discipline.

Developing a student-Education
Alignment

Student approaches to both learning and the
learning environment can be investigated through
several diagnostic instruments. Within the study,
learning styles (Kolb, 1984; Soloman & Felder,
1999), temperament (Keirsey & Bates, 1984),
study approaches (Entwistle & Ramsden, 1983)
and relationship to learning activities (Meyer &
Boulton-Lewis, 1997) were all incorporated. The
results of these instruments help build several
profiles of the student cohorts. Important in this
context was the individual learning styles5 and
individual approaches to learning. The results
confirmed other research (Entwistle & Tait,
1990, 1995; Tynjälä, Salminen, Sutela, Nuutinen,
& Pitkänen, 2005) about students with specific
learning styles having a preference for surface

Figure 5. Trigger for investigation of estimation techniques

��

Constructive Alignment in SE Education

learning and ‘being taught’, and indicated that
students conceptions of the characteristics of their
learning environments were related to their study
orientations and strategies.

Other research within this School (Armarego,
Fowler, & Roy, 2001) indicates that engineering
students’ motivation and success can be adversely
affected if their learning styles, and the learning
styles of the staff teaching them, are not taken
into account. There is considerable evidence that a
mismatch, between lecturers’ expectations of the
way students learn and students’ own individual
preferred learning styles, disadvantage students.
Research suggests that these mismatches lead to
lack of motivation and interest in students and
affect their success (Felder, 1996; UWA, 1996;
Zywno & Waalen, 2001).

These findings were supported by the project
discussed in this chapter, strengthening indica-
tions of the importance of additional alignments
– teacher and learning environment to student.
Learning styles instruments, when applied to en-
gineering academic staff, also indicated a strong
Converger approach to teaching. The implication
of this was that the dominant teaching style did
not exhibit the adaptability and flexibility required
by either the characteristics of the discipline or
the learning environment being developed.

The term constructive alignment, therefore,
goes beyond the need to ensure that teaching,
assessment and every aspect of the teaching-learn-
ing environment are aligned to the main aims or
intended learning outcomes of a course. When
the course is not aligned with learner interests or
the situation constrains the student’s approach to
learning, the dependent learner mode will tend
to dominate – control of the learning process is
relinquished to the teacher, while the student
will demand carefully articulated structure, clear
guidance and clearly-defined assessment (Ar-
marego, 2007b). A dependent learner, therefore,
does not align with the discipline characteristics
described earlier in this chapter. Staff develop-
ment, to introduce experiential learning models

and ‘teaching around the learning cycle’ (Felder,
1996) are advocated (Armarego & Fowler (2005)
also discusses the staff development implemented
in this project).

CONCEPTUAL MODEL OF
ALIGNMENT

The result of the investigation described here, and
the Action Research project that underpins it, is
the development of a complex model that aligns
discipline competencies with student character-
istics with learning environment, as illustrated
in Figure 6.

This chapter argues that traditional formal
education does not meet the competency expecta-
tions of industry. Practitioner dissatisfaction with
formal education focuses on non-technical com-
ponents of competency: they look for graduates
who are flexible, adaptable in the organisational
environment and can continue learning. These
have been identified as cognitive skills related
to higher order learning, strategies to enable op-
portunism and creativity and the development of
emotional intelligence.

The three cycles of this project explored al-
ternate learning models to evaluate their appro-
priateness for addressing these issues. A shift in
focus from technical competency to the soft and
metacognitive skills that enable the competent
practice of SE was achieved. Each intervention
strategy addressed specific concerns and, through
evaluation of and reflection on the intervention,
strategies are refined for the next cycle to address
additional issues identified:

• Cycle 1 – Cognitive Apprenticeship: Focus
on authenticity and transfer of skills acquired
to other courses and, eventually, to the
profession. This cycle highlighted student
problems in generalising their learning, and
in willingness to apply previous knowledge
to the ‘new’ learning. In effect they were

 ��

Constructive Alignment in SE Education

constrained by the ‘apprenticeship’ nature
of the model. A significant finding of this
cycle related to student emphasis on ‘correct’
answers to problem solving undertaken.
Students focussed on learning the tools and
techniques of SE at the expense of a broader
(and more abstract) understanding within
the discipline

• Cycle 2 – CreativePBL: Focus on student-
centred learning; creativity and adaptability.
This model was developed to address the
deficiencies of the Apprenticeship model that
were identified in Cycle 1. It was developed
to focus on creativity and divergent think-
ing, so that, instead of students aimed at
finding the single, best, correct answer to a
standard problem in the shortest time (con-
vergent thinking) they aimed at redefining
or discovering problems and solving them by
means of branching out, making unexpected
associations, applying the known in unusual
ways, or seeing unexpected implications.
However, process itself acted as a deterrent
to student motivation to study and to exploit
the creativity being nurtured – opportun-
ism was difficult within the process and

hence flexibility inhibited; here a focus on
process detracted from the ‘authenticity’ of
the environment

• Cycle 3 – Studio Learning: Focus on deep
learning; opportunism and metalearning.
This model was developed to gain leverage
from the positive elements of the models
previously applied. Here the strategy was
to reach all types of learners by ‘teaching
around the cycle’6, thus enabling students
to develop the mental dexterity required
in professional practice, and introducing
the importance of contingency measures
and opportunistic creativity. The Studio
environment also provided the opportunity
for students to adopt expert strategies – the
teacher acts as guide or ‘consultant’ in
these processes and helps students to reflect
critically on their effectiveness in specific
contexts.

This research shows the gap between practi-
tioner expectations of formal education for SE
can be reduced through fine-grained alignment
of the learning environment with the characteris-
tics of the discipline. While technical knowledge

Figure 6 Conceptual model of discipline-learning- environment-student characteristics alignment

�0

Constructive Alignment in SE Education

acquired by students is important in that it acts
as a ‘filter’ for graduate employment, of greater
impact on the professional competence is the
focus on soft and metacognitive skills. These are
learnable within a formal education environment,
albeit through the application of non-traditional
learning models. The final model developed and
applied in the research project, Studio Learning,
appeared to be effective in addressing issues
raised in studies of discipline practitioners and
the education literature. The application of Studio
Learning within the Murdoch SE programme is
discussed in greater detail elsewhere (Armarego,
2007a).

The results of the alignment of this model
with the discipline/educational issues highlighted
earlier in this chapter can be summarised as the
need to:

• Provide students with authentic experiences
which address competencies additional
to specific discipline knowledge: students
were exposed to learning both as a ‘generic’
metacognitive activity, and as a skill to be
continually adapted and utilised within a
discipline context. Flexibility in thinking
- addressing creativity, opportunism and
divergency/convergency - was made explicit
and strategies to exploit it developed

• Provide learners with a deep understanding
of self and others in complex human activ-
ity systems in a collaborative environment:
students became aware of and learnt to
utilise each other’s strengths and weaknesses
in achieving the learning outcomes. They
learnt how to ‘jell’, what to do if they did
not, and to be empathetic to the contexts
of other students. They learnt to value and
exploit alternate perspectives brought to a
problem by different stakeholders (client,
teacher/consultant, other team members) to
enrich their learning. They became aware
of the need to be self-motivated and learn
independently - students were confident in

questioning their own and others’ assump-
tions within the learning environment

• Allow time to explore new ideas and to re-
flect on possible processes and outcomes:
students were willing to ‘trust’ each other’s
knowledge (implicit or not, technical or not),
accepting the multi-disciplinary nature of
the skills and knowledge required to achieve
the learning objectives

• Be challenged: students were motivated
by the (increasing) complexity of the tasks
assigned, and were able to focus on cogni-
tive and interpersonal skills to adapt to the
changes imposed.

Techniques applied included: providing stu-
dents with information about learning theory
(PBL, situated learning, life-long learning), ensur-
ing ‘higher order learning’ was addressed with
greater emphasis on analysis and synthesis rather
than application of knowledge within courses, em-
bedding reflective practices within each course (eg
journals, performance and team-work reviews),
emphasising alternative approaches to problems
and ‘rewarding’ diversity of (feasible) solutions,
embedding change in all aspects of the problems
tackled (changing requirements, scenarios, deliv-
erables, team composition, client contact, etc) to
highlight the importance of opportunism, flex-
ibility and adaptability (Armarego, 2007c).

Not only was student feedback positive, and a
significant improvement in their assessment marks
discernable, but observation and analysis of subse-
quent learning (Armarego, 2007c) showed strong
indications of willingness to transfer knowledge
gained, to take control of their learning, and indi-
cated motivation to deeper learning, as indicated
by the work of Entwistle and Ramsden (1983).

However, what both practitioner studies
(especially the work of Minor (2004)) and this
research hint at is the importance of individual
characteristics and abilities. Minor’s participants
indicated a Personality component to competent
practice. Examination of student reflective com-

 ��

Constructive Alignment in SE Education

ments, in conjunction with data regarding student
learning, adds another dimension to the issue of
education for competent practice.

This research suggests that an alignment
between the learner and the (discipline-aligned)
learning model enhances student learning of that
discipline. However, further research is required
to test these findings in the context of student
transition to the workplace: at this time, reporting
of graduate success (although very encouraging)
is only anecdotal.

IMPLICATIONs FOR THE FUTURE

An increasing shortage in IT practitioners both
through disengagement with the discipline and
decreasing enrolments in tertiary institutions
suggest an imperative to address the needs of
industry and provide graduates with appropriate
competency. The implication for education is that
it is no longer adequate for academics to only be
discipline experts – knowledge and understand-
ing of the complete learning process is vital in
achieving this goal, and implies resources com-
mitted to appropriate (educational) training. The
implication for the learning environment is that
it is no longer appropriate to rely on traditional
teaching as the basis for the learning process
– these methods do not align well with the require-
ments of the profession, and inhibit many (actual
as well as potential) students from engaging with
the discipline. This, too, requires resources to be
dedicated to invigorating the learning environ-
ments provided. The implication for the students
themselves is that dependent learning is contra-
indicated for success in the IT professions. As
learning becomes necessarily life-long, students
must embrace the skills and knowledge outside
the discipline content (the affective and soft skills)
required for successful professional practice.
From the educational perspective, these must be
made explicit by, for example, moving towards
student-centred experiential learning models; by

embedding higher order, soft and affective skills
into the course; and ensuring – through mapping
and constructive alignment - that these are a mea-
surable outcome of the learning process.

CONCLUsION

 This chapter describes a relationship between the
characteristics of the discipline and established
models of learning. These characteristics inform
the development of a conceptual model for SE edu-
cation, and a learning model that addresses more
explicitly the gaps in formal education identified
by practitioners. These gaps may be considered
as a lack of alignment between the various ele-
ments which contribute to graduate competence
as practicing professionals in the discipline.

The concept of alignment is well understood
and is backed by a body of research literature: in
an educational context constructive alignment (eg
between objectives and assessment) is considered
‘best practice’; as practitioner studies highlight,
in industry alignment between IT practice and
formal education is also considered best practice.
However, shortfalls in IT professionals in industry,
as well as decreasing enrolments and growing
student attrition suggest other alignments; those
between the discipline, the organisation and
education should also be explored. Yet not much
work has been published in this area.

The research that this chapter discusses con-
firms that there is a relationship between char-
acteristics exhibited by learners and the learning
environment provided. Students display aptitudes
for specific learning environments; these should
therefore exploit student learning characteristics
since those whose approaches to learning align
with the learning model appear to gain increased
benefits. If that environment is also aligned with
the characteristics of the discipline, it is suggested
that students with specific characteristics, taught
in a manner that is appropriate to the discipline,
have greater potential to becoming competent

��

Constructive Alignment in SE Education

practitioners: a case of the sum of the alignments
being greater that its parts.

REFERENCEs

Andresen, L., Boud, D., & Cohen, H. (1995).
Experience-based learning. In G. Foley (Ed.),
Understanding Adult Education and Training
(pp. 207-215). Sydney: Allen and Unwin.

Armarego, J. (2002). Advanced Software Design:
a case in problem-based learning. Paper presented
at the CSEET2002 15th Conference on Software
Engineering Education and Training, Covington
(Ke).

Armarego, J. (2004). Student perceptions of
quality learning: evaluating PBL in Software
Engineering. Paper presented at the Seeking
Educational Excellence: 13th Teaching Learning
Forum, Perth.

Armarego, J. (2005). Educating agents of change.
Paper presented at the CSEE&T2005 18th Con-
ference on Software Engineering Education and
Training, Ottawa.

Armarego, J. (2007a). Beyond PBL: preparing
graduates for professional practice. Paper pre-
sented at the CSEET2007: 20th Conference on
Software Engineering Education & Training,
Dublin.

Armarego, J. (2007b). Deconstructing student
attitude to learning: a case study in IT education.
Paper presented at the CSITed2007: Computer Sci-
ence and IT Education Conference, Mauritius.

Armarego, J. (2007c). Educating Requirements
Engineers in Australia: effective learning for pro-
fessional practice. Unpublished PhD, University
of South Australia, Adelaide.

Armarego, J., & Fowler, L. (2005). Orienting
students to Studio Learning. Paper presented
at the Proceedings of the 2005 ASEE/AaeE 4th

Global Colloquium on Engineering Education,
Sydney.

Armarego, J., Fowler, L., & Roy, G. G. (2001).
Constructing Software Engineering Knowledge:
development of a learning environment. Paper
presented at the In search of a Software Engineer-
ing Profession: CSEE&T2001 14th Conference on
Software Engineering Education and Training,
Charlotte (NC).

Bach, J. (1997). SE education: we’re on our own.
IEEE Software, 14(6), 26,28.

Bach, J. (1999). Reframing requirements analysis.
IEEE Computer, 32(2), 120-122.

Banks, D. A. (2003). Belief, inquiry, argument and
reflection as significant issues in learning about
Information Systems development methodologies.
In T. McGill (Ed.), Current Issues in IT Education
(pp. 1-10). Hershey (PA): IRM Press.

Barrows, H. S., & Tamblyn, R. M. (1980). Prob-
lem-based Learning, an Approach to Medical
Education. New York: Springer.

Bentley, J. F., Lowry, G. R., & Sandy, G. A.
(1999). Towards The Compleat Information
Systems Graduate: a Problem based Learning
Approach. Paper presented at the Proceedings of
the 10th Australasian Conference on Information
Systems.

Biggs, J. (1999). Teaching for Quality Learning at
University: what the student does. Buckingham
(UK): Open University Press.

Bloom, B. S. (1956). Taxonomy of Educational
Objectives: the classification of educational goals
Handbook 1: cognitive domain. New York: David
Mackay.

Brooks, F. P. (1986). No silver bullet - essence
and accidents of software engineering. Paper
presented at the Proceedings of Information
Processing 86: the IFIP 10th World Conference,
Amsterdam.

 ��

Constructive Alignment in SE Education

Brown, G., Bull, J., & Pendlebury, M. (1997). As-
sessing Student Learning in Higher Education.
London: Routledge.

Brown, J. S., Collins, A., & Duguid, P. (1989).
Situated cognition and the culture of learning.
Educational Researcher, 18, 32-42.

Carr, W., & Kemmis, S. (1986). Becoming Criti-
cal: education, knowledge and action research.
Lewes (UK): Falmer.

Cropley, D. H., & Cropley, A. J. (1998). Teaching
Engineering Students to be Creative - Program
and Outcomes. Paper presented at the Australasian
Association of Engineering Education: 10th An-
nual Conference.

Dreyfus, H. L., & Dreyfus, S. E. (1986). Mind
over Machine. New York: Free Press.

Engel, G., & Roberts, E. (Eds.). (2001). Computing
Curricula 2001: Computer Science -- final report:
Joint Task Force on Computing Curricula, ACM
and IEEE Computer Society.

English, F. (1978). Quality control in curriculum
development. Arlington (VA): American Associa-
tion of School Administrators.

Entwistle, N. J., & Ramsden, P. (1983). Under-
standing Student Learning. London: Croom
Helm.

Entwistle, N. J., & Tait, H. (1990). Approaches to
learning, evaluations of teaching, and preferences
for contrasting academic environments. Higher
Education, 19, 169-194.

Entwistle, N. J., & Tait, H. (1995). Approaches
to studying and perceptions of the learning en-
vironment across disciplines. New directions for
teaching and learning, 64, 93-103.

Felder, G. M., & Spurlin, J. (2005). Applications,
reliability and validity of the Index of Learning
Styles. International Journal of Engineering
Education, 21(1), 1-3-112.

Felder, R. M. (1996). Matters of Style. Prism:
Journal of the American Society of Engineering
Education, 6(4), 18-23.

Felder, R. M., & Brent, R. (2005). Understand-
ing student differences. Journal of Engineering
Education, 94(1), 57-72.

Felder, R. M., & Silverman, R. L. (1988). Learn-
ing and teaching styles in engineering education.
Engineering Education, 78(8), 674-681.

Freed, G. (1992). Fifth generation innovation.
Sydney: Australian Centre for Innovation and
International Competitiveness, University of
Sydney.

Garlan, D., Gluch, D. P., & Tomayko, J. E. (1997).
Agents of Change: Educating Future Leaders in
Software Engineering. IEEE Computer, 30(11),
59-65.

Glass, R. L. (1992). A comparative analysis of
the topic areas of Computer Science, Software
Engineering, and Information Systems. Journal
of Systems and Software, 25.

Glass, R. L. (1995). Software Creativity: Pren-
tice-Hall.

Gorgone, J. T., Davis, G. B., Valacich, J. S.,
Topi, H., Feinstein, D. L., & Longenecker, H.
E. (Eds.). (2002). IS 2002: model curriculum for
undergraduate degree programs in Information
Systems. Park Ridge (IL): ACM.

Gott, S. P., Hall, E. P., Pokorny, R. A., Dibble, E., &
Glaser, R. (1993). A naturalistic study of transfer:
adaptive expertise in technical domains. In D. K.
Detterman & R. J. Sternberg (Eds.), Transfer on
Trial: intelligence, cognition and instruction (pp.
258-288). Norwood (NJ): Ablex.

Guilford, J. P. (1967). The Nature of Human Intel-
ligence. New York: McGraw-Hill.

Guindon, R. (1989). The process of knowledge
discovery in system design. In G. Salvendy &

��

Constructive Alignment in SE Education

M. J. Smith (Eds.), Designing and Using Hu-
man-Computer Interfaces and Knowledge Based
Systems (pp. 727-734). Amsterdam: Elsevier.

Guindon, R. (1990). Knowledge exploited by
experts during software systems design. Inter-
national Journal of Man-Machine Studies, 33,
279-304.

Habermas, J. (1972). Theory and Practice (V. J,
Trans.). London: Heinemman.

Hannafin, M. J. (1997). The case for grounded
learning systems design: what the literature
suggests about effective teaching learning and
technology. Paper presented at the Proceedings
of ASCILITE ‘97, Perth.

Holt, J., & Solomon, F. (1996). Engineering Edu-
cation - the way ahead. Australasian Journal of
Engineering Education,, 7(1), 1-22; 83-98.

Iivari, J. (1991). A paradigmatic analysis of con-
temporary schools of IS development. European
Journal of Information Systems, 1(4), 249-272.

Keirsey, D., & Bates, M. (1984). Please Under-
stand Me (3 ed.): Prometheus Nemesis Book
Company.

Klemola, T., & Rilling, J. (2002). Modeling
comprehension processes in software develop-
ment. Paper presented at the Proceedings of the
first IEEE Conference on Cognitive Informatics
(ICCI’02), Calgary (Canada).

Kolb, D. A. (1984). Experiential Learning Experi-
ence as the Source of Learning and Development,
: Prentice-Hall.

Kolb, D. A. (1995). Learning style inventory:
technical specifications. Boston: McBer & Com-
pany.

LeBlanc, R., & Sobel, A. E. K. (Eds.). (2004). Soft-
ware Engineering 2004: curriculum guidelines
for undergraduate degree programs in Software
Engineering. Los Alamitos (CA): IEEE Computer
Society Press.

Lee, D. M. S. (1999a). Knowledge/skill require-
ments and professional development of IS/IT
workers: a summary of empirical findings from
two studies. In Panel on Workforce Needs in
Information Technology, Computer Science and
Telecommunications Board, National Academy
of Sciences. Milwaukee (WI).

Lee, D. M. S. (2004). Organizational entry and
transition from academic study: examining a
critical step in the professional development of
young IS workers. In M. Igbaria & C. Shayo
(Eds.), Strategies for Managing IS/IT Personnel
(pp. 113-141). Hershey (PA): Idea Group.

Lethbridge, T. C. (2000). What knowledge is
important to a software professional? IEEE Com-
puter, 33(5), 44-50.

LTSN. (2002). Constructive alignment and why
it is important to the learner, from http://www.
ltsneng.ac.uk/er/theory/constructivealignment.
asp

Lubars, M., Potts, C., & Richer, C. (1993). A re-
view of the state of the practice in requirements
modeling. Paper presented at the International
Symposium on Requirements Engineering, San
Diego.

Lumsdaine, M., & Lumsdaine, E. (1995). Thinking
preferences of engineering students: implications
for curriculum restructuring. Journal of Engineer-
ing Education, 84(2), 193-204.

Maiden, N. A. M., & Gizikis, A. (2001). Where
do requirements come from? IEEE Software,
18(5), 10-12.

Maiden, N. A. M., & Sutcliffe, A. G. (1992). Ex-
ploiting reusable specifications through analogy.
Communications of the ACM, 34(5), 55-64.

Mann, J. (1996). The Role of Project Escalation
in Explaining Runaway Information Systems
Development Projects: A Field Study. Georgia
State University.

 ��

Constructive Alignment in SE Education

Meyer, J. H. F., & Boulton-Lewis, G. M. (1997).
The association between university students’
perceived influences on their learning and their
knowledge, experience, and conceptions, of learn-
ing. Paper presented at the Proceedings of the 7th
European Conference for Research on Learning
and Instruction, Athens.

Middendorf, J., & Pace, D. (1986). Decoding the
disciplines: a model for helping students learn
disciplinary ways of thinking. New Directions
for teaching and learning, 98, 1-12.

Minor, O. (2004). Theory and Practice in Require-
ments Engineering: an investigation of curricula
and industry needs. Unpublished Master, Univer-
sity of Koblenz-Landau, Koblenz (Germany).

Mulder, K. F. (2006). Engineering curricula in Sus-
tainable Development: an evaluation of changes at
Delft University of Technology. European Journal
of Engineering Education, 31(2), 133-144.

Nguyen, L., & Swatman, P. A. (2000). Essential
and incidental complexity in requirements models.
Paper presented at the Fourth International Con-
ference on Requirements Engineering Education,
Schaumburg (Il).

Oliver, R. W. (2000). The coming biotech age:
The business of bio material. New York: Mc-
Graw-Hill.

Parnas, D. L., & Clements, P. C. (1986). A ra-
tional design process: how and why to fake it.
IEEE Transactions on Software Engineering,
12(2), 251-257.

Pfleeger, S. L. (1999). Albert Einstein and em-
pirical software engineering. IEEE Computer,
32(10), 32-37.

Reeves, T. C. (1994). Evaluating what really
matters in computer-based education, from http://
www.medicine.mcgill.ca/ibroedu/review/Reeves
Evaluating What Really Matters in Computer-
Based Education.htm

Reigeluth, C. M. (1997). Instructional theory,
practitioner needs and new directions: some reflec-
tions. Educational Technology, 37(1), 42-47.

Robillard, P. N. (1999). The role of knowledge in
software development. Communications of the
ACM, 42(1), 87-92.

Rothman, R., Slattery, J. B., Vranek, J. L., & Resn-
ick, L. B. (2002). Benchmarking and Alignment of
Standards and Testing (CSE Report No. 566). Los
Angeles: Center for the Study of Evaluation,

National Center for Research on Evaluation, Stan-
dards, and Student Testing, Graduate School of
Education & Information Studies, UCLA.

Royce, W. W. (1970). Managing the development of
large software systems: concepts and techniques.
Paper presented at the IEEE WESCON.

Sawyer, P., & Kotonya, G. (2000). SWEBOK:
software requirements engineering knowledge
area description (Version 0.6 ed.): IEEE Computer
Society/ACM.

Schön, D. A. (1983). The Reflective Practitioner:
How Professionals Think in Action. New York:
Basic Books.

Scott, G., & Yates, W. (2002). Using successful
graduates to improve the quality of undergradu-
ate engineering programs. European Journal of
Engineering Education, 27(4), 60-67.

Shackelford, R. (Ed.). (2005). Computing Cur-
ricula 2005: the overview report: The Joint Task
Force for Computing Curricula 2005.

Soloman, B., & Felder, R. (1999). Index of Learning
Styles (ILS),, from http://www2.ncsu.edu/unity/
lockers/users/f/felder/public/ILSpage.html

Somekh, B. (1989). Action research and collabora-
tive school development. In R. McBride (Ed.), The
Inservice Training of Teachers: some issues and
perspectives. Brighton: Falmer Press.

��

Constructive Alignment in SE Education

Spiro, R. J., Feltovich, P. J., Jacobson, M., & Coul-
son, R. (1991). Cognitive flexibility, constructiv-
ism and hypertext: random access instruction for
advanced knowledge acquisition in ill-structured
domains. Educational Technology, 31, 24-33.

Thomas, J. C., Lee, A., & Danis, C. (2002). En-
hancing creative design via software tools. Com-
munications of the ACM, 45(10), 112-115.

Trauth, E. M., Farwell, D., & Lee, D. M. S. (1993).
The IS expectation gap: industry expectation
versus academic preparation. MIS Quarterly,
17, 293-307.

Turley, R. T. (1991). Essential Competencies of
Exceptional Professional Software Engineers.
Colorado State University, Fort Collins (CO).

Turley, R. T., & Bieman, J. M. (1995). Competen-
cies of exceptional and non-exceptional software
engineers. Journal od Systems and Software,
28(1), 19-38.

Tynjälä, P., Salminen, R., Sutela, T., Nuutinen, A.,
& Pitkänen, S. (2005). Factors related to study suc-
cess in engineering education. European Journal
of Engineering Education, 30(2), 221-231.

UWA. (1996). Do male and female students dif-
fer in their preferred style of learning? Perth:
Institutional Research Unit, University of Western
Australia.

Visser, W. (1992). Designers’ activities exam-
ined at three levels: organisation strategies and
problem-solving processes. Knowledge-Based
Systems, 5(1), 92-104.

Waks, L. J. (2001). Donald Schon’s Philosophy
of Design and Design Education. International
Journal of Technology and Design Education,
11, 37-51.

Waterman, R. H., Waterman, J. A., & Collard, B.
A. (1994). Toward a career resilient workforce.
Harvard Business Review, 69, 87-95.

Winn, W., & Snyder, D. (1996). Cognitive per-
spectives in psychology. In D. H. Jonassen (Ed.),
Handbook of Research for Educational Com-
munications and Technology (pp. 112-142). New
York: Simon & Schuster Macmillan.

Zuber-Skerritt, O. (1995). Models for action re-
search. In S. Pinchen & R. Passfield (Eds.), Mov-
ing On: creative applications of action learning
and action research (pp. 3–29). Mt Gravatt (Qld):
Action Learning, Action Research and Process
Management Assn, Inc.

Zywno, M., & Waalen, J. (2001). The effect of
hypermedia instruction on achievement and at-
titudes of students with different learning styles.
Paper presented at the Proceedings of the 2001
American Society for Engineering Education An-
nual conference and Exposition Session 1330.

ENDNOTEs

1 When applied to education, alignment refers
to the ongoing process of bringing congru-
ence to the declared, learnt and assessed
components to guide instruction design
and ultimately, student learning. Authors
on curriculum alignment agree content,
depth, emphasis and cognitive activity match
are required for sound alignment (Roth-
man, Slattery, Vranek, & Resnick, 2002).
In the context of this chapter, alignment
transcends the educational environment to
include discipline, practitioner and student
characteristics.

2 Somekh (1989) defines Action Research as
the study of a social situation, involving
the participants themselves as research-
ers, with a view to improving the quality
of action within it. This research applies
the style described as the ‘Deakin’ (Carr &
Kemmis, 1986) approach. This has merit
in being adopted for studies in educational
contexts (Zuber-Skerritt, 1995)

 ��

Constructive Alignment in SE Education

3 This implied rearranging political and
administrative structures in a rationalist
way in order to abandon superstition and
injustice

4 For software development, Zucconi (1995)
suggested the underlying disciplines of
central importance are psychology, com-
puter science and discrete mathematics,
and suggests an IT professional needs to be
well organised, able to work as a member
of a multi-disciplinary team, and within
the scope of the employer’s policies and
procedures and society’s tenets

5 In general, students exhibited ‘engineering’
styles. As the work of the Felders and their

colleagues (eg Felder & Spurlin, 2005; Felder
& Brent, 2005; Felder & Silverman, 1988)
indicate, engineering students are pragma-
tists with a tendency to narrow technical
interests. Converger characteristic, to seek
“single, correct answers or solutions to a
question or problem” (Kolb, 1995) becomes
the dominant learning style

6 Exploring the relevance of each new topic
(Diverger); making available basic informa-
tion and methods associated with the topic
(Assimilator); providing opportunities to
practice the methods (Converger) and en-
couraging exploration of the applications
(Accomodator) (Felder, 1996)

��

Chapter III
On the Role of Learning

Theories in Furthering Software
Engineering Education

Emily Oh Navarro
University of California, Irvine, USA

André van der Hoek
University of California, Irvine, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abs TRACT

Learning theories describe how people learn. There is a large body of work concerning learning theo-
ries on which to draw, a valuable resource of which the domain of software engineering educational
research has thus far not taken full advantage. In this chapter, we explore what role learning theories
could play in software engineering education. We propose that learning theories can move the field of
software engineering education forward by helping us to categorize, design, evaluate, and communicate
about software engineering educational approaches. We demonstrate this by: (1) surveying a set of rel-
evant learning theories, (2) presenting a categorization of common software engineering educational
approaches in terms of learning theories, and (3) using one such approach (SimSE) as a case study to
explore how learning theories can be used to improve existing approaches, design new approaches, and
structure and guide the evaluation of an approach.

INTRODUCTION

Learning theories are attempts to describe and
understand the various ways in which people learn.
They are an important resource for educational
research, as they can both guide us in creating
new educational approaches, and help us analyze
and improve existing approaches.

In this chapter, we propose that learning
theories, which have thus far been explicitly
leveraged in software engineering education in
only a minimal way, can actually play quite a
significant role in this domain. Specifically, we
believe that learning theories can serve to move
the field of software engineering education for-
ward by helping us to categorize, design, evaluate,

 ��

On the Role of Learning Theories

and communicate about software engineering
educational approaches. Categorizing approaches
in terms of learning theories can help us to un-
derstand the approaches in relation to each other,
understand how they fit together, and point out
areas of untapped potential. New approaches can
be designed to leverage certain theories whose
potential is unfulfilled or known to be especially
valuable in our domain. Learning theories can be
used to evaluate approaches by helping structure
experiments to look for the presence of these and
other theories in the processes of learners. And,
we can use our newfound knowledge to commu-
nicate in a common language—that of learning
theories—about different approaches and our
experience with them.

This chapter details this vision of principally
using learning theories in the domain of software
engineering education. We first briefly present a
set of well-known (mainly constructivist) learning
theories that are especially applicable. We then
introduce a categorization of the major software
engineering educational approaches to date in
terms of the learning theories that they appear
to have been designed around. Following this,
we discuss the role learning theories can play in
analyzing and improving the design of a software
engineering educational approach (and designing
new approaches), and focus on the analysis of one
such approach (SimSE) as a case study. We then
discuss how software engineering educational
approaches can be evaluated in terms of learning
theories, again using SimSE as a case study. We
conclude with a summary in the final section.

bACk GROUND:
LEARNING THEORIEs

To provide some background for our discussion
on the role of learning theories in software engi-
neering education, in this section we will briefly
introduce the set of learning theories that we
surveyed for the purposes of our analysis. We do

not include here an exhaustive list of all learning
theories with significant detail. Instead, the pur-
pose of this section is to simply introduce some
of the ones we have seen software engineering
educational approaches centered around most
frequently, and provide pointers to where more
information about each one can be found. In ad-
dition, we will also briefly touch on implications
and typical or possible applications of each theory
for software engineering education.

We chose the particular set of learning theories
discussed here because of two criteria: relevancy
to software engineering and orthogonality among
the factors defining the theory. In other words,
these theories are the ones we have seen to be
most clearly and/or frequently embodied in the
software engineering educational approaches that
we surveyed. Furthermore, there exists a great deal
of overlap among learning theories, and there are
several learning theories that encompass a number
of others. In these cases, we either group theories
that have the same basic idea, and omit those that
simply combine a number of theories.

We acknowledge that these theories fall mainly
into the constructivist paradigm (rather than the
behaviorist or cognitive categories), however, given
that constructivism is the most recently-developed
paradigm, and software engineering is a relatively
new discipline, this is not surprising (it has been
argued elsewhere, in fact, that the evolution of
computer science education in the past decade or
so has been significantly influenced by construc-
tivism (Kolikant, 2001)). While it is certainly true
that most delivery methods generally contain a mix
of various theories that fall into each of the three
camps (constructivist, behaviorist, and cognitive),
because the constructivist aspects are the most
focused on, we have chosen to scope this survey
and analysis to focus primarily on these theories.
Surely similar surveys and analyses could be done
with cognitive and behaviorist theories that would
yield interesting results, however, such exercises
are outside the scope of the one presented here.

�0

On the Role of Learning Theories

Nevertheless, some of the theories surveyed in
this chapter do have elements of cognitive and/or
behaviorist principles. For example, Learning
through Failure involves a form of “punish-
ment” (failure) meant to “extinguish” a certain
behavior.

An additional issue that should be noted is the
distinction between learning “theories,” learning
“models,” and learning “methods,” as well as
their counterparts in the domain of instructional
design (instructional design theories, models, and
methods). Because the lines between these are
blurred and often used interchangeably, it should
be noted that in this chapter several of the “learning
theories” we refer to can also be called by some of
these other terms. When this is the case, we will
point it out in our discussion of those theories.
However, as is frequently done in the literature,
we use the term “learning theory” broadly, as a
term that covers all of these categories.

 One of best-known learning theories is Learn-
ing by Doing, a theory based upon the premise
that people learn a task best not by hearing about
it, but by actually doing it (Dewey, 1916). The
implication of this theory for instructional design
is the following: the learner should be provided
with ample opportunity to actually perform the
activities they are meant to learn, rather than using
passive mediums such as lectures and readings.
In software engineering education, this translates
to going beyond just lectures and reading assign-
ments (although, for most any domain, a certain
amount of such scaffolding is necessary to provide
the learner with the required background knowl-
edge to effectively participate in the Learning
by Doing). Software engineering educators have
recognized this, and now a standard component
of nearly all software engineering courses is
the class project—a small software engineering
project that students must develop using some of
the techniques learned in class.

 Situated Learning (Lave, 1988) is an edu-
cational theory that builds upon the Learning
by Doing approach. While Learning by Doing

focuses on the specific learning activities that
the student performs, the Situated Learning
theory is concerned with the environment in
which the Learning by Doing takes place. In
particular, Situated Learning is based on the
belief that knowledge is situated, being in large
part a product of the activity, context, and culture
in which it is developed and used. Therefore, the
environment in which the student practices their
newly learned knowledge should be “authentic”,
resembling, as closely as possible, the environment
in which the knowledge will be used in real life.
A popular application of this theory in software
engineering education focuses on incorporating
aspects of realism (or “authenticity”) into the class
project, such as using an industrial participant
to play the role of the customer (Hayes, 2002),
using maintenance- or evolution-based projects
(McKim & Ellis, 2004), or using large teams of
people that are distributed across geographical
locations (Favela & Pena-Mora, 2001).

Like Situated Learning, Keller’s ARCS Mo-
tivation Theory (Keller, 1983) also focuses on
motivating students to learn. However, rather than
focusing on the physical environment in which
they learn, Keller’s ARCS Motivation Theory
concerns itself with producing certain feelings
in the learner that are believed to promote learn-
ing. In particular, these feelings are attention,
relevance, confidence, and satisfaction.

•	 Attention: The attention and interest of the
learner must be engaged. Proposed meth-
ods for doing so are: introducing unique
and unexpected events; varying aspects of
instruction; and arousing information-seek-
ing behavior by having the learner solve or
generate questions or problems.

•	 Relevance: Learners must feel that the
knowledge is relevant to their lives. The
theory suggests that knowledge be presented
and practiced using examples and concepts
that are relevant to learners’ past, present,
and future experiences.

 ��

On the Role of Learning Theories

•	 Confidence: Learners need to feel personal
confidence in the learning material. This
should be done by presenting a non-trivial
challenge and enabling them to succeed at
it, communicating positive expectations,
and providing constructive feedback.

•	 Satisfaction: A feeling of satisfaction must
be promoted in the learning experience. This
can be done by providing students with op-
portunities to practice their newly learned
knowledge or skills in a real or simulated
setting, and providing positive reinforce-
ments for success.

Keller’s ARCS is technically considered an
instructional design model that is rooted in vari-
ous learning theories. Two of the most directly
contributing theories are Andragogy (Knowles,
1984) and Expectancy-Value Theory (Fishbein &
Ajzen, 1975). Andragogy concerns adult learners
in particular, and focuses on their need for self-
directed, relevant, hands-on learning. Expectancy-
value theory states that in order for a learner to
put forth the effort required to learn, they must
both value the knowledge/task/exercise and expect
that they can succeed at it. Because Keller’s ARCS
combines these theories and provides more hands-
on applicability than either theory alone, we have
chosen to include it (rather than the theories it is
based on) in our survey and analysis.

While Keller’s ARCS could be applied in a
number of different ways in software engineer-
ing education, in general it entails providing the
students with attention-grabbing, realistic, hands-
on assignments that pose a significant, yet doable
challenge. One class of approaches that explicitly
sets out to accomplish such goals is that in which
the class project is made purposely open-ended
and/or vague. This is done in two main ways:
either by allowing the students to define their
own requirements (giving students the pseudo-
experience of new product development based
on market research) (Navarro & van der Hoek,
2005b), or by allowing them to define their own

process (giving students experience in not only
following a process, but in designing the process
that they follow) (Groth & Robertson, 2001). The
stated purpose of these open-ended approaches
is to mimic common, less-structured (authentic)
real-world software engineering situations, giving
the students more ownership of the project and
therefore more interest in it, as well as a greater
feeling of confidence and satisfaction when the
project is completed.

Model-Centered Instruction (Gibbons, 2001)
(which is also considered an instructional design
theory) says educators should center all learning
activities around models of three types: models
of environments, models of cause-effect systems,
and models of human performance. Presentation
of general concepts and theories should be kept to
a minimum. Instead, Model-Centered Instruction
believes that knowledge is best learned by explo-
ration of these models. In software engineering
education, this translates to simulating realistic
situations, presenting case studies, and assigning
realistic problems for the students to solve. One
software engineering educational approach that
embodies this theory is the practice-driven one, in
which the curriculum is largely lab- and project-
based, and lectures are used only as supporting
activities (Ohlsson & Johansson, 1995).

The Discovery Learning theory (Bruner,
1967) takes a similar approach to model-centered
instruction in that it believes that an exploratory
style of learning is best. Discovery Learning is
based on the idea that an individual learns a piece
of knowledge most effectively if they discover it
on their own, rather than having it explicitly told
to them. This theory encourages educational ap-
proaches that are rich in exploring, experimenting,
doing research, asking questions, and seeking
answers. Educational software engineering
simulation approaches (Drappa & Ludewig, 2000;
Navarro & van der Hoek, 2005a) are specifically
designed to facilitate this type of learning—no
knowledge is made explicit in the simulation, as
it is rather discovered by students experimenting

��

On the Role of Learning Theories

with different approaches and seeing the effects of
their decisions on the outcome of the simulation.
These types of approaches are generally given
as structured exercises and combined with other
teaching methods (such as lectures, readings, and
projects). Including this type of scaffolding has
been found to be crucial in making Discovery
Learning maximally effective (Kirschner et al.,
2006; Roblyer, 2005).

Along the same lines as the Discovery Learn-
ing theory is the Learning Through Failure theory
(Schank, 1997). This theory is based on the as-
sumption that the most memorable lessons are
those that are learned as a result of failure. The
theory argues that: (1) Learning through failure
provides more motivation for students to learn,
so as to avoid the adverse consequences that they
experience firsthand when they do not perform as
taught, and (2) Failure engages students, as they
are motivated to try again in order to succeed.
Proponents of the theory argue that students
should be allowed to (and even set up to) fail to
encourage maximal learning. Although Learning
through Failure is usually applied to the realm of
e-learning, there have also been some non-e-learn-
ing software engineering educational approaches
in which the main avenue of learning is through
failure. In these “sabotage” approaches, the in-
structor purposely sets the students up for failure
by introducing common real-world complications
into projects (e.g., crashing hardware just before
a deadline), the rationale being that students will
then be prepared when these situations occur in
their future careers (Dawson, 2000).

The theory of Learning through Reflection
is primarily based on Donald Schön’s work sug-
gesting the importance of reflection activities in
the learning process (Schön, 1987). In particular,
Learning through Reflection emphasizes the need
for students to reflect on their learning experience
in order to make the learning material more ex-
plicit, concrete, and memorable. Some common
reflection activities include discussions, journal-
ing, or dialogue with an instructor (Kolb, 1984).

One example of this in software engineering is
(Tomayko, 1996), a practice-driven industrial
partnership approach that incorporates weekly
one-on-one mentoring sessions with a “coach”
to discuss each student’s performance and help
them reflect on their experience. The game-based
simulation described in (Drappa & Ludewig,
2000) and the industrial simulation described
in (Nulden & Scheepers, 2000) also incorporate
dialogue and reflection as post-simulation activi-
ties in which students analyze and discuss their
simulation experience with a tutor or instructor,
and reflect on what they have learned.

Finally, the theory of Elaboration (Reigeluth
& Rodgers, 1980) states that, for optimal learn-
ing, instruction should be organized in order of
complexity, from least complex to most complex.
Simplest versions of tasks should be taught first,
followed by more complicated versions. This is
a theory that is generally inherent to most cur-
ricula (as well as most other learning theories), as
courses and topics are usually introduced in order
of increasing complexity. In software engineering
educational approaches, applying this theory can
sometimes be difficult, as there is oftentimes no
natural way to organize the information in terms
of complexity (e.g., how can one do this for a
class project?). One approach that has been able
to do this is the industrial simulation approach
described in (Collofello, 2000). In this approach,
students are assigned very simple simulations to
begin with, and the complexity of the simulations
is incrementally increased as the students progress
in their knowledge.

As mentioned previously, what has been pre-
sented in this section is only a brief introduction
to the relevant learning theories. There is much
more detail to these theories than what we have
discussed, detail which must be looked into further
before one can effectively apply these theories to
their educational approaches. Typically, subtleties
are involved in each one, and care must be taken
to pay attention to these details.

 ��

On the Role of Learning Theories

LEARNING THEORY-bAsED
CATEGORIzATION OF EXIsTING
APPROACHEs

One of the main ways that learning theories can
be used in software engineering educational
research is to provide the field with a way to
analyze and categorize existing approaches, both
independently and in relation to each other. Such
a categorization can serve to help us understand
how the different approaches fit together and create
a picture of the field as a whole, so that areas of

strengths, weaknesses, and untapped potentials
can be unearthed. We have done such a categoriza-
tion, which we will present in this section.

Before creating this categorization, in order to
organize our analysis we first surveyed the major
software engineering educational approaches
published in the past several years and found that
they can be lumped into three broad groupings:
realism, topical, and simulation (these groupings
can be broken down further into sub-groupings,
as shown in Table 1). Realism approaches are
those that focus on making various aspects of

Table 1. Grouping of software engineering educational approaches

Realism 53 Topical 48 Simulation 8

Industrial Partnerships 16 Formality 3 Industrial 2

- Modify real software 1 - Formal methods 2 Game-Based 4

- Industrial advisor 1 - Engineering 1 Group Process 2

- Industrial mentor/lecturer 2 Process (Specific) 21

- Case study 5 - PSP 14

- Real project / customer 7 - TSP 2

Maintenance/Evolution 9 - RUP 3

- Multi-semester 4 - XP 2

- Single-semester 5 Process (General) 6

Team Composition 13 - Process engineering 3

- Long-term teams 1 - Project management 3

- Large teams 3 Parts of Process 3

- Different C.S. classes 1 - Scenario-based req. eng. 1

- Different majors 2 - Code reviews 1

- Different universities 2 - Usability testing 1

- Different countries 1 Types of Software Eng. 8

- Team structure 3 - Maintenance/Evolution 3

Non-Technical Skills 2 - Component-based SE 2

Open-Endedness 7 - Real-time SE 3

- Requirements 2 Non-Technical Skills 7

- Process 5 - Social/logistical skills 3

Practice-Driven 3 - Interact w/ stakeholders 1

Sabotage 3 - HCI 2

- Business aspects 1

��

On the Role of Learning Theories

the students’ project experience more closely
resemble one they would encounter in the real
world. Some of these have included industry
participation (Beckman et al., 1997; Kornecki et
al., 2003; Wohlin & Regnell, 1999), emphasizing
non-technical skills such as marketing and project
management (Gnatz et al., 2003; Goold & Horan,
2002), and focusing on making the nature and
composition of the student teams that work on the
project more realistic (e.g., making them very large
(Blake, 2003) or composed of several sub-teams
(Navarro & van der Hoek, 2005b)). Topical ap-
proaches aim to educate students in detail about a
topic generally not covered in depth in mainstream
textbooks and lectures. These approaches do not
focus on specific delivery methods, but instead
focus on the mere addition of the topic as a crucial
component of an effective and complete education
in software engineering. Some examples of such
topics are formal methods (Abernethy & Kelly,
2000), real-time software engineering (Kornecki,
2000), and specific software processes such as the
Personal Software Process (Hilburn, 1999) or the
Rational Unified Process (Halling et al., 2002).
Finally, simulation approaches are those that have
students practice software engineering processes
in a (usually) computer-based simulated environ-
ment. Within the realm of software engineering
simulations, there are three main types: industrial
simulations brought to the classroom (Collofello,
2000; Pfahl et al., 2000), game-based simulations
(Drappa & Ludewig, 2000; Navarro & van der
Hoek, 2005a), and group process simulations
(Nulden & Scheepers, 2000; Stevens, 1989).

 To categorize these approaches in terms of
learning theories, we carefully studied each one
to determine which learning theories appear to
have been applied (whether intentionally or un-
intentionally), and which learning theories have
clear potential to be employed. The resulting
categorization is presented in Table 2 as a matrix
of approaches and the learning theories that they
leverage. (For a complete discussion of this cat-
egorization, see (Navarro, 2005)—here we present

only the highlights.) The presence of three stars
in the table indicates that the approach embodies
the particular theory, or is centered around it. The
presence of two stars represents that the theory
appears to be involved in the design of that type
of approach, but is perhaps not an intrinsic part
of it, and may not be involved in all approaches
that fall within that type. The presence of one
star indicates that there is an obvious potential
for that particular type of approach to employ that
learning theory, but there have been very few, or
no known cases of it.

Example: s imulation and Learning
Theories

As an example of how we analyzed each approach
in terms of learning theories, in this section we
will focus on the simulation category and walk
through how we determined the applicability
of each learning theory for these approaches.
First of all, all aforementioned educational soft-
ware engineering simulations allow students
to learn software processes by participating in
them (Learning by Doing), albeit virtually. This
theory is central to the paradigm of educational
simulations (hence, the three stars in the table).
These simulations also employ Situated Learning
by adding realism to the learning environment,
although in different ways: Industrial simulations
add realistic factors in the form of real project
data in the simulation model; Game-based simula-
tions add realism by immersing the student in the
role of a participant in a realistic game scenario;
Group process simulations inject realism through
the simulated characters that behave similarly to
real-world participants. Because these realistic
factors are artificial in that they are virtual (rather
than in a real-life setting), we put two stars in the
table for this theory.

 Simulation approaches strongly fit with the
Keller’s ARCS model of learning. In particular,
they are specifically designed to promote atten-
tion, relevance, confidence, and satisfaction (and

 ��

On the Role of Learning Theories

have been shown to do so in some cases) in the
following ways:

•	 Attention: A number of studies done with
educational software engineering simula-
tions have repeatedly shown that students
find these simulations enjoyable, engaging,
and an interesting challenge they are happy
to take on (Baker et al., 2003; Dantas et al.,
2004; Navarro & van der Hoek, 2005a; Sharp
& Hall, 2000; Stevens, 1989). This is par-
ticularly true for game-based simulations.
Clearly this is the result of the elements of
surprise, humor, challenge, and fun that are
integral to many game-based simulations.

•	 Relevance: Because learners can experi-
ence firsthand how the knowledge they are
learning is relevant in a real-world situation
(the one that is portrayed in the simulation),

simulation promotes a feeling of relevance
to students’ future careers. This relevance
can be enhanced by the usage of real-world
data in the model to make the simulation
more realistic. Furthermore, as the theory
suggests, relevance is enhanced even further
if the educational approach builds on previ-
ous and present knowledge. Simulations that
are used to demonstrate concepts that have
already been communicated to the students
in another form (e.g., lecture or text) directly
address this.

•	 Confidence: Simulations provide a non-triv-
ial challenge that is also doable. As students
are given the opportunity to succeed at a
simulation, they will feel a sense of personal
confidence in the learning material. This is
especially true in game-based simulations,
in which students have the additional benefit
of feeling they have “won the game.”

Le
ar

ni
ng

 b
y

D
oi

ng

Si
tu

at
ed

 L
ea

rn
in

g

K
el

le
r’s

 A
R

C
S

M
od

el
-B

as
ed

 In
st

ru
ct

io
n

D
is

co
ve

ry
 L

ea
rn

in
g

Le
ar

ni
ng

 T
hr

ou
gh

 F
ai

lu
re

Le
ar

ni
ng

 T
hr

ou
gh

 R
efl

ec
tio

n

El
ab

or
at

io
n

Industrial Partnership – Real Project ** *** ** *
Maintenance/Evolution ** *** * **
Team Composition ** *** *
Open-Endedness ** ** *** ** ** *
Non-Technical Skills ** ** *
Practice-Driven *** *** *** ** * *
Sabotage ** ** *** *

Topical ** * * * * * * *

Simulation *** ** *** * *** ** * **

Table 2. Software engineering educational approaches and the learning theories they incorporate

��

On the Role of Learning Theories

•	 Satisfaction: As students are able to prac-
tice their knowledge and skills in a realistic
(yet simulated) setting, seeing the positive
consequences of applying their knowledge
correctly promotes a true feeling of satisfac-
tion. Again, game-based simulations add
to this if the student is also rewarded with
a high score or some other game-relevant
measure of success.

 Model-based instruction has not been utilized
at all in simulation, but has obvious potential to
be. In particular, simulations could be used as the
model (realistic situation, case study, and prob-
lem, simultaneously) that instruction is centered
around. In such a case, students would practice
a simulation (or series of simulations) for each
concept (or set of concepts) being taught. Simula-
tions would allow for ample exploration—one of
the basic tenets of model-based instruction—as
students could practice the same simulation mul-
tiple times, using a different approach each time,
learning the consequences of various actions, and,
as a result, learning a great deal about the process
and concepts being simulated.

 The exploratory quality of simulation in and of
itself directly implements the Discovery Learning
theory. The nature of simulation is highly condu-
cive to allowing students to discover knowledge
on their own, as they see phenomena played out
in a simulation, and are encouraged to explore,
experiment, do research, ask questions, and seek
answers.

 This type of exploratory learning is also
inherently related to the Learning through Fail-
ure theory. As students explore the simulation
and try different approaches, they are likely to
fail at least a few times. In fact, one of the basic
purposes of simulations is to allow students to
“push boundaries”, try different approaches, and
fail without fear of the drastic and severe conse-
quences that would occur in a real-world setting.
For example, a student who fails in a simulated
software project would only have to worry about

getting a low game score or seeing an unhappy
simulated customer, while in the real world such
a failure could cost millions of dollars or have
even more serious consequences.

 Learning through Reflection has also been
incorporated into simulation approach, although
only limitedly: with the game-based simulation
SESAM (Drappa & Ludewig, 2000), and the indus-
trial simulation described in (Nulden & Scheepers,
2000). As mentioned previously, dialogue and
reflection sessions have been incorporated into
these learning processes as post-simulation activi-
ties. Some dialogue activity is also an inherent
part of Problems and Programmers (Baker et al.,
2003), the educational software engineering card
game simulation. The face-to-face, competitive
nature of this physical card game has been shown
to promote rich and useful discussion between
student opponents, regarding such topics as why
they took the approach they did, the reasons
behind one person’s win and another’s loss, and
their reactions to unexpected events.

 Finally, the Elaboration theory has also been
only limitedly incorporated into simulation-based
software engineering educational approaches. In
particular, Elaboration has only been leveraged
in the process used with the industrial simula-
tion described in (Collofello, 2000). This process
consists of assigning students very simple simula-
tions to begin with, and incrementally increasing
the complexity of the simulations as the students
progress in their knowledge.

Categorization Highlights

The first thing to notice in general from Table 2
is that, although learning theories are not often
explicitly discussed in software engineering edu-
cation research, they are indeed applicable in our
domain. Whether consciously or unconsciously,
people have been building approaches toward
them in various ways. If we look at how the dif-
ferent learning theories fare with respect to the
number of approaches that incorporate them, we

 ��

On the Role of Learning Theories

can clearly see that our domain has focused the
most on Learning by Doing and Situated Learning.
This is not a surprise, given the strong emphasis
on preparing students for the “real world” that is
intrinsic to the field. In contrast, Learning through
Reflection is the most under-explored theory, but
also has the most potential for greater use—every
category of approach has the potential to leverage
(or better leverage) this theory.

If we then look at each approach with respect
to the learning theories they incorporate, we can
see that most of them apply multiple theories at
once. The “topical” category has one star for each
theory because, since these approaches focus on
the topic rather than on delivery methods, they
theoretically have the potential to apply all of
the theories, depending on the way that topic is
taught. Simulation, on the other hand, directly
incorporates, or has the potential to directly in-
corporate all of the theories considered in some
way or another. While it certainly is not the case
that any teaching method that addresses more
learning theories than another is better than that
other method (consider a combination of strategies
put together haphazardly in some teaching method
versus one well-thought-out and tightly-focused
method cleverly leveraging one very good strat-
egy), an approach that naturally addresses factors
and considerations of multiple learning theories is
one that is most definitely worth exploring. Simu-
lation is such an approach, but one that has been
significantly underexplored in software engineer-
ing education (Navarro, 2005)—something that
we are attempting to address with the approach
described in the following section.

DETAILED ANALYsIs/DEsIGN/
DEVELOPMENT OF AN APPROACH
IN TERMs OF LEARNING
THEORIEs

In addition to providing the field with a way to
categorize and analyze existing software engi-

neering educational approaches, learning theories
can also help in developing new approaches and
modifying existing approaches to be more effec-
tive. Categorizations such as the one presented
in the previous section can help guide the design
(or re-design) of such approaches, as areas for
potential are highlighted.

Case study: The Design of s imsE

In this section, we present a case study of a soft-
ware engineering educational approach that was
actually not explicitly designed with learning
theories in mind. In looking back at our approach
in light of learning theories, however, we can see
that several of our key decisions made in its design
are highly relevant to some of these theories. We
can also see missed opportunities of ways we
could have leveraged additional learning theories
to make it more effective.

The approach is SimSE, an educational game-
based software engineering simulation environ-
ment. SimSE is a computer-based environment that
facilitates the creation and simulation of realistic
software process simulation models—models that
involve real-world components not present in typi-
cal class projects, such as large teams of people,
large-scale projects, critical decision-making,
personnel issues, multiple stakeholders, budgets,
planning, and random, unexpected events. In so
doing, it aims to provide students with a platform
through which they can experience many differ-
ent aspects of the software process in a practical
manner without the overarching emphasis on
creating deliverables that is inherent in actual
software development.

 The graphical user interface of SimSE is
shown in Figure 1. SimSE is a single-player game
in which the player takes on the role of project
manager and must manage a team of developers
in order to successfully complete an assigned
software engineering project or task. The player
drives the process by, among other things, hiring
and firing employees, assigning tasks, monitor-

��

On the Role of Learning Theories

ing progress, and purchasing tools. At the end of
the game, the player receives a score indicating
how well they performed, and an explanatory
tool provides them with a visual analysis of their
game, including which rules were triggered when,
a trace of events, and the “health” of various at-
tributes (e.g., correctness of the code) over time
(see Figure 2).

To date, six SimSE game models exist: a wa-
terfall model, an inspection model, an incremental
model, an Extreme Programming model, a rapid
prototyping model, and a Rational Unified Process
model. For more information on SimSE, including
its design, game play, and simulation models, see
(Navarro, 2006).

The idea of SimSE was originally motivated
by the hypothesis that simulation can bring to
software engineering education many of the
same benefits it has brought to other educational
domains. Specifically, we believed that software

engineering process education could be improved
by using simulation to allow students to practice
managing different kinds of “realistic” software
engineering processes. The constraints of the
academic environment prevent students from
having the opportunity to practice many issues
surrounding the software engineering process
in their course projects. Our approach therefore
focused on providing this opportunity through
the use of simulation.

To guide us in the design of SimSE, we per-
formed two activities: (1) a study of the domain
of software engineering education to discover
what its unique needs are, and (2) a survey of
well-known principles for successful educational
simulations from the research literature. The result
of this was a specific set of key decisions that are
listed here and discussed in light of the learning
theory (or theories) that we later discovered related
directly to them:

Figure 1. SimSE graphical user interface

 ��

On the Role of Learning Theories

1. Use of the game paradigm. We could have
chosen to base our simulation approach on
the industrial simulation or group process
simulation paradigms mentioned previously,
but instead we chose the game paradigm. It
has been shown that game-like features such
as graphics, interactivity, surprising random
events, and interesting, life-like challenges
are known to hold a student’s attention and
promote a feeling of confidence and satisfac-
tion as they succeed in the game (Ferrari et
al., 1999). This directly corresponds to the
Keller’s ARCS theory, which suggests that
such qualities promote a highly effective
learning experience.

2. A fully-graphical user interface. To make
SimSE maximally engaging and visually
realistic, we chose to design a fully graphi-
cal, rather than textual interface. As was
shown in Figure 1, the focal point of this

interface is a typical office layout in which
the simulated process is “taking place”,
including cubicles, desks, chairs, comput-
ers, and employees who “talk” to the player
through pop-up speech bubbles over their
heads. In addition, graphical representations
of all artifacts, tools, customers, and projects
along with the status of each of these objects
are visible. This decision to graphically
portray simulated software engineering
situations turned out to be strongly in line
with the theory of Situated Learning—the
learner is provided with a visual context that
corresponds to the real world situations in
which the learned knowledge would typi-
cally be used.

3. A high level of interactivity. Keeping the
attention of the learner engaged is not only
done by making a user interface visually
appealing, but also by continuously involv-

Figure 2. Graphical representation of a SimSE Game, generated by the explanatory tool

�0

On the Role of Learning Theories

ing the learner. Thus, rather than designing
SimSE as a continuous simulation that
simply takes an initial set of inputs and pro-
duces some predictive results, we designed
it in such a way that the player must make
decisions and steer the simulation accord-
ingly throughout the entire process. SimSE
operates on a step-by-step, clock tick basis,
and every clock tick the player has the op-
portunity to perform actions that affect the
simulation. Keeping the learner continuously
engaged and giving them ample opportunity
to practice their skills and tackle challenges
are tactics suggested by the Keller’s ARCS
theory for promoting attention, relevance,
confidence, and satisfaction.

4. Customizable simulation models. SimSE
includes a model builder tool and associated
modeling approach that allow an instructor
to build simulation models and generate cus-
tomized games based on these models. This
feature adds the (unanticipated) potential
for using SimSE in a way that follows the
theory of Elaboration—instructors could
build models of varying complexity and use
them in order of increasing complexity with
students. Although we have not yet built such
models with SimSE, it is in our future plans
to do so, as we now know that this potential
for greater effectiveness is there.

5. An explanatory tool. An integral part of
SimSE is its novel explanatory tool that pro-
vides players with a visual representation of
how the simulated process progressed over
time and explanations of the rules underlying
the game. This feature promotes Learning
through Reflection as it allows players to
look back on their game and analyze their
decisions and how those decisions affected
the outcome. The explanatory tool output
could also potentially be used as the focal
point of a dialogue session between student
and tutor/instructor.

6. Complementary usage of SimSE. Rather
than design SimSE to be a standalone tool
meant to replace standard course compo-
nents such as lectures, readings, and projects,
we instead designed it to be used comple-
mentary to them, and have used it in such a
setting. The simulation models we have built
require a basic set of knowledge and skills in
order to play and learn from them effectively,
knowledge that students conceivably obtain
in lectures and readings. Thus, in essence,
SimSE allows them to “Learn by Doing”
by learning through experience the lessons
communicated through reading and lectures,
as well as other lessons that are simply not
adequately teachable through passive means.
Linking the knowledge learned in SimSE
to existing knowledge also promotes the
feeling that what a student is learning is of
relevance to them, a major tenet of Keller’s
ARCS.

7. Simulation models that provide a clear
goal. SimSE allows the modeler to compose
a “starting narrative” for the player that ap-
pears at the start of a game, and to which the
player can refer back at any time during a
game. In the models we have built, we have
used this starting narrative to provide the
player with the exact goals of the simula-
tion, criteria for completion of these goals,
and any hints or special notes that might
help them along the way. Precisely defined
objectives not only guide students through
a simulation, but also pose a challenge that
many students find hard to resist. Achieving
the goal becomes a priority and Discovery
Learning is employed as creative thinking
is sparked in coming to an approach that
eventually achieves that goal.

8. Simulation models that are adequately
challenging. We have built into our simu-
lation models interesting situations that are
adequately challenging (engaging students’

 ��

On the Role of Learning Theories

attention and making it likely that they learn
through failure at times) but not impossible,
promoting eventual success that leads to
confidence in the learning material and sat-
isfaction in the experience (central principles
to Keller’s ARCS).

Looking back on the design of SimSE in light
of learning theories served to link some of our
intuition in the design of SimSE to these theories,
thereby increasing our confidence of being on the
right path with our approach. In addition to this, it
also revealed some missed opportunities that we
could have taken advantage of, had we originally
designed SimSE with learning theories in mind.
For example, we could have better taken advan-
tage of the Elaboration theory by designing our
models in incrementally complex versions, and
introducing them to students in order of increasing
complexity. In our usage of SimSE in courses and
in out-of-class studies, we also could have made
reflection a more central and structured part of the
approach by providing the student with explicit
explanatory tool exercises to complete, exercises
that would encourage the type of reflection that
would help solidify the lessons learned in the
simulation (currently, the student is simply given
the explanatory tool, and decisions about how to
use it are left up to them). As another example,
we could have better incorporated aspects of
authenticity (promoting Situated Learning) by
including more random events (a characterizing
feature of the real world) in our models. These
types of events are only used sparingly in many
of our models.

Like most software engineering educational
approaches, SimSE was not designed with learning
theories in mind. However, by looking back on its
design in light of learning theories, we have learned
a great deal about how SimSE promotes learning
and how it can be improved to foster greater learn-
ing, as we have seen in this section.

LEARNING THEORY-CENTRIC
EVALUATION

Although we did not explicitly use learning
theories in SimSE’s initial design, we did use
them as a central guiding factor in designing a
major part of its evaluation. Validating that the
theories an approach was designed to employ
(or appear to employ) are actually employed, as
well as discovering if an approach incorporates
aspects of any additional theories, can be highly
useful exercises—such data can be used to make
that and other similar approaches more effective
as they are tailored to exploit the characteristics
known to promote each theory (van Eck, 2006).
Thus, as part of SimSE’s evaluation, we performed
an in-depth observational study that focused on
investigating the learning processes of SimSE
players to determine whether they exhibited be-
haviors indicative of various learning theories.

Case study: s imsE Evaluation setup

For this study, we used as subjects 11 under-
graduate students who had passed the introductory
software engineering course at the University of
California, Irvine. This requirement was put in
place so that they would have at least the basic
understanding of software engineering concepts
required to play SimSE. The study occurred in a
one-on-one setting—one subject and one observer.
Each subject was first given instruction on how
to play SimSE, and was then observed playing
SimSE for about 2.5 hours. In order to evaluate
how well the explanatory tool achieves its goal of
aiding Learning through Reflection, we had eight
students play SimSE with the explanatory tool
and three without. (Differences in the behavior,
attitudes, and opinions of each group could then
be compared, though clearly, not to the extent
of being statistically significant.) While subjects
were playing, their game play and behavior were
observed and noted. Following this, the subject
was interviewed about their experience for about

��

On the Role of Learning Theories

30 minutes. In addition to any spontaneous ques-
tions the observer formulated based on a particular
subject’s actions or behavior during game play,
all subjects were asked a set of standard ques-
tions. Several of these questions were designed
to specifically detect the presence of one or more
learning theories in the subject’s learning process.
Some questions did not target a particular theory
or set of theories, but were instead meant to evoke
insightful comments from the subject from which
various learning theories could be inferred, and
from which general insights into the learning
process could be discovered. Some samples from
the standard set of questions are listed here, with
the targeted learning theory (or theories) listed in
parentheses afterwards when applicable.

•	 To what do you attribute the change (or lack
of) (improvement, worsening, fluctuation,
steady state) of your score with each game?
(Discovery Learning, Learning through
Failure)

•	 Do you feel you learned more when you
“won” or when you “lost”? Why? What
did you learn from each “win” or “loss”?
(Discovery Learning, Learning through
Failure)

•	 When you lost, did you feel motivated to
try again or not? Why? (Learning through
Failure)

•	 On a scale of 1 to 5, how much did play-
ing SimSE engage your attention? Why?
(Keller’s ARCS)

•	 How much has your level of confidence
changed in the learning material since
completing this exercise? (Keller’s ARCS)

•	 Did you feel that you learned any new
software process concepts from playing
SimSE that you did not know before? If so,
which ones? (answer could be indicative of
multiple theories)

•	 If you feel you learned from SimSE, what do
you believe it is about SimSE that facilitated

your learning? (answer could be indicative
of multiple theories)

There were also some questions primarily de-
signed for comparison between the subjects who
used the explanatory tool and those who did not.
These questions were aimed at discovering how
the player went about figuring out the reasoning
behind their scores, as well as how well they
understood this reasoning.

•	 Where do you think you went wrong in game
1/2/x? (Learning through Reflection)

•	 Please describe the process that you fol-
lowed to figure out the reasoning behind
your score, or where you went wrong/right.
(Learning through Reflection)

Following the experiment, the interviewer’s
observations and interview notes were analyzed
to try to discover which behaviors and comments
were indicative of the various learning theories,
and how, as well as to discover any other insights
about SimSE as a teaching tool that could be
gained from this data.

Evaluation Results

The learning theory that was most clearly involved
in every subject’s learning process was Discovery
Learning. All subjects were able to recount at least
a few lessons they learned from SimSE, and none
of these lessons were ever told to them explicitly
during their experience. Rather, they discovered
them independently through exploration and
experimentation within the game. Interestingly,
although all subjects that played a model seemed
to discover the same lessons (for the most part),
no two subjects discovered them in the same
way. Every subject approached the game with a
different strategy, but came away with similar
new knowledge, suggesting that SimSE can be
applicable to a wide range of students that come

 ��

On the Role of Learning Theories

from different backgrounds with different ideas
and possibly, different learning styles. This is a
central aspect of a student-centered theory like
Discovery Learning. Since learning depends
primarily on the learner and not the instructor,
the learner is free to use their own style and ideas
in discovering the knowledge, rather than being
forced to adhere to a rigid style of instruction.

Learning through Failure also seemed to be
widely evident. Every subject seemed to take a
“divide and conquer” approach to playing SimSE,
isolating aspects of the model and tackling them
individually (or a few at a time). When subjects
described the progression of their games in the
interviews, it was clear that the way they conquered
each aspect was by going through at least one or
two rounds of failure in which they discovered
what not to do, and from this discovering a cor-
rect approach that lead to success. When asked
explicitly about learning through failure, every
subject stated that they learned when they failed,
but the amount of learning they reported varied.
Five subjects said they learned more from failure
than success, two subjects said they learned more
when they succeeded, and four subjects said they
learned equally as much from failure and success.
All but one subject said that they were motivated
to try again after they failed. This motivation was
also evident in the behavior of several subjects,
as some, after the completion of one failed game,
hurriedly and eagerly started a new one. One
subject even tried to start a new game when the
time for the game play portion of the experiment
was up and he was already informed that it would
be the last game.

The Learning by Doing theory seemed to be
involved in most of the subjects’ learning experi-
ence. Eight out of the 11 subjects made comments
about their experience playing SimSE that hinted
at aspects of Learning by Doing. Some of their
comments included:

•	 “[SimSE helped me learn because it] puts
you in charge of things. It’s a good way of
applying your knowledge.”

•	 “[SimSE helped me learn because it is] in-
teractive, not just sitting down and listening
to something.”

Comments indicative of Situated Learning
were also rather frequent, mentioned by seven out
of the 11 subjects. Some of these included:

•	 “[SimSE helped me learn because] it was
very realistic and helped me learn a lot of
realistic elements of software engineering,
such as employees, budget, time, and sur-
prising events.”

•	 “[One of the learning-facilitating charac-
teristics of SimSE was] seeing a real-life
project in action with realistic factors like
employee backgrounds and dialogues.”

Behaviors and comments suggestive of Keller’s
ARCS Motivation Theory were also evident,
although certain aspects of the theory came out
stronger than others. To explain, let us look at the
four aspects of the theory (attention, relevance,
confidence, and satisfaction) individually.

First, the attention of the subjects seemed to
be quite engaged with SimSE. This was evident
in their body language, the comments made both
during game play and the interview, and their
ratings of SimSE’s level of engagement. Many
of them spent the majority of their time during
game play sitting on the edge of their seats, lean-
ing forward and fixing their eyes on the screen.
There were head nods, chuckles in response to
random events and character descriptions, shouts
of “Woo hoo!” after achieving a high score in a
game, shaking of the head when things were not
going so well for a player, and requests of, “Can
I try this one more time?” when the experiment’s
allotted time for game play was coming to an end.
Words some subjects used to describe SimSE in
the interview were “challenging”, “fun”, “interest-
ing”, “addictive”, and “amusing.” When explicitly
asked how much SimSE engaged their attention,
the students rated it quite high—4.1 on average
out of five.

��

On the Role of Learning Theories

Second, relevance was rated moderately high,
but not as high as level of engagement. Five of the
subjects rated SimSE’s relevance to their future
experiences as “pretty relevant” or “very relevant”,
five described it as “somewhat” or “partially”
relevant and one said it was not relevant at all.
Although not explicitly asked about SimSE’s
relevance to their past experiences, nearly all
of the subjects mentioned that they used some
of the knowledge they had learned in software
engineering courses to come up with their strate-
gies for playing the game, suggesting that there is
also a relevance between their past experiences
(learning the concepts in class) and their learning
experience with SimSE.

Third, most subjects felt their level of con-
fidence in the learning material (the software
process model simulated and software process
in general) had increased at least somewhat since
playing SimSE. Four subjects reported their level
of confidence had changed “a lot” or “very much”,
five said it had changed “somewhat”, and two said
it had not changed at all.

Fourth, satisfaction was rated quite high by the
subjects. Nine out of the 11 subjects reported that
they were “quite satisfied”, “very satisfied”, “fully
satisfied”, or “pretty satisfied”, and three subjects
stated they were “somewhat satisfied.” Most of
the reported factors that contributed to a feeling
of satisfaction pertained to a subject’s increasing
success from game to game, although some also
mentioned that the sheer fun and challenge of
SimSE contributed to their satisfaction as well.

The explanatory tool did seem to promote
Learning through Reflection, to some extent. Most
of the subjects that had access to the explanatory
tool did make use of it, the duration of its use after
most games ranging from five to 25 minutes. It
was obvious that the subjects who did not have the
explanatory tool (to whom we will henceforth refer
as “non-explanatory subjects”) were significantly
more confused and less confident about the reason-
ing behind their scores and how to improve than
those who did have the explanatory tool (to whom

we will henceforth refer as “explanatory subjects”).
All of the non-explanatory subjects expressed this,
while only one explanatory subject stated such an
opinion. The following are some of the comments
made by the non-explanatory subjects:

•	 “I was trying to guess what I was doing
wrong, so I probably chose the wrong areas
that I was doing wrong, and then I tried to
switch back to my original way and then
I kind of forgot what that was and once I
started trying to improve it, all of my little
details started changing and I didn’t know
what parts were causing my score to go
lower.”

•	 “I felt like I knew, oh, that’s where I went
wrong sometimes, like I should spend a
little less time there, but a lot of times I was
wrong about where it was I went wrong.”

On the other hand, most of the explanatory
subjects’ comments expressed that the explanatory
tool did, indeed facilitate their learning:

•	 “[The explanatory tool] showed me why I
was doing poorly—because of certain events
that were happening.”

•	 “The rules [described in the explanatory tool]
are really helpful—even if someone doesn’t
know anything about software engineering
I think the rules can teach you how to play
the game.”

Implications of Evaluation Results

Evaluating SimSE in terms of learning theories
provided us with several valuable insights into
how SimSE helps students learn. In addition, it
also helped us to discover ways to potentially
make SimSE more effective. In this subsection,
we describe how focusing on some of the theories
in our evaluation provided us with knowledge that
will help us maximize SimSE’s effectiveness.

 ��

On the Role of Learning Theories

Learning through failure: Overall, the chal-
lenge of receiving a “failing” score and trying to
improve it seemed to be a significant avenue of
learning and a strong motivating factor of SimSE.
This reinforced our notion that simulation models
should be made challenging enough that students
are set up to fail at times. It is these failures
that provide some of the greatest opportunities
for learning. By focusing on this aspect in our
observations, we also discovered that one of our
models (Rapid Prototyping) was not quite chal-
lenging enough, and students could sometimes get
a good score without really learning the lessons.
Thus, we have since added more challenges to
this model, and will continue to build simulation
models in the future that have an adequate level
of challenge.

 Learning by doing: Several of the subjects’
comments mentioned the ability to put previously
learned knowledge into practice as a learning-fa-
cilitating characteristic of SimSE. This validates
our choice to use SimSE complementary to other
teaching methods, so that it can fulfill this im-
portant role of being an avenue through which
students can employ Learning by Doing as they
do the things they only heard about in class.

Situated learning: The realistic elements in
SimSE seem to add significantly to its educational
effectiveness. Thus, it is important that we con-
tinue to include elements of the real world in our
models, in order to situate students’ knowledge
in a realistic environment.

Elaboration: It became clear from our obser-
vations that one of our models (waterfall) is much
too large and complex for a “SimSE beginner.”
(Although the waterfall process is a simple one,
the corresponding SimSE model is quite com-
plicated, incorporating several non-technical,
managerial aspects.) By giving such a complex
model to a student who has never played SimSE
before, we were clearly violating the principles of
the elaboration theory. Thus, viewing this result
in light of that theory taught us that such a model
should not be introduced until the student has
played other, simpler models first.

Keller’s ARCS: Through this study we were
able to discover what elements of SimSE and its
models best hold students’ attention by noting
when students appeared to be most engaged,
and what kinds of things they commented about
favorably in the interviews. For example, several
students mentioned that the random events in the
models (e.g., the customer changing their mind
and requiring the team to rework part of the code)
added an element of surprise and realism that kept
things entertaining. Thus, we will continue to build
these elements into our future models, as well as
try to maximize them in our current models. We
also discovered which elements students found un-
engaging. For instance, several subjects thought
the inspection model was boring and repetitive.
Through the interviews, we were able to detect
exactly what it was about the inspection model
that made it this way, and have recently imple-
mented changes that we anticipate will make it
more interesting for future SimSE players.

Learning through reflection: The explana-
tory tool partially fulfills its goal of facilitating re-
flection, but it is clear that it needs to be improved.
In particular, more help needs to be given to the
user in generating meaningful, useful graphs,
and the rule descriptions need to be more easily
accessible. We have recently addressed these
issues in our development by adding attributes
to each model that are meant specifically for
explanatory graphing purposes and by making
the rule descriptions more accessible through
the user interface.

Learning theories can help structure evalua-
tions by providing ideas about what the researcher
should be looking for in the learning processes of
students. As we have seen with SimSE, this can be
done even if the approach was not designed with
learning theories in mind. A careful retro-analy-
sis of the approach’s design in terms of learning
theories can reveal the aspects that a learning
theory-centric evaluation should focus on. Con-
ducting such an evaluation has the potential to
both reveal the effectiveness of an approach, as
well as guide future work in the area.

��

On the Role of Learning Theories

Certainly, not every aspect of an approach can
be evaluated this way—an evaluation focused
on learning theories should only be one part of
an evaluation plan. In addition to the evaluation
described here, SimSE’s evaluation plan also
included a pilot study, a comparative study, and
in-class studies, each of which was designed to
evaluate different aspects of SimSE to form a
comprehensive picture of its ability as a teaching
tool (see (Navarro & van der Hoek, 2007) for more
information about these studies).

sUMMARY

Learning theories are an important educational
resource of which the software engineering edu-
cational community has not yet taken full advan-
tage. Learning theories can be used to categorize,
design, evaluate, and communicate about software
engineering educational approaches, providing a
structured and informed way to move our domain
forward with approaches that are effective and
well-understood. We have shown one example
of applying learning theories to software engi-
neering education in our analysis and evaluation
of SimSE. It is our hope that educators can take
this example and apply it to other approaches and
areas of software engineering education to create
more effective teaching strategies that are rooted
in educational theory.

MORE INFORMATION

More information about SimSE, including down-
loads, evaluations, and publications, are available
at http://www.ics.uci.edu/~emilyo/SimSE/.

ACk NOWLEDGMENT

We would like to thank the reviewers of this
chapter for their highly useful and constructive

feedback. Effort partially funded by the National
Science Foundation under grant number DUE-
0618869.

REFERENCEs

Abernethy, K., & Kelly, J. (2000). Technology
transfer issues for formal methods of software
specification. In S. A. Mengel & P. J. Knoke
(Eds.), Proceedings of the thirteenth conference on
software engineering education and training (pp.
23-31). Austin, TX: IEEE Computer Society.

Baker, A., Navarro, E. O., & van der Hoek, A.
(2003). Problems and programmers: An educa-
tional software engineering card game. In Pro-
ceedings of the 2003 international conference
on software engineering (pp. 614-619). Portland,
Oregon.

Beckman, K., Khajenoori, K., Coulter, N., &
Mead, N. R. (1997). Collaborations: Closing the
industry-academia gap. IEEE Software, 14(6),
49-57.

Blake, B. M. (2003). A student-enacted simulation
approach to software engineering education. IEEE
Transactions on Education, 46(1), 124-132.

Bruner, J. S. (1967). On knowing: Essays for the
left hand. Cambridge, Mass.: Harvard University
Press.

Collofello, J. S. (2000). University/industry
collaboration in developing a simulation based
software project management training course. In
S. Mengel & P. J. Knoke (Eds.), Proceedings of
the thirteenth conference on software engineer-
ing education and training (pp. 161-168). Austin,
TX: IEEE Computer Society.

Dantas, A. R., Barros, M. O., & Werner, C. M. L.
(2004). A simulation-based game for project man-
agement experiential learning. In Proceedings of
the 2004 international conference on software

 ��

On the Role of Learning Theories

engineering and knowledge engineering. Banff,
Alberta, Canada.

Dawson, R. (2000). Twenty dirty tricks to train
software engineers. In Proceedings of the 22nd
international conference on software engineering
(pp. 209-218): ACM.

Dewey, J. (1916). Democracy and education. New
York, NY: Macmillan.

Drappa, A., & Ludewig, J. (2000). Simulation in
software engineering training. In Proceedings of
the 22nd international conference on software
engineering (pp. 199-208): ACM.

Favela, J., & Pena-Mora, F. (2001). An experience
in collaborative software engineering education.
IEEE Software, 18(2), 47-53.

Ferrari, M., Taylor, R., & VanLehn, K. (1999).
Adapting work simulations for schools. The
Journal of Educational Computing Research,
21(1), 25-53.

Fishbein, M., & Ajzen, I. (1975). Belief, attitude,
intention, and behavior: An introduction to
theory and research. Reading, Mass.: Addison-
Wesley.

Gibbons, A. S. (2001). Model-centered instruction.
Journal of Structural Learning and Intelligent
Systems, 14(4), 511-540.

Gnatz, M., Kof, L., Prilmeier, F., & Seifert, T.
(2003). A practical approach of teaching software
engineering. In P. J. Knoke, A. Moreno & M. Ryan
(Eds.), Proceedings of the sixteenth conference
on software engineering education and training
(pp. 120-128). Madrid, Spain: IEEE.

Goold, A., & Horan, P. (2002). Foundation soft-
ware engineering practices for capstone projects
and beyond. In M. McCracken, M. Lutz & T. C.
Lethbridge (Eds.), Proceedings of the fifteenth
conference on software engineering education
and training (pp. 140-146). Covington, KY,
USA: IEEE.

Groth, D. P., & Robertson, E. L. (2001). It’s all
about process: Project-oriented teaching of soft-
ware engineering. In D. Ramsey, P. Bourque &
R. Dupuis (Eds.), Proceedings of the fourteenth
conference on software engineering education
and training (pp. 7-17). Charlotte, NC, USA:
IEEE.

Halling, M., Zuser, W., Kohle, M., & Biffl, S.
(2002). Teaching the unified process to under-
graduate students. In M. McCracken, M. Lutz
& T. C. Lethbridge (Eds.), Proceedings of the
fifteenth conference on software engineering
education and training (pp. 148-159). Covington,
KY, USA: IEEE.

Hayes, J. H. (2002). Energizing software engi-
neering education through real-world projects
as experimental studies. In M. McCracken, M.
Lutz & T. C. Lethbridge (Eds.), Proceedings of
the fifteenth conference on software engineering
education and training (pp. 192-206). Covington,
KY: IEEE.

Hilburn, T. (1999). PSP metrics in support of
software engineering education. In H. Saiedian
(Ed.), Proceedings of the twelfth conference on
software engineering education and training (pp.
135-136). New Orleans, LA, USA: IEEE.

Keller, J. M. (1983). Motivational design of in-
struction. In C. M. Reigeluth (Ed.), Instructional
design theories and models: An overview of their
current status. Hillsdale, NJ: Erlbaum.

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006).
Why minimal guidance during instruction does
not work: An analysis of the failure of constructiv-
ist, discovery, problem-based, experiential, and
inquiry-based teaching. Educational Psycholo-
gist, 41(2), 75-86.

Knowles, M. (1984). Andragogy in action: Ap-
plying modern principles of adult education. San
Francisco, CA: Jossey Bass.

��

On the Role of Learning Theories

Kolb, D. A. (1984). Experiential learning: Expe-
riences as the source of learning and develop-
ment. Englewood Cliffs, NJ, USA: Prentice-Hall
International, Inc.

Kolikant, Y. B. (2001). Gardeners and cinema
tickets: High school students’ preconceptions
of concurrency. Computer Science Education,
11(3), 221-245.

Kornecki, A. J. (2000). Real-time computing in
software engineering education. In S. A. Mengel
& P. J. Knoke (Eds.), Proceedings of the thirteenth
conference on software engineering education
and training (pp. 197-198). Austin, TX, USA:
IEEE.

Kornecki, A. J., Khajenoori, S., & Gluch, D. (2003).
On a partnership between software industry and
academia. In P. J. Knoke, A. Moreno & M. Ryan
(Eds.), Proceedings of the sixteenth conference
on software engineering education and training
(pp. 60-69). Madrid, Spain: IEEE.

Lave, J. (1988). Cognition in practice: Mind, math-
ematics, and culture in everyday life. Cambridge,
UK: Cambridge University Press.

McKim, J. C., & Ellis, H. J. C. (2004). Using a
multiple term project to teach object-oriented
programming and design. In T. B. Horton & A.
E. K. Sobel (Eds.), Proceedings of the seventeenth
conference on software engineering education
and training (pp. 59-64). Norfolk, VA: IEEE.

Navarro, E. O. (2005). A survey of software
engineering educational delivery methods and
associated learning theories (Technical Report
No. UCI-ISR-05-5). Irvine, CA: University of
California, Irvine.

Navarro, E. O. (2006). SimSE: A software en-
gineering simulation environment for software
process education. Ph.D. Dissertation, University
of California, Irvine, Irvine, CA.

Navarro, E. O., & van der Hoek, A. (2005a). Design
and evaluation of an educational software process

simulation environment and associated model. In
T. C. Lethbridge & D. Port (Eds.), Proceedings of
the eighteenth conference on software engineering
education and training. Ottawa, Canada: IEEE.

Navarro, E. O., & van der Hoek, A. (2005b). Scal-
ing up: How thirty-two students collaborated and
succeeded in developing a prototype software
design environment. In T. C. Lethbridge & D. Port
(Eds.), Proceedings of the eighteenth conference
on software engineering education and training.
Ottawa, Canada: IEEE.

Navarro, E. O., & van der Hoek, A. (2007).
Comprehensive evaluation of an educational soft-
ware engineering simulation environment. In H.
Edwards & R. Narayanan (Eds.), Proceedings of
the twentieth conference on software engineering
education and training. Dublin, Ireland.

Nulden, U., & Scheepers, H. (2000). Understand-
ing and learning about escalation: Simulation in
action. In Proceedings of the 3rd process simula-
tion modeling workshop (prosim 2000). London,
United Kingdom.

Ohlsson, L., & Johansson, C. (1995). A practice
driven approach to software engineering educa-
tion. IEEE Transactions on Education, 38(3),
291-295.

Pfahl, D., Klemm, M., & Ruhe, G. (2000). Using
system dynamics simulation models for software
project management education and training. In
Proceedings of the 3rd process simulation mod-
eling workshop (prosim 2000). London, United
Kingdom.

Reigeluth, C. M., & Rodgers, C. A. (1980). The
elaboration theory of instruction: Prescriptions
for task analysis and design. NSPI Journal, 19,
16-26.

Roblyer, M. D. (2005). Integrating educational
technology into teaching (4th ed.). Upper Saddle
River, NJ: Prentice Hall.

 ��

On the Role of Learning Theories

Schank, R. C. (1997). Virtual learning. New York,
NY, USA: McGraw-Hill.

Schön, D. (1987). Educating the reflective practi-
tioner. San Francisco, CA, USA: Jossey-Bass.

Sharp, H., & Hall, P. (2000). An interactive multi-
media software house simulation for postgraduate
software engineers. In Proceedings of the 22nd
international conference on software engineering
(pp. 688-691): ACM.

Stevens, S. M. (1989). Intelligent interactive video
simulation of a code inspection. Communications
of the ACM, 32(7), 832-843.

Tomayko, J. E. (1996). Carnegie Mellon’s software
development studio: A five year retrospective. In
Proceedings of the ninth conference on software
engineering education and training (pp. 119-129).
Daytona Beach, FL, USA: IEEE.

van Eck, R. (2006). Digital game-based learning:
It’s not just the digital natives who are restless.
Educause Review, 41(2), 17-30.

Wohlin, C., & Regnell, B. (1999). Achieving
industrial relevance in software engineering
education. In H. Saiedian (Ed.), Proceedings of
the twelfth conference on software engineering
education and training (pp. 16-25): IEEE Com-
puter Society.

Section III
Innovative Teaching Methods

 ��

Chapter IV
Tasks in Software Engineering

Education:
The Case of a Human Aspects of

Software Engineering Course

Orit Hazzan
Technion - IIT, Israel

Jim Tomayko
Carnegie Mellon University, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abs TRACT

The field of software engineering is multifaceted. Accordingly, students must be educated to cope with
different kinds of tasks and questions. This chapter describes a collection of tasks that aim at improving
students' skills in different ways. We illustrate our ideas by describing a course about human aspects of
software engineering. The course objective is to increase learners' awareness with respect to problems,
dilemmas, ethical questions, and other human-related situations that students may face in the software
engineering world. We attempt to achieve this goal by posing different kinds of questions and tasks to
the learners, which aim at enhancing their abstract thinking and expanding their analysis perspectives.
The chapter is based on our experience teaching the course at Carnegie-Mellon University and at the
Technion – Israel Institute of Technology.

INTRODUCTION

The complexity of software development environ-
ments is well known. This complexity includes
technical aspects (such as IDEs and programming
languages), cognitive aspects (for example, pro-

gram comprehension) and social aspects of the
profession (e.g., issues related to teamwork). As
a result of this multifaceted nature, the discipline
of software engineering requires that special at-
tention be given to tasks executed by software
engineering students.

��

Tasks in Software Engineering Education

This chapter presents a collection of tasks
that can be integrated into software engineering
education. The tasks presented here do not address
software development activities (such as design
or coding) but rather belong to peripheral topics
related to the actual development of software.
We suggest, however, that the discussion of these
topics, when supported by students’ engaging in a
variety of tasks, has a direct influence on students’
professional skills in general, and on their software
development performance in particular.

We illustrate our ideas using a course on human
aspects of software engineering. The course objec-
tive is to increase software engineering students’
awareness of (a) the richness and complexity of
various facets of the human aspect of software
engineering and (b) problems, dilemmas, ques-
tions and conflicts that may arise with respect to
human aspects of software engineering during
the course of software development. The course
is based on Tomayko and Hazzan (2004), and the
tasks presented can be adapted to any software
engineering course.

The Human Aspects of Software Engineering
course is usually attended by senior undergraduate
students or graduate students who already have
some software development experience. Being an
elective course, it is usually taught in a relatively
small class setting. Indeed, as illustrated later on
in the chapter, these course characteristics enable
us to propose an interactive, hands-on and active
teaching and learning style.

The importance attributed to active learning is
based on the constructivist approach. Construc-
tivism is a cognitive theory that examines the
nature of learning processes. According to this
approach, learners construct new knowledge by
rearranging and refining their existing knowledge
(cf. Davis, Maher and Nodding, 1990; Smith,
diSessa and Roschelle, 1993). More specifically,
the constructivism approach suggests that new
knowledge is constructed gradually, based on the
learner’s existing mental structures and on feed-
back that the learner receives from the learning

environments. In this process, mental structures
are developed in steps, each elaborating on the
preceding ones; although, there may, of course,
also be regressions and “blind alleys”. This con-
struction process is closely related to the Piagetian
mechanisms of assimilation and accommodation
(Piaget, 1977). One way to support such gradual
mental constructions is by providing learners
with a suitable learning environment in which
they are active. The working assumption is that
the feedback, provided by a learning environment
in which learners learn a complex concept in an
active way, supports mental constructions of the
learned concepts.

In this chapter, we start by presenting the
course structure and then focus on the ten kinds
of tasks used throughout the course. We explain
the nature of each kind of tasks and how it may
improve students’ skills as software engineers. We
conclude with some suggestions for implementing
our approach in other courses.

bACk GROUND: HUMAN AsPECTs
OF sOFTWARE ENGINEERING-
COURsE DEsCRIPTION

This section describes the different topics ad-
dressed in the course on Human Aspects of
Software Engineering by highlighting their im-
portance from the learners’ perspective.

Lesson 1—The Nature of Software Engi-
neering: This lesson aims at increasing learners’
awareness that the success or failure of software
development stem mainly from people-centered
reasons rather than from technology-related
reasons. By inviting learners to analyze differ-
ent development environments, we illustrate the
effects of human interaction in software develop-
ment processes.

Lesson 2 —Software Engineering Methods:
This lesson focuses on models of several soft-

 ��

Tasks in Software Engineering Education

ware development methods including iterative,
agile, and more. In this lesson, we highlight the
human aspects of these software development
methods.

Lesson 3—Working in Software Teams: Our
aim in this lesson is to help learners comprehend
the influence of team structures on the actual
process of software development. In this lesson,
we aim to expand learners’ considerations when
setting out to form software teams.

Lesson 4—Software as a Product: This
lesson highlights the importance of the custom-
ers in software development environments and
their significant role in discussions about human
aspects of software development. Accordingly,
special emphasis is put on different topics related
to requirements (e.g., requirement management,
gathering of requirements, and the understanding
of requirements).

Lesson 5—Software Engineering Code of
Ethics: In this lesson, learners are introduced to
the concept of ethics in general, and to the Software
Engineering Code of Ethics in particular. Our
primary objective in this lesson is to teach students
both how to identify situations in which ethical
considerations should be integrated in software
development processes (in addition to technical,
financial and other considerations) and to perceive
the Software Engineering Code of Ethics as a
tool that can be used both in the identification of
ethical dilemmas and in solving them.

Lesson 6—International and Cultural Per-
spectives on Software Engineering: This lesson
highlights the potential influence of local events
on the global high-tech industry, the influence
of different cultures on software engineering
processes, and the characteristics of software
engineering processes in different places around
the world. Diversity issues in the high-tech culture
are addressed in this lesson as well.

Lesson 7—Different Perspectives on Soft-
ware Engineering: The goal in this lesson is to
increase learners’ awareness to different perspec-
tives on the discipline of software engineering,
each of which emphasizes different aspects of
the field. To this end, learners are introduced to
different perspectives towards software engineer-
ing and are requested to examine which elements
from each perspective fit their own perception
of software engineering. The human aspect of
software engineering is expressed by the fact
that different practitioners in the field perceive
the profession differently.

Lesson 8—The History of Software Engi-
neering: It is important to introduce students
to the history of software engineering since the
nature of this historical process in some way
reflects the nature of the field itself. Indeed, such
connections are made during the course and on
various occasions learners are asked to examine
the influence of different events in the history
of software engineering on the current status of
the field. The main milestones of this history are
highlighted, as are the interconnections among
them.

Lesson 9—Program Comprehension, Code
Inspections, and Refactoring: This lesson high-
lights the importance of programming style and
its influence on program comprehension. Spe-
cifically, in this lesson, learners are encouraged
to observe connections between programming
style and the daily life of software developers,
for example, with respect to code inspections and
refactoring processes.

Lesson 10 —Learning Processes in Software
Engineering: In this lesson, software develop-
ment processes are examined from a cognitive
perspective with the intention of increasing learn-
ers’ attention to learning processes in software
engineering in general, and to a reflective mode
of thinking in particular.

��

Tasks in Software Engineering Education

Lesson 11—Heuristics of Software Devel-
opment: In this lesson, learners become aware
of heuristics that can guide the performance of
different activities throughout the process of
software development. Specifically, the concept of
abstraction and its relevance and contribution to
software development processes are examined.

Lesson 12—Software as a Business: This
lesson discusses several business-related issues
in software engineering. Due to the significant
influence of the Internet as a software-based sys-
tem on world economy, this lesson also addresses
connections between the Internet and the human
aspects of software development.

Lesson 13—Case Studies in Software Engi-
neering: In this lesson, students are presented with
case studies which they are requested to examine
according to the different theories presented thus
far in the course. Similar to other disciplines
that integrate case study analysis in the learning
process, the target of this task is to use and apply
theories in real-life situations.

Lesson 14—Students’ Summary Projects
and Presentations: In this lesson, students pres-
ent case studies that they have constructed, reflect
on the construction process of these case studies
and present questions for discussion based on the
case studies they have developed.

MAIN THRUsT OF THE CHAPTER:
kIND s OF QUEsTIONs

As can be seen in the course description, the
course addresses many topics related to the dif-
ferent human aspects of software engineering. It
is, however, clearly impossible to cover all of the
material cited in each topic within the framework
of such a course. Indeed, it is not our intention to
go into detail with respect to all of these topics.
Rather, we aim to increase learners’ awareness of

these topics and to provide them with tools that
will enable them to further their study of those
subjects that they find interesting and relevant.
One way to achieve this target is by giving the
learners different kinds of tasks.

In what follows, we present ten kinds of ques-
tions we use for this purpose. For each category,
we present its nature and illustrate it with several
questions. For each illustrative question we indi-
cate the learning stage at which it is presented (as a
preparation question, during the learning process,
or as a summary question) and explain how it may
improve students’ skills as software engineers in
general, and their understanding of the human
aspect of software engineering in particular.

Illustrative example: Before we present the
ten kinds of questions, we present an illustrative
example that comprises several kinds of questions.
The question is presented first as a preparation
question in Lesson 4, which examines software
as a product and later on, the question is contin-
ued as a summary question in Lesson 12, which
discusses software as a business. The students are
given additional tasks with respect to each topic.
The question is presented in Table 1.

This two-step task invites students to examine
the process of requirement gathering from dif-
ferent perspectives by executing various kinds
of tasks. First, the students are asked to take the
customer’s perspective – a perspective that they
usually are not requested to adopt. As explained
in the question and as explicitly explained to the
students, such an experience has a value of its
own. Second, the students are asked, as software
developers, to examine the requirements they
listed when acting as customers and to analyze
their nature. Then, the students are asked to com-
pare the list they generated with features of real,
available, similar software tools. The aim of this
experience is to illustrate, first, that a lot of infor-
mation is available for the purpose of requirement
elicitation and, second, that requirement gathering
is a complex and multi-faceted process.

 ��

Tasks in Software Engineering Education

Step A: The question starts out as a preparation question for Lesson 4 – Software as a Product:

Question formulation:

1. Students are usually given a list of requirements and are asked to develop a software system that meets these
requirements. This task may help you reveal some of the problems involved in defining software requirements.
For this purpose, you are asked to assume that you are a customer who needs a software system for web-based
surveys.

 First, determine the kind of business you have. Based on this decision, define your requirements for the web-
based system. Write these requirements as would a person who is not a software developer.

 After you finish listing the requirements, analyze them:
- What kinds of requirements did you list (user-oriented, technical-oriented, performance-oriented, others)?
- Compare your list with real web-based survey tools. Can you use existing tools as a resource for gathering

requirements?
 This exercise is important for at least two reasons. First, you may at some time be a customer of software systems

and will have to define the requirements of the software systems you need. Second, as a software developer,
when you have real customers, such an experience may help you see the situation from the customer’s point of
view.

2 .Based on your experience in §1, explain why requirement changes are so predominant in software engineer-
ing.

3. Data indicate that the percentage of software tools that actually meet customers’ needs is relatively low. Based on
your experience in §1, explain this phenomenon.

Step B: The question continues as a summary question for Lesson 12 - Software as a Business:

Question formulation:

This question continues the task presented in Lesson 4 - Software as a Product, in which you were asked to list
requirements for an application that supports on-line surveys.

 - Expand the requirements list you constructed for the on-line survey so that it also includes a means for e-
commerce.

 - How might the addition of these requirements influence the development process of the on-line survey tool?

Table 1. Illustrative example

In the second part of the task, the students
are asked to expand the list that they originally
generated. The idea is to illustrate that products
can evolve in a gradual process, when customers
either improve their understanding of their needs
or when customer needs are expanded, and that
additional features can be added to a software
product as long as the development process sup-
ports the gradual addition of features. When the
students add features, they are asked to analyze
potential influences of this addition on the software
development process.

In summary, throughout this task, the students
take the customer perspective, examine and ex-

pand their own requirements list, and analyze the
connection between the process of requirement
gathering and software development processes. It
is reasonable to assume that such a collection of
activities and perspectives that students take while
working on this task, expand their perspective on
software development processes in general, and
increase their awareness of the human aspects of
software engineering in particular.

We now present ten kinds of questions pre-
sented to the students during the course. Their
contribution to student learning is illustrated by
specific examples of questions taken from dif-
ferent course lessons. Questions that can be cat-

��

Tasks in Software Engineering Education

egorized into more than one kind of questions are
presented in the category they best illustrate. We
note that all kinds of questions can be presented
at any stage of the course.

I. Review Questions

This kind of questions asks learners to examine
and analyze the literature on a specific topic and
to summarize their findings. Such a task has
several purposes: First, when working on such
tasks, learners develop a sense of the huge extent
of resources available to them when they wish to
learn about an unfamiliar topic. Second, learners
realize that when they are stuck, with no idea of
how to proceed, they can just look for informa-
tion; as soon as they see what is available on the
problem topic, the picture becomes clearer. Third,
as opposed to passively sitting in a lecture hall
listening to a lecture, the mental constructions
built during such a process are significant for
the learning process of the topic about which
information is sought.

Example �: Lesson �
Software Engineering Methods,
Summary Question

There are several inherent problems in software
development. If you are not familiar with them, just
search the web using a phrase such as “problems
with software development”. Select the five prob-
lems that are, in your opinion, the most critical
problems in software development and explain
how each of the software development methods
discussed in this lesson helps solve them.

We will address this question on three lev-
els: On the first level, it is clear that even a brief
search will highlight the fact that there are many
problems in software development. On the second
level, addressing this question may illustrate to
students that the problems they face are com-
mon in the community of software engineering

professionals. Finally, they may observe that most
of the problems are related to human aspects of
software engineering and that, if they increase
their awareness of this characteristic, they can
improve their understanding and performance
in the field.

Example �: Lesson �
The Nature of Software Engineering,
Preparation Question

How did the term “software engineering” come
into being?

When students are asked to answer such a
question before hearing the answer in the lecture,
their awareness might increase with respect to
several facts. First, they may observe that the
concept of software engineering was not invented
in one day, but rather, it was a process that led
to the establishment of the field. Second, when
delving into the details, students may recognize
that many of the same problems that character-
ized the field in its early days still exist today.
Such an acknowledgment reflects very clearly the
complexity of the problems with which the field
deals. Third, the students are required to examine
the field of software engineering as a profession
with its own life cycle. We suggest that a task of
this kind enriches students’ perspective of their
profession, and that this perspective is broader than
the perspective students form if they passively hear
about the establishment of the field of software
engineering from their instructor in class.

II. Concept-Exploration Questions

In these questions, students are asked to explore
new terms and to examine their connection to
software engineering. Such an examination,
we suggest, may increase learners’ awareness
of both the uniqueness of the field of software
engineering and its dynamic nature. In addition,
such understanding may enrich the students’

 ��

Tasks in Software Engineering Education

perspective with respect to their own professional
development in the field.

Example �: Lesson �0
Learning Processes in Software
Engineering, Preparation Question

Search the Web for the concept “learning orga-
nization”. Describe the essence of this concept in
a few sentences. What direct implications does it
have for software engineering processes?

In this question, students are asked to learn a
new topic (in this case “learning organization”)
and to analyze its connection to the profession
of software engineering. It is suggested that this
skill (that is, the ability to analyze how a new
topic is connected to one’s profession) is extremely
important in the case of software engineering
since software engineering is a relatively young
field with many buzzwords whose meaning and
targets are not always clear. Thus, one’s ability
to recognize potential connections (as well as
the ability to decide that no relationships exist) is
particularly important in our profession.

III. Opinion Questions

These questions require the students to give their
opinion about a specific concept or situation. Usu-
ally, such questions are presented as preparation
questions that aim at fostering learners’ thinking
about the topic to be learned.

Example �: Lesson �
Code of Ethics of Software
Engineering, Preparation Question

In your opinion and based on your familiarity
with the notion of ethics, does the community of
software engineering need a code of ethics? If
“yes” - explain why. What principles should it
be based on? What topics should it address? If
“no” - explain and defend your opinion.

This question is presented to the students before
they are introduced to the software engineering
code of ethics, but after they have been exposed
to the concept of ethics. Thus, on the one hand,
they can ponder the application of the concept
with respect to software engineering, while, on
the other hand, not being influenced by the details
of the code, to which they will be exposed later.
We suggest presenting this question at this stage
(that is, before the students become familiar with
the software engineering code of ethics itself) for
at least three reasons. First, at this stage, students
can examine, for themselves, what values they, as
individuals, appreciate in the context of software
engineering. Second, at a later stage, they will be
able to compare their personal perspective with
that which is reflected in the software engineering
code of ethics that was formulated by a committee
representing the community of software engi-
neers. Third, working on such an activity opens
the students up to the idea that they are part of a
professional community, which, perhaps, needs
additional documents to unify its members. Thus,
they may enhance their personal perception as
software engineering professionals.

IV. Re.ective Questions

Being a reflective practitioner (Schön, 1983, 1987)
is an important advantage for software engineers,
since a reflective mode of thinking can increase
one’s performance in the field beyond the ap-
plication of previous experience. This mode of
thinking has already been pursued in the context
of software engineering (cf. Cockburn, 2001;
Hazzan, 2002; Kerth, 2001). We illustrate here
how it can be integrated into software engineer-
ing education.

Example �: Lesson �
Software as a Product,
Summary Question

Visit a company (a software house or any other
company). Observe how people communicate

��

Tasks in Software Engineering Education

and behave in that company. Identify a situation
in the company workflow that can be improved
by a computational tool. Create a requirements
list for this tool. Interview different people in the
organization about this list of requirements.

Analyze and reflect: Are their impressions
consistent with yours? Have they suggested any
improvements? How would you improve the re-
quirements list based on these interviews?

This question aims at increasing the students’
awareness that there multiple opinions exist with
respect to software products. Accordingly, this
question suggests the option of asking different
peoples’ opinion before making final decisions.
The reflective task that concludes the question
invites the students to rethink the entire process
and see how its outcome can be used to improve
their product. Such a task, if conducted (and
reflected on) properly, shows the students that
being a reflective practitioner can improve one’s
professional performances.

V. Analysis Tasks

In these tasks, learners are requested to analyze
vast information related to software develop-
ment processes. The questions aim at increasing
learners’ awareness to the availability of this
information as well as to different ways in which
its analysis may be useful to them as software
engineers.

Example �: Lesson �
International Perspective on Software
Engineering, In-Process Question

The following tasks examine the NASDAQ (Na-
tional Association of Securities Dealers Automat-
ed Quotation) during the decade 1997-2007.

1. Select five years during this decade. For
each year, find what countries had software

companies listed on NASDAQ. What does
this list of countries say about the NASDAQ
and about the international market during
those years?

2. Examine the years 1999, 2000, 2001, and
2002 closely: Select four months in each
year and compare the NASDAQ level for
those months. What trends can you observe?
How can you explain them?

This question deals with an important char-
acteristic of software companies: their market
value. It also, however, looks at the financial
aspect of software development from both local
and global viewpoints. The first part of the ques-
tion asks the students to find out which countries
played a major role in specific years. Such an
examination may draw their attention to the fact
that their local market is not the only player in
this game. The second part of the question aims
at improving students’ ability to identify trends
and patterns in data provided to them. It is im-
portant that these two messages are delivered to
software engineers.

VI. Design Questions

In these questions, learners are asked to take an
active role in the design process of the field of
software engineering, a relatively young field that
is still being shaped. Accordingly, the target of
these tasks is to convey the message that, in the
future, the learners may influence the way the
field is shaped, its norms, its principles and the
work habits of its practitioners.

Example �: Lesson �
The Nature of Software Engineering,
Further-Review Task

Two case studies are presented. Then the following
question is presented: Based on these two case
studies, construct the principles of the ideal work
place for software development.

 ��

Tasks in Software Engineering Education

This task is presented in the early stages of the
course (Lesson 1). It is hoped that this mode of
thinking will guide the students throughout the
entire course. This message is further pursued in
future lessons as the following task illustrates.

Example �: Lesson �0
Learning Processes in Software
Engineering, Summary Question

Suppose you establish a software startup. Work
on the following tasks:

1. Describe the startup.
2. Lay out the basic activities you would set

up in order to make it a learning organiza-
tion.

3. Discuss what may happen if these activities
are not set up when the startup is founded
but rather a year later.

This task asks the students to think as in-
dependent people, who may at some time in
the future found their own company. It aims at
conveying the ideas that there are decisions to
be made prior to the establishment of a com-
pany, that such a construction process should be
thoughtful, and that many of the decisions made
at the early stages of the company might have a
significant and direct influence on its future. The
task achieves its goal by inviting the students to
consider different approaches to dealing with
a given situation, while exploring the different
outcomes of each action.

VII. scenario Analysis

The target of this kind of tasks is to let learners
analyze situations they may encounter in software
development processes. The underlying assump-
tion is that the actual working on such tasks, as
well as the class discussion that may follow it,
can broaden the learners’ perspective of possible

approaches to specific situations in software de-
velopment environments.

Example �: Lesson �
Code of Ethics of Software
Engineering, Preparation Task

Following are several cases related to software
engineering. With respect to each scenario,
express your opinion on the behavior described
and explain how you would behave in such a
case. Then, according to your decision, formulate
one or more ethical norms that, in your opinion,
should be included in the Software Engineer-
ing Code of Ethics. These norms should guide
software developers in making their decisions
in similar cases.

[The task includes several cases; for illustra-
tion purposes we present only one.]

Scenario One: Not Telling the Entire Truth
A programmer is asked to make a change in

a software application used by an international
bank. She performs all of the required tests. After
all the tests passed, she recalls that one more test
is required. This test does not pass. Since she
does not have the time required for debugging,
she submits her work and states that all the tests
passed successfully.

As described above, the target of these tasks
is to let students deal, during their studies, with
situations they may encounter in the future. This
kind of activity is further elaborated in the tenth
kind of tasks, in which the students are asked to
analyze scenarios that they have constructed.

VIII. Connection Questions

In these questions, learners are asked to discuss
connections between different topics discussed
in the course. The idea is to increase learners’

�0

Tasks in Software Engineering Education

awareness of such connections so that they will
not perceive the different topics discussed in the
course as isolated concepts. Indeed, the com-
plexity that characterizes software development
processes can be partially explained by the fact
that the different factors involved in this process
may have a mutual influence.

Example �0: Lesson ��
Software as a Business,
Preparation Questions

Suggest possible connections between e-com-
merce and the Software Engineering Code of
Ethics.

Since there are so many ethical issues related
to on-line communication, it is impossible to
review them all in depth in one or two lessons.
This question helps minimize the gap and, at
the same time, enables students to consider the
topic from the perspective of its connections to
a topic that has been previously discussed in the
course – the Software Engineering Code of Eth-
ics. Students’ work on this task serves as a basis
for a subsequent class discussion.

IX. Research Oriented Questions

The aim of these questions is to let the students
experience using some research tools they may
employ in their future work for different purposes,
such as information gathering and improving
organizational processes.

Example ��: Lesson �
Working in Software Teams,
Summary Question

Record one of your team meetings that is dedi-
cated to solving a particular problem. Listen to
the cassette and analyze the meeting: Did all

participants contribute to the discussion? Did
someone discourage the introduction of new
ideas? At what points would you steer the meeting
differently? Illustrate your analysis by quoting
excerpts from the meeting.

Summarize: Did the meeting achieve its aims?
Could it have been managed more efficiently? If
so, how?

This question has several targets. First, it
shows the students that it is possible to learn
about processes within their teams and that care-
ful examination of such processes can improve
team management. Second, working on such a
task highlights the idea that the effectiveness of
meeting can be improved when the needed atten-
tion, that such an improvement requires, is given.
Finally, the students experience using a simple
tool that can be used also in other situations and
for other purposes.

Example ��: Lesson �
Program Comprehension,
Code Inspections, and Refactoring,
Summary Question

Write two computer programs that execute the
same task such that the programming style of
the first requires the addition of many comments
in order to understand it, whereas the second
program requires no comments (or almost no
comments) for its comprehension.

a. Give each program to a student/software en-
gineer and ask them to explain the program
they received. Observe and document the
processes used by each. Draw appropriate
conclusions.

b. Ask each of the two programmers to make
the same modification in the program. Trace
the change process in each case. What are
your conclusions?

 ��

Tasks in Software Engineering Education

c. Select one or more qualitative research
tools described in Lesson 4 - Software as
a Product. Design a small-scale research
outline that examines the influence of
specific programming style guidelines on
the way programmers develop a computer
program. Conduct the research and de-
scribe your conclusions.

This question is composed of two focused
parts – (a) and (b) – and a more open part – (c).
The first two parts aim at highlighting the influ-
ence of programming style on program com-
prehension processes. The third part requires
the students to be creative and to plan a small
research project for a specific target. It is hoped
that such an experience will show the students,
first, that there are cases in which a small-scale
research is needed and, second, that they are
equipped with the tools required to conduct such
a research study.

X. building Case studies / s tory
Telling

These questions ask students to construct sce-
narios and case studies, based on their personal
experience as well as on what has been learned
and discussed in the course. The scope of the
cases varies: from short and focused stories to
vast narratives that encompass multiple aspects
of software engineering. These tasks have several
advantages. First, students must consider what is
important, as well as less important, to include
in the case study. Second, they must integrate
different issues related to software engineering
into a single story. Third, they must analyze
what they have constructed, an activity that once
again enhances their awareness of different topics
related to software engineering. In what follows,
we illustrate the application of these ideas with
respect to stories of different scopes.

Example ��: Lesson �
Software Engineering Code of Ethics,
Intermediate-Stage Question

Suggest a situation in software development in
which a team of software developers must make
the decision whether or not to report to their
management about a bug in a specific software
tool they developed. What does the code of eth-
ics say in such cases? How would you behave
in such a case?

This task focuses on ethical issues. It asks
the students to create a scenario that focuses on
a particular case. It illustrates how small details
determine the nature of the situation. When such
a task is repeated with respect to different topics,
this message is emphasized and highlighted.

Example ��: Lesson �
Software Engineering Code of Ethics,
Summary Question

Compose a story that raises ethical consider-
ations. Interview software engineers about this
case. Ask them to express their opinion and
predicted behavior in such a case. Analyze their
reactions. Are all of the reactions similar? How
do they differ from each other and from your
opinion? What do these reactions imply with
respect to software development? What lessons
will you take with you from this experience to
your future development of software?

This task illustrates another way in which case
studies can be used for educational purposes.
Specifically, based on a story that the students
develop, they carry out a small-scale research that
explores different opinions related to software
engineering processes.

��

Tasks in Software Engineering Education

Example ��: End of the Course Task,
Case Study Construction and Analysis

At the end of the course, the students are asked
to construct and analyze a case study following
a process that guides them in their case-study
construction. The process is outlined in the Ap-
pendix to this chapter. The target of this task is
to integrate all of the material learned in the
course and to enable the students to express
their perspective on the variety of topics learned
in the course.

FUTURE TRENDs

We now propose several suggestions for the con-
tinuation of the work presented in this chapter:

Evaluation: This chapter is organized by kinds
of tasks. The actual influence of these tasks is now
being examined in a qualitative research project
that examines the multi-faceted contribution of
these questions to students’ awareness with respect
to the different topics addressed in the course.
In particular, we are exploring the development
of this awareness, as well as its influence on
students’ perception of the discipline of software
engineering.

Other categorizations: The tasks given to
the students in the Human Aspects of Software
Engineering course are presented in this chapter
according to the kind of task the students are re-
quired to carry out. Naturally, there are other ways
of categorizing the different tasks students work
on during the course. One such categorization is
by the learning target of the questions; another is
by the mental processes employed when working
on the tasks.

CONCLUsION

We conclude with some suggestions related to the
application of the ideas presented in this chapter
to other software engineering courses. In general,
we propose that most kinds of tasks presented
in this chapter can be applied in many software
engineering courses.

We suggest that the tasks presented in this
chapter, can contribute to students’ professional
skills while dealing with the challenges of the
profession of software engineering. In particular,
we suggest introducing questions of the kinds
presented in this chapter in courses that:

•	 Aim at improving students’ analytical
skills, reflection processes and problem-
solving abilities using a learning approach
that enables the students to formulate their
perspectives and explore resources on which
to base their points of view.

•	 Aim at illustrating to students the multi-
faceted nature of the profession of software
engineering, in a way that guides them to
seek for different points of view, controver-
sial issues, and dilemmas and conflicts with
which they will have to cope in the future.

•	 aim at basing the lessons on student inter-
actions that encourage them to learn from
their peers and experience teamwork and
information sharing.

In our opinion, many of the courses taught in
software engineering programs should target these
issues. We hope that our contribution is be in the
presentation of a collection of kinds of questions
that can be used in order to achieve these goals.

NOTE

This chapter is dedicated to my colleague Jim
Tomayko, my co-author of Human Aspects of

 ��

Tasks in Software Engineering Education

Software Engineering (2004), who passed away
in January 2006.

REFERENCEs

Cockburn, A. (2001). Agile Software Develop-
ment, Addison-Wesley Pub Co.

Davis, R. B., Maher, C. A. and Noddings, N.
(1990, eds.). Constructivist views on the teach-
ing and learning of mathematics, Journal for
Research in Mathematics Education, Monograph
Number 4, The National Council of Teachers of
Mathematics, Inc.

Hazzan, O. (2002). The reflective practitioner
perspective in software engineering education,
The Journal of Systems and Software 63(3), pp.
161-171.

Kerth, N. (2001). Project Retrospectives: A Hand-
book for Team Reviews, Dorset House Publishing
Company.

Piaget, J. (1977). Problems of Equilibration. In
Appel, M. H and Goldberg, L. S. (1977). Topics
in Cognitive Development, Volume 1: Equilibra-
tion: Theory, Research and Application, Plenum
Press, NY, pp. 3-13.

Schön, D. A. (1983). The Reflective Practitioner,
BasicBooks.

Schön, D. A. (1987). Educating the Reflective
Practitioner: Towards a New Design for Teaching
and Learning in The Profession, San Francisco:
Jossey-Bass.

Smith, J. P., diSessa, A. A. and Roschelle, J. (1993).
Misconceptions reconceived: A constructivist
analysis of knowledge in transition, The Journal
of the Learning Sciences 3, pp. 115-163.

Tomayko, J. and Hazzan, O. (2004). Human
Aspects of Software Engineering, Charles River
Media.

��

Tasks in Software Engineering Education

APPENDIX – sIX sTAGEs OF CAsE sTUDY CONsTRUCTION

(Source: Tomayko and Hazzan, 2004, pp. 286-287)

Step 1. Select a topic: Think about a topic that you find interesting and relevant for you to dis-
cuss.

Step 2. Analyze the nature of the topic: In this stage, you are asked to check whether the topic you
wish to focus on has enough heft to be at the center of a case study. Ask yourself questions such as:

•	 What software development activities are connected to the selected topic?
•	 Which players, that participate in software development environments, are connected to the

topic?
•	 What human aspects of software engineering does the topic address?
•	 Is the topic connected to the individual in the team or to the team as an entity?

If your answers to the above questions indicate that the topic is indeed “rich” enough and can be
connected to different issues in software development environments, it might be suitable as a central
topic for a case study.

Step 3. Imagine possible situations: Envision at least two situations in software engineering in
which the topic may be relevant. The idea is to see whether there are specific situations in software
engineering in which the topic you wish to pursue has a significant expression.

Step 4. Write the case study: Start writing the selected case study. Try to make it as vivid as pos-
sible without forgetting to include the main issues you wish to address.

Step 5. Check the scope of the case study: After completing the first draft (and editing) of the case
study, check whether other related topics can be added to the case. Make sure you do not change the
focus of the case study. Then, check issues such as: Is the main message you wanted to convey in this
case study reflected properly? Are the connections between the different topics addressed in the case
study clear?

Step 6. Develop questions about the case study: Develop stimulating questions that can be explored
with respect to the case study you just developed.

 ��

Chapter V
Speaking of Software:
Case Studies in Software

Communication

Ann Brady
Michigan Technological University, USA

Marika Seigel
Michigan Technological University, USA

Thomas Vosecky
Michigan Technological University, USA

Charles Wallace
Michigan Technological University, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abs TRACT

We describe our recent efforts to generate and use case studies to teach communication skills in soft-
ware development. We believe our work is innovative in several respects. The case studies touch on
rhetorical issues that are crucial to software development yet not commonly associated with the field of
software engineering. Moreover, they present students with complex, problematic situations, rather than
sanitized post hoc interpretations often associated with case study assignments. The case study project
is an interdisciplinary collaboration that interweaves the expertise of software engineers and technical
communicators. Our software engineering and technical communication curricula have been enhanced
through this cross-fertilization.

OVERVIEW

We argue that the art of communication, in its
oral and written forms, is given relatively little
attention in software engineering education,

despite its fundamental importance in software
development. Two major problems appear to
prevent a more thorough treatment of communi-
cation issues. First, although software engineers
may be effective communicators, they typically

��

Speaking of Software

do not have practice in articulating what it is that
makes communication effective (or ineffective).
That is, their knowledge remains at a tacit level,
from which it is difficult to impart it to students.
Second, part of what makes communication in the
software workplace difficult is its intricacy and
subtlety—“the devil is in the details”. Students will
not be convinced by toy examples; only realistic
stories of software development will suffice. Yet
the prospect of creating a communication setting
of appropriate scale seems overwhelming.

Our ongoing interdisciplinary work seeks to
address both of these problems. It utilizes the
expertise of technical communicators, who are
well versed in discussing and analyzing commu-
nication. Equipped with examples from software
engineering, empirical techniques from ethnogra-
phy, and analytical techniques from rhetoric, we
have created case studies for teaching commu-
nication skills in software development, and we
have used the case studies in upper-level courses
in both software engineering and technical com-
munication. Here we use the term “case study”
not in its sense as a research tool in the social
sciences, but rather in its sense as a pedagogical
tool, currently used most prominently in law and
business schools. Our case studies are based on the
experiences of real software engineering students
engaged in their capstone projects. The associated
instructional materials touch on rhetorical issues
not usually associated with software engineering:
audience, active listening, critical analysis, timing,
and planning. Moreover, they present students
with complex, problematic situations, rather than
sanitized post hoc interpretations often associated
with case study assignments.

The case study project is an interdisciplinary
collaboration that interweaves the expertise of
software engineers and technical communicators.
Our software engineering curriculum has been
enhanced through this cross-fertilization—both
by the insights into communication and by the
qualitative methods employed in generating the
cases. We report on the success of the project to

date and describe some of the future directions
we envision for this work.

MOTIVATION

We believe there is a significant gulf between the
skills that students practice in academia and the
skills they must use in the workplace. In this sec-
tion, we show that practicing software developers
acknowledge the importance of communication
skills and expect new employees to have them.
We then turn to the current state of software en-
gineering education and comment on the status
of communication skills in academia.

Communication in the software
Workplace

Within the lifespan of a single project, software
engineers must engage with a wide range of
stakeholders, with very different perspectives
and goals (Poole, 2003). They must carefully
elicit requirements from clients and keep them
apprised of budget or scheduling changes. They
must consult with end users to design products
that provide both ease and value. They must also
communicate within their development team, to
maintain a clear vision of how to divide the labor
and how to handle the project risks.

Stepping up from the level of individual
projects to survey the software development
landscape, we find an astounding variety of ap-
plications. No other engineered product has such
a diverse set of potential uses. With this diversity
of uses comes a diversity of stakeholders. In the
span of a career, a software developer moves
from project to project—and most likely from
firm to firm—at each step negotiating a new
application and a new set of stakeholders with
widely varying knowledge, requirements, and
communication styles.

Several studies point to deficiencies in re-
quirements as the primary cause of large-scale

 ��

Speaking of Software

project failures (Curtis, Krasner, & Iscoe, 1988;
Davis, 1990; Glass, 1998). This can be traced to a
lack of commitment and trust between customer
and developer. Developers consider risks such
as “failure to gain user commitment” and “lack
of adequate user involvement” more important
than such serious risks as “introduction of new
technology” and “insufficient/inappropriate staff-
ing” (Keil, Cule, Lyytinen, & Schmidt, 1998).
This evidence indicates the need for improved
communication during requirements elicitation
and analysis.

Of course, communication issues are also a
source of conflict within the development team.
Demonstration of social skill sets—“the ‘good
communication skills’ often referred to in job post-
ings” (Reinsch & Shelby, 1997)—is now explicitly
required of new workers (Muir, 2004). While intra-
team conflicts are often viewed as management or
organizational behavior issues, many researchers
have identified them as inherently communicative
(Putnam & Folger, 1988; Putnam & Poole, 1987;
Schultz & Anderson, 1984). Regardless of whether
the conflict is rooted in the actions of manage-
ment, the behavior of individuals, or deficiencies
in communication, improving communication
skills is one way to avoid conflict in the first place,
or resolve it should it occur. Discussing the skills
students need to negotiate work conflicts early in
their careers, Myers and Larson state that “[a] com-
municative understanding of conflict can facilitate
students’ transition to full-time employment by
helping students to interpret the nature or types of
conflicts employees experience in organizations”
(Myers & Larson, 2005).

A survey of software engineering profession-
als (McMillan & Rajaprabhakaran, 1999) ranks
four software engineering project features based
on what they felt was most important for profes-
sional development. The first two, respectively,
are “working with real users” and “developing a
working prototype.” This highlights the impor-
tance of client communication, essential to both
these aspects of development. Student work often

suffers when communication skills taught in class
are not applied during their coursework both in
communicating with their project teams and with
their instructor (Liu, 2005).

Communication in a software setting is es-
sentially problematic, for a number of reasons.
Software development is complex, due not only
to the functionality of the software itself, but also
to the competing and often conflicting goals of
different stakeholders. Software engineering is a
nascent field, without a time-honored, universal
lexicon. The wide range of application areas draws
together stakeholders with different backgrounds
and little in the way of a common vocabulary.
Moreover, software developers work in a world
of incomplete, imperfect information. While they
can access the internals of the machine through
the precision of computer languages, they must
work through the less mechanical channel of
human language to understand the needs and
desires of other stakeholders. For these reasons,
instruction in communication strategies requires
grounding in realistic contexts that reflect and
simulate these difficulties.

Communication in software
Engineering Education

We believe that the process of communicating
about software is not given sufficient attention in
software engineering education, given its impor-
tance and its difficulty. Instruction in communi-
cating with other stakeholders and documenting
software is typically the role of ancillary courses
in technical communication, taught through de-
partments outside of software engineering. While
these courses offer an important introduction to
effective means of workplace communication, a
single class cannot provide the extensive prac-
tice in the variety of discipline-specific contexts
needed to prepare software engineering students
adequately.

The precision of programming languages and
computer hardware is comforting to students and

��

Speaking of Software

educators in the computing disciplines, but that
very comfort can lull students away from looking
at the human problems that motivate software
development in the first place. The process of
interacting with human stakeholders is often seen
as “soft” material, not worthy of serious attention.
Of the software engineering education contribu-
tions to the SIGCSE and CSEET conferences in
recent years, only a handful of papers address
issues of communication between humans in
software development.

Part of the difficulty here is that the commu-
nicative skills that developers acquire on the job
remain in a tacit form; by and large, there is no
“explicit formulation of rules” (Freedman, 1993b).
Addressing the gulf between the workplace and
academia, Alred (Alred, 2006) suggests that
“[t]he workplace requires practitioners to seek
fundamentally different ways of responding to
their contexts and exigencies—ways that do not
require them, for example, to document either their
intellectual processes or establish concurrence
with scholarly or any other literature”.

It is interesting to see how the issue of com-
munication is treated in the IEEE Software Body of
Knowledge (SWEBOK) (Abran, Moore, Bourque,
& Dupuis, 2004). In the “Software Requirements”
section, it states that “[o]ne of the fundamental
tenets of good software engineering is that there
be good communication between software us-
ers and software engineers”. In the section on
“Project management” – a “related discipline”
outside of software engineering itself – it notes
that “[c]ommunication management is also often
mentioned as an overlooked but major aspect of
the performance of individuals in a field where
precise understanding of user needs and of com-
plex requirements and designs is necessary”.

Clearly, there is some ambivalence in the
SWEBOK about the role of communication. On
one hand, it does include language emphasizing
the importance of communication in the software
process. “Communication management” is even
cited as an “overlooked” aspect. Yet it is not clear

that the SWEBOK helps to raise the prominence
of communication. Only communication be-
tween users and developers is included within
the bounds of “software engineering”; all other
types of communication (including intra-team
communication) are relegated to an ancillary
area. Locating communication outside of software
engineering encourages the status quo of “out-
sourcing” communication to other departments,
rather than dealing with it in the context of the
software engineering curriculum.

VIsION AND APPROACH

We have a vision of a new curriculum where
communication is a core skill, tightly integrated
with the other aspects of software engineering,
rather than a stand-alone topic taught outside of
the discipline. With such a curriculum, software
engineering students will become not only cre-
ative designers and thoughtful analysts but also
effective communicators. Empowering students
to participate in active communication will make
them more engaged in their profession and less
prone to frustration and burnout. Furthermore,
students with skills and interest in communi-
cation, who seek more than a cubicle-centered
“programming” view of software development,
will be attracted to the field. Margolis and Fisher
indicate that many female students seek ground-
ing in meaningful applications and become
disillusioned with computer-centrism (Margolis
& Fisher, 2002). Focusing on real software prob-
lems will likely attract those students who prefer
“computing with a purpose”.

To pursue this vision, we have assembled an
interdisciplinary team of software engineers and
technical communicators. We benefit from the
experience our technical communicators have in
preparing students for communication challenges.
Here we explore the role of technical communica-
tion, rhetoric, and the value of case studies.

 ��

Speaking of Software

Technical Communication

The practice of technical writing can be traced
from the fifth century BCE, through the Middle
Ages, and into the Industrial Revolution (Tebeaux
& Killingsworth, 1992). Its systematic instruction
in the United States began after the Civil War
(Connors, 2004). Histories of technical commu-
nication generally identify the Second World War
as the birth of the profession, when the boom of
wartime technologies triggered a corresponding
boom in documentation that would facilitate dis-
semination and operation—and also necessitated
a new class of workers to write and compile this
documentation. Realizing that it was not profit-
able to hire engineers to both design and write,
Westinghouse, General Motors, and General
Electric developed their own in-house technical
writing departments, and technical writing was
finally recognized in the United States as a field
of its own.

Early courses in technical communication
were grounded in what has been called a “win-
dowpane” view of language (Miller, 1979). Ac-
cording to this view, the technical communicator’s
role (whether that technical communicator is a
professional in technical communication or a
software developer who will work with technical
communication genres as part of her profession)
is to render technical information as clearly and
transparently as possible. The problem with this
view of technical communication is the implicit
assumption that it is possible to attain a technical
language that is universally clear and transparent.
A corollary to this thesis is that any difficulties
in deciphering such language are due to inad-
equacies of the reader or listener, not with the
assumptions that underlie the presentation of the
information. The windowpane view of technical
communication assumes that meaning is trans-
mitted unilaterally from sender to receiver rather
than negotiated between them.

Particularly within the latter half of the twen-
tieth century, technical communication scholars

have argued for a more rhetorical and humanistic
approach to teaching and practicing technical
communication. For example, in her landmark
article “A Humanistic Rationale for Technical
Writing” (Miller, 1979), Miller argues that it is
“the common opinion that [it] is a ‘skills’ course
with little or no humanistic value is the result
of a lingering but pervasive positivistic view
of science... an efficient way of coercing minds
to submit to reality”. Consequently, students in
technical communication courses tend to look
upon writing as a “superfluous, bothersome, and
usually irrelevant aspect of their technical work”.
As a corrective, Miller recommends that we
“teach technical or scientific writing, not as a set
of techniques for accommodating slippery words
to intractable things, but as an understanding of
how to belong to a community… to write well is
to understand the conditions of one’s own partici-
pation—the concepts, values, traditions and style
which permit identification with that community
and determine the success or failure of com-
munication." Even more recently, scholars have
begun to focus on genres surrounding software
documentation and development, noting paral-
lels between approaches to usability testing and
research and a rhetorical view of communication.
Like rhetorical approaches to communication,
usability focuses on different types of audiences
and the particular contexts within which they work
and the purposes to which documentation will be
put rather than positing a universal decontextu-
alized user for whom expert, system knowledge
must be “dumbed down” (Johnson-Eiola, 2001;
Johnson, 1998).

Such a rhetorically grounded approach to
technical communication, we believe, promises
to make students more successful communica-
tors when they enter the workplace. Rather than
learning arhetorical, rote approaches to technical
communication genres, students learn to strategi-
cally engage with and manipulate those genres
according to the audiences, purposes, and contexts
within which and with which they are working.

�0

Speaking of Software

Rhetoric

In this project, we have a particular approach to
communication grounded in theories and prac-
tices of rhetoric. While the term “rhetoric” has
acquired a negative meaning of “[l]anguage that
is elaborate, pretentious, insincere, or intellectu-
ally vacuous”, we use an older definition: “[t]he
art or study of using language effectively and
persuasively” (Pickett, 2004). More precisely, we
define rhetoric as strategic communication. Soft-
ware developers are frequently confronted with
challenges that can only be met through careful
communication: for instance, understanding the
typical use of a software product in the workplace,
assessing user satisfaction with a prototype, or
breaking the bad news about a missed deadline.
Successful communication requires a strategy
informed by an awareness of audience, a broad
knowledge of potential genres, and sensitivity to
the effects of style.

We see, in fact, a clean fit between rhetoric and
software engineering. The software engineering
student, like the rhetorician, can rely on the arts
of knowing how to inquire, what questions to
ask, in particular situations to make appropriate
communications for a variety of audiences. When
students are introduced to case studies, they are
exposed to communication problems that can be
analyzed and understood using these rhetorical
principles.

Revealing to software engineering students
the complexity of the rhetorical situation is the
first step in teaching them to communicate stra-
tegically (Johnson, 1998). Software engineers
produce much more than source code — design
documentation, user guides, memos to manage-
ment or other team members, to name just a few
examples — and they must learn how to consider
the broad contexts of use within which their
products reside. For example, communication in a
small start-up will be significantly different from
that in a large corporation since institutions and
disciplines constrain and define how it is carried

out. In a small, recently founded company, the
communication system is likely to be organized in
a “flat” manner; employees are likely to know one
another and thus to communicate more directly
and without regard to established protocols. Those
working in larger and more established organiza-
tions may be required to communicate through
a hierarchy of established channels. As another
example, domestic communication practices will
not necessarily work in international contexts,
since cultures and historical legacies direct and
shape organizational and stylistic conventions.
Software engineering students who understand
these subtleties are better prepared to work with
fellow members of development teams as well
as with both domestic and international stake-
holders.

Rhetoric also offers software engineering
students a practical understanding of commu-
nication as a problem solving process and gives
them strategies for moving systematically toward
a solution (Deili, 1988; Flower, 1998). While the
term “problem” has a precise and time-honored
meaning in the theory of computation, here we
consider problems of a different sort—human-
centered, not prone to mathematical formaliza-
tion. Nevertheless, as software engineers venture
into complicated contexts of communication,
they can call upon a highly recognizable array
of techniques from the problem-solving model.
Specifically, rhetoric divides planning into stages:
invention, arrangement, style, and delivery. This
breakdown into stages is particularly useful for
teaching students to engage in active listening
and critical analysis.

The first stage of planning, invention, is per-
haps the most important since it sets the require-
ments for the following three. It offers students
a method for gathering information about how
to communicate most effectively with particular
audiences in specific contexts and is based on four
sets of questions. The first question set focuses
on audience. It poses questions about the charac-
teristics of the stakeholders, about their attitudes

 ��

Speaking of Software

toward the information that the students will com-
municate, and about the knowledge they might
possess that could be useful in the development
of the software. The second question set focuses
on purpose. Here, students must consider what
their aim is in communicating with their stake-
holders—to learn, teach, inform, or persuade.
Rhetoric also provides students with a way of
knowing more than the needs of an audience and
the problems of communicating with it. Problems
do not exist in a vacuum but reside within given
contexts that shape not only the problem, but the
eventual solutions, as well. The next set of ques-
tions thus requires that student focus on the context
in which the communication will occur and can
suggest limitations to what the students intend to
communicate, such as a short turn-around or steep
learning curve. Answers to these questions can
affect the way students organize their informa-
tion or the format they chose to convey it. The
final question set requires that students focus on
themselves as communicators and how they aim
to be perceived by their stakeholders—as problem
solvers, investigators, facilitators, experts.

Decisions about the other three stages—ar-
rangement, style, and delivery—are contingent
on answers to questions posed in the first plan-
ning stage of invention, but are, nevertheless,
themselves crucial to carrying out effective
communication. The way that students arrange
information, for instance, depends upon stake-
holders’ attitudes about the information and the
students’ purpose in conveying it. The style stu-
dents choose to use—formal, informal, technical,
colloquial—depends on both how they wish to
be perceived, as well as their stakeholders’ roles
in the project. How students deliver the infor-
mation—in an informal memo or more formal
report—depends on the contexts in which users
will apply the information.

To highlight the overlap and intersection of
these stages, we use the metaphor of commu-
nication cycles (Johnson, 1998) to describe the
various documents that record and communicate

the software development process. For instance, a
typical cycle would include several technical com-
munication document genres that help to manage
a project: an initial problem statement memo, fol-
lowed by a project proposal, then a series of weekly
progress reports that describe the successes and
difficulties encountered as the project proceeds.
Often, these exigencies will be cycled back to
the problem statement and proposal, refining and
adapting them in an iterative process. Finally, as
the project comes to a close, participants generate
a transmittal report and an oral presentation that
explain the history and outcomes of the project
to managers, clients, and teachers.

Case studies

Typically, it is impractical to involve large
numbers of students in real projects with real
stakeholders. Students who do not participate
in project-oriented courses get no exposure to
the issues surrounding such communication,
and those who do are thrust into a highly risky
and sensitive situation with little previous guid-
ance. Many in technical communication and
software engineering have reported the value
of students acquiring real-world experience in
the workplace while at the same time lamenting
the constraints: limited time and availability of
internships, expense, and less than appropriate
assignments once in the field (Blakeslee, 2001;
Freedman, 1993a; Freedman, Adam, & Smart,
1994; Lave & Wenger, 1991).

These constraints can be relieved with the
use of case studies in the classroom, where they
can be guided by the instructor (Williams & Co-
lomb, 1993). The use of case studies to simulate
stakeholder interaction has a long history, and
has been shown to be beneficial to both students
and teachers (Christensen, 1987; Gale, 1993).
Speaking from the perspective of business educa-
tion, Fulmer claims that the case method helps
to develop “skills of analysis, including learning
how to ask the right questions, decision making,

��

Speaking of Software

and persuasion” (Fulmer, 1992). The skills that
Fulmer describes are clearly rhetorical skills.

Two reported deficiencies of case studies
are their lack of immediacy and their failure to
present compelling, realistic situations (Gale,
1993). While acknowledging the importance of
case studies in pre-professional communications
programs, Dorn’s analysis of case studies from
business education (Dorn, 1999) finds that case-
based instruction may be of limited usefulness
in the workplace: “[the cases] typically require
students to respond to exceptional rhetorical
situations when in reality the rhetorical situations
writers usually face require more mundane and
standardized types of discourse”. For example, a
common case study in technical communication
focuses on the communication failures that led to
the destruction of the space shuttle Challenger in
1986. While this is surely a compelling story, the
circumstances are not likely to be encountered by
many entry-level employees. Below, we describe
a means to overcome these difficulties to create
interesting cases that reflect the processes of
undergraduate student projects.

CREATING THE CAsEs

The case studies we have assembled draw from
ethnography and rhetoric—fields closely allied
with technical communication. Here we explain
how we found rich stories of communication
close to home, and how we gathered and com-
posed them.

Locating the source

The goal of building case studies for use in teach-
ing is often hampered by the secrecy surround-
ing most software development. While many of
our students and most of our faculty have had
experiences in industry- or government-spon-
sored development, the proprietary nature of
this information has typically prevented them

from sharing their experiences. We do, however,
have one valuable and readily available source:
the students themselves. All Software Engineer-
ing students take the “Senior Design Project”
capstone course. In this course, senior students
develop real, practical software products intended
for actual use in accordance with requirements
from real clients and other stakeholders. These
projects typically involve interaction with clients
outside of the Computer Science department. The
cases presenting these projects provide compel-
ling, problematic examples of communication,
and students can identify with them since they
are grounded in the real experiences of fellow
students.

Applying Ethnography to the
Educational sphere

Ethnography, as Beverly Moss explains, is “a
qualitative research method that allows a re-
searcher to gain a comprehensive view of the
social interactions, behaviors, and beliefs of a
community or social group. In other words, the
goal…is to study, explore, and describe a group’s
culture” (Moss, 1992). We used some proven
techniques from ethnography to create views
of real software development settings. Our case
studies, however, should not be mistaken for
true ethnographical studies; since our resources
were limited, we could not perform the years of
fieldwork required of such endeavors.

Our method followed a qualitative case study
approach, which attempts to “identify the im-
portant aspects or variables of the phenomenon”
chosen for examination by “closely studying in-
dividuals, small groups, or whole environments”
with the aim to identify avenues for further
research (Lauer & Asher, 1988). In our work,
that further research included the development
of case studies based on our observations, and
presented to other students as a means of simu-
lating the conditions they will encounter later in
their careers in computer science.

 ��

Speaking of Software

The desire to capture recurring patterns in
software development problems has been ex-
pressed elsewhere in the software engineering
literature. For instance, Sutcliffe et al. (A. G.
Sutcliffe, Maiden, Minocha, & Manuel, 1988)
propose that “if common abstractions in a new
application domain could be discovered early in
the requirements engineering (RE) process, then
it may be possible to reuse generic requirements
and link them to reusable designs. This could pro-
vide a conduit for reusing the wealth of software
engineering knowledge that resides in reusable
component libraries” (1073, italics ours). Put
another way, individuals and the groups within
which they work often create ways of coping with
the uncertainties of the project design process,
amassing a sizeable and valuable knowledge
base as they do. Through our case studies we
aim to capture that knowledge, reflected in the
lived experience of one individual or group of
individuals. Incorporating this knowledge and
experience into pedagogical tools, our cases have
the potential to instill that experience in others
when used in the classroom.

Gathering the Data

As the students work on their Senior Design proj-
ects, significant case study data is accumulated:
meeting minutes, email, reports for clients and
for the Senior Design instructor, and documented
code. Email is collected through ad hoc mailing
lists, which the project teams use for communicat-
ing among themselves and with others. Further-
more, Senior Design students reflect on their daily
results and then consolidate the information they
have collected in one-page progress reports that
they submit on a weekly basis to the instructor.
Consequently, work on the case studies during
the academic year is focused on data collection,
organization and coding; summers are focused
on case study construction.

To develop these first case studies, and pilot
our approach, graduate students gathered written

material (notes, meeting minutes, versions of the
software, emails, and so forth) from the Senior
Design students. Following standard practice in
qualitative research (Agar, 1996; Kirsch & Sul-
livan, 1992; Lauer & Asher, 1988), the graduate
students acted as participant observers during the
majority of the students’ meetings. As researchers,
they made audio recordings, drew diagrams of
where people sat and how they moved about the
room, and recorded field notes for later reference.
Following the suggestions of Emerson, Fretz,
and Shaw, their field notes recorded fine details
(Emerson, Fretz, & Shaw, 1995) for later recall,
reconstruction, and analysis. Further, their notes
focused on key events and incidents — such as
dramatic and unexpected shifts in the client’s
requirements and expectations — and recorded
stakeholders’ reactions. These strategies brought
the cases “to life” by including details and rich
descriptions of action, thus capturing the visual
and oral ambiance of the situation and giving that
“you are there” feeling.

As the project came to a close, the graduate stu-
dents also conducted semi-structured interviews
with the Senior Design students and their clients.
They used these interviews to triangulate early
results as Hesse-Biber and Leavy recommend
(Hesse-Biber & Leavy, 2005), and to support
findings and “earn the confidence of the reader
that the researchers have ‘gotten it right’”.

Constructing the stories

To construct the case studies, the graduate stu-
dents first assembled all the original material
chronologically into one long summary account,
with hyperlinks to the original documents, and
then divided it into modules. They also developed
question sets for each module to help students
identify and examine the issues, as well as some
password-protected teaching aids for the instruc-
tor giving background material and an “insider’s
view” of the situations. These were integrated
into the final chronological version.

��

Speaking of Software

To develop the thematic version, the graduate
students read through the chronological account.
Relying on the grounded theory method (Strauss
& Corbin, 1998), they started with a detailed,
line-by-line analysis of the descriptions found in
the transcripts. From this the graduate students
generated initial categories, which focused on
inherent meaning and details, aiming to identify
central ideas of “what is going on here” and label
them as emergent themes, often using terms taken
from the words of the respondents themselves.
These were then grouped into categories with
explanatory and predictive potential. For example,
one category they identified referred to the stu-
dents’ difficulties in learning and working with
an unfamiliar programming language (Matlab).
These instances were then abstracted and listed
chronologically. Other themes were then identified
and listed under their own headings. Comparing
the content and frequency of interactions across
categories, the graduate students began to see some
explanatory power. For example, questions that
arose in the “learning Matlab” category, yet were
not answered in the “client interactions” category,
stymied the students. These questions offer insight
into why the project fell behind schedule. These
comparisons also hold some measure of predictive
power as well—a future interaction would likely
follow the pattern of the past if no remediation
was attempted.

Presenting the stories

Our cases are presented in the style of the “realist
tale” as described by Van Maanen (Van Maanen,
1988). These are “by far the most prominent,
familiar, prevalent, and recognized form of
ethnographic writing [which] push most firmly
for the authenticity of the cultural representa-
tions conveyed by the text”. Its typical form is
a “documentary style focused on minute, but
mundane details of everyday life”. Such details
are not random, but “accumulate” to make some
important point; they “suggest intimacy and

establish presence” and “draw in the audience”.
Our cases aim to present the participants’ point
of view through quotations, recordings, and other
documentation, but also include their reflections.
In light of our pedagogical goal, however, we as
authors have “final word” on any depictions.

Our case studies consist of multimedia pack-
ages, combining text, audio and video material, to
capture the real process of dealing with stakehold-
ers. The cases are presented as hypertext docu-
ments. Apart from accessibility and portability,
this electronic format allows us to embed links
to the original documents instead of including
them as an appendix. For example, the text of an
email might be included in the scenario, but the
attached document that came with it is left as a
separate file. The student analyzing the case must
open that file, much as if he or she had been the
original recipient of the email. This action helps
move the reader from passive observer to ac-
tive participant, making the case more real and
interesting.

The cases are expressed in plain language and
mention specifics, preserving the vocabulary of
the application domain to convey important con-
textual information that students might otherwise
overlook. This encourages the kind of constructive
questioning that fleshes out important details (A.
Sutcliffe, 2003). In some instances, cases present
examples of failures in communication, providing
students the opportunity to reflect on what went
wrong and suggest alternatives (Gale, 1993).

The presentation of the material has been
designed so that information about the project re-
quirements is imparted gradually. This simulates
the problems of Senior Design students grappling
with the issues of real clients. The raw materials of
each case are organized into modules, representing
periods of time in the project history, usually one
week per module. These modules allow users to
browse through stories, listen to audio clips, watch
animations, and respond to questions that are
specifically aimed toward provoking inquiry into
a particular point in time, or a certain theme.

 ��

Speaking of Software

On Wednesday of the fourth week of the semester (Sept. 22) the leaders of the three
crane project teams meet with Hank Taylor and Nancy Smith. They decide that since
the “point of meeting is to get regular coordination of the teams, they will continue the
meeting of team leaders on Wednesday from 12-1 on”. Representing the CS Team are
JoAnn, Ken and Bob; Matt and Ben come for the crane builders; and Jon is there to talk
about the platform.
Minutes of Sept. 22 Crane Team Leaders meeting
The items on JoAnn’s summary of the meeting are:

 •	 The CS Team will work on crane, not on the platform, this term.
 •	 In a discussion of scope of the CS Team’s part, Hank says the crane part is the “biggest,

nastiest part” and he thinks the GUI for the platform will take about an hour and is the
easiest part.

Module C Story

Figure 1. Excerpt from Module C Story, Seabase case study

EXAMPLE: THE sEAbAsE CAsE
sTUDY

We present examples of material from the “Sea-
base” case study, where Senior Design students
(called the “CS team”) worked with faculty and
students in Mechanical Engineering to develop
control software for a ship-based crane. The
communication challenges in the project were
significant: students had to learn the culture of
mechanical engineers, as well as a new program-
ming language, Matlab. As newcomers to a project
that was already underway, they had to find their
place in an established work environment that
was foreign to them.

An excerpt from the Module C story is shown in
Figure 1. The story document includes hyperlinks
to three primary sources: the meeting minutes
for the project team leaders, the risk document
of the team, and email from a project advisor in
Mechanical Engineering. The email reveals an
interesting problem for the CS team: communica-
tions from the Mechanical Engineering faculty
members that indicates differing expectations in
what the challenging aspect of the project will
be. Here, advisor Hank Taylor indicates that “the
crane [controller] part is the ‘biggest, nastiest’

part” and a side project to design a GUI for the
crane controller is “the easiest part.” In a meet-
ing one week earlier, Nancy Smith had stated the
opposite: “The GUI design is a good project for
the CS team,” and “working on only the crane
controller would be ‘too simple.’” The questions
(shown in Figure 2) and instructor notes challenge
the readers to use problem solving to resolve this
disparity.

Figure 3 includes an excerpt from the Module
E story that illustrates the notion of communica-
tion cycles. Two meetings occur in short order:
first, an informal meeting of the team in which
they prepare questions for Hank Taylor; then the
meeting with Hank. There is a three-step process,
in which the students formulate the questions,
pose them, and finally unpack the answers later
in Module F.

The Module E questions (shown in Figure
4) ask the readers to evaluate the effectiveness
of this process: to what extent the students were
able to articulate their needs and interpret Hank’s
responses. There are other links with wider scope.
For instance, after listening to the discussion of
the code from the model crane, the readers are
asked to go back to documentation of this code
that had been circulated earlier, and determine

��

Speaking of Software

 1. Can you recap the project so far?
 • What information has been conveyed?
 • What questions remain about what has to be done?
 • What would you do to answer those questions?
 2. How would you characterize the interactions among Hank, Nancy, and the team mem-

bers?
 3. It's interesting that Hank says that the “crane part” is going to be “the biggest, nastiest

part”, and that the GUI design will be easiest. On the other hand, Nancy seems to be
saying the opposite: the controller will not be very difficult, and the GUI will be more
challenging.

 • Why might they have such different opinions?
 • How can the CS team resolve this difference?
 4. The CS team attends a Team Leader meeting. What might be the value of this kind of

meeting, instead of just meeting with Hank?
 5. Critique the to-do list as given in the minutes.
 • What purpose does it serve?
 • Is there more information that you would add?
 6. Critique the risk document, in a similar fashion.

Module C Questions

Figure 2. Module C Questions, Seabase case study

On Monday, Sept. 27, the CS team holds two meetings. The first is a “brainstorming
what-to-do meeting” in the hall. Present are Ken Lundy, Bob Marin, JoAnn Durst, and
Arnie. At this meeting they try to “get our heads straight about what we're doing and
should be doing.”
Minutes of Sept. 27 CS Team brainstorming meeting
After that, they meet with Hank Taylor to go over the code from the model crane in
Albuquerque, a “code functionality meeting.”
Minutes of Sept. code functionality meeting with CS Team and Hank
At the meeting with Hank Taylor, the purpose is to go over the code from the model
crane in Albuquerque. (Listen in on the meeting as they dissect the code.)
There is also a lot of discussion about learning Matlab. (Listen to the discussion and fol-
low along with the meeting minutes.)

Module E Story

Figure 3. Excerpt from Module E Story, Seabase case study

 ��

Speaking of Software

 1. Discuss the outcome of each meeting.
 • What conclusions did they reach?
 • Could having roles (facilitator, agenda keeper, minute taker/poster, etc.) improve ef-

ficiency of meetings?
 • If so, how should these jobs be distributed?
 2. The term “big picture” arises twice: once at the brainstorming meeting, then later at

the code functionality meeting. The CS team seems to want more of a “big picture”
of the project, while (at least in the view of the CS team) Hank is encouraging them to
“leap into coding”.

 • What additional “big picture” information might Hank be able to provide? What value
(if any) would it be to the CS team?

 • What (if anything) might the students gain from “leaping into coding”?
 3. Did they resolve things they discussed at the “brainstorming meeting” by meeting with

Hank? Which things were, which were not?
 4. Look back at the “Function List.” Does it make more or less sense now, based on the

two meetings?
 5. Look back at the Risk Document from Module C.
 • Do you see any risks being played out?
 • What are the students doing to mitigate them? Is it working?
 • Are there any risks that should be added to or removed from the document?

Module E Questions

Figure 4. Module E Questions, Seabase case study

JoAnn mentions “requirements” twice in her email message:
 • She makes a request for “crane requirements”. It is interesting to look ahead and see

when these requirements materialize.
 • She makes this request so that the CS Team can write their requirements. The CS

Team seems to have taken on the job of writing their own requirements. It is not
clear who assigned them this task. It is probably worthwhile to discuss the problems
with developers writing their own requirements.

Module E Instructor Notes

Figure 5. Excerpt from Module E Instructor Notes, Seabase case study

��

Speaking of Software

Dave appoints Jacob the team-client go-between and Jacob uses e-mail to contact Fritz
about meeting with the team.

Module C Story

Figure 6. Excerpt from Module C Story, SoilSim case study

 Fritz,
 We were wondering if you could provide us with some sort of metric for
 testing, so we can verify that Soilsim is doing what it should be doing.
 Such as, if we add 10 worms to the simulation and a couple of spiders is
 the program behaving like it should be? We know how the program behaves
 in its current state, but we need some indicators to test for, to determine if it
 is behaving correctly. If you need to play around with the program a little to
 get us this information, we would be happy to meet with you and provide a
 copy of the program for you to take a look at. Let me know if you need any
 clarification on anything.
 Thank you, Jacob

 Jacob, I'd be happy to provide you that information. The best way would be
 For me to see what the program is doing now, so if we could arrange a time
 next week that would work for me. -- Fritz.

On February 22, week 7 of the 14-week semester, Fritz and the team meet for the first
time in the CS lab. This was an essential meeting for the team, markedly increasing
productivity. Following is the audio recording of the meeting, presented as a
chronological series of five clips.

whether the conversation helped to clarify the
earlier documentation. Also, at the brainstorming
meeting, it is determined that more requirements
for the mechanical crane are needed; in the Instruc-
tor Notes (an excerpt of which is shown in Figure
5), readers are asked to look ahead in the story to
discover when the requirements materialize.

EXAMPLE: THE sOILsIM CAsE
sTUDY

We turn now to the “SoilSim” case study, where
Senior Design students worked with an environ-
mental scientist at a local research laboratory, to
develop an educational simulation game about
soil ecology for grade-school students. An ex-
cerpt from Module C story is shown in Figure
6. The students in the story were continuing a
project that had been started by other students.

One student (Jacob) had done earlier work on
the game, but the other two students in the team
had to become familiar with both the basics of
soil ecology and the code left behind by earlier
teams. The team wrestled with understanding the
ecological mechanisms involved in the problem,
using documentation from earlier teams as well
as Jacob’s knowledge. Eventually, they realized
that they needed some criteria for validating their
simulation, and so turned to the scientist (Fritz).
The story includes Jacob’s email appeal for help,
and audio clips of the subsequent discussion be-
tween Fritz and the team.

The questions and instructor notes shown
in Figure 7 and Figure 8 focus on the second
audio clip. The themes of interest here are the
knowledge gap between client and developer
(mitigated somewhat by Jacob’s explanations to
his teammates) and the risk of changing client

 ��

Speaking of Software

 Clip 2
 1. Does a software engineer need to know biology in order to develop a biology-based

project?
 2. What kind of communication obstacles might develop in a cross-disciplinary team?
 3. The team has been developing the project for nearly two months, yet this is the first

time they have interacted with the client: what might be some implications?
 4. What difficulties might a development team face if the overall product vision is not

stable?
 5. How might a back-and-forth vision-development communication process work?
 6. The client has given a discipline-specific nuanced description of the C-N process, how

does this differ from the initial overview Jacob gave the team at the beginning of the
semester?

Module C Questions

Figure 7. Excerpt from Module C Questions, SoilSim case study

 Clip 2
 • The client asks the team about their biology background. They had basic biology in high

school, but that’s it. The client gives a systems analogy to assist them with a big-picture
sense of the Carbon-Nitrogen cycle. This is a good place to discuss cross-disciplinary
projects and the communication obstacles relative to such projects.

 • The client is explaining the project to this semester’s SoilSim team for the first time.
The only explanation the team had up until now is the overview Jacob gave at the
beginning of the semester. It might be interesting to compare and contrast the two
versions and to discuss the implications of each version for project development.

 • Interestingly, as the client develops his explanation of the project he seems, as well,
to be expanding on his basic vision for the project. This is a place to discuss the value
of a stable project outcomes vision and possible effects of fluctuating goals on project
development.

 • The team questions the client about the cycle and is offered a more detailed explana-
tion. This may be a place to discuss the usefulness of back-and-forth developmental
communication between the team and the client during which project vision can emerge
and eventually become stable.

Module C Instructor Notes

Figure 8. Excerpt from Module C Instructor Notes, SoilSim case study

�0

Speaking of Software

expectations (as evidenced implicitly by Fritz’s
comments during the meeting).

UsING THE CAsEs

Our case studies have been used both within our
software engineering curriculum and in a techni-
cal communication setting with a wide variety of
students. The material appears to have not only the
depth to recreate the complexity of communication
in a software project, but also the breadth to con-
nect with students outside of software engineering.
We report on our findings here.

Technical Communication

We have used the Seabase case study in an in-
terdisciplinary technical communication course
that included computer science and software
engineering students along with students ma-
joring in engineering, business, and technical
communication. The case was used over a two-
and-a-half-week unit during summer 2006 and
over a four-week unit during fall 2006. Students
worked in interdisciplinary teams, each of which
included a computer science or software engineer-
ing student. In class discussions, in memos, and
in final reports, they analyzed how the various
communication genres produced by the senior
design group (such as requirements documents,
risk documents, emails, timelines, meeting min-
utes, reports, and presentations) contributed to
action or nonaction of project stakeholders and
ultimately to the overall success or failure of
the Seabase project. For example, one in-class
exercise asked students to rewrite a set of meet-
ing minutes taken from the case after extensive
discussions about the purposes and audiences for
these documents. Similarly, in their final reports,
the teams of students not only analyzed the com-
munication-related causes of the Seabase project’s
failure but also drew on their analyses to make
recommendations that were designed to help fu-

ture senior design students and faculty improve
their communication practices. The successful use
of this case in a technical communication course
demonstrates that the lessons that it teaches about
communication and about working on interdisci-
plinary teams are applicable outside of, as well as
within, the computer science classroom.

From written student comments and the
analyses presented in their final reports, we con-
clude that students responded well to a rhetorical
approach. They came away from the case study
with a better understanding of the importance
of a rhetorical—rather than rote—approach to
problem solving and to communication cycles.
The project particularly highlighted for students
the importance of considering a document’s vari-
ous audiences—or stakeholders. In his reflections
about the project, one student wrote, “Before this
class I had simply written paper after paper without
any thought as to who was reading it aside from
the professor who assigned it. I feel that not only
did I learn how to design a paper to fit a particular
audience, I also learned to pick an audience and
the importance of doing so.”

Students particularly liked the fact that the
case included the actual documents produced by
the senior design group for the Seabase project:
they were able to see how the documents’ lack
of rhetorical awareness (attention to factors of
audience, purpose and context) significantly
contributed to the project’s ultimate failure. For
example, in one final report students observed
how the timeline produced by the CS team lacked
dates and deliverables: “The biggest problem is
that there are no dates at all on the timeline,” they
write. “The team has not worked out starting times,
durations, and, most importantly, deadlines.” The
students reading the case study concluded that
the document was produced in a rote manner, to
satisfy a course requirement — without aware-
ness that anyone would actually read it, use it,
or modify it in the future. The student readers
provided a revised timeline that included dates,
deadlines, and deliverables, and specified which

 ��

Speaking of Software

team members were responsible for which tasks.
In a related example, students observed in class
discussions how the risk document helped the
senior design group to catalogue risks to the
project as they occurred, but not to prevent or
manage them.

The case also provides an excellent opportu-
nity to encourage students to both discuss and
experience communicating with stakeholders
outside of one’s discipline. For example, profes-
sors from the Mechanical Engineering department
seemed to consistently underestimate the amount
of work that the Computer Science students will
need to put into the project. In the Module B, a
mechanical engineering professor is quoted as
saying that “working only on the crane control-
ler would be ‘too simple.’” In the next module,
which is excerpted above in Figure 1, a different
Mechanical Engineering professor gives an en-
tirely opposite opinion (that the controller will
be the hardest part). These two modules provide
an excellent opportunity to discuss not only the
importance of clarifying stakeholder roles and
adequate documentation in reconciling conflicting
claims such as these but also to discuss strategies
for communicating across disciplines.

Although student response to the case in both
the summer and fall sessions of this course was
mostly positive, there were a couple of concerns
that need to be addressed in future classes. First,
students without experience in computer sci-
ence were initially intimidated by the technical
terminology that is employed throughout the
case. Luckily, there were computer science and
software engineering students in both sections
of the course who helped to explain not only the
terminology but also the level of knowledge about
programs like Matlab that computer science stu-
dents would likely have going into the project. As
the case stands now, it would be difficult to teach
without the help of students or an instructor with
some expertise in the subject matter. As Schul-
lery (1999) observes, “cases should [ideally] be
applicable to all students in the class”. But this lack

of technical information also had the unforeseen
benefit of giving computer science and software
engineering students a chance to explain technical
information to people outside of their discipline,
a skill that will certainly come in handy as they
enter the workforce. These explanations could
be formally built into the course. (For example,
students could research an unfamiliar term and
present a short “white paper” or similar document
on the subject to the rest of the class.)

Studying the CS team’s story was itself done
in teams, which gave the case study readers a
chance to apply immediately what they learned
from analyzing the case. Some teams had to
struggle with the very communication problems
that the case highlighted — rote, formulaic ap-
proaches to document development, lack of respect
for knowledge outside of one’s discipline were
especially in evidence. In particular, students
often faced the prospect of their own skills being
undervalued, the kind of power-based intra-team
conflict described by Meyers and Larson (2005).
For instance, in her evaluation of the project, one
technical communication student wrote, “I did not
like how my team functioned. Skills possessed by
some were overlooked or not valued. The function
of my team was to ‘please the instructor’ and not
do good job working on the assignment.” This
is an issue that could be productively addressed
in future courses: for example, students could
discuss at the beginning of the project what skills
they bring to the table and could clarify their own
roles within the group.

Because much of the content of the case was
specific to computer science and software engi-
neering, some students lost interest in the case,
particularly in the fall semester when the case
took up four weeks of a fourteen-week course.
Most students, however, seemed to find the case
interesting and relevant for what it taught about
project management (and about the management
of senior design projects in particular), collabora-
tive work, and rhetorical approaches to problem
solving and to communication cycles.

��

Speaking of Software

While students in the class benefited from
the computer science and software engineering
students’ insider knowledge of the case’s subject
matter, computer science and software engineer-
ing students left the class with concrete ideas for
improving communications with stakeholders
involved in their future projects. Finally, the case
provides multiple opportunities to consider the
challenges that women involved in male-domi-
nated computer science and software engineering
projects might face—particularly, gendered as-
sumptions that women (even in leadership posi-
tions) should assume a secretarial role.

software Engineering

We use the case studies in a software engineering
course that focuses on requirements elicitation
and analysis, usability, and testing. The course is
a prerequisite for the Senior Design course and
is therefore well placed to provide instruction
on communication strategies. The curriculum
includes a team project in which students design
a prototypical user interface based on input from
real people. One of the key assessment criteria for
the project is the degree of attentiveness to their
potential users, as reflected in the prototype.

We have used the case studies as preparation
for this project; in particular, we have concentrated
on the instances of direct communication between
developer and client. The students worked both
individually and in small teams on the case study
material, both in and outside of class. One week
of lecture time was devoted to the topic. We have
evaluated the use of the Seabase case study in the
fall 2006 offering of this course, using standard
qualitative evaluation methods (Brown & Enos,
2002). Details can be found in an earlier paper
(Brady, Seigel, Vosecky, & Wallace, 2007); here
we summarize our conclusions.

Our analysis found that few students at the
time of the pre-instruction evaluation had a
concept of stakeholder that included more than

the basics of developer, client and end user. In-
deed, one of the sixteen students evaluated had
a strong reaction against broadening the notion
of stakeholder beyond “developer” and “client”.
When asked about the kinds of information that
they would want to get from stakeholders, their
answers did not extend beyond the basic notion
of a list of desired features or services. This
belies a simplistic view of clients and end users
as nothing but sources of demands, rather than
sources of useful background and prior experi-
ence. Likewise, individual students generally did
not provide many ideas for getting information
from stakeholders, though collectively there was
a wide variety.

The post-instruction evaluation indicates
that students gained a deeper awareness of the
stakeholder concept, beyond their simple notion
of “client and user”. The evaluation also reveals
a broader understanding of the issues at play
when communicating with stakeholders: moving
beyond the simple notion of “functional require-
ments” to issues of usability and project manage-
ment. Students were able to suggest a broader set
of potential methods to get information from stake-
holders—that is, they became more creative prob-
lem solvers. Finally, the evaluation indicates that
most students found their understanding of these
concepts had changed—become more “detailed,”
“increased,” become “fuller” or “broader”—as a
result of instruction in the class.

The way in which the case study material is
disclosed to the students can have profound effects
on their attitude. Since only a week was devoted
to the Seabase case, it was necessary to give the
students access to the entire story, all at once. This
particular Seabase story ends badly: the Senior
Design team was unable to produce much by the
end of the semester. (There is another case study
that follows the successful efforts of a team that
worked on Seabase one semester later.) Students
following the case were able to “jump ahead” to
the negative final results, and this clearly colored

 ��

Speaking of Software

their opinion of the team’s efforts. An easy cyni-
cism emerged, and it was difficult to elicit any
positive comments about how the Seabase project
was conducted, even though there were clearly
some good practices in place. A more effective
teaching strategy, which we intend to use in the
future, would impart the steps of the project more
gradually, temporarily hiding the outcomes from
the case study readers—just as they are hidden
from the original project participants.

FUTURE DIRECTIONs

On one level, we see several ways in which our
case study concept can be broadened and adapted
for different uses. On a higher level, we hope that
this work inspires further efforts across disciplines
to strengthen the intrinsically interdisciplinary
field of software engineering education.

Development and New Applications
of Case studies

Our case studies are publicly available, and we
hope that the instructional material (questions and
notes) surrounding them grow as more instruc-
tors use them. We hope to implement the case
studies Website as a wiki in which instructors
can contribute further questions and notes to
the case studies. Our experience shows that the
case studies also bring out issues that are not
communication-related; it would be interesting
to develop some of the other themes brought out
in the case studies.

The case studies are necessarily complex and
require time to study and understand. Currently,
students see them relatively late in their under-
graduate careers. It would be useful to introduce
some of the themes earlier in the curriculum,
but in a way that requires less of a time com-
mitment. This has led us to the idea of drawing
scenarios (Victor, 1999) from the case studies.
Victor describes scenarios as like case studies in

the level of detail and in the lack of a “specific
right answer” (100), but different in that they are
smaller in scope and do not necessarily deal with
real experiences. Our scenarios would have the
advantage of coming from real software projects,
but we would also have a certain “artistic license”
to modify the stories in order to keep them suc-
cinct. One particular extension we have in mind
is to dramatize some of the “scenes” from the
case studies and put them in video form–what
Victor calls “vignettes”. This raises the possibil-
ity of interactive video, in which students can
watch communication interchanges develop over
time, then at certain points choose from a set of
strategic options and watch the consequences of
their choices.

Involving students in Case building

One issue that must be acknowledged is the time
commitment involved in developing case studies.
To pilot the methods, graduate students gathered
material, acted as participant observers during
meetings, and conducted semi-structured inter-
views with the students and their clients. At the
end of the school year they wrote up the cases
presented here. Fortunately, the students were
funded through an NSF grant, but clearly this
kind of support is not available to everyone who
wishes to make case studies.

We have been testing procedures that will
allow us to reduce the active role of the graduate
students, thereby reducing cost and time commit-
ments. We have introduced one undergraduate
software engineering student to selected quali-
tative methods, and he has performed the actual
observations and recording, under the supervi-
sion of a graduate student. Also, now that Senior
Design students have been exposed to rhetorical
principles through the case studies, the written
reports that they produce as part of their projects
can speak more directly to the communication
issues we are interested in.

��

Speaking of Software

Interdisciplinarity: Encouraging
Further Reciprocation

Software engineering is a field that draws from a
wide range of disciplines. This project illustrates
the benefits of reaching across disciplinary bound-
aries to bring outside knowledge into the software
engineering curriculum (Brady, Johnson, &
Wallace, 2006). For several decades, academic
technical communicators have engaged in extrac-
tion and incorporation, the first stages of what
Klein calls interdisciplinary exchange (Klein,
1990). That is, they have entered other disciplines
(including software engineering), brought back
important findings, and then applied them to tech-
nical communication practices and pedagogy. The
result is a rich body of studies on communication
and collaboration in real workplaces, as well as
new ideas and best practices for interface design
and composition. Our project represents the third
stage of interdisciplinary exchange: reciprocation,
in which technical communicators “give back”,
offering the fruits of their work to improve the
field of software engineering.

To further this work and encourage others
to engage in similar interdisciplinary efforts,
we wish to build a community of software de-
velopment stakeholders—both educators and
practitioners—who understand one another’s
potential contributions and who are committed to
the principle of integrating communication edu-
cation into the software engineering curriculum.
These stakeholders can describe the problems
they encounter in teaching and employing com-
munication, and the practices that they have found
effective. Working as a group, we hope to explore
how to extend current educational practices.

ONLINE CAsE sTUDIEs

We have set up an online repository of case stud-
ies at www.speaksoft.mtu.edu/cases/. Currently
the first-semester Seabase case and the SoilSim

case are publicly available. Three more case stud-
ies will soon be added: the second (successful)
semester of the Seabase project, the Java Logic
Simulator project (interacting with a Computer
Science professor to create an educational tool for
circuit design), and the 3-D Maze project (interact-
ing with another Computer Science professor to
create a test platform for HCI research in three-
dimensional interface navigation).

ACk NOWLEDGMENT

This work has been supported by NSF Award
#CCF-0417548. We wish to thank our colleagues
who helped design and implement the case studies:
Anne Mareck, Leroy Steinbacher, Jon Woods,
and Robert Johnson. We also deeply appreciate
the participation of the Senior Design students
whose projects we documented, and the students
who used the case studies and participated in the
evaluation. Finally, we thank our reviewers for
their helpful comments.

REFERENCEs

Abran, A., Moore, J. W., Bourque, P., & Dupuis, R.
(Eds.). (2004). Guide to the Software Engineering
Body of Knowledge. IEEE Computer Society.

Agar, M. (1996). The Professional Stranger.
Academic Press.

Alred, G. J. (2006). Bridging Cultures: The
Academy and the Workplace. Journal of Business
Communication, 43, 79-88.

Blakeslee, A. M. (2001). Bridging the Workplace
and the Academy: Teaching Professional Genres
Through Classroom-Workplace Collaborations.
Technical Communication Quarterly, 10(2),
169-192.

Brady, A., Johnson, R. R., & Wallace, C. (2006).
The intersecting futures of technical communica-

 ��

Speaking of Software

tion and software engineering: Forging a multi-
disciplinary alliance. Technical Communication,
53(3).

Brady, A., Seigel, M., Vosecky, T., & Wallace,
C. (2007). Addressing Communication Issues in
Software Development: A Case Study Approach.
Paper presented at the Conference on Software
Engineering Education and Training.

Brown, S., & Enos, T. (Eds.). (2002). The Writ-
ing Program Administrator’s Resource: A Guide
to Reflective Institutional Practice. Lawrence
Erlbaum.

Christensen, C. R. (1987). Teaching and the Case
Method. Harvard Business School.

Connors, R. J. (2004). The Rise of Technical Writ-
ing Instruction in America. In J. Johnson-Eiola
& S. Selber (Eds.), Central Works in Technical
Communication (pp. 4-19). Oxford University
Press.

Curtis, B., Krasner, H., & Iscoe, N. (1988). A
Field Study of the Software Design Process for
Large Systems. Communications of the ACM,
31(11), 1268-1287.

Davis, A. (1990). Software Requirements: Objects,
Functions, and States. Prentice Hall.

Deili, M. (1988). A problem solving approach to
usability testing. Paper presented at the Interna-
tional Technical Communication Conference.

Dorn, E. M. (1999). Case Method Instruction in
the Business Writing Classroom. Business Com-
munication Quarterly, 62, 41-60.

Emerson, R. M., Fretz, R. I., & Shaw, L. L. (1995).
Writing Ethnographic Fieldnotes. University of
Chicago Press.

Flower, L. (1998). Problem Solving Strategies
for Writing in College and Community. Harcourt
Brace.

Freedman, A. (1993a). Show and Tell? The Role
of Explicit Teaching in the Learning of New
Genres. Research in the Teaching of English,
27(3), 222-251.

Freedman, A. (1993b). Show and Tell? The Role
of Explicit Teaching in the Learning of New
Genres. Research in the Teaching of English,
27(3), 222-251.

Freedman, A., Adam, C., & Smart, G. (1994).
Wearing Suits to Class: Simulating Genres and
Simulations as Genre. Written Communication,
11(2), 193-226.

Fulmer, W. E. (1992). Using Cases in Management
Development Programmes. Journal of Manage-
ment Development, 11, 33-37.

Gale, F. C. (1993). Teaching Professional Writing
Rhetorically: The Unified Case Method. Journal
of Business and Technical Communication, 7(2),
256-266.

Glass, R. L. (1998). Software Runaways: Lessons
Learned from Massive Software Project Failures.
Prentice Hall.

Hesse-Biber, S. N., & Leavy, P. (2005). Qualitative
Research Inquiry. In The Practice of Qualitative
Research. Sage.

Johnson-Eiola, J. (2001). Little Machines: Un-
derstanding Users; Understanding Interfaces.
ACM Journal of Computer Documentation, 25,
119-127.

Johnson, R. R. (1998). User-Centered Technology:
A Rhetorical Theory for Computers and Other
Mundane Artifacts. SUNY Press.

Keil, M., Cule, P. E., Lyytinen, K., & Schmidt,
R. C. (1998). A framework for identifying soft-
ware project risks. Communications of the ACM,
41(1), 76-83.

Kirsch, G., & Sullivan, P. (1992). Methods and
Methodology in Composition Research. Southern
Illinois University Press.

��

Speaking of Software

Klein, J. T. (1990). Interdisciplinarity. Wayne
University Press.

Lauer, J. M., & Asher, W. (1988). Composition
Research/Empirical Designs. Oxford University
Press.

Lave, J., & Wenger, E. (1991). Situated Learning:
Legitimate Peripheral Participation. Cambridge
University Press.

Liu, C. (2005). Using issue tracking tools to fa-
cilitate student learning of communication skills
in software engineering courses. Paper presented
at the Conference on Software Engineering Edu-
cation & Training.

Margolis, J., & Fisher, A. (2002). Unlocking the
Clubhouse: Women in Computing. MIT Press.

McMillan, W. W., & Rajaprabhakaran, S. (1999).
What leading practitioners say should be empha-
sized in students’ software engineering projects.
Paper presented at the Conference on Software
Engineering Education & Training.

Miller, C. R. (1979). A Humanistic Rationale
for Technical Writing. College English, 40, 610-
617.

Moss, B. J. (1992). Ethnography and Composi-
tion: Studying Language at Home. In G. Kirsch
& P. Sullivan (Eds.), Methods and Methodology
in Composition Research. Southern Illinois Uni-
versity Press.

Muir, C. (2004). Learning Soft Skills at Work:
An Interview with Annalee Luhman. Business
Communication Quarterly, 67(1), 99-101.

Myers, L. L., & Larson, R. S. (2005). Preparing
Students for Early Work Conflicts. Business Com-
munication Quarterly, 68, 306-317.

Pickett, J. P. (Ed.). (2004). The American Heritage
Dictionary of the English Language (4th ed.).
Houghton Mifflin.

Poole, W. G. (2003). The softer side of custom
software development: Working with the other
players. Paper presented at the Conference on
Software Engineering Education and Training.

Putnam, L. L., & Folger, J. P. (1988). Communica-
tion, Conflict, and Dispute Resolution: The Study
of Interaction and the Development of Conflict
Theory. Communication Research, 15, 349-359.

Putnam, L. L., & Poole, M. S. (1987). Conflict
and Negotiation. In F. M. Jablin, L. L. Putnam,
K. H. Roberts & L. W. Porter (Eds.), Handbook
of Organizational Communication: An Interdis-
ciplinary Perspective (pp. 549-599).

Reinsch, L. N., & Shelby, A. N. (1997). What Com-
munication Abilities Do Practitioners Need? Busi-
ness Communication Quarterly, 60(4), 7-29.

Schultz, B., & Anderson, J. (1984). Training in
the Management of Conflict: A Communication
Theory Perspective. Small Group Behavior, 15,
333-348.

Strauss, A. L., & Corbin, J. M. (1998). Basics of
Qualitative Research: Techniques and Procedures
for Developing Grounded Theory. Sage.

Sutcliffe, A. (2003). Scenario-based require-
ments engineering. Paper presented at the IEEE
International Conference on Requirements En-
gineering.

Sutcliffe, A. G., Maiden, A. M., Minocha, S., &
Manuel, D. (1988). Supporting Scenario-Based
Requirements Engineering. IEEE Transactions
on Software Engineering, 24(12), 1072-1088.

Tebeaux, E., & Killingsworth, J. M. (1992). Ex-
panding and Redirecting Historical Research in
Technical Writing: In Search of Our Past. Techni-
cal Communication Quarterly, 1(2), 5-32.

Van Maanen, J. (1988). Tales of the Field: On Writ-
ing Ethnography. University of Chicago Press.

 ��

Speaking of Software

Victor, D. A. (1999). Using Scenarios and Vi-
gnettes in Cross-Cultural Business Communi-
cation Instruction. Business Communication
Quarterly, 62(4), 99-103.

Williams, J. M., & Colomb, G. G. (1993). The
Case for Explicit Teaching: Why What You Don’t
Know Won’t Help You. Research in the Teaching
of English, 27(3), 252-264.

��

Chapter VI
Novel Methods of Incorporating

Security Requirements
Engineering into Software
Engineering Courses and

Curricula
Nancy R. Mead

Software Engineering Institute, USA

Dan Shoemaker
University of Detroit Mercy, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abs TRACT

This chapter describes methods of incorporating security requirements engineering into software engi-
neering courses and curricula. The chapter discusses the importance of security requirements engineering
and the relationship of security knowledge to general computing knowledge by comparing a security
body of knowledge to standard computing curricula. Then security requirements is related to standard
computing curricula and educational initiatives in security requirements engineering are described, with
their results. An expanded discussion of the SQUARE method in security requirements engineering case
studies is included, as well as future plans in the area. Future plans include the development and teaching
of academic course materials in security requirements engineering, which will then be made available
to educators. The authors hope that more educators will be motivated to teach security requirements
engineering in their software engineering courses and to incorporate it in their curricula.

INTRODUCTION

Exploitable defects in software pose a threat to
both our national security and our way of life.
That is because our critical infrastructure is en-

abled by information technology (PITAC, 2005).
Nevertheless, even though software plays a pivotal
role in ensuring every sector of our economy, the
President’s Information Technology Advisory
Council (PITAC) found that “commonly used

 ��

Novel Methods of Incorporating Security Requirements Engineering into Software Engineering Courses and Curricula

software engineering practices permit danger-
ous defects, which let attackers compromise
millions of computers every year” (PITAC,
2005, p. 39).

Most defects are the result of programming or
design errors (Jones, 2005). And such defects do
not have to be identified or actively exploited in
order to be a threat (Redwine, 2006). Yet, given
that unfortunate fact, PITAC still found that “cur-
rent commercial software engineering lacks the
rigorous controls needed to [ensure defect free]
products at acceptable cost” (PITAC, 2005, p.
39). And even worse, “In the future, the nation
may face even more challenging problems as ad-
versaries—both foreign and domestic—become
increasingly sophisticated in their ability to insert
malicious code into critical software” (Redwine,
2006, p. xiv).

In fiscal terms, the exploitation of defects
costs the U.S. economy an average of $60 billion
dollars per year (Newman, 2002). However, the
real concern lies in the fact that the exploitation
of a flaw in the software that underlies basic
infrastructure services like power and com-
munication could cause a significant national
disaster. The Critical Infrastructure Taskforce
sums up that likelihood in a single statement:
“The nation’s economy is increasingly dependent
on cyberspace. This has introduced unknown
interdependencies and single points of failure. A
digital disaster strikes some enterprise every day,
[and] infrastructure disruptions have cascading
impacts, multiplying their cyber and physical
effects” (Clark, 2002, p. 6).

The generally acknowledged solution to the
problem of exploitable defects is more secure
practice in every aspect of the acquisition, develop-
ment, and sustainment of software and software
artifacts. Nonetheless, “informed consumers have
growing concerns about the scarcity of practitio-
ners with requisite competencies to build secure
software” (Redwine, 2006, p. xiii).

Because of the key importance of capable prac-
titioners and the general lack of proper prepara-

tion, The National Strategy to Secure Cyberspace
– Action/ Recommendation 2-14 has mandated
the Department of Homeland Security (DHS) to
“promulgate best practices and methodologies
that promote integrity, security, and reliability in
software code development, including processes
and procedures that diminish the possibilities of
erroneous code, malicious code, or trap doors
that could be introduced during development”
(NIAC, 2003, p. 35).

It would seem to be a simple task to “identify
the necessary workforce competencies, leverage
sound practices, and guide curriculum devel-
opment for education and training relevant to
software assurance” (Redwine, 2006, p. xiv.).
However, the problem is that security is not a
mature field, and so the teaching of security
topics is done in a number of disjointed places
within higher education. That includes “software
engineering, systems engineering, information
systems security engineering, safety, security,
testing, information assurance, and project man-
agement” (Redwine, 2006, p. xiv).

Coherent knowledge about “software as-
surance processes and practices has yet to be
integrated into the body of knowledge of the
contributing disciplines” (Redwine, 2006, p. xiv).
Too often, the result of this lack of integration is
the graduation of a software engineering student
who develops buggy code with weak security
measures.

It is both impractical and impossible to sim-
ply drop the whole body of software assurance
knowledge into a traditional computer curricu-
lum. Therefore it is necessary to adopt a focused
strategy and a clear starting point. One of the
logical places to start the integration process is
in an area that is vital to good security practice,
but which is also well established and important
to general development. That is security require-
ments engineering.

�00

Novel Methods of Incorporating Security Requirements Engineering into Software Engineering Courses and Curricula

THE IMPORTANCE OF
REQUIREMENTs ENGINEERING

It is well recognized that requirements engineering
is critical to the success of any major develop-
ment project (Addison, 2000; Carr, 2000; Hecht,
2000; Mead, 2006; Palyagar, 2004b). Several
authoritative studies have shown that requirements
engineering defects cost 10 to 200 times as much
to correct once fielded than if they were detected
during requirements development (Boehm, 2001).
Other studies have shown that reworking require-
ments defects on most software development
projects costs 40 to 50 percent of total project
effort, and the percentage of defects originating
during requirements engineering is estimated at
more than 50 percent (McGibbon, 1999; Mead,
2005b). The total percentage of project budget
due to requirements defects is 25 to 40 percent
(McGibbon, 1999; Mead, 2005b).

A recent study found that the return on
investment when security analysis and secure
engineering practices are introduced early in the
development cycle ranges from 12 to 21 percent,
with the highest rate of return occurring when the
analysis is performed during application design
(Soo Hoo, 2001). Thus the costs of poor security
requirements show that even a small improvement
in this area would provide a high value. By the time
that an application is fielded and in its operational
environment, it is very difficult and expensive to
significantly improve its security.

The Problem with Developing
security Requirements

Security requirements are often identified during
the system life cycle. However, the requirements
tend to be general specifications of the functions
required, such as password protection, firewalls,
and virus detection tools. Often the security re-
quirements are developed independently of the
rest of the requirements engineering activity and
hence are not integrated into the mainstream of

the requirements activities. As a result, security
requirements that are specific to the system and
that provide for protection of essential services
and assets are often neglected.

In reviewing requirements documents, we
typically find that security requirements, when
they exist, are in a section by themselves and
have been copied from a generic set of security
requirements. The requirements elicitation and
analysis that is needed to get a better set of security
requirements seldom takes place.

Much of the study of requirements engineering
research and practice has addressed the capabili-
ties that the system will provide. So a lot of atten-
tion is given to the functionality of the system,
from the user’s perspective, but little attention is
given to what the system should not do. In one
discussion on requirements prioritization for a
specific large system, ease of use was assigned
a higher priority than security requirements. Se-
curity requirements were in the lower half of the
prioritized requirements. This occurred in part
because the only security requirements that were
considered had to do with access control.

Current research recognizes that security
requirements are negative requirements. There-
fore, general security requirements, such as “The
system shall not allow successful attacks,” are
generally not feasible because there is no consen-
sus on ways to validate them other than to apply
formal methods to the entire system, including
COTS components. We can, however, identify
the essential services and assets that must be
protected. We are able to validate that mecha-
nisms such as access control, levels of security,
backups, replication, and policy are implemented
and enforced. We can also validate that the system
will properly handle specific threats identified by
a threat model and correctly respond to intrusion
scenarios.

If security requirements are not effectively
defined, the resulting system cannot be effec-
tively evaluated for success or failure prior to
implementation. Security requirements are often

 �0�

Novel Methods of Incorporating Security Requirements Engineering into Software Engineering Courses and Curricula

missing in the requirements elicitation process
and tend to be neglected subsequently. In addition
to employing applicable software engineering
techniques, the organization must understand
how to incorporate the techniques into its existing
software development processes (Linger, 1998).
The identification of organizational mechanisms
that promote or inhibit the adoption of security
requirements elicitation can be an indicator of the
security level of the resulting product.

RELATING sECURITY
REQUIREMENTs PRACTICEs TO
CURRICULUM MODELs

Although data exists to support the benefit of
requirements engineering in general, the data
to specifically support the benefits of security
requirements engineering is anecdotal. It is gener-
ally assumed that organizations could significantly
improve the security of their systems by utilizing
a systematic approach to security requirements
engineering. Nevertheless, it was also felt that
the first step in deciding how to integrate secu-
rity requirements engineering into the bodies of
knowledge of the contributing disciplines was
to understand the precise relationship between
security requirements practices and the cur-
riculum models for each field. Thus a study was
undertaken to specifically examine how security
requirements might best fit into the curriculum
requirements of all of the traditional computer
disciplines. That effort was materially aided by
the fact that the sponsoring societies of the three
most influential areas in higher education had
just finished their own comprehensive inventory
of those curricula.

The Authoritative baseline: CC2005

That study is the Computing Curricula 2005:
The Overview Report, which is commonly
called “CC2005.” CC2005 is fully endorsed by

each of the three bodies that prepared it, which
are the ACM, the IEEE Computer Society, and
the Association for Information Systems. The
intention of CC2005 was to “offer society a
practical vision of our shared field, of the vari-
ous disciplines within it, and of the meaningful
choices that face students, educators, and their
communities. The goal of this report is to articu-
late the shared identity, the separate identities
of each” (JTCC, 2005, p. 8). In that respect,
CC2005 merges the recommendations for the
content and focus of Computer Engineering,
Computer Science, Information Systems, and
Software Engineering curricula into a single
authoritative digest.

To accomplish this, a working group of ACM,
IEEE, and AIS experts reviewed the most current
curriculum models for each of the participat-
ing disciplines. The group then “compared the
contents [specified in the five model curricula] to
one another, and synthesized what [they] believe
to be the essential descriptive and comparative
information” (JTCC, 2005, p. 5). That analysis
produced 40 topic areas. These 40 topics are
considered to be the complete set of curricular
items appropriate for all five major comput-
ing disciplines. The report specifically states
that “each one of the five discipline-specific
curricula represents the best judgment of the
relevant professional, scientific, and educational
associations and serves as a definition of what
these degree programs should be and do”(JTCC,
2005, p. 5).

In addition to the 40 topic areas, which in
effect summarize all of the knowledge input to
the teaching and learning process, CC2005 also
provides a comparative view of the capabilities
that might be expected from graduates of each
degree program (JTCC, 2005). Thus, “besides
summarizing what a student will study, [the re-
port also]…summarizes the expectations for the
student after graduation” (JTCC, 2005, p. 28). In
some respects, the 60 capability goals were the
greatest help, since they imply knowledge that

�0�

Novel Methods of Incorporating Security Requirements Engineering into Software Engineering Courses and Curricula

would be necessary to produce a properly trained
profession. By referencing those outcomes, it
was possible to map a relationship between re-
quirements of secure practice and the associated
CC2005 curricular areas. It was also easier to see
the places where essential knowledge capabilities
are missing or where there was a misalignment
between the capability areas and the aims of the
discipline.

Comparison of security k nowledge
to General Computing k nowledge

We mapped the commonly recognized elements
of secure practice to the CC2005 recommenda-
tions for three of the five disciplines (covered
by the CC2005 analysis). Because of significant
overlap with non-computing disciplines (JTCC,
2005, p.11)—computer engineering with electrical
engineering and IT with business—we omitted
the two disciplines that represent each end of the
spectrum.

Using the expedient of characterizing the
concentration of references by topic, the follow-
ing eight CC2005 topic areas had a significant
degree of required security knowledge associated
with them (> 100 references): (1) Requirements,
(2) Architecture, (3) Design, (4) Verification and
Validation, (5) Evolution (e.g., maintenance), (6)
Processes, (7) Quality, and (8) Project Manage-
ment.

Using the same criterion, the following three
CC2005 topic areas had moderate security content
requirements (< 100): (1) Legal/Professional/
Ethics/Society, (2) Risk Management, and (3)
Programming Languages. Finally, there is some
requirement for security knowledge (< 10) in each
of these thirteen areas: (1) Integrative Program-
ming (integrated), (2) Information Systems De-
velopment, (3) Complexity, (4) Human Computer
Interaction, (5) Operating Systems Principles &
Design, (6) Operating Systems Configuration &
Use, (7) Platform Technologies, (8) Algorithms,
(9) Graphics and Visualization (conceptualiza-

tion), (10) Software Modeling and Analysis, (11)
Database Practice, (12) Business Requirements,
and (13) Engineering Economics for SW.

There is no apparent relationship between se-
cure software assurance practice and (1) Manage-
ment of Information Systems Organizations, (2)
Systems Administration, (3) Systems Integration,
(4) Mathematical Foundations, (5) Interpersonal
Communication, (6) Organizational Theory, (7)
Decision Theory, (8) Organizational Behavior,
(9) Organizational Change Management, (10)
General Systems Theory, (11) Business Models,
and (12) Functional Business Areas.

In general these findings are no surprise, since
the aim of any form of security is to foster secure
practice in the development of software. Given
that aim, the concentration of recommendations
on the primary and supporting processes of the
software life cycle and on project management
should be expected. For the same reason, the areas
of moderate coverage also contain no surprises
except for the emphasis on the legal/profes-
sional/ethical and social aspects. The focus on
knowledge in those areas might be indicative
of the growing awareness that software vulner-
abilities carry significant legal, social, and ethical
implications.

The areas of “little” or “no” coverage tend
to be the curricular elements that are particular
to the specific disciplines in CC2005, computer
science, software engineering and information
systems. That tends to reinforce the conclusion
that the main focus for security education ought
to be on instilling best practice in software work
rather than within the various academic studies
of computing. Whether that implies a need for
the further development of security knowledge
is a matter of conjecture outside of the goals of
our research. However, it does point to the fact
that the current security knowledge would be
best integrated into the places in each discipline
where the elements of the software life cycle are
introduced. In many higher education applica-

 �0�

Novel Methods of Incorporating Security Requirements Engineering into Software Engineering Courses and Curricula

tions, those would be called the “core” areas
rather than electives.

Another Way To Look at It: The
Fit Between Security and Desired
Outcomes

One of the more interesting aspects of the CC2005
report is the ranking by discipline of 60 funda-
mental competencies that might be expected of
a computer graduate. The list is exhaustive, and
because there is a difference in the type of em-
ployment for each discipline, there is a difference
in what is expected. Thus there is a different set
of presumed outcomes for computer scientists,
software engineers, and IS workers. Nevertheless,
one of the best ways of evaluating the useful-
ness and current application of the requirements
of secure practice is to see just how well those
match with the priority learning outcomes for
each discipline.

The 60 expected capabilities are the direct
consequence of the 40 learning topics. Therefore
each outcome was parsed to determine which of
the 40 topics could be specifically associated with
it. Then, once the number of related topics was
determined, the total references for each topic
were compiled for the outcome.

For instance, if the outcome was to “design a
user friendly interface,” there are 255 common
security topics associated with “design” and five
references to “human/computer interfaces.” That
is the limit of topics that could reasonably be as-
sociated with interface design, and so the total
number of security references for this outcome is
260. Since that is somewhere between moderate
and good coverage based on the average number
of references per topic, it might be said that there is
a reasonable level of security knowledge involved
in proper interface design.

Because employment expectations are differ-
ent, each discipline within the CC2005 report had a
different set of priority capabilities associated with
it. Thus the capability requirements are different,

in the sense that each discipline assigns a different
level of importance to each of the 60 outcomes.
The CC2005 report uses six levels of importance
to characterize potential expectations: “highest
possible expectations,” “highest expectations,”
“moderate expectations,” “low expectations,”
“little expectations,” and “no expectations.”

We arrayed the desired outcomes for computer
science, information systems, and software en-
gineering into a single table and compared the
relative level of outcome expectations for each.
Not surprisingly, we found that the priority for the
sixty outcomes is different for computer science,
information systems, and software engineering
work. Specifically, we found that secure software
practice topics fit best with software engineer-
ing curricula and least with curricula associated
with computer science programs. That is not
surprising, since the intent of secure practice is
to specify knowledge that practitioners can apply
to real-world problems, and software engineering
is probably the best aligned of the academic disci-
plines to that objective. The fact that information
systems programs, which are also practitioner
based, tend to score closer to software engineering
in their relationship to secure practice reinforces
this opinion.

Thus it would appear that the focus of secure
practice is less academic than it is practitioner
leaning. What that indicates is that it would
be easier to introduce the current content into
programs that are focused on applications and
methods than ones in which principles and math-
ematical representation are the primary curricular
focus. One other observation is that, although the
“moderate expectations” category does not reflect
priority areas of study in all of these disciplines,
it is overwhelmingly the best aligned category for
each discipline. What that might indicate is that,
although secure software assurance is a legitimate
area of study for all of these fields, it is not the
highest priority in any of them. Only in the case of
software engineering, whose curricular structure
is life cycle based, is there consistent alignment

�0�

Novel Methods of Incorporating Security Requirements Engineering into Software Engineering Courses and Curricula

above a moderate level of expectation between
curricular outcomes and the knowledge elements
associated with secure practice.

In terms of implementation, in each of these
curricula, the practitioner orientation and the
fact that security content is not the point of the
field tends to indicate that the courses in which
secure practice content would be most easily
integrated would be those that are designed to
provide students with knowledge about specific
life cycle activities such as specification, design,
and testing and assurance.

As a final note, the measurement process
used in this study (a raw count) is inherently less
accurate than expert contextual analysis of the
meaning of each knowledge element. Therefore a
more rigorous comparison should be undertaken
to better characterize the functional relationship
between the items in the CBK and the various
curricular standards.

INCORPORATING sECURITY
REQUIREMENTs ENGINEERING
INTO MAINsTREAM ACADEMIA

Once we had better understood the relationship
between the complete body of knowledge in
security and the curricular recommendations
for all computing disciplines, we were ready to
tackle the question of how security requirements
engineering is best presented in an academic
setting.

The typical undergraduate curriculum does not
provide much room for the addition of security
requirements engineering practices other than as
part of a project course that includes security re-
quirements. There are, however, a number of ways
that security requirements engineering methods
could be incorporated into a software engineer-
ing curriculum (Mead, 2006). If an undergradu-
ate project included requirements development,
the students could be given an assignment to
identify (and implement) security requirements

along with other more traditional requirements.
This would occur in the early part of the project.
Alternatively, if the students did not develop the
project’s requirements, they could still be asked
to recommend security requirements.

At the graduate (master’s) level, it is much
easier to see how security requirements might
be addressed. This material could be part of a
requirements course or a course on development
of secure systems, with several lectures and an
exercise or case study on security requirements.
In a graduate level project course, the students
would typically be developing requirements rather
than developing software based on pre-existing
requirements, so there would be opportunity to
insert this methodology in such a course. In that
instance the students would apply a method such as
SQUARE as part of their requirements gathering
process, and the instructor could grade the students
on the quality of the security requirements and
on the success of the implementation.

Another possibility is to incorporate the
material into a course that is part of a security
specialty within a graduate level program in
software engineering or information systems.
Typically there are several courses on informa-
tion security, at least one of which deals with the
development of secure software. Discussion of
security requirements engineering could fit into
a series of lectures and case studies. Eventually
a half-semester or full-semester course could be
devoted to security requirements engineering.
This would also allow for a comparative study of
various techniques that have been developed to
support security requirements engineering.

security Requirements Engineering
Techniques

A report by Mead et al., which focuses on surviv-
able requirements engineering, describes several
requirements engineering techniques (Mead,
2003). In the course of assembling an elicitation
framework and applying it to a software devel-

 �0�

Novel Methods of Incorporating Security Requirements Engineering into Software Engineering Courses and Curricula

opment effort, several effective approaches to
security requirements engineering were identi-
fied, including

•	 Comprehensive, Lightweight Application
Security Process—CLASP—is an activity-
driven, role-based set of process components
guided by formalized best practices. CLASP
is designed to help software development
teams build security into the early stages
of existing and new-start software develop-
ment life cycles in a structured, repeatable,
and measurable way. CLASP is based on
extensive field work by Secure Software
employees in which the system resources
of many development life cycles were de-
composed to create a comprehensive set
of security requirements. These resulting
requirements form the basis of CLASP’s Best
Practices, which can enable organizations
to systematically address vulnerabilities
that, if exploited, can result in the failure of
basic security services (e.g., confidentiality,
authentication, and authorization). [http://
www.owasp.org/index.php/Category:
OWASP_CLASP_Project]

•	 Security Quality Requirements Engineering
(SQUARE). This is a process aimed specifi-
cally at security requirements engineering. It
is described in detail later in this chapter.

•	 Core security requirements artifacts (Mof-
fett, 2004). This approach takes an artifact
view and starts with the artifacts that are
needed to achieve better security require-
ments. It provides a framework that includes
both traditional requirements engineering
approaches to functional requirements and
an approach to security requirements engi-
neering that focuses on assets and harm to
those assets. “From requirements engineer-
ing it takes the concept of functional goals,
which are operationalised into functional
requirements, with appropriate constraints.
From security engineering it takes the con-

cept of assets, together with threats of harm
to those assets. Security goals aim to protect
from those threats, and are operationalised
into security requirements, which take the
form of constraints on the functional require-
ments.”

•	 Misuse/abuse cases. A security “misuse”
case (Sindre, 2000; Alexander, 2003), a
variation on a use case, is used to describe
a scenario from the point of view of the at-
tacker. Since use cases have proven useful
in documenting normal use scenarios, they
can also be used to document intruder usage
scenarios, and ultimately to identify security
requirements or security use cases. A similar
concept has been described as an “abuse”
case. One obvious application of a misuse
case is in eliciting requirements. Since use
cases are used successfully for eliciting
requirements, it follows that misuse cases
can be used to identify potential threats
and to elicit security requirements. In this
application, the traditional user interaction
with the system is diagrammed simultane-
ously with the hostile user’s interactions.

Another useful technique is attack trees for
security requirements engineering (Ellison,
2003). Formal specification approaches to se-
curity requirements, such as Software Cost
Reduction (SCR) (Heitmeyer, 2000) have also
been useful.

INTEGRATING sECURITY
REQUIREMENTs INTO sTANDARD
CURRICULA

A number of approaches can be used for integrat-
ing security requirements into standard curricula.
At the National Institute of Informatics in Japan,
the Top SE program [Honiden, 2007] includes
security requirements engineering as part of
its curriculum. The Top SE program includes

�0�

Novel Methods of Incorporating Security Requirements Engineering into Software Engineering Courses and Curricula

discussion of misuse cases, TROPOS (Giorgini,
2007), and goal-driven requirements engineering
(KAOS) (De Landtsheer, 2005). In addition there
is a case study based on the Common Criteria.

Case studies for security requirements engi-
neering and security engineering in general have
been used at the International Institute of Infor-
mation Technology, Hyderabad (Garg, 2006) as a
means of bridging the industry/university gap.

The Networked Systems and Survivability
(NSS) program at the Software Engineering
Institute has, over three academic semesters,
experimented with a novel technique to educate
students on the development of security require-
ments engineering for software systems (Mead,
2006). In three separate course projects, thirteen
students gained hands-on experience through case
studies involving real-world software develop-
ment projects. We present an expanded discussion
of these case studies below.

A set of academic lectures has also been
developed by the SEI for security requirements
engineering and SQUARE. These are being pi-
loted at University of Detroit Mercy and will be
refined and made available to interested faculty
elsewhere.

sQUARE CAsE sTUDIEs

Using the Security Quality Requirements Engi-
neering methodology (Mead, 2005a), the students
were able to understand the importance of security
requirements in software systems, as well as to
improve the security foundation of the client
projects with which they worked. In each study,
the students were graduate students at Carnegie
Mellon University. All were enrolled in an infor-
mation security oriented curriculum, although
their primary focus varied between security
technology and information security policy.

Case study selection Process

The case study clients included industry and
government projects. Specifically they included
small to medium-size companies in the Pittsburgh
area, a Department of Homeland Security project,
and a Department of Defense project. Some of
the considerations in project selection were (1)
the ability to get access to key stakeholders in
the organization, (2) projects that were a reason-
able size for a one-semester project for a team of
three to five students, (3) projects that were either
new or major upgrades, although we did do some
retrogressive analysis of existing projects, and (4)
projects with a significant software development
component. Note that clients were often concerned
about the amount of time this would take, so we
needed to be very sensitive to the need to man-
age meeting time and other client interactions.
We also worked with a single point of contact on
the client end so that we were not perceived as
making constant demands on the time of large
groups of staff members. We typically started
with an overview briefing of the SQUARE pro-
cess, identified key client participants, and then
limited our interactions to only those participants
until we were ready to report results.

Overview of the sQUARE Process

Security Quality Requirements Engineering is a
model developed at Carnegie Mellon University
by Nancy Mead of the Software Engineering
Institute. The motivation behind SQUARE is to
see whether good requirements engineering pro-
cesses can be adapted specifically to the problem
of identifying security requirements. If this can
be done successfully, organizations will have the
ability to identify security requirements up front
rather than as an afterthought. The SQUARE
process provides a means for eliciting, categoriz-
ing, and prioritizing security requirements for
information technology systems and applications.
Note that while there is nothing unique about the

 �0�

Novel Methods of Incorporating Security Requirements Engineering into Software Engineering Courses and Curricula

steps in the process, which have existed for many
years in requirements engineering, we have seen
relatively little evidence of their application to
security requirements and even less on whether
such a process is successful for developing security
requirements.

Many of the existing methods that were
described earlier fit nicely into the SQUARE
process. These include misuse and abuse cases,
attack trees, and formal methods. Others, such as
the Common Criteria and SCR, suggest their own
requirements engineering process. The SQUARE
methodology seeks to build security concepts into
the early stages of the development life cycle. The
model may also be useful for documenting and
analyzing the security aspects of fielded systems
and could be used to steer future improvements
and modifications to these systems.

The process is best applied by the project’s
requirements engineers and security experts in
the context of supportive executive management
and stakeholders. We believe the process works
best when elicitation occurs after risk assessment
(Step 4) has been done and when security require-
ments are specified prior to critical architecture
and design decisions. Thus, critical business
risks will be considered in the development of
the security requirements.

The SQUARE steps are summarized below.
A detailed discussion of SQUARE and how to
apply it can be found in (Mead, 2005a).

Step 1: Agree on definitions
Input: Candidate definitions from IEEE and other
standards

Techniques: Structured interviews, focus group
Participants: Stakeholders, requirements team

Output: Agreed-to definitions

Step 2: Identify security goals

Input: Definitions, candidate goals, business driv-
ers, policies and procedures, examples

Techniques: Facilitated work session, surveys,
interviews

Participants: Stakeholders, requirements engi-
neer

Output: Goals

Step 3: Develop artifacts to support security
requirements definition

Input: Potential artifacts (e.g., scenarios, misuse
cases, templates, forms)

Techniques: Work session

Participants: Requirements engineer

Output: Needed artifacts: scenarios, misuse cases,
models, templates, forms

Step 4: Perform risk assessment

Input: Misuse cases, scenarios, security goals

Techniques: Risk assessment method, analysis
of anticipated risk against organizational risk
tolerance, including threat analysis

Participants: Requirements engineer, risk expert,
stakeholders

Output: Risk assessment results

Step 5: Select elicitation techniques

Input: Goals, definitions, candidate techniques,
expertise of stakeholders, organizational style,

�0�

Novel Methods of Incorporating Security Requirements Engineering into Software Engineering Courses and Curricula

culture, level of security needed, cost/benefit
analysis, etc.

Techniques: Work session

Participants: Requirements engineer

Output: Selected elicitation techniques

Step 6: Elicit security requirements

Input: Artifacts, risk assessment results, selected
techniques

Techniques: Accelerated Requirements Method
(ARM), Joint Application Development (JAD),
interviews, surveys, model-based analysis,
checklists, lists of reusable requirements types,
document reviews

Participants: Stakeholders facilitated by require-
ments engineer

Output: Initial cut at security requirements

Step 7: Categorize requirements as to level
(system, software, etc.) and whether they are
requirements or other kinds of constraints

Input: Initial requirements, architecture

Techniques: Work session using a standard set
of categories

Participants: Requirements engineer, other spe-
cialists as needed

Output: Categorized requirements

Step 8: Prioritize requirements

Input: Categorized requirements and risk assess-
ment results

Techniques: Prioritization methods such as AHP,
Triage, Win-Win, etc.

Participants: Stakeholders facilitated by require-
ments engineer

Output: Prioritized requirements

Step 9: Requirements inspection

Input: Prioritized requirements, candidate formal
inspection technique

Techniques: Inspection method such as Fagan,
peer reviews, etc.

Participants: Inspection team

Output: Initial selected requirements, documenta-
tion of decision-making process and rationale

Novel Aspects of SQUARE Case
Studies as a Learning Vehicle

In our academic case studies (Mead, 2006), the
students had a variety of backgrounds. Some had
a background in security and some had a back-
ground in software engineering or information
technology. However, none of the students had
experience in eliciting and documenting security
requirements for software systems. It is also the
case that they did not have experience working
with methods, such as SQUARE, that were un-
der development. The students therefore had to
develop two products to complete their course
requirements: (1) a document that was delivered
to the client proposing security requirements and
supporting artifacts for the client’s project and (2)
a process document delivered only to the faculty
advisor. This second document described how
the students went about applying each step in the
process, whether it was easy or difficult to apply,
and how it could be improved on. In other words,
they were responsible for providing feedback to

 �0�

Novel Methods of Incorporating Security Requirements Engineering into Software Engineering Courses and Curricula

both the client and the faculty advisor for the
purpose of improving the SQUARE process. To
that end, the project provided them with a unique
learning opportunity.

Evaluating the Work of the Students

It’s always a challenge to find fair ways of evalu-
ating the work of students who are working as a
team but receive individual grades. The grading
criteria that were used for the case study projects
were as follows:

Client Satisfaction (25%)

•	 Quality of deliverables—reports, presenta-
tions, software, demonstrations.

•	 Significance of the team accomplishments.
•	 Quality of interactions with the client.
•	 How well client expectations were met.
•	 Effectiveness in solving the client’s prob-

lem.
•	 Transparency—how easily the work prod-

ucts are understood.
•	 Ease of use and/or implementation of the

work products.

Peer Evaluation (25%)

•	 Extent to which peers (team members) con-
tributed to the overall project.

•	 Peer expectation management. (Did each
team member meet the expectations of
the team as a whole? Was the team kept
informed? Did each team member share the
workload? Was assistance provided to other
team members?)

•	 “Free riding.” (An individual team mem-
ber who does not deliver work products
as expected by the team or who does not
participate in team activities will receive a
measurably lower grade.)

Quality of the Deliverables—Reports, Pre-
sentations (30%)

•	 Significance of the accomplishments of the
team.

•	 Creativity and elegance in the final product
as delivered.

•	 Reports and presentations of high quality.
•	 Completeness of the final deliverables; all

deliverables delivered as required.
•	 Adherence to the project plan as modified

during the term.
•	 Proactively taking measures to ensure that

the project is on track.
•	 Prompt submissions of weekly individual

project status reports.

Project Management/Teamwork/etc. (15%)

•	 Advisor expectation management. (Was the
faculty advisor kept informed? Were sched-
uled meetings and telecoms attended?)

•	 Client expectation management. (How well
did the team manage the expectations of the
client?)

•	 Team cohesion. (Did the team work together
effectively? Did the team work to bring along
the weaker members of the team? Did the
team perform as a unit in public?)

•	 Communication and coordination. (Were
communications made promptly and ef-
fectively?)

Other factors (5%)

•	 Personal growth of the team member.
•	 Extent to which the project fulfilled expecta-

tions of the MISM Program.
•	 Effort invested.

Students who met requirements—completed
the work assigned to them, delivered acceptable
products, participated in team meetings, advisor
meetings, and client meetings, and received ac-

��0

Novel Methods of Incorporating Security Requirements Engineering into Software Engineering Courses and Curricula

ceptable peer reviews—could expect to earn a B.
Students who made less contribution than this, in
terms of effort expended, failure to attend meet-
ings, failure to deliver work products as promised,
or inability to do the technical work, received a
lower grade. Students who made a greater tech-
nical contribution to the accomplishments of the
team, delivered superior products, took on extra
work, and contributed constructively to meetings
and to team interactions got a higher grade.

Assessment of the Bene.ts of This
Approach

At present, we have only qualitative data con-
firming that the SQUARE approach is beneficial.
Many of the students have gone on to positions
in the security field and have indicated that the
case study work was very useful to them. Here
are comments from two students that we have
stayed in touch with.

Hassan is with Ernst & Young: “The real-world
experience I gained from the SQUARE project
gave me the perfect set of information security
project management and budgeting skills that were
invaluable in my job at Ernst & Young.”

Eric is working as a software engineer with
the Space and Naval Warfare Systems Center
(SPAWAR), San Diego: “While working on the
SQUARE project with Dr. Mead, I took part in
several in-depth case studies involving organi-
zations of varying size and reputation. It was a
wonderful opportunity to get a feel for how real
companies develop and manage large IT proj-
ects. This insight, along with the security focus
of SQUARE, allowed me to hit the ground run-
ning here at SPAWAR with the security projects
we’re developing. Overall it was an extremely
valuable experience and I’m grateful that I was
involved.”

Also, we received the following testimonial
from a client that was a subject of the study: “Our
company operates in a lean, fast-paced, ever-
changing environment, and I had some reserva-

tions as to how much time we could spend in ac-
commodating the CMU graduate students’ project
goals and their busy schedules. I was impressed
with how well we coordinated efforts in setting
meeting dates, adhering to the schedule, and shar-
ing information with minimal inconvenience to
either side. Our company provided them with an
opportunity to assess a many-faceted product, and
they responded graciously by sharing the differ-
ent techniques they used to analyze the security
aspects of our application. Their results gave us
insight that has since influenced our application
development and configuration. It was a pleasure
working with the three separate groups and their
sponsor over the two-year period.”

FUTURE PLANs

At present we are piloting workshop and academic
course materials for security requirements engi-
neering. This material will be made available to
educators who wish to incorporate such topics
into software engineering courses. In addition,
we are doing further study of the coverage of the
software assurance body of knowledge in standard
software engineering curricula. As experience
with these approaches grows, our plans include
the gathering of more quantitative data to show
the benefit of the approaches we have discussed
here. It is our hope that in the future there will
be more synergy between software assurance and
software engineering education.

REFERENCEs

Addison, T., & Vallabh, S. (2000). Controlling
Software Project Risks – an Empirical Study of
Methods Used by Experienced Project Manag-
ers. KPMG.

Alexander, I. (2003). Misuse cases: Use cases with
hostile intent. IEEE Software, 20(1), 58-66.

 ���

Novel Methods of Incorporating Security Requirements Engineering into Software Engineering Courses and Curricula

Benzel, T. (1989). Integrating security require-
ments and software development standards.
In Proceedings of the 12th National Computer
Security Conference (pp. 435-458). Fort Meade,
MD: National Computer Security Center.

Boehm, B., & Basili, V. (2001). Software defect
reduction – Top 10 list. IEEE Computer, 34(1),
135-137.

Carr, J. J. (2000). Requirements engineering
and management: The key to designing quality
complex systems. The TQM Magazine, 12(6),
400-407.

Clark, R. A., & Schmidt, H. A. (2002). A national
strategy to secure cyberspace. Washington, DC:
The President’s Critical Infrastructure Protection
Board.

De Landtsheer, R., & van Lamsweerde, A. (2005).
Reasoning about confidentiality at requirements
engineering time. In Proceedings of the 10th
European Software Engineering Conference held
jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineer-
ing (pp. 41-49). New York, NY: ACM.

Ellison, R. J., & Moore, A. P. (2003). Trustworthy
refinement through intrusion-aware design (Tech.
Rep. No. CMU/SEI-2003-TR-002). Pittsburgh,
PA: Software Engineering Institute, Carnegie
Mellon University. Retrieved November 1, 2007
from http://www.sei.cmu.edu/publications/docu-
ments/03.reports/03tr002.html

Garg, K., & Varma, V. (2006). Security: Bridging
the academia-industry gap using a case study. In
XIII Asia Pacific Software Engineering Confer-
ence Proceedings (pp. 485-492). New York, NY:
IEEE Computer Society Press.

Giorgini, P., Mouratidis, H., & Zannone, N. (2007).
Modelling Security and Trust with Secure Tropos.
Integrating Security and Software Engineering:
Advances and Future Visions, 160-189. Hershey,
PA: IGI Global.

Hecht, H., & Hecht, M. (2000). How reliable are
requirements for reliable software? Software
Tech News, 3(4). Retrieved May 31, 2007 from
http://www.softwaretechnews.com

Heitmeyer, C., & Bharadwaj, R. (2000). Applying
the SCR requirements method to the light control
case study. Journal of Universal Computer Sci-
ence, 6(7), 650-678.

Honiden, S., Tahara, Y., Yoshioka, N., Taguchi,
K., & Washizaki, H. (2007). Top SE: Educating
superarchitects who can apply software engineer-
ing tools to practical development in Japan. In
Proceedings of 29th International Conference on
Software Engineering (ICSE’07) (pp. 708-718).
New York, NY: IEEE Computer Society.

Joint Taskforce for Computing Curricula (JTCC)
2004. (2004). Software Engineering 2004: Cur-
ricular Guidelines for Undergraduate Programs
in Software Engineering. New York, NY: ACM
and IEEE.

Joint Taskforce for Computing Curricula (JTCC)
2005. (2005). Computing curricula 2005: The
overview report. New York, NY: ACM and
IEEE.

Jones, C. (2005). Software quality in 2005: A
survey of the state of the art. Marlborough, MA:
Software Productivity Research.

Konieczka, S. (2003). Predictable releases: The
key to quality software. Boulder, CO: SCM Labs,
Inc. Retrieved November 1, 2007 from http://www.
stickyminds.com/

Kuehl, C. S. (2001, October). Improving system
requirements quality through application of an
operational concept process: An essential element
in system sustainment. Paper presented at NDIA
4th Annual Systems Engineering Conference,
Dallas, TX. Retrieved November 2, 2007 from
http://www.dtic.mil/ndia

���

Novel Methods of Incorporating Security Requirements Engineering into Software Engineering Courses and Curricula

Kumar, R. L. (2002). Managing risks in IT projects:
An options perspective. Information & Manage-
ment, 40(1), 63-74.

Lauesen, S., & Vinter, O. (2001). Preventing
requirement defects: An experiment in process
improvement. Requirements Engineering, 6(1),
37-50.

Linger, R. C., Mead, N. R., & Lipson, H. F. (1998).
Requirements definition for survivable systems. In
Third International Conference on Requirements
Engineering (pp. 14-23). Los Alamitos, CA: IEEE
Computer Society.

McGibbon, T. (1999). A business case for soft-
ware process improvement revised. Washington,
DC: DoD Data Analysis Center for Software
(DACS).

Mead, N. R. (2003) Requirements Engineering
for Survivable Systems (Tech. Rep. No. CMU/
SEI-2003-TN-013). Pittsburgh, PA: Software En-
gineering Institute, Carnegie Mellon University.
Retrieved November 2, 2007 from http://www.
sei.cmu.edu/publications/documents/03.reports
/03tn013.html

Mead, N. R., Hough, E. D., & Stehney, T. R. II.
(2005a). Security quality requirements (SQUARE)
methodology (Tech. Rep. No. CMU/SEI-2005-
TR-009). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University. Retrieved
November 2, 2007 from http://www.sei.cmu.
edu/publications/documents/05.reports/05tr009.
html

Mead, N. R., & Stehney, T. R. II. (2005b, May).
Security quality requirements engineering
(SQUARE) methodology. Paper presented at the
meeting of the Software Engineering for Secure
Systems (SESS05), ICSE 2005 International
Workshop on Requirements for High Assurance
Systems, St. Louis, MO.

Mead, N. R., & Hough, E. D. (2006). Security
requirements engineering for software systems:

Case studies in support of software engineering
education. In Proceedings of the 19th Conference
on Software Engineering Education and Training
(pp. 149-158). Los Alamitos, CA: IEEE Computer
Society Press.

Moffett, J. D., Haley, C. B., & Nuseibeh, B. (2004).
Core Security Requirements Artefacts (Technical
Report 2004/23, ISSN 1744-1986). UK: The Open
University. Retrieved November 2, 2007 from
http://mcs.open.ac.uk/computing-tr/

National Infrastructure Advisory Council
(NIAC). (2003). National strategy to secure cy-
berspace. Washington, DC: U.S. Department of
Homeland Security.

Newman, Michael. (2002). Software errors cost
U.S. economy $59.5 billion annually. Gaithers-
burg, MD: National Institute of Standards and
Technology (NIST).

Palyagar, B. (2004). Measuring and influencing
requirements engineering process quality. In Pro-
ceedings of AWRE 04, 9th Australian Workshop on
Requirements Engineering. Retrieved November
2, 2007 from http://awre2004.cis.unisa.edu.au/

Palyagar, B. (2004). A framework for validating
process improvements in requirements engineer-
ing. Retrieved November 2, 2007 from http://www.
ics.mq.edu.au/~bpalyaga/papers/palyagar_b.pdf

President’s Information Technology Advisory
Committee (PITAC). (2005). Cybersecurity: A
crisis of prioritization. Arlington, VA: Executive
Office of the President, National Coordination
Office for Information Technology Research and
Development.

Redwine, S. T. (Ed.). (2006). Software assurance:
A guide to the common body of knowledge to
produce, acquire and sustain secure software,
version 1.1. Washington, DC: U.S. Department
of Homeland Security

Regnell, B., & Beremark, P. (1998). A market
driven requirements engineering process – Results

 ���

Novel Methods of Incorporating Security Requirements Engineering into Software Engineering Courses and Curricula

from industrial process improvement program.
Retrieved November 2, 2007 from http://www.
tts.lth.se/Personal/bjornr/Papers/CEIRE98-REJ.
pdf

Sawyer, P., Sommerville, I., & Viller, S. (1997).
Requirements process improvement through the
phased introduction of good practice. Software
Process Improvement and Practice, 3(1), 19-34.

Shoemaker, D., Mead, N. R., Drommi, A., Bailey,
J., & Ingalsbe, J. (2007). SWABOK’s fit to common
curricular standards. In Proceedings of the 20th
Conference on Software Engineering Education

and Training. Los Alamitos, CA: IEEE Computer
Society Press.

Sindre, G., & Opdahl, A. (2000). Eliciting security
requirements by misuse cases. In Proceedings of
TOOLS Pacific 2000 (pp. 120-130). Los Alamitos,
CA: IEEE Computer Society Press.

Soo Hoo, K., Sudbury, A. W., & Jaquith, A. R.
(2001). Tangible ROI through secure software
engineering. Secure Business Quarterly, 1.

Zave, P. (1997). Classification of research efforts
in RE. ACM Computer Surveys, 29(4), 315-321.

Section IV
Project-Based

Software Engineering

 ���

INTRODUCTION

Students must emerge from a “write-a-program-
get-a-grade” mentality to a “follow-a-process-pro-
duce-a-deliverable” mentality (and eventually to
“use-and-improve-processes-to-solve-customer-
problems”). This evolution from learner to prac-
titioner is a cultural mindset even at the personal

level. Junior professionals are confronted with
real-world situations immediately after graduat-
ing and entering the workforce. Professionalism
challenges junior engineers in a different way
than academic ethics. Junior professionals can
gain professionalism through formal and informal
mentoring relationships in professional settings
such as internships, but we should not rely solely

Chapter VII
The Software Enterprise:

Preparing Industry-Ready
Software Engineers

Kevin A. Gary
Arizona State University, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abs TRACT

“You can’t teach experience” – but you can sure try. At the Polytechnic Campus of Arizona State Uni-
versity, we are developing a learning-by-doing approach for teaching software engineering called the
Software Enterprise. The Capstone experience is extended to two one-year projects and serves as the
primary teaching and learning vehicle for best practices in software engineering. Several process features
are introduced in an attempt to make projects, or more importantly the experience gained from project
work, more applicable to industry expectations. At the conclusion of the Software Enterprise students
have an applied understanding of how to leverage software process as a tool for successful project evo-
lution. This chapter presents the Software Enterprise, focusing the presentation on three novel aspects:
a highly iterative, learner-centered pedagogical model, cross-year mentoring, and multiple projects as
a novel means of sequencing learning objectives.

���

The Software Enterprise

on industry to accept this burden; we must incor-
porate it into the learning environment.

The Software Enterprise, introduced four
years ago in the Division of Computing Stud-
ies at Arizona State University’s Polytechnic
campus (ASU Poly), is our attempt at preparing
new graduates for the software profession. In the
model of a polytechnic, an increased emphasis is
placed on hands-on practice over pure scientific
study. The mechanism chosen for this approach is
the Capstone project, which traditionally focuses
on one or two semester projects required at the
conclusion of the undergraduate degree program.
The Capstone project, an inherited requirement
from engineering disciplines, is often considered
more a “rite of passage” than a teaching and
learning opportunity. We contend the Capstone
experience provides a great opportunity to be the
primary teaching and learning model in software
engineering. Our solution is a learn-by-doing
model called the Software Enterprise.

The Software Enterprise is one part “evolution”
and one part “revolution.” It leverages some of
the better practices we have seen from the mul-
titude of Capstone software engineering projects
published over the past decade. In particular,
mentoring relationships within student teams are
emphasized, as is a careful sequencing of course
and project topics. The Software Enterprise also
presents a novel pedagogical model geared to
accelerate students’ comprehension of software
engineering. This combination of old and new is
wrapped in an applied learning program so as
to better prepare new graduates for the software
engineering profession.

This chapter is organized as follows. The next
section motivates the need for the Enterprise by
discussing some perceived shortcomings of new
computing graduates. The pedagogical innova-
tion of the Enterprise is presented next, followed
by a detailed description of how the pedagogy
is implemented at ASU Poly. We conclude with
an ongoing evaluation of the Enterprise and a
summary.

bACk GROUND AND MOTIVATION

Software engineer ranks as one of the fastest grow-
ing occupations (U.S. BLS, 2007) with the highest
median salary (Morsch, 2006). Unfortunately,
many employers consider new graduates unpro-
ductive, while at the same time those graduates feel
unprepared for that first job. Traditional computer
science education is criticized as outdated, too
theoretical, and too fractured. As educators, we
should do a better job preparing new graduates
for what lies ahead. We should expose students to
the true nature of today’s computing challenges,
strive to ground students in fundamental theory,
and provide them the modern tools a modern
discipline requires.

The Software Enterprise uses a bottom-up ap-
proach to incorporating process best practices and
process models via a multi-year Capstone experi-
ence. Example best practices include configuration
management, unit testing, and code inspections
for software development. By software process
models we mean the incorporation of accepted
process models as a mechanism for teaching and
learning software construction, maintenance, and
project management. The ability to identify issues,
analyze risks, debate, create consensus, and work
within a team are examples of managerial skills
software engineers require perhaps more than
other engineering disciplines due to the unique
challenges in developing software products. We
also contend there is more in the intersection of
emphasizing process execution and project man-
agement skills than is given proper due. In other
words, how does a learning facilitator demonstrate
the need for process structure while at the same
time mentor students on the judgment needed to
know when to alter the current process instance
to ensure project success?

The approach in the Software Enterprise is
to provide a process structure, and then give
teams “just enough rope” to resolve their own
process-related issues. We do this in several ways.
Traumatic “real-world events” are injected dur-

 ���

The Software Enterprise

ing project execution that force teams to exercise
soft-skills while at the same time leveraging their
process. Project teams force seniors to mentor
juniors, providing a mentoring communication
model. Students engage in reflective learning to
identify the most appropriate process techniques
and are asked to explain why they chose to employ
these techniques over others available.

In our personal experience in industry and
in discussions with industry advisors to our pro-
grams, a significant issue for employers hiring
new graduates is that graduates are ill-equipped
to practice the profession. Many students can
manage to get good grades in software engineer-
ing classes, but when confronted with a software
system of industry-level complexity, can they put
that knowledge into practice? It is our opinion that
often they cannot. We believe the culprit here is
the traditional curricular pattern often adopted
by software engineering programs shown in
Figure 1.

The traditional model, following the general
curricular patterns prescribed in the SE2004 guide
(Association for Computing Machinery [ACM] &
The Institute for Electrical and Electronic Engi-
neers Computer Society [IEEE-CS], 2004) asks
students to first take a breadth-oriented survey-
of-the-field style course (or courses) that exposes
them to a breadth of engineering practices and
processes but typically lacks depth in any given
area. The results are students who can recite the
basic principles, but who lack the comprehension
to apply them. These types of courses are then fol-
lowed by courses that delve into a specific process
topic in significant depth, for example a Software
Design or a Software Quality Assurance course.
These courses focus on deep skills development
within the narrow process area. Students then
complete the program with the capstone project,
which asks them to apply this knowledge in
a full semester project. This approach suffers
from a “toy problem effect.” Many students do

Figure 1. Traditional software engineering curricular pattern

���

The Software Enterprise

not get exposure to the full engineering process
spectrum in a manner that allows them to apply
the deeper skill sets they may have developed in
a particular area. The results are students who
can claim knowledge of a particular skill, but lack
the context in which to apply this knowledge. A
typical conversation an interviewer might have
with a graduating student might be “well, yes I
did a few use cases in my Software Requirements
class, but no I have not done one of that size nor
do I understand how to use that model to drive
analysis and test planning.”

THE sOFTWARE ENTERPRIsE

We propose a new methodology for evolving a
student’s competencies from knowledge to com-
prehension to applied knowledge by co-locating
lectures, problem-centered learning, and complex
process planning activities in time. In other words,
disseminate information, immediately follow with
problem-centered learning techniques, and then

ask the student teams to apply the knowledge
within an ongoing project instance that follows a
specified process. The result is a highly iterative
methodology for evolving the student’s competen-
cies in a rapid fashion (Figure 2).

Contrast this model with the traditional soft-
ware engineering instruction model shown in
Figure 1.

We believe the Enterprise method of cou-
pling disseminated knowledge to skills practice
to incorporated process tasks leads to quicker
comprehension and applied knowledge than the
traditional model. We refer to this model as an “It-
erative Instructor-facilitated, Learner-centered”
model. Learners are responsible for individual
study readings and exercises, for working indi-
vidually or in small teams on problem-centered
learning exercises, and for participating in
complex projects under specified process roles
(role playing). Instructors are responsible for dis-
seminating knowledge via lectures and as a filter
for reference content (research articles, industry
publications, online searches, etc.). Instructors

Figure 2. Iterative instructor-facilitated learner-centered model © 2006 ASEE. Used with permission.

 ���

The Software Enterprise

are responsible for crafting scripted exercises that
allow for practice of specific skills. Instructors
are also responsible for “coaching” teams and
providing a context for projects. For example,
the instructor serves the external roles of Senior
Management and Technical Consultant for the
current set of projects.

ENTERPRIsE sEQUENCE
IMPLEMENTATION

This section describes the implementation details
used at ASU Polytechnic from student and faculty
perspectives.

student Curricular and Project
Trajectories

The curricular topics covered in the Enterprise
sequence are given in Table 1.

The Software Enterprise calls for two one-year
projects that a student participates in sequentially.
This sequence is shown in Table 2.

A student entering the Enterprise sequence
begins by taking a Tools and Process course.
In this course a student gains exposure to a set
of tools that support the software process. This
includes IDEs, data gathering and analysis tools
(metrics), testing (unit, system, integration, and
performance), build and deployment, and docu-
mentation. There is also a significant PSP com-
ponent to train new students on how to account
for time and defect injection rates. First semester
students are currently asked to participate in
requirements and design reviews plus prototype
development during the second half (elaboration
phase) of the Fall semester with the senior-level
students (the first and third semester courses are
scheduled at the same time).

The student’s second semester (Spring Year
1 in Table 2) is spent in Construction and Tran-
sition. Students spend significant time develop-
ing the software according to specific project

requirements. Students are also responsible for
verification and validation activities against the re-
quirements, and for transitioning activities such as
packaging, deployment scripts, performance and
scalability testing, and product documentation.
Students are managed and mentored by students
completing the fourth semester of the sequence.
The completion of this semester also marks the
completion of the student’s first project.

In the third semester (Fall Year 2 in Table
2), a student begins a new project by starting
with Inception and Elaboration. Students elicit
requirements, create a vision document, docu-
ment requirements, perform requirements analysis
resulting in a logical model of the system, and
construct an initial architecture realized both in
code (User Interface and Architectural prototypes)
and in an architecture description document.
These artifacts serve as the input products for
the Spring semester’s Construction and Transi-
tion phases.

In the fourth and final semester (Spring Year
2 in Table 2) of the Enterprise sequence, a student
serves as a process/project manager, quality as-
surance manager, or chief architect. As process
manager, fourth semester students are responsible
for process planning, process monitoring, and
process changes. Fourth semester students are
responsible for writing the test and deployment/
release plans for their software products. Each
student is responsible for one or more projects and
one or more resources (the students in semester
two). Fourth semester students are also respon-
sible for ensuring the construction follows the
architecture set forth in the Fall semester by the
architecture document, or for managing changes
to the architecture if they are desired.

Importantly, year 1 students act the learning
role of mentors to year 2 students (i.e. seniors
mentor juniors). This arrangement allows up-
perclassmen to mentor lower-division students
in a highly interactive manner. For example, the
Construction and Transition activities of second
semester participants are planned, estimated,

120

The Software Enterprise

and tracked by fourth semester students. Year 2
students in the Enterprise also mentor in the sense
they completed Year 1 and as such understand the
exact situations these students face. Co-located
weekly lab meetings facilitate collaborative and
mentoring relationships.

The sequencing of topics and courses shown
in Tables 1 and 2 is done for practical reasons.
Course 1: Tools and Process, is a tool-centric
course that indoctrinates first semester juniors

Course 1: Tools & Process Course 2: Construction & Transition
Intro to PSP GUI development
Using an IDE Software Construction
Build Management Unit Testing Concepts
Use case diagrams Test-driven development
Unit testing Defensive Programming
Functional testing Refactoring
Metrics tools Code Reviews
CM tool Static/dynamic code analysis

Configuration Management
Professionalism & Ethics

Course 3: Inception & Elaboration Course 4: Process & Project Management
Software Lifecycle Process Software Development Planning
Requirements Engineering Task Identification / WBS
Requirements Documentation PERT, Critical Path Analysis
Requirements Elicitation Task Scheduling / Gantt charts
Use Cases Estimation
User Stories Risk Management
Requirements Quality Inspections
Requirements Analysis Verification and Validation
RUP Analysis Test Planning
Structured Analysis Test Script Writing
Usability Release Management
Requirements Management Postmortem

Table 1. Software enterprise curricular topics

Year in Sequence Project Fall SPring

Year 1 (Juniors) 1 Course 1 Course 2
Year 2 (Seniors/Graduates) 2 Course 3 Course 4

Table 2. Software enterprise student participation trajectory

into the Enterprise. At this point in their academic
careers, first semester juniors (in our program at
least), have not relied heavily on tools and have
not exercised the full range of software engineer-
ing activities, at least on a scalable team-oriented
project. These students are given a light introduc-
tion to concepts and a heavy emphasis on tools.
For example, build management is a topic covered
using Apache’s Ant tool (ant.apache.org). To
most students at this level, a multiple (many) file,

 ���

The Software Enterprise

refinement process is particularly key, as teams
are asked to repeatedly revisit requirements for
clarity and maturity, expressed in terms of the
quality attributes from the IEEE-830 standard
(IEEE-CS 1998). Reflective learning is perhaps
most important in this course, as students come to
realize the process of eliciting and communicating
requirements is not as simple as walking in and
asking a project sponsor what they want.

Course 3 has the most curricular content,
and the sheer breadth and depth of the material
is challenging to cover for faculty and absorb for
students. For students, this is their first exposure to
a topic for which there is no concrete answer; re-
quirements remain a primarily subjective process.
This is particularly acute in the Enterprise due to
the emphasis on communication (elicitation) and
understanding (translation to architecture) over
merely learning a set of specification notations
and document formats. We also note, based on
anecdotal observations and project grades, foreign
students tend to struggle in such a course. We sug-
gest this is due to the lecture-oriented push model
prevalent in these cultures, and conclude that this
makes such a course an even more important
component of their educational experience.

By the time students reach Course 4, they are
fully immersed in the Enterprise, meaning they
are able to draw on the experiences of the previ-
ous 3 courses. They tend to be highly motivated
to excel on their projects and take true ownership
of the deliverables. Obstacles related to adapting
to the pedagogical model are completely absent
at this point, as students are now accustomed to
rapid exposure and integration of new concepts.
One common phenomenon in this course is stu-
dents complain that they wish they knew of the
techniques covered earlier, particularly in project
management. Throughout the first 3 courses stu-
dents organize team activities using a “common
sense” approach, meaning they rely on ad hoc
planning and monitoring techniques. This is done
on purpose so that students understand the utility
and importance of these techniques and the chal-

many package compilation and assembly process
based on 3rd party components (jars) is a new
experience, at least on a scalable level. Course 1
focuses on proficiency in Ant to complete “builds”
and “deployments,” even in lieu of a complete
comprehension of component-based software
engineering. Our objective is to get students to
think in terms of building and deploying software
instead of merely compiling and running it. This
approach to Course 1 is out of practical necessity,
and results in a situation where these students are
gently brought into the projects; they are not turned
loose from week 1. Note that most of the topics
in Course 1 are revisited for greater conceptual
depth later in the sequence.

Course 2 covers topics typically not included in
traditional computing programs, but ones we be-
lieve essential to becoming a better programmer.
The foundation of most topics in Course 2 comes
from the Agile community, where code-level qual-
ity best practices are emphasized more than in
other process models. Lectures in Course 2 cover
conceptual foundations, while lab sessions put the
concepts into practice. For example, the Configu-
ration Management topic includes concepts like
codeline quality thresholds, codeline branching
patterns, and connections to release management;
the lab has students create sandboxes, perform
checkouts, updates, and merges. Course 2 students
play the role of software developer, configuration
manager, and build manager on project teams,
so these concepts are put directly into practice.
Whereas Course 1 gradually migrates students
toward the pedagogical model shown in Figure
2, Course 2 follows it exactly.

Course 3 resembles requirements courses in
many computing programs with any reasonable
emphasis in software engineering; however the
Enterprise course emphasizes the communication
and understanding over specification. Significant
time (more than half a semester) is spent on the
convergent pipeline from business idea to require-
ments discovery to prioritized requirements iden-
tified through an iterative refinement process. The

���

The Software Enterprise

lenges in the job of a project manager. The goal is
to combat the stereotype of a project manager’s
job as lacking in complexity, and “not as hard as
the technical stuff.” Course 4 students ultimately
take ownership of the projects; while Course 3
tasks include identifying all stakeholders, Course
4 students are truly beholden to them.

Faculty Perspective and Logistical
Issues

This section covers many of the important logis-
tical considerations faculty face in the Software
Enterprise.

Selecting a Process Lifecycle Model

The Software Enterprise uses a process meta-
model to constrain process planning and pro-
cess lifecycle model execution. The Software
Enterprise constrains projects to use one process
meta-model (a higher-order process model that
may incorporate specific lifecycle models and
process practices). This keeps major release points
in synch across teams, and provides a basis for a
higher-level of decision-making than exercised
by projects constrained to a specific process
lifecycle model. Process meta-models considered
were the Personal/Team Software Process (PSP/
TSP) (Humphrey 1997; Humphrey 2000), Agile
methods specifically extreme programming (XP)
(Beck 2000) the Rational Unified Process (RUP)
(Krutchen 2000), and the Spiral/Theory-W model
(Boehm et. al. 1998).

Our decision was to use the RUP as the process
meta-model for the Software Enterprise. We do
incorporate aspects of the Win-Win Spiral model
where relevant, such as risk analysis, risk man-
agement, phase boundary planning, prototyping,
and negotiation. Though “borrowing” activities
from the Spiral model, the RUP model is used
due to current tool support, availability of texts
and other supporting materials, definition of a
collaborative model with team roles, and inclu-

sion of a Transition (deployment) phase. It also
helps that RUP’s four phases line up better on
semester boundaries than the reentrant nature of
the Spiral model.

We decided against using Agile/XP methods
at the process meta-model level. Logistically,
students do not spend enough time on a single
course to allow for the daily interactions needed
for XP (Umphress, Hendrix, & Cross, 2002). More
importantly, there is too much of a reliance on ex-
perience and constant integration to provide a suit-
able framework for student learning of software
engineering in a project setting. Stated another
way, many XP projects are successful due to the
ability and experience of the engineers involved
and their proximity to constantly collaborate.
Students simply do not have the skill level or
the consistent schedule needed to be successful
with an Agile meta-model. However, many Ag-
ile methods, specifically XP, are very helpful in
identifying practices useful during software con-
struction, and we incorporate problem-centered
learning modules based on these practices during
the second semester (Construction & Transition)
of the Enterprise sequence. Useful XP practices
include refactoring, test-driven development, pair
programming, metrics for evolution, configuration
management, customer walkthroughs, frequent
integration, and estimating velocity.

We also decided not to use the PSP/TSP at the
software lifecycle level. After reviewing the text-
book materials (Humphrey 1997; Humphrey 2000)
and online materials (Carnegie Mellon 2005) for
these processes and reviewing the literature for
examples of their application for software engi-
neering education (Borstler et. al. 2002; Hilburn
& Humphrey, 2002; Sebern 2005), we considered
them simply too burdensome to introduce at the
lifecycle model level. The PSP/TSP lacks the flex-
ibility of RUP and the Spiral model at the process
meta-level. In addition, the method for employing
it implies a take-it-or-leave-it approach. Because
we could not decouple PSP/TSP activities from
each other cleanly, we also did not employ indi-

 ���

The Software Enterprise

vidual PSP/TSP modules into the sequence in the
same way as we employ XP practices discussed
above. However, as we describe below, we eventu-
ally did find it important to leverage the PSP for
first-year Enterprise participants.

Project Process Logistics

Projects proceed in iterations. Dates for iterations
are set by the facilitator and typically run three
weeks. Iterations are necessary to ensure there are
well-defined synchronization and feedback points
during project execution. Teams are required to
indicate expectations for the iteration on a weekly
status report, which includes progress on deliv-
erables, schedule, and risks addressed. At the
conclusion of an iteration teams are expected to
revisit these expectations and indicate how well
reality matched expectations, and do a simple
causal analysis explaining any major deviations.
This is a simple yet effective form of reflective
learning.

The structure the Enterprise adopts is moti-
vated by a need to give students enough process to
guide them, while leaving certain details for teams
to work out. This approach has worked for other
project-oriented courses in the literature (Frailey,
2006; Umphress, Hendrix, & Cross, 2002). In
particular, teams are presented best practices
from a variety of software lifecycle models and
asked to choose which ones they wish to apply
for a given task. For example, SRS documents
may or may not include use case analyses, user
stories, or structured analysis artifacts such as
structure charts or P-specs. Teams must submit
a “rationale” document and give a presentation at
the end of each phase that explains why they used
particular techniques and did not use others. One
may argue that in doing so we reduce the utility
of the process model as a whole, and this may
be the case. But we believe it is more important
for students to assess best practices, exercise
judgment in selecting practices, and reflect on
the decisions than it is to prescribe practices by

rigidly adhering to a specific model. Instead of rote
execution of a prescriptive process, teams must
identify situations and determine the path that will
lead to success. This mimics our understanding of
industry best practices by incorporating a process
framework but customizing best practices to the
project instances.

This is a difficult approach to integrate into
curricula for several reasons. Most process
practices are fairly coupled to a specific process
model, meaning you cannot mix and match best
practices within other models easily. For example,
RUP test case planning is use case driven. XP
planning game estimation is tied to attributes
sketched on user story cards. As a corollary,
most software process-related teaching material
presents best practices from the perspective of
a specific process. We have not identified a text
(we currently use (Leffingwell & Widrig 2003)
for Inception and Elaboration, and (McConnell
2004) for Construction and Transition) that pres-
ents, in a suitable way, a detailed cross-section
of best practices from all the major software
process models.

Identifying Good Projects

A significant amount of prep work is required to
identify good projects (and good project sponsors),
and then match student teams to those projects.
The ideal project for the Software Enterprise is
one that (1) comes from off-campus, (2) sponsored
by a project manager, (3) based technologically
off an existing solution or set of solutions, and (4)
vaguely defined. We arrived at these ideals through
trial and error, and acknowledge these ideals are in
fact idealistic; no single project ever fully attains
them. These ideals are discussed next.

The best projects do not necessarily come
from industry, but the best projects do come from
off-campus. Some Enterprise projects have been
sponsored off-campus by other academic institu-
tions, most notably Mesa Community College and
ASU’s University Technology Office (located on a

���

The Software Enterprise

different campus). Several industry projects have
chosen to meet primarily on-campus, often as the
industry sponsor’s excuse to “get out of the office.”
It is the student teams that need to be removed
from their comfort zone. By conducting customer
meetings at the customer site, student teams are
much more cognizant of the business realities of
the sponsoring organization, and as a result are
better prepared and more professional. In a sense,
it forces teams to act as service organizations
(Poole, 2003). The Software Enterprise identi-
fies project sponsors through personal industry
contacts and industrial advisory boards. Only
after off-campus sponsors are accounted for are
on-campus sponsors considered.

The best projects are sponsored by project
managers, especially those with limited software
development expertise. Sponsors with significant
technical expertise are often too eager to solve
problems for the team, and also tend to not express
requirements but instead define technical tasks.
This is particularly evident in Course 3, where
project teams are charged with eliciting require-
ments, prototyping, and defining architecture.
These activities are amongst the most challenging
to students. While certainly some benefit is gained
from technical interaction with industry mentor
types, too often these technologists become a
solution crutch. Faculty members also make poor
project sponsors, as they usually are interested in
the learning objectives and assessment criteria of
the projects. In short, they think they are teach-
ing and grading the teams instead of sponsoring
them. The situation is worse if the faculty member
participates in the Enterprise in any fashion due
to an inability, on both sides, to create distinct
lines between student-faculty and team-sponsor
interactions. Project managers who are not active
technically (though manage technical projects)
have worked best as they tend to follow a model
of interaction that focuses on expectations, plans,
risks, and progress on deliverables, and as such
teams become accustomed to focusing their work
the service they are to provide. Unfortunately,

at this time most Enterprise projects are spon-
sored by technologists, either from industry or
academia.

The best projects leverage existing technolo-
gies. We have found that students are tremendously
lacking in their ability to work, at an implementa-
tion level, with existing source code. The main
reason for this is simple - they haven’t been asked
to yet. This is a larger problem for computing
curricula. Students are not asked before the Enter-
prise to examine a large body of source code and
understand its structure and style. Students are
typically naïve about the scale of software systems,
even ones they use every day. As an example, one
in-class exercise asked students to estimate the
lines of code in a specific software system they
use almost every day. The system in question is
about 2 million lines of code; more than half the
class estimated 10 thousand lines or less, 2 less
than one thousand. The Enterprise requires teams
to leverage existing bodies of source code, often
taken from previous solutions or from the open
source community. Furthermore, most projects
have a significant integration requirement, be it
data or control integration. These projects are very
useful for their realism as well as their technical
characteristics.

The best projects are vaguely defined. The
principal objective of Course 3 is to gain a shared
understanding of the problem and solution spaces
through elicitation, prototyping, and architecture.
Giving projects that are too “canned” reduces
the project to a big programming exercise, strip-
ping the team of the need to experience how
to perform an iterative refinement process. As
Szyperski points out, stakeholders typically are
better at expressing requirements as incremental
extensions to systems with which they are al-
ready familiar (Szyperski, 2005). However, we
do not want a system where the requirements
are readily expressed by the customer; instead
we want students to work at elicitation to draw
those requirements out. On the other hand, giv-
ing projects that are too discovery oriented are

 ���

The Software Enterprise

typically overwhelming to students at this level
as they require research and critical inquiry skills
typically required of graduate students. Because
the entry point for projects is Course 3, we look
for projects where a sponsor has a concrete vision
or idea, but has not gone down the path of fleshing
the idea out or assigning resources to it. Sponsors
write a short narrative “elevator pitch” regarding
the project idea, and Enterprise faculty members
engage in a brief give-and-take over email or the
phone to determine whether the sponsor is at the
right point for requirements elicitation.

Projects and potential sponsors are evalu-
ated based on these attributes, though again no
project has ever been able to address all of these
perfectly. Often the burden is on the Enterprise
facilitator to note beforehand where potential
hurdles may arise, and attempt to navigate ways
to clear them.

Supporting Heavily Tooled
Environments

Professional software engineers rely heavily on
tools to help with productivity and scalability. The
Enterprise, mostly in Course 1, exposes students to
tools in practical use. Table 3 below summarizes
the tools used, their purpose, and some short com-
ments on their utility in the Enterprise.

In many instances the specific tool chosen
out of many options is not significant, assuming
fundamental concepts taught in the classroom can
be implemented by the tool. For example, though
there are real practical differentiators to CM tools
CVS, Subversion, and Jazz, each provide enough
functionality to be applicable to Enterprise proj-
ects. Many of the tools selected are open source
tools, done mostly for cost reasons but also in
part because these tools are popular with Agile
methodologies. A sensitive issue with open source
tools is the level of support available, including
documentation. On the positive side mature open
source tools have mature communities willing and
able to answer questions via online forums.

Another common issue is the need for proj-
ect-specific or customer-mandated tools. Degree
programs leveraging the Enterprise sequence
all use Java as the required teaching language,
though sponsors often identify other language
needs and are accommodated by subsets of stu-
dents (a common example is embedded systems
projects in C). Project-specific tools are allowed if
a justified need is presented. Customer-requested
or mandated tools are trickier to deal with; often
these requests are based on the customer’s per-
sonal preferences or comfort and not on project
requirements. At one time, teams were allowed
to choose several of their own tools, such as CM
repository, collaborative Websites, UML model-
ing, and office documents, but this situation was
simply untenable to support and the policy was
changed after the first year.

Putting the “Real” in Real-World
Projects

Capstone courses provide an excellent opportunity
for students to work on “real-world” projects. But
what constitutes real-world? The complexity of
the problem? Its scale? We contend it is more
contextual, and we must teach students how to
properly deal with change in this context. Students
working in teams on class projects commonly
react perturbed when unexpected events arise,
and then expect the instructor to show lenience
in assigned deadlines and grading criteria when
they do occur. Unexpected events might include
a server failure, a personal workstation crash,
long lines in public computing facilities, group
members getting sick, faculty members going on
travel, sponsor unavailability, technical complex-
ity, personality clashes on teams, misunderstood
requirements, changing technologies; the list is
endless. Showing leniency for these events sends
the wrong message. The truth is, these things hap-
pen in real projects everyday. Co-workers become
sick, antagonistic, or take new jobs; customers
do not sit by the phone waiting to answer their

126

The Software Enterprise

questions; stakeholders frequently change require-
ments, new technologies are announced daily, and
computing facilities become unavailable. These
unfortunate events that befall our students should
be seen as learning opportunities in leveraging
their process to work through these issues.

The Enterprise approach is simple to imple-
ment: deal with it. Successful teams find ways to
work though issues, not use them as excuses and
beg for mercy from their stakeholders. To that end
not only is there a healthy dose of “tough love,”
but we often intentionally introduce disruptive
events during projects and force students to solve

them on-the-fly. Some examples of these events
include:

•	 Rotate team members. Teams may exchange
members once each semester. This exchange
is made unannounced, and teams are
typically given a short time (a few days) to
transfer knowledge and tasks to other team
members.

•	 Cancel projects. Projects that fall sig-
nificantly behind or are judged to be on
an unsuccessful track are cancelled. Team
members are distributed to other projects.

Tool Purpose Comments

Eclipse/Jazz IDE Eclipse a major platform, Jazz built on Eclipse and freely available
as a beta.

Ant Build scripts Open source standard, cross platform, Eclipse support. Considering
maven.

Jira Defect tracking Vendor tool with reduced price for academic/bundled license w/
Confluence

CVS Configuration
management

Rudimentary but popular tool, considered Subversion, now using
CM provided in Jazz

JUnit Unit Test Eclipse plugin available
SourceforgeMetrics Metrics metrics.sourceforge.net, Eclipse plugin
PMD Static analysis Eclipse plugin, highly customizable

iRise Storyboards/UI
prototypes Vendor tool w/ free academic license, www.irise.com

MagicDraw UML Personal edition free for academic use, supports RUP analysis class
stereotypes and is cross-platform.

MS Excel / Jira Change Mgmt Requirements often evolve through Confluence and Word
versioning too.

MS Word Documents

Open Workbench Project Management Supports Work Breakdown Structures, PERT/Gantt Charts,
Resource models

Coverlipse Code coverage Eclipse plugin
Checkclipse Code style Eclipse plugin
Jupiter Code reviews Eclipse plugin from University of Hawaii
Academus/Sakai Course Mgmt Portal interface supports team collaboration easier.
Confluence Wiki Organized around “spaces” makes team support easy.
Sticky notes Elicitation Brainstorming/Affinity processes, storyboarding

Table 3. Tools in use by the enterprise

 ���

The Software Enterprise

•	 Change requirements. Requirements
changes may be introduced by the customer
at any time.

•	 Change technologies. Projects typically le-
verage open source technologies to complete
project implementations. These technologies
are subject to frequent change, and teams
are asked to change with the technology.

•	 Rotate team roles. Though not as intrusive
as switching team members, changing roles
within a team tends to lead to greater intra-
team chemistry.

•	 Turnover between semesters. A common
issue with projects spanning more than
one semester is student turnover. This is
embraced as indicative of the “real world”
where team member turnover is expected.

Certainly these types of issues tend to slow
down and degrade the quality of the final software
products produced. The benefit is that teams must
rely on good process practices, organization, risk
analysis, judgment, and collaboration to work
through these problems.

Project Assessment

Student projects are graded on their ability to
define a process, follow the process, and adapt
to change. Grades are weighted for the sequence
(particularly the second year) primarily on the
ability to set, follow, and adapt activities within
the context of a process, and only secondarily on
the quality of deliverables produced. It is difficult
to construct an assessment model based on these
criteria. For one, it is difficult to directly measure
the impact of one process model against another,
particularly in a setting with naïve practitioners of
the process (which by definition students typically
are). Second, tracking process-related data on
student projects can be a significant time burden
for faculty. The validity of student process data
gathering is another issue. While the PSP/TSP
does emphasize aspects of data gathering and

data-driven process improvements, it still remains
difficult to ask students to ascertain, for example,
the impact of a particular configuration manage-
ment policy on software quality. Additionally,
students are grade-driven, so asking for honest
reporting of process data when students are
concerned about grade impacts often leads to
optimistic reporting where sometimes the true
nature of a team’s situation is not revealed until
the end of the semester. In our view, there are no
easy answers to these issues.

Additionally, there are two key components
of Enterprise projects that have an impact on
assessment.

•	 Collaboration across academic years. As
discussed previously, project teams consist
of juniors and seniors collaborating on the
same team. These teams also meet and work
together on extended lab sessions once a
week. The energy seniors devote to mentor-
ing is included in the assessment of their final
grade. This can be a point of contention with
exceptionally talented students who have a
tendency to work ahead of the rest of their
team instead of pulling the team forward
with them.

•	 Entire class is “the company.” Student
team projects are usually pitted against
one another in a competition to show off
the best resulting product in order to obtain
the maximum grade. In the Enterprise all
project teams are part of the same company,
and the success of the company is as impor-
tant, if not more important, than individual
project success. Therefore a percentage of
the final grade is influenced by how well all
of the class projects perform, not just the
project in which the team participates. This
encourages teams to share lessons learned
and sometimes resources across projects.
This principle has been employed in other
Capstone experiences (Coppit 2006; Turhan
& Bener, 2007), though the principle differ-

���

The Software Enterprise

ence is that in those projects a large class
section participates on a single project as
one company, whereas Enterprise students
are one company executing many projects.
We believe this more accurately recreates
the pressures of software development and
resource sharing at many software services
shops.

EVALUATION

The Software Enterprise is currently in its fourth
year; 82 different students have enrolled in at least
one Enterprise course in the first three years and
43 students (30 new) are currently enrolled in Fall
2007. Due to the limited time it has been offered
and the relatively low population, a statistically
valid evaluation of student performance in meeting
the overall objective of “industry preparedness”
is not feasible at this time. However, we are in
the progress of collecting longitudinal data and
share what we have learned so far.

Several types of quantitative and qualitative
assessment data are collected each year:

1. Course assessments: These are the stan-
dard rating-oriented course assessments
performed for all courses at ASU. Students
are asked to rate the quality of the learning
experience as well as provide some qualita-
tive feedback.

2. Course survey: An Enterprise-specific
course survey is conducted at the end of each
semester. Students are asked quantitative
questions about the quality of the learning
experience, as well as a self-assessment of
expertise in course subject areas.

3. Affinity process: Students are posed con-
text-free questions in small groups and orga-
nize responses in naturally forming clusters
(the “affinity” for each other’s responses).
Interestingly, this process is also taught as
part of requirements elicitation.

4. Impending and recent graduates survey:
A survey of impending and recent graduates
asked about perceptions they hold regarding
the utility of their education with respect
to their technical profession. The goal is
to repeat this study for several years to ac-
cumulate trend data about the preparedness
of our graduates.

5. Qualitative data is reflected in anonymous
student write-in responses on surveys in 1
and 2, feedback from project sponsors, and
input from two industry advisory coun-
cils.

The Affinity process (3) and course survey (2)
are particularly useful in assessing the industry-
preparedness perceptions of our students. The
graduates survey (4) will be useful when results
are complete.

Affinity process. An Affinity process is a
method for obtaining unbiased results (Kawakita,
1982). The process is as follows:

1. Explain the process to participants
2. Pose question
3. Ask each participant to write down as many

responses as possible (at least 10) regarding
the question. Only one idea (preferably one
word) should be written per post-it-note.
Allow approximately 5 minutes for this
phase.

4. Ask all participants to place all of their post-
it-notes on the white board and to remain
at the board as a group. Tell participants
(without discussing it with each other) to
cluster the ideas into coherent groups by
physically moving post-it-note into close
proximity with each other. Participants
should consider all items on the board, not
just ones they created. If a dispute exists
(e.g., an idea ping pongs from one cluster to
other, copy the idea onto another post-it-note
and place in both clusters).

 ���

The Software Enterprise

5. Ask participants, as a group, to name the
clusters. They are encouraged to talk about
the names in this phase. Write the name
of each cluster on a post-it-note, place the
post-it-note along with each cluster on the
whiteboard, and circle the cluster.

6. Ask participants to individually multi-vote
on importance of each named cluster using
the voting stickers provided. Participants
may vote many times for one cluster or
may distribute their votes among many
clusters.

7. Debrief participants regarding the choices
made.

8. Collect post-it-notes from the whiteboard,
placing the cluster name post-it-note on top
of each topic group

The Affinity process was used as a means
for evaluating what students thought were the
most relevant concepts learned during a one-year
experience on a project team. Affinity processes
are conducted at the conclusion of each academic
year, and for both year 1 and year 2 participants
of the Enterprise. One of the three questions
we ask students in this process is about their
perceptions of skill needs for junior software
engineers:

Q2: What skills are most important to junior
professionals?

This question asks students to consider what
skills they think they will need the most when
they graduate. Interestingly, students adeptly
responded with soft skills (e.g. “Proper attitude
and personality” 43%) over technical skills (e.g.
“Software skills” 19%).

This result is interesting in that it reflects un-
directed feedback regarding what skills students
believe are most important to know as impending
junior professionals, and students overwhelmingly
recognize that soft skills will be a differentiator

when they take that first job. A report on our
complete Affinity process results is available in
our previous work (Gary et. al 2006).

A common problem with an Affinity study is
an ability to align results longitudinally. While
respondents may create similar clusters from year
to year, they rarely create the exact same clusters,
creating an issue as to how to normalize clusters
for consistency.

Course survey. Students are asked to take an
anonymous online survey after the each semester
ends. The surveys ask students about the level of
academic exposure they had to a particular En-
terprise topic before starting the Enterprise, and
the amount of professional benefit they expect to
receive from exposure to the topic. Results are
shown in Table 4.

These results reflect the responses of 29
students, and so are not statistically valid. It is
interesting to observe anecdotally however, is
that although students perceive a lot of profes-
sional benefit to most topics, their prior academic
exposure is usually quite low.

The conclusion we draw from these studies
is that the Enterprise includes industry-relevant
topics. Anecdotally, industry partners believe
both the topics and the pedagogy will produce
better-prepared graduates. Additional anecdotal
feedback from project sponsors and faculty col-
leagues at ASU suggest greater applied com-
prehension as well, as reflected in the depth and
professionalism of the student teams and projects
at year-end department-wide demonstration days.
However, neither the studies nor the anecdotal
feedback can determine at this time if greater
applied knowledge results from the pedagogy. To
this end, we are engaged in a longitudinal study
(assessment technique number 4, first data col-
lected December 2006) where we hope to show,
over a period of time, greater industry prepared-
ness of our graduates.

��0

The Software Enterprise

RELATED REsEARCH

Software engineering in higher education is ma-
turing at a fast rate, even in the face of enrollment
declines. The field has been very active over the
past decade with new degree programs coming
online (Bagert & Chenoweth, 2005), curricular
recommendations (ACM & IEEE-CS, 2004), an
availability of a body of knowledge (IEEE-CS,
2004), and a growing body of literature on soft-
ware engineering pedagogy, much of it focused
on project-oriented coursework. There are a
large number of variations possible in software
engineering projects, and the Software Enterprise
both borrows and advocates practices taken from

previous works at other academic programs, as
described throughout the chapter. In this section
we draw attention to project offerings particularly
influential on the overall structure and implemen-
tation on the Enterprise.

 Specific programs with exemplary project
offerings that have had a deep influence on our
evolution of the Software Enterprise include the
Software Development Studio component of the
Professional Master’s program at Carnegie Mellon
University (Tomayko 1996), the Software Devel-
opment Laboratory at the Milwaukee School of
Engineering (Sebern 2002), the Capstone projects
at Auburn University (Umphress, Hendrix, &
Cross, 2002), and the Capstone projects in the

Survey Results Academic Exposure Professional Benefit

Topic Area none some lot lot some none

Code Reviews 57% 36% 8% 57% 43%

CM 91% 9% 91% 9%

Defensive Programming 36% 54% 9% 80% 20%

IDEs (Eclipse) 15% 54% 31% 82% 9% 9%

Metrics 82% 9% 9% 40% 20% 40%

Refactoring 73% 27% 9% 82% 18%

Deployment/Release Mgmt 92% 9% 67% 33%

Unit Testing 36% 45% 18% 90% 10%

Estimation 77% 23% 83% 17%

Project Management 69% 23% 8% 77% 23%

Quality Planning 57% 22% 22% 92% 8%

Release Management 83% 17% 62% 23% 15%

Defect Tracking 67% 11% 22% 71% 29%

Risk Management 53% 33% 13% 92% 8%

Task Planning & Sequencing 53% 20% 27% 92% 8%

Test Types (alpha, beta) 75% 8% 17% 50% 42% 8%

Analysis Modeling 75% 25% 57% 42%

Table 4. Course survey results

 ���

The Software Enterprise

Masters track at the University of West Florida
(Wilde et. al, 2003).

The Software Development Studio at CMU
(Tomayko 1996) is a seminal program in project-
oriented software coursework. The Studio puts
graduate students in a terminal degree program
through a multi-semester project experience cov-
ering the full range of software process activities.
The Studio motivated a precursor to the Enterprise
called the Software Factory (Tvedt, Tesoriero, &
Gary, 2001), which emphasized project engagement
throughout the entire undergraduate experience.
The Software Enterprise shares the multi-semester
approach with an emphasis on soft-skill develop-
ment with the Studio. The Enterprise, however,
introduces the software phases in reverse order,
and emphasizes soft-skills development through
multi-year structured student collaborations. The
Enterprise also introduces the sequence in the
undergraduate, not graduate, program.

The reverse ordering of the process phases
is also introduced by the Software Development
Laboratory at MSOE. Sebern (Sebern 2002) ac-
knowledges the difficulty newer students have
grasping process and soft-skills concepts, and
therefore students are led from “grave to cradle”
through process phases. Unfortunately a further
description of the utility of this approach is not
provided. Sebern also discusses the issue of stu-
dent turnover, or project continuity, and describes
a pre-course for seniors preparing them for the
project sequence. This course includes mentoring
activities from project enrollees, shared advice on
the project, and basic skills preparation. This is
a model we are looking to replicate in our Year
1, first semester Tools offering.

(Umphress, Hendrix, & Cross, 2002) articulate
the motivation for using the Capstone as a teach-
ing and learning experience instead of a summa-
tive experience: “…Instructors expect them to
integrate the technical skills they’ve learned in
previous courses, learn to work synergistically
as a team, plan and track their work, satisfy their
customer – and produce sound software. Yet,

more often than not, projects so framed teach
their participants yet another way not to develop
software.” We agree wholeheartedly. Further,
our initial iterations of the Enterprise encoun-
tered some of the same concerns described in
the paper – balancing workload, scaling of skills
sets, responsibilities within a team – to which
we responded by tightening certain parts of the
process while leaving others intentionally open-
ended. The result is our iteration-oriented RUP
meta-model incorporating best practices along
the way. This paper also influenced our thinking
around using a process-oriented grading approach
instead of a product-oriented one.

The University of West Florida project (Wilde
et. al, 2003) was also influential in our thinking
in that it emphasized software evolution as well
as software process. The authors make a strong
argument that it is difficult to learn concepts in
evolution without putting them into practice,
thereby applying that classroom-oriented in-
struction in these concepts will not necessarily
translate to their successful implementation in a
Capstone project. In other words, the only option
here is to immediately apply the concepts in order
to ground them. This is part of the foundation for
our reasoning for the iterative delivery model in
Figure 2. We wish however, that the authors also
applied this approach to management topics, where
instead they implemented a seminar-style format.
In the Enterprise, management concepts are also
introduced using the same pedagogical model,
which is very effective in showing the value of
these tools (work breakdown structures, critical
path analysis, earned-value analysis, etc.).

Again, these are only a small cross-section of
the large body of work now available on Capstone
project implementations in software engineering.
To a certain extent the Enterprise contributes its
voice to the debates about the logistics of running
such courses. On a larger level, the community
now seems headed toward a larger discussion on
the impact of software engineering education,
what it is, where it has failed expectations, and

���

The Software Enterprise

what the major issues are to be addressed. A re-
cent article (Lethbridge et. al 2007) articulates a
number of open questions. As a Polytechnic and
part of the only major research University in the
nation’s fifth largest metropolitan center, we are
particularly interested in the research questions
posed for communicating real-world industrial
practices more effectively to students. The authors
suggest that “hard-to-teach process concepts…can
be learned reasonably well on the job, so increased
emphasis in undergraduate programs may not be
necessary.” This conclusion is defeatist, and we do
not think the academic community should punt
the issue readily. To be fair, the authors present
this question in the context of a larger discussion
around the substantial issues in working with
industry, and one cannot deny that there will
always be things best learned “on the job.” Yet
as we said in the beginning, “You can’t teach
experience - but you can sure try.” We should take
these research questions as a challenge to produce
graduates ready for the profession by leveraging
successes from the past decade while addressing
the shortcomings through innovative instruction.
The Software Enterprise is one small step in this
direction by promoting the Capstone as a teaching
and learning vehicle using an iterative hands-on
model that accelerates the student from concept
to applied understanding.

sUMMARY

In our efforts to address the difficulties encoun-
tered in a Capstone project course, we asked how
graduating students entering the marketplace gain
the skills needed to become competent profes-
sionals. We identified some key characteristics
then went about designing ways in which these
experiences could be incorporated into our proj-
ect course.

The result is a highly iterative, learner-centered
pedagogical model where students are exposed
to software engineering methods and tools via

traditional lecture, practice them in learner-cen-
tered exercises, scale them up to large projects,
and reflect on the viability of the methods and
tools within the context of the software process.
Prior, but not widely applied, innovations by fel-
low scholars in software engineering education
are employed, namely emphasizing the ordering
in which concepts are introduced and mentor-
ing relationships. The Software Enterprise also
contributes data points to existing avenues of
evolution around software engineering project
coursework, particularly in the areas of how to
run project teams and select desirable project
sponsors. A particular emphasis is placed in the
Enterprise on process robustness, and on incorpo-
rating software development best practices from
the Agile methodologies into the undergraduate
curriculum.

The principal drawback to the Software En-
terprise approach is the complexity of executing
the highly iterative and integrated pedagogical
model shown in Figure 2. The approach requires
careful synchronization of course topics and
project objectives, adaptation to project-specific
obstacles, dealing with student team dynamics,
identifying project sponsors and setting expec-
tations, reviewing reams of project deliverables,
teaching in non-mainstream computing material,
and providing a heavily tooled environment.

The methodology also places a great burden on
instructors-as-facilitators to lead students down
the right path. Knowledge from disparate sources
must be both filtered and aggregated; it must also
be packaged for digestion in a practice-oriented,
collaborative learning environment. Structured,
hands-on exercises for problem-centered learning
must be constructed. Facilitators must determine
the correct amount of guidance and support to
provide team projects that enable learning without
causing projects to degenerate into a “thrashing”
state, alienating students from finding the right
path. Finally, instructors must rethink how learn-
ing is assessed, and how to assess the relative
success of the Enterprise sequence.

 ���

The Software Enterprise

Computer science, and software engineering
by extension, has suffered from a perception
that universities do not produce industry-ready
graduates. We believe the Software Enterprise
pedagogical approach facilitates applied com-
prehension. The Enterprise model fuses the best
of the maturing work in software engineering
education with a new delivery model for promot-
ing understanding into practice. This approach
is new and emerging, and we have had to make
several adjustments and try several variations over
the past four years. Now that we believe we have
a stable platform, we are planning to undertake
broader studies of the impact of the pedagogy, and
are also examining the feasibility of extending
the Software Enterprise model to non-capstone
project courses, multidisciplinary projects, and
non-software engineering concepts.

ACk NOWLEDGMENT

This work was supported by an Arizona Board
of Regents Learner-Centered Education (LCE)
grant.

REFERENCEs

Association for Computing Machinery & Institute
for Electrical and Electronic Engineers Computer
Society (2004). Software Engineering 2004 Cur-
riculum Guidelines for Undergraduate Degree
Programs in Software Engineering. Joint Task
Force on Computing Curricula.

Beck, K. (2000). Extreme Programming Explained
– Embrace Change, Boston: Addison-Wesley.

Boehm, B., Egyed, A., Port, D., Shah, A., Kwan,
J. & Madachy, R. (1998). A Stakeholder Win-win
Approach to Software Engineering Education.
Annals of Software Engineering, 6, 295-321.

Borstler, J., Carrington, D. Hislop, G., Lisack,
S. Olsen, K. & Williams, L. (2002, Sept/Oct).
Teaching PSP: Challenges & Lessons Learned.
IEEE Software 19(5), 42-48.

Carnegie Mellon University (2005). Academic
PSP Material. Retrieved January 4, 2008 from
http://www.sei.cmu.edu/tsp/psp/download/aca-
demic.html.

Coppit, D. (2006). Implementing Large Projects
in Software Engineering Courses. Computer
Science Education 16(1), 53-73.

Frailey, D. (2006). Bringing realistic software
engineering assignments to the software engi-
neering classroom. Proceedings of CSEET’06:
The 19th Conference on Software Engineering
Education and Training. Ohau, HI.

Gary, K., Gannod, B. Gannod, G., Koehnemann,
H., Lindquist, T., & Whitehouse, R. (2005). Work
in progress – The Software Enterprise. Proceed-
ings of FIE’05: The Frontiers in Education Con-
ference. Indianapolis, IN.

Gary, K., Gannod, G., Koehnemann, H., & Blake,
M.B. (2005). Educating Future Software Profes-
sionals on Outsourced Software Development.
Proceedings of ASEE’05: The National Confer-
ence of the American Society for Engineering
Education. Portland, OR.

Gary, K., Gannod, B., & Koehnemann, H. (2006).
The Software Enterprise: Facilitating the Industry
Preparedness of Software Engineers. Proceedings
of ASEE’06: The National Conference of the
American Society for Engineering Education.
Chicago, IL.

Hilburn, T., & Humphrey, W. (2002, Sept/Oct).
Teaching Teamwork. IEEE Software 19(5), 72-
77.

Humphrey W.S. (1997). Introduction to the
Personal Software Process. Boston: Addison-
Wesley.

���

The Software Enterprise

Humphrey W.S. (2000). Introduction to the Team
Software Process. Boston: Addison-Wesley.

Institute for Electrical and Electronic Engineers
Computer Society (1998). IEEE Recommended
Practice for Software Requirements Specifica-
tions. (IEEE standard 830-1998). New York,
NY.

Institute for Electrical and Electronic Engineers
Computer Society (2004), Guide to the Software
Engineering Body of Knowledge (SWEBOK). Los
Alamitos, CA.

Kawakita, J. (1982). The Original KJ Method
(English). Tokyo: Kawakita Research Institute.

Kruchten, P. (2000). The Rational Unified Process
– An Introduction (2nd ed.). Boston: Addison-
Wesley.

Leffingwell, D. & Widrig, D. (2003). Managing
Software Requirements: A Use Case Approach
(2nd ed.). Boston: Addison-Wesley.

Lethbridge, T., Diaz-Herrera, J., LeBlanc, R.,
and Thompson, J.B. (2007). Improving software
practice through education: Challenges and fu-
ture trends. Proceedings of FOSE’07: Future of
Software Engineering, special track at ICSE’07:
The 29th International Conference on Software
Engineering. Minneapolis, MN.

McConnell, S. (2004). Code Complete 2 (2nd ed).
Redmond WA: Microsoft Press.

Morsch, L. (2006). What some fastest-growing
jobs pay. Retrieved January 4, 2008 from http://
www.cnn.com/2006/US/Careers/01/26/cb.top.
jobs.pay/index.html.

Poole, W.G. (2003). The softer side of customer
software development: Working with the other
players. Proceedings of CSEET’03: The 16th
Conference on Software Engineering Education
and Training. Madrid, Spain.

Sebern, M. (2002). The Software Development
Laboratory: Incorporating industrial practice

in an academic environment. Proceedings of
CSEET’02: The 15th Conference on Software
Engineering Education and Training. Coving-
ton, KY.

Sebern, M. (2005). Software Process: Applying
industrial strength methods in engineering edu-
cation. Proceedings of ASEE’05: The National
Conference of the American Society for Engineer-
ing Education. Portland, OR.

Szyperski, C. (2005). The making of a software
engineer: Challenges for the educator. Proceed-
ings of ICSE’05: The 27th International Conference
on Software Engineering. St. Louis, MO.

Tomayko, J.E. (1996). Carnegie Mellon’s software
development studio: a five year retrospective.
Proceedings of CSEE’96: The 9th Conference
on Software Engineering Education. Daytona
Beach, FL.

Turhan, B. & Bener, A. (2007). A template for real
world team projects for highly populated software
engineering classes. Proceedings of ICSE’07:
The 29th International Conference on Software
Engineering. Minneapolis, MN.

Tvedt, J. Tesoriero, R., & Gary, K. (2001). The
Software Factory: Combining undergraduate
computer science and software engineering
education. Proceedings of ICSE’01: The 23rd In-
ternational Conference on Software Engineering.
Toronto, CA.

Umphress, D., Hendrix, T., & Cross, J. (2002,
Sept/Oct). Software Process in the Classroom:
The Capstone Experience. IEEE Software, 19(5),
78-81.

U.S. Bureau of Labor Statistics (U.S. BLS) (2007).
Economic and employment projections: 2006-
2016. Retrieved January 4, 2008 from http://www.
bls.gov/news.release/ecopro.toc.htm.

Wilde, N., White, L.J., Kerr, L.B., Ewing, D.D.,
& Krueger, A. (2003). Some experiences with

 ���

The Software Enterprise

evolution and process-focused projects. Pro-
ceedings of CSEET’03): The 16th Conference on
Software Engineering Education and Training.
Madrid, Spain.

���

Chapter VIII
Teaching Software Engineering
in a Computer Science Program

Using the Affinity Research
Group Philosophy

Steve Roach
The University of Texas at El Paso, USA

Ann Q. Gates
The University of Texas at El Paso, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abs TRACT

This chapter describes a two-semester software engineering course that is taught in a computer science
program at the University of Texas at El Paso. The course is distinguished from other courses in that it
is based on the Affinity Research Group (ARG) philosophy that focuses on the deliberate development
of students’ team, professional and technical skills within a cooperative environment. To address the
challenge of having to teach professional and team skills as well as software engineering principles,
approaches, techniques, and tools in a capstone course, the authors have defined an approach that uses
a continuum of instruction, practice, and application with constructive feedback loops. The authors
hope that the readers will benefit from the description of the approach and how ARG components are
incorporated into the course.

INTRODUCTION

The Computing Curricula 2001 (CC2001) project
is the product of a joint effort by the Computer
Society of the Institute for Electrical and Elec-
tronic Engineers (IEEE-CS) and the Association
for Computing Machinery (ACM) with the goal of

developing curricular guidelines for undergradu-
ate programs in computing. CC2001 describes
a set of recommendations for undergraduate
programs in computer science (CS) and has had
significant influences on curriculum development
throughout the world (ACM, 2004). It includes the
following statement with respect to the project

 ���

Teaching Software Engineering in a Computer Science Program Using the Af.nity Research Group Philosophy

component of a Computer Science Curriculum
(CC2001, 2001, p. 45):

The course descriptions . . . offer several models
for including project work in the curriculum.
The first strategy is simply to include a project
component as part of the required intermediate
or advanced course that covers the core mate-
rial on software engineering. This strategy is
illustrated by the course CS292{C,W}. Software
Development and Professional Practice, which
includes a team project along with a significant
amount of additional material. As long as students
have sufficient time to undertake the design and
implementation of a significant project, this ap-
proach is workable. The projects in such courses,
however, tend to be relatively small in scale,
simply because the time taken up by the software
engineering material cuts into the time available
for the project.

All accredited software engineering programs
and almost all accredited CS programs in the
United States have a capstone experience in the
undergraduate curriculum (CC2001, 2001; EAC,
2007; CAC, 2007). Like many other CS programs,
the CS program at the University of Texas at El
Paso (UTEP) combines the project experience
with an introduction to software engineering
principles. The two-semester sequence is taken
in the students’ final year of study and focuses on
fundamental software engineering topics while
developing the students’ communication and team
skills, establishing a venue in which to engage
in meaningful discussions about the Software
Engineering Code of Ethics and Professional
Practice (ACM/IEEE-CS, 1999), providing prac-
tical experience, and supporting faculty-student
interaction.

Teaching a capstone course in a software
engineering program, where students have had
significant exposure to software engineering
concepts prior to entering the course, and teach-
ing a capstone in a CS program, where students

have usually had no prior software engineering
courses, are manifestly different from each other.
As noted in the CC2001 report, teaching the soft-
ware engineering material and having students
work together in a project setting is challenging.
UTEP has met this challenge by developing a
course that focuses on the practice of software
engineering in a project that involves actual clients
and the deliberate development of professional
skills as espoused by the Affinity Research Group
(ARG) model.

The primary goals of the UTEP course are
to provide students with (a) a fundamental and
functional understanding of the methods, tools,
and techniques required of rigorous software
engineering so that they can identify and adopt
the practices needed in the workforce; (b) the
experience of working with an actual client to
develop a product so that they can learn to manage
issues, such as incomplete, ambiguous, changing
and inconsistent requirements, and to deal with
time pressures; (c) the ability to apply software
engineering principles to a software project; (d)
the ability to prepare documentation in adher-
ence to IEEE standards; and (e) the experience
of working effectively in teams.

The UTEP approach is unique in that it uses
the Affinity Research Group (ARG) model (Gates,
1999; Teller, 2001; Gates, 2007). The two principal
tenants of the ARG model that apply to software
development teams in the academic setting are the
cooperative learning paradigm and the structured,
intentional, and deliberate development of profes-
sional and technical skills. The ARG model has
processes for evaluating work products and itera-
tively revising them. These processes have been
adapted for use in the capstone project course.

In this chapter, we describe the techniques and
approaches to teaching software engineering that
we have developed and used for the past decade.
Our philosophy, derived from the ARG model, is
to focus on the development of each student.

���

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

bACk GROUND: THE AFFINITY
REsEARCH GROUP MODEL

In 1995, the ARG model was developed at UTEP
with the goal of involving undergraduates students
from CS and electrical and computer engineering
in research to improve recruitment, retention,
and persistence of students, particularly female
students and students from under-represented
populations. UTEP is an urban university whose
ethnic composition mirrors that of El Paso with an
80% Hispanic population. It is a commuter school,
and a significant fraction of the undergraduate
population is “first generation”, i.e., the first gen-
eration in the family to acquire post-secondary
education. In 1995, few students in CS were on
campus other than to attend classes, and a low
number of students continued to graduate school.
With the introduction of ARGs, the culture in
the CS department transitioned to one in which
student-faculty interaction outside the classroom
increased, a larger network of students formed
study groups in their college careers, and students
stayed on campus longer.

An ARG is a team of faculty mentor(s) and
students who work together cooperatively to ac-
complish a research task. Team members have
varying levels of expertise, capabilities, interests
and skills; and they may have a variety of edu-
cational, cultural, and familial backgrounds. The
ARG model embraces this diversity and exposes
students to experiences that facilitate the develop-
ment and transfer of knowledge and skills among
members of the group. The ARG model joins two
foundational ideas: interaction among students
and faculty outside the classroom increases the
likelihood of students persisting to graduation
(Astin, 1985; Rodriguez, 1994, Tinto, 1993), and
cooperative learning techniques maximize student
learning and efficacy (Johnson, 1989). In addition,
the model integrates best practices from a variety
of sources in industry, research, and education.
Using structured tasks and activities, students
develop domain expertise, gain an understand-

ing and appreciation of the research process and
its practice, and acquire the skills that will make
them effective leaders and successful in research,
academia, and industry. The model has demon-
strated success in increasing both the quality of
undergraduate students’ learning experiences and
their participation in advanced studies.

A key element of the ARG model is the use
of the cooperative learning paradigm (Johnson,
1989; Johnson, 1990; Johnson, 1991; Johnson,
1992a; Johnson, 1992b; Johnson, 1995). Coop-
erative groups create higher quality products,
achieve mastery or competence of a task, develop
a social network, and have increased self-esteem.
Structured cooperative learning techniques are
integrated into the routine functioning of the
group. The mere formation of a group, as in tra-
ditional research groups, does not ensure that it
will function cooperatively. As Johnson and col-
leagues note (Johnson, 1990, p. 4), “Cooperation
is working together to accomplish shared goals.
Within cooperative activities, individuals seek
outcomes that are beneficial to themselves and
beneficial to all other group members.”

In an ARG, group members work together to
maximize their own and each other’s productivity
and achievement. The ARG model ensures that
structured cooperative learning techniques are
part of the group’s routine functioning. Because
teaching and practicing professional skills are
part of the research group activities, for example,
students are able to learn skills from their groups
and transfer them to other environments.

Five basic elements must be present for the
group to truly function cooperatively: positive
interdependence, face-to-face promotive interac-
tion, individual and group accountability, profes-
sional skills development, and group processing.
The ARG model incorporates all five by structur-
ing them into weekly activities and in the group’s
day-to-day functioning.

•	 Positive interdependence is the situation
where each team member’s success depends

 ���

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

on the success of the team as a whole. When
positive interdependence is present, each
member has a personal stake in the group’s
success and believes that the group values
her or his contributions. An example of
structuring positive interdependence in the
classroom is to give students a grade based
on the average of the individual scores of the
group members on a quiz. In this situation,
each team member becomes motivated to
ensure the success of the other team mem-
bers.

•	 Face-to-face promotive interaction occurs
when students are situated so they can eas-
ily and comfortably talk to each other and
actively seek participation from each other.
The explicit goal in this sharing process is for
members to help one another succeed and,
therefore, help the group reach its goals. It
is important to acknowledge and recognize
each member’s contribution, and a key skill
is the proper use of constructive criticism,
i.e., critiquing ideas and not the person. The
practice of constructive critique is critical to
the improvement of both the individual and
the group, and it’s important that students
understand the need for and the role of cri-
tique in raising the quality of a product.

•	 Individual and group accountability is
needed to ensure that individuals par-
ticipate fully. One complaint that students,
particularly high-achieving students, have
with respect to working on teams is that the
better students end up doing all the work
and the weaker students share the grade.
By structuring individual accountability
in the groups, the faculty mentor ensures
there are no “free rides”. Each person must
be responsible for tangibly contributing
her or his fair share to the group. Likewise,
the group as a whole is responsible for the
group’s smooth function and for delivering
the required work. This is important when
a large group is divided into smaller groups,

each with a given task. Constructing time-
lines and explicitly showing the dependen-
cies among individual and group tasks are
other effective techniques for structuring
individual and group accountability.

•	 Professional skills are the skills needed to
work with people in a business environment.
They are the communication and inter-
personal skills that facilitate working rela-
tionships. Professional skills are explicitly
taught and practiced in activities designed
around one or more technical topics such as
critiquing a presentation, practicing active
listening and asking questions. Fomenting
effective professional skills makes for more
productive and successful interaction among
group members and is essential to the main-
tenance of positive interdependence.

•	 Group processing is the critical evaluation
of the performance of the group. It consists
of individuals assessing the quality of their
contributions to the group as well as the
group’s considerations of its recent perfor-
mance. Processing gives group members the
opportunity to identify potential improve-
ments for further work so that the individu-
als and the group’s performance at a higher
level. Group processing must be deliberately
structured into activities.

bRIDGING THE GAP bETWEEN
THE Abs TRACT AND CONCRETE

At UTEP, we face four significant hurdles to
achieving the goals of the software engineer-
ing capstone course. Informal discussions with
computer science faculty at other institutions
indicate that these hurdles are not unique to our
program.

1. Experienced instructors recognize that there
is a gap between discussion of a technique
in the classroom and endowing students

��0

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

with the ability to apply the technique to
real problems. Research supports the claim
that application of concepts on real problems
provides a bridge between abstract and
concrete learning (Kurfiss, 1998) and that
students learn best by doing, discussing,
or taking action (American Psychological
Association, 1992; McKeachie, 1986).

2. We have a CS, not a software engineer-
ing program. Students in the CS program
(Parnas, 1999) are not well-versed in many
aspects of large software system develop-
ment or management. Few students enter-
ing the capstone course have developed or
worked on software products larger than a
few thousand lines of code. Generally, they
lack understanding of and experience with
project planning, requirements elicitation,
requirements specification, modeling, de-
velopment of test plans, documentation, and
software maintenance; that is, they do not
know the material that the course is designed
to cover but that is needed in order to develop
the software for the capstone project.

3. Few students have had the opportunity to
work in software teams larger than two or
three members and, thus, they lack the expe-
rience to work well in team situations. While
students are regularly required to work in
small groups throughout the curriculum,
these groups are typically self-selected or
unstructured.

4. Students lack adequate oral and written
communication skills. Technical writing
is difficult, and undergraduate students in
particular need to practice this skill. Most
good writers use an iterative process of
writing, correcting, and rewriting in which
the author strengthens the content, sharpens
the focus, improves the organization, clari-
fies the point of view, and refines the tone
(Hacker, 1991). Public speaking skills benefit
from iterative refinement.

The UTEP software engineering course is
structured as three hours of lecture per week
for a 14-week semester. The ARG model makes
extensive use of cooperative learning, and this
is transferred to the course by using cooperative
and problem based learning for one-third to two-
thirds of the lecture time. Traditional lecture is
used the rest of the time.

The ARG model stresses the development of
each student’s ability to assess her or his own
contributions and capabilities as well as the ability
to communicate professionally. In-class exercises
focus not only on the application of software
engineering techniques such as developing a test
set to meet a test coverage criterium, but also on
the assessment and critique of each student’s and
each team’s work as well as the work of others.
In class, we explicitly structure activities to fa-
cilitate students’ learning and practice of giving
and receiving constructive criticism.

In the ARG model, research team members
are encouraged to become the team expert in a
given subject. This expertise is used by the team
as needed when the expert either produces a work
product related to the area of expertise or trains
other team members in the subject. This practice
has been transferred to the capstone project by as-
signing team roles. The ARG model also stresses
the development of each student. In the capstone
course, leadership skills are developed in each
team member by requiring each student to take the
lead for several team deliverables (shown in Table
1), unlike many project teams where one student
takes the lead for the duration of the project.

Students are assisted and evaluated by the
Software Engineering Guidance Team, a team
of faculty and graduate students who oversee
the project. The faculty members are Certified
Software Development Professionals (CSDP,
2007), and each have several years of industrial
software development experience. Guidance Team
members ensure individual accountability in part
by interviewing individual students during group
presentations and regularly assessing task assign-

 ���

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

ments and work products produced by individuals
during the semester.

Our approach to bridging the gap between
abstract and concrete is to apply both lecture
and practice repeatedly. We call our approach
the Instruction-Practice-Application Continuum,
which is described graphically in Figure 1. In
this approach, as shown on the left side of the
figure, classroom activities are used to introduce
techniques, e.g., functional modeling, project
planning, or software inspections. These activi-
ties include traditional lectures, problem-based
instruction, and cooperative learning. Assess-
ments such as home work, quizzes, exams, and
in-class observations are used to determine how
well students grasp the concepts in the academic
setting. When necessary, topics are covered again
in class.

In the case of the capstone experience, the task
is to implement a solution to the problem around
which the project is based. On the right side of Fig-
ure 1, the project is used to reinforce the concepts
learned in class. In this setting, students work in
teams to apply the techniques covered in lectures

to create project deliverables. The instructor as-
sesses the deliverables and provides constructive
feedback on drafts by conducting an informal
walk-through of the deliverable with the team and
asking questions; students improve deliverables
based on the feedback and new knowledge gained.
The purpose of the cycle on the left of the figure is
to have students learn and apply new concepts to
small problems assigned in class or as homework,
while the cycle on the right moves the students
toward higher-level thinking skills, such as analy-
sis, synthesis, and evaluation (Bloom, 1956), by
applying the newly learned material to the project.
In this cycle, students produce work products
such as models, requirements, documentation,
design, test suites, and source code. These work
products are reviewed by the course instructor
and the Guidance Team, and frequently, the work
products are returned to the students for further
improvement. When problems are identified that
are common across teams, these problems can be
addressed in the lectures. In this way, the experi-
ence of the instructors is passed to the students
in much the same way that experience is passed

Figure 1. Instruction-Practice-Application Continuum

���

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

to apprentice tradesmen. Final versions of work
products are delivered to the clients.

THE PROj ECT

To address the issue of providing students with
the experience of developing large software sys-
tems, the course requires that students construct
software for a real client, someone who needs a
software solution to a problem. Given the project’s
central role in the course, selection of the project is
a key part of preparation for the course; however,
the project is a means to an end. Our focus is on
teaching students the methods that support build-
ing complex, reliable, and maintainable systems.
The project gives them the opportunity to apply a
process and practice process improvement.

Software engineering is about managing
change, but students tend to have experience with
requirements that do not change. What they need,
then, is real-world experience where the customer
may change the requirements during the project,
may be unclear about their own needs, and are
unsure about how to best solve their problem.
Identifying and clarifying ambiguous, incomplete,
and inconsistent requirements, as well as manag-
ing change, are an important part of the course.
Students often lack experience in eliciting and
specifying requirements, and the comment below
from one of our clients supports the importance
of defining a requirements process:

As the SCIMITAR project lead, I felt the students
received a real-world immersion in the complexi-
ties of software development. They learned the
importance of listening to the customer, develop-
ing requirements, and getting feedback from the
customer. They also learned how difficult it is to
really nail down those requirements, and how much
it saves in the long run to do so. --Lon Anderson,
Army Research Laboratory (L. Anderson, personal
communication, 2003)

In addition to managing change in require-
ments and its impact on maintaining consistency,
the students must learn to anticipate change in de-
sign. Indeed, the best way to appreciate designing
for change is to have change looming during the
design process, and then observe what happens
to the design when change occurs.

Project Descriptions

There are endless possibilities for software engi-
neering projects, and we are frequently approached
by potential clients. To help us select appropriate
projects, we consider the following requirements
for projects:

•	 The client must truly want the software
product. Involvement of the client is essen-
tial. Clients participate in interviews and
demonstrations, and they are present for the
final presentations each semester. They must
be available to answer questions about the
desired product during critical junctures of
the two-semester course.

•	 The client must be willing to wait for two
semesters or more to receive functional
software. Two approaches can be used in
this capstone course. One is the waterfall
model and the other is an adaptation of
the agile approach called Feature-Driven
Development (FDD) (Coad,1999). The use
of waterfall is intentional: Our students are
familiar with coding, but not as familiar with
the other aspects of software engineering.
The original version of FDD is composed
of five processes: develop an overall model,
build a feature list, plan by feature, design by
feature, and build by feature. The modified
version of FDD (Rauda, 2005) uses the five
processes, but modifies the internal tasks of
the processes to meet the outcomes of the
course.

•	 The project must have sufficient scope that it
is infeasible for one or two students to com-

 ���

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

plete the task in two semesters. This creates
the positive interdependence that encourages
teams to bond and work together.

•	 The project must be feasible, or it must be
possible to set the scope of the project for
the teams so that their part of the project is
feasible.

Project clients have ranged from researchers
in geology, agronomy, environmental sciences,
and software engineering to project managers
attempting to deliver software to customers in
the U. S. Army, for the United States Geologi-
cal Survey, and users of the geoinformatics grid
(GEON, 2007). Here are some of the projects
completed in the past several years.

• PACES: Satellite Scene Viewer: This
project provided access to the Pan American
Center for Earth and Environmental Studies
(PACES) satellite image archive by integrat-
ing ENVI image processing and Oracle
database management system software with
graphical-user interfaces.

• HATS GUI (Winter, 2006): This project
created a graphical user interface for the
High-Assurance Transformation System
(HATS) developed at Sandia National
Laboratiories. The HATS GUI facilitated
the creation and interpretation of transfor-
mation rules used to generate software for
high-assurance applications.

• Scene and Countermeasures Integration
for Munition Interaction with Targets
(SCIMITAR) (Anderson, 1999): SCIMI-
TAR is an analytical tool that evaluates
munition interaction with ground platforms
within a scene. SCIMITAR allows users
to modify and analyze images by adding
obscurants and target types onto the scene
in order to analyze aimpoint probabilities
and countermeasure effectiveness.

• Gravity Data Repository and Processing
System (GDRP) (GeoNet, 2007): GDRP

is a web-based tool that provides general
information about gravity measurements
and presents a collection of tools for adding,
accessing, visualizing, and manipulating
data. The project was a coordinated effort
with UTEP, Arizona State University, and
U.S. Geological Survey.

Project Management

The end result of the project should be a software
product or a prototype product. In order to produce
a working piece of software, project management
is essential. This is particularly relevant when
managing several software teams simultaneously.
While many resources are available to guide an
instructor in basic software project management
(Wysock, 2006; Whitehead, 2001; DeMarco,
1999; McConnell 1997), in this section we discuss
aspects of project management specific to the
academic capstone project.

Students in the UTEP course work in highly
structured and managed project teams on all
aspects of development: requirements elicitation,
feasibility, modeling and analysis, prototyping,
requirements specification, tracing, high-level and
low-level designs, implementation, and testing. In
addition, students submit formal documents (us-
ing IEEE standards when appropriate) including
feasibility report, interview report, Software Re-
quirements Specification (SRS), Software Design
Document (SDD), test plan, testing defect report,
and configuration management plan. Students
participate in walkthroughs and inspections for
designs and prototypes, and presentations of
the software requirements and finished product
are presented formally to the clients. Figure 2
shows a Gantt chart of the major deliverables for
the two-semester course following a traditional
academic year.

The verification and validation task includes
paper prototype reviews, executable prototype
reviews, inspections, walkthroughs, and struc-

���

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

tured testing. Clients and the Guidance Team are
present for many of the reviews.

The Project Team

The CC2001 (2001, pp. 43-44) emphasizes the
need for students to work in teams:

Few computer professionals can expect to work
in isolation for very much of the time. Software
projects are usually implemented by groups of
people working together as a team. Computer
science students therefore need to learn about
the mechanics and dynamics of effective team
participation as part of their undergraduate edu-
cation. Moreover, because the value of working
in teams (as well as the difficulties that arise)
does not become evident in small-scale projects,
students need to engage in team-oriented projects
that extend over a reasonably long period of time,
possibly a full semester or a significant fraction
thereof.

Recruiters often tell us that they are looking
for students with demonstrated abilities to work
in teams. As educators, it is important for us to
teach team skills and to structure teams in order
to encourage the practice of professional skills
that improve communication and accountability
among members. To address the challenge of
developing effective team skills, we use the ARG
model, in particular, the cooperative paradigm, to
build strong teams. This requires that facilitators
build positive interdependence, encourage promo-
tive interaction, structure individual account-
ability, teach team and professional skills, and
discuss with the team what practices are--and are
not--successful (Johnson,1992a; Scholtes, 1996).
We strongly believe that these elements must be
present in the teams we build for this course.
Without the cooperative structure, inexperienced
students will not work as a team; rather, they will
merely be a collection of students.

Teams consist of five team members assigned
by the Guidance Team. Teams persist across

Figure 2. Gantt Chart of course deliverables

 ���

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

semesters. Students are assigned to positions on
each team. The positions are:

•	 Systems analyst. The systems analyst is
responsible for identifying the purpose
of the system and the individual goals of
the customer. The analyst must know the
technology and be able to understand and
respond to what is found in observing and
talking with those who are commissioning
a new system or will be the end users of it.
This person needs considerable communica-
tion as well as generalization skills.

•	 Systems architect. The person in this position
will define the computational components
and the interactions among these compo-
nents with respect to the specification. The
architect must be able to deal with a large
amount of technical detail while at the same
time develop a superior view of the overall
system.

•	 Designer. The designer must know the
technology and be able to prepare detailed
specifications and models of the new system
by analyzing the requirements specification
and high-level design document.

•	 Lead programmer. The lead programmer
should have experience in code develop-
ment in different programming paradigms.
The lead programmer will manage the team
that implements the code according to the
specification and design. The person best
suited for this job is someone who is willing
to devote time to learn new technology, if
necessary.

•	 Verification and Validation (V & V) supervi-
sor. The V & V supervisor is in charge of
developing and administering tests that are
representative of the use of the system. This
person is also responsible for configuration
management, and verification and validation
throughout all phases of development.

Team Selection

Some instructors feel that teams should be self-
selected or homogenous (e.g., put all the “best”
students on one team). We have tried these ap-
proaches, and they have not worked well. When
everyone on the team thinks the same way, the
team may stumble down a mutually agreed
upon (but wrong) path, and students do not learn

Semester Position Deliverable

1

Systems analyst Software Requirements Specification

Systems architect Feasibility report and final presentation

Designer Models, diagrams, and interface evaluation

Lead Programmer Interface prototype and tool support

V & V Tracing documents, test plan, and interview report.

2

Systems analyst Final user-interface design and final presentation

Systems architect Architectural design document

Designer Detailed design document

Lead Programmer Code

V & V Tracing documents, configuration management and test plan

Table 1. Deliverables by team role

���

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

how to deal with and appreciate diverse ideas.
A number of recruiters have told us that they
recruit from different colleges and universities
simply so their workforce will be educationally,
and culturally diverse. We model this approach
in our teams.

We assign students to five-member teams
for an entire year, and it is rare that we remove
a member from a team. Because of this, we are
careful about the teams we create, and we expend
substantial effort in selecting the members, con-
sidering four general areas: personality, position
preference, experience, grade-point average, and
project- and gender-specific issues. Students are
given the position descriptions and the list of
deliverables assigned for each position. They are
asked to provide a résumé and write a letter of
application in which they specify the three posi-
tions for which they feel most qualified or have
the greatest interest. Our team assignment process
includes steps such as evaluating students’ letters
of application and résumés, assessing dominant
personality characteristics, and balancing the
diversity of the teams with respect to gender,
ethnicity, grades, and educational experiences.

We assess personality using the Shapes per-
sonality exercise (Bonura, 1998). This exercise is
a modified form of the Myers Briggs personality
type assessment. During the exercise, students
select the personality “shape” with which they
most identify. Students come to appreciate that
not all of their fellow students identify with the
same shape, and that there are strengths and
needs associated with each of the shapes. On
our teams, we strive to balance the four shapes
on each team.

We attempt to balance the teams with respect
to the experiences and academic achievements
of the students. We ask that students report their
cumulative and major grade point averages on their
résumés. We also do a preliminary assessment of
their writing abilities based on the letter of ap-
plication. Our goal is to balance teams in terms
of their academic histories. We attempt to have

several students with strong English skills or good
academic records on each team. For particular
projects, we also consider work experience and
certain courses (such as database management)
when assigning students to teams. We try to avoid
assigning friends to the same team.

The gender-specific issues include assigning
female students, when possible, to teams with
at least one other female. Although not always
necessary, the practice of having more than one
female student on a team helps in situations when
the female’s opinions are ignored or not valued.

Development Professional Skills

Rather than assume that students know how to
work effectively in teams by the mere fact that
they are on a team, we deliberately teach stu-
dents how to work in teams by describing how
to conduct effective meetings, giving each stu-
dent the opportunity to learn how to take a lead
role, requiring students to analyze their teams’
performance, and suggesting ways to improve
individual participation and team effectiveness.
Students are assigned specific positions on their
team, and we use that position to assign the lead
for different deliverables. The leader is respon-
sible for ensuring the deliverable (refer to Table
1) is completed and that every team member
contributes to each deliverable. This person is
responsible for initiating the work (typically by
calling a team meeting and setting the agenda
for the meeting), monitoring task assignments,
collecting finished products, and delivering the
final version. Our goals in having rotating leads
are to provide students with opportunities to
practice task-planning strategies and to learn
leadership skills. It has been our experience that
some students who ordinarily would not choose
to lead a team effort turn out to be good leaders
and develop skills and exhibit talents that were
previously unrecognized.

Other approaches to developing professional
skills include using cooperative learning in the

 ���

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

classroom and experience sharing, where a faculty
or guest speaker discusses real-world experiences
related to effective team behaviors. To encourage
the development of basic leadership skills, we
lecture on and model setting agendas, assigning
roles in meetings, clarifying task assignments,
reaching consensus, defining tasks and timelines,
maintaining meeting minutes and checking on
progress towards a goal. The agendas and minutes
are used by the Guidance Team when assessing
individual accountability.

Individual Accountability

We often hear from students that they do not like
working in teams because some students do all
the work and other students sit back and get a
free ride. In class, it is not possible to fire a non-
contributing team member. We can, however,
structure the team so that it is difficult for inactive
students to hide. We hold students accountable for
their contribution to the team effort, and we use
three essential tools for monitoring student par-
ticipation: observation, self-assessment, and direct
interview. Our formal and informal approaches to
assessing the contributions that individuals make
towards the team project give us a clear picture of
the level of contributions made by each student,
and we use these indicators to adjust individual
grades for the group project.

The team notebook, which may include an in-
dividual engineering notebook, is updated weekly
by students and contains meeting minutes, email
exchanges, and draft work products. Reviews of
these notebooks, which may be kept electronically
(e.g., using WebCT), have frequently identified
teams in conflict and instances of team members
not performing to team expectations. These re-
views can be used to identify problems in team
functioning and allow the instructor to intervene
when necessary. Informal approaches include
observing students while they are working. The
teaching assistants for the course are in frequent
contact with students working in the laboratory,

and informally the TAs observe how project team
members behave. To help with observation, a ru-
bric is useful to tally particular behaviors exhibited
by team members during meetings, e.g., seeking
member participation, summarizing major points,
or asking questions.

Students are required to self report their level
of contribution. Some of these statements must be
shared with (and signed by) other team members,
and some are private between the student and the
Guidance Team. In addition, members report on
what is working well in the team and what needs
to be improved.

During meetings between a team and the
instructor, the instructor interviews each team
member to assess the level of contribution. Ex-
ams are used to assess the level of competency
with respect to given topics. Frequently, these
exams expose weaknesses in students who have
not participated in the development of a team’s
work products.

One further technique for assessing student
performance on the team project is the interview at
the final presentations. These presentations include
members of the academic community outside the
course, and questioning of individual students in
this setting is highly effective in determining the
familiarity with the course concepts as well as the
level of contribution toward team success.

Team Issues

Frequently, students working in teams experience
conflict, and not all students are equally adept at
dealing with these situations, particularly those
that result from clashing priorities and person-
alities (Scholtes, 1996). Significant challenges
arise for the instructor of the project course when
students are unable to resolve team issues on their
own. In order for us to expect students to work
on a team, we have to teach them how to resolve
team conflicts. The process described by Johnson
(Johnson, 2005) is generally more effective than
ad hoc processes for conflict resolution.

���

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

The first step in assisting a team in resolving
conflicts is to identify that a team has a problem.
Frequently students will bring the problem to the
attention of the instructor. To monitor teams who
are not reporting difficulties, the Guidance Team
looks at a number of indicators. For example, a
lack of initiative shown in email trails or poor
work delivered in rough drafts is an indication
that a member of the team is not contributing. A
series of work efforts not appearing in the final
product or suggestions that appear in email, but
not in work products may indicate team members
are ignoring or discounting a team member.

Once a team issue is identified, the Guidance
Team meets with the project team. In relatively
simple cases, there may be a discussion of team
skills and techniques for ensuring that com-
munication is clear, for example summarizing
the results of team meetings and emailing task
assignments immediately after the meeting.
Follow-up meetings can be used to assess the
change in team functioning. In more complex
cases, the process may entail a lengthier process
that includes having team members voice their
perceptions and emotions and having other team
members paraphrase what their teammates have
said. Paraphrasing forces a student to listen to
and understand the position of the other students.
Often, the students come away from such an
experience with a new respect for and apprecia-
tion of their team mates. Complex cases usually
require several guided meetings before the team
is able to address issues on its own.

One source of team conflict is the case where
we have highly motivated students mixed with
less motivated students. While it is normal for
lower-achieving students to become engaged and
highly productive and valuable to project teams,
it is not uncommon for teams to have one or two
members who remain unmotivated and unproduc-
tive. In these cases, the Guidance Team negotiates
grade and deliverable adjustments for individual
students on the team.

In most cases, these simple interventions suf-
fice. However, in more extreme cases, we have
teams develop a code of conduct and identify
their expectations for the course and project. In
the most egregious cases, we have removed team
members from a team and had that student report
directly to the Guidance Team.

Written and Oral Communications
skills

In order to develop students’ abilities to commu-
nicate technical concepts effectively, we use the
Instruction-Practice-Apply Continuum shown in
Figure 1. The process begins in the classroom.
A common technique for ensuring individual
accountability when using cooperative learn-
ing in class is to randomly select students to
explain their group’s solution to a given in-class
problem. When students explain a solution, the
faculty member can guide the student to a clear
explanation by asking questions and helping the
student rephrase statements.

Formal presentations are scheduled four times
during the two semesters: a paper prototype pre-
sentation, a formal presentation of the SRS, an
executable prototype presentation, and the final
presentation. For each presentation, each student
on the team is required to present some part of
the product. The presentations are evaluated both
on style and content by the Guidance Team and
the clients. The rubric for evaluating students
includes items such as use of visual aids, pace,
eye contact, gender neutrality, ability to field ques-
tions, and use of language and terminology. The
comments from the Guidance Team and clients
are summarized and returned to the students.
The common observation of the clients is that the
final presentation is significantly better than the
presentations from the first semester.

While all of our students have taken English
writing classes prior to entering the capstone
course, many of them have great difficulty with

 ���

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

technical writing. Improving their abilities re-
quires practice. The approach we take is to review
student writing, make editorial comments, and
have the students rewrite the work. Comments
range from the correction of simple grammatical
errors to explaining the grammar rules involved
to issues related to content and structure. Com-
mon content problems include misuse of terms,
sentences that imply a causal relationship that does
not exist, factual errors, sentence fragments, and
sentences that are incomprehensible. An example
of a mistaken causal relationship is this statement:
Since V is developed using C++, most of us have
experience using C++. When shown this state-
ment, most students agree that the dependent and
independent clauses are not related.

Students in the course report that they realize
that the criteria for written work include both
technical content and grammatical composition.
This and the requirement of revising drafts until
they are acceptable, increases the students’ level
of effort in proof reading. When they believe
that their writing has value to the client, the stu-
dents are much more willing to spend the time
producing higher quality work. Our experience
has shown that students who rewrite documents
to correct these errors are less likely to repeat
them in the future.

Assessment and Evidence of
success

The structure of the course has been shaped by
advice from alumni, recruiters, industry represen-
tatives, and academics from other institutions. In
particular, we have evidence of the effectiveness of
this course based on data collected from employ-
ers and alumni. The following correspondences
were received from former students:

Working as a software engineer is like reliving
your class times 10 and my grades are based on
performance. I would like to talk to your class to

show your students how all the material they are
learning is relevant to the real world. Microsoft
employee

I returned from an interview with Cisco Systems
yesterday and I met a former student. She is now a
team leader. She felt that your software engineer-
ing course was very helpful in her career and she
wanted me to get this feedback to you. Interviewee
at Cisco Systems

Wow, I never though I would see this SE stuff
again…but, here I am beginning a huge project
for the organization that I am in. Even though it’s
only me building the system, I figured that the only
way to build something that would last is to go
through all the steps that I learned in your class!
I just thought you would like to hear that your
class was so useful. Air Force officer

This course has changed my attitude toward
groups. I saw how you structured the groups and
instilled individual accountability so that each
member contributed to the final product. Alum

The continued success of the course depends
on making changes, and process improvement
is structured in the course from three different
perspectives—team, product, and course.

Team: In addition to team processing discussed
earlier, the Guidance Team regularly requests
teams to review their progress. This processing
typically occurs after some major deliverable.
Individuals on each team are asked to respond
to the following questions:

•	 Did you complete your task on time?
•	 How did you encourage participation from

another team member?
•	 What is working well in your team?
•	 What needs to be improved in your team?

The responses to these questions are consoli-
dated, made anonymous, and shared with the team

��0

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

members. This process assists team members
and the Guidance Team in identifying problems
and reviewing with teams the skills that resolve
them. The recurring themes, especially in the first
semester, are centered on meetings and lack of
commitment from all members.

Regarding meetings, the problems typically
center on unproductive meetings, and length
of meetings. The feedback in this area includes
review of how to conduct effective meetings, e.g.,
setting an agenda, assigning roles such as time
keeper and participation checker, creating action
items, and checking status of previous action
items. Students are also encouraged to consider
the “100-mile rule,” i.e., treat each meeting as
though each member has travelled 100 miles to
attend and, as a result, it’s imperative to arrive
on time and have a productive meeting (Scholtes,
1996).

The advice given to teams regarding lack of
commitment centers on building positive inter-
dependence and the importance of recognizing
members’ contributions to the project and valuing
the opinions of others. Additional advice includes
structuring individual accountability through task
assignments and deadlines. The lead is encour-
aged to keep records of individual contributions
and status through meeting minutes or e-mail
exchanges. The following response to the ques-
tion of “what worked well” reflects how one team
improved from one semester to the next:

We worked horribly as a team last semester. This
semester, however, we’ve come to terms with each
member’s benefits and weaknesses. Because we’ve
learned to think as a team, we now act as one. It is
much more evident that trusting of team members
produces the desired results. Everyone is willing
to spend as much time as necessary to produce
what he/she needs to. By not wanting to let down
the group, every member (including myself) works
very hard to produce a team deliverable.

Another example of reflection from a team
member is the following:

At the beginning of last semester when I looked at
the names of my prospective team, I didn’t know
what to think, only one familiar name. Looking at
this team now, we are really a “melting pot”: one
Taiwanese, one Hispanic/American, one Indian,
one Mexican and one [anglo]. Who says that we
can’t all get along together? Each one of us had
our own strengths and weaknesses in our abili-
ties and our personalities. Miraculously, what I
lacked, someone else had to offer. What someone
else needed, I could help. This is the true defini-
tion of teamwork. And we made it work. I am truly
enriched for this experience and I thank each one
of you for that.

Product: Our assessment of the quality of the

products produced by the students is part of the
evaluations given during the final presentations
each semester. These presentations are evaluated
by the Guidance Team as well as the clients. Using
these assessments, we have identified problems
in the efficacy of the testing strategies and the
specifications of pre- and post- conditions in the
detailed designs.

Considering the student as a product, we look
at Alumni Surveys to determine whether five
years after graduation alumni believe that the
program prepared them to work in teams, ap-
ply software engineering principles, model, and
design. The survey results are given in Table 2.
Recent focus group evaluations of alumni of the
course support the ideas that the Affinity model
assists students in dealing with conflict and im-
proving their communications and presentation
skills. One of the principal skills developed in
the model is the ability to constructively critique
other people’s work and to accept constructive
critique of their own work. The key factor is that
the Affinity model has helped them develop the
social and professional skills that allow them to
interact productively with the other people with
whom they work.

Course: With respect to the course, numerous
changes have been made over the years, including

 ���

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

Q17c: Prepared me to work in teams. 91.8% strongly agree or agree

Q17g: Developed ability to apply principles of software engineering. 97.3% strongly agree or agree

Q17h: Prepared to model real-world processes and objects. 81.0% strongly agree or agree

Q18: Have designed a system, component or process 91.9% yes

Q19: Quality of preparation for specific design task 29.4% excellent, 61.8% good, 8.8%
below average

Table 2. Results of 2007 Alumni Survey (n=37)

Course Outcome Assessment ARG Component Description

Apply techniques for eliciting requirements,
including conducting interviews and developing
a throw-away prototype.

a. Project: Interview, cli-
ent interactions, and
prototypes

Asking technical questions; Preparing presentations
for prototype reviews

Analyze requirements to determine if they meet the
attributes of well-written requirements.

a. Exams
SRS Reviews

Peer evaluation of requirements, identifying common
mistakes, SRS drafts

Exhibit responsible attitudes and work habits as
individuals and groups, in accordance with profes-
sional software engineering codes of ethics.

a. Notebooks , t eam
memos, presentation
evaluations

Individual accountability in project work: preparing
and documenting team meetings.

Assemble and present technical work orally. a. Project presentations Cooperative teams; delivering technical presentations;
answering questions.

Develop effective techniques for collaboration
and problem-solving within groups in order to
create finished products of high quality.

a. Project
Notebooks

Cooperative teams; professional and team skills;
conflict resolution.

Conduct a technical review.a.

Prototype reviews,
SRS reviews, design
reviews, code re-
views

Deliberate instruction in the skills needed to perform
good reviews; professional presentation based on
technical merit.

Compose technical documents that are grammati-
cally correct and technically sound.

a. Project Documents Perform good reviews; professional presentations.

Table 3. Subset of course outcomes and corresponding ARG components

introduction of new tools, improved tutorials on
use of tools, and revised strategies for teaching
concepts with which students have difficulties.
An important method that we introduced for
evaluating the course is the mapping of course
outcomes to particular tasks or questions on tests,
and assignments to determine the effectiveness
of learning. For example, Table 3 shows a small
subset of the course outcomes for the two-semester
course and the corresponding ARG component
that complement the outcome. The outcomes are
given in two levels: Level 2 is Application and

Analysis. These are outcomes in which the student
can apply the material in familiar situations, e.g.,
can work a problem of familiar structure with
minor changes in the details. Level 3 is Synthesis
and Evaluation. These are outcomes in which the
student can apply the material in new situations.
This is the highest level of mastery.

RELATED WORk

Since project and team experiences are embedded
in most computer science and software engineer-

���

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

ing undergraduate programs, it is no surprise that
many faculty have encountered issues similar to
the ones we encounter, and many of the approaches
we suggest here are being used in other institu-
tions. The use of cooperative and collaborative
learning approaches, active learning, and pair
programming facilitate the integration of teams
where there are differences in the abilities of team
members, assist team members in overcoming
communications barriers, and help to motivate
students in the team setting (Ellis, 2000; Aller,
2004; Doerschuk, 2004; Spickard-Prettyman,
2004; Mickle, 2004; Layman, 2005). Assessment
of team projects is difficult and time-consuming,
and most effective approaches include reviews
and engineering notebooks (Meyer, 2005; Cooley,
2004). There are many ways to attempt to give
academic projects a “real world” flavor by incor-
porating real clients (for example, see Ford 2004
and Bruhn 2004).

FUTURE TRENDs

The need for technology workers in the United
States in the near future will continue to grow
(Holahan, 2007; McGee, 2007a).The need for
reliable software outstrips our ability to produce it.
The President’s Council of Advisors on Science
and Technology (PCAST, 2007) reports on the im-
portance of networking and information technology
(NIT) systems connected with the physical world.
These include embedded systems, engineered
systems, and cyber-physical systems, e.g., home
health-care devices, ground transportation moni-
toring, and environmental monitoring. The ability to
design and develop safety-critical and secure NIT
systems is a national priority. There will be a need
to educate a workforce that can work in multidisci-
plinary environments with a strong understanding
of security and verification. In addition, employers
will continue to seek project management, commu-
nications, and team skills (McGee, 2007b). Team
skills that include the ability to work with members

in different places, different time zones, and different
cultures will become more common.

The trend towards distributed team develop-
ment (see for example Ramesh 2002 and Duarte
2006) and multidisciplinary software develop-
ment will continue. An example of this is the
trend towards service orientation (SO), where
applications are constructed from resources made
available over the Internet as web or grid services.
The term SO refers to the level of abstraction in
which functionality is specified. In particular, SO
is an approach for analysis, design, and develop-
ment of modules that support principles such
as reusability, loose coupling, abstraction, and
separation of concerns (Erl, 2005). The more
familiar term service-oriented architecture (SOA)
is used to describe “the policies, practices, and
frameworks that enable application functionality
to be provided and consumed as sets of services”
(Sprott, 2004).

There will be a need to integrate existing
software services and components to rapidly pro-
duce software solutions. Application developers
from business and scientific domains are using
web services to implement systems based on the
SOA paradigm. Web service technologies provide
the necessary mechanisms to expose shareable
resources (service-oriented modules that provide
data and functionality) over the network and al-
low the resources to be consumed by users across
heterogeneous platforms, enhancing interaction
across organizations. The needed skills include
the ability to specify functionality of services so
that services can be advertised and discovered.

The Department of Labor’s Bureau of Labor
Statistics projects that over the 2004-2014 decade
there will be increases of 46% for software engi-
neers (Hecker, 2005). There is a strong need for
software engineers who are familiar with software
development tools such as automated testing tools
and systems that assist developers in generating
code from designs. The separation between CS
and SE will increase, but the need for developers

 ���

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

will require that we produce capable developers
in CS programs.

CONCLUsION

The ARG model focuses on the development of
the student. We use the cooperative learning and
the development of skills by using the iterative
feedback aspects of the ARG model to teach the
software engineering capstone course. The course
raises the level of our students to meet the needs
and expectations of our constituents, the industry
recruiters. The Instruction-Practice-Apply ap-
proach utilizes repeated application of software
engineering techniques to a real-world problem
and extensive interaction with experienced soft-
ware engineers to teach students the practice of
software engineering. As the ARG model sug-
gests, we use structured and deliberate techniques
to teach students how to work together to produce
software engineering deliverables and resolve
conflicts. Feedback from our industrial partners
indicates that the team experience and the project
are invaluable to our students. Feedback from our
alumni and students indicate that theses experi-
ences have a significant impact on their careers
by preparing them for the workplace.

CC 2001 (2001, p. 43) describes the importance
of developing complementary curriculum, i.e.,
the constellation of skills that are taught through
internship, such as the ability to write an effective
résumé, manage time effectively, conduct library
research, maintain professional responsibility,
remain up current in the field, and engage in
life-long learning. As described in this paper, it
is clear that the UTEP SE approach provides the
benefits of complementary curriculum by sup-
porting the development of a set of transferable
skills that enhance the students overall efficacy
and ability to effectively contribute to the software
engineering workforce.

ACk NOWLEDGMENT

This work was supported in part by the National
Science Foundation (NSF) through grants DUE-
0443061 and CNS-0540592. Any opinions,
findings, and conclusions or recommendations
expressed in the paper are those of the authors and
do not necessarily reflect the views of the NSF.

REFERENCEs

ACM/IEEE-CS Joint Task Force on Software
Engineering Ethics and Professional Practices
(1999). The ACM/IEEE Software Engineer-
ing Code of Ethics and Professional Practice.
retrieved February 2007 from http://www.acm.
org/about/se-code.

ACM Education Board (2004), ACM Education
Board Annual Report, Fiscal Year FY 2003.

Aller, B. M., Kline, A. & Tsang, E. (2004). Work
in Progress: Improving the senior capstone. In
Proceedings of the 334th ASEE/IEEE Frontiers in
Education Conference (pp. TCG/12-TCG/14).

American Psychological Association (1992).
Learner-Centered Psychological Principles:
Guidelines for School Redesign and Reform.
Washington D.C.: American Psychological As-
sociation.

Anderson, L , Chenault, T., Churchman, J., &
Homack, R. (1999). Scene and Countermeasure
Integration for Munition Interaction with Targets
Army Research Lab White Sands Missile Range
NM Survivability/Lethality Analysis Director-
ate. Retrieved May 2007 from http://stinet.dtic.
mil/oai/oai?&verb=getRecord&metadataPrefix=
html&identifier=ADA368518

Astin, A. W. (1985). Achieving Academic Excel-
lence. San Francisco: Jossey-Bass.

Bloom, B. (1956). Taxonomy of Educational Ob-
jectives. David McKay Company, Inc.

���

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

Bonura, S. & Hayman, B. (1998). Shape Up! Re-
source Manual, Personality Styles and Human
Interaction – Making Them Work for You! Graphic
Business Solutions, Inc: San Diego, CA.

 Bruhn, R. & Camp, J. (2004). Creating corporate
world experience in capstone courses. In Proceed-
ings of the 34th ASEE/IEEE Frontiers in Education
Conference (pp. T2G/1-T2G/6).

CAC (2007) Computing Accreditation Com-
mission Criteria for Accrediting Computing
Programs, Accreditation Board of Engineering
Technology. Retrieved March 10, 2007, from
http://www.abet.org/Linked%20Documents-
UPDATE/Criteria%20and%20PP/C001%2006-
07%20CAC%20Criteria%209-12-06.pdf

CC2001 (2001) Computing Curricula 2001 Com-
puter Science Volume, Association of Computing
Machinery. Retrieved October 2006 from http://
www.sigcse.org/cc2001/.

Coad, P., Lefebvre, E. & De Luca, J. (1999). Java
Modeling in Color With UML: Enterprise Compo-
nents and Process. Prentice Hall International.

CSDP (2007) IEEE Computer Society Certi-
f ied Software Development Professional,
Retrieved May 1, 2007 from http://www.
computer.org/portal/site/ieeecs/menuitem.
c5ef b9b8ade9096b8a9ca0108bcd45f3/index.
jsp?&pName=ieeecs_level1&path=ieeecs/educa-
tion/certification&file=index.xml&xsl=generic.
xsl&

Cooley, W. (2004). Individual student assess-
ment in team-based capstone design projects. In
Proceedings of the 34th ASEE/IEEE Frontiers in
Education Conference (pp. F1G-1-5).

DeMarco, T. & Lister, T. (1999). Peopleware:
Productive Projects and Teams Second Edition.
Dorset House Publishing Company, Inc.

Doerschuk, P. (2004). Incorporating team software
development and quality assurance in software
engineering education. In Proceedings of the 34th

ASEE/IEEE Frontiers in Education Conference
(pp. F1C/7-F1C/12).

Duarte, D. & Snyder, N. T. (2006). Mastering
Virtual Teams: Strategies, Tools, and Techniques
That Succeed, Jossey-Bass.

Ellis, H. (2000). An Experience in Collaborative
Learning: Observations of a Software Engineering
Course. In Proceedings of the 30th ASEE/IEEE
Frontiers in Education Conference (pp. T2C/1-
T2C/6).

Engineering Accreditation Commission (EAC
2007). Criteria for accrediting engineering pro-
grams effective for the 2007-2008 accreditation
cycle. Retrieved September 2007 from http://
www.abet.org.

Erl, T. (2005). Service oriented architecture: con-
cepts, techniques, and design. Prentice Hall.

Ford, R. & Lasher, W. (2004). Processes for en-
suring quality capstone design. In Proceedings
of the 34th ASEE/IEEE Frontiers in Education
Conference (S2G/13-S2G/17).

Gates, A. Q., Delgado, N., & Mondragon, O.
(2000). A structured approach for managing a
practical software engineering course. In Pro-
ceedings 30th ASEE/IEEE Frontiers in Education
Conference (pp. T1C/21 - T1C/26).

Gates, Q., Teller, P., Bernat, A., Delgado, N., &
Della-Piana, C. (1999). Expanding participation in
undergraduate research using the affinity research
group model. Journal of Engineering Education,
88(4): 409-414.

GeoNet (2007). United States Gravity Data Re-
pository System. Retrieved May 10, 2007 from
http://paces.geo.utep.edu/gdrp/.

GEON (2007). GEON: the geosciences network.
Retrieved November 2007 from: http://geongrid.
org.

 ���

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

Gates, A.Q., Roach, S., Villa, E., & Kephart, K. (in
press, 2007). Affinity Research Groups: Creating
and Maintaining Effective Research Teams.

Hacker, D. (1991). The Bedford Handbook for
Writers. Boston: Bedford Book of St. Martin’s
Press.

Hecker, D. E. (2005). Occupational Employment
Projections to 2014. Monthly Labor Review. De-
partment of Labor (pp. 70-101).

Holahan, C. (2007). The myth of high-tech
outsourcing. Business Week, 4/24/07, retrieved
on 4/2007 from http://www.businessweek.
com/technology/content/apr2007/tc20070424_
967747.htm?chan=top+news_top+news+index_
top+story.

Johnson, D., & Johnson, R. (1989). Cooperation
and competition: theory and research. Edina,
MN: Interaction Book Company.

Johnson, D., Johnson, R., & Holubec, E. (1990).
Circles of learning: cooperation in the classroom.
Edina, MN: Interaction Book Company.

Johnson, D., Johnson, R., & Smith, K. (1991).
Active learning: cooperation in the college class-
room. Edina, MN: Interaction Book Company.

Johnson, D., Johnson, R., & Holubec, E. (1992a).
Cooperation in the classroom. Edina, MN: Inter-
action Book Company.

Johnson, D., Johnson, R., & Holubec, E. (1992b).
Advanced cooperative learning. Edina, MN:
Interaction Book Company.

Johnson, D., Johnson, R., & Holubec, E. (1994).
The nuts and bolts of cooperative learning. Edina,
MN: Interaction Book Company.

Johnson, D. & Johnson, R. (2005). Teaching
students to be peacemakers, 4th Edition, Edina,
MN: Interaction Book Company.

Kerth, N. L. (2001). Software retrospectives: a

handbook for team reviews, Dorset House Pub-
lishing Company, Inc.

Kurfiss, J.G. (1998). Critical thinking. ASHE-
ERIC Higher Education Report No. 2. Washing-
ton, D.C.: Association for the Study of Higher
Education.

Layman, L., Willimas, L., Osborne, J., Berenson,
S., Slaten,K. & Vouk, M. (2005). How and why
collaborative software development impacts the
software engineering course. In Proceedings
of the 35th ASEE/IEEE Frontiers in Education
Conference (pp. T4C/9-T4C/14).

McConnell, S. (1997). Software project survival
guide. Microsoft Press.

McGee, M. K. (2007a). Bill to increase H1-B visa
makes a comeback in congress. InformationWeek,
retrieved 4/2007 from http://www.information-
week.com/showArticle.jhtml;jsessionid=L5FSM
T3UOTFHYQSNDLPSKHSCJUNN2JVN?artic
leID=199101679&queryText=H-1B .

McGee, M. K. & Murphy, C. (2007b). In grow-
ing job market, IT pros get more for the soft
skills. InformationWeek retrieved 10/07 from
http://www.informationweek.com/story/show-
Article.jhtml?articleID=202404815

McKeachie, W.J., Pintrich, P.R., Lin, Y.-G., &
Smith, D.A.F. (1986). Teaching and learning in
the classroom: a review of the research litera-
ture. Ann Arbor: National Center for Research to
Improve Postsecondary Teaching and Learning,
University of Michigan.

Mickle, M. H., Shuman, L., & Spring, M. (2004).
Active learning courses on the cutting edge of
technology. In Proceedings of the 34th ASEE/
IEEE Frontiers in Education Conference (pp.
T2F/19-T2F/23).

Meyer, D. G. (2005). Capstone design outcome as-
sessment: instruments for quantitative education.
In Proceedings of the 35th ASEE/IEEE Frontiers
in Education Conference (pp. F4D/7-F4D-11).

���

Teaching Software Engineering in a Computer Science Program Using the Affinity Research Group Philosophy

Parnas, D. L. (1999). Software engineering pro-
grams are not computer science programs. IEEE
Software, 16 (6):19-30.

PCAST (2007). President’s Council of Advisors
on Science and Technology. Leadership under
challenge: information technology R&D in a
competitive world: an assessment of the federal
networking and information technology R&D
program. www.ostp.gov.

Ramesh, G. (2002). Managing global software
projects: how to lead geographically distributed
teams, manage processes and use quality models.
McGraw-Hill Limited.

Rauda, L. G. (2005). A Feature-Driven Develop-
ment approach for an undergraduate software en-
gineering course. Master’s Project, the University
of Texas at El Paso, May 2007.

Rodriguez, C. (1994). Keeping minority under-
graduates in science and engineering. Paper
presented at the 19th Annual Conference of the
Association for the Study of Higher Education,
Tucson, Arizona.

Scholtes, P, Joiner, B. & Streibel, B. (1996). The
Team Handbook 2nd Edition. Joiner Associates,
Inc.

SE2004 (2004) Curriculum Guidelines for Un-
dergraduate Degree Programs in Software En-
gineering, Association of Computing Machinery
and IEEE Computer Society. Retrieved December
2006 from http://sites.computer.org/ccse/.

Spickard-Prettyman, S., Qammar, H., Broadway,
F., Cheung, F.M. & Evans, E. (2004). The impact
of vertical integration of design teams on the
chemical engineering program. In the Proceed-
ings of the 34th ASEE/IEEE Frontiers in Education
Conference (T2G/15-T2G/19).

Sprott, D. & Wilkes, L. (2004). Understanding
service-oriented architecture. Microsoft Architect
Journal. Retrieved May 2007 from http://msdn2.
microsoft.com/en-us/library/aa480021.aspx.

Teller, P. & Gates, A. Q. (2001). Using the affinity
research group model to involve undergraduate
students in computer science. Journal of Engi-
neering Education, 549-555.

Tinto, V., Goodsell Love, A., & Russo, P. (1993).
Leaving college: rethinking the causes and curses
of student attrition (2 ed.). Chicago: The University
of Chicago Press.

Whitehead, R. (2001). Leading a software devel-
opment team: a developer’s guide to successfully
leading people & projects, Addison-Wesley.

Winter, V. (2006). The high-assurance transfor-
mation system. Retrieved December 2006 from
http://faculty.ist.unomaha.edu/winter/HATS_
Page/hats_index.html.

Whitehead, R. (2001). Leading a software devel-
opment team: a developer’s guide to successfully
leading people and projects, Addison-Wesley.

Wysocki, R. (2006). Effective software project
management. John Wiley & Sons.

 ���

Chapter IX
A Framework for Success
in Real Projects for Real

Clients Courses
David Klappholz

Stevens Institute of Technology, USA

Vicki L. Almstrum
The University of Texas at Austin, USA

Ken Modesit
Indiana University – Purdue University Ft. Wayne, USA

Cherry Owen
The University of Texas of the Permian Basin, USA

Allen Johnson
Huston-Tillotson University, USA

Steven J. Condly
HSA Learning & Performance Solutions, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abs TRACT

In this chapter, we demonstrate the importance of Real Projects for Real Clients Courses (RPRCCs)
in computing curricula. Based on our collective experience, we offer advice for setting up an effective
support infrastructure for such courses. We discuss where and how to find clients, the types of projects
that we have used, and how to form and train teams. We investigate the variety of standards and work
products that we have used in our courses and explore issues related to assessment and evaluation.
Finally, we consider the benefits of an RPRCC-centric approach to computing curricula.

���

A Framework for Success in Real Projects for Real Clients Courses

A course is underway. Students are excited, en-
gaged, eager to apply what they are learning,
eager to communicate with one another about their
project work, what they need to accomplish, and
what they must find out from outside stakehold-
ers. As a lovely bonus, the project the students
are developing is more than a toy problem or a
product that will gather dust on the back of the
shelf — they are writing software that is useful
and will be used.

This type of course exists and has been success-
ful in many settings, including public and private
institutions, small, medium, and large institutions,
and Historically Black and Hispanic-Serving
institutions (that is, the colleges and universities
at which the co-authors teach). In this chapter, we
promote the idea of Real Projects for Real Clients
Courses (RPRCCs) and discuss key issues related
to successfully planning for and executing them
in a variety of settings.

INTRODUCTION

RPRCCs are courses in which students work in
teams to develop real software for real clients,
including faculty and staff from their own in-
stitutions, for-profit companies, not-for-profit
organizations, and government agencies. To be
“real,” software must meet the needs of the client
by solving a problem or providing a service for
the client or the organization the client represents.
RPRCCs are appropriate in all Computing Cur-
ricula 2005 (Joint IEEE CS/ACM Task Force,
2005) disciplines, that is, computer science (CS),
information systems (IS), computer engineering
(CE), software engineering (SE), and information
technology (IT), which we refer to collectively as
“computing disciplines” or simply as “comput-
ing.” RPRCCs are also appropriate in the full
range of post-secondary institutions, including
community colleges, four-year colleges, and

universities, and can even be used at the second-
ary level.

This chapter explores the core issues covered
in a taxonomy that has been developed by the co-
authors over a number of years. The taxonomy,
which delineates issues involved in designing
and delivering RPRCCs, has been refined using
feedback from participants in workshops and
other conference activities (e.g., Almstrum, Klap-
pholz, & Modesitt, 2007; Klappholz, Almstrum,
& Modesitt, 2006). Appendix A gives the top two
levels of the current version of the taxonomy.

In this chapter, we explore the following basic
issues involved in developing and teaching an
RPRCC:

•	 Client-related issues, including where to find
them, how to vet them for appropriateness as
clients, and how to manage client expecta-
tions;

•	 Project-related issues, including possible
types of projects and how to vet projects
for appropriateness;

•	 Team-related issues, including how to form
teams and train them;

•	 Product-related issues, including standards
and required work products; and

•	 Issues related to assessment and evalua-
tion.

The full taxonomy details these and a large
number of additional issues. Finally, in the Fu-
ture Trends section, we argue for the notion of
RPRCC-centric computing curricula, that is,
curricula that include RPRCCs at multiple levels
of the undergraduate program.

The experiences we discuss in this chapter
can help readers understand the issues one must
consider when planning the framework for an
RPRCC. We sincerely hope that the ideas pre-
sented below will better equip instructors with
all types of experience to plan and execute suc-
cessful RPRCCs.

 ���

A Framework for Success in Real Projects for Real Clients Courses

WHY RPRCCs?

Other than using real projects and real clients,
how different is it to teach an RPRCC version of
a course compared to a more traditional version of
the same course? Several of us have observed that
teaching an RPRCC probably takes more time than
teaching a traditional version of the same course,
especially if the instructor has never worked in
a disciplined development environment. Certain
aspects of teaching an RPRCC can be difficult
to predict and control. An RPRCC requires a
different style of planning (e.g., to find clients,
determine teams, coordinate schedules, and
manage client expectations) and a different style
of oversight (e.g., to ensure that teams are mak-
ing progress toward their goals). When starting
to teach such a course, there is a sharp learning
curve, making the first semester or two especially
demanding and risky.

Why, then, should a computing instructor put
in the added effort and a department expend the
extra resources in order to offer RPRCCs? We
argue that RPRCCs and RPRCC-centric curricula
provide benefits to three constituencies: comput-
ing departments, computing students, and the
IT/software development workforce. We discuss
these issues below.

Benefits to the Department

The most straightforward benefit to computing
departments that offer RPRCCs has to do with
accreditation. In addition to the traditional set of
technical skills, the new criteria from ABET, Inc.,
the recognized accreditor for U.S. college and
university programs in applied science, comput-
ing, engineering, and technology include a second
set of equally important professional skills, which
are also essential aspects of RPRCCs. Shu-
man, Besterfield-Sacre, and McGourty (2005)
divide these latter skills into process skills,
which include communication, teamwork, eth-
ics, and professionalism, and awareness skills,

which include lifelong learning, a knowledge of
contemporary issues, and engineering within a
societal and global context.

A second potential benefit of RPRCCs is that
using industrial clients can strengthen cooperation
between educational institutions and industry. The
close interaction can help students find placement
in internships and post-graduation employment.
The relationship can also support technology
transfer and sharing of research results (Grisham,
Krasner, & Perry, 2006).

Recruiting and retention are major concerns
to most computing departments. Because stu-
dents enrolled in RPRCCs tend to be strongly
motivated by the mixture of real and theoretical
skills inherent in these courses (Hogan, Smith, &
Thomas, 2005), computing curricula that include
RPRCCs may increase retention. RPRCCs early
in the curriculum, for example at the pre-CS1 and
secondary levels, may convince students with
little or no programming background or who
would otherwise never select a career in software
development to consider a computing major.

The declining number of women in computing
is disheartening when compared to increasing
numbers of women in other areas of science and
engineering. In 1985, 38% of B.S. degrees in CS
were awarded to women. By 2003, their repre-
sentation had shrunk to 28%. Because RPRCCs
concentrate on interpersonal skills and because
every community has potential RPRCC clients
whose projects have social significance, the
availability of RPRCCs can have a strong posi-
tive effect on efforts to recruit and retain women
and members of under-represented minorities
(Eisenman, 2001; Jessup, Sumner, & Barker, 2006;
Margolis & Fisher, 2001; Norman & Keating,
1997; Schuhmann, 1992).

Benefits to students

Individual students enrolled in RPRCCs and
RPRCC-centric curricula can experience early
opportunities for community service, added

��0

A Framework for Success in Real Projects for Real Clients Courses

confidence in their own abilities, and a strong
foundation for life-long employment. If an
RPRCC uses not-for-profit or educational clients,
this enables students to perform service to the
community at the same time they are earning
academic credit.

Many computing graduates report that what
they learned as undergraduates did not prepare
them sufficiently for the work they encountered
after they entered the workforce (Fernandez &
Tedford, 2006; Fernandez, Garcia, Camacho, &
Evans, 2006). RPRCCs can help students gain
confidence in their own skills as well as experi-
ence that will help them become productive more
quickly once they enter the workforce.

RPRCCs instill a number of skills, especially
business-related and inter-personal skills, which
are among the most difficult to offshore (Aspray,
Mayadas, & Vardi, 2006; Boehm, Abi-Antoun,
Port, Kwan, & Lynch, 1999; Mitchell, 2006).
While such skills can be taught as theoretical
principles, most students will learn them in depth
only by doing, that is, through active learning.
Thus, the skills students practice while enrolled
in RPRCCs form the basis for life-long careers for
computing graduates wanting to work in countries
that send work offshore.

RPRCCs fit snugly within the active learn-
ing genre, a type of learning that emphasizes
student engagement in realistic problem solving,
teamwork, and application of theory and principle
(McKeachie, 1961). Courses that incorporate ac-
tive learning into the curriculum have been shown
to realize demonstrable improvements in student
learning, achievement, and transfer in subjects as
diverse as general science (Akinoglu & Tando-
gan, 2007), medicine (Frohna, Hamstra, Mullan,
& Gruppen, 2007), nursing, (Bowles, 2006),
business management (Zheng & Padmanabhan,
2006), statistics (Enders & Diener-West, 2006),
entrepreneurship (Tan & Ng, 2006), and textiles
(Kadolph, 2005). Interested readers can refer to
the journal Active Learning in Higher Education
(http://alh.sagepub.com/) for up-to-date research
in this field.

Benefits to the IT/Software
Development Workforce

RPRCCs provide both quantitative and qualita-
tive benefits to the workforce. Statistics show
that the current supply of computing graduates
is not satisfying demand. The American Bureau
of Labor Statistics (BLS) predicts that in the
United States alone by 2014 there will be a total
of 448,000 job openings in various aspects of IT
and software development in response to industry
growth and baby boomer retirement in spite of
offshoring. In contrast, only 8,000 new research
positions are predicted for computer and infor-
mation scientists (Hecker, 2005; Vegso, 2006).
Thus, if academia could produce sufficiently
many new graduates to fill all of the projected
openings, over 98% would be employed in some
aspect of software development rather than in
research. Students whose preparation includes
the practical skills that RPRCCs are designed to
instill in addition to the traditional theoretical
background will be far better prepared to become
productive members of the workforce soon after
graduation.

The Standish Chaos reports (Standish Group,
1994, 2003), which outline reasons for software
project cost and schedule overruns and outright
cancellations after significant expenditure of
time and resources, indicate that a major factor
is a lack of certain skills, many of which are
taught in RPRCCs. Starney (2006) has revealed
three primary reasons for project failures: lack
of requirements management, lack of risk man-
agement, and poor project planning. All of these
skills are addressed in RPRCCs.

RPRCCs build skills above and beyond tra-
ditional academic computing skills, which cover
only a fraction of the software development tasks
that must be performed on typical projects. In
addition to skills such as algorithm development
and programming, project work requires skills
inherent in RPRCCs, such as requirements en-
gineering, analysis and design, testing, cost and

 ���

A Framework for Success in Real Projects for Real Clients Courses

effort estimation, scheduling, risk management,
and overall project management. The ubiquity of
software libraries and sophisticated middleware
makes algorithm development a far less dominant
aspect of the development process than it was 10
or 15 years ago.

WHY sO FEW RPRCCs?

Given these benefits, why do so many departments
not include RPRCCs among their offerings? As
we began our study of RPRCCs, we conjectured
that a major reason is that many departments lack
faculty with the background and confidence to
teach such courses. Unlike technical computing
courses, teaching RPRCCs requires skills that
are difficult to learn by reading a textbook and
solving sample problems. Rather, learning to
teach RPRCCs requires practical experience with
developing real software for real clients, experi-
ence typically acquired by working in industry,
either as one’s primary employment or through
industrial faculty internships (e.g., http://www.
boeing.com/companyoffices/pwu/fellowship/ob-
jective.html; Johnson, Powers, & Wagert, 1989).
In our experience many computing faculty enter
academia directly from graduate school without
any detours for industry experience and are,
therefore, ill-prepared to teach RPRCCs.

At the same time, industry folks coming to
academia to teach RPRCCs can encounter chal-
lenges, although generally for different reasons.
In one example, an instructor with over 30 years
of industry and government experience taught a
new RPRCC that had to be cancelled, with bad
feelings all around. While the instructor did have
the requisite software development skills, this
individual lacked the teaching skills required to
make the course interesting and successful for
the students and the clients. On the other side of
the pendulum, while working in industry one of
our co-authors received special training in how to
teach as part of the IBM University Programs in

Technical Education and was able to convert that
experience into success in the classroom.

THE AUTHORs’ sETTINGs

The details of a particular RPRCC depend on
factors such as the course’s desired outcomes, the
preparation of students, and available resources.
Before we address issues relating to clients,
projects, teams, work products, and assessment,
we describe the wide variety of settings in which
we have taught RPRCCs at different levels of the
computing curriculum.

The ideas in this chapter are drawn from close
to 50 years of cumulative experience teaching
RPRCCs. Students at our institutions have very
different backgrounds and the resources available
to instructors vary widely. This breadth of experi-
ence shows the broad range of possibilities and
the different ways that RPRCCs can be realized
in different settings. We have taught RPRCCs
in computer science departments at the follow-
ing types of post-secondary institutions in the
United States:

•	 A small private engineering school. Students
arrive well prepared, with overall SAT scores
well above the national average. Nearly all
entering CS freshmen have had at least one
computing course in high school and quite a
few students have done additional program-
ming before entering the undergraduate
program. In the past few years a handful
of freshmen have entered with professional
experience, mostly in Website design, and a
small number have even had their own web
design businesses.

•	 A small Hispanic-Serving university. Stu-
dents may be admitted with low SAT scores
and many enter with low math placement
scores. Only a few of the students entering
the CS major have had high school pro-
gramming or other advanced placement

���

A Framework for Success in Real Projects for Real Clients Courses

courses. Some students have been employed
in industry, which has given them valuable
project-work experience.

•	 A small private Historically Black university.
Entering students have typically not had
a programming course and may be weak
in mathematics. Students are frequently
admitted with low SAT scores, which can
make it difficult for them to solve technical
problems and design programs. Many stu-
dents have family and job responsibilities
as well as transportation problems, which
makes it more difficult for them to schedule
meetings and complete project work. As a
partial solution to these problems, courses
have been restructured to provide additional
lab time for team meetings.

•	 A medium-sized regional state university that
is primarily a commuter campus. Students
are relatively well prepared, with mathemat-
ics as the most typical deficiency. Entering
students have the highest SAT verbal and
total scores of students in any program in
the college and significantly exceed uni-
versity and national norms. Most students
have had some programming experience in
high school, but may take a basic comput-
ing course (CS0) if they arrive without this
experience. By the time they take the first
of two required RPRCCs they are familiar
with networks, databases, and architecture,
as well as with technical writing. The pro-
gram of study includes a new prerequisite
of a non-computing course that emphasizes
teamwork and leadership skills.

•	 A large private research-oriented univer-
sity. The curriculum includes an elective
two-semester introductory-level graduate
SE RPRCC. Over three-quarters of the
students in this course are recently-arrived
Asian nationals, mostly Indian, but including
many Chinese, Koreans, and Thais. About
half of the students have some industry
background.

•	 A very large public state research university.
Over half of incoming students have had
a computing course in high school, many
have advanced placement credit, and about
half have done web programming or created
Websites. Only a few have professional ex-
perience. CS majors have among the highest
average SAT scores in the university. The
program does, however, include a significant
number of weaker students who enjoy using
computers and want to be CS majors.

Throughout the chapter, we embrace the di-
versity of our student populations and the great
variety that characterizes RPRCCs at our different
institutions. The courses in our examples include:
several varieties of software engineering (SE)
(e.g., a one-semester elective junior/senior-level
course; a one-semester required course, and a
two-semester required capstone sequence); a
one-semester required sophomore/junior-level
database course; a one-semester Information Sys-
tems Design course; a Senior Research course; and
a required two-semester project-only capstone.
In all of these courses, including those taught at
levels as early as the sophomore year, students
work on real projects for real clients.

Because of the diversity of our student
populations, the educational goals for our vari-
ous RPRCCs are significantly different in some
respects. As a result our approaches to issues
involved in designing and teaching RPRCCs have
ranged from structured and prescriptive at one
end of the spectrum to “seat of the pants” at the
other end. The examples we include should give
a sense of this range.

bUILDING THE CLIENT POOL

A planning challenge that can seem insurmount-
able to faculty members new to teaching an
RPRCC is finding the clients who will form the
backbone of the course (as well as the projects).

 ���

A Framework for Success in Real Projects for Real Clients Courses

The first semester or two of teaching an RPRCC
can be a challenge as the instructor builds up an
initial pool of clients. After teaching RPRCCs
once or twice, the pump is often sufficiently
primed that past clients and new prospects initi-
ate contact with the instructor well ahead of the
time about being clients for the next RPRCC of-
fering (Ecker, Caudill, Hoctor, & Meyer, 2004).
Although outside forces can sometimes undermine
an instructor’s ability to recruit potential clients,
for example when a bad economic climate forces
willing potential clients to reprioritize how they
spend their time, some instructors find that over
time the bigger challenge is to hold the number of
potential clients to a manageable number.

The process of building a client pool can
build on experiences learned from others. After
co-teaching the first semester of a two-semester
graduate-level RPRCC during a sabbatical, one
of the co-authors converted a required, junior-
level DB course into an RPRCC. Emulating the
approach used to seek clients for the graduate
course, this instructor sent an email to faculty
and staff explaining that students in the course
would be doing real projects for real clients and
inviting people to submit proposals and come to
a meeting. For the first two years all clients were
faculty and staff; after that, many new potential
clients turned up thanks to word-of-mouth from
previous clients or people who knew previous
clients. In one example, a retiree sought a team to
create a Website for a large not-for-profit, mem-
ber-run yacht club. The Website incorporated five
activities that had each been hand-run by different
administrators. In the end, the client organization
was very satisfied, even inviting the team to go
for a sail and hiring some of the students to do
more work on the Website.

In the next subsection, we explore general
client characteristics, including potential sources
of clients and how to vet potential clients for
suitability. We also discuss the number of clients
appropriate for an RPRCC and how to prepare
them for what to expect.

Client Characteristics

Before the introduction of the PC in the early
1980s, only specialized individuals used comput-
ers and software, so sources of clients were very
limited. Today everyone uses software, so almost
anyone can serve as a client, either out of personal
interest in a software application or as a representa-
tive of an organization’s needs (Modesitt, Maxim,
& Akingbehin, 1999). Even so, a careful client
selection process that takes into consideration
the educational goals of the particular RPRCC
is invaluable in maximizing the likelihood of
success for clients, students, the instructor, and
the institution. In our settings, client sources have
included: faculty in the same or another depart-
ment; operational staff from academic depart-
ments; institutional administrators such as the
president, provost, or registrar; members of the
institutional IT office; other operational offices
such as the library, career services, housing, or
catering; student organizations; pre-secondary
teachers, librarians, and educational specialists;
staff of local and federal governmental agencies;
employees of and volunteers with local not-for-
profits; and employees of for-profit businesses.

In the remainder of this subsection, we discuss
our experience in considering the following four
general characteristics of potential clients:

•	 Their sophistication with respect to under-
standing software development and how to
explain requirements.

•	 Their experience in this type of client
role.

•	 Their physical location and ability to com-
municate by means other than face-to-face
(e.g., email, telephone, on-line chat).

•	 Their schedule of availability for meeting
with and conferring with a student team.

The continuum of sophistication runs from
clients who are completely naïve in the ways
of software development to those who are ex-

���

A Framework for Success in Real Projects for Real Clients Courses

tremely savvy. Examples of the former are faculty
members outside of the computing department,
pre-college personnel, and representatives of
not-for-profits. The latter group includes mem-
bers of the computing department, members of
the department’s Professional Advisory Board
(PAB), and employees of the institutional IT
department.

Naïve clients typically have a problem they
believe can be solved by software, but do not know
precisely what the software can or should do and
how it should look to the user. Boehm et al. (1999)
refers to this as the IKIWISI (I’ll know it when I
see it) effect. While savvy clients are better able
to delineate their needs and communicate those
needs to the team, a savvy client may inadver-
tently detract from what students learn about
requirements engineering by providing too much
information too easily. In addition, teams working
with naïve clients are more likely to understand
the team’s obligation to learn about the client’s
domain, rather than expecting the client to know
about computing and software development.

The prior experience individuals have serving
as a client in an RPRCC can have an enormous
impact on their appropriateness as clients, regard-
less of their sophistication with respect to software
development methods. An experienced client is
more likely to understand the flow of the semester,
the guidelines for what the team should produce
at each step along the way, and the importance of
allowing the team to make mistakes and recover.
An experienced client understands the importance
of being frank with the team about how well the
developing product meets client expectations and
that keeping quiet in order to “protect” the team
does students a disservice in the long run.

The physical proximity of potential clients to
campus can affect their effectiveness as clients.
Progress reports, final demonstrations, and other
meetings often involve travel for the student team
or the client. If the client is located off-campus, it
might be difficult for the student team to arrange
transportation to reach the client site. At the same

time, many instructors feel on-site meetings are
vital for helping students better understand the
client’s needs. Working with off-site clients is
typical of real world software development and,
particularly if clients are remote, can expose
student teams to issues such as communicating
across time zones and using tools such as video,
telephone, and on-line conferencing. However,
instructors new to RPRCCs will probably find it
easier to work with clients close to home. As the
instructor gains confidence with logistics, using
off-campus clients becomes more viable.

Constraints on a client’s schedule can affect
their suitability as a client. For example, if the
client is a classroom teacher, the team may have
to arrange to meet during a fixed planning pe-
riod, after the school day ends, or on weekends.
The client’s travel commitments can be an issue,
though modern technology makes it possible to
hold geographically distributed meetings if the
client can make time for them. In one RPRCC,
a client was married in mid-semester and was
unavailable for a month. Because the team did
not think to ask and the client did not realize it
was necessary to tell them, the students and the
instructor learned a good lesson in risk manage-
ment.

While most clients will have domain knowl-
edge in the area of the proposed project, this is
not an absolute requirement. Several of us have
experience with clients who were not subject-
matter experts, yet supported their teams in
completing a successful project. In such cases, the
clients either interacted with domain experts or
put the teams in contact with the domain experts.
To complement this, team members (usually)
had the insight to understand what they did not
know and what to ask of domain experts. Where
domain knowledge was lacking, the client and
team used other means, such as research, to ob-
tain the necessary information. In other words,
a success-oriented attitude often trumps domain
knowledge and is a vital characteristic in clients.
Our advice is to consider course goals and student

 ���

A Framework for Success in Real Projects for Real Clients Courses

characteristics in deciding whether to use clients
who lack direct knowledge about the proposed
software’s domain.

Vetting Clients

As RPRCC instructors approach prospective
clients, they are asking the client to give an in-
formed opinion about whether or not they wish
to assume the role. To support this, the instructor
must provide information about the course, the
project, the pros and cons of participating, samples
from previous projects, and contact information
from previous clients. The instructor must also
make clear the importance of having the client
remain actively involved in the project throughout
the semester.

In the end, it is the RPRCC instructor’s job to
decide whether an individual who has offered to
be a client is viable for that role. If the RPRCC
instructor already knows the potential client,
the decision is often easy. In other situations,
the instructor must become acquainted with the
potential client, whether face-to-face, by phone,
or by email, and then decide. Sometimes it may
be necessary to seek references from mutual
acquaintances or others who are familiar with
the potential client.

Types of Client Organizations

In this subsection we explore the types of organi-
zations from which one or more of us has drawn
clients for the RPRCCs we have taught. As ap-
propriate, we discuss advantages and tradeoffs
associated with each type of organization.

Clients drawn from the institution at which
the RPRCC is being taught can be a comfortable
choice for those new to teaching RPRCCs, espe-
cially when the individual is already an acquain-
tance. On-campus clients can often more easily
arrange to meet with students than can off-site
clients. While the pool of faculty and staff from
outside of the computing department are generally

somewhat naïve about software development, they
are invariably bright people who have interesting
problems to solve. Using institutional staff from
departments such as the sponsored research office,
institutional police and security, the library, the
Provost’s office, or the graduate school can build
good will and garner benefits for faculty, depart-
ments, and students alike. Another on-campus
option is student organizations. For example,
the Student Technology Assistant program was
an outgrowth of campus involvement with the
Teaching Learning Technology Roundtable at
the University of Michigan–Dearborn (TLT
Group, 2007).

In an RPRCC with a service-learning focus,
the instructor is likely to want teams to work
on software that benefits society in some way.
ABET-CAC accreditation criteria (ABET, Inc.
2007) require programs to include social and
ethical issues in computing. Service projects
for non-profit agencies can help students under-
stand these issues through first hand experience.
Werner and MacLean (2006) discuss the use of
community service projects in computer-related
courses. Clients can be recruited from educational
institutions and from not-for-profits, including
local organizations such as nature centers and
national organizations like Habitat for Humanity.
Finding candidate clients at such organizations
can be as simple as talking to family, friends,
and acquaintances or methodically contacting
promising sources, such as elementary or middle
schools, local museums, and parks departments.
School enrichment programs can offer contacts
with innovative educators anxious to provide
children with engaging educational software.

Government agencies, in particular city and
county governments, can be a good source of
clients and can enable students to work on sig-
nificant problems, for example global warming
or energy conservation (see American College
& University Presidents Climate Commitment,
2007, for a coalition of institutions devoted to
such issues). Public utility projects can provide an

���

A Framework for Success in Real Projects for Real Clients Courses

interesting challenge for RPRCCs, as such projects
are often targeted for a harsher environment than
an office setting. For example, in a project for a
Water Quality Department, students developed
embedded software for a hand-held device. A ben-
efit of working for governmental agencies is that
the students, the department, and the institution
can gain widespread favorable publicity.

If an RPRCC is to produce software for for-
profit businesses, potential clients can be drawn
from among alumni, graduate students, and in-
dustrial advisors who have business connections.
While relationships with industry can reap benefits
for the RPRCC instructor and the department,
political concerns may render it desirable for the
instructor to have some experience at running
RPRCCs prior to recruiting industry clients. For
students, who may be seeking internships or
full-time employment, clients drawn from busi-
ness can lead to rewarding contacts. In addition
to the regular client tasks, clients from for-profit
businesses can often double as mentors thanks to
experience with issues such as budget, schedule,
deadlines, deliverables, quality, iterative develop-
ment, communication skills, requirements, risk
assessment, and testing.

If the department has one, the PAB can be a
useful source of clients (Modesitt, 2005, 2006).
Because PAB members are often eager to work
with students who may one day become em-
ployees, they have a vested interest in successful
projects. PAB members are also in a unique posi-
tion to offer a wide variety of real problems for
student teams. As an added benefit, PAB clients
can serve a double purpose because accreditation
organizations such as the Computing Accredita-
tion Commission (CAC) of ABET encourage
departments to utilize PABs.

How Many Clients are Sufficient?

The number of clients required to run an RPRCC
depends on how the RPRCC is organized. If each
team is to do a unique project, and each client

is to represent a single project, then the number
of clients must equal the number of teams. A
variation practiced by some of us is to offer more
project options than the number of teams. With
an excess of options, each team is more likely
to end up matched with a project that suits its
members well. A downside to this strategy is that
some clients may not be matched with a team, an
outcome that should be discussed in the process
of managing the client’s expectations (see the
next subsection).

At times, a client may ask to propose multiple
projects. If the client truly has time to act as the
client for multiple projects, then the instructor
can make do with fewer clients than teams. If
the projects are completely distinct, then client
interactions with each team can be relatively
independent. If the client proposes a larger proj-
ect, then different components can be assigned
to different teams and integrated later, with the
client meeting as appropriate with the separate
teams or the combined team. We do not, however,
recommend that clients work with multiple teams
if they have never served in this role before.

Preparing the Potential Client for
What to Expect

During the process of recruiting prospective
clients, the instructor must provide clear infor-
mation about what the role entails, both risks
and rewards. A good starting point can be a
flyer or webpage that introduces the course, the
role of the client, the rhythm of the activities
in the course, and the types of project that are
appropriate. This information can also be com-
municated via telephone or email, either personal
or broadcast.

The introductory information supplied to
potential clients should include:

•	 An indication that this is a quest for clients
who have project ideas that could be devel-
oped by a team of students.

 ���

A Framework for Success in Real Projects for Real Clients Courses

•	 A broad description of the type(s) of soft-
ware that a student team is typically able to
develop in the allotted time.

•	 Samples of previous successful projects de-
veloped by student teams in earlier offerings
of the course at this or other institutions (and
perhaps a description of some of the twists
and turns on the path to success).

•	 A list of earlier clients, which may very
well include some that the prospective client
knows personally.

•	 A rough estimate of the time and effort
investment typically required of a client.

•	 The general timeline for the RPRCC, in-
cluding dates when the client will need to
be available to meet with the team, review
documents, and attend presentations.

•	 The need, in some situations, for student
access to workspace at the client’s site or to
a development environment similar to the
target environment.

•	 Information that the prospective client must
provide to the instructor to support the deci-
sion-making process.

Candidate clients should be encouraged to
ask questions by email, by phone, or in person,
whichever is most convenient. If the match-up
seems promising, the instructor should arrange
for a meeting to further explore the potential
relationship.

Once the instructor has agreed to take on a
particular client, the client must generate a brief
description (for many of us, no more than a half
page in length) for the proposed project. While
many clients are able to capture the project ideas
on their own, some instructors find it helps to
work directly with clients and possibly with other
critical stakeholders to refine the rough descrip-
tion or even to generate ideas. Developing the
rough description of the requirements requires
a delicate balance. The description must give a
fair idea of the project without encroaching on
the requirements engineering the team should

perform to iteratively refine the rough statement
and detail what the software should do to satisfy
the stakeholders.

DEVELOPING THE PROj ECT
OPTIONs

There is a strong relationship between the process
of recruiting clients and the task of determining
the projects that will be available to the teams.
Whatever the project types allowed for a specific
RPRCC, they must align well with the goals for
the course. Some instructors want students to
gain experience doing new development from
scratch. Others want students to experience the
advantages and disadvantages of doing enhance-
ment projects. For SE RPRCCs and capstones,
many instructors want student teams to identify
the best solution from across the entire spectrum
of possibilities. This latter approach mimics a
software development workplace where develop-
ers work with the client to determine the type of
development that best satisfies the client’s needs
at an acceptable cost.

With stronger students, many of us have teams
go through the entire software development life
cycle in a single semester, from requirements
engineering to implementation, testing, and
deployment. When teams encounter unforeseen
difficulties, they can confer with various stake-
holders to prioritize features and, if necessary,
scale back plans for the functionality that can be
achieved in the given timeframe. An approach that
can help weaker students complete a significant
piece of work or stronger students attack a truly
challenging project is to limit the tasks the team
must complete during the semester to perform-
ing requirements analysis and constructing a
prototype. In our experience, many clients can be
satisfied even if the team’s final results fall short
of fully functional industrial-strength software.
For-profit clients often find it useful to have
student developers perform this early step in the

���

A Framework for Success in Real Projects for Real Clients Courses

development process; later, software development
professionals or students in a subsequent RPRCC
can implement the product and test it, often with
considerable net financial savings to the client
organization.

In this section we discuss categories of projects,
from custom development at one end of the spec-
trum to research-oriented projects at the other. We
also explore considerations for vetting projects,
including project demands, academic challenges,
and post-delivery considerations.

Project Categories

Our collective experience includes a broad variety
of project types: custom software designed and
implemented from scratch; projects to enhance
results from earlier offerings; applications that
tie together multiple open-source or Commer-
cial-Off-The-Shelf (COTS) products with “glue
code;” tailoring open-source or COTS products
that approximate the client’s needs; and projects
that contribute to independent research and de-
velopment (IRAD).

In a custom development project, the team
begins by developing requirements based on
what might be a fairly vague problem statement.
For weaker students enrolled in a one-semester
RPRCC, this type of project may be too demand-
ing. In a two-semester sequence, the work can be
split, for example with the first semester devoted
to requirements engineering and design and the
second to implementation and testing. Another
approach when working with weaker students is
to accept only smaller projects, while a third is to
allow larger projects that can be partitioned into
easily integrated modules or packages. While the
latter approach makes it possible for multiple teams
to work on different modules in parallel with one
another, the instructor must consider client capac-
ity for working with multiple teams and may have
to guide the process of partitioning the project and
planning for incremental integration.

Having teams enhance software produced by
others can be an especially valuable experience.
Studies have shown that in industry an average
60% of the work is maintenance and enhancement
(Hanna, 1993; Glass, 2001), with initial job as-
signments for many software developers focused
on these tasks. Enhancement projects arise for a
variety of reasons: perhaps an earlier team had to
scale back from the original requirements; it may
be the next step in an iterative development plan
for a project too large for a one-semester course;
or the client may have gained insights for how
to expand a product or make it more useful. In a
later RPRCC, possibly one devoted to learning
maintenance and enhancement skills, such a
project can be continued by a different team. In
any case, the new team must use the documenta-
tion and other artifacts produced by the original
development team, so the experience is likely to
teach them the importance of readable project
artifacts and well-documented code. In getting
started on an enhancement project, the team must
review the artifacts from the existing version(s)
of the application to understand the requirements
and possible solutions that were tried. Gener-
ally, the team’s task will include updating and
extending the artifacts, although some teams
decide to start over from scratch rather than
modifying earlier work. In the latter case, the
team should be required to justify starting over
with a reason other than NIH (Not Invented Here).
In one enhancement project, a team worked for a
humanities professor to modify a database with
the full corpus of the medieval French poet who
was this professor’s research focus. Two earlier
teams had worked on this project in the context
of a DB RPRCC. After the first class presentation
by the latest team, the instructor realized that the
software, including the DB schema, was poorly
documented. The task for the newest team then
became to document the schema in an accept-
able fashion, rather than trying to correct all the

 ���

A Framework for Success in Real Projects for Real Clients Courses

existing software defects. This experience gave
the entire class a good lesson in prioritizing and
re-scoping.

COTS-intensive projects tend not to require
much, if any, from-scratch programming. Having
teams work on such projects can be a real chal-
lenge, especially for the novice RPRCC instructor,
because the projects may involve considerations
alien to those without relevant experience (Boehm,
Port, Yang, Bhuta, & Abts, 2003; Boehm, Yang,
Bhuta, & Port, 2005; Franch & Port, 2005). More-
over, for some RPRCCs, COTS-intensive projects
may be incompatible with the learning goals if,
for example, the instructor wants students to do
full-fledged object-oriented analysis and design.
COTS-intensive projects can help students mas-
ter the type of risk management that requires
them to determine which artifacts to produce on
the principle that “if it’s risky not to do it, then
do it; if it’s risky to do it (e.g., because it takes
valuable time from more urgent activities), then
don’t do it.”

IRAD projects can be an exciting, and at times
unsettling, addition to the spectrum of project
types. IRAD projects tend to be exploratory,
often providing the client with proof of concept
and a better understanding of the problem. For
IRAD projects, it may be difficult to predict the
final work products from the beginning and, in
fact, the final work products might be no more
than a report, a trade study, a demonstration,
or a rough prototype. In one such project, the
client was a research scientist from an institute
that focuses on accessibility issues. The team
developed a prototype for a new screen reader
component to give users with vision limitations a
no-cost open-source alternative to the expensive
commercial screen reader. One student from the
original team continued to develop this project
over several semesters, with the end result being
a solid prototype that has attracted attention from
users and researchers across the world.

PROj ECT VETTING bY
INsTRUCTOR

In this subsection we discuss issues that an in-
structor must consider in determining whether the
demands of a particular project are appropriate for
their setting. These include the scale and scope of
the project in terms of complexity and duration,
the academic challenges inherent in a project,
and post-release issues such as ownership and
maintenance of the resulting product.

Assessing Project Demands

Several factors come into consideration in under-
standing the likely level of effort required by a
particular project. For all RPRCCs, one consider-
ation is the skill set students must have or acquire
to complete the project. For projects that involve
technologies or skills new to most or all of the
team members, another factor is the likelihood
of a steep learning curve. For projects that are
to be partitioned among a number of teams, an
additional issue is how easily the project can be
partitioned into reasonable units, and even whether
a reasonable partitioning is possible at all.

Some of us do no more than an informal as-
sessment of project complexity, based on past
experience with software development and
with earlier RPRCCs we have taught. Often, a
short description is enough to give us a feeling
for whether a project is a good match with the
educational goals of the course, the students’
abilities, and the duration of the RPRCC. Others
of us prefer a more formal approach such as the
one that Shelly, Cashman, and Rosenblatt (2008,
p. 66) describe in the “Preliminary Investigation
Overview” section of their textbook.

Client expectations for a project also have a
bearing on whether a project is an appropriate
choice. Williams, Bair, Borstler, Lethbridge, and
Surendran (2003) estimate that only one in five
student teams produce a professional-quality
product. Software that must meet critical needs

��0

A Framework for Success in Real Projects for Real Clients Courses

for the client organization in the near future is,
therefore, almost certainly a poor choice.

Academic Challenges

Some of us prefer to offer projects from domains
with which students are at least somewhat famil-
iar. For weaker students a completely unfamiliar
domain can slow the team down so much that
they cannot make much progress in one semester,
which can lead to a sense of failure. For stronger
students, being faced with an unfamiliar domain
offers the advantage of simulating reality, al-
though students may initially reel at being faced
with this unaccustomed challenge. While some
of us expend considerable energy in assessing
the scope of potential projects, others leave the
bulk of the task of scoping and adjusting ex-
pectations to the team as part of their learning
experience.

For any type of project, a key influence on the
pace at which work can proceed is how familiar
team members are with the tools or components
that may be required, e.g. a DBMS or middle-
ware. Some of us require students to use specific
programming (or other) skills learned in earlier
courses in their RPRCC projects, which can limit
the types of projects that are appropriate. Others
of us leave the choice of languages, tools, and
components to the team as it develops an under-
standing of the client’s domain and requirements,
begins to develop a design, and communicates
with the stakeholders who will host the completed
software to determine the technologies they are
willing and able to support.

For any type of project, one option is to have
multiple teams work in parallel on different aspects
of the same project or even on the entire project.
Each team can work on one or more components
of the project and integrate the full system later
in the course. For example, when a 6th-grade
teacher wanted a grading tool, one team focused
on the front-end components (user interface and
reports), while another team focused on back-end

issues (DB and data analysis). The challenge with
this approach is coordinating delivery schedules
and integrating the completed components into a
single product. A benefit of this approach is that
it can stimulate teams to share ideas and review
one another’s work. However, integration should
be done iteratively, rather than at the end as a big
bang effort.

It is also possible to have multiple teams work
independently on exactly the same project in
parallel with one another, rather than on differ-
ent aspects of the same project. While multiple
attempts at accomplishing the client’s goals may
appear to increase the likelihood that at least one
will succeed, this approach can put an unaccept-
ably heavy demand on the client’s time. One way
around this is to require that all teams be repre-
sented at all client meetings. A downside to this
approach, however, is that it can engender the sort
of competition that tempts teams to undermine,
rather than support, one another.

For novice RPRCC instructors, particularly
those who do not have earlier experience work-
ing in industry, it is probably best to avoid hav-
ing multiple teams work in parallel on the same
project. The potential risks can be difficult to
appreciate and deal with until an instructor has
sufficient experience.

Issues Relating to the Delivered
Product

Some of us accept only projects for which the client
agrees to allow all artifacts produced by the team
to be placed in the public domain. When projects
are developed under an open-source agreement,
future teams at the same or other institutions can
extend them and learn from them. Others of us
accept projects that obligate us, and sometimes
the students, to sign contracts that restrict future
uses of some or all resulting work products. If a
project is being done for a for-profit business or
university entity, then privacy, trade secrecy, and
intellectual property issues may be important. In

 ���

A Framework for Success in Real Projects for Real Clients Courses

these instances, teams may be required to sign
non-disclosure agreements and to keep in-prog-
ress work products securely under lock-and-key.
Some of us do not mind constraints of this type,
while others have avoided such situations.

A key issue that must be discussed with the
client is post-delivery maintenance of software
produced by student teams. Part of managing
client expectations is to explain the likelihood
that maintenance will be necessary in the future
and to consider who will be responsible. In some
cases, the client’s organization assumes this re-
sponsibility. For example, the client for a Website
developed for a Chinese charity was a former
teaching assistant from the instructor’s database
course. For this project, the former TA was capable
and willing to maintain the product after it was
developed by the student team. Another solution
is to have future student teams do maintenance,
possibly as a part of their regularly scheduled
project work. One of us has arranged to have
maintenance tasks on past projects completed
by students enrolled in independent study and
student workers supported by a related grant. In
other situations, all future maintenance will be
the responsibility of a separate organization. Sun
and Decker (2004) discuss tradeoffs among vari-
ous options for who should handle maintenance,
for example, the current team, a future team, or
a separate support mechanism such as the client’s
IT organization. At some of our institutions,
the IT department has been willing to maintain
Websites developed for clients at the institution if
the product was developed using COTS products
already in use and if, in addition, testing shows
that the product is of sufficient quality.

In some cases, a client proposes a project
that is to be developed by multiple teams over
multiple semesters. Each semester, one or more
teams works to develop and deliver a component
or increment of the project, which is then used
as a foundation for a later class. Werner and
MacLean (2006) describe one such project, a
community service project that was expanded

over 5 semesters. One of us has experience with
this in industry, where a company took a very
methodical approach to having teams succes-
sively build up a complex project over several
semesters. Another one of us has experienced
this with several clients from educational settings.
For example, one project, which was designed to
help young children explore mathematical con-
cepts such as combinatorics and recursion, was
expanded and improved over seven semesters by
eight different teams.

The long-term vision for software developed
during RPRCCs varies widely. In some cases,
any future maintenance is solely the responsibil-
ity of the client. This means that if problems are
discovered or if there are changes to the hosting
platform, operating system, or component COTS
product (for example, if one of these is updated to
a new, incompatible version), the client must find
someone else (perhaps another RPRCC team) to
update the product.

Another long-term consideration for products
developed during an RPRCC is how (and if) they
should be made available beyond the end of the
course. One of us created an overall identity that
spanned offerings to keep every project avail-
able as part of an instructor-maintained on-line
repository. The repository included an underlying
management system to support the course each
semester and provide access to all work products
under a uniform interface.

TEAM FORMATION AND
PREPARATION

Before students can begin to work on their projects
they must be assigned to teams. In this section
we discuss factors influencing choice of team
size, options for how to assemble teams, how to
prepare students for teamwork, and approaches to
matching teams to projects. At smaller institutions
with small class sizes, team set-up is somewhat
simpler because the instructor already knows the

���

A Framework for Success in Real Projects for Real Clients Courses

students well and there are fewer possible per-
mutations. Yet a viable option is to set up teams
that span multiple institutions (see, for example,
Last, Almstrum, Erickson, Klein, & Daniels,
2000; Modesitt, 2004) or even multiple courses
or departments at the same institution; however,
we restrict our discussion to teams enrolled in a
single course at the same institution.

Determining Team size

Before deciding how to form teams, the RPRCC
instructor must decide on team size. For the sake
of discussion, we refer to teams of 2-3 students as
small, teams in the 4-6 range as medium-sized,
teams in the 7-10 range as large, and larger teams
as super-sized. The lower and upper bounds on
these team size designations are not intended to
be precise.

Our experiences range across all of these
possible sizes. One of us has observed that the
way students in small teams share work is almost
always acceptable to all, whereas with larger
teams this is not always the case. Williams et al.
(2003) have suggested using two-person teams
for intensive training and XP pair-programming
methods. Some of us deliberately use larger teams
to ensure that students have the opportunity to
understand the impact of team size on managing
communication and other aspects of teamwork.
Many published descriptions of RPRCC courses
report that medium-sized teams work best (Ecker
et al., 2004; Friedman, McHugh, & Deek, 2003;
Koppelman & van Dijk, 2006; Kurtz, et al, 2007);
this has been the rule for most of our settings,
including the departments where two RPRCCs
are required.

Larger teams can tackle significantly larger
projects than can smaller teams. One approach is to
divide large teams into smaller subteams, each of
which executes a part of the overall project. There
are many ways to divide responsibilities across
subteams, for example according to component or
according to phase (e.g. design, documentation,

verification & validation). Under either approach,
one or more subteams can assume primary re-
sponsibility for full team tasks such as managing
inter-team collaboration or integrating the vari-
ous subteams’ work products. With larger teams
and larger products, students can practice skills
beyond those required in smaller-scale software
development. Two examples of RPRCCs in which
multiple groups worked on various aspects of one
project come from Fenwick and Kurtz (2005),
where software development teams collaborated
with Human Computer Interaction (HCI) teams,
and Kurtz et al. (2007), where students from dif-
ferent universities worked on components of a
very large project.

At the far end of the team-size spectrum is the
super-sized team. A super-sized team will cer-
tainly have to be subdivided in some way, either by
the team members themselves or by the instructor.
Even with extensive industry experience, one of
us has found that teaching an RPRCC with large
or super-sized teams requires much more work
by the instructor than using medium-sized teams.
For instructors new to RPRCCs, particularly those
without significant industry experience, it may
be best to avoid using super-sized or large teams.
Even for highly experienced instructors, it may
be most effective to work up to larger-team skills
using a stepwise approach. Students would first
learn skills while working in a small or medium
team, then in a later offering could work in a large
or super-sized team. Because computing students
can be resistant to learning skills other than pro-
gramming and individual work, allowing them
to acquire these additional skills in more gradual
steps may be more effective. A stepwise approach
also positions students to better understand and
appreciate the differences when they encounter
larger projects.

A final factor to consider in looking at team
size is the overall number of teams that will
result, given the RPRCC’s enrollment. The total
time required of the instructor for interacting
with teams is a function of both the desired level

 ���

A Framework for Success in Real Projects for Real Clients Courses

of interaction and the number of teams. On the
other hand, larger teams can require more work
because of the need to manage and coordinate
subteams (although in some circumstances,
the teams themselves can take on much of this
responsibility). In the end, the choice of team
size depends on the goals of the RPRCC and the
instructor’s level of experience and comfort, as
well as the individual team members.

Assembling Teams

Once team size is decided, the next issue is how
to assemble teams. The major approaches are
(1) the instructor assigns students to teams, (2)
students form teams on their own, and (3) hybrid
approaches that combine these two options. If stu-
dents form their own teams, the instructor can vet
each team to ensure an appropriate mix of skills,
adjusting team composition if necessary. If the
course is assigned teaching assistants, the TAs can
be enlisted to propose a first cut at teams based
on a pre-specified algorithm, with the instructor
fine-tuning as needed. Cultural and language
considerations can also play into team composi-
tion. For example, one of us who usually assigns
teams has at times allowed self-selected teams that
were totally Chinese, African, or Middle Eastern
because it supported better communication among
teams, a critical success factor. In this case, the
teams were still required to balance team skills
as described later in this section.

In a multi-staged two-semester approach to
team formation, smaller teams go through all
the steps required to create a platform-specific
design during the first semester, then during the
second semester carry out implementation, test-
ing, installation, and user training. In one RPRCC
sequence that uses this approach, students who
enroll in the first semester are not required to
enroll in the second. Because enrollment usually
drops significantly from the first semester to the
second semester, the number of teams also drops
from the first semester to the second semester. In

most cases the projects that are carried through
lose at least one or two team members between
semesters, so some students must be reassigned
to a new team. If a project has lost most of its
team members, it is rarely carried through to the
second semester. This potential outcome must be
clearly explained up front to potential clients as
part of expectations management.

A key question regarding team formation is
how soon after the semester begins they should
be formed. We have found that it is wise to wait
with team formation until course registration has
stabilized, assuming that the end of the drop/add
period is not too far beyond the start of the course.
While forming teams earlier can enable teams
to start their project(s) earlier, this may require
additional work if students are allowed to add or
drop the course in the first few weeks (a problem
that is less likely to occur if the RPRCC is a re-
quired course).

Once the work is underway, circumstances can
arise well into the semester when it is necessary to
realign teams, for example, if the institution allows
late drops. Realignment can also be necessary if
team members become uniformly dissatisfied with
one team member’s behavior or performance. It
is prudent to publish a procedure that teams can
use to bring grievances before the instructor so
students understand the consequences of remov-
ing a team member from a team. In our experi-
ence, however, teams are generally able to work
out such issues on their own.

skills Needed within Teams

A team must possess a number of skills in order
to succeed on a software development project.
Among these are inter-personal communication
skills, writing skills, problem-solving skills (e.g.,
for analysis and design), and technology skills.
Different individuals will bring different strengths
to the team, in part due to inherent talents. How-
ever, students’ earlier experiences will also have
a strong influence, for example, because of differ-

���

A Framework for Success in Real Projects for Real Clients Courses

ences in the required or elective courses they have
taken, the outside software projects with which
they have been involved, and the employment or
internship opportunities they have enjoyed.

Among the tools we have used to assess stu-
dents’ skills are the following:

•	 Survey instruments that list skills, includ-
ing various programming languages and
COTS products such as DB systems and
middleware. Students respond by self-as-
sessing each of these skills on a scale that
ranges from zero to five.

•	 Personal data forms that solicit information
such as courses taken, weekly schedule,
on-campus vs. commuter status (to deter-
mine availability outside of class time), and
computing equipment available at home.

•	 Formal resumes, in some cases prepared
with the help of the Career Services depart-
ment.

•	 Informal “about-me” reports.
•	 In-class interviews of each student, either

by the instructor or by other students. The
interview process can range from very in-
formal to fairly formal to allow students to
practice for future job interviews. Interview
protocols can be adapted from ones provided
by sources such as the department’s PAB.

•	 Transcripts, which are typically legally
available only to the instructor, not to TAs
or other students.

In the real world of software development,
project management generally assigns develop-
ers to teams based on matching skills to project
needs. If the instructor assigns students to teams,
it may be easier to balance the skill mix for each
team to help ensure that every team can succeed
on its project. Allowing students themselves to
determine the teams may result in an uneven
distribution of skills across the teams.

One of us starts the process of assigning stu-
dents to teams by characterizing each student
using these indicators:

1. Technology experience (based on a self-as-
sessment survey).

2. Communication skills (based on grade point
average (GPA) in humanities courses).

3. Problem-solving skills (based on GPA in
computing and mathematics courses).

4. Drive to ensure the project will be successful
(based on overall GPA).

This instructor sets up teams so that each
is composed of at least two students with high
self-reported technology experience, at least one
student with strong communication skills, at least
one student with strong problem-solving skills,
and at least one student with strong drive. On oc-
casion, the instructor allows self-selected groups
of four or five students who offer a compelling
argument that they should be allowed to form a
team, for example because they have previously
worked together on a successful project. In most
cases the results have been very good.

Another instructor-driven approach to team
formation sorts students according to informa-
tion gathered via personal data collected early in
the semester. One of us regularly uses this list of
criteria, ordered from highest to lowest priority,
to determine teams:

1. Anti-affinity: Who does not want to work
with whom.

2. Schedule (compatibility): Based on general
timing categories {morning, afternoon, early
evening, late evening}, preferred days of the
week, and full schedules as a final sanity
check.

3. Gender: No gender should be represented
by only one person in a group except in the
case of strong mutual requests (that is, avoid
teams with just one woman).

4. Break up cliques: No more than three
mutual requests per team.

5. Affinity: Who wants to work with whom;
worth more if a mutual request.

 ���

A Framework for Success in Real Projects for Real Clients Courses

6. Skill coverage in the group: An ideal team
assignment balances success-critical skills,
including management, programming/tech-
nical, writing, SE and testing experience,
and industry experience.

7. Interview/travel plans: No team should be
composed of members who are all interview-
ing for jobs during the semester.

8. Nearness to graduation: Minimize the
potential effect of “senioritis”.

Is it essential to balance all teams according
to all of these factors? For some of us, the results
have been mixed. Some teams run into difficul-
ties even though on paper there is a balance of
strengths in each of the areas. Other teams seem
weak from the start, but manage to dig up the skills
and shine, even though the indicators would have
predicted otherwise. Pre-planning can go only so
far – the rest is up to the team.

Team Formation by students

Students often prefer to form their own teams.
One risk is that individuals who know few of the
other students or are perceived to have weaker
skills can end up feeling slighted. In one author’s
experience, allowing students to select their own
teams is more successful among graduate students
than undergraduates.

To support the self-selection process, students
must first understand the roles needed to make
a team successful as well as the responsibilities
associated with each role. Among many others,
these roles might include: team manager; client
contact; documentation manager; programmer;
configuration manager; and tester. Students
should also learn about the risks associated with
forming a team that lacks members able and
willing to serve in one or more of the required
roles. Students must receive sufficient information
about other class members to be able to consider
relevant factors such as skills and compatibility
of weekly schedules. This information can be

posted in an easily accessible spot, for example
in the protected area of a course management tool
such as Blackboard or WebCT.

To prepare for self-selection of teams, one of
us provides students with a two-hour lecture on
issues relating to roles and skill sets. Immedi-
ately after the lecture, students attend a half-hour
“mixer” where they stand under a banner that
identifies their preferred role. During the mixer,
students begin to talk with others whom they
have not previously met. Over the next week or
so students form their own teams and inform the
course staff of their decisions, with no fine-tuning
by instructional staff.

Regardless of how strongly an instructor
stresses the skills required for the different roles,
some groups of students will still form teams
based purely on friendship or compatibility of
another sort. In one case, a group of students with
English as a second language, all very recently
arrived in the United States, decided to form a
team because they preferred to communicate in
their native language. While they all had strong
technical skills, the team failed miserably in their
project because none of them could communicate
with the client well enough to perform essential
requirements engineering activities.

Teaching Teamwork

Teamwork skills can be conveyed though lectures,
readings, talks given by guest speakers, and col-
lected reflections and examples (also referred to
as organizational memory) from earlier offerings
of the RPRCC. Some of us provide students with
instruction on teamwork and other software de-
velopment-related issues on an ongoing, or “just
in time,” basis. This subsection discusses a few
of the topics that we cover.

Among the important team skills students
can learn are how to be an effective facilitator
for team meetings or team-client meetings, how
to divide work among team members, and how to
deal with problems such as conflict between team

���

A Framework for Success in Real Projects for Real Clients Courses

members and non-responsive clients. In courses
where teams are expected to hold formal technical
reviews of work products, they can receive train-
ing on these techniques. Outside guest speakers
can help bring these topics to life. Examples of
guest speakers we have used include the Human
Resources specialist from a local company, repre-
sentatives from the organizational leadership and
supervision department at the university, and an
industrial psychologist from the university’s busi-
ness school, who specializes in team dynamics.

Students often assume that they have far bet-
ter communication skills than they actually do.
Oral communication skills concern intra-team
issues as well as team-client issues, especially if
the client comes from a radically different profes-
sional background (Boehm et al., 1999). Many of
us have found it useful to coach students to help
them understand the importance of these skills
and to develop and improve them. Presentation
skills are another area where students can benefit
from coaching. A lecture on presentations can
cover the gamut from how to prepare effective
materials to tricks for calming nerves.

Social interaction can be a powerful mecha-
nism for strengthening teamwork. It can be helpful
to require each team to invent a team name, set
up a team Website, and use other approaches to
establishing their team identity. As an example
of encouraging team identity, one of us pays for
mugs that display team symbols and presents
these to team members and the client.

Several of us have been very successful in
building up and using an organizational memory
based on information from earlier RPRCC of-
ferings. For example, while an area such as
risk management may be easy to discuss in the
abstract, learning to do it well requires practical
examples and harsh experience. The RPRCC’s
organizational memory can be built up on a
Website or wiki over time to delineate risks
faced by earlier teams, how teams dealt with
these risks successfully or unsuccessfully, and
the consequences.

One contribution to organizational memory
can be a collection of “lessons learned” that each
team is required to include in its final report and
that the instructor organizes over time. One of us
uses such material in a two-stage process in which
individual students first study the past lessons to
identify trends and themes and suggest ways a
team can avoid problems and repeat successes.
The second stage takes place after the teams have
been set up. Each team discusses their observa-
tions, perhaps during a meeting or via email, and
then writes up its compiled observations as part
of their first team status report. This has been an
effective exercise for allowing students in a new
team to learn from one another and gain early
insights into the development process they will
be following.

Another way to build up organizational
memory is to create an archive of project artifacts
from earlier offerings of the RPRCC. These can
be a valuable resource for helping students come
up to speed on both teamwork and other aspects
of software development. For example, one of us
asks each student to formally review the work
products created by one or more previous teams
as part of the process of becoming familiar with
the course’s overall standards and guidelines.
The assignment can require students to compare
and contrast different approaches to such issues
as planning, design, documentation, verification
and validation, and quality. These reviews can
also feed into plans for enhancement projects
for future offerings of the RPRCC by identifying
maintenance needs and possible extensions for
earlier projects.

Matching Teams with Projects

While teams may appreciate the opportunity to
indicate their preferences among the project op-
tions in our offerings, either we as the instructor
or the client typically makes the final decision.
Some of us match teams with projects with no

 ���

A Framework for Success in Real Projects for Real Clients Courses

team input, based purely on intuition and experi-
ence. The rest of this subsection describes other
approaches.

Some of us provide teams with information
about the project options by means of detailed
requests for proposals (RFPs), informal project
sketches, or client presentations. Each team then
responds by preparing a proposal that explains its
qualifications for and its proposed approaches to
their top project choices. The instructor can then
use the proposals as input for assigning teams to
projects.

If all of the clients in a particular offering
understand software development, the instructor
can invite the clients to indicate team prefer-
ences based upon the proposed approaches and
team qualifications. If no two clients choose the
same team, then all clients get their first choice;
if there are conflicts or if one or more teams is
not chosen by any client, the instructor typically
makes the final decision, often in consultation
with the clients. (Recall that in some of our of-
ferings there are generally more project options
than teams, so some projects are dropped, at least
for the time being.)

sTANDARDs AND WORk
PRODUCTs

We require a wide variety of different work
products associated with the product and process
aspects of a project. Terminology varies from per-
son to person and from institution to institution, in
the professional world as well as in the academic
world. For the purposes of this chapter, a work
product is any item that must be produced by a
team as part of its project obligation. Frequently
encountered synonyms for work product are
deliverable, document, and artifact. While code
is considered by most to be a work product, a
deliverable, and a project-generated artifact, it is
generally not referred to as a document.

Specific requirements depend on course objec-
tives, on the training that students have had before
starting this offering, and on training provided
during the course. Written guidelines and stan-
dards for work products can range from terse to
elaborate, and each work product can be as terse
or elaborate as risk management suggests is best
for the specific project.

Any guidelines and standards must be clear
enough to enable students to grasp what they
are supposed to produce and the required qual-
ity levels. For our purposes, standards serve as
a reference point against which work products
can be evaluated, and guidelines specify how
teams should carry out their tasks and submit the
resulting work products. Regardless of the specific
work products an instructor requires, some set of
work products other than actual code is required
in virtually all RPRCCs. Support for developing
guidelines and standards can be found in textbooks
such as the one from Pressman (2005), in the IEEE
family of standards for software development
(IEEE Software Engineering Standards Central,
2007), and in the scaffolding approach described
by Hislop (2006).

Some of us have developed a set of custom-
ized standards that specify the content and layout
of all work products to be produced during the
course, as well as a schedule of delivery dates
for each. For some of us, a client-team contract
specifies the deliverables, either based on pre-
established standards in the client’s organization
or on negotiations with the students. In other
circumstances, we require each team to determine
not only the process they will use but also the
work products needed for successful execution of
the project using that process. This approach can
work well in capstone RPRCCs when students
already have previous experience in SE principles
and practices. In this situation, determining the
process and work products can be seen as a vital
part of the learning experience and one that is
of critical importance in professional software
development.

���

A Framework for Success in Real Projects for Real Clients Courses

scheduling Guidelines

A key aspect of planning for an RPRCC is to de-
velop a scheduling framework to keep teams on
track and working at a steady rate. This type of
framework increases the probability of successful
project completion in the available timeframe. In
a fully structured approach, which is appropriate
for students new to software development, the
instructor sets a strict schedule of when major
work products are due and the team has control
over intermediate deadlines.

As students gain experience with software
development methods, especially in their second or
third RPRCC, the instructor can use an approach
in which teams determine their own deadlines. In
capstone courses, this can be an excellent tool for
practice in setting and meeting deadlines. For this
approach to work, the instructor must maintain
regular contact with each team to ensure they are
making progress and meeting deadlines. This
can be accomplished through periodic written
progress reports, formal face-to-face meetings,
and informal discussions.

Additional Guidelines

Guidelines are useful for helping teams maintain
consistency in their efforts and can also make the
task of evaluating work products easier for both
the instructor and the client. Providing students
with formatting guidelines can help them learn to
follow professional workforce practices and can
introduce consistency that is useful in assessing
and using the work products. Guidelines can
specify methods for submitting work products, for
example number of hardcopies or how to submit
work products via electronic means (e.g. as email
attachments, as a document with a specific name
in a specific folder, or as a submission within a
course management system such as WebCT or
Blackboard).

A guideline about deadlines can indicate what
teams must do to request an extension and any

consequences, such as how the grading will be
affected, if there are delays. A related guideline
could explain what a team must do to re-scope
their project if the instructor and client agree that
this is acceptable.

Another guideline might concern who can see
work products and when. For some courses, the
Website or project directory will be accessible
only by team members; at the other extreme,
work products might be posted on a public team
Website throughout the course, thereby allowing
anyone on the Internet to view them. If there are
security and privacy requirements for the project,
the instructor and the team must take care to
protect private information.

Configuration management of one type or
another is essential for coordinating versions of
work products and also adds important skills to
students’ toolsets. A guideline can be introduced
to explain whether teams are required to use a
specific configuration management tool, another
tool of their choice, or a more informal method
for keeping track of versions of work products.
A related guideline can cover the use of defect
tracking tools and what types of defects teams
should be tracking and reporting.

Individual Work Products

Formal individual writing assignments can help
students explore issues related to the on-going
work, as well as encourage them to read selected
articles relevant to the project work. Such assign-
ments can provide students with the opportunity
to reflect on the team’s work and think through
possible solutions to problems. These types of
assignments can serve an important role in the
course, both in getting students to think and help-
ing the instructor to better monitor team dynamics
and frustrations.

Several of us review project work completed
by individual students to help in assigning indi-
vidual grades. Individual assignments can also
help students think about the project and reflect

 ���

A Framework for Success in Real Projects for Real Clients Courses

on how well it is progressing. An example of an
individual work product, typically delivered to
the instructor, but not to the client, is a notebook
where the student records personal project activi-
ties, and which the instructor examines periodi-
cally, often at randomly chosen times. A variation
on this idea is to require individual reports, say
every two weeks, that list accomplishments for
the previous period, goals for the next period,
problems encountered, and possible solutions.
(We discuss progress reports more in the next
subsection.)

Team Work Products

Team work products include the final deliverables
for the project as well as any intermediate docu-
ments that aid in organizing and analyzing work
accomplished. If industrial-strength standards are
used, one risk is that the number and volume of
work products can quickly become unmanageable,
even for a small project. The number of required
work products must be weighed against the time
a team can realistically be expected to spend in
developing the work products. All of us prioritize
and, in general, require only the minimum number
likely to lead to a successful outcome. For example,
an SE RPRCC might require teams to develop all
of the various types of project and product artifacts
listed in this subsection. For other offerings, espe-
cially early ones, teams may only be required to
produce a small subset. In any offering, however,
the instructor must be clear about the goals behind
the documentation requirements. This can help
avoid a situation where students develop a disdain
for following guidelines and standards because
they perceive (perhaps correctly) that the work
demanded of them is far more heavyweight and
time-consuming than is strictly required for the
success of their project.

In general, the main purpose of all required
work products should be to facilitate communi-
cation and keep the project work transparent to
all stakeholders. The instructor and client must

communicate to the team what is to be accom-
plished, and the team must communicate their
understanding of what should be produced. The
team must also communicate progress to all team
members, to the instructor (for a grade), and to
the client (for client satisfaction). Problems and
solutions, as well as questions and answers, must
be communicated throughout the project. The
final deliverables must include all information
the client and other stakeholders need in order to
use the software product successfully and provide
for its maintenance and possible enhancement.
Teams should learn to always think about who
will be using each specific artifact and include
only information needed by – and understandable
to – the relevant stakeholders.

Guidelines can be presented in the form of
templates, examples of previous project artifacts,
or descriptions of each work product’s content and
structure. It is vital for teams to receive periodic
feedback so they can iteratively improve all de-
liverables. The rest of this subsection explores
some of the specific work products we require
in the RPRCCs we teach.

While a formal project plan might not be re-
quired for every project, some type of planning
must take place before a project starts. Depending
on the goals for the RPRCC, the written project
plan can be a one-shot document that defines
initial planning or a document that is frequently
updated to reflect changes in planning.

Several of us require periodic progress re-
ports, in the form of either a written document
or a face-to-face meeting. The periodicity for
these reports can be weekly, bi-weekly, or even
monthly. Like an individual progress report, a
team progress report usually records the previous
period’s progress, goals for the coming period,
problems that have arisen, and possible solutions;
some of us have teams combine the individual
and team information into a single report. The
progress report can facilitate dialog among team
members, the instructor, and the client. The team
can include questions for the instructor or the

��0

A Framework for Success in Real Projects for Real Clients Courses

client, and either the instructor or the client can
respond so that all team members see the answer.
A benefit of written, as opposed to oral, progress
reports is that they provide a chronological record
of the entire project from beginning to end.

Most of us require that all client meetings
be documented in client meeting reports. These
reports can be part of the progress reports or can
be separate documents. Client meeting reports
should capture points of discussion and any deci-
sions made during the meeting.

A requirements document is used to record
the required features both of the product and, if
specified by the client, of the process to be used
in developing it. This document helps ensure that
the right system is built. In some situations, some
of us have allowed teams to forego a requirements
document in favor of a well-documented GUI
prototype.

A design document shows the structure of
the application to be built. This document typi-
cally describes the high-level (architectural) and
low-level designs of the projected software and
may include both platform-independent and plat-
form-dependent models, perhaps documented as
dataflow or UML diagrams.

Prototyping allows students to explore alterna-
tive possibilities and learn to use new development
tools. A prototype can focus on the entire product
or on only a part, such as the GUI interface. Pro-
totypes are often thrown away after the proposed
product is better understood, but in some cases
are given to the client to support work on future
increments. The following quote from the original
edition of Brooks’ classic The mythical man-month
(1975) reflects this situation well:

In most projects, the first system built is barely
usable. It may be too slow, too big, awkward in
use or all three. There is no alternative but to
start again, smarting but smarter, and build a
redesigned version in which these problems are
solved. … Where a new system concept or new
technology is used, one has to build a system to

throw away, for even the best planning is not so
omniscient as to get it right the first time. The
management question, therefore, is not whether
to build a pilot system and throw it away. You will
do that. The only question is whether to plan in
advance to build a throwaway, or to promise to
deliver the throwaway to customers… (p. 116)

This is true of many student projects. As
with real world clients, RPRCC clients often do
not know what they want until they see it. Ad-
ditionally, the technology used on a project might
be new to both the client and the student team.
Incremental prototypes can help the client bet-
ter clarify project requirements and understand
development options. Even if a team does not use
the full prototyping approach, many software de-
velopment process models encourage prototyping
at various phases of the project. (Section 3.4 of
Pressman (2005) gives a rationale for this type
of iterative process.)

Testing, verification, and validation are closely
related tasks but treated very differently in differ-
ent RPRCCs. For example, some of us require a
comprehensive Verification and Validation Plan
that describes and specifies the timing for reviews
of all types of project artifacts and the tests to be
carried out at each stage of the development life
cycle. Others of us include only functionality test
planning, particularly if the offering is early in
the curriculum. The instructor must guide teams
to develop test plans that are suitable for the goals
of the course, yet sufficiently limited in scope that
the tests can be completed in the time available.
A simple form of test plan lists each test with a
unique test number, a description of the test, and
a description of the expected test results. Once a
test has been conducted, students should record
the results and compare them with the expected
results to demonstrate that the application is
working as expected. Some of us require teams
to describe all verification and validation work,
including the test results, in a separate Verifica-
tion and Validation Report.

 ���

A Framework for Success in Real Projects for Real Clients Courses

Even if online help is available, many soft-
ware products should include a Users’ Manual
and/or Installation Manual. If the application is
well designed, these manuals can be very brief.
The team should make the decision as to whether
these manuals are needed in collaboration with
the client.

Some of us require students to review one
another’s work, as both document and code re-
views have been shown to improve the quality of
software. Some of us require teams to complete
a Formal Technical Review before the project
work can progress from one step to the next in
the development process.

Most of us require teams to give one or more
oral presentations. A presentation can be a formal
event to share information about the project with
peers, the client, other stakeholders, or faculty
from the department and institution. In some
presentations, the team walks through a docu-
ment or the product and receives feedback from
the instructor and other students. A presentation
can be part of the review of the final applica-
tion or other deliverables and can also serve as
a feedback session for further improvements of
the product.

Ass Ess MENT AND EVALUATION

Assigning individual grades to students who work
and learn in teams can be challenging. Yet the
positive effect of group participation on individual
learning is very clear; Slavin (2005) gives strong
evidence that working in cooperative groups
and on teams has positive effects on individual
student achievement, even when achievement is
measured using conventional instruments such
as quizzes. Indeed, mastery learning seems to
thrive in a group dynamic, provided members
of the group meet regularly (Bloom, Madaus, &
Hastings, 1981).

This section provides a brief overview of
various approaches to assessment and evaluation,

with an eye toward making clear the differences
between assessment in RPRCCs and other types
of courses. Additionally, we draw a distinction
between assessments (which relate directly to the
individual students or teams of students) and eval-
uations (which concern the course itself) (Linn,
1989; Voigt, 2007). We assess students and evalu-
ate programs. Increasingly, accreditation bodies
are tightening their requirements, leading to an
increased focus on the role of high quality assess-
ment and evaluation. In the following paragraphs,
we discuss approaches to both in the context of
RPRCCs. We distinguish between issues related
to assessing individual student accomplishments
and assessing the work of the team.

When students work in teams, performing
assessment and evaluation is considerably more
complex than it is in more traditional instruc-
tional settings. Some parts of an RPRCC, such
as standard textbook-related content, are readily
amenable to traditional assessments like quiz-
zes, tests, and written exercises. Other aspects
of RPRCCs, such as compliance with deadlines,
communication with team members, and dealing
with unanticipated problems, must be assessed
differently. However assessment is conducted,
the instructor must make expectations clear to
students throughout the course, including how
project-related performance is to be assessed
(Deretchin, 2002). Since assessment in an RPRCC
often differs dramatically from what students have
experienced in other courses, the instructor must
emphasize the assessment protocol clearly and
from the beginning. For example, one of us gives
a team the grade of incomplete if they shirk their
responsibilities or if their client is dissatisfied. A
team can make up the incomplete if they provide
the client with something useful, which usually
takes just a few more hours or days of work.

In addition to traditional course content,
RPRCCs cover concepts and skills that are impor-
tant in the workplace but often absent in computing
discipline programs other than software engineer-
ing. The combination of content (e.g. SE, DBMS,

���

A Framework for Success in Real Projects for Real Clients Courses

or web programming) and project work common
in many RPRCCs can make it challenging for an
instructor to fit in all of the traditional content in
addition to teamwork- and project-related knowl-
edge and skills. Instructors can push the learning
envelope by devising assessment and evaluation
approaches that have the side effect of helping stu-
dents learn more about course content (McMillan,
2001; Young & Marks-Maran, 2002). Some tools
we have used in assessing non-traditional learning
outcomes include individual journal entries, team
progress reports, and one-minute papers (What
did you learn today? What confused you?). The
instructor can customize such assignments to
ensure that they address course objectives. For
example, if a course objective is for students
to learn to apply time management skills, the
instructor can have students explain what they
have learned about time management, how they
have handled time management problems, and
how their thinking about time management has
changed. Another assessment tool is Team-Based
Learning (Michaelsen, 2002). In this two-stage
approach to giving quizzes, individual students
take a quiz, turn in the answers, then convene
in their teams. Each team negotiates to create
a group response to the same items and, by the
end of the class meeting, the instructor reveals
the correct responses. As follow up, each team
submits a written discussion of why they chose
the response they recorded. If the team disagrees
with an answer from the key, they are encouraged
to include an argument (ideally with evidence)
for why they feel a different answer should be
the correct one.

In the workplace, software developers provide
management with periodic evidence of progress by
means of status reports, time sheets, and similar
tools. Most of us require this type of reporting
from both individuals and teams when we teach
SE and capstone RPRCCs. Some of us find that
periodic written status reports are sufficient.
Others hold weekly meetings with each team to
elicit the information that would otherwise be

included in a well-written report, which offers
the added benefit of frequent contact. When
requiring status reports, the requirements must
outline exactly what the team is to report about
its progress (Stein & Hurd, 2000); these reports
can provide insights into what the students are
learning. One of us schedules periodic project
audits for each team, in which someone from
outside of the team (generally the instructor or
a teaching assistant) does a careful walkthrough
of various aspects of the on-going project work,
then meets with the team to go over the results
and check current status.

In addition to instructor assessment of indi-
viduals and teams, Schmuck and Schmuck (1997)
encourage having students assess one another.
They state that assessments may carry more weight
if they come from peers rather than from the
resident expert or sage (i.e., the instructor). Some
of us incorporate such assessments into overall
student grades only after providing students with
the opportunity to read and respond to their own
assessments by peers. Others are wary of privacy
issues, particularly if there are negative comments,
so use other methods to share feedback with each
student. To ensure the privacy of the comments,
one of us summarizes the peer reviews for each
student. While this is very time-consuming, it
reaps rich rewards for the students.

The assessment approaches we have discussed
thus far focus on process, one of the two major
aspects of software development. The other as-
pect that must be assessed is the product itself,
including documentation. A novel aspect of an
RPRCC is that the client plays an involved, yet
outside, role. Clients are in a unique position for
giving informed feedback regarding the quality
of the product. Some of us use this feedback as
additional data in determining grades, accounting
for a small part of the final grade (say 5%); others
avoid asking clients for a direct contribution into
the grade due to concerns about inconsistencies in
applying the criteria. One of us asks the client to
give an overall assessment by signing off on the

 ���

A Framework for Success in Real Projects for Real Clients Courses

final grade the instructor proposes for the team.
If the client feels the grade is too high, this per-
cepition can lower the team members’ grades. If
the client is dissatisfied and refuses to sign off on
the grade, this can result in an incomplete for the
students on the team. On the other hand, because
it is impossible to know whether a client is truly
assessing the product or showing compassion
for the students, some of us choose to use client
assessment only indirectly. Some of us simply
talk to the client informally to get a feel for how
satisfied they are, with the grade influenced by
client satisfaction.

The assessment scheme for the project portion
of an RPRCC tends to be more holistic than that
used in standard courses. RPRCC assessment
schemes are generally broader than those used in
more traditional instruction, which may be limited
to one test per chapter, lab reports, or homework
exercises. A special feature of assessment for
RPRCCs is that they can involve incremental
assessment of process and product, but should at
the same time encourage and recognize continual
improvement of most work products. Some of us
maintain a portfolio for each team, tracking their
progress in improving the work products based
on feedback and continued work. This very rich
form of assessment fits with the position of the
psychometrics community that more and varied
assessments produce a better and clearer picture
of student learning than do occasional and uni-
form assessments (Ardovino, Hollingsworth, &
Ybarra, 2000).

On the issue of evaluating instructional peda-
gogy, just as on the issue of assessment, RPRCCs
present both greater challenges and richer opportu-
nities. Some of the sources of input for evaluating
an RPRCC include the instructor, teaching assis-
tants, teammates, student peers, the intact team,
peer teams, clients, departmental faculty, and
representatives of PABs. When RPRCCs are first
added to a curriculum they are typically subject
to more scrutiny than may be the case for a more
traditional new offering. Because of the novelty

of this approach and because this type of course
involves individuals from outside of the classroom
(i.e., the clients), there is good reason to question
the validity and efficacy of the RPRCC and its
results. In situations in which an RPRCC version
of a topic is being taught in parallel with a more
traditional version (usually as an experiment),
it may be possible for the instructor to evaluate
the RPRCC version by comparing performance
results from traditional exams and assignments
between the two. The teams’ progress reports,
final reports, and client communications can
serve as data in forming an overall evaluation of
the effectiveness of the RPRCC version. To add
longitudinal data to the evaluation, instructors or
departments can survey former students for their
views about the skills they gained during their
RPRCCs and other coursework. This type of data
can carry particular weight with administrators,
given that garnering alumni support is a vital
strategy for many institutions.

Regardless of the source of the evaluation
data, it is important for the instructor to consider
whether they are engaging in formative or sum-
mative evaluation. The former guides day-to-day
decisions and often involves minor adjustments
to instruction, curriculum, and schedule. The
latter is concerned with the RPRCC as a whole
and might motivate wholesale changes if war-
ranted by the collected data (Worthen & Sanders,
1988). The assignments given to assess student
learning can be used in the evaluation process;
however, the issue here is not whether a student
has learned something, but whether some aspect
of the course can be adjusted in order to maxi-
mize student learning or improve the deliverable
for the client. Admittedly there is no shortcut to
good assessment and evaluation, but quizzes,
exercises, journal entries, reports, and the like
can be used in a manner that coheres with the
course objectives and allows instructors to judge
learning and course efficacy.

���

A Framework for Success in Real Projects for Real Clients Courses

FUTURE TRENDs

With increased emphasis on encouraging stu-
dents, especially women and minorities, to study
computing, we anticipate increasing interest
in RPRCCs. For pre-college students to be at-
tracted to computing, they (and their parents)
must understand that computing is more than
just programming (Morris, 2004; Supercomput-
ing Online, 2007). The vast majority of students
entering computing are likely to spend the bulk of
their careers working in teams on real projects for
real clients. How, then, can we be more honest in
attracting students to computing than by offering
RPRCCs and RPRCC-centric curricula?

There are many potential benefits to an RPRCC
approach to computing education. Increasing the
pipeline of students taking RPRCCs would benefit
the computing workforce, which will otherwise
be in danger, as documented in the figures cited
earlier from the Bureau of Labor Statistics stud-
ies (Hecker, 2005, Vegso, 2006) and the Standish
Chaos reports (Standish Group, 1994, 2003). An
appropriate mix of clients and projects can facili-
tate the transfer of improved technology from the
research community to the workplace by giving
students the theoretical knowledge required to
understand and apply breakthroughs as well as
the skills to develop them. Finally, the choice of
client can serve the greater good, for example
through service to society in terms of pro bono
for not-for-profit clients or enhanced rapport with
members of the academic community and with
local industry and government entities.

For all of these reasons, we expect to see a
significant increase in RPRCC offerings. We also
expect to see the introduction of RPRCC-centric
curricula, i.e., programs of study that include mul-
tiple RPRCCs. One of the most exciting aspects of
this vision is the prospect of including RPRCCs
at all levels, starting early in the curriculum. In
such a curriculum software development skills
would be introduced in early offerings and then
covered in more detail or more formally in one

or more later courses. For example, a Website de-
sign RPRCC taught prior to or concurrently with
CS1 could teach relatively informal requirements
engineering and requirements documentation
techniques. Implementation of the software could
be carried out later by students in an advanced
course, which could itself include instruction on
more formal specification techniques.

Having a curriculum with multiple RPRCCs
would support a spiral approach to teaching a
variety of skills, many of which are easy to talk
about in the abstract but difficult to learn and to
perform. Examples of such skills are requirements
engineering, risk management, cost and effort
estimation, and project scheduling. This approach
would also allow students to experiment with cus-
tomizing their development processes to achieve
an appropriate balance between lightweight (or
agile) methods and more heavyweight methods
(Boehm & Turner, 2004).

An RPRCC-centric program of study could
introduce large-project skills in later courses.
These skills could be taught in a capstone or as
part of a separate (possibly elective) SE course
late in the curriculum. In this way, students would
learn skills needed for large projects only after
they have a solid foundation and truly understand
the need for small-project SE skills. At this point,
students should also be better prepared intellectu-
ally to understand when and why large-project
skills are needed.

All of these promising possibilities add ur-
gency to the goal of assisting individuals new to
RPRCCs as they plan for and deliver these courses
for the first time. We are exploring the idea of a
knowledge-based tool based upon the taxonomy
of RPRCC issues (given in part in Appendix A),
which can aid an RPRCC instructor in navigat-
ing the many decisions and challenges inherent
in such courses. This would involve gathering
information from experts on the many approaches
to these factors so that over time novices could
use the tool to figure out how to design a course
that fits well with local needs.

 185

A Framework for Success in Real Projects for Real Clients Courses

Closing Though Ts

This chapter is far from exhaustive. For every idea
we have shared, there are many more variants that
we and others have tried. From the student’s point
of view, taking an RPRCC can run the range from
fun and stimulating to difficult and frustrating. In
response to students’ laments about the workload
and challenges, we often point out the value of us-
ing “war stories” from RPRCC experiences during
employment interviews. A student’s explanation
of how they or their team overcame adversity
on their project is far more likely to impress an
interviewer than is a story about an individual
programming or database assignment.

From the instructor’s point of view, teaching
RPRCCs can be challenging, exhausting, frustrat-
ing, rewarding, time-consuming … and exactly
the type of experience students need to prepare
them for their futures. The glowing feedback,
experienced by all of us, that “This was the most
useful course I took as an undergraduate” gives an-
ecdotal evidence of the importance of RPRCCs.

As we continue to develop the RPRCC tax-
onomy, we plan to contribute to a repository of
instructor-related, student-related, and client-re-
lated materials, each with variants appropriate to
different educational goals and available resources.
We hope that this chapter is a useful beginning.

Refe Ren Ces

ABET, Inc. (2007). Item IV-17. 2007-2008 Criteria
for Accrediting Computing Programs. Available:
http://www.abet.org/forms.shtml#For_Comput-
ing_Programs_Only

Akinoglu, O., & Tandogan, R. Ö. (2007). The ef-
fects of problem-based active learning in science
education on students’ academic achievement,
attitude and concept learning. Eurasia Journal
of Mathematics, Science & Technology Educa-
tion, 3(1), 71-81.

Almstrum, V. L., Klappholz, D., & Modesitt,
K. (2007, March). Workshop on planning and
executing real projects for real clients courses.
Proceedings of the 38th SIGCSE Technical Sym-
posium on Computer Science Education (p. 582).
Covington, KY.

American College & University Presidents Cli-
mate Commitment (2007). Program overview.
Available: http://www.presidentsclimatecom-
mitment.org/

Ardovino, J., Hollingsworth, J., & Ybarra, S.
(2000). Multiple measures: Accurate ways to as-
sess student achievement. Thousand Oaks, CA:
Corwin Press.

Aspray, W., Mayadas, F., & Vardi, M. Y. (Eds).
(2006). Globalization and offshoring of software.
A Report of the ACM Job Migration Task Force.
Available: http://www.acm.org/globalizationre-
port/

Bloom, G. S., Madaus, G. F., & Hastings, J. T.
(1981). Evaluation to improve learning. New York:
McGraw-Hill.

Boehm, B. W., Abi-Antoun, M., Port, D., Kwan,
J., & Lynch, A. (1999). Requirements engineering,
expectations management, and the two cultures.
Proceedings of the 4th IEEE International Sym-
posium on Requirements Engineering (pp. 14-22).
Limerick, Ireland: IEEE.

Boehm, B. W., Port, D., Yang, Y., Bhuta, J., &
Abts, C. (2003). Composable process elements
for developing COTS-based applications. ISESE
2003, 8-17.

Boehm, B. W., & Turner, R. (2004). Balancing
agility and discipline: A guide for the perplexed.
Boston: Addison-Wesley.

Boehm, B. W., Yang, Y., Bhuta, J., & Port, D.
(2005). Composable spiral processes for COTS-
based application development. Proceedings of
the 4th International ICCBSS conference (pp.
6-7), Bilbao, Spain: Springer.

���

A Framework for Success in Real Projects for Real Clients Courses

Bowles, D. J. (2006). Active learning strategies
… Not for the birds! International Journal of
Nursing Education Scholarship, 3(1), 0-11.

Brooks, F. (1975). The mythical man-month:
Essays on software engineering. Reading, MA:
Addison-Wesley.

Deretchin, L. F. (2002). Making the grade. In P.
Schwartz & G. Webb (Eds.), Assessment: Case
studies, experience and practice from higher
education (pp. 114-120). London: Kogan Page.

Ecker, P. S., Caudill, J., Hoctor, D., & Meyer,
C. (2004). Implementing an interdisciplinary
capstone course for associate degree Information
Technology programs, Proceedings of the 5th
Conference on Information Technology Educa-
tion (pp. 60-65). Salt Lake City, UT.

Eisenman, R. (2001). Stimulating achievement
among Hispanic college students. Radical Peda-
gogy, 3(2). Available: http://radicalpedagogy.
icaap.org/content/issue3_2/eisenman.html

Enders, F. B., & Diener-West, M. (2006). Methods
of learning in statistical education: A randomized
trial of public health graduate students. Statistics
Education Research Journal, 5(1), 5-19.

Fenwick, J. B., & Kurtz, B. L. (2005). Intra-cur-
riculum software engineering education. ACM
SIGCSE Bulletin inroads, 36(1). 540-544.

Fernandez, J. D., & Tedford, P. (2006). Evaluat-
ing computing education programs against real
world needs. Journal of Computing Sciences in
Colleges, 21(4), 259-265.

Fernandez, J. D., Garcia, M., Camacho, D., &
Evans, A. (2006). Software engineering industry
experience – the key to success. Journal of Com-
puting Sciences in Colleges, 21(4), 230-236.

Franch, X., & Port, D. (2005). COTS-Based Soft-
ware Systems. Proceedings of the 4th International
ICCBSS Conference (LNCS 3412). Bilbao, Spain:
Springer.

Friedman, R., McHugh, J. A., & Deek, F. P.
(2003). NJIT’s sandbox: An industry/education
partnership for IT development. In Proceedings
of the 4th Conference on Information Technology
Curriculum (pp. 201-205). Lafayette, Indiana,
USA.

Frohna, A. Z., Hamstra, S. J., Mullan, P. B., &
Gruppen, L. D. (2006). Teaching medical edu-
cation principles and methods to faculty using
an active learning approach: The University of
Michigan Medical Education Scholars Program.
Academic Medicine, 81(11), 975-978.

Glass, R. L. (2001). Frequently forgotten funda-
mental facts about software engineering. IEEE
Software, 18(3), 112 - 111.

Grisham, P. S., Krasner, H., & Perry, D. E. (2006).
Data engineering education with real-world proj-
ects, ACM SIGCSE Bulletin, 38(2), pp. 64-68.

Hanna, M. (1993). Maintenance burden begging
for a remedy. Datamation, April, 53-63.

Hecker, D. E. (2005). Occupational employment
projections to 2014, Monthly Labor Review, Bu-
reau of Labor Statistics, 128(11), November 2005.
Available: http://www.bls.gov/opub/mlr/2005/11/
contents.htm

Hislop, G. W. (2006). Scaffolding student work
in capstone design courses. 36th ASEE/IEEE
Frontiers in Education Conference (pp. T1A1-
T1A4). San Diego, CA.

Hogan, J. M., Smith, G., & Thomas, R. (2005).
Tight spirals and industry clients: The modern SE
education experience. In Proceedings of the 7th
Australasian Conference on Computing Educa-
tion - Volume 42 (pp. 217-222). A. Young & D.
Tolhurst (Eds.), ACM International Conference
Proceeding Series, vol. 106. Australian Computer
Society, Darlinghurst, Australia.

IEEE Software Engineering Standards Central
(2007). Software Engineering Standards Over-

 ���

A Framework for Success in Real Projects for Real Clients Courses

view. Available: http://standards.ieee.org/soft-
ware/overview.html

Jessup, E., Sumner, T., & Barker, L. (2006). Report
from the trenches: Bringing more women to the
study of computer science. Manuscript submitted
for publication. Available: http://www.cs.colorado.
edu/~jessup/SUBPAGES/PS/trenches.pdf

Johnson, A., Powers, C., & Wagert, S. (1989).
EMCS implementation by IBM Advanced Work-
station division. Proceedings of GUIDE 75, Los
Angeles, CA. Joint IEEE Computer Society/ACM
Task Force on the “Model Curricula for Comput-
ing”. Also available as IBM Technical Report
TR51.0554, November, 1989.

Joint IEEE Computer Society/ACM Task Force
on the “Model Curricula for Computing” (2005).
Computing Curricula Series. Available: http://
www.acm.org/education/curricula.html

Kadolph, S. J. (2005). Equipment experts: Enhan-
cing student learning in textile science. Clothing
& Textiles Research Journal, 23(4), 368-374.

Klappholz, D., Almstrum, V. L., & Modesitt, K.
(2006, April). Workshop on real projects for real
clients courses. 19th Conference on Software
Engineering and Training, Oahu, HI.

Koppelman, H., & van Dijk, B. (2006). Creating a
realistic context for team projects in HCI, Proceed-
ings of the 11th Annual SIGCSE Conference on
Innovation and Technology in Computer Science
Education (pp. 58-62). Bologna, Italy.

Kurtz, B. L., Fenwick, J. B., Ellsworth, C. C., Yuan,
X., Steele, A., & Jia, X. (2007). Inter-university
software engineering using web services. ACM
SIGCSE Bulletin inroads, 39(1). 464-468.

Last, M., Almstrum, V., Erickson, C., Klein, B.,
& Daniels, M. (2000, June). An international
student/faculty collaboration: The Runestone
project. ACM SIGCSE Bulletin inroads. 32(3).
128-131.

Linn, R. L. (Ed.). (1989). Educational Measure-
ment (3rd ed.). New York: American Council on
Education and Macmillan Publishing.

Margolis, J., & Fisher, A. (2001). Unlocking the
clubhouse: Women in computing. Cambridge,
MA: MIT Press.

McKeachie, W. J. (1961). Understanding the learn-
ing process. Journal of Engineering Education,
51, 405-408.

McMillan, J. H. (2001). Essential assessment con-
cepts for teachers and administrators. Thousand
Oaks, CA: Corwin Press.

Michaelsen, L. K. (2002). Getting started with
team-based learning. In L. K. Michaelsen, A. B.
Knight, & L. D. Fink (Eds.), Team-based learn-
ing: A transformative use of small groups (pp.
27-50). Westport, CT: Praeger.

Mitchell, R. L. (2006). How not to get “offshored.”
Computerworld Blogs. March 31, 2006 http://
www.computerworld.com/blogs/node/2150

Modesitt, K., Maxim, B., & Akingbehin, K. (1999).
Just in Time Learning in software engineering.
The Journal of Mathematics and Science Teach-
ing. 18(3). 287-301.

Modesitt, K. (2004, September). The Distributed
Development of Software Engineering Profes-
sionals. International Colloquium on Engineer-
ing Education. ASEE and Tsinghua University,
Beijing, PRC.

Modesitt, K. (2005, October). W3 – Winning Three
Times Over: Industry, University, Society. ABET
Annual Meeting on Accreditation, Innovation, and
Improvement, San Diego, CA, pp. 17-24.

Modesitt, K. (2006). A practical assessment guide
to the use of Professional Advisory Boards. Best
Assessment Processes VIII of ABET, Rose-Hulman
Institute of Technology, February 27-28.

���

A Framework for Success in Real Projects for Real Clients Courses

Morris, J. (2004). Programming doesn’t begin to
define computer science. Pittsburgh Post-Gazette.
July 4, 2004. Retrieved June 6, 2007, from http://
www.post-gazette.com/pg/04186/341012.stm

Norman, K. I., & Keating, J. F. (1997). Barriers for
Hispanics and American Indians entering science
and mathematics: Cultural dilemmas. Association
for the Education of Teachers in Science (AETS)
Conference Proceedings (pp. 448-464). Available:
http://www.ed.psu.edu/ci/Journals/97pap22.htm

Pressman, R. S. (2005). Software engineering:
A practitioner’s approach. (6th ed.). New York:
McGraw-Hill.

Schmuck, R. A., & Schmuck, P. A. (1997). Group
processes in the classroom (7th ed.). Madison, WI:
Brown & Benchmark.

Schuhmann, A. (1992). Learning to teach Hispanic
students. In M. Dilworth (Ed.), Diversity in teacher
education – New expectations (pp. 93-111). San
Francisco: Jossey-Bass.

Shelly, G. B., Cashman, T. J., & Rosenblatt, H.
J. (2008). Systems analysis and design (7th ed.).
Boston: Thompson Course Technology.

Shuman, L. J., Besterfield-Sacre, M., & Mc-
Gourty, J. (2005). ABET “professional skills”
– Can they be taught? Can they be assessed? The
Journal of Engineering Education, January 2005.
Available: http://www.findarticles.com/p/articles/
mi_qa3886/is_200501/ai_n9521126

Slavin, R. E. (2005). Educational psychology:
Theory and practice (8th ed.). Boston: Allyn and
Bacon.

The Standish Group. (1994). The Standish Group
Report – CHAOS 1994. Standish Group Inter-
national. Available: http://www.standishgroup.
com/sample_research/chaos_1994_1.php

The Standish Group. (2003). CHAOS Chronicles
Version 3.0. West Yarmouth, MA: The Standish
Group.

Starney, K. (2006). Why do projects fail? Cross-
Talk: The Journal of Defense Software Engineer-
ing, 19(6), 3. Available at http://www.stsc.hill.
af.mil/crosstalk/2006/06/index.html

Stein, R.F., & Hurd, S. (2000). Using student
teams in the classroom: A faculty guide. Boston:
Anker Publishing.

Sun, N., & Decker, J. (2004). Finding an “ideal”
model for our capstone experience. Journal of
Computing in Small Colleges, 20(1), 211-219.

Supercomputing Online. (2007). Princeton pro-
fessor foresees computer science revolution: An
interview with Bernard Chazelle. Retrieved June
6, 2007, from http://www.supercomputingonline.
com/article.php?sid=10496

Tan, S. S., & Ng, C. K. F. (2006). A problem-based
learning approach to entrepreneurship education.
Education & Training, 48(6), 416-428.

The TLT Group. (2007). Student Technology
Assistant Programs. Available at http://www.
tltgroup.org/programs/sta.html

Vegso, J. (2006). BLS IT workforce projections
compared. CRA Bulletin, January 19, 2006. Avail-
able: http://www.cra.org/wp/index.php?cat=14

Voigt, W. P. (2007). Quantitative research methods
for professionals. Boston: Allyn and Bacon.

Werner, M., & MacLean, L.M. (2006). Building
community service projects effectively. Journal of
Computing Sciences in Colleges, 21(6), 76-87.

Williams, J. C., Bair, B., Borstler, J., Lethbridge,
T.C., & Surendran, K. (2003). Client sponsored
projects in software engineering courses. ACM
SIGCSE Bulletin inroads, 35(1). 401-402.

Worthen, B. R., & Sanders, J. R. (1988). Educa-
tional evaluation: Alternative approaches and
practical guidelines. White Plains, NY: Long-
man.

 ���

A Framework for Success in Real Projects for Real Clients Courses

Young, G., & Marks-Maran, D. (2002). But they
looked great on paper. In P. Schwartz & G. Webb
(Eds.), Assessment: Case studies, experience and
practice from higher education (pp. 106-113).
London: Kogan Page.

Zheng, Z. A., & Padmanabhan, B. (2006). Selec-
tively acquiring customer information: A new data
acquisition problem and an active learning-based
solution. Management Science, 52(5), 697-712.

��0

A Framework for Success in Real Projects for Real Clients Courses

IV. PROJECT

21. Project types
22. Project vetting by instructor
23. Project proposals
24. Resource issues
25. Process guideline
26. Support tools
27. Work products / deliverables
28. Project-related activities
29. Project planning and tracking
30. Risk management of projects by students
31. Students using data from projects

V. ASSESSMENT & EVALUATION

32. Assessment during the academic term
33. Formal assessment of final work products
34. Evaluation of effectiveness and feedback on
 course

I. COURSE

1. Course Profile
2. Professional topics covered in course
3. Other activities for learning software engi-

neering principles
4. Course planning / flexibility (“reshuffling”)
5. Support materials
6. Training students
7. Additional staff
8. Institutional memory
9. Showcasing projects (completed or in
 process)
10. Challenges
11. Other

II. TEAM

12. Team formation
13. Team style / organization
14. Matching teams with projects
15. Team-building and defining team
 operations
16. Communication considerations

III. CLIENT

17. Sources of clients
18. Client vetting by instructor
19. Preparing clients for their role
20. Legal issues

APPENDIX A: TOP TWO LEVELs OF RPRCC TAXONOMY

In this appendix we provide the top two levels of the current version of the draft RPRCC taxonomy. The
taxonomy covers the large variety of issues relevant in Real Project for Real Client Courses (RPRCCs)
and illustrates the potential diversity and robustness of RPRCCs. The taxonomy also demonstrates the
broad set of issues that must be considered by any faculty member preparing to teach an RPRCC in
order to tailor it to local needs and resource constraints.

 ���

INTRODUCTION

Since its early roots at the 1968 NATO conference
in Garmisch Germany (Naur, Randell & Buxton,
1976), the software engineering discipline as has
sought to use tools, techniques, and paradigms
similar to those found in other engineering disci-

plines in order to improve the quality and reduce
the cost of software development. The seminal
“No Silver Bullet” article by Brooks (1987) in part
focuses on identifying the essence of what makes
software development difficult and stresses that
the ability to modify software so as to accom-
modate evolving hardware requirements is one

Chapter X
Experiences in
Project-Based

Software Engineering:
What Works, What Doesn't

Steven A. Demurjian
University of Connecticut, USA

Donald M. Needham
United States Naval Academy, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abs TRACT

Project-based capstone software engineering courses are a norm in many computer science (CS) and
computer science & engineering (CS&E) accredited programs. Such cap-stone design courses offer an
excellent vehicle for educational outcomes assessment to support the continuous improvement process
required for accreditation. A project-based software engineering capstone course near the end of a
student’s program can span the majority of CS and CS&E program objectives, providing a significant
means to assess at-tainment of these objectives in a single course location. One objective of this chapter
is to explore the role of a project-based, software engineering course in accreditation. An addi-tional
objective is to relate over twelve combined years of experience in teaching such a course, and in the
process, highlight what works and what does not. We candidly examine both the successes and the failures
that we have encountered over the years, and provide a roadmap for other instructors and departments
seeking to institute such courses.

���

Experiences in Project-Based Software Engineering

of the key aspects of understanding the inherent
difficulties faced by software developers. Agile,
lightweight methodologies such as Extreme
Programming (Beck, 1999) emphasize customer
involvement and promote team work in an effort
to make the development process better suited
to adapt to changing requirements. Of note with
Beck’s approach is the use of ad-hoc teams to
resolve difficulties that arise during the develop-
ment process. Software engineering educators
have responded to these needs in part with the
emergence of project-based software engineering
capstone courses at the undergraduate level.

Such software engineering capstone courses
are becoming a cornerstone of many computer
science (CS) and computer science & engineer-
ing (CS&E) programs, and provide a means for
practice-based exploration of large-scale projects
in a team setting following current trends in
software engineering course sequence design
(Abran & Moore, 2004; Boehm, Kaiser & Port,
2000; LeBlanc & Sobel, 2004; Meyer, 2001; Shaw,
2000). Our approach to project-based software
engineering capstone courses allows students to
apply concepts and ideas garnered throughout
their undergraduate program within a capstone
experience near the end of their studies. For stu-
dents, such courses can provide the opportunity
to control the project topic, select teammates (to
a limited degree), make critical decisions, and
problem solve by applying coursework knowledge
and their experiences. Project topics selected by
our teams have run the gambit from standalone
Java applications, automatic mixing machines that
use windshield wiper motors and micro-processor
controlled PVC pipes run via a web interface, to
embedded system controllers for autonomous
underwater vehicles. In such courses, instructors
can serve as the mentor or project manager, over-
seeing the week-to-week schedule of deadlines,
and arbitrating among team members when dif-
ficulties or clashes in personalities arise.

Project-based, software engineering capstone
courses can also play a vital role in terms of ac-

creditation. ABET, known prior to 2005 as the
Accreditation Board for Engineering and Tech-
nology (ABET, 2007), has assumed accreditation
over CS, CS&E, information technology, software
engineering, and computer engineering programs.
As part of ABET accreditation, departments
must identify program objectives, and detail the
program outcomes for each program; CS&E has
outcomes that are influenced by engineering
accreditation requirements, while CS outcomes
have been influenced by computing accreditation
requirements. Given a set of program outcomes,
in order to support a continuous improvement
process, it is necessary for departments to assess
their programs on a regular basis. Since well-fo-
cused project-based software engineering courses
can span nearly the entire curriculum in terms of
topic coverage, they can serve as an ideal vehicle
to accomplish this objective.

This chapter focuses primarily on CSE293,
Capstone Project-Based Laboratory, in the De-
partment of Computer Science & Engineering
at the University of Connecticut (UConn). Ex-
periences gained from a similar course, IC480,
Computer Science Capstone, offered at the United
States Naval Academy (USNA) are interleaved
where they provide significant complementary
or contrary perspectives. UConn’s CSE293 was
a new course developed during the Spring 2001
semester which we designed and instituted as
part of our major curriculum changes for ABET
2000 accreditation. The course has been taught
every semester at UConn since that time, with
multiple sections by multiple instructors. The
course philosophy of CSE293 is for the students
(typically seniors near the end of their programs)
to demonstrate the ability to work in a team with
minimal or no guidance, where the team orga-
nizes, plans, designs, prototypes, and delivers a
product according to milestones established (and
known in advance) for the semester. Throughout
the semester, the instructor delivers appropriate
feedback to students in various mediums (oral,
email, annotated documents, etc.), in response to

 ���

Experiences in Project-Based Software Engineering

assignment deliverables, presentations, individu-
al/team meetings, and so on. The initial instructor
of CSE293 developed baseline project assignment
milestones which have evolved over the semesters
into a generalized group of milestones organized
on a course web page. This courseware has been
used by different instructors over the years, and
provides an organized and common means to
deliver a consistent offering of CSE293.

The remainder of this chapter has five sections.
First, background on accreditation is provided as
a basis to later demonstrate the potential breadth
of a project-based software engineering course
in terms of assessment of program outcomes at-
tainment. Then, the content, requirements, and
projects for CSE293 as offered at UConn and
IC480 as offered at USNA are presented. Next,
self-assessments of CSE293 and IC480 are pro-
vided, with candid detailing of both successes
and failures in delivering the course since its
inception in Spring 2001. Then, future trends are
discussed, with a focus on software engineering
education and curricula, in general, and project-
based software engineering courses, in particular.
Finally, concluding remarks are presented.

bACk GROUND

Programs in CS and CS&E that are seeking to
be accredited must satisfy stringent requirements
for program educational objectives, and program
outcomes and their assessment, as outlined by
ABET (2007) which handles accreditation for
applied science, computing, engineering, and
technology programs. CS programs must satisfy
Computing Accreditation Commission (CAC)
requirements while CS&E programs must sat-
isfy both CAC and Engineering Accreditation
Commission (EAC) requirements. At the time
of writing this paper, there are over 210 CS, and
11 CSE accredited programs.

Our concentration in this chapter emphasizes
project-based software engineering and its critical

role for CS and CS&E program outcomes and their
assessment, since these are the two accredited
programs at UConn. Table 1 gives the CS and
CSE program outcomes from the criteria for ac-
crediting programs for 2007-2008.

COURsE REQUIREMENTs AND
PROj ECTs

CSE293 Capstone Project-Based Laboratory
is a three credit course taken at the end of an
undergraduate’s program, with two major prereq-
uisites: an operating systems course (senior level
as well, with many prerequisites such as computer
architecture, introductory software engineer-
ing, and so on) and an initial laboratory course
(digital hardware design, software engineering,
networking, micro-processor, etc.). The CSE230
Introduction to Software Engineering course,
required of all CS and CSE majors, is typically
taken in the first semester of the junior year, and
since 1990 has used the Fundamentals of Software
Engineering (Ghezzi, Jazeyeri & Mandrioli, 2002)
as its primary text. All of the material in this text
is covered in one semester including: software
qualities and principles, software design and
specification, verification, the software process
and management, and so on. This material is
augmented with significant material on the UML
and other special topics which vary by semester
and instructor and typically include: software
architectures, aspect-oriented software devel-
opment, service-oriented computing, software
reliability, etc. Students work both individually
and in teams on instructor-directed design and
programming projects throughout the semester.
 The Naval Academy’s software engineering
prerequisite course is taken in the Fall of the
senior year, which is the semester immediately
preceding the capstone course. In this course, the
students divide themselves into teams and are
given a requirements document that includes an
acceptance test plan for an instructor-determined

���

Experiences in Project-Based Software Engineering

CS Program Outcomes CSE Program Outcomes
CS-a An ability to apply knowledge of computing and

mathematics appropriate to the discipline.
CSE-a An ability to apply knowledge of mathematics,

science, and engineering.
CS-b An ability to analyze a problem, and identify and

define the computing requirements appropriate to
its solution.

CSE-b An ability to design and conduct experiments, as
well as to analyze and interpret data.

CS-c An ability to design, implement and evaluate a
computer-based system, process, component, or
program to meet desired needs.

CSE-c An ability to design a system, component, or
process to meet desired needs within realistic con-
straints such as economic, environmental, social,
political, ethical, health and safety, manufactur-
ability, and sustainability.

CS-d An ability to function effectively on teams to
accomplish a common goal.

CSE-d An ability to function on multi-disciplinary teams.

CS-e An understanding of professional, ethical, legal,
security, and social issues and responsibilities.

CSE-e An ability to identify, formulate, and solve engi-
neering problems.

CS-f An ability to communicate effectively with a
range of audiences.

CSE-f An understanding of professional and ethical re-
sponsibility.

CS-g An ability to analyze the local and global impact
of computing on individuals, organizations and
society.

CSE-g An ability to communicate effectively.

CS-h Recognition of the need for, and an ability to
engage in, continuing professional development.

CSE-h The broad education necessary to understand the
impact of engineering solutions in a global, eco-
nomic, environmental, and societal context.

CS-i An ability to use current techniques, skills, and
tools necessary for computing practice.

CSE-i A recognition of the need for, and an ability to
engage in life-long learning.

CS-j An ability to apply mathematical foundations,
algorithmic principles, and computer science
theory in the modeling and design of computer-
based systems in a way that demonstrates com-
prehension of the tradeoffs involved in design
choices.

CSE-j

CSE-k

A knowledge of contemporary issues.
An ability to use the techniques, skills, and mod-
ern engineering tools necessary for engineering
practice.

CS-k An ability to apply design and development prin-
ciples in the construction of software systems of
varying complexity.

CSE-l
see notes

An ability to apply design and development prin-
ciples in the construction of software systems of
varying complexity.

CSE-m
see notes

An understanding of computer hardware and its
relation to software design.

Notes:
Since CAC and EAC both use lower case letters for outcomes, we have added “CS-” and “CSE-” to preface CS and
CSE program outcomes, respectively.
CS-j and CS-k are proposed by ABET-CAC.
EAC lists only CSE-a to CSE-k; UConn added CSE-l and CSE-m to reflect their practice and the overlap that exists
between their CS and CS&E programs.

1.

2.
3.

Table 1. CS and CSE program outcomes

 ���

Experiences in Project-Based Software Engineering

semester-long project. During this course the
students attend lectures on the various phases
of the software development life cycle, and de-
velop, deliver and orally present and demonstrate
milestones including a rapid prototype, speci-
fication/analysis, design, and testing. The final
delivery milestone includes a presentation that
demonstrates the degree to which each team meets
the acceptance test plan given at the start of the
course. The Naval Academy’s capstone course is
similar to UConn’s CSE293 which is described
in the following discussion.

The content of the UConn’s CSE293 capstone
course is reflected in its description:

This course is the second semester of the required
major design experience. In one semester-long
team project, students will propose, design, pro-
duce, and evaluate a software and/or hardware
system. The project will culminate in the delivery
of a working system, a formal public presentation,
and written documentation. Oral and written
progress reports are required.

In CSE293, the students organize their own
teams, choose the project topic, determine team
responsibilities, plan the prototyping schedule,
and so on; the instructor is the project manager

with the role of insuring that the project deadlines
are met and that disputes among team members are
resolved in a timely fashion. CSE293 is intended
to demonstrate the ability of the students to work
as a team with limited or minimal guidance. The
course is offered in a section of up to 18 students
organized into teams. Our one-semester capstone
design course is consistent with other approaches
(Ellis & Mitchell, 2004; Flener 2006).

In CSE293, the first half of the semester
involves identifying the project topic (further
discussed in the following sections), developing
a comprehensive specification, performing a
comprehensive and detailed design, and establish-
ing milestones for prototyping deliverables and
allocating work among teammates. Throughout
each of these milestones, the instructor provides
comments in different media (oral, email, written)
to guide each team in a positive direction. The
second half of the semester is for prototyping and
assessment with multiple deliverables.

In terms of the course assignments, complete
CSE293 details are available at http://www.engr.
uconn.edu/~steve/Cse293/cse293.html and the
specific course assignments are summarized in
Table 2 and briefly reviewed below.

CSE293 meets formally once a week for a 2
hour block for a total of 14 weeks; the entire class

Assignment Due Title Description
1-Part I Week 1 Establish

Teams
Students are organized into teams of size four to six and informally discuss
possible project topics.

1-Part II Week 2 Preliminary
Project Idea

Each team submits a 1-2 page project topic proposal for instructor critique.
Team responds to critique, prepares a five page proposed project description,
and presents their proposal. All presentations in the course are made to the
instructor and the rest of the class.

2 Week 3 Specification
and Software
Quality
Analyses

Teams submit a 10-12 page specification of their proposed project topic.
Required sections are delineated by the instructor, and each student must
identify the sections that they have written. In addition, each student selects
two software characteristics (performance, reliability, reusability, etc.) and
discusses the relevance/importance of the quality to their project topic and the
way that it will be attained in their project topic.

Table 2. CSE293 assignment description and timeline

continued on following page

���

Experiences in Project-Based Software Engineering

3-Part I Week 4 Revised
Specification

Based on instructor comments, a revised and expanded/enhanced specification
is due.

3-Part II Week 5 Multi-Faceted
Design

The design document requires the use of a design tool for UML and a detailed
design organized into six tasks. Each student must be responsible for specific
aspects of the design and must clearly identify their diagrams and documenta-
tion. The six tasks making contributing to the detailed design include:

Entity Relationship Diagrams.
Data-Flow Diagrams or UML Sequence Diagrams.
Finite State Machines or UML Statechart Diagrams.
UML Class/Object Diagrams.
Petri Nets or UML Activity Diagrams.
Three page summary document on the relationships and interplay of all of
their diagrams from Tasks A to E.

A.
B.
C.
D.
E.
F.

3-Part III Week 6 Revised
Multi-Faceted
Design

Based on instructor’s critique for Assignment 3-Part II, the students are asked
to revise their diagrams and written documentation.

4-Part I Week 6 Prototyping
Plan

Teams lay out a plan for implementing their project topic with prototype deliv-
erables in the 9th, 12th, and 14th weeks. Plan describes the three prototypes, and
the components and sub-components for each prototype.

4-Part II Week 6 Management
Plan

Teams complement the Assignment 4-Part I prototyping plan with a manage-
ment plan that identifies the responsibilities of each team member for each
sub-component, including a primary and backup individual per sub-component.
Plan also identifies whether each sub-component is not-implemented (stub),
partially implemented, or fully implemented for the respective prototypes.

4-Part III Weeks 9,
12 and 14

Prototype
Reports and
Presentations

Teams provide deliverables for each prototype, including:
Presentation of their progress/status including system demonstrations.
Update of the prototype and management plan (what milestones did they
hit/miss).
Evaluation of the project status, and critique of teamwork experiences.

A.
B.

C.
5 Last day

of class
Realistic
Issues for
Product
Development

Each student explores issues related to commercialization of their proj-
ect by writing a 3 page analysis associated with issues such as: Funding,
Commercialization, Intellectual Property, Social/Ethical/Legal, Software
Licensing, Payment, HIPAA Security, or any other specific issues related to
commercialization.

Final
Project

Last day
of class

Final Project
Delivery

Industry managers in computing are invited and critique/provide input. The
final submission has both team and individual parts. For the Team Submission,
each team provides an overview of the project and its goals, a summary of
changes since Assignment 3- Part III, a detailed user manual, etc. For the
Individual Submission, there are team-assessments and self-assessments as
well as student reflections on their accomplishments, what they have learned,
and what they would change/do differently if they started the project again.

Table 2. continued

meets with the instructor each week for the first
half of the semester. The instructor explains each
deliverable assignment for the semester and acts as
the project manager by providing oral and written
feedback to each group. The first class is used to
overview the course requirements, web site, and

materials, and most importantly to organize the
students into teams of four to six individuals (As-
signment 1, Part I in Table 2). We typically have
one or two teams that have pre-formed prior to the
start of the class by students looking to work with
one another, and the instructor forms the other

 ���

Experiences in Project-Based Software Engineering

teams. The teams that pre-form typically do quite
a good job on their team projects since they are
motivated to work together from the start. Since
students predominately take CSE293 in their final
semester, their backgrounds are very uniform
in terms of prior courses, with slight variances.
Consequently, there is no attempt to try to balance
a team in terms of student skill sets. In terms of
leadership, we allow the team and its dynamics
to develop over the semester. Three days after
the first class, each team is required to email a 1
to 2 page project proposal to the instructor, who
provides feedback on its scope (to make sure that
it is large enough) and offers other suggestions
on possible problems, alternatives, etc. At USNA,
we use a low-level rubric to assist in scoping the
project by requiring each team to delineate at
least one major and distinct focus area (grouping
of functionality) per team member on the team.
For example, a team of six will be required to
have six major, distinct focus areas. Since we also
require teams to turn in an acceptance test plan
with their project proposal, each team’s focus areas
are further required to contain between five and
eight itemized functional descriptions that map
directly to the team’s acceptance test plan. We
have found that this primitive rubric is effective
in guiding each team to a good starting point
for their project proposal assignment so that the
instructor can provide effective feedback.

At UConn, our objective is to choose a project
scope that is significantly large from a specifica-
tion and design perspective (the first half of the
semester), which can then be narrowed for the
implementation phase (the second half of the se-
mester). Using this feedback, each team prepares
a 10-15 minute presentation for the second class
to the instructor and all other teams (Assignment
1, Part I in Table 2).

The initial specification (Assignment 2) is
due at the third class (with instructor available
to answer questions), and the instructor provides
feedback to each team within 24 hours (typically
annotated specification plus email). The course

web page contains a detailed document discussing
the specification content and process (along with
samples from prior semesters). The specification
is structured with specific sections including: in-
troduction, operating environment, user, system,
database interfaces, system operation, informa-
tion, performance, and security; software quali-
ties are given via Ghezzi, Jazeyeri & Mandrioli
(2002) with the each student selecting two qualities
and discussing their relevance, importance, and
impact for their project. The revised specification
(Assignment 3, Part I in Table 2) is due the 4th
class and is based on these comments (with the
instructor available to answer questions), with
the initial multi-faceted design (Assignment 3,
Part II in Table 2) of UML diagrams plus entity
relationships due at the 5th class. Teams receive
instructor feedback by the next day and prepare
a revised design (Assignment 3, Part III in Table
2) along with a prototyping and management plan
(Assignment 4, Parts I and II in Table 2) by the 6th
class. This prototyping plan allows each team to
scope the implementation down to a reasonable
subset of the specification/design to deliver a
solution in three increments (Assignment 4, Part
III in Table 2) over the remainder of the semester
(9th, 11th, and 14th classes). Each increment has
a presentation, demonstration, and prototyping
report; the final increment is more complete in
all three and is often attended by industry per-
sonnel for more realistic feedback. For all of the
assignments, there are multiple samples from past
semester on the web page. The intent of all of the
various milestones and associated presentations
is to provide feedback to guide the students and
allow the students to experience the successes
and pitfalls of project development in a realistic
setting. For each prototype, the team is asked
to assess their prototyping/management plan in
order to understand their progress and to re-plan
for the remaining increments. The point of this
reassessment is for the students to understand the
difficulty in predicting and planning software
increments prior to actually writing code.

���

Experiences in Project-Based Software Engineering

 In addition to the assignments shown in Table
2, each team must develop and deploy a project web
page with all of these materials in electronic form,
with each team member maintaining a blog of
their activities throughout the semester. Students
are required to use a UML tool (such as Borland’s
Together Architect or Eclipse plug in) for UML
diagram development, and are encouraged to use
an appropriate interactive development environ-
ment with source code control. Sample solutions
for all course assignments and presentations are
available on the course web page.

WHAT WORks , WHAT DOEsN’T

There are many efforts on project-based software
engineering that relate lessons learned, including
Flener (2006), who details his experiences in
attempting to incorporate realism into the soft-
ware engineering course with collected student
comments on positive and negative experiences;
Polack-Wahl (2006), who considers the impact
of the type of project (instructor vs. industry vs.
other) and student outcomes from the perspec-
tive of landing their first software engineering
position; and, van der Duim, et al., (2007) which
reports on experiences on multi-university team
projects with conclusions that include real-life
projects being too complex.

In this section, we report on our successes
and failures in CSE293 in a number of different
categories, ranging from external issues such as
curriculum, accreditation and outcomes assess-
ment, to internal issues such as project choice,
team member backgrounds, and team size. We
have found that the internal issues often have a
strong potential for negative impact on both the
students and the instructor. The remainder of this
section discusses each of these issues in turn, and
includes a candid assessment of our efforts as
organized into two categories (what Works and
what Doesn’t work).

Accreditation and Outcomes
Assessment

In terms of accreditation, project-based software
engineering capstone courses (semester or year
long) such as CSE293 provide an ideal opportunity
to assess the attainment of program outcomes
that cross the entire curriculum at the latter stage
of a student’s program (for both CS and CS&E
programs). In accreditation, program outcomes
assessment is intended to be a continuous im-
provement process that occurs each semester by
identifying and assessing key courses against
the program outcomes, CS-a to CS-k for CS
programs and CSE-a to CSE-m for CS&E pro-
grams as discussed in the previous section. For
example, at UConn, our CS program is assessed
using five different categories of courses (software
engineering, algorithms, ethics, programming
languages and compilers, and capstone senior
design in CSE293). CSE293 provides a means
through which the students’ deliverable work can
be used to demonstrate significant contribution
to outcomes CS-b to CS-k for CS programs and
CSE-c to CSE-l for CS&E programs as outlined
in Table 3.

As can be seen in Table 3, Course Assignments
2, 3, and 5 contribute quite heavily in the measur-
ing attainment of both CS and CS&E program
outcome assessments.

In summary, for both our CS and CS&E
accredited programs, the ability of a capstone
project-based software engineering course such as
CSE293 to be used as the major outcomes assess-
ment course for accreditation greatly facilitates
the continuous evaluation process. For example,
in analyzing CSE293 assessment measurements
gathered during the Spring 2007 semester, we
noticed that we lacked measurements for realistic
issues as they arise in CS-e, CS-g, and CS-h of
the CS program objectives and of CSE-f, CSE-h,
CSE-i, and CSE-j of the CS&E program objec-
tives. As a result of our evaluation process, Course
Assignment 5 on Realistic Issues for Product

 ���

Experiences in Project-Based Software Engineering

Development was added for subsequent offerings
of this course. Overall, the issue of using the cap-
stone course to measure attainment of program
outcomes is in the Works category, although the
danger exists for the capstone course to be saddled
with gathering too many such measurements as
we discuss in the following section.

As can be seen in Table 3, many program
outcomes can be measured by capstone courses
structured like CSE293. An unintended conse-
quence of such a versatile (from an assessment
perspective) course can be an undue burdening
of the instructors teaching the course with the
collection of a great deal of assessment data. To
resolve this issue at USNA, the department’s as-

ABET
Program
Outcomes

Vehicles for measuring attainment of ABET Program Outcomes

CS-b;
CSE-e

Course Assignments 1 (Part II- Preliminary Project Idea) and 2 (Specification and Software Quality
Analysis), along with Course Assignment 3 Part I require the student to analyze the problem and define its
scope as part of the specification.

CS-c;
CSE-e

Course Assignment 3 (Part II- Multi-Faceted Design and Part III- Revised Multi-Faceted Design) in-
volve the design of a computer-based system.

CSE-e Course Assignment 4 (Part I- Prototyping Plan and Part II- Management Plan and Part III – Prototype
reports and Presentations) demonstrate to varying degrees an ability to identify, formulate and solve engi-
neering problems.

CS-d;
CSE-d

All course assignments require teamwork to a variety of degrees.

CSE-g All course assignments require oral and written communication to the instructor. Prototype presenta-
tions are made to the entire class. For the final presentation, industry managers in computing are invited and
critique/provide input.

CS-e;
CSE-h

Course Assignment 5 (Realistic Issues for Product Development) explores realistic issues related to
commercialization (e.g., professional, ethical, legal, security, social, global issues and responsibilities).

CS-f All course assignments require oral and written communication to the instructor. Prototype presentations
are to the entire class. For the final presentation, industry managers in computing are invited and critique/
provide input.

CS-g;
CSE-c,

CSE-f

Course Assignment 5 (Realistic Issues for Product Development) explores realistic issues and con-
straints related to commercialization for local and global impact of computing on individuals, organizations
and society, including ethical, legal, security and global policy issues.

CS-h;
CSE-c
CSE-i,
CSE-j

Course Assignment 5 (Realistic Issues for Product Development) requires students to learn and research
a topic (such as commercialization) that was likely not covered in depth in their program.

CS-i;
CSE-k,

CSE-l

Course Assignment 3 (Part II- Multi-Faceted Design and Part III- Revised Multi-Faceted Design) re-
quires students to use current techniques (UML and other models) and associated tools for their design.

CS-j When given feedback on their teams’ initial and revised designs for Course Assignment 3 (Part II-
Multi-Faceted Design and Part III- Revised Multi-Faceted Design), students must respond with revisions to
the modeling and design of their systems.

CS-k Course Assignment 3 (Part II- Multi-Faceted Design and Part III- Revised Multi-Faceted Design) dem-
onstrate an ability to apply UML (and other models) to construct a solution for their project.

Table 3. Vehicles for measuring attainment of ABET program outcomes

�00

Experiences in Project-Based Software Engineering

sessment committee compiled a matrix showing
every possible program outcome that every course
in the program could possibly measure. At a series
of assessment-focused department meetings, the
faculty members reviewed the matrix to ensure
that each course in the program was indeed con-
tributing to one or more outcomes, and modified
the matrix to remove excessive redundancy (such
as the same outcome being measured in too large a
number of courses) as well as to evenly distribute
the assessment workload across the curriculum.
We sought to ensure that each program outcome
was measured at least twice, and no more than
four times throughout the program. This issue is
definitely in the Works category as the process
of analyzing our assessment matrix resulted in
significant faculty buy-in to our approach to pro-
gram assessment, and also served to streamline
which of the possible program outcomes were
measured in the various courses.

University-Wide Curriculum Goals

In Fall 2005, CSE293 was required to additionally
count as a writing-course (W-course) so that it
could be used to fulfill a university-wide writing
continuum. A W-course requires that each student
write a paper of at least 15 single spaced pages,
and that these pages include both original pages
and edited (revisions suggested by the instructor
on English grammar, formatting, content, etc.).
Students at UConn must take two W-courses to
meet their general education requirements. For
CS&E and computer engineering programs, the
students meet this requirement without CSE293.
For the CS program, CSE293 is vital. This has
been a nightmare for CSE293, and has required
the instructor to carefully partition every project
so that each student’s writing on each team can
be tracked, even though only some of the students
enrolled actually need CSE293 to count as a W-
course. Further, there has been added documenta-
tion and revision cycles to attempt to get to the 15
pages early in the semester, since they must be

“edited” pages. Every student easily meets this
goal by the end of the semester with final reports,
user manuals, individual/team assessments, and
so on. However, this approach is burdensome on
the instructor. While CSE293 serves an exemplary
role in outcomes assessment for accreditation,
its role as a W-course for general education re-
quirements is misplaced since CSE293 is taken
too late in the program to be beginning to teach
students about technical writing. We are currently
discussing moving the W-course requirement to
an earlier location in our program so as to allow
students to take advantage of what they learn about
technical writing, program documentation, etc.,
in subsequent courses. CSE293 as a W-course,
while on the fence between Works and Doesn’t,
is clearly leaning towards Doesn’t.

Courseware sharing

CSE293 materials, as they appear on the web page,
have been used by a number of faculty members
since the inception of this course in Spring 2001.
In the most recent semester (Spring 2007), the
identical core of materials (course projects) was
used, with the various instructors of the course
making some interesting additions to their sec-
tions. In one section we added a fourth prototype
deliverable, and found that this approach was not
very successful since there was a limited time after
spring break (seven weeks) and adding a fourth
deliverable meant that there was only a very small
potential for incremental functionality advance-
ments for that deliverable. In another section we
asked for self and team assessments related to
each team’s web site design for the course and the
software development environment (SDE) used.
For the SDE, we asked each student to detail the
tools they used, how the tools were used, and
if the student would use such tools again. Our
analysis of the most recent offering of the course
demonstrates that even though there are a core set
of course assignments, there is enough versatility
in the course to add to and otherwise customize

 �0�

Experiences in Project-Based Software Engineering

the course based on the particular instructor’s
background and preferences. Courseware sharing
also contributes to the continuous improvement
process required by accreditation by supporting
modifications to subsequent course offerings that
incorporate both instructor and student feedback.
Courseware sharing is definitely in the Works
category.

Team size

In the over 35 times that the authors have taught
CSE293 or other similar team-based project
courses, we have uniformly observed that teams
of from four to six individuals work well, as has
been noted by other efforts (Fleener, 2006). Teams
of this size tend to allow students to undertake an
adequately scoped project and to experience the
critical personnel interactions that Brooks (1995)
argues are inherent to large-scale commercial
software development. A team size larger than
six tends to introduce too many communication
paths and typically requires another layer of
management that is inappropriate given typical
course constraints. A team size of less than four
means that the loss of a team member due to
illness, family situations, or senioritis, can sig-
nificantly impact the team. What Doesn’t Work
in our experience are small teams of just two or
three members, as the relatively small team size
results in a variety of difficulties not typically
experienced by larger teams. Small teams do not
get as many opportunities to experience the full
measure of personnel interactions that are inherent
in larger teams. Small teams encounter greater
bias while conducting peer evaluations (further
discussed in the below sections). Further, small
teams have greater difficulty meeting deadlines
and objectives when they experience the literal,
or figurative, loss of a team member. When one
team member is unavailable, or doesn’t carry
their fair share of the workload, the loss of that
team member represents a 33% loss of effort for a
three person team or a 50% loss of effort for a two

person team. In such cases, it can be difficult for
the remainder of the team to make up the work-
load difference without resorting to heroic efforts
which are inappropriate, since this is, after all, an
academic undertaking. In addition, if the rest of the
class has larger team sizes of four to six students,
the overall work done by the small two to three
person groups tends to pale in comparison. This
can lead to larger teams inferring that the larger
teams had to do more work, and at the same time
leaving the smaller teams thinking that the smaller
teams had to put in more effort per-person than
did students on the larger teams. To summarize
what Works: We recommend balanced teams of
four to six students in cases where students have
generally similar academic backgrounds, projects
are intended to be completed in a single semester,
and peer assessments similar to those we discuss
in the below Assessment/Individual Contribution
section are used to help determine a student’s
individual grade for the course project.

Impact of Project Topic

Over the years, there have been many topics chosen
by students that have been successfully completed
by the teams while others teams have failed; like-
wise, topics selected from a list provided by the
instructor have been successfully used by some
teams while other teams have failed attempting the
same topic. To summarize what Works are proj-
ects that teams undertake involving well-known,
well-documented technologies that provide safe
havens for technologically timid students, or
conversely, project selections that involve inno-
vative and cutting edge technologies that excite
the more adventurous students. Successful teams
that chose software-centric projects have typically
included topics surrounding: web-based projects,
stand alone Java/C++ projects, and database front
ends. For example, a successful team’s project
was a United States Census browser that allowed
users to make http queries against a massive da-
tabase. Another example was a team that chose

�0�

Experiences in Project-Based Software Engineering

a web-based application for authors, reviewers,
and editors to track submitted journal articles. In
terms of innovation, hardware/software combina-
tion projects have included: an automatic mixing
machine that used windshield wiper motors and
PVC pipes controlled by a micro-processor and
run via a web interface; a diagnostic system that
ran on a laptop with a database and connected
to a car’s serial port for real-time analysis of an
automobile’s performance; model trains with
embedded computers that support control and
feedback sensors (termed digital trains) that are
controllable through Java applications using serial
connections; a multitude of single and multi-player
web-based games; and robotics projects such as
linking a robot to a PDA to a cell phone with a
web-interface, and projects that link a robot with
a web-controlled camera. What Doesn’t work:
Teams that fail do so for a variety of reasons
that are in part due to their project selection. One
failure characterization that seems to dominate is
when teams choose obscure or antiquated hard-
ware where documentation or hardware support
is unavailable or outside the students’ ability to
acquire mastery over. For example, some team
failures were attributed in part to their targeting
of the Atari 800 computer platform. Other failures
occurred when a team depended on the timing of
commercial software releases that were promised
by the company, but then didn’t occur (if they did
at all) until there were only a few weeks left in
the semester. Interestingly, projects undertaken
by teams that succeed one semester can fail for
teams undertaking the same project in the next
semester, even when both the teams have similar
skill sets. For example, the requirements for the
previously mentioned digital train system were
instructor provided, and the first team to under-
take the project was quite successful. However,
teams in subsequent semesters using the same
digital train requirements were much less suc-
cessful. In retrospect, the follow-on digital train
teams tended to choose the project topic because
the team was unable to come up with their own

project idea. Overall, success and failure often
seems to depend more on team member buy-in
to the project idea, rather than on the particular
skills of the team members.

Year-Long Capstone Design

In many capstone-based software engineering
courses, a two semester approach is promoted to
provide adequate time for realistic experiences
with the entire software engineering process
(Bagert & Mengel, 2003; Clark, Davies & Skeers,
2005). In fact, at UConn and USNA, many of
the non-computing engineering programs (e.g.,
mechanical, chemical, etc.), have a history of
year-long projects. As an experiment under a
Spring/Fall cycle, a year long project was instituted
at UConn. In the Spring semester, CSEYYY (a
predecessor of CSE293) was split into two groups:
one group did one semester projects as usual. The
second group defined two-semester projects that
would continue in a sequence with CSE293. For
example, three of the six groups in CSEYYY
continued on with their project in the subsequent
Fall semester in CSE293. This required maintain-
ing two separate schedules and milestones (for
one semester vs. two semester groups) and also
providing additional work for the two-semester
groups so as to define a larger-scale project for the
two-semester sequence. This issue was definitely
in the Doesn’t work category at UConn; to say that
it was a total failure would be an understatement.
In Spring 2005, the three year-long groups had five,
four, and four team members respectively. One
group shrunk to two members who then switched
projects. Another group, shrunk first from four
to three members, and then to two over the last
four weeks. The third group stayed intact, but had
an overall implementation over the course of 15
weeks that was only incrementally better than a
one semester project. The final grades that the
students earned were the lowest that the instructor
has ever given in a project-based course over his
career at UConn (20 years with 18 project courses).

 �0�

Experiences in Project-Based Software Engineering

Although there are many examples of having two
semester projects work (Bagert et al., 2003; Clark
et al., 2005), we haven’t experimented at UConn
with year long projects since that time.

Our experiences at USNA with year-long
(Fall/Spring) inter-disciplinary capstone projects
(Needham, 2005) have been mixed. Some of these
projects involved unmanned aerial vehicle (UAV)
systems funded by a Department of Defense
agency. The projects focused in part on determin-
ing what type of small unmanned flight-capable
vehicles undergraduate-level groups could con-
struct on limited budgets. An explicit requirement
of the UAV teams was that they design, construct,
and fly an UAV using commercial off the shelf
software and components to the maximum extent
possible. The computer science students on these
inter-disciplinary teams (which also included
aeronautical engineering students) did generally
good jobs of software system design and prototyp-
ing in the fall semester, but fell victim to critical
vendor-controlled software system upgrades that
did not materialize (with severe negative impact
on the resulting UAV systems).

Conversely, other multi-disciplinary teams
have developed autonomous underwater vehicles
(AUVs) for annual AUV competitions (AUVSI,
2007) jointly directed by the Association for
Unmanned Vehicle Systems International and
the Office of Naval Research and have met with
great success. The computer science students on
these teams (which also included mechanical, sys-
tems and ocean engineering students) under-took
the year-long project as a two-course sequence,
starting with an introductory instructor-driven
project-based software engineering course the
fall semester. In the fall course, multi-threaded
prototype embedded system controllers were
designed, constructed and tested through simu-
lations. These software systems were developed
with an eye towards software reusability since
the AUSVI competition intentionally alters the
competition parameters close to the competition
date to force student teams to respond to changing

environments. For the computer science students
involved with our AUV teams, the initial software
engineering course was followed by spring se-
mester capstone courses in which the prototype
software control systems were integrated with the
physical systems constructed by the mechanical,
systems and ocean engineering students. Most of
the engineering students had only a rudimentary
exposure to programming in C which was primar-
ily focused on device driver development. Oddly,
we encountered problems similar to those reported
by Last, Hause, Daniels and Woodroffe (2002) in
their exploration of virtual project teams in which
team members were spread across continents (US,
Sweden and the UK). We experienced a similar
lack of programming language commonality
(Java for the CS majors and C for the Systems
Engineering majors), lack of motivation caused
by some team members not knowing what other
team members were doing, and an “us vs. them”
mentality, even though the academic centers for
our students were located just one building away
from each other. Since our AUV teams had up-
wards of 10 students from various departments, a
middle-tier management level was added part-way
through the second semester of the sequence, one
for software development and one for hardware
construction.

This middle-tier management level addition
greatly relieved many of the problems we expe-
rienced by instituting a single point of contact
for communication both from and to the various
subsets of the teams. On our most successful
team, the middle-tier managers were roommates
which likely enhanced the communications at
their level. The success this team experienced
further acknowledges the criticality of open lines
of communication between team members. Over
the years, AUV capstone project teams have
met with various degrees of success, with the
most fully operational resultant AUV systems
typically participating in the ASUVI competi-
tion just one month after the respective spring
semesters ended.

�0�

Experiences in Project-Based Software Engineering

Assessment/Individual Contribution

A delicate aspect of teaching CSE293 is the
requirement for each team member to perform
confidential self and team-member assessments.
As noted by Chrisman and Beccue (1987), Scott,
Bisland, Tiehenor, and Cross (1994) and Wilkins
and Lawhead (2000), individually assessing stu-
dents within team settings present difficult prob-
lems that can be further complicated by the need
for instructor intervention to resolve intra-team
disputes. Over the years, we have tried different
approaches as given in Table 4.

The first approach we tried, the “Letter Grade”
technique from Table 4, resulted, with a few excep-
tions (less than seven out of more than 70 teams),
in almost all students self-grading to an average
of 90+ or higher for the semester and indicating
that all team members deserve an A or A- at worst.
This is often totally contrary to reality, particularly
in terms of the grades that have been received
by the students’ respective course projects. We
believe that this is a result of students’ percep-
tions that if they finish the course project and it
more or less “works”, they deserve a high grade.
A similar effect occurred when using the “Sums
to One” approach in Table 4. Related examples
occurred when each student was asked to iden-
tify his/her and teammates level of participation
for each deliverable (e.g., specification, design,

etc.). Even though students are specifically told
that not all students had to contribute equally to
all deliverables, for four person teams, students
usually indicated 25% effort per person per deliv-
erable, for five person teams, 20%, and so on. In
a few cases, the assessments were lopsided. For
example, we had a case where for a team of six,
five students indicated that the sixth student did
not contribute equally and deserved a low grade;
refreshingly, that sixth student concurred! There
have also been dysfunctional teams where every
team member criticized a different team member
as not contributing, and teams that complained
that the leader was too controlling.

Meaningful peer assessment has long been
problematic in capstone courses. In efforts by
Clark, et al. (2005), self and peer assessments were
conducted in a formal business-oriented way with
student supplied time sheets, detailed surveys, and
grading formulas for instructors. In another effort
(Ellis & Mitchell, 2004), surveys were used with
the instructor making similar conclusions to our
observations. In the following sections we discuss
our approaches to strengthening the utility and
impact of peer assessments.

At USNA, we instituted the rubric shown
in Table 5 in pursuit of what we termed a Peer-
Assessment-Multiplier for awarding individual
students grades for team projects. During these
assessments, each student circles a rating to in-

Description Technique Result
Letter Grade Students assign a letter or

numeric grade (0..100) to self
and each of their teammates.

Unproductive. Almost all students self-graded to an av-
erage of 90+ or higher for the semester and indicated
that all team members deserved an A or A- at worst

Sums to One Students assign a fraction to
self and team members where
the fractions must sum to one.

Unproductive. Almost all students self-graded to a .25
for four person teams, .20 for five person teams, etc.
Same net effect as Letter Grade above.

Descriptive
Rubric

Students use a pre-defined
descriptive rubric to assess
self and team members.

Productive. Students rarely self-graded to a description
that maximized their score, and few teams uniformly
chose the highest descriptor for each team member.

Table 4. Techniques for student assessments of self and team members

 �0�

Experiences in Project-Based Software Engineering

dicate the degree to which the evaluating student
feels that each team member fulfilled his/her
responsibilities in completing the team-oriented
project assignments. Students were advised that
their rating of their team members should reflect
each individual’s level of participation, effort, and
sense of responsibility, not his or her academic
ability.

Students were given the rubric at the beginning
of the semester so they knew how they would be
assessed by their peers, and that the instructors
would assign weights to the various ratings (such
as 100 for an Excellent rating, 90 for Very Good,
etc). The students were told that their specific
ratings of their team members would remain
confidential, but that they would be advised of
their averaged peer assessment by the instructor
at about 4 week intervals throughout the course.
This is another area in which larger team sizes
(four to six) work better than smaller team sizes
(two to three), as it is more difficult to ensure
such confidentiality within small teams. For even
larger teams (more than six) we have found that
students bring in additional influences that tend
to reduce the utility of peer assessments. For ex-

ample, on the multi-disciplinary UAV and AUV
teams discussed above, students from the same
major tended to grade their fellow majors higher,
primarily because they knew them better from
having taken earlier classes together and they
could better relate to the quality of the work done
by students of the same major. With team sizes of
four to six, we observed that there were generally
less opportunities for such external influences
to skew the peer assessments because the teams
were comprised of either all the same major, or
there were not enough students from each major
to unduly the peer assessments.

In all cases, what noticeably improved the
usefulness of the peer assessments was when
we began informing the students that their own
team-generated individual peer evaluation, as
compared to their teams overall peer evaluation
average, would impact each student’s recorded
team project grade. Our intentions were to use
the peer assessment to award additional points
to a team member whose peers felt was doing
excellent work, and penalize poorly performing
team members. For example, assume a team of
four in which one team member’s peer assess-

Rating Description
Excellent Consistently went above and beyond the call; nurtured teammates; routinely did far

more than his/her assigned team responsibilities.
Very Good Always did what he/she was supposed to do; very well prepared and very coopera-

tive.
Good Mostly did what he/she was supposed to do; acceptably prepared and cooperative.
Satisfactory More often than not did what he/she was supposed to do, no more, no less; mini-

mally prepared and cooperative.
Marginal Sometimes failed to show up or complete assignments w/o valid reasons; rarely

prepared.
Deficient Often failed to show up or complete assignments w/o valid reasons; rarely pre-

pared.
Grossly Unsat Consistently failed to show up or complete assignments w/o valid reasons, unpre-

pared.

Table 5. Rubric for student assessments of self and team members

�0�

Experiences in Project-Based Software Engineering

ment rubric results average to Excellent, two team
members average to Very Good, and one team
member averages to Marginal. This gives a total
of 100 + 90 + 90 + 60, or 340 points, resulting
in an overall team average of 85. Each student
receives a peer-assessment-multiplier (here,
100/85, 90/85, 90/85 and 60/85) that is applied to
their recorded final project grade that represents
their individual, peer-assessed, accomplishments
relative to the project. Continuing our example,
assume a team has a final project score of 82%. In
this case, the Excellent peer-rated student would
receive (100/85)*82 or 96.4%, the two Very Good
rated students would each receive an (90/85)*82
or 86.8%, and the Marginal student would receive
a (60/85)*82 or 57.8% for their respective final
project grades. It should be noted that the sum-
mation of the peer-assessment-multiplied final
project scores remains the same (96.4 + 86.8 +
86.8 + 57.8 still average to 82), but the points
have been re-distributed in a manner that rewards
students that have been peer-assessed as carrying
more than their share of the load. Further, team
members that are shirking their responsibility are
held accountable for their actions through a lower
peer-assessment-multiplied final project score.

Most team members (over 88% in our analysis)
perform at or near the team average and therefore
experience minimal impact in terms of their proj-
ect grade. We have found such peer-assessment
to be a very effective technique, especially when
applied early and at regular intervals throughout
the semester. In particular, under-performing
team members realize early on that their lack
of commitment to the team project will impact
their grade. This approach is quite useful in help-
ing students acquire the ability to work well in
the team environment. As a side note, we have
also found that the Peer-Assessment-Multiplier
approach serves as an excellent resource when
students return to ask for letters of recommenda-
tion in their job searches. Although it would be
inappropriate to disclose a student’s multiplier, it
can be quite useful as an aide in helping to recall

which students were the most effective in a team
environment for semesters past.

The Peer-Assessment-Multiplier technique
falls in the Works category, but there are a few
caveats. Although the technique is not fool-proof
(teams can still voluntarily pool their assessment
grading and thereby render the technique useless,
unpopular team members can be unfairly singled
out, etc), our experiences have been that teams
rarely want to freely carry the weight of an under-
performer, and that (most) students are mature
enough not to penalize a team member unfairly.

Non-Functioning Team Members

On very rare occasions, a team may have a team
member that severely fails to fulfill his/her respon-
sibilities towards the team project. At USNA, we
sought to empower teams to handle such person-
nel issues at as low a level as possible, rather than
have the instructor step in and act as arbitrator for
every team difficulty encountered. Towards this
end, we established the following Regulations for
Ejecting Nonfunctioning Team Members:

1. Warning Memo. If the majority of a team
determines that a member of the team is not
fulfilling his/her responsibilities, they will
send the member a formal warning memo,
with a copy to the instructor. The memo
must specifically state what the member has
thus far failed to do in regard to meeting
responsibilities as a team member, what the
team member must do to correct the situa-
tion, must be dated, and must indicate that
the member will be ejected from the team
if the situation is not corrected within two
weeks.

2. Ejection Memo. After a period of two weeks,
if the individual has not taken appropriate
steps to correct the situation, the team will
send the individual a formal ejection memo,
with a copy to the instructor. The instructor
will formally meet with the team as a whole

 �0�

Experiences in Project-Based Software Engineering

to examine the situation and approve the
ejection as appropriate, in which case the
individual will be responsible for complet-
ing his or her own project.

3. Relapse Memo. If the individual temporarily
corrects the lack of responsibility but then
again relapses into being a nonfunctioning
team member, no additional warning memos
are necessary. The team may immediately
follow the ejection memo steps delineated
above.

We have used the above Regulations for Eject-
ing Nonfunctioning Team Members for over 50
teams with very good results. Cases in which
the instructor had to step in as an arbitrator were
greatly reduced, from a few every semester or so,
down to the point where virtually no arbitration
was required with the regulations in effect. In total,
there were just four cases of warning memos being
routed, with one of those cases continuing on to the
ejection memo stage. The Regulations for Ejecting
Nonfunctioning Team Members technique falls
squarely into the Works category. Our approach
encourages teams to resolve minor disputes at
an appropriately low level, improves team com-
munication, and encourages team members to
actively participate in their team’s project.

FUTURE TRENDs

Future trends in software engineering focus at
the discipline, program, and instructor levels.
Software engineering education is being in-
fluenced on both a national and international
level by many different efforts. ABET has
currently accredited 13 software engineering
programs that meet its criteria. There are two
major ongoing curriculum efforts: the Guide
to Software Engineering Body of Knowledge
(Abran & Moore, 2004), which is seeking to
raise the software engineering profession to the
level of other engineering disciplines in terms

of licensing and accreditation; and, Software
Engineering 2004 (LeBlanc & Sobel, 2004), the
curriculum guidelines for undergraduate degree
programs in software engineering. Both of these
efforts are the subject of much discussion in the
literature: Simmons (2006) examined the need
to address the world wide demand of software
engineers as a result of outsourcing and US
Department of Labor growth projections for
the occupation; Thomson and Edwards (2006)
reported on bridging the university/industry gap
in software engineering education in the United
Kingdom, and recommend the inclusion of best
industry practices into curricula; and van Vliet
(2005; 2006) identified the shortcomings of both
SWEBOK and SE2004 in achieving real-world
experiences, the dissimilarity between software
engineering and other engineering disciplines,
and the inaccuracy of project planning tech-
niques. In addition, Bagert’s (2004) work on a
software engineering roadmap is an excellent
summary of the issues including a discipline
code of ethics, professional licensing (Texas
and Canada), and accreditation (United States
and Canada).

 There are many novel efforts underway relat-
ed to software engineering capstone courses such
as CSE293. Bagert and Mengel (2003) discuss a
standardized software process that is employed in
their MSSE and BSCS programs that emphasizes
a practice-based approach to software engineer-
ing education. Their undergraduate students take
an initial software engineering course, followed
by a senior-level product design course, and then
a senior-level product implementation laboratory.
This is similar to CSE293 in focus, but gives a
full semester devoted to software design rather
than the partial semester design focus of CSE293.
Bernhart, Grechenig, Hetzl and Zuser (2006)
have developed two courses in their quest to
transition the software engineering knowledge
requirements identified in SE2004 into actual
software engineering course design. One is a
project-based introductory software engineering

�0�

Experiences in Project-Based Software Engineering

course following an instructor dictated timeline;
the second is a follow-on course in which stu-
dents develop software systems based on their
own timelines. This second course is similar
to CSE293, with one interesting exception: the
second course proposed by Bernhart et al. does
not require the first course as a prerequisite. This
is very different from CSE293 which requires
a foundational knowledge of basic software en-
gineering principals before students undertake
the capstone project. Fenwick and Kurtz (2005)
report on their efforts to have project-based
software engineering experiences which involve
teams that span multiple courses, and go so far
as to involve freshman, sophomores, and juniors
in a single project. Their approach essentially
has the students in the lower level courses act-
ing as contractors that deliver, for example, the
database portion of the project to the students
enrolled in the managerial-focused software
engineering course. Daigle and Niccolai (1997)
attempted a similar connection between a low
level software engineering theory courses and
senior level project courses. An advantage of
both of these approaches is that the software
engineering capstone students are relieved of
some of the low level implementation concerns
and are allowed to focus more on the analysis,
design and management issues of the project.
This is very different from the approach taken in
CSE293 in which the teams have to build a proj-
ect completely by themselves and from scratch.
Ghezzi and Mandrioli (2005) propose knowledge
skills and curricula requirements for software
engineering education that are largely met by
CESZZZ. Hazeyama (2005) reviews current
practices in team-based software engineering and
provides a paradigm to evaluate and assess these
approaches. In particular, Hazeyama’s proposal
for assessment-based grading closely parallels
the Peer-Assessment-Multiplier technique we
discuss above. Van der Duim, Andersson and
Sinnema (2007) propose seven best practices for
software engineering education to enhance the

rigor and control of software engineering proj-
ects. However, they report difficulty in resolving
what they term the “Free Riders” problem. This
problem occurs with students that do not really
contribute to the team’s efforts, but hope to pass
the course anyway by assuming that instructors
do not have any real insight into individuals’
efforts. We are confident that the Free Riders
problem can be addressed using a combination of
the Peer-Assessment-Multiplier and Regulations
for Ejecting Nonfunctioning Team Members
techniques we describe above.

CONCLUDING REMARks

The main contribution of this chapter was to relate
our experiences - what works and what doesn’t,
and discuss our experiences in relation to those
of other educators. We detailed future trends in
software engineering education at the discipline
level (SWEBOK, SE2004, licensing, etc.) and
novel approaches by individual educators in real-
izing practice-based experiences into the software
engineering education process.

We reported on our successes and failures
with UConn’s Capstone Project-Based Labora-
tory, CSE293, with related experiences in similar
courses at USNA. We found that team-oriented
project-based software engineering capstone
courses such as CSE293 provide a nearly ideal
opportunity to assess the attainment of program
outcomes in a manner that greatly facilitates the
process of continuous evaluation. However, since
such courses can be used to assess attainment of
so many program outcomes, we have identified
steps that can be taken to ensure that faculty
teaching such courses are not overburdened with
assessment data collection for either ABET-related
or university-wide requirements.

We examined our development of a set of core
capstone-oriented assignments for CSE293 to help
standardize the capstone experience from semes-
ter to semester. Such core assignments must be

 �0�

Experiences in Project-Based Software Engineering

developed with enough versatility in the course to
allow instructors to add to and otherwise custom-
ize the course based on the particular instructor’s
background and preferences. Additionally, stan-
dardized core assignments can also contribute to
the continuous improvement process required of
accredited programs.

We discussed our experiences with various
team sizes, and conclude that a targeted team size
of four to six students provides suitable propor-
tions with which to support appropriately scoped
semester-long projects, withstand unforeseen
team member losses, support confidential, and
useful, peer evaluations and ensure that sufficient
intra-team communication complexities are ex-
perienced by the team members.

In terms of project selection, we found that
student-selected, instructor-scoped projects that
involve well-known or emerging technologies
work well. However, team members must concep-
tually buy-in to the basis behind the specific project
proposed. Also, the team must take steps to avoid
becoming constrained by commercially promised
future software releases in order to complete their
project. We have shown that year-long (as opposed
to single-semester) inter-disciplinary capstone
projects can work. We have discussed steps that
can be taken concurrently across the involved
departments to ensure that software and hardware
being developed in different locations by differ-
ent team subsets can be integrated at appropriate
intervals throughout the year. Further, the design
of software developed for such projects benefits
from having paid careful attention to design reus-
ability in order to gain the flexibility needed to
overcome late term integration obstacles.

Key aspects of team-oriented software en-
gineering capstone courses include the need for
confidential self and team-member assessments
as well as mechanisms for dealing with unco-
operative team members. We present a rubric
that culminates in a peer-assessment-multiplier
for assigning individual student grades for team
projects. We have shown how this multiplier can

be used to reallocate a team’s final project grade
so that the peer-assessed hardest working team
members are recognized, while also fairly dealing
with underperforming team members. On very
rare occasions, a team may have a team member
that severely fails to fulfill his/her responsibili-
ties towards the team project. To mitigate such
situations, we presented our ejection regulations
technique for empowering teams to handle such
situations at the lowest possible level, much as
they will need to do in industry.

In terms of future work, at USNA, in addition
to our current ABET accredited CS program we
have recently developed, offered and successfully
undergone a pilot accreditation of our Informa-
tion Technology (IT) program. As of the writing
of this chapter there are currently only 5 ABET
accredited IT programs in the country. For future
offerings of our project-oriented software engi-
neering capstone course, we plan on requiring
our CS and IT majors to conduct their capstone
projects within mixed teams that include propor-
tionate numbers of both CS and IT majors. We
are currently modifying our capstone course to
accommodate the mixture of majors, and to ensure
that the combined capstone course can provide
measurements for the program outcomes assess-
ments required by both programs in a manner
similar to that in which CSE293 addresses both
CS and CS&E program outcomes assessment.

For CSE293, we have also begun to explore
different delivery mechanisms for the course. In an
upcoming semester, we will be team teaching the
course, with one instructor providing the overall
guidance, and splitting the students into three
sections (10 students and two teams per instruc-
tor) in order to provide more detailed interactions
and guidance to each team through more contact
hours with the instructor. This will allow one
instructor to handle software/database focused
projects, one instructor to handle software/web-
based projects, and a third instructor to handle
network/hardware based projects; each instructor
will advise projects that are in their strength area.

��0

Experiences in Project-Based Software Engineering

Moreover, the CS and CSE students taking the
course will be able to obtain advising tailored to
their project domain.

REFERENCEs

ABET (2007). Leadership and Quality Assurance
in Applied Science, Computing, Engineering, and
Technology Education. Retrieved December 18,
2007, from http://www.abet.org.

Abran, A., & Moore, J. W. (2004). Guide to the
Software Engineering Body of Knowledge. IEEE
Computer Board of Governors. Retrieved Decem-
ber 18, 2007, from ttp://www.swebok.org/

AUVSI (2007). Association for Unmanned Vehicle
Systems International. Retrieved December 18,
2007, from http://www.auvsi.org.

Bagert, D., & Mengel, S. (2003). Using a Web-
Based Project Process Throughout the Software
Engineering Curriculum. Proceedings of 25th
International Conference on Software Engineer-
ing, ICSE 2003, pp. 634-640.

Bagert, D. (2004). SEER: Charting a Roadmap for
Software Engineering Education. Proceedings of
17th Conference on Software Engineering Educa-
tion and Training, CSEET 2004, pp. 158-161.

Beck, K. (1999). Embracing Change with Ex-
treme Programming, IEEE Computer 32(10),
pp. 70-77.

Bernhart, M., Grechenig, T., Hetzl, J., & Zuser,
W. (2006). Dimensions of Software Engineering
Course Design. Proceedings of 28th International
Conference on Software Engineering, ICSE 2006.
pp. 667-672.

Boehm, B., Kaiser, G., & Port, D. (2000) A
Combined Curriculum Research and Curriculum
Development Approach for Software Engineering
Education, Conference on Software Engineering
Education and Training, 2000, p. 310.

Brooks, F. (1987). No Silver Bullet, IEEE Com-
puter 20(4), pp. 10-19.

Brooks, F. (1995). The Mythical Man-Month; 2nd
edition, Addison-Wesley Professional.

Chrisman, C., & Beccue, B. (1987) Evaluating
students in system development group projects.
SIGCSE-Bulletin, 19(1): pp. 366–373, 1987.

Clark, N., Davies, P., & Skeers, R. (2005). Self and
Peer Assessment in Software Engineering Proj-
ects. Proceedings of 7th Australasian Computing
Education Conference, ACE 2005, pp. 91-100.

Daigle, R. & Niccolai, M. (1997). Inter-Class
Synergy by Design. In Proceedings of the SIGCSE
Conference on Computer Science Education
(SIGCSE ’97). New York, NY: ACM Press, pp.
92-95.

Ellis, H., & Mitchell, R. (2004). Self-Grading in
a Project-Based Software Engineering Course.
Proceedings of 17th Conference on Software
Engineering Education and Training, CSEET
2004, pp. 138-143.

Fenwick, J., & Kurtz, B. (2005). Intra-curriculum
software engineering education. Proceedings
of the 36th SIGCSE Technical Symposium on
Computer Science Education, SIGCSE 2005,
pp. 540-544.

Flener, P. (2006). Realism in Project-Based Soft-
ware Engineering Courses: Rewards, Risks, and
Recommendations. Proceedings. of 21st Interna-
tional Symposium on Computer and Information
Sciences, ISCIS 2006, pp. 1031-1039.

Ghezzi, C., Jazayeri, M., & Mandrioli, D. (2002).
Fundamentals of Software Engineering. 2nd edi-
tion, Prentice Hall.

Ghezzi, C., & Mandrioli, D. (2005). The Chal-
lenges of Software Engineering Education.
Proceedings of 27th International Conference on
Software Engineering, ICSE 2005, pp. 637-638.

 ���

Experiences in Project-Based Software Engineering

Hazeyama, A. (2005). State of the Survey on Team-
based Software Engineering Project Course.
Proceedings of the 17th International Conference
on Software Engineering and Knowledge Engi-
neering, SEKE 2005, pp. 430-435.

Last, M., Hause, L., Daniels, M., & Woodroffe,
M. (2002). Learning from Students: Continuous
Improvement in International Collaboration.
Proceedings of the Conference Integrating Tech-
nology into Computer Science Education, ITiCSE
2002. ACM Press, New York, NY, pp. 136-140.

LeBlanc, R., & Sobel, A. (2004). Software
Engineering 2004 Curriculum Guidelines for
Undergraduate Degree Programs in Software
Engineering, ACM, 2004. Retrieved December
18, 2007 from http://sites.computer.org/ccse/.

Meyer, B. (2001). Software Engineering in the
Academy, Computer, 34(5), pp. 28-35.

Naur, P., Randell, B., & Buxton, J. (Eds.). (1976).
Software Engineering: Concepts and Techniques:
Proceedings of the NATO Conferences, Petrocelli-
Charter, New York.

Needham, D. (2005). Interdisciplinary Teams for
Software System Development. Proceedings of
the 2005 International Conference on Frontiers
in Education: Computer Science & Computer
Engineering, FECS 2005, pp. 10-16.

Polack-Wahl, J. (2006). Lessons Learned From
Different Types of Projects in Software Engi-
neering. Proceedings of the 2006 International
Conference on Frontiers in Education: Computer
Science & Computer Engineering, FECS 2006,
pp. 258-263.

Scott, T., Bisland, R., Tiehenor, L., & Cross, J.
(1994). Team Dynamics in Student Programming
Projects. SIGCSEBulletin 26(1), pp. 111-115.

Shaw, M., Software Engineering Education: A
Roadmap. International Conference of Software
Engineering - Future of SE Track, ICSE 2000,
pp. 371-380.

Simmons, D. (2006). Software Engineering
Education in the New Millennium. Proceedings
of 30th Annual International Computer Software
and Applications Conference, COMPSAC 2006,
pp. 46-47.

Thompson, J., & Edwards, H. (2006). Bridging
the University/Industry Gap. Proceedings of 28th
International Conference on Software Engineer-
ing, ICSE 2006, pp. 1011-1012.

van der Duim, L., Andersson J., & Sinnema M.
(2007). Good Practices for Educational Software
Engineering Projects. Proceedings of 29th Inter-
national Conference on Software Engineering,
ICSE 2007, pp. 698-707.

van Vliet, H. (2005). Some Myths of Software
Engineering Education. Proceedings of 27th In-
ternational Conference on Software Engineering,
ICSE 2005, pp. 621-622.

van Vliet, H. (2006). Reflections on Software
Engineering Education. IEEE Software, 24(3),
pp. 55-61.

Wilkins, D., & Lawhead, P. (2000). Evaluating
individuals in team projects. SIGCSE-Bulletin,
32(1), pp. 172–175.

Section V
Educational Technology

 ���

Chapter XI
Applying Blended Learning in

an Industrial Context:
An Experience Report

Christian Bunse
International University in Germany, Germany

Christian Peper
Fraunhofer Institute Experimental Software Engineering, Germany

Ines Grützner
Fraunhofer Institute Experimental Software Engineering, Germany

Silke Steinbach-Nordmann
Fraunhofer Institute Experimental Software Engineering, Germany

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abs TRACT

With the rapid rate of innovation in software engineering, teaching and learning of new technologies have
become challenging issues. The provision of appropriate education is a key prerequisite for benefiting
from new technologies. Experience shows that typical classroom education is not as effective and efficient
as it could be. E-learning approaches seem to be a promising solution but e-learning holds problems
such as a lack of social communication or loose control on learning progress. This chapter describes a
blended learning approach that mixes traditional classroom education with e-learning and that makes
use of tightly integrated coaching activities. The concrete effects and enabling factors of this approach
are discussed by means of an industrial case study. The results of the study indicate that following a
blended learning approach has a positive impact on learning time, effectiveness and sustainability.

INTRODUCTION

Today, software systems are available for almost
all aspects of human life, ranging from household
appliances to transportation/logistics, com-

munication and health. Although, this is good
with respect to effort and costs, at the same time
it increases the need for high quality systems.
But, the development of high-quality software
systems requires well-trained professionals using

���

Applying Blended Learning in an Industrial Context

sophisticated tools and techniques. Unfortunately,
transferring new techniques and tools from re-
search into industrial practice is not easy. It may
take years for a new, promising and even proven
idea to become accepted as standard industrial
practice. Software developers and organizations
are regularly faced with technology decisions
concerning the adoption of technology. Thus,
technology adaptation and introduction requires
adequate training (Lutz 2007), especially con-
cerning development methodology and quality
management.

Typically, the demand for training is based
on the job- and activity profile of employees
(i.e., developers are trained in technologies they
are going to apply in their projects) or on the
requirements of the applied curricula. Build-
ing a training program on the actual needs and
requirements of its participants is a step into the
right direction, since this overcomes the problems
typically associated with static training programs
concerning flexibility, timeliness, etc. (Singh
2003). However, even the most flexible training
program (wrt. content) is of limited value if its
transfer methodology (i.e., how the training should
be performed) is not adapted in a way that ensures
maximum sustainability.

According to (Wills 2006), “traditional” strate-
gies, using classrooms and technology and topic
experts (e.g., professionals or professors) are in
broad use. Unfortunately, these strategies are not
only cost- but also time-intensive. While this might
be acceptable in a university context, companies,
especially small and medium-sized enterprises
that have tight development schedules and short
software release rates, cannot afford such trainings.
Developers participating in traditional training
programs are not able to develop software at the
same time (i.e., reduction of development time).
E-learning has been advertised as one solution for
this problem by allowing and actively supporting
education at any time and at any place.

E-learning, which requires initial investments
for preparing training media, is not “cheap”.

Companies offering such training activities there-
fore have to acquire a large audience in order to
obtain a positive return on investment (Ochs &
Pfahl 2002). However, a large audience bears the
danger of generalization (i.e., the training material
is not adapted towards the specific situation of
its participants) and lacks in social communica-
tion (i.e., learning in isolation) (Stark & Schmidt
2002). Communication problems might be miti-
gated by providing online support, guidance, and
discussion facilities, although these require extra
resources and effort and thus, increase the need
for an even larger audience. Another problem
associated with large audiences is the varying
level of experience and background knowledge
of its participants (i.e., heterogeneity) (Bunse,
Grützner, Peper & Steinbach-Nordmann 2005).
Thus, cost efficiency and large audiences are like
chasing one’s own tail.

Traditional and e-learning both have their
strengths and weaknesses. Combining them in
so- called blended learning arrangements may
outweigh the negative effects of both approaches,
conserve the positive effects, and may even add
additional value. Based on practical observa-
tions and experience with both “traditional”
and e-learning, we propose a blended learning
approach (Bunse, Grützner, Peper & Steinbach-
Nordmann 2005) that mixes traditional classes
and e-learning: E-learning is used to leverage
knowledge and skills in the very beginning, fol-
lowed by in-depth seminars for teaching advanced
concepts as well as for performing group work,
and practical exercises.

One important goal for developing and ap-
plying our approach has been the assurance of
sustainable learning effects (Asian Development
Bank 1997). In other areas of education and train-
ing (e.g., soft skills), coaching is an often used
means for addressing this problem. Coaching is a
technique for observing the current functioning,
assessing the strengths and weaknesses, and de-
veloping measures for addressing needed changes.
Transferred to the domain of technology educa-

 ���

Applying Blended Learning in an Industrial Context

tion, coaching has to be integrated into the daily
work of the trainees (i.e., be workflow-oriented) in
order to obtain significant improvements. There-
fore, our blended learning approach is enriched
by a subsequent, workflow-oriented coaching
process. To obtain evidence on the practicability
and effectiveness of our approach, it has been
applied in industrial training projects. The results
show that especially its adaptivity towards the
needs of participants and the coaching aspects
are the most prominent benefits as perceived by
the participants.

The remainder of this chapter is structured
as follows. Section two introduces our blended
learning strategy for teaching object-oriented
development with UML. Section three describes
major rationales for the product structure derived
from market trends. Section four describes already
existing experience on using our strategy in vari-
ous application areas (e.g., for training students and
professionals). In addition, it analyzes the effects of
our approach on an objective basis and discusses
how blended learning can improve software en-
gineering education. Section five discusses the
latest trend and directions in software engineering
education. Finally, Section six provides a short
summary and some conclusions.

bLENDED LEARNING IN
sOFTWARE ENGINEERING
EDUCATION

In general, blended learning uses a mixture of
various teaching methods and media, to “get
the right content in the right format to the right
people at the right time”. It therefore combines
multiple delivery methods that complement each
other (Singh 2003). As stated by the American
Management Association (AMA), it “integrates
seemingly opposite approaches … in order to
achieve individual and organization (learning)
goals”. Besides traditional classroom trainings,
possible elements of the blend include e-learning

modules and components (for example, assess-
ments, simulations, resource collections, or online
workbooks), virtual collaboration means (like
email, communities of practice, online meetings,
or e-mentoring facilities), or face-to-face methods
(e.g., workshops, assignments for project team
work, or coaching) (Rossett & Vaughan Frazee
2006, Singh 2003). With its advantages, especially
in the field of (social) interaction and learning
organization, the blended learning approach is
increasingly penetrating teaching practice at
universities (Jones & Northrop 2006a), training
providers (Jones & Northrop 2006b), and industry
(Lutz 2007 and Heidecke, Mayrhofer, Schiesser &
Back 2007). Interestingly, there is a great variety
concerning the methods applied in these domains.
Methods range from educational games (Jain
& Boehm, 2006), writing about a topic (Wang
& Sorensen 2006), case studies (Burge & Troy
2006), project work (Frailey 2006) to simulations
(Ubal, Cano, Petit & Sahuquillo 2006 as well as
Fetaji & Fetaji 2006).

Interestingly, blended learning helps to
overcome obstacles that prevent companies
from using e-learning approaches to train their
employees. According to market studies on e-
learning potential (e.g. Ochs & Pfahl, 2002), the
five most important resistance factors concerning
e-learning are:

1. Insufficient qualification of personnel for
e-learning-related tasks,

2. Low quality of the used software systems,
3. the overall quality of e-learning tools is seen

to be unsatisfactory,
4. Existing tools are too expensive, and
5. The quality of contents is often seen to be

inadequate to meet specific needs.

In addition, the study predicted an increased
mid-term (i.e., 1-2 years, thus at present!) demand
for service categories centered on e-learning (i.e.,
43% for Web-based training, 61% for Web-based

���

Applying Blended Learning in an Industrial Context

tutoring, and 58% for Web-based cooperative
learning and problem solving).

Interestingly, the powers of resistance seem
to be eliminated by blended learning programs,
since these offer classroom trainings that fit ex-
actly to the working context of the participants.
An additional factor in this regard is that blended
learning approaches (at least those presented in
this chapter) allow using e-learning elements
without requiring a special management system
hosted on the training organization’s platform.
The increase in quality and thus, the mitigation
of risk factors, is also indicated in the context of
industrial case studies (i.e., successful certifica-
tion of participants).

In summary, blended learning seems to be
a valid approach for conducting effective and
efficient trainings with sustainable effects. The
blended learning approach presented in this
chapter is based on the definition given in (Singh
& Reed 2001): “Blended learning focuses on
optimizing achievement of learning objectives
by applying the “right” learning technologies
to match the “right” personal learning style to
transfer the “right” skills to the “right” person
at the “right” time.” This definition focuses on
the learning objective and on the fact that many
different personal learning styles need to be sup-
ported to reach a broad audience.

Ferreira, Fonseca, d’Alge and Montiero (2002)
and Höhle and Cho (2000) have looked extensively
into distance learning and how these courses are
received and studied by their participants. They
suggest that experience made in pure distance
learning can be taken and applied to onsite com-
bined learning courses, as that presented in this
chapter. Following (Mühlhauser 2002) our ap-
proach is based on material that is used, updated
and, most importantly of all, educates.

Our approach is based on standard definitions
and approaches however the most important
question is what are the concrete effects when
applying the approach and what are its enabling
factors. Thus, empirical evidence is needed.

Interestingly, previous research on case studies
has not focused on blended learning (Solberg
Søilen 2007). (Yildiz & Chang 2003) conclude
that Web-based courses tend to be “richer and
of more quality” than regular class room educa-
tion. In contrast, (Mikulecky 1998) observed that
students were able to generate more thoughtful
responses in Web-based courses. Following (Sol-
berg Søilen 2007) the three forms of interaction:
learner-instructor, learner-content and learner-
learner interaction are involved in interactive
and blended learning. The case study presented
in (Solberg Søilen 2007) confirms the importance
of the interaction the student has with teacher and
other student in addition to distance or e-learn-
ing. Our study supports this too and indicates
that blended learning has a positive impact on
learning time and, due to the integrated coach-
ing measures, supports effective learning with
sustainable results.

TEACHING OO-DEVELOPMENT
WITH UML IN A bLENDED
LEARNING APPROACH

Blended learning is a promising approach to
facilitate software engineering education, given
the need for training-on-the-job, the rapid change
of technologies, and the diversity of application
domains. In this section, we describe the ap-
plication or instantiation of the general blended
learning approach towards model-based and
object-oriented development with UML.

Object-orientation and UML were chosen as
training topics due to the growing popularity and
distribution of the paradigm and its associated
technologies in large parts of industry. Thus,
in detail, there is a need for systematic educa-
tion concerning sound OO analysis, design, and
programming, as well as for model-based speci-
fications and architectures using UML. Interest-
ingly, the trend towards requesting e-learning
facilities is increasing in parallel. This motivated

 ���

Applying Blended Learning in an Industrial Context

the development of an integrated product known
as “Blended learning OO & UML”, which has
already been successfully applied in academic
and professional education.

In general, as discussed and outlined in section
2, blended learning proposes a mixture of learn-
ing activities comprising self-steered learning
activities, cooperative and collaborative learning
activities, learning activities supported by online
tutors, social learning activities, and traditional
classroom teaching activities. The approach has to
address all these elements but, at the same time,
needs to be flexible and adaptable towards different
context requirements. This is comparable to the
situation of software engineering technologies,
which are unlikely to be transferred into practice
in a monolithic style.

In summary, our approach establishes four
modular learning product levels (see Figure 1).
Each level integrates the respective lower level and
supplements it with new activities in the teaching
process. This modularity provides a maximum
of flexibility for the design of educational pro-
grams and assures optimal appropriateness for
the learners in specific programs. The following
table (Table 1) provides a detailed description of
each product level.

In general, the different program modules
can be independently applied in concrete train-
ing activities. Since there are no silver-bullets,
especially not in engineering education, simply
using a pre-defined learning program or module
will hinder obtaining sustainable effects. To
create such effects, a program or module must
thus be individually adapted to various context
factors such as application domain (e.g., domain-
specific examples and best-practices), skill level,
etc. However, adaptation is neither easy nor
cheap (e.g., adapting e-learning courses requires
significant effort). Therefore, we defined in gen-
eral that adaptation will focus on the classroom
training aspects and use a standard e-learning
course for creating a common understanding of
the participants. The training material used in
classroom training uses different modules that
can be individually combined and/or exchanged.
Thus, context-specific modules can be simply
plugged into the training material. The underlying
strategy (e-learning followed by classroom activi-
ties) requires the definition of a standard schema
for actually conducting the training.

Figure 2 depicts the standard schema defined
in the context of OO&UML. The schema trans-
ports the various contents of the product levels

Figure 1. Product levels

���

Applying Blended Learning in an Industrial Context

Levels of the
learning product Description

UML
Basis

“UML Basis”, located at the lowest level, is centered around two Web-based trainings (WBT’s), which
target different groups: (1) “UML Interactive for Technical Managers” presents information on the origins,
characteristics, and advantages of UML. It also presents a short overview of the different UML diagrams
and available tool support. It enables the learner to make a decision concerning the use of UML in upcoming
development. (2) “UML Interactive for Software Designers” provides additional learning content to enable
learners to develop UML diagrams with good quality. Both WBTs are supported by an Internet forum granting
synchronous and asynchronous communication opportunities. Here learners can ask questions or chat / discuss
with peers.

UML
Personal

“UML Personal” resides at the second level. In addition to “UML Basis”, it provides support by online tutors.
Tutors answer subject matter and organizational questions. In an extended version of the tutoring activities,
tutors provide feedback on practical exercises That simulate real working tasks. They represent the third stage
of knowledge transfer (i.e., in addition to examples and self-tests in the WBTs). Thus, tutors are able to evaluate
acquired knowledge and skills as well as the individual learning behavior.

OO
Practitioner (UML)

Learning activities added at the third level, “OO Practitioner (UML)”, are classroom trainings and project
coaching. Classroom trainings provide several topics from the field of object-oriented analysis, design, and
implementation, and intensify object-oriented concepts, e.g., through exercises from the learners’ application
context. Topics are identified in advance, together with learners and their superiors. Subsequent to classroom
trainings, project coaching (also known as action-learning) is offered. During the coaching phase, learners apply
their acquired knowledge and skills in a real-world project supported by experts.

OO
Designer (UML)

“OO Designer (UML)”, at the top level, adds certification of learning activities. During certification, the learner
has to either solve a complex exercise together with a peer or work on a long-term project within a team. Results
are presented to and discussed with the tutors. Certification topics belong to the daily working routine of the
learners.

Table 1. Description of the product levels

to the learners. In the first phase, the educational
program is designed and organized, integrating a
detailed analysis of the learner’s skills, educational
needs, and learning environment. The method
used to analyze these fields is the skill profiling and
analysis method ”QUALISEM-People“(de Haan,
Waterson, Trapp & Pfahl, 2003), which assures
that the content and instructional strategy of the
program are defined based on objective informa-
tion. This aims at increasing the acceptance level
and thus the effectiveness of the learning program
by satisfying objectively identified training needs.
In the second phase, the educational program is
launched. It starts with a kick-off workshop, which
aims at learners as well as tutors getting to know
each other and at explaining the organization
of the program to the learners. This is followed
by the online phase, in which the learners work
with a Web-based training course of the UML

Basis or the UML Personal level. The goal of the
online learning phase is to reach an equal level
of knowledge regarding the UML notation. This
is a prerequisite for efficient teaching sessions in
the subsequent classroom trainings, because the
trainer can then concentrate on providing detailed
advanced knowledge, such as object-oriented
analysis, design, and programming from the
product level OO Practitioner (UML). In the third
phase, the knowledge acquired is transferred into
practice. That is, the learners perform an object-
oriented software development project. The tutors,
now acting as coaches, support them in their efforts
following the principles of scaffolding und fading.
Eventually, the acquired knowledge is certified
as having reached the highest product and thus
education level OO Designer (UML).

 ���

Applying Blended Learning in an Industrial Context

Obs ERVATIONs AND
EXPERIENCEs IN AN INDUsTRIAL
sETTING

The blended learning approach presented here
has been successfully tested both in academia
and in industry and several experience reports
have been published (Grützner & Bunse, 2002;
Grützner, Steinbach-Nordmann, Ochs, & Bunse
2003; Bunse, Grützner, Peper, & Steinbach-Nor-
dmann, 2005). With the intention of improving
the blended learning arrangements and matching
the industrial training programs with the needs
of the participants, continuous evaluation was
established. Concurrent to these evaluation ac-
tivities, participants were questioned about their
individual learning needs, their learning behavior,
and their learning preferences. The questioning
was divided into a pre-questionnaire (before the
online learning in Phase I started) and a post-
questionnaire at the end of Phase II.

schedule of the Training Program

The blended learning approach had to be adapted
to match the organizational needs of the enter-
prises. The education material for the workshops
was adapted to match the specific needs of the
domains and (as far as possible) the experience of
the participants. For this purpose, the enterprises

made some real-world material (documentations,
source code, etc.) available that represented the
specific application domain of the enterprise’s
business area. The course was concluded by a
certification day where a complex and domain-
specific exercise had to be autonomously solved
by the participants in two- or three-person teams.
All participants were still granted access to the
online course after having finished the training
part.

The set-Up of the Case study

To evaluate the impact and acceptance of the ap-
plied blended learning approach, we started some
data collecting. We did not intend to test specified
research hypotheses, but wanted to know more
about the learning needs and preferences of the
participants and how the training program could
be improved.

In particular, we were looking for answers to
the following questions:

Pre-Questionnaire:

(Q1) What are the individual starting points of
participants regarding the training (e.g. expe-
riences with UML, motivation, expectations,
and individual time schedules)?

Figure 2. Product levels and phases

��0

Applying Blended Learning in an Industrial Context

(Q2) How do participants prefer to learn?

Post-Questionnaire:

(Q3) How do participants evaluate the train-
ing measure and its elements (e.g., WBT,
classroom training, training materials, and
exercises)?

(Q4) How did participants use the Web-based
training? Was it possible to integrate learn-
ing and working?

The pre-questionnaire preceded the training
program and aimed at the collection of learning
needs, preferences, and expectations regarding the
upcoming training phase (cf. Table 2). The post-
questionnaire was provided to the learners at the
end of the certification day (cf. Table 3).

All participants were invited to fill out an on-
line-questionnaire (see Table 2) at the beginning
of Phase I (pre) and another printout questionnaire
(see Table 3) at the end of Phase II (post).

Results of the Case studies

A total of 42 employees (software developers,
managers, persons in charge) at the age of 20-49
years attended the training program.

Group line-up of participants in the blended
learning training in the industrial case study:

•	 43% Software Developers (others e.g.,
mechanical engineers)

•	 85.71% male
•	 range of age:
 - 20 - 29 years (28.6%)
 - 30 - 39 years (35.71%)
 - 40 - 49 years (28.6%)
(missing to 100: no entry)

The return rate of questionnaires (28 pre/38
post) was quite satisfying, although the quantity
of data and the group line-up do not allow any

empirical generalization. Nevertheless, the results
of the evaluation might give some interesting in-
sights into the needs and expectations of learners
and the usage of different elements of blended
learning in an industrial context.

Pre-Questionnaire (N=28)

(Q1) What are the individual starting points of
participants regarding the training?

Asked about the importance of a training

program on object-oriented software development
with UML for their future project work, almost
half of the participants (48 %) replied that it is
urgent to learn more about UML. Furthermore,
asked about their individual goals and expecta-
tions concerning the training program (open
question), the vast majority of answers provided
(80%) could be summarized as ‘be able to apply
UML in future projects actively’.

When the participants were asked which
element of the blended learning approach they
would expect most of, they referred to classroom
training, coaching, and the WBT in descending
order.

When asked about which learning mode is most
effective in their point of view, the participants
decided in favor of more or less informal com-
munication with their peers. Nearly at the same
high level was classroom training involving a
tutor who is also available after the training as a
project coach (see Figure 5).

(Q2) How do participants prefer to learn? How
do they integrate working and learning?

Except for one person, none of the participants
(97.3%) had any experiences with any kind of
e-learning resp. online training.

Post-Questionnaire (N=38)

 ���

Applying Blended Learning in an Industrial Context

Question Options
I. Personal Data

�.� Sex Male/Female
�,� Age <20, 20-29, 30-39, 40-49 years, 50-59, >60
�.� Position in company free text

II. Individual s ituation

�.� Which experience do you already have in working with UML?

- None
- I can understand some types of diagrams
- I can understand all types of diagrams
- I can create some types of diagrams
- I can create all types of diagrams

�.� How urgently do you need the contents of the continuing
education course for your daily work? (1) very urgently … (6) not at all

�.� How much time do you plan to invest into working with the Web-
based Training “UML for Design Engineers”? Hours per week

�.�
Do you expect that the work with the Web-based Training “UML
for Design Engineers” can be integrated into your current daily
work schedule?

(1) well … (6) badly

III. Advance Evaluation of the Continuing Education Course

�.� What is your personal goal for participating in the entire
continuing education course? free text

�.� What are your expectations regarding the entire continuing
education course? free text

�.� Which part of the continuing education course do you expect to
be most beneficial for you? WBT, On-site training, Coaching

IV. Media/Computer Usage Preferences

�.�
What do you use the computer for (at work and at home)?

<Information>, <Communication>, <Programming>, <Games>,
<Entertainment>, <Continuing Education>, <Other>

(1) very often … (6) very rarely

�.� Which type of e-learning programs do you already have
experience with?

- CBT (Computer-based training)
- WBT (Web-based training)
- E-Workshop
- Professional online communities
(newsgroups, blogs)
- Other

�.�

Which positive aspects do you associate with e-learning?

(Please also answer this question if you have no experience yet
with e-learning. The issue is your assessment at this point in
time.)

free text

�.� Which negative aspects do you associate with e-learning? free text
V. Personal Learning Preferences

�.�

What do you think are the best ways you can learn new, complex
information?

<By reading>, <By listening>,
<Illustrated by images /graphics/animations>, <By acting>

(1) best … (6) least

�.�

What is your personal best way to obtain continuing education?
<On-site training with trainer>, <Professional book>,
<Journals, papers>, <Electronic learning material>,

<Own research on WWW>,
<Professional discussion/informal exchange with colleagues>

(1) best … (6) least

Table 2. Pre-questionnaire: Prerequisites and learning needs

���

Applying Blended Learning in an Industrial Context

Question Options
Learning behavior

�. How much time did you invest into working with the Web-based
Training (WBT)?

- More than planned
- As planned
- Less than planned
- I did not plan any time period in advance

If you invested more or less time, what do you think are the
reasons for this? free text

�. How well were you able to integrate working with the WBT into
your daily work? Well, Not so well, Rather badly, Badly

Which factors were particularly beneficial, respectively
detrimental, in this regard? free text

�.
How did you mostly work with the WBT? Please characterize
your personal leaning situation with the help of the following
categories (several answers are possible).

Online version, Printed version, At work,
At home, On the road, During working hours,
During spare time

Remarks free text

Post-Evaluation of Education Course (Phase I-II)

�. Which part of the continuing education course has fulfilled your
expectations and goals best so far?

WBT, On-site training,
The combination of WBT and on-site training
(Blended Learning)

�. Which part of the continuing education course could you most
easily do without?

WBT,

On-site phase (training + certi.cation),

I don’t want to do without anything.

�.

How well did the following components of the WBT support you in
understanding the study material?

<The teaching texts of the WBT><The diagrams of the WBT>
<The animations of the WBT><The exercises of the WBT>

(1) very well, (2) well ... (6)

�.

How well did the following components of the on-site phase
support you in understanding the study material?

<The explanations of the lecturer>
<The presentation slides and the handout>

<The exercises adapted to the domain>
<Cooperation with colleagues>

<The complex task during certification>

(1) very well, (2) well ... (6)

�.
Has your basic attitude towards e-learning changed through your
work with the WBT?

- No, I continue to think that e-learning is a
good thing

- No, I still do not think much of e-learning

- Yes, it has improved, since: …

- Yes, it has gotten worse, since: …
Personal Information

�. Do you want to provide some personal information?

<Sex>
<Age>

<Position in company>

Male, Female
<20, 20-29, 30-39, 40-49 years, 50-59, >60
free text

Table 3. Post-questionnaire: Assessment of satisfaction and learning behavior

 ���

Applying Blended Learning in an Industrial Context

(Q3) How do participants evaluate the training
measure and its elements (e.g., WBT, classroom
training, training materials, exercises)?

In the second questionnaire, the participants
regarded classroom training as the most im-
portant learning mode in the blended learning
program.

To explore which element of the training
program did support their individual learning
process most effectively, participants were asked
to evaluate each element on a scale from 1 (= very
good) to 6 (= inadequate).

When evaluating the elements of Classroom
Training, participants were most satisfied with:

• Trainer instructions (1.6)
• Collaboration with colleagues (2)
• Domain-specific exercises (2.5)
• Training materials (2.7)

When evaluating the elements of Web-based
Training, participants were most satisfied with:

• Illustrations (1.6)
• Texts (1.8)
• Exercises (2.1)
• Animations (2.1)

After the training, most of the participants
(85 %) did not consider any of the parts dispens-
able.

The evaluation of training elements proves,
that the existing learning preferences and habits
of participants (classroom training and discussion
with colleagues) lead to correspondent evaluation
results: What was expected to be most effective
before the training started was evaluated as the
most effective way to learn after the training. But
e-learning as the new learning mode seems to be
highly accepted, too. The good evaluation of the
Web-based training elements and the fact that
none of the training parts is considered dispens-
able suggest that participants look at e-learning
as a valuable addition to training. The latter also
suggests that e-learning is not considered as a
stand-alone training mode, but blended learning
is an appreciated approach from the learners´
point of view.

Figure 3. Perceived effectiveness of ways to learn (pre-questionnaire)

���

Applying Blended Learning in an Industrial Context

(Q4) How did participants use the Web-based
training? Was it possible to integrate learning
and working?

In an industrial training program, the par-
ticipants are usually employees of an enterprise
and have to continue their normal work during
the course. Depending on the situation, it can be
important not to disturb or interrupt a certain core
working time. Therefore, the training program
was designed with a Web-based training phase
aimed at enabling learners to organize their learn-
ing activities in a flexible and individual way.
Small learning units and the individual choice
of content and learning time should guarantee
that learning could be integrated more easily into
day-to-day work than fixed training schedules.
The estimated learning time for the whole Web-
based training was 30-35 hours per participant.
For evaluation purposes, it was of interest whether
the estimated time slot was sufficient and whether
participants were able to integrate working and
learning activities.

When asked about their actual effort spent on
the learning program compared to the

estimated effort (30-35 hours), most of the
participants answered that they spent less time
than planned, nobody spent more time than
planned, and five persons did not plan and, as a
consequence, were not aware of time while learn-
ing (see Table 4).

The reasons for spending less time on learn-
ing were given in a freely edited list (open ques-
tion):

• time pressure
• higher priorities (day-to-day business)
• skipping of redundancies
• waiving of well-known content
• supervisors restricted time resources

The success of integrating working and learn-
ing during the training was evaluated as very
good by more than half of the participants. Three

persons each evaluated the integration as poor,
resp. really bad (see Table 5).

In an open question, participants were asked to
name the reasons that encouraged resp. disabled
the integration of working and learning activities.
Table 6 illustrates which positive and negative
influence factors were considered as positive resp.
negative from the learners´ point of view.

The fact that the effort spent was less than
planned, that the integration of learning and work-
ing was evaluated very positive, and the list of
named influence factors suggest, that the concept
of the blended learning program (modularity,
small units, flexibility of time and space) supports
the integration of learning activities into daily
routines and tasks. All negative influence factors
mentioned are environmental aspects, which have
to be improved or optimized by measurements at
the working place itself.

E-learning is often believed to happen in an
employee’s spare time. The results of the case
study show that this assumption was not verified
in our context (see Table 7). The participants
learned predominantly at the work place dur-
ing working hours in an online mode. Only
six persons learned at home, 3 persons learned
during their spare time, and nobody chose the
opportunity of mobile learning. It is remarkable
that more than 40% used the print-out version of
the Web-based training (text + graphics). This
effect may be explained by learners´ habits: Most
of them responded in the pre-questionnaire that
they consider reading journals and books the
most effective way of learning.

Even though learning took place at work dur-
ing working hours, learning did not conflict with
day-day-to-tasks and the integration of working
and learning was rated as very good. This may
be explained by the individual learning schedule
of each participant.

In order to get more information about the
schedules, the access distribution was analyzed
via logfile analysis.

 ���

Applying Blended Learning in an Industrial Context

Figure 4 shows the access distribution of the
participants, whit the major part of the learning
time being scheduled after about 4 p.m. Moreover,
most of the time was scheduled on Fridays. Obvi-
ously, the flexibility of the online course was, in
fact, used to optimize the coexistence of working
and learning.

Lessons Learned

The previous section described the participants’
experiences with the course. We will now switch
to the perspective of the provider and discuss
some qualitative experiences collected during
(and further) case studies.

As argued, the adaptation of the workshop
exercises and examples to a specific domain is an

important success factor (keep in mind that the
domain-specific exercises have been rated higher
than all other training materials (Q3)). It is in the
interest of both enterprise and teacher to keep
effort and cost for this task as low as possible. In
all previous projects, it was possible to agree on a
certain effort for the adaptation, which was sup-
ported by suitable material from the enterprises.
For a reasonable adaptation, some prerequisites
turned out to be important: (a) The tutor prepar-
ing the material must be able to handle the ap-
plication domain. This requirement is not trivial,
because often a complete reverse engineering of
the material has to be done: Often, you can only
expect to be provided with C/Java source code
or some textual documentation, from which a
partial UML model has to be derived. (b) The

More than planned As planned Less than planned Did not plan

0
0%

8
21.0%

24
63.2%

5
13.1%

missing.: 1 (2.7%)

Table 4. Effort spent on the learning programme

very good ok poor really bad

20
52.6%

11
28.9%

3
7.9%

3
7.9%

Table 5. Integration of learning and working activities

missing.: 1 (2.7%)

Positive factors Negative factors
modularity of learning units
small units
commitment of supervisor
flexibility
homework

-
-
-
-
-

noise, interruptions
day-to-day-business, short-term tasks
lack of organization (help needed)
slow data transfer
no Internet access

-
-
-
-
-

Table 6. Factors influencing the integration of learning and working activities

���

Applying Blended Learning in an Industrial Context

contact person in the enterprise should be able to
select proper sources, i.e., he should already have
some experience with the contents taught. (c) The
participants should have enough time to become
familiar with the selected original material.

The main target of an industrial technology
transfer project is to provide the employees of
an enterprise with the ability to apply certain
knowledge to a given problem. In practice, the
exact identification of the knowledge content
and its application modalities are not as clear as
might be expected.

The first reason for this is found in the differ-
ent views of the involved people. We distinguish
three roles in the context of an industrial project:
Management is normally the project initiator and
willing to invest into employees’ education to
achieve higher productivity. Therefore, it generally
has high expectations concerning the outcome of
the project. These might include increased us-
age of a certain technique or an expensive tool.
The employees typically have different prior

experience and motivation in dealing with the
new technology. Therefore, they often expect
greatly different information from the knowledge
content offered. The coach has to communicate
this content to the employees, and keep in touch
with management. Since management view and
employee view usually differ, the coach becomes
a moderator between these two parties. This also
applies to the mediation between competitive
groups of employees. Additionally, he might have
his own academic interest, e.g., introducing a
specific method, etc.

The second reason for the uncertainty regard-
ing the content is the change of evidence over
time. All project participants gain experience
during the project. Therefore, the focus can move
to knowledge details, which have turned out to be
important for a successful application but were
considered at the beginning.

In the blended learning approach we can
distinguish several phases of project work: the
self-organized occupation with the courseware or

Where and how do participants learn with
the Web-based training? Responses (multiple answers)

at work
during working hours
online
print version (.pdf)
at home
spare time
mobile

29 (76.3%)
28 (73.7%)
24 (63.1%)
16 (42.1%)
6 (15.8%)
3 (7.9%)
0 (0%)

Table 7. Learning with the Web based training

Figure 4. Access distribution of participants as an indicator of online learning time

 ���

Applying Blended Learning in an Industrial Context

WBT (WBT), the classroom training workshops
(WS), the coaching phase (COA), the consulting
phase (CON), and the cooperation phase (COP).
Some exemplary durations and coaching efforts
for the first phases are shown in Figure 5a).

Figure 5b) also reflects the typical evolution of
some characteristic parameters over the project’s
runtime (so far without empirical evidence). The
bold curve shows how the main target, i.e., the
ability of knowledge application, starts with
some prior experience. This is improved by the
WBT and workshops WS up to a sound and
comparable, but theoretical knowledge level.
It is subsequently transferred into practice by
coaching (COA) and consulting (CON). Finally,
it reaches a level of saturation. The project in
this phase rather becomes a problem-oriented
cooperation (COP) than a regular part of an edu-
cation. The dashed line shows the accumulated
project costs, which are also low at the begin-
ning (only WBT licenses) and then increase
because of the personnel-intensive workshops
and coaching/consulting phases. Ideally, target
and cost functions develop in the same way, so
that all participants have a good feeling about
the invested money and effort. When the costs
continue to grow although the target function
reaches the saturation level, consulting turns
into cooperation and the education program can
be declared as finished.

Scalability is one of the main advantages
of the presented blended learning approach. It
results directly from the close relation between
target function and cost: the education can be
customized to the enterprise’s needs and financial
situation simply by finishing the project after any
phase. This design allows to initially agree on a
small project containing only the early phases
and to extend the project by additional phases
if necessary and economically feasible. Thus,
the early phases can work as a door opener for
the consulting phase or even subsequent applied
research projects.

There are some further aspects of a blended
learning project that are important success factors
and basically behave in a similar way: The social
integration of the coach into the enterprise com-
munity is a prerequisite for the smooth transport
of knowledge (in Q3, the trainer instructions have
been evaluated best). If the coach is not accepted,
the project will probably fail. The social integra-
tion usually starts at zero and is improved step by
step during the use of the WBT (emails, forum),
during the workshops (first personal contact), and
in coaching meetings (intensive personal contact
in small groups). It converges towards a project-
specific maximum.

The adaptation of the knowledge content
also starts at zero, already increasing a little bit

Figure 5. Expected development of project phases

���

Applying Blended Learning in an Industrial Context

through first forum discussions during the WBT
usage. The workshop typically considers domain-
specific examples, the coaching introduces some
superficial enterprise-specific problems (hours of
preparation for the coach), and consulting brings
up detailed problems (days of preparation). This
ends in the cooperation phase, where the degree
of adaptation cannot be further increased. The
flexibility of the knowledge presentation is also
zero for the WBT, since all material is presented in
a standard form. For the workshops, this situation
is slightly improved, but the coach still depends
on a standard set of presentation slides and exer-
cises. Since the effort available for preparation is
significantly higher in subsequent phases, there
is also much more room for selecting alternative
approaches, discussions, etc.

Recommendations

The evaluations and observations presented in the
previous sections can be summarized into several
general consequences and recommendations:

•	 Even though e-learning and Web-based train-
ings aim to shorten learning time we point
out that learning still needs time. This insight
should be emphasized towards the enterprise
management as often as possible to ensure
adequate scheduling of the training.

•	 Let people choose their own learning mode
and learning situation. We assume, that
people are interested in flexible learning
solutions and that they are capable of adapt-
ing a learning program to their individual
context constraints in the most appropriate
way (time, priorities of tasks).

•	 Combine e-learning resp. Web-based train-
ing with classroom training and coaching.
Our experience is that individual learning
via media (books, digital content) is an
important issue. However, it is very content
driven. To learn more about professional
methodologies, participants should be en-

abled and encouraged to apply the knowledge
they have learned and to learn what the ef-
fects in the real world are. This can be done
in classroom trainings by using real-world
tasks and materials or in real projects with
the assistance of a coach.

•	 A social climate of confidence, with personal
relationships between coach and employees
(but also between coach and management),
is very important. It should be deliberately
developed during the project phases, e.g.,
by the following means:
•	 Introduce the coach early, e.g., with

personalized kick-off emails or even
meetings with the WBT users.

•	 Let the same person do the workshop
and the subsequent coaching.

•	 Do not change coaches.
•	 Do not denigrate existing competen-

cies, integrate them.
•	 The content should be adapted as early as

possible. In the best case, you can take a
concrete problem from the application en-
vironment as a reference example. However,
this increases project costs early on.

•	 Do not stop the project too early, e.g., directly
after the WBT. This leaves people alone
with the mentioned content and application
uncertainty.

•	 For the same reason, the project targets
should be readjusted from time to time.
Regular talks with the different participants
help to reconcile their interests.

•	 Identify internal experts who can support
and continue the knowledge transfer in the
future.

FUTURE TRENDs

Teaching and learning object-oriented and model-
based software development is a field in motion
with a high innovation rate. Good examples are
the recent advent of service orientation (i.e.,

 ���

Applying Blended Learning in an Industrial Context

SOA, SAC, SDO, BPEL, etc.) or the continuous
evolvement of modeling languages such as UML.
Concerning training and education, this creates
special requirements. On the one hand, latest
developments and findings have to be adequately
reflected by constantly evolving training materi-
als. On the other hand, new technologies are slowly
penetrating the market, requiring training material
for ‘older’ technologies, too. In the long run, this
will definitively increase the size of the training
material and will make maintenance a ‘nightmare’.
This becomes even worse when we think about
document formats, multimedia technologies, etc.
Interestingly, this is comparable to the situation
of software legacy systems. Therefore, techno-
logical support is needed for facilitating the task
of maintenance and development by providing
means for managing complexity.

One idea to address this problem is single-
source publishing (e.g., XML based) following a
component- or service-oriented approach (i.e., a
development methodology for training material).
This allows creating individually combinable
training modules with pre-defined adaptation
spots that can be easily assembled into new train-
ings programs. Since all modules or documents
are represented in a XML-based format, they can
be easily mapped to different formats without
the need to check for version numbers, operating
systems, etc. (Thomas & Ras 2005).

Interestingly, this trend is in line with the
technological trends in education in general. Cur-
rently, the original idea of e-learning is evolving
from simple PowerPoint shows, via interactive
training modules, towards collaborative learning
and teaching. Major developments in these areas
are the use of WIKIS, which allow people to teach
each other and to share experience, Podcasts,
Weblogs, and virtual learning environments (i.e.,
following the “Second life“ idea). Another trend
in this regard are Open Educational Resources
and content sharing to make learning material
freely available. In summary, it appears that tools
to be used by many users without a lot of effort

for developing common solutions are of high
importance. Standard authoring tools, although
needed, are of less importance.

One reason for the technological developments
might be the trend towards collaborative learning
using supportive tools such as Weblogs, Wikis,
or Communities. Thus, there is a clear trend
towards personalized and user-centric learning
with a specific focus on active and self-organized
learners. At the same time the pressure to develop
new learning platform or management systems
seems to decrease.

Interestingly, the ideas of viewing the develop-
ment of training material as a kind of ‘engineering
process’ in order to obtain adaptable trainings
combined with means for collaborative learning
are already reflected in our blended learning ar-
rangement. Tutoring, group work, online discus-
sion, and coaching provide the basic means for
collaborative learning. The modular structure,
pre-defined variation points, and other adaptation
mechanisms support complexity management
and facilitate maintenance. In the future, we will
use a single-source publishing approach based on
XML technology that is currently being devel-
oped (Grützner, Thomas & Steinbach-Nordmann,
2006). This will again reduce maintenance effort
and ensure tool/format independence.

sUMMARY AND CONCLUsION

The high innovation rate in software engineering
technologies combined with the ever increasing
pace of software development projects calls for
highly motivated and trained developers. Thus,
new and flexible teaching approaches are war-
ranted to ensure effective technology transfer from
academia into practice. In other words, training
has to be performed in a way that is compatible
with modern working styles and adaptable to the
actual problem domain, while ensuring sustain-
able effects.

��0

Applying Blended Learning in an Industrial Context

This chapter introduced a blended learning
approach (i.e., a mixture of online training and
traditional classroom education) enhanced by
tightly integrated coaching activities. This ap-
proach was practically applied to train professional
software developers in object-oriented software
development with UML. In detail, the approach
uses online training activities to create a common
understanding and knowledge of the technology,
classroom trainings for transferring application-
and domain-specific knowledge, and coaching
to ensure that the recently learned elements are
correctly applied.

For successfully applying our approach in
practice as well as for supporting others in their
decision to adopt our results, it is important to
evaluate the concrete effects of the approach and
to critically reflect on the enabling factors, i.e.,
evidence is warranted. The second part of this
chapter therefore presented an industrial case
study to gain more insights into the learner’s
expectations, preferences and the integration of
working and learning in an industrial setting. The
results indicate that following a blended learning
approach has a positive impact on learning time
and, due to the integrated coaching measures,
supports not only effective learning but also sus-
tainable results. However, the limited amount of
data-points does not allow generalizing the results.
Thus, further additional studies are required.

REFERENCEs

Rossett, A. & Vaughan Frazee, R. (2006). Blended
Learning Opportunities. AMA Special Report.
Retrieved October 24, 2007, from http://www.
amanet.org/blended/pdf/WhitePaper_Blend-
Learn.pdf.

Asian Development Bank (1997). Special Study
of the Effectiveness and Impact of Training in
Educational Projects. Technical Report. Special
Study Series Number 29), SST:INO 97023.

Burge, J. & Troy, D. (2006). Rising to the Chal-
lenge: Using Business-Oriented Case Studies in
Software Engineering Education. Proceedings of
the Nineteenth Conference on Software Engineer-
ing Education & Training. Turtle Bay, Hawaii.

Bunse, C., Grützner, I., Peper, C., Steinbach-Nord-
mann, S. (2005). Applying a Blended Learning
Strategy for Software Engineering Education.
Proceedings of the 18th Conference on Software
Engineering Education and Training (CSEE&T).
Ottawa, Canada.

Collins, A., Brown, J. S. & Newman, S. E. (1990).
Cognitive apprenticeship: teaching the crafts of
reading, writing and mathematics. In: Resnick,
L. B. (Ed.). Knowing, learning and instruction:
Essays in honor of Robert Glaser. Hillsdale, N.J.:
Lawrende Erlbaum.

de Haan, D., Waterson, P., Trapp, S. & Pfahl, D.
(2003). Integrating needs assessment within next
generation e-learning systems: Lessons learnt
from a case study. Proceedings of the IFIP OPEN
WORKING CONFERENCE “eTRAIN 2003: E-
Training Practices for Professional Organisa-
tions”. Pori, Finland.

Ferreira, H.S., Fonseca, L.M.G., d’Alge, J.C.L.,
Montiero, A.M.V. (2002). New Approach on
Teaching Geotechnology. International Archives
of Photogrammetry and Remote Sensing, and
Spatial Information Science San Jóse dos Campos,
Brazil. Vol. XXXIV, Part 6, CVI.

Fetaji, B. & Fetaji, M. (2006). Software Engineer-
ing Java Educational Software and its Qualitative
Research. Proceedings of the IV International
Conference onMultimedia and ICTs in Education
m-ICTE 2006 “Current Developments in Technol-
ogy-Asissted Education”. Seville, Spain, Vol. 3.

Frailey, D. J. (2006). Bringing Realistic Software
Engineering Assignments to the Software Engi-
neering Classroom. Proceedings of the Nineteenth
Conference on Software Engineering Education
& Training. Turtle Bay, Hawaii.

 ���

Applying Blended Learning in an Industrial Context

Grützner, I. & Bunse, C. (2002). Teaching Object-
Oriented Design with UML - A Blended Learning
Approach. Proceedings of the Sixth Workshop
on Pedagogies and Tools for Learning Object-
Oriented Concepts. Held in conjunction with
16th European Conference for Object-Oriented
Programming (ECOOP 2002), Malaga, Spain.

Grützner, I., Steinbach-Nordmann, S., Ochs, M. &
Bunse, C. (2003). Der Baukasten Objektorientierte
Software-Entwicklung: Berufliche Weiterbildung
in der Software-Industrie. Proceedings of the
6th International Conference on Information
Management (Wirtschaftsinformatik). Dresden,
Germany (In German).

Grützner, I., Thomas, L., & Steinbach-Nordmann,
S. (2006). Building re-configurable multilingual
training media. Proceedings of the IV Interna-
tional Conference on Multimedia and ICTs in
Education m-ICTE 2006 “Current Developments
in Technology-Asissted Education”. Seville,
Spain, Vol. 3.

Heidecke, F., Mayrhofer, D., Schiesser, A. &
Back, A. (2007). Organisation des Außendienst-
trainings in der Pharma-Branche: Entwicklung
eines Referenzmodells mittels Fallstudienfor-
schung. In Breitner, M. H., Bruns, B. & Lehner,
F. (eds.). Neue Trends im E-Learning: Aspekte
der Betriebswirtschaftslehre und Informatik.
Heidelberg: Physica (in German).

Höhle, J., Cho, K., 2000. Distance Learning and
Exchange of Scientific Knowledge via Internet.
International Archives of Photogrammetry and
Remote Sensing. Amsterdam, Holland, Vol.
XXXIII, Part B6. pp. 337-340.

Jain, A. & Boehm, B. (2006). SimVBSE: Develop-
ing a Game for Value-Based Software Engineer-
ing. Proceedings of the Nineteenth Conference
on Software Engineering Education & Training.
Turtle Bay, Hawaii.

Jones, S. & Northrop, M. (2006a). Blended Learn-
ing: the practicalities of implementation in a UK

University. Proceedings of the IV International
Conference on Multimedia and ICTs in Education
m-ICTE 2006 “Current Developments in Technol-
ogy-Asissted Education”. Seville, Spain, Vol. 3.

Jones, S. & Northrop, M. (2006b). Implementa-
tion of a Blended Learning approach: Milestones,
tractors and Crossroads. Proceedings of the IV
International Conference on Multimedia and
ICTs in Education m-ICTE 2006 “Current De-
velopments in Technology-Asissted Education”.
Seville, Spain, Vol. 3.

Lutz, B. (2007). Training for Global Software
Development in an International “Learning Net-
work”. Proceedings of the International Confer-
ence on Global Software Engineering (ICGSE
2007). Munich, Germany.

Mikulecky, L. (1998). Diversity, discussion, and
participation: Comparing a Web-based and cam-
pus-based adolescent literature classes. Journal of
Adolescent & Adult Literacy, 42(2), pp. 84-97.

Mühlhäuser, M., Trompler, C., 2002, Digital
Lectures Halls Keep Teachers in the Mood and
Learners in the Loop. Proceedings of E-Learn
2002, Montreal, Canada. Association for the
Advancement of Computing in Education (AACE).
pp. 714-721.

Ochs, M., & Pfahl, D. (2002) e-learning Market
Potential in the German IT Sector: An explora-
tive Study. Kaiserslautern, Germany: Fraunhofer
IESE. Retrieved November 2, 2003 from http://
www.iese.fhg.de/market_survey.

Singh, H. & Reed, C. (2001) Achieving Success
with Blended Learning. Technical Report, Centra
Software, 2001, Retrieved January 21, 2008, from:
http://www.centra.com/download/whitepapers/
blendedlearning.pdf

Singh, H. (2003). Building Effective Blended
Learning Programs. Journal on Educational
Technology, 43 (6), pp. 51-54.

���

Applying Blended Learning in an Industrial Context

Solberg Søilen, K. (2007). Using case studies in
blended learning for increased interactivity and
lower drop out rates. 19th Nordic Academy of
Management Conference. Bergen, Norway.

Stark, C.M. & Schmidt, K.J. (2002). Transitioning
to e-Learning: A Case Study. Proceedings of the
2002 eTEE Conference. Davos, Switzerland.

Thomas L. & Ras E. (2005). Courseware De-
velopment Using a Single-Source Approach.
Proceedings of the World Conference on Edu-
cation Multimedia, Hypermedia and Telecom-
munications.

Ubal, R., Cano, J.-C., Petit, S. & Sahuquillo, J.
(2006). RAC FP: A Training Tool to Work With
Floating-Point Representation, Algorithms, and
Circuits in Undergraduate Courses. IEEE Trans-
actions on Education. 49 (3), pp. 321- 331.

Wang, A. I. & Sorensen, C.-F. (2006). Writing
as a Tool for Learning Software Engineering.
Proceedings of the Nineteenth Conference on
Software Engineering Education & Training.
Turtle Bay, Hawaii.

Wills, S. (2006). Strategic Planning for Blended
e-learning. Proceedings of the 7th International
Conference on Information Technology Based
Higher Education & Training. Sydney, Aus-
tralia.

Yildiz, Senem, Chang, Carrie (2003) Case Studies
of Distance Students’ Perceptions of Participation
and Interaction in Three Asynchronous Web-
based Conferencing Classes. The U.S. Turkish
Online Journal of Distance Education-TOJDE.
4 (2).

 ���

Chapter XII
Integrated Software Testing
Learning Environment for

Training Senior-Level Computer
Science Students

Daniel Bolanos
Universidad Autonoma de Madrid, Spain

Almudena Sierra
Universidad Rey Juan Carlos, Spain

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abs TRACT

Due to the increasingly important role of software testing in software quality assurance, during the last
several years, the utilization of automated testing tools, and particularly those belonging to the xUnit
family, has proven to be invaluable. However, as the number of resources available continues increasing,
the complexity derived from the selection and integration of the most relevant software testing principles,
techniques and tools into an adequate learning environment for training computer science students in
software testing, increases too. In this chapter we introduce a experience of teaching Software Testing
for a senior-level course. In the elaboration of the course a wide variety of testing techniques, method-
ologies and tools have been selected and seamlessly integrated. An evaluation of students performance
during the three academic years that the course has been held show that students’ attitudes changed
with a high or at least a positive statistical significance.

INTRODUCTION

In this chapter we present a complete methodology
for software testing training in the context of a
laboratory course for senior-level computer sci-

ence students. The intent of this work is to provide
educators with a set of guidelines to effectively
instruct computer science students on software
testing. The goal is not only to incorporate specific
software testing skills into students’ curricula,

���

Integrated Software Testing Learning Environment

but also to prepare the student with skills for
independent lifelong learning on the topic. The
designed course spans the whole software testing
lifecycle, and includes teaching recommendations
to address students’ common difficulties and
misconceptions, as well as techniques to evaluate
Students’ performance for every stage.

During three academic years (2003-2006,
note that results for the ongoing academic year
are not currently available) we have developed
and improved a software testing learning envi-
ronment that has been used to train senior-level
students in the Department of Computer Science
of Universidad Autonoma de Madrid (Spain).
In this environment, students are instructed
about the elaboration of the test plan, test cases
design, testing automation by means of specific
tools, reporting and interpreting test results and
maintenance related issues. All of these tasks are
carried out over a complete pre-existent software
system that has been specifically developed for
this purpose.

To evaluate the effectiveness of the approach
we have carried out attitudinal surveys to stu-
dents during the three years that the course has
been offered. These surveys provided us with
inestimable information about students’ progress
and perception on several aspects of the course.
This information was used to find out which ele-
ments of the course were perceived by students
as most useful, most difficult or most personally
rewarding; and, of course, to improve the learning
environment along the academic years. We have
found that, thanks to their immersion in this test-
ing environment, students understood the crucial
importance of software testing across the software
lifecycle. Also, they incorporated a complete
testing methodology and a broad set of software
testing tools into their previous knowledge.

The chapter is divided into the following sec-
tions: a background section in which previous
work on the topic is discussed and compared
to the proposed approach, a description of the
software testing learning environment including

teaching recommendations and a description of
the students’ performance evaluation method, an
evaluation of the effectiveness of the approach
and a final section with the conclusions and
future work.

bACk GROUND

Due to the increasingly important role of software
testing in software quality assurance, during the
last years, the use of testing frameworks that
assist the developer during the testing process,
and particularly the use of those belonging to
the xUnit family, has proven to be invaluable.
The production of high-quality and bug-free
software products and solutions has gained a
crucial importance in the software development
industry, always focused to meet the needs of its
increasingly more demanding end-users. In the
last few years, many software testing techniques
and methodologies have emerged to address
these challenges, some of them influenced by
agile (Beck, K. et al., 2001) and particularly by
Extreme Programming (XP) (Beck, K., 2000).
These techniques provide a wide set of principles,
practices and recommendations for all the tasks
involved in the software testing process, from test
case design to automation of functional tests. In
this context, an overwhelming number of testing
frameworks and tools have been developed and
are available (many of them under open-source
licenses) with the purpose of aiding the developer
in testing every particular system aspect written
in any programming language imaginable.

However, as the number of resources and
techniques available continues increasing and
demonstrating new benefits, the complexity de-
rived from the selection and integration of the most
relevant software testing principles, techniques
and tools into an adequate learning environ-
ment for training computer science students in
software testing, increases too. Though several
interesting experiences have been reported, to

 ���

Integrated Software Testing Learning Environment

collecting and integrating all of these continuously
evolving sources of knowledge and experience
into a methodology to effectively teach software
testing, remains an unresolved issue. As we will
see later on in this section, many experiences of
taking software testing to the classroom have
been reported. They are focused in a number of
testing related topic like for example extreme
programming, unit testing or pair programming.
However, it seems like there have not been any
experience of collecting and integrating the most
relevant and successful techniques into the same
course.

There have been numerous experiences
bringing Extreme Programming principles
to the classroom (Astrachan, O. Duvall, R.C.
& Wallingford, E. 2001; Edwards, S. 2003;
Kaufmann, R. & Janzen, D. 2003; Melnik, G.
& Maurer, F. 2002; Mugridge, R. 2003; Müller,
M. & Hagner, O. 2002; Müller, M. & Tichy, W.
2001; Reichlmayr, T. 2003; Shukla, A. & Wil-
liams, L. 2002; Tinkham, A. & Kaner, C. 2005)
as well as other less specific like (Collofello, J. &
Vehathiri, K., 2005) and (Astrachan, O., Duvall,
R.C., & Wallingford, E., 2001). For example, in
(Shukla, A., & Williams, L., 2002) a complete
report of an undergraduate course on software
testing focused on Test-Driven Development
(also known as TDD and considered one of the
most important aspects of Extreme Program-
ming) is presented. The course was held dur-
ing three academic years and, despite positive
results in terms of students performance, a
main problem was identified. The problem lies
in the counterintuitiveness of TDD due to the
fact that, according to this technique test cases
need to be written before the code to test. This
problem is especially significant in graduate and
nearly-graduate students (for whom the course
presented in this chapter is intended) who have
already become established in the traditional
“write the code and then test it” software test-
ing strategy. In general, in the vast majority of
these experiences a special need for coaching and

support for students has been detected due to the
novelty of the topic and the large number of new
concepts it involves. For this reason we decided
to design an integrated learning environment in
which students’ progress is monitored through
individualized tutoring during laboratory classes
and the use of a centralized software repository
where they store the work as they progressively
complete it. In this respect the adoption of pair
programming as the collaborative paradigm for
the course has brought us the possibility of taking
advantage of the benefits it provides to students
when facing radically new software development
related concepts and scenarios.

Pair programming is a software develop-
ment model at the core of XP and is a kind of
“collaborative programming”. It consists of two
programmers (two students), working side-by-
side at one computer collaborating on the same
design, algorithm, code or test. One person is the
“driver”, i.e. has control of the pencil/mouse/key-
board and is writing the design or code. The other
person, the “observer,” continuously and actively
examines the work of the driver identifying tac-
tical and strategic deficiencies in it (Williams,
L., Kessler, R. A., Cunningham, W., & Jeffries,
R. 2000). Despite cases of study (Müller, M., &
Tichy, W. 2001) where pair programming has
been shown to suffer from some waste of time
and from an unclear division of work, we have
chosen pair programming as the collaborative
model during the laboratory course due to the
following reasons:

•	 Pair pressure: pair programmers put pres-
sure on each other. This is a form of positive
pressure that leads students to keep each
other focused and on-task (Williams, L. A.,
& Kessler, R. R. 2000).

•	 Pair programming has been shown to be
beneficial independent of the developers’
experience (Cockburn, A., & Williams, L.
2001). Note that our students do not have
experience in formal software testing.

���

Integrated Software Testing Learning Environment

•	 Pair programming improves the success and
morale of the students and increases satisfac-
tion in the process (McDowell, C., Werner,
L., Bullock, H., & Fernald, J. 2003).

•	 Pair programming increases confidence in
the programming solutions

•	 Students are much less reliant on the teach-
ing staff. When one partner doesn’t know/
understand something the other almost
always does, therefore the teaching work-
load is reduced and lab consultation hours
are very calm (McDowell, C., Werner, L.,
Bullock, H., & Fernald, J. 2002; Williams,
L., & Kessler, R. 2000).Pair programming
is much more productive when developers
face unfamiliar problems than when facing
familiar ones (Lui, K.M., & Chan, K. C.C.
2003). This is the case we are considering
since students have no previous knowledge
about the software system to test, nor expe-
rience using the testing tools introduced in
the course.

THE sOFTWARE TEsTING
LEARNING ENVIRONMENT

The Course

The software testing course has been held during
the second semester of the last three academic
years (2003-2006) as a laboratory course in the
senior-level Software Engineering subject at the
Department of Computer Science of Universidad
Autonoma de Madrid (Spain). At the beginning
of the course students have intermediate Java
programming skills and more than 100 hours of
theoretical-practical software engineering train-
ing plus specific theoretical instruction in software
testing fundamentals. This instruction comprised
basically the following topics:

•	 Test design techniques: black box and white
box.

•	 Integration strategies in structured program-
ming languages: top-down, bottom-up, and
sandwich.

•	 Integration strategies in object oriented
programming languages.

•	 Test cases design.
•	 Testing across the software development

lifecycle: unit, integration, system, accep-
tance, and regression testing

•	 Risk management during the test process.
•	 Test plan document elaboration guide-

lines.

Table 1 summarizes the most relevant features
of the course.

The first day of the course students are grouped
in pairs and informed about the work to do:

•	 Test plan documentation: scope, description
of the integration strategy and techniques
selected, assignment of responsibilities
and resources, schedule, milestones, risk
management, completion criteria, etc.

•	 Test development: test procedures, test
scenarios, test cases and test source code.

•	 Test execution: execution of the software
following the plans and reporting of failures
and errors detected.

•	 Test reporting: final conclusions about the
results obtained from the executed tests.

During the explanation teachers emphasize
aspects related with the testing automation level,
code coverage, test cases design and maintenance.
Finally students are informed about the course
evaluation procedures.

system to be Tested

A complete system has been developed by teachers
with the sole purpose of being tested. The main
advantage of this is that students have the same
starting point what makes students’ performance
evaluation more straightforward. Due to the

 ���

Integrated Software Testing Learning Environment

strict time constraints of the course as well as the
broad software developing experience students
acquired in previous years, we have not seen the
necessity of spending time instructing students
on development issues.

The developed system presents a very interest-
ing set of features that makes the testing process
very interesting from an educational point of view:
multithreading, HTTP interface, file input/output,
private methods, exception handling, XML docu-
ments generation and parsing, external configura-
tion, etc. The system consists of 7 Java classes
and about 1700 lines of code. However, no more
than 200 lines shared out between a few selected
methods are used for testing purposes. In order
to delimit the range of results that can be poten-
tially obtained from the testing process, as well
as facilitating students’ performance evaluation
and making the testing process more rewarding,
several failures affecting different parts of the
system have been deliberately introduced. These
failures have been carefully selected with the
intention of being detected using different test-
ing techniques and strategies: black box, white
box (grey box), unit testing, integration testing,

functional testing, etc. Note that for obvious rea-
sons the different failures introduced vary each
academic year.

The system to be tested is named Road Infor-
mation Server (RIS) and its aim is to serve XML
documents via HTTP containing information
about roads: traffic flow, presence of accidents
in the road, weather forecast, etc. This informa-
tion is taken by this module from the output of
a hypothetical system named Road Observation
and Information Providing System (ROIPS) from
a data file (note that the format of this file is the
only thing students need to know about the ROIP
system) that acts as an interface between both
systems. The RIS system is continuously read-
ing the data from that file and generating XML
documents containing the information requested
via HTTP (GET method) by the clients. Since the
information is published using HTTP the simplest
way to interact with the system is from a conven-
tional browser (this feature enables students to
easily interact with the system). Figure 1 shows
the system to be tested and its environment.

Number of students 150 students divided into 5 groups with an average of 15 pairs of
students and a dedicated teacher per group.

Qualification required Last year undergraduate computer science students.
Programming language Java JDK 1.5

Testing tools JUnit 4.0, JFunc, HttpUnit, XMLUnit, JTestCase, JUnitReport,
JUnitAddOns, and others.

Software configuration management tools SVN 1.3 + TortoiseSVN
Software execution and deployment Ant 1.6.5

Evaluation procedure

Oral presentation.
Formal written report including the Test Plan, test cases
design and test execution results and interpretation.
Software generated quality and completeness (only the
software present in the repository is evaluated)
Practical examination.

•
•

•

•
Duration 8 Weeks

Table 1. Summary of course details

���

Integrated Software Testing Learning Environment

Elaboration of the Test Plan

Once the students understand the goals of the
course and get familiarized with the system to
test, they must start elaborating the test plan. This
document is required to be formatted as a technical
report, this point is the special interest because
students are very close to finish their degree and
need to be prepared for dealing with the docu-
ment formatting standards used in the software
development industry. This document must be
realistic and include a schedule and milestones
adjusted to the course length.

Unit Testing

Unit testing is one of the core practices of XP and
consists of taking each class of an object oriented
software system and testing it in isolation. Students
are encouraged to select a bottom-up testing ap-
proach, i.e. testing the classes of the system first
and then testing the sum of its classes. On such
an approach, integration testing becomes much
easier. Teachers also encourage students to put
special emphasis on unit testing due to the fol-
lowing reasons:

•	 Unit testing implicitly involves a sort of
documentation that provides students with
a better understanding of modules, require-
ments and API’s.

•	 Good unit tests are fundamental when doing
regression tests.

Since Java is the programming language
selected for the course, the tool selected to assist
the unit testing process can’t be other than JUnit.
Many issues concerning test cases design and the
right way to test an object in isolation need to be
covered for an in-depth understanding of unit
testing. In the following subsections we describe
these issues in detail, providing some teaching
recommendations obtained from our experience
holding the course. However, note that some
aspects, like test cases design, are not uniquely
correlated with unit testing.

Test Cases Design

The first step when doing unit testing is to design
the test cases, black box and white box techniques
are both suitable for this purpose. Black box con-
sists of testing whether the output of a function

Figure 1. Diagram of the system to be tested and its environment

 ���

Integrated Software Testing Learning Environment

or method, given certain inputs, conforms to its
functional specification. White box consists of
analyzing the source code in order to guide the
selection of test data. In this respect, students
need to have good enough Java programming
skills to throughfully understand the execution
flow present in the methods’ source code. It is
important to balance the pairs when creating
them at the beginning of the course; students
with less Java programming skills must be paired
with the more experienced ones. Test data must
be appropriately selected to achieve an adequate
coverage over the code to test. Students have to
decide which coverage (statement, edge, branch
or path) to use when testing each method and
justify the decisions made. Also, students have
to create flow graphs for each method and depict
on them special situations derived from excep-
tion handling when it is the case. Note that only
6 methods of the whole system are selected to be
tested, so the workload is assumable.

We have encountered difficulties among stu-
dents to understand and appropriately set-up the
context in which a method for a given test case must
be called. There is a trend to conceive a method
as an execution entity which results are only
determined by the input parameters regardless
the context in which the method is invoked. This
problem is especially notorious when designing
test cases under the white-box perspective. For
this reason we have selected some methods which
results are strongly influenced by events like the
presence of a file in the file-system or the inner-
state of the object in which the method is defined.
Another important issue is to make students take
into account all the factors involved in setting-up
the method invocation context and to check all
the observable results of its execution.

Testing in Isolation

Maybe the most difficult aspect when doing unit
testing is to completely isolate a class from its col-
laborative classes. Usually an object makes use of

other objects to carry out certain tasks beyond its
own functionality. Obviously, the execution results
(and so that the test results) of methods belonging
to that object are going to be strongly determined
by the inner-state of the object. Usually it is very
difficult to set up domain state on such a way that
it exposes the features to be tested. Even if we
can do it, the written test will be probably very
complex and difficult to understand and main-
tain. We can avoid these problems using Mock
Objects (Mackinnon, T., Freeman, S., & Craig,
P. 2000) that are a substitute implementation to
emulate or instrument other domain code (in
particular the collaborative classes). They should
be simpler than the real code, not duplicate its
implementation, and allow the developer to set
up private state to aid in testing. Mock Objects
are very useful, but to create them by hand may
be tedious, therefore, students use a tool named
JMock. JMock automatically generates the mock
classes’ source code from the original classes and
presents a very intuitive interface with a very plain
learning curve. In addition to the generation of the
Mock Objects, a preliminary refactoring process
is typically required, consisting in creating the
factory methods in which the original objects
will be replaced by mock objects. In the Source
code listing 1, it is shown an example of a factory
method that instantiates a collaborative class.

public class TargetClass() {

 protected CollabClass factory-

Method(){

 return new CollabClass();

 }

 ...

}

Source Code Listing 1
Following this procedure, it is possible to test
objects that inherit from the target class and over-
ride the factory method to replace the instantiation
of the collaborative object with the instantiation

��0

Integrated Software Testing Learning Environment

of the mock one. This can be seen in the Source
code listing 2.

public void testTargetClassMethod {

// instantiation using mock objects

TargetClass targetInstance = new Tar-

getClass() {

 protected CollabClass

 factoryMethod {

 return new CollabClass();

 }

 }

 // test something

}

Source Code Listing 2
We have found that is very important to carefully
select the code examples to which students must
apply the Mock Objects technique so they can see
a tangible benefit derived from its use. This way,
applying Mock Objects becomes a very rewarding
task rather than a nuisance. Otherwise they tend to
consider the solution too complex in comparison
to the problem to solve and it discourages them.

Testing Private Methods

Some TDD purists suggest that principles of en-
capsulation should never be violated for testing an
object. Testing private methods (note that in the
Java language as well as in other object oriented
languages there are several access modifiers.
In this respect, the qualifier private must not be
interpreted literally but as “not belonging to the
public interface of the class”) means that you
have to change your tests every time you change
your private methods, and this becomes a bar-
rier to refactoring and agile development. The
reason is that, typically, private methods contain
implementation details of the objects and there-
fore are more prone to suffer changes during the
software maintenance process. We can consider,
in the context of white-box testing technique, that
a private method is implicitly tested by means of

testing the public methods that use it. However,
sometimes it is not easy to obtain an acceptable
coverage following this strategy. In these cases
we may need to test private methods directly,
so we include such an exercise in the laboratory
course. The problem here is that private methods
can’t be called outside the class where they are
defined and obviously the test code can’t belong
to the class to test. The best solution is to by-pass
the Java Virtual Machine (JVM) encapsulation
mechanism by using the Java Reflection API.
This can be done using the classes included in
the java.lang.reflect package or by means
of the JUnit-addons library (available under an
open source license). As can be seen in the Source
code listing 3, calling a private method with the
later is straightforward:

SomeClass returnValue = (SomeClass)Pr

ivateAccessor.invoke(

 instanceToTest,

 “methodToTest”,

 new Class[]{ Class1, Class2},

 new Object[]{ param1, param2});

Source Code Listing 3
As a laboratory exercise, some private methods
are selected; students must decide which of them
should be tested and include the observed advan-
tages and disadvantages of the decision taken in
the documentation produced.

Testing Exceptions

Exceptions are a mechanism to handle unex-
pected or atypical situations during the execu-
tion of a program. Exception management code
is responsible for the detection and handling of
system conditions that could potentially lead to
failure. As any other part of a software system,
they must be tested. However this is probably
one of the aspects of an object oriented pro-
gramming language, which testing procedure
has never been covered in detail in the available

 ���

Integrated Software Testing Learning Environment

bibliography. There are a few recommendations
on the topic; even frameworks like JUnit pro-
vide helper tools. However, we have observed
a lack of an in-deep analysis in which students
can rely to successfully proceed in most of the
possible scenarios.

When testing exceptions, students use to con-
sider them as an if-else block of code, where
the if corresponds to the try sentence and the
else corresponds to the catch sentence. This
way, the testing procedure would consist in defin-
ing two test cases, one for each possible execution
path. Nevertheless, there are a fair number of
non trivial questions that arise among students
when taking this procedure to practice. Should
all the exceptions be tested following the same
procedure? Should all the potentially thrown
exceptions be tested? If not, what is the criteria
to decide which of them should not? In the rest
of this section we will try to shed some light on
these questions.

The goal is to verify that exceptions are gener-
ated only when it’s due, following this consider-
ation it makes sense to classify them as expected
or unexpected. Note that this classification does
not attend to the exception itself but to the nature
of the test cases designed for testing it.

Expected Exceptions

Expected exceptions refer to test cases in which
the method-under-test execution context is set-up
so an exception must be thrown. Testing them
consists of invoking the throwing method with
“exceptional” data and checking that the excep-
tion is actually thrown via an assertion. Testing
this kind of exceptions can be done in JUnit 4.x
using the annotation @Test(expected=Ex
pectedException.class) when defining
the test method. However, it presents a clear
shortcoming, checking that the right exception
has been produced is up to the framework and
no extra verifications over the exception object
itself can be done since it is not available in the

test method. For simplicity and generality the
procedure shown in the Source code listing 4 has
been proposed to students:

public void testSomeMethod () {

 try{

 i n s t a n c e T o T e s t .

methodToTest(params);

 fail(“An exception was expected”);

 } catch (ExpectedException e){

 // Execution control must reach

here

 }

}

Source Code Listing 4
With these code sentences we ensure that a failure
will occur if the exception ExpectedExcep-
tion is not raised when invoking the method to
test with the adequate parameters. We have ob-
served among students a common misconception
of expected exceptions. Sometimes, they include
some test cases in which the concept of expected
exceptions is extended to “testing the Java plat-
form”. For example, test cases are written which
result in a method invoked over a non initialized
object that produces a NullPointerExcep-
tion raised by the JVM. This kind of test cases
doesn’t make any sense because testing the JVM
is obviously out of the scope of the test plan.

Unexpected Exceptions

Unexpected exceptions correspond to those
unpredicted situations for which the system can
not suggest any solution. This kind of exceptions
is easy to test since JUnit automatically catches
exceptions thrown by test methods and report
them as errors (note the non trivial distinction
between errors and failures in JUnit). While for
unchecked exceptions (those who inherit from
RuntimeException) nothing needs to be
done, checked exceptions have to be declared in

���

Integrated Software Testing Learning Environment

the throws clause of the test method definition.

public void testSomeMethod () throws

SomeCheckedException {

 // test something

}

Source Code Listing 5

Improving Maintainability
Nowadays, most of the activity and economic
benefits of software enterprises come from main-
tenance related tasks. In fact, commonly in the
vast majority of software projects, the maintenance
life-cycle is much longer than the development
one and so is the volume of resources dedicated
to it. The interesting point here is that the larger
the number of resources needed, the larger the
potential for cost-effectiveness improvement and
so must be the effort in teaching good practices
on this topic.

During a maintenance stage in which the pro-
duction code is being altered, regression tests need
to be done with a very high periodicity and have
to be as much automated as possible so they can
be ran at a reasonable cost in resources. For this
reason, it is necessary to train students in good test-
ing practices that guarantee the production of not
only maintainable test software but test software
with a highly automated that can be effectively
used in regression. In addition to some general
recommendations, like minimizing the coupling
between test code and production code and using
auto-deployment scripts, students are trained in
the use of an open source tool named JTestCase.
This tool is very helpful assisting in the test cases
design and execution tasks; it is basically a JUnit
extension library that allows the test cases data
to be separated from the test cases source code.
This separation is provided by using XML data
files to store test cases data in a very structured
and readable fashion. To enhance maintainability
even further, different XML files must be used
to store test data belonging to different classes.

JTestCase also provides the API methods required
to load this data into memory from the test code
during the testing process. The main advantages
that led us to recommend students the use of this
library are two:

•	 It is possible to enlarge the test cases data set
with only adding a new test case description
to the XML files, and without modify and
having to recompile the test source code.

•	 Developers who design test cases data sets
don’t need to know about the source code
of the methods to test. Therefore a clear
separation between the test cases design
and execution roles is established.

Nevertheless, this library also presents some
drawbacks we needed to deal with when designing
the laboratory exercises in order not to increase
excessively their complexity. For example, storing
the parameters data of the methods to test in the
XML files when they are instances of complex
data types or user defined classes, may result in
a very complex and tedious task (because they
are not directly supported by the syntax JTest-
Case provides). Although this problem may be
overcome using the JICE library, we considered
it does not worth the time students spend to learn
a new tool.

Another recommendation we do is to use the
XML documents generated as part of the test
cases design documentation (XML files are read-
able by both humans and machines) and therefore
avoid duplicated information that is always hard
to maintain.

Reporting and Interpreting Test Results
Once the test cases execution has been carried out
using the corresponding Ant script, a fair amount
of information summarizing the errors and failures
detected is generated. The correct interpretation
and understanding of this information is a key
issue to locate and solve adequately the software
defects found during the testing process. JUnit

 ���

Integrated Software Testing Learning Environment

includes support for the presentation of test cases
execution results in textual (standard output in the
command window) or graphical form. However,
in real applications for which thousands of test
cases are typically developed, these methods of
presenting the information are unreadable and
impractical. To cope with this problem we have
instructed students in the use of the JUnitReport
tool, which allows the generation of hypertext
browsable documents in HTML format containing
the execution results for every particular executed
test case. This tool is able to merge the individual
XML files generated by the <junit> Ant task,
and apply a stylesheet on the final document.
JUnitReport is provided with the Ant release as
an additional task but installation of external third
party libraries is required. One important thing
to point out is that both <junit> and <junitreport>
tasks must be written in different targets inside the
Ant script so the test case execution and results
reporting tasks are not interdependent.

Another fundamental topic that must be cov-
ered is the correct interpretation of the obtained
results. Usually, JUnit makes a distinction between
errors and failures, however, this distinction is
artificial, unuseful and usually a source of mis-
understandings among students. This distinction
does not provide clear information about the source
of the software defects found. While failures relate
to assertion methods that have not been satisfied,
i.e. defects in the production code, errors reflect
unanticipated situations that occurred during the
test cases execution and could be caused by both
defects in the production code or in the test code.
This issue must be covered at the beginning of the
course when the JUnit tool is introduced.

Integration Testing
Integration tests are centered on the collaboration
of classes in a system. Once the different classes
have shown to work well in isolation, is necessary
to verify that they also work well when combined.
When doing unit testing over a target class, stu-
dents do a little refactoring process to replace

domain objects with mock objects through the
use of factory methods. After that, mock objects
must be replaced progressively by the original
ones. This can be done straightforward using the
approach presented in (Wick, M., Stevenson, D.,
& Wagner, P. 2008). Students have to replace the
factory method of the original target class with a
new factory method that returns the actual object
with which students wish to integrate. Note that
this approach allows a step-by-step integration,
i.e. if we replace factory methods one by one, we
are adding the original classes to the integration
test one-by-one. In comparison with unit tests,
integration tests are more difficult to implement
due to the complexity of setting up the domain in
the right state to test a specific behavior. In inte-
gration tests lots of objects are involved while in
unit tests only a few mock objects, plus the target
object, are involved. Moreover, mock objects state
is very easy to set up comparatively. Due to these
difficulties, we have found that students need
extra support and instruction to make integration
testing successfully.

Functional Testing
The final step is to make functional tests over
the system as a whole. For this purpose students
are provided with a brief Software Requirements
Document in which, for example, the syntax of
the HTTP requests served by the system and
the format of the XML documents returned are
described. The goal is to make automated tests
to verify that the system behavior meets the
software requirements. Making functional tests
from scratch over a distributed application with
the only help of JUnit (note that despite its name
JUnit is not exclusively attached to unit testing.)
is a hard task. To cope with this difficulty we
have introduced in the learning environment two
interesting JUnit extension libraries (these two
libraries as well as all the tools included in the
learning environment described in this chapter
are free-available open source tools) that facilitate
this work: HttpUnit and XMLUnit. Note that

���

Integrated Software Testing Learning Environment

despite their names, XMLUnit and HttpUnit are
not unit testing tools but functional testing tools;
nevertheless the “unit” prefix is an easy way to
make these tools easily recognizable as belong-
ing to the JUnit family. In one hand HttpUnit
simplifies the interaction with a Web application
by hiding all the HTTP protocol details from
the developer. This tool basically emulates the
functionality of a Web browser allowing the test
code to navigate a Web application and retrieve its
contents as a user would do by clicking links and
reviewing documents using a conventional Web
browser and the mouse. Once the test code is able
to retrieve documents from the system, the next
step is to validate the contents and structure of
the documents retrieved to ensure they follow the
specification contained in the Software Require-
ments Document. For this purpose, HttpUnit can
be used in combination of XmlUnit. While the
former is able to parse and validate the contents
of HTML documents (like the title of the page,
tables and forms present in it and even the cor-
rectness of the script code) the later is able to do
XML documents validation.

Another interesting point when making func-
tional tests is the possibility of allowing multiple
failures, i.e. to allow more than one assert method
to fail inside the same test method. JUnit typically
stops the execution of a test method and continues
with the execution of the next one when the first
failure occurs. While this is convenient in the
particular case of unit testing, in which after a
failure happens the state of the object under test
is potentially unpredictable, in functional tests is
common to design a test case so it carries out a
set of higher level operations that are often uncor-
related. In these cases, one failure may not affect
the normal execution of the following operations
and, since functional testing is usually a very
time-consuming task, to be able to continue the
testing process can save a lot of execution time.
There is a specifically designed tool to overcome
this drawback of JUnit when applied to functional

tests, its name is JFunc and was also incorporated
to the testing environment.

In the following points we summarize some in-
teresting issues we have observed during the three
academic years the course have been held.

•	 The process of incorporating functional test-
ing tools to the course involves a relatively
long learning curve if is not accompanied
by the adequate examples and instruction.

•	 Once the tools are effectively applied to the
functional testing process, students realize
the simplicity of the test code produced and
the extensibility and generality of the solu-
tion. After an initial guided research effort
followed by a posterior independent research
effort, they incorporate to their curriculum
a set of state-of-the-art functional testing
tools that clearly improve the quality and
the level of automation of the tests, as well
as are very helpful in regression.

•	 Sometimes students need extra support to
distinguish between the aspects of a Web
document that must be tested and those
that must not. While the contents and or-
ganization of the information contained
are important, aspects like presentation and
Web design elements are obviously out of
the scope.

•	 The system to test produces dynamic docu-
ments, this is an interesting point because
some dynamic contents we deliberately in-
cluded, like time-stamps or auto-increment
values, are by nature nearly impossible to
test. In these cases, students are instructed to
eliminate the validation of those values from
the overall contents validation process.

Taking Advantage of Software Management
Configuration Tools (SMC Tools)
Nowadays SMC tools are essential to track the
evolution of the software under development and
also represent the basic support for the collabora-
tive work model of every software development

 ���

Integrated Software Testing Learning Environment

team. For this reason, and in order to make the
working environment as real as possible, we have
considered a key issue to incorporate the use of a
repository along the course. The version control
system selected is SVN Subversion v1.3 (Subver-
sion, 2000). This tool was originally created to
replace CVS (Concurrent Version System) and
presents some advantages over it, among them, its
usage simplicity. Students interact with SVN by
means of a Windows client named TortoiseSVN,
which is integrated in the Windows Explorer con-
textual menu. The repository can also be accessed
for reading purposes through a standard WEB
browser using Apache authentication. Working
with the repository using TortoiseSVN is a very
easy task and only a few commands (import,
checkout, commit …) and a basic knowledge
about the work-cycle is necessary for students to
get started. Each pair of students has a folder in
the repository and a login/password to access it.
The first day of the course students import the
baseline software system to the corresponding
work folder in the repository. At the end of every
day in the course or after a major change has been
made over the software contained in the local
working folder, students are required to commit
the changes to their personal folder in the reposi-
tory. One common problem we have found is that
some students can’t clearly differentiate between
software elements that must be stored in the reposi-
tory (only those that evolve across the software
life-cycle and can’t be generated from others, as is
the case of a .class file generated from a .java file)
and those that must not. This concept is important
because making a clear distinction between both
kinds of elements prevents filling the repository
with unuseful and redundant content and saves
time in the interaction with it. For this purpose
students are encouraged to define a “clean” task in
the Ant script that allows deleting the compilation
process results (binary files like .class and .jar)
before committing to the repository.

 The repository is also, indirectly, an excellent
mechanism for teachers to track students’ progress

and detect misconceptions in the early stages of
the course, when these problems are more likely
to happen and easier to deal with. We will cover
this topic in more detail in the next point.

students’ Performance Evaluation

Students’ performance evaluation along the course
is based on the following:

•	 Oral presentations in which each student
explains and defends the decisions made and
justify the obtained results. A key aspect is
the adequate defense of the testing process
completion criteria and the testing tech-
niques and strategies selected. Also students
are required to make suggestion about how to
improve the learning environment and how
other parts of the system that remain out of
the scope of the test plan could be tested.

•	 A formal written report including the Test
Plan, test cases design as well as test execu-
tion results and interpretation: The goal is
to get students used to write formal docu-
ments as close as possible to those used in
real-world software companies.

•	 Software generated quality and complete-
ness: At the end of the course, the test
software contained in the students’ folder
in the repository is examined and evaluated
in terms of readability, completeness, level
of automation achieved, coverage over the
production code, maintainability, etc. An
existing tool designed for measuring the
coverage achieved over the production code,
which name is Cobertura (Cobertura, 2005),
has been utilized for automatically measur-
ing the coverage of students’ generated test
code and to compare it to the target coverage
they described in the Test Plan. Another
interesting point is the use of the repository
to obtain feedback for evaluation purposes.
By looking at the changes-log in the reposi-
tory, it is possible to observe which versions

���

Integrated Software Testing Learning Environment

of which software elements and when were
committed to the repository. This is very
helpful for evaluating up to which extent
the schedule students wrote in the Test
Plan was met. This is an important issue
because a last-year computer science student
must demonstrate enough experience to
accurately estimate time and resources to
accomplish a task.

•	 A practical examination, in which the student
is tested on skills that indicate a good level
of understanding and handling of the tools
used. In this respect students use to perform
very well and, when asked, they show to be
very capable of applying the tools to new
scenarios.

In the vast majority of the cases students
performed very well in the oral presentations and
in the practical examination. Interestingly some
students went beyond the scope of the course and
incorporated new tools to the testing process,
like it is the case of performance analysis tools.
However after carefully examining the change-log
of the working folder in the repository for each
pair of students, it seems like some of them have
troubles estimating the time needed to accomplish
each task. We attribute it to the lack of experi-
ence taking to the practice the testing techniques
introduced. We expect to get better performance
in this respect in the following.

The final results indicate that about 85% of
students (as an average of the three years in
which the course has been held) completed the
course satisfactory, being the average grade 7.5
out of 10. This percentage is very similar to the
number of students who actually completed all
the exercises comprised on the course. This, lead
us to the conclusion that the learning environment
success is guaranteed whenever the teachers get
students enough involved on it.

EVALUATING THE EFFECTIVENEss
OF THE APPROACH

To evaluate the impact of the course on students
learning and attitudes we carried out a series of
surveys. Surveys took place at the beginning
and at the end of the course that has been held
during the last three academic years. Despite the
voluntary nature of the surveys, 93% of an aver-
age of 150 students per year completed them. It
is important to note that students knew that their
answers to the questions would have no effect in
their grades. The purpose of the surveys was to
evaluate whether students attitudes over relevant
software testing topics covered during the course,
changed accordingly with our previously stated
hypotheses.

The attitude evaluation survey was designed in
a similar fashion to the one presented in (Sitara-
man, M., Long, T.J., Weide, B.W., Harner, E.J. &
Wang, L. 2001). The survey consists on 18 state-
ments. Each of them must be marked by students
with one of six choices: strongly disagree (1),
disagree (2), moderately disagree (3), moderately
agree (4), agree (5) and strongly agree (6); where
the number in brackets is the score associated to
each choice. Table 2 contains 6 of the 18 sentences
that compose the attitudinal survey. Note that
each sentence is labeled with a word (“positive”
or “negative”) that refers to the expected trend for
the sentence’s results when comparing surveys at
the beginning and end of the course.

Table 3 summarizes results from the sentences
contained in Table 2. These results are obtained
from 134 students of the course that was offered
in the 2005-2006 academic year. The first col-
umn indicates the number of the sentence. The
second and third columns indicate the average
agreement scores for each sentence in the sur-
veys taken at the beginning and at the end of the
course respectively. The fifth column shows the
P-value derived from one-sided paired t-tests on
the raw data. These values are used to determine

 ���

Integrated Software Testing Learning Environment

the statistical significance, which is contained in
the sixth column.

CONCLUss ION AND
FUTURE WORk

Looking at the overall results for the 2005-2006
course’s surveys, we see that students’ attitudes
changed with a high or at least a positive statistical
significance for 15 out of 18 sentences. Moreover,
results associated to the sentences designed to
evaluate the effectiveness of pair programming
confirm initially stated hypotheses always with
high statistical significance.

At the beginning of the course students are
skeptical about the benefits of a formal software
testing process when they realize the amount

of work and time that such a process demands.
However, we have found that the software testing
environment presented here, change students’
perception about the value of software testing to
improve software reliability. Students see how to
test an almost real application and we observe it
really encourages them. During the years in which
the course has been held, pair programming has
demonstrated to be an effective collaborative
work model, especially when two students with
very different skills are grouped into the same
pair. In this case, both members’ skills converge
to be at least equal to the higher one at the end
of the course. After the training, students work
was evaluated in terms of completeness, effec-
tiveness, maintainability and level of automa-
tion, results show that more than 85 percent of
students performed above the required level. This

1. To put a special effort in ensuring the software design quality plays a fundamental role in facilitating the software
testing process. (positive)

1. Software testing is an effective and powerful way to increase software reliability. (positive)
1. Software testing process starts when all the source code is written and it is always the last stage of the software

development life-cycle. (negative)
1. Software testing is a very time consuming process. (positive)
1. Software testing is a very repetitive and tedious task; however, no special skills are required to get satisfactory

results. (negative)
1. The best results you can find out once the software testing process is done, is that neither errors nor failures were

found. (negative)

Table 2. Attitudinal survey questions and expected trends

Sentence Before After Difference P-Value Significant?
1 3.3 5.1 +1.8 < 0.01 High
2 4.5 5.3 +0.8 0.02 Yes
3 3.9 2.8 -1.1 < 0.01 High
4 4.1 4.5 +0.4 0.2 No
5 5.1 2.3 -2.8 <0.01 High
6 5.3 2.6 -2.7 <0.01 High

Table 3. Summary of attitudes changes

���

Integrated Software Testing Learning Environment

evaluation also shows that students usually have
difficulties when doing integration tests. They
don’t know how to start the integration and how
to progressively select new classes to be added
to the integration test. Coaching is much needed
at this point. Final evaluations also show that
students are generally satisfied with their work
and consider the methodology experimented to
be useful in the long term.

Our current work and intention for the future
is to update and enhance the learning environ-
ment by incorporating into it the most relevant
software testing related trends and techniques
among those that are continuously arising in
the software testing world. In particular, we are
currently working to incorporate into the course
testing of database access and new ways to identify
test anti-patterns.

REFERENCEs

Astrachan, O., Duvall, R.C., & Wallingford, E.
(2001). Bringing Extreme Programming to the
Classroom. Presented at XPUniverse Confer-
ence’01, 2001.

Beck, K. et al. (2001). Agile Manifesto. Retrieved
March 30th 2007, from http://agilemanifesto.
org/

Beck, K. (2000). Extreme Programming Ex-
plained: Embrace Change. Addison Wesley.

Cobertura. (2005). Retrieved from http://cober-
tura.sourceforge.net/

Cockburn, A., & Williams, L. (2001) The costs and
benefits of pair programming. In G. Succi and M.
Marchesi (Eds.), Extreme Programming examined
(pp. 223-243).Boston: Addison-Wesley.

Collofello, J. & Vehathiri, K. (2005). An Environ-
ment for Training Computer Science Students on
Software Testing. Paper presented ad Frontiers

in Education, 2005. FIE ‘05. 19-22 Oct. 2005,
T3E-6- T3E-10.

Edwards, S. (2003). Using Test-Driven Develop-
ment in the Classroom: Providing Students with
Automatic, Concrete Feedback on Performance.
Paper presented at International Conference on
Education and Information Systems: Technol-
ogy and Applications EISTA 2003, Orlando,
FL, 2003.

Kaufmann, R., & Janzen, D. (2003). Implications
of test-driven development: a pilot study. Paper
presented at 18th annual ACM SIGPLAN confer-
ence on Object-oriented programming, systems,
languages, and applications (OOPSLA 2003),
Anaheim, CA, 2003.

Lui, K.M., & Chan, K. C.C. (2003). When Does a
Pair Outperform Two Individuals?, Lecture Notes
in Computer Science, Volume 2675, 225–233.

Mackinnon, T., Freeman, S., & Craig, P. (2000).
Endo-Testing: Unit Testing with Mock Objects.
Presented at eXtreme Programming and Flexible
Processes in Software Engineering - XP2000.

McDowell, C., Werner, L., Bullock, H., & Fernald,
J. (2002). The Effects of Pair-Programming on
Performance in an Introductory Programming
Course. Presented at 33rd SIGCSE technical-
symposium on Computer science education.
2002, 38-42.

McDowell, C., Werner, L., Bullock, H., & Fernald,
J. (2003). The impact of pair programming on
student Performance, perception and persistence.
Presented at Int.Conf. on Software Engineering
(ICSE2003), 2003, 602-607.

Melnik, G., & Maurer, F. (2002) Perceptions
of Agile Practices: A Student Survey.” Paper
presented at Agile Universe/XP Universe 2002,
Chicago, IL, 2002.

Mugridge, R. (2003). Challenges in Teaching Test
Driven Development. Paper presented at XP 2003,
Genova, Italy, 2003.

 ���

Integrated Software Testing Learning Environment

Müller, M., & Hagner, O. (2002). Experiment about
test-first programming Software, IEE Proceedings
vol. 149, pp. 131-136.

Müller, M., & Tichy, W. (2001). Case study: ex-
treme programming in a university environment.
Paper presented at Software Engineering, 2001.
ICSE 2001. Proceedings of the 23rd International
Conference on, Toronto, Ontario, 2001.

Reichlmayr, T. (2003). The agile approach in
an undergraduate software engineering course
project. Paper presented at Frontiers in Educa-
tion, 2003. FIE 2003. 33rd Annual, Boulder,
CO, 2003.

Shukla, A., & Williams, L. (2002). Adapting ex-
treme programming for a core software engineer-
ing course. Paper presented at 15th Conference
on Software Engineering Education and Training,
2002. (CSEE&T 2002), Covington, KY, 2002.

Sitaraman, M., Long, T.J., Weide, B.W., Harner,
E.J. & Wang, L. (2001). A formal approach to
component-based software engineering educa-
tion and evaluation. Paper presented at 23rd
International Conference on Software Engineer-
ing. ICSE 2001.

Subversion. (2000). Retrieved from http://subver-
sion.tigris.org/

Tinkham, A., & Kaner, C. (2005). Experiences
Teaching a Course in Programmer Testing. Paper
presented to Agile Conference, 2005. 24-29 July
2005, 298- 305.

Wick, M., Stevenson, D., & Wagner, P. (2008). Us-
ing Testing and JUnit Across the curriculum. Pre-
sented at 36th SIGCSE technical symposium on
Computer science education, 2005, 236–240.

Williams, L., Kessler, R. A., Cunningham, W., &
Jeffries, R. (2000). Strengthening the Case for Pair-
Programming, IEEE Software, 17(4), 19-25.

Williams, L. A., & Kessler, R. R. (2000). The
Effects of‘Pair-Pressure’ and ‘Pair-Learning’
on Software Engineering Education. Presented at
13th Conference on Software Engineering Educa-
tion and Training, March 2000, 59-65.

Williams, L., & Kessler, R. (2000). Experiment-
ing with industry’s pair programming model
in the computer science Classroom. Journal of
Computer Science Education, 10(4).

Section VI
Curriculum and

Education Management

 ���

Chapter XIII
Software Engineering
Accreditation in the

United States
James McDonald

Monmouth University, USA

Mark J. Sebern
Milwaukee School of Engineering, USA

James R. Vallino
Rochester Institute of Technology, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abs TRACT

This chapter provides a brief history of the accreditation of software engineering programs in the United
States and describes some of the experiences encountered by programs in achieving their accreditation
and by program evaluators in reviewing those programs. It also describes how the accredited programs
have addressed the most difficult issues that they have faced during the accreditation process. The au-
thors have served as leaders of the accreditation efforts at their own institutions and as ABET program
evaluators at several other academic institutions that have achieved accreditation. The objective of
this chapter is to provide those software engineering programs that will be seeking accreditation in the
future with some of the experiences of those who are familiar with the process from both the programs’
and the evaluators’ points of view. Leaders of programs that are planning to request an accreditation
review will be well prepared for that review if they combine the information contained in this chapter
with the recommendations contained in Chapter XIX of this text.

INTRODUCTION

The history of software engineering education
dates to the generally accepted origin of the
software engineering discipline in 1968. This

year is associated with the first NATO conference
on software engineering in Garmisch, Germany.
Tomayko (1998) points out, however, that the same
year also marked what is apparently the first of-
fering, by Douglas Ross at the Massachusetts In-

���

Software Engineering Accreditation in the United States

stitute of Technology, of an academic course with
the term “software engineering” in its title. For a
variety of reasons, considerable time passed before
courses with significant software engineering
content became more common (Tomayko, 1998;
Duggins 2002). Beginning in 1977, a number of
graduate programs in software engineering were
developed and began operation, including those
at Seattle University, Texas Christian Univer-
sity, and the Wang Institute of Graduate Studies
(Tomayko, 1998). At the undergraduate level, a
number of computer science and computer engi-
neering programs incorporated one or two courses
in software engineering, typically taught using
survey textbooks that offered reasonable breadth
but relatively little depth. Although undergraduate
software engineering programs began to emerge
internationally as early as 1985 (Joint Task Force
on Computing Curricula, 2004), it was not until
1996 that the Rochester Institute of Technology
initiated what was to become, in 2003, one of
the first four software engineering programs to
receive accreditation in the United States; the other
programs in this group were offered by Clarkson
University, Milwaukee School of Engineering,
and Mississippi State University.

While we recognize that software engineering
programs in other countries have been accredited
by accrediting agencies in those countries, this
chapter addresses only the history and experi-
ences of software engineering programs that have
achieved accreditation in the United States. It is
hoped that the material presented here will be of
value to software engineering educators in both
the United States and around the world.

AbET AND ENGINEERING
PROGRAM ACCREDITATION

ABET, Inc., formerly known as the Accredita-
tion Board for Engineering and Technology, is
the recognized accreditation body in the United
States for college and university programs in

applied science, computing, engineering, and
technology. It is a federation of professional and
technical societies (28 at present) representing
those fields. ABET accreditation activities are
managed by four commissions; the two most
directly related to software engineering are the
Engineering Accreditation Commission (EAC)
and the Computing Accreditation Commission
(CAC). Like other engineering disciplines, soft-
ware engineering falls under the EAC, while
the CAC is responsible for computer science,
information systems, and information technology.
In possible contrast to some other disciplines,
accreditation has historically been an expected
attribute of United States engineering programs,
and is thus an important concern for software
engineering educators.

Each discipline has an associated “lead so-
ciety”, which is one of the member societies of
ABET. This society has primary responsibility for
defining discipline-specific accreditation criteria,
as well as for selecting, training, and evaluating
program evaluators. Initially, the lead society for
software engineering was the Institute of Elec-
trical and Electronic Engineers (IEEE), which
prepared the original version of the software
engineering program criteria (Engineering Ac-
creditation Commission, 1999, p. 47), discussed
later in this chapter.

With the integration of ABET and the Com-
puting Sciences Accreditation Board (CSAB) in
November 2001, CSAB took over the role of lead
society for software engineering, and the IEEE
became a “cooperating society.” Unlike the IEEE
and most other member societies of ABET, CSAB
is not itself a membership society. Instead, the
current members of CSAB are three other profes-
sional societies: the Association for Computing
Machinery (ACM), the IEEE Computer Society
(IEEE-CS), and the Association for Information
Systems (AIS).

From the point of view of a software engi-
neering program seeking initial accreditation,
the process begins with a request for evaluation,

 ���

Software Engineering Accreditation in the United States

which must be submitted by January of the year
in which an evaluation visit is being requested.
Since ABET policies require that a program have
at least one graduate at the time of the evalua-
tion visit, the request for evaluation is generally
submitted in the year when the first graduates
are anticipated.

Of course, the work of program and curriculum
definition must begin much earlier. It is common
for program faculty to attend ABET faculty
workshops and to send representatives to training
sessions for ABET program evaluators, in order
to gain familiarity with the accreditation criteria,
process, and practices. The program must also
define its educational objectives and outcomes,
discussed in more detail below.

Once the request for evaluation has been sub-
mitted, the next task is to complete the self-study
report, which provides detailed data and evidence
to show that the program meets the applicable ac-
creditation criteria. The self-study report is based
on an ABET-provided template (Engineering
Accreditation Commission, 2007a) and must be
submitted by the end of June during the year in
which the request was made.

The evaluation visit takes place in the fall. The
visiting team consists of a team chair (usually a
member of the EAC) and at least one program
evaluator (PEV) for each program to be evalu-
ated. The minimum team size is three members
(ABET, 2006, p. 8), so it is possible that two
program evaluators may be assigned to a single
program if no other program is being evaluated
during the same visit. Prior to the visit, the pro-
gram evaluator examines the self-study report
and related materials such as student transcripts.
Ongoing communication with the program leader-
ship helps to resolve as many issues as possible
before the team arrives on campus. During the
visit, the evaluator interviews faculty members
and students, examines additional materials such
as examples of student work, evaluates facilities,
and gathers any other necessary information.

During an exit session at the end of the visit,
the accreditation team provides the institution with
a summary of its evaluation. After the visit, the
program has the opportunity to submit additional
evidence, primarily to address any shortcomings
that were identified during the visit. The team
chair and program evaluators then prepare a draft
statement of their findings, which is sent to the
institution for comment. The final version of the
statement incorporates any changes resulting from
the institution’s “due process” response and is sent
to the EAC for final action during the summer after
the visit. If accreditation is granted, it is common
practice to extend accreditation retroactively to
the prior year graduates, since it was their work
and curriculum that were examined during the
accreditation review.

CRITERIA FOR ACCREDITATION

The current engineering accreditation criteria
(Engineering Accreditation Commission, 2007)
are based on a major revision originally known
as Engineering Criteria 2000 (often abbreviated
as “EC2000” or “EC2K”). Prior versions of the
criteria focused on detailed prescriptions and, in
the view of many engineering educators, limited
opportunities for flexibility and innovation. The
revised criteria adopted an approach of setting
general goals and assigning to individual programs
the responsibility for demonstrating achievement
of those goals through appropriate assessment
and evaluation.

Each of the ABET criteria for accrediting
baccalaureate-level engineering programs ad-
dresses a specific area of concern. During 2007,
changes to the numbering and organization of the
criteria were proposed, as indicated in Table 1;
these changes will take effect for the 2008-2009
accreditation cycle.

Despite the change in organization, the content
of each of the areas of concern has remained fairly

���

Software Engineering Accreditation in the United States

stable from the introduction of the EC2000 criteria
until the present time. The criteria are:

Students. For historical reasons, the criteria
first address the relationship between an engi-
neering program and its students, even though
logically it would make more sense to begin with
the program educational objectives and outcomes.
Programs are required to evaluate students and
monitor their progress, while providing both cur-
ricular and career advising. Specific note is made
of the need for effective policies and procedures
for the admission of transfer students, granting of
transfer credit, and verification that all students
meet all program requirements.

Program educational objectives. Since the
initial introduction of the EC2000 criteria, there
has been a continuing evolution and clarification
of the terminology used to specify the results that
an engineering program strives to achieve. By
the current definition, the program educational
objectives deal with the broad career and profes-
sional accomplishments for which graduates are
being prepared. It is common for the program
leadership and faculty to consult with employers
and other stakeholders to ensure that the program
objectives accurately reflect the environment in
which the program’s graduates will work. Since

these achievements relate to performance after
graduation, the program’s success in this regard
cannot, in general, be determined until some time
has passed. Even then, it may be difficult to as-
sess the program’s contribution to the individual
graduate’s success in meeting these longer-term
objectives.

A program’s educational objectives are
expected to be consistent with its institutional
mission and to communicate its specific goals
to potential students and to the public at large. A
typical program objective might be, “Graduates of
the program are expected to obtain employment
in the software development industry and/or to
enter graduate school within six months after
graduation.”

Program outcomes. To complement the pro-
gram educational objectives, programs are also
required to define and assess program outcomes,
which are narrower statements that describe the
knowledge and skills expected of students at the
time of graduation. The underlying assumption
is that this knowledge and skill will provide the
basis for achievement of the longer-term career
and professional achievements. This criterion
requires that a set of eleven specific outcomes be
incorporated (often referred to as “a-k” because of

Area of Concern
Criterion

(2007-2008)
Criterion

(2008-2009)
Students Criterion 1 Criterion 1

Program Educational Objectives Criterion 2 Criterion 2
Program Outcomes Criterion 3 Criterion 3

Continuous Improvement Criteria 2-3 Criterion 4
Curriculum Criterion 4 Criterion 5

Faculty Criterion 5 Criterion 6
Facilities Criterion 6 Criterion 7
Support Criterion 7 Criterion 8

Program Criteria Criterion 8 Criterion 9

Table 1. Areas of concern covered in each ABET criterion

 ���

Software Engineering Accreditation in the United States

the way they are enumerated), but programs are
free to articulate additional outcomes. A typical
outcome is: “By the time students have gradu-
ated from the program they must demonstrate
the ability to apply knowledge of mathematics,
engineering and science,” which is outcome a) in
the specific list of outcomes.

Historically, programs have been encouraged
to formulate their own outcomes based on their
specific program objectives. These program-spe-
cific outcomes are often designed to incorporate
the “a-k” outcomes. For example, a software engi-
neering program might adopt a program outcome
related to designing software components and
systems, implicitly referencing the “3(c)” outcome
that deals with designing a system, component,
or process within realistic constraints.

However, defining a complete set of program-
specific outcomes can also mean extra work for
the program in preparing for an accreditation
visit, since it is then necessary to demonstrate
student achievement of both the “a-k” and the
additional “program-defined” outcomes. One
alternative is to augment the standard “a-k”
outcomes by articulating a small number of ad-
ditional outcomes, if the program judges that the
generic outcomes are not sufficient. The proposed
2008-2009 engineering criteria omit a previous
requirement that the program must “formulate
program outcomes” related to the program ob-
jectives, perhaps suggesting a shift away from
program-specific outcomes.

Continuous improvement. The requirement
for ongoing actions to improve the program,
previously called out in the context of program
objectives and outcomes, has become a separate
criterion in the proposed 2008-2009 draft. Pro-
grams are required to show evidence for these
actions, which are expected to be based on the
results of assessment and evaluation processes
called for in the criteria related to program objec-
tives and program outcomes.

Curriculum. This section of the engineering
criteria has two major parts. The first deals with

minimum standards for curriculum content. The
curriculum must include at least one year (typi-
cally 32 semester credits or 48 quarter credits) of
college-level mathematics and basic sciences. At
least some of the basic sciences course work must
include experimental experience. A minimum
of one and one-half years (48 semester credits
or 72 quarter credits) of engineering topics is
also required. The engineering topics consist of
engineering sciences and engineering design.
The curriculum is also required to incorporate a
general education component that complements
the technical content, but no quantitative specifica-
tions are mandated for this component.

One question for software engineering pro-
grams is whether some computer science content
can be used to meet the “mathematics and basic
science” requirement. This type of accounting
seems quite reasonable, since the relationship
between computer science and software engineer-
ing resembles that between, for example, physics
of mechanics and mechanical engineering. In
addition, many computer science topics are math-
ematical in nature. However, there is at present no
explicit policy on this matter, so many programs
have taken a defensive position that ensures the
credit requirement is met using course content
consistent with a more traditional definition of
mathematics and basic science.

The second part of the curriculum criterion
imposes a requirement that students be prepared
for engineering practice through the curriculum
and that this course work culminate in a major
design experience that incorporates engineering
standards and multiple realistic constraints. The
requirement for a major design experience is often
addressed by a “senior design project” course or
course sequence.

Faculty. The criterion related to the program
faculty addresses three primary concerns. First,
the number of faculty members and their compe-
tencies must be sufficient to cover all curricular
areas of the program, while also assuring that
faculty members have time to advise and in-

���

Software Engineering Accreditation in the United States

teract with students, support university service
activities, continue their own professional devel-
opment, and maintain links with practitioners
and employers.

Second, the program faculty must be invested
with sufficient authority to provide effective guid-
ance for the program and to define and execute
processes for assessment, evaluation, and con-
tinuous improvement of the program’s objectives,
outcomes, and curriculum.

Third, the criterion provides guidance for
evaluating the competence of the faculty, citing
factors such as education, diversity, engineering
experience, teaching effectiveness, communica-
tion ability, scholarship, participation in profes-
sional societies, and professional engineering
licensure. In addition to these traditional mea-
sures, the criterion also makes explicit the need
for “enthusiasm for developing more effective
programs” (Engineering Accreditation Commis-
sion, 2007, p. 3), perhaps recognizing the personal
and communal investment that is required to
institute and maintain effective assessment and
improvement processes.

Facilities. Programs are required to ensure
that classrooms, laboratories, and equipment are
adequate and that they provide an atmosphere
conducive to learning, foster student-faculty in-
teraction, and support professional development
and activities. Students must have opportunities
to learn the use of modern engineering tools and
adequate computing facilities must be available
to support both students and faculty.

Support. Programs must have, and demon-
strate that they have, the institutional support
and financial resources needed to maintain the
faculty and facilities. This criterion also explicitly
requires adequate support personnel and institu-
tional services. Specific mention is also made of
the need for “constructive leadership” to assure
the quality and continuity of the program.

Program Criteria. The general engineering
accreditation criteria are intended to apply across
widely disparate engineering disciplines. While

this commonality and consistency is valuable, it
is also understood that each discipline may have
its own specific requirements. To address these
issues, the engineering criteria incorporate sets
of program-specific criteria, which are (at least
nominally) limited to curricular topics and fac-
ulty qualifications. The applicability of a given
set of program criteria is determined by the
name of the program; for example, a program in
“computer and software engineering” would be
expected to meet the program criteria for both
computer engineering and software engineer-
ing. When multiple sets of program criteria
are applicable, overlapping requirements need
only to be satisfied once. The program criteria
for software engineering are discussed in the
following section.

PROGRAM CRITERIA FOR
sOFTWARE ENGINEERING

As noted above, program criteria are limited to
curricular topics and faculty qualifications. The
curriculum-related portion of the current software
engineering program criteria (Engineering Ac-
creditation Commission, 2007, p. 18) states two
primary requirements.

First, the curriculum is required to provide
breadth and depth across the range of engineering
and computer science topics implied by the title
and objectives of the program. Except in unusual
cases (e.g., a program that focuses on applying
software engineering to aeronautics or to financial
modeling), this will normally imply compliance
with an accepted “community” definition of the
software engineering discipline. Two such defi-
nitions are given in the Guide to the Software
Engineering Body of Knowledge (2004) and in the
undergraduate software engineering curriculum
guidelines prepared by the Joint Task Force on
Computing Curricula (2004).

Second, the curriculum section of the program
criteria for software engineering requires that the

 ���

Software Engineering Accreditation in the United States

program demonstrate a number of specific student
outcomes. While these mandated outcomes are
not really “curricular topics”, there is precedent
for requirements of this type in the program
criteria for many other disciplines (Engineering
Accreditation Commission, 2007, pp. 5-18).

The software engineering program criteria
require the program to demonstrate that gradu-
ates have the ability to analyze, design, verify,
validate, implement, apply, and maintain soft-
ware systems. Although the term “analyze” has
a generic engineering meaning, in this context it
is generally understood to refer to requirements
analysis. Graduates must also be able to apply,
in the context of complex software systems,
discrete mathematics, probability, statistics, and
relevant topics in computer science and support-
ing disciplines.

Additionally, the program must demonstrate
that graduates have the ability to work in one or
more significant application domains. In itself,
this requirement does not dictate any particular
curricular content, but it does imply some course-
work or other experience beyond core software
engineering and computer science topics. Some
existing software engineering programs have
chosen to require specific courses in one or
more application domains such as embedded
software, gaming software or web applications.
Other programs have defined a set of elective
course sequences, in a variety of areas, allow-
ing students to choose according to their own
interests. A few programs have adopted both of
these strategies.

In regard to faculty qualifications, the current
program criteria for software engineering do not
impose any additional requirements. Effective for
the 2001-2002 accreditation cycle, the program
criteria were amended to require that “those fac-
ulty teaching core software engineering material
have practical software engineering experience”
(Engineering Accreditation Commission, 2000, p.
16), but that section was later deleted (Engineer-

ing Accreditation Commission, 2002, p. 22) with
little public explanation for the change.

GROWTH OF ACCREDITED
sOFTWARE ENGINEERING
PROGRAMs

The first undergraduate program in software
engineering in the United States was started
in 1996 at Rochester Institute of Technology.
Since that program took root and showed the
viability of an undergraduate software engineer-
ing program, there has been a steady growth in
the number of programs, with several new ones
started each year. This has happened despite the
general downturn in undergraduate computing
program enrollments since 2000 (Computing
Research News, 2007). There are currently 35
programs leading to an undergraduate degree
in Software Engineering. Through the summer
of 2007, fifteen of these programs have been
accredited by ABET. The Rochester Institute
of Technology program graduated its first class
of baccalaureate-level software engineers in
May 2001. The first four programs applying for
accreditation had their campus visits in fall of
2002, and received accreditation approval in the
summer of 2003. The EAC granted the Rochester
Institute of Technology program an extended
grandfathering which covered their May 2001
class. That gave the program the distinction of
awarding the first ABET accredited BS in Soft-
ware Engineering degrees. Figure 1 shows the
growth in both the total number of undergraduate
software engineering programs and the number
of accredited programs.

CURRENTLY ACCREDITED
PROGRAMs

Table 2 lists the fifteen software engineering
programs accredited by ABET as of 2007. All

���

Software Engineering Accreditation in the United States

of these programs award a Bachelor of Science
degree in Software Engineering. The programs
have a range of student populations from 30 to
over 400.

Name of Institution Year Accreditation Awarded
Auburn University 2005
Clarkson University 2003
Embry-Riddle Aeronautical University (Florida) 2005
Fairfield University 2006
Florida Institute of Technology 2004
University of Michigan-Dearborn 2005
Milwaukee School of Engineering 2003
Mississippi State University 2003
Monmouth University 2005
Penn State University – Erie 2006
Rochester Institute of Technology 2003
University of Texas at Arlington 2004
University of Texas at Dallas 2006
Rose-Hulman Institute of Technology 2007
University of Wisconsin - Platteville 2007

Table 2. Year when program was accredited

Figure 1. Number of undergraduate software engineering programs

EXPERIENCEs OF PROGRAMs
AND PROGRAM EVALUATORs

The authors have completed informal on-line
surveys of both software engineering programs
that have been accredited by ABET and the ABET

 ���

Software Engineering Accreditation in the United States

without appropriate review. The programs that
have had this problem have generally tightened
their advising, monitoring and course substitution
approval processes.

Most programs have had difficulty meeting
the Program Educational Objectives criterion.
These objectives represent achievements that
students would be expected to reach after gradua-
tion. As such, the data are not under the program’s
direct control. One program commented:

“Assessing educational objectives is difficult. You
must rely on outside information to get assess-
ment data, and it is difficult to get enough results
to make a reasonable measurement. Traditional
alumni survey completion rates are very low and
when the number of graduates is relatively low, it
is difficult to get enough data from alumni survey
results. Employer surveys are equally difficult to
get unless you have dedicated employers that hire
a large number of your graduates.”

The Program Educational Objectives crite-
rion requires a process, based on the needs of the
program’s constituents, in which the objectives
are determined and an ongoing evaluation of the
extent to which the objectives are being attained,
the result of which must be used to improve the
program.

Programs have sometimes created their
Program Educational Objectives without the
involvement of the program’s constituencies or, in
a few cases, without even explicitly defining those
constituencies. To avoid this problem, successful
programs have usually defined their constituents
very explicitly in their self-study report. The
constituents described are usually the program’s
students, the program’s faculty and an industrial
advisory committee representing potential em-
ployers of the program’s alumni. Some programs
have added parents of students, administrators of
the institution and the state or region’s economy.
Reasonable and acceptable Program Educational
Objectives have typically been created by first

program evaluators who have been involved in
reviewing those programs. We have supplemented
the data gathered in those surveys with our per-
sonal experiences as program evaluators and as
program leaders to characterize the experiences
of programs that have been accredited.

Both programs and program evaluators report
that the programs that have been accredited have
typically had little difficulty meeting the require-
ments of the Facilities and Support criteria.
However, both programs and program evaluators
report that several programs have had to take
action, sometimes significant action, to meet the
requirements of the Students, Program Edu-
cational Objectives, Program Outcomes and
Curriculum criteria. Survey results indicate a
few cases of disagreement, or even contention,
between programs and program evaluators, spe-
cifically in the areas of faculty qualifications and
curricular topics. The next two sections of this
chapter highlight evaluation findings related to the
criteria that have resulted in improvement actions
by the software engineering programs and those
criteria which have caused some tension between
programs and their evaluators.

CRITERIA REsULTING IN
IMPROVEMENT ACTIONs bY
PROGRAMs

Many programs reported that they have adopted
automated grade tracking and degree audit sys-
tems that are being used to replace some regular
face-to-face student advising. This has made it
more difficult to demonstrate that student progress
is being properly evaluated and monitored by
the faculty for conformance to program require-
ments as required by the Students criterion. A
few programs found that they were not advising
and monitoring their students carefully enough.
This sometimes resulted in students not complet-
ing all of the courses required by the program,
usually due to course substitutions that were done

��0

Software Engineering Accreditation in the United States

having the faculty draft a set of six to eight specific
things that they would expect their graduates to
achieve within a few years after graduation. Then
these objectives are discussed with, and perhaps
modified by, an industrial advisory committee,
after forming such a committee if one doesn’t
already exist. A description of the interaction with
constituents is documented and the objectives are
published, usually in the institution’s catalog, on
the program’s web site and in any materials being
used to market the program. Some have developed
employer surveys to get feedback on achievement
of Program Educational Objectives and a few
have modified the wording of their educational
objectives to eliminate misunderstandings of the
wording.

Most programs seeking initial accreditation
have found it very difficult to measure achieve-
ment of their objectives by the time of the first
evaluation visit, which usually occurs in the fall
after the first alumni have graduated from the
program. About the only thing the program can
practically do within those few months is to in-
formally speak with members of their industrial
advisory board who may have hired the program’s
first graduates to get feedback on their opinions
about the students’ likelihood of meeting the
objectives. Some programs have put off this step
until several months after the visit and simply
describe what the program is planning to do to
evaluate achievement of the objectives.

In the period following the introduction of
the EC2000 criteria, a common source of diffi-
culty was confusion among program leaders and
program faculty about the differences between
educational objectives and program outcomes.
Self study reports frequently made the objectives
and the outcomes sound very similar to each other.
Sometimes programs have used the same set of
capabilities in describing the objectives and the
outcomes and have simply grouped them in differ-
ent ways. The intent of the ABET criteria is that the
objectives and the outcomes are clearly different
things. The easiest way to distinguish them from

each other are that the outcomes should be things
that students are expected to achieve by the time
they graduate while the objectives are career and
professional accomplishments which they would
be expected to achieve after graduation. As time
has passed program leaders and faculty seem to
have become more familiar with this distinction
and the confusion has been diminishing.

Some programs and evaluators noted issues
with the Program Outcomes criterion. One
program, which was using student portfolios
as the primary method for assessing outcomes,
augmented their collection and evaluation of
student portfolios based on suggestions made
by the program evaluator. This augmentation
involved developing very explicit instructions for
students describing what they should include in
their portfolios, how it should be organized and
a rubric for use by the faculty describing how to
evaluate the portfolio contents.

With regard to the specific “a-k” outcomes,
some programs expressed difficulty sufficiently
demonstrating achievement of: f) an understand-
ing of professional and ethical responsibility;
h) the broad education necessary to understand
the impact of engineering solutions in a global,
economic, environmental, and societal context;
i) a recognition of the need for, and an ability to
engage in life-long learning; and, j) a knowledge of
contemporary issues. They have usually developed
additional methods for measuring these outcomes
and sometimes have developed new courses or
added content to existing courses.

Some programs have had difficulty in com-
plying with the requirements of the Curriculum
criterion related to the culminating major design
experience. This program component must pro-
vide a significant software engineering design
experience to each student. In some cases this
“capstone” experience may fall more into the
realm of research than design or fail to incor-
porate appropriate engineering standards and
constraints. Programs encountering this problem
have had to develop methods to ensure that their

 ���

Software Engineering Accreditation in the United States

projects have significant design content, that the
work was clearly and completely documented,
and that engineering standards and constraints
were appropriately considered.

THE MOsT DIFFICULT Iss UEs

While the survey results indicated a good deal of
agreement between program leaders and program
evaluators, there were some exceptions. Specifi-
cally, there was some evidence, of inconsistency,
and even some contention, related to faculty
qualifications and curricular content.

Program leaders generally reported no prob-
lems related to faculty qualifications. However,
several program evaluators expressed concerns
regarding a low proportion of faculty with true
breadth and depth of experience in software
engineering. This issue seemed to arise primar-
ily in software engineering programs housed in
computer science departments. As one evaluator
stated, “It is sometimes difficult to agree with
established CS programs adding an SE program
that they have sufficient breadth and stability in
SE to satisfy the ABET criteria.”

Another concern of some evaluators related to
the isolation of some software engineering faculty
members, who seemed to have little involve-
ment with the software engineering practitioner
community and with the software engineering
education community.

PEVs noted a need for all faculty to be aware
of and be involved with the ABET/EAC proce-
dures and self-study preparation. The problem
most frequently observed across all criteria has
been defining appropriate and viable assessment
and evaluation processes. Even when adequate
processes have been defined, PEVs often identi-
fy problems with faculty compliance. To satisfy
the requirements of outcomes assessment, the
program faculty members must be committed
to ongoing execution of the defined processes.
Most programs and evaluators understood that

the Outcomes Criterion requires the direct
measurement of student outcomes via capstone
projects, portfolio evaluations or specific quiz
or exam questions. However, almost all agreed
that the overhead required to do this rigorously
placed a high burden on the programs, particu-
larly for programs that had decided to evaluate
all outcomes and all students every year.

As noted previously, the software engineering
Program Criteria require appropriate curricular
content. Several evaluators commented that there
were problems with programs’ interpretations of
the breadth and depth of software engineering
material required to satisfy these criteria. They
said that these problems have most frequently been
seen when programs are developed from a base
of a computer science or a computer engineering
curriculum.

Two programs reported that they have had
problems with a specific program evaluator’s
interpretation of the requirements related to Pro-
gram Criteria. These evaluators, they say, were
looking for coverage of a specific topic area, such
as software evolution, as part of the maintenance
activities which students are required to be able
to do by the time they graduate according to this
criterion.

In the case of programs that have had problems
with curricular content, faculty members have
sometimes felt that they were already covering
many of the required software engineering topics.
By requiring students to take specific existing
computer science courses and adding a software
engineering capstone course to the curriculum,
they felt that they would meet the breadth and
depth requirements.

The programs that have been most successful
in satisfying the curriculum requirements of the
program criteria have linked their curricula to
accepted frameworks such as the Guide to the
Software Engineering Body of Knowledge (2004)
and Joint Task Force on Computing Curricula
(2004) and have made these links explicit in
their course syllabi, by describing which courses

���

Software Engineering Accreditation in the United States

cover which topics outlined in those documents.
The number of specific software engineering
courses in these programs usually ranges from
six to twelve. Typically those courses cover 50%
to 80% of the topics specified in the referenced
documents.

While the program criteria do require breadth
and depth of software engineering content, it is not
necessary that these topics be covered in specific
“software engineering” courses. However, if this
content is embedded in other (e. g., computer sci-
ence) courses it must be very clear from the course
syllabi and from the work done by students that
the software engineering topics are, in fact, being
covered. It is a common expectation that at least
some of these courses employ textbooks that ad-
dress a variety of advanced software engineering
topics, and that they do not rely primarily on the
small number of commonly used introductory
software engineering textbooks.

IMPROVEMENTs MADE

The variety of improvements that have been made
as a result of assessment and preparation for ac-
creditation visits is extremely long. This section
will summarize a subset of those with which the
authors are familiar.

For the requirements related to Students, a few
programs have found that they were not advising
and monitoring their students carefully enough.
This sometimes resulted in students not complet-
ing all of the courses required by the program,
usually due to course substitutions that were done
without appropriate review. The programs that
have had this problem have typically tightened
their advising and monitoring processes to insure
that the problem does not happen in the future.

Several programs have formed new industrial
advisory committees and gotten them deeply
involved in helping to specify Program Educa-
tional Objectives. A few have developed employer
surveys to get feedback on achievement of pro-

gram educational objectives and at least one has
modified the wording of its objectives to eliminate
misunderstandings of the wording. Based on our
experience, with our own programs and with
programs that we have evaluated, we believe that
the greatest benefits to the programs have been
the improved relationships between the programs
and local industry that have resulted from the
involvement of industrial advisory committees
in the accreditation process.

In response to shortcomings identified in the
Program Outcomes area and to the measurement
of specific outcomes, many programs have modi-
fied the content of specific courses, usually with
small changes to assure that prerequisite courses
were meeting the expectations of instructors in
later courses. Some programs have developed
specific courses to assure that students were devel-
oping an understanding of professional and ethi-
cal responsibilities. Others have developed new
methods and courses for assuring that students
were receiving a broad education, recognizing the
need to engage in life long learning and developing
an understanding of contemporary issues. All of
these improvements were made as direct results
of measurements indicating that student learning
results were below expectations for one or more
of the specified outcomes.

To effectively demonstrate compliance with
the requirements for a major design experience by
the Curriculum criterion, some programs have
provided additional encouragement for students
to document their engineering processes, design
approaches and their consideration of engineer-
ing standards and multiple practical constraints
in their design projects.

To address shortcomings related to faculty
experience and competencies to cover all cur-
ricular areas, as required by the Faculty criterion,
a few programs have added one or more faculty
members. Typically they have taken advantage of
existing open positions or of planned retirements
to add these resources. To strengthen faculty
guidance and oversight, some programs have

 ���

Software Engineering Accreditation in the United States

decided to encourage faculty member participa-
tion in workshops related to ABET accreditation
and assessment.

To meet the Program Criteria requirements
for curricular breadth and depth, a number of
programs have modified their courses and their
curricula to insure that adequate coverage of topics
such as verification, validation and maintenance.
Some have developed completely new courses to
address missing content or to provide additional
depth in certain areas.

While few of the programs from which data
were collected reported unexpected benefits, those
who have made improvements uniformly reported
that the improvements made were beneficial
and should have been made, with or without an
accreditation process. In several cases program
leaders agreed that the results of the accreditation
review gave them leverage with both members of
their faculty and with their institutions’ adminis-
tration to make appropriate improvements. And,
finally, all agreed that having ABET accreditation
gives credibility to their programs by certifying
that their software engineering program is a real
engineering program.

FUTURE DIRECTIONs

At the time this chapter was being written, there
were 35 undergraduate software engineering pro-
grams being offered by colleges and universities
in the United States. Fifteen of them have been
accredited by ABET. It appears likely that most
of the remaining programs, which are not yet
accredited, will be seeking initial accreditation
within the next few years.

 Finally, the National Academy of Engineer-
ing has made a recommendation that the master’s
degree should become the first professional degree
accepted for entry into the engineering profession.
Currently, ABET allows only one degree level
at each institution in each field of engineering
to be accredited. If the master’s degree becomes

the entry point into the engineering profession,
that would imply a policy or practice change for
ABET to allow accreditation at both the masters
and bachelors level or to award accreditation pri-
marily at the masters level. There are several good
arguments for and against each of these proposals.
Only time will tell if any change will be made and
what form that change is likely to take.

REFERENCEs

ABET. (2006). Accreditation policy and procedure
manual. Baltimore, MD. ABET, Inc. Retrieved
May 13, 2007, from http://abet.org/forms.shtml.

 Computing Research News (2007), 2005-2006
Taulbe Survey, May 2007.

Duggins, S. L., & Thomas, B. B. (2002). An
historical investigation of graduate software
engineering curricula. Proceedings of the 15th
Conference on Software Engineering Education
and Training (CSEET’02), Los Alamitos, CA,
IEEE Computer Society Press.

Engineering Accreditation Commission. (1999).
Criteria for accrediting engineering programs:
Effective for evaluations during the 2000-2001 Ac-
creditation Cycle. Baltimore, MD. ABET, Inc.

Engineering Accreditation Commission. (2000).
Criteria for accrediting engineering programs:
Effective for evaluations during the 2001-2002 Ac-
creditation Cycle. Baltimore, MD. ABET, Inc.

Engineering Accreditation Commission. (2001).
Criteria for accrediting engineering programs:
Effective for evaluations during the 2002-2003 Ac-
creditation Cycle. Baltimore, MD. ABET, Inc.

Engineering Accreditation Commission. (2002).
Criteria for accrediting engineering programs:
Effective for evaluations during the 2003-2004 Ac-
creditation Cycle. Baltimore, MD. ABET, Inc.

���

Software Engineering Accreditation in the United States

Engineering Accreditation Commission. (2007).
Criteria for accrediting engineering programs:
Effective for evaluations during the 2007-2008
Accreditation Cycle. Baltimore, MD. ABET,
Inc. Retrieved May 13, 2007, from http://abet.
org/forms.shtml.

Engineering Accreditation Commission. (2007a).
Engineering self-study questionnaire. Baltimore,
MD. ABET, Inc. Retrieved May 13, 2007, from
http://abet.org/forms.shtml.

Guide to the Software Engineering Body of
Knowledge (2004), Bourque, P. and Dupuis,
R., (Eds.), Los Alamitos, CA, IEEE Computer
Society Press.

Joint Task Force on Computing Curricula. (2004).
Software Engineering 2004: Curriculum Guide-
lines for Undergraduate Degree Programs in
Software Engineering. IEEE Computer Society
and Association for Computing Machinery.

Tomayko, J. E. (1998). Forging a discipline: An
outline history of software engineering education.
Annals of Software Engineering 6(1998), 3-18.

 ���

Chapter XIV
Software Engineering

at Full Scale:
A Unique Curriculum

Jochen Ludewig
Universität Stuttgart, Germany

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abs TRACT

In 1996, a new Software Engineering curriculum was launched at Universität Stuttgart. It was based on
many years of practical experience teaching computer science and also on experience in industry where
most of our graduates will find jobs. While the topics of this curriculum are not very different from those
of computer science, there is much more emphasis on problem solving, software construction, and project
work. In 2009, our traditional curriculum leading to the so-called diploma (equivalent to a master’s
degree) will be replaced by a new curriculum according to the bachelor and master concept. This chapter
describes both the old and the new curriculum, and discusses problems and achievements.

INTRODUCTION

Software engineering is usually taught as a special
course for students studying computer science
or engineering. But software engineering is not
just a set of topics, as the SWEBOK (SWEBOK,
2004) suggests, but also, or primarily, a particular
mindset, a way of thinking, very similar to the
mindset engineers tend to have. One might say
that you get a software engineer if you combine a

computer science graduate’s knowledge with the
mental structure, the way of thinking, reasoning,
and solving problems, of an engineer.

In order to educate such people, it is not enough
to modify our CS programs by some cosmetic
changes, a new lecture or a nice little project. We
need a radical change. And we cannot pretend that
our knowledge should be good enough for our
students; we have to teach them what they need
rather than teaching them what we like, because

���

Software Engineering at Full Scale

most people like to teach what they have taught
all the time (Ludewig, Reißing, 1998). This paper
describes such a new curriculum that was launched
in 1996, and discusses our experience.

bACk GROUND

Traditionally, students of science and engineer-
ing in Germany finally receive a diploma, which
is equivalent to a master’s degree. Since there is
no formal level below the diploma, there is no
equivalent to the Bachelor’s degree and, hence, no
straightforward mapping between a curriculum
in Germany and a curriculum in Great Britain or
in the United States.

The Diploma curriculum is similar to what is
called an integrated master’s degree program in
Great Britain, India and some other countries.

Though space does not allow for a detailed
comparison, here are some significant differ-
ences:

• In Germany, three levels of school education
are available, differing in their requirements
and in their duration. The highest level leads
to a final examination, the so-called “Abitur”.
One out of three young people actually pass
this examination, usually at an age around 19.
In most of the engineering studies including
computer science and software engineering,
those who hold an Abitur may enrol without
entrance examinations. But many of them
underestimate the difficulties they encounter
at university. That is one of the reasons why
many students fail soon after beginning.

• A complete curriculum consists of 9 se-
mesters: 4 semesters for the “basic studies”,
another 4 for the “advanced studies”, and
one for the diploma thesis. Most students
take more time, resulting in an average of
some 12 semesters. Many students have a
part-time job in industry, or even run a small
business.

• Both written and oral examinations are
offered once in every semester; there are
no mid-term exams. Students may attend a
lecture this year and take the examination
next year or even later. If they fail, they are
required to repeat the examination after
another semester. If they do not pass in the
second attempt, they have to leave.

• The curriculum of the basic studies (se-
mesters 1 through 4) is fairly rigid because
there is little choice for the students. Still,
they may postpone lectures and exami-
nations. Therefore, only a minority has
actually finished all the examinations that
constitute the so-called “Pre-diploma”
(Diplomvorprüfung) after two years. The
Pre-diploma is not a degree but only the
entrance condition for the advanced studies.
Though the Pre-diploma may at first sight
resemble a bachelor’s degree, it is in fact very
different because it covers mainly fundamen-
tal topics like mathematics and theory.

• In the advanced studies, the students can
arrange their schedule as they like. When
they have met all requirements, they can
start their diploma thesis, which is strictly
limited to six months.

The effect of these differences is that our stu-
dents must take full responsibility for themselves.
If they fail to work continuously, they will drop
out sooner or later, as more than 50 % actually do.
Those who survive can usually handle common
problems fairly well. Colleagues from abroad
who come to Germany and teach at our university
tend to find that the system is strange for them
but works well for those who succeed.

Faculty members in Germany enjoy a consti-
tutional freedom of teaching: While we have to
teach, we decide what we teach. This freedom
has a subtle influence on curricula: There are no
standardized components like in the US, because
any professor teaching e.g. the basic course “in-
troduction to CS” can (and often will) change the

 ���

Software Engineering at Full Scale

content, the text book, and the exercises. When
we design a new curriculum, we better make
sure that we can actually implement it with the
faculty that is around. If they do not like it, the
curriculum will not work.

A few years ago, there was a political decision
(the so called “Bologna agreement”) to switch to
the bachelor/master schedule; these changes will
be discussed in the final part of this chapter.

Other changes take place as well. Tradition-
ally, universities (like schools) were free for the
students who had to pay a small administrational
fee only. Now, they are charged in most states
of our federal republic. Currently, charges are
low compared to most universities in the world
(around 1000 € per year), but this may be only
the beginning. Private schools and universities do
exist in Germany but are not relevant in a statisti-
cal sense. More than 96 % of all students attend
one of the public universities; if only universities
offering a Ph.D. are considered, it is more than
99 % (HRK, 2007).

CONCEPTs

When the Software Engineering curriculum (SEC)
was designed in 1995 and 1996, little material was
available. There was a guideline issued by the
German CS society (Gesellschaft für Informatik,
1985); a new guideline was being prepared at that
time. While the new guideline did not influence
our curriculum, the curriculum had some impact
on the guideline (Gesellschaft für Informatik,
1997; Mahn et al., 1999). Some of our concepts,
in particular the large projects, have been success-
fully copied in other universities (cp. Bungartz,
Bernreuther, 2006), but a complete university-level
curriculum in software engineering has not yet
been offered anywhere else in Germany.

In 1995, our department decided to have an
evaluation of the CS curriculum including inter-

views with alumni. Many of them voted for better
education in software engineering.

The SEC was launched in 1996. Since then,
every year some 60 to 140 students were enrolled.
In 1999, the SEC was evaluated by an international
group of peers, with extremely positive results.
Some minor changes were implemented shortly
after. This paper refers to the SEC that has been
applied since 2000.

The fundamental idea was to offer a curriculum
that comprises most of the courses also contained
in the CS curriculum, but far more project work
of various types. The structure is very similar to
an electrical engineering curriculum. (The author
who designed the curriculum holds a diploma
in electrical engineering.) This concept is often
confused with an education covering both tradi-
tional engineering and CS, like the curriculum
at MacMaster University in Hamilton, Ontario
(Parnas, 1999). While their graduates are engi-
neers in a traditional sense, our graduates should
cooperate with other engineers, but not replace
them. The similarity to other engineering studies
lies in the practical, constructive approach: If you
encounter a problem, solve it using a minimum
of resources!

Many universities offer courses in software
engineering as an add-on for CS students. But,
despite SWEBOK, software engineering is not
only a body of knowledge. Software engineering
is a paradigm. If you put physicists into some
courses on materials, they will still be physicists,
not electrical engineers, because they have not
enjoyed an engineer’s education. Software engi-
neering must be taught, and practiced, early.

Some time ago, when I talked to a student, I
asked him if he was a CS student or an SE student.
He said that he was a first year SE student. “Well,
then you won’t really feel a big difference, do you?”
“Oh yes, I do”, was his answer. “The CS students
are those whose programs are unreadable.”

���

Software Engineering at Full Scale

COURsEs

Students of Software Engineering share more
than 50 % of their courses with CS students.
They all have the usual courses on mathematics,
theoretical computer science, programming lan-
guages, data base systems, etc. Figure 1 shows
the complete SEC. Black lines under the boxes

represent examinations, while dotted lines stand
for the successful participation in exercises or
small projects.

“L” stands for lecture, “E” for exercise, “P”
for projects, “H” (hour) for anything else. The
lesson is 45 min per week, but the usual format
is a double pack. Therefore, “3L 1E”, e.g., means
three lectures plus one exercise, 90 min each, in
two weeks.

Figure 1. Software Engineering curriculum

 ���

Software Engineering at Full Scale

Here is a list of those components (courses)
that were designed for, and are offered exclu-
sively to, the Software Engineering students.
They are discussed in detail in the following
paragraphs.

a. Programming lab (b (1st semester)
b. Courses in English and economics
c. Programming in the large (“Introduction to

SE I” in Figure 1), including project-manager
training using a project simulator (SESAM)
(3rd semester)

d. Programming in the small (“OOP” in Figure
1) (3rd semester)

e. Formal methods (“Introduction to SE II” in
Figure 1) (4th semester)

f. First software project (“Basic project” in
Figure 1) (4th semester)

g. Lecture on advanced software engineering
(5th semester)

h. Large software project (5th and 6th semes-
ter)

i. Large software project in an application area
(6th and 7th semester)

j. Project on problem analysis (8th semester)

All the lectures described below include ex-
ercises where small problems are discussed. The
exercises are usually under the control of Ph.D.
students (who are, in most cases, employees of
the university). The volume is given in credit
points. Our standard formula is 3 credit points
per 2 lessons (= 2*45 min) per week for a full
semester (15 weeks).

COURsE DETAILs

Programming Lab (1st semester;
3 Credit Points)

Many students have written programs before they
enter the university, while a few have not. There-
fore, we have to teach programming, preferably

using a language that is equally unknown to all
the students. Currently, we teach Ada as the first
programming language.

Programming is taught in the introductory
course (where SE students are not separated
from the CS students). The programming lab is
directed towards systematic programming, with
emphasis on style guides and other standards
(e.g. for comments) that are to be observed. Our
message is: The program that you build is not
for you. It is for others who have to read and
maintain it.

Until recently, we used to teach programming
like most people do, i.e. bottom-up. Students
learn some concepts of programming, like types
and control structures. Then, they build a small
program. From a software engineering point of
view, that is wrong. Soon after, it takes us much
effort to convince our students that large programs
are not just multiples of small ones. The fact that
software engineering is primarily concerned with
complexity is not well integrated.

Therefore, we changed this course, start-
ing with a fairly large software system. We
use a program named AdaDoc, which gener-
ates HTML documents from Ada code. It is
sufficiently large (2700 statements, 9341 non-
comment source lines, more than 23 000 LOC
altogether) to challenge the students. In order to
modify this program, they have to understand
it, though only partially. They easily learn to
appreciate good style (egoless programming).
The new course started only recently (in October
2007), but the first results are very promising.
Students co-operate and learn from experience
and understanding what used to be a boring,
bureaucratical command.

Courses in English and
Economics (3rd and 4th semester;
6 Credit Points)

All our students (at least those who grew up in
Germany) learned English in school. But some

��0

Software Engineering at Full Scale

of them did not learn it very well. In order to
make sure that our graduates can read English
documents and communicate on an international
level, we offer a course followed by a test (similar
to a TOEFL). They also learn some economics
because many of them will later be managers or
run a software company.

Programming in the Large, Including
Project Manager Training Using a
Project s imulator (sEsAM)
(3rd semester; 6 Credit Points)

The whole curriculum is project-driven. There-
fore, the lecture on programming in the large
covers a small project from planning and cost
estimation all the way to testing, in order to equip
our students for the larger projects (see d, g, h).
Towards the end of this course, students practice
software project management using a simulator
that was developed in the department (SESAM;
Drappa, Ludewig, 2000).

Programming in the small
(3rd semester; 4 Credit Points)

Complementary to programming-in-the-large
(b), students learn how to develop object-oriented
systems using UML and Java.

First software Project (4th semester,
9 Credit Points)

In groups of three, students develop a mid-size
program. All students start from the same (in-
formal) specification. Some of the results are
still in use, e.g. a tool for generating time shift
diagrams.

Formal Methods (4th semester;
5 Credit Points)

Students learn how to apply formal techniques
for specification and verification; currently, they
use Alloy as a specification language.

Lecture on Advanced software
Engineering (5th semester; 6 Credit
Points)

This lecture has two goals: Firstly, students should
know more about software project management
for mastering the problems of the large projects
(see below). Secondly, some topics not strongly
related to their project work like process assess-
ment and improvement or ethics need to be ad-
dressed as well.

Much time is dedicated to discussion and
motivation. Only if the students understand why
good software engineering is desirable will they
be able to convince their colleagues in industry.

Large software Project (5th and
6th semester; 24 Credit Points)

Research groups submit proposals for projects
to the curriculum committee. These projects
should not include research but serious software
development. Most frequently, students develop
some new tool or a new component for an existing
tool. When a project has been accepted students
can select it; but their freedom is limited by the
condition that each project must have between
six and twelve participants.

We require for each project certain roles to
be provided by the research group: There must
be a professor who will eventually examine the
students; there is a customer, and there are (usu-
ally) two supervisors who will help the students
when necessary. In order to avoid confusion, the
customer must not serve as a supervisor; these
roles are clearly separated. All responsibility rests

 ���

Software Engineering at Full Scale

with the students. Projects differ widely; in the
Software Engineering group, all projects start with
a bidding phase. If there are nine participants (the
ideal size!), they form three competing companies.
After talking to the customer, they will prepare a
presentation, trying to win the project. Then the
groups are merged and they all work together.
(The research group is not involved except for the
roles mentioned above.) They will elect a project
manager and organize their work following the
principles they have learned in their lectures and
in the small project they have done before. While
the project manager usually keeps his or her role,
all other students take several positions; somebody
may e.g. co-author the specification, implement
parts of the system, and organize the reviews.
This is left to the team. They have to document
their effort, so they notice if somebody spends
significantly less or more time on the project
than others.

For ten to twelve months, the students spend
much time together, and they experience all the
problems and frustrations of real projects. This
includes the effects of working in a fairly large
group; while three people can cooperate without
much organization, eight or ten can not. So they
learn to appreciate good processes and sound
project management. We try to make sure that
they are eventually successful because we strongly
believe that positive experience is much more
effective than negative experience.

There is not just one “right solution”. If it works
and the documents are fairly complete and use-
ful, it is fine. We found that a process with two
passes is promising: They design and implement
the core parts in about half of the time and then
ask for feedback. Depending on the corrections
and improvements that turn out to be necessary,
they add some of the parts that are merely nice
to have in the second pass.

Finally, the students will deliver a product to
the customer. This final presentation tends to be
quite an event. And most of the projects deliver
software that is as good as, or even better than,

software that is commercially available. Many
of the systems are actually used and maintained
afterwards.

The large projects include lectures and a semi-
nary which addresses some more ambitious topics
related to or beyond the project. We give marks on
the project work (weight 0.5), the seminary (0.2),
and the examination (0.3), resulting in one final
mark. Nobody can pass who fails in the project
work. We usually grade the project as a whole and
apply corrections for those whose contributions
were clearly above or below average.

In our (i.e. in the Software Engineering group’s)
projects, we tried various settings, depending on
the task. Sometimes, we had customers from in-
dustry; sometimes we were the customers (asking
for a new component for our SESAM system, see
above). Our latest project (finished in November
2007) produced a new tool for glass box test-
ing. This tool can collect, and visualize, several
coverage metrics. The developers were required
to develop software for the public domain; in
the seminary, we discussed not only technical
aspects of testing, but also questions concerning
the licenses used in the public domain.

Large software Project in an
Application Area (6th and 7th
semesters)

Every student chooses an application area where
he or she has to collect 18 credit points from
written or oral examinations. We currently offer
three such areas:

• Traffic systems (railway, air traffic, etc.)
• Industrial automation (including robotics

and all the machines used in modern fac-
tories)

• Technology management (e.g. product en-
gineering)

In this application area (i.e. in the department
that sponsors the application area), students do

���

Software Engineering at Full Scale

not only attend lectures and are graded but also
do their second large project. While these projects
are formally just like the first ones, they tend to
be more “realistic” because they take place in an
environment where software engineering is not
considered a primary goal and students cannot
expect to get much support.

There is no particular reason to have just the
application areas listed above; they (i.e. the depart-
ments) happened to be interested when we started
and were able to offer projects for our students.
We have to make sure that projects are sufficiently
large; therefore, we did not yet extend the list
(though other departments applied as well).

small Project on Problem Analysis
(8th semester; 5 Credit Points)

In industry it is necessary to make decisions based
on insufficient information. However, students do
not like to express a definitive opinion. They would
rather collect data in tables and charts and avoid
taking a position. In this small project, we usually
have a partner in industry where some question has
to be answered, like “should we switch to a more
complex tool for software configuration manage-
ment?” or “is XP an attractive approach for our
projects?” Then, three students analyse the situ-
ation, collect useful information on the problem,
read the available books and papers, interview the
stakeholders, and give a presentation on their final
decision. Though this is only a small project, our
experience is overwhelming. The students like it,
and the companies like it even more.

Industrial Experience (3 Months,
at Any Time)

Our students are required to spend at least three
months in a company where software is devel-
oped. Only a few parameters are given, such as
the minimum size of the company. The students
have to deliver a report on their experience; the
report is checked but not graded.

In most cases, our students learn that software
engineering is not easy under the harsh conditions
of industry. Some of the reports are more like horror
tales. But the students recognize what is missing
and they have a much better understanding of good
software engineering afterwards. Reading their
reports provides feedback for our lectures.

EXPERIENCE AND LEss ONs
LEARNED

After more than ten years, we have collected a
large number of observations some of which are
consistent with our expectations, while others
are surprising.

Daring a Revolution

• Introducing a radically new curriculum is
a very ambitious project that will fail in
most circumstances. The hardest part is
convincing the colleagues; they usually
try to defend the status quo because any
real change means either more work or less
influence for somebody.

• Some of our new students expected a cur-
riculum without mathematics and theory.
They had to face the fact that SE is everything
but just hacking.

Demand and supply

• The demand for this curriculum has been
steady for many years. Now, the number of
new students is getting close to the numbers
in CS. In 2007, for instance, there were 109
freshmen in CS and 89 in Software Engi-
neering.

• Since the graduates hold a CS degree just like
those who were in the CS program, they are
hired like other CS graduates. (For several
years, industry has been desperately look-
ing for software people in Germany.) Those

 ���

Software Engineering at Full Scale

in industry who know our program often
ask for graduates who could contribute to
software quality assurance and other fields
where software engineering competence is
essential.

Projects

• Large projects are highly attractive and often
deliver very good results. Many professors
are now keen on offering such projects be-
cause they know they get sound and really
useful software. Most students like projects
because they can demonstrate their abilities,
learn a lot, and get much more satisfaction
than from examinations. A large and useful
project creates a win-win-situation.

• Supervising a project is hard work, even
though we do not participate in the projects.
Most effort is spent on checking interme-

diate results and for fire fighting when the
project is in trouble. We want the students
to ask for help if they need it; but they
often do not recognize that they need it.
Therefore, we have to watch their progress.
Before a project is launched, the envi-
ronment has to be set up because there
is not enough time in the projects for
evaluating and acquiring new tools, etc.
On the other hand, we are not afraid of is-
suing tasks without foreseeing the solution.
In engineering, there is not just one correct
path. But any result can be checked for its
qualities. It is not uncommon that students
find solutions that the supervisors never
thought of.

• Working in groups seems to have an effect
on the individual marks. Our students are
significantly more homogeneous than CS
students in their examinations (Figure 2).

Figure 2. Average absolute deviation from the average number of points (written exams in programming
languages and compiler construction, where both CS students and SE students participate)

���

Software Engineering at Full Scale

• Some of the students who are not doing very
well in their exams show a great performance
in projects. Our traditional criteria are bi-
ased towards scientific work, though most
of our graduates will never do research but
develop and maintain software systems and
soon become managers.

• When students do real projects, there is a
strong demand for lectures that address real
problems. Students explicitly ask for hints
(how to write specs, how to design software,
etc.). Using one’s own textbook (Ludewig,
Lichter, 2007) is quite a relief in this situ-
ation, but its omissions are soon revealed.
CS students who are usually not exposed to
project work do not ask such questions.

• In every project, a certain style of coopera-
tion and communication will emerge; we do
not yet know which conditions determine
this style (otherwise, we would like to influ-
ence it). The project manager is obviously
important; but the students choose their
project manager, we do not interfere.

• Any research group in the CS department
may offer projects, i.e. act as a customer. But
customers do not always appreciate good
software engineering. This is not only true
in industry but also within our university.
We had several cases where the customer
challenged planning and quality assurance
in favour of fast progress in coding. Students
have to learn that they must “sell” their
approach well in order to avoid conflicts
between tough deadlines and ambitious
quality goals.

soft skills

• Soft skills, like giving presentations, ne-
gotiating changes or delays, or organizing
groups, do not develop automatically when
needed; they have to be taught. We offer a
course on techniques for writing papers and
giving presentations. We also use the semi-

naries for coaching the presentation skills.
Anything else is done within the projects.

• Industrial experience is very useful in any
case: Students who find a company with high
software engineering standards can see how
it works. Others who get into an environ-
ment where little is known about software
engineering will see what happens when
people work on software unsystematically,
without quality assurance, etc.

• We do not yet offer any other training
courses, e.g. courses on group dynamics,
mediation, or documentation. There is cer-
tainly a need for them, but not necessarily
a demand. Students tend to spend their time
only on activities that pay (in terms of credit
points).

sWITCHING TO bACHELOR’s
DEGREEs

As mentioned in the beginning, our diploma will
soon be abandoned, making way for bachelor’s
and master’s degrees. While students starting
in October 2008 will still follow the traditional
schedule, those who enter in October 2009 will
be in bachelor programs. Many universities
have already switched to the new structures.
(But new students prefer to enrol in other uni-
versities, demonstrating little confidence in the
imported degrees.) In general, this is a revolution
imposed from above, not supported by most of
the faculty.

The Bologna agreement defined a total of 10
semesters. But most universities agreed upon a 6
plus 4 schedule, so we have to design a six-semester
undergraduate course. Some professors believe
that they can simply rearrange their curriculum
because they expect the students, at least the good
ones, to stay for the master’s degree. But a majority
of our students will leave as bachelors, because
they are offered attractive jobs, their grants are
discontinued, and they are fed up with taking

 ���

Software Engineering at Full Scale

exams all the time. Therefore, we have to make
sure that a bachelor is not an incomplete master
but a complete software engineer.

In 2007, we have reached an agreement upon
the new Software Engineering undergraduate cur-
riculum (SEUC, see Figure 3). A master’s course
is currently under construction; since Stuttgart
is the capital of German car manufacturing, we
might offer a degree with strong links to the car
industry (“Automotive Software Engineering”).

The catalogues mentioned at the left are A:
programming languages, data base systems etc.;
B: all areas represented by full professors in the
department; C: all courses in the department.

Is IT sTILL THAT DIFFERENT?

Since the gates of the SEC were opened in 1996,
many universities all over the world have started,
or improved, their software engineering programs.
One might expect that the SEC is no longer a very
special concept.

In fact, the SEC is obviously consistent with the
goals and principles stated in the report by the IEEE
CS & ACM Task Force (2004). But there are also
differences, partially due to different traditions.
The most important point seems to be the SEEK,
the Software Engineering Education Knowledge.
All entries in the list are highly attractive candi-
dates for software engineering education. Still, we
would not attempt to cover them all because we
feel that we will never achieve completeness in any

Figure 3. The future Software Engineering curriculum (bachelor level)

���

Software Engineering at Full Scale

sense. We estimate one deep experience, even in a
fairly small niche of software engineering, higher
than any high-level overview. Our graduates are
expected to solve problems they (and we) never
heard of. We cannot equip them for their future
challenges. But we can provide the experience
that systematic work, continuous quality assur-
ance, plus a fair portion of both knowledge and
creativity do work. That is possibly the shortest
description of our approach. We want to grow
great software engineers (Brooks, 1987).

ENTERING THE AGE OF
sPECIALIsATION

Software engineering is a great area. Many of
our heroes, like Dave Parnas, Barry Boehm, and
Fred Brooks, are still around and still contribute.
Which other field could offer almost the whole
history in one conference room, as we saw in
1991 (Broy, Denert, 2002)?

But the pioneers give way to young experts.
Since the field is large, there is not just one area
of expertise, but many of them, say half a dozen
or even a dozen. Software engineering in banks
and insurance companies is not like software
engineering in automotive systems. Therefore,
there will be specialists on software in various
application areas because these people differ in
their goals, in their methods, in their languages
and tools.

Specialisation is actually taking place but has
hardly been reflected in books and magazines, and
even less so in the education system. There are
– at least – three reasons for this delay:

• There is no generally accepted taxonomy of
the field. We do not know how to cut it into
pieces.

• In most of these areas, we do not have the
accumulated knowledge that would make
up a scientific domain.

• Specialists who could teach in those areas
do exist, but hardly within the universities.
Most colleagues in the department will not
like the idea of having several new professors
who are not members of the CS community
in a traditional sense.

Michael Jackson (1999) has pointed out that
specialisation is very desirable. The IEEE CS
& ACM Task Force (2004, 2.3.3) states: “Do-
main-specific techniques, tools, and components
typically provide the most compelling software
engineering success stories.“ But to date, things
have not changed a lot. If private companies
analysed their needs, they would certainly find
that they should sponsor new professors in their
particular fields. Maybe we should try to com-
municate this idea.

CONCLUsION

The SEC, started in 1996, has attracted more
than 1000 students so far. Very few switched to
CS later (which is comparatively easy). Many
graduates have expressed their view that they have
acquired very useful knowledge and experience.
The curriculum has been influential in many other
German universities, though nowhere else has a
complete software engineering curriculum been
established.

Very soon, the SEC will be replaced by an
undergraduate course leading to a bachelor’s de-
gree. Most, though not all, features will survive.
A master’s degree offering some specialisation
will soon be added.

REFERENCEs

Brooks, F.P. (1987). No silver bullet – Essence
and accidents of software engineering. IEEE
Computer, 20(4), 10-19.

 ���

Software Engineering at Full Scale

Broy, M., E. Denert (eds.) (2002). Software pio-
neers: Contributions to software engineering.
Springer-Verlag, Berlin.

Bungartz, H.-J., & Bernreuther, M. (2006). First
experiences with group projects in CSE Educa-
tion. Computing in Science and Engineering,
July 2006, 16-25.

Drappa, A., & J. Ludewig (2000). Simulation in
Software Engineering Training. Proceedings of
the 22nd ISCE, Limerick, Ireland, 199-208.

Gesellschaft für Informatik (1985). Ausbildung
von Diplom-Informatikern an wissenschaftlichen
Hochschulen. Empfehlung der GI vom 18. März
1985, Informatik-Spektrum 8, 164–165.

Gesellschaft für Informatik (1997). Lehrinhalte
und Veranstaltungsformen im Informatikstudium,
ergänzende Empfehlungen. Informatik Spektrum
20, Heft 5.

IEEE CS and ACM Joint Task Force on Com-
puting Curricula (2004). Software Engineering
2004, Curriculum Guidelines for Undergradu-
ate Degree Programs in Software Engineering.
August 23, 2004.

Jackson, M. (1999). Specializing in software en-
gineering. IEEE Software, 16(6), 119-121.

Ludewig, J., & Reißing, R. (1998). Teaching what
they need instead of teaching what we like – the
new Software Engineering curriculum at the
University of Stuttgart. Information and Software
Technology, 40(4), 239 - 244.

Ludewig, J., & Lichter, H. (2007). Software en-
gineering—Grundlagen, Menschen, Prozesse,
Techniken. dpunkt.verlag Heidelberg.

Mahn, A., et al. (1999). Empfehlungen der Ge-
sellschaft für Informatik e.V. zur Stärkung der
Anwendungsorientierung in Diplom-Studiengän-
gen der Informatik an Universitäten, Informatik-
Spektrum 22, 444-448.

Parnas, D. L. (1999). Software engineering pro-
grammes are not computer science programmes.
IEEE Software, 16(6), 19-30. (Originally published
in the Annals of Software Engineering, Vol. 6,
April 1999, 19-37)

SWEBOK (2004). Software engineering body of
knowledge. http://www.swebok.org/

HRK (2007). Hochschulkompass der HRK
(Hochschulrektorenkonferenz). http://www.
hochschulkompass.de/

���

Chapter XV
Continuous Curriculum

Restructuring in a Graduate
Software Engineering Program

Daniela Rosca
Monmouth University, USA

William Tepfenhart
Monmouth University, USA

Jiacun Wang
Monmouth University, USA

Allen Milewski
Monmouth University, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abs TRACT

The development, maintenance and delivery of a software engineering curriculum present special
challenges not found in other engineering disciplines. The continuous advances of the field of software
engineering impose a high frequency of changes reflected in the curriculum and course content. This
chapter describes the challenges of delivering a program meeting the needs of industry and students.
It presents the lessons learned during 21 years of offering such a program, and dealing with issues
pertaining to continuous curriculum and course content restructuring, the influence of the student body
on the curriculum and course content. The chapter concludes with our recommendations for those who
are seeking to create a graduate program in software engineering, with a special note on the situations
where an undergraduate and graduate program will need to coexist in the same department.

INTRODUCTION

The objective of this chapter is to prepare those
who are seeking to introduce a graduate program

in software engineering (SE) for the challenges
they will face. Towards that end, the lessons
learned during 21 years of offering such a program
at Monmouth University will be presented. As it

 ���

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

will be demonstrated, the development, main-
tenance and delivery of a software engineering
curriculum present special challenges not found
in other engineering disciplines.

This chapter describes the challenges of deliv-
ering a program that meets the needs of industry
and students in a highly dynamic field. The evolu-
tion of the curriculum induced by the domain’s
continuous advances and evolution in industry
practice will be presented. The special meaning
of continuous course content development in
software engineering will be argued through is-
sues pertaining to dated textbooks, ever-changing
programming languages, operating systems, and
software tools. The chapter will also present our
experience in dealing with the diversity of the
student body, and its influence on the curriculum
and course content. The chapter will conclude with
our recommendations for constructing a similar
program, with a special emphasis on situations
where an undergraduate and graduate program
in software engineering will need to coexist in
the same department.

bACk GROUND

Although software engineering was recognized as
a field in 1968 at the NATO sponsored conference
on the subject (Naur, 1968), it took universities and
colleges a significant amount of time to respond
to that fact. It was not until 1986 that Monmouth
University (MU) started a graduate program dedi-
cated to software engineering, which was offered
by its Computer Science Department. In 1995
Monmouth created the first Software Engineering
Department in United States. Now it is one of the
pioneer universities offering a bachelor’s degree
in software engineering.

One motivation for creating a separate soft-
ware engineering program and department was
the awareness of the skills that industry would
like students to have upon graduation, which are
not stressed by most computer science curricula.

These skills include teamwork, communications,
time management, engineering problem solving,
quantitative and qualitative process management,
reuse, requirements management, system archi-
tecture, testing and project management.

As one of the few universities with extensive
and comprehensive experience in offering soft-
ware engineering programs, we have learned
much about providing such a program. With more
and more undergraduate software engineering
programs appearing, we feel it is beneficial to
other institutions for us to share the problems
encountered and lessons learned over the past 21
years. A summary of the problems encountered
and the lessons learned are presented here:

•	 Continuous curriculum restructuring.
One can expect to revisit the overall curricu-
lum of the program every four to five years,
in order to accommodate changes in industry
practice and educational expectations. This
is reflected also in the historical investiga-
tion of the graduate software engineering
curriculum reported in (Duggins, 2002).

•	 Continuous course content restructuring.
It is critically needed due to the dynamics
of the field. The continuous development
of course content implies also a continuous
development of course projects, and dealing
with dated textbooks, ever changing operat-
ing systems, programming languages and
software tools.

•	 Hiring and retaining faculty. The need for
new faculty to have a record of sustained
scholarly accomplishments and industrial
experience enforces great restrictions on the
number of available candidates, as it was also
notified by Glass (2003). Retaining faculty
is complicated by the fact that in addition
to performing their normal teaching duties
SE faculty must continually keep up with
changes in the field as a whole.

•	 Influence of the diversity of the student
body on the curriculum and course

��0

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

content. Issues raised by a diversity of
educational backgrounds, employment
status, educational goals, and communica-
tion skills introduce challenges that need to
be dealt with by any software engineering
program.

The remainder of the chapter discusses in
detail the topics presented above. It begins with
the presentation of the curriculum evolution over
the history of our program. Then it discusses
various issues involved in the continuous changes
of the software engineering course content. The
subsequent section outlines our experience in
hiring and retaining the faculty, followed by a
presentation of the student body influence of the
diversity of the curriculum and course content.
The chapter concludes with the presentation of our
recommendations for those interested in starting
a graduate program in software engineering, and
future trends of the MU program. This discus-
sion will emphasize the accommodation of an
undergraduate and graduate program in software
engineering in the same department.

CONTINUOUs CURRICULUM
REsTRUCTURING

Over its short history, software engineering (SE) as
a field has been a moving target. We have observed
the introduction of the capability maturity model,
the unified modeling language, personal and team
software process, and corporate adherence to ISO
Standards emerge as major forces within software
engineering organizations. We have observed
important changes in analysis and design with
transitions from structured analysis and design
,to object-oriented analysis and design. Even the
architectures being released today have shifted
from client-server architectures to distributed
architectures with the current trend being focused
on service-oriented architectures.

A curriculum that addresses the skills and
practices required by professionals in this field
must continuously reinvent itself over time. The
curriculum of Software Engineering changes
with a frequency on the order of twice a decade
as opposed to decades for engineering (Clough,
2005) and sciences (Stryer, 2003), in general. Just
about every aspect of the software engineering
curriculum is susceptible to change over a de-
cade. In order to accommodate industry’s needs
and to keep pace with the advances of software
engineering as a field, we have added or dropped
courses, and added new tracks and programs. The
decisions were made in the context of creating
and maintaining a balance between the theory,
technology and practical aspects of software
engineering.

Changing the curriculum can not be performed
in an ad hoc manner. We follow a well-defined
process. First, the faculty discusses the need for
change based on feedback from industry, stu-
dents, and current publications. The acquisition
of feedback is a continuous process that is assisted
through an industry advisory board, alumni
surveys, student exit interviews, student learn-
ing outcomes assessment, periodical evaluation
of the program by an external reviewer who is a
prominent figure in software engineering educa-
tion, and attendance at professional meetings.
We have established a set of learning outcomes
that we monitor on a regular basis and we take
into consideration when the need for a significant
curriculum change is required.

Next, the program director writes a proposal
identifying the new curriculum, and any additional
courses that might be required. This effort includes
writing a complete syllabus for each course that is
introduced, modifying existing syllabi for courses
with significant content changes, and a justifica-
tion for each course that is dropped.

The proposal is put forth to the faculty in the
department for comments. Comments include
challenges to the changes in course content and
discussion of the overall package. The syllabi

 ���

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

for the various courses may undergo several
iterations.

Once the proposal is approved within the
department, the proposal is sent to the chairs
meeting within the school. Often times, changes
to the software curriculum may require changes
in the course content of other departments (e.g.,
computer science and the business school).
If significant push-back arises from the other
departments within the school, the proposal is
reconsidered by department.

At the school chairs meeting it can be decided
that a stronger business case is required. An exter-
nal body typically develops this business case. It is
either a survey developed by an independent firm,
or by an external industrial advisory committee.
The business case reflects the needs and state of
industry, which will attract new students.

After the eventual suggestions for change are
incorporated into the proposal, it is submitted
to the university graduate studies committee.
Here the curriculum is evaluated in terms of its
consistency with the University Policies applied
to graduate programs. This includes establishing
maximum class sizes, the number of contact hours,
assignment of lab fees, and other factors.

Next we present the evolution of the Monmouth
University’s Graduate Software Engineering Cur-
riculum. This evolution shows a gradual transition
from a software engineering program created
inside a Computer Science department, towards
a program with engineering courses that span the
entire software lifecycle. It incorporates the results
of a strong collaboration between academia and
industry (Powell, 1997).

The Initial Curriculum (1986)

The initial software engineering curriculum at
Monmouth University consisted of 30 credits,
with 6 core courses and 4 electives (see Figure
1). The core courses covered in detail only the
implementation (in Ada) and project manage-
ment aspects of the software lifecycle, due to the

limited availability of faculty with an appropriate
background. The curriculum looked more like “a
computer science curriculum with an engineering
flavor” (Dart, 1997), covering classic computer
science courses such as algorithms, operating
systems, computer architecture and database
management systems.

Students’ practical training was accomplished
in a 3-credit practicum course. This course con-
sisted of a team project to develop a software
system from initial requirements to the final,
tested and documented product. The early cur-
riculum was biased more on theoretical aspects
(notice the heavy concentration on mathematical
foundations of SE), with less exposure to specific
SE technology and practice, as was very early
recommended in (Ford, 1987).

1991 Curriculum Changes

This curriculum added a number of SE courses,
including formal methods, formal specifications,
software process and SE environments (see Figure
2). However, it still had a bias towards computer
science, offering an artificial intelligence course,
4 courses of mathematical foundations and formal
methods, and 4 courses in network technology,
due to our geographic location in an area domi-
nated by the telecommunications industry. It was
similar to the First MSE model curriculum (Ardis,
1989a; Ardis 1989b) that recommended a set of
10-12 courses, which comprised 6 core courses,
3 or more electives and a two-semester practicum
project. However, due to the lack of qualified
faculty, the core courses offered were not able to
cover the entire software lifecycle.

1995 Curriculum Changes

In 1995 the curriculum was substantially changed
to include 36 credits, with 10 core and 2 elective
courses (see Figure 3), in order to comply with
the Software Engineering Institute model cur-
riculum (Ardis, 1989) and the 1991 Computing

���

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

Core Courses
(6 Courses = 18 Credits)
SE 501 Mathematical Foundation of Software Engineering I
(3 credits)
SE 505 Programming-in-the-large (3 credits)
SE 510 Computer Network Design (3 Credits)
SE 516 Software Engineering I (3 credits)
SE 518 Project Management (3 credits)
SE 525 System Project Implementation (3 credits)
Elective Courses
(4 Courses = 12 Credits)
SE 502 Mathematical Foundation of Software Engineering II
(3 Credits)
SE 506 Programming-in-the-small (3 credits)
SE 509 Programming Languages (3 Credits)
SE 511 Protocol Engineering (3 Credits)
SE 512 Algorithms Design and Analysis (3 Credits)
SE 514 Computer Architecture (3 Credits)
SE 515 Operating Systems Implementation (3 Credits)
SE 517 Software Engineering II (3 Credits)
SE 519 Database Management (3 Credits)

Figure 1. 1986 curriculum

Figure 2. 1991 curriculum

 ���

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

Curriculum guidelines (Tucker, 1991; Ford 1991).
That curriculum covered the entire software
lifecycle in detail, by offering 3 new courses,
specifically in requirements, implementation
and reuse, and testing and quality. A former
elective, software systems security, became a
core course.

Having such a heavy core, this curriculum
offered little f lexibility for learning aspects
of SE that students would be most interested
in. Another major change was ref lected in the
introduction of several new courses that would
form 6 credit elective specialization tracks: in
distributed software systems, software manage-
ment, information systems, and real-time sys-

tems. These tracks were introduced as a response
to the needs and feedback from the local industry,
and government collaborators (Powell,1997). The
curriculum change was made possible by hiring
faculty with both theoretical background and
working experience in industry, supplemented
with a substantial help from adjunct faculty with
expertise in specialized areas of SE.

1996 Curriculum Changes

In 1996 minor changes were made in the cur-
riculum. It remained a 36-credit program, with
9 core and 3 elective courses, which offered a bit
more flexibility than the previous program. The

Figure 3. 1995 curriculum

���

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

curriculum covered all the aspects of the software
lifecycle. The capstone course was either a 3-credit
practicum, or 6-credits of thesis research. The
introduction of a thesis option was made possible
by attracting faculty with the desire to engage in
research activities.

1998 Curriculum Changes

The 1998 curriculum represented another major
change by providing for much more flexibility
in a 36 credit program, with 5 core, 5 elective
courses, and a 6-credit practicum or a 6-credit
thesis (see Figure 4).

The recognition of the importance of exposure
to practical experience in a software engineering
program has lead to the increase of the practicum
project from 3 to 6 credits, and to the introduction
of term projects in most of the courses in the cur-
riculum. This is similar to the recommendations of
the First MSE curriculum (Ardis,1989) of offering
a two semester practicum and as much as 30% of
the program be dedicated to project work.

The MU curriculum continued to follow the
software life-cycle model, as opposed to the CMU
Model (Garlan, 1995), which emphasized teaching
“cross-cutting principles of software develop-
ment” throughout the curriculum. As such, the
CMU Model offered five core courses organized
around modeling, methods of development, man-
agement, analysis and architecture. Also, they
included a software development studio for the
development of practice skills, during the entire
duration of the program.

The 1998 MU curriculum has added a new
course, The Process of Engineering Software,
which largely follows Watts Humphrey’s Personal
Software Process (PSP) principles (Humphrey,
2005). The introduction of this course was justi-
fied by the need for graduates who are aware
and have the necessary skills for predictably
producing high quality systems, in a timely and
cost effective manner, using reusable components
as much as possible in their work. In spite of the

hard work necessary for the manual input of the
data for the various forms and templates involved
in the PSP, students have given us very positive
feedback about the usefulness of the principles
learned in this course. For alleviating the cleri-
cal work related to the manual input of data, we
created a semi-automated tool to support the
PSP process (Rosca, 2001). This tool was the
result of a two-semester practicum project of
one group of students.

Two of the former core courses, math-
ematical foundations of SE, and principles of
SE, have been transformed into preparatory
(bridge) courses (see Figure 4). Together with
three other programming courses the “bridge”
program is offered for students with an under-
graduate major other than computer science,
computer engineering, electrical engineering,
or information systems. After taking the 15
credit preparatory courses and a one-semester
project course, students can receive a certificate
in software development if they don’t wish to
pursue a Master’s program.

The elective courses included in this cur-
riculum were necessary for completing a chosen
specialization track, such as organizational
management, telecommunications, embedded
systems, and information systems. These 15-
credit tracks were much more comprehensive
than their counterparts in the 1995 curriculum.
They comprise courses from other disciplines
such as business, electrical engineering and
computer science. However, students have been
able to select elective courses across tracks if
they didn’t want to pursue a specialization. A
brief description of the specialization tracks is
given next.

The Organisational Management track pre-
pares students to become software development
managers or specialists in software process im-
provement. Topics of study include process im-
provement, quality management, organisational
development and management, risk management
and project planning and management.

 ���

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

Figure 4. 1998 curriculum

���

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

The Telecommunications track prepares
students to become specialists in telecommu-
nications. Topics of study include networks,
software systems security, and evaluation of
telecommunications systems.

The Embedded Systems track prepares
students to become specialists in embedded
systems development. Topics of study include
specification and analysis of embedded real-time
systems requirements, design and implementa-
tion of embedded real-time software systems,
performance evaluation of embedded real-time
software systems, and development of real-time
components.

The Information Management track prepares
students to become chief information officers or
specialists in information systems integration and
development. Topics of study include informa-
tion technology management, specification and
analysis of information systems, evaluation of
information systems, and development of infor-
mation systems software components.

2002 Curriculum Change

In 2002, the only curriculum change was the
addition of a new specialization track: the
Management of Software Technology, offered
in collaboration with the Monmouth University
School of Business. The idea of this track grew
out of the recognition that industry is outsourcing
increasing amounts of software development.
This track prepares students to be chief tech-
nology officers or specialists in the acquisition
of software systems for businesses. Topics of
study include assessing the impact that software
can have on organizations, the development of
requirements for system acquisition via purchase
or outsourcing, the assessment of software tech-
nologies with regard to organizational needs,
and implementing a controlled introduction of
technology into an organization.

All the knowledge areas of the Software
Engineering Body of Knowledge (SWEBOK)

project (Bourque, 2004) can be identified in this
curriculum.

CONTINUOUs DEVELOPMENT OF
COURsE CONTENT

Technologically, the computing field has un-
dergone significant changes that have forced
alterations in the material taught within Soft-
ware Engineering courses. Since the inception
of our SE Master’s program, we have witnessed
the widespread adoption of Object-Orientation
(along with massive changes in techniques and
methodologies), the phenomenal explosion of the
World Wide Web, the emergence of Java, and the
move of security requirements from corporate to
consumer platforms, just to name a few of these
changes. Therefore, the material covered within
a curriculum that addresses the technological un-
derstanding required by professionals in this field,
needs to be continuously updated over time.

This problem emerges in several different
forms. In particular,

•	 Continuous course content changes
•	 Dated textbooks
•	 Operating system/programming language

biases
•	 Continuous development of course proj-

ects

Each of these areas is discussed in greater
detail in the paragraphs that follow.

Course Content Changes

One can expect to have to revise course material
every year. This is necessary to accommodate
technological changes and to incorporate new in-
dustrial practices. For example, since the inception
of our program we have changed the programming
languages taught in class from Ada, to C++ and

 ���

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

Java; in the requirements engineering course
object-oriented analysis methods were added to
the structured analysis methods (Rosca, 2000);
in the design course a transition was made from
structured design to object-oriented design, com-
ponent-based design, and architectural design. In
the testing course we have added segments on
testing applications that are constructed using
commercial off-the-shelf (COTS) components,
using automated testing and test management
tools. For project management more content was
gradually introduced on the use of scheduling
tools, such as MS project, risk simulators, like
Risk+, and discussion of the use of buffer tasks
in the planning of software development projects
(McDonald, 2000). The burden of this continuous
course creation or updating could be alleviated
in the future by the curricular materials offered
by the SWENET project (Lutz, 2003), created by
the professionals in the SE community for the use
of the community, at large.

The continuous revisions of course material
constitutes a significant amount of work on the
part of the faculty. In as little as three years, the
changes within the field are significant enough
that many courses have to be totally redesigned.
The adoption of UML and its subsequent evolu-
tion has forced revisions in design diagrams,
the vocabulary used to describe designs, and
introduce new best practices.

Dated Textbooks

As technology changes and software engineering
evolves, the ability of texts to keep up with these
changes is severely stressed. An instructor will
find himself or herself utilizing three or four texts
in order to properly cover a topic area. Books will
seemingly contradict each other, only because
they were published two years apart. Often, a
book that is only three years old will contain
many concepts that have been already superseded
or renamed. Many excellent textbooks have not
been updated to use current representations, such
as UML2, for example.

This forces faculty continuously research new
and updated prints. The faculty has to take into
consideration student feedback on the useful-
ness of the recommended textbooks. Some new
textbooks might be already dated at the time of
their publication.

Operating system/Programming
Language biases

Few topics seem to generate as much debate as
the selection of which operating system (OS)
or programming language should be the lingua
franca for course work. It seems that everyone
has an opinion or a realistic need to learn one
environment over another. The selection of one
environment over the other has significant impacts
on the tools available for use by the instructor, the
knowledge that the instructor has to bring into
the classroom, and the equipment that must be
maintained. In our case, over the years we have
migrated from UNIX platforms, to Windows, and
to dual-boot machines that run both Windows
and Linux. Most of the students are familiar with
both operating systems, since different instruc-
tors favor one OS over the other. They appreciate
the flexibility offered by the dual-boot machines
available in our labs.

The programming language debate is a little
more problematic than OS preferences. Many of
the students at the graduate level have jobs in
which they work in C++, Java, or C#. The students
often insist that the programming language that
they use in the workplace be utilized in their
courses. The problem is that choice of program-
ming language can significantly impact what is
appropriate content for a course. Designing C++
programs utilizes different patterns than those
used in designing Java programs, since C++
programs must necessarily and explicitly manage
memory. Historically, the choice of programming
language has been made largely based on inputs
from the market and external program reviewers.
For example, at the time this paper was written,

���

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

most courses use Java, with the exception of the
real-time systems course which still uses C and
C++.

Continuous Development of Course
Projects

Faculty, students, and industry have universally
recognized the need for hands-on experience
(Ellis, 2000). Without practical training, students
and industry complain that the material will be
too theoretical and that graduates would have
trouble applying the theory to real world projects.
This has led us to incorporate projects into the
majority of courses taught in the program, while
maintaining a balance between the theoretical
and practical aspects of the courses. The type
of projects has changed over the years: we have
started with stand-alone systems, to continue
with distributed, web-based, service-oriented
systems.

The program culminates with a two semester
practicum, where students work in groups on
all phases of a real-world project, starting with
requirements elicitation, design, implementation,
and testing. Unlike the course offered at University
of Southern California by B. Boehm (Boehm,
2006), in our practicum there are no lectures,
because it is assumed that students have already
covered all software engineering core courses
in the curriculum. Students need to follow a
well defined software process, producing all the
necessary documentation that covers the product
life-cycle. Although the process is not prescribed
by the instructor, as in (Germain, 2003), most of the
students follow a heavy–weight type of process,
such as UPEDU (Robillard, 2001). The students
practice teamwork and communication skills,
while working on a large-scale project proposed
by a real client. The clients are either from our
campus, or companies from the area surrounding
the university. They are asked to provide com-
ments and evaluate the deliverables, in addition
to the instructor. The type of project proposals we

get from the industry partners points us to areas
that need to be covered by the curriculum.

The course/term projects are administered at
the beginning of the semester, and have a couple
of milestones spread along the semester. The
instructors check the documents and/or software
applications delivered at each milestone and
provide feedback to the students. The instructors
provide the project statements. The members of
the project teams are either established by the
students, when they are not new to the program,
or when no preferences are expressed, the in-
structor makes the choices. The teams have the
authority to choose their leaders, and the role of
each member.

The introduction of projects into a Software
Engineering course encompasses its own set of
difficulties. While a simple program for shuf-
fling cards may suffice to teach students about
algorithms and data structures in a programming
course, software engineering has to deal with
much larger problems in order to demonstrate the
value and need for an engineering process. The
result is that projects have to be big, but not so big
that they cannot be performed within the confines
of the course. Because the project has to be big,
it has to be structured such that the students can
incrementally develop it as the course unfolds.

As the course content, technology and available
tools change, the course projects need to change
too. We have found that the size issue can some-
times be addressed by partially completing the
project before presenting it to the students. This
might require the development of a set of require-
ments before introducing a larger project into a
software design course, providing some economic
or financial analyses before introducing a project
into a software project management course, or
developing requirements and code before intro-
ducing a project into a testing course. In any case
such a strategy requires that the instructor spend
significant time doing the background work and
documenting the results of that work so that the
students can make good use of it as they proceed

 ���

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

with the next steps. This way the students are
encouraged to concentrate on tasks for a specific
project that are unique to the course in which the
project is being used.

Hilburn (2006), who wants to develop a com-
prehensive case study along with education mate-
rial that can be used throughout the curriculum,
proposes another alternative. This way, students
will use the output of one course project work
in subsequent courses, and will be able to better
understand the connections between the topics
taught in different courses. Again, this approach
requires more work for faculty while making it
more difficult to adapt courses to technological
advances.

DIFFICULTIEs ATTRACTING AND
RETAINING FACULTY

Software Engineers, even in difficult economic
times, are a highly sought after commodity.
It is extremely challenging for any software
engineering program to both attract and retain
their faculty, in USA or around the globe (Grant,
2000). We noticed that the stability of the faculty
makes a program more attractive to prospective
students.

It is very difficult to attract appropriate fac-
ulty, as it has been observed by Glass (2003). In
particular, faculty members usually are acquired
from computer science backgrounds and/or from
industrial practice. The problem with faculty
from computer science backgrounds is that their
backgrounds are in computer science rather than
software engineering. The problem with acquir-
ing faculty from industry is that often they do not
have documented credentials (a PhD degree) and
a documented trace of their scholarly work.

With the need to continuously update course
content and curricula, to keep up or advance the
state of the field, the load on a faculty member
in software engineering tends to be significantly
greater than in some other academic areas. Given

that it is very difficult to hire faculty with the ap-
propriate academic and industrial backgrounds,
many of the hires are often non-tenure track. We
are very fortunate to be positioned in a strong
high tech industry area, with a steady supply of
teachers with a very good industry experience,
who are seeking to augment their income, are
between jobs, or are retired.

A real solution for the administration is to
provide competitive salaries and support consult-
ing or research activities. This enables faculty to
make up any shortfalls in salary and keep abreast
of the industry needs and practices. With respect
to this issue, MU offers faculty one day a week to
spend on research or consulting activities. Also,
MU has been successful in hiring excellent faculty
with a PhD degree in areas other than computer
science, with a strong industrial experience in
software development.

We are aware that this solution might not be
easy to implement at many universities, therefore
we are suggesting another venue for attracting
and retaining faculty: the creation of a research
center or institute on campus. This way faculty
with complementary expertise can collaboratively
work on interesting, complex projects and create
rich opportunities for research and publications.
This allows faculty to keep current with the state
of research and practice, feed this information into
a curriculum that is up-to-date (Boehm, 2000),
reduce the teaching load, and build a cohesive
faculty community. MU has created the Rapid
Response Institute, where faculty from the SE
department works together with faculty and stu-
dents from around the campus on research and
applications for Homeland Security.

DIVERsITY OF THE sTUDENT
bODY

In the 21-year history of the software engineer-
ing program at MU we have observed increas-
ing diversity within the student population. The

��0

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

diversity spans several dimensions: educational
background, employment status, educational
goals and native language. The successful program
must address all these dimensions of diversity.

Educational backgrounds

Consistent with the origins of the program, many
students in the graduate program achieved un-
dergraduate degrees in computer science. These
students have strong programming skills, but very
seldom have the engineering discipline that em-
phasizes understanding the problem to be solved,
or the process to be followed. These students tend
to immediately start coding once they receive a
problem to be solved. Students asked on more
than one occasion why it was necessary to design
a program when they could write one faster.

We also have a large population of students that
are coming into the graduate program from other
engineering and non-engineering disciplines.
These students usually are much more accepting
of engineering processes, but have relatively weak
programming skills and minimal knowledge about
how computers function. To accommodate them
we have had to incorporate a set of preparatory
courses to provide the programming skills and
computer knowledge necessary to succeed in
the program.

Our program has already started receiving
a new group of students. These students have
undergraduate degrees in software engineering
and already have a good understanding of engi-
neering practices balanced with programming
skills. At this point, our program had to address
increasingly more advanced software engineer-
ing topics that may be beyond the knowledge
of the other two groups of students. A detailed
discussion of this topic is deferred to in the Future
Trends section.

Employment status

The employment status of students has significant
impact on the program. It affects how long students

are in the program, the effort that they put into
assignments, their willingness to accept course
material, and when classes are offered. It should
be noted that (with a few exceptions) students
entering into the program full-time usually find
work at the end of their first year and become
part-time students. The majority of our student
population attends school part-time with full-
time employment in the software industry. Most
of our classes are offered in the early evening to
accommodate them.

The fact that the average student is employed
full-time and attends classes part-time means that
they may be in the program for as long as 8 years.
In fact, the population of students is much more
stable than the curriculum. Some students have
graduated on curriculums that have been replaced
twice since they enrolled in the program.

Employment in the software industry has sig-
nificant impact on the willingness of some students
to accept the concepts taught in the classroom.
These students have already acquired work habits
that are not consistent with best practices. Students
often state that they don’t perform a particular
engineering practice at work and that they don’t
see a need for it. Of course, many of these same
students talk about how their projects at work
tend to be chaotic. Other students report the dif-
ficulties they’ve encountered in trying to practice
in their conservative organizations what they’ve
learned in class. Either case tends to undermine
the instructor in presenting new material in the
classroom. Here is one of the situations where
the instructor’s industrial experience plays an
important role in both selecting the material to
be taught and in responding to student concerns
regarding the usefulness of the topics learned in
the real world.

Employed students also tend to focus on what
they immediately need to succeed in today’s work-
place. There is often an insistence on learning a
product (such as Oracle or Sybase) rather than the
concepts (i.e., database principles). This emphasis
on skill rather than knowledge runs counter to

 ���

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

the goals of the program that are the develop-
ment of software engineers who can lead their
organizations into the future. We have included
some of these products into our classrooms, but
the main goals of the courses remain to teach the
engineering principles of the field, which can be
applied to a large number of products.

Students who are not employed in the industry
have problems prioritizing the material being
taught or placing it in the context of delivering a
product. If they are required to know C++, they
assume that all employers develop code in C++.
They are often surprised when they get a job
and discover that they will have to learn a new
programming language. Students are occasion-
ally concerned that courses cover many different
methods and approaches to achieve a given goal
rather than emphasize one method. They have to
be taught to understand that the knowledge and
skill they acquire in school will have to blend into
whatever organization they join, and that they
need to engage in a lifelong learning process that
is inevitable in this dynamic field.

Educational Goals

It would be nice if all students entered the program
with the desire and goal of becoming a software
engineer and delivering a specific kind of product.
However, the educational goals of the students
range from wanting to know all about software
and engineering, to the other extreme where
they only want to get the credentials that will
allow them to earn a higher salary. Our student
body appears to be driven by a small number of
educational goals, as we were able to derive from
their application packages, advising sessions and
an alumni survey. These are:

•	 Get the business and process knowledge that
will allow them to manage software projects
and people.

•	 Get the skills and knowledge that will allow
them to be more productive in their chosen
career.

•	 Start a career in which they can have a
significant income

•	 Get a job in the software field that does not
involve a lot of coding.

The major impact of these goals concerns the
subject areas that interest the student. We have
had to tailor our curriculum to respond to these
different goals. We find a significant fraction of
the students are very interested in the process,
project management, and organizational man-
agement courses. Others find that the courses on
requirements and software testing give them an
entry point into a part of the software business that
does not appear to require major coding efforts.
Finally, the courses that emphasize specific types
of software systems (real-time, information, and
embedded systems) attract those students that are
interested in gaining the particular knowledge
and skills that will allow them to master their
chosen field of work.

Communications skills

There is significant diversity among our students
in terms of their communication skills. However,
communication skills are critical in software en-
gineering, being considered as important as the
technical skills (Teles, 2003; Lethbridge 2000).
The average software engineering student will
probably produce more documents and make
more public presentations than the average Eng-
lish major. Communications have to be precise,
unambiguous, complete, logically sound and well
structured. Oral presentations have to convey
complex information under time constraints.
Students have to learn to gauge how much in-
formation is to be conveyed. This requires that
they judge what their audience can be expected
to know and what must be presented. Although
typical undergraduate general education programs
attempt to teach these skills most students who
enter our graduate program require additional
coaching and training in this area.

���

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

International students are often at a disadvan-
tage due to the fact that English is their second
language. This affects their writing ability where a
weakness in vocabulary often prevents them from
expressing themselves clearly and succinctly. It
also undermines their confidence in public speak-
ing due to concerns about their command of the
language and fears that others will not understand
them because of their accents. It can also severely
limit their participation in class discussions.

International students are not the only ones
with problems in communications. Many of the
students, particularly those with computer science
backgrounds, are not used to writing technical
documents. While they may be good at writing
code, they often have difficulties in expressing
themselves succinctly in a written document.

The most direct approach to dealing with sig-
nificant changes in the student population has been
to adapt the curriculum and individual courses to
meet the changing needs of our students. Employed
students are encouraged to express their perspec-
tives on the material so that their experiences can
be shared with students that have yet not entered
the field. In some classes, programming assign-
ments can be written in Java or C++ depending
upon the student’s choice.

Another change has been the incorporation
of more term papers into course work to allow
students to get greater experience in writing.
Papers are graded on technical content, structure,
adherence to topic, and on the use of language.
Corrections are suggested and students have a
chance to resubmit corrected work. With respect
to verbal communications, students are required
to make oral presentations of their term projects.
This way, until they reach the capstone project,
students would have had the opportunity to ex-
ercise their communications skills several times.
We have also observed significant progress in
the communication skills and self-confidence of
students when we created multicultural teams,
and encouraged informal peer-mentoring. As
one of our external program reviewers observed,

the oral communications skills of students sig-
nificantly improved when they were repeatedly
videotaped, and discussed the strengths and
weaknesses of their recorded presentations with
the instructor.

GUIDANCE ON sTARTING AND
MANAGING PROGRAMs

Based on the experience described above in
starting and managing Monmouth University’s
software engineering program we would offer
the following advice to academic departments
that are considering a similar program:

1. Conduct research to determine the most
current curriculum recommendations from
the IEEE, ACM and other sources.

2. Find out, by participating in national groups
and committees that develop those recom-
mendations, what likely future changes
might take place.

3. Enlist the academic institution’s industrial
advisory boards to determine how the gen-
eral recommendations need to be tailored
to suit the needs of local industry. The part-
nership with the local industry will bring
multiple benefits, such as a good source
of real world projects for courses, student
placement for summer internships, industry
guest lecturers for courses or a research
seminar.

4. Form a Task Force with professors from both
SE and CS departments to make sure the
two departments will not conflict each other.
Also invite an external reviewer who can
offer concrete guidance, based on personal
experiences in building such a program at
another university.

5. Recruit full-time faculty who are competent
to teach the required variety of courses and
who have industrial experience in applying
software engineering techniques in real

 ���

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

work environments. Don’t expect this to be
an easy task. You might need to manage the
program initially with significant help from
part-time faculty.

6. Expect that the curriculum will need to
change with time to accommodate both
changes in the discipline as well as changes
in the needs of local employers.

7. Define a set of students learning outcomes
that you will continuously monitor, and use
the results to evaluate the need for improve-
ments.

8. Periodically seek accreditation from a na-
tional board, or at least solicit a thorough
review from an external evaluator, who
is a prominent figure in the field. These
efforts will ensure the quality of your cur-
riculum.

9. If you intend to advertise your program to
international students, make sure that you
educate student’s expectations regarding
the research oriented or practical training
oriented nature of the program.

10. If you intend to offer the program over
multiple campuses, or on-line, you need
to secure the equipment, technology and
instructors qualified and willing to teach
distance learning courses. Don’t expect this
to be an easy task, the instructor’s effort to
teach these courses might be considerably
higher than teaching face-to-face courses.

FUTURE TRENDs

Having looked at the past, it is now appropriate to
look to the future for our program. In particular,
we recognized a need for another set of changes.
The introduction of an undergraduate software
engineering program had profound consequences
on the graduate program, forcing severe changes
in its curriculum. The redesigned curricula should
allow the new graduates of the bachelor’s degree
in software engineering to have the opportunity

of extending their knowledge and skills to new
frontiers. In particular, we believe that while in
the undergraduate program students should focus
on the application level software development, at
the graduate level they should focus on the en-
terprise and global levels. Also, we expect these
students to show originality in the application of
their knowledge and pursue research to push the
boundaries of knowledge in the SE area of their
choice (similar to the UK program reported in
(Edwards, 2003)).

With this respect, in 2007 we modified our
graduate program, such that the students with a
bachelor’s degree in SE will be required to take
5 core courses, 6 elective courses and a two-
semester thesis. Up to 9 credits of core courses
can be waived if equivalent courses have been
completed as part of the students’ Bachelor of
Science in software engineering program. This
would make our SE graduate program similar in
structure to masters programs in electrical engi-
neering, mechanical engineering, etc. throughout
the United States (see Figure 5).

In particular, we moved a bridge course into a
core course: former SE501 (Mathematical Foun-
dations) is combined with former SE561(Formal
Methods) into a new and augmented core course,
SE561(Mathematical Foundations of Software En-
gineering). This course will include mathematical
methods that a software engineer needs to master,
such as graph theory, formal languages, logic,
sets theory, etc.

Former SE565 and SE570, the requirements
and design courses, have been changed to cover
techniques at the global and enterprise levels
of software development. Former SE575, the
software verification and validation course, has
been changed to cover verification, validation
and maintenance techniques and tools. Former
SE580 course will cover the team software
process (Humphrey,1999) due to the recognition
that the graduates will need to work in teams for
most of their careers, and the feedback received
from graduates.

���

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

Figure 5. 2007 curriculum

We have also made some changes in the
bridge courses of our curriculum by adding two
bridge-courses, SE510 (Object-oriented Analysis
and Design) and SE515 (Disciplined Software
Development). We strongly believe that all our
students should know the basic analysis and de-
sign methods by the time they enter the graduate
program. This would allow us to teach advanced

methods for software analysis and design in the
corresponding core courses (SE565 and SE570),

instead of spending a considerable amount of
time teaching basic knowledge. Also, we are
strong believers of the engineering principles
emphasized by a disciplined approach to devel-
oping programs, such as the Personal Software
Process (PSP). We would like all our students to

 ���

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

be familiar with these engineering techniques at
the individual level, to be able to leverage them
at the team level in the software process core
course (SE580). This course will also introduce
principles of agile software development.

We removed Operating Systems Concepts
(CS505) from the curriculum since the material
was covered in several other software engineer-
ing courses. We revised SE504 (Principles of
Software Engineering) to focus on structured
analysis and design methods while presenting the
breadth of software engineering principles. This
emphasis would allow us to focus on the modern
object-oriented methods in the core analysis and
design classes.

In the electives courses, we added a course
on Secure Web Services Design (SE611) to de-
velop a sequence of courses on security, together
with SE610 (Software Systems Security). This
sequence will cover both the theoretical and
practical aspects of software systems security,
given the ubiquity of security issues in today’s
systems.

Another future trend that we believe will
induce major changes in the way we deliver
our program will be determined by the increas-
ingly mobile characteristic of the majority of our
students, whom are working full-time and take
the courses part-time. To allow them maximum
flexibility, we might need to change our delivery
mode to include more distance learning, maybe in
the way The Open University in UK does (Quinn,
2006). At the moment we are experimenting with
offering “hybrid courses” that are a combination
of a traditional, face-to-face delivery, and distance
learning that uses online curricular materials.
This delivery mode saves students the travel time
to campus, and also allows them to keep up to
speed when they travel for business. Students are
required to come to campus every other week, to
meet with the instructor for a face-to-face class.
If their grade falls below a certain threshold, they
are required to come to class every week. This is

a new approach for us, and we don’t have enough
data yet for a thorough evaluation.

Another issue, that is beyond the scope of this
paper though, is the awareness of the influence
that the licensing of software engineers shall have
on the design of the curriculum. However, the
directions and discussions that are taking place
with regard to licensing have to be followed so
that appropriate changes can be implemented in
the curriculum.

CONCLUsION

This chapter has presented the main problems and
lessons learned from one of the oldest programs in
software engineering in the USA. The evolution
of the graduate curriculum over its 21 years of
existence has been shown as an example for other
colleges and universities considering the addition
of a software engineering degree. We expect this
evolution to continue in the future, as the SE field
is a constant moving target.

We have argued that the continuous update
of the course content has a special meaning in
software engineering, due to the dynamics of
the field. With this respect, we have shown the
impact of the advances in the field on the textbooks
used, the need for continuous reevaluation of the
chosen programming language, operating system,
or software tools used in class.

The chapter has shown the difficulties we
have experienced in attracting and retaining the
faculty over the years, due to the need of the
new faculty to have both a record of scholarly
accomplishments and industrial experience. The
emphasis here is on the conjunction of these two
requirements, which sets great restrictions on the
pool of available candidates.

We explained how various issues related to
the diversity of the student body influence the
curriculum and course content. As such, the
educational backgrounds, employment status,

���

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

educational goals, and communications skills
of the student body are challenges any software
engineering program has to solve.

Based on our experience in dealing with these
problems, we have offered some recommendations
for those interested in starting a similar program,
with an emphasis on the curriculum and course
content issues that arise where an undergraduate
and graduate program in software engineering
coexist in the same department.

As a measure of success of our continuous
efforts to improve, we have seen the program
enrollment increasing steadily over the years.
This is not a reason to rest, since the SE field will
continue to evolve, and we will have to respond
to new challenges.

REFERENCEs

Ardis, M., & Ford, G. (1989). 1!989 SEI Report on
Graduate Software Engineering Education (Tech.
Rep. CMU/SEI-89-TR-21), Software Engineering
Institute.

Ardis, M., & Ford,G. (1989). SEI Report on Gradu-
ate Software Engineering Education, Proceedings
of the Software Engineering Education Confer-
ence, Springer-Verlag.

Boehm, B. (2006). Learning by Doing: Real-
client Software Project Courses, ASEE Tutorial
2006, Retrieved from http://db-itm.shidler.hawaii.
edu/cseet2006/Boehm%20ASEET.pdf .

Boehm, B., Kaiser, G., & Port, D. (2000). A
Combined Curriculum Research and Curriculum
Development Approach to Software Engineer-
ing Education, Workshop on Developing Un-
dergraduate Software engineering Programs,
Proceedings of CSEE&T 2000, 310-311

Bourque, P., & Dupuis, R. (2004). Guide to the
Software Engineering Body of Knowledge – Final
Version, SWEBOK, Feb. 2000, Retrieved from
http://www.swebok.org/

Clough, G.W. (2005). Educating the Engineer of
2020: Adapting Engineering Education to the New
Century. Washington, D.C.: National Academies
Press, Retrieved from http://www.nap.edu.

Dart, P., Johnston, L., Schmidt, C., & Sonenberg,
L. (1997). Developing an Accredited SE Program,
IEEE Software, Nov/Dec, 66-70.

Duggins, S.L., & Thomas, B.B. (2002). An Histori-
cal Investigation of Graduate Software Engineer-
ing Curriculum, Proceedings CSEE&T, 78-87.

Ellis, H., McKim, J.C., & Younessi H. (2000).
Issues Affecting Graduate and Postgraduate
Software Engineering Curricula, Workshop on
Developing Graduate and Postgraduate Software
Engineering Courses, Proceedings of CSEE&T
2000, 190

Ford, G. (1991). 1991 SEI Report on Graduate
Software Engineering Education, Technical Re-
port CMU/SEI-91-TR-2, Software Engineering
Institute, Carnegie Mellon University

Ford, G., Gibbs, N., & Tomayko, J. (1987).
Software Engineering Education: An Interim
Report from the Software Engineering Institute,
Technical Report CMU/SEI-87-TR-8, Software
Engineering Institute,

Garlan, D., Brown, A., Jackson, D., Tomayko, J.,
& Wing, J. (1995). The CMU Master of Software
Engineering Core Curriculum, Proceedings of
CSEE&T 1995, 65-86, Springer Verlag.

Germain, E., & Robillard, P. (2003). What Cogni-
tive Activities are Performed in Student Projects?,
Proceedings of CSEE&T 2003, 224-231

Glass, R. (2003). A Big Problem in Academic Soft-
ware Engineering and a Potential Outside-the-Box
Solution, IEEE Software, July/August,94-96.

Grant, D. (2000). Undergraduate Software En-
gineering Degrees in Australia, Proceedings of
CSEE&T 2000, 308-309

 ���

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

Hiburn, T., Towhidnejad, M., Nangia, S., & Shen,
L. (2006). A Case Study Project for Software Educ-
taion, Proceedings FIE 2006, M1F1-M1F5.

Humphrey, W. (1999). Introduction to the Team
Software Process, Addison Wesley.

Humphrey, W. (2005). A Discipline of Software
Engineering, Second Edition, Addison Wesley.

Lethbridge, T. (2000). What Knowledge is Impor-
tant to a Software Professional?, IEEE Computer,
33(5), 44-50.

Lutz, M.J., Hilburn, T.B., Hislop, G., McCraken,
M., & Sebern, M. (2003). The SWENET Project:
bridging the gap from bodies of knowledge to
curriculum development, Proceedings FIE 2003,
vol.3, S3C-7.

McDonald, J. (2000). Teaching Software Project
Management in Industrial and Academic Environ-
ments, Proceedings of CSEE&T, 151-160.

Naur, P., & Randall, B. (eds) (1968). Software
Engineering: A report on a Conference Sponsored
by the NATO Science Committee, NATO.

Powell, G., Diaz-Perrera, J., & Turner, D. (1997).
Achieving Synergy in Collaborative Education.
IEEE Software, Nov/Dec, 58-65.

Quinn, B., Barroca, L., Nuseibeh, B., Fernan-
dez-Ramil, J., Rapanotti, L., Thomas, P., &

Wermelinger, M. (2006). Learning Software
Engineering at a Distance, IEEE Software, No-
vember/December, 36-43.

Robillard, P, Krutchen, P., & d’Astous, P. (2001)
YOOPEEDOO (UPEDU): A Process for Teach-
ing Software Process, Proceedings of CSEE&T
2001,18-26

Rosca D. (2000). An Active/Collaborative Ap-
proach in Teaching Requirements Engineering,
Proceedings of FIE’00, T2C9-12

Rosca, D., Li, C., Moore, K., Stephan, M., &
Weiner, S. (2001). PSP-EAT – Enhancing a Per-
sonal Software Process Course, Proceedings of
FIE’01, T2D18.

Stryer, L. (2005). Bio2010: Transforming Un-
dergraduate Education For Future Research Bi-
ologists Washington, D.C.: National Academies
Press, Retrieved from http://www.nap.edu.

Teles, V.M., & Oliveira C. (2003). Reviewing the
Curriculum of Software Engineering Undergradu-
ate Courses to Incorporate Communication and
Personal Skills Teaching, Proceedings CSEET
2003, 158-165.

Tucker, A (Editor) et al.(1991). Report of the ACM/
IEEE-CS Joint Curriculum Task Force. Retrieved
from http://www.acm/education/curr91/homep-
age.html.

���

Chapter XVI
How to Create a Credible

Software Engineering
Bachelor’s Program:
Navigating the Waters of
Program Development

Stephen Frezza
Gannon University, USA

Mei-Huei Tang
Gannon University, USA

Barry J. Brinkman
Gannon University, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abs TRACT

This chapter presents a case study in the development of a Software Engineering (SE) Bachelor’s Degree
program. It outlines issues in SE program development, various means to address those issues, and
explains how the issues were addressed in the initial and ongoing development of an undergraduate SE
program. By using SEEK and SWEBOK as requirements sources to define what an undergraduate soft-
ware engineer needs to know, the authors walk through the creation of a sample curriculum at a small,
comprehensive university in the United States. Both the current and initial curricula are presented. The
article discusses many items to consider in the process of planning and launching a new BSSE program,
such as accreditation, curriculum guidelines, sources of information, and potential problems.

INTRODUCTION

Software Engineering is one of the newer engi-
neering disciplines to emerge. Starting with the

coining of the ‘Software Engineering’ term in 1968
(Naur, 1969), there has been continual growth in
interest in software engineering education. Ini-
tially, these efforts were primarily at the graduate

 ���

How to Create a Credible Software Engineering Bachelor’s Program

level, serving software engineering practitioners
with undergraduate degrees in Computer Science,
Computer Engineering or other related fields. In
1998, in recognition of the needs of bachelors-level
computing graduates, the Computer Society of the
Institute for Electrical and Electronic Engineers
(IEEE-CS) and the Association for Computing
Machinery (ACM) established the Joint Task
Force on Computing Curricula 2001 (CC2001) to
undertake a major review of curriculum guide-
lines for undergraduate programs in computing
(Diaz-Herrera, 2004). This and other efforts (EA,
2007; CEAB, 2006; ABET, 2005) added official
recognition of the need for the establishment
of effective undergraduate programs preparing
students to become software engineers.

The underlying assumption is that creat-
ing a new degree program for a relatively new
discipline (Software Engineering), in a profes-
sional area (Computing) that already has several
well-established disciplines (Computer Science,
Computer Engineering, Information Systems, etc.)
necessarily comes with a number of significant
development risks. This chapter takes the form
of an extended experience report, in the hope of
presenting an overview of these risks, and practical
means to mitigate them. This work is primarily
based on the authors’ experience in developing
a software engineering undergraduate program
leading to a Bachelor of Science degree in Software
Engineering (BSSE) at a small comprehensive
university in the United States (Frezza, 2006). Ef-
fort has been made to generalize this experience,
and include questions and issues encountered in
other SE program development efforts, as well as
raising issues that may be more critical in other
organizational settings.

Iss UEs IN sE PROGRAM
DEVELOPMENT

Developing a new undergraduate program, par-
ticularly one like Software Engineering that does

not have long-established definitions can be (and
for us was) a delicate business. Among the key
stakeholders for a new SE program, the require-
ments for what belongs in such a major may not
be well understood, or easily communicated. In
all, our program development effort was similar
to many of our software development experiences,
in that the requirements management activities
were significant, messy, and working to resolve
them early proved worthwhile. Our undergradu-
ate software engineering program, at the time
of writing, has been developed, launched, gone
through several on-going outcomes reviews, and
we are currently preparing our first accreditation
self-assessment.

Based on our reflection on the issues we en-
countered, and our post-design assessments, some
of the key issues we’ve found in developing a new
SE program include:

•	 Organization: Determining where the
program is housed or sponsored within the
institution

•	 Vision: Defining the style, or professional
focus of the program

•	 Accreditation: Applying international and
national standards to ensure program qual-
ity

•	 Curriculum: Designing the academic plan
for students to meet or exceed the vision,
and

•	 Finding help: Locating contacts to support
program development

Organization

Determining where an SE program is housed
is important to its success. The issue centers
on faculty ownership of the program, and ad-
ministrative support for the students. Many SE
programs are organized in the same academic
housing as Computer Science programs, but this
is not universally the case. At issue is the blend
of CS, IS, and Engineering courses currently

�00

How to Create a Credible Software Engineering Bachelor’s Program

available, and ability to work with the faculty
delivering these courses to be effective for the
new program. While Software Engineering is
normally classified as a computing sub-discipline,
in many institutions computing disciplines may be
in multiple departments scattered across multiple
schools, or not. The character and ability of the
various departments and schools to collaborate
(e.g., School of Engineering vs. School of Arts
and Science, etc.) may not be easily navigated,
and can delay program introduction.

The housing issue for a program is significant,
as it can affect issues related to shared course
content, accreditation, funding, hiring, tenure, and
a plethora of other subtle and inter-related aca-
demic issues, not the least of which is the culture
of the faculty leading the program. Mismatches
can adversely affect program development, but
more especially student learning and faculty
retention issues.

While many programs are initially housed
in an existing department structure, in several
instances, sponsoring departments have been
cross-department, or even cross-college ar-
rangements. In some cases these more complex
structures, created to launch the SE program,
were later replaced. Factors that can affect com-
plex administrative structures include growing
enrollments, competition, budgets and funding,
faculty issues and other sustainability factors.
In some schools, the more complex structures
proved workable, and have been maintained (e.g.,
Drexel). The common theme is the ability to gain
sufficient institutional agreement for offering SE
course and related program content.

In our case, this negotiation of where to house
the program led to delaying the program launch
by about a year. Our initial proposal was to run
the new SE program with a systems orientation
from the Electrical and Computer Engineering
(ECE) department. What was at issue was the
nature of software engineering – few faculty
having significant experience beyond embedded
software development, or exposure to the signifi-

cant and world-wide efforts to define software
engineering as a discipline (Bourque, 2000).
Locating authoritative guidelines as to what a
software engineering undergraduate program
should include was significant to this negotia-
tion. Even with these guidelines, identifying the
nature of our new SE program, and where it
should be developed/housed was by no means
a simple process.

Addressing this housing issue led to sev-
eral surveys and presentations, using materials
from conferences (Diaz-Herrera, 2001), ABET
program-specific criteria (ABET, 2005), the
Certified Software Development Professional
(CSDP) effort (McConnell, 1999; IEEE CS, 2001),
SWEBOK drafts (Abran, 2004), and the SE2004
drafts (Diaz-Herrera, 2004) to define software
engineering for students, faculty and adminis-
trators. In particular, SE2004, SWEBOK, and
ABET proved to be the most useful, and served
as authoritative guidelines for our proposal de-
velopment. At the end of these discussions, even
though the program proposal originated from our
ECE department, the strong computing focus of
the SE program was deemed more suitable to be
housed in the Computer and Information Science
(CIS) department offering our computer science
(CS) and management information systems (MIS)
degree programs.

As the CIS department was housed in the
same school as ECE, no administrative objec-
tions were encountered. The new task was to
redevelop the program vision and program details
with a team of primarily CIS faculty in a way
that would succeed when the new program was
launched and managed from the CIS department.
The decision to house the program in a different
department meant ECE relinquishing control on
the proposal, the proposal champion working with
a new department chair and new faculty partners.
The benefit of this redevelopment work was the
promise of building consensus around a shared
vision from those who would ultimately deliver
the program.

 �0�

How to Create a Credible Software Engineering Bachelor’s Program

Vision

Following a well-documented SE best practice,
identifying a coherent vision was a useful start-
ing point, and our experience confirmed that
it is a key factor for success in developing a
Software Engineering undergraduate program.
Within the vision for an academic program,
one of the most fundamental issues is the ju-
dicious selection of the type, or character of
the program that is desired. Notwithstanding
other sources, at least six application models
for software engineering have been identified
(Jones, 2003):

•	 Military: Applications built according to
military or US Department of Defense stan-
dards. This may include weapons systems,
but also logistics and non-military systems
that use military standards.

•	 Systems: Applications developed to control
hardware devices such as computers, air-
craft, telephone switches, and other physical
devices and products, including embedded
systems.

•	 Commercial: Applications for lease or sale
to external customers, occasionally referred
to as ‘shrink-wrap’ software. This category
includes many personal computer applica-
tions, but also includes larger mainframe
applications.

•	 Outsourced: Applications developed for a
specific client company under a contract.
Because of contractual obligations and the
possibility of litigation, outsourced projects
have some additional activities in compari-
son to in-house development.

•	 Management Information Systems (MIS):
Applications built to control major business
functions such as accounting, marketing,
sales, and personnel. This category includes
many traditional mainframe applications,
but also the more recent client-server, multi-
tiered and web-based applications.

•	 End-user development: Small applications
that various kinds of knowledge work-
ers—such as accountants, engineers, or
project managers—build for personal use.

In developing a vision for a specific program,
casting the nature of the program may be decided
by other factors, such as faculty availability, skills,
and influences from local and regional employers.
These can, and should influence what a specific SE
program graduate should be able to do. However,
this ‘local’ approach can easily ignore the other
external ‘requirements’ for a credible program.

There exist broad and relatively well-devel-
oped, and reasonably authoritative guidelines for
what software engineers need to know (See the
Defining the BSSE Graduate and What Software
Engineers Need to Know subsections that follow).
However, the context in which these skills are
developed is also important, as these different
application models have differences that can be
significant in program delivery. These differences
will typically show up in the determination of
the content of required upper-level courses and
elective courses.

Developing a vision is important in that the
vision statement, once agreed to, serves as a useful
guide in helping to sell the program to different
academic and administrative stakeholders, as
well as a useful reference during program design.
Like most business exercises in vision, develop-
ing this as a shared vision, rooted in the realistic
limitations of the organization will help reduce
the risk of failure.

In our case, the decision to house the program
in the CIS department led to a new shared vi-
sion for our SE program. The initial ECE-based
proposal was based on a systems focus. With
CIS faculty participation, the revised program
proposal focused on delivering skills and knowl-
edge for the outsourced and MIS categories.
These represented trade-offs among the program
developers, recognizing that the outsourced/MIS
view would have distinctly different courses and

�0�

How to Create a Credible Software Engineering Bachelor’s Program

flavor from the systems view. While different
from the initial vision, this was a vision that was
both legitimate, and would work well within the
exiting department and course structures then in
place. The tradeoffs allowed the new proposal to
parallel the CS program more closely, but with
the recognition that software engineering con-
cepts needed to be integrated into courses taken
jointly by CS and MIS students. Ultimately, this
has proven to be useful in our situation, as the
integration of software engineering concepts into
early courses was easily negotiated, and continues
to be well received.

Accreditation

In the US and many other countries, the use of the
term “Engineering” in a program or degree title is
necessarily accompanied by the requirement for
some form of national accreditation which serves
to ensure program quality. In the United States,
ABET, Inc. (ABET, 2007) is responsible for the
specialized accreditation of educational programs
in applied science, computing, engineering, and
technology. In Canada, the Canadian Engineer-
ing Accreditation Board (CEAB), serves as the
accreditation body for engineering programs
(CEAB, 2006), while Engineers Australia (EA)
is responsible for this service in Australia (EA,
2007). This is an important initial consideration
for creating a new program, because the nature of
engineering accreditation generally brings with
it required documentation processes, criteria and
even academic culture that may be foreign to the
institution or sponsoring department. Taking the
time to become familiar with the processes and
documentation needed is important, and in some
instances may require hiring consultants to review
academic proposals.

At the time of writing, 13 such programs were
accredited in the United States (ABET, 2006),
12 in Canada (CEAB, 2006), and 18 in Australia
(EA, 2007). To give a sampling of the breadth
of universities that have chosen this route, these

universities are listed in Figure 1. In our case, the
goal was to create a program that would warrant
including Gannon University in the list.

While not all programs require national ac-
creditation, international guidelines exist (such as
SE2004) to help ensure the quality of Software
Engineering undergraduate programs. In our case,
accreditation was a process new to the sponsoring
department, but not to the school. Experience in
applying the ABET criteria was easy to find, and
the use of the EAC accreditation criteria (ABET,
2005) and the related SE2004 volume served as
significant drivers in assessing the quality of the
program proposal. This validation of the curricu-
lum development process was extremely valuable
in describing software engineering to program
stakeholders, and served as a very useful means of
assessing changes to the program (Frezza, 2006).
These processes as we applied them are described
in more detail in the pages that follow.

Curriculum Development

Ultimately one of the most critical portions of the
program delivery is the curriculum employed by
the program. The curriculum development process
includes the development of the program objec-
tives, as well as courses and course objectives.
In most institutions, these are developed within
the framework of institutional standards, as well
as existing computing, mathematics, engineering
and other courses that would also be taken by
SE students. This key issue is discussed in much
more detail in sections which follow.

sources of Help and Advice

As in most engineering endeavors, one of the
most useful sources of development information
comes from others who have developed similar
products (Kelley, 1999). These resources are
particularly useful for helping to understand is-
sues, avoid issues, or also experience to resolve
issues as they are encountered in your program

 �0�

How to Create a Credible Software Engineering Bachelor’s Program

development. This is also a significant source
of external expertise that can be used to help
validate the program, such as a ‘blue-ribbon’ or
other external panel that can validate or provide
guidance to program development.

In our case, finding help in the form of the
Working Group on Software Engineering and
Education, and the more recent Software Engi-
neering Program Leaders Association (SEPLA)
proved to be extremely useful for helping find
and share materials to explain the SE profes-
sion to various constituents (faculty, students,
administrators), as well as provide useful market
data and comparison programs. Various SEPLA
members also volunteered, and provided input on
various program proposals. The SEPLA listserv
is available at sepla@listserv.butler.edu.

In our experience, the faculty development
wherein we used authoritative guidelines to

define Software Engineering for ourselves was
absolutely essential. The need for this education
came initially in response to addressing our orga-
nization issues. Our Accreditation goal dictated
that ABET criteria needed to be considered,
but the more extensive international guidelines
(SWEBOK and SE2004) were more informa-
tive. The process of blending these viewpoints
helped establish detailed ‘requirements’ for our
BSSE program, as well as establish agreement
on these requirements. This analysis work was
crucial to the success of the program proposal
process, and became central to developing the
program outcomes, expectations, and ultimately
its detailed design. Our particular blending is
summarized in the Defining the BSSE Graduate
and the What Software Engineers Need to Know
sections that follow.

Us (ABET) Canada (CEAB) Australia (EA)
Auburn University University of Calgary Australian National University
Clarkson University Carleton University Curtin University of Technology
Embry-Riddle Aeronautical University, Daytona
Beach Concordia University Flinders University

Fairfield University-School of Engineering Lakehead University Griffith University Nathan Campus

Florida Institute of Technology McMaster University La Trobe University (Bundoora
campus)

University of Michigan-Dearborn University of New Brunswick Monash University
Milwaukee School of Engineering University of Ottawa Murdoch University
Mississippi State University University of Waterloo RMIT University

Monmouth University University of Western
Ontario Swinburne University of Technology

Pennsylvania State University, Behrend College École de technologie
supérieure University of Canberra

Rochester Institute of Technology Laval The University of Melbourne
University of Texas at Arlington Polytechnique The University of Newcastle
University of Texas at Dallas The University of New South Wales

The University of Queensland
The University of Western Australia
University of Southern Queensland
University of Sydney
University of Technology, Sydney

Figure 1. Accredited software engineering related programs in the U.S., Canada, and Australia (current
as of Sept. 2007)

�0�

How to Create a Credible Software Engineering Bachelor’s Program

While the authoritative sources (ABET,
SE2004 and SWEBOK) are all aimed at differ-
ent target audiences, the definitions of software
engineering they provide for these audiences are
important. These definitions all speak directly
to what the expectations would be for our BSSE
graduates after the program was established,
hopefully accredited, and they were well into
their careers. Because the definitions were exter-
nal, they carried significantly more weight than
the viewpoint of any particular faculty member.
These definitions, once blended, became central
to developing the shared vision for our BSSE
program as the program was developed, and has
since continued to support outcomes assessment
and program enhancement.

DEFINING THE bss E GRADUATE

For the purposes of creating a quality, accredit-
able program, it is essential to define the desired
knowledge and skills possessed by the BSSE
graduates. One of the more useful forms for
defining the desired knowledge and skills are
the “outcomes” for the program. Outcomes re-
late to broadly defined skills, knowledge, and
behaviors that students should acquire as they
progress through the program (Wankat, 1993).
If a graduate achieves all the program outcomes,
this indicates that the student meets the program’s
stated educational objectives and is equipped to
function as expected of a BSSE graduate.

To create an accreditable SE program, the
program design must meet the established edu-
cational objectives and program criteria for a
BSSE program. There are at least two primary
sources for these objectives and criteria which
define the minimal knowledge and skills for
a BSSE graduate. In the US, the Engineering
Accreditation Commission (EAC) provides two
categories of objectives and criteria that apply
to the design of engineering programs (ABET,
2005).The first category, the EAC Program

Educational Objectives, is a broader set which
applies to all engineering programs. The second
category provides each engineering discipline
a unique set of program criteria specific to the
discipline.

While these objectives and criteria are de-
finitive for accreditation in the U.S., they do not
provide as much detail as the SE2004 guidelines
(Diaz-Herrera, 2004). The difficulty is that when
comparing the SE2004 Student Outcomes (Diaz-
Herrera, 2004) with the related EAC Program
Educational Objectives (ABET, 2005) and EAC SE
Program Criteria (ABET, 2005), there are notice-
able gaps among them (Frezza, 2006). However,
the superset of related SE skills indicates that a
program should provide at least the following
outcomes (Frezza, 2006):

•	 Show mastery of the software engineering
knowledge and skills, and professional issues
necessary to begin practice as a software
engineer

•	 Demonstrate the ability to appropriately
apply science, discrete mathematics, em-
pirical techniques, probability and statistics
and relevant topics in computer science and
supporting disciplines to the development
of complex software systems

•	 Work as an individual and as part of a multi-
disciplinary team to develop and deliver
quality software artifacts

•	 Reconcile conflicting project objectives,
finding acceptable compromises within
limitations of cost, time, knowledge, exist-
ing systems and organizations

•	 Design appropriate solutions in one or more
application domains using software engi-
neering approaches that integrate ethical,
social, legal and economic concerns

•	 Understand professional and ethical respon-
sibility

•	 Demonstrate an understanding of and apply
current theories, models, and techniques that
provide a basis for problem identification

 �0�

How to Create a Credible Software Engineering Bachelor’s Program

and analysis, software design, development,
implementation, and documentation

•	 Demonstrate an understanding and appre-
ciation for the importance of negotiation,
effective work habits, leadership, and good
communication with stakeholders in a typi-
cal software development environment

•	 Learn new models, techniques and tech-
nologies as they emerge and appreciate the
necessity of such continuing professional
development

•	 Obtain knowledge of contemporary issues
•	 Receive and internalize a broad education

necessary to understand the impact of en-
gineering solutions in a global, economic,
environmental, and societal context

These program outcomes, which arguably must
be met for a U.S.-based program, provide a use-
ful definition of what the BSSE graduate should
know and be able to do. Although important for
defining and continually improving program
effectiveness, the outcomes by themselves don’t
provide adequate detail about the specifics for
“software engineering knowledge and skills”.
What specifically should we teach students? What
should the courses contain? SE fortunately has
other sources that define more specifically what
students must know and be able to do.

WHAT sOFTWARE ENGINEERs
NEED TO kNOW

In order to craft a credible Software Engineering
curriculum that also paves the way to students’
success in the workforce, we need to understand
what knowledge students are expected to pos-
sess. Not only does this include knowledge that
students fresh out of college are expected to know,
but also knowledge that these students after a few
years in the workforce are expected to hold. There
are two primary sources for these requirements,
SE2004 (Diaz-Herrera, 2004) and SWEBOK

(Abran, 2004), addressing aforementioned types
of knowledge respectively.

•	 SE2004 (Software Engineering 2004):
defines the body of knowledge that every
software engineering degree graduate fresh
out of college needs to know as the Soft-
ware Engineering Education Knowledge
(SEEK).

•	 SWEBOK (Guide to the Software Engi-
neering Body of Knowledge): character-
izes the contents of software engineering
discipline, i.e., the knowledge needed for
the practice of software engineering after
four years in the workforce.

Both of these documents carry with them ex-
tended development processes and improvements.
In addition, both development efforts included
significant efforts to ensure that the documents,
and thus the educational patterns that might
emerge from them, were not US-centric. The
SE2004 effort, in particular, has been translated
into Russian to support curricular development
efforts in Central and Eastern Europe (Pavlov,
2006). At the time of this writing, new curriculum
pilots based on SE2004 have been started in over
30 Central and Eastern European universities
(Sobel, 2007).

sE2004

The Joint Task Force on Computing Curricula
sponsored by the IEEE Computer Society and
the Association of Computing Machinery Joint
Task Force developed Software Engineering 2004
(SE2004) as curriculum guidelines for under-
graduate degree programs in software engineering
(Diaz-Herrera, 2004). SE2004 defines a detailed
set of knowledge expected of a BSSE graduate as
the Software Engineering Education Knowledge
(SEEK). SEEK is designed as a guide to support
the development of undergraduate software en-
gineering education curricula.

�0�

How to Create a Credible Software Engineering Bachelor’s Program

SEEK defines 10 education knowledge areas
(KAs), each of which is recognized as a significant
part of the body of knowledge that every bach-
elors-level software engineering graduate needs
to know. A short description for each of the ten
knowledge areas defined by SEEK (Diaz-Herrera,
2004) are listed below:

1. Software evolution. “Software evolution is
the result of the ongoing need to support the
stakeholders’ mission in the face of changing
assumptions, problems, requirements, archi-
tectures, and technologies.” (Diaz-Herrera,
2004)

2. Software process. “Software process is con-
cerned with knowledge about the description
of commonly used software life-cycle pro-
cess models and the contents of institutional
process standards; definition, implementa-
tion, measurement, management, change
and improvement of software processes;
and use of a defined process to perform the
technical and managerial activities needed
for software development and maintenance.”
(Diaz-Herrera, 2004)

3. Software verification and validation.
“Software verification and validation uses
both static and dynamic techniques of system
checking to ensure that the resulting program
satisfies its specification and that the program
as implemented meets the expectations of
the stakeholders.” (Diaz-Herrera, 2004)

4. Software quality. “Software quality is a
pervasive concept that affects, and is af-
fected by all aspects of software develop-
ment, support, revision, and maintenance.
It encompasses the quality of work products
developed and/or modified … and the quality
of the work processes used to develop and/or
modify the work products.” (Diaz-Herrera,
2004)

5. Software design. “Software design is
concerned with issues, techniques, strate-
gies, representations, and patterns used to

determine how to implement a component
or a system. The design will conform to
functional requirements within the con-
straints imposed by other requirements such
as resource, performance, reliability, and
security.” (Diaz-Herrera, 2004)

6. Software management. “Software manage-
ment is concerned with knowledge about the
planning, organization, and monitoring of all
software life-cycle phases.” (Diaz-Herrera,
2004)

7. Computing essentials. “Computing es-
sentials includes the computer science
foundations that support the design and
construction of software products.” (Diaz-
Herrera, 2004)

8. Software modeling and analysis. “Mod-
eling and analysis can be considered core
concepts in any engineering discipline,
because they are essential to documenting
and evaluating design decisions and alterna-
tives. Modeling and analysis is first applied
to the analysis, specification, and validation
of requirements.” (Diaz-Herrera, 2004)

9. Mathematical and engineering funda-
mentals. “The mathematical and engineer-
ing fundamentals of software engineering
provide theoretical and scientific underpin-
nings for the construction of software prod-
ucts with desired attributes.” (Diaz-Herrera,
2004)

10. Professional practice. “Professional Prac-
tice is concerned with the knowledge, skills,
and attitudes that software engineers must
possess to practice software engineering
in a professional, responsible, and ethical
manner.” (Diaz-Herrera, 2004)

Each knowledge area (KA) is further divided
into smaller modules called units. The left column
in Figure 2 lists the SEEK knowledge areas in
light grey shades, and the knowledge units (KUs)
defined for each KA in italics.

 �0�

How to Create a Credible Software Engineering Bachelor’s Program

Each knowledge unit defined in SEEK is further
divided into topics. Some topics are designated
as ‘essential’, and constitute the core knowledge
which is considered required for anyone to obtain
a software engineering undergraduate degree.
In its current (2004) revision, SE2004 defines
240 topics as essential that software engineers
graduating from credible programs need to know
(Diaz-Herrera, 2004). A summary of the number
of units, topics, essential topics, and contact hours
for essential topics are listed in Table 1.

The topic-level detail outlined in Table 1 can be
a two-edged sword for program design. With the
rigorous application of the topic-level information,
those developing new software engineering pro-
grams may well find that the credit hours needed to
cover the ‘essential’ units would be well beyond the
ability to offer a program within most University
constraints. Similarly, this ‘essential’ detail can
be too detailed for effective course planning, and
can obscure what units are more essential than
others, particularly in the context of making a
program unique to an institution (Frezza, 2003).
Conversely, the detail facilitates definition of what
is meant by particular knowledge units, and thus
strongly facilitates measuring the completeness
of a program, and clarity in communicating what
constitutes a BSSE degree.

Besides the undergraduate education knowl-
edge defined by SEEK, we also need to know
about what kinds of knowledge are needed for the
practice of software engineering in the workforce.
The guide to the Software Engineering Body of
Knowledge (SWEBOK) does just that.

sWEbOk

The IEEE Computer Society established a baseline
for the body of knowledge and recommended
practices for the field of software engineering in
the Guide to the Software Engineering Body of
Knowledge (SWEBOK) (Abran, 2004). SWEBOK
characterizes the contents of software engineer-
ing discipline, i.e. the knowledge needed for the

practice of software engineering after four years
in the workforce, into ten Knowledge Areas
(KAs). Each knowledge area is further divided
into subareas, and each subarea is further divided
into topics and subtopics. The right column in
Figure 2 lists the SWEBOK knowledge areas in
light grey shades, and the knowledge subareas
defined for each KA in italics.

The KAs for both SEEK and SWEBOK are
highlighted in light grey shades in Figure 2. The
double arrowed lines given in Figure 2 outline
the similarities, the dashed lines outline partial
coverage, while KAs without links indicate
the differences between SEEK and SWEBOK
KAs. As you can see from the figure, for the
first six SEEK knowledge areas (KA) each has
a very related KA in SWEBOK as indicated
by the double arrowed lines. Typically the KA
in SWEBOK has a broader coverage in topics
than the corresponding SEEK KA. However, the
SEEK knowledge units listed in light grey are not
covered by its knowledge area’s corresponding
SWEBOK KA, but are covered by the SWEBOK
KA to which it is linked with solid lines. For
example, SEEK unit Software Configuration
Management in Software Management KA is
covered by SWEBOK Software Configuration
Management KA. SEEK unit Product Assurance
in Software Quality KA is covered by SWEBOK
subarea Software Design Quality Analysis and
Evaluation in Software Design KA.

In addition to the closely related SEEK and
SWEBOK KAs mentioned above, two SWEBOK
KAs, each having significant overlap with but
only partially covering its corresponding SEEK
KA, are shown in dashed lines. SWEBOK KA
Software Requirements only covers requirements
related units in SEEK KA Software Modeling
and Analysis, while Software Construction
covers construction related units in Computing
Essentials.

Noticeable unit differences between SEEK
and SWEBOK are highlighted in reverse diagonal
shades. Both Mathematical and Engineering Fun-

�0�

How to Create a Credible Software Engineering Bachelor’s Program

Figure 2. SE2004 SEEK knowledge areas and units vs. SWEBOK knowledge areas and subareas

 �0�

How to Create a Credible Software Engineering Bachelor’s Program

damentals and Professional Practice SEEK KAs
do not have corresponding SWEBOK KAs due
to the educational nature and curricula develop-
ment purpose of SEEK. As the SWEBOK focuses
on the boundary of software engineering, hence
non-software engineering-specific knowledge,
such as the fundamental background required to
acquire software engineering specific knowledge,
was intentionally left out.

Another noticeable difference is in the SWE-
BOK Software Engineering Tools and Methods
KA as highlighted in dark grey shades. The
Software Engineering Tools subarea is embodied
inside the Software Evolution, Software Process,
Software Verification and Validation, Software
Quality, Software Design, Software Management,
Computing Essentials, Software Modeling and
Analysis, Mathematical and Engineering Fun-
damentals and Professional Practice topics in
SEEK, as highlighted in dark grey shades.

Both SEEK and SWEBOK define the specific
knowledge and skills required of a software en-
gineer. For undergraduate software engineering
graduates fresh out of college, the knowledge they
attain comes from the courses they complete in
their curricula, hence curricula plays an important
role in deciding what knowledge students will
posses when they graduate. While both SEEK
and SWEBOK are designed as a guide/foundation
for software engineering curricula development,
SEEK is especially designed for undergraduate
software engineering curricula development
with detailed topics defined, and an expectation
that accredited programs will reflect this set of
knowledge and skills in their program.

SEEK provides description for each KA, but
no descriptions are provided for the units and
topics defined. This kind of set up could be hard
for syllabus development as the contents which
should be included for the name provided for
units and topics could be open for interpretation.

SEEK Knowledge Area Units Topics Essential
Topics

Essential
Contact
Hours

Computing Essentials 4 42 37 172
Mathematical and
Engineering Fundamentals 3 22 19 89

Professional Practice 3 17 17 35
Software Modeling and
Analysis 7 42 33 53

Software Design 6 37 31 45
Software Verification and
Validation 5 30 28 42

Software Evolution 2 13 9 10
Software Process 2 14 13 13
Software Quality 5 28 25 16
Software Management 5 31 28 19

Total 42 276 240 494

Table 1. Summary of SEEK knowledge areas, units and yopics

��0

How to Create a Credible Software Engineering Bachelor’s Program

With no reference materials provided, it could be
difficult for faculty to find suitable textbooks or
materials to cover the desired topics. On the other
hand, SWEBOK provides detailed description
and interesting discussion for each KA, subarea,
topic and subtopic defined as well as links to
books and articles.

sTARTING THE PROCEss

The practical process of developing a vision for
a specific instance of a Software Engineering
program includes a number of concerns to be
addressed, such as focus, style, leadership, and
the requirements derived from the institutional
strengths, weaknesses and opportunities. The
experience of the authors is that of developing a
program within the context of existing computing
and engineering programs within the sponsoring
institution, so issues concerning the creation of new
academic structures will only be by inference.

Project Leadership

The immediate starting point is necessarily one
of leadership – who will lead the project to define
and launch the program. While this may seem
trite, clearly defining the academic stakeholders is
critically important, as the risks of not involving
appropriate representation from related academic
departments early in the program development are
real, and have proven to be stumbling blocks to
SE program development. As with any success-
ful project, establishing executive sponsorship at
various levels is key, as is communication with the
executive sponsors and other stakeholders. One
mechanism for supporting ongoing validation,
communication and development of the program
is a steering committee.

An effective program development steer-
ing committee should follow effective patterns
within the institution, and typically is formed
from department chairs, experienced faculty,

external advisors, and anyone else deemed
appropriate to the institution. This commit-
tee, whether formal or informal in its makeup,
should necessarily include persons who have the
authority to formally propose a new program
within the institution. In some cases, this process
may require cross-college cooperation, and thus
may also include either academic deans or their
representatives.

The steering committee should at minimum
approve program development decisions, but
may (as in our situation) be significantly more
active in the development of the program details.
Among these, determining the expected style of
the program was a significant set of decisions.
For example, in our case, the deliberate choice
was to not require co-ops, and to not focus on one
particular SE style, such as embedded systems,
but rather allow styles and domains to be student-
selected via the use of technical electives.

In our development process, the project started
with one faculty project leader, and eventually
formed a development committee after the hous-
ing (which department) issue was settled. In the
case of Butler University in Indiana, the housing
department was clear, and they developed an ex-
ternal advisory board consisting of local software
industry leaders which helped significantly in
crafting the program and building internal cred-
ibility (Henderson, 2003).

Capitalizing on Institutional
strengths

Each educational institution has its own set of
distinguishing characteristics, including things
like the faculty, teaching style(s), history, physical
location, etc. Part of the success of a new program
is its ability to realize these characteristics within
the program in ways that strengthen the program,
its appeal to students and its effectiveness for
graduates.

In many cases, these institutional strengths are
easily recognized, and involve institution-wide

 ���

How to Create a Credible Software Engineering Bachelor’s Program

structures to support them. These structures can
take on many forms: core curricula, freshmen
sequences, service learning, marketing, develop-
ment, alumni services, cooperative arrangements,
etc. While many of these academic and non-
academic features may also act as constraints,
they are also what bring the institutions’ unique
stamp to the new program. Clearly identifying and
celebrating these institutional strengths are signifi-
cant for marketing the program, both internally
and externally. Performing a formal Strengths,
Weaknesses, Opportunities and Threats (SWOT)
analysis may be useful.

One of the more common SE program devel-
opment questions that hinges upon institutional
strengths is that of requiring cooperative employ-
ment placements as part of the academic program.
In some institutions, such as Rochester Institute
of Technology (RIT) and Drexel University, this
is an institutional strength, and is required of
most programs. In other schools, required co-
ops are common, and institutional support is
readily available. Yet this is not the case in most
institutions – neither the culture nor the academic
structures support co-ops, so the decision to in-
clude a required co-op placement as part of the
program design may involve significantly more
cost to the program.

In our case, similar to that of Butler University,
we developed our BSSE program in a ‘liberal
arts’ institution, where the general education
requirements included 36 semester hours of
general education, and provides a significant
institutional ‘stamp’ to the program. Similarly,
there was no institutional support for required
co-op placements, and despite the attraction of
such an arrangement, it was deemed unfeasible
by the development steering committee.

One of the more important institutional limita-
tions to be negotiated is the availability of faculty
resources; some institutions are very risk-adverse,
and consequently are very reluctant to invest in
new faculty positions for new programs until the

enrollment proves the need. Other institutions are
more accepting of risk, and are more tolerant of
investment that will help distinguish a program,
and ensure its early success.

In our case, after creating the initial academic
plan, we projected the faculty resources needed
to develop and sustain the new program. With an
enrollment estimate, the request took the form
of one new faculty member the year after the
program launch, and another faculty member two
years after launch if enrollment met or exceeded
the estimates.

CURRICULUM CONsTRUCTION
AND DEsIGN

Students gain and build knowledge and skills
from the courses they take while in college.
Curriculum dictates what courses students in a
specific program should take and the sequence
of taking them. Hence curriculum plays an im-
portant role in determining what knowledge and
skills students should possess when they graduate
with a bachelor’s degree. On the other hand, each
course students take has a specific set of course
objectives that students completing the course are
expected to accomplish; curriculum also plays
a determining role in what program outcomes
will be achieved through the course outcomes.
Furthermore, curriculum is the place where each
institution showcases its strength, uniqueness and
special program focus. So what courses should
be included in an institution’s BSSE curriculum?
There is no one easy answer for that.

For the purpose of creating an accreditable pro-
gram, where graduates meet or exceed expected
program outcomes, in our experience, there are
several factors to consider during the curriculum
design and construction process.

���

How to Create a Credible Software Engineering Bachelor’s Program

1. Institutional/university strength and
constraints

Each university/educational institution has its
unique set of characteristics as discussed in the
Capitalizing on Institutional Strengths subsec-
tion. No matter what the characteristics are, some
(such as faculty, teaching style(s) and co-op ar-
rangement) are great for marketing as the unique
strength of the institution while others (such as
core curricula, co-op requirement and freshmen
sequences) can be considered as constraints for
curriculum development.

In our case, our university mandates 36 credit
hours of general education which ensures that
every graduate achieves the university outcomes
(Frezza, 2003). Although the number of credits
required is mandated, every program does have
the autonomy of restricting course(s) that students
can select from each category to better suit the
needs of each program. Furthermore, our SE
program does not have co-op requirement which
opens up credit hours for curriculum. On the other
hand, if a co-op arrangement is instituted by the
university, the number of credit hours required
for the co-op arrangement would be a constraint
for curriculum design.

An area where this can be significant is that of
total credit hours – in our case, the Computer Sci-
ence and other Engineering programs all require
over 130 semester credits, so this afforded a bit of
room in creating courses for the SE program. Many
schools have very specific credit constraints that
can make this more difficult, e.g., in the United
States, many schools have 128 credit limits for
bachelors degree programs. As in our case, using
related programs in the school (such as EE or CS)
as patterns can prove to be effective. Many of
the patterns these existing programs have, such
as when they take general education courses,
the patterns for lab courses and lab credits, the
patterns for co-ops, the patterns for common and
discipline-specific courses can prove to be useful.
In our case we used the CS degree as the pattern,

and reused as many of these courses as possible;
by replacing some advanced mathematics courses
with SE courses, this allowed us to create a pro-
gram with essentially the same number of credit
hours as the CS program.

2. SE program hosting department/college
constraints

In addition to university/institutional constraints,
program hosting department/college may have
its own set of requirements (such as maximum
reuse of faculty and existing courses offered,
existing prerequisite structure, capstone project
requirement, departmental outcomes, maximum
number of credits required in a program) that
need to be fulfilled.

In our case, the SE hosting department, CIS,
expects the new SE program to be compatible with
the existing CIS computing programs: computer
science and management information systems.
This is not only for the economic benefits of shared
courses and faculty resources but also allows stu-
dents to switch majors early in the program without
much impact on required time to earn the degree
(Frezza, 2003). Such a requirement leads to the
mapping/compatibility analysis of existing CIS
course offerings, prerequisite structure and the
SE program vision. Since the SE program focuses
on the outsourced and MIS categories, the CIS
faculty felt the strong need of solid programming,
systems, networking and computing background
for SE students which in turn leads to the reuse of
a great number of existing CIS courses. Specifi-
cally, SE and CS program students have almost
identical courses for the first two years. However,
such an arrangement also limits the number of
credits available for Software Engineering specific
courses that can be offered.

In addition, every CIS department graduate
is expected to complete a capstone project and
achieve a set of departmental outcomes. The
capstone project, which integrates ethics and
project management with a multi-disciplinary two

 ���

How to Create a Credible Software Engineering Bachelor’s Program

semester long team project, mandates six credit
hours of the senior year schedule. Although the
set of departmental outcomes are not in the form
of credit hours, it requires careful traceability
analysis on the mappings of course outcomes to
departmental outcomes. The analysis result could
start the process of redefining current course
content and outcomes, as well as creating new
courses and the responsibility (assignment of
departmental outcomes) of new courses.

3. Defined SE program outcomes

Besides the hosting departmental/college out-
comes that need to be achieved, every SE program
that hopes to be accredited should also fulfill the
outcomes defined by its accreditation body. As
discussed in the Accreditation subsection and
Defining the BSSE Graduate section, every SE
program needs to define its own set of program
outcomes that can be related to the outcomes
required by the accreditation body and specified
in SE2004 (Diaz-Herrera, 2004). Both depart-
mental outcomes and the defined SE outcomes
will serve as targets for the courses designed into
the BSSE curriculum.

In our case, we combined the generic CIS de-
partmental outcomes with specific SE outcomes
that then defined the BSSE program outcomes.
A gap analysis was performed on the mapping of
BSSE program outcomes to the eleven outcomes,
the superset of ABET EAC, EAC SE and SE2004
outcomes, described in Defining the BSSE Gradu-
ate section. The result is shown in Table 2. The
analysis goal was to make sure that every Gannon
BSSE outcome maps to at least one generic SE
outcome and every generic SE outcome maps to
at least one Gannon BSSE outcome.

4. Outcomes to Courses: Applying ABET,
SEEK and SWEBOK

The outcomes only convey what objectives should
be achieved by the courses prescribed in a BSSE

curriculum but not courses should be offered. One
of the important goals in the design and construc-
tion of courses is to build up students’ knowledge
and skills through the curriculum. Both SE2004
and SWEBOK, described in What Software En-
gineers Need to Know section, define Knowledge
Areas (KAs) and topics that are important to a
software engineer. By identifying Knowledge Ar-
eas (KAs), Knowledge Units (KUs) and topics that
need to be covered by courses, assigning them to
courses, defining course outcomes, and mapping
course outcomes to BSSE program outcomes,
this not only ensures that every BSSE program
outcome is covered by one or more courses, but
also ensures that the important (essential) topics
hand-picked by the SE program committee are
covered by one or more courses. While most
ABET program outcomes (A-K) and program
criteria were well covered, issues regarding the
minimal standards for science, mathematics, and
the application of SE to some discipline needed
specific inclusions in the program designs under
consideration.

In our experience, SWEBOK proved to be
invaluable in helping to define Knowledge Areas,
subareas and topics to be covered by courses.
Although SWEBOK is not designed specifically
for undergraduate curriculum development and
accreditation, we found it provided easy to under-
stand, and more in-depth description of knowledge
areas and topics than SE2004. In addition, it also
provided useful references in building syllabi for
new courses.

Since SE2004 SEEK and SWEBOK de-
fined very similar Knowledge Areas (KAs), as
discussed in What Software Engineers Need
to Know section, it was not difficult for us to
identify Knowledge Areas (KAs) that need to be
covered by courses in SE curriculum. SE2004
SEEK defined very detailed topics for each KA,
more specifically topics that are designated as
essential should be covered by an accreditable
SE curriculum. In an ideal world, we should be
able to assign every essential topic or even non-

���

How to Create a Credible Software Engineering Bachelor’s Program

G
annon softw

are Engineering
(bss

E) program
 outcom

es
2006-7

Show mastery of the software engineering knowledge and
skills, and professional issues necessary to begin practice as

a software engineer

Ability to appropriately apply science, discrete mathematics,
empirical techniques, probability and statistics and relevant
topics in computer science and supporting disciplines to the

development of complex software systems

Work as an individual and as part of a multi-disciplinary team
to develop and deliver quality software artifacts

Reconcile conflicting project objectives, finding acceptable
compromises within limitations of cost, time, knowledge,

existing systems and organizations

Design appropriate solutions in one or more application
domains using software engineering approaches that
integrate ethical, social, legal and economic concerns

Understanding of professional and ethical responsibility

Demonstrate an understanding of and apply current theories,
models, and techniques that provide a basis for problem

identification and analysis, software design, development,
implementation, and documentation.

Demonstrate an understanding and appreciation for the
importance of negotiation, effective work habits, leadership,

and good communication with stakeholders in a typical
software development environment.

Learn new models, techniques and technologies as they
emerge and appreciate the necessity of such continuing

professional development.

Knowledge of contemporary issues

Broad education necessary to understand the impact of
engineering solutions in a global, economic, environmental,

and societal context

�. A
pply problem

 solving strategies to
softw

are developm
ent

x
x

x

X

�. Interface w
ith business and

analytical professionals to solve
softw

are or system
s developm

ent
problem

s

x
x

�. C
om

prehend ethical decisions and
their ram

ifications as professionals.
x

X
x

X
x

�. D
em

onstrate effective verbal,
w

ritten, and listening com
m

unication
skills as required for professional,
group, and team

 interactions

x
x

X

�. D
em

onstrate the ability to continue
in professional developm

ent and
expansion of their professional
interests

x
x

X
x

x

�. M
aintain a com

prehension of
the changing technology and its
ram

ifications
x

x

�. R
ealize and m

anage high quality
sw

 developm
ent lifecycle processes

in one or m
ore application dom

ains
x

x
x

x
X

x

�. A
pply discrete m

athem
atics

and abstract structures to system

developm
ent

x
x

�. A
pply quantitative m

easures in the
evaluation of softw

are com
ponents

and system
s

x
x

x
x

Table 2. Mapping of Gannon BSSE program outcomes to generic SE outcomes

 ���

How to Create a Credible Software Engineering Bachelor’s Program

essential ones defined in SEEK to courses in
our SE curriculum. In reality, we had to operate
under institutional and departmental constraints;
those are 36 credits of general education require-
ment, remaining compatible to existing CS and
MIS programs (maximum reuse of existing CIS
courses), six credits of capstone project, and 135
maximum credits for the SE program.

Our program development model started with
using an existing program (in this case, Computer
Science) as the basis for the formulation. Instead
of assigning all essential and even non-essential
SEEK topics, KUs and KAs to whatever courses
that we imagined as important for SE curriculum,
we started with mapping these topics, KUs and
KA’s to existing computer science courses, related
discipline and general education course contents.
After such a mapping exercise, we were able to find
the topics, KUs, KAs and even BSSE outcomes
not covered by existing courses. This enabled us
to revisit existing course contents and outcomes,
and even allowed us the opportunity to reshape
or redirect the contents and outcomes of existing
courses, as well as facilitate the discussion to
remove courses to make room for SE courses.

The mappings created were managed in a
spreadsheet, much like requirements traceability
lists, and showed that the ‘requirements’ coverage
was incomplete. So there remained the question
of whether we could cover the rest of essential
topics, KUs and KAs reasonably by redesigning
existing course offerings or whether new courses
should be designed to serve this purpose.

In our case, we were not able to reasonably
cover most of the essential topics, KUs, KAs and
even BSSE outcomes by redesigning existing
courses. Seven new SE specific courses: Software
Engineering Seminar, Requirements and Proj-
ect Management, Formal Methods in Software
Development, Software Architecture, Software
Testing and Quality Assurance, Human Interface
Design and Maintenance, and Personal Software
Process, totaling 19 credits, were created and
offered by the CIS department. The initial cur-

riculum is presented in Figure 3, and the current
(2007-8) curriculum is listed in Figure 4. Each SE
student also needs to pick an application domain,
consisting of nine credit hours of existing courses
from various departments, to focus on. The math
department also agreed to offer a new course
– Discrete Math 2 for our SE students. Even with
the creation of these new courses, we still could
not cover all the essential topics in SEEK due to
the constraint of the maximum of 135 credits. The
detailed examples of the mapping process can be
found in (Frezza, 2003) and (Frezza, 2006).

Figure 3 presents the 135 credits initially
proposed for the BSSE curriculum. These are
organized by type, such as current Engineering
and Computer and Information Science courses
(51 credits), new Software Engineering courses
(19 credits), Application Domain courses (9
credits), new and existing mathematics courses
(15 credits), existing Science courses (8 credits),
and existing liberal studies (general education)
courses (36 credits).

5. New courses or reuse existing courses

In an ideal world where unlimited resources
(faculty, budget, number of credits, etc.) are
available, and no constraints are imposed for
curriculum development, all new courses can be
created specifically for an SE program. However,
in reality, where multiple constraints exist and
academic political issues are abundant, it’s not
always possible to create all the new courses a
new SE program needs. In such a situation, a
gap analysis on the mapping of existing course
contents to SEEK topics, KUs, KAs and defined
BSSE program outcomes could serve as the start-
ing point for the discussion of redirecting current
course contents, negotiating whether and what
new courses to create, and where and how to run
the new courses.

The discussions about old, revised and new
courses were at times heated – for example, a more
‘systems’ or ‘engineering’ flavor to the course

���

How to Create a Credible Software Engineering Bachelor’s Program

Figure 3. Initial Gannon BSSE curriculum (as designed 2004)

 ���

How to Create a Credible Software Engineering Bachelor’s Program

would have introduced discrete mathematics in
the context of digital design, and then followed
up with formal discrete mathematics course to fill
out the KA. However, the ‘MIS’ vision prevailed,
(and the desire to parallel the Computer Science
program closely), and a Discrete Mathematics 1,
followed by a Discrete Mathematics 2 combina-
tion was agreed upon, followed up by a Formal
Methods in Software Development course, offered
by our department. For each of these courses, ap-
propriate KA’s were assigned to the mappings, as
well as the subproject of getting our colleagues
in the Math Department to support the approach.
Such tradeoffs were not insignificant, but were
guided by the needs as expressed in the trace-
ability spreadsheet. The spreadsheet framed the
problem; our particular resolution to the program
vision (information systems) and organization
issues (CIS department) guided the debate.

Similar issues surfaced around addressing the
‘Computer Organization’ requirements within
the Computing Foundations KU, which could be
implemented with a ‘microprocessors course’ or a
‘computer architecture course’ – neither of which
would come from our department. Here the trace-
ability showed the need for, and coverage within
the spirit and letter of the requirements – but a
choice/decision needed to be made. In this case,
the previous ‘Discrete 1 vs. Digital Logic’ decision
drove the issue. Only the ‘Computer Architecture’
remained as a viable choice, both because of the
desire to parallel the CS program, and the fact
that the architecture course accepted the Discrete
Mathematics 1 course as a prerequisite – whereas
the microprocessor course did not.

In our case, the seven new SE specific courses
fell logically on the shoulders of the hosting
department, CIS, due the focus and skills of the
department and faculty. We were able to negotiate
with Math department to offer the new Discrete
Math 2 course due to its strong mathematics
content. For domain related courses, we decided
to reuse existing courses offered by various de-
partments to offer students more domain specific

knowledge. Our current Software Engineering
curriculum is presented in the Change Manage-
ment section below.

Once the BSSE curriculum is developed, it is
just a proposal – it serves as the guide and core
for getting the agreement to launch the program,
and ultimately for attracting students, staffing and
running the courses that make up the program
and continuing to improve the program to serve
students’ needs.

sELLING THE PROGRAM

During the early stages of conceiving and
constructing the program, support must be ob-
tained on several levels in order to reasonably
proceed, and, ultimately, to launch a successful
program.

Understanding the student Market

One initial question which must be answered is
whether there is and will be work for BSSE gradu-
ates. If this question is answered in the negative,
there is little chance for program success since it
will be extremely difficult to attract students to
a program with bleak job prospects. According
to the United States Bureau of Labor Statistics
(U.S. Department of Labor, 2006a), computer
software engineers in the United States held
about 800,000 jobs in 2004. They are employed
in a wide variety of industries, with employers
ranging from startup companies to established
industry leaders.

According to Bureau projections, computer
software engineer will be one of the fastest-grow-
ing occupations through 2014 as businesses adopt
and integrate new computer-based technologies.
Jobs openings will be created both through em-
ployment growth and from the need to replace
workers who retire or otherwise leave the oc-
cupation. Consulting opportunities for computer
software engineers also should continue to grow.

���

How to Create a Credible Software Engineering Bachelor’s Program

Growth in the field will come from rapidly evolv-
ing technologies as well as new software needs
driven by information security concerns.

With growing internationalization of soft-
ware development, some countries will see more
software development contracted out abroad.
However, jobs in software engineering are less
prone to being sent abroad because the occupa-
tion requires innovation and intense research and
development. Most companies prefer to keep this
function in-house whenever practical.

Since the BSSE is a relatively new major, it is
often difficult to obtain accurate statistics which
isolate the major. This is true when discussing
starting salaries. Some basic information is avail-
able from the National Association of Colleges
and Employers web site (National Association of
Colleges and Employers, 2007) (more detailed
information is available to members). This press
release lists the average starting salary offer to
recent bachelor’s graduates in Management In-
formation Systems/Business Data Processing as
$46,966. The average offer for Computer Science
graduates is listed as $52,177. The press release
does not distinguish between types of job, nor
does it list Software Engineering as a category
of degree.

The United States Bureau of Labor Statistics
(U.S. Department of Labor, 2006b), lists median
salary data for computer software engineers in the
United States, but the data is for the profession.
As discussed below, most practicing software
engineers do not have a degree in Software En-
gineering, so the data applies to anyone working
as a software engineer, not just to those with a
Software Engineering degree.

Given the promising employment outlook,
a follow-up question is whether students are
enrolling in BSSE programs. If we build it, will
they come?

As with employment trends, it is difficult to
obtain accurate enrollment statistics which apply
specifically to the Software Engineering major.
The Digest of Education Statistics, 2005 (National

Center for Education Statistics, 2005), lists 163
students receiving a Bachelor’s degree in Com-
puter Software Engineering in 2003-04, while
the 2004 Digest (National Center for Education
Statistics, 2004), lists 121 students receiving a
Bachelor’s degree in Computer Software Engi-
neering in 2002-03. These are the most recent
official statistics generally available as of this writ-
ing. While these statistics indicate solid growth
in the number of bachelor’s degrees granted, the
number of SE graduates is still extremely small
when compared with the number of software
engineers needed.

It is also difficult to obtain statistics for soft-
ware engineering as a career preference. For
example, the Post-Secondary Planning Survey
Analysis, conducted by the National Research
Center for College and University Admissions
(NRCCUA) Career-Choice Preferences lists
“Computer Sciences,” “Information Technology,”
and several Engineering choices, but “Software
Engineering” is not included as a separate choice
(NRCCUA, 2007). The SAT survey of intended
majors of college bound students in 2007 includes
only the broad categories of “Computer and In-
formation Sciences and Support Services” and
“Engineering” (The College Board, 2007).

Based on the above numbers, it can be con-
cluded that most practicing software engineers do
not have a degree in Software Engineering, but
rather in Computer Science or some other related
discipline. The question is whether a traditional
Computer Science degree program best prepares
a student for today’s typical software engineering
jobs and future career need not be addressed; there
is room for and need for both majors.

With promising employment and enrollment
outlooks, a final general question is whether
the market is already flooded with new BSSE
programs. The brief, simple answer is “no” (or
at least it was in 2002 and still is at the time of
writing).

In 2003, there were 21 known programs in the
United States offering some type of bachelor’s

 ���

How to Create a Credible Software Engineering Bachelor’s Program

degree in Software Engineering, with more being
proposed (Bagert, 2003). As of January 1, 2007,
there are at least 34 known BSSE programs in the
U.S. 13 of which are accredited by ABET (ABET,
2006). Based on these numbers and the projected
need for Software Engineers, it seems that many
more programs with a Software Engineering
focus are needed.

building Additional support

Once these initial questions are answered, support
to proceed must be obtained from several groups.
First, the affected faculty must support the pro-
gram. If housed in a Computer Science program,
one adjustment will be a shift in the focus of some
upper division courses. The basics of program-
ming, database, networking, operating systems,
and computer architecture will be taught in both
majors. However, Computer Science majors will
then study topics such as analysis of algorithms,
comparative programming languages, compilers,
and formal languages. Software Engineers, on the
other hand, with study topics such as software
design and test, software architecture, require-
ments, project management, quality assurance,
and human interface design.

For some faculty, this will be an issue. It will be
seen as a move from a set of courses with technical,
well-defined content to a set of courses with a more
subjective content. If co-located with a Computer
Science program, the split in focus and teaching
assignment for upper division courses may fall
naturally along the strengths and interests of the
faculty and be seen as a positive. If not, some
accommodation will need to be made for and by
the faculty. This can often be accomplished by
judicious distribution of the core set of courses.
Regardless of initial reaction, recent downward
trends in enrollment in Computer Science pro-
grams should provide motivation for faculty to
support a program which will likely lead to an
increase in enrollment.

Once the faculty is behind the concept of a
Software Engineering program, the university
administration must be convinced that launch-
ing the program is a good idea. While there are
several factors involved, the overriding issue with
the administration is likely to be economic: will
the new program make money or lose money? For
a university, the business case will boil down to
whether revenue from increased enrollment will
offset increased costs. The overall impact of the
program proposal was the creation and staffing
of seven new courses in software engineering; if
offered annually, as was the plan, this defined the
need for a new faculty member. In our case, we
developed our proposal to feature launching the
program first, and then adding the new faculty
member in the second year in order to offset the
economic impact.

Cost increase can vary greatly depending
on factors discussed in preceding sections. If
the program is housed in a department such as
Computer Science, there can be much reuse of
courses and faculty. As such, there will likely
be little additional cost when the program is first
launched. As the program moves into its third and
fourth years, new upper division courses must
be developed and taught. Part of this cost can be
shifted by eliminating or reducing the frequency
of current courses which are under-enrolled.
Other costs are more than offset by the increase
in enrollment.

A further advantage to the university is the
visibility of offering a cutting-edge program. This
will help attract both students and faculty. It will
also bolster the overall image of the university. In
our case, adding the SE program led to a change in
the CS+SE enrollment trends – what had been on
significant decline grew slightly and stabilized.

Finally, to be successful, the program must be
attractive to both students and their parents. One
major point, of course, is that Software Engineer-
ing is a promising career. The field provides an
adequate number of jobs and good salaries. A
degree in Software Engineering provides the right

��0

How to Create a Credible Software Engineering Bachelor’s Program

skill set for a student entering the job market, and
degree in Software Engineering distinguishes
the graduate from a graduate with a Computer
Science degree. This can be highlighted by the
admissions department as well as in any market-
ing provided by the university. One criticism of
adding Software Engineering was the question of
impact on Computer Science enrollment. In our
case, there has been an impact on CS enrollment
(and MIS for that matter). We have ‘lost’ students
to SE from these programs, but we also found
many new students who would have otherwise not
applied to the university. For our (rather small)
program, this has been averaging about 50% for
the four years we have accepted students to the
SE program. Over this period, about half of the
new students who join the BS-SE would not have
joined the university. For our department, this has
resulted in a slight decline in CS undergraduates,
but more recently it has also seen an increase in
CS applicants, as well as a qualitative difference in
those students who join the CS program – they are
increasingly joining because they are genuinely
interested in CS topics and approaches.

Finally, the entry in the university catalog for
the new program becomes more important than
for more established programs. In addition to
just being a listing of required courses and their
content, the catalog entries server as a marketing
tool. A good entry will highlight the potential of
the career path, the promise of the department to
the students to deliver the appropriate courses and
material, and the commitment of the university
to support the new program.

LAUNCHING THE PROGRAM

Based on the plan initially proposed to and then
approved by the university (Frezza, 2003), Gannon
was able to launch the SE major with little impact
on courses or faculty for the first two years. Based
on the assessment of Gannon’s strengths and those
of the various departments as well as a review of

requirements imposed by the policies of both the
university and college, the courses taken by SE
majors in the first two years were already offered
within the university. These courses consisted of
Liberal Arts core courses taken by all Gannon
students, CIS core courses already offered and
taken by the CS and MIS majors at the university,
and introductory science courses already offered
to several majors. The only exception to this is
the Discrete Math 2 course taken second semester
of sophomore year. The Math department was
willing to develop and offer this course in the
necessary time frame. By design, the first two
years of the program had little immediate impact
on course delivery or teaching load – only one
new one-credit course was needed. Our internal
goal of trying to reuse as many of the existing
Computer Science curriculum courses and se-
quences as possible had the significant benefit
of our being able to launch the program prior to
searching for new faculty.

Adding New Faculty

Adding a new faculty member to the department
proved to be significantly easy for our situation,
as one of the proponents of the program (who was
CSDP qualified), by mutual agreement, essentially
transferred from the Electrical and Computer
Engineering department. Finding a second quali-
fied faculty member was not as easy. Finding a
potential faculty member with a good academic
background, worthwhile industry experience, an
appropriate commitment to teaching and scholar-
ship, who fits in the university/department culture
and has not already taken on a higher-paying job
in industry is a tall order.

While our experience has been somewhat
limited, some of the problem areas have included
recruitment of junior faculty; getting the right
match for credentials, experience and fit have
proven to be difficult. The typical Computer
Science Ph.D. may not have any interest in ‘core’
software engineering topics; whereas Ph.D.’s from

 ���

How to Create a Credible Software Engineering Bachelor’s Program

Engineering or Information Science disciplines
may not have any significant software development
background. In any case, many typical Ph.D.s
do not have either experience or education in SE
‘special topics’ areas such as project management,
software maintenance or even requirements.

Additional issues abound when searching for
seasoned faculty members – while they often have
more project and teaching experience, they also
have the potential for more (and more complex)
issues in areas such as benefits and tenure. Such
issues are often institutional, and flexibility may
not be available.

Course Pilots

This particular facet of our program design did not
eliminate the need for additional staffing, however.
Based on our assessments, we would need a new
faculty member in the second year of the program
to teach the first round of the new SE courses,
and if enrollment took off, in year three or four
we would need another faculty member to help
with the additional sections that would be needed
in the introductory sequence. These points were
very important to painting the financial picture
to the university about the distribution of costs
and risks in launching the program. Financially,
the big impact would be in years two and four;
academically, the real impact would begin in the
third year of the program; a change-management
plan was needed.

The plan was to hire a new (additional) SE-
qualified faculty member in year two, and ad-
ditionally to offer all of the new junior-level SE
courses in advance. This latter plan was part of a
(pedagogical) risk-management strategy so that
the new faculty member and other department
faculty members could pilot the new SE courses
prior to the first wave of SE students entering the
courses. The expanded department faculty would
then offer each of the new SE courses one year in
advance of the first wave of SE students – with

three semesters containing significant piloting
of courses.

For the fall (piloting semester five) of their
junior year, SE majors were scheduled to take
three upper division SE-specific courses: Software
Design and Test, Personal Software Process, and
Formal Methods in Software Development. Of
these, only one was new, as Software Design and
Test was already a course offered and required
of our CS majors and Personal Software Process
was offered to our 1st-year graduate students.
Hence neither of these courses needed significant
modifications for the undergraduate BSSE popula-
tion. The Formal Methods course was a different
story – it was new to our faculty and needed to
be developed and offered. Finding educational
resources and faculty development seminars to
support this course proved to be difficult. Develop-
ing this course offering required identifying and
making decisions on course topics, approaches,
tools, methodologies and textbooks that would
work for our students.

During the next spring (piloting semester
six), the impact intensified. The SE majors were
scheduled to take two more new courses in the
following year, so Requirements and Project
Management, and Software Architecture, which
were developed and offered in their pilot forms,
knowing the regular group of majors would regis-
ter in the following year. This additional workload
was covered by the new faculty member.

The third year of the program (pilot for Semes-
ter seven) required the development and offering
of two new undergraduate courses, both offered
in the first semester: Software Testing and Qual-
ity Assurance, and Human Interface Design and
Maintenance. These courses, along with the first
regular offerings of the three fifth-semester SE-
specific courses accounted for the additional time
provided by the faculty hired at the beginning of
the second year of the program.

In addition to the courses and faculty needed,
two other factors needed to be considered. First,
the university Admissions department needed to

���

How to Create a Credible Software Engineering Bachelor’s Program

be involved in the process. The program needed
to be advertised as much as possible, and admis-
sions needed to understand the requirements for
admission to the program. They also needed to
place the incoming SE students in the proper
courses for the freshman year.

Finally, the issue of transfer students, both in-
ternal and external, needed to be addressed. Since
the program was phased-in over four years, for the
first two years, we would be unable to accept up-
per division transfers (unless they were willing to
stay an extra year) since the upper division courses
were not available during those first two years.
We did, in fact, accept one sophomore transfer
the first year of the program and he was able to
graduate with just one additional semester.

CHANGE MANAGEMENT

One important issue to address early in the pro-
gram development is to plan for change. This
begins with outcomes and measurement. We
were fortunate that many of the processes that
we required in this area were already largely in
place. The CIS department already had outcomes
defined for the CS and MIS majors and some
measurement tools in place.

Further, the Electrical Engineering and Me-
chanical Engineering departments were ABET
accredited. Concurrently with the launching of
the SE major, the CIS department was prepar-
ing for ABET accreditation for the two existing
majors, and the EE and ME departments were
preparing to renew their accreditation. To aid
in this process, an online course evaluation tool
was prepared to gather information specifically
required by the ABET process. (A university-wide
course evaluation instrument had been in use for
all courses for several years, but it did not gather
all information required by ABET.) This tool was
used from the beginning of the SE program.

Even though we are only about to begin our
fourth year of the program, and the first time

the senior level courses will be offered, we have
already made changes to the program. First, we
realized that we had a hole in coverage in the op-
erating systems area. To address this issue within
faculty time and budget constraints, we added
the full Operating Systems course to the list of
required courses. To make room, we dropped an
Introduction to Engineering course which had
only partial content relevant to our needs. We
moved the relevant content into pieces of existing
courses where they fit the best.

One of the core Liberal Studies requirements
is a basic business course. Many of our majors
chose either Microeconomics or Macroeconom-
ics. After two years of the program, we saw an
opportunity to provide a business course more
directly applicable to the SE majors. As such,
we co-developed a course (Project Economics)
with the business school which provides basic
economics theory as well as the application of the
theories in a project setting. This course is now
the designated business course for SE majors.

Our current Software Engineering Curriculum
(2007-8) is listed in Figure 4. Diagonal shading
indicates reused Computer and Information Sci-
ence courses. The darker grey shading indicates
new courses developed for the Software Engi-
neering major by the Computer and Information
Science department. One of the seven originally
proposed new Software Engineering courses (See
Figure 3), the Software Engineering Seminar, was
offered two times and it was determined that the
course was not serving the needs of our software
engineering students. Therefore, it was removed
from the curriculum. As noted in a previous sec-
tion, Discrete Math 2 was developed by the Math
department for our software engineering program.
The remaining courses required for the software
engineering major, including the application do-
main courses, are coded in Figure 4 as indicated
by the shading key. These courses were already
offered by various departments within the uni-
versity, with the exception of Project Economics
discussed above.

 ���

How to Create a Credible Software Engineering Bachelor’s Program

Figure 4. Current software engineering curriculum (2007-8)

���

How to Create a Credible Software Engineering Bachelor’s Program

CONCLUsION

This article does not address the relative merits
of the education provided by a traditional Com-
puter Science program compared with a Software
Engineering program. It does seem that there is a
need to provide the type of Software Engineering
curriculum discussed in the article and that the
curriculum can be provided along with, rather
than instead of, a more traditional Computer
Science curriculum. Programs have been and can
be introduced at institutions with diverse size,
diverse overall focus, diverse program style, and
diverse strengths.

This article discusses many items to consider
in the process of planning and launching a new
BSSE program. Further, obtaining program ac-
creditation is highly desirable, in some cases
necessary. Understanding the steps required by the
appropriate accrediting body to obtain accredita-
tion is mandatory at some point in the program’s
lifecycle. Understanding the steps very early and
accounting for them during program planning will
help smooth the journey to accreditation.

REFERENCEs

ABET Engineering Accreditation Commission
(EAC) (2005). Criteria for Accrediting Engineer-
ing Programs, Effective for Evaluations during
the 2006-7 Accreditation Cycle. Baltimore, MD.
Retrieved May 28, 2007, from http://www.abet.
org/forms.shtml.

ABET (2006). List of Accredited Programs in
Software Engineering, October 1, 2006. Retrieved
May 28, 2007, from http://www.abet.org/ABE-
TWebsite.asp#area

ABET (2007). Home Page, Retrieved May 28,
2007, from http://www.abet.org/index.shtml

Abran, A., & Moore, J. (Eds.). (2004). Guide to
the Software Engineering Body of Knowledge,

2004 Version, IEEE Computer Society Press.
Available at http://www.swebok.org.

Bagert, D., & Ardis, M. (2003, November). Soft-
ware Engineering Baccalaureate Programs In
The United States: An Overview. Proceedings of
the Frontiers in Education Conference (FIE’03).
Boulder, CO.

Bourque, P., Dupuis, R., Abran, A., Moore, J., &
Tripp, L. (2000, August). Developing Consensus
on the Software Engineering Body of Knowledge.
Proceedings of the 2000 World Computer Con-
gress, Beijing, China. Available at http://www.
gelog.etsmtl.ca/publications/pdf/535.pdf

Canadian Council of Professional Engineers, Ca-
nadian Engineering Accreditation Board (2006).
CEAB Accreditation Criteria and Procedures.
Ottawa, Ontario, Canada. Retrieved October
26, 2007, from http://www.engineerscanada.
ca/e/files/report_ceab.pdf

Diaz-Herrera, J. L., Hilburn, T., Hislop, G., Lutz,
M., MacNeil, P.E., & McCracken, M. (2001, Oc-
tober). Software Engineering Education Should
Be Presented as A: Science, B: Engineering, C.
Technology, D. None of the above, E. All of the
above, Other. Proceedings of the Frontiers in
Education Conference (FIE’01), Reno, NV.

Diaz-Herrera, J. L., & Hilburn, T. (Eds.). (2004).
Software Engineering 2004 Curriculum Guide-
lines for Undergraduate Degree Programs in
Software Engineering A Volume of the Comput-
ing Curricula Series. Available at http://sites.
computer.org/ccse

Engineers Australia (2007). Australian Profes-
sional Engineering Programs Accredited by Engi-
neers Australia. Last updated 6 September 2007.
Retrieved November 11, 2007 from http://www.
engineersaustralia.org.au/education/program-
accreditation/accredited-programs/accredited-
programs_home.cfm

 ���

How to Create a Credible Software Engineering Bachelor’s Program

Frezza, S., Sasi, S., & Seol, J. (2003, November).
Report from the Trenches: Applying the SEEK
to BSSE Program Development. Proceedings of
the Frontiers in Education Conference (FIE’03).
Boulder, CO.

Frezza, S. T., Tang, M-H., & Brinkman, B. J.
(2006). Creating an Accreditable Software En-
gineering Bachelor’s Program. IEEE Software,
23(6), 27-35.

Henderson, P., Linos, P., & Tinsley, E. (2003).
Crafting an Undergraduate Software Engineer-
ing Program in a Liberal Arts Environment.
Unpublished extended abstract, Butler University,
Indianapolis, IN.

IEEE Computer Society (2001). The Certified
Software Development Professional Program,
Available at http://www.computer.org/portal/
pages/ieeecs/education/certification.

Jones, C. (2003). Variations in Software Develop-
ment Practices. IEEE Software, 20(6), 22-27.

Kelley, R. E. (1999). How to be a Star Engineer,
IEEE Spectrum. 36(10), 51-58.

McConnell, S., & Tripp, L. (1999). Professional
Software Engineering: Fact or Fiction? IEEE
Software, 16(6), 13-18.

National Association of Colleges and Employers
(2007). Higher Starting Salary Offers Reflect
Positive Trend in Job Market for New College
Graduates. Press Release. Retrieved May 28,
2007, from http://www.naceweb.org/press/dis-
play.asp?year=2007&prid=256

National Center for Education Statistics (2004).
Institute of Education Sciences, U. S. Department
of Education. Digest of Education Statistics,
2004. Retrieved May 28, 2007, from http://nces.
ed.gov/programs/digest/

National Center for Education Statistics (2005).
Institute of Education Sciences, U. S. Depart-
ment of Education. Digest of Education Statistics,
2005. Retrieved May 28, 2007, from http://nces.
ed.gov/programs/digest/

National Research Center for College and Univer-
sity Admissions (2007). Post-Secondary Planning
Survey Analysis, 2007-2008 Edition. Retrieved
November 15, 2007, from http://www.nrccua.
org/downloads/reports/survey_analysis.pdf

Naur, P. & Randell, B. (Eds.) (1969). Software
engineering: Report of a conference sponsored
by the NATO Science Committee, Garmisch,
Germany, 7–11 October 1968, Brussels, Scientific
Affairs Division, NATO.

Sobel, A. E. K., Bagert, D. J., Frezza, S. T., &
Pavlov, V. L. (2007, October). Panel - Assessing
The Impact of the SE2004 Curriculum Guidelines,
presented at the Frontiers in Education Conference
(FIE’07), Milwaukee, WI.

The College Board (2007). 2007 College Bound
Seniors, Total Group Profile Report. Retrieved No-
vember 15, 2007, from http://www.collegeboard.
com/prod_downloads/about/news_info/cbsenior/
yr2007/national-report.pdf

U. S. Department of Labor, Bureau of Labor Sta-
tistics (2006a). Occupational Outlook Handbook
(OOH), 2006-07 Edition. Retrieved May 28, 2007,
from http://www.bls.gov/oco/

U. S. Department of Labor, Bureau of Labor
Statistics (2006b). Occupational Employment and
Wages. May 2006. Retrieved May 28, 2007, from
http://www.bls.gov/oes/current/oes151032.htm

Wankat, P. & Oreovicz, F. (1993). Teaching Engi-
neering, Upper Saddle River, NJ: McGraw Hill.

Section VII
Professional

Practice

 ���

Chapter XVII
Ensuring Students Engage with

Ethical and Professional
Practice Concepts

J. Barrie Thompson
University of Sunderland, UK

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abs TRACT

The teaching and learning of aspects related to ethics and professional practice present significant
challenges to both staff and students as these topics are much more abstract than say software design
and testing. The core of this chapter is an in-depth examination of how ethics and professional practice
can be addressed in a very practical manner. To set the scene and provide contextual information the
chapter commences with information on an international model of professionalism, a code of ethics for
Software Engineers, and different teaching and learning approaches that can be employed when ad-
dressing ethical issues. The major part of the chapter is then devoted to detailing a particular teaching
and leaning approach, which has been developed at the University of Sunderland in the UK. Finally
conclusions, views on the present situation and future developments, and details of outstanding chal-
lenges are presented.

INTRODUCTION

Software Engineers operate within a global
market place where, for example, software can
be specified in the USA, developed in India, and
then used by individuals globally on the Internet.
The systems that they produce provide solutions to
problems across a wide range of areas from health
care, through business, to all forms of transpor-

tation. Compared to what could be achieved just
a few years ago the technical developments that
software underpins can have far reaching impli-
cations on everyday life. Also, it must be noted
that they support much of the world economy.
However, these technical developments can also
have a downside, raising significant social and
ethical risks for individuals, organisations and
society at large (ETHICOMP, 2004).

���

Ensuring Students Engage with Ethical and Professional Practice Concepts

A major challenge for educators is to ensure
that students do not just concentrate on the tech-
nical elements of Software Engineering. The
students need to be prepared for their place as
future professionals who can appreciate the wider
issues associated with the systems for which they
will have a responsibility. It is thus important that
the students understand the need for professional
practices and the roles that codes of ethics play
in underpinning such practices. However, it is
equally important to ensure that these “softer”
subjects are treated in an engaging and meaningful
manner that involves the students fully and interac-
tively. Simply studying models of professionalism
and codes of ethics in isolation can be, to say the
least, a boring and unchallenging activity (both
for the students and the academic staff).

The objectives of this chapter are firstly to
provide some background and contextual in-
formation relating to an international model of
professionalism relevant to professional practice
in information technology and a code of ethics
for Software Engineers. Then consideration will
be given to different teaching and learning ap-
proaches that can be employed when addressing
ethical issues. Following this, the major part of
the chapter is devoted to presenting details of a
particular teaching and learning approach, which
has been developed at the University of Sunderland
in the UK, and which is believed to:

•	 Give the students an understanding of the
role and importance of codes of ethics and
professional practice.

•	 Encourage students to engage and work
together.

•	 Develop individual and group skills in the
areas of analysis, appraisal, discussion, and
presenting.

•	 Provide an environment in which the stu-
dents can apply a code of ethics and profes-
sional practice to a realistic (though fictitious)
situation.

•	 Encourage staff/student communication.
•	 Provide elements of: “fun” (yes, it does this),

of competiveness, and real engagement.

The following two sections set the scene, by
respectively, providing contextual information
and examining teaching and leaning approaches.
The next five sections then address, in detail,
the approach adopted at Sunderland. The final
section of the chapter is devoted to some conclu-
sions, views on the present situation and future
developments, and finally details of outstanding
challenges.

bACk GROUND AND CONTEXTUAL
INFORMATION

Since the mid 1990s there have been a number of
initiatives relevant to professionalism within the
wider Information and Communication Technol-
ogy (ICT) sector. For example, during the 1990s
the International Federation for Information
Processing (IFIP), following encouragement
from the World Trade Organisation, undertook
activities related to defining international stan-
dards for professionals in the field of Information
Technology. Whilst in the USA, during the same
time-frame, the ACM and IEEE Computer So-
ciety worked together on a number of initiatives
which would support the establishment of Soft-
ware Engineering as a profession. The ACM and
IEEE Computer Society initiatives concentrated
on areas associated with Ethics and Professional
Practices, Body of Knowledge and Recommended
Practices, and Education.

A detailed account of the efforts of IFIP and
those of the ACM and IEEE Computer Society
and what has followed them can be found in a
paper presented at the 2007 ETHICOMP confer-
ence (Thompson, 2007). Of particular relevance
to this chapter are:

 ���

Ensuring Students Engage with Ethical and Professional Practice Concepts

•	 A framework or meta model that was ap-
proved by IFIP in 1999 and which was de-
fined in a document entitled “Harmonization
of Professional Standards” (Mitchell, Juliff,
& Turner, 1998) and

•	 The “Software Engineering Code of Ethics
and Professional Practice” (SECEPP, 1999)
produced under the auspices of the ACM
and IEEE Computer Society.

With regard to the other ACM and IEEE
Computer Society initiatives, the project that was
concerned with defining a Body of Knowledge was
completed by the IEEE Computer Society alone
after a difference of views split the relationship
(ACM, 2000). The resultant publication “Guide
to the Software Engineering Body of Knowl-
edge” (SWEBOK) appearing in 2004 (Bourque
& Dupuis, 2004). However, the two societies
subsequently worked together to produce the cur-
riculum document “Software Engineering 2004,
Curriculum Guidelines for Undergraduate Degree
Programs in Software Engineering” (IEEE-CS
& ACM, 2004).

IFIP’s Professional standards
Framework

IFIP is a non-governmental, non-profit umbrella
organisation for national societies working in the
field of information processing. The federation is
essentially a society of societies—included in its
membership are the ACM, Australian Computer
Society, British Computer Society, and IEEE
Computer Society along with many others. IFIP
has the mission to be the leading, truly interna-
tional, apolitical organisation which encourages
and assists in the development, exploitation and
application of Information Technology for the
benefit of all people. Technical work, which is the
heart of IFIP’s activity, is managed by a series
of Technical Committees (TCs). Each of these
is in turn responsible for a number of working
groups (WGs).

During the 1990’s, IFIP started to address
issues that were related to the movement of
Information Technology professionals from one
country to another. A driver behind this was a
view from the World Trade Organisation that the
establishment of standards regarding the quali-
fications of professionals was very important in
an era of international treaties that promoted free
trade and the free movement of workers from
one country to another. In 1997 a working party
was created whose aim was to produce a docu-
ment that would clearly set out the standards of
tertiary education, experience or practice, ethics,
and continuing education that a customer might
expect from a practitioner offering services to the
public. During 1998 a small writing party met and
produced a draft standard entitled “Harmonization
of Professional Standards” (Mitchell, Juliff, &
Turner, 1998). This was subsequently presented
in August 1999 to the IFIP Technical Committee
on Education (TC3) and to a meeting of members
of the TC3 Working Group that is concerned with
Vocational Education and Training (WG3.4).

The main parts of the IFIP Professional Stan-
dards document are reproduced as Appendix
1 to this chapter and address the following six
areas:

•	 Ethics of professional practice,
•	 Established body of knowledge,
•	 Education and training,
•	 Professional experience,
•	 Best practice and proven methodologies,

and
•	 Maintenance of competence.

Within Working Group 3.4 it was felt that the
most appropriate area within the field of Informa-
tion Processing for consideration of professional-
ism was Software Engineering. Thus, starting in
September 2000 a series of activities commenced
that was undertaken over a two year period to
promote the IFIP Professional Standards docu-
ment and provide a forum for an analysis of its

��0

Ensuring Students Engage with Ethical and Professional Practice Concepts

relevance to Software Engineering community.
The overall reaction by the community was very
encouraging—it was recognised that the IFIP
document essentially defines a framework or meta
model, which should assist advancing professional
standards if it is used in a sensitive and appropriate
manner. A summary of the work undertaken in
promoting and evaluating document and the most
significant outcomes were reported at the IFIP
2005 World Conference on Computers in Educa-
tion (Thompson, 2005). That paper also details
concerns associated with Software Engineering
maturity in the areas of best practice and proven
methodologies, maintenance of competence, and
the educational support for these.

software Engineering Code of Ethics
and Professional Practice

The ACM and IEEE-CS collaboration with regard
to Software Engineering started in 1993 with
the creation of a Joint Steering Committee for
“The Establishment of Software Engineering as
a Profession”. The committee’s task was primar-
ily to “establish the appropriate set(s) of criteria
and norms for professional practice of software
engineering upon which industrial decisions,
professional certification and education curricula
can be based.” (ACM & IEEE-CS, 1999a). In
1998 the two organisations further formalised
their co-operation with the creation of Software
Engineering Coordinating Committee (SWECC)
which was made responsible for co-ordinating,
sponsoring and fostering all their various activities
regarding Software Engineering (ACM & IEEE-
CS, 1999b).

A major success resulting from the SWECC
co-operation between the ACM and IEEE-CS was
the production of the Software Engineering Code
of Ethics and Professional Practice (SECEPP) by
a task force led by Don Gotterbarn of East Ten-
nessee State University.

The code is available in two forms - a short
version which summarises aspirations at a high

level of abstraction and a full version which has
additional clauses (SECEPP, 1999). The latter pro-
vide examples and details of how the aspirations
of the code should change the way people act as
SE professionals. The current short version of the
code (version 5.2) is reproduced in Appendix 2 to
this chapter and addresses basic principles with
regard to eight areas:

•	 Public,
•	 Client and Employer,
•	 Product,
•	 Judgement,
•	 Management, Profession,
•	 Colleagues, and
•	 Self

Perhaps of particular note is the ordering of
these areas with “Public” first and “Self” last.
The code in addition to being approved by both
ACM and IEEE-CS (Gotterbarn, Miller, & Rog-
erson, 1999) has been widely adopted across the
world (SECEPP, ud). In fact it appears to be one
particular project that has been outstanding in
the lack of criticism associated with it. A pos-
sible reason for this was that the task force which
produced the code (consisting of a three-person
Executive Committee and a general member-
ship of 22 members) had a truly international
composition.

TEACHING AND LEARNING
APPROACHEs

The importance of addressing ethical and pro-
fessional issues in Software Engineering pro-
grammes is clearly recognised within the guiding
principles for the Software Engineering volume
of the Computing Curricula:

“The education of all Software Engineering
students must include student experiences with
the professional practice of Software Engineering.
The professional practice of Software Engineering

 ���

Ensuring Students Engage with Ethical and Professional Practice Concepts

encompasses a wide range of issues and activities
including problem solving, management, ethical
and legal concerns…” (IEEE-CS & ACM, 2004,
p. 10).

The particular issues associated with profes-
sionalism and ethics in the real world situations
that Software Engineers operate in have been
addressed in many papers and texts since the mid
1990s (e.g. Myers, Hall & Pitt, 1997, and Bott,
2005). Unfortunately, support for the teaching
and learning related to the subject area is not
so readily available as for other more technical
subjects such as design and testing. A further
problem is that the major Software Engineer-
ing textbooks tend to provide little more than
passing references to professional and ethical
issues. However, various teaching and leaning
approaches have been addressed in depth in
recent papers presented at the 2003 and 2004
Conferences on Software Engineering Educa-
tion and Training (Towell, 2003, and Towell &
Thompson, 2004). In addition, papers addressing
teaching and learning approaches that relate to
addressing professionalism and ethics, but to a
wider computing audience, can be found in the
proceedings of the Ethicomp Series of Confer-
ences, The Ethicomp Journal and the Journal
of Information Communication and Ethics in
Society (further information on theses sources
can be obtained from the Centre for Comput-
ing and Social Responsibility at De Montfort
University (DMU, 2007)).

More plentiful sources of information on
teaching and learning approaches are the vari-
ous workshops and tutorials that have been held
in conjunction with international conferences
(e.g. Granger et al (1997), Gotterbarn & Miller
(2001), Thompson & Towell (2004)). The latter
of these events was held at the 2004 Conference
on Software Engineering Education and Train-
ing and specifically addressed the teaching of
ethics in Software Engineering programs. The
operation and results of the workshop were sub-
sequently reported in the 160th issue of the Forum

for Advancing Software engineering Education
(FASE, 2004). During the workshop the com-
monest teaching techniques that were used when
addressing ethics were identified as:

•	 Discussion of an instructor’s personal ex-
periences

•	 Discussion of current events
•	 Reviewing various codes of ethics such as

the Software Engineering Code of Ethics
and Professional Practice

•	 Using case studies to highlight particular
ethical considerations.

•	 Using role-play to engage students in the
exploration of ethical situations

•	 Using games such as Lockheed Martin’s
“The Ethics Challenge” (documented by
Bekir, Cable, Hashimoto, & Katz, 2001)

•	 Employing Web-Based Learning Systems
such as Walter Maner’s Interactive Computer
Ethics Explorer. (Maner, ud)

Further details of these approaches can be
found in a paper by Towell, Thompson and Mc-
Fadden (2004) which considered how to address
professional standards within the Information
Systems curriculum.

When it comes to delivery of ethical and profes-
sional related topics a major issue that instructors
have to address is: whether the best approach is
to have one or more very specific modules that
address these areas or whether the topics should
be treated throughout the curriculum and thus
directly complement and support the other subject
areas. Gotterbarn (2001) is a clear proponent of
the pervasive approach, however this can present
some real difficulties:

•	 The majority of the staff teaching the other
subjects need themselves to believe in the
importance of ethics and professionalism and
they need to have the necessary knowledge
to address the issues that are likely to be
raised by the students.

���

Ensuring Students Engage with Ethical and Professional Practice Concepts

•	 If the academic programme needs to be
accredited (for example, by ABET in the
USA or the British Computer Society in the
UK) it can very hard to convince a visiting
accreditation panel that these topics really
are pervasive throughout the curriculum.

The pragmatic approach taken by many in-
stitutions, especially when accreditation is seen
as a major requirement, is to simply have one or
more explicitly titled modules that can easily be
identified as addressing the relevant issues.

THE sUNDERLAND APPROACH:
OVERVIEW

At the University of Sunderland we have em-
ployed a particular approach to addressing ethical
and professional practice concepts within our
masters level programmes in computing that
combines several of the strategies listed in the
previous section. These programmes cover a
wide range of range of specialisms including a
Masters in Software Engineering. A common
module entitled Research, Ethical, Professional
and Legal Issues forms a key part of each of
these programmes and it is within this module
that we address issues relating to professional-
ism, ethics and codes of practice. Here, I intend
only to consider the activities that we undertake
in lecture and tutorial sessions that are relevant
to ethics and professional practice. Tutorials, in
the Sunderland context, are formal timetabled
sessions with a tutor and a relatively small group
of students that usually involves practically ori-
entated or discursive work. Details of the overall
module, its learning outcomes and its operation
can be found in a paper that was presented at the
2004 ETHICOMP Conference (Thompson &
Edwards 2004). Nevertheless it is worth noting
that in a single year the module has been studied
by up to 300 masters level students on-campus by

direct instruction and by an equal number of off-
campus students via distance learning materials.
Many of the on-campus programmes have a high
intake of overseas students and we have found the
approach to be very effective no matter what the
ethnic mix. The major element of assessment is
a critical review paper that addresses a particular
ethical, professional, or legal issue and what we do
in class helps provide a contextual understanding
to support this.

Our approach makes use of the following:

•	 A brainstorming session to identify current
ethical challenges.

•	 Consideration of a number of very short
situational case studies.

•	 Consideration of international develop-
ments

•	 Consideration of the IFIP model as a frame-
work for professionalism.

•	 Consideration of the Software Engineering
Code of Ethics and Professional Practice
(SECEPP)

•	 A major class role play exercise that makes
use of the SECEPP and a fictitious case study
- “The Case of the Killer Robot” (Epstein,
1997).

The above will be considered in turn in the
following four sections. What we believe is im-
portant is student engagement and mechanisms
that will encourage them to work together in teams
rather than as individuals. We try to minimise
the amount of face to face classroom teaching
that involves simply information transfer. Our
strategy is to use the lecture sessions to cover
major concepts, outline new activities, and provide
feedback on previous activity. The real work is
undertaken in much smaller tutorial sessions via
truly active learning.

 ���

Ensuring Students Engage with Ethical and Professional Practice Concepts

THE sUNDERLAND APPROACH:
PREPARATORY WORk

When addressing the concept of ethics we try and
keep things as straightforward as possible. We
start by pointing out that there are great debates
by philosophers concerning ethics and morality
but that we will simply consider ethics to be the
moral principles held by an individual or a group.
Thus, given a set of ethics, an individual can de-
cide whether they believe certain behaviour to be
right or wrong. We expand on this by considering
ethics in academic research (which students can
usually directly relate to) and the role of ethical
committees to vet research activities. From then
we go on to consider the ethical use of computer-
based information systems especially with regard
to the handling of personal information. Here we
can use the lecturer’s own experiences and even
those of some of the students themselves.

Our first tutorial exercise is aimed at develop-
ing student engagement and collecting as wide
a set of views as possible. We issue the students
with Post-Its and then ask each student to write
on a Post-It what they consider to be a major
ethical challenge in computing. The submissions
are posted on the classroom wall and one or two
students are charged with the task of organising the
submissions into groupings. We get the students
to view and consider what has been submitted,
and we then follow this with a classroom discus-
sion in which we attempt to expand on the issues
raised.

Our next classroom exercise involves consider-
ation of a set of mini-scenarios that were detailed
in a paper “Can a Software Engineer Afford to be
Ethical” (Langford, 1996). These cover elements
of individual behaviour, “public” behaviour, com-
pany behaviour, and effects of acting unethically
at work with regard to short term consequences,
image, and the law. We issue the students with
copies of the paper several days before the class,
tell them to read it fully and consider whether
or not the examples are still relevant today (the

paper being over 10 years old). The students have
by then been organised into groups and they are
told to discuss their individual findings with
the other members of the group and come to a
consensus opinion on each scenario prior to the
class meeting. In the class itself we will get each
group to present their findings on one particular
scenario – each presentation is then followed by
a class discussion. An alternative approach (if
verbal student presentations present too much
of a challenge) is, at the start of the session, to
issue each group with one or two sheets of poster-
sized paper and get the group to write up their
findings on one particular scenario. These are
then posted on the classroom wall, the students
view them and then we debate each one. Once
started, students will usually debate issues for a
reasonable time – getting them to debate is usu-
ally not a challenge, although getting groups or
individuals to do presentations often is! Hence
the use of posters.

THE sUNDERLAND APPROACH:
ADDREss ING DEVELOPMENTs
AND A FRAMEWORk FOR
PROFEss IONALIsM

Our next step is to provide a wider contextual
view for the role of ethics in computing and the
developments there have been towards creating a
professional discipline. As our exemplar we con-
centrate on the efforts that there have been with
regard to Software Engineering. We cover both
the developments in the USA during the 1990s and
what IFIP was undertaking at the same time.

Developments in Professionalism

We often use the USA developments as an example
of the problems and “politics” that can occur over
a number of years:

���

Ensuring Students Engage with Ethical and Professional Practice Concepts

•	 The creation in 1993 of the ACM and IEEE-
CS Joint Steering Committee for “The
Establishment of Software Engineering as
a Profession” and the creation of task forces
to address: Body of Knowledge and Recom-
mended Practices, Ethics and Professional
Practices, and Education. (ACM & IEEE-
CS, 1999a).

•	 The 1998 further formal co-operation with
the creation of Software Engineering Co-
ordinating Committee (SWECC) (ACM &
IEEE-CS, 1999b)

•	 The publication in 1999 of the Software
Engineering Code of Ethics and Professional
Practice (SECEPP, 1999).

•	 A revision of The Texas Engineering Prac-
tice Act that came into operation on Janu-
ary 1st 1999 (Texas Board of Professional
Engineers, 1999) and which allowed the
recognition of Software Engineering as a
distinct engineering discipline and hence
the licensing of such engineers.

•	 The withdrawal of the ACM from SWECC
over the issue of licensing (ACM, 2000).

•	 The eventual publication in 2004 of “
Guide to the Software Engineering Body
of Knowledge” (SWEBOK) (Bourque &
Dupuis, 2004) under the auspices of the
IEEE Computer Society alone.

•	 The 2004 publication of the curriculum
document “Software Engineering 2004,
Curriculum Guidelines for Undergraduate
Degree Programs in Software Engineering”
(IEEE-CS & ACM, 2004) under the auspices
of both organisations.

•	 The IEEE Computer Society’s own effort
to offer Certified Software Development
Professional (CSPD) designation (Engel,
2006). This involves passing an examination
that in turn is related to the SWEBOK.

This somewhat erratic progress can be used to
develop classroom discussions and examine the
motivators behind what has happened.

We also make clear that there are different
models for regulating professional practices either
by licensing or certification where:

•	 Licensing – is a mandatory process admin-
istered by a government authority

•	 Certification – is a voluntary process ad-
ministered by the profession itself.

Again these can lead to discussions on the
pros and cons of each model.

The IFIP Professional standards
Framework

We use the development of the IFIP Professional
Standards framework (Mitchell, Juliff, & Turner,
1998) as an example of international cooperation
and we highlight how, with regard to Software
Engineering, the efforts by the ACM and IEEE-
CS together or alone are populating the IFIP
framework that consists of:

•	 Ethics of professional practice,
•	 Established body of knowledge,
•	 Education and training,
•	 Professional experience,
•	 Best practice and proven methodologies,

and
•	 Maintenance of competence.

For example, both the SWEBOK and the Body
of Knowledge defined within the Software Engi-
neering 2004 curriculum document support the
second element of the IFIP framework.

 We also emphasise, as detailed in the IFIP
Professional Standards document, the claimed
benefits for internationally recognised standards
(Mitchell, Juliff, & Turner, 1998):

•	 The public is assured that safety or economi-
cally critical work is performed by competent
individuals regardless of where in the world

 ���

Ensuring Students Engage with Ethical and Professional Practice Concepts

those persons gained their qualifications and
experience.

•	 A client is assured that a person who meets
such international standards is competent
to carry out tasks in documented specific
areas regardless of where the work is done
or the output of the work is used (subject
to recognition of issues of culture and lo-
cale).

•	 Professionals are assured that their quali-
fications, if recognised in one country,
will be accepted in other countries without
re-examination (except possibly for being
up-to-date).

Again, claims such as these can be used to
spark classroom discussion. However, the group
exercise that we normally set the students after
introducing the framework is for each student
group to be given a copy of the IFIP Profes-
sional Standards document, and then for each
of the groups to select one or more professional
occupations outside computing (medics, lawyers
or whatever). They then have to see how well the
framework fits the professions they have chosen.
Results are reported via posters at the next tuto-
rial and discussions are held on the findings. The
professions that the students select are usually
quite wide ranging and their investigations can
produce surprising results – according to one
particular set of students it is the profession of
International Football (Soccer) Referees who best
fit the framework!

THE sUNDERLAND APPROACH:
CODEs OF PRACTICE AND ROLE
PLAY

The first element within the IFIP framework is the
Ethics of Professional Practice. We spend some
time considering this and the fact that a profes-
sional discipline, as well as being supported by a
clearly defined body of knowledge and curricula

for appropriate academic programmes, needs also
to have formally defined ethical policies and pro-
fessional practices. We also highlight the fact that
as stated in the IFIP document for ethical codes
to be effective they must be compatible with the
culture of the society in which the practitioner
normally works.

In addition to considering the Software Engi-
neering Code of Ethics and Professional Practice
(SECEPP, 1999) we also look at codes that have
been produced to meet the specific needs of in-
dividual organisations for example:

•	 The ACM’s Code of Ethics and Professional
Conduct (ACM, 1997) and

•	 The British Computer Society’s Code of
Conduct & Code of Good Practice (BCS,
ud)

However, it is the Software Engineering Code
of Ethics and Professional Practice that receives
the greatest attention because of its international
nature, its form (short and full) and the particular
ordering of its principles as referred to earlier.
We also support the sentiments expressed in the
preamble to the full version of the code that:

“Because of their roles in developing software
systems, software engineers have significant op-
portunities to do good or cause harm, to enable
others to do good or cause harm, or to influence
others to do good or cause harm. To ensure, as
much as possible, that their efforts will be used for
good, software engineers must commit themselves
to making software engineering a beneficial and
respected profession”

But to be realistic, simply looking at codes or
comparing one code with another is not the most
exciting activity on the planet! Also, it must be
recognised that such activities are more likely to
turn students away from considering professional
issues rather than arousing their interest.

���

Ensuring Students Engage with Ethical and Professional Practice Concepts

Our solution has been to facilitate consider-
ation of a code of ethics by use of a case study
coupled with role-play. The latter becomes a
highlight in our tutorial activities and has been
found to be an excellent mechanism for encourag-
ing the students to work together. The case study
we use is the fictitious “The Case of the Killer
Robot” (Epstein, 1997). This is a purposefully
exaggerated study and in the full form it is rather
long. However, we make use of an abridged ver-
sion that is freely available on the web for student
use. The core of this case study consists of seven
newspaper articles, one journal article and one
magazine interview. It is centred on the situa-
tion where a robot operator at Cybernetics, Inc.,
is killed by an assembly line robot produced by
another company Silicon Techtronics. The case is
first made that the cause of the accident was poor
quality software produced by a programmer at
Silicon Technologies. However, as the case study
progresses it becomes more obvious that there
are many other people who could be held fully
or partly responsible and that numerous ethical
issues are involved.

We divide the students into teams and each
team is allocated a selected character from the
case study. One half of the team must produce
the case for their character being responsible for
(or contributing to) the death of the robot operator
and the other half of the team must produce the
opposing view. The team also has to show how
the action of the character was in contravention
of the principles detailed in the Software Engi-
neering Code of Ethics and Professional Practice.
Students are each given a copy of the abridged
case study, and the Code of Ethics and Profes-
sional Practice. The teams then have a week to
prepare, with their team members, for the Killer
Robot Trial/Investigation.

THE sUNDERLAND APPROACH:
THE k ILLER TRAIL /
INVEsTIGATION

We normally divide the students into five teams
and allocate to each team one of the main char-
acters from the case study. The particular char-
acters and their roles which we have decided to
concentrate on are (Epstein, 1997):

•	 Randy Samuels, a programmer. He wrote
the program code that caused the Robbie
CX30 robot to oscillate wildly, killing its
operator, Bart Matthews.

•	 Sam Reynolds, the CX30 Project Manager.
He had a background in data processing
but was put in charge of the Robbie project.
Reynolds was committed to the waterfall
model of development.

•	 Michael Waterson, the President and CEO
of Silicon Techtronics. He placed Sam Reyn-
olds in charge of Robbie CX30 project as a
cost-saving measure.

•	 Cindy Yardley, a Silicon Techtronics em-
ployee and software tester. She admitted
to faking software tests in order to save the
jobs of her co-workers.

•	 Bart Matthews, a robot operator. The
malfunctioning Robbie robot struck him
dead.

These characters give us a good coverage of
people at different levels within the case study
from top management to the worker who is
killed. As stated above, in the week before the
trial/investigation half the members of each team
must prepare the case for their character being
held responsible (the prosecution case) and other
members of the team member must prepare the
opposing view (the case for the defence). In each
case they should make reference as to how the
character’s actions have aligned or not aligned
with the code of ethics.

 ���

Ensuring Students Engage with Ethical and Professional Practice Concepts

For the actual Killer Robot Trail/Investiga-
tion the process that we adopt is to consider each
character in a predetermined order. Members from
the relevant team must present the case for their
character being held responsible (the prosecution
case) and then other team members must present
the opposing view (the case for the defence). After
each presentation there is a short time for questions
from the remaining members of the class. Finally,
once both presentations regarding the character
have been completed, the relative level of blame
or no blame associated with the character is voted
on, by the reminder of the class, depending on
the strength of the arguments. When voting, the
voters are told that they must just consider the
presentations concerning the characters in ques-
tion and forget any views concerning their own
case study character.

The blame/no blame voting is on a scale of
+5 to –5 where +5 represents total blame (the
character is the “Devil Incarnate”) to –5 the
character is blameless (totally pure). The scores
are recorded by a member of staff using a blank
version of the form shown in Appendix 3. Once all
the characters have been considered, an average
level of blame can be computed for each character
by summing the products of the number of votes
with level of blame value and then dividing this
sum by the number of voters. An example set of
values is also given in the Appendix.

Students really do get involved in this exer-
cise. They usually need a little prompting from
the members of staff to get the arguments going
but once started it is often very difficult to stop
them and at times one feels that opposing teams
could almost come to blows. Of course, it always
helps if there are one or two students who have
previously been involved in amateur dramatics
or like to watch courtroom dramas! “Reality” in
some instances has been helped by having a female
member of staff play the part of Bart Matthews’
widow (Roberta) who sits at the back of the class
weeping gently and calling out “Bart, Bart, why
did you have to die”.

The enthusiasm for the exercise has been
demonstrated by the ways in which the students
prepare their “prosecutions” and “defence” cases.
They often augment the supplied material with
additional information that they have generated
themselves. An example of such is shown in
Appendix 4 which is part of the case for the de-
fence for Bart Matthews produced by a group of
students following an MSc programme entitled
“Electronic Commerce Applications”. This clearly
shows a really significant level of commitment to
the exercise, which it must be noted is not part of
the formal assessment for the module. It is there
just for fun (and some learning as well).

THE sUNDERLAND APPROACH:
REFLECTIONs

The module has run for many years at Sunder-
land and has undergone formal quality checks
each year. The inputs to these have been student
feedback, feedback from the staff involved in the
teaching and the support work, comments from
External Examiners, comments from visiting aca-
demics who have observed particular parts of the
module, and student results. The main challenges
that the members of staff supporting the module
face is ensuring that the students do enter into the
spirit of our approach and do engage in discus-
sions. In the early years of running the module we
relied to a great extent on student presentations
to report group findings. However, we found that
it was nearly always the same students who were
prepared to present. Also, students whose first
language was not English were clearly hesitant to
take a leading role. With a move to using posters to
communicate the groups’ findings these problems
have been greatly reduced. Once the main points
have been posted up it is much easier to get the
majority of the students to express their views,
especially if the members of staff take the role
of very proactive facilitators.

���

Ensuring Students Engage with Ethical and Professional Practice Concepts

The Killer Robot exercise has proved to be a
success on almost every occasion we have run it
- sometimes much to the surprise of the staff them-
selves. Even in cases where almost all the students
have been from overseas countries we have found
that they are willing to enter fully into the spirit of
things. In fact some of the most animated interac-
tions have occurred in such situations. However,
again much depends on the staff motivating the
students, encouraging diverse views, and keep-
ing the trial progressing as an enjoyable and fun
activity. The only start-up problem we encounter
time and time again, when the case study is is-
sued, is getting the students to understand that
their group is NOT playing the allocated character
they are playing the members of the prosecution
and defence teams for that character.

Obviously what can be achieved in the way
of student interaction depends to a great extent
on classroom situations. The arrangement at
Sunderland is that all the students from different
programmes undertaking one particular iteration
of the module have lectures together. Since this
can total well over one hundred students, any
extended discussions can be somewhat limited
within those sessions. Hence the interactive work
must be mainly within the supporting tutorial
sessions where there is typically one member

of staff to 16/20 students. In many cases, due to
rooming constraints, tutorial groups are doubled
up with two members of staff and 35 to 40 students.
However, we have found that this is a situation
that can actually help discussions and interactions
– the two members of staff can “play-off” against
each other and this can encourage the students to
become more involved. In situations where the
total class size is much smaller a more interactive
approach can be taken where the formal lecture
sessions and the tutorials can blur together. We
always try and adjust our approach so that it fits
best with the total class size and the resources
available (rooms and support staff).

Wherever possible the tutorial sessions are for
the students for one particular programme. This
means that the discussions and considerations can
be directed to address the particular challenges
that exist within the relevant sphere of application.
In such situations we can collect data from the
Killer Robot Trial/Investigation that reflect the
views of students on particular programs. Table
1 shows the data collected from one such set of
trials. The figures reflect the levels of blame voted
by students from six different MSc programmes.
These figures can then be used to initiate further
discussions especially since they show clear dif-
ferences in the views of students from different

Character Average Blame (negative values represent no blame scores)

ITM SE ECA EC CBIS HIM

Randy Samuels 3.0 2.3 2.3 2.1 2.3 1.9

Sam Reynolds 1.6 1.6 3.4 2.5 2.1 2.4

Michael Waterson 2.7 3.6 1.7 3.7 3.7 2.8

Cindy Yardley 2.7 3.4 2.1 2.3 1.9 1.4

Bart Matthews 0.3 1.7 1.2 0.1 -0.9 -2.0

Table 1. Results from a set of Killer Robot Trials/Investigations that took place during the 2003/2004
academic year

 ���

Ensuring Students Engage with Ethical and Professional Practice Concepts

programmes (a pattern that has been replicated
on almost every occasion the exercise has been
run).

Scoring from 5 representing absolute blame
to -5 no blame whatsoever.

The MSc programmes involved were: Infor-
mation Technology Management (ITM), Software
Engineering (SE), Electronic Commerce Ap-
plications (ECA), Electronic Commerce (EC),
Computer Based Information Systems (CBIS),
Health Information Management (HIM).

CONCLUsION, THE PREsENT,
THE FUTURE, AND OUTsTANDING
CHALLENGEs

Experiences at Sunderland over a number of years
have shown that our approach has generated an en-
thusiasm in many of the students, has encouraged
them to consider wider issues, and become really
involved in the activities undertaken. Certainly
the staff believe that the objectives that were listed
at the start of this chapter are being met. Also,
the use of a proven framework for professional-
ism as produced by IFIP means that we have a
mechanism for addressing developments in the
field, see where they fit in the overall picture,
and help students to identify outstanding chal-
lenges. As the Software Engineering profession
matures, many more elements of the framework
(for example aspects relating to best practices and
continuous development) will become populated
giving the staff and students further areas to
explore and discuss.

Professional and international bodies have
continued to address the challenge of the com-
puting discipline’s perceived immaturity. In
the last five years there have been a number of
particular efforts to address professionalism in
the computing field. These have either addressed
the needs of a particular set of practitioners (for
example, the certification of Software Develop-
ment Professionals (Engel, 2006), internation-

alisation issues (IFIP OECD WITSA, 2002),
or particular national needs (for example to
provide indemnity insurance for professionals
(Avram, 2006)). Of particular note is an ambi-
tious three-year managed programme entitled
“Professionalism in IT” (BCS, 2006) that the
British Computer Society (BCS) embarked on
in 2005. This has as its overall objective “… in-
creasing professionalism, to improve the ability
of business and other organisations to exploit the
potential of information technology effectively
and consistently” (Hughes, 2006). Indications
of the programmes worth are that it has led to
a formal alliance between professional bodies,
a major government agency, and industry-led
bodies within the UK and interest in it has been
expressed from Canada, Australia, and South
Africa. Developments such as this will continue
and there is a clear trend that professionalism
is taking on a greater international dimension.
However, this also means that there needs to be
clear Frameworks of Understanding that will help
comprehension of the particular situation in each
country (Thompson, 2007).

Despite all the above, many academic chal-
lenges remain with regard to addressing ethics
and professionalism. A survey undertaken in
2003, which was aimed at Software Engineering
educators, indicated that in many institutions the
teaching of ethics in the curriculum was largely
ignored (Towell & Thompson, 2004). The situ-
ation may have improved by now – but by how
much? It is often very difficult indeed to get those
members of staff who are teaching technical
subjects to recognise the importance of topics
like ethics and professionalism. One often feels
that if it were not for the demands of accrediting
bodies, these subjects would be totally ignored.
This is a situation that must surely change.

That there is an essential and continuing need
to properly address ethical and professional issues
both at undergraduate and postgraduate levels is
clear from the reports that address the needs of
industry. For example, the 2004 report “The Chal-

��0

Ensuring Students Engage with Ethical and Professional Practice Concepts

lenges of Complex IT Projects” highlighted at the
head of its Executive Summary: “The levels of
professionalism observed in software engineering
are generally lower than those in other branches
of engineering, although there are exceptions”
(Royal Academy of Engineering, 2004). Thus
there is much for the academics still to do.

Similarly the workshop on Teaching Ethics in
Software Engineering Programmes, held during
the 2004 Conference on Software Engineering and
Training identified numerous academic challenges
(FASE, 2004). I believe that those which deserve
the greatest priority are:

•	 Ethics teaching must be directed at the needs
of the students and be relevant to their disci-
pline (a general ethics course given by staff
who do not have a computing background
is unlikely to be of use).

•	 All the staff teaching within a Software
Engineering programme must themselves be
capable of taking on the teaching of ethical
and professional issues (and ideally should be
members of a relevant professional body).

•	 Teaching must be sensitive to the “values”
of different ethnic groups. This is especially
important where programmes recruit stu-
dents from overseas.

•	 Whether the subject should pervade the
curriculum or be addressed in very specific
modules? Does the need to convince an
accrediting body that the subject is being
explicitly addressed act against its spread
across the curriculum?

•	 Ensuring that the relevant professional body
and its code of conduct receive the same
exposure as they would on a traditional
engineering programme. In that way ethical
values should pervade the curricula.

It will be interesting to see how these and
other issues are addressed in the future and
whether people-orientated aspects will become

just as important in academic programmes as the
technically orientated aspects.

ACk NOWLEDGMENT

Parts of this paper are developed from 2004 and
2007 ETHICOMP papers that addressed our
Teaching at Sunderland, and Globalisation and
the IT Professional (Thompson & Edwards, 2004)
and (Thompson, 2007) respectively.

Also thanks to Nicola Upton (Electronic
Commerce Applications student in 2003) for
allowing the use of the material reproduced in
Appendix 4.

REFERENCEs

ACM (1997). ACM Code of Ethics and Profes-
sional Conduct. Retrieved November 19, 2003,
from http://www.computer.org

ACM (2000). A Summary of the ACM Position on
Software Engineering as a Licensed Engineer-
ing Profession. Report retrieved April 1, 2006,
from http://www.acm.org/serving/se_policy/se-
lep_main.html

ACM & IEEE-CS (1999a). History of Joint IEEE
Computer Society and ACM Steering Committee
for the Establishment of Software Engineering as
a Profession. Retrieved September 1, 1999, from
http://www.acm.org/serving/se/History.htm

ACM & IEEE-CS (1999b). Software Engineering
Co-ordinating Committee (SWECC). Information
retrieved September 1, 1999, from http://www.
acm.org/serving/se/

Avram, C. (2006). The Australian Perspective.
Presentation at IFIP Workshop on Improving IT
Practitioner Skills, August 25, 2006, (A part of the
19th IFIP World Computer Congress, August 20-
25, 2006, Santiago, Chile,), Abstract and presenta-

 ���

Ensuring Students Engage with Ethical and Professional Practice Concepts

tion retrieved October 3, 2006, from http://www.
ifip.org/projects/IT-Pract-main.htm

BCS (ud). Code of Conduct & Code of Good
Practice. Both retrieved November 19, 2003, from
http://www.bcs.org.uk

BCS (2006). Professionalism in IT Programme,
covered in a series of articles in the May 2006
issue of IT NOW, Swindon, UK: British Computer
Society.

Bekir, N., Cable, V., Hashimoto, I., & Katz, S.
(2001). Teaching Engineering Ethics: A New
Approach. Proceedings of the 31st ASEE/IEEE
Frontiers in Education Conference, October 10-13,
2001, Reno, NV, USA, Session T2G. Piscataway,
NJ: IEEE.

Bott, F. (2005). Professional Issues in Informa-
tion Technology. Swindon, UK: British Computer
Society.

Bourque, P., & Dupuis, R. (Eds.). (2004). Guide
to the Software Engineering Body of Knowl-
edge (SWEBOK). Published by IEEE Computer
Society. The guide itself along with details of
its development and further information on the
SWEBOK project can be retrieved from: http://
www.swebok.org

DMU (2007). De Monfort University, Centre for
Computing and Social Responsibility. Provides
details of the proceedings of the Ethicomp Se-
ries of Conferences, The Ethicomp Journal, and
the Journal of Information Communication and
Ethics in Society, home page: http://www.ccsr.
cse.dmu.ac.uk/

Engel, G. (2006). IT Opportunities from the IEEE
Computer Society. Presentation at IFIP Workshop
on Improving IT Practitioner Skills, August 25,
2006 (A part of the 19th IFIP World Computer
Congress, Santiago, Chile, August 20-25, 2006),
Abstract and presentation retrieved October 3,
2006, from: http://www.ifip.org/projects/IT-Pract-
main.htm

Epstein R.A.G. (1997). The Case of the Killer
Robot, New York: John Wiley and Sons. There are
also freely available abridged web versions e.g.
from the Online Ethics Center at Case Western
Reserve University: http://onlineethics.org/cases/
robot/robot.html

ETHICOMP (2004). Introduction ETHICOMP
2004. In proceedings of Seventh International
ETHICOMP Conference (ETHICOMP 2004),
April 14-16 2004, Syros, Greece, (pp. 3-4). Syros:
University of the Aegean.

FASE (2004). Report on the CSEE&T 2004 Work-
shop: Teaching Ethics in Software Engineering
Programs. Forum for Advancing Software en-
gineering Education (FASE), 14(4), (Issue 160),
April 2004.

Gotterbarn, D. (2001). Views expressed during
tutorial: Software Engineering Ethics Training in
Industry and Academe: Professionalism and the
Software Engineering Code of Ethics, organised
by Gotterbarn, D. and Miller, K. at Fourteenth
Conference on Software Engineering Education &
Training, February 19-21, 2001, Charlotte, North
Carolina. See Gotterbarn and Miller (2001) for
details of tutorial.

Gotterbarn, D., & Miller, K. (2001). Tutorial:
Software Engineering Ethics Training in Industry
and Academe: Professionalism and the Software
Engineering Code of Ethics. In proceedings of
Fourteenth Conference on Software Engineer-
ing Education & Training, February 19-21, 2001,
Charlotte, North Carolina, (pp. 24). Los Alamitos,
CA, IEEE-Computer Society.

Gotterbarn, D., Miller, K., & Rogerson, S. (1999).
Computer Society and ACM Approve Software
Engineering Code of Ethics, Computer, October,
(pp. 84-88).

Granger, M. J., Currie Little, J., Adams, E. S.,
Björkman, C., Gotterbarn, D., Juettner, D.D., et al,
(1997). Using information technology to integrate
social and ethical issues into the computer science

���

Ensuring Students Engage with Ethical and Professional Practice Concepts

and information systems curriculum. Report of the
Iticse ‘97 Working Group on Social and Ethical
Issue in Computing Curricula, in supplemental
proceedings SIGSE/SIGCUE ITiCSE’97, (pp. 38
– 50). New York: ACM Press,

Hughes, C. (2006). IT comes of age – profes-
sionalism in the industry. The British Computer
Society Annual Review 2006, (pp.12-13), Swindon:
British Computer Society.

IEEE-CS & ACM (2004). Software Engineering
2004, Curriculum Guidelines for Undergradu-
ate degree Programs in Software Engineering.
Published by IEEE-CS, and accessible from the
education web-site for the ACM: http://www.acm.
org/education/

Development of the volume is documented at the
SE2004 site: http://sites.computer.org/ccse/

 IFIP OECD WITSA (2002). Joint Working Con-
ference “Meeting Global IT Skills Needs – The
Role of Professionalism”, October, 25-27, 2002,
Woking, UK, retrieved February 1, 2005, from
http://www.globalitskills.org/

Langford, D. (1996). Can A Software Engineer
Afford to be Ethical?, Proceedings of the confer-
ence: Professional Awareness in Software Engi-
neering (PASE’96), February 1-2, 1996, London.
The conference papers were later published as
edited chapters in the text: Myers C., Hall T. and
Pitt D, (Eds.), (1997), The Responsible Software
Engineer, London, Springer-Verlag.

Maner, W. (ud). Interactive Computer Ethics Ex-
plorer (ICEE). Web application retrieved February
1, 2004, from http://www.cs.bgsu.edu/maner/xx-
icee/html/welcome.htm

Mitchell, I,. Juliff, P., & Turner, J. (1998). Harmo-
nization of Professional Standards. International
Federation of Information Processing, 1998, re-
trieved February 13, 2001, from

http://www.cet.sunderland.ac.uk/seis/icse-
2001workshop/IFIPharmonisationDraft1998.

html Also available as an appendix to the paper
Evaluations of IFIP’s Proposed Standards for
Professionals (Thompson, 2005), and from

http://www.ifip.or.at/minutes/C99/C99_harmo-
nization.htm

Myers, C., Hal,l T., & Pitt, D. (1997). The Respon-
sible Software Engineer : Selected readings in IT
Professionalism. London, Springer-Verlag.

Royal Academy of Engineering (2004). The
Challenges of Complex IT Projects. Report of a
working group from The Royal Academy of Engi-
neering and The British Computer Society, 2004,
retrieved October 12, 2006, from http://www.bcs.
org/upload/pdf/complexity.pdf

SECEPP (ud). Adopting the Software Engineering
Code of Ethics and Professional Practice, details
retrieved April 1, 2006, from http://csciwww.etsu.
edu/gotterbarn/secepp/

SECEPP (1999). Software Engineering Code of
Ethics and Professional Practice. Retrieved April
1, 2006 from http://www.acm.org/serving/se/code.
htm Details of the code and its development can
also be retrieved from http://csciwww.etsu.edu/
gotterbarn/secepp/page.asp?Name=Code

Texas Board of Professional Engineers (1999).
Texas Engineering Practice Act, Revised 1st
January 1999, Austin. Texas, 1999. Retrieved July
11, 2000, from http://www.main.org/peboard/law.
pdf

Thompson, J. B. (2005, July). Evaluations of
IFIP’s Proposed Standards for Professionals.
Paper presented at the 8th IFIP World Conference
on Computers in Education, (WCCE 2005), July
4-7, 2005, University of Stellenbosch, Cape Town,
South Africa, Session P10.3.

Thompson, J.B. (2007). Globalisation and the
IT Professional. In proceedings of 9th Interna-
tional ETHICOMP Conference, March 27-29,
2007, Meiji University, Tokyo, (pp. 564-575).
Tokyo: Global e-SCM Research Centre, Meiji
University.

 ���

Ensuring Students Engage with Ethical and Professional Practice Concepts

Thompson, J. B., & Edwards H. M. (2004). Pro-
viding Graduate Computing Students with an
Appreciation of Appropriate Ethical, Professional
and Legal Issues, In proceedings of Seventh Inter-
national ETHICOMP Conference (ETHICOMP
2004), April 14-16, 2004, Syros, Greece, (pp.
839-853). Syros: University of the Aegean.

Thompson, J. B., & Towell, E. (2004). Work-
shop: Teaching Ethics in Software Engineering
Programmes. In proceedings of 17th Conference
on Software Engineering Education & Training
(CSEE&T2004), March 1-3, Norfolk. USA, (pp.
162-164). Los Alamitos, CA: IEEE-Computer
Society.

Towell, E. (2003). Teaching Ethics in the Software
Engineering Curriculum. In proceedings of the

Sixteenth Conference on Software Engineering
Education & Training, March 20-22, Madrid,
Spain, (pp. 150-157). Los Alamitos, CA: IEEE-
Computer Society Press.

Towell, E., & Thompson, J. B. (2004). A Further
Exploration of Teaching Ethics in the Software
Engineering Curriculum. In proceedings of the
Seventeenth Conference on Software Engineering
Education & Training, March 1-3, Norfolk, USA,
(pp. 39-49). Los Alamitos, CA: IEEE-Computer
Society.

Towell, E. Thompson J. B. and McFadden K.L.
(2004). Introducing and Developing Professional
Standards in the Information Systems Curricu-
lum. Ethics and Information Technology, (2004)
6, 291-299.

���

Ensuring Students Engage with Ethical and Professional Practice Concepts

APPENDIX A

EXTRACTs FROM IFIP DOCUMENT: HARMONIzATION OF PROFEss IONAL
sTANDARDs

Drafted by Ian Mitchell, FNZCS, Peter Juliff, FACS and Joe Turner, FACM.

The standard for Professional Practice in Information Technology

Ethics of Professional Practice

A code of ethics acknowledges the professional responsibilities of practitioners to society at large,
members of the public, employers, contracting parties and fellow practitioners.

Codes of ethics have been published by many member societies and IFIP itself.
Every implementation of the standard must include a code of ethics.
Such a Code of Ethics must be compatible with the culture of the society in which the practitioner

normally works.
Practitioners must operate in a manner compatible with the culture of the locale in which they are

currently working and in which the product may be used.
Practitioners must publicly ascribe to the code of ethics published within the standard.

Established Body of Knowledge

Several IFIP member societies have published bodies of knowledge, some of which have gained wide
acceptance. Such recognised bodies of knowledge are divided into many domains determined by the
various services carried out by practitioners. The body of knowledge on which any implementation
is based should include at least the common components of these but also ensure that each domain is
complete in itself for the domains adopted locally.

Mastery of such a body of knowledge forms the basis of preparation for practice. A practitioner
must demonstrate mastery of at least one such domain as well as all core components identified in the
body of knowledge.

Practitioners must be aware of and have access to a well-documented current body of knowledge
relevant to the domain of practice.

Education and Training

Most practitioners will enter the workforce with prior education and training which will commonly be
a baccalaureate degree assessing the mastery of the body of knowledge.

Institutions offering such education and training should be prepared to openly compare themselves
to internationally well-known and recognised peer institutions offering similar programmes.

It is recognised that this level of mastery may be achieved by various combinations of education and
experience. Nevertheless a practitioner must be able to provide evidence of such mastery to practitioners
who have met this standard.

The minimum level of mastery of the body of knowledge must be at the baccalaureate level.

 ���

Ensuring Students Engage with Ethical and Professional Practice Concepts

Professional Experience

Experience builds on knowledge in many essential ways. Such as:

•	 It develops and improves practical skills and competencies.
•	 It provides understanding of task definition in the users’ terms.
•	 It helps develop interpersonal skills that facilitate the communication and human interaction be-

tween all participants.
•	 As many approaches to problem solution are not readily scaleable experience over a wide variety

of problem types and sizes is desirable before working in an unsupervised environment. Experi-
ence is generally required in assessing task complexity.

•	 Task management, overall project management and quality management generally require experi-
ence.

Other professions have clear requirements for experience before allowing their members to practice
without supervision.

In addition to a demonstrated mastery of the body of knowledge a minimum of the equivalent of
two years supervised experience is recommended before the practitioner operates unsupervised.

Best Practice and Proven Methodologies

Experienced practitioners have identified and documented many practices and methodologies the use of
which generally leads to successful project outcomes. Where such best practice and proven methodolo-
gies are available the practitioner should use them unless a particular task has exceptional attributes.

Member societies drawing on all available international sources should encourage the documentation
and promulgation of best practice and proven methodologies.

Practitioners should be familiar with current best practice and relevant proven methodologies.

Maintenance of Competence

To maintain demonstrated competence practitioners must be familiar with new developments in their
domains of practice.

Such developments may be reflected in the body of knowledge, best practice and proven methodolo-
gies as well as in specific skills.

Familiarity with new developments may be obtained through formal education or peer interaction.
There may be assessment of current competence by formal examination, peer assessment or employer

or client acknowledgement of successful work.
A practitioner should participate for at least the equivalent of 10 days per year in activities that

contribute to maintaining competence. It is recognised that in different locations the opportunities for
such ongoing development may vary.

The standard in each country or region must state how this requirement will be met and the role of
the IFIP member society in monitoring this function.

Practitioners must be able to provide evidence of their maintenance of competence.

���

Ensuring Students Engage with Ethical and Professional Practice Concepts

APPENDIX b

sOFTWARE ENGINEERING CODE OF ETHICs AND PROFEss IONAL PRAC-
TICE

Produced by ACM/IEEE-CS Joint Task Force on Software Engineering Ethics and Professional Prac-
tices.

Copyright (c) 1999 by the Association for Computing Machinery, Inc. and the Institute for Electri-
cal and Electronics Engineers, Inc.

short Version

PREAMBLE

The short version of the code summarizes aspirations at a high level of the abstraction; the clauses that
are included in the full version give examples and details of how these aspirations change the way we
act as software engineering professionals. Without the aspirations, the details can become legalistic and
tedious; without the details, the aspirations can become high sounding but empty; together, the aspira-
tions and the details form a cohesive code.

Software engineers shall commit themselves to making the analysis, specification, design, develop-
ment, testing and maintenance of software a beneficial and respected profession. In accordance with
their commitment to the health, safety and welfare of the public, software engineers shall adhere to the
following Eight Principles:

1. PUBLIC - Software engineers shall act consistently with the public interest.
2. CLIENT AND EMPLOYER - Software engineers shall act in a manner that is in the best interests

of their client and employer consistent with the public interest.
3. PRODUCT - Software engineers shall ensure that their products and related modifications meet

the highest professional standards possible.
4. JUDGMENT - Software engineers shall maintain integrity and independence in their professional

judgment.
5. MANAGEMENT - Software engineering managers and leaders shall subscribe to and promote

an ethical approach to the management of software development and maintenance.
6. PROFESSION - Software engineers shall advance the integrity and reputation of the profession

consistent with the public interest.
7. COLLEAGUES - Software engineers shall be fair to and supportive of their colleagues.
8. SELF - Software engineers shall participate in lifelong learning regarding the practice of their

profession and shall promote an ethical approach to the practice of the profession.

 ���

Ensuring Students Engage with Ethical and Professional Practice Concepts

APPENDIX C

EXAMPLE COMPLETED kILLER CHARACTERs VOTING FORM

Character Blame No Blame Average
Vote

5 4 3 2 1 0 1 2 3 4 5

Randy Samuels 2 2 21 1 1 1 3.0

Sam Reynolds 3 3 5 7 5 5 3 2 1.6

Michael Waterson 2 5 12 4 1 4 2.7

Cindy Yardley 6 11 4 1 2 3 1 0 1 1 2.7

Bart Matthews 9 0 0 0 2 11 1 2 0 0 6 0.3

APPENDIX D

DEFENCE FOR THE ACCUsED: MR. bARTHOLOMEW MATHEWs

Ladies and gentlemen of the jury…….let me take you back to a beautiful, sunny May morning, May
the 17th 1992 to be precise. A Sunday, you may recall? (the date was actually a Sunday, I checked on
the net!)

Mr. Mathews had kindly agreed to go to work for the morning (Cybernetics Inc in Silicon Heights),
much to the dismay and disappointment of his wife (Roberta Mathews) and their children (the children’s
names have remained anonymous for their protection). Mrs. Mathews had planned to take the family
out for the day to the coast to celebrate the successful heart transplant of their youngest child. (You may
have seen the recent story in the local press! – DONOR FOUND AT LAST!)

However, Mr. Mathews being such a devotee to the company went in to work all the same……..little
did he know it would be the last day of his life.

Now, some simpletons may speculate that Mr. Mathew’s death was caused by mere human error.
I am here today to relay the REAL turn of events to this disastrous and harrowing death. Ladies and
gentlemen, I would like you to forget the propaganda and hype that you have read in the press and listen
and judge for yourself that Mr. Bartholomew Mathew’s death was NO ACCIDENT!

Today I would like to highlight three main areas that will demonstrate that the deceased is innocent
of the charge.

1. Mr. Mathews was well respected within his profession
2. Operational flaws
3. Cover up

���

Ensuring Students Engage with Ethical and Professional Practice Concepts

1. Mr. Mathews was well respected within his profession.

Firstly I would like to draw your attention to Exhibit A: ‘The reconstruction of what is now being
labelled as ‘The Killer Robot tragedy’. This document has been written by Dr. Horace Gritty from
the Department of Computer Science and Related Concerns at Silicon Valley, USA.

Despite Mrs. Mathews plans, Mr. Mathews went into work on that Sunday morning. The reason
being?

Cybernetics had recently purchased a new Robot (the CX30) for their assembly line plant. Matthew’s
and the company were very excited as the manufacture of the machine had been remarkably speedy…..
and they were keen to see what it could do….the robot was revolutionary and represented a gigantic
step forward in terms of sophistication. Mr. Mathews was quick to recognise this fact and proceeded
with placing the manual right next to where he was working. Exhibit A: ‘The reconstruction of what
is now being labelled as ‘The Killer Robot tragedy’. The Killer Robot Interface list of events: “a
reference manual was open and was laid flat in the workstation reading/writing area”.

Thus, reiterating that Mr. Mathews took his work very seriously and always maintained the utmost
professionalism.

Exhibit B: Software Engineering Code of Ethics and Professional Practice. 3.07 “Strive to fully
understand the specifications for software on which they work” (in this instance the machine).

Secondly, I would like to remind you of the Silicon Techtronics Annual Report for Shareholders,
published last March. Which has a picture of a smiling Bart Matthews on its glossy front cover (un-
fortunately we were unable to obtain a copy). The deceased is shown operating the very same CX30
which carried out the deadly deed some two months after the photograph was taken. This assures us
once more that Mr. Matthews was well regarded within Cybernetics Inc. as he managed to hit the front
page, not page 2 or 3 but the front page of the report that was given to all stakeholders (some of which
would have known Mr. Mathews personally). Why, then would anyone suggest that Mr. Mathews could
be responsible for his own death?

2. Operational flaws.

I would now like to refer back to Exhibit A: ‘The reconstruction of what is now being labelled as ‘The
Killer Robot tragedy’. I would firstly like to read a few extracts from this article for your interest.

“The Robbie Cx30 robot violates nearly every rule of interface design”

“The Robbie Cx30 operator interface violated each and every one of Shneiderman’s rules. Several of these
violations were directly responsible for the accident which ended in the death of the robot operator.”

“console had a keyboard, but no mouse.”

“Reading/writing area was quite a distance from the computer screen….This placed much strain on the
operator’s back and also caused excessive eye strain.”

 ���

Ensuring Students Engage with Ethical and Professional Practice Concepts

“There were many violations of consistency in the Robbie CX30 user interface.”

“System must have been quite a mental strain on the operator”.

“most actions are irreversible when the system is in an exceptional state, and this helped lead to the
killer robot tragedy”.

There are many more quotations of a similar nature. I think it would be fair to conclude that Dr
Gritty is of the opinion that the design of the interface had a lot to do with the cause of death.

Dr Gritty’s deductions once more suggest that the deceased was innocent of negligence.
I would also like to refer to Exhibit c: The Silicon Valley Sentinel-Observer’s article title ‘Qual-

ity of operator training questioned’.
 In it Ruth Witherspoon (spokesperson for the ‘justice for Randy Samuels’ committee) explained that

“Bart Mathews was killed when exceptional condition 5.2.4.26 arose. This involved an exceptionally
violent and unpredictable robot arm motion. This condition required operator intervention, namely
the entering of the command codes mentioned in the document…..the program correctly set off this
exceptional condition and the robot operator received due warning that something was wrong”

So why didn’t Mathews enter the command code? Could it be that:

•	 The manual was too far a distance from the interface?
 (I refer back to exhibit A)
•	 The command code was too difficult to enter in such a short time?
 Again, in exhibit a Dr Gritty states “...He tries “emergency abort” submenu…This involves SIX

separate menu choices.”
•	 Mr. Mathews did not notice the error message because there was no audio affect to remind the

user to look at the interface?
 In Exhibit A: Dr Gritty proposes “at 10.22 am “ROBOT DYNAMICS INTERITY ERROR- 45 ap-

pears on the screen. Bart Mathews does not notice this because there is no beep or audio effect
such as occurs with every other error situation”. (Also indicating an inconsistency in the design-to
make the machine un-user friendly). This is also a violation of Software Engineering Code of
Ethics and Professional Practice; Exhibit B:

 1.03 “Approve software only if they have a well-founded belief that it is safe, meets specifications,
passes appropriate tests, and does not diminish quality of life, diminish privacy or harm the en-
vironment”

•	 Insufficient training was the cause of the tragedy?
 In Exhibit c: The Silicon Valley Sentinel-Observer’s article title ‘Quality of operator training

questioned’ a robot operator form Cybernetics Inc was quoted as saying:
 “Neither I nor Bart Mathew’s was ever trained to handle this sort of exceptional condition. I doubt

that the Bart Matthews was ever trained to handle this sort of exceptional condition. I doubt that
Bart Mathew’s had any idea what he was supposed to do when the computer screen started flash-
ing the error message on the screen”. As it states in the software engineering code of ethics and
professional practice (Exhibit B)

 1.04 “Disclose to appropriate persons or authorities any actual or potential danger to the user,
the public, or the environment, that the public, or the environment, that they reasonable believe

��0

Ensuring Students Engage with Ethical and Professional Practice Concepts

to be associated with software or related documents.”
 Silicon Techtronics claims to provide 40 hours of operator training however Witherspoon recalls

that the robot operators were given only 8 hours.

3. Cover up.

Could it be, that laying the blame on the deceased (who conveniently cannot defend himself)? Is a con-
spiracy theory to deter the public from other goings on within Silicon Techtronics?

I am not here to accuse but to speculate.
I find it funny that the description of the death was pacified by the tabloids. Mr. Mathews was in fact

decapitated and not crushed as was first printed.
I also find it odd that the ‘exceptional circumstances’ were never pointed out to the robot opera-

tors.

sUMMARY

•	 Mr. Mathews went into work on his day off despite personal circumstances
•	 The manual was found open at the scene of the crime
•	 Mr. Mathews was placed on the front cover of Silicon Techtronics report to stakeholders
•	 The design of the Robot was unsafe.
•	 The robot operators were not trained sufficiently and were not aware of any ‘exceptional circum-

stances’.
•	 Propaganda
•	 Exceptional circumstances were never pointed out.

 ���

Chapter XVIII
An International Perspective

on Professional Software
Engineering Credentials

Stephen B. Seidman
University of Central Arkansas, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abs TRACT

This chapter provides an international perspective on professional software engineering credentials.
It distinguishes between professional licensing, certification, and other forms of credentials. It com-
pares and contrasts several major approaches to professional credentials: broad-based certifications,
national examinations, and job frameworks. Examples of credentials in each category are discussed in
detail. The chapter also discusses efforts to develop international standards for these credentials. The
chapter concludes with a brief description of the current landscape of professional software engineer-
ing credentials.

INTRODUCTION

Professional credentials can be classified into two
broad categories. Credentials in the first category
confer a governmentally sanctioned professional
status that carries specific rights and privileges.
For example, in the United States, a state awards
licenses to individuals who wish to practice any
of a wide variety of professions, including medi-

cine, engineering, accounting, and architecture.
Practice in these professions is limited to those
holding appropriate licenses. Practicing a profes-
sion without a license is subject to legal penalties,
including fines and imprisonment. In the United
Kingdom and Australia, chartered status for
engineers, architects, and accountants carries
similar rights, privileges, and restrictions. The
requirements and processes associated with attain-

���

An International Perspective on Professional Software Engineering Credentials

ing and maintaining licensed or chartered status
are statutory. Enforcement of these requirements
and processes is the responsibility of a govern-
ment agency, which may possibly delegate this
responsibility to a professional society.

Professional certifications constitute the sec-
ond category of credentials. They are sought by
practitioners who seek to demonstrate mastery of
a particular body of knowledge. It is important
to distinguish between broad-based certifications
and product-specific certifications. Broad-based
certifications are based on bodies of knowledge
that cover an entire professional discipline or a
subspecialty within such a discipline. These cer-
tifications are generally awarded by professional
societies. Examples of broad-based certifications
include specialty certifications in medicine or
law and financial certifications. In the computing
domain, broad-based certifications are available
for software engineers and security experts. By
contrast, product-specific certifications are based
on a specific product or product line, such as a
medical device or an operating system. The manu-
facturers of the products or product lines usually
award certifications tied to their products.

In general, candidates applying for a broad-
based certification must meet specific education
and experience requirements. A candidate’s
familiarity with a body of knowledge is gener-
ally assessed by examination, although some
certification programs use peer review to assess
knowledge and/or professional experience. Most
certification programs require that a certificate
holder demonstrate professional activity and
continuing education in order to maintain certi-
fication. Broad-based certification programs are
governed by national and international standards.
Product-specific certifications generally use
examinations to assess candidates’ familiarity
with the product and its use, and maintenance
requirements are less commonly found.

Another approach to professional credentials
is based on job frameworks, which organize the
tasks performed by professionals in a domain into

a multidimensional structure. The dimensions
represent the skills performed by professionals
and the ways and levels at which those skills are
utilized in a specific job category. Several job
frameworks for the information and communica-
tion technology (ICT) domain have recently been
developed in Europe.

This chapter will describe the spectrum of soft-
ware engineering professional credentials. It will
give an overview of the historical and international
background of software engineering licensing
and certification. It will summarize and place in
context some current licensing and certification
efforts that relate to software engineering profes-
sionals. Examples presented will include:

•	 The IEEE Computer Society’s Certified
Software Development Professional (CSDP)
certification

•	 The Australian Computer Society’s approach
to granting chartered status to software
engineers

•	 The approaches to software engineering
licensure taken by Texas and some Canadian
provinces

•	 The Japanese program of information tech-
nology professional examinations

•	 The iSQI approach to certifying software
testing professionals

•	 The UK’s SFIA job framework and its
relationship to other European job frame-
works

The chapter will also discuss the ongoing ef-
fort to develop an ISO/IEC standard for programs
certifying software engineering professionals.

PROFEss IONALIsM AND
LICENsURE

Until the nineteenth century, professional status
was limited to clergy, medical doctors, and law-
yers. Professional organizations controlled status

 ���

An International Perspective on Professional Software Engineering Credentials

in the professions, sometimes enforced by links
to government (e.g., the state-controlled Church
of England) and to academia (e.g., medicine and
Church of England clergy).

Technological advancements associated with
the Industrial Revolution created a need for new
professional roles. While engineering had a long
military tradition, the increased need for civilian
applications of engineering (hence “civil engineer-
ing”) greatly expanded the number of engineers.
During the course of the nineteenth century, engi-
neering gradually moved from an apprenticeship
model toward an academic model. In the US, the
Morrill Act of 1862 supported the establishment of
state-funded engineering colleges. However, state
licensure of professional engineers in the US was
not required until 1907. Wyoming was the first
US state to require licensure, which was rapidly
taken up by the other states. In the United States,
each state has established its own regulations and
requirements for engineering licensure, although
the educational and experience requirements are
similar. Candidates must pass two examinations
common to all states: Fundamentals of Engineer-
ing (FE), and Principles and Practice (PE). The
first examination covers knowledge common to
the traditional engineering disciplines (e.g. statics,
mechanics, thermodynamics), while the second
examination deals with advanced material specific
to a particular engineering discipline (e.g. civil
engineering, electrical engineering)

Other countries link engineering licensure
to the accreditation of university engineering
programs. For example, as in the United States,
the engineering profession in Canada is regulated
locally (at the provincial level), but candidates with
a degree from an accredited engineering program
and with appropriate professional experience do
not have to take an examination. In the United
Kingdom, a national organization (Engineering
Council UK) is responsible for engineering profes-
sional qualifications. Applicants for chartered sta-
tus (equivalent to licensure) must submit dossiers
that show that they have degrees from accredited

engineering programs and appropriate profes-
sional experience. Two professional engineers in
the appropriate discipline review the dossier and
interview the applicant. The situation in Australia
is similar to that in the UK, except that regulation
is once again at the local (state) level. In Germany,
the academic title “Diplomingenieur”, currently
awarded to graduates of engineering programs,
is also regulated at the state level. The German
higher education system has multiple tiers, and
graduates of lower-tier programs must use an ap-
propriate modification of the title. The situation
in Austria is similar, though the regulation is at
the national level.

The Bologna accord (Fuller, Pears, Amillo,
Avram, & Mannila, 2006) is having an impact
on engineering education in the European Union.
In particular, all universities will have to move
toward a common degree structure: three years
for a first-cycle degree, two years for a second-
cycle degree, followed by doctoral education.
This change doesn’t alter the fact that the higher
educational systems of most European countries
are regulated at the national or state level.

The status of software engineering as an en-
gineering discipline has received much attention
(Shaw, 1990). In recent years, the increasingly
critical role played by software in all aspects of
life has raised the question of licensing software
engineers, especially those working on systems
that have critical health or safety implications. In
the United States, Texas is so far the only state
to license software engineers. Two problems
with including software engineering in the US
engineering licensure system are (1) there is cur-
rently no PE examination for software engineer-
ing, and (2) the FE examination covers material
not generally included in software engineering
curricula. Bagert (2004) gives the context and
history of software engineering licensure in the
United States.

Other countries have found it easier to include
software engineers in engineering licensure sys-
tems. Since the Canadian system does not use

���

An International Perspective on Professional Software Engineering Credentials

licensure examinations, it has proved easier to
incorporate software engineering into this system.
It’s important to note that since “engineer” and
“engineering” are trademarks owned by Engi-
neers Canada, accredited software engineering
programs in Canada are offered in colleges of
engineering. The provinces of Ontario, Alberta,
and British Columbia are already licensing soft-
ware engineers. This situation has led to a dispute
between two professional societies: Engineers
Canada (the business name of the Canadian
Council of Professional Engineers) and the Ca-
nadian Information Processing Society (CIPS).
The CIPS perspective on the Canadian situation
is given in documents that can be found on the
CIPS Website (Van Dalen, 2003; Canadian Infor-
mation Processing Society, 2007). The Engineers
Canada perspective can be found in a paper on
its Website (Engineers Canada, 2001).

In the UK, the British Computer Society (BCS)
is a licensed member of Engineering Council UK,
and its members are therefore eligible to apply for
Chartered Engineer status. This means that gradu-
ates of BCS-accredited programs with appropriate
experience can apply for chartered engineer status.
In Australia, the Australian Computer Society
and Engineers Australia have developed a joint
approach to chartering software engineers. This
success of this approach also depends on tight
control of program accreditation.

It is interesting to consider the emergence of
software engineering in the context of the his-
torical development of new professions. Adams
(2004) discusses software engineering from this
perspective, with particular reference to the US,
UK, and Canada.

bROAD-bAsED PROFEss IONAL
CERTIFICATIONs

A broad-based professional certification scheme is
intended to recognize an individual’s professional
competence in a body of knowledge recognized

by a community of professionals. Examples of
such schemes include the Project Management
Professional (www.pmi.org), board certifications
for medical specialties (www.ambs.org), the Cer-
tified Financial Planner (www.cfp.net), and for
software engineers, the IEEE Computer Society’s
Certified Software Development Professional
(CSDP; www.computer.org/certification).

The IEEE Computer Society’s CSDP certi-
fication scheme is an example of a broad-based
software engineering certification. The origin of
this scheme can be traced back for almost a decade.
In 1998, the IEEE Computer Society began to
consider the feasibility of certifying software en-
gineering professionals. The first step in a formal
investigation of this possibility was to gather input
from the professional community. In 1999, the
Society conducted a study that included surveys
and discussions with potential certificate holders
and with industry representatives. The results of
this study indicated a strong interest in certifica-
tion. In the following two years, the Computer
Society worked with a major test development
consultant to prepare a certification examina-
tion. The process included preparing a listing of
task and knowledge statements. The statements
were then distributed for validation to a group of
software engineers, whose comments were used
to produce a final version of the statements. It’s
important to observe that the knowledge state-
ments are regarded as primary, with task state-
ments explicitly mapped to knowledge statements.
Furthermore, an appropriate knowledge level is
assigned to each knowledge statement, using a
taxonomy first proposed by Bloom (1984). Test
specifications were then developed from informa-
tion derived from the job analysis. The specifica-
tions became the blueprint for defining the final
content of the examination and determining the
content weights Test questions (items) were then
prepared and evaluated by an independent group
of software engineers. The consultant ensured that
the examination was psychometrically valid and
culturally appropriate. The approved items were

 ���

An International Perspective on Professional Software Engineering Credentials

then assembled into two examination forms, each
containing 180 questions, in accordance with the
test specifications. The assembled forms were
given a final review by a test developer and by
a group of software engineers, who reviewed
potential problem items and made substitutions
were necessary. In 2001, the approved test forms
when pilot-tested by a group of software engineers
selected to match the targets for education and
experience. After further analysis, cut scores were
determined and accepted by the IEEE Computer
Society Professional Practices Committee (PPC),
acting as the CSDP oversight committee. The
second form of the exam was then statistically
equated to the first, after which the examination
was officially ready for release.

 The CSDP examination has been given since
2002. It consists of 180 questions, to be completed
in 3.5 hours. The examination is offered at testing
centers in many countries. There are currently
more than 700 CSDP certificate holders. These
individuals reside in many countries, in all parts
of the world. The IEEE Computer Society’s PPC
is currently revising the examination to bring its
body of knowledge into conformance with the
revision of the SWEBOK body of knowledge (see
www.swebok.org). At the same time, the PPC is
developing a new examination targeting recent
university graduates. This certification will be
called the Certified Software Development As-
sociate (CSDA).

Another example of a professional certifica-
tion scheme addressed to software engineers is
operated by the International Software Quality
Institute (iSQI), an independent nonprofit orga-
nization in Germany (with support from German
national and state governments) that provides
comprehensive services in the field of software
quality. iSQI’s primary mission is to coordinate
industry and professional efforts to develop and
implement software quality standards. Certifica-
tion of software engineering professionals is an
important part of iSQI’s activities. Certification
is offered in three software engineering profes-

sional specialties: software architecture, project
management, and software testing. Each iSQI
examination is administered by an examination
board.

All examinations are offered at foundation
level. The testing examination is also offered at an
advanced level, and an expert-level certification
is under development. Advanced-level exami-
nations are anticipated for the other specialties
as well. The foundation-level examinations are
90-minute multiple-choice examinations. The
advanced-level testing examination consists
of three 90-minute multiple-choice parts (Test
Manager, Functional Tester, Technical Tester).
The examinations are offered frequently at two
sites in Germany. Training courses for prospec-
tive examination takers are provided by a number
of organizations. The appropriate examination
boards accredit organizations that provide train-
ing courses. The underlying bodies of knowledge
and examination specifications can be inferred
from the training course outlines found on the
iSQI Website (www.isqi.org).

In general, any approach to professional cer-
tification can be described using three relatively
independent dimensions: (D1) a characterization
of the professional role that is to be certified,
(D2) a list of the abilities and skills needed by a
professional in that role, and (D3) a description
of the certification process and its organization,
including development, management, and main-
tenance. National and international standards for
certification schemes require a given scheme to
describe how it is organized along these dimen-
sions. In the United States, such a standard has
been developed by the National Commission for
Certifying Agencies (NCCA) (National Commis-
sion for Certifying Agencies, 2003). A similar
international standard, ISO/IEC Standard 17024
(International Organization for Standardization,
2003), has recently been adopted as a standard
by the European Community. This model makes
it possible to compare and contrast different ap-
proaches to professional certification.

���

An International Perspective on Professional Software Engineering Credentials

For example, the CSDP certification scheme’s
position on dimension D1 comes from the fact
that the examination is intended for software
engineering professionals with four years of ex-
perience. Specifically, applicants must have a bac-
calaureate degree and 9000 hours of professional
experience in six of eleven specified knowledge
areas. Its position on dimension D2 comes from
the examination’s list of knowledge areas and the
corresponding task and knowledge statements. Its
position on D3 has been described above.

NATIONAL EXAMINATIONs

The certification schemes described above are
organized and operated by professional societies.
These can be contrasted with national examination
schemes operated by a government agency.

An example of a national examination scheme
is the Japanese government’s Information Tech-
nology Engineers Examination. In 1969, Japan’s
Ministry of Economy, Trade and Industry (then
called the Ministry of International Trade and
Industry) established the Information Technology
Engineers Examination as a national examination.
In 1984, the Japan Information Processing Devel-
opment Corporation (JIPDEC) was designated as
the official examination administrator by METI,
and the Japan Information Technology Engineers
Examination Center (JITEC) was established to
carry out the details of the administration. JITEC
has responsibility for all certification activities,
from acceptance of applications to maintenance of
certification. In 2004, examination administration
was transferred to the Information-technology
Promotion Agency, JAPAN (IPA). An overview
of the Japanese examination program is given
in (Information-Technology Promotion Agency,
2004).

The first examinations offered were Class I
Information Technology Engineer and Class II
Information Technology Engineer. During its 35
years of operation, the examination has under-

gone numerous changes and revisions. In 1994, a
major revision introduced many new examination
categories. The most recent revision was made in
2001, which resulted in the following examination
categories: fundamental information technology
engineer, systems auditor, systems administra-
tor, senior systems administrator, information
systems security administrator, systems analyst,
project manager, applications systems engineer,
and technical engineer (network systems, data-
base systems, systems management, embedded
systems). Some of the examination categories
correspond to engineers who play primary
roles in software development: system analyst,
application systems engineer, software design
and development engineer, and fundamental
information technology engineer.

The scope and skill standards for the
examination are based on the opinions of experts
from industry and academia. These standards are
continuously reviewed to keep them consistent
with changes in the information technology and
information industries. At the same time, the
examination categories are reviewed for their rel-
evance to current trends in information technology
as well as for consistency with past examinations.
The scope of an examination includes the test
specification and an outline of the examination.
The skill standard for an examination provides
context. It describes the activities and tasks of
engineers employed in the relevant examination
category, as well as outlining the underlying
knowledge needed in this category. The body of
knowledge for each category includes material
from software engineering, information systems,
and computer science.

There are no specific eligibility criteria for the
examinations. The duration of each examination is
one day. A morning session uses multiple-choice
questions to test a candidate’s familiarity with
the required knowledge. An afternoon session
uses case studies and essay questions to test
a candidate’s ability to apply and practice the
knowledge. The case study and essay questions

 ���

An International Perspective on Professional Software Engineering Credentials

also serve as a way of assessing a candidate’s
past experience. The examination questions are
developed by an examination committee, which
comprises about 400 experts from industry and
academia. Subcommittees are charged with
question development, checking, and selection.
Each subcommittee has independent authority to
construct appropriate questions. In general, new
questions are produced for each examination, but
some knowledge questions may be modified for
reuse. After the examination, candidates can bring
question papers home to use for self-study and
further education. The correct answers for some
questions are made available, and examinees can
obtain their scores on the examination. Transpar-
ency of the examination is therefore ensured in
several ways: scope of examination, production of
examination questions, availability of examina-
tion scores and sample question answers.

The Ministry of Economy, Trade, and Indus-
try issues certificates to successful examinees.
The certificates show the date of certification,
but currently have no expiration date. From
1969 through 2004, 12,404,713 candidates took
the examinations; certificates were awarded to
1,324,869 successful candidates. During its 35
years of existence, the Information Technology
Engineers Examination has been able to adapt
to the rapidly changing information technology
environment. Its adaptability to the demands of
the times has been a major factor in its success.
Furthermore, nine Asian countries (India,
Singapore, Korea, China, Philippines, Thailand,
Vietnam, Myanmar, Taiwan) have recently agreed
to accept the Japanese examination as a profes-
sional credential.

j Ob FRAMEWORks

Another approach to certifying the expertise of
software engineering professionals is to place
the tasks carried out by these professionals in a
broader model of information technology pro-

fessional positions. Such a model is called a job
framework. The pioneering job framework effort
in the information technology arena is the Skills
Framework for the Information Age (SFIA, www.
sfia.org.uk). The SFIA framework was developed
in the UK and first launched in 2000; version 3 of
the framework was released in 2005 (Skills Frame-
work for the Information Age, 2005). SFIA is a
two-dimensional model; the dimensions represent
the skills used by information and communication
technology (ICT) professionals and the levels at
which these skills are needed for a particular job.
The skills are placed along the first dimension of
the model; they are grouped into six categories,
such as development or service provision. The
second dimension of the model consists of seven
levels of responsibility and accountability exer-
cised by ICT professionals. The two dimensions
of the model give rise to a matrix showing the
complete set of skills used by ICT professionals.
Each skill and level in the matrix corresponds to a
professional position. The model gives descriptors
that provide examples of typical tasks performed
by professionals in that position.

For example, the SFIA 3.0 skill category
“development” contains the subcategory “sys-
tems development”. The skills associated with
this subcategory include “database design”,
“programming/software development”, and “sys-
tems testing”. Four of the seven levels are used:
“assist”, “apply”, “enable”, and “ensure/advise”.
The descriptors for the levels used in this subcat-
egory are given below.

•	 (Assist) Designs, codes, tests, corrects and
documents simple programs and assists in
the implementation of software which forms
part of a properly engineered information
or communications system.

•	 (Apply) Designs, codes, tests, corrects and
documents moderately complex programs
and program modifications from supplied
specifications, using agreed standards and
tools. Conducts reviews of supplied speci-
fications, with others as appropriate.

���

An International Perspective on Professional Software Engineering Credentials

•	 (Enable) Designs, codes, tests, corrects and
documents large and/or complex programs
and program modifications from supplied
specifications using agreed standards and
tools, to achieve a well-engineered result.
Takes part in reviews of own work and leads
reviews of colleagues’ work.

•	 (Ensure, advise) Sets standards for program-
ming tools and techniques, advises on their
application and ensures compliance. Takes
technical responsibility for all stages in the
software development process. Prepares
project and quality plans and advises systems
development teams. Assigns work to pro-
gramming staff and monitors performance,
providing advice, guidance and assistance to
less experienced colleagues as required.

The relationship of job frameworks to profes-
sional credentials is that an individual can be
certified with respect to his or her level on one
or more skills. For example, a software developer
could be classified as Level 5 (ensure/advise) ac-
cording to the description given above. An applica-
tion for SFIA Level 5 certification would include
documentation of appropriate education/training
and work experience. Evaluation of an application
would include a review of the applicant’s creden-
tials and face-to-face interviews by examiners
who are already certified at that level.

More recently, the European Community has
sponsored an informatics certification program
(EUCIP, www.eucip.com) that is based on a job
framework. EUCIP divides the informatics career
space into a number of elective profiles. By Feb-
ruary 2004, the following profiles were defined:
Business Analyst, Information Systems Analyst,
Software Developer, and Network Manager. Many
more EUCIP profiles have since been defined
(European Certification of Informatics Profes-
sionals, 2006). The structure of a profile includes
a brief description of the tasks to be carried out
by a person working in the corresponding job,
a list of essential behavioral skills for that job,

a list of required detailed skills, and a matrix of
accredited learning modules by which an indi-
vidual can demonstrate that he or she has these
skills. The EUCIP job framework is also two-
dimensional; one dimension consists of the skills
needed, while the other dimension indicates the
skill level, classified as deep (sound competence
and experience), incisive (concepts reinforced
by experience), or introductory (some concepts,
general smattering).

For example, the task description for a EUCIP
Software Developer (European Certification of In-
formatics Professionals, 2004) includes sentences
like “Defines detailed specifications and directly
contributes to the efficient creation and/or modi-
fication of complex software systems using the
proper standards and tools.”, and “Constructs or
modifies, tests, and corrects large and/or complex
component modules from specifications.” The
corresponding behavioral skills are given by sen-
tences like “The Software Developer role requires
first of all a rational mental attitude capable of
conceptual and analytical thinking, a high regard
for detail and a persistent goal-oriented approach,
leading to the result through structured solutions
formulated in a flexible way.” The detailed skills
are organized by level. Examples include:

•	 Deep: “Use different programming design
methods, such as object-oriented design,
top-down design, structured programming”,
“Understand the use of objects and classes”,
“Apply the principles of software engineer-
ing.”

•	 Incisive: “Gather and analyse user require-
ments”, “Coordinate a software development
project”, “Reuse objects and code.”

The list of learning modules for this profile
(European Certification of Informatics Profes-
sionals, 2004, p.12) includes university program
names (e.g. information systems, software en-
gineering) and industry certificates (Microsoft,
Oracle, Sun).

 ���

An International Perspective on Professional Software Engineering Credentials

It’s important to note that job frameworks
are organized around skills and skill levels. This
contrasts with the knowledge-based approach
used by the CSDP certification scheme and the
SWEBOK body of knowledge.

The SFIA and EUCIP job frameworks were de-
signed to cover the entire spectrum of information
technology careers. The extent of this coverage
tends to make such frameworks a less than perfect
fit for industrial sectors or firms with specific
needs. Grant (2006) explores the tension between
specific and industry-wide frameworks.

EFFORTs TO sTANDARDIzE
PROFEss IONAL CREDENTIALs

The increasing globalization of the software
industry suggests that software engineers will
increasingly need to move between countries.
Such individuals will need a way of acquiring
professional software engineering credentials that
are portable across national borders. One possible
approach would be for one country to enter into
bilateral agreements with other countries for
mutual recognition of professional credentials.
Japan has done this for its examination scheme
with other Asian countries. The problem with this
approach is that the number of bilateral agree-
ments quickly becomes very large, and managing
a country-by-country equivalence matrix will
become a large problem.

A simpler and more maintainable approach
would be to create an international standard for
software engineering certifications. The existence
of such a standard would make it easier for soft-
ware engineering professionals to establish the
international validity of certifications awarded by
a country or professional society. A subcommittee
of the International Standardization Organization
(ISO) began such an effort in Fall 2004. Specifi-
cally, the ongoing effort is taking place within a
working group of ISO/IEC JTC1 SC7, which is
charged with developing software and systems

engineering standards. A working draft of the
standard has already been prepared, and it is
hoped that the standard will be in final form and
approved as an international standard by 2008. A
certification scheme claiming conformance with
the proposed standard will need to demonstrate
(1) that it incorporates the processes for certifica-
tion of individuals included in the existing inter-
national standard (ISO/IEC 17024) and (2) that
the body of knowledge used by the certification
scheme can be mapped to the SWEBOK body of
knowledge for software engineering (Software
Engineering Body of Knowledge, 2004).

Regional approaches to standardization are
also under consideration. Several European coun-
tries have created job frameworks for information
technology. We have already discussed the SFIA
and EUCIP job frameworks, but there have also
been other efforts to create frameworks in Europe.
For this reason, the European Union has been
working on standardizing professional credentials
in information technology. This ongoing effort is
centered in the work of the European Centre for
the Development of Vocational Training (known
by the French acronym CEDEFOP, www.cedefop.
europa.eu). This organization, created in 1975,
is the European Union’s reference center for vo-
cational education and training. One example of
CEDEFOP’s efforts to establish European stan-
dards for information technology skills is a series
of conferences dealing with “e-skills” issues in
Europe. The most recent conference in this series
took place in Thessaloniki in October 2006. The
URL describing the conference is http://eskills.
cedefop.europa.eu/conference2006. One of the
background papers for this conference is a docu-
ment (European Committee for Standardization,
2006) released in February 2006 that proposed a
European meta-framework for information tech-
nology skills. The intention is that a European
meta-framework would provide a structure that
could be used to contrast and compare existing
national job frameworks, such as the UK’s SFIA,
the German AITTS framework (Federal Ministry

��0

An International Perspective on Professional Software Engineering Credentials

for Information and Research, 2003) and the one
developed by the French IT industry organiza-
tion CIGREF (Club Informatique des Grandes
Entreprises Françaises, 2006).

sUMMARY AND FUTURE TRENDs

It is increasingly clear that software engineering
professionals (and more generally information
technology professionals) need professional
credentials that are not tied to a particular manu-
facturer’s products. Several different approaches
to such credentials are possible.

Professional licensure or chartered status
builds on a model that is well established in
other professions. In this approach, a government
awards or approves the award of a professional
status to an individual, and this status carries
rights and privileges established in law. In the
United States, this is only available to software
engineers in Texas, and it doesn’t seem likely to
spread quickly to other states. In Canada, this
status is more easily obtained. In the United King-
dom and Australia, chartered status for software
and/or information technology professionals has
been successfully modeled on chartered status
for engineers. It seems unlikely that this model
will spread to many other countries.

Broad-based professional certifications are
generally awarded by professional societies. These
certification schemes are based on established
bodies of knowledge and conform to an interna-
tional standard for the operation of certification
schemes. Such schemes have been established and
successful for many years in other professional
disciplines. They are relatively new to software
engineering, but based on the experience of
other disciplines, it can be expected that they
will gradually come to play a significant role in
demonstrating the professional competence of a
software engineer. The popularity and portability
of these certification schemes will be aided by the
emergence of an international standard.

National examinations also have a role to play
in demonstrating the competence of information
technology professionals. They are most impor-
tant in Japan, where such examinations have
been offered for decades to millions of aspiring
professionals. Japan offers its examinations in
many Asian countries, and mutual recognition
agreements are in place. Outside of Asia, national
examinations play a smaller role, typically as a
way of demonstrating competence for information
technology professionals who cannot demonstrate
appropriate academic experience.

Job frameworks are yet another way to demon-
strate the competence of information technology
professionals. They are particularly popular in
Europe, where the European Union is working
to develop a meta-framework that can serve as a
regional standard against which national frame-
works can be measured.

The importance of information and software
technologies to society today is certain to expand
still further in the future. Under these circum-
stances, it is likely that all of the approaches
to professional certifications described above
will continue to increase in popularity and ac-
ceptance.

ACk NOWLEDGMENT

I would like to thank the following individuals
for the information they provided on software
engineering credentialing efforts in Europe,
Australia, and Japan: Juan Garbajosa, Bob Hart,
Bernd Hindel, Hiroshi Mukaiyama.

REFERENCEs

Adams, T. (2004). Software engineering in
Canada, the US, and the UK: inter-professional
relations and the emergence of a new profession.
London, Ontario: University of Western Ontario,
Workforce Aging in the New Economy.

 ���

An International Perspective on Professional Software Engineering Credentials

Bagert, D. (2004). Licensing and certification of
computer professionals. Advances in Computers,
60, 1-34.

Bloom, B. (1984). Taxonomy of Educational Ob-
jectives. Boston MA: Allyn and Bacon.

Canadian Information Processing Society. (2007).
Software engineering. Retrieved January 15, 2007,
from http://www.cips.ca.it/position/softeng

Club Informatique des Grandes Entreprises
Françaises. (2006). Our expectations regarding
the European e-competence framework. Paper
presented at the European e-Skills 2006 Confer-
ence, Thessaloniki, Greece. Retrieved February 4,
2007 from http://eskills.cedefop.europa.eu/confer-
ence2006/presentations/PS1-2_Delafon.pdf.

Engineers Canada. (2001). Accreditation of
software engineering programs is good news.
Retrieved September 29, 2007, from http://www.
engineerscanada.ca/e/pub_ceo_01_02.cfm

European Certification of Informatics Profession-
als. (2004). EUCIP Software Developer: elec-
tive level profile specification. Dublin, Ireland:
EUCIP Ltd.

European Certification of Informatics Profession-
als. (2006). Introduction to the EUCIP elective
level, version 2.3. Dublin, Ireland: EUCIP Ltd.

European Committee for Standardization. (2006).
CWA 15515, European ICT Skills Meta-Frame-
work – State-of-the-Art Review, clarification
of the realities, and recommendations for next
steps. Brussels, Belgium: European Committee
for Standardization.

Federal Ministry for Information and Research
(2003). The German Advanced IT Training
System: Concepts and Results. Bonn, Germany:
Federal Ministry for Information and Research.

Fuller, U., Pears, A., Amillo, J., Avram, C., &
Mannila, L. (2006). A computing perspective
on the Bologna process. ACM SIGCSE Bulletin,
38(4), 142-158.

Grant, S. (2006). Frameworks of competence:
common or specific.

 presented at TenCompetence Workshop on
Learning Networks for Lifelong Competence
Development, March 20-21, 2006, Sofia, Bulgaria.
Retrieved September 29, 2007 from http://hdl.
handle.net/1820/836

Information-Technology Promotion Agency.
(2004). Japan Information-Technology Engineers
Examination Handbook. Tokyo, Japan: Japan
Information-Technology Engineers Examination
Center.

International Organization for Standardization.
(2003). ISO/IEC 17024: Conformity assessment
– general requirements for bodies operating
certification of persons. Geneva, Switzerland:
ISO Copyright Office.

National Commission for Certifying Agencies.
(2003). Standards for the Accreditation of Cer-
tification Programs. Washington, DC: National
Organization for Competency Assurance.

Shaw, M. (1990). Prospects for an emerging disci-
pline of software. IEEE Software, 7(6), 15-24.

Skills Framework for the Information Age. (2005).
London, UK: SFIA framework reference, version
3. SFIA Foundation.

Software Engineering Body of Knowledge.
(2004). Retrieved February 4, 2007 from http://
www.swebok.org

Van Dalen, G. (2003). Software engineer – are you
licensed? Retrieved February 4, 2007 from http://
www.cips.ca/news/national/news.asp?aID=1731

���

Compilation of References

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abernethy, K., & Kelly, J. (2000). Technology transfer
issues for formal methods of software specification. In
S. A. Mengel & P. J. Knoke (Eds.), Proceedings of the
thirteenth conference on software engineering education
and training (pp. 23-31). Austin, TX: IEEE Computer
Society.

ABET (2006). List of Accredited Programs in Software
Engineering, October 1, 2006. Retrieved May 28, 2007,
from http://www.abet.org/ABETWebsite.asp#area

ABET (2007). Home Page, Retrieved May 28, 2007,
from http://www.abet.org/index.shtml

ABET (2007). Leadership and Quality Assurance in
Applied Science, Computing, Engineering, and Tech-
nology Education. Retrieved December 18, 2007, from
http://www.abet.org.

ABET Engineering Accreditation Commission (EAC)
(2005). Criteria for Accrediting Engineering Programs,
Effective for Evaluations during the 2006-7 Accreditation
Cycle. Baltimore, MD. Retrieved May 28, 2007, from
http://www.abet.org/forms.shtml.

ABET. (2006). Accreditation policy and procedure
manual. Baltimore, MD. ABET, Inc. Retrieved May 13,
2007, from http://abet.org/forms.shtml.

Abran, A., & Moore, J. (Eds.). (2004). Guide to the Soft-
ware Engineering Body of Knowledge, 2004 Version,
IEEE Computer Society Press. Available at http://www.
swebok.org.

Abran, A., & Moore, J. W. (2004). Guide to the Software
Engineering Body of Knowledge. IEEE Computer Board

of Governors. Retrieved December 18, 2007, from
ttp://www.swebok.org/

Abran, A., Moore, J. W., Bourque, P., & Dupuis, R.
(Eds.). (2004). Guide to the Software Engineering Body
of Knowledge. IEEE Computer Society.

Accreditation Board for Engineering and Technol-
ogy (2007). Item IV-17. 2007-2008 Criteria for
Accrediting Computer Programs. Available: http://
www.abet.org/Linked%20Documents-UPDATE/
Criteria%20and%20PP/A004%2007-08%20Accreditio
n%20Policy%20and%20Procedure%20Manual%2011-
10-06.pdf

ACM & IEEE (2004) Computing Curricula, Software
Engineering 2004: Curriculum Guidelines for Under-
graduate Degree Programs in Software Engineering.
IEEE Computer Society and Association for Computing
Machinery. Piscataway, NJ: IEEE CS Press

ACM & IEEE (2005) Computing Curriculum 2005:
The Overview Report. IEEE Computer Society and
Association for Computing Machinery. Piscataway,
NJ: IEEE CS Press

ACM & IEEE-CS (1999a). History of Joint IEEE Com-
puter Society and ACM Steering Committee for the
Establishment of Software Engineering as a Profession.
Retrieved September 1, 1999, from http://www.acm.
org/serving/se/History.htm

ACM & IEEE-CS (1999b). Software Engineering Co-
ordinating Committee (SWECC). Information retrieved
September 1, 1999, from http://www.acm.org/serv-
ing/se/

 ���

Compilation of References

ACM (1997). ACM Code of Ethics and Professional
Conduct. Retrieved November 19, 2003, from http://www.
computer.org

ACM (2000). A Summary of the ACM Position on Soft-
ware Engineering as a Licensed Engineering Profession.
Report retrieved April 1, 2006, from http://www.acm.
org/serving/se_policy/selep_main.html

Adams, T. (2004). Software engineering in Canada,
the US, and the UK: inter-professional relations and
the emergence of a new profession. London, Ontario:
University of Western Ontario, Workforce Aging in the
New Economy.

Addison, T., & Vallabh, S. (2000). Controlling Software
Project Risks – an Empirical Study of Methods Used by
Experienced Project Managers. KPMG.

Agar, M. (1996). The Professional Stranger. Academic
Press.

Akinoglu, O., & Tandogan, R. Ö. (2007). The effects of
problem-based active learning in science education on
students’ academic achievement, attitude and concept
learning. Eurasia Journal of Mathematics, Science &
Technology Education, 3(1), 71-81.

Alexander, I. (2003). Misuse cases: Use cases with hostile
intent. IEEE Software, 20(1), 58-66.

Almstrum, V. L., Klappholz, D., & Modesitt, K. (2007,
March). Workshop on planning and executing real projects
for real clients courses. Proceedings of the 38th SIGCSE
Technical Symposium on Computer Science Education
(p. 582). Covington, KY.

Alred, G. J. (2006). Bridging Cultures: The Academy
and the Workplace. Journal of Business Communica-
tion, 43, 79-88.

American College & University Presidents Climate
Commitment (2007). Program overview. Available:
http://www.presidentsclimatecommitment.org/

Andresen, L., Boud, D., & Cohen, H. (1995). Experi-
ence-based learning. In G. Foley (Ed.), Understanding
Adult Education and Training (pp. 207-215). Sydney:
Allen and Unwin.

Ardis, M. A., & Ford, G. A. (1989) SEI Report on Graduate
Software Engineering Education. TR CMU/SEI-89-TR-
21. Pittsburgh PA: Carnegie Mellon University.

Ardis, M., & Ford, G. (1989). 1!989 SEI Report on
Graduate Software Engineering Education (Tech. Rep.
CMU/SEI-89-TR-21), Software Engineering Institute.

Ardis, M., & Ford,G. (1989). SEI Report on Graduate
Software Engineering Education, Proceedings of the
Software Engineering Education Conference, Springer-
Verlag.

Ardovino, J., Hollingsworth, J., & Ybarra, S. (2000).
Multiple measures: Accurate ways to assess student
achievement. Thousand Oaks, CA: Corwin Press.

Armarego, J. (2002). Advanced Software Design: a
case in problem-based learning. Paper presented at the
CSEET2002 15th Conference on Software Engineering
Education and Training, Covington (Ke).

Armarego, J. (2004). Student perceptions of quality
learning: evaluating PBL in Software Engineering. Paper
presented at the Seeking Educational Excellence: 13th
Teaching Learning Forum, Perth.

Armarego, J. (2005). Educating agents of change. Paper
presented at the CSEE&T2005 18th Conference on Soft-
ware Engineering Education and Training, Ottawa.

Armarego, J. (2007a). Beyond PBL: preparing gradu-
ates for professional practice. Paper presented at the
CSEET2007: 20th Conference on Software Engineering
Education & Training, Dublin.

Armarego, J. (2007b). Deconstructing student attitude to
learning: a case study in IT education. Paper presented
at the CSITed2007: Computer Science and IT Education
Conference, Mauritius.

Armarego, J. (2007c). Educating Requirements Engi-
neers in Australia: effective learning for professional
practice. Unpublished PhD, University of South Aus-
tralia, Adelaide.

Armarego, J., & Fowler, L. (2005). Orienting students
to Studio Learning. Paper presented at the Proceedings

���

Compilation of References

of the 2005 ASEE/AaeE 4th Global Colloquium on
Engineering Education, Sydney.

Armarego, J., Fowler, L., & Roy, G. G. (2001). Construct-
ing Software Engineering Knowledge: development of a
learning environment. Paper presented at the In search
of a Software Engineering Profession: CSEE&T2001
14th Conference on Software Engineering Education
and Training, Charlotte (NC).

Asian Development Bank (1997). Special Study of the
Effectiveness and Impact of Training in Educational
Projects. Technical Report. Special Study Series Number
29), SST:INO 97023.

Aspray, W., Mayadas, F., & Vardi, M. Y. (Eds). (2006).
Globalization and offshoring of software. A Report of the
ACM Job Migration Task Force. Available: http://www.
acm.org/globalizationreport/

Association for Computing Machinery & Institute for
Electrical and Electronic Engineers Computer Soci-
ety (2004). Software Engineering 2004 Curriculum
Guidelines for Undergraduate Degree Programs in
Software Engineering. Joint Task Force on Computing
Curricula.

Association for Computing Machinery & Institute for
Electrical and Electronic Engineers Computer Soci-
ety (2004). Software Engineering 2004 Curriculum
Guidelines for Undergraduate Degree Programs in
Software Engineering. Joint Task Force on Computing
Curricula.

Astrachan, O., Duvall, R.C., & Wallingford, E. (2001).
Bringing Extreme Programming to the Classroom. Pre-
sented at XPUniverse Conference’01, 2001.

AUVSI (2007). Association for Unmanned Vehicle Sys-
tems International. Retrieved December 18, 2007, from
http://www.auvsi.org.

Avram, C. (2006). The Australian Perspective. Presen-
tation at IFIP Workshop on Improving IT Practitioner
Skills, August 25, 2006, (A part of the 19th IFIP World
Computer Congress, August 20-25, 2006, Santiago,
Chile,), Abstract and presentation retrieved October 3,

2006, from http://www.ifip.org/projects/IT-Pract-main.
htm

Bach, J. (1997). SE education: we’re on our own. IEEE
Software, 14(6), 26,28.

Bach, J. (1999). Reframing requirements analysis. IEEE
Computer, 32(2), 120-122.

Bagert, D. (2004). Licensing and certification of computer
professionals. Advances in Computers, 60, 1-34.

Bagert, D. (2004). SEER: Charting a Roadmap for
Software Engineering Education. Proceedings of 17th
Conference on Software Engineering Education and
Training, CSEET 2004, pp. 158-161.

Bagert, D. J. & Ardis, M. A. (2003). Software Engineering
Baccalaureate Programs in The United States: An Over-
view. Proceedings, Frontiers in Education Conference,
pp. S3C-1 to S3C-6. Piscataway, NJ: IEEE CS Press.

Bagert, D. J. & Chenoweth, S. V. (2005). Future Growth
of Software Engineering Baccalaureate Programs in the
United States, Proceedings, ASEE Annual Conference.
Portland, Oregon.

Bagert, D. J., Hilburn T. B., Hislop, G. W., Lutz, M.,
McCracken, M. & Mengel, S. (1999). Guidelines for
Software Engineering Education Version 1.0 Technical
Report CMUISEI-99-TR-032. Pittsburgh PA: Carnegie
Mellon University.

Bagert, D., & Ardis, M. (2003, November). Software
Engineering Baccalaureate Programs In The United
States: An Overview. Proceedings of the Frontiers in
Education Conference (FIE’03). Boulder, CO.

Bagert, D., & Mengel, S. (2003). Using a Web-Based Proj-
ect Process Throughout the Software Engineering Cur-
riculum. Proceedings of 25th International Conference
on Software Engineering, ICSE 2003, pp. 634-640.

Baker, A., Navarro, E. O., & van der Hoek, A. (2003).
Problems and programmers: An educational software
engineering card game. In Proceedings of the 2003
international conference on software engineering (pp.
614-619). Portland, Oregon.

 ���

Compilation of References

Banks, D. A. (2003). Belief, inquiry, argument and
reflection as significant issues in learning about Informa-
tion Systems development methodologies. In T. McGill
(Ed.), Current Issues in IT Education (pp. 1-10). Hershey
(PA): IRM Press.

Barrows, H. S., & Tamblyn, R. M. (1980). Problem-
based Learning, an Approach to Medical Education.
New York: Springer.

BCS (2006). Professionalism in IT Programme, covered
in a series of articles in the May 2006 issue of IT NOW,
Swindon, UK: British Computer Society.

BCS (ud). Code of Conduct & Code of Good Practice.
Both retrieved November 19, 2003, from http://www.
bcs.org.uk

Beck, K. (1999). Embracing Change with Extreme Pro-
gramming, IEEE Computer 32(10), pp. 70-77.

Beck, K. (2000). Extreme Programming Explained
– Embrace Change, Boston: Addison-Wesley.

Beck, K. et al. (2001). Agile Manifesto. Retrieved March
30th 2007, from http://agilemanifesto.org/

Beckman, K., Khajenoori, K., Coulter, N., & Mead, N.
R. (1997). Collaborations: Closing the industry-academia
gap. IEEE Software, 14(6), 49-57.

Bekir, N., Cable, V., Hashimoto, I., & Katz, S. (2001).
Teaching Engineering Ethics: A New Approach. Pro-
ceedings of the 31st ASEE/IEEE Frontiers in Education
Conference, October 10-13, 2001, Reno, NV, USA, Ses-
sion T2G. Piscataway, NJ: IEEE.

Bentley, J. F., Lowry, G. R., & Sandy, G. A. (1999). To-
wards The Compleat Information Systems Graduate: a
Problem based Learning Approach. Paper presented at
the Proceedings of the 10th Australasian Conference on
Information Systems.

Benzel, T. (1989). Integrating security requirements
and software development standards. In Proceedings
of the 12th National Computer Security Conference
(pp. 435-458). Fort Meade, MD: National Computer
Security Center.

Bernhart, M., Grechenig, T., Hetzl, J., & Zuser, W. (2006).
Dimensions of Software Engineering Course Design.
Proceedings of 28th International Conference on Software
Engineering, ICSE 2006. pp. 667-672.

Biggs, J. (1999). Teaching for Quality Learning at Uni-
versity: what the student does. Buckingham (UK): Open
University Press.

Blake, B. M. (2003). A student-enacted simulation ap-
proach to software engineering education. IEEE Trans-
actions on Education, 46(1), 124-132.

Blakeslee, A. M. (2001). Bridging the Workplace and
the Academy: Teaching Professional Genres Through
Classroom-Workplace Collaborations. Technical Com-
munication Quarterly, 10(2), 169-192.

Bloom, B. (1984). Taxonomy of Educational Objectives.
Boston MA: Allyn and Bacon.

Bloom, B. S. (1956). Taxonomy of Educational Objec-
tives: the classification of educational goals Handbook
1: cognitive domain. New York: David Mackay.

Bloom, G. S., Madaus, G. F., & Hastings, J. T. (1981).
Evaluation to improve learning. New York: McGraw-
Hill.

Boehm, B. (2006) Learning by Doing: Real-client
Software Project Courses, ASEE Tutorial 2006, Re-
trieved from http://db-itm.shidler.hawaii.edu/cseet2006/
Boehm%20ASEET.pdf .

Boehm, B. W., & Turner, R. (2004). Balancing agility
and discipline: A guide for the perplexed. Boston: Ad-
dison-Wesley.

Boehm, B. W., Abi-Antoun, M., Port, D., Kwan, J., &
Lynch, A. (1999). Requirements engineering, expecta-
tions management, and the two cultures. Proceedings of
the 4th IEEE International Symposium on Requirements
Engineering (pp. 14-22). Limerick, Ireland: IEEE.

Boehm, B. W., Port, D., Yang, Y., Bhuta, J., & Abts, C.
(2003). Composable process elements for developing
COTS-based applications. ISESE 2003, 8-17.

���

Compilation of References

Boehm, B. W., Yang, Y., Bhuta, J., & Port, D. (2005).
Composable spiral processes for COTS-based applica-
tion development. Proceedings of the 4th International
ICCBSS conference (pp. 6-7), Bilbao, Spain: Springer.

Boehm, B., & Basili, V. (2001). Software defect reduction
– Top 10 list. IEEE Computer, 34(1), 135-137.

Boehm, B., Egyed, A., Port, D., Shah, A., Kwan, J. &
Madachy, R. (1998). A Stakeholder Win-win Approach
to Software Engineering Education. Annals of Software
Engineering, 6, 295-321.

Boehm, B., Egyed, A., Port, D., Shah, A., Kwan, J. &
Madachy, R. (1998). A Stakeholder Win-win Approach
to Software Engineering Education. Annals of Software
Engineering, 6, 295-321.

Boehm, B., Kaiser, G., & Port, D. (2000) A Combined
Curriculum Research and Curriculum Development Ap-
proach to Software Engineering Education, Workshop
on Developing Undergraduate Software engineering
Programs, Proceedings of CSEE&T 2000, 310-311

Boehm, B., Kaiser, G., & Port, D. (2000) A Combined
Curriculum Research and Curriculum Development
Approach for Software Engineering Education, Confer-
ence on Software Engineering Education and Training,
2000, p. 310.

Borstler, J., Carrington, D. Hislop, G., Lisack, S. Olsen,
K. & Williams, L. (2002, Sept/Oct). Teaching PSP:
Challenges & Lessons Learned. IEEE Software 19(5),
42-48.

Borstler, J., Carrington, D. Hislop, G., Lisack, S. Olsen,
K. & Williams, L. (2002, Sept/Oct). Teaching PSP:
Challenges & Lessons Learned. IEEE Software 19(5),
42-48.

Bott, F. (2005). Professional Issues in Information Tech-
nology. Swindon, UK: British Computer Society.

Bourque, P., & Dupuis, R. (2004). Guide to the Soft-
ware Engineering Body of Knowledge – Final Version,
SWEBOK, Feb. 2000, Retrieved from http://www.
swebok.org/

Bourque, P., & Dupuis, R. (Eds.). (2004). Guide to the
Software Engineering Body of Knowledge (SWEBOK).
Published by IEEE Computer Society. The guide itself
along with details of its development and further infor-
mation on the SWEBOK project can be retrieved from:
http://www.swebok.org

Bourque, P., Dupuis, R., Abran, A., Moore, J., & Tripp, L.
(2000, August). Developing Consensus on the Software
Engineering Body of Knowledge. Proceedings of the 2000
World Computer Congress, Beijing, China. Available at
http://www.gelog.etsmtl.ca/publications/pdf/535.pdf

Bowles, D. J. (2006). Active learning strategies … Not
for the birds! International Journal of Nursing Education
Scholarship, 3(1), 0-11.

Brady, A., Johnson, R. R., & Wallace, C. (2006). The
intersecting futures of technical communication and
software engineering: Forging a multi-disciplinary al-
liance. Technical Communication, 53(3).

Brady, A., Seigel, M., Vosecky, T., & Wallace, C.
(2007). Addressing Communication Issues in Software
Development: A Case Study Approach. Paper presented
at the Conference on Software Engineering Education
and Training.

Brooks, F. (1975). The mythical man-month: Essays on
software engineering. Reading, MA: Addison-Wesley.

Brooks, F. (1987). No Silver Bullet, IEEE Computer
20(4), pp. 10-19.

Brooks, F. (1995). The Mythical Man-Month; 2nd edition,
Addison-Wesley Professional.

Brooks, F. P. (1986). No silver bullet - essence and ac-
cidents of software engineering. Paper presented at the
Proceedings of Information Processing 86: the IFIP 10th
World Conference, Amsterdam.

Brooks, F.P. (1987): No silver bullet – essence and ac-
cidents of software engineering. IEEE Computer, Vol.
20 (4), 10-19.

Brown, G., Bull, J., & Pendlebury, M. (1997). Assess-
ing Student Learning in Higher Education. London:
Routledge.

 ���

Compilation of References

Brown, J. S., Collins, A., & Duguid, P. (1989). Situated
cognition and the culture of learning. Educational Re-
searcher, 18, 32-42.

Brown, S., & Enos, T. (Eds.). (2002). The Writing Pro-
gram Administrator’s Resource: A Guide to Reflective
Institutional Practice. Lawrence Erlbaum.

Broy, M., E. Denert (eds.) (2002): Software Pioneers:
Contributions to Software Engineering. Springer-Ver-
lag, Berlin.

Bruner, J. S. (1967). On knowing: Essays for the left hand.
Cambridge, Mass.: Harvard University Press.

Bungartz, H.-J., M. Bernreuther (2006): First Experiences
with Group Projects in CSE Education. Computing in
Science and Engineering, July 2006, 16-25.

Bunse, C., Grützner, I., Peper, C., Steinbach-Nordmann,
S. (2005). Applying a Blended Learning Strategy for
Software Engineering Education. Proceedings of the
18th Conference on Software Engineering Education
and Training (CSEE&T). Ottawa, Canada.

Burge, J. & Troy, D. (2006). Rising to the Challenge:
Using Business-Oriented Case Studies in Software
Engineering Education. Proceedings of the Nineteenth
Conference on Software Engineering Education &
Training. Turtle Bay, Hawaii.

Canadian Council of Professional Engineers, Canadian
Engineering Accreditation Board (2006). CEAB Ac-
creditation Criteria and Procedures. Ottawa, Ontario,
Canada. Retrieved October 26, 2007, from http://www.
engineerscanada.ca/e/files/report_ceab.pdf

Canadian Information Processing Society. (2007).
Software engineering. Retrieved January 15, 2007, from
http://www.cips.ca.it/position/softeng

Carnegie (2007) The Carnegie Classification of Institu-
tions of Higher Education. Stanford, CA: The Carnegie
Foundation for the Advancement of Teaching. Retrieved
January 15, 2008 from http://www.carnegiefoundation.
org/classifications/

Carnegie Mellon University (2005). Academic PSP
Material. Retrieved January 4, 2008 from http://www.
sei.cmu.edu/tsp/psp/download/academic.html.

Carnegie Mellon University (2005). Academic PSP
Material. Retrieved January 4, 2008 from http://www.
sei.cmu.edu/tsp/psp/download/academic.html.

Carr, J. J. (2000). Requirements engineering and man-
agement: The key to designing quality complex systems.
The TQM Magazine, 12(6), 400-407.

Carr, W., & Kemmis, S. (1986). Becoming Critical:
education, knowledge and action research. Lewes
(UK): Falmer.

Chrisman, C., & Beccue, B. (1987) Evaluating students
in system development group projects. SIGCSE-Bulletin,
19(1): pp. 366–373, 1987.

Christensen, C. R. (1987). Teaching and the Case Method.
Harvard Business School.

Clark, N., Davies, P., & Skeers, R. (2005). Self and
Peer Assessment in Software Engineering Projects.
Proceedings of 7th Australasian Computing Education
Conference, ACE 2005, pp. 91-100.

Clark, R. A., & Schmidt, H. A. (2002). A national strategy
to secure cyberspace. Washington, DC: The President’s
Critical Infrastructure Protection Board.

Clough, G.W. (2005) Educating the Engineer of 2020:
Adapting Engineering Education to the New Century.
Washington, D.C.: National Academies Press, Retrieved
from http://www.nap.edu.

Club Informatique des Grandes Entreprises Françaises.
(2006). Our expectations regarding the European e-com-
petence framework. Paper presented at the European e-
Skills 2006 Conference, Thessaloniki, Greece. Retrieved
February 4, 2007 from http://eskills.cedefop.europa.
eu/conference2006/presentations/PS1-2_Delafon.pdf.

Cobertura. (2005). Retrieved from http://cobertura.
sourceforge.net/

Cockburn, A. (2001). Agile Software Development, Ad-
dison-Wesley Pub Co.

Cockburn, A., & Williams, L. (2001) The costs and ben-
efits of pair programming. In G. Succi and M. Marchesi
(Eds.), Extreme Programming examined (pp. 223-243).
Boston: Addison-Wesley.

���

Compilation of References

Collins, A., Brown, J. S. & Newman, S. E. (1990).
Cognitive apprenticeship: teaching the crafts of read-
ing, writing and mathematics. In: Resnick, L. B. (Ed.).
Knowing, learning and instruction: Essays in honor of
Robert Glaser. Hillsdale, N.J.: Lawrende Erlbaum.

Collofello, J. & Vehathiri, K. (2005). An Environment
for Training Computer Science Students on Software
Testing. Paper presented ad Frontiers in Education, 2005.
FIE ‘05. 19-22 Oct. 2005, T3E-6- T3E-10.

Collofello, J. S. (2000). University/industry collabora-
tion in developing a simulation based software project
management training course. In S. Mengel & P. J. Knoke
(Eds.), Proceedings of the thirteenth conference on soft-
ware engineering education and training (pp. 161-168).
Austin, TX: IEEE Computer Society.

Computing Research News (2007), 2005-2006 Taulbe
Survey, May 2007.

Connors, R. J. (2004). The Rise of Technical Writing
Instruction in America. In J. Johnson-Eiola & S. Selber
(Eds.), Central Works in Technical Communication (pp.
4-19). Oxford University Press.

Coppit, D. (2006). Implementing Large Projects in Soft-
ware Engineering Courses. Computer Science Education
16(1), 53-73.

Cowling, A.J. (1998). The First Decade Of An Under-
graduate Degree Programme In Software Engineering.
Annals of Software Engineering, 6(1-4), 61-90.

Cropley, D. H., & Cropley, A. J. (1998). Teaching Engi-
neering Students to be Creative - Program and Outcomes.
Paper presented at the Australasian Association of Engi-
neering Education: 10th Annual Conference.

Curtis, B., Krasner, H., & Iscoe, N. (1988). A Field Study
of the Software Design Process for Large Systems. Com-
munications of the ACM, 31(11), 1268-1287.

Daigle, R. & Niccolai, M. (1997). Inter-Class Synergy by
Design. In Proceedings of the SIGCSE Conference on
Computer Science Education (SIGCSE ’97). New York,
NY: ACM Press, pp. 92-95.

Dantas, A. R., Barros, M. O., & Werner, C. M. L. (2004).
A simulation-based game for project management experi-
ential learning. In Proceedings of the 2004 international
conference on software engineering and knowledge
engineering. Banff, Alberta, Canada.

Dart, P., Johnston, L., Schmidt, C., & Sonenberg, L.
(1997) Developing an Accredited SE Program, IEEE
Software, Nov/Dec, 66-70.

Davis, A. (1990). Software Requirements: Objects, Func-
tions, and States. Prentice Hall.

Davis, R. B., Maher, C. A. and Noddings, N. (1990,
eds.). Constructivist views on the teaching and learning
of mathematics, Journal for Research in Mathematics
Education, Monograph Number 4, The National Council
of Teachers of Mathematics, Inc.

Dawson, R. (2000). Twenty dirty tricks to train software
engineers. In Proceedings of the 22nd international con-
ference on software engineering (pp. 209-218): ACM.

de Haan, D., Waterson, P., Trapp, S. & Pfahl, D. (2003).
Integrating needs assessment within next generation e-
learning systems: Lessons learnt from a case study. Pro-
ceedings of the IFIP OPEN WORKING CONFERENCE
“eTRAIN 2003: E-Training Practices for Professional
Organisations”. Pori, Finland.

De Landtsheer, R., & van Lamsweerde, A. (2005). Rea-
soning about confidentiality at requirements engineering
time. In Proceedings of the 10th European Software Engi-
neering Conference held jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering (pp. 41-49). New York, NY: ACM.

Deili, M. (1988). A problem solving approach to usability
testing. Paper presented at the International Technical
Communication Conference.

Deretchin, L. F. (2002). Making the grade. In P. Schwartz
& G. Webb (Eds.), Assessment: Case studies, experi-
ence and practice from higher education (pp. 114-120).
London: Kogan Page.

Development of the volume is documented at the SE2004
site: http://sites.computer.org/ccse/

 ���

Compilation of References

Dewey, J. (1916). Democracy and education. New York,
NY: Macmillan.

Diaz-Herrera, J. L., & Hilburn, T. (Eds.). (2004). Software
Engineering 2004 Curriculum Guidelines for Under-
graduate Degree Programs in Software Engineering A
Volume of the Computing Curricula Series. Available
at http://sites.computer.org/ccse

Diaz-Herrera, J. L., Hilburn, T., Hislop, G., Lutz, M.,
MacNeil, P.E., & McCracken, M. (2001, October).
Software Engineering Education Should Be Presented
as A: Science, B: Engineering, C. Technology, D. None
of the above, E. All of the above, Other. Proceedings of
the Frontiers in Education Conference (FIE’01), Reno,
NV.

DMU (2007). De Monfort University, Centre for Com-
puting and Social Responsibility. Provides details of the
proceedings of the Ethicomp Series of Conferences, The
Ethicomp Journal, and the Journal of Information Com-
munication and Ethics in Society, home page: http://www.
ccsr.cse.dmu.ac.uk/

Dorn, E. M. (1999). Case Method Instruction in the
Business Writing Classroom. Business Communication
Quarterly, 62, 41-60.

Drappa, A., & Ludewig, J. (2000). Simulation in soft-
ware engineering training. In Proceedings of the 22nd
international conference on software engineering (pp.
199-208): ACM.

Drappa, A., J. Ludewig (2000): Simulation in Software
Engineering Training. Proceedings of the 22nd ISCE,
Limerick, Ireland, 199-208.

Dreyfus, H. L., & Dreyfus, S. E. (1986). Mind over
Machine. New York: Free Press.

Duggins, S. L., & Thomas, B. B. (2002). An historical
investigation of graduate software engineering cur-
ricula. Proceedings of the 15th Conference on Software
Engineering Education and Training (CSEET’02), Los
Alamitos, CA, IEEE Computer Society Press.

Duggins, S.L., & Thomas, B.B. (2002) An Historical
Investigation of Graduate Software Engineering Cur-
riculum, Proceedings CSEE&T, 78-87.

Ecker, P. S., Caudill, J., Hoctor, D., & Meyer, C. (2004).
Implementing an interdisciplinary capstone course for
associate degree Information Technology programs,
Proceedings of the 5th Conference on Information Tech-
nology Education (pp. 60-65). Salt Lake City, UT.

Edwards, S. (2003). Using Test-Driven Development
in the Classroom: Providing Students with Automatic,
Concrete Feedback on Performance. Paper presented at
International Conference on Education and Information
Systems: Technology and Applications EISTA 2003,
Orlando, FL, 2003.

Eisenman, R. (2001). Stimulating achievement among
Hispanic college students. Radical Pedagogy, 3(2).
Available: http://radicalpedagogy.icaap.org/content/is-
sue3_2/eisenman.html

Ellis, H., & Mitchell, R. (2004). Self-Grading in a Proj-
ect-Based Software Engineering Course. Proceedings
of 17th Conference on Software Engineering Education
and Training, CSEET 2004, pp. 138-143.

Ellis, H., McKim, J.C., & Younessi H. Issues Affecting
Graduate and Postgraduate Software Engineering Cur-
ricula, Workshop on Developing Graduate and Post-
graduate Software Engineering Courses, Proceedings
of CSEE&T 2000, 190

Ellison, R. J., & Moore, A. P. (2003). Trustworthy re-
finement through intrusion-aware design (Tech. Rep.
No. CMU/SEI-2003-TR-002). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University.
Retrieved November 1, 2007 from http://www.sei.cmu.
edu/publications/documents/03.reports/03tr002.html

Emerson, R. M., Fretz, R. I., & Shaw, L. L. (1995). Writing
Ethnographic Fieldnotes. University of Chicago Press.

Enders, F. B., & Diener-West, M. (2006). Methods of
learning in statistical education: A randomized trial of
public health graduate students. Statistics Education
Research Journal, 5(1), 5-19.

Engel, G. (2006). IT Opportunities from the IEEE Com-
puter Society. Presentation at IFIP Workshop on Improv-
ing IT Practitioner Skills, August 25, 2006 (A part of the
19th IFIP World Computer Congress, Santiago, Chile,

��0

Compilation of References

August 20-25, 2006), Abstract and presentation retrieved
October 3, 2006, from: http://www.ifip.org/projects/IT-
Pract-main.htm

Engel, G., & Roberts, E. (Eds.). (2001). Computing
Curricula 2001: Computer Science -- final report: Joint
Task Force on Computing Curricula, ACM and IEEE
Computer Society.

Engineering Accreditation Commission. (1999). Criteria
for accrediting engineering programs: Effective for
evaluations during the 2000-2001 Accreditation Cycle.
Baltimore, MD. ABET, Inc.

Engineering Accreditation Commission. (2000). Crite-
ria for accrediting engineering programs: Effective for
evaluations during the 2001-2002 Accreditation Cycle.
Baltimore, MD. ABET, Inc.

Engineering Accreditation Commission. (2001). Criteria
for accrediting engineering programs: Effective for
evaluations during the 2002-2003 Accreditation Cycle.
Baltimore, MD. ABET, Inc.

Engineering Accreditation Commission. (2002). Criteria
for accrediting engineering programs: Effective for
evaluations during the 2003-2004 Accreditation Cycle.
Baltimore, MD. ABET, Inc.

Engineering Accreditation Commission. (2007). Crite-
ria for accrediting engineering programs: Effective for
evaluations during the 2007-2008 Accreditation Cycle.
Baltimore, MD. ABET, Inc. Retrieved May 13, 2007,
from http://abet.org/forms.shtml.

Engineering Accreditation Commission. (2007a). En-
gineering self-study questionnaire. Baltimore, MD.
ABET, Inc. Retrieved May 13, 2007, from http://abet.
org/forms.shtml.

Engineers Australia (2007). Australian Professional En-
gineering Programs Accredited by Engineers Australia.
Last updated 6 September 2007. Retrieved November 11,
2007 from http://www.engineersaustralia.org.au/educa-
tion/program-accreditation/accredited-programs/ac-
credited-programs_home.cfm

Engineers Canada. (2001). Accreditation of software
engineering programs is good news. Retrieved Sep-

tember 29, 2007, from http://www.engineerscanada.
ca/e/pub_ceo_01_02.cfm

English, F. (1978). Quality control in curriculum develop-
ment. Arlington (VA): American Association of School
Administrators.

Entwistle, N. J., & Ramsden, P. (1983). Understanding
Student Learning. London: Croom Helm.

Entwistle, N. J., & Tait, H. (1990). Approaches to
learning, evaluations of teaching, and preferences for
contrasting academic environments. Higher Education,
19, 169-194.

Entwistle, N. J., & Tait, H. (1995). Approaches to study-
ing and perceptions of the learning environment across
disciplines. New directions for teaching and learning,
64, 93-103.

Epstein R.A.G. (1997). The Case of the Killer Robot,
New York: John Wiley and Sons. There are also freely
available abridged web versions e.g. from the Online
Ethics Center at Case Western Reserve University:
http://onlineethics.org/cases/robot/robot.html

ETHICOMP (2004). Introduction ETHICOMP 2004.
In proceedings of Seventh International ETHICOMP
Conference (ETHICOMP 2004), April 14-16 2004, Syros,
Greece, (pp. 3-4). Syros: University of the Aegean.

European Certification of Informatics Professionals.
(2004). EUCIP Software Developer: elective level profile
specification. Dublin, Ireland: EUCIP Ltd.

European Certification of Informatics Professionals.
(2006). Introduction to the EUCIP elective level, version
2.3. Dublin, Ireland: EUCIP Ltd.

European Committee for Standardization. (2006). CWA
15515, European ICT Skills Meta-Framework – State-
of-the-Art Review, clarification of the realities, and
recommendations for next steps. Brussels, Belgium:
European Committee for Standardization.

Fairley, R. (1986). The role of academe in software
engineering education. Proceedings of the 1986 ACM
Fourteenth Annual Conference on Computer Science.
p. 39-52. New York: ACM Press.

 ���

Compilation of References

FASE (2004). Report on the CSEE&T 2004 Workshop:
Teaching Ethics in Software Engineering Programs.
Forum for Advancing Software engineering Education
(FASE), 14(4), (Issue 160), April 2004.

Favela, J., & Pena-Mora, F. (2001). An experience in
collaborative software engineering education. IEEE
Software, 18(2), 47-53.

Federal Ministry for Information and Research (2003).
The German Advanced IT Training System: Concepts
and Results. Bonn, Germany: Federal Ministry for
Information and Research.

Felder, G. M., & Spurlin, J. (2005). Applications, reli-
ability and validity of the Index of Learning Styles.
International Journal of Engineering Education, 21(1),
1-3-112.

Felder, R. M. (1996). Matters of Style. Prism: Journal
of the American Society of Engineering Education,
6(4), 18-23.

Felder, R. M., & Brent, R. (2005). Understanding stu-
dent differences. Journal of Engineering Education,
94(1), 57-72.

Felder, R. M., & Silverman, R. L. (1988). Learning and
teaching styles in engineering education. Engineering
Education, 78(8), 674-681.

Fenwick, J. B., & Kurtz, B. L. (2005). Intra-curriculum
software engineering education. ACM SIGCSE Bulletin
inroads, 36(1). 540-544.

Fenwick, J., & Kurtz, B. (2005). Intra-curriculum soft-
ware engineering education. Proceedings of the 36th
SIGCSE Technical Symposium on Computer Science
Education, SIGCSE 2005, pp. 540-544.

Fernandez, J. D., & Tedford, P. (2006). Evaluating comput-
ing education programs against real world needs. Journal
of Computing Sciences in Colleges, 21(4), 259-265.

Fernandez, J. D., Garcia, M., Camacho, D., & Evans,
A. (2006). Software engineering industry experience
– the key to success. Journal of Computing Sciences in
Colleges, 21(4), 230-236.

Ferrari, M., Taylor, R., & VanLehn, K. (1999). Adapting
work simulations for schools. The Journal of Educational
Computing Research, 21(1), 25-53.

Ferreira, H.S., Fonseca, L.M.G., d’Alge, J.C.L., Montiero,
A.M.V. (2002). New Approach on Teaching Geotechnol-
ogy. International Archives of Photogrammetry and
Remote Sensing, and Spatial Information Science San
Jóse dos Campos, Brazil. Vol. XXXIV, Part 6, CVI.

Fetaji, B. & Fetaji, M. (2006). Software Engineering
Java Educational Software and its Qualitative Research.
Proceedings of the IV International Conference onMul-
timedia and ICTs in Education m-ICTE 2006 “Current
Developments in Technology-Asissted Education”.
Seville, Spain, Vol. 3.

Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention,
and behavior: An introduction to theory and research.
Reading, Mass.: Addison-Wesley.

Flener, P. (2006). Realism in Project-Based Software
Engineering Courses: Rewards, Risks, and Recommen-
dations. Proceedings. of 21st International Symposium
on Computer and Information Sciences, ISCIS 2006,
pp. 1031-1039.

Flower, L. (1998). Problem Solving Strategies for Writing
in College and Community. Harcourt Brace.

Ford, G. & Gibbs, N. (1996) A Mature Profession of
Software Engineering. Software Engineering Institute.
Technical Report CMU/SEI-96-TR-04. Pittsburgh, PA:
Carnegie Mellon University.

Ford, G. (1991) 1991 SEI Report on Graduate Software
Engineering Education, Technical Report CMU/SEI-91-
TR-2, Software Engineering Institute, Carnegie Mellon
University

Ford, G. (1991a). The SEI Undergraduate Curriculum
in Software Engineering. Proceedings, 22nd SIGCSE
Technical Symposium on Computer Science Education.
pp. 375–385 New York: ACM Press.

Ford, G. A. (1991b) SEI Report on Graduate Software
Engineering Education. CMU/SEI-91-TR-2. Pittsburgh,
PA: Carnegie Mellon University.

���

Compilation of References

Ford, G., Gibbs, N., & Tomayko, J. (1987) Software
Engineering Education: An Interim Report from the
Software Engineering Institute, Technical Report CMU/
SEI-87-TR-8, Software Engineering Institute,

Ford, Gary A. (1994). The Progress of Undergraduate
Software Engineering Education. SIGCSE Bulletin.
26,4. New York: ACM Press.

Frailey, D. (2006). Bringing realistic software engineering
assignments to the software engineering classroom. Pro-
ceedings of CSEET’06: The 19th Conference on Software
Engineering Education and Training. Ohau, HI.

Frailey, D. (2006). Bringing realistic software engineering
assignments to the software engineering classroom. Pro-
ceedings of CSEET’06: The 19th Conference on Software
Engineering Education and Training. Ohau, HI.

Frailey, D. J. (2006). Bringing Realistic Software En-
gineering Assignments to the Software Engineering
Classroom. Proceedings of the Nineteenth Conference
on Software Engineering Education & Training. Turtle
Bay, Hawaii.

Franch, X., & Port, D. (2005). COTS-Based Software
Systems. Proceedings of the 4th International ICCBSS
Conference (LNCS 3412). Bilbao, Spain: Springer.

Freed, G. (1992). Fifth generation innovation. Sydney:
Australian Centre for Innovation and International
Competitiveness, University of Sydney.

Freedman, A. (1993a). Show and Tell? The Role of Explicit
Teaching in the Learning of New Genres. Research in
the Teaching of English, 27(3), 222-251.

Freedman, A. (1993b). Show and Tell? The Role of Explicit
Teaching in the Learning of New Genres. Research in
the Teaching of English, 27(3), 222-251.

Freedman, A., Adam, C., & Smart, G. (1994). Wearing
Suits to Class: Simulating Genres and Simulations as
Genre. Written Communication, 11(2), 193-226.

Frezza, S. T., Tang, M-H., & Brinkman, B. J. (2006). Cre-
ating an Accreditable Software Engineering Bachelor’s
Program. IEEE Software, 23(6), 27-35.

Frezza, S., Sasi, S., & Seol, J. (2003, November). Report
from the Trenches: Applying the SEEK to BSSE Program
Development. Proceedings of the Frontiers in Education
Conference (FIE’03). Boulder, CO.

Friedman, R., McHugh, J. A., & Deek, F. P. (2003).
NJIT’s sandbox: An industry/education partnership for
IT development. In Proceedings of the 4th Conference
on Information Technology Curriculum (pp. 201-205).
Lafayette, Indiana, USA.

Frohna, A. Z., Hamstra, S. J., Mullan, P. B., & Gruppen,
L. D. (2006). Teaching medical education principles and
methods to faculty using an active learning approach:
The University of Michigan Medical Education Scholars
Program. Academic Medicine, 81(11), 975-978.

Fuller, U., Pears, A., Amillo, J., Avram, C., & Mannila,
L. (2006). A computing perspective on the Bologna
process. ACM SIGCSE Bulletin, 38(4), 142-158.

Fulmer, W. E. (1992). Using Cases in Management
Development Programmes. Journal of Management
Development, 11, 33-37.

Gale, F. C. (1993). Teaching Professional Writing Rhe-
torically: The Unified Case Method. Journal of Business
and Technical Communication, 7(2), 256-266.

Garg, K., & Varma, V. (2006). Security: Bridging the
academia-industry gap using a case study. In XIII Asia
Pacific Software Engineering Conference Proceedings
(pp. 485-492). New York, NY: IEEE Computer Society
Press.

Garlan, D., Brown, A., Jackson, D., Tomayko, J., & Wing,
J. (1995) The CMU Master of Software Engineering
Core Curriculum, Proceedings of CSEE&T 1995, 65-86,
Springer Verlag.

Garlan, D., Gluch, D. P., & Tomayko, J. E. (1997). Agents
of Change: Educating Future Leaders in Software Engi-
neering. IEEE Computer, 30(11), 59-65.

Gary, K., Gannod, B. Gannod, G., Koehnemann, H.,
Lindquist, T., & Whitehouse, R. (2005). Work in progress
– The Software Enterprise. Proceedings of FIE’05: The
Frontiers in Education Conference. Indianapolis, IN.

 ���

Compilation of References

Gary, K., Gannod, B. Gannod, G., Koehnemann, H.,
Lindquist, T., & Whitehouse, R. (2005). Work in progress
– The Software Enterprise. Proceedings of FIE’05: The
Frontiers in Education Conference. Indianapolis, IN.

Gary, K., Gannod, B., & Koehnemann, H. (2006). The
Software Enterprise: Facilitating the Industry Prepared-
ness of Software Engineers. Proceedings of ASEE’06:
The National Conference of the American Society for
Engineering Education. Chicago, IL.

Gary, K., Gannod, G., Koehnemann, H., & Blake, M.B.
(2005). Educating Future Software Professionals on
Outsourced Software Development. Proceedings of
ASEE’05: The National Conference of the American
Society for Engineering Education. Portland, OR.

Germain, E., & Robillard, P. (2003) What Cognitive Ac-
tivities are Performed in Student Projects?, Proceedings
of CSEE&T 2003, 224-231

Gesellschaft für Informatik (1985): Ausbildung von Dip-
lom-Informatikern an wissenschaftlichen Hochschulen.
Empfehlung der GI vom 18. März 1985, Informatik-
Spektrum 8, 164–165.

Gesellschaft für Informatik (1997): Lehrinhalte und Ve-
ranstaltungsformen im Informatikstudium, ergänzende
Empfehlungen. Informatik Spektrum 20, Heft 5.

Ghezzi, C., & Mandrioli, D. (2005). The Challenges of
Software Engineering Education. Proceedings of 27th
International Conference on Software Engineering,
ICSE 2005, pp. 637-638.

Ghezzi, C., Jazayeri, M., & Mandrioli, D. (2002).
Fundamentals of Software Engineering. 2nd edition,
Prentice Hall.

Gibbons, A. S. (2001). Model-centered instruction.
Journal of Structural Learning and Intelligent Systems,
14(4), 511-540.

Giorgini, P., Mouratidis, H., & Zannone, N. (2007). Mod-
elling Security and Trust with Secure Tropos. Integrating
Security and Software Engineering: Advances and Future
Visions, 160-189. Hershey, PA: IGI Global.

Glass, R. (2003). A Big Problem in Academic Software
Engineering and a Potential Outside-the-Box Solution,
IEEE Software, July/August,94-96.

Glass, R. L. (1992). A comparative analysis of the topic
areas of Computer Science, Software Engineering, and
Information Systems. Journal of Systems and Software,
25.

Glass, R. L. (1995). Software Creativity: Prentice-
Hall.

Glass, R. L. (1998). Software Runaways: Lessons
Learned from Massive Software Project Failures.
Prentice Hall.

Glass, R. L. (2001). Frequently forgotten fundamental
facts about software engineering. IEEE Software, 18(3),
112 - 111.

Gnatz, M., Kof, L., Prilmeier, F., & Seifert, T. (2003). A
practical approach of teaching software engineering. In P.
J. Knoke, A. Moreno & M. Ryan (Eds.), Proceedings of the
sixteenth conference on software engineering education
and training (pp. 120-128). Madrid, Spain: IEEE.

Goold, A., & Horan, P. (2002). Foundation software
engineering practices for capstone projects and beyond.
In M. McCracken, M. Lutz & T. C. Lethbridge (Eds.),
Proceedings of the fifteenth conference on software
engineering education and training (pp. 140-146).
Covington, KY, USA: IEEE.

Gorgone, J. T., Davis, G. B., Valacich, J. S., Topi, H., Fein-
stein, D. L., & Longenecker, H. E. (Eds.). (2002). IS 2002:
model curriculum for undergraduate degree programs
in Information Systems. Park Ridge (IL): ACM.

Gott, S. P., Hall, E. P., Pokorny, R. A., Dibble, E., &
Glaser, R. (1993). A naturalistic study of transfer: adap-
tive expertise in technical domains. In D. K. Detterman
& R. J. Sternberg (Eds.), Transfer on Trial: intelligence,
cognition and instruction (pp. 258-288). Norwood (NJ):
Ablex.

Gotterbarn, D. (2001). Views expressed during tutorial:
Software Engineering Ethics Training in Industry and
Academe: Professionalism and the Software Engineering

���

Compilation of References

Code of Ethics, organised by Gotterbarn, D. and Miller,
K. at Fourteenth Conference on Software Engineering
Education & Training, February 19-21, 2001, Charlotte,
North Carolina. See Gotterbarn and Miller (2001) for
details of tutorial.

Gotterbarn, D., & Miller, K. (2001). Tutorial: Software
Engineering Ethics Training in Industry and Academe:
Professionalism and the Software Engineering Code
of Ethics. In proceedings of Fourteenth Conference on
Software Engineering Education & Training, February
19-21, 2001, Charlotte, North Carolina, (pp. 24). Los
Alamitos, CA, IEEE-Computer Society.

Gotterbarn, D., Miller, K., & Rogerson, S. (1999). Com-
puter Society and ACM Approve Software Engineering
Code of Ethics, Computer, October, (pp. 84-88).

Granger, M. J., Currie Little, J., Adams, E. S., Björkman,
C., Gotterbarn, D., Juettner, D.D., et al, (1997). Using
information technology to integrate social and ethical
issues into the computer science and information systems
curriculum. Report of the Iticse ‘97 Working Group on
Social and Ethical Issue in Computing Curricula, in
supplemental proceedings SIGSE/SIGCUE ITiCSE’97,
(pp. 38 – 50). New York: ACM Press,

Grant, D. (2000) Undergraduate Software Engineering
Degrees in Australia, Proceedings of CSEE&T 2000,
308-309

Grant, S. (2006). Frameworks of competence: common
or specific. Paper presented at TenCompetence Work-
shop on Learning Networks for Lifelong Competence
Development, March 20-21, 2006, Sofia, Bulgaria.
Retrieved September 29, 2007 from http://hdl.handle.
net/1820/836

Grisham, P. S., Krasner, H., & Perry, D. E. (2006). Data
engineering education with real-world projects, ACM
SIGCSE Bulletin, 38(2), pp. 64-68.

Groth, D. P., & Robertson, E. L. (2001). It’s all about
process: Project-oriented teaching of software engi-
neering. In D. Ramsey, P. Bourque & R. Dupuis (Eds.),
Proceedings of the fourteenth conference on software
engineering education and training (pp. 7-17). Charlotte,
NC, USA: IEEE.

Grützner, I. & Bunse, C. (2002). Teaching Object-Ori-
ented Design with UML - A Blended Learning Approach.
Proceedings of the Sixth Workshop on Pedagogies and
Tools for Learning Object-Oriented Concepts. Held in
conjunction with 16th European Conference for Ob-
ject-Oriented Programming (ECOOP 2002), Malaga,
Spain.

Grützner, I., Steinbach-Nordmann, S., Ochs, M. &
Bunse, C. (2003). Der Baukasten Objektorientierte
Software-Entwicklung: Berufliche Weiterbildung in der
Software-Industrie. Proceedings of the 6th International
Conference on Information Management (Wirtschaftsin-
formatik). Dresden, Germany (In German).

Grützner, I., Thomas, L., & Steinbach-Nordmann, S.
(2006). Building re-configurable multilingual training
media. Proceedings of the IV International Conference
on Multimedia and ICTs in Education m-ICTE 2006
“Current Developments in Technology-Asissted Educa-
tion”. Seville, Spain, Vol. 3.

Guide to the Software Engineering Body of Knowledge
(2004), Bourque, P. and Dupuis, R., (Eds.), Los Alamitos,
CA, IEEE Computer Society Press.

Guilford, J. P. (1967). The Nature of Human Intelligence.
New York: McGraw-Hill.

Guindon, R. (1989). The process of knowledge discovery
in system design. In G. Salvendy & M. J. Smith (Eds.),
Designing and Using Human-Computer Interfaces and
Knowledge Based Systems (pp. 727-734). Amsterdam:
Elsevier.

Guindon, R. (1990). Knowledge exploited by experts
during software systems design. International Journal
of Man-Machine Studies, 33, 279-304.

Habermas, J. (1972). Theory and Practice (V. J, Trans.).
London: Heinemman.

Halling, M., Zuser, W., Kohle, M., & Biffl, S. (2002).
Teaching the unified process to undergraduate students.
In M. McCracken, M. Lutz & T. C. Lethbridge (Eds.),
Proceedings of the fifteenth conference on software
engineering education and training (pp. 148-159). Cov-
ington, KY, USA: IEEE.

 ���

Compilation of References

Hanna, M. (1993). Maintenance burden begging for a
remedy. Datamation, April, 53-63.

Hannafin, M. J. (1997). The case for grounded learning
systems design: what the literature suggests about effec-
tive teaching learning and technology. Paper presented
at the Proceedings of ASCILITE ‘97, Perth.

Hayes, J. H. (2002). Energizing software engineering
education through real-world projects as experimental
studies. In M. McCracken, M. Lutz & T. C. Lethbridge
(Eds.), Proceedings of the fifteenth conference on soft-
ware engineering education and training (pp. 192-206).
Covington, KY: IEEE.

Hazeyama, A. (2005). State of the Survey on Team-
based Software Engineering Project Course. Proceed-
ings of the 17th International Conference on Software
Engineering and Knowledge Engineering, SEKE 2005,
pp. 430-435.

Hazzan, O. (2002). The reflective practitioner perspec-
tive in software engineering education, The Journal of
Systems and Software 63(3), pp. 161-171.

Hecht, H., & Hecht, M. (2000). How reliable are require-
ments for reliable software? Software Tech News, 3(4).
Retrieved May 31, 2007 from http://www.softwaretech-
news.com

Hecker, D. E. (2005). Occupational employment projec-
tions to 2014, Monthly Labor Review, Bureau of Labor
Statistics, 128(11), November 2005. Available: http://
www.bls.gov/opub/mlr/2005/11/contents.htm

Heidecke, F., Mayrhofer, D., Schiesser, A. & Back, A.
(2007). Organisation des Außendiensttrainings in der
Pharma-Branche: Entwicklung eines Referenzmodells
mittels Fallstudienforschung. In Breitner, M. H., Bruns,
B. & Lehner, F. (eds.). Neue Trends im E-Learning:
Aspekte der Betriebswirtschaftslehre und Informatik.
Heidelberg: Physica (in German).

Heitmeyer, C., & Bharadwaj, R. (2000). Applying the
SCR requirements method to the light control case
study. Journal of Universal Computer Science, 6(7),
650-678.

Henderson, P., Linos, P., & Tinsley, E. (2003). Crafting
an Undergraduate Software Engineering Program in
a Liberal Arts Environment. Unpublished extended
abstract, Butler University, Indianapolis, IN.

Hesse-Biber, S. N., & Leavy, P. (2005). Qualitative
Research Inquiry. In The Practice of Qualitative Re-
search. Sage.

Hiburn, T., Towhidnejad, M., Nangia, S., & Shen, L.
(2006). A Case Study Project for Software Eductaion,
Proceedings FIE 2006, M1F1-M1F5.

Hilburn, T. (1999). PSP metrics in support of software
engineering education. In H. Saiedian (Ed.), Proceed-
ings of the twelfth conference on software engineering
education and training (pp. 135-136). New Orleans,
LA, USA: IEEE.

Hilburn, T., & Humphrey, W. (2002, Sept/Oct). Teaching
Teamwork. IEEE Software 19(5), 72-77.

Hilburn, T., & Humphrey, W. (2002, Sept/Oct). Teaching
Teamwork. IEEE Software 19(5), 72-77.

Hislop, G. W. (2006). Scaffolding student work in cap-
stone design courses. 36th ASEE/IEEE Frontiers in Edu-
cation Conference (pp. T1A1-T1A4). San Diego, CA.

Hislop, G. W., Lutz, M. J., & Sebern, M. J. (2006).
Sharing Software Engineering Curriculum Materials.
Proceedings, ASEE 2006.

Hogan, J. M., Smith, G., & Thomas, R. (2005). Tight
spirals and industry clients: The modern SE education
experience. In Proceedings of the 7th Australasian
Conference on Computing Education - Volume 42 (pp.
217-222). A. Young & D. Tolhurst (Eds.), ACM Interna-
tional Conference Proceeding Series, vol. 106. Australian
Computer Society, Darlinghurst, Australia.

Höhle, J., Cho, K., 2000. Distance Learning and Exchange
of Scientific Knowledge via Internet. International Ar-
chives of Photogrammetry and Remote Sensing. Amster-
dam, Holland, Vol. XXXIII, Part B6. pp. 337-340.

Holt, J., & Solomon, F. (1996). Engineering Education
- the way ahead. Australasian Journal of Engineering
Education,, 7(1), 1-22; 83-98.

���

Compilation of References

Honiden, S., Tahara, Y., Yoshioka, N., Taguchi, K., &
Washizaki, H. (2007). Top SE: Educating superarchitects
who can apply software engineering tools to practical de-
velopment in Japan. In Proceedings of 29th International
Conference on Software Engineering (ICSE’07) (pp.
708-718). New York, NY: IEEE Computer Society.

HRK (2007): Hochschulkompass der HRK (Hochschul-
rektorenkonferenz). http://www.hochschulkompass.de/

h t t p: // w w w.c e t . s u n d e r l a n d . a c .u k /s e i s / i c s e -
2001workshop/IFIPharmonisationDraft1998.html Also
available as an appendix to the paper Evaluations of
IFIP’s Proposed Standards for Professionals (Thompson,
2005), and from

http://www.ifip.or.at/minutes/C99/C99_harmonization.
htm

Hughes, C. (2006). IT comes of age – professionalism
in the industry. The British Computer Society Annual
Review 2006, (pp.12-13), Swindon: British Computer
Society.

Humphrey W.S. (1997). Introduction to the Personal
Software Process. Boston: Addison-Wesley.

Humphrey W.S. (1997). Introduction to the Personal
Software Process. Boston: Addison-Wesley.

Humphrey W.S. (2000). Introduction to the Team Soft-
ware Process. Boston: Addison-Wesley.

Humphrey W.S. (2000). Introduction to the Team Soft-
ware Process. Boston: Addison-Wesley.

Humphrey, W. (1999) Introduction to the Team Software
Process, Addison Wesley

Humphrey, W. (2005) . A Discipline of Software Engi-
neering, Second Edition, Addison Wesley.

IEEE Computer Society (2001). The Certified Software
Development Professional Program, Available at
http://www.computer.org/portal/pages/ieeecs/educa-
tion/certification.

IEEE CS and ACM Joint Task Force on Computing Cur-
ricula (2004): Software Engineering 2004, Curriculum

Guidelines for Undergraduate Degree Programs in
Software Engineering. August 23, 2004.

IEEE Software Engineering Standards Central (2007).
Software Engineering Standards Overview. Available:
http://standards.ieee.org/software/overview.html

IEEE-CS & ACM (2004). Software Engineering 2004,
Curriculum Guidelines for Undergraduate degree Pro-
grams in Software Engineering. Published by IEEE-CS,
and accessible from the education web-site for the ACM:
http://www.acm.org/education/

 IFIP OECD WITSA (2002). Joint Working Conference
“Meeting Global IT Skills Needs – The Role of Profes-
sionalism”, October, 25-27, 2002, Woking, UK, retrieved
February 1, 2005, from http://www.globalitskills.org/

Iivari, J. (1991). A paradigmatic analysis of contempo-
rary schools of IS development. European Journal of
Information Systems, 1(4), 249-272.

Information-Technology Promotion Agency. (2004).
Japan Information-Technology Engineers Examination
Handbook. Tokyo, Japan: Japan Information-Technology
Engineers Examination Center.

Institute for Electrical and Electronic Engineers Com-
puter Society (1998). IEEE Recommended Practice for
Software Requirements Specifications. (IEEE standard
830-1998). New York, NY.

Institute for Electrical and Electronic Engineers Com-
puter Society (2004), Guide to the Software Engineering
Body of Knowledge (SWEBOK). Los Alamitos, CA.

Institute for Electrical and Electronic Engineers Com-
puter Society (1998). IEEE Recommended Practice for
Software Requirements Specifications. (IEEE standard
830-1998). New York, NY.

Institute for Electrical and Electronic Engineers Com-
puter Society (2004), Guide to the Software Engineering
Body of Knowledge (SWEBOK). Los Alamitos, CA.

International Organization for Standardization. (2003).
ISO/IEC 17024: Conformity assessment – general re-
quirements for bodies operating certification of persons.
Geneva, Switzerland: ISO Copyright Office.

 ���

Compilation of References

Jackson, M. (1999): Specializing in Software Engineer-
ing. IEEE Software, Vol. 16, No. 6, 119-121.

Jain, A. & Boehm, B. (2006). SimVBSE: Developing a
Game for Value-Based Software Engineering. Proceed-
ings of the Nineteenth Conference on Software Engineer-
ing Education & Training. Turtle Bay, Hawaii.

Jessup, E., Sumner, T., & Barker, L. (2006). Report
from the trenches: Bringing more women to the study of
computer science. Manuscript submitted for publication.
Available: http://www.cs.colorado.edu/~jessup/SUB-
PAGES/PS/trenches.pdf

Johnson, A., Powers, C., & Wagert, S. (1989). EMCS
implementation by IBM Advanced Workstation division.
Proceedings of GUIDE 75, Los Angeles, CA. Joint IEEE
Computer Society/ACM Task Force on the “Model Cur-
ricula for Computing”. Also available as IBM Technical
Report TR51.0554, November, 1989.

Johnson, R. R. (1998). User-Centered Technology: A
Rhetorical Theory for Computers and Other Mundane
Artifacts. SUNY Press.

Johnson-Eiola, J. (2001). Little Machines: Understand-
ing Users; Understanding Interfaces. ACM Journal of
Computer Documentation, 25, 119-127.

Joint IEEE Computer Society/ACM Task Force on the
“Model Curricula for Computing” (2005). Computing
Curricula Series. Available: http://www.acm.org/educa-
tion/curricula.html

Joint Task Force on Computing Curricula. (2004).
Software Engineering 2004: Curriculum Guidelines
for Undergraduate Degree Programs in Software En-
gineering. IEEE Computer Society and Association for
Computing Machinery.

Joint Taskforce for Computing Curricula (JTCC)
2004. (2004). Software Engineering 2004: Curricular
Guidelines for Undergraduate Programs in Software
Engineering. New York, NY: ACM and IEEE.

Joint Taskforce for Computing Curricula (JTCC) 2005.
(2005). Computing curricula 2005: The overview report.
New York, NY: ACM and IEEE.

Jones, C. (2003). Variations in Software Development
Practices. IEEE Software, 20(6), 22-27.

Jones, C. (2005). Software quality in 2005: A survey of
the state of the art. Marlborough, MA: Software Pro-
ductivity Research.

Jones, S. & Northrop, M. (2006a). Blended Learning:
the practicalities of implementation in a UK University.
Proceedings of the IV International Conference on
Multimedia and ICTs in Education m-ICTE 2006 “Cur-
rent Developments in Technology-Asissted Education”.
Seville, Spain, Vol. 3.

Jones, S. & Northrop, M. (2006b). Implementation of a
Blended Learning approach: Milestones, tractors and
Crossroads. Proceedings of the IV International Con-
ference on Multimedia and ICTs in Education m-ICTE
2006 “Current Developments in Technology-Asissted
Education”. Seville, Spain, Vol. 3.

Kadolph, S. J. (2005). Equipment experts: Enhancing
student learning in textile science. Clothing & Textiles
Research Journal, 23(4), 368-374.

Kaufmann, R., & Janzen, D. (2003). Implications of test-
driven development: a pilot study. Paper presented at 18th
annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications
(OOPSLA 2003), Anaheim, CA, 2003.

Kawakita, J. (1982). The Original KJ Method (English).
Tokyo: Kawakita Research Institute.

Kawakita, J. (1982). The Original KJ Method (English).
Tokyo: Kawakita Research Institute.

Keil, M., Cule, P. E., Lyytinen, K., & Schmidt, R. C.
(1998). A framework for identifying software project
risks. Communications of the ACM, 41(1), 76-83.

Keirsey, D., & Bates, M. (1984). Please Understand Me
(3 ed.): Prometheus Nemesis Book Company.

Keller, J. M. (1983). Motivational design of instruction.
In C. M. Reigeluth (Ed.), Instructional design theories
and models: An overview of their current status. Hills-
dale, NJ: Erlbaum.

���

Compilation of References

Kelley, R. E. (1999). How to be a Star Engineer, IEEE
Spectrum. 36(10), 51-58.

Kerth, N. (2001). Project Retrospectives: A Handbook for
Team Reviews, Dorset House Publishing Company.

Kirsch, G., & Sullivan, P. (1992). Methods and Meth-
odology in Composition Research. Southern Illinois
University Press.

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why
minimal guidance during instruction does not work:
An analysis of the failure of constructivist, discovery,
problem-based, experiential, and inquiry-based teaching.
Educational Psychologist, 41(2), 75-86.

Klappholz, D., Almstrum, V. L., & Modesitt, K. (2006,
April). Workshop on real projects for real clients courses.
19th Conference on Software Engineering and Training,
Oahu, HI.

Klein, J. T. (1990). Interdisciplinarity. Wayne University
Press.

Klemola, T., & Rilling, J. (2002). Modeling comprehen-
sion processes in software development. Paper presented
at the Proceedings of the first IEEE Conference on Cogni-
tive Informatics (ICCI’02), Calgary (Canada).

Knight, J. & Leveson, N. (2002). Should Software
Engineers be Licensed? Communications of the ACM.
45(11), 87-90. New York: ACM Press.

Knoke, P. J. (1998). Graduate SE Program Survey Re-
sults And Evaluation, Forum for Advancing Software
engineering Education (FASE), Vol. 8, No. 9. (electronic
newsletter) <http://www.cs.ttu.edu/fase/v8n09.txt>

Knowles, M. (1984). Andragogy in action: Applying
modern principles of adult education. San Francisco,
CA: Jossey Bass.

Kolb, D. A. (1984). Experiential Learning Experience
as the Source of Learning and Development, : Pren-
tice-Hall.

Kolb, D. A. (1984). Experiential learning: Experiences
as the source of learning and development. Englewood
Cliffs, NJ, USA: Prentice-Hall International, Inc.

Kolb, D. A. (1995). Learning style inventory: technical
specifications. Boston: McBer & Company.

Kolikant, Y. B. (2001). Gardeners and cinema tickets:
High school students’ preconceptions of concurrency.
Computer Science Education, 11(3), 221-245.

Konieczka, S. (2003). Predictable releases: The key to
quality software. Boulder, CO: SCM Labs, Inc. Retrieved
November 1, 2007 from http://www.stickyminds.com/

Koppelman, H., & van Dijk, B. (2006). Creating a real-
istic context for team projects in HCI, Proceedings of
the 11th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education (pp. 58-62).
Bologna, Italy.

Kornecki, A. J. (2000). Real-time computing in software
engineering education. In S. A. Mengel & P. J. Knoke
(Eds.), Proceedings of the thirteenth conference on soft-
ware engineering education and training (pp. 197-198).
Austin, TX, USA: IEEE.

Kornecki, A. J., Khajenoori, S., & Gluch, D. (2003). On a
partnership between software industry and academia. In
P. J. Knoke, A. Moreno & M. Ryan (Eds.), Proceedings of
the sixteenth conference on software engineering educa-
tion and training (pp. 60-69). Madrid, Spain: IEEE.

Kruchten, P. (2000). The Rational Unified Process – An
Introduction (2nd ed.). Boston: Addison-Wesley.

Kruchten, P. (2000). The Rational Unified Process – An
Introduction (2nd ed.). Boston: Addison-Wesley.

Kuehl, C. S. (2001, October). Improving system require-
ments quality through application of an operational
concept process: An essential element in system sustain-
ment. Paper presented at NDIA 4th Annual Systems En-
gineering Conference, Dallas, TX. Retrieved November
2, 2007 from http://www.dtic.mil/ndia

Kumar, R. L. (2002). Managing risks in IT projects:
An options perspective. Information & Management,
40(1), 63-74.

Kurtz, B. L., Fenwick, J. B., Ellsworth, C. C., Yuan, X.,
Steele, A., & Jia, X. (2007). Inter-university software

 ���

Compilation of References

engineering using web services. ACM SIGCSE Bulletin
inroads, 39(1). 464-468.

Langford, D. (1996). Can A Software Engineer Afford to
be Ethical?, Proceedings of the conference: Professional
Awareness in Software Engineering (PASE’96), Febru-
ary 1-2, 1996, London. The conference papers were later
published as edited chapters in the text: Myers C., Hall
T. and Pitt D, (Eds.), (1997), The Responsible Software
Engineer, London, Springer-Verlag.

Last, M., Almstrum, V., Erickson, C., Klein, B., & Dan-
iels, M. (2000, June). An international student/faculty
collaboration: The Runestone project. ACM SIGCSE
Bulletin inroads. 32(3). 128-131.

Last, M., Hause, L., Daniels, M., & Woodroffe, M.
(2002). Learning from Students: Continuous Improve-
ment in International Collaboration. Proceedings of the
Conference Integrating Technology into Computer Sci-
ence Education, ITiCSE 2002. ACM Press, New York,
NY, pp. 136-140.

Lauer, J. M., & Asher, W. (1988). Composition Research/
Empirical Designs. Oxford University Press.

Lauesen, S., & Vinter, O. (2001). Preventing require-
ment defects: An experiment in process improvement.
Requirements Engineering, 6(1), 37-50.

Lave, J. (1988). Cognition in practice: Mind, mathematics,
and culture in everyday life. Cambridge, UK: Cambridge
University Press.

Lave, J., & Wenger, E. (1991). Situated Learning: Legiti-
mate Peripheral Participation. Cambridge University
Press.

LeBlanc, R., & Sobel, A. (2004). Software Engineering
2004 Curriculum Guidelines for Undergraduate Degree
Programs in Software Engineering, ACM, 2004. Re-
trieved December 18, 2007 from http://sites.computer.
org/ccse/.

LeBlanc, R., & Sobel, A. E. K. (Eds.). (2004). Software
Engineering 2004: curriculum guidelines for under-
graduate degree programs in Software Engineering. Los
Alamitos (CA): IEEE Computer Society Press.

Lee, D. M. S. (1999a). Knowledge/skill requirements
and professional development of IS/IT workers: a sum-
mary of empirical findings from two studies. In Panel
on Workforce Needs in Information Technology, Com-
puter Science and Telecommunications Board, National
Academy of Sciences. Milwaukee (WI).

Lee, D. M. S. (2004). Organizational entry and transition
from academic study: examining a critical step in the
professional development of young IS workers. In M.
Igbaria & C. Shayo (Eds.), Strategies for Managing IS/IT
Personnel (pp. 113-141). Hershey (PA): Idea Group.

Leffingwell, D. & Widrig, D. (2003). Managing Software
Requirements: A Use Case Approach (2nd ed.). Boston:
Addison-Wesley.

Leffingwell, D. & Widrig, D. (2003). Managing Software
Requirements: A Use Case Approach (2nd ed.). Boston:
Addison-Wesley.

Lethbridge, T. (2000) What Knowledge is Important to a
Software Professional?, IEEE Computer, 33(5), 44-50.

Lethbridge, T. C. (2000). What knowledge is important to
a software professional? IEEE Computer, 33(5), 44-50.

Lethbridge, T. C., Diaz-Herrera, J., LeBlanc, R. J., &
Thompson, J. B. (2007). Improving software practice
through education: Challenges and future trends. In 2007
Future of Software Engineering. International Confer-
ence on Software Engineering. pp. 12-28. Piscataway,
NJ: IEEE CS Press.

Lethbridge, T., Diaz-Herrera, J., LeBlanc, R., and Thomp-
son, J.B. (2007). Improving software practice through
education: Challenges and future trends. Proceedings
of FOSE’07: Future of Software Engineering, special
track at ICSE’07: The 29th International Conference on
Software Engineering. Minneapolis, MN.

Lethbridge, T., Diaz-Herrera, J., LeBlanc, R., and Thomp-
son, J.B. (2007). Improving software practice through
education: Challenges and future trends. Proceedings
of FOSE’07: Future of Software Engineering, special
track at ICSE’07: The 29th International Conference on
Software Engineering. Minneapolis, MN.

��0

Compilation of References

Linger, R. C., Mead, N. R., & Lipson, H. F. (1998). Re-
quirements definition for survivable systems. In Third
International Conference on Requirements Engineer-
ing (pp. 14-23). Los Alamitos, CA: IEEE Computer
Society.

Linn, R. L. (Ed.). (1989). Educational Measurement (3rd
ed.). New York: American Council on Education and
Macmillan Publishing.

Liu, C. (2005). Using issue tracking tools to facilitate
student learning of communication skills in software
engineering courses. Paper presented at the Conference
on Software Engineering Education & Training.

LTSN. (2002). Constructive alignment and why it is
important to the learner, from http://www.ltsneng.
ac.uk/er/theory/constructivealignment.asp

Lubars, M., Potts, C., & Richer, C. (1993). A review of
the state of the practice in requirements modeling. Paper
presented at the International Symposium on Require-
ments Engineering, San Diego.

Ludewig, J., H. Lichter (2007): Software Engineering
– Grundlagen, Menschen, Prozesse, Techniken. dpunkt.
verlag Heidelberg.

Ludewig, J., R. Reißing (1998): Teaching what they need
instead of teaching what we like – the new Software
Engineering curriculum at the University of Stuttgart. In-
formation and Software Technology 40 (4), 239 - 244.

Lui, K.M., & Chan, K. C.C. (2003). When Does a Pair
Outperform Two Individuals?, Lecture Notes in Computer
Science, Volume 2675, 225–233.

Lumsdaine, M., & Lumsdaine, E. (1995). Thinking
preferences of engineering students: implications for
curriculum restructuring. Journal of Engineering Edu-
cation, 84(2), 193-204.

Lutz, B. (2007). Training for Global Software Develop-
ment in an International “Learning Network”. Proceed-
ings of the International Conference on Global Software
Engineering (ICGSE 2007). Munich, Germany.

Lutz, M. J. & Naveda, J. F. (1997). The Road Less Trav-
eled: A Baccalaureate Degree In Software Engineering.

Proceedings, SIGCSE Technical Symposium. p. 287-291.
New York: ACM Press.

Lutz, M.J., Hilburn, T.B., Hislop, G., McCraken, M., &
Sebern, M. (2003) The SWENET Project: bridging the
gap from bodies of knowledge to curriculum develop-
ment, Proceedings FIE 2003, vol.3, S3C-7.

Mackinnon, T., Freeman, S., & Craig, P. (2000). Endo-
Testing: Unit Testing with Mock Objects. Presented at
eXtreme Programming and Flexible Processes in Soft-
ware Engineering - XP2000.

Mahn, A., et al. (1999): Empfehlungen der Gesellschaft
für Informatik e.V. zur Stärkung der Anwendungsori-
entierung in Diplom-Studiengängen der Informatik an
Universitäten, Informatik- Spektrum 22, 444-448.

Mahoney, M.S. (2004) Finding a History for Software
Engineering. IEEE Annals of the History of Computing.
p. 8-19. Piscataway, NJ: IEEE CS Press.

Maiden, N. A. M., & Gizikis, A. (2001). Where do require-
ments come from? IEEE Software, 18(5), 10-12.

Maiden, N. A. M., & Sutcliffe, A. G. (1992). Exploiting
reusable specifications through analogy. Communica-
tions of the ACM, 34(5), 55-64.

Maner, W. (ud). Interactive Computer Ethics Explorer
(ICEE). Web application retrieved February 1, 2004,
from http://www.cs.bgsu.edu/maner/xxicee/html/wel-
come.htm

Mann, J. (1996). The Role of Project Escalation in Ex-
plaining Runaway Information Systems Development
Projects: A Field Study. Georgia State University.

Margolis, J., & Fisher, A. (2001). Unlocking the clubhouse:
Women in computing. Cambridge, MA: MIT Press.

Margolis, J., & Fisher, A. (2002). Unlocking the Club-
house: Women in Computing. MIT Press.

McCalla, G. (2002). Software Engineering Requires In-
dividual Professionalism. Communications of the ACM.
45(11), 98-101. New York: ACM Press.

McConnell, S. (2004). Code Complete 2 (2nd ed). Redmond
WA: Microsoft Press.

 ���

Compilation of References

McConnell, S., & Tripp, L. (1999). Professional Soft-
ware Engineering: Fact or Fiction? IEEE Software,
16(6), 13-18.

McDonald, J. (2000). Teaching Software Project Man-
agement in Industrial and Academic Environments,
Proceedings of CSEE&T, 151-160.

McDowell, C., Werner, L., Bullock, H., & Fernald, J.
(2002). The Effects of Pair-Programming on Performance
in an Introductory Programming Course. Presented at
33rd SIGCSE technicalsymposium on Computer science
education. 2002, 38-42.

McDowell, C., Werner, L., Bullock, H., & Fernald, J.
(2003). The impact of pair programming on student
Performance, perception and persistence. Presented at
Int.Conf. on Software Engineering (ICSE2003), 2003,
602-607.

McGibbon, T. (1999). A business case for software pro-
cess improvement revised. Washington, DC: DoD Data
Analysis Center for Software (DACS).

McKeachie, W. J. (1961). Understanding the learning pro-
cess. Journal of Engineering Education, 51, 405-408.

McKim, J. C., & Ellis, H. J. C. (2004). Using a multiple
term project to teach object-oriented programming
and design. In T. B. Horton & A. E. K. Sobel (Eds.),
Proceedings of the seventeenth conference on software
engineering education and training (pp. 59-64). Norfolk,
VA: IEEE.

McMillan, J. H. (2001). Essential assessment concepts
for teachers and administrators. Thousand Oaks, CA:
Corwin Press.

McMillan, W. W., & Rajaprabhakaran, S. (1999). What
leading practitioners say should be emphasized in stu-
dents’ software engineering projects. Paper presented
at the Conference on Software Engineering Education
& Training.

Mead, N. R. (2003) Requirements Engineering for Surviv-
able Systems (Tech. Rep. No. CMU/SEI-2003-TN-013).
Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University. Retrieved November 2, 2007 from http://

www.sei.cmu.edu/publications/documents/03.reports
/03tn013.html

Mead, N. R., & Hough, E. D. (2006). Security require-
ments engineering for software systems: Case studies in
support of software engineering education. In Proceed-
ings of the 19th Conference on Software Engineering
Education and Training (pp. 149-158). Los Alamitos,
CA: IEEE Computer Society Press.

Mead, N. R., & Stehney, T. R. II. (2005b, May). Security
quality requirements engineering (SQUARE) method-
ology. Paper presented at the meeting of the Software
Engineering for Secure Systems (SESS05), ICSE 2005
International Workshop on Requirements for High As-
surance Systems, St. Louis, MO.

Mead, N. R., Hough, E. D., & Stehney, T. R. II. (2005a).
Security quality requirements (SQUARE) methodology
(Tech. Rep. No. CMU/SEI-2005-TR-009). Pittsburgh,
PA: Software Engineering Institute, Carnegie Mel-
lon University. Retrieved November 2, 2007 from
http://www.sei.cmu.edu/publications/documents/05.
reports/05tr009.html

Melnik, G., & Maurer, F. (2002) Perceptions of Agile
Practices: A Student Survey.” Paper presented at Agile
Universe/XP Universe 2002, Chicago, IL, 2002.

Meyer, B. (2001). Software Engineering in the Academy,
Computer, 34(5), pp. 28-35.

Meyer, J. H. F., & Boulton-Lewis, G. M. (1997). The
association between university students’ perceived
influences on their learning and their knowledge, ex-
perience, and conceptions, of learning. Paper presented
at the Proceedings of the 7th European Conference for
Research on Learning and Instruction, Athens.

Michaelsen, L. K. (2002). Getting started with team-based
learning. In L. K. Michaelsen, A. B. Knight, & L. D. Fink
(Eds.), Team-based learning: A transformative use of
small groups (pp. 27-50). Westport, CT: Praeger.

Middendorf, J., & Pace, D. (1986). Decoding the disci-
plines: a model for helping students learn disciplinary
ways of thinking. New Directions for teaching and
learning, 98, 1-12.

���

Compilation of References

Mikulecky, L. (1998). Diversity, discussion, and par-
ticipation: Comparing a web-based and campus-based
adolescent literature classes. Journal of Adolescent &
Adult Literacy, 42(2), pp. 84-97.

Miller, C. R. (1979). A Humanistic Rationale for Techni-
cal Writing. College English, 40, 610-617.

Minor, O. (2004). Theory and Practice in Requirements
Engineering: an investigation of curricula and industry
needs. Unpublished Master, University of Koblenz-Lan-
dau, Koblenz (Germany).

Mitchell, I,. Juliff, P., & Turner, J. (1998). Harmonization
of Professional Standards. International Federation of
Information Processing, 1998, retrieved February 13,
2001, from

Mitchell, R. L. (2006). How not to get “offshored.”
Computerworld Blogs. March 31, 2006 http://www.
computerworld.com/blogs/node/2150

Modesitt, K. (2004, September). The Distributed
Development of Software Engineering Professionals.
International Colloquium on Engineering Education.
ASEE and Tsinghua University, Beijing, PRC.

Modesitt, K. (2005, October). W3 – Winning Three Times
Over: Industry, University, Society. ABET Annual Meet-
ing on Accreditation, Innovation, and Improvement, San
Diego, CA, pp. 17-24.

Modesitt, K. (2006). A practical assessment guide to
the use of Professional Advisory Boards. Best Assess-
ment Processes VIII of ABET, Rose-Hulman Institute of
Technology, February 27-28.

Modesitt, K. L., Bagert, D. J., Werth, L. & Knoke, P.
J. (2000). Annual Survey of International Software
Engineering Academic Programs - Progress Report
Number 2. Forum for Advancing Software engineering
Education (FASE), Vol. 10, No. 11. (electronic newsletter)
<http://www.cs.ttu.edu/fase/v10n11.txt>

Modesitt, K., Maxim, B., & Akingbehin, K. (1999). Just
in Time Learning in software engineering. The Journal
of Mathematics and Science Teaching. 18(3). 287-301.

Moffett, J. D., Haley, C. B., & Nuseibeh, B. (2004). Core
Security Requirements Artefacts (Technical Report
2004/23, ISSN 1744-1986). UK: The Open University.
Retrieved November 2, 2007 from http://mcs.open.
ac.uk/computing-tr/

Morris, J. (2004). Programming doesn’t begin to define
computer science. Pittsburgh Post-Gazette. July 4, 2004.
Retrieved June 6, 2007, from http://www.post-gazette.
com/pg/04186/341012.stm

Morsch, L. (2006). What some fastest-growing jobs
pay. Retrieved January 4, 2008 from http://www.cnn.
com/2006/US/Careers/01/26/cb.top.jobs.pay/index.
html.

Morsch, L. (2006). What some fastest-growing jobs
pay. Retrieved January 4, 2008 from http://www.cnn.
com/2006/US/Careers/01/26/cb.top.jobs.pay/index.
html.

Moss, B. J. (1992). Ethnography and Composition: Study-
ing Language at Home. In G. Kirsch & P. Sullivan (Eds.),
Methods and Methodology in Composition Research.
Southern Illinois University Press.

Mugridge, R. (2003). Challenges in Teaching Test Driven
Development. Paper presented at XP 2003, Genova,
Italy, 2003.

Mühlhäuser, M., Trompler, C., 2002, Digital Lectures
Halls Keep Teachers in the Mood and Learners in the
Loop. Proceedings of E-Learn 2002, Montreal, Canada.
Association for the Advancement of Computing in Edu-
cation (AACE). pp. 714-721.

Muir, C. (2004). Learning Soft Skills at Work: An Inter-
view with Annalee Luhman. Business Communication
Quarterly, 67(1), 99-101.

Mulder, K. F. (2006). Engineering curricula in Sustainable
Development: an evaluation of changes at Delft Univer-
sity of Technology. European Journal of Engineering
Education, 31(2), 133-144.

Müller, M., & Tichy, W. (2001). Case study: extreme
programming in a university environment. Paper
presented at Software Engineering, 2001. ICSE 2001.

 ���

Compilation of References

Proceedings of the 23rd International Conference on,
Toronto, Ontario, 2001.

Müller, M., & Hagner, O. (2002). Experiment about
test-first programming Software, IEE Proceedings vol.
149, pp. 131-136.

Myers, C., Hal,l T., & Pitt, D. (1997). The Responsible
Software Engineer : Selected readings in IT Profes-
sionalism. London, Springer-Verlag.

Myers, L. L., & Larson, R. S. (2005). Preparing Students
for Early Work Conflicts. Business Communication
Quarterly, 68, 306-317.

National Association of Colleges and Employers (2007).
Higher Starting Salary Offers Reflect Positive Trend in
Job Market for New College Graduates. Press Release.
Retrieved May 28, 2007, from http://www.naceweb.
org/press/display.asp?year=2007&prid=256

National Center for Education Statistics (2004). Institute
of Education Sciences, U. S. Department of Education.
Digest of Education Statistics, 2004. Retrieved May 28,
2007, from http://nces.ed.gov/programs/digest/

National Center for Education Statistics (2005). Institute
of Education Sciences, U. S. Department of Education.
Digest of Education Statistics, 2005. Retrieved May 28,
2007, from http://nces.ed.gov/programs/digest/

National Center for Research on Evaluation, Standards,
and Student Testing, Graduate School of Education &
Information Studies, UCLA.

National Commission for Certifying Agencies. (2003).
Standards for the Accreditation of Certification Pro-
grams. Washington, DC: National Organization for
Competency Assurance.

National Infrastructure Advisory Council (NIAC).
(2003). National strategy to secure cyberspace. Wash-
ington, DC: U.S. Department of Homeland Security.

National Research Center for College and University
Admissions (2007). Post-Secondary Planning Survey
Analysis, 2007-2008 Edition. Retrieved November 15,
2007, from http://www.nrccua.org/downloads/reports/
survey_analysis.pdf

Naur, P. & Randell, B. (Eds.) (1969). Software engineer-
ing: Report of a conference sponsored by the NATO
Science Committee, Garmisch, Germany, 7–11 October
1968, Brussels, Scientific Affairs Division, NATO.

Naur, P. & Randell, B. eds. (1969) Software Engineering:
Report on a Conference Sponsored by the NATO Science
Committee, Garmisch, Germany, 7th to 11th October
1968. Scientific Affairs Division, NATO.

Naur, P., & Randall, B. (eds) (1968). Software Engineer-
ing: A report on a Conference Sponsored by the NATO
Science Committee, NATO.

Naur, P., Randell, B., & Buxton, J. (Eds.). (1976). Software
Engineering: Concepts and Techniques: Proceedings of
the NATO Conferences, Petrocelli-Charter, New York.

Navarro, E. O. (2005). A survey of software engineering
educational delivery methods and associated learning
theories (Technical Report No. UCI-ISR-05-5). Irvine,
CA: University of California, Irvine.

Navarro, E. O. (2006). SimSE: A software engineering
simulation environment for software process education.
Ph.D. Dissertation, University of California, Irvine,
Irvine, CA.

Navarro, E. O., & van der Hoek, A. (2005a). Design and
evaluation of an educational software process simulation
environment and associated model. In T. C. Lethbridge
& D. Port (Eds.), Proceedings of the eighteenth confer-
ence on software engineering education and training.
Ottawa, Canada: IEEE.

Navarro, E. O., & van der Hoek, A. (2005b). Scaling up:
How thirty-two students collaborated and succeeded in
developing a prototype software design environment. In
T. C. Lethbridge & D. Port (Eds.), Proceedings of the
eighteenth conference on software engineering educa-
tion and training. Ottawa, Canada: IEEE.

Navarro, E. O., & van der Hoek, A. (2007). Comprehensive
evaluation of an educational software engineering simula-
tion environment. In H. Edwards & R. Narayanan (Eds.),
Proceedings of the twentieth conference on software
engineering education and training. Dublin, Ireland.

���

Compilation of References

Needham, D. (2005). Interdisciplinary Teams for Soft-
ware System Development. Proceedings of the 2005
International Conference on Frontiers in Education:
Computer Science & Computer Engineering, FECS
2005, pp. 10-16.

Newman, Michael. (2002). Software errors cost U.S.
economy $59.5 billion annually. Gaithersburg, MD: Na-
tional Institute of Standards and Technology (NIST).

Nguyen, L., & Swatman, P. A. (2000). Essential and
incidental complexity in requirements models. Paper
presented at the Fourth International Conference on Re-
quirements Engineering Education, Schaumburg (Il).

Norman, K. I., & Keating, J. F. (1997). Barriers for
Hispanics and American Indians entering science and
mathematics: Cultural dilemmas. Association for the
Education of Teachers in Science (AETS) Conference
Proceedings (pp. 448-464). Available: http://www.
ed.psu.edu/ci/Journals/97pap22.htm

Nulden, U., & Scheepers, H. (2000). Understanding
and learning about escalation: Simulation in action. In
Proceedings of the 3rd process simulation modeling
workshop (prosim 2000). London, United Kingdom.

Ochs, M., & Pfahl, D. (2002) eLearning Market Potential
in the German IT Sector: An explorative Study. Kaisers-
lautern, Germany: Fraunhofer IESE. Retrieved November
2, 2003 from http://www.iese.fhg.de/market_survey.

Ohlsson, L., & Johansson, C. (1995). A practice driven
approach to software engineering education. IEEE
Transactions on Education, 38(3), 291-295.

Oliver, R. W. (2000). The coming biotech age: The busi-
ness of bio material. New York: McGraw-Hill.

Palyagar, B. (2004). A framework for validating process
improvements in requirements engineering. Retrieved
November 2, 2007 from http://www.ics.mq.edu.
au/~bpalyaga/papers/palyagar_b.pdf

Palyagar, B. (2004). Measuring and influencing require-
ments engineering process quality. In Proceedings of
AWRE 04, 9th Australian Workshop on Requirements

Engineering. Retrieved November 2, 2007 from http://
awre2004.cis.unisa.edu.au/

Parnas, D. L. (1999): Software Engineering Programmes
are not Computer Science Programmes. IEEE Software,
Vol. 16, No. 6, 19-30. (Originally published in the Annals
of Software Engineering, Vol. 6, April 1999, 19-37)

Parnas, D. L. (2002). Licensing Software Engineers in
Canada. Communications of the ACM. 45(11), 90-98.
New York: ACM Press.

Parnas, D. L., & Clements, P. C. (1986). A rational design
process: how and why to fake it. IEEE Transactions on
Software Engineering, 12(2), 251-257.

Pfahl, D., Klemm, M., & Ruhe, G. (2000). Using system
dynamics simulation models for software project manage-
ment education and training. In Proceedings of the 3rd
process simulation modeling workshop (prosim 2000).
London, United Kingdom.

Pfleeger, S. L. (1999). Albert Einstein and empirical
software engineering. IEEE Computer, 32(10), 32-37.

Piaget, J. (1977). Problems of Equilibration. In Appel,
M. H and Goldberg, L. S. (1977). Topics in Cognitive
Development, Volume 1: Equilibration: Theory, Research
and Application, Plenum Press, NY, pp. 3-13.

Pickett, J. P. (Ed.). (2004). The American Heritage Dic-
tionary of the English Language (4th ed.). Houghton
Mifflin.

Polack-Wahl, J. (2006). Lessons Learned From Different
Types of Projects in Software Engineering. Proceedings
of the 2006 International Conference on Frontiers in
Education: Computer Science & Computer Engineering,
FECS 2006, pp. 258-263.

Poole, W. G. (2003). The softer side of custom software
development: Working with the other players. Paper
presented at the Conference on Software Engineering
Education and Training.

Poole, W.G. (2003). The softer side of customer software
development: Working with the other players. Proceed-
ings of CSEET’03: The 16th Conference on Software
Engineering Education and Training. Madrid, Spain.

 ���

Compilation of References

Powell, G., Diaz-Perrera, J., & Turner, D. (1997). Achiev-
ing Synergy in Collaborative Education. IEEE Software,
Nov/Dec, 58-65.

President’s Information Technology Advisory Committee
(PITAC). (2005). Cybersecurity: A crisis of prioritiza-
tion. Arlington, VA: Executive Office of the President,
National Coordination Office for Information Technology
Research and Development.

Pressman, R. S. (2005). Software engineering: A practi-
tioner’s approach. (6th ed.). New York: McGraw-Hill.

Putnam, L. L., & Folger, J. P. (1988). Communication,
Conflict, and Dispute Resolution: The Study of Interaction
and the Development of Conflict Theory. Communication
Research, 15, 349-359.

Putnam, L. L., & Poole, M. S. (1987). Conflict and Ne-
gotiation. In F. M. Jablin, L. L. Putnam, K. H. Roberts
& L. W. Porter (Eds.), Handbook of Organizational
Communication: An Interdisciplinary Perspective (pp.
549-599).

Quinn, B., Barroca, L., Nuseibeh, B., Fernandez-Ramil,
J., Rapanotti, L., Thomas, P., & Wermelinger, M. (2006)
Learning Software Engineering at a Distance, IEEE
Software, November/December, 36-43.

Redwine, S. T. (Ed.). (2006). Software assurance: A guide
to the common body of knowledge to produce, acquire
and sustain secure software, version 1.1. Washington,
DC: U.S. Department of Homeland Security

Reeves, T. C. (1994). Evaluating what really matters in
computer-based education, from http://www.medicine.
mcgill.ca/ibroedu/review/Reeves Evaluating What Re-
ally Matters in Computer-Based Education.htm

Regnell, B., & Beremark, P. (1998). A market driven re-
quirements engineering process – Results from industrial
process improvement program. Retrieved November 2,
2007 from http://www.tts.lth.se/Personal/bjornr/Papers/
CEIRE98-REJ.pdf

Reichlmayr, T. (2003). The agile approach in an under-
graduate software engineering course project. Paper
presented at Frontiers in Education, 2003. FIE 2003.
33rd Annual, Boulder, CO, 2003.

Reigeluth, C. M. (1997). Instructional theory, practitioner
needs and new directions: some reflections. Educational
Technology, 37(1), 42-47.

Reigeluth, C. M., & Rodgers, C. A. (1980). The elabora-
tion theory of instruction: Prescriptions for task analysis
and design. NSPI Journal, 19, 16-26.

Reinsch, L. N., & Shelby, A. N. (1997). What Com-
munication Abilities Do Practitioners Need? Business
Communication Quarterly, 60(4), 7-29.

Robillard, P, Krutchen, P., & d’Astous, P. (2001) YOOP-
EEDOO (UPEDU): A Process for Teaching Software
Process, Proceedings of CSEE&T 2001,18-26

Robillard, P. N. (1999). The role of knowledge in soft-
ware development. Communications of the ACM, 42(1),
87-92.

Roblyer, M. D. (2005). Integrating educational tech-
nology into teaching (4th ed.). Upper Saddle River, NJ:
Prentice Hall.

Rosca D. (2000). An Active/Collaborative Approach in
Teaching Requirements Engineering, Proceedings of
FIE’00, T2C9-12

Rosca, D., Li, C., Moore, K., Stephan, M., & Weiner,
S. (2001) PSP-EAT – Enhancing a Personal Software
Process Course, Proceedings of FIE’01, T2D18

Rossett, A. & Vaughan Frazee, R. (2006). Blended
Learning Opportunities. AMA Special Report. Retrieved
October 24, 2007, from http://www.amanet.org/blended/
pdf/WhitePaper_BlendLearn.pdf.

Rothman, R., Slattery, J. B., Vranek, J. L., & Resnick, L.
B. (2002). Benchmarking and Alignment of Standards
and Testing (CSE Report No. 566). Los Angeles: Center
for the Study of Evaluation,

Royal Academy of Engineering (2004). The Challenges
of Complex IT Projects. Report of a working group from
The Royal Academy of Engineering and The British
Computer Society, 2004, retrieved October 12, 2006,
from http://www.bcs.org/upload/pdf/complexity.pdf

���

Compilation of References

Royce, W. W. (1970). Managing the development of
large software systems: concepts and techniques. Paper
presented at the IEEE WESCON.

Sawyer, P., & Kotonya, G. (2000). SWEBOK: software
requirements engineering knowledge area description
(Version 0.6 ed.): IEEE Computer Society/ACM.

Sawyer, P., Sommerville, I., & Viller, S. (1997). Require-
ments process improvement through the phased introduc-
tion of good practice. Software Process Improvement
and Practice, 3(1), 19-34.

Schank, R. C. (1997). Virtual learning. New York, NY,
USA: McGraw-Hill.

Schmuck, R. A., & Schmuck, P. A. (1997). Group pro-
cesses in the classroom (7th ed.). Madison, WI: Brown
& Benchmark.

Schön, D. (1987). Educating the reflective practitioner.
San Francisco, CA, USA: Jossey-Bass.

Schön, D. A. (1983). The Reflective Practitioner, Ba-
sicBooks.

Schön, D. A. (1983). The Reflective Practitioner:
How Professionals Think in Action. New York: Basic
Books.

Schön, D. A. (1987). Educating the Reflective Practitio-
ner: Towards a New Design for Teaching and Learning
in The Profession, San Francisco: Jossey-Bass.

Schuhmann, A. (1992). Learning to teach Hispanic
students. In M. Dilworth (Ed.), Diversity in teacher
education – New expectations (pp. 93-111). San Fran-
cisco: Jossey-Bass.

Schultz, B., & Anderson, J. (1984). Training in the
Management of Conflict: A Communication Theory
Perspective. Small Group Behavior, 15, 333-348.

Scott, G., & Yates, W. (2002). Using successful gradu-
ates to improve the quality of undergraduate engineering
programs. European Journal of Engineering Education,
27(4), 60-67.

Scott, T., Bisland, R., Tiehenor, L., & Cross, J. (1994).
Team Dynamics in Student Programming Projects.
SIGCSEBulletin 26(1), pp. 111-115.

Sebern, M. (2002). The Software Development Labora-
tory: Incorporating industrial practice in an academic
environment. Proceedings of CSEET’02: The 15th Confer-
ence on Software Engineering Education and Training.
Covington, KY.

Sebern, M. (2002). The Software Development Labora-
tory: Incorporating industrial practice in an academic
environment. Proceedings of CSEET’02: The 15th Confer-
ence on Software Engineering Education and Training.
Covington, KY.

Sebern, M. (2005). Software Process: Applying industrial
strength methods in engineering education. Proceedings
of ASEE’05: The National Conference of the American
Society for Engineering Education. Portland, OR.

SECEPP (1999). Software Engineering Code of Ethics
and Professional Practice. Retrieved April 1, 2006
from http://www.acm.org/serving/se/code.htm Details
of the code and its development can also be retrieved
from http://csciwww.etsu.edu/gotterbarn/secepp/page.
asp?Name=Code

SECEPP (ud). Adopting the Software Engineering Code
of Ethics and Professional Practice, details retrieved
April 1, 2006, from http://csciwww.etsu.edu/gotter-
barn/secepp/

Shackelford, R. (Ed.). (2005). Computing Curricula 2005:
the overview report: The Joint Task Force for Computing
Curricula 2005.

Sharp, H., & Hall, P. (2000). An interactive multimedia
software house simulation for postgraduate software
engineers. In Proceedings of the 22nd international con-
ference on software engineering (pp. 688-691): ACM.

Shaw, M. (1990). Prospects for an emerging discipline
of software. IEEE Software, 7(6), 15-24.

Shaw, M. (1990). Prospects for an Engineering Discipline
of Software. IEEE Software. 7(6), 15-24. Piscataway,
NJ: IEEE CS Press.

Shaw, M. (2000). Software Engineering Education: A
Roadmap. Proceedings of the Conference on The Future
of Software Engineering. 373-380.

 ���

Compilation of References

Shaw, M., Software Engineering Education: A Roadmap.
International Conference of Software Engineering - Fu-
ture of SE Track, ICSE 2000, pp. 371-380.

Shelly, G. B., Cashman, T. J., & Rosenblatt, H. J. (2008).
Systems analysis and design (7th ed.). Boston: Thompson
Course Technology.

Shoemaker, D., Mead, N. R., Drommi, A., Bailey, J., &
Ingalsbe, J. (2007). SWABOK’s fit to common curricu-
lar standards. In Proceedings of the 20th Conference
on Software Engineering Education and Training. Los
Alamitos, CA: IEEE Computer Society Press.

Shukla, A., & Williams, L. (2002). Adapting extreme
programming for a core software engineering course.
Paper presented at 15th Conference on Software Engi-
neering Education and Training, 2002. (CSEE&T 2002),
Covington, KY, 2002.

Shuman, L. J., Besterfield-Sacre, M., & McGourty, J.
(2005). ABET “professional skills” – Can they be taught?
Can they be assessed? The Journal of Engineering Edu-
cation, January 2005. Available: http://www.findarticles.
com/p/articles/mi_qa3886/is_200501/ai_n9521126

Simmons, D. (2006). Software Engineering Education
in the New Millennium. Proceedings of 30th Annual
International Computer Software and Applications
Conference, COMPSAC 2006, pp. 46-47.

Sindre, G., & Opdahl, A. (2000). Eliciting security re-
quirements by misuse cases. In Proceedings of TOOLS
Pacific 2000 (pp. 120-130). Los Alamitos, CA: IEEE
Computer Society Press.

Singh, H. & Reed, C. (2001) Achieving Success with
Blended Learning. Technical Report, Centra Software,
2001, Retrieved January 21, 2008, from: http://www.cen-
tra.com/download/whitepapers/blendedlearning.pdf

Singh, H. (2003). Building Effective Blended Learning
Programs. Journal on Educational Technology, 43 (6),
pp. 51-54.

Sitaraman, M., Long, T.J., Weide, B.W., Harner, E.J. &
Wang, L. (2001). A formal approach to component-based
software engineering education and evaluation. Paper

presented at 23rd International Conference on Software
Engineering. ICSE 2001.

Skills Framework for the Information Age. (2005).
London, UK: SFIA framework reference, version 3.
SFIA Foundation.

Slavin, R. E. (2005). Educational psychology: Theory
and practice (8th ed.). Boston: Allyn and Bacon.

Smith, J. P., diSessa, A. A. and Roschelle, J. (1993).
Misconceptions reconceived: A constructivist analysis
of knowledge in transition, The Journal of the Learning
Sciences 3, pp. 115-163.

Sobel, A. E. K., Bagert, D. J., Frezza, S. T., & Pavlov, V.
L. (2007, October). Panel - Assessing The Impact of the
SE2004 Curriculum Guidelines, presented at the Frontiers
in Education Conference (FIE’07), Milwaukee, WI.

Software Engineering Body of Knowledge. (2004). Re-
trieved February 4, 2007 from http://www.swebok.org

Solberg Søilen, K. (2007). USING CASE STUDIES IN
BLENDED LEARNING FOR INCREASED INTER-
ACTIVITY AND LOWER DROP OUT RATES. 19th
Nordic Academy of Management Conference. Bergen,
Norway.

Soloman, B., & Felder, R. (1999). Index of Learning
Styles (ILS),, from http://www2.ncsu.edu/unity/lock-
ers/users/f/felder/public/ILSpage.html

Somekh, B. (1989). Action research and collaborative
school development. In R. McBride (Ed.), The Inservice
Training of Teachers: some issues and perspectives.
Brighton: Falmer Press.

Soo Hoo, K., Sudbury, A. W., & Jaquith, A. R. (2001).
Tangible ROI through secure software engineering.
Secure Business Quarterly, 1.

Spiro, R. J., Feltovich, P. J., Jacobson, M., & Coulson,
R. (1991). Cognitive flexibility, constructivism and hy-
pertext: random access instruction for advanced knowl-
edge acquisition in ill-structured domains. Educational
Technology, 31, 24-33.

���

Compilation of References

Stark, C.M. & Schmidt, K.J. (2002). Transitioning to e-
Learning: A Case Study. Proceedings of the 2002 eTEE
Conference. Davos, Switzerland.

Starney, K. (2006). Why do projects fail? CrossTalk: The
Journal of Defense Software Engineering, 19(6), 3. Avail-
able at http://www.stsc.hill.af.mil/crosstalk/2006/06/in-
dex.html

Stein, R.F., & Hurd, S. (2000). Using student teams in the
classroom: A faculty guide. Boston: Anker Publishing.

Stevens, S. M. (1989). Intelligent interactive video
simulation of a code inspection. Communications of the
ACM, 32(7), 832-843.

Strauss, A. L., & Corbin, J. M. (1998). Basics of Qualita-
tive Research: Techniques and Procedures for Develop-
ing Grounded Theory. Sage.

Stryer, L. (2005) Bio2010: Transforming Undergraduate
Education For Future Research Biologists Washington,
D.C.: National Academies Press, Retrieved from http://
www.nap.edu.

Subversion. (2000). Retrieved from http://subversion.
tigris.org/

Sun, N., & Decker, J. (2004). Finding an “ideal” model
for our capstone experience. Journal of Computing in
Small Colleges, 20(1), 211-219.

Supercomputing Online. (2007). Princeton professor fore-
sees computer science revolution: An interview with Ber-
nard Chazelle. Retrieved June 6, 2007, from http://www.
supercomputingonline.com/article.php?sid=10496

Sutcliffe, A. (2003). Scenario-based requirements
engineering. Paper presented at the IEEE International
Conference on Requirements Engineering.

Sutcliffe, A. G., Maiden, A. M., Minocha, S., & Manuel,
D. (1988). Supporting Scenario-Based Requirements
Engineering. IEEE Transactions on Software Engineer-
ing, 24(12), 1072-1088.

SWEBOK (2004): Software Engineering Body of Knowl-
edge. http://www.swebok.org/

SWEBOK. (2004). Guide to the Software Engineering
Body of Knowledge. Piscataway, NJ: IEEE CS Press.

Szyperski, C. (2005). The making of a software engineer:
Challenges for the educator. Proceedings of ICSE’05: The
27th International Conference on Software Engineering.
St. Louis, MO.

Szyperski, C. (2005). The making of a software engineer:
Challenges for the educator. Proceedings of ICSE’05: The
27th International Conference on Software Engineering.
St. Louis, MO.

Tan, S. S., & Ng, C. K. F. (2006). A problem-based learn-
ing approach to entrepreneurship education. Education
& Training, 48(6), 416-428.

Tebeaux, E., & Killingsworth, J. M. (1992). Expanding
and Redirecting Historical Research in Technical Writ-
ing: In Search of Our Past. Technical Communication
Quarterly, 1(2), 5-32.

Teles, V.M., & Oliveira C. (2003). Reviewing the Cur-
riculum of Software Engineering Undergraduate Courses
to Incorporate Communication and Personal Skills
Teaching, Proceedings CSEET 2003, 158-165.

Texas Board of Professional Engineers (1999). Texas
Engineering Practice Act, Revised 1st January 1999,
Austin. Texas, 1999. Retrieved July 11, 2000, from
http://www.main.org/peboard/law.pdf

The College Board (2007). 2007 College Bound Seniors,
Total Group Profile Report. Retrieved November 15,
2007, from http://www.collegeboard.com/prod_down-
loads/about/news_info/cbsenior/yr2007/national-report.
pdf

The Standish Group. (1994). The Standish Group Report
– CHAOS 1994. Standish Group International. Avail-
able: http://www.standishgroup.com/sample_research/
chaos_1994_1.php

The Standish Group. (2003). CHAOS Chronicles Version
3.0. West Yarmouth, MA: The Standish Group.

The TLT Group. (2007). Student Technology Assistant
Programs. Available at http://www.tltgroup.org/pro-
grams/sta.html

 ���

Compilation of References

Thomas L. & Ras E. (2005). Courseware Development
Using a Single-Source Approach. Proceedings of the
World Conference on Education Multimedia, Hyper-
media and Telecommunications.

Thomas, J. C., Lee, A., & Danis, C. (2002). Enhancing
creative design via software tools. Communications of
the ACM, 45(10), 112-115.

Thompson, J. B. (2005, July). Evaluations of IFIP’s Pro-
posed Standards for Professionals. Paper presented at the
8th IFIP World Conference on Computers in Education,
(WCCE 2005), July 4-7, 2005, University of Stellenbosch,
Cape Town, South Africa, Session P10.3.

Thompson, J. B., & Edwards H. M. (2004). Providing
Graduate Computing Students with an Appreciation
of Appropriate Ethical, Professional and Legal Issues,
In proceedings of Seventh International ETHICOMP
Conference (ETHICOMP 2004), April 14-16, 2004,
Syros, Greece, (pp. 839-853). Syros: University of the
Aegean.

Thompson, J. B., & Towell, E. (2004). Workshop: Teach-
ing Ethics in Software Engineering Programmes. In
proceedings of 17th Conference on Software Engineer-
ing Education & Training (CSEE&T2004), March 1-3,
Norfolk. USA, (pp. 162-164). Los Alamitos, CA: IEEE-
Computer Society.

Thompson, J., & Edwards, H. (2006). Bridging the Uni-
versity/Industry Gap. Proceedings of 28th International
Conference on Software Engineering, ICSE 2006, pp.
1011-1012.

Thompson, J.B. (2007). Globalisation and the IT Profes-
sional. In proceedings of 9th International ETHICOMP
Conference, March 27-29, 2007, Meiji University, Tokyo,
(pp. 564-575). Tokyo: Global e-SCM Research Centre,
Meiji University.

Tinkham, A., & Kaner, C. (2005). Experiences Teaching a
Course in Programmer Testing. Paper presented to Agile
Conference, 2005. 24-29 July 2005, 298- 305.

Tomayko, J. and Hazzan, O. (2004). Human Aspects of
Software Engineering, Charles River Media.

Tomayko, J. E. (1996). Carnegie Mellon’s software de-
velopment studio: A five year retrospective. In Proceed-
ings of the ninth conference on software engineering
education and training (pp. 119-129). Daytona Beach,
FL, USA: IEEE.

Tomayko, J. E. (1998). Forging a Discipline: An Outline
History of Software Engineering Education. Annals of
Software Engineering, 6(1-4), 3-18.

Tomayko, J.E. (1996). Carnegie Mellon’s software devel-
opment studio: a five year retrospective. Proceedings of
CSEE’96: The 9th Conference on Software Engineering
Education. Daytona Beach, FL.

Towell, E. (2003). Teaching Ethics in the Software En-
gineering Curriculum. In proceedings of the Sixteenth
Conference on Software Engineering Education &
Training, March 20-22, Madrid, Spain, (pp. 150-157).
Los Alamitos, CA: IEEE-Computer Society Press.

Towell, E. Thompson J. B. and McFadden K.L. (2004).
Introducing and Developing Professional Standards in
the Information Systems Curriculum. Ethics and Infor-
mation Technology, (2004) 6, 291-299.

Towell, E., & Thompson, J. B. (2004). A Further Explo-
ration of Teaching Ethics in the Software Engineering
Curriculum. In proceedings of the Seventeenth Confer-
ence on Software Engineering Education & Training,
March 1-3, Norfolk, USA, (pp. 39-49). Los Alamitos,
CA: IEEE-Computer Society.

Trauth, E. M., Farwell, D., & Lee, D. M. S. (1993). The IS
expectation gap: industry expectation versus academic
preparation. MIS Quarterly, 17, 293-307.

Tucker, A (Editor) et al.(1991) Report of the ACM/IEEE-
CS Joint Curriculum Task Force. Retrieved from http://
www.acm/education/curr91/homepage.html.

Turhan, B. & Bener, A. (2007). A template for real world
team projects for highly populated software engineering
classes. Proceedings of ICSE’07: The 29th International
Conference on Software Engineering. Minneapolis,
MN.

��0

Compilation of References

Turley, R. T. (1991). Essential Competencies of Excep-
tional Professional Software Engineers. Colorado State
University, Fort Collins (CO).

Turley, R. T., & Bieman, J. M. (1995). Competencies of
exceptional and non-exceptional software engineers.
Journal od Systems and Software, 28(1), 19-38.

Tvedt, J. Tesoriero, R., & Gary, K. (2001). The Software
Factory: Combining undergraduate computer science
and software engineering education. Proceedings of
ICSE’01: The 23rd International Conference on Software
Engineering. Toronto, CA.

Tvedt, J. Tesoriero, R., & Gary, K. (2001). The Software
Factory: Combining undergraduate computer science
and software engineering education. Proceedings of
ICSE’01: The 23rd International Conference on Software
Engineering. Toronto, CA.

Tynjälä, P., Salminen, R., Sutela, T., Nuutinen, A., &
Pitkänen, S. (2005). Factors related to study success in
engineering education. European Journal of Engineering
Education, 30(2), 221-231.

U. S. Department of Labor, Bureau of Labor Statistics
(2006a). Occupational Outlook Handbook (OOH), 2006-
07 Edition. Retrieved May 28, 2007, from http://www.
bls.gov/oco/

U. S. Department of Labor, Bureau of Labor Statistics
(2006b). Occupational Employment and Wages. May
2006. Retrieved May 28, 2007, from http://www.bls.
gov/oes/current/oes151032.htm

U.S. Bureau of Labor Statistics (U.S. BLS) (2007).
Economic and employment projections: 2006-2016. Re-
trieved January 4, 2008 from http://www.bls.gov/news.
release/ecopro.toc.htm.

Ubal, R., Cano, J.-C., Petit, S. & Sahuquillo, J. (2006).
RAC FP: A Training Tool to Work With Floating-Point
Representation, Algorithms, and Circuits in Undergradu-
ate Courses. IEEE Transactions on Education. 49 (3),
pp. 321- 331.

Umphress, D., Hendrix, T., & Cross, J. (2002, Sept/Oct).
Software Process in the Classroom: The Capstone Ex-
perience. IEEE Software, 19(5), 78-81.

Umphress, D., Hendrix, T., & Cross, J. (2002, Sept/Oct).
Software Process in the Classroom: The Capstone Ex-
perience. IEEE Software, 19(5), 78-81.

UWA. (1996). Do male and female students differ in their
preferred style of learning? Perth: Institutional Research
Unit, University of Western Australia.

Van Dalen, G. (2003). Software engineer – are you li-
censed? Retrieved February 4, 2007 from http://www.
cips.ca/news/national/news.asp?aID=1731

van der Duim, L., Andersson J., & Sinnema M. (2007).
Good Practices for Educational Software Engineering
Projects. Proceedings of 29th International Conference
on Software Engineering, ICSE 2007, pp. 698-707.

van Eck, R. (2006). Digital game-based learning: It’s
not just the digital natives who are restless. Educause
Review, 41(2), 17-30.

Van Maanen, J. (1988). Tales of the Field: On Writing
Ethnography. University of Chicago Press.

van Vliet, H. (2005). Some Myths of Software Engi-
neering Education. Proceedings of 27th International
Conference on Software Engineering, ICSE 2005, pp.
621-622.

van Vliet, H. (2006). Reflections on Software Engineering
Education. IEEE Software, 24(3), pp. 55-61.

Vegso, J. (2006). BLS IT workforce projections compared.
CRA Bulletin, January 19, 2006. Available: http://www.
cra.org/wp/index.php?cat=14

Victor, D. A. (1999). Using Scenarios and Vignettes in
Cross-Cultural Business Communication Instruction.
Business Communication Quarterly, 62(4), 99-103.

Visser, W. (1992). Designers’ activities examined at
three levels: organisation strategies and problem-solving
processes. Knowledge-Based Systems, 5(1), 92-104.

Voigt, W. P. (2007). Quantitative research methods for
professionals. Boston: Allyn and Bacon.

Waks, L. J. (2001). Donald Schon’s Philosophy of Design
and Design Education. International Journal of Technol-
ogy and Design Education, 11, 37-51.

 ���

Compilation of References

Wang, A. I. & Sorensen, C.-F. (2006). Writing as a Tool
for Learning Software Engineering. Proceedings of the
Nineteenth Conference on Software Engineering Educa-
tion & Training. Turtle Bay, Hawaii.

Wankat, P. & Oreovicz, F. (1993). Teaching Engineering,
Upper Saddle River, NJ: McGraw Hill.

Waterman, R. H., Waterman, J. A., & Collard, B. A.
(1994). Toward a career resilient workforce. Harvard
Business Review, 69, 87-95.

Werner, M., & MacLean, L.M. (2006). Building com-
munity service projects effectively. Journal of Computing
Sciences in Colleges, 21(6), 76-87.

White, J. & Simons, B. (2002). ACM’s Position on Li-
censing of Software Engineers. Communications of the
ACM. 45(11), 91-92. New York: ACM Press.

Wick, M., Stevenson, D., & Wagner, P. (2008). Using
Testing and JUnit Across the curriculum. Presented at
36th SIGCSE technical symposium on Computer science
education, 2005, 236–240.

Wilde, N., White, L.J., Kerr, L.B., Ewing, D.D., &
Krueger, A. (2003). Some experiences with evolution
and process-focused projects. Proceedings of CSEET’03):
The 16th Conference on Software Engineering Education
and Training. Madrid, Spain.

Wilde, N., White, L.J., Kerr, L.B., Ewing, D.D., &
Krueger, A. (2003). Some experiences with evolution
and process-focused projects. Proceedings of CSEET’03):
The 16th Conference on Software Engineering Education
and Training. Madrid, Spain.

Wilkins, D., & Lawhead, P. (2000). Evaluating individuals
in team projects. SIGCSE-Bulletin, 32(1), pp. 172–175.

Williams, J. C., Bair, B., Borstler, J., Lethbridge, T.C.,
& Surendran, K. (2003). Client sponsored projects in
software engineering courses. SIGCSE Bulletin inroads,
35(1). 401-402.

Williams, J. M., & Colomb, G. G. (1993). The Case for
Explicit Teaching: Why What You Don’t Know Won’t
Help You. Research in the Teaching of English, 27(3),
252-264.

Williams, L. A., & Kessler, R. R. (2000). The Effects
of‘Pair-Pressure’ and ‘Pair-Learning’ on Software
Engineering Education. Presented at 13th Conference
on Software Engineering Education and Training, March
2000, 59-65.

Williams, L., & Kessler, R. (2000). Experimenting with
industry’s pair programming model in the computer
science Classroom. Journal of Computer Science Edu-
cation, 10(4).

Williams, L., Kessler, R. A., Cunningham, W., & Jeffries,
R. (2000). Strengthening the Case for Pair-Programming,
IEEE Software, 17(4), 19-25.

Wills, S. (2006). Strategic Planning for Blended eLearn-
ing. Proceedings of the 7th International Conference
on Information Technology Based Higher Education &
Training. Sydney, Australia.

Winn, W., & Snyder, D. (1996). Cognitive perspectives
in psychology. In D. H. Jonassen (Ed.), Handbook of
Research for Educational Communications and Tech-
nology (pp. 112-142). New York: Simon & Schuster
Macmillan.

Wohlin, C., & Regnell, B. (1999). Achieving industrial
relevance in software engineering education. In H. Saie-
dian (Ed.), Proceedings of the twelfth conference on
software engineering education and training (pp. 16-25):
IEEE Computer Society.

Worthen, B. R., & Sanders, J. R. (1988). Educational
evaluation: Alternative approaches and practical guide-
lines. White Plains, NY: Longman.

Yildiz, Senem, Chang, Carrie (2003) Case Studies of
Distance Students’ Perceptions of Participation and Inter-
action in Three Asynchronous Web-based Conferencing
Classes. The U.S. Turkish Online Journal of Distance
Education-TOJDE. 4 (2).

Young, G., & Marks-Maran, D. (2002). But they looked
great on paper. In P. Schwartz & G. Webb (Eds.), Assess-
ment: Case studies, experience and practice from higher
education (pp. 106-113). London: Kogan Page.

Zave, P. (1997). Classification of research efforts in RE.
ACM Computer Surveys, 29(4), 315-321.

���

Compilation of References

Zheng, Z. A., & Padmanabhan, B. (2006). Selectively
acquiring customer information: A new data acquisition
problem and an active learning-based solution. Manage-
ment Science, 52(5), 697-712.

Zuber-Skerritt, O. (1995). Models for action research. In
S. Pinchen & R. Passfield (Eds.), Moving On: creative
applications of action learning and action research
(pp. 3–29). Mt Gravatt (Qld): Action Learning, Action
Research and Process Management Assn, Inc.

Zweben, S. (2007). 2005-2006 Taulbee Survey. Comput-
ing Research News. pp. 7-22.

Zywno, M., & Waalen, J. (2001). The effect of hypermedia
instruction on achievement and attitudes of students
with different learning styles. Paper presented at the
Proceedings of the 2001 American Society for Engi-
neering Education Annual conference and Exposition
Session 1330.

 ���

About the Contributors

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Heidi J. C. Ellis is an assistant professor in the Computer Science Department at Trinity College,
Hartford, CT. Dr. Ellis is a member of the IEEE Computer Society and the IEEE Education Society
and has been involved in the development of the Computer Society’s Certified Software Development
Professional exam. Dr. Ellis is currently involved in the Trinity humanitarian free and open source (H-
FOSS) effort. She is also a member of the CONNJUR project, an open source integration environment
for biomolecular NMR data analysis developed collaboratively with Dr. Michael Gryk at the University
of Connecticut Health Center. Dr. Ellis’ research interests include software engineering education, tech-
nology for learning and teaching, and tools for biological data processing and analysis. Professor Ellis
graduated from the University of Connecticut in 1995 with a PhD in computer science and engineering
with a focus on software engineering.

Steven A. Demurjian is a full professor of computer science & engineering at the University of
Connecticut. Dr. Demurjian is a member of ACM, IEEE Computer Society, IFIP WG11.3 on Database
Security, and was elected in 2007 as a member of the Connecticut Academy of Science & Engineering.
Dr. Demurjian’s research interests include: UML extensions for role-based (RBAC) and mandatory
(MAC) access control with assurance and automatic generation of aspect-oriented software for security
enforcement, RBAC and MAC models and security solutions for assurance in web-based and distrib-
uted computing environments, and design/code level reusability and refactoring for component-based
systems. Dr. Demurjian has over 120 archival publications (book, journal articles, book chapters, and
conference/workshop articles). Dr. Demurjian graduated from The Ohio State University in 1987 with
a PhD in Computer and Information Sciences with a focus on database models and systems.

J. Fernando Naveda is co-founder and chair of the department of software engineering at Rochester
Institute of Technology (RIT), where he has been since 1993. In 1986 he earned a PhD in computer
science from the University of Minnesota, Twin Cities; and a bachelor’s degree in computer systems
engineering from Instituto Tecnológico y de Estudios Superiores de Monterrey, México, in 1975. In
1990 he was a visiting scientist at the Software Engineering Institute. An active member and volunteer
with the IEEE Computer Society, Naveda currently serves as the vice-chair in the Educational Activities
Board. He is the co-editor of the volume IEEE Computer Society Real-World Software Engineering
Problems – A Self-Study Guide for Today’s Software Professional.

* * *

���

About the Contributors

Vicki L. Almstrum is a research fellow with the Department of Electrical and Computer Engineering
at The University of Texas at Austin, where she is leading the process of introducing an international
senior design option. In articles, panel discussions, working groups, websites, and other activities, Dr.
Almstrum has been a strong proponent of computing education research as a viable field. Dr. Alm-
strum has 10 years experience teaching a 1-semester elective upper-level SE RPRCC with clients from
not-for-profits and educational institutions. She has eight years of industry experience with standards,
methodologies, and quality assurance for Motorola (in Arizona) and Philips Elektronikindustrier (in
Sweden).

Jocelyn Armarego worked for 10 years in industry as a requirements engineer before joining the
academic staff of first Curtin and then Murdoch Universities. This chapter reflects her interests in SE
education (in particular issues of non-traditional learning and student approaches to learning), require-
ments engineering (how we do it, how we teach it) and alignment between formal education and profes-
sional practice. She has been involved with the development of model curricula for software engineering
and is a member of Engineers Australia’s National Committee on SE. She is currently participating in
a research project investigating creativity in software development in a distributed environment.

Daniel Bolanos was born in Madrid (Spain), in 1980. He received a BS in computer science in 2002
and an MS in computer engineering in 2004, both from the Autonoma University of Madrid. Daniel
has been an assistant teacher for 4 years at the Autonoma University of Madrid, teaching software en-
gineering and software testing. In 2006 he joined the Center for Spoken Language Research at Boulder,
Colorado, where he is currently finishing his PhD in speech processing. His research activity is mainly
focused in large vocabulary speech recognition. However, he is actively involved in the development
and analysis of new software testing techniques and strategies.

Ann Brady is an assistant professor of humanities and the director of the Scientific and Technical
Communication Program at Michigan Technological University. Her research focuses on interdiscipli-
narity as it informs the theory and practice of technical communication. She received a PhD in rhetoric
and professional communication from Miami University of Ohio.

Barry J. Brinkman is an assistant professor in the Computer and Information Science Department,
Gannon University. He received a PhD in computer and information science from The Ohio State Uni-
versity. With 25 years in research and development at Battelle and Bell Laboratories, his current research
interests are in the areas of computer and network security and computer science education. As an active
practitioner, his experience included all aspects of software development, from high-level requirements
definition to specification, design, implementation, testing and maintenance. He teaches a variety of
topics, from introductory programming, to networking, operating systems, and distributed systems
development. Dr. Brinkman is currently a member of the Association of Computing Machinery.

Christian Bunse is associate professor for software engineering at the School of Information
Technology, International University in Bruchsal, Germany. Prior to this, he had been the head of the
Component Engineering Department at the Fraunhofer Institute for Experimental Software Engineering
(IESE) in Kaiserslautern. Before joining Fraunhofer, he was a faculty research assistant of the Software-
Technology-Transfer-Initiative, University of Kaiserslautern, Germany. His research interests are in

 ���

About the Contributors

the area of model-based development, resource awareness and empirical software engineering. He is a
member of the GI and the special interest groups on software engineering, software architecture, and
automotive software engineering.

Steven J. Condly is senior associate at HSA Learning & Performance Solutions and was formerly
visiting assistant professor of educational psychology at the University of Central Florida. His expertise
and research interests fall in the area of identifying and analyzing psychological variables related to
human learning, motivation, performance, and testing and assessment. He studies students at the high
school and collegiate level as well as adults employed in work settings. His research on the role of incen-
tives in workplace performance garnered him three separate national awards, including the American
Society for Training and Development Research Award for Article of the Year.

Stephen T. Frezza, CSDP, earned his PhD, MS, and BS degrees in electrical engineering from
the University of Pittsburgh. He is an associate professor and chair of the Computer and Information
Science Department at Gannon University. As a Certified Software Development Professional (CSDP),
he remains actively involved in developing practical industry-university projects and partnerships. He
teaches a variety of software engineering topics, primarily in the area of requirements engineering,
project management, software testing and embedded systems. His research interests are in the areas of
software engineering education, automatic schematics generation, automated software testing, and the
relationship between engineering and theology. Dr. Frezza is a member of the IEEE Computer Society,
and the Association of Computing Machinery.

Kevin A. Gary, PhD, joined the Division of Computing Studies at Arizona State University as an
assistant professor in 2004 after spending several years in industry architecting solutions for e-learning.
Since joining the faculty at ASU, Dr. Gary has designed a capstone experience named the Software
Enterprise that aims to better prepare new graduates in software engineering for industry. The Enter-
prise emerged from Dr. Gary’s industry experience and mentorship of junior software engineers. Dr.
Gary’s research activities focus on software process and architecture, for open source and web-based
software. Current research projects are in the areas of open source software for image-guided surgery
(the Image-guided Surgery Toolkit [IGSTK], www.igstk.org), search technologies for the semantic
web, and web analytics. Dr. Gary also remains active in his dissertation area, workflow and business
process system architectures. Dr. Gary remains connected to the practice as co-director (with Dr. Harry
Koehnemann) of the Distributed and Enterprise Applications Consortium (DEAC, deac.asu.edu), by
actively consulting with companies in the Phoenix metro area, and by remaining abreast enterprise
technologies for higher education.

Ann Gates was one of the original investigators in the development of the ARG model and continues
to play a key role in its implementation and refinement. She has published with others over twenty papers
on the model. In addition, she presented the model in panels and gave workshops. Ann is a member of the
IEEE-Computer Society (IEEE-CS) Board of Governors (2004-2006); IEEE-CS, Educational Activities
Board (1997-present); the National Academy of Engineering’s Committee on Engineering Education
(2002-2004); steering committee for the Frontiers in Education Conference (2000-2002; 2003-2005);
IEEE-CS Certified Software Development Professional Certification Committee; and founding member
of the Computing Alliance for Hispanic-Serving Institutions as well as the Academic Alliance for the

���

About the Contributors

National Center for Women in Information Technology. In addition, she is a program evaluator for the
Computing Accreditation Committee of ABET. She received her PhD in computer science from New
Mexico State University.

Ines Grützner received her diploma in computer science and economics from Dresden University of
Technology. She works as a scientist and project manager in the field of Software Engineering Education
and Training as well as eGovernment at the Fraunhofer Institute for Experimental Software Engineer-
ing (IESE) in Kaiserslautern. Her research in eLearning is focused on the systematic, engineering-style
development of online courses. She has led several projects targeted at the development of online courses
on software engineering topics.

Orit Hazzan is an associate professor at the Department of Education in Technology and Science of
the Technion – Israel Institute of Technology and she heads the computer science education track of the
department. She is a co-author (with Jim Tomayko) of Human Aspects of Software Engineering (2004,
Charles River Media). Currently, she writes (with Yael Dubinsky) her second book – Agile Software
Engineering – to be published by Springer in 2008. Dr. Hazzan has 19 years of teaching experience in
academia and industry (courses, workshops, lectures and conference presentations) and she is the author
of about 100 journal and conference publications.

Gregory W. Hislop is a faculty member and former associate dean in the College of Information
Science and Technology at Drexel University. He has played a central role in development, implementa-
tion, and revision of degree programs in software engineering, information systems, and information
technology. He was one of the four leaders of the NSF SWENET project, which created an online
repository of software engineering curricular materials. Prior to coming to Drexel, Dr. Hislop spent 18
years working in government and industry. His efforts encompassed technology planning and evalu-
ation, software development and support, and development and delivery of technical education. His
research interests include technology for learning and teaching, education in the computing disciplines,
and design, evolution, and evaluation of software. He has delivered over 60 papers and presentations
related to these areas in recent years.

Allen Johnson is interim chair of computer science at Huston-Tillotson University. Dr. Johnson has
more than 35 years of experience developing computer systems and software in the industry. He is the
chair of the Student and Academic Relations Committee of the Association of Software Testing and
served on the advisory board for the UT Austin Software Engineering Institute’s Software Project Man-
agement certificate program. In workshops and presentations, Dr. Johnson has been an advocate for the
scholarship of teaching and learning. He has over 25 years of experience teaching one-semester courses
at the graduate/senior/junior level, teaching computer science college-level courses for IBM and other
corporations, and 48-week industry courses that involved clients from not-for-profits and industry.

David Klappholz is associate professor of computer science at Stevens Institute of Technology. He
has 33 years of experience teaching computer science and has performed and supervised technology
research on parallel computing and compiler technology (sponsored by organizations such as NSF,
DOE, and IBM Research). Dr. Klappholz is an ABET program evaluator and has been involved in
NSF-sponsored software process pedagogy research. He co-taught CS577, Barry Boehm’s SE RPRCC at

 ���

About the Contributors

USC, during a sabbatical in 2002 and has spent parts of the past five summers as a Visiting Researcher
engaged in improving CS577. Dr. Klappholz has five years of experience teaching a sophomore/junior-
level required DBMS RPRCC at Stevens, with mostly university faculty and staff as clients, but also
with a few not-for-profit and industry clients who heard about the course by word of mouth.

Jochen Ludewig was born in 1947 in Hannover, Germany. He holds a diploma in electrical engi-
neering from the Technical University of Hannover, and a postgraduate certificate in computer science
from the Technical University of Munich. He holds a PhD from the TU Munich with a thesis on the
specification of software for real time systems (1981). After five years at Brown Boveri Research in
Baden, Switzerland, he became an associate professor at the Swiss Federal Institute (ETH) at Zurich.
In 1988, he returned to Germany as a full professor of software engineering at the Universität Stutt-
gart. He has authored or co-authored eight books, including an introduction to computer science and a
textbook on software engineering. He designed the software engineering curriculum launched in 1996
at the Universität Stuttgart, and supervised and improved it ever since.

James McDonald is associate professor and chair of the Department of Software Engineering, Mon-
mouth University. He earned a bachelor’s degree in electrical engineering from New Jersey Institute of
Technology, an MSEE degree from Massachusetts Institute of Technology and a PhD from New York
University. Dr. McDonald has an extensive industrial background in both software and electrical engi-
neering. He has worked at AT&T, Bell Laboratories, Bellcore and Lucent Technologies. He is a senior
member of the Institute of Electrical and Electronic Engineers (IEEE), the IEEE Computer Society, the
Association for Computing Machinery (ACM) and the American Society for Engineering Education
(ASEE). At Monmouth University he teaches courses on Project Management, Software Organization
Management, Software Verification, Validation and Maintenance, a Software Engineering Practicum,
Information Technology and other software engineering topics. He is serving as an ABET program
evaluator for electrical, computer and software engineering programs.

Nancy R. Mead is a senior member of the technical staff in the Survivable Systems Engineering
Group, which is part of the CERT Program at the Software Engineering Institute (SEI). Mead is also a
faculty member in the Master of Software Engineering and Master of Information Systems Management
programs at Carnegie Mellon University. Her research interests are in the areas of information security,
software requirements engineering, and software architectures. Mead has more than 100 publications
and invited presentations. She is a Fellow of the Institute of Electrical and Electronic Engineers, Inc.
(IEEE) and the IEEE Computer Society and is also a member of the Association for Computing Ma-
chinery (ACM). Dr. Mead received her PhD in mathematics from the Polytechnic Institute of New York,
and received a BA and an MS in mathematics from New York University.

Allen Milewski is currently an associate professor of software engineering at Monmouth University
in West Long Branch, NJ, USA. His research interests combine studies of collaborative work and user
interface design. Projects include team collaboration, global teamwork and cultural variation in social
and cognitive processes. In addition, he has published in the area of user interface internationalization.
Most recently, he has included the design of collaborative information systems for Homeland Security
and Emergency Management use. He has more than 20 years of Industry experience in engineering.

���

About the Contributors

Kenneth Modesitt, prior to his retirement in 2007, was professor and interim chair of computer
science as well as associate dean for external partnerships and research at Indiana University – Purdue
University Ft. Wayne. His areas of expertise include software engineering, expert systems, and distrib-
uted learning. He has used teams of students to develop software for real clients for over 20 years at
four different universities. His experiences working for industry have had a major impact on his quest
to bring “realism” to the classroom. These experiences began in 1963 at Control Data Corporation and
have included software and management positions with Texas Instruments, Rockwell International,
and Loral.

Emily Oh Navarro is a project scientist in the Department of Informatics of the Donald Bren
School of Information and Computer Sciences at the University of California, Irvine. She completed
her PhD in information and computer science at UCI in 2006, with her dissertation entitled, “SimSE:
A Software Engineering Simulation Environment for Software Process Education.” She also holds an
MS in information and computer science from UCI, along with a BS in biological sciences, also from
UCI. Emily’s research is focused on developing game-based simulation tools for software engineering
education. She is the lead developer on the SimSE project and has also contributed to the design and
evaluation of Problems and Programmers, an educational software engineering card game.

Donald M. Needham is an associate professor of computer science at the United States Naval
Academy. Dr. Needham is an ABET-CAC program evaluator and a member of the ACM and the IEEE
Computer Society. His research interests include safety-critical software metrics as applied to software
fault trees and software reuse within product lines. He has been funded by the Joint Technology Office,
Naval Sea Command Systems, Electric Boat, Naval Research Lab and NASA and has published over
40 archival publications (book, journal articles, book chapters, and conference/workshop articles). Dr.
Needham graduated from the University of Connecticut in 1997 with a PhD in computer science and
engineering.

Cherry Owen is assistant professor of computer science in the Department of Mathematics and
Computer Science in the College of Arts and Sciences at The University of Texas of the Permian Ba-
sin. She has 20 years of experience teaching computer science and mathematics as well as seven years
experience as a systems analyst with Exxon Company, USA. She has been incorporating real projects
into various courses whenever possible for the last ten years, with clients from industry, not-for-profits,
and university faculty.

Christian Peper studied computer science and physics at Saarland University, Germany. In 1995, he
joined the University of Kaiserslautern as a researcher working on reuse-oriented application of formal
description techniques. Since 2003, he has been working for the Fraunhofer Institute for Experimental
Software Engineering (IESE) in Kaiserslautern with a current focus on development and specification
of adaptive component-oriented systems. Since 2004, he has also acted as a UML trainer and consultant
in several industrial education and cooperation projects.

Steve Roach has been using cooperative learning and the ARG model in his courses and research
since 1999. In 2002 and 2003, he chaired the IEEE CCSE Sub-Committee on Advanced Software En-
gineering Curricula. The CCSE is an international organization developing models of undergraduate

 ���

About the Contributors

and graduate software engineering programs. In 2003, he chaired the panel session “The Art of Getting
Students to Practice Team Skills,” at the 33rd ASEE/IEEE Frontiers in Education Conference (with E.
Villa, J. Sullivan, R. Upchurch, and K. Smith). He is an IEEE-CS Certified Software Development Pro-
fessional and a program evaluator for the Computing Accreditation Committee of ABET. He received
a PhD in computer science from the University of Wyoming.

Daniela Rosca is currently an associate professor in the Software Engineering Department at Mon-

mouth University, NJ, USA. Her main research interests span the areas of requirements engineering,
business rules, dynamic workflow systems, and process modeling. Recently, she has been applying her
expertise to various systems for Emergency Management. Prior to joining Monmouth University, Dr.
Rosca was a senior member of technical staff at the Romanian Institute for Computers Research. She is
the author of numerous research papers published in journals, books, and conference proceedings. Dr.
Rosca has served as program committee member, session chair or organizer for several international
conferences and workshops. She is a member of ACM.

Mark J. Sebern is a professor in the Electrical Engineering and Computer Science Department
at the Milwaukee School of Engineering (MSOE). He was the founding program director of MSOE’s
undergraduate software engineering program, one of the first four to be accredited in the United States.
Prior to joining MSOE, Dr. Sebern worked in industry for twenty years as a practicing computer and
software engineer. His interests include software engineering process, software design and architecture,
databases, web application frameworks, and embedded computer systems. Dr. Sebern leads MSOE’s
cooperative efforts with industry partners in the area of software process improvement, providing tar-
geted training and coaching support to software development teams and managers. He has also served
as an ABET program evaluator for computer engineering and software engineering programs.

Stephen B. Seidman is dean of the College of Natural Sciences and Mathematics at the University
of Central Arkansas. He has held administrative and academic posts at New Jersey Institute of Technol-
ogy, Auburn University, Colorado State University, and George Mason University. He received a PhD
in mathematics from the University of Michigan. Seidman’s research interests are in software architec-
tures, formal methods, and computing education. He has been active in efforts to improve computing
and software engineering education and professionalism, including service as the IEEE Computer
Society’s Vice-President for Educational Activities, as a member of the CSAB board of directors, and
as a member of an ISO/IEC working group.

Marika Seigel is an assistant professor of rhetoric and technical communication at Michi-
gan Technological University, where she teaches undergraduate and graduate courses in
technical communication to students from a variety of disciplines. In addition to technical
communication, her research interests include usability, gender studies, and rhetorics of science and tech-
nology. She received her bachelor’s degree in English from the University of Michigan and her master’s
degree and PhD in English (with a focus in rhetoric and composition) from Penn State University.

Dan Shoemaker is the director of the Centre for Assurance Studies, which is a National Security
Agency (NSA) Center of Academic Excellence in IA Education. He has been professor and chair of
computer and information systems at the University of Detroit Mercy for the past 24 years. He has been

�00

About the Contributors

involved in software engineering education since 1988. He also co-authored McGraw-Hill’s current
textbook on information assurance, “Information Assurance for the Enterprise”. His research interests
are in the areas of secure software assurance, information assurance and enterprise security architec-
tures, IT governance and control and strategic software management and he has close to 50 publications
and invited presentations in these areas. Dr. Shoemaker has a bachelor’s degree and a PhD from the
University of Michigan He has two master’s degrees from Eastern Michigan University.

Almudena Sierra-Alonso received her PhD in computer science from Universidad Politécnica de
Madrid, in 2000. She joined the Computer Science Department at the Carlos III University in 1995 where
she was an assistant professor until 2000. Currently she is an associate professor in the Computer Sci-
ence Department of the Rey Juan Carlos University. She teaches software engineering from 2000. She
has published in areas like the knowledge engineering methodologies and the confluence of knowledge
and software engineering, mainly in the requirements phase. Her current research focuses in software
architecture: the transition from requirements to software architecture and how to model and manage
the design decisions made during that transition in order to use them for future maintenance.

Silke Steinbach-Nordmann studied educational sciences, psychology, and sociology combined
with German language and modern literature studies at Philipps University Marburg, Germany. Before
she joined the Fraunhofer Institute for Experimental Software Engineering (IESE), she worked as a
researcher at the University of Kaiserslautern in the field of adult education and vocational training.
For more than ten years, she has taught trainings and lessons in adult education and at universities with
a focus on educational aspects. Since 2000, she has been working at Fraunhofer IESE; in November
2007, she took over the role of department head in the Education and Training Department (EAT). Her
research interests are in technology-enhanced learning, didactics in vocational training, human aspects
in technology, and empirical studies in software engineering.

Mei-Huei Tang earned a PhD and MS in computer science from the State University of New York,
University at Albany. She is currently an assistant professor in Computer and Information Science
Department at Gannon University in Erie, Pennsylvania. She teaches a variety of computer science
and software engineering courses, including advanced programming, software architecture, testing
and quality assurance and formal methods. Her research interests include change impact analysis,
object-oriented design, software metrics, software architecture, software reliability, software testing,
and software engineering education. Dr. Tang is currently a member of the Association of Computing
Machinery.

William Tepfenhart is author of several books on object orientation. He is currently an associate
professor in the Software and Electrical Engineering Department, Monmouth University and director of
the Master’s Program in Software Engineering. He is the chief technical officer of the Rapid Response
Institute at Monmouth University. His current line of research investigates the use of software solutions
to enhance the effectiveness of collaboration among first responders during emergency situations. Prior
to his entry to the academic world, he was employed as a developer and technologist at AT&T Labo-
ratories where he worked on applications associated with the long distance network, establishment of
engineering practices at a corporate level, and working with advanced object-oriented technologies.

 �0�

About the Contributors

J. Barrie Thompson is a national teaching fellow in the UK and is professor in applied software
engineering in the School of Computing and Technology at the University of Sunderland, UK. His
prime interests are educational, professional and ethical issues associated with Software Engineering.
He promotes the development of innovative teaching approaches relevant to the needs of industry. He
was a member of the Software Engineering curriculum steering committee representing IEEE Com-
puter Society’s Technical Committee for Software Engineering. Since January 2005 he has been the
chair of IFIP Working Group 3.4, Professional and Vocational Education and Training. He is a member
of the Editorial Advisory Board for the Journal of Information Communication and Ethics in Society
and an associate editor for the International Journal of Information and Communication Technology
Education. He also co-edits the on-line newsletter FASE (Forum for Advancing Software engineering
Education).

James E. Tomayko was a teaching professor in Carnegie Mellon University’s School of Com-
puter Science for more than 16-year. At the same time, he served as a part-time senior member of the
technical staff at the Software Engineering Institute. Dr. Tomayko’s publications include Software
Engineering Education: SEI Conference on Software Engineering (1991), published by Springer-
Verlag; Computers in Space: Journeys with NASA (1994), Computers Take Flight: A History of
NASA’s Pioneering Digital Fly-by-Wire Project (2000) and Human Aspects of Software Engineer-
ing (2004, with Orit Hazzan). Dr. Tomayko died on January 2006 after a long illness. He was 56.

Will Tracz is a principal software engineer/application architect for the Global Combat Support
System - AF (GCSS-AF) Application Integration department at Lockheed Martin IS&S in Endicott,
NY responsible for investigating innovative applications of and evaluating technology for the GCSS-AF
Architecture Integration Framework. Dr. Tracz is a member Lockheed Martin’s Corporate Advanced
Software Technology Focus Group. In addition, he was a co-PI on the Defense Advanced Research Proj-
ects Agency (DARPA) Dynamic Assembly of Systems for Adaptability, Dependability, and Assurance
(DASADA) and Domain-Specific Software Architecture (DSSA) Programs. Dr. Tracz is a member of
the RIT Software Engineering Advisory Board, the Software Engineering Institute Technical Advisory
Group on Engineering and Method, and an IEEE TCSE Executive Committee Member at Large. In
addition, he is the editor of the ACM SIGSOFT Software Engineering Notes, past chairman of the In-
ternational Conference on Software Engineering sponsored by IEEE and ACM, and the author of over
100 technical reports and books on software engineering, software architectures, and software reuse.

James R. Vallino is an associate professor in the Department of Software Engineering at Rochester
Institute of Technology. He was actively involved in the development of the software engineering program,
the first undergraduate software engineering program in the United States. This involvement included
bringing active learning and problem-based learning into the curriculum, developing an NSF CCLI-
funded inter-disciplinary course sequence in real-time and embedded systems, and guiding the program
through its ABET accreditation. Prior to RIT, Dr. Vallino had seventeen years of software development
experience in industry, followed by his PhD studies in computer science at the University of Rochester.
His research interests include pedagogy for software engineering education, software design, especially
in the real-time and embedded systems area, and model-based development methodologies.

�0�

About the Contributors

André van der Hoek is an associate professor in the Department of Informatics of the Donald Bren
School of Information and Computer Sciences and a faculty member of the Institute for Software Research,
both at the University of California, Irvine. He holds a joint BS and MS degree in business-oriented
computer science from the Erasmus University Rotterdam, The Netherlands, and a PhD in computer
science from the University of Colorado at Boulder. André’s research focuses on understanding and
advancing the role of design, coordination, and education in software. He has developed several con-
figuration management systems, designed the widely-used xADL 2.0 architecture description language,
and created novel educational software engineering approaches used at institutions across the world.
André is the principal designer of the new B.S. in Informatics at UC Irvine and was honored, in 2005,
as UC Irvine Professor of the Year for his outstanding and innovative educational contributions.

Thomas Vosecky is a PhD candidate in rhetoric and technical communication at Michigan Techno-
logical University, where he is currently involved in the development of a writing center for the MBA
program in the School of Business and Economics. His research interests include the ancient Greek
concept of techné (the capacity to make), research methods, and the case study as a means of simulat-
ing practical experience in the classroom. He has received a bachelor’s degree in psychology from the
University of Minnesota, Minneapolis, a master’s degree in rhetoric and technical communication from
Michigan Tech, and ASE automobile technician certification.

Charles Wallace is an associate professor of computer science at Michigan Technological
University. He has been involved in the undergraduate software engineering degree program at
Michigan Tech since its inception in 2004. His research and teaching interests lie in software require-
ments, documentation, verification, and usability. He holds a bachelor’s degree in linguistics from
the University of Pennsylvania, a master’s degree in linguistics from the University of California,
Santa Cruz, and a doctorate in computer science and engineering from the University of Michigan.

Jiacun Wang received a PhD in computer engineering from Nanjing University of Science and
Technology (NUST), China, in 1991. He is currently an associate professor in the Software Engineer-
ing Department, Monmouth University, West Long Branch, NJ, USA. From 2001 to 2004, he was a
member of scientific staff with Nortel Networks in Richardson, Texas. Prior to joining Nortel, he was a
research associate of the School of Computer Science, Florida International University (FIU) at Miami.
Prior to joining FIU, he was an associate professor at NUST. His research interests include software
engineering, discrete event systems, formal methods, wireless networking, and real-time distributed
systems. He authored Timed Petri Nets: Theory and Application (Norwell, MA: Kluwer, 1998), and
published more than 50 research papers in journals and conferences. He is an Associate Editor of IEEE
Transactions on Systems, Man and Cybernetics, Part C, and has served as program chair, special ses-
sions chair or program committee member for many international conferences. Dr. Wang is a senior
member of IEEE.

 �0�

Index

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

A
ABET, Inc. 252
accreditation 253–264
accreditation, of courses 198
Accreditation Board for Engineering and Technology

252
accredited programs 257
accredited programs, growth of 257
Affinity Research Group (ARG) 136, 137
Affinity Research Group model iv–vi, x–xiv,

136–156
American Management Association (AMA) 215
Arizona State University 115

B
blended learning v–vi, xi–xiv, 213, 214, 215, 216,

217, 219, 220, 222, 223, 224, 226, 227, 229,
230, 231, 232

blended learning, in software engineering education
215

C
Canadian Engineering Accreditation Board (CEAB)

302
Certified Software Development Professional

(CSDP) 300
communication cycles 81, 85, 90, 91
computer science & engineering program 191
computer science (CS) 136, 158, 191, 192, 300
computer science, senior-level course v–vi, xi–xiv,

233–250
computer science program 191
Computing Accreditation Commission (CAC) 7,

166, 193, 252
Computing Curricula 2001 (CC2001) project 136
course content, continuous development of 286
CSE293 192

CSE293 Capstone Project-Based Laboratory 193
curriculum changes, 1986 281
curriculum changes, 1991 281
curriculum changes, 1995 281
curriculum changes, 1996 283
curriculum changes, 1998 284
curriculum changes, 2002 286
curriculum restructuring v–vi, xiii–xiv, 278–297

D
Discovery Learning theory 41, 42, 46
diversity, influence of student body on curriculum

279

E
e-learning 213, 214, 224
Electrical and Electronic Engineers (IEEE-CS) 136,

299
engineering, use of term 302
Engineering Accreditation Commission (EAC) 7,

193, 252, 304, 324
Engineers Australia (EA) 302
Expectancy-Value Theory 41
Extreme Programming model 48

F
Face-to-face 139
Feature-Driven Development (FDD) 142

G
Germany, degree programs 266

H
High-Assurance Transformation System (HATS) 143
historical development 1, 354

Index

�0�

L
Learning by Doing 40, 44, 45, 47, 53, 55, 296
Learning theories 38, 39, 55, 56
learning time 213, 216, 224, 225, 226, 228, 230

M
Model-based instruction 46
Model-Centered Instruction 41

N
NATO conference, 1968 191

P
Pan American Center for Earth and Environmental

Studies (PACES) 143
pedagogical tool, 76
professional credentials 351
professionalism, and licensure 352
project-based software engineering iv–vi, xi–xiv,

191–212

R
Real Projects for Real Clients Courses (RPRCCs)

157–190
Real Projects for Real Clients Courses (RPRCCs),

benefits to department 159
Real Projects for Real Clients Courses (RPRCCs),

benefits to students 159
Real Projects for Real Clients Courses (RPRCCs),

building client pool 159
requirements engineering 100
requirements engineering (RE) 83

S
SE2004 305
Seabase case study 85
security requirements engineering iv–vi, ix–xiv,

98–114
Situated Learning 40, 44, 45, 47, 49, 51, 53, 96
Software Design Document (SDD) 143
software development 2, 15, 16, 17, 18, 19, 20, 21,

24, 34, 35, 37, 47, 59, 61, 62, 63, 64, 65, 66,
68, 69, 70, 71, 74, 75, 76, 78, 81, 82, 83, 94,
96, 100, 101, 104, 105, 106, 111, 116, 124,
128, 132, 134, 137, 140, 142, 152, 154, 155,
156, 159, 160, 161, 163, 164, 165, 167, 168,

169, 172, 173, 174, 175, 176, 177, 178, 180,
182, 184, 191, 193, 195, 200, 201, 203, 218,
220, 228, 229, 230, 234, 235, 236, 238, 244,
247, 254, 270, 284, 286, 287, 289, 293, 295,
299, 300, 305, 306, 314, 318, 321, 346, 356,
357, 358

software engineer, as an occupation 116
Software Engineering (SE), bachelor’s degree pro-

gram 298–326
software engineering accreditation, in U.S. v–vi,

xii–xiv, 251–264
software engineering course, goals 139
Software Engineering curriculum (SEC) 265–277
Software Engineering curriculum (SEC), courses of

268–271
software engineering curriculum, restructuring of

278–297
software engineering education iii–vi, viii–xiv,

61–74
software engineering education, communication 77
Software Engineering Institute (SEI) 4
software engineers 1, 6, 7, 8, 15, 36, 57, 59, 62, 64,

67, 68, 71, 75, 76, 78, 80, 103, 116, 125, 129,
152, 153, 207, 257, 276, 291, 295, 299, 301,
306, 307, 317, 318, 335, 346, 352, 353, 354,
355, 359, 360

Software Enterprise, The iv–vi, ix–xiv, 115–135
software quality assurance 233, 234
Software Requirements Specification (SRS) 143
software system 8, 9, 12, 34, 35, 65, 106, 108, 112,

124, 142, 194, 203, 208, 213, 215, 257, 274,
283, 286, 291, 295, 304, 314, 335, 358

software testing, learning environment 236
software testing training 233
software workplace, communication 76
SQUARE method, in security requirements 98
strategic communication 80
SWEBOK 265, 305, 307

U
Universität Stuttgart 265–277
University of Sunderland 327

W
Web-based courses 216
Web-based training 215, 218, 220, 221, 223, 224,

226, 228

	Table of Contents
	Detailed Table of Contents
	1. Software Engineering Education: Past, Present, and Future
	II Constructive Alignment in SE Education: Aligning to What?
	III. On the Role of Learning Theories in Furthering Software Engineering Education
	IV. Tasks in Software Engineering Education: The Case of a Human Aspects of Software Engineering Course
	V. Speaking of Software: Case Studies in Software Communication
	VI. Novel Methods of Incorporating Security Requirements Engineering into Software Engineering Courses and Curricula
	The Software Enterprise:Preparing Industry-ReadySoftware Engineers
	Teaching Software Engineeringin a Computer Science ProgramUsing the Affinity ResearchGroup Philosophy
	IX. A Framework for Success in Real Projects for Real Clients Courses
	Experiences inProject-BasedSoftware Engineering:What Works, What Doesn't
	Applying Blended Learning inan Industrial Context:An Experience Report
	Integrated Software TestingLearning Environment forTraining Senior-Level ComputerScience Students
	Software EngineeringAccreditation in theUnited States
	Software Engineeringat Full Scale:A Unique Curriculum
	Continuous CurriculumRestructuring in a GraduateSoftware Engineering Program
	How to Create a CredibleSoftware EngineeringBachelor’s Program:Navigating the Waters ofProgram Development
	Ensuring Students Engage withEthical and ProfessionalPractice Concepts
	XVIII. An International Perspective on Professional Software Engineering Credentials
	Compilation of References
	Index

