

Communications
in Computer and Information Science 50

José Cordeiro AlpeshKumar Ranchordas
Boris Shishkov (Eds.)

Software and
Data Technologies

4th International Conference, ICSOFT 2009
Sofia, Bulgaria, July 26-29, 2009
Revised Selected Papers

13

Volume Editors

José Cordeiro
INSTICC and IPS
Setúbal, Portugal
E-mail: jcordeir@est.ips.pt

AlpeshKumar Ranchordas
INSTICC, Setúbal, Portugal
E-mail: alpesh@insticc.org

Boris Shishkov
IICREST, Sofia, Bulgaria
E-mail: b.b.shishkov@tudelft.nl

ISSN 1865-0929 e-ISSN 1865-0937
ISBN 978-3-642-20115-8 e-ISBN 978-3-642-20116-5
DOI 10.1007/978-3-642-20116-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011925002

CR Subject Classification (1998): D.2, D.3, C.2.4, H.2, I.2.4

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The present book includes extended and revised versions of a set of selected
papers from the 4th International Conference on Software and Data Technolo-
gies (ICSOFT 2009), held in Sofia, Bulgaria, which was organized by the Insti-
tute for Systems and Technologies of Information, Communication and Control
(INSTICC), co-organized by the Interdisciplinary Institute for Collaboration and
Research on Enterprise Systems and Technology (IICREST), in cooperation with
the Bulgarian Academy of Sciences and the Technical University of Sofia and
technically co-sponsored by the Workflow Management Coalition (WfMC).

The purpose of ICSOFT 2009 was to bring together researchers and practi-
tioners interested in information technology and software development. The con-
ference tracks were “Enterprise Software Technology,” “Software Engineering,”
“Distributed Systems,” “Data Management” and “Knowledge-Based Systems.”

Being crucial for the development of information systems, software and data
technologies encompass a large number of research topics and applications: from
implementation-related issues to more abstract theoretical aspects of software
engineering; from databases and data-warehouses to management information
systems and knowledge-based systems; next to that, distributed systems, perva-
sive computing, data quality and other related topics were included in the scope
of this conference.

ICSOFT 2009 received 212 paper submissions from 50 countries in all con-
tinents. To evaluate each submission, a double-blind paper evaluation method
was used: each paper was reviewed by at least two internationally known ex-
perts from the ICSOFT Program Committee. Only 27 papers were selected to
be published and presented as full papers, i.e., completed work (8 pages in the
proceedings / 30 min oral presentations), 53 additional papers describing work-
in-progress were accepted as short papers for 20 min oral presentation, leading
to a total of 80 oral paper presentations. Another 33 papers were selected for
poster presentation. The full-paper acceptance ratio was thus 13%, and the total
oral paper acceptance ratio was 38%.

We hope that you will find these papers interesting, considering them a help-
ful reference in the future when addressing any of the research areas mentioned
above.

July 2010 José Cordeiro
Alpesh Ranchordas

Boris Shishkov

Conference Committee

Conference Co-chairs

José Cordeiro Polytechnic Institute of Setúbal /
INSTICC, Portugal

AlpeshKumar Ranchordas INSTICC, Portugal

Program Chair

Boris Shishkov IICREST / Delft University of
Technology, The Netherlands

Organizing Committee

Patŕıcia Alves INSTICC, Portugal
Sérgio Brissos INSTICC, Portugal
Helder Coelhas INSTICC, Portugal
Vera Coelho INSTICC, Portugal
Andreia Costa INSTICC, Portugal
Bruno Encarnação INSTICC, Portugal
Bárbara Lima INSTICC, Portugal
Raquel Martins INSTICC, Portugal
Elton Mendes INSTICC, Portugal
Carla Mota INSTICC, Portugal
Vitor Pedrosa INSTICC, Portugal
Mónica Saramago INSTICC, Portugal
José Varela INSTICC, Portugal
Pedro Varela INSTICC, Portugal

Program Committee

Jemal Abawajy, Australia
Silvia Abrahão, Spain
Alain Abran, Canada
Muhammad Abulaish, India
Hamideh Afsarmanesh,

The Netherlands
Jacky Akoka, France
Markus Aleksy, Germany
Daniel Amyot, Canada
Kenneth Anderson, USA

Toshiaki Aoki, Japan
Keijiro Araki, Japan
Gabriela Noemı́ Aranda, Argentina
Farhad Arbab, The Netherlands
Cyrille Artho, Japan
Colin Atkinson, Germany
Xiaoying Bai, China
Mortaza S. Bargh, The Netherlands
Joseph Barjis, The Netherlands
Zeki Bayram, Cyprus

VIII Conference Committee

Fevzi Belli, Germany
Alexandre Bergel, Chile
Árpád Beszédes, Hungary
Wladimir Bodrow, Germany
Marcello Bonsangue, The Netherlands
Lydie du Bousquet, France
Mark Van Den Brand,

The Netherlands
Lisa Brownsword, USA
Fergal Mc Caffery, Ireland
Gerardo Canfora, Italy
Mauro Caporuscio, Italy
Cinzia Cappiello, Italy
Licia Capra, UK
Sergio de Cesare, UK
Krzysztof Cetnarowicz, Poland
Jinjun Chen, Australia
Kung Chen, Taiwan
Shiping Chen, Australia
Chia-Chu Chiang, USA
Peter Clarke, USA
Rem Collier, Ireland
Kendra Cooper, USA
Alexandra Cristea, UK
Sergiu Dascalu, USA
Steven Demurjian, USA
Giovanni Denaro, Italy
Oscar Dieste, Spain
Maŕıa J. Domı́nguez-Alda, Spain
Jing Dong, USA
Juan C. Dueñas, Spain
Philippe Dugerdil, Switzerland
Jürgen Ebert, Germany
Raimund K. Ege, USA
Fikret Ercal, USA
Onyeka Ezenwoye, USA
Cléver Ricardo Guareis de Farias,

Brazil
Massimo Felici, UK
Rudolf Ferenc, Hungary
Juan Fernandez-Ramil, UK
Gianluigi Ferrari, Italy
Kehan Gao, USA
Jose M. Garrido, USA
Dragan Gasevic, Canada

Mouzhi Ge, Ireland
Nikolaos Georgantas, France
Paola Giannini, Italy
J. Paul Gibson, France
Itana Gimenes, Brazil
Swapna Gokhale, USA
Juan Carlos Granja, Spain
Christophe Gravier, France
Des Greer, UK
Klaus Grimm, Germany
Giancarlo Guizzardi, Brazil
Slimane Hammoudi, France
Christian Heinlein, Germany
Markus Helfert, Ireland
Jose Luis Arciniegas Herrera,

Colombia
Jang-eui Hong, Korea, Republic of
Nien-Lin Hsueh, Taiwan
Ilian Ilkov, The Netherlands
Ivan Ivanov, USA
Yong-Kee Jun, Korea, Republic of
Wan Kadir, Malaysia
Sanpawat Kantabutra, Thailand
Roger (Buzz) King, USA
Mieczyslaw Kokar, USA
Jun Kong, USA
Rainer Koschke, Germany
Walter Kosters, The Netherlands
Martin Kropp, Switzerland
Tei-wei Kuo, Taiwan
Patricia Lago, The Netherlands
Konstantin Laufer, USA
Yu Lei, USA
Raimondas Lencevicius, USA
Hareton Leung, China
Mary Levis, Ireland
Kuan-Ching Li, Taiwan
Hua Liu, USA
K.S. Low, Singapore
Andrea de Lucia, Italy
Christof Lutteroth, New Zealand
Ricardo J. Machado, Portugal
Broy Manfred, Germany
Yannis Manolopoulos, Greece
Eda Marchetti, Italy

Conference Committee IX

Ami Marowka, Israel
Katsuhisa Maruyama, Japan
Tommaso Mazza, Italy
Bruce McMillin, USA
Karl Meinke, Sweden
Atif Memon, USA
Jose Ramon Gonzalez de Mendivil,

Spain
RaffaelaMirandola, Italy
Dimitris Mitrakos, Greece
Mattia Monga, Italy
Sandro Morasca, Italy
Henry Muccini, Italy
Paolo Nesi, Italy
Jianwei Niu, USA
Rory Oconnor, Ireland
Pasi Ojala, Finland
Flavio Oquendo, France
Vincenzo Pallotta, Switzerland
Witold Pedrycz, Canada
Patrizio Pelliccione, Italy
Massimiliano Di Penta, Italy
Thoa Pham, Ireland
Martin Pinzger, The Netherlands
Pascal Poizat, France
Lori Pollock, USA
Andreas Polze, Germany
Peter Popov, UK
Christoph von Praun, Germany
Rosario Pugliese, Italy
Rafa Al Qutaish, Jordan
Jolita Ralyte, Switzerland
T. Ramayah, Malaysia
Anders Ravn, Denmark
Marek Reformat, Canada
Arend Rensink, The Netherlands
Werner Retschitzegger, Austria
Claudio de la Riva, Spain

Colette Rolland, France
Gustavo Rossi, Argentina
Gunter Saake, Germany
Krzysztof Sacha, Poland
Francesca Saglietti, Germany
Isabel Seruca, Portugal
Marian Fernández de Sevilla, Spain
Beijun Shen, China
Yanfeng Shu, Australia
Marten Van Sinderen, The Netherlands
Harvey Siy, USA
Yeong-tae Song, USA
George Spanoudakis, UK
Peter Stanchev, USA
Nenad Stankovic, USA
George K. Thiruvathukal, USA
Laurence Tratt, UK
Sergiy Vilkomir, USA
Christiane Gresse Von Wangenheim,

Brazil
Hironori Washizaki, Japan
Jens H. Weber-Jahnke, Canada
Edgar Weippl, Austria
Ing Widya, The Netherlands
Qing Xie, USA
Bin Xu, China
Haiping Xu, USA
Hongji Yang, UK
Stephen Yang, Taiwan
Tuba Yavuz-kahveci, USA
I-Ling Yen, USA
Fatiha Zaidi, France
Gregor Zellner, Germany
Xiaokun Zhang, Canada
Zhenyu Zhang, Hong Kong
Hong Zhu, UK
Elena Zucca, Italy

X Conference Committee

Auxiliary Reviewers

Jeroen Arnoldus, The Netherlands
Matt Bone, USA
Stefano Busanelli, Italy
Luigi Cerulo, Italy
Enrique Fernandez, Argentina
Ralf Gitzel, Germany
Anna Grimán, Venezuela
Maurice Hendrix, UK
Joseph Kaylor, USA
Jérémy Lardon, France
Giuseppe Antonio Di Lucca, Italy
Ivano Malavolta, Italy
Paolo Medagliani, Italy

Fei Niu, Sweden
Joseph Okika, Denmark
George Pallis, Cyprus
Ignazio Passero, Italy
Plamen Petrov, USA
Eleftherios Tiakas, Greece
Tom Verhoeff, The Netherlands
Saleem Vighio, Denmark
Tien-Hsiung Weng, Taiwan
Matthew Wojtowicz, USA
Maria Zimakova, The Netherlands
Eugenio Zimeo, Italy

Invited Speakers

Roel Wieringa University of Twente, The Netherlands
Jorge Cardoso SAP AG, Germany
Kecheng Liu University of Reading, UK
Mihail Mihaylov Konstantinov University of Architecture, Civil

Engineering and Geodesy, Bulgaria

Table of Contents

Invited Papers

IoS-Based Services, Platform Services, SLA and Models for the Internet
of Services . 3

Jorge Cardoso, Matthias Winkler, Konrad Voigt, and
Henrike Berthold

Pragmatic Web Services: A Semiotic Viewpoint . 18
Kecheng Liu and Adrian Benfell

Part I: Enterprise Software Technology

Unified Hosting Techniques for the Internet of Tradeable and
Executable Services . 35

Josef Spillner, Iris Braun, and Alexander Schill

Service Differentiation in Multi-tier Application Architectures 46
Mursalin Habib, Yannis Viniotis, Bob Callaway, and
Adolfo Rodriguez

Lessons Learned on the Development of an Enterprise Service
Management System Using Model-Driven Engineering 59

Rodrigo Garćıa-Carmona, Juan C. Dueñas, Félix Cuadrado, and
José Luis Ruiz

Part II: Software Engineering

Checking Regulatory Compliance of Business Processes and Information
Systems . 71

Motoshi Saeki, Haruhiko Kaiya, and Satoshi Hattori

A Decision Support Scheme for Software Process Improvement
Prioritization . 85

Arne Beckhaus, Lars M. Karg, Christian A. Graf,
Michael Grottke, and Dirk Neumann

Development of a Family of Personalized Mobile Communicators 94
Miguel A. Laguna and Bruno González-Baixauli

Reverse Generics: Parametrization after the Fact . 107
Alexandre Bergel and Lorenzo Bettini

XII Table of Contents

A Calculus of Agents and Artifacts . 124
Ferruccio Damiani, Paola Giannini, Alessandro Ricci, and
Mirko Viroli

Using Trace to Situate Errors in Model Transformations 137
Vincent Aranega, Jean-Marie Mottu, Anne Etien, and
Jean-Luc Dekeyser

Design of SOA Services: Experiences from Industry 150
Susanne Patig

Part III: Distributed Systems

Division of Water Supply Systems into District Metered Areas Using a
Multi-agent Based Approach . 167

Joaqúın Izquierdo, Manuel Herrera, Idel Montalvo, and
Rafael Pérez-Garćıa

Rateless Codes for Reliable Data Transmission over HomePlug AV
Based In-Home Networks . 181

J.P. Muñoz-Gea, P.J. Piñero-Escuer, J. Malgosa-Sanahuja,
P. Manzanares-Lopez, and J.C. Sanchez-Aarnoutse

Replication Strategies for Business Objects in SOA 192
Michael Ameling, Bernhard Wolf, Thomas Springer, and
Alexander Schill

A Hybrid Approach for Database Replication: Finding the Optimal
Configuration between Update Everywhere and Primary Copy
Paradigms . 205

M. Liroz-Gistau, J.R. Juárez-Rodŕıguez, J.E. Armendáriz-Íñigo,
J.R. González de Mend́ıvil, and F.D. Muñoz-Escóı

Educational Resource Scheduling Based on Socio-inspired Agents 218
Juan I. Cano, Eloy Anguiano, Estrella Pulido, and
David Camacho

Part IV: Data Management

Managing Risks by Integrity Constraints and Integrity Checking 233
Hendrik Decker

Energy Efficient Data Sorting Using Standard Sorting Algorithms 247
Christian Bunse, Hagen Höpfner, Suman Roychoudhury, and
Essam Mansour

Table of Contents XIII

Part V: Knowledge-Based Systems

Analysis of Emergent and Evolving Information: The Agile Planning
Case . 263

Rasmus Rosenqvist Petersen and Uffe Kock Wiil

Emotion Based User Interaction in Multimedia Educational
Applications . 277

Efthymios Alepis, Maria Virvou, and Katerina Kabassi

Author Index . 291

Invited Papers

IoS-Based Services, Platform Services, SLA and Models
for the Internet of Services

Jorge Cardoso1, Matthias Winkler2, Konrad Voigt2, and Henrike Berthold2

1 CISUC/University of Coimbra, Portugal
2 SAP Research CEC, Chemnitzer Strasse 48, 01187 Dresden, Germany

Abstract. The Internet of Services (IoS) embraces new business and technologi-
cal models that can radically change the way day-to-day services are provisioned
and contracted. Within the IoS, services which were traditionally not created
based on an established science and operated without a systematic approach, will
be digitalized using proper methodologies, standards, and tools. The digital spec-
ification of services will enable their trading over the Internet using electronic
marketplaces. This paper provides four main contributions to the IoS research:
a definition and characterization for the concept of IoS-based service, the role
and importance of platform services for the IoS, the challenges of managing SLA
dependencies between IoS-based services in compositions, and a model-based
approach for service engineering that can be used to design IoS-based services.

1 Introduction

Nowadays, all industrialized countries have become service-based economies in terms
of the distribution of the people employed in the service sector [1]. While the first ser-
vices were certainly delivered by humans to humans, the advances in computer systems
over the past sixty years allowed computers to deliver services to humans. Information
technologies (IT) have significantly contributed to the evolution of services. Over the
years, each generation of innovation has created solutions that enable to automatically
execute activities that were once done by human beings [2].

For example, Automated Teller Machines (ATM), introduced in the 70s, enabled
banks to reduce costs by decreasing the need for tellers. Even with the expensive cost
of IT in the late 70s and early 80s, the cost of automated processing with ATM was
less than the expenditure of hiring and training a teller to carry out the same activity. In
this case, a complex and specialized machine was developed to perform the same activ-
ity once executed by a human. As technology brought the automation to sophisticated
machines, the number of workers required to execute many activities was gradually
reduced. Nowadays, a broad spectrum of services is being replaced by automated ma-
chines. For example, undertaking a trip by train has traditionally required passengers to
purchase a ticket from an office and show it for inspection when required by the train
operator. As a response to technological development, automated dispensers have re-
duced the need to queue in order to purchase a ticket before a trip and, therefore, enable
faster journeys.

The historical perspective and evolution of services has not only been confined to
the use of machines to automate services. The emergence of the Internet, allied with the

J. Cordeiro, A. Ranchordas, and B. Shishkov (Eds.): ICSOFT 2009, CCIS 50, pp. 3–17, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

4 J. Cardoso et al.

World Wide Web, has allowed a remote and generalized interaction between humans
and computers. The technological developments in the late 90s have pushed the notion
of service to Web service with the objective of supporting interoperable computer-to-
computer interactions over a data network. This type of interaction required services to
be autonomous and platform-independent, and needed services to be described, pub-
lished, discovered and orchestrated using standard protocols for the purpose of building
distributed solutions. The emphasis was on the definition of interfaces from a technical
and programming perspective. The objective was on distributed systems communica-
tion, since Web services provide a technological solution to enable enterprise trans-
action systems, resource planning systems and customer management systems to be
accessed programmatically through a digital network.

The IoS takes these developments one step further. So far, the use of services (i.e.
Web services) has been restricted to IT professionals and to IT departments inside or-
ganizations. The Internet of Service targets to investigate and develop new theories,
models, architectures and technologies to provide efficient and effective solutions that
enable also non-professional users to create, trade and consume services. Furthermore,
the notion of service is not limited to IT-based or technical services, but also to real
world or day-to-day services. This larger spectrum of services immediately foresees a
methodical study on how these services can be represented and modeled digitally.

This paper explores four important topics for the Internet of Services (these results
are part of the output of the TEXO project which is part of the THESEUS program1)
The first topic addresses the evolution of the concept of service, the economical value
and the major characteristics of IoS-based services. These aspects are important in or-
der to fully understand why the IoS and its services are fundamentally distinct from
previous endeavors in the area of service provisioning. The second topic depicts a tax-
onomy for the various platform services that will be made available to providers and that
will be used to design and operate IoS-based services. As the name indicates, platform
services are provided by the underlying platform where IoS-based services are provi-
sioned. The third topic tackles the support for managing SLA dependencies with a focus
on IoS-based services that have a process composition in their backend. The violation
of a particular SLA contract in a composition can affect related SLA and, therefore, de-
pendencies and their impact need to be studied. Finally, the last topic covers the design
of IoS-based services using a model-based approach. The design method proposed is
part of the lifecycle of Service Engineering and relies on the integration of models that
describe the various facets of a IoS-based service using efficient matching algorithms.

2 The Concept, Value and Characteristics of Services

Research in service science can often lead to confusion due to the simple fact that
different communities use the same term to refer to conceptually distinct services. To
avoid any ambiguity, this section will clarify key concepts associated with the term
service upfront. The value that IoS-based services can bring to worldwide economies
and the intrinsic characteristics of services when compared to products will also be
reviewed.

1 http://theseus-programm.de/en-US/home/default.aspx

IoS-Based Services, Platform Services, SLA and Models for the Internet of Services 5

Fig. 1. Terms most frequently associated with the concept of service

2.1 The Concept of Service

Baida et al. [3] have identified that the terms service, e-service and Web service actually
address related concepts from different domains such as computer science, information
science and business science.

In computer science, the terms service, e-service and web service are generally used
to identify an autonomous software component that is uniquely identified by a univer-
sal resource identifier (URI) and that can be accessed using standard Internet protocols,
such as the simple object access protocol (SOAP) and the hypertext transfer protocol
(HTTP), and languages such as the extensible markup language (XML). Hull et al. [4]
have used the term e-service to describe the functionalities and characteristics of a Web
service. They have defined an e-service as a collection of network-resident software ser-
vices accessible via standardized protocols, whose functionality can be automatically
discovered and integrated into applications or composed to form more complex ser-
vices. In information science, services are a means of delivering value to customers by
facilitating outcomes the customers want to achieve without the ownership of specific
costs and risks [5]. Outcomes are created from the execution of tasks or activities under
a set of constraints. In business science, a service is a set of intangible activities that
generally take place in interactions between a provider and a consumer. The emphasis
is not on standards, protocols or software, but on the study of how consumer experience
with services can be evaluated and improved.

A deeper understanding of the terms associated to the concept of service is necessary
in order to conceptually craft a common frame of reference. Such a shared understand-
ing will help stakeholders involved in building enterprise wide solutions based on ser-
vices for the IoS. Therefore, there is the need to identify the terms most often associated
with the concept of service that have been introduced over time by the research com-
munity and by the industry. The four most relevant terms, illustrated in Figure 1, are
real world services (day-to-day services), e-services, Web services and, more recently,
IoS-based services. We introduce the term IoS-based service to differentiate a new type
of service that will be represented with digital structures, specifications and standards
to be traded on the Internet of Services.

6 J. Cardoso et al.

Real World Service. The term real world service (i.e., a day-to-day service or simply a
service) is used to refer to any type of service that can be found in society. Because of
their diversity and heterogeneity, real world services, have traditionally been difficult to
define. Kotler [6] defines a service as any activity or benefit that one party can give to
another that is essentially intangible and does not result in the ownership of anything.
Its production may or may not be tied to a physical product. For Payne [7], a service is
an activity that has an element of intangibility associated with it and which involves the
service provider’s interaction either with the customers or with the property belonging
to the customer.

E-services. E-services are services for which data networks, such as the Internet, are
used as a channel that allow consumers to interact with remote services. Virtually any
service can be transformed into an e-service if it can be invoked via a data network.
E-services are independent of the specification language used to define its functional-
ity, non-functional properties or interface. As with real world services, the definition of
e-service is fairly broad. The main requirement is that the service must allow a remote
invocation and interaction using a data network as a communication channel. The spec-
ification of a service from a business and technical perspective is not mandatory.

Web Services. Web services allow software applications to easily communicate, inde-
pendently of the underlying computing platform and language. The use of Web services
is substantially less complex than the use of prior solutions for creating interopera-
ble distributed systems. Heterogeneous, autonomous and distributed applications have
been a vital field since computing shifted from jobs running on centralized mainframe
computers to networked computers. Previous technologies that covered the same objec-
tives as Web services included Remote Procedure Call (RPC), Common Object Request
Broker Architecture (CORBA), Distributed Component Object Model (DCOM) and
Java Remote Method Invocation (JRMI). These technologies had drawbacks that were
considered significant when developing distributed application, such as incompatibility
across vendors’ implementations, and complexity and cost of solutions.

IoS-based Service. The term ”IoS-based service” is used to identify services provided
through the Internet. Two main characteristics make IoS-based services distinct from
previous services. On the one hand, this notion of service is not limited to IT-based ser-
vices, but also to real world or day-to-day services. On the other hand, the stakeholders of
such services, from the provisioning and consumption side, are not only IT professionals
but also non-professional users. As a result, IoS-based services serve a dual purpose since
they can be utilized directly by consumers, but they can also be invoked by technical sys-
tems to access business functionality which is provided remotely by business providers.
An IoS-based service model defines a view on services that is provision-oriented and
service-centric. An important feature of a digital service model is a separation of char-
acteristics in terms of business, operational and technical perspectives.

Compared to previous approaches to support services – which were mainly imple-
mented as pieces of software (e.g. Web services) – developing solutions for the IoS
is more elaborate since real world services have very specific characteristics. While
e-services and Web services are seen mainly as technological entities, the Internet of

IoS-Based Services, Platform Services, SLA and Models for the Internet of Services 7

Services will take the representation of services one step further. IoS-based services will
combine and correlate business, operational and IT aspects into service descriptions.

2.2 The Economical Value of Services

The intense competition of economies and the globalization of worldwide markets
in conjunction with the generalization and expansion of IS and IT have opened up
significant opportunities for the conception of new specialized services. Services are
becoming quickly more productized. Providers are focusing on services for increased
differentiation and creation of consumer value as a source of competitive advantage.

Recently, the concept of service has acquired a renewed importance since after sev-
eral years of public debate, the European Parliament has approved the service directive
[8]. This directive intends to enhance competition by removing restrictions on cross-
border market access for services in Europe. The implications of this measure for busi-
nesses and the IT community are enormous since the service sector represents more
than 70% of the Gross National Product and the directive can amplify the consumption
of services in the European Union by 0.6% (37 billion Euros) [9]. Figure 2 illustrates
the gross value added of services in Germany in 2005 provided by the Statistisches
Bundesamt2. In Germany, the service sector represents 69.4% of the gross value added.

Fig. 2. Gross value added of services in Germany

Services seem to be the new hub for most economies. Infrastructure services such
as transportation and communication are fundamental building blocks which link to
all other sectors. In most countries, one of the largest and most important providers of
services is the government which operates in sectors such as water management, public
safety and basic healthcare system.

Based on the economical value and importance of services, one question that imme-
diately arises is how can the Internet provide a solution to create and enable a genuine

2 http://www.destatis.de/

8 J. Cardoso et al.

market for the trade of cross-border services? Since the Internet is now an integral ingre-
dient of the fabric of worldwide societies, economies and commerce, it can intuitively
provide a fundamental infrastructure to enable the realization of the IoS.

2.3 Intrinsic Characteristics Services

Before proposing or building a solution for the IoS and for IoS-based services, it is
fundamental to understand the nature of real world services since it is this type of ser-
vices that will be digitalized and represented with proper models to enable their trading
over the Internet. Real world services are often known to have one or more of the fol-
lowing characteristics: intangible, inseparable, immersive, bipolar, variable, ostensible,
long-running, decoupled, perishable and qualitative.

Fig. 3. Characteristics of services

Intangible (1). Services are intangible since they do not have a material existence. One
can physically touch or view a product but most services are intangible. Nonetheless,
it is often possible to see and evaluate the results that arise from the execution of a
service. For eaxmple, it is not feasible to touch a legal advice or a doctor consultation.
Therefore, it is difficult to create suitable specifications to model and to define attributes
to objectively describe services. As such, research needs to be undertaken to determine
which fundamental aspects and characteristics of real world services should be present
in IoS-based service models and descriptions.

Inseparable (2). The provisioning and consumption of services occurs frequently in par-
allel. This implies that a rigorous match between supply and demand must be achieved.
Otherwise, services are lost or consumers are queued and need to wait for service avail-
ability. This characteristic leads to a challenging research question: How can market-
places of the IoS provide mechanisms to match between supply and demand efficiently?

Immersive (3). Services are often executed in collaboration, involving providers and
consumers. This implies that in many cases it is difficult to determine the parties re-
sponsible for the degree of success or failure of a service. Therefore, when IoS-based

IoS-Based Services, Platform Services, SLA and Models for the Internet of Services 9

services are executed, it is important to define service level agreements (SLA) that ac-
count for both parties. But in case of service provisioning failure, since many services
are executed in collaboration, how can responsibilities be determined?

Bipolar or Hybrid (4). Services are often executed by a blend of human and technolog-
ical resources. While approaches to monitor purely technological resources are already
available, solutions to monitor human involvement in services’ execution and the com-
plex relationship between the human and technological dimensions have not been stud-
ied in the context of highly distributed, autonomous and heterogeneous settings, such
as the IoS. As a result, the following research question arises: How to create mecha-
nisms that account for the monitoring of technological resources with the individual
monitoring of human resources?

Variable (5). Products have a high degree of standardization, while services are very
often tailor-made and are, therefore, heterogeneous. Organizations differentiate them-
selves in offering products and services, but the variations between similar products of
different providers are less prominent than the variations between services. The quality
and consistency of services is subject to a considerable variability since they are often
delivered by humans. Human attitudes (such as behavior, cognitive skills, emotions,
style, etc.) have a high variablity since they are difficult to control, manage and evalu-
ate. For the IoS, this characteristic brings the need to devise new variability models for
services, perhaps based on the variability models which have already been developed
for products.

Ostensible Ownership (6). The ownership between products and services is distinct. A
stock can be called a financial product that the provider owns. A stock order may be
placed by a consumer which might result in a transaction later on. When the transaction
is completed, the ownership is transferred to the consumer. On the other hand, it is
not possible to own a service. It possession is termed as an ostensible ownership. As a
result, the IoS needs to enable providers to have the ostensible ownership of IoS-based
services and enable them to remain in their control and management.

Long-running (7). Generally, the trading of products requires a low level of interaction
between providers and consumers. For example, when a consumer buys a book at Ama-
zon.com there is only one interaction point in time: the action of purchasing the book.
In exceptional scenarios, the consumer may contact the provider in case of non-delivery
of the product. On the other hand, services are often executed by a back-end business
process which involves human interaction over time until the service is completed. For
example, a service contracted to translate a book from German to English may run for
several weeks and require a significant interaction between the translator and the writer.
This brings humans, relationships between people, processes and activities to be an in-
tegral part of services. Therefore, IoS-based services need to account for the definition
and representation of long-running business processes which include personal interac-
tions (e.g., face-to-face or a telephone interaction) between providers and consumers.

Decoupled (8). A simplified lifecycle of a service includes generally five main phases:
discovery, selection, invocation, execution and termination. In order to capture the full
potential of services, consumers must have access to dynamic discovery mechanisms.

10 J. Cardoso et al.

Once a set of services is discovered, a selection is made and the selected service is in-
voked. Finally, the service is executed and terminates. These five phases can be carried
out only with human involvement (humans add value in the form of labor, advice and
skills), with a conjunction of humans and IT, or resorting purely on automated process-
ing. Therefore, in the IoS, each phase is decoupled and may position itself anywhere
in the spectrum of services executed solely by humans, on the one side, or purely au-
tomated on the other side. Here again, the representation of human and IT involvement
needs to be equated when modeling IoS-based services.

Perishable (9). Since services have a propensity to be intangible, it is usually not possi-
ble to store them. As a consequence, services are perishable and unused capacity cannot
be stored for future trade. For example, if a car is not sold today it can be sold tomorrow
but spare seats on an airplane cannot be transferred to the next flight. Not being able
to store services brings a challenge for electronic marketplaces since new management
methods for service capacity are required.

Qualitative (10). In manufacturing industries, measures determining the quality of prod-
ucts are generally quantitative. On the other hand, the quality of a service is generally
qualitative. The physical evidence or the tangible products that originate from service
execution can provide indications that allow measuring a service quality. This charac-
teristic is again a challenge for the IoS. How to identify which aspects of a service ex-
ecution can be used to evaluate the quality of services quantitatively and qualitatively?
Furthermore, the perceived service quality often results from consumers comparing the
outcome of a service against what they expected to receive. Thus, how can consumers’
expectations be properly captured and managed in the IoS?

All these intrinsic characteristics of services need to be explored and equated when
real world services are digitalized into electronic models to be advertized in market-
places and purchased remotely by consumers using the Internet.

3 Platform Services

Platform services provide functionalities as a common infrastructure that can be used
by IoS-based services in business value networks. We divide platform services into four
groups: core business services, design support services, execution support services, and
consumer support services. The elements of this classification are not orthogonal and
one specific platform service can be classified under one or more types.

Core business services provide base functionalities required to complete a value-
generating service to an IoS-based service. A value-generating service is the concrete
service that generates a value for its consumer. An IoS-based service is a composite
service that contains the value-generating service and core business services that are
required to trade them. The set of core business services should contain services for
payment, billing, security, and community rating. However, depending on the concrete
service delivery platform, the set of these services can vary. The more core business ser-
vices are available, the more business models can be supported. A core business service
often provides a customized user interface that is integrated in the cockpit of service

IoS-Based Services, Platform Services, SLA and Models for the Internet of Services 11

consumers. As a result, a consumer has to provide the required data for a core service to
perform. For example, in a payment core service, the consumer must specify the kind
of payment for the use of an IoS-based service.

Execution support services extend the functionality of the runtime environment. Their
usage has to be specified at design time. Examples are adaptation services, monitoring
services, and efficient data propagation services. An adaptation service automatically
adapts an IoS-based service to changes in the runtime environment or consumer re-
quirements without affecting the functional results. A monitoring service measures a
number of runtime characteristics and can notify service consumers, service providers
or platform providers about anomalies that occur at the technical and business level.
An efficient data propagation service allows services that process large data volumes to
exchange these data in an efficient way.

Consumer support services provide a functionality to retrieve services that fulfill the
consumer’s needs and requirements. Examples are services to search and select appro-
priate IoS-based services. Consumer support services can be accessed via the consumer
cockpit . They use service description repositories for the search functionalities.

Design support services help the design of IoS-based services. They typically have a
design component that supports business process modeling and a runtime component
that runs as part of the overall process. Examples of design support services include
message matching services and data integration services. The message matching ser-
vice serves as an example of a platform service which is used to map complex message
schemas between IoS-based services that form compositions. Therewith, it enables the
composition of independently developed services offered on a service marketplace. The
message matching service has two main components: the mapping component and the
translation component. The mapping component is the design component. It automat-
ically calculates a proposal for a mapping between two message schemas. A graphical
user interface is provided for that component which presents a proposed mapping and
supports its manual completion to a final mapping. The translation component is the
runtime component. It uses the specified mapping to translate messages.

4 Managing Dependencies in IoS-Based Service Compositions

One goal of the IoS vision is the creation of service compositions out of atomic IoS-
based services provided by different service providers. The different atomic IoS-based
services are composed in a way that they form more complex functionality, i.e. they
are implicitly collaborating. These compositions are then offered to consumers via a
marketplace. The provisioning of atomic as well as composite IoS-based services is
regulated by service level agreements (SLA) which are negotiated between the service
providers and consumers of the respective services.

An important challenge of this scenario is the management of such service composi-
tions to ensure that the atomic services are working together in a proper way to achieve
the overall goal of the composition. This management task is handled by the composite
service provider who selects the atomic services and negotiates the SLAs with atomic
service providers and composite service consumers. Managing service compositions

12 J. Cardoso et al.

is a challenging task due to the fact that the collaborating services have dependencies
on each other. This leads to failure propagation. Also, the different SLAs need to be
negotiated in a way which ensures proper collaboration between services. Changes to
an SLA after the initial negotiation may require changes to other SLAs. In the follow-
ing sections we outline the problem space of dependencies in service compositions and
present our approach to managing these dependencies.

4.1 Introducing Dependencies

A service dependency is a directed relation between services. It is expressed as a
1-to-n relationship where one service (dependant) depends on one or multiple services
(antecedent). A service S1 is dependent on a service S2 if the provisioning of service
S1 is conditional to the provisioning of service S2, e.g. if a property of service S1 is
affected by a property of S2.

A service can be dependent on another service with regard to different aspects. A de-
pendency occurs e.g. when one service provides something (e.g. data or goods) which
is needed by another service to provide its functionality. A second example would be
that the quality of service (QoS) of a composite service depends on the QoS of its
atomic services. Dependencies occur either between atomic services in a process (hor-
izontal dependencies) or between the composite service and atomic services (vertical
dependencies) [10]. Horizontal dependencies mainly occur due to provider-consumer
relationships or simultaneity constraints between services while vertical dependencies
occur due to task-subtask relationships between the composite service and the atomic
services [11]. Distinguishing the underlying causes of dependencies is important as they
form the base for the dependency discovery strategy (see section 4.3).

4.2 Approach to Managing Dependencies

In order to manage service dependencies we developed an approach for capturing de-
pendency information at design time in a dependency model and evaluating this model
at runtime when problems occur or an SLA needs to be renegotiated. The approach
follows a lifecycle of four steps: creation, validation, usage, retirement. During the first
step (creation) the dependency information captured in a dependency model. Informa-
tion about service dependencies is not available explicitly but rather implicitly in the
process description and the related SLAs. To make it available explicitly for easier han-
dling at runtime, the process description and SLA information are analyzed and depen-
dency information is extracted and captured in a dependency model. The dependency
model is then stored in a dependency repository. During the second step (validation)
the dependency model is validated to check if the SLAs have been negotiated in a way
that the services can successfully collaborate to achieve the composite service goals.
During the third step (usage) the dependency model is evaluated at runtime in the con-
text of occurring events such as SLA violations during monitoring or requests for SLA
renegotiation. The goal of this evaluation is to determine effects of the current event on
other services (i.e. if the SLA for service S1 is changed, which other services will be af-
fected). Finally, during the fourth step (retirement) the dependency model is terminated
once the composite service is terminated and the composite service SLA is expired.
During this step the dependency model is removed from the dependency repository.

IoS-Based Services, Platform Services, SLA and Models for the Internet of Services 13

At the base of this approach there is a dependency model. A meta-model for cap-
turing dependencies was developed for this purpose and a model editor for creating
dependency model instances was implemented based on this meta-model [12]. While
the model editor allows the full specification of dependency model instances, we also
developed a model creation approach which partially automates this procedure.

4.3 Dependency Model Creation

The process of creating a dependency model is separated into two major steps. An initial
model is generated automatically by an algorithm which analyses the process descrip-
tion and SLAs. In the second step the model can be refined by manual changes using a
model editor. While the first step enables a more efficient creation process, the second
step ensures that complex dependencies, which cannot be discovered automatically, can
be included into the model. It also enables users to refine discovered dependencies.

The discovery algorithm takes the process description of the composite service and
determines all valid paths from the start node to the end node. Next, the services within
each path are checked for horizontal dependencies. The underlying assumption for this
process is that services, which do not occur within a path do not have consumer-provider
based dependencies. Synchronization constraints can occur also across paths, but they
would have to be expressed explicitly since neither process description nor SLAs con-
tain this information implicitly. Vertical dependencies are discovered by comparing the
single services inside a path with the composite service. Dependencies regarding the
QoS and price of services are not analyzed based on the created paths, but instead re-
quire a precise analysis of the process structure. QoS and price dependencies occur as
1-to-n relationships between the composite service and the atomic services. These de-
pendencies are expressed as a function for calculating the respective composite value
from the atomic values. The formula for composite value calculation is generated based
on the process structure [13].

5 Models for the Internet of Services

The intrinsic complexity of IoS-based services requests for a new approach in Ser-
vice Engineering (SE) and tools in developing such services [14]. Typically, services
evolve in a common ecosystem in which organizations and IT provide value in form
of services. SE provides methodologies to cope with the complexity of several busi-
ness actors and their interaction. Furthermore, SE specifies tools for implementing and
deploying services, covering both, IT and business perspectives.

Consequently, SE is a structured approach for creating a new service. It addresses
two problems: 1) multiple stakeholders across different organizations and 2) different
perspectives ranging from business to IT. To cope with these challenges we propose
an integrated service engineering methodology and support by meta-model and model
matching.

5.1 Integrated Service Engineering

For the development of IoS-based services we proposed the Integrated Service En-
gineering (ISE) methodology [14] and implemented it in the ISE workbench [15].

14 J. Cardoso et al.

Thereby, we present a model-based approach; i. e. each aspect of a service is formally
represented by a corresponding model. Figure 4 shows the ISE framework which is part
of ISE methodology. Inspired by the Zachman framework and following the separation
of concerns paradigm, it structures services into four main perspectives and five dimen-
sions. These dimensions are: service description, workflow, data, people and rules. Each
of these dimensions is divided into four perspectives (layers) of abstraction. These per-
spectives of the ISE methodology can be regarded as a phase in the development (model
refinement) of services. Thus, the models which are assigned to each layer support the
development from different viewpoints (i.e., scope, business, logical, and technical).

Additionally, models at different dimension but belonging to the same layer are
bound to others in order to form the complete business service model at the respec-
tive level of abstraction. For all cells of the matrix, we have defined formal models
which should be considered in the service development. Examples of models include
UML, BPMN, BPEL, OWL, etc. Figure 4 presents the models selected and used in the
ISE workbench.

Therefore, ISE acts as an integration platform for several models placed in cells of
the framework. Throughout one dimension, models are created with respect to different
views and refined until they conform to a technical specification. This leads to multiple
representations of information on different layers of abstraction in the corresponding
dimensions. Changes in one model have to be propagated (or at least detected) into
related models holding overlapping information (depicted by arrows in Figure 4).

Fig. 4. The ISE models arranged in the corresponding matrix

5.2 Support by Model Matching

Multiple stakeholders and multiple perspectives result in several models designed in
different ways. These models exhibit commonalities which need to be synchronized.
This requires an integration of these models. The integration challenge is twofold: (1)
one has to integrate the models by means of model transformation enabling an auto-
matic synchronisation and (2) if a transformation is not available, one needs to identify
commonalities. This covers use-cases such as duplicate detection as well as trace link
creation. Thereby, having the trace link data available, common scenarios like change
impact and orphaned elements analysis can be performed.

IoS-Based Services, Platform Services, SLA and Models for the Internet of Services 15

Figure 4 depicts a service, which is constituted of several models, each of them
corresponding to a meta-model, i. e. a formalism representing a number of instances,
e. g. a UML-class diagram or a BPMN process. These instances (models) have common
features, since they represent the same services. For instance, a data object used in the
BPMN has been modelled in a UML-class diagram. This information needs to be kept
in sync in order to fulfill consistency. Nowadays, this is poorly supported by tools and
if at all performed manually.

However, our approach has one major advantage; it is model-driven, which allows
for a common formalism and therefore easy access to data in a closed world. To tackle
the integration issue, we proposed to extend and adapt the aforementioned schema
matching service, enabling it to consume meta-models [16]. We envision an extension
allowing also a consumption of models, so correspondences can be discovered on meta-
model and model level, thus performing meta-model and model matching in one sys-
tem. This allows for a matching of BPMN and BPEL as well as BPMN and UML or
any other meta-model. But we are not limited to these meta-models, but also support
the reoccuring task of matching of concrete instances such as BPEL processes or Java
classes. We name this approach Layer Independent Matching, since it is applicable to
the meta and instance layer. Finally, one can match heterogeneous specifications, thus
discover similarity (trace links) between different models like BPMN, BPEL, WSDL,
USDL, etc as well as their concrete instances.

In model matching (instances) a bigger set of data is available compared to meta-
model matching, so we feel that a stronger focus on structural heuristics is needed.
Following that, we propose to apply graph edit distance algorithm taking advantage
of planar graphs and using different clustering algorithms to cope with the increased
dimension in size of models. For instance, a comparison between two concrete BPEL
processes often contains more than 200 elements. Assuming they are represented as
formal models in a graph this can be extended (e.g. in Java classes) to more than 5000
nodes, comparing 5000 x 5000 nodes leads to 2.5 Mio nodes which requests for a
clustering approach, thus reducing the dimensions of the problem to be matched.

6 Conclusions

In order for the Internet of Services to become a reality, numerous areas of research
need to be (re)explored. From business science, contributions on new business models
and pricing schema will be valuable. In the area of law and cyberlaw, new legal matters
related to the provision and contracting aspects of IoS-based services supported by net-
worked information devices and technologies will be required. From the area of social
science, new community rating schema will be needed. The spectrum of research top-
ics is substantial and sizable. In this paper we have centered our attention on four main
topics: the notion and characteristics of IoS-based services, the characterization of plat-
form services, the management of SLA contracts, and the design of complex IoS-based
services. To correctly understand the notion of IoS-based services, an historical retro-
spective allied with a detailed identification of the specificities of day-to-day services
that can be digitalized into the IoS are fundamental. The next topic presented platform
services and introduced a taxonomy to better understand the type of platform services

16 J. Cardoso et al.

provided by marketplaces and provisioning platforms. Understanding the shared value-
added contribution of an IoS-based service and the contribution of platform services is
important to identify the focus of innovation and uniqueness. The third topic of study
was the management of dependencies between services in compositions. We described
an approach for the handling of dependencies at design and runtime. At its core it has
a dependency model which is created by a semi-automatic approach of automatic dis-
covery and additional modeling. Finally, the fourth topic described a structured and
model-based approach to design and handle the intrinsic complexity of IoS-based ser-
vices. Once individual models to describe a service are obtained, the challenge is to
integrate the models using model matching and transformation. We presented a solu-
tion for supporting a semi-automatic matching of metamodels, models and instances
using a Layer Independent Matching approach.

Acknowledgements. The TEXO project was funded by means of the German Federal
Ministry of Economy and Technology under the promotional reference 01MQ07012.
The authors take the responsibility for the contents. The information in this docu-
ment is proprietary to the following Theseus Texo consortium members: SAP AG,
empolis GmbH, intelligent views gmbh, ontoprise GmbH, Siemens AG, Fraunhofer
Gesellschaft, FZI Forschungszentrum Informatik Karlsruhe, the German Research Cen-
ter for Artificial Intelligence (DFKI GmbH), Technische Universität Darmstadt, Tech-
nische Universität Dresden, Technische Universität München and Universität Karlsruhe
(TH). The information in this document is provided ”as is”, and no guarantee or war-
ranty is given that the information is fit for any particular purpose. The above referenced
consortium members shall have no liability for damages of any kind including without
limitation direct, special, indirect, or consequential damages that may result from the
use of these materials subject to any liability which is mandatory due to applicable law.

References

1. Stafford, T.F., Saunders, C.S.: Moving towards chapter three. e-Service Journal 3(1), 3–5
(2003)

2. Nelson, R.R.: Technology and global industry: Companies and nations in the world economy.
In: Guile, B.R., Brooks, H. (eds.), (1987) vol. 18, National Academy Press, Washington
(April 1989)

3. Baida, Z., Gordijn, J., Omelayenko, B., Akkermans, H.: A shared service terminology for
online service provisioning. In: Janssen, M., Sol, H.G., Wagenaar, R.W. (eds.)Proceedings of
the Sixth International Conference on Electronic Commerce ICEC 2004, ACM Press, New
York (2004)

4. Hull, R., Benedikt, M., Christophides, V., Su, J.: E-services: a look behind the curtain. In:
Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on Princi-
ples of database systems, pp. 1–14. ACM Press, New York (2003)

5. Long, J.: ITIL Version 3 at a Glance: Information Quick Reference. Springer Publishing
Company, Incorporated, Heidelberg (2008)

6. Kotler, P.: Marketing Professional Services. Prentice-Hall, Englewood Cliffs (2002)
7. Payne, A.: Essence Services Marketing. Pearson Education, Limited, London (1993)
8. EU directive 2006/123/EC of the European parliament and of the council of December 12

2006 on services in the internal market. Technical report, European Union (2004)

IoS-Based Services, Platform Services, SLA and Models for the Internet of Services 17

9. Economic Assessment of the Barriers for the Internal Market for Services. Technical report,
Copenhagen Economic (2005)

10. Winkler, M., Schill, A.: Towards dependency management in service compositions. In:
Proceedings of the International Conference on e-Business, pp. 79–84 (2009)

11. Malone, T.W., Crowston, K.: The interdisciplinary study of coordination. ACM Computing
Surveys 26(1), 87–119 (1994)

12. Winkler, M., Sell, C., Springer, T., Schill, A.: A dependency model for composite service
management. In: Proceedings of the International Conference WWW/Internet 2009 (2009)
(to appear)

13. Cardoso, J., Miller, J., Sheth, A., Arnold, J.: Quality of service for workflows and web service
processes. Journal of Web Semantics 1, 281–308 (2004)

14. Cardoso, J., Voigt, K., Winkler, M.: Service engineering for the internet of services. In:
Enterprise Information Systems, Springer, Heidelberg (2008)

15. Scheithauer, G., Voigt, K., Bicer, V., Heinrich, M., Strunk, A., Winkler, M.: Integrated service
engineering workbench: Service engineering for digital ecosystems. In: International ACM
Conference on Management of Emergent Digital EcoSystems (2009)

16. Voigt, K.: Towards combining model matchers for transformation development. In: Proceed-
ings of 1st International Workshop on Future Trends of Model-Driven Development at ICEIS
2009 (2009)

J. Cordeiro, A. Ranchordas, and B. Shishkov (Eds.): ICSOFT 2009, CCIS 50, pp. 18–32, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Pragmatic Web Services: A Semiotic Viewpoint

Kecheng Liu and Adrian Benfell

Informatics Research Centre, University of Reading, Ground Floor
Building 42, Whiteknights, Reading RG6 6WB, U.K.

k.liu@henley.reading.ac.uk, a.j.benfell@reading.ac.uk

Abstract. For an organization to discover and consume contextually relevant
web services over a Service Oriented Architecture (SOA) requires competen-
cies that move beyond the current boundaries of Syntactic and Semantic Web
technology. The theory behind the Pragmatic Web (the study of intentional ef-
fects via communicative acts using the web) and Semiotics (the science of
signs) can make a significant contribution to formulating an approach to dis-
covering and consuming web services in the format of Pragmatic Web Services.
Pragmatic Web Services as defined in this paper affords an array of opportuni-
ties should an organization wish to implement a SOA based upon web services
whilst taking into account any related contextualized organizational parameters.

Keywords: Pragmatic, Semiotic, Semiosis, Service oriented architecture, Web
services.

1 Introduction

Web technology allows organizations acting as service providers or consumers to
work with web services whilst cooperating together across spatial and temporal
differences. Organizations work within a variety of social parameters that can have a
significant influence on the discovery of appropriate web services. Papazoglou [23]
says a major test linked to web service discovery relates to detailing organizational
objectives that correlate with a class of desirable web services required using some
kind of formal request language. Other authors also agree with this position [2], [10],
[15] and [24]. Additionally, these authors focus upon the obstructions linked to web
service discovery, as they assert that web service discovery from an organizational
perspective is the weak component of the tri-themed web service model (service
provider, service consumer and service broker). Consensus emerges between these
authors to suggest that web service discovery is difficult to address within different
organizational contexts. Furthermore, problems can occur when an organization
crosses its boundary in search of web services; the question of matching web services
to organizational parameters becomes even more demanding. However, the intrinsic
features of the Pragmatic Web as the basis for communicative acts between service
providers and consumers and Semiotics for understanding the signs exchanged during
communication, are both amenable to the challenges of discovering web services in
diverse organizational settings. This paper outlines SOA and web services and a
dominant SOA framework, the OASIS Reference Architecture [20] as they relate to

 Pragmatic Web Services: A Semiotic Viewpoint 19

the social implications of realizing a SOA. The theory supporting the Pragmatic Web
and Semiotics is then used to show how web services can be discovered as ‘Pragmatic
Web Services’ within a SOA.

2 Service Oriented Architecture and Web Services – A Motivating
Example

Service Oriented Architecture (SOA) provides a rigorous model for capitalizing upon
the claimed benefits of web services. While the service-oriented approach provides an
effective solution to using various web services to support business processes, it in-
volves a number of key factors that critically determine success. Organizations en-
compass social parameters that are defined by strategic objectives, organizational
structures, people, and business processes [4], [7] and [20]. The social parameters of
business organizations inform normative behavioral patterns established by people
interacting within their domain. The matching of web services using SOA as the plat-
form to represent the social parameters of individual organizations is beyond the ca-
pability and scope of the current design and implementation of web services and SOA
research [23]. Many current effective technical solutions are still not capable of cop-
ing with complex challenges that emerge from organizations that function from within
their set social parameters. The interface of a web service follows a syntactic structure
organized in a service catalogue, in line with a stack of web service protocols allow-
ing them to be called to deliver their functions across spatial and temporal differences
when required. According to the capabilities of each web service, a web service can
perform functions synchronously or asynchronously dependent upon a specified
communication protocol [12]. The communication protocols supporting web services
enable services to be requested and delivered over a SOA platform to execute the
necessary functions to fulfill business processes [14]. However, the interface belong-
ing to a web service imposes a software implementation on a service consumer; the
interface is based upon a narrow functional description not configurable to the social
parameters of an organization.

To highlight these complexities, the OASIS Reference Architecture [20] is used as
a prototype to illustrate the need for further examination from wider perspectives. For
example, the OASIS Reference Architecture stresses the importance of considering
the social parameters aligned to organizations when implementing a SOA based upon
web services:

“The mode of business in a SOA based system is characterized in terms of providing
services and consuming services to realize mutually desirable real world effects. The
people and organizations involved in a SOA based community may be a single enter-
prise or a large scale peer-to-peer network of enterprises and individuals. Many of the
activities that people engage in are themselves defined by the relationships between
people and organizations that they belong to.” [20, p22].

The OASIS Reference Architecture stresses that executing a SOA typically results in
a change to the ‘social structure’ of an organization [20, p24]. Within a social struc-
ture, ‘social norms’ emerge as an assortment of constituents, for example people,
software agents and various other SOA resources of the social structure interact. A
component described as the Business via Services View of the OASIS Reference

20 K. Liu and A. Benfell

Architecture illustrates a generic social structure of an organization implementing a
SOA. The Business via Services View is composed of a variety of other models to
describe the stakeholders and participants, the resources they have access to and their
needs and capabilities. The stakeholders and participants are described as the fore-
most agents belonging to a SOA. It includes a number of definitions, but generally the
terms used revolve around the functions of a service provider and consumer as ‘par-
ticipants’ in SOA. The core of this paper is based upon the social structure and resul-
tant joint interactions between a service provider and consumer (as groups of people)
that implementing a SOA may define. According to [20] a social structure describes
emergent rules that are generally recognized by all participants. A ‘constitution’
within the OASIS Reference Architecture defines the roles of participants within the
rule based framework and their obligations based upon those agreed rules. A ‘shared
state’ emerges when a set of ‘social actions’ (actions in social structure) take place
leading to social facts (social facts that are understood by a social structure). A social
fact is validated as a ‘social norm’ when the social structure attaches meaning to the
social fact. During a process of validation, normative behavioral patterns emerge that
all participants agree to. A ‘commitment’ is a social fact that can be true (or false
should the commitment not be adhered to) when, in a future state, a participant is
obliged to carry out a social fact. The OASIS Reference Architecture marks out how
the social parameters of organizations are formulated when implementing a SOA
(with web services) based upon its description of a social structure. It also provides a
channel to add the concepts drawn from the Pragmatic Web and Semiotics to define
what Pragmatic Web Services are and how they affect the discovery process.

3 The Pragmatic Web

The ‘web’ as it relates to web services is often referred to in three formats: the
Syntactic Web – predominantly used to present the interfaces of web services; the
Semantic Web – using data to generate more meaning related to the orchestration of
web services to suit business processes; and the Pragmatic Web – the contextualiza-
tion of web services through the exchange of signs based upon communicative acts.
Using the web as a tool to access web services so that they can be embedded within
software applications is a significant development of the Syntactic Web. However, the
limitations of the Syntactic Web surface when considering web services. For example,
the characteristics of web services are described using a Web Service Description
Language (WSDL) document based upon the Extensible Markup Language (XML).
The WSDL defines the web service elements such as the data types, parameters, op-
erations, and the binding and communication stack of protocols, so that a service
consumer can make use of internet and web technology to operate any web service
[8] and [16].

The elements of a WSDL file are an essential ingredient to join a service provider
and consumer in a business transaction. However, the syntactic mechanisms that
make web services work on the Syntactic Web do not provide the facilities for a ser-
vice provider to describe their web services effectively, and conversely a service con-
sumer to make informed choices. Furthermore, joint actions as they are described
within the OASIS Reference Architecture assume that service providers and consum-
ers carry out their work independently, and join forcefully only when a web service is
called for using the WSDL to coordinate their interaction.

 Pragmatic Web Services: A Semiotic Viewpoint 21

The Semantic Web by contrast, Berners-Lee et al [5], is based upon the idea that
meaning can be obtained from the XML mark-up to provide more understanding
related to individual web services, Shadbolt et al [28]. The discovery of web services
as it features within the realm of the Semantic Web is to use software-based agents to
ensure that relevant web services are the ones selected on behalf of a service
consumer only. To achieve semantic web service discovery, ‘static ontologies’ are
applied to construct a domain of interest that resides within an organization, Schoop
et al [29]. The ontological units described are typically objects (or instances), classes,
attributes (or slots) and relations. Objects are individual instances of a class, and a
class describes a collection of similar objects. Prime examples of such ontology lan-
guages include the Web Ontology Language (OWL) [21] and one specific to web
service discovery OWL-S [22]. Ontology languages permit a decentralized approach
to explain in more detail the salient features of web services. However, this category
of ontology modeling is a weakness as they facilitate the modeling of data structures
only, suggesting they have limitations when the social parameters of organizations
must be considered. This places a limit to the effectiveness of capitalizing upon OWL
and OWL-S to assess web services from organizational perspectives.

Stamper [31] recognizes three categories of ontology modeling that provide clues
to their usefulness in connection to web service discovery. The first relates to the
recognition of symbols as they are typically found in any standard presentation for-
mat, for example the Syntactic Web. The second identifies distinct objects and object
type classification, similar the type featured in OWL/OWL-S as used within the Se-
mantic Web. The third type of ontology is based upon the view that the world known
to a person consists of only the actions a person can carry out in their environment. To
overcome the limitations of the ontologies that can be modeled using languages such
as OWL/OWL-S within the setting of web service discovery, Stamper’s [31] third
type of ontology is particularly relevant and conclusively finds its way into the
Pragmatic Web.

Singh [30] put forward an opinion about some issues that could also affect the
take-up of the Semantic Web – chiefly related to the ontology modeling tools used.
Schoop et al [29] provides support to Singh’s outlook on the Semantic Web by saying
“the most problematic assumption (belonging to the representation of ontologies
within the Semantic Web) is that context-free facts and logical rules would be suffi-
cient”. Singh [30] recommends the Pragmatic Web as a companion to the Semantic
Web to resolve the issues that could impair the take-up of the Semantic Web. The
exposure made by Stamper [31] related to ontologies is further emphasized by
deMoor [11]. The three principles of the Pragmatic Web made by Singh [30], who
builds his work on [19], is revised further by Liu [18] as:

• User before provider: the emphasis of the Pragmatic Web focuses upon the effect
of information about web services on service consumers, rather than on the intended
meanings supplied by the service providers about web services as defined in a static
object type ontology;
• Process before data: the execution of the application, the execution of a web ser-
vice is important, which constitutes a ‘run-time’ context. Such a context will deter-
mine the meaning dynamically; therefore the Pragmatic Web is context-aware;

22 K. Liu and A. Benfell

• Interaction before presentation: dynamic interpretation of web service suitability
produces the actual effect of communication; the meaning generated in the process of
interpretation cannot be dependent on the presentation of a static object based ontol-
ogy that is found within the Semantic Web.

Pragmatics as it features within the Pragmatic Web is a scientific discipline to study
intention and effect of human communication. Syntactics, semantics, and pragmatics
as they correlate to the three versions of the web, also constitute the traditional disci-
pline of studying signs used in communication and information processing – Semiot-
ics. Furthermore, semiotics puts the evolution of the web on a sound footing as it
changes the focus from syntactics and semantics to pragmatics, thus reflecting the
advancements of the Pragmatic Web [18]. The theory supporting the Pragmatic Web
provides the conduit between a service provider and consumer to overcome the issue
of matching web services to organizational parameters, particularly since the OASIS
[20] framework advocates the ‘forceful joining’ of service providers and consumers
using communication actions to underpin interaction. The framework in fig 1 affords
the joining of service providers and consumers. Although derived from the OASIS
Reference Architecture it takes into account that communicative actions are config-
ured by intentional behavior in an interaction setting. In addition, the framework is
used to shape how semiotics in the form of ‘shared semiosis’ can occur between a
service provider and consumer. Shared semiosis is used to configure the joint actions
between a service provider and consumer – a missing component from the OASIS
Reference Architecture.

Participant

Serv iceProv ider Serv iceConsumer

Communicativ eAct

JointAction

Intent RealWorldEffect

inf luences

1

will hav e

1..*

1

conf igure

1..*

1..*

charge

1

1

*

1

inv olv ed in

1..*

1

conv ey s

1..*

1

*

Fig. 1. Joint Action as Interaction

 Pragmatic Web Services: A Semiotic Viewpoint 23

The provision and consumption of a web services are complex processes of shared
semiosis carried out by service providers and consumers. For the provider, the semio-
sis takes place during the construction of a web service; while the semiosis for the
consumer occurs when a web service is to be identified and used. Should the process
of semiosis not be shared, the success of web service discovery relies upon the poten-
tial of a web service meeting a consumer request – a remote possibility should a
service provider and consumer not communicate through joint actions as advocated in
this paper.

To maximize the success of discovering suitable web services, the service provider
and consumer must understand the semiosis of each participant in a joint action, and
without any form of communication where there is an exchange of various signs, is
highly unlikely. To overcome this issue, semiotics as the corroborating theory is used
to put the concept of joint actions on a reliable foundation.

4 Semiotics as the Theoretical Underpinning

Semiotics is traditionally based upon two domains, Saussurean [26] linked to
linguistic studies, and Peircean [25] where all kinds of signs including linguistic ones
are investigated. Both domains adhere to a subjective element to understanding signs
as signs can have different meanings across various social settings. Peirce’s view of
semiotics is used to arrange shared semiosis between service providers and consumers
due to its triadic grounding. For instance, to form an understanding of a sign Peirce
defined the term semiosis, the interplay between three unified parts: a sign, an object
and an interpretant. A sign can take on various formats: symbolic, iconic and
indexical. Symbolic signs identify their objects through cultural conventions such as
words; iconic signs represent their objects by similarities, such as images; and
indexical signs are signs that have causal links to meaning, for example a
thermometer indicating a temperature, a petroleum gauge to indicate the level in a
petroleum tank. Each sign classification has on order of ‘agreed rules’ associated with
them to make them work. For example, indexical signs are considered to be highly
subjective and symbolic signs such as words are not so subjective, as people will
continually return and agree to their meaning.

Fig. 2. Semiotic Triangle

24 K. Liu and A. Benfell

Regarding the process of semiosis in fig 2 [17, p16], a sign refers to an object, and
the object verifies its sign. The object is the semantic meaning of sign; there is an
ontological dependency between the object and sign as the object confirms the exis-
tence of a sign. The sign – object relation is added to by the interpretant, consequently
an interpretant is a more developed sign in terms of understanding. The interpretant
holds the contextual meaning given to a sign – it can be made up of norms that pro-
vide the rules or law by which meanings belonging to an interpretant sign can be
revealed. Furthermore, according to Liu [17] a semiosis is a sign-mediated process in
which a person gives meaning to a sign, hence it is a way to build knowledge and
experience attributable to people only. A semiosis therefore can only take place in a
human communication setting as it is mediated using signs such as languages (either
natural, computational or formal). Peirce [25] also introduced three modes of infer-
ence that sit within the process of semiosis, abduction, deduction and induction. The
purpose of abduction is to develop a hypothesis to explain the observations made
related to a sign. Deduction generates an incomplete conclusion related to the mean-
ing of sign, the object, but confers the existence of a sign. Induction completes the
conclusion of a sign by verification through consensus. To complete a full under-
standing of an inquiry through semiosis, abduction, deduction and induction must be
used in combination to infer the meaning of a sign. Induction as a part of semiosis in a
shared format draws in the roles of service providers and consumers in joint actions
that can be described by affordances, norms and deontic logic [17].

4.1 Affordances, Norms and Deontic Logic

The theory of affordances originates from Gibson [13] and was extended to the study
of the real world for understanding patterns of human behavior, Liu [17]. Society as
an environment sets boundaries that enable many patterns of behavior possible.
Should a person (a service provider or consumer) be removed from its environment,
the range of behavior the person owns would cease to exist. Also, according to Liu
[17], a person by knowing the invariants (general patterns of behavior) can learn the
acceptable social boundaries. The OASIS Resource Architecture refer to these as
‘shared states’ that emerge when a set of ‘social actions’ (actions in a social structure)
take place leading to social facts (social facts that are understood by a social struc-
ture). A social fact is then validated as a ‘social norm’ when a social structure attaches
meaning to the social fact, affordances in this context subsume norms that fall into
two categories, social and legal.

According to Boella et al [6] social norms “exist where models of human activity
are normatively regulated”. Essentially social norms provide a mechanism by which
people through consensus, recognize and adhere to. Social norms not only determine
the meanings people attach to signs but also introduce unpredictable behavior [32].
Regarding norm enforcement, social norms are ‘enforced’ by coordination motives
that are governed by social phenomena as they are shared expectations about a
solution to a given problem, hence there is no need for rigid enforcement.

Social norms are governed by expected patterns of behavior; ‘legal’ norms
however require a different form of control. Legal norms are sustained by social dis-
approval or a form of punishment for norm violation. Legal based norms are an ex-
pression of obligations and rights that a person has within a social structure of some
kind [6] and [17]. Typically legal norms are supported by a consenting mechanism

 Pragmatic Web Services: A Semiotic Viewpoint 25

that is accepted by people since they can be used to overcome problems of coordina-
tion and cooperation. The purpose of considering social and legal norms in a shared
semiosis between a service provider and a consumer is to initiate a mechanism
whereby norms are created and agreed upon by both parties; they are used to describe
the elements of web services as ‘codes’.

Deontic logic includes obligation, permission and forbiddance. Social and legal
norms can be specified using these deontic operators as they fall into the category of
behavioral norms – that is what people obligatory (must), permitted (may) and forbid-
den (must not do) [17]. The list of deontic operators relates to the notion of emergent
social norms produced when the various parts of a social structure cooperate in a
SOA. Legal norms are imposed on organizations through acts agreed by society, such
as government. The deontic operators are therefore used to capture the social and
legal norms that explicate the social parameters of an organization, conferred by
affordances, the repertoire of behavior known only to people acting as in a service
provider or consumer organization. Hence affordances represent the ‘business
knowledge’ that is used in the web service matching process in a shared semiosis.

4.2 Speech Act Theory

An ‘illocutionary act’, described by Austin [1], models the intention that a speaker
makes by saying something to a hearer, and the hearer doing something. Austin estab-
lishes two further ideas that supplement the illocutionary act, constative utterances
(true and false) and performative utterances (to do something by speaking). Austin
goes further by saying that an illocutionary act consists of ‘securing the uptake’, that
is making sure the act is executed. To strengthen an illocutionary act, Searle [27]
embellishes Austin’s theory by adding illocutionary points, for example:

• Assertive – to commit the speaker (in varying degrees) to something being the
case, or to the truth of the expressed proposition;

• Directive – to attempt (in varying degrees) to request the hearer to do something.
These include both questions (which can direct the hearer to make an assertive speech
act in response) and commands (which direct the hearer to carry out some linguistic
or non-linguistic act);

• Commissive: to commit the speaker (in varying degrees) to promise to do some
future course of action;

• Declaration: to bring about the correspondence between the propositional content
of the speech act and reality (e.g., pronouncing a couple married);

• Expressive: to express a psychological state about a state of affairs (e.g., apologiz-
ing and praising).

The components of Speech Act Theory (SAT) are used to generate communicative
acts to support joint actions between service providers and consumers; they interface
the exchanges between service providers and consumers as joint actions. Table 1
depicts where the Pragmatic Web and Semiotics can be used to fortify how joint ac-
tions are carried out in SOA and web service discovery setting.

26 K. Liu and A. Benfell

Table 1. SOA, Pragmatic Web and Semiotics

SOA and Web Services Pragmatic Web Semiotics
Communication Actions. Speech Act Theory. Speech Act Theory.

Joint Actions.
Effect of information
through communicative acts.

Shared semiosis configures the
communicative acts.

Real-world effects (Intent).
Context awareness through
communicative acts.

Initiated by shared semiosis.

Obligation. Deontic operators.

Social Norms.
Affordances and norms (Social
and Legal) used as a part of
shared semiosis.

To summarize, the relationship between the Pragmatic Web and Semiotics is par-

ticularly relevant to the study of web services in service oriented contexts. For exam-
ple, the shared semiosis approach to joint actions facilitated by communication acts is
the starting point in defining Pragmatic Web Services.

5 Embedding Semiotics into Web Service Discovery

Within service oriented contexts, the signs generated by a service provider and
consumer are inclined to be textually orientated, for example a WSDL file. A service
provider by authoring such a text goes through a process of semiosis. Equally, a
service consumer by examining a WSDL file to assess the functional properties and
capabilities of a web service also completes a process of semiosis. To place shared
semiosis within the context of SOA and web services, Liu [17] describes four parts
that are applicable:

1. Universal – it explains the process used for creating and using a sign (the codes
created and used in a text describing the elements of a web service as communicated
between a service provider and consumer);
2. Specific Criterion or Norm – semiosis is a process capable of identifying any-
thing present according to the study of signs (it relates to the dependencies between
the codes describing the elements of a web service that a service provider and con-
sumer agree to be present);
3. Subject-dependent – it is closely related to the interpreter who can be an individ-
ual, or a group for example, with certain knowledge obeying certain affordances and
norms (the interpretant in Peircean semiotics as it relates to the affordances and norms
owned by the service providers and consumers that influence the inferences made
regarding the codes used to describe the elements of a web service);
4. Recursive (an object or an interpretant generated by a service provider and con-
sumer may become a different sign to be interpreted in a temporal joint action).

Additionally, syntactics as a branch of semiotics considers the formal properties of
symbols as they relate to how words are used to form phrases and sentences inside
texts. Syntactics provides a route into determining how a shared semiosis starts
between a service provider and consumer. Understanding the syntactics of a text

 Pragmatic Web Services: A Semiotic Viewpoint 27

through a process of shared semiosis, works as the starting point in a dynamic
(temporal) series of events as syntactics, semantics and pragmatics are used in
harmony to produce shared meanings. A service provider and consumer, for example,
would review a text that contains various codes (syntactics) and derive a meaning
(semantics) of each code. A full understanding of web service potentiality can only be
reached when the effects of the sign, made by contextual interpretation, is made by
the service provider and consumer through consensus (pragmatics). Based upon
syntactics, semantics and pragmatics, and the four elements of semiosis put forward
by [17], the basis for shared semiosis that frames the evolution of Pragmatic Web
Services is defined as:

• Syntactics: an agreement made between a service provider and consumer relating
to the structure and expected content as a universal (elements) of web service descrip-
tion files;

• Semantics: dynamic recursive agreement relating to the meaning of elements
through coding contained within web service description files;

• Pragmatics: subject-dependent interpretation of the applicability of web services
using a specific criterion or norm linked to affordances.

With reference to fig 3 (and arrow 1) below a range of textual documents conveying
signs based upon ‘intertextuality’ influence the encoding of description specific to
web services (abduction). Intertextuality, described by Chandler [9] refers to the
authorship of a text and its encoding being driven by relationships to other texts. For
example, a WSDL file is linked to other files such as a requirement specification
generated during software development. A person constructing a web service
description file would interpret the text in a specification document through the
process of semiosis and accordingly document a web service with descriptions.
Encoding therefore relates to the production of a textual document containing the
codes that service providers and consumers agree to as a shared vocabulary. Each
code in an XML format is related to the elements found in a WSDL file, but each
code must also have representation in a norm and consequently as an affordance.

Textual encoding of documentation, shown in fig 3 (arrow 1), associated with web
service description in combination with intertextuality, complements authorship with
other available texts, and is fundamental when a shared semiosis takes place between
a service provider and consumer. Table 2 below depicts the process of semiosis as it
is aligned to a service provider and consumer linked to any available texts. A service
consumer would encode a web service requirements specification that reflects the
social parameters of their organization embodied as functional requirements – ex-
posed as affordances and norms. Table 2 also treats service provider and consumer
semiosis not as an independent activity prior to the publication and search for web
services as the codes used to define web service elements must be agreed first through
joint actions. A service provider or consumer decodes a text (deduction) through
shared semiosis by following the agreed codes. A service consumer (as a reader)
would participate actively in constructing a meaning associated with a textual docu-
ment [9]. Applying the term ‘denotative sign’ (arrow 2 in fig 3) for textual documen-
tation a service provider and consumer would arrive at a shared understanding (but
incomplete of its full interpretation) of any collective text by following the agreed

28 K. Liu and A. Benfell

Sign (Textual
code)

Object

Pragmatic
(Interpretant)

SHARED
SEMIOSIS

(intertextuality
and encoding -

negotiated code
and reading)

Syntactic (Subjects
contained in a text)
Textual document(s)
related to description
or specification

Semantic (Ontological
Dependencies)
Determine intended
meaning of the signs

Pragmatic
Affordance and
social and legal
norms

3.Final
(interpretant
sign)

2. Decoding
(connotativ e
sign)

1. Encoding (denotativ e sign)

Fig. 3. Shared Semiosis

Table 2. Semiotic Branch

Semiotic
branch Intent and Real World Effect Semiosis (intertextuality – encoding,

negotiated code and reading)

Syntactic
Encoding
(denotative sign).

Capture through existing texts
the elements to form codes that
describe the syntactic features of
a web service.

Sign – Textual code (intertextuality and
encoding)
Source code, analysis and design
specifications – narrative and
diagrammatic models.

Semantic
Decoding
(connotative sign).

Comprehension by consensus
(using communicative acts) the
elements symbolized as codes in
relation to the functions and
capabilities of a web service.

Object – Connotative sign
(negotiated code and reading)
Ontological dependencies linked to the
contextualized interpretation by an
Interpreter (Participant).

Pragmatic
(interpretant sign).

Linking the interpretations of the
elements with potential contexts
and effects on all participants
and specifying a meaning of all
subjects congruent with all
participants.

Interpretant – Connotative signs linked to
the social parameters of a business
organization defined as affordances and
structured using norms.

codes. Hence, a service provider or consumer can ascertain the primary meaning
conveyed through consensus, or as in the case of a web service, the elements of a web
service represented as codes. The denotative sign (or signs) defining an agreed
vocabulary between a service provider and consumer opens up further interpretation
of connotative signs (induction).

 Pragmatic Web Services: A Semiotic Viewpoint 29

Participant

Participant

Serv iceProv ider

Participant

Serv iceConsumer

Communicativ eAct

JointAction

Intent RealWorldEffect

Assertive

Commissive

Declaration

Directive

Expressive

SharedVocabulary

conv ey s

1..*

charges

1..*

will
hav e

1..*

create
and
modif y

1

1

inv olv ed in

1..*

inf uences

1

1..*

1

1..*

conf igure

Fig. 4. Pragmatic Web Services

The decoding of a sign initiates a denotative sign, a consensus (objective) view of
the sign (code) meaning. However, as a service provider or consumer decodes a joint
vocabulary, any social parameters and ‘personalized’ associations linked to the codes
influence the meaning. Hence, once an agreement is formed through denotation a
service consumer will influence the process of shared semiosis through governed
social parameters and independent understanding of the codes created by the service
provider. Consequently, connotative signs emerge that emphasize the need for a
deeper shared semiosis. Negotiated code and reading relates to the process that a
service provider or consumer will resist and modify meaning of a text according to
social position, personal experiences and interests through affordances but will gener-
ally accept the preferred meaning intentionally communicated. Therefore, a final
interpretant sign based upon Peirce’s view of induction [25] must be reached by a
service consumer following instances of shared semiosis at different time intervals.

Not until an interpretant sign is reached relating to each sign (code) that a complete
vocabulary of code definitions is available. In essence, the social properties belonging

30 K. Liu and A. Benfell

to an organization inform the interpretation of signs – the interpretant is then linked
with the meaning of codes in a text. The agreed shared vocabulary completes a ‘first
level’ shared semiosis between a service provider and consumer.

The service consumer moves to a diagnostic and prognostic phase to determine the
final interpretant sign. During diagnosis the service consumer would identify the
suitability of a web service by linking the meaning obtained through shared semiosis
(vocabulary) with organizational context. However, the shared vocabulary as agreed
through shared semiosis is temporal, as the service provider and consumer may return
to a shared semiosis as a result of diagnosis. Prognosis where the final interpretant
signs exist determine the acceptance or refusal of a web service – should agreement
not be made pertaining to the codes used by a service provider or consumer, each is
obliged (an obligation state in the OASIS Reference Architecture) not to continue in a
joint action. Hence, the pragmatic matching of web services is made explicit through
an agreed shared vocabulary.

Joint actions as they are contingent upon the process of shared semiosis are in-
formed by communicative acts [3]. Communicative acts convey intent as service
provider and consumer behavior has an effect within the real-world (fig 4). The real-
world effects change shared states (shared states as described in the OASIS Reference
Architecture). All of the components in fig 4 solidify the definition of Pragmatic Web
Services. Furthermore, key to this definition is the notion of shared semiosis as it
harmonizes each component of the framework.

6 Conclusions

The emergence of the Pragmatic Web opens up a frontier to capitalize upon web ser-
vice technology. However, the challenges are far from technical, and many are be-
yond the capability of the current approaches. The Pragmatic Web and Semiotics
offers a sound theoretical basis for emergent research into SOA and web services. The
semiotic perspective offers a useful insight in the theoretical underpinning for suc-
cessful web service discovery in the service oriented paradigm. The approach to web
service discovery described here illustrates how the role of shared semiosis structured
as joint actions in the provision and consumption of web services can work.

For example, the purpose of capturing a communicative act and applying semiosis
to the symbolic signs (the codes) generated by joint actions can provide a means to
capture intentions originating from service providers and consumers. The model in fig
5 shows that a service provider or a consumer communicative act can capture more
intentions leading to infinite semiosis. Affordances are used to ensure that a request
for a web service, for example, is compliant with a shared vocabulary.

The evolution of the Syntactic Web and the Semantic Web to the Pragmatic Web
improves greatly the quality of the work related to searching for web services over a
SOA platform. Semiosis as it emerges from Peircean semiotics is theoretically open to
the challenges of matching web services to the social parameters set by organizations.
The social parameters are known to the people who belong to an organization and are
an essential ingredient that determine the success or failure of web service discovery.
The social parameters are represented as affordances which are described by social
and legal norms. Should an agreement not be made regarding the meaning of each

 Pragmatic Web Services: A Semiotic Viewpoint 31

code, a service provider and consumer can each terminate a business transaction.
Pragmatic Web Services are defined by the relationship between a service provider
and consumer through the interaction of a shared semiosis orchestrated by communi-
cative acts – joint actions to achieve the matching of appropriate web services. Should
the concept of Pragmatic Web Services not be followed, the probability of matching
web services is greatly reduced and left as a remote possibility.

References

1. Austin, J.: How to Do Things with Words. Harvard University Press, Cambridge (1962)
2. Atkinson, C., Bostan, P., Hummel, O., Stoll, D.A.: Practical Approach to Web Service

Discovery and Retrieval. In: IEEE International Conference on Web Services, Salt Lake
City UT, USA, July 9-13 (2007) ISBN: 0-7695-2924-0

3. Benfell, A., Liu, K.: Defining a Pragmatic Based Web-service Discovery Mechanism,
I-SEMANTICS Special Track: 4th AIS SigPrag. In: International Pragmatic Web Confer-
ence. Graz, Austria, pp. 763–774 (2009) ISBN 978-3-85125-060-2

4. Berkem, B.: From The Business Motivation Model (BMM) To Service Oriented Architec-
ture (SOA). Journal of Object Technology 7(8), 57–70 (2008)

5. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American, 34–43
(May 2001)

6. Boella, G., Torre, L., Verhagen, H.: Introduction to Normative Multiagent Systems. Com-
putational and Mathematical Organizational Theory 12(2-3), 71–79 (2006)

7. Business Motivation Model – OMG, http://www.omg.org/spec/BMM/1.0/
8. Carey, M.: SOA What?, pp. 92–93. IEEE Computer, Los Alamitos (March 2008)
9. Chandler, D.: Semiotics – The Basics. Routledge, New York (2002)

10. Crasso, M., Zunino, A., Campo, M.: Easy web service discovery: A query-by-example
approach. Science of Computer Programming 71, 144–164 (2008)

11. de Moor, A.: Patterns for the Pragmatic Web. In: Dau, F., Mugnier, M.-L., Stumme, G.
(eds.) ICCS 2005. LNCS (LNAI), vol. 3596, pp. 1–18. Springer, Heidelberg (2005)
(invited paper)

12. Erl, T.: SOA: Principles of Service Design. Prentice-Hall, Englewood Cliffs (2008)
13. Gibson, J.: The Theory of Affordances. In: Shaw, R., Bransford, J. (eds.) Perceiving, Act-

ing, and Knowing (1977) ISBN 0-470-99014-7
14. Huang, S., Chu, Y., Li, S., Yen, D.: Enhancing conflict detecting mechanism for Web Ser-

vices composition: A business process flow model transformation approach. Information
and Software Technology 50(11), 1069–1087 (2008)

15. Kim, I.-W., Lee, K.-H.: Web Services, Describing Semantic Web Services: From UML
to OWL-S ICWS. In: IEEE International Conference on Web Services, vol. 9(13), pp.
529–536 (2007)

16. Li, Y., Liu, Y., Zhang, L., Li, G., Xie, B., Sun, S.: An Exploratory Study of Web Services
on the Internet. In: IEEE International Conference on Web Services, Salt Lake City UT,
USA, July 9-13 (2007) ISBN: 0-7695-2924-0

17. Liu, K.: Semiotics in Information Systems Engineering. Cambridge University Press,
Cambridge (2000)

18. Liu, K.: Pragmatic Computing: A Semiotic Perspective to Web Services, Keynote paper.
In: Proceedings of ICETE 2007, E-Business and Telecommunications, pp. 3–15. Springer,
Heidelberg (2008) ISSN 1865-0929

32 K. Liu and A. Benfell

19. Morris, C.W.: Foundations of the Theory of Signs. Chicago University Press, Chicago
(1938)

20. OASIS Reference Architecture for Service Oriented Architecture Version 1.0, Public
Review Draft 1 (April 23, 2008), http://docs.oasis-open.org/soa-rm/
soa-ra/v1.0/soa-ra-pr-01.pdf

21. OWL Web Ontology Language Overview,
http://www.w3.org/TR/2004/REC-owl-features-20040210/

22. OWL-S OWL-S: Semantic Markup for Web Services,
http://www.w3.org/Submission/OWL-S

23. Papazoglou, M., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Computing:
State of the Art and Research Challenges, pp. 38–45. IEEE Computer, Los Alamitos
(November 2007)

24. Pastore, S.: The service discovery methods issue: A web services UDDI specification
framework integrated in a grid environment. Journal of Network and Computer Applica-
tions 31, 93–107 (2008)

25. Peirce, C.S., Hartshorne, C., Weiss, P., Burks, A.W. (eds.): Collected writings, vol. 8.
Harvard University Press, Cambridge (1931)

26. de Saussure, F.: Course in General Linguistics (trans. Roy Harris),, London, Duckworth
(1916/1983)

27. Searle, R.: Speech Acts. Cambridge University Press, London (1969)
28. Shadbolt, N., Hall, W., Berners-Lee, T.: The Semantic Web Revisited. IEEE Intelligent

Systems, 96–101 (May-June 2006)
29. Schoop, M., de Moor, A., Deitz, J.L.G.: The Pragmatic Web: A Manifesto. Communica-

tions of the ACM 49(5), 75–76 (2006)
30. Singh, M.P.: The Pragmatic Web. IEEE Computing, 4–5 (May-June, 2002)
31. Stamper, R.: Knowledge as Action: a Logic of Social Norms and Individual Affordances.

In: Gilbert, G.N., Heath, C. (eds.) Social Action and Artificial Intelligence, pp. 172–191.
Gower Press, Aldershot (1985)

32. Young, P.: Social Norms. In: Durlauf, S.N., Blume, L.E. (eds.) The New Palgrave Diction-
ary of Economics, 2nd edn., Macmillan, London (2008)

Part I

Enterprise Software Technology

Unified Hosting Techniques for the Internet of
Tradeable and Executable Services

Josef Spillner, Iris Braun, and Alexander Schill

Technische Universitt Dresden
Faculty of Computer Science, Chair for Computer Networks

Nthnitzer Str. 46, 01187 Dresden, Germany
{josef.spillner,iris.braun,alexander.schill}@tu-dresden.de

Abstract. In a collaborative Internet of Services, traditional hosting concepts
from service-oriented architectures are not sufficient anymore. Instead of just reg-
istering service descriptions at central brokers, services are increasingly consid-
ered tangible, distributable and tradeable dynamic entities for all aspects around
the service execution itself. The set of manageable service artifacts encompasses
heterogeneous description files, usage contract templates and pricing models.
Electronic services also contain implementation artifacts in a variety of formats.
For service broker and marketplace operators, it is essential to be able to process
these service artifacts. Each service technology usually requires a separate execu-
tion platform which eventually leads to a high complexity for the administration
and management of services. Similar to the unification of invocation of web ser-
vices through protocol adapters, it is clearly needed to unify management aspects
like deployment, monitoring and adaptation of service implementations across
technologies. We therefore propose the concept of unified hosting environments
for tradeable and executable services.

1 Introduction

Software applications can run either locally on a user’s computer or remotely on a
server. Historically, each remote application required its own protocol with binary or
text-based data transmission. More recently, the use of extensible protocols like HTTP
and SOAP with a predefined structure and application-specific content expressed as
XML, JSON or any other generic format has become popular especially in web-centric
environments. In combination with a discoverable uniform invocation interface, the so-
called service description, such applications are known as web services. The interest
in web services is growing not only due to the technical merits. Instead, the more so-
phisticated web service management and trading facilities become, the more they will
be used as electronic representation of conventional business services. From a business
perspective, supplementing or replacing conventional services and processes with their
electronic counterparts increases selection and composition flexibility, reliability and
global availability.

Legacy software is often made accessible through the web for interaction with users,
or as a web service for programmatic access. Such additions are known as applica-
tion service provisioning (ASP) and lately as software as a service (SaaS). Despite this

J. Cordeiro, A. Ranchordas, and B. Shishkov (Eds.): ICSOFT 2009, CCIS 50, pp. 35–45, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

36 J. Spillner, I. Braun, and A. Schill

evolution of interface additions, the server-side installation procedure and consecutive
service management has not become easier. To date, there are no uniform administra-
tion interfaces available for managing heterogeneous services. Most approaches treat
web services as pre-installed static software, essentially preventing the consideration of
services as distributable entities.

On the other hand, a growing number of service offerings is being created with an In-
ternet of Services [8] in mind. Easy installation, often just consisting of hot-deploying
a self-containing service package, and registration at a service directory are among
the characteristics of such services [12]. Due to the popularity of this development
model, various different service execution techniques and programming languages as
well as description and packaging formats for service deployment have been created
and are widely used. Additionally, the runtime environments for such services range
from operating-system level execution to highly sophisticated containers, execution
engines and middleware infrastructures. In spite of the differences, they all provide
a managing container for the deployed web service implementation. This assumption
contrasts with recent research ideas for distributed, self-managed hosting [3] without
containers, which is not yet widely used. We therefore refer to the individual middle-
ware implementations of hosting environments for service execution and management
as containers.

For service providers, this variety makes it difficult to offer the same level of hosting
support and availability guarantees for any service. Even basic management tasks like
retrieving a list of available services and service instances is not easily possible with
today’s systems. A unification of the containers into a Unified Hosting Environment
(UHE) is thus needed. In this paper, we propose such a unification for the packaging,
description and implementation of services and will show how heterogeneous service
hosting in the Internet of Services becomes possible without excluding the existing
service development community.

The remainder of the text is structured as follows: First, we present existing ap-
proaches for service trading and hosting and analyse their shortcomings. Then, we ex-
plain how to assess service packages and corresponding containers at an abstract level
by representing their most important service hosting and management aspects in mod-
els. A formal container notation in UML based on these abstractions is given as the
least common denominator of the unification concept. Third, we outline the concept of
a UHE using this notation and well-known software design patterns.

2 Related Work

Background information on the challenges of introducing new network-level and appli-
cation-level services into existing infrastructures is given in [11]. Both deployment and
management, refined by us to cover monitoring and adaptation, has thus already been
known to raise issues for about a decade.

A common issue with new technologies like SOA is the lack of widespread method-
ologies. The main contributing factors to this issue are heterogeneous stakeholders,
programming languages, protocols, interfaces and implementation frameworks. The
OASIS Framework for Web Service Implementation (FWSI) has been designed and

Unified Hosting Techniques for the Internet of Tradeable and Executable Services 37

analyse

implement

test

deploy

manage
(update,
monitor,
adapt)

 Hosting

Fig. 1. Typical service hosting lifecycle

extended to cover the requirements analysis, development and testing of services, but
the subsequent phases of deployment and operation are not yet covered [5]. The gap is
shown in Fig. 1.

An approach to fill the gap is the Service Grid Infrastructure (SGI) [1]. Its pur-
pose is the deployment and execution of heterogeneous services under a number of re-
quirements: dynamic deployment, stateful services and consideration of non-functional
properties. By restricting the service implementation technology to OSGi and EJB, the
approach fails to take advantage of its otherwise sound decoupled management and
execution of stateful services in a grid context. On the management layer, it offers
unified access to monitoring data, but no unified adaptation interface. Despite an ex-
tension to .NET services later on [10], today’s needs for dynamic service hosting range
from small CGI scripts and BPEL files to complex, pre-configured virtual machines and
corresponding SOA-aware management interfaces.

The Service Component Architecture (SCA) is an approach for unification of devel-
opment and deployment of services. It wraps each service into a uniform component
and defines dependencies between those [4]. However, there are several shortcomings
with SCA regarding unified hosting. It requires the presence of the wrapper as part of the
distributed service package. Furthermore, while a configuration interface is available,
it does not cover dynamic reconfiguration at run-time. The omission of this capability
leads to restrictions on adaptation mechanisms. Other dynamic aspects like switching
connection protocols are supported, though. Therefore, we will not base our proposal
on SCA but rather treat SCA as yet another concrete container in which SCA-compliant
packages can be deployed.

Based on the evaluation of existing works, we formalise unified service hosting
and propose a more complete and more suitable system which honours native service
packages and hence doesn’t require developers to learn additional technologies. Our
proposal maintains a separation of concerns between access to services from clients
and their management from hosting agents.

3 Abstraction of Service Packages

We propose the Tradeable Services Model (TSM) as light-weight, extensible packag-
ing structure for services. TSM divides packages into declarative and imperative service

38 J. Spillner, I. Braun, and A. Schill

Web service
implementation

Graphical impression

Functional service
description

SLA/
SLA template

Non-functional/
semantic description

BPEL Java

Ruby

PNG

JPEG

WSDL WADL

USDL

WSML

CQML+ RDF

WS-Agreement

WSLA

Tradeable
Service
Package

Fig. 2. Service package structure according to the Tradeable Services Model

artifacts. Declarative artifacts encompass the service descriptions in a variety of formats,
contract templates, user interface hints and pricing models. The imperative artifacts only
exist for executable electronic services for which they define the implementation. Some
declarative artifacts are being used together with the imperative ones during service ex-
ecution, such as syntactic service operation and parameter descriptions according to the
Web Service and Web Application Description Language (WSDL, WADL). Others are
purely of interest for service trading independently from the existence of a web service
implementations, such as business and legal aspect descriptions according to the Unified
Service Description Language (USDL). However, artifacts from the latter group might
be bound to runtime-relevant artifacts including service level agreement templates, used
to form access-controlling contracts during negotiation, and interpretable pricing mod-
els, used to generate bills based on monitored invocation patterns.

Service packages conforming to the TSM may be file archives, directories or other
logical combinations of the artifacts. The package itself and each artifact shall be con-
sidered dynamic to allow for a flexible lifecycle management including insertions, up-
dates and removals. The package structure along with typical representatives of earch
artifact group is shown in Fig. 2. This report will not elaborate on the abstraction of con-
tents of declarative artifacts. Instead, the focus will be on deployment and management
of the executable parts within service containers and related management of declarative
artifacts as opaque entities.

4 Abstraction of Containers

The abstract notation of service execution containers shall be derived from a comparison
of commonalities found in existing container implementations. Analogous to the TSM,
we derive the Tradeable Services Container Model (TSCM) with a minimal set of man-
agement interfaces and propose to align container implementations to the model. The

Unified Hosting Techniques for the Internet of Tradeable and Executable Services 39

Table 1. Overview on service containers

Container Overview

Container Implementations Deployment Repository

1. OSGi Knopflerfish, Equinox bundle, PAR OBR
2. Servlet Jetty, Tomcat servlet none
3. Web server Apache, thttpd LSB package Debian
4. OS Linux
5. BPEL engine ActiveBPEL, ODE BPEL archive none
6. SCA runtime Tuscany, Fabric3 SCA composite none
7. VM controller Eucalyptus Cloud Disk image none
1) OSGi Bundle Repository, http://www.osgi.org/Repository/HomePage
2) Debian Package Search, http://www.debian.org/distrib/packages

Table 2. Dynamic aspects in service containers

Container Dynamics

Container Configuration Reconfiguration Instantiation

1. OSGi manifest file messages singleton
2. Servlet web.xml servlet reload per call
3. Web server /etc config server reload per call
4. OS /etc config SIGHUP per call
5. BPEL engine none none per call
6. SCA runtime properties none various
7. VM controller /etc config SIGHUP singleton

variety of containers makes it non-trivial to find a practical least common denominator.
Therefore, we selected typical representatives with a sufficiently high manageability
and popularity in real-world deployments. This includes Java servlet containers, OSGi
service platforms, conventional web servers for web applications, operating systems
implementing the Linux Standard Base (LSB) service interface, BPEL engines and vir-
tual machine controllers. Most of them expect services to be deployed in a format not
understood by the other ones, and they also differ in their implementation languages,
execution models and management interfaces. Table 1 shows a number of containers,
implementations thereof and the accepted package formats for service deployment. For
each package type, repositories are listed if they exist and are commonly used.

The capabilities of service packages differ widely. Automatic and semi-automatic
functional testing, for example, requires a formal syntactical description of the ser-
vice interface. In the case of BPEL archives, the corresponding WSDL files are gen-
erally included, whereas LSB packages don’t contain such descriptions in most cases.
A study conducted by us found that among more than 24,000 packages of the De-
bian GNU/Linux distribution, 7,121 are registered as being applications and 267 as
being network services. These numbers are likely higher in reality since the process of

40 J. Spillner, I. Braun, and A. Schill

categorising the packages is ongoing. Yet, despite many of the service packages offer-
ing RPC, XML-RPC, SOAP or REST interfaces, only a total of two packages (Sympa
and phpWiki) ship with WSDL descriptions.

More differences can be found in the runtime features of the containers. Some allow
for a dynamic external reconfiguration or multiple instantiation, while others don’t, as
can be seen in table 2.

There is clearly a need to unify the access to such containers so that service hosters
can cope with the heterogeneity imposed by the preferences of service developers.

5 A Formal Notation for Containers

Considering the variety of properties even of abstract views on containers, a symbolic
expression will not be able to capture all aspects. On the other hand, extensible and
machine-readable notations are hard to understand by humans and are unable to se-
lectively focus on important details. Therefore, we use an UML notation to express a
common model for service containers. An excerpt is shown in Fig. 3. The model refers
to a single container which can deploy any number of packages. Each package contains
n services which are each described by m formal service descriptions and l endpoints.
For each service srvi each invocation yields an instance instilj .

By extension, the invocation properties can be guaranteed with contracts slaik for
each client for any service. Furthermore, specific service containers allow client-specific
reservations and customisations of services which we call service allocations srvik .
For instance, VM images are usually cloned and booted with individual configuration
for resources like the number of CPU cores, available memory and virtual hard disk
capacity. We will however leave discussion of handling contracts and service allocations
out of this text for brevity.

Today’s package formats support this model only to a certain degree. For exam-
ple, the description and endpoint of a servlet-based service cannot be inferred from
the servlet metadata automatically. Instead, heuristics need to be applied to find the

Fig. 3. Formal notation of service containers (excerpt)

Unified Hosting Techniques for the Internet of Tradeable and Executable Services 41

correct information inside the package. OSGi-based and LSB services already provide
rich metadata, including the licence which is important for the consideration of ser-
vice migration. Still, the packaging formats could be improved to cover the needs of
dynamically deployable services.

6 Unified Hosting Environment

Based on the abstract notation of containers, a collection of a number of them unified
behind a delegating proxy yields a more powerful environment capable of handling
more kinds of services.

For the deployment, a package containing the service is routed to the respective
container. For example, a BPEL file is written to the BPEL server’s hot-deployment
directory, whereas a web application is stored on the disk followed by a notification of
the web server. If the deployment at the container fails or no suitable container has been
found, the UHE deployment fails.

Similarly, the reconfiguration either uses an appropriate mechanism of the respective
container, or fails if either the mechanism fails or no container can be found. While
the heterogeneous nature of containers and service concepts might pose a challenge
to such combinations, preliminary findings suggest that at least among the considered
implementations there are no hard discrepancies.

The architecture of the environment can thus be assumed to follow the pattern in
Fig. 4, leading to Fig. 5. In terms of software design patterns, UHE is defined as a proxy
connected to a number of adapters, each of which wraps a specific container. Any con-
tainer method can be invoked on the unified environment, and depending on the service
type is redirected to the container which handles the service. While the server admin-
istrator or corresponding tools communicate with the services through UHE, clients
still communicate with each container directly, thus the introduced overhead is being
minimised.

A possible extension here is to introduce a recursive-hierarchical distributed UHE
by adding a UHE adapter which accepts all package formats and redirects requests to
other UHE installations, thereby creating a composite environment. Due to the many
implications like globally unique identifiers, we will not discuss this topic in this paper.

Fig. 4. Design pattern notation of container abstraction

42 J. Spillner, I. Braun, and A. Schill

Unified Hosting Environment

BPEL
engine

OSGi
con-
tainer

Servlet
con-
tainer

Web
server

LSB
service
runtime

Interactive administration Programmatic administration

Client

HTTPSOAP SMTPRMI SOAP,
 HTTP

Fig. 5. Hosting environment architecture

In the following subsections, we will explain the implications of the unification on a
number of aspects in hosting environments.

6.1 Deployment

Service packages are assumed to be either self-contained, as can often be seen with
servlets and associated libraries in WAR packages, or to rely on a dependency resolu-
tion and configuration mechanism as is the case with LSB package managers or OSGi
bundle loaders [2]. We thus define the self-contained property of the package and
the dependency-resolving property of the respective container. In both cases,
additional restrictions have to be assumed about the existence and versions of the in-
stalled system software, including language-level virtual machines, container behaviour
and system call interfaces. This assumption can be weakened if the implementation sup-
ports a recognition of the required environment configuration and setup of a matching
environment using a virtualised operating systems or other techniques. This distinc-
tion shall be expressed by the virtualisable property of the container, and the
corresponding self-described property of the package.

Therefore, the following property matches are considered a requirement depending
on the desired universality of the hosting environment: If any package is not self-
contained, then the container must be dependency-resolving, otherwise the
service will not run. If a package is not self-described, then the container must
meet all its implicit requirements, otherwise the service will not run either.

The table 3 shows the varying degree of self-containedness and self-description of
service packages, corresponding to the containers in the previous tables. It is interesting
to see that no service package format mandates self-containedness, yet a couple of them
usually ship with dependency libraries while others do not.

6.2 Monitoring and Adaptation

A number of software components on a typical hosting system can be considered stake-
holders in a unified environment. Adaptation mechanisms, for example, implement ab-
stract adaptation strategies for a controlled change of either the system, the services or

Unified Hosting Techniques for the Internet of Tradeable and Executable Services 43

Table 3. Properties of service packages

Service package properties

Package type self-contained self-described

1. OSGi bundle possibly yes
2. Axis WAR possibly no
3. Webapp/DEB no yes
4. System/RPM no yes
5. ODE BPEL archive no yes
6. SCA composite possibly no
7. VM image yes no

contract offers and running contracts, within well-defined limits. Likewise, monitoring
agents need ways to capture system-level, container-level and service-level indicators
about running service instances, avoiding to directly provide supporting implementa-
tions for the growing variety of containers and preferring to use the available query
interfaces. Such requirements reach beyond a unification on the messaging level, as
is provided by enterprise service buses. UHE is a suitable layer to unify monitoring
and adaptation aspects. Adaptation mechanisms on the middleware level may include
load balancing [7]. In such cases, having a unified interface to deploy packages across
machines is beneficial as well.

6.3 Testing

Another requirement from hosting companies is that each service must first run in a
quarantined environment, also known as sandbox, to find out potential issues with the
implementation and to test the acceptance of the service. None of the containers we have
evaluated supports a sandbox, although most provide methods to deploy and undeploy
service implementations.

Therefore, we consider it mandatory and architecturally sound to provide such a
feature within the UHE based on the deployment methods, as shown in Fig. 6. Com-
bined with service versioning, the addition of a testing step supports the long-term

 not installed

 installed/
 stopped

 started tested instantiated

Fig. 6. Service state transitions

44 J. Spillner, I. Braun, and A. Schill

management and evolution of service offerings. Migrating an installed and configured
service into the production container will take a small amount of work compared to the
overall configuration efforts [9].

6.4 Interfaces

A hosting environment should be accessible both by humans and by software. In both
cases, the interfaces should not depend on the actual variety and number of containers
installed. Instead, the interface should remain stable whenever new technology demands
the addition or removal of containers, thus guaranteeing the same level of usability.

For administrators, an interactive interface for basic management tasks like upload-
ing services, listing installed services and running instances and modifying the service
states is proposed. It could be implemented as a web interface or as a desktop applica-
tion integrated into a general system management framework. In addition, we propose
having a suitable web service interface to the UHE so that its service management capa-
bilities can be offered to any remote agent. Among the potential users, a service registry
could benefit from a formal way of interacting with the containers which collectively
can be considered the service repository.

7 Discussion and Conclusions

We have explored commonalities and disparities between various service package for-
mats and service containers acting as hosting environments. Based on a comparison, we
presented an abstract view on their structures and abilities, yielding the models TSM
for dynamic service packages and TSCM for containers handling the executable arti-
facts from these packages. Using a formal notation, we were able to define the notion
of a Unified Hosting Environment which acts as a proxy and adapter to all concrete
service containers. UHE allows for deployment and management of heterogeneous ser-
vices without any additional service development effort and run-time execution over-
head. The concept of UHE is complementary to recent progress towards development
methodologies for distributable services. It is supported by specialised implementation
techniques with mobile code [6] and the tradable service archive format SAR.

Conceptual extension points including contract handling, service allocation and
distributed operation have been identified and will be analysed regarding their unifi-
cation potential in the future. A prototypical implementation UHE has been created
to verify the scope of the models TSM and TSCM in practice1. The prototype and its
further development will help service providers to keep up with the high variety of
development methods and packaging formats in service offerings. The easier service
hosting becomes, the faster the vision of an Internet of Services can be turned into a
real infrastructure.

Acknowledgements. The project was funded by means of the German Federal Min-
istry of Economics and Technology under the promotional reference “01MQ07012”.
The authors take the responsibility for the contents.

1 UHE implementation in the SPACE project: http://serviceplatform.org/wiki/Puq

Unified Hosting Techniques for the Internet of Tradeable and Executable Services 45

References

1. Bhme, H., Saar, A.: Integration of heterogenous services in the Adaptive Services Grid. In:
GI-edn. 2nd International Conference on Grid Service Engineering and Management, Erfurt,
Germany. Lecture Notes in Informatics (LNI), NODe 2005/GSEM 2005 p. 69 (September
2005)

2. Cosmo, R.D., Trezentos, P., Zacchiroli, S.: Package upgrades in FOSS distributions: details
and challenges. In: First ACM Workshop on Hot Topics in Software Upgrades (HotSWUp),
Nashville, Tennessee, USA (October 2008)

3. Harrison, A., Taylor, I.: Dynamic Web Service Deployment Using WSPeer. In: Proceedings
of 13th Annual Mardi Gras Conference - Frontiers of Grid Applications and Technologies,
Baton Rouge, Louisiana, USA, pp. 11–16 (February 2005)

4. Krmer, B.J.: Component meets service: what does the mongrel look like? In: Innovations
Syst. Softw. Eng., pp. 385–394. Springer, Heidelberg (November 2008)

5. Lee, S.P., Chan, L.P., Lee, E.W.: Web Services Implementation Methodology for SOA Ap-
plication. In: Proceedings of the 4th IEEE International Conference on Industrial Informatics
(INDIN) Singapore (August 2006)

6. Liu, P., Lewis, M.J.: Mobile Code Enabled Web Services. In: Proceedings of the IEEE In-
ternational Conference on Web Services (ICWS), Orlando, Florida, USA, pp. 167–174 (July
2005)

7. Lodi, G., Panzieri, F., Rossi, D., Turrini, E.: SLA-Driven Clustering of QoS-Aware Applica-
tion Servers. IEEE Transactions on Software Engineering 33(3) (March 2007)

8. Petrie, C.: The World Wide Wizard of Open Source Services. In: Fourth International Work-
shop on Semantic Web for Services and Processes (SWSP), Salt Lake City, Utah, USA (July
2007)

9. Sethi, M., Kannan, K., Sachindran, N., Gupta, M.: Rapid Deployment of SOA Solutions via
Automated Image Replication and Reconfiguration. In: IEEE International Conference on
Services Computing, Honolulu, Hawaii, USA (July 2008)

10. Trger, P., Meyer, H., Melzer, I., Flehmig, M.: Dynamic Provisioning and Monitoring of State-
ful Services. In: Proceedings of the 3rd International Conference on Web Information Sys-
tems and Technologies - WEBIST, Barcelona, Spain (March 2007)

11. Villanueva, O.A., Touch, J.: Web Service Deployment and Management Using the X-bone.
In: Spanish Symposium on Distributed Computing (SEID) Ourense (September 2000)

12. Winkler, M.: Service Description in Business Value Networks. In: Doctoral Symposium of
the 4th International Conference Interoperability for Enterprise Software and Applications
(I-ESA), Berlin, Germany (March 2008)

Service Differentiation in Multi-tier Application
Architectures

Mursalin Habib1, Yannis Viniotis2,3, Bob Callaway2,3, and Adolfo Rodriguez3

1 Qualcomm Inc. San Diego, CA 92121, U.S.A.
2 Department of Electrical and Computer Engineering, North Carolina State University

Raleigh, NC 27695, U.S.A.
3 IBM, Research Triangle Park, NC 27709, U.S.A.

mhabib@qualcomm.com, candice@ncsu.edu
{rcallawa,adolfo}@us.ibm.com

Abstract. Enterprise networks, such as back-end offices, data centers or web
server farms support multiple services and are typically architected in multiple
computing tiers. In Service-Oriented-Architecture (SOA) environments, one tier
is used for, say, offloading the CPU-intensive XML processing. The business
logic is then implemented in a separate tier. The offload tier is typically im-
plemented as a cluster of (potentially virtual) middle-ware appliances. Service
differentiation in enterprise networks addresses the issues of managing the en-
terprise network resources in order to achieve desired performance objectives.
In this paper, we define and evaluate via simulations an algorithm that manages
allocation of CPU time in the appliance tier, by means of activating and deacti-
vating service domains in the appliance cluster. The main design objective of our
algorithm is to overcome the disadvantages of the present static solutions.

Keywords: Middleware, Service oriented architecture, Service differentiation,
Multi-tier Application architectures.

1 Introduction

Service oriented architectures (SOA) have become the technology of choice for satisfy-
ing many business goals in terms of flexibility, software reuse, and addressing complex-
ity [1], [2]. A way of adopting SOA is through exposing functionality as Web Services.
These services leverage the ubiquitous nature of XML as a universal message format;
however, this choice often imposes increased computational overhead due to XML pars-
ing. For this reason, enterprise network administrators deploy specialized, hardware- as-
sisted appliances for XML processing. These appliances, called middleware appliances
or SOA appliances, are positioned on the edge of the enterprise network, as a separate
tier “in front of” the service tier. They are generally deployed in multiples to provide
sufficient processing power and to meet high availability requirements. Fig. 1 depicts
an abstraction of such an environment that emphasizes the clustering of appliances and
servers into two separate computing tiers.

1.1 Service Differentiation

Typically, an enterprise network supports multiple classes of service requests
(also known as service domains) [10], [3]. For the purposes of this paper, and at a

J. Cordeiro, A. Ranchordas, and B. Shishkov (Eds.): ICSOFT 2009, CCIS 50, pp. 46–58, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Service Differentiation in Multi-tier Application Architectures 47

Fig. 1. Abstract architecture of a two-tier enterprise system

high-level, a service domain corresponds to a deployed application or related applica-
tions. Service differentiation refers to the generic problem of managing the enterprise
network resources in order to achieve desired performance objectives on a per domain
basis. For example, resources may include the CPU processing power at the appliance
tier and/or the service tier; performance may be defined in terms of throughput for one
service domain or average delay for another.

It is up to the enterprise network administrator to properly manage (that is, configure
and provision) the system resources together as a collective whole, to achieve service
domain differentiation. In this paper, we focus on the issue of managing the “island”
of middleware appliances. More specifically, we consider the problem of Unqualified
Service Differentiation that can be stated as follows: “allocate a desired percentage of
the CPU power of the appliances to a given service domain”. For example, assuming
only three domains SD1, SD2 and SD3, and two appliances with one unit of CPU each,
a desired allocation of processing power may be 50%, 30% and 20% respectively.

1.2 Mechanisms for Service Differentiation

A variety of mechanisms can be used to effect this allocation. For example, one such
mechanism is “priority-based” CPU scheduling of service domains (see for example,
[8]). This mechanism requires per domain buffering and is typically used in the server
tier. Another one, used more often in inexpensive appliance devices without built-in
intelligence (e.g., FIFO buffering for all domains) and without CPU scheduling, is “ac-
tivation/deactivation” of service domains at the gateway: if more CPU resources are
needed to achieve its goal, a service domain can be activated at additional appliances;
or, more instances of the domain can be activated at the same appliance. Similarly, a
service domain can be deactivated from a subset of the appliances if it exceeds its per-
formance goal. In that sense, activation/deactivation of service domains can be seen as
an attempt to alter the rate at which requests are allowed to enter the system from the
gateway. Allocation of CPU resources is controlled indirectly, since is is well-known
that a service domain with rate λ and average service time ES will achieve a utilization
of λ ·ES (in a stable system).

To the best of our knowledge, there are two known solution approaches for provid-
ing differentiated services via activation/deactivation actions, as we describe in section
2.1. In summary, both known approaches result in (a) inefficient use of appliance re-
sources, and, (b) the inability to provide service differentiation. We address both issues

48 M. Habib et al.

in this paper. We describe how we could effect dynamic provisioning of service domains
amongst a cluster of appliances. This way, unlike the known solutions, service domains
are not statically bound to a particular (subset of) appliances.

In summary, the main contribution of our research is an algorithm that, unlike the
presently known solutions, has the following advantages: (a) it is capable of providing
arbitrary allocation of CPU resources to service domains, thus achieving true service
differentiation, (b) it utilizes appliance resources in an efficient manner, and thus it
leverages processing white-space across all appliances, (c) it increases service locality,
and, (d) it does not require manual configurations.

The paper is organized as follows. In Section 2, we provide the system architecture
and formulation of the problem. In Section 3, we outline the proposed algorithm. In
section 4, we summarize the simulation results and answers to the research questions
raised.

2 Problem Formulation

The overall architecture of the system under consideration is depicted in Fig. 1. Service
Requests from clients arrive, via a generic transport network, to be processed in the
system. A Gateway is the first entry point of the system we are going to consider. The
gateway distributes requests to the appliances. Service Domains represent the group-
ing of different service requests. Servers process service requests belonging to different
service domains. The servers are organized in a “service tier”, in the shown architec-
ture. (Middleware) Appliances are responsible for pre-processing service requests from
different service domains.

The appliances have the capability of buffering requests, in order to accommodate
bursty traffic; we assume that they process service requests in a FIFO manner and with-
out preemption1.

In this paper, we focus on the issue of managing the “island” of middleware appli-
ances. More specifically, we consider the problem of Unqualified Service Differentia-
tion that can be stated as follows:

Unqualified Service Differentiation: Provide Service domain m with upto a
certain percentage, Pm, of CPU cycles in the appliance cluster.

In typical, commercial SLAs, the percentages may differ, based on whether the system
operates under normal or overload conditions. For simplicity, we consider the case of
a single condition, hence the name unqualified. We propose an algorithm for achieving
Unqualified Service Differentiation in section 3. We present some prior work next.

2.1 Prior Work

As discussed in section 1.2, we consider mechanisms that solve the Unqualified Ser-
vice Differentiation problem via activation/deactivation actions only. Our motivation for

1 Even with the presence of a CPU scheduling algorithm inside the appliance, when the number
of service domains exceeds the number of buffering classes, service requests within a buffering
class are still processed in a FIFO manner.

Service Differentiation in Multi-tier Application Architectures 49

focusing on such mechanisms comes from two reasons: (a) the fact that existing, com-
mercially available appliances utilize this method, and, (b) in systems with large num-
bers of service domains, multiplexing multiple domains onto the same buffer forces
FIFO scheduling. To the best of our knowledge, there are two known solution ap-
proaches; both assume the existence of a gateway device (typically an HTTP router/IP
sprayer, HRIS) to distribute service load to the appliance cluster. HRIS is a device with-
out deep-content inspection intelligence that simply routes on, say, a URL, and uses IP
spraying to send traffic to appliance replicas.

In the first approach, the administrator groups all appliances in a single group and
enables them all to process service requests for any given service [11]. The fronting IP
sprayer would forward a service request to each of the appliances, routing the request to
the appropriate service port for service-specific processing. This approach suffers from
a number of drawbacks. First, in enabling all service domains on every appliance, it is
much more difficult to effect differentiated services across service domains competing
for the same appliance resources. While an IP sprayer can effectively spread the load
(based on policy) amongst the different appliances, it cannot gauge the effect of a spe-
cific service request on CPU and thus cannot provide differentiated service amongst
the competing service domains. For example, if the administrator wishes to allocate
up to 50% of total CPU to a particular service domain, the system as whole can only
hope to evenly spread across the appliances, which, under overload conditions, leads
to each service domain receiving 1/3 (33%) of the total CPU. A secondary problem is
that it becomes nearly impossible to effect any spatial locality with this solution [11],
[15], [4], [6], [7]. In the second approach, the administrator may statically allocate a
portion of the appliances to each of the service domains. In this case, each appliance
is assigned a specific service domain(s) that it will serve. In this way, service requests
for a specific service domain are concentrated on specific appliances, thus achieving
spatial locality. Further, the administrator can allocate appliances for service domains
proportional to the intended capacity (and to some extent priority) for each individ-
ual service, thus achieving some level of differentiated service. However, this approach
also has a few drawbacks. First, it is difficult to leverage the white space of appliances
serving one service for satisfying requests intended for overloaded appliance and its
service. That is, under certain conditions, many of the overall system resources may go
under-utilized. Second, the allocation process is manual and cannot adapt to changing
request rates and prevailing conditions. This could lead to inefficient resource partition-
ing and ultimately violate intended differentiated service goals [12], [13], [14], [16],
[4], [5].

3 Algorithm Description

SAA/SDA is a closed-loop, feedback-based reactive algorithm. It collects periodic per-
formance measurements from the appliances and uses them to alter the rate of the in-
coming traffic to meet the differentiation goal. To describe the algorithm we need the
definitions provided in subsection 3.1.

50 M. Habib et al.

Fig. 2. Decision Instances Tk

3.1 Definitions

The Provisioning Agent (PA) is responsible for deciding on activation/deactivation of
service domain instances in the appliance cluster. This agent can be implemented as a
centralized or distributed application, residing on one or more appliances or a separate
compute node. How PA collects the measured statistics from the appliance cluster is out
of the scope of this paper.

Decision Instant (Tk) is the kth decision instant at which PA activates/deactivates
service domain instances based on the algorithm outcome. As denoted in Fig. 2, at Tk,
all the measurements collected in the time interval (Tk−1, Tk) are evaluated; activation
and deactivation of service domains are enforced. In our simulations, Tk is assumed to
form a periodic sequence, for simplicity.

Target CPU % (Pm) is the desired percentage of CPU resources to be allocated to
the mth service domain. Achieved CPU % (Xm(Tk)) is the percentage of the cluster
CPU resources obtained by the mth service domain until time Tk.

Down and Up Tolerances DTm and UTm: in order to avoid unnecessary oscilla-
tions and overhead, when the Achieved CPU % is “close enough” to the Target CPU %,
i.e., when

Pm −DTm < Xm(Tk) < Pm + UTm. (1)

the service domain is excluded from activation/deactivation.
Utilization Matrix (Unm) is the achieved resource utilization (e.g., total CPU time

used) by the mth service domain in the nth appliance, in the time interval (Tk−1, Tk).
Instantiation Matrix (Bnm) is the number of instances of the mth service domain

that should be activated in the nth appliance during the time interval (Tk−1, Tk). This is
the main decision variable that the PA computes. The mechanism of signalling HRIS
about the values of Bnm and how PA collects the measured statistics from the appliance
cluster is out of the scope of this paper.

N is the total Number of Appliances in the cluster. M is the Number of Service
Domains supported by the system.

Groups A and D denote the ranking of service domains. When service domain m
is not achieving its Target CPU % (Pm), the PA selects it to be activated in the next
decision instant in one or more appliances and thus includes it in Group A. Similarly,
when service domain m is allocated more than its Target CPU % (Pm), the PA selects it
to be deactivated in the next decision instant in one or more appliances and thus includes
it in Group D.

Service Differentiation in Multi-tier Application Architectures 51

3.2 Algorithm Summary

At each decision instance, at time Tk, k = 1, 2, . . .

1. Collect measurements (Unm) from the N appliances.
2. Calculate the actual percentile of allocated resources for the M service domains

using the iterative equation:

Xm (Tk) =
1

kN

N∑

n=1

Unm +
k − 1

k
Xm (Tk−1). (2)

This equation is a recursive way of calculating the long-term time average of the
CPU utilization.

3. Calculate Thresholding operations according to Eqn. 1.
4. Evaluate and Rank Performance to check if the goal is met. Intuitively, the lower
|Xm(Tk)− Pm| is, the “better” the performance of that particular service domain.
The service domain is placed in Group A or D as follows. When

Xm(Tk)− Pm ≥ 0. (3)

the service domain meets or exceeds its target and is thus included in Group D.
When

Xm(Tk)− Pm < 0. (4)

the domain misses its target and is thus included in Group A.
5. Apply Deactivation Algorithm to deactivate instances of all service domains in

Group D as per algorithm SDA (defined in subsection 3.3).
6. Apply Activation Algorithm to activate instances of all service domains in Group

A as per algorithm SAA (defined in subsection 3.3).
7. Feedback these decisions (expressed as values of the matrix Bnm) to the gateway.

The intuition and hope is that, during the next interval (Tk, Tk+1), the rate of service
requests for a domain m will be favorably affected. Activating “more” instances of a
service domain will, hopefully, increase the rate at which requests enter the appliance
tier. Thus, the domain will see an increase in its share of the cluster CPU resources;
note that the increase may not be obtained during the “next” cycle, due to the effects
of FIFO scheduling. Similarly, deactivating instances of a service domain will, hope-
fully, decrease the rate at which requests enter the appliance tier. Thus, the domain will
eventually see a decrease in its share of the cluster CPU resources.

3.3 SAA/SDA Activation and Deactivation Algorithm

There is a myriad of choices in how activation and deactivation of service domains
can be enforced. We briefly outline only one choice here; due to the lack of space, we
omit specifications of what actions should be taken in certain “special cases”. For more
choices and a more detailed description of implementation ramifications, see [9].

1. (SDA) Deactivate one instance of every service domain in Group D in appliances
which run service domains in Group A to free up CPU cycles utilized by domains
in Group A.2

2 One of the omitted special cases specifies that deactivation of a domain should not take place
if this action leaves the service domain with zero instances active.

52 M. Habib et al.

2. (SAA) Using the instantiation matrix Bnm, activate one instance of every service
domain in Group A, in appliances which run service domains of Group A.

Note that both SDA and SAA will result in a change of the values stored in the matrix
Bnm. As an example, suppose that we have 4 appliances and 5 service domains with
target CPU percentages set at {35%, 25%, 15%, 10%, 5%} . Suppose that the initial
value for the instantiation matrix is given by

B =

⎡

⎢⎢⎣

1 0 10 1 4
10 3 1 2 4
0 5 8 4 1
0 0 2 4 10

⎤

⎥⎥⎦ (5)

Suppose that the collected Unm values result in actual CPU percentages Xm(Tk) equal
to {11%, 8%, 19%, 11%, 19%}. The tolerances for thresholding are set at 2%, so the
algorithm calculates group A = {1, 2} and group B = {3, 5}. Therefore, we must
activate domains 1 & 2 and deactivate domains 3 & 5. Now based on the algorithm
described (SDA), there is no instances of domains 1 and 2 activated in appliance 4, so
there is no need to deactivate instances of domains 3 & 5 in that appliance. However,
as there are instances of domains 1 and 2 running in appliances 1, 2 and 3, there will
be deactivations of domains 3 and 5 in these appliances. Note that, because there is
only one instance of domain 3 activated in appliance 2 and only one instance of domain
5 activated in appliance 3, these two entries will be kept unchanged. Because of the
deactivation, as some of the CPU resource utilized by domain 3 and 5 is freed up, under-
utilized domain 1 and 2 can take advantage of that and activate one more instance of
domain 1 and 2 in appliance 2, domain 1 in appliance 1 (domain 2 cannot be activated
in appliance 1 as it is not already activated there) and domain 2 in appliance 3. So, after
SDA, we will get (changed values are in bold face),

B =

⎡

⎢⎢⎣

1 0 9 1 3
10 3 1 2 3
0 5 7 4 1
0 0 2 4 10

⎤

⎥⎥⎦ (6)

and after SAA, we will get instantiation matrix as follows (changed values are in bold
face),

B =

⎡

⎢⎢⎣

2 0 9 1 3
11 4 1 2 3
0 6 7 4 1
0 0 2 4 10

⎤

⎥⎥⎦ (7)

4 Simulation and Analysis

4.1 Simulation Goals and Assumptions

Despite the strong engineering intuition, we have no theoretical proof that the SDA/SAA
algorithm will be able to satisfy any arbitrary, desired values of CPU allocations.

Service Differentiation in Multi-tier Application Architectures 53

Fig. 3. Simulator Design

Therefore, in order to verify the proposed algorithm, we evaluated the multi-service
multi-appliance system by developing a discrete-event simulator in C. We
focused our analysis in this paper on the following three sets of questions:

Q1. Does SDA/SAA “work” (i.e., can it meet the Pm service differentiation goals?)
Fig(s). 4 and 5 are representative results in this regard.

Q2. Is SDA/SAA indeed “better” than the other open-loop, static approaches (i.e.,
does it have the advantages described in section 2.1)? Fig. 6 (partly) answers this
question.

Q3. How do algorithm parameters (i.e., UTm/DTm, N , M , {Pm}, initial Bnm values)
affect the behavior of SDA/SAA? Fig(s). 7 through 12 partly answer this question.

The simulation model is depicted in Fig. 3. The service requests arrive at the system
in a random fashion. The gateway arrival process for service domain m is modeled for
simplicity as a Poisson process3 with arrival rate λm. The CPU service time for requests
from domain m is a uniform random variable with average value ESm. For simplicity,
all appliances are considered homogeneous. They employ a single, infinite-capacity
FIFO buffer for all domains activated in them; their CPU capacity is normalized to 1
unit. Therefore, the CPU utilization of (and thus the CPU allocation to) a service domain
m would be λm · ESm.

4.2 Simulation Results and Analysis

Due to lack of space, in this paper we only include representative results. A more
comprehensive set of results and analysis (including confidence intervals) are provided
in [9].

To answer question Q1, we varied the number of appliances, N from 1 to 10; the
number of service domains, M from 1 to 20. For the results depicted in Fig. 4, we
set N = 4, M = 3, the desired goals are {Pm} = {44%, 33%, 22%} with 2% up
and down threshold tolerances. All domains have the same service times and arrival

3 Since the system is controlled in a closed-loop fashion, the nature of the randomness in the
arrival (and service time process) is not that critical.

54 M. Habib et al.

rates. We initialized the instantiation matrix to the same values in all four appliances;
in order to create an “unfavorable” situation for the algorithm, the number of instances
initialized were {2, 5, 10} for the three domains respectively, as opposed to the desired
ratios of 44/33/22 respectively. Fig. 4 shows that the SDA/SAA algorithm meets the
desired goal despite the unfavorable initial instantiation in the entire cluster. In this
simulation, the total arrival rate was chosen high enough to keep the CPUs busy, hence
the total utilization (also shown in Fig. 4) approaches 100%.

In Fig. 5, we observe how the algorithm alters the number of instances of service
domains in the appliances to achieve the goal. In all figure(s) that depict activated in-
stances, values for appliance 1 are shown (graphs are similar for other appliances). The
algorithm causes oscillation in the beginning as for lower value of k, Xm(k) changes
abruptly which in turn causes oscillations in the values of Bmn.

We demonstrate advantages (c) and (d) mentioned in section 2.1 in detail in [9].
In this paper, to answer question Q2, observe that desired Pm goals depend heavily
on the actual arrival rates (which may not be known in a real system). For example,
suppose we specify {P1, P2, P3} = {44%, 33%, 22%} and the arrival rates and the
average service times for the three service domains are equal. A static allocation, in this
case, would allocate CPU times in the ratios 44% : 33% : 22%, wasting 11% for SD1,
depriving SD3 of 33-22=11% and leaving a 22% “white space” (unused CPU resource).
Fig. 6 shows how SDA/SAA could achieve an equal allocation of CPU resources in this
scenario, with a total CPU allocation of 100%, which would eliminate the white space
altogether.

To answer question Q3 involves varying the algorithm parameters N, M , UTm/
DTm, Pm, initial Bnm. In all our experiments, the behavior of the algorithm (i.e., the
nature of variations in the Bnm values) as well as its performance (i.e., the achieved
percentages) did not change as we varied the number of appliances N or the number of
service domains M . In the interest of saving space, we show in Fig(s). 7 and 8 some
results only for the “boundary cases” N = 1 and N = 10 we tried. The experiments
had the same setting as the one used in question Q1. As expected, the results agree with
those depicted in Fig. 4.

Fig. 4. Utilization Xm(Tk) vs time Fig. 5. Variation in Bnmvalues, appliance 1

Service Differentiation in Multi-tier Application Architectures 55

Fig. 6. Utilization Xm(Tk) vs time Fig. 7. Variation in Bnm Values, in Appliance
1, for N = 1 Appliances

Fig. 8. Utilization Xm(Tk) vs time, in Appliance 1, for N = 10 Appliances

The effect of the tolerance parameters UTm/DTm is typical of the “oscillatory”
behavior depicted in Fig. 10. The figure was produced with (a rather strict) setting
of UTm = DTm = 0.1% for all domains; the rest of the experiment setup is the
same as the one depicted in the scenario of question Q1. In general, stricter tolerances
cause more oscillations in both the goals and the instantiation matrix values (compare
Fig. 9 to Fig. 4 and Fig. 10 to Fig. 5). Throughout the experiment, an initial value of
Bnm = 10,∀n, m was used.

In general, the Pm parameter can be set by the system administrator in one of two
possible ways: “achievable” or “non-achievable”. In the first, the arrival rate λm and av-
erage service times ESm of the domain are such that λm ·ESm ≥ Pm; in other words,
there is enough traffic to take advantage of the allocated CPU resource. Fig. 4 is an
example of this case. In the second, we have that λm ·ESm < Pm; in this case, the do-
main does not have enough traffic to take advantage of the allocated CPU resource.
As with all feedback-based algorithms, this situation may “mislead” the algorithm
into always activating additional instances of the domain, causing “instability” and
eventually affecting other domains too4.

Fig. 11 exemplifies what can happen when “non-achievable” goals are set. In this
experiment, we set again {P1, P2, P3} = {44%, 33%, 22%}. The arrival rate for SD1

4 This is one of the “special cases” we alluded to in section 3.3.

56 M. Habib et al.

Fig. 9. Utilization Xm(Tk), effect of strict
tolerances

Fig. 10. Variation in Bnm, effect of strict
tolerances

Fig. 11. Utilization Xm(Tk), “non-
achievable” Pm goals

Fig. 12. Potential for instability, “non-
achievable” Pm goals

was set low, so that this domain would never reach a 44% CPU utilization, even if it
was given full access of the CPUs; its maximum utilization will eventually approach
λ1 · ES1 ≈ 6% in this experiment. The other two domains produced enough traf-
fic to fully utilize their desired percentages. As Fig. 11 shows, these two domains
(over)achieve their desired percentages. Figure 12 explains why. The algorithm keeps
activating instances for SD1, the “underachieving” domain, at the expense of the other
two domains, which are left with only one activated instance each; this explains why
these two domains get an equal share of the CPU. The total CPU utilization stays at
100%, as shown in Fig. 11, eliminating any white space.

5 Conclusions

In this paper, we proposed SAA/SDA algorithm, a closed-loop, feedback-based algo-
rithm that provides service differentiation based on CPU utilization measurements in
a cluster of middleware appliances. The appliances employ FIFO buffering and thus
differentiation is controlled by activation/deactivation of service domains. The algo-
rithm achieves the differentiation goals by controlling the rate at which service requests

Service Differentiation in Multi-tier Application Architectures 57

are sent to individual appliances in the cluster; it does not rely on a priori knowledge
of service domain statistics. It has the following advantages: (a) it is capable of pro-
viding arbitrary allocation of CPU resources to service domains, thus achieving true
service differentiation, (b) it utilizes appliance resources in an efficient manner, and
thus it leverages processing white-space across all appliances, (c) it increases service
locality, and, (d) it does not require manual configurations. We have demonstrated such
advantages with extensive simulations.

References

1. Erl, T.: Service Oriented Architecture: A Field Guide to Integraing XML and Webservices.
Prentice Hall, Upper Saddle River (2005)

2. Huhns, M., Singh, M.P.: Service Oriented Computing: Key Concepts and Principle. In: IEEE
Internet Computing, pp. 75–82. IEEE Computer Society, Los Alamitos (2005)

3. Chandrashekar, J., Zhang, Z.-L., Duan, Z., Hou, Y.T.: Service Oriented Internet. In: Proceed-
ings of International Conference on Service Oriented Computing, pp. 75–82. IEEE Computer
Society, Los Alamitos (2003)

4. Kallitsis, M.G., Callaway, R.D., Devetsikiotis, M., Michailidis, G.: Distributed and Dynamic
Resource Allocation for Delay Sensitive Network Services. In: Proceedings of 51st Annual
IEEE Global Telecommunications Conference (GLOBECOM), New Orleans (2008)

5. Callaway, R.D., Devetsikiotis, M., Kan, C.: Design and Implementation of Measurement-
Based Resource Allocation Schemes Within The Realtime Traffic Flow Measurement Archi-
tecture. In: Proceedings of IEEE International Conference on Communications (ICC), Paris
(2004)

6. Wang, X., Lan, D., Wang, G., Wang, X., Ye, M., Chen, Y., Wang, Q.: Appliance-based Au-
tonomic Provisioning Framework for Virtualized Outsourcing Data Center. In: Fourth Inter-
national Conference on Autonomic Computing, ICAC 2007 (2007)

7. Wang, X., Lan, D., Wang, G., Wang, X., Ye, M., Chen, Y., Wang, Q.: An autonomic provi-
sioning framework for outsourcing data center based on virtual appliances Cluster Comput-
ing, pp. 229–245. Springer Science+Business Media, LLC, Heidelberg (2008)

8. Parekh, A.K., Gallager, R.G.: A Generalized Processor Sharing Approach to Folow Con-
trol in Intergrated Service Networks: The Single Node Case. IEEE/ACM Transactions on
Networking 1(3), 344–357 (1993)

9. Habib, M.: Service appliance provisioning algorithm, M.S. Thesis, North Carolina State Uni-
versity, Raleigh, NC, USA (2009)

10. Menascée, D.A., Barbará, D., Dodge, R.: Preserving qos of e-commerce sites through self-
tuning: a performance model approach. In: Proceedings of the 3rd ACM conference on Elec-
tronic Commerce, EC 2001, New York, NY, USA, pp. 224–234 (2001)

11. Zhu, H., Tang, H., Yang, T.: Demand-driven service differentiation for cluster-based network
servers. In: Proc. of IEEE INFOCOM, pp. 679–688 (2001)

12. Sharma, A., Adarkar, H., Sengupta, S.: Managing qos through prioritization in 72 web ser-
vices. In: Proceedings on Fourth International Conference on Web Information Systems, pp.
140–148 (2003)

13. Ranjan, S., Rolia, J., Fu, H., Knightly, E.: Qos-driven server migration for internet data
centers. In: Proc. Tenth IEEE International Workshop on Quality of Service, pp. 3–12
(2002)

58 M. Habib et al.

14. Zhang, C., Chang, R.N., Perng, C.-S., So, E., Tang, C., Tao, T.: Leveraging service composi-
tion relationship to improve cpu demand estimation in soa environments. In: Proceedings of
the 2008 IEEE International Conference on Services Computing, SCC 2008, pp. 317–324.
IEEE Computer Society, Washington (2008)

15. Wang, X., Du, Z., Chen, Y., Li, S., Lan, D., Wang, G., Chen, Y.: An autonomic provisioning
framework for outsourcing data center based on virtual appliances. Cluster Computing 11(3),
229–245 (2008)

16. Garcı́a, D.F., Garcı́a, J., Entrialgo, J., Garcı́a, M., Valledor, P., Garcı́a, R., Campos, A.M.:
A qos control mechanism to provide service differentiation and overload protection to inter-
net scalable servers. IEEE Transactions on Services Computing 2, 3–16 (2009)

J. Cordeiro, A. Ranchordas, and B. Shishkov (Eds.): ICSOFT 2009, CCIS 50, pp. 59–68, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Lessons Learned on the Development of an Enterprise
Service Management System Using Model-Driven

Engineering

Rodrigo García-Carmona1, Juan C. Dueñas1, Félix Cuadrado1, and José Luis Ruiz2

1 Universidad Politécnica de Madrid, ETSI Telecomunicación
Ciudad Universitaria s/n. 28040, Madrid, Spain

{rodrigo,jcduenas,fcuadrado}@dit.upm.es
2 Indra, c/José Echegaray 8, 28108, Parque Empresarial, Las Rozas, Madrid, Spain

jlrrevuelta@indra.es

Abstract. MDE (Model-Driven Engineering) techniques and tools promise to
reduce the complexity and effort of software development. However, although
this approach is widely known, there are few reports on its application to real
enterprise developments. In this article we present our experience in the crea-
tion of an enterprise service management system using MDE. This is a complex
system, as it must cope with the heterogeneity and distribution of both software
services and their runtime infrastructure. Also, enterprise systems must support
multiple non-functional requirements. These requirements are usually fulfilled
by enterprise framework solutions, which require a steep learning curve. To
overcome these problems we have applied the aforementioned MDE method-
ologies, starting from a generic information model and partially generating the
system from it. We detail the pitfalls found and discuss the strong and weak
points of the followed process.

Keywords: MDE, Enterprise Systems, Code Generation, Report on Experience.

1 Introduction

Enterprise service management systems are very complex and costly to develop. Its
purpose is the control and automation of the life cycle of software services across a
distributed and variable environment. They must adapt to heterogeneous distributed
environments, controlling, processing and managing large amounts of data. Also,
their internal architecture must support rapid system evolution, in order to keep pace
with new business requirements. On top of that, non-functional characteristics such as
robustness and security must be maintained.

When we were confronted with the task of developing this kind of system we
looked for alternatives in order to simplify its complexity. MDE (Model Driven
Engineering) [1] promises to speed the development and reduce complexity by the
abstraction of real entities into models, and the application to them of automatic code
generation operations. Therefore, we opted to integrate MDE techniques and tools in
our development process to try to make use of these capabilities.

60 R. García-Carmona et al.

In this article we present a report on our experience developing the system. Next
section provides an overview over the most important concepts of MDE. Section 3
provides additional information about the target domain, the reasoning behind the
adopted approach and the tool selection. The fourth section provides additional details
on the case study, detailing the generation processes and system architecture.

Finally, complete discussion on the results and lessons learned after the develop-
ment is provided, offering some guidelines for similar experiments.

2 Model-Driven Engineering

MDE is a methodology based on the use of abstractions of entities called models.
They only contain the information relevant to a particular domain, being oblivious to
the remaining details. Their constraints, characteristics and semantics are well defined
through metamodels (which are also models), avoiding ambiguities.

The OMG (Object Management Group) is the main standardization organization
for MDE languages and processes. Some of its most relevant specifications are MOF
[2], a language used for the definition of metamodels, or UML, which is in turn
defined using MOF.

MDE processes consist of several kinds of transformations, being model to model
and model to text the most prominent. An example model to model transformation
allows the enrichment and modification of the definitions of Platform Independent
Models (PIM) until they are transformed to Platform Specific Models (PSM). These
processes can be automated through the use of transformation languages, such as
QVT (Query/View/Transformation).

Code generation activities are the most representative applications of model to text
transformations. Under some circumstances, a PSM with enough information can be
used to automatically generate the actual source code of the system. In less ideal
cases, the generated code base is completed with manual implementation.

Adopting MDE can provide many benefits to the development process. It allows
the partial (and in some cases complete) automation of several activities and eases the
response to changing requirements or domain specifications. Also, it allows the
expression of the problems that need to be solved in a more comprehensible way,
providing to architects a clearer view of the system entities.

Applying MDE to the development of enterprise systems has the potential to
greatly help in the fulfillment of their particular characteristics [3]. Enterprise
management systems present between them many similarities in the software infra-
structure and basic requirements, such as communications, or data persistence. These
requirements can be captured in model and transformation definitions.

The usage of MDE techniques allows the automation of specific operations and
brings “information hiding” principles to the development process, fostering speciali-
zation. Work towards solving specific enterprise domain problems using MDE has
been performed recently and has shown positive results [4, 5].

However, a considerable effort may be needed for the assimilation of these prac-
tices. Thus, the key limiting factor for its enterprise adoption is the availability of a
comprehensive and mature tool chain that seamlessly integrates with the development
processes and the specific technologies.

 Lessons Learned on the Development of an Enterprise Service Management System 61

3 Case Study Description

3.1 System Requirements

The system under development is an enterprise service management architecture. Its
purpose is the control and automation of the life cycle of software products and ser-
vices across distributed environments. This system will manage information about the
physical structure of the target environment, its runtime state, the available software
and services, and the dependencies between them. Moreover, it will interact with the
physical elements through a well-defined information model, in order to abstract from
the complexity and heterogeneity of enterprise systems.

The development of an enterprise system like the one described in this paper is a
complex process. The system must be deployed over a distributed environment, and
operate with an adequate quality of service, ensuring its high availability, fault toler-
ance, and scalability. Some representative non-functional requirements are:

• Information consolidation is a fundamental requirement for any management
system. Runtime state, statistics, operation logs and system resources must
be persisted, sorted and related between each other.

• System components are designed in a decoupled, distributed way, which in
turn imposes a need to expose remote communication mechanisms.

As these requirements are common to most enterprise services, in recent years several
frameworks and specifications have been developed to provide pre-packed solutions
to these aspects. In fact, they have been so useful that its popularity has turned them
into additional requirements for the developed services. However, the result is a
framework sprawl where the complexity has shifted from the original requirements to
a well-established architecture and technology base.

3.2 Technical Approach

After analyzing the characteristics and requirements of the system, we tried to address
these concerns by adopting MDE techniques and tools in our development process. We
wanted to achieve two main objectives: First, by using the code generation capabilities
of MDE tools, we tried to reduce the development effort of the described system, im-
proving productivity. Second, by selecting which parts of the system will be generated,
we wanted to abstract as much as possible from the non-functional concerns and the
enterprise frameworks, which were not familiar to the development team.

There was also an additional in factor supporting the adoption of this approach: the
existing information model. As this model is the central element of the management
system, it must be comprehensively defined in the analysis stage. This will provide us
with an initial input for the selected MDE tool chain. However, it is important to note
that it only describes the information and not the system behavior.

In order to apply this approach it is necessary to choose a modeling solution.
Although the metamodeling has a huge impact in which solution will be selected
(must be powerful, flexible and based upon open and widely adopted standards), the
specific requirements of our development process will fundamentally impact the tool
support for modeling and code generation. We established the following criteria:

62 R. García-Carmona et al.

• Comprehensive Java code generation functionality from the available mod-
els. The system requirements mandate a Java development, supported by
several enterprise frameworks.

• Maturity of the tools. An unfinished or beta solution should be discarded, as
tracing errors caused by the code generation are very difficult and costly to
detect.

• Out-of-the-box transformations for abstracting from the required frameworks
and non-functional concerns (e.g. information persistence through ORM
frameworks). Manually defined transformations will not be adopted, as they
require the acquisition of a deep understanding in both the transformation
language and the underlying framework. Because of that, we will partially
adopt an MDE approach.

• Quality of documentation and gentle learning curve. As we will work over
the MDE tools, a fundamental factor for its selection is the required effort for
applying the technology to our specific problem.

3.3 Tool Selection

After comparing the decision criteria with the available models and tools we chose the
following options:

We selected EMF (Eclipse Modeling Framework) [6] ECore as the modeling lan-
guage for the definition of the information model. EMF is a modeling framework that
provides both an implementation of EMOF (Essential MOF) named ECore and a set
of supporting tools for defined metamodels, which automatically provide editors for
defining model instances, a set of transformations between ECore, XSD and Java,
XML-based model persistence and unit test cases. EMF is a very mature and popular
project, which has fostered a very active open-source community around the project,
providing multiple tools, languages and transformations on top of it.

As our system should support heavy workloads and preserve data integrity, we
could not use the base XML serialization provided by EMF, needing relational data-
base support instead. Teneo is an EMF extension that provides a database persistence
solution by generating a direct mapping between ECore models and Java ORM
(Object Relational Mapping) frameworks, automatically generating the mapping files
from the ECore elements. Teneo supports two different types of ORM solutions, Hi-
bernate and JPOX/JDO. We used Hibernate because is the de-facto industry standard
(and compatible with the EJB 3.0 specification). It also offers a simplified manage-
ment interface for the relational operations.

Another system requirement is the ability to distribute the components providing a
Web Services remote communication layer on top of the business logic. Web Services
is the leading standard for enterprise distributed communications. It promotes con-
tract-based design and loose coupling, through well-defined XML documents for both
the contract definition and the information exchange. The contract is expressed
through WSDL (Web Services Description Language) files.

The format of the messages in Web Services is specified inside the WSDL descrip-
tor by XSD (XML Schema Definition). Since EMF allows the usage of XSD for the
definition of metamodels, we wanted to use these XSDs to create part of the WSDL.
For the implementation of Web Services we chose Spring Web Services, a contract-
first Web Services framework which was part of our enterprise middleware layer.

 Lessons Learned on the Development of an Enterprise Service Management System 63

The selected tools (EMF, Teneo, Spring-WS) partially address our requirements.
They support the definition of both models and metamodels and their transformation
to database mappings, WSDL files and Java source code. We chose these solutions
discarding more generic transformation model tools because of the previously men-
tioned requirements (out-of-the-box functionality, abstraction from middleware
layers, simplicity and ease of learning).

Figure 1 depicts the relations between these tools and how they work to generate
the base artifacts for different aspects of the system (logic, persistence, and communi-
cations). In the middle box, EMF automates the generation of both Java classes and
XSD files which represent the metamodels obtained from the ECore information
model. On the data persistence layer, Teneo automates the generation of database
mappings and schemas from the same ECore model that was used in EMF.

Fig. 1. Transformation flows

Lastly, on the remote communication domain, Spring-WS generates a WSDL de-
scriptor from the XSDs created in the information model layer, XSDs specifying the
operations of the interface and XML bindings of the remote interfaces to Java code.

4 Report on Experience

4.1 System Description

As we have described previously, the developed system is a distributed enterprise
application, with multiple entities collaborating to provide the required functionality.
For its design we have followed a layered architecture, adopting the middleware
open-source stack (Spring, OSGi, Hibernate, Web Services) for modular, enterprise
applications. The adoption of middleware and framework components greatly reduces
the coding effort, and promotes best practices for solving common concerns of every
development project.

64 R. García-Carmona et al.

Figure 2 shows a model-focused structural view of one component of our
distributed system. It shows three different areas. The system runs over a runtime
environment, formed by hardware, operating system, a Java virtual machine and a set
of provided libraries, On top of this substrate reside the models layer. These compo-
nents are the result of our generation process. Finally, the third group is composed by
the actual functionality of the application, the service layer. Developers should focus
only on these elements, which are the business logic units, user interfaces, remote
services, and inventory services. As the model layer provides automatic transforma-
tions it abstracts from the middleware infrastructure in charge of the remote serializa-
tion and persistence.

Fig. 2. System structural view

4.2 Process Practices

With the characteristics of the selected tools and the requirements of the system in
mind we defined a flow for the detailed design and implementation activities. Figure 3
shows its steps and the transitions between them.

The application of MDE translates into the following tasks:

• Definition of models using MDE models and metamodels.
• Modification of already created models, in order to adapt them; either by us-

ing transformations (model-to-model) or by hand (model tuning).
• Generation of code from the models, mainly using model to code transforma-

tions.
• Modification of generated code (code tuning).
• Implementation of code not covered by MDE, which in our case pertains to

the system logic.
• Testing of both the generated and manually created elements.

 Lessons Learned on the Development of an Enterprise Service Management System 65

Fig. 3. Development process

Concerning testing it is important to note that EMF generates unit tests that validate
the generated source code. Therefore, the testing tasks can be performed with auto-
matically created or hand-written tests.

5 Discussion

This section provides additional discussion on the followed approach after its comple-
tion. We will present both a small quantitative analysis of the finished system and a
summary of the lessons we have learned. We think this information can be useful to
not only evaluate the success of the approach but also improve similar processes.

5.1 Quantitative Analysis

To evaluate the generated code some metrics have been performed. The results of this
analysis are depicted in Table 1.

The first two rows contain the most basic information that can be obtained: the raw
number of lines of code and Java classes. It is important to note that the size of the
modeled part weights roughly half of the system (60.000 lines of code excluding
libraries). Most of this code contains the information model and the XML serializa-
tion engine.

The remaining rows comprise some software metrics that try to measure the quality
of the code. Efferent couplings indicates how focused are the classes. The remaining
metrics (cyclomatic complexity, number of lines per method and number of locals)
indicate the complexity and comprehensibility of the code. All the values are averages
for all the classes or methods.

66 R. García-Carmona et al.

Since generated and manually written code cannot be compared side by side, we
compared the amounts of code of the model definitions and the generated elements.
The model definitions span 1609 lines, the ratio is of 20.6 Java lines generated per
line of model definition written.

Table 1. Code metrics

Metric Value
Lines of Code 33125
Classes 290
Average Efferent Couplings 6.91
Average Cyclomatic Complexity 2.06
Average Number of Lines per Method 13.63
Average Number of Locals 1.44

5.2 Lessons Learned

During the process we identified some critical risks for the success of the develop-
ment with this approach. Most of these pitfalls could be avoided taking some factors
into consideration. Further on, we expose the most remarkable issues:

Application of Mature Transformations. Our intent with the described generation
process was to take models as a foundation, trying to abstract whenever possible of
the specific middleware for the previously described concerns, such as persistence or
remote communications.

Although our experience was positive (used these capabilities seamlessly over the
model layer), we found some problems using one of the transformation frameworks
(Teneo 0.8): its data persistence service did not work as expected in common situa-
tions (updating operations). Detection of such failures was difficult because the
source of problems could be in any of the layers, and we had to look into their source
code, losing the theoretical advantages of abstraction. Therefore, tool and framework
maturity are a fundamental risk to be assessed for adopting this type of approach.

Limits in the Abstractions. We were also affected by the law of leaky abstractions
[7], as the transformations hid useful concepts in the lower levels that could only be
obtained by respecting these low-level constraints in the business logic (lazy loading
from the database improves efficiency but imposes session management in the upper
layer).

Model Definition Accuracy. The success of the complete development is heavily
dependent on this. During our development, an error in the business logic was finally
traced to a mistake in the definition of the information model. We expressed a
relationship between elements as a composition instead of an aggregation, and the
generated code did behave as we defined (but not intended).

Application of Corrective Changes. Probably the most important model transforma-
tion that a solution can offer is the generation of code. In our experience almost all the
chosen solutions behaved perfectly on this matter. However, the generation process
can in some cases be far from perfect and the generated code could not be used
directly.

 Lessons Learned on the Development of an Enterprise Service Management System 67

We experienced this drawback with Teneo. The generated mapping files had to be
manually edited to solve various problems. The greatest time sink here was to trace
the failure to the generated model and figure what tweaks were needed.

On the other hand, the automatic generation of unit test cases that EMF provided
helped greatly to discard those models as the source of any failure.

Application of Perfective Changes. Sometimes the generated elements do not ac-
complish all the goals that have been set. In these situations the missing features have
to be implemented into the generated code by hand. If the generated artifacts are well
documented and easily readable, applying these improvements is a good way to build
over the base functionality.

In our case, the code produced by EMF lacked proper methods for asserting the
equality between two elements, managing collections or generating a unique identi-
fier. But fortunately the generated code did not require a deep knowledge of EMF.
With the help of annotations to preserve these non-generated methods in future trans-
formations and thanks to the cleanliness and organization of the code, the application
of these perfective changes was straightforward.

Cost of Starting a New Iteration. It is very common during the development process
to go back to a previous step, introducing some changes and continue from there. This
usually forces the redefinition of models and regeneration of code. In these cases it is
very important to keep track of all the manual changes and procedures that have to be
applied after finishing the automated tasks. For instance: performing the correct code
modifications after its regeneration.

Therefore, is vital to have a detailed and documented process for the development
with MDE. We addressed this point by adopting the detailed flow shown in previous
sections.

Coverage of Transformations. MDE is based upon transformations. However, spe-
cial attention needs to be devoted to the system components where the necessary trans-
formations are not automatically performed. These sections must be reviewed after
each code regeneration operation and some parts need to be manually implemented.

During the development of the system we found that Spring Web Services, al-
though generated the WSDL, lacked the tools to do the same with the bindings
between the logic and the interfaces. In the end we implemented those bindings
manually. However, in retrospective we think that defining and implementing these
transformations could have been a better solution. The workload would have been
similar but in further iterations the benefits of extending MDE coverage would have
been considerable.

6 Conclusions

In this case study we have developed a real-world enterprise management system in a
model-centric view through MDE processes. This approach has allowed us to imple-
ment some non-functional requirements such as remote communications or informa-
tion persistence with model transformation techniques and tools, using available open
source tools and libraries.

68 R. García-Carmona et al.

The results obtained during this development have been satisfactory. The reduced
effort obtained by the code generation capabilities greatly helped to speed the process.
The general perception of both the developers and project managers are that the use of
these methodologies, albeit the problems faced, has eased the development process
and improved the quality of the produced system. It seems clear that the characteris-
tics of the enterprise domain make it perfectly-suited for automating the generation of
parts of the system.

However, regarding the level of achieved abstraction from the middleware layers
we identified several key factors that greatly impact the results in this area. We be-
lieve that our lessons learned in this case study can help with the execution of similar
processes and greatly reduce the risks involved and shorten the development cycles.

Acknowledgements. The work presented here has been performed in the context of
the CENIT-ITECBAN project, under a grant from the Ministerio de Industria,
Comercio y Turismo de España.

References

1. Schmidt, D.C.: Guest Editor’s Introduction: Model-Driven Engineering. Computer 39(2),
25–31 (2006)

2. Object Management Group, Meta Object Facility Specification 2.0.(January 2006),
http://www.omg.org/spec/MOF/2.0/

3. Frankel, D.S.: Model Driven Architecture: Applying MDA to Enterprise Computing.
Wiley, Chichester (2003)

4. Quartel, D., Pokraev, S., Pessoa, R.M., van Sinderen, M.: Model-Driven Development of a
Mediation Service. In: 12th International IEEE Enterprise Distributed Object Computing
Conference, Munchen (2008)

5. White, J., Schmidt, D.C., Czarnecki, K., Wienands, C., Lenz, G.: Automated Model-Based
Configuration of Enterprise Java Applications. In: 11th International IEEE Enterprise Dis-
tributed Object Computing Conference, Annapolis (2007)

6. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Frame-
work, 2nd edn. Addison-Wesley Professional, Reading (2008)

7. Spolsky, J.: Joel on Software. Apress (2007)

Part II

Software Engineering

Checking Regulatory Compliance of
Business Processes and Information Systems

Motoshi Saeki1, Haruhiko Kaiya2, and Satoshi Hattori1

1 Dept. of Computer Science, Tokyo Institute of Technology
Ookayama 2-12-1-W8-83, Meguro-ku, Tokyo 152-8552, Japan

2 Dept. of Computer Science, Shinshu University
Wakasato 4-17-1, Nagano 380-8553, Japan

{saeki,satoshi}@se.cs.titech.ac.jp, kaiya@cs.shinshu-u.ac.jp

Abstract. In these years, many laws and regulations are being enacted to pre-
vent business processes (BPs) and information systems (ISs) from their malicious
users. As a result, it is significant for organizations to ensure that their BPs and ISs
comply with these regulations. This paper proposes a technique to apply a formal
technique to ensure the regulatory compliance of BP or IS descriptions written in
use case models. We translate the use case models of the behavior of BPs and ISs
into finite state transition machines. Regulations are represented with computa-
tional tree logic (CTL) and their satisfiability are automatically verified using a
model checker SMV. The modality of regulations can be specified with temporal
operators based on branching time semantics of the CTL in our technique.

1 Introduction

To develop an information system used in an organization, we firstly model a business
process so that it can solve the problems that the organization has. We have several
techniques to model business processes and information systems, e.g. work flow, state
transition, use case and goal modeling etc. In particular, we often specify the behavior
of business processes and information systems.

In these years, many laws and regulations (simply, regulations) are being enacted to
prevent business processes and information systems from their malicious users. As a
result, we should develop a business process and an information system that are com-
plaint with these regulations. If we developed a business process or an information
system that was not compliant with the regulations, we could be punished and its com-
pensation could be claimed to us, as a result we could take much financial and social
damage. It is significant for us to ensure that our business processes and information
systems comply with these regulations. Furthermore, if we would find that the informa-
tion system that is being developed was not compliant with its related regulations, we
have to redo its development and its development cost and efforts seriously increase.
Thus we have to check if a behavioral specification of the business process and/or the
information system to be developed is compliant with regulations as early as possible,
in order to reduce its development cost. In an earlier stage of development, we should
verify that the behavioral specification comply with regulations.

J. Cordeiro, A. Ranchordas, and B. Shishkov (Eds.): ICSOFT 2009, CCIS 50, pp. 71–84, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

72 M. Saeki, H. Kaiya, and S. Hattori

We propose the technique to check formally regulatory compliance of the behavioral
specifications of business processes and information systems, using a model checker
SMV. In [14], in order to detect the possibilities of non-compliance, its authors have
developed the technique to represent specification statements and regulatory ones with
case frames of Fillmore’s case grammar and then to match these case frames. However,
it dealt with itemized assertive sentences as specification statements only and it did not
consider behavioral aspects such as execution order of actions in the system. In this pa-
per, we model the behavior of a business process or an information system with a finite
state transition machine that can be an input to a model checker. Regulatory statements
are formally represented with temporal logical formulas and the model checker verifies
if these logical formulas are true in the state transition machine or not. If the logical
formulas are true, we can judge the behavioral specification to be compliant with the
regulations. If the formulas are false, since the model checker outputs counterexamples
showing the state transition sequences unsatisfying the regulations, we can recognize
where its regulatory non-compliance exists.

The rest of the paper is organized as follows. Section 2 presents how to represent
regulatory statements with branching time temporal logic (another name, CTL: compu-
tational tree logic, and we use the abbreviation CTL below). In particular, we emphasize
the modality of regulatory statements such as obligation, prohibition, etc. and discuss
how to formally represent them with the temporal operators of CTL. We also explain
the overview of our checking process for regulatory compliance and illustrate its details
together with supporting tools in section 3. It includes a description language of state
transition machines for the model checker SMV and the terminology matching to re-
trieve the relevant regulatory statements to be verified. In section 4, we discuss another
example to show the usefulness of our approach. Sections 5 and 6 are for related work
and concluding remarks respectively.

2 Regulation

2.1 Representing Regulations

A typical example of regulations related to IT technology is Japanese Act on the Pro-
tection of Personal Information [1] that specifies the proper handling of personal infor-
mation such as names, addresses and telephone numbers of persons in order to prevent
from making misuse of this information. For example, the Article 18, No. 1 of Act on
the Protection of Personal Information provides that

Article 18, No. 1 of Act on the Protection of Personal Information:
When having acquired personal information, an entity handling personal in-
formation must, except in cases in which the Purpose of Use has already been
publicly announced, promptly notify the person of the Purpose of Use or pub-
licly announce the Purpose of Use.

According to [5], a regulatory statement consists of 1) the descriptions of a situation
where the statement should be applied and 2) the descriptions of obligation, prohibition,
permission and exemption of an entity’s acts under the specified situation. In the above

Checking Regulatory Compliance of Business Processes 73

example, we can consider that “when having acquired personal information, except in
cases in which the Purpose of Use has already been publicly announced” is a situation
where this act should be applied, while “notify” and “announce” represent the acts of
“the entity”. These acts are obligations that the entity should perform.

The first thing that we should address is how to deal with four modalities, obliga-
tion, prohibition, permission and exemption using mathematical notation such as formal
logic. We use the temporal operators of CTL to represent these modalities. Suppose that
we specify the behavior of an information system with a finite state transition machine.
Since state transitions occur non-deterministically in it, there exist several execution
paths in the information system. When we define the states as nodes and the transitions
as edges, we can get a tree called computational tree that specifies these execution paths.
The properties that hold on the tree can be defined with CTL formulas. Suppose that R
is a logical formula. We use four types of temporal operators AF, AG, EF and EG and
their intuitive meanings are as follows. AF R is true iff R is eventually true for every
path, AG R is true iff R is always true for every path, EF R is true iff there is a path
where R is eventually true, and EG R is true iff there is a path where R is always true.

The value of a proposition is either true or false at a node. Let P and Q be propositions
of a situation and an act respectively. Q is true if the act is being executed. By using
the above four operators, we can represent a regulatory statement with the modalities
as follows.

Obligation : P→ AF Q
Prohibition : P→ AG ¬Q
Permission : P→ EF Q
Exemption : P→ EG ¬Q

The three computational tree of Figure 1 shows why the above formulas can express
a modality of a regulatory statement. Gray-colored nodes on the paths stand for the
states where Q is true, while each root node denotes the state where the situation P is
true. In the case of obligation, we should perform Q if the situation P is true, whatever
execution path we take. Therefore Q should be eventually true for every path outgoing
from the node P. On the other hand, a regulatory statement of prohibition says that we
are not allowed to execute Q on any path. ¬ Q should continuously be true on any node
of every path outgoing from P, i.e. Q is always false for every path. If there exists a path
where Q is eventually true, Q is permitted to be executed. If there exists a path where Q
is always false, we are exempted from executing Q. Note that CTL has binary temporal
operators based on until and we can represent with these operators time intervals such
as the deadline when an obligation keeps on holding. For simplicity, we will not refer
to them throughout this paper but we can deal with them in the same way.

In the cases of permission and exemption, although the regulatory statement is not
true on an information system, we cannot say that it violates the regulation. For exam-
ple, if “P → EF Q” (permission of Q) is not true, there are no paths where Q can be
executed. Even though the act Q is permitted, we don’t always need to execute Q and
non-execution of Q is not a regulatory violation. However, if an information system
will not have the function to execute the permitted act Q, it may have a disadvantage to
competitors’ products having this function in the market. Moreover, there is a possibil-
ity that its users may accuse it of inconvenience because they cannot use the function.

74 M. Saeki, H. Kaiya, and S. Hattori

P
￢Q

Prohibition: P → AG ￢Q

P
￢Q

Prohibition: P → AG ￢Q

P

Q

P

Q

Obligation: P → AF Q

Execution tree

P

Q

P

Q

Obligation: P → AF Q

Execution tree

P

Q

Exemption: P → EG ￢Q
Permission: P → EF Q

P

Q

Exemption: P → EG ￢Q
Permission: P → EF Q

Fig. 1. Computation Tree and Modality of Regulations

In addition, suppose the case when the act Q is executed at every path, i.e. the same
situation as obligation. This case is compliant with the regulatory statement. However,
if the execution of the act Q brings about inconveniences to the users of the information
system, the system where Q is executed in any case may have a disadvantage. Thus we
additionally check the execution of Q in every path, using the formula “P → AG Q”.
Similarly in the case of the exemption of Q, we additionally check whether Q is not
executed in any path, i.e. is prohibited or not.

We continue to discuss how to represent a regulatory statement with a CTL formula,
using as an example the Article 18, No. 1 of Act on the Protection of Personal Informa-
tion, mentioned in the beginning of this sub section. This article claims the obligation
of the acts “announce” or “notify”. The situation part and the act one in a regulatory
statement can be described with logical combinations of case frames as shown in [14].
The technique of case frames was originated from Fillmore’s Case Grammar to rep-
resent the semantics of natural language sentences. A case frame consists of a verb
and semantic roles of the words that frequently co-occur with the verb. These semantic
roles are specific to a verb and are called case. For example, the case frame of the verb
“get”, having the cases “actor”, “object” and “source”, can be described as “get(actor,
object, source)”, where “get” denotes the acquisition of the thing specified by the object
case. The actor case represents the entity that performs the action of “get” and that will
own the thing as the result of the “get” action. The source case denotes the entity from
which the actor acquires the object. By filling these case slots with the words actually
appearing in a sentence, we can obtain its semantic representation. In the example of
the sentence “an entity handling personal information acquires from a member her per-
sonal information”, we can use the case frame of “get” and have “get(entity handling
personal information, personal information, member)” as its intermediate semantic rep-
resentation. Finally, we can represent the example statement of Article 18, No.1 using
case frames and CTL as follows;

get(x, Personal information, y)
∧ ¬ announce(x, Purpose of use)
∧ aggregation(y, Personal information)
∧ handle(x, Personal information, Purpose of use)
→ AF (notify(x, Purpose of use, y)

∨ announce(x, Purpose of use))

Note that the identifiers of lower case characters such as “x” and “y” stand for variables,
and we can fill them with any words. In this sense, the formula can be considered as a
template.

Checking Regulatory Compliance of Business Processes 75

MODULE main
VAR

state : {S1, S2, S3, S4, Final_state} ;
ASSIGN

init(state) := S1 ;
next(state) :=

case

state = S1 : {S2, S3} ;
state = S2 : S4 ;
state = S3 : {S3, S4} ;
state = S4 : {Final_state, S1} ;
1 : state ;

esac ;

Fig. 2. Description of a FSM with SMV

2.2 Describing FSMs

We use the model checker SMV [9], because it can deal with CTLs. In SMV, a system
to be checked is represented as a set of concurrent sequential processes and each pro-
cess is defined as a non-deterministic finite state transition machine (FSM). In a FSM,
state transitions are defined as changes of values of explicitly declared state variables.
Figure 2 includes an example of a FSM and its representation with the language of the
model checker SMV. The left part of the figure shows a diagram of the FSM, and rounded
rectangles and arrows represent states and transitions between them respectively.

The right of the figure shows the description of the FSM for SMV, and it has only
one global variable named “state” that stores the current state. The VAR section declares
the variable and its domain, i,e. a set of values that can be assigned to the variable. The
expression “next(state)” denotes the value of “state” at the next state. A case block (case
· · · esac) sets the value of the next state according to the current value. The values before
and after the colon (:) expresses the current value and the next one respectively. For
example, if the current value is S1, the next value is set to S2 or S3 after a transition. The
bottom line of the case block includes “1” before the colon and it means “otherwise”.

To make it easy to find the relevant regulatory statements and to generate their
CTL formulas from the FSM, it is preferable to use as the FSM’s state names natural-
language sentences or phases like use case descriptions, or their case frame notation as
shown in the right part of Figure 5.

3 Checking Process

3.1 Overview

Figure 3 shows the process of checking regulatory compliance in a business process
or an information system. Its behavior is modeled with a state transition model and
the model is described with the language of the model checker. In our approach, we
also translate regulatory statements into CTLs as shown in section 2.1, and verify if the
CTLs are true on the state transition machine by using a model checker. If the model

76 M. Saeki, H. Kaiya, and S. Hattori

p →AF q

Behavior of a BP or an IS Regulations

Finite State
Machine

CTL Template

Terminology Matching
+

Model Checking

Checking results

Fig. 3. Overview of a Checking Process

Fig. 4. On-line E-Shop

checker finds that the CTLs are false, it produces the examples where the CTLs are
false, i.e. the counterexamples. We can explore the counterexamples and identify which
parts of the use case descriptions may cause the detected noncompliance. Note that in
the case of permission or exemption regulatory statements, as mentioned in section 2.1,
1) the resulting falseness does not lead to noncompliance and 2) we can perform an
additional check even in the case of true.

The words, terms and phrases (terms, hereafter) appearing in regulatory statements
are different from the terms in the state transition machines, but they may have the same
meaning. We need a task for identify the terms having the same meaning and unify them
into a single expression. “Terminology matching” is for matching the terms appearing
in the CTLs to those in the state transition machines by using synonym dictionaries such
as WordNet. The supporting technique for this task will be illustrated in section 3.3.

Checking Regulatory Compliance of Business Processes 77

Create an account

Actor: User

Pre condition

There are no accounts yet.

Normal flow

1. The user sends his personal

information to the system.

2. The system checks the validity

of the personal information.

3. The system issues login ID

and password to the user.

Post condition

The user gets an account and

the user is not logged in yet.

MODULE create_an_account(state)
ASSIGN
next(state) :=
case
state = “there_are_no_accounts_yet” :

“send(User,Personal_information,System)” ;
state = “send(User,Personal_information,System)” :

“check(System,Validity_of_Personal_information)” ;
state = “check(System,Validity_of_Personal_information)” :

“issue(System, Login_ID_and_password,User”) ;
1 : state ;
esac;

(a) Use case description (b) SMV description

Fig. 5. Detailed Description of Create an account

Fig. 6. Supporting a Terminology Matching Task

3.2 Example

In this subsection, we explain an example that will be used throughout this section. The
example is an on-line shop for goods like Amazon, and Figure 4 depicts its use case
diagram and its state transition diagram. The overall behavior of the business process
of a shop user is specified with the state transition diagram shown in the right part of

78 M. Saeki, H. Kaiya, and S. Hattori

Login
　Actor: User
　Pre condition
　the user is not logged in.

　 Normal flow
　　1. The user inputs login ID
　　　　 and password to the system.
　Post condition
　The user is logged in.

Logout
Actor: User
Pre condition
the user is logged in.

Normal flow
　　1. The user exits.
Post condition

The user is not logged in.

Create an account
Actor: User
Pre condition

　　There are no accounts yet.
Normal flow

　1. The user sends his personal
　　　　information to the system.
　2. The system checks the validity
　　　 of the personal information.
　3. The system issues login ID and
　　　　 password to the user.

Post condition
The user gets an account and

　　 the user is not logged in yet.

Fig. 7. A Counterexample

the figure. A user first creates her account (Create an account) and then logs in her ac-
count (Login). She browses various catalogs of goods to find the items that she want
to get(Browse goods). If she finds a good that she like to buy, she buys it by speci-
fying a payment method, e.g. inputting her credit card information (Buy goods). She
can browse the catalogs of goods without buying anything (the transition from Browse
goods to Logout) and can buy several goods repeatedly in one session (the transition
loop between Browse goods and Buy goods). Figure 5 shows the detailed behavior of
“Create an account”, which is described as a use case description in the left part and
with SMV language in the right part of the figure. Note that, for simplicity, we use the
descriptions that are not syntactically allowed in SMV. As mentioned in section 2.2, we
consider an action currently executed in the use case as a current state and the global
variable “state” holds the name of the currently executed action. If this action finishes
and the next action starts being executed, the name of the next action is assigned to
the variable. As for pre and post conditions in a use case, by assigning the name of the
condition to the variable, we represent the state where it comes to be true. We don’t
intend to propose a technique to translate use cases into a state transition machine. In
fact, more elaborated translation techniques can be found in [8,15,16] and they may be
used.

3.3 Terminology Matching

The goal of terminology matching task is 1) retrieving the regulatory statements relevant
to a FSM by unifying terms of the regulatory statements to the terms appearing in the
FSM such as state names, and 2) generating the CTL formulas in SMV-acceptable form
from the unified formulas of the regulatory statements.

Checking Regulatory Compliance of Business Processes 79

Suppose that a FSM has the state name “send(User, Personal information, System)”,
which is case frame notation of the sentence“The user sends his personal information
to the system”. When we use this sentence, we can get a case frame as its semantic rep-
resentation after lexical analysis. If we use as a state name an incomplete natural lan-
guage sentence, e.g.“send personal information” where a subject is missing, we should
add missing words so as to get its case frame. In this example, the verb “get” in the case
frame of Article 18, No.1 is semantically the same as “send” but the flow of the object
(personal information) of this act is reverse to “send”. We have a dictionary of case
frames, and it includes information on synonym verbs and their case slots. It also has
the rules of replacing a verb and its case slot values, keeping the same meaning. For ex-
ample, a rule says that the frame “get(actor:x, object:y, source:z)” can be replaced with
“send(actor:z, object:y, target:z)”. After this replacement, we fill the variables “x” and
“y” with “System” and “User” respectively so as to match with the example sentence
the resulting case frame (the situation part of the Article 18, No.1). From the context
of the FSM, since it is obvious that the system (“x”) handles with personal information
and that the user (“y”) has personal information, we can omit the predicates “handle”
and “aggregate”. Finally we have the following CTL as the result of this Terminology
Matching task.

state = “send(User, Personal information, System)”
→ AF (state = “notify(System, Purpose of use, User)”
∨ state = “announce(System, Purpose of use)”)

The above is just the CTL formula to be checked if the FSM has regulatory noncompli-
ance or not, and an input to a model checker.

Since Terminology Matching task deals with the semantics of natural language, we
cannot fully automate it. However, we have a computerized tool to support this task,
based on the technique in [14]. The tool has the following functions; 1) analyzing nat-
ural language descriptions and extracting their case structures if necessary, 2) having
a dictionary of case frames of regulatory statements, 3) retrieving the regulatory state-
ments which can be matched to the case frames of the state names of the FSM, and 4)
generating the CTL formula of regulatory statements by unifying the terms and simpli-
fying it. Figure 6 shows a screen shot of our tool. The tool suggests a pair of the descrip-
tion “send(User, Personal information, System)” and the related regulatory statements
after matching them in case frame level. This matching process uses Japanese-English
translation dictionary and synonym ones. We have extracted case frames from the Ar-
ticles 15 - 36 of Act on the Protection of Personal Information and stored them in a
dictionary beforehand. The tool checks if the verb phrases appearing in the descriptions
can be matched to these case frames. As a result, the left and right areas of the window
of Figure 6 show the description “send(User, Personal information, System)” of “Cre-
ate an account” in Figure 5 and the Article 18 No.1 respectively, because they can be
matched. Some information helpful to produce the input CTL formula is displayed in
the other area of the window, e.g. situations and acts to be considered during producing
the formula.

80 M. Saeki, H. Kaiya, and S. Hattori

3.4 Model Checking

The model checker of SMV is called NuSMV. Since NuSMV checks if a formula is true
at the initial state of a FSM, we attach the operator AG in the head of the formula that
was obtained in the Term Matching task.

The NuSMV shows that the CTL of Article 18 No.1 is false, and we can recognize
that our example has a regulatory violation because the verified CTL is an obligation.
The counterexample that the NuSMV outputs suggests the instance of execution paths
where the CTL comes to be false. According to it, as shown in Figure 7 which is de-
scribed in use case description form not in state transition style for simplicity, we can
recognize that the following scenario caused the regulatory violation. After executing
Create an account, Login is executed and then its login is successful. After that, the
Logout use case is immediately executed. Login and logout are iterated as a loop. This
path does not satisfy the CTL of Article 18 No.1 specifying the obligation of the action
“notify” or “announce”.

Figure 8 illustrates the verification example mentioned above. Note that we used
abbreviated literal forms instead of string data types to represent the values of “state”

Fig. 8. Verification Example with NuSMV

Checking Regulatory Compliance of Business Processes 81

variable for brevity and the ability of NuSMV. For example, we used the literals send
personal info and notify purpose in the NuSMV tool instead of the strings “send(User,
Personal information, System)” and “notify(System, Purpose of use, User)” respec-
tively. The figure includes two windows; one is the verification result and another is
a counterexample. The rear window shows that the CTL of Article 18 No.1 is false (the
CTL numbered with 0 in the Property tab), and we can recognize that our example has
a regulatory violation. The counterexample is shown in the front window of the figure.
According to it, after executing Create an account (step 21: issue ID, which denotes “3.
The system issues login ID and password to the user” in Figure 7), Login is executed
(steps 24-30: input ID, denoting “1. The user inputs login ID and password to the sys-
tem” in Figure 7) and then its login is successful (step 31: logged in, the post condition
of the Login use case). After that, the Logout use case is immediately executed (step
32: exit). Login and logout are iterated as a loop (step 23→ 33→ 23).

By investigating the counterexamples, we can identify where regulatory violation
is in the FSM and what parts we should correct. In this example, we can find that
there is regulatory violation in either Create an account, Login or Logout and that we
can resolve it by inserting the obligation act “notify(System, Purpose of use, User)” to
either of them. We add this act to Create an account.

4 An Example of Exemption

In this section, we introduce another example which includes a regulation denoting
exemption, and it is a simplified, but actual, version of the process of money transfer
at a bank. If we intend to transfer money to an account, we can take two ways; one is
to ask a bank teller to do and the other is to use an automatic teller machine (ATM). In
the former way, a transferer (a person who intends to transfer money) fills a form and
brings it together with cash to a bank counter. The bank teller at the counter requires
the transferer to show some identification documents such as photo ID card, passport,
etc. to prove if the transferer is a real person who wants to transfer money or not. This
process is for avoiding spoofing and voice phishing. If the identification is successful,
the bank teller can perform money transfer. In the second case, the transferer transfers
money from her bank account to the other account by manipulating an ATM. She inserts
her cash card to the ATM and inputs her PIN code. After the valid PIN code is verified,
she can specify amount of money and the account which receives it. Figure 9 shows the
simplified version of the FSM of the above process and we omit the details of an ATM
manipulation process like inputting PIN code etc.

Although the identification of a transferer is necessary to protect from spoofing and
voice phishing, for convenience of bank customers the exemption regulation “when a
person intends to transfer money cheaper than 100,000 JPY, i.e. small money, she is not
identified” is enacted. We can specify this regulation as the following CTL formula.

state = “intend to transfer small money by ATM”→ EG ¬ (state = “identify a transferer”)

By using NuSMV, we find that its result is true. Suppose that we change the FSM of
Figure 9 by replacing with “identify a transferer” the destination (“transfer”) of the
transition from “manipulate an ATM”. It means that the identification is necessary in

82 M. Saeki, H. Kaiya, and S. Hattori

Fig. 9. Money Transfer Process

both ATM-transfer and cash-transfer. In this changed version of FSM, we get false for
the above formula. However, this is not a regulatory noncompliance as mentioned in
section 2.1.

Suppose the following formula on the FSM of Figure 9.

state = “intend to transfer small money by ATM”→ AG ¬ (state = “identify a transferer”)

It is true on the FSM. That is to say, whenever a tranferer transfers small money, her
identification is not performed. Although the FSM is regulatory compliant, this situation
is not so good to avoid spoofing and voice phishing because she can repeat transferring
small money without her identification at many times. Thus, we can consider to add
to Figure 9 the transition from “manipulate an ATM” to “identify a transferer” with
keeping regulatory compliance. The example mentioned in this section shows that we
can find some kind of vulnerability by using additional checks related to permission
and exemption regulations.

5 Related Work

The research topics related to regulatory compliance in requirements engineering area
being actively focused on. The state of the art of this area and some achievements can
be found in [10]. We can find many approaches to represent regulations with formal ex-
pressions [11,12,13], and many of them used classical logic as formal representations
of regulations. For example, Hassan et al. used logical formula to represent regulatory
statements and enterprise requirements, and Alloy analyzer to check the consistency be-
tween them [6]. Although they benefited from powerful and well-established theorem
provers and model checkers, an issue on the treatment of the modalities of regulatory
statements still remains. Analyzing regulatory compliance of misuse cases leads to the
elicitation of a class of non-functional requirements such as security, safety, reliability
etc. Deontic logic is one of the alternatives to represent the modalities of obligation and
prohibition more intuitively and comprehensively [7]. However, its theorem prover or
model checker has been less established yet rather than CTL [2,4]. There are some stud-
ies on applying goal-oriented analysis to regulations in order to identify the rationales
of and the dependencies among regulatory statements. [3]. Although their aim does not
have the same direction as ours, we can consider deeper analysis by checking regu-
latory compliance from the viewpoints of rationales of regulations and requirements
specifications.

Checking Regulatory Compliance of Business Processes 83

6 Conclusions and Future Work

This paper presents the technique to check regulatory non-compliance of a business
process and an information system by using a model checking. The future work can be
listed up as follows.

1. Elaborating the automated technique to translate human-friendly descriptions of
FSMs including use case models and state transition diagrams into SMV FSMs. In
addition, we also consider the other types of descriptions such as UML Activity
Diagram and are developing its translation tool.

2. Elaborating the supporting tool and its assessment by case studies, in particular
NuSMV is not so powerful to retrieve and manage counterexamples. The functions
on manipulating counterexamples are significant to resolve regulatory noncompli-
ance and the methodology how to find from the counterexamples the solutions to
mitigate regulatory noncompliance should be developed.

3. Developing a supporting technique for the processes to translate correctly regula-
tory statements into CTL formulas. In addition, since regulatory documents include
meta level descriptions such as application priority of the statements, the technique
to model them should be more elaborated.

4. Considering how to deal with scalability problems on the techniques of model
checking.

5. Dealing with non-functional requirements such as security.
6. Combining tightly our approach to requirements elicitation methods such as goal-

oriented analysis and scenario analysis,
7. Developing the technique to manage and improve the requirements that have the

potentials of regulatory noncompliance,
8. Developing metrics of measuring compliance, in fact the types and numbers of

regulatory noncompliance occurrences can be considered as strength degrees of
noncompliance.

References

1. Cabinet Office, Government of Japan: Act on the Protection of Personal Information (2003),
http://www5.cao.go.jp/seikatsu/kojin/foreign/act.pdf

2. Castero, P., Maibaum, T.: A Tableaux System for Deontic Action Logic. In: van der Meyden,
R., van der Torre, L. (eds.) DEON 2008. LNCS (LNAI), vol. 5076, pp. 34–48. Springer,
Heidelberg (2008)

3. Darimont, R., Lemoine, M.: Goal Oriented Analysis of Regulations. In: REMO2V, CAiSE
2006 Workshop, pp. 838–844 (2006)

4. Dinesh, N., Joshi, A., Lee, I., Sokolsky, O.: Reasoning about Conditions and Exceptions to
Laws in Regulatory Conformance Checking. In: van der Meyden, R., van der Torre, L. (eds.)
DEON 2008. LNCS (LNAI), vol. 5076, pp. 110–124. Springer, Heidelberg (2008)

5. Eckoff, T., Sundby, N.: RECHTSSYSTEME (1997)
6. Hassan, W., Logrippo, L.: Requirements and Compliance in Legal Systems: a Logic Ap-

proach. In: Requirements Engineering and Law (RELAW 2008), pp. 40–44 (2008)
7. Jones, A., Sergot, M.: Deontic Logic in the Representation of Law: Towards a Methodology.

Aritificial Intelligence and Law 1(1), 45–64 (2004)

84 M. Saeki, H. Kaiya, and S. Hattori

8. Nebut, C., Fleurey, F., Traon, Y., Jezequel, J.M.: Automatic Test Generation: A Use Case
Driven Approach. IEEE Transaction on Software Engineering 32(3), 140–155 (2006)

9. NuSMV: A New Symbolic Model Checker (2007), http://nusmv.fbk.eu/
10. Otto, P., Anton, A.: Addressing Legal Requirements in Requirements Engineering. In: Proc.

of 15th IEEE International Requirements Engineering Conference, pp. 5–14 (2007)
11. 1st International Workshop on Requirements Engineering and Law (2008),

http://www.csc2.ncsu.edu/workshops/relaw/
12. International Workshop on Regulations Modelling and Their Validation and Verification

(REMO2V), CAiSE 2006 Workshop(2006),
http://lacl.univ-paris12.fr//REMO2V/

13. Interdisciplinary Workshop: Regulations Modelling and Deployment (2008),
http://lacl.univ-paris12.fr/REMOD08/

14. Saeki, M., Kaiya, H.: Supporting the Elicitation of requirements Compliant with Regulations.
In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 228–242. Springer,
Heidelberg (2008)

15. Some, S.: Use case editor (uced),
http://www.site.uottawa.ca/˜ssome/Use_Case_Editor_UCEd.html

16. Whittle, J., Jayaraman, P.: Generating Hierarchical State Machines from Use Case Charts.
In: Proc. of 14th IEEE Requirements Engineering Conference (RE 2006), pp. 19–28 (2006)

A Decision Support Scheme for Software Process
Improvement Prioritization

Arne Beckhaus1,4, Lars M. Karg1,3, Christian A. Graf2, Michael Grottke2,3,
and Dirk Neumann4

1 SAP Research Darmstadt, Germany
2 imbus AG, Germany

3 University of Erlangen-Nuremberg, Germany
4 University of Freiburg, Germany

{arne.beckhaus,lars.karg}@sap.com,
christian.graf@imbus.de,

michael.grottke@wiso.uni-erlangen.de,
dirk.neumann@is.uni-freiburg.de

Abstract. Software managers pursuing process improvement initiatives are con-
fronted with the problem of selecting potential improvements. In the field of soft-
ware quality assurance, suitable decision support for prioritizing the optimization
of activities according to their return on investment is not yet available. Our paper
addresses this research gap. We develop a decision support scheme that facilitates
the selection and prioritization of quality assurance activities. We demonstrate
the scheme’s applicability in three industrial case studies. By relying on the well-
known COQUALMO model’s characteristics and calibration data, our approach
is industrially applicable with little data collection efforts.

Keywords: Software process improvement, Decision support, COQUALMO.

1 Introduction

For decades, users of software solutions have been suffering from poor solution qual-
ity [24]. Estimates for the United States show annual economic damages of billions
of dollars [17]. Recently, software vendors have attempted to tackle this challenge by
adapting the concepts of more mature industries, such as manufacturing [1]. This trend
can also be seen in quality assurance (QA) departments.

Software defects are typically traced by means of different QA techniques. When at-
tempting to improve the QA process, management is often confronted with the decision
which technique to improve first in order to achieve the highest possible quality gains.
Software Process Improvement (SPI) [2,11] promises to support quality managers in
their decision-making. It is a software-industry-specific concept, defined as “changes
implemented to a software process that bring about improvements” [18]. However, a
light-weight, context-specific, and easy-to-apply SPI scheme has not yet been proposed.
We fill this research gap by developing an SPI decision support scheme. It provides
quality managers with a toolkit to prioritize improvement activities based on expected
defect reduction.

J. Cordeiro, A. Ranchordas, and B. Shishkov (Eds.): ICSOFT 2009, CCIS 50, pp. 85–93, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

86 A. Beckhaus et al.

Thereby, our approach relies on the Constructive Quality Model (COQUALMO)
[6,7]. While COQUALMO’s objective is defect prediction, our approach attempts to
prioritize process improvements. We start with the same process assessment case study
as COQUALMO, but we focus on the defect removal part and neglect defect introduc-
tion. Our optimization approach re-uses calibration data elicited from industry experts
as provided in COQUALMO [5]. It also adapts to COQUALMO’s definition of the
defect removal model in order to determine the effect of the calibration constants on
residual defects. Since it relies on many pre-calculated values, the approach can be
applied in a highly efficient way.

The remainder of this article is structured as follows. Related work on SPI and CO-
QUALMO is introduced in Section 2. Section 3 presents our findings in form of the
proposed optimization approach. The applicability of this approach is demonstrated in
three industrial case studies in Section 4. Our findings are summarized in Section 5,
where we also give an outlook on future research directions.

2 Related Work

2.1 Software Process Improvement

Optimizing the processes of a company is one of the core responsibilities of its man-
agement. In business administration, various frameworks for business process improve-
ments have been developed. Deming [9] with his Shewart cycle and Womack/Jones
[25] with their Lean Thinking approach are two prominent examples. Besides targeting
process improvement in general, these two frameworks have a special focus on quality.

In the software industry, SPI has been developed as an industry-specific concept
[2,11]. It addresses the peculiarities of software engineering and is applicable to various
kinds of software projects as commercial-of-the-shelf or in-house and custom software
development.

A central part of SPI and other process improvement concepts is measurement
[8,12,21,19,15,20]. Statistical process control is necessary for both transparency of the
status quo and controlling the success of improvements quantitatively. Several standard-
ized process assessment methodologies have been developed for software engineering
which are usually referred to as ‘Software Process Capability’ or ‘Maturity Models’ [23].

Research on SPI often deals with change management practices and influence fac-
tors of SPI success (e.g. [22,10]). We therefore address an open research question by
proposing a light-weight decision support scheme for the prioritization of quality as-
surance techniques according to how much they are expected to benefit from process
improvement.

2.2 COQUALMO

COQUALMO is a quality model aiming at the prediction of residual defects in software
development projects [6,7]. It is an extension of the project effort estimation model
COCOMO II [3] which has successfully been implemented in various industrial set-
tings.

A Decision Support Scheme for Software Process Improvement Prioritization 87

The basic idea behind COQUALMO is to picture software artifacts as reservoirs
(tanks) connected by pipes, similar to a water supply system. Defects are introduced
and removed by additional pipes representing processes that may introduce or remove
defects from the system—see Jones’ tank and pipe model [14] and Boehm’s defect
introduction and removal model [4].

COQUALMO models the introduction and the removal of defects by two separate
sub-models. The defect introduction (DI) sub-model covers the introduction of new
(non-trivial) defects into the software code. It uses a subset of the cost drivers from
COCOMO II [3] to derive a set of 21 parameters of defect introduction. These param-
eters are multiplied with the size of the software artifact. The output of the DI model is
the predicted number of requirements, design, and coding defects.

The defect removal (DR) sub-model covers the identification and elimination of de-
fects in later phases of the software project. Both sub-models must be applied in order to
predict the number of residual defects after test. Since the sub-models are separate, it is
possible to instantiate one without the other. We make use of this model characteristic,
because in the context of our selection approach we are only interested in defect removal.
In the following, we will therefore merely discuss the DR sub-model in more detail.

The defect removal sub-model relies on a multiplicative and influence factor based
modeling approach. Residual defects are modeled separately for each software arti-
fact type. Like the DI sub-model, the DR sub-model classifies defects according to the
process steps in which they were created as requirements, design, and coding defects.
This classification is named ‘artifact type’ in COQUALMO, and it may easily be ex-
tended. The DR sub-model considers three different defect removal techniques, which
are called ‘profiles’ in COQUALMO:

– ‘Automated Analysis’ is a technique that statically checks the source code of a piece
of software.

– ‘Peer Reviews’ are code inspections performed by people—hence the term ‘people
reviews’ in [6].

– ‘Execution Testing and Tools’ can be seen as dynamic testing of the software prod-
uct, potentially by means of dedicated testing tools.

All these techniques can help detect defects from all artifact types, although the defect
may have been introduced in a much earlier phase. In COQUALMO, the number of
residual defects of artifact type j is estimated as

DResEstj = Cj ·DIEstj ·
3∏

i=1

(1−DRFij)

with

j artifact type (requirements, design, or coding), j ∈ {1, 2, 3};
DIEstj number of defects of artifact type j, estimated based on the DI sub-model;
Cj baseline (calibration factor) calculated from historical data;
i defect finding and removal techniques (automated analysis, peer reviews,

and execution testing and tools), i ∈ {1, 2, 3};
DRFij defect removal factor modeling the impact of the i-th technique on the j-th

artifact.

88 A. Beckhaus et al.

For each defect removal technique, six maturity levels ranging from ‘very low’ over
‘low’, ‘nominal’, ‘high’, and ‘very high’ to ‘extra high’ are defined based on typical
process characteristics. For each combination of artifact type j and profile i as well as
each maturity level, [6] reports a value of DRFij determined by experts in a two-step
Delphi study.

3 Proposed Decision Support Scheme

3.1 Differentiation from COQUALMO

The optimization approach suggested in this paper is directly derived from
COQUALMO’s defect removal sub-model. Our selection approach does not rely on
COQUALMO’s defect introduction sub-model. Instead, it is based on the weighting of
influence factors by experts in form of the aforementioned two-step Delphi study. Be-
sides the general characteristics of the multiplicative model for defect removal, this data
set is the most important part of COQUALMO used in this study. Figure 1 illustrates
how COQUALMO and our approach are linked.

In [5], the defect removal factors are provided in table format. They are reflected in
the model definition in form of the DRFij factors. DRFij can be interpreted as the
fraction of defects of artifact type j that can be removed by means of defect removal
technique i. (Note that in this study COQUALMO’s concept of defect removal profiles
is referred to as defect removal techniques.) For example, a DRFij value of 0.1 means
that 10% of the defects of artifact type j can be removed via technique i.

Due to the typical constraint in an industrial case study that its findings must justify
the data acquisition effort, usually only one artifact type j is taken into account. In most
cases this is coding, for obvious reasons. Thus, DRFij can be reduced to DRFi since
there is no further need to distinguish between artifact types. However, this simplifi-
cation of the model is not necessary, and the selection approach as derived below can
easily be developed for multiple artifact types as well.

COQUALMO

Our Approach

Delphi
Study

DI
Model

DR
Model

Defect
Prediction

Improv.
Prioritiz.

Optimization
Approach

Case Study
Process

Assessment

re-used in
flow of analysis

Fig. 1. Association between COQUALMO and our approach

A Decision Support Scheme for Software Process Improvement Prioritization 89

Since DRFi (and DRFij , respectively) are model variables that are assigned values
corresponding to the maturity level m found when instantiating COQUALMO, we ad-
ditionally introduce the constants DRCi,m where i is the defect removal technique and
m is its maturity level. The values of DRCi,m can directly be taken from [6].

3.2 Definition

A qualitative pre-study revealed that quality managers are very interested in prioritizing
improvements of the three techniques of automatic code analysis, peer reviews, and
execution testing and tools. Thus, our approach extends COQUALMO in a way that
provides quality management with the means to prioritize its investments into process
maturity. Since the software industry is currently striving for a higher maturity of its
processes [16], managers would like to know where to start in order to achieve the
biggest gains. In the field of quality management, these gains can be quantified in terms
of the reduction in the number of defects. In other words: If a quality manager has to
choose between process improvements in the three techniques mentioned above, s/he
should pick the one that is expected to yield the highest reduction in defects remaining
in the software.

In fact, the constants provided in COQUALMO already contain all the information
necessary for revealing the impact of moving a process to the next maturity level. Let

Δi,m = DResEst(i,m) −DResEst(i,m+1)

be the estimated number of residual defects remaining less in an artifact when the matu-
rity of defect removal technique i is upgraded from level m to level m+1. i ∈ {1, 2, 3}
is one of the three defect removal techniques, and m ∈ {1, ..., 5} represents one of the
maturity levels except ‘extra high’, which is excluded due to the impossibility of any
further improvement at this level.

Based on these concepts, we can derive

opti,m = Δi,m/DResEst(i,m),

which is the estimated fraction by which the number of residual defects is reduced when
upgrading the process from (i, m) to (i, m + 1). This expression can be simplified to

opti,m = 1− (1−DRCi,m+1)
(1−DRCi,m)

,

where DRCi,m denotes the constant defect reduction factor for defect removal tech-
nique i on maturity level m for the artifact type ‘coding’ as given in [6]. opti,m is the
optimization index for moving the process for defect removal technique i from maturity
level m to m+1. As shown above, it represents the estimated fraction by which the total
number of remaining defects would be reduced when a specific process is moved to the
next maturity level. The optimization index for the highest maturity level is undefined
since, by definition, at this level further improvement is impossible.

Despite restricting our industrial case studies to the artifact type ‘coding’, the above
formula can easily be extended to support COQUALMO’s other two artifact types as
well. The only necessary modification is the insertion of a third index j, denoting the
artifact type, to all variables.

90 A. Beckhaus et al.

Table 1. Optimization Matrix

Very Low Low Nominal High Very High

Automated Analysis 10% 11% 13% 25.7% 13%
Peer Review 30% 25.7% 23.1% 33% 37%
Execution Testing & Tools 38% 32% 26.2% 29% 45%

Calculating the optimization index for all pairs (i, m) yields an optimization matrix
for process maturity improvement. The optimization matrix shown in Table 1 relies
exclusively on the data provided by Chulani in COQUALMO [6]. Therefore, it can
be calculated without any case-study-specific data. It’s entries give the percentage by
which the number of residual defects in coding will be reduced when raising the process
maturity by one level for the given defect removal technique.

Our selection approach will typically be instantiated by a process assessment in order
to derive the current maturity levels of the three techniques. For each technique i and its
current maturity level m, the value opti,m is then looked up in the optimization matrix
provided in Table 1. An improvement of the technique with the highest value is expected
to yield the highest possible reduction of remaining defects and, consequently, the best
impact on quality according to the COQUALMO model.

Note that we assume single steps of process improvement. This is due to our expe-
rience that it is very difficult to implement process improvements, and just as difficult
not to fall back to the old practices over time. Our assumption is in line with the recent
debate of the establishment of lean thinking and lean engineering principles in the soft-
ware industry [25,16]. Recommeding jumps across multiple levels, for example from
‘very low’ to ‘high’, in one step would rather stem from the opposite school of thought,
namely business process re-engineering [13].

4 Case Studies

In order to demonstrate the applicability and usefulness of our approach in practice, we
conducted three case studies. One of them was concerned with the software develop-
ment unit at a medium-sized enterprise. The quality assurance processes of the chosen
project were well established, but the project itself was rather small with a team of
less than 20 developers. The other two industrial case studies were conducted at a large
European business software vendor. Here, two different development projects were cho-
sen in an innovative line of business. The team sizes were about 60 and 80 developers,
respectively. We consistently number these case studies by 1 to 3, but due to confiden-
tiality reasons we cannot provide any information on which number belongs to which
development project.

Our research methodology is interview-based. For each case study, we interviewed
five project members. Interviewees where chosen to cover a broad range of roles within
a project. For each case study, we interviewed the quality manager responsible for
the project and covered in addition at least four of the following job roles: developer,
architect, tester, quality specialist, and project lead.

A Decision Support Scheme for Software Process Improvement Prioritization 91

Table 2. Optimization Matrices for the Three Case Studies

Case Study 1 Very Low Low Nominal High Very High

Automated Analysis 10% 11% 13% 25.7%→ 3. 13%
Peer Review 30% 25.7% 23.1% 33% 37%→ 2.
Execution Testing & Tools 38% 32% 26.2% 29% 45%→ 1.

Case Study 2 Very Low Low Nominal High Very High

Automated Analysis 10% 11%→ 3. 13% 25.7% 13%
Peer Review 30% 25.7% 23.1%→ 2. 33% 37%
Execution Testing & Tools 38% 32% 26.2% 29% 45%→ 1.

Case Study 3 Very Low Low Nominal High Very High

Automated Analysis 10% 11% 13% 25.7% 13%→ 3.
Peer Review 30% 25.7% 23.1% 33% 37%→ 2.
Execution Testing & Tools 38% 32% 26.2% 29% 45%→ 1.

The interview was based on a questionnaire derived from the defect profile descrip-
tions in [5]. Our experience with two pre-studies conducted at projects 1 and 2 showed
that purely questionnaire-based research yields noisy data in the form of a high vari-
ation in the process maturity estimates. This is due to difficulties on the part of the
interviewees to rank their processes in an industry-wide context. We therefore asked
open questions regarding the processes to come up with a first restricted set of possible
maturity levels. In a next step, we provided our interview participants with examples
tailored to their context in order to achieve a common understanding of the maturity
levels. This methodology appeared to be a critical success factor in low-effort process
maturity assessments, since our default explanations of the different maturity levels
where often only understood after providing context-specific details and examples.

An alternative data acquisition method would have been a CMMI appraisal. How-
ever, its effort is very high compared to our approach and would not have been justi-
fiable in our setup. Nevertheless, CMMI has gained popularity, and it is recommended
to check for existing appraisals prior to conducting new interviews. Since it provides
valuable input for other business decisions, a new appraisal might also be worth the
effort when combining our approach with others.

Participants of our case study praised our efficient data acquisition methodology and
voluntarily asked us to repeat this assessment every six months for benchmarking and
controlling purposes. However, a low-effort questionnaire-based process assessment
methodology may introduce a bias into the data acquisition. We encourage consider-
ate evaluation of the data quality needs of a usage scenario prior to conducting a survey.

According to the selection scheme discussed in Section 3, we highlight the maturity
levels of the defect removal techniques in our optimization matrices in Table 2. The
improvement rank of the test activities is given to the right of the arrows. For example,
in case study 1, it would be best to invest into an improvement of execution testing
and tools. Raising the process maturity level from very high to extra high is expected

92 A. Beckhaus et al.

to yield a reduction of residual defects by 45%. Second-best is the improvement of
peer reviews with an improvement factor of 37%. The improvement of the automated
analysis technique from high to very high process maturity ranks third with an estimated
improvement of 25.7%.

After conducting our three case studies, we asked the participating quality managers
whether or not they agree with the prioritization derived by our approach. This cross-
check was successful, and most managers accepted the finding that test execution envi-
ronments are an attractive area for attaining high returns on investment in improvement
initiatives.

5 Conclusions

In this paper, we presented a decision support approach to prioritize three different
quality assurance techniques for selection in improvement projects. It is based on the
multiplicative model definition of COQUALMO, as well as its calibration data gath-
ered in the course of a two-step Delphi study [5]. Our approach facilitates the current
advancement of the software industry in the form of managed, lean processes. Quality
managers are able to prioritize process improvements based on their expected effect
on quality in terms of residual defects. The approach can be instantiated with low effort
due to the re-use of COQUALMO constants. It is also context-specific due to relying on
process assessments. Our approach’s applicability has successfully been demonstrated
in three industrial case studies with a medium-sized enterprise and a global player in
the software industry.

Future research is needed in order to also quantify the investment needed to raise
process maturity levels. Once these data are available, quality managers are able to eco-
nomically trade off between the expected quality enhancement yield of an improvement
initiative on the one hand and its costs on the other hand. Additionally, our approach
should be validated by conducting repetitive case studies after processes have been im-
proved and lifted to higher maturity levels. In this way, the assumptions concerning
defect reductions inherent in the Delphi-study calibration data of COQUALMO can be
cross-checked and possibly refined.

Acknowledgements. Parts of the work presented in this paper have been funded by the
German Federal Ministry of Education and Research (grants 01ISF08A and 01ISF08B).

References

1. Antony, J., Fergusson, C.: Six sigma in the software industry: results from a pilot study.
Managerial Auditing Journal 19, 1025–1032 (2004)

2. Basili, V., Caldiera, G.: Improve software quality by reusing knowledge and experience.
Sloan Management Review 37(1), 55–64 (1995)

3. Boehm, B., Abts, C., Brown, A., Chulani, S., Clark, B., Horowitz, E., Madachy, R., Riefer,
D., Steece, B.: Software Cost Estimation with COCOMO II. Prentice-Hall, Englewood Cliffs
(2000)

4. Boehm, B.W.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs (1981)

A Decision Support Scheme for Software Process Improvement Prioritization 93

5. Chulani, S., Boehm, B.: Modeling software defect introduction and removal: COQUALMO
(COnstructive QUALity MOdel). Tech. rep., Technical Report USC-CSE-99-510, University
of Southern California, Center for Software Engineering (1999)

6. Chulani, S.: COQUALMO (COnstructive QUAlity MOdel) a software defect density predic-
tion model. In: Kusters, R., Cowderoy, A., Heemstra, F., van Veenendaal, E. (eds.) Project
Control for Software Quality, Shaker Publishing, Ithaca (1999)

7. Chulani, S., Steece, B.M., Boehm, B.: Case Studies in Reliability and Maintenance. In: De-
termining Software Quality Using COQUALMO, pp. 293–311. Wiley, Chichester (2003)

8. DeMarco, T.: Controlling Software Projects: Management, Measurement and Estimation.
Yourdon Press, New York (1982)

9. Deming, W.E.: Out of the Crisis. MIT Press, Cambridge (2000)
10. Dyba, T.: An empirical investigation of the key factors for success in software process im-

provement. IEEE Transactions on Software Engineering 31(5), 410–424 (2005)
11. El Emam, K., Drouin, J.N., Melo, W. (eds.): SPICE: The Theory and Practice of Software

Process Improvement and Capability Determination. CS Press (1998)
12. Fenton, N., Pfleeger, S.: Software Metrics: A Rigorous and Practical Approach. Int’l Thom-

son Computer Press, London (1996)
13. Hammer, M., Champy, J.: Reengineering the Corporation. A Manifesto for Business Revo-

lution. Collins Business (2003)
14. Jones, C.: Programming defect removal. In: Proceedings, GUIDE 40 (1975)
15. Jones, C.: Applied Software Measurement: Global Analysis of Productivity and Quality, 3rd

edn. McGraw-Hill, New York (2008)
16. Middleton, P., Sutton, J.: Lean Software Strategies. Productivity Press (2005)
17. NIST: The economic impacts of inadequte infrastructure for software quality (2002)
18. Olson, T.G., Humphrey, W.S., Kitson, D.: Conducting SEI-assisted software process assess-

ments. Tech. rep., Carnegie Mellon University, Technical Report CMU/SEI-89-TR-7, Pitts-
burgh (1989)

19. Rifkin, S.: What makes measuring software so hard? IEEE Software 18(3), 41–45 (2001)
20. Sahraoui, H., Briand, L.C., Guhneuc, Y.G., Beaurepaire, O.: Investigating the impact of a

measurement program on software quality. Information & Software Technology 52(9), 923–
933 (2010)

21. van Solingen, R., Berghout, E.: The Goal/Question/Metric Method: A Practical Guide for
Quality Improvement of Software Development. McGraw-Hill, London (1999)

22. Stelzer, D., Mellis, W.: Success factors of organizational change in software process im-
provement. Software Process Improvement and Practice 4(4), 227–250 (1998)

23. Von Wangenheim, C.G., Hauck, J.C.R., Zoucas, A., Salviano, C.F., McCaffery, F., Shull, F.:
Creating software process capability/maturity models. IEEE Software 27(4), 92–94 (2010)

24. Whittaker, J.A., Voas, J.M.: 50 years of software: Key principles for quality. IT Pro, 28–35
(November/December 2002)

25. Womack, J.P., Jones, D.T.: Lean Thinking, 2nd edn. Free Press, New York (2003)

J. Cordeiro, A. Ranchordas, and B. Shishkov (Eds.): ICSOFT 2009, CCIS 50, pp. 94–106, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Development of a Family of Personalized Mobile
Communicators

Miguel A. Laguna and Bruno González-Baixauli

GIRO Research Group, University of Valladolid
Campus M. Delibes, 47011 Valladolid, Spain
{mlaguna,bbaixauli}@infor.uva.es

Abstract. People with communication problems can use personal communica-
tors as a low-cost help in their everyday life. The diversity of individual situa-
tions has guided us towards a solution based on the software product line
paradigm. Multiple options can be easily incorporated to each product, allowing
the adequate customization of the final application to the disability of each con-
crete person. Software product lines are a proven development paradigm in in-
dustrial environment but its application in small organizations is not easy. Our
approach uses the UML package merge mechanism to manage the variability in
the product line requirement, design and implementation models. The structure
of the feature models is directly reflected in the relationships between packages
in the architectural models, so that the traceability of configuration decisions is
straightforward. A similar strategy is applied at the implementation level, using
packages of partial classes. The combination of these techniques and the
conventional IDE tools make the developments of product lines in small or-
ganizations easier as it removes the need for specialized tools and personnel.
This article reports the successful experience on the development of a family of
personalized communicators as a software product line representative of the
mobile systems domain.

Keywords: Software product line, Feature model, Mobile system, communicator.

1 Introduction

Quality of life is a general aspiration of people, especially associated to subjective
feelings about general health, communication skills, and mobility. On the other hand,
wireless and mobile devices are being used for multiple purposes with an increasing
list of applicability domains. In particular, people with communication problems can
use mobile communicators as a low-cost help in their everyday life. However, the
diversity of individual situations is a problem that has guided us towards a solution
based on the software product line paradigm. Using this approach, multiple options
can be easily incorporated to each product, allowing the adequate customization of the
final application to the disability of each concrete person.

Software product lines (SPL) are a proven reuse approach in industrial environ-
ments, due to the combination of a systematic development and the reuse of coarse-
grained components that include the common and variable parts of the product line

 Development of a Family of Personalized Mobile Communicators 95

[2]. However, this approach is complex and requires a great effort by the companies
that take it on. The research we carry out in the GIRO research group1 aims to sim-
plify the change from a conventional development process into one that benefits from
the product line advantages in small and medium enterprises (SME) or organizations.
For this reason, we have proposed, among other initiatives, an adaptation of the Uni-
fied Process to include specific techniques of Product Line Engineering in a process
parallel to Application Engineering [11].

As specific SPL development techniques, we must pay special attention to the
variability and traceability aspects at each abstraction level. We need models that
represent the product line and a mechanism to obtain the configuration of features that
represent the best combination of variants for a specific application. Additionally, we
must connect the optional features with the related variation points of the architectural
models that implement the product line through traceability links. There is wide
agreement about using a model that shows, in an explicit and hierarchical way, the
variability by means of a feature model in some of their multiple versions like FODA
[10] or FORM [9]. FODA features are nodes of a tree, related by various types of
edges (Figure 1). The tree root is called the root feature, or concept. The edges are
used to decompose this concept into more detailed features. There are AND, X-OR
and optional decompositions. Several extensions have been proposed, using directed
acyclic graphs instead of simple trees or changing the visual syntax.

Registered

CreditCard
ElectronicCheque

PaymentType

DebitCard

Guest

Payment

Fig. 1. A simple FODA feature diagram

We have also proposed the use of the goal and soft-goal concepts [16] for the
analysis and definition of the variability in product lines. In fact, we have built an
initial prototype that permits the optimum set of features to be selected with respect to
the desires of the users, expressed as a set of goals and soft-goals with different
priorities [6].

1 http://www.giro.infor.uva.es

96 M.A. Laguna and B. González-Baixauli

The second aspect of the problem focuses on the connection of the feature model
with the design of the solution or product line architecture, usually implemented by an
object-oriented framework. This explicit connection allows the automatic instantiation
of the domain framework in each specific application. In a previous work [12], we
proposed the UML 2 package merge mechanism to orthogonally represent the SPL
architectural variations, their relationship with the optional features and finally, using
partial class packages, with the structure of the implementation code.

We planned, as a continuation of this work, to test the proposal in realistic situa-
tions. Our group has agreements with associations of handicapped people with the
aim of developing useful tools for people with several types of disabilities. This back-
ground has guided the selection of the application domains. This article is a report of
the practical experiences with these techniques in the development of a product line of
personalized communicators for people with disabilities, based on mobile devices,
typically personal digital assistants (PDA).

A distinctive characteristic is the use of conventional CASE and IDE tools. This is
a pre-requisite imposed by the general objective of our approach: to simplify the
adoption of the product line paradigm by SMEs. In particular, we have used .NET and
MS Visual Studio as development platforms. The personnel involved vary from
granted and volunteer postgraduate students to undergraduates finishing their term
projects, but they are not specialists in SPL development.

The rest of the article is organized as follows: Section 2 briefly presents the
proposed techniques, based on the package merge relationship of UML 2 and the
partial class mechanism. Section 3 is devoted to the description of the case study. In
Section 4, the related work is analyzed and, finally, Section 5 concludes the article,
states some lessons learned and outlines future work.

2 Seamless SPL Development

Each concrete system in a product line is derived from a complete architecture, select-
ing or not the optional parts, with respect to the particular functional and non-
functional user requirements. This activity is basically a selection process that yields a
feature sub-model. This sub-model, through traceability relationships, guides the
composition of the code modules. The key aspect of the process is the traceability
from features to design and from design to implementation. This traceability is not
easily managed for several reasons [15]. On the one hand, an optional feature can be
related to several elements in a UML model and vice versa. We must therefore assign
the traceability relationship between elements of the two levels with a “many-to-
many” multiplicity. This fact quickly complicates the global model, making it poorly
scalable. The second problem is summarized in the fact that the same basic modeling
mechanisms of variability (the specialization in class diagrams or the <<extend>>
relationship of the use cases diagrams) are used to express two variability levels: the
design of the product line architecture and the design of a specific application that
also has variations (for example two valid and alternative payment forms within a
sales system).

 Development of a Family of Personalized Mobile Communicators 97

The solution to this problem has been achieved by modifying or adapting the UML
structural and behavioral models, moving from the standard (see the references of the
related work Section). In our approach, one of the initial restrictions imposed was to
maintain unchanged the UML meta-model, in order to use conventional CASE tools
to model the product line. Other obligations were:

a) The technique must allow the location, at one point on the model, of all the
variations associated to each optional feature to facilitate the management of
the traceability.

b) The technique must separate the SPL from the intrinsic variability of the spe-
cific applications.

c) The selected mechanism must have continuity with the implementation mod-
els (“seamless development”).

To achieve these objectives, we express the variability of UML models using the
package merge mechanism, defined in the UML 2 infrastructure meta-model and used
in an exhaustive way in the definition of UML 2 [14].

The package merge mechanism adds details to the models in an incremental way.
The <<merge>>> dependence is defined as a relationship between two packages that
indicates that the contents of both are combined. It is very similar to generalization
and is used when elements in different packages have the same name and represent
the same concept, beginning with a common base. Selecting the desired packages, it
is possible to obtain a tailored definition from among all the possible ones. Even
though, in this work, we focus on class diagrams, the mechanism can be extended to
any UML model, in particular use cases and sequence diagrams [14].

This mechanism permits a clear traceability between feature and UML models to
be established. The application to our problem consists in associating a package to
each optional feature, so that all the necessary changes in the model remain located
(maintaining the UML meta-model unchanged and separating both variability levels).

The package model is hierarchical, reflecting the feature model structure. Consid-
ering each pair of related packages recursively, the base package can be included or
not in each specific product, but the dependent package can only be included if the
base package is also selected. This is exactly how experts decide which features are
included or not during the configuration process, and is directly reflected in the final
product configuration of packages. Therefore, the application to SPL consists of
building the architectural model (including structural –class diagrams-, behavioral -
use cases-, and dynamic –interaction diagram- models) starting from a base package
that gathers the common SPL aspects. Then, each variability point detected in the
feature model originates a package, connected through a <<merge>> relationship with
its parent package. These packages will be combined or not, when each product is
derived, according to the selected feature configuration. Figure 2 shows an example
of application in the e-commerce domain.

Additionally, using partial classes organized in packages, a direct correspondence
between design and code can be established. The use of partial classes is a way of
managing variability. The aim is to maintain a one-to-one correspondence from fea-
tures to design and from design to implementation. As an added value, the package
structure of the code for each final product of the SPL can be obtained automatically
(and passed to the compiler) from the features configuration [12].

98 M.A. Laguna and B. González-Baixauli

name: String

price: float

Product
Catalog

CatalogStructure

Image2D
Product

Image2D

Image3D

Catalog

description: String

Category Product

Categories

Category

CategoriesMultilevel Category

Product

MultipleClasification

 + product

*

 + catalog

0..1

 + image2D

0..1

- subCategores

*

 + category *

 + catalog

1

 + prod

*

 + cat

0..1

 + prod

* + cat *

<<merge>> <<merge>>

<<merge>>

<<merge>>

<<merge>>

CatalogStructure

Categories ProductInformation

Description

Multilevel

MultipleClasif ication

BaseDescription

Image2D

AssociatedAssets

Image3D

Fig. 2. A partial Feature Model and a possible UML design

3 Case Study: Communicators for People with Disabilities

The case study is not very ambitious if we judge it by the number of considered varia-
tions but presents interesting problems, due to the constraints imposed by the specific-
ity of mobile device development.

The domain analysis has been accomplished starting from the experience with sev-
eral PDA systems developed in our laboratory. Each one of these originally solved the
particular problem of a concrete person with some degree of disability. These systems
have been built in collaboration with Asprona, a Spanish association that maintains
several schools specialized in children with medium/severe disabilities of several
types. The main utility of these communicators is that people with different degrees of

Table 1. Comparison of different writing methods

Writing method Speed required Capacity Learning
Swept Very slow Very little Very little
Sweep (with sound) Very slow Very little Very little
Sweep (groups) Slow Very little Little
Diagonals Middle Little High

Repeated pulsations Middle Middle Middle
Databases Rapid Middle Middle
Traits Very rapide High High
Grouped characters Rapid Middle Middle
Vowels Rapid Middle High

 Development of a Family of Personalized Mobile Communicators 99

disability can compose messages using text (selecting the different characters as in a
keyboard) or images (that represent different concepts) in a suitable (and usually
mobile) device. The suitable methods are compared in Table 1. Once composed, the
device can reproduce the message using a text-to-speech conversion (or send it to
another device). The product line approach has a clear intention: separate the common
parts of these systems from the specialized ones, developing these parts as optional
packages. As an immediate result, we have multiplied the number of different available
variants.

3.1 Feature Analysis

All the final applications must reproduce the text composed by the user. But, due to
the different abilities of the users, it is necessary to consider different writing meth-
ods, adapted to each type of disability. For example, if the user is not capable of click-
ing a button, it is necessary to use a sweeping method. We have considered several
(textual and image based) writing methods. Some of them are the following:

• Grouped characters method: the main screen shows several groups of charac-
ters (AÁBCDE, ÉFGHIÍ, etc.). Selecting a group enables another screen,
where the characters of this group appear redistributed, one per cell. The se-
lection of one of them results in that character being added to the text.

• Vowels method: similar to the previous method, but the vowels are repre-
sented in independent cells on the main screen, generally reducing the num-
ber of pulsations.

• Categories method: the categories of characters (consonants, vowels and
numbers) are shown in the initial screen.

Each of the evaluated methods has advantages and inconveniences for people with
different degrees and types of disabilities, as shown in Table 1. Using the table as a
guide, and adding some complementary aspects such as color management, phrases
persistence, etc., the feature model of Figure 3 has been defined. For legibility reasons,
the original graphical tree format is depicted in a compact alternative representation.

The feature model has been defined with the Feature Modeling Tool (FMT, avail-
able at GIRO site2), developed in our group with Microsoft DSL tools as an add-in of
Visual Studio. The DSL Tools is an SDK for MS Visual Studio that allows domain-
specific languages to be defined and modeling tools to be generated for these lan-
guages. We used the Microsoft DSL tools to build the graphical tool, and then we
created the associated editors and utilities using the .NET native facilities. Figure 4
shows a general picture of FMT with its four views: the graphical modeling tool
(Design view), Solution Explorer (the native Visual Studio view), Configuration
view, and the auxiliary tree view (or feature Model Explorer). The main window is
the Design view, where feature models are visually built, including requires and
mutex dependencies. The graphical view is complemented by the Model Explorer
view, visually identical to the format used by the fmp plug-in (see Figure 3 details).
The lower left view is the Configuration panel, where the product engineer can select
those features that s/he wants to be included in each SPL specific product. The tool

2 http://www.giro.infor.uva.es/FeatureTool.html

100 M.A. Laguna and B. González-Baixauli

Fig. 3. Feature model of the communicator product line

itself is responsible for checking the multiplicities and requires/mutex constraints.
Finally, the last view (upper right) is the view of the SPL as a development project
(a Visual Studio solution). This view automatically changes with the SPL configura-
tion: If a feature is selected in the configuration panel, the linked package is added to
the solution. The modeling tool is completed with the package generation and
configuration utilities, as explained in the previous Section.

 Development of a Family of Personalized Mobile Communicators 101

According to the model of Figure 3, each final product can incorporate several
writing methods, but all the systems will have at least the grouped characters method.
For this reason, the right structure of the feature model has two main alternative
branches. If more than a writing method is selected, the exchange from a writing
method to another must be allowed. Then the Configure writing method is mandatory.
This type of relationship between features enriches the model but must be carefully
registered in the feature model.

3.2 Product Line Design

In Figure 4, some of the packages and classes that make up the product line can be
appreciated inside the original Visual Studio solution explorer (upper right panel of
the image). Each package contains internally a set of partial classes that the compiler
will integrate if the package is selected (i.e., if the optional feature is selected in the
bottom left configuration panel of Figure 4).

In this type of applications the need for persistence is limited (only preferences and
customer phrases are saved), but interface design requires a greater effort, due to the

Fig. 4. Feature model tool and the communicator product line, solution, configuration and
model views

102 M.A. Laguna and B. González-Baixauli

Fig. 5. Structure of the configurable user interface of the communicator product line

limitations of the visualization screen. To deal with these limitations, XML and XSD
files that define the elements of the interface are used. The variable parts are included
in the different packages.

In Figure 5, the design of the user interface is shown in a diagrammatical way. The
size and number of buttons are variable and the selected configuration indicates the
number of buttons on each screen, as well as size, position, functionality and appear-
ance. For example, if the Textual package is selected, the principal_cat.xml file
defines the welcome screen and creates the communicator according to the selected
writing method. Each .XML file is located in the package that includes its related
functionality. Previous to compilation, the required .XML files are combined (in a
way similar to the C# partial classes facility) using a DATASET based mechanism.

3.3 Product Line Implementation

At implementation level, partial classes and conditional compilation have been used.
The strategy consists of using the same code structure in all the cases, as a template.
The Base package contains a main class Program.cs, where the code that loads the
common part of the product line is included. The optional packages contain a class
Program.cs with the methods that add the package, executed from the source code
through conditional compilation. For example, the package CompleteOptions has a
class with the methods that add color details and the management of predefined
phrases, updating the menu with the new options.

One of the components that the product line must include is the text-to-speech util-
ity. In spite of the available commercial and open-source applications, the limitations
of the mobile platforms have forced to an ad-hoc solution, developing a simple
syllabic synthesizer, with the collaboration of the students who lend their voices.

The product line includes eight thoroughly functional applications, compiled from
different package combinations (some examples can be appreciated in Figure 6).
Pending integration is an optional feature already implemented that will allow wire-
less and SMS based communication with a desktop computer.

A first working prototype has been delivered to the Asprona association specially
configured for a person with speech problems but good manual coordination, as a
result of a traffic accident. In this case, the grouped characters method is a good elec-
tion. The use of the system, fixed to his wheel chair, is helping him to get a greater
level of autonomy.

 Development of a Family of Personalized Mobile Communicators 103

Fig. 6. Grouped characters, vowels, and sweep modules of the communicator product line

4 Related Work

Though there are many projects that describe variability management mechanisms in
terms of requirements and designs, few of them include implementation details.
Different authors have proposed explicitly representing the variation points adding
annotations or changing the essence of UML. For example, Von der Maßen et al.
proposed using new relationships ("option" and "alternative") and the consequent
extension of the UML meta-model [13]. John & Muthig suggest the application of use
case templates to represent the variability in product lines, using stereotypes [8],
though they do not distinguish between optional variants, alternative or obligatory.

On the other hand, Halman and Pohl defend the modification of use case models to
orthogonally represent the variation points (using a triangle symbol with different
annotations) [7]. As for structural models, either the mechanisms of UML are used
directly (through the specialization relationship, the association multiplicity, etc.) or
the models are explicitly annotated using stereotypes. The work of Gomaa is an ex-
ample of this approach, since it uses the stereotypes <<kernel>>, <<optional>> and
<<variant>> (corresponding to obligatory, optional, and variant classes) [5]. Simi-
larly, Clauß proposes a set of stereotypes to express the variability in the architecture

104 M.A. Laguna and B. González-Baixauli

Fig. 7. A final prototype, configured using the grouped characters method

models: <<optional>>, <<variationPoint>> and <<variant>> stereotypes designate,
respectively, optional, variation points (and its sub-classes), and variant classes [3].
Though this type of approximations permits the evolution of the variability to be
traced at the different levels, they do not solve the requirement of a one-to-one corre-
spondence between the different models.

Another solution proposed by Czarnecki in [4], consists of annotating the UML
models with presence conditions, so that each optional feature is reflected in one or,
more realistically, several parts of a diagram (perhaps a class, an association, an at-
tribute, etc. or a combination of elements). This technique does not artificially limit
the representation of a variant with a unique element and even the color code helps to
emphasize the implications of choosing a certain option. However, this visual help is
not scalable when more than a dozen variants are handled. In all these approaches, the
modification of the UML meta-model (or at least the use of stereotypes) is required.

A completely different approach, focused on implementation instead of require-
ments or design, is the Feature Oriented Programming (FOP) paradigm [1]. The
optional features are implemented as increments (refinements) in a java-like language.
Starting from a base class, these increments are combined using a set of tools, pro-
vided with the AHEAD tool suite. Other commercial tools, such as Big-Lever Gears
or Pure-Variants offer similar functionalities.

Though these solutions are valid, the learning of new modeling or implementation
techniques and the need of specialized CASE and IDE tools represent barriers for the
adoption of the approach of product lines in many organizations; we therefore believe
that the solution presented here improves the abovementioned proposals.

 Development of a Family of Personalized Mobile Communicators 105

5 Conclusions

In this work the viability of a product line development approach, based on the pack-
age merge and partial class mechanisms, has been shown. The use of the proposed
mechanisms enables the automated generation of each product from the features con-
figuration. Furthermore, the use of conventional CASE and IDE tools can simplify the
adoption of this paradigm, avoiding the necessity of specific tools and techniques as
in previous alternatives.

The approach has been successfully applied to the design and implementation of a
product line in the domain of communicators for people with disabilities, and imple-
mented with mobile devices.

Current work includes the development of other product lines with industrial or
social interest, and the enrichment of the communicator study. In this case, the objec-
tive is to evaluate the scalability of the proposal as the optional features increase
(which implies an exponential increase in the number of final products). On the other
hand, the experience with this type of mobile platform is being used in other domains
that combine information capture through PDAs and smart phones with delivery to a
central system, configured as a set of Web services. An example of this is a recently
launched product line project for monitoring health parameters (such as heart rate,
temperature, etc.) in the context of a senior citizen residence, using a combination of
wireless sensors and mobile devices. The utility of the product line approach in these
domains is evident, as the variety of sensors, parameters, alarm signals, and visualiza-
tion aspects in the central computer is potentially unlimited.

Acknowledgements. This work has been founded by the Junta de Castilla y León
(VA-018A07 project) and Spanish MICIINN (TIN2008-05675). We also recognize
the collaboration of the ASPRONA association, and the students involved in the
development of these product lines.

References

1. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement., IEEE TSE
(2004)

2. Bosch, J.: Design & Use of Software Architectures. In: Adopting and Evolving a Product-
Line Approach, Addison-Wesley, Reading (2000)

3. Clauß, M.: Generic modeling using UML extensions for variability. In: Workshop on Do-
main Specific Visual Languages at OOPSLA (2001)

4. Czarnecki, K., Antkiewicz, M.: Mapping Features to models: a template approach based
on superimposed variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005. LNCS, vol. 3676,
pp. 422–437. Springer, Heidelberg (2005)

5. Gomaa, H.: Object Oriented Analysis and Modeling for Families of Systems with UML.
In: Frakes, W.B. (ed.) ICSR 2000. LNCS, vol. 1844, pp. 89–99. Springer, Heidelberg
(2000)

6. González-Baixauli, B., Leite, J., Mylopoulos, J.: Visual Variability Analysis with Goal
Models. In: Proc. of the RE 2004, pp. 198–207 (2004)

7. Halmans, G., Pohl, K.: Communicating the Variability of a Software-Product Family to
Customers. Journal of Software and Systems Modeling, 15–36 (2003)

106 M.A. Laguna and B. González-Baixauli

8. John, I., Muthig, D.: Tailoring Use Cases for product line Modeling. In: Proceedings of the
International Workshop on Requirements Engineering for product lines 2002 (REPL
2002). Technical Report: ALR-2002-033, AVAYA labs (2002)

9. Kang, K.C., Kim, S., Lee, J., Kim, K.: FORM: A Feature-Oriented Reuse Method with
Domain-Specific Reference Architectures. Annals of Software Engineering, 143–168
(1998)

10. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-Oriented Domain Analy-
sis (FODA) Feasibility Study. Technical Report, CMU/SEI-90-TR-21, Software Engineer-
ing Institute (Carnegie Mellon), Pittsburgh, PA 15213 (1990)

11. Laguna, M.A., González, B., López, O., García, F.J.: Introducing Systematic Reuse in
Mainstream Software Process. In: IEEE Proceedings of EUROMICRO 2003, pp. 351–358
(2003)

12. Laguna, M.A., González-Baixauli, B., Marqués, J.M.: Seamless Development of Software
Product Lines: Feature Models to UML Traceability. In: GPCE 2007(2007)

13. von Massen, T., Lichter, H.: RequiLine: A Requirements Engineering Tool for Software
product lines. In: van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 168–180.
Springer, Heidelberg (2004)

14. Object Management Group. Unified modeling language specification version 2.0: Infra-
structure. Technical Report ptc/03-09-15. OMG (2003)

15. Sochos, P., Philippow, I., Riebisch, M.: Feature-oriented development of software product
lines: mapping feature models to the architecture. In: Weske, M., Liggesmeyer, P. (eds.)
NODe 2004. LNCS, vol. 3263, pp. 138–152. Springer, Heidelberg (2004)

16. van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour. In:
Proceedings of the 5 IEEE Int. Symp. on Requirements Engineering, pp. 249–262 (2001)

Reverse Generics: Parametrization after the Fact

Alexandre Bergel1 and Lorenzo Bettini2

1 PLEIAD Laboratory, Computer Science Department (DCC)
University of Chile, Santiago, Chile

2 Dipartimento di Informatica, Università di Torino, Italy
http://www.bergel.eu

http://www.di.unito.it/∼bettini

Abstract. By abstracting over types, generic programming enables one to write
code that is independent from specific data type implementation. This style is
supported by most mainstream languages, including C++ with templates and Java
with generics. If some code is not designed in a generic way from the start, a
major effort is required to convert this code to use generic types. This conversion
is manually realized which is known to be tedious and error-prone.

We propose Reverse Generics, a general linguistic mechanism to define a
generic class from a non-generic class. For a given set of types, a generic is
formed by unbinding static dependencies contained in these types. This gener-
alization and generic type instantiation may be done incrementally. This paper
studies the possible application of this linguistic mechanism to C++ and Java
and, in particular, it reviews limitations of Java generics against our proposal.

1 Introduction

The concept of generic programming [8], which has characterized functional program-
ming for several decades, appeared in mainstream programming object-oriented
languages such as C++, only in the late 80s, where it motivated from the beginning
the design of the Standard Template Library (STL) [17,18,5]. Generic programming
was not available in the first versions of Java, and this limited code reuse, by forcing
programmers to resort to unsafe operations, i.e., type casts. Generics are a feature of
the Java 1.5 programming language. It enables the creation of reusable parameterized
classes while guaranteeing type safety.

In spite of the limitations of Java generics, type parameterization allows the program-
mer to get rid of most type down-casts they were forced to use before Java generics;
this also is reflected in part of the standard Java library which is now generic. How-
ever, much pre-1.5 Java code still needs to be upgraded to use generics. For example,
a quick analysis on the AWT Java library shows that some classes perform more than
100 down-casts and up-casts and 70 uses of instanceof. This examination reveals that
in many places the amount of up-casting subsequent down-casting that is used almost
makes the programs behave like dynamically typed code.

Note, that the need to make existing code generic may arise also in languages where
generic types were already available. In particular, either a library or a framework is de-
signed in a type parametric way from the very beginning, or the “conversion” must be

J. Cordeiro, A. Ranchordas, and B. Shishkov (Eds.): ICSOFT 2009, CCIS 50, pp. 107–123, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

108 A. Bergel and L. Bettini

done manually, possibly breaking existing code. Several proposals have been made that
promote an automatic conversion from non-generic code into generic code [9,22,14].
These approaches involve reverse-engineering techniques that infer the potential type
candidates to be turned into parameters. This paper presents a different approach: in-
stead of relying on the programming environment to pick up type parameters, a pro-
grammer may create a generic class starting from a non-generic one, by using a proper
language construct. To our knowledge, no previous attempt to offer a language built-in
mechanism to generalize classes has been proposed.

We propose to extend the way generics are expressed by defining a generic type
(class or interface) from a non-generic type definition. Our approach consists of an
extension to be applied to an existing object-oriented programming language. However,
in this paper, we will investigate the possible application of this extension to Java and
C++. We will also demonstrate how the implementation of generic types in the language
affects the usability of this new linguistic extension. With this extension, programmers
can create generic classes and interfaces starting from existing classes and interfaces
by specifying the types that need to be turned into generic parameters. We call this
linguistic mechanism Reverse Generics.

This approach is different from the above mentioned refactoring approaches since
in our context there will be no refactored code: the starting class will continue to exist
after it is used to create its generic version. However, we believe that the refactoring
techniques in the literature could formulate a refactoring based on our reverse generics
to actually implement the refactoring.

The paper is organized as follows. Section 2 presents and illustrates Reverse Gener-
ics. Section 3 enumerates several typing issues due to the Java type system with re-
spect to generic programming. Section 5 presents briefly related work and Section 6
concludes and presents future work.

2 Reverse Generics

Reverse Generics is an extension for object-oriented programming languages that en-
ables a generic class to be created starting from an existing class, and a generic interface
from an existing interface. Some of the static type references contained in the original
class or interface are transformed into type parameters in the resulting generic version.
The process of obtaining a generic class from a class definition is called generaliza-
tion. We consider generalization as the dual of the instantiation operation. We refer to
unbinding a type when references of this type contained in the original class definition
are not contained in the generic.

Given a class name, ClassName, and a type name, TypeName, the generic version of
a class is denoted by the following syntactic form:

ClassName>TypeName<

All references to TypeName contained in the class ClassName are abstracted. A name
is associated to the abstract type in order to be concretized later on. Several type names
may be abstracted using the following writing:

ClassName>TypeName1, . . . , TypeNamen<

Reverse Generics: Parametrization after the Fact 109

The resulting generic class should then be assigned to a class definition, which
depends on the actual programming language (and in particular on its syntax for
parameterized types); thus, in Java we would write:

class MyGenericClass<T extends TypeName> =
ClassName>TypeName<;

In C++ we would instead write

template<typename T>
class MyGenericClass<T> =

ClassName>TypeName<;

The class resulting from a reverse generic should be intended as a standard class in the
underlying language. We could simply instantiate the type parameters of a generic class
and then create an object, e.g.,

new MyGenericClass<MyTypeName>();

However, there might be cases (e.g., when using partial instantiation, Section 2) where
it is useful to simply instantiate a generic class and assign it another class name; thus,
we also consider this syntax:

class MyClass = MyGenericClass<MyTypeName>;

In the following, we informally describe and illustrate Reverse Generics with several
examples resulting from an experiment we conducted on the AWT graphical user inter-
face Java library. The same mechanism may be applied to C++ templates.

Class Generalization. The class EventQueue is a platform-independent class that
queues events. It relies on AWTEvent, the AWT definition of event. The code below
is an excerpt of the class EventQueue:

public class EventQueue {
private synchronized AWTEvent getCurrentEventImpl() {

return (Thread.currentThread() == dispatchThread)
? ((AWTEvent)currentEvent.get()): null;

}
public AWTEvent getNextEvent()

throws InterruptedException {
...
}
public void postEvent(AWTEvent theEvent) {

...
boolean notifyID = (theEvent.getID() == this.waitForID);
...
}
...
}

110 A. Bergel and L. Bettini

In some situations, the EventQueue class may have to be used with one kind of event,
say KeyEvent. This will significantly reduce the number of runtime downcasts and en-
sure type safety when such a queue has to be used.

By using reverse generics we can define the generic class GEventQueue<T extends
AWTEvent> from the non-generic class EventQueue as follows:

class GEventQueue<T extends AWTEvent> =
EventQueue>AWTEvent<;

GEventQueue<T extends AWTEvent> is a generic definition of EventQueue that con-
tains a particular data type, T. A type has to be provided to GEventQueue in order to
form a complete class definition. To satisfy the Java type checker, a constraint has to
be set on T by enforcing it to be a subtype of AWTEvent. For example, in the method
postEvent(...), getID() is invoked on an event. The getID() method is defined in the class
AWTEvent. Without the constraint on T, GEventQueue<T> would be rejected by the
Java compiler since it can not statically guarantee the presence of getID().

The generic GEventQueue<T> resulting from the snippet of code given above is
equivalent to:

public class GEventQueue<T extends AWTEvent> {
private synchronized T getCurrentEventImpl() {

return (Thread.currentThread() == dispatchThread)
? ((T)currentEvent.get()): null;

}
public T getNextEvent() throws InterruptedException {

...
}
public void postEvent(T theEvent) {

...
boolean notifyID = (theEvent.getID() == this.waitForID);
...

}
...

}

References of AWTEvent have been replaced by the type parameter T. GEventQueue is
free from references of the AWT event class definition. The queue may be employed
with KeyEvent then, a subclass of AWTEvent:

GEventQueue<KeyEvent> keyEventsQueue
= new GEventQueue<KeyEvent>();

keyEventsQueue.postEvent(new KeyEvent(...));
try {

KeyEvent event = keyEventsQueue.getNextEvent();
} catch(Exception e) {} // getNextEvent() is throwable

Interface Generalization. The mechanism for classes described above may be applied
to interfaces. For example, the AWT ActionListener interface is defined as follows:

Reverse Generics: Parametrization after the Fact 111

public interface ActionListener extends EventListener {
public void actionPerformed(ActionEvent e);

}

This interface may be generalized with the following declaration:

public interface GActionListener<T> =
ActionListener>ActionEvent<;

The benefit of this generalization is the ability to reuse the interface ActionListener with
a different event API.

Incremental Generalization. A generic class obtained using reverse generics may be
generalized further by unbinding other remaining static type references. For instance,
let us consider the class EventDispatchThread, which is a package-private AWT class
which takes events off the EventQueue and dispatches them to the appropriate AWT
components. EventDispatchThread is used in the EventQueue class as follows:

public class EventQueue {
...
private EventDispatchThread dispatchThread;

final void initDispatchThread() {
synchronized (this) {

if (dispatchThread == null &&
!threadGroup.isDestroyed()) {

dispatchThread = (EventDispatchThread)
AccessController.doPrivileged(new PrivilegedAction()

{...}}}}

In the situation where some assumptions may have to be made on the type of the event
dispatcher, the GEventQueue<T extends AWTEvent> may be generalized further:

public class
GenericEventQueue<Dispatcher extends EventDispatchThread>

=GEventQueue>EventDispatchThread<;

The generic GenericEventQueue has two type parameters, T and Dispatcher. Note that
the definition above is equivalent to the generic class obtained by unbinding both the
AWTEvent and the EventDispatchThread type in one single step:

public class GenericEventQueue
<T extends AWTEvent,
Dispatcher extends EventDispatchThread>

=EventQueue>AWTEvent, EventDispatchThread<;

The class GenericEventQueue<T,Dispatcher> can be instantiated by providing the
proper two type parameters.

At the current stage of reverse generic, Incremental Generalization assumes that the
two parameters are distinct types. If not, then the generalization cannot be applied.

112 A. Bergel and L. Bettini

Partial Instantiation. The generic GenericEventQueue described above may be par-
tially instantiated by fulfilling only some of its type parameters. For example, an event
queue dedicated to handle key events may be formulated:

public class GKeyEventQueue =
GenericEventQueue<KeyEvent>;

One type argument has still to be provided to GKeyEventQueue, i.e., the one corre-
sponding to the type parameter Dispatcher. A complete instantiation may be:

public class OptimizedKeyEventQueue
= GKeyEventQueue<OptimizedEventDispatchThread>;

OptimizedKeyEventQueue has all the type parameters instantiated and can be used to
create objects:

OptimizedKeyEventQueue keyEventsQueue
= new OptimizedKeyEventQueue();

keyEventsQueue.postEvent(new KeyEvent(...));
try {

KeyEvent event = keyEventsQueue.getNextEvent();
} catch(Exception e) {} // getNextEvent() is throwable

3 Dealing with the Language Features

Reverse generics is a general mechanism that can be used to extend an existing
programming language that already provides a generic programming mechanism. How-
ever, since this mechanism relies on the existing generic programming features pro-
vided by the language under examination, we need to investigate whether such existing
mechanisms are enough to create a complete “reversed generic” class. This section sum-
marizes the various technical limitations of Java generics and their impact on reverse
generics. In this respect, C++ does not seem to put limitations for reverse generics. A
broader comparison between the generic programming mechanisms provided by Java
and C++ may be found in the literature [11,6].

Class Instantiation. A crucial requirement in the design of the addition of generic in
Java 1.5 was backward compatibility, and in particular to leave the Java execution model
unchanged. Erasure [20,7] is the front-end that converts generic code into class defini-
tions. It behaves as a source-to-source translation. Because of erasure, List<Integer>
and List<String> are the same class. Only one class is generated when compiling the
List<T> class. At runtime, those two instantiations of the same generic List<T> are
just Lists. As a result, constructing variables whose type is identified by a generic type
parameter is problematic.

Let’s consider the following code:

class PointFactory {
Point create() { return new Point(); }

}

Reverse Generics: Parametrization after the Fact 113

One might want to generalize PointFactory the following way:

class Factory<T> = PointFactory>Point<;

The corresponding reversed generics class would correspond to the following generic
class:

class Factory<T> {
T create() { return new T(); }

}

However, this class would not be well-typed in Java: a compile-time error is raised since
new Point() cannot be translated into new T() for the reason given above. As a result, the
class PointFactory cannot be made generic in Java. Enabling a generic type parameter
to be instantiated is considered to be a hard problem [2]. A proposal has been made to
eliminate such restrictions [1], in order to let generic types appear in any context where
conventional types appear.

On the contrary, in C++, the above code for Factory<T> (with the corresponding
C++ template syntax adjustments) is perfectly legal, and instantiation of generic types
is also used in the STL itself.

Static Methods. Generic class type parameters cannot be used in a static method1. A
generic method has to be used instead.

For example, the class EventQueue contains the static method eventToCache
Index(...):

private static int eventToCacheIndex(AWTEvent e) {
switch(e.getID()) {

case PaintEvent.PAINT: return PAINT;
case PaintEvent.UPDATE: return UPDATE;
case MouseEvent.MOUSE MOVED: return MOVE;
case MouseEvent.MOUSE DRAGGED: return DRAG;
default: return e instanceof PeerEvent ? PEER : -1;

}
}

This method is generalized in GenericEventQueue as the following:

private static <U extends AWTEvent>
int eventToCacheIndex(U e) {
...

}

The type parameter U cannot be equal to T since eventToCacheIndex(...) is a static
method. This means that eventToCacheIndex(...) may be employed with a type T1 even
if GenericEventQueue has been invoked with a type T2. For example, we might have:

1 http://java.sun.com/docs/books/tutorial/extra/generics/methods.html

114 A. Bergel and L. Bettini

class GEventQueue<T extends AWTEvent>
= EventQueue>AWTEvent<;...

GEventQueue<KeyEvent> keyEventQueue
= new GEventQueue<KeyEvent>();

GEventQueue.eventToCacheIndex(new ActionEvent(...));

The expression GEventQueue<KeyEvent> instantiates the generic with the type
KeyEvent. However, the static method eventToCacheIndex is performed with an
ActionEvent, a subclass of AWTEvent living in a different class hierarchy than KeyEvent.
While this does not undermine type safety, we believe that it might represent an abnor-
mal situation with respect the initial design intentions. This issue suggests an extension
of reverse generic to handle static methods as a possible further investigation.

On the contrary, C++ deals with generic class type parameters used in static methods,
as in the following code (the implicit type constraint is that the operator << is defined
for T, which is the case for the basic types we use in main):

template<typename T>
class ClassWithStaticMethod {

T myField;
public:

// constructor initializing the field
ClassWithStaticMethod(const T& t) : myField(t) {}

static void m(T t) {
cout << ”t is: ” << t << endl;

}
};

int main() {
ClassWithStaticMethod<int>::m(10);
ClassWithStaticMethod<float>::m(10.20);
ClassWithStaticMethod<string>::m(”foobar”);

// create an object of class ClassWithStaticMethod<string>
// passing a string argument
ClassWithStaticMethod<string> c(”value”);
c.m(”hello”);
c.m(10); // compile ERROR!

}

Note also how the C++ compiler correctly detects the misuse of a static method in the
last line: the static method of a class where the generic type is instantiated with string is
being used with another type (int)2.

Abstract Class. Turning a type contained in a method signature into a type parameter
may make the resulting generic class abstract in Java. Consider the following two class
definitions:

2 A static method invoked on an instance corresponds to the static method invoked on the
instance’s class.

Reverse Generics: Parametrization after the Fact 115

abstract class AbstractCell {
public abstract void set (Object obj);
public abstract Object get ();

}
class Cell extends AbstractCell {

private Object object;
public void set (Object obj) { this.object = obj; }
public Object get () { return this.object; }

}

One may want to write the following generic to make Cell operate on Number instead
of Object:

class GCell<T extends Number> = Cell>Object<;

However, GCell is abstract since set(Object) is not implemented. The solution is to
make AbstractCell generic by abstracting Object. In C++, since it does not type check a
generic class, but only its instantiations (i.e., generated classes), the situation is differ-
ent, as illustrated in the next section.

Method Erasure Uniqueness. Consider the previous code excerpt of AbstractCell and
Cell. Let us assume one wants to make Cell operate on any arbitrary type instead of
Object. Naively, one may write the following definition:

class GCell<T> = Cell>Object<;

It is the same definition of GCell provided above without the upper type. This definition
results in a compile error. The reason is that the method set has two different erasures
without being overriding. This is a further limitation of the Java type erasure.

To fully understand why, consider the following example. This code is rejected by
the Java compiler (with the error “GCell is not abstract and does not override abstract
method set(java.lang.Object) in AbstractCell’’):

class GCell<T> extends AbstractCell {
private T object;
public void set (T obj) { this.object = obj; }
public T get () { return this.object; }

}

This is due to the Java erasure mechanism which prevents two methods from having
the same erasure if one does not override the other. The method set(T) in GCell<T>

and set(Object) in AbstractCell have the same erasure. The former does not override the
latter, but overloads it. An illustration of this limitation is:

class MyClass<U,V> {
// These two overloaded methods are ambiguous
void set (U x) { }
void set (V x) { }

}

116 A. Bergel and L. Bettini

Defining an upper bound of the type T will enforce this overloading and removes the
method erasure ambiguity. A compilable version could be:

class MyClass<U extends Object, V extends java.awt.Frame> {
void set (U x) { }
void set (V x) { }

}

Let us now consider a possible reversed generic GCell generated in C++, which could
correspond to the following one:

class AbstractCell {
public:

virtual void set(int o) = 0;
virtual int get() = 0;

};

template<typename T>
class GCell: public AbstractCell {

T object;
public:

GCell(T o) : object(o) {}
virtual void set(T o) { object = o; }
virtual T get() { return object; }

};

int main() {
AbstractCell *cell = new GCell<int> (10);
cout << cell->get() << endl;
cell->set(20);
cout << cell->get() << endl;
AbstractCell *cell2 =

new GCell<string> (”foo”); // compile ERROR
}

C++ correctly considers GCell<int> as a concrete class since the abstract methods of the
base class are defined3. However, if we tried to instantiate GCell<string> we would get
a compiler error, since GCell<string> is considered abstract: in fact, the get/set methods
in the abstract class are not implemented (GCell<string> defines the overloaded version
with string, not with int).

Primitive Types. Arithmetic operators in Java have to be used in a direct presence
of numerical types only. As an example, the + and - operators can only be used with
primitive types and values. The autoboxing mechanism of Java makes it operate with
the types Integer, Float.

For example, the following generic method is illegal since Number objects cannot be
arguments of + and -:

3 To keep the example simple we used int as a type, since no Object is available in C++.

Reverse Generics: Parametrization after the Fact 117

public class T<U extends Number> {
public int sum (U x, U y) {

return x + y;
}

}

Instead, the following declaration of sum is legal:

public class T<U extends Integer> {
public int sum (U x, U y) {

return x + y;
}

}

This means that one can reverse generic a class by abstracting the type Integer into a
parameter U extends Integer. However, this would not be highly useful since Integer is
a final class, sum can be applied only with the type Integer.

The use of arithmetic operations prevents the operand types from being turned into
type parameters in a generic way. This is not a problem in C++ thanks to operator over-
loading (a feature that is still missing in Java), as also illustrated in the following section.

Operators. Java does not provide operator overloading, but it implements internally the
overloading of +, for instance, for Integer and String. Thus, the two classes are legal in
Java:

public class IntSum {
public static Integer sum (Integer x, Integer y) {

return x + y;
}

}

public class StringSum {
public static String sum (String x, String y) {

return x + y;
}

}

But there is no way to extract a generic version, since there is no way to write a correct
type constraint4.

This is not a problem in C++ thanks to operator overloading. However, we think
that this problem is not strictly related to the absence of operator overloading in Java.
Again, It is due to type erasure and how the type-checking is performed in Java. C++
does not perform type-checking on the generic class: upon type parameter instantiation
it type-checks the resulting (implicitly) instantated class; thus, we can write in C++
such a generic class with method sum, which will have only some accepted (well-
typed) instantiations, i.e., those that satisfy the implicitly inferred constraints (in our

4 This might be solved, possibly, with a union type [12] constraint such as, e.g., extends
Integer∨ String.

118 A. Bergel and L. Bettini

case, the operator + must be defined on the instantiated type). On the contrary, Java
type-checks the generic class itself, using the explicit constraint, which in our case,
cannot be expressed in such a way that it is generic enough.

4 Discussion

In this section we discuss how the reverse generics introduced features are related to
the underlying programming language (in our case study, Java and C++). Moreover, we
hint some possible usage of reverse generics in a development scenario.

Partial Template Specialization. C++ allows the programmer to write template spe-
cializations, i.e., special implementations of possibly partially instantiated generic
classes and functions. This mechanism, besides being the base for template metapro-
gramming [23,4,3], is very useful for providing optimized implementations for
specific types; e.g., if there is a generic class storing data in a parameterized vector,
we could write a specialized version for boolean using a single bit for each element and
bitmasking, as sketched in the following example:

template <typename T>
class MyVector<T> {

T *buffer; // initialized dynamically
public:

// constructor omitted
void set(int i, T t) { buffer[i] = t; }
T get(int i) { return buffer[i]; }

}

// optimized version for bool
template <>
class MyVector<bool> {

bool *buffer; // initialized dynamically
public:

// constructor omitted
void set(int i, bool t) { /* use bit masking */ }
bool get(int i) { /* use bit masking */ }

}

Java, instead, does not provide this functionality. One might think of using incremen-
tal generalization and partial instantiation mechanisms of reverse generics (Sections 2
and 2, respectively). However, this is not enough to implement a mechanism corre-
sponding to partial template specialization in Java. In fact, in C++, as shown above,
we provide a specialized version for a type instance of a generic class, using the same
class name (note that there is no inheritance involved), and of course this is impossi-
ble in Java due to the type erasure mechanism. Moreover, incremental generalization
and partial instantiation, in reverse generics do not aim to mimic partial template spe-
cialization: it is a mechanism to create new generic classes from existing classes, by
parameterizing (respectively, instantiating) only some types.

Reverse Generics: Parametrization after the Fact 119

Development Methodology. Since highly parameterized software is harder to under-
stand [10], we may think of a programming methodology where a specific class is
developed and tested in a non-generic way, and then it is available to the users via its
“reversed” generic version (thus, in this case, we really need the non generic version
for testing purposes, so the code must not be refactored). For example, C++ debuggers
may have problems when setting a breakpoint for debug purposes within a template
from a source file: they may either miss setting the breakpoint in the actual instantia-
tion desired or may set a breakpoint in every place the template is instantiated. Another
well-known problem with programming using templates is that usually the C++ com-
pilers issue quite long compilation errors in case of problems with template usage and
in particular with template instantiations; these errors are also hard to understand due
to the presence of parametric types.

Thus, reverse generics can be used as a development methodology, not only as a
way to turn previous classes into generic: one can develop, debug and test a class with
all the types instantiated, and then expose to the “external world” the generic version
created through reverse generics. Provided that an explicit dependency among reversed
generic classes and the original ones is assumed (e.g., by using makefiles), the reversed
generic version of a class will be automatically kept in sync with the original one.
This also shows that reverse generic incremental generalization and partial instantiation
mechanisms are completely different mechanisms with respect to C++ template partial
specialization: in the C++ code snippet above, it is up to the programmer to manually
keep in sync the generic version of a class and all its possible template specializations.

Class Relations. Classes obtained with reverse generics are not related to the original
classes. Thus, using the following instruction

class MyGenericClass<T extends MyType> =
MyClass>MyType<;

MyGenericClass and MyClass are two distinguished and unrelated classes: the only
thing that couples them (implicitly) is the fact that MyGenericClass has exactly the
same code as MyClass modulo the type that was parameterized.

We think that this is the only sensible design choice since generic types and inher-
itance are basically two distinguished features that should not be mixed; indeed the
main design choices of Java generics tend to couple generics and class based inheri-
tance (again, for backward compatibility), relying on type erasure, and, as we discussed
throughout the paper, this highly limits the expressivity and usability of generics in a
generic programming methodology.

C++ keeps the two above features unrelated; in particular, the STL library basically
does not rely on inheritance at all [17,18,5], leading to a real usable generic library (not
to mention that, avoiding inheritance and virtual methods also leads to an optimized
performance).

Conservative Extension. Reverse generics is a conservative linguistic extension that
preserves the original type system and semantic rules of the underlying programming
language. Thus, the features introduced by our linguistic extension are independent
from the hosting language. It is important to notice that the resulting generic classes
might not be typable in the extended programming language: type erasure plays an

120 A. Bergel and L. Bettini

essential role (Section 3). The main idea is that the code implicitly produced by a re-
versed generic class corresponds to what a programmer might have written manually,
and should be typable by the extended language accordingly.

For instance, the following instruction

class MyClass<TypeName> = MyClass>TypeName<;

is legal from the reverse generics mechanism’s point of view. However, in Java there
is no way to write a typable corresponding code (due to type erasure we would end up
having two classes with the same name).

In C++ the original class could be seen as a specialization of the reversed generic
one. However, the following possible corresponding code is rejected, due to the unpa-
rameterized class:

template<typename T>
class MyClass {

T myField;
public:

void set(T f) { myField = f; }
T get() { return myField; }

};

class MyClass {
int myField;

public:
void set(int f) { myField = f; }
int get() { return myField; }

};

Since in the presence of template specialization, the template declarations must be ex-
plicit also in the specialized class, thus, we should change the second class as follows:

template <>
class MyClass<int> {

int myField;
public:

void set(int f) { myField = f; }
int get() { return myField; }

};

A possible solution could be to change also the original code accordingly during
the reverse generic operation. However, this would make the approach less language
independent.

5 Related Work

To our knowledge, no programming language construct to build a generic class from a
complete class definition has been presented in the literature. This section presents the
closest work to Reverse Generics.

Reverse Generics: Parametrization after the Fact 121

Reverse Engineering Parameterized Types. A first attempt to automatically extract
generic class definitions from an existing library has been conveyed by Duggan [9],
well before the introduction of generics into Java.

Beside the reverse engineering aspect, Duggan’s work diverges from Reverse Gener-
ics regarding downcast insertion and parameter instantiation. Duggan makes use of dy-
namic subtype constraint that inserts runtime downcast. Parameterized type may be
instantiated, which requires some type-checking rules for the creation of an object: the
actual type arguments must satisfy the upper bounds to the formal type parameters
in the class type. Moreover, the version of generics presented in his work with Poly-
Java differs from Java 1.5 in several important ways that prevent his results from being
applied to Java generics.

Modular Type-based Reverse Engineering. Kiezun et al. proposes a type-constraints-
based algorithm for converting non-generic libraries to add type parameters [14]. It
handles the full Java language and preserves backward compatibility. It is capable of in-
ferring wildcard types and introducing type parameters for mutually-dependent classes.

Reverse engineering approaches ensure that a library conversion preserves the orig-
inal behavior of the legacy code. This is a natural intent since such a conversion is
exploited as a refactoring. The purpose of Reverse Generics is to replace static types
references contained in existing classes with specialized ones. Section 3 shows that a
generic obtained from a complete class may have to be set abstract. This illustrates that
the original behavior of the complete class may not be preserved in the generic ones.
Method signatures may be differently resolved in the generic class.

Type Construction Polymorphism. A well-known limitation of generic programming
in mainstream languages is to not be able to abstract over a type constructor. For in-
stance, in List<T>, List is a type constructor, since, given an argument for T, e.g., In-
teger, it builds a new type, i.e., List<Integer>. However, the type constructor List itself
cannot be abstracted (this is a well known limitation of first-order parametric polymor-
phism). Thus, one cannot pass a type constructor as a type argument to another type
constructor. Moors, Piessens and Odersky [16] extend the Scala language [19] with
type construction polymorphism to allow type constructors as type parameters. Thus, it
is possible not only to abstract over a type, but also over a type constructor; for instance,
a class can be parameterized over Container[T]5, where Container is a type constructor
which is itself abstracted and can be instantiated with the actual collection, e.g., List or
Stack, which are type constructors themselves.

Reverse generics act at the same level of first-order parametric polymorphism, thus,
it shares the same limitations, e.g., the following reverse generic operation cannot be
performed:

class MyClass {
List<Integer> mylist;

}

class MyClassG = MyClass>List<;

5 Scala uses [] instead of <>.

122 A. Bergel and L. Bettini

An interesting extension is to switch to the higher level of type constructor polymor-
phim, but this is an issue that still needs to be investigated, and, most important, it
should be experimented with a programming language that provides type constructor
polymorphism, and, with this respect, Scala seems the only choice compared to Java
and C++.

6 Conclusions

Genericity in programming languages appeared in the beginning of the 70s. It gained a
large adoption by being adopted in mainstream languages. All the generic mechanisms
we are aware of enable a parameterization only if the code has been prepared for be-
ing parametrized. This paper goes against this implicitly established mindset. Reverse
generics promote a generalization for code that has not been prepared for it.

Since highly parameterized software is harder to understand [10], we may think of
a programming methodology where a specific class is developed and tested in a non-
generic way, and then it is available to the users via its “reversed” generic version (thus,
in this case, we really need the non generic version for testing purposes, so the code
must not be refactored). For example, C++ debuggers may have problems when setting
a breakpoint for debug purposes within a template from a source file: they may either
miss setting the breakpoint in the actual instantiation desired or may set a breakpoint
in every place the template is instantiated. Another well-known problem with program-
ming using templates is that usually the C++ compilers issue quite long compilation
errors in case of problems with template usage and in particular with template instanti-
ations; these errors are also hard to understand due to the presence of parametric types.

Thus, reverse generics can be used as a development methodology, not only as a way
to turn previous classes into generic: one can develop, debug and test a class with all the
types instantiated, and then expose to the “external world” the generic version created
through reverse generics. Provided that an explicit dependency among reversed generic
classes and the original ones is assumed (e.g., by using makefiles), the reversed generic
version of a class will be automatically kept in sync with the original one.

Classes obtained with reverse generics are not related to the original classes. We
think that this is the only sensible design choice since generic types and inheritance are
basically two distinguished features that should not be mixed; indeed the main design
choices of Java generics tend to couple generics and class based inheritance (again, for
backward compatibility), relying on type erasure, and, as we discussed throughout the
paper, this highly limits the expressivity and usability of generics in a generic program-
ming methodology. C++ keeps the two above features unrelated; in particular, the STL
library basically does not rely on inheritance at all [17,18,5], leading to a real usable
generic library (not to mention that, avoiding inheritance and virtual methods also leads
to an optimized performance).

We currently described reverse generics in a very informal way by describing a sur-
face syntax and its application to Java and C++. We plan to investigate the applicability
of reverse generics also to other programming languages with generic programming
capabilities such as, e.g., C# and Eiffel [15].

As a future work, we will seek a stronger and deeper theoretical foundation. The
starting point could be Featherweight Java [13], a calculus for a subset of Java which

Reverse Generics: Parametrization after the Fact 123

was also used for the formalization of Java generics. Alternatively, we might use the
framework of [21], which, working on C++ templates that provide many more features
than Java generics, as we saw throughout the paper, seem to be a better candidate for
studying the advanced features of reverse generics.

References

1. Allen, E., Bannet, J., Cartwright, R.: A First-Class Approach to Genericity. In: Proc. of
OOPSLA, pp. 96–114. ACM, New York (2003)

2. Allen, E.E., Cartwright, R.: Safe instantiation in generic java. Sci. Comput. Program. 59(1-2),
26–37 (2006)

3. Abrahams, D., Gurtovoy, A.: C++ Template Metaprogramming: Concepts, Tools and
Techniques from Boost and Beyond. Addison-Wesley, Reading (2004)

4. Alexandrescu, A.: Modern C++ Design, Generic Programming and Design Patterns Applied.
Addison Wesley, Reading (2001)

5. Austern, M.H.: Generic Programming and the STL: using and extending the C++ Standard
Template Library. Addison-Wesley, Reading (1998)

6. Batov, V.: Java generics and C++ templates. C/C++ Users Journal 22(7), 16–21 (2004)
7. Bracha, G., Odersky, M., Stoutamire, D., Wadler, P.: Making the future safe for the past:

adding genericity to the Java programming language. In: Proc. of OOPSLA, pp. 183–200.
ACM, New York (1998)

8. Reis, G.D., Järvi, J.: What is generic programming? In: Proc. of LCSD (2005)
9. Duggan, D.: Modular type-based reverse engineering of parameterized types in java code.

In: Proc. of OOPSLA, pp. 97–113. ACM, New York (1999)
10. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison Wesley, Reading (1995)
11. Ghosh, D.: Generics in Java and C++: a comparative model. ACMSIGPLAN Notices 39(5),

40–47 (2004)
12. Igarashi, A., Nagira, H.: Union Types for Object Oriented Programming. Journal of Object

Technology 6(2), 31–52 (2007)
13. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus for Java

and GJ. ACM TOPLAS 23(3), 396–450 (2001)
14. Kiezun, A., Ernst, M.D., Tip, F., Fuhrer, R.M.: Refactoring for parameterizing java classes.

In: Proc. of ICSE, pp. 437–446. IEEE, Los Alamitos (2007)
15. Meyer, B.: Eiffel: The Language. Prentice-Hall, Englewood Cliffs (1992)
16. Moors, A., Piessens, F., Odersky, M.: Generics of a higher kind. In: Proc. of OOPSLA,

pp. 423–438. ACM, New York (2008)
17. Musser, D.R., Stepanov, A.A.: Generic programming. In: Gianni, P. (ed.) ISSAC 1988.

LNCS, vol. 358, pp. 13–25. Springer, Heidelberg (1989)
18. Musser, D.R., Saini, A.: STL Tutorial and Reference Guide. Addison Wesley, Reading (1996)
19. Odersky, M., Spoon, L., Venners, B.: Programming in Scala. Artima (2008)
20. Odersky, M., Wadler, P.: Pizza into Java: Translating theory into practice. In: Proc. of POPL,

pp. 146–159. ACM, New York (1997)
21. Siek, J., Taha, W.: A semantic analysis of C++ templates. In: Hu, Q. (ed.) ECOOP 2006.

LNCS, vol. 4067, pp. 304–327. Springer, Heidelberg (2006)
22. von Dincklage, D., Diwan, A.: Converting Java classes to use generics. In: Proc. of OOPSLA,

pp. 1–14. ACM, New York (2004)
23. Veldhuizen, T.: Using C++ template metaprograms. C++ Report 7(4), 36–43 (1995)

A Calculus of Agents and Artifacts�

Ferruccio Damiani1, Paola Giannini2, Alessandro Ricci3, and Mirko Viroli3

1 Dipartimento di Informatica, Università di Torino, Torino, Italy
2 Dipartimento di Informatica, Università del Piemonte Orientale, Piemonte, Italy

3 DEIS, Alma Mater Studiorum, Università di Bologna, Bologna, Italy

Abstract. A library-based extension of JAVA, the SIMPA framework, introduced
a new abstraction based on agent-oriented concepts. Agents are autonomous en-
tities that cooperate by exploiting artifacts, representing resources that are dy-
namically created and shared by agents. In this paper we present a core calculus
integrating techniques coming from the area of concurrency and from OO pro-
gramming. The syntax of the calculus with its static and dynamic semantics are
introduced through an example. The calculus aims to foster the formalization (and
proof) of type soundness of SIMPA programs and the development of techniques
for analyzing the computational behaviour of agents and artifacts.

1 Introduction

Multi-core architectures, Internet-based computing and Service-Oriented Architectures/
Web Services, are increasingly introducing concurrency issues (and distribution) in the
context of a large class of applications and systems—up to making them key factors
of almost any complex software system. As noted in [15], even though concurrency
has been studied for about 30 years in the context of computer science fields such as
programming languages and software engineering, this research has not significantly
impacted on mainstream software development. However, it appears more and more
important to introduce higher-level abstractions, which can “help build concurrent pro-
grams, just as object-oriented abstractions help build large component-based programs”
[15].

The A&A (Agents and Artifacts) meta-model, recently introduced in the context
of agent-oriented programming and software engineering as a novel foundational ap-
proach for modelling and engineering complex software systems [10], goes in this di-
rection. Agents and artifacts are the basic high-level and coarse-grained abstractions
available in A&A: agents are used to model (pro)-active and task-oriented components
of a system, which encapsulate the logic and control of their execution, while artifacts
model purely-reactive function-oriented components of a system, used by agents to
support their (invidual and collective) activities.

In [12,14] it is introduced SIMPA, a library-based extension of JAVA providing pro-
grammers with agent-oriented abstractions on top of the basic OO layer, to be used as
basic building blocks to define the architecture of complex (concurrent) applications. In

� Work partially supported by MIUR PRIN 2009 DISCO project. The funding bodies are not
responsible for any use that might be made of the results presented here.

J. Cordeiro, A. Ranchordas, and B. Shishkov (Eds.): ICSOFT 2009, CCIS 50, pp. 124–136, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Calculus of Agents and Artifacts 125

SIMPA, the underlying OO computational model of JAVA is still adopted, but only for
defining agents and artifacts programming and data storage, namely, for defining the
purely computational part of applications. On the other hand, agents and artifacts are
used to define aspects related to system architecture, interaction, and synchronisation.

In this paper we promote the applicability of A&A metamodel in OO program-
ming a step further, by introducing FAL (FEATHERWEIGHT AGENT LANGUAGE), a
core calculus formalizing the key features of SIMPA. The formalization is largely in-
spired to FJ, (FEATHERWEIGHT JAVA) [7], and is based on reduction rules applied at
certain evaluation contexts. On the other hand, being concurrency-oriented, this cal-
culus uses techniques coming from concurrency theory, as e.g. in process algebras. A
system configuration is seen as a parallel composition of agents and artifacts instances
(seen as independent and asynchronous processes), the former keeping track of a tree of
(sub-)activities to be executed in autonomy, the latter holding a set of pending opera-
tions to be executed in response to agent actions over the artifact.

The remainder of the paper is organised as follows. Section 2 introduces the SIMPA
programming model. Section 3 presents syntax, operational semantics of the FAL cal-
culus, and discusses briefly the properties that follow from type soundness. The oper-
ational semantics is presented via an example. For lack of space the formal rules are
not given. Section 4 discusses some related work and concludes by outlining possible
directions for further work.

2 The Programming Model

In this section we describe an abstract version of SIMPA programming model by
exploiting the syntax of the FAL calculus.

The Agent Programming Model. In essence, an agent in SIMPA is a stateful entity
whose job is to pro-actively execute a structured set of activities as specified by the
agent programmer, including possibly non-terminating activities, which finally result
in executing sequences of actions, either internal actions – inspecting/changing its own
state – or external actions – interacting with its environment. All actions are executed
atomically.

The state of an agent is represented by an associative store, called memo-space,
which represents the long-term memory where the agent can dynamically attach, as-
sociatively read and retrieve chunks of information called memo. A memo is a tuple,
characterised by a label and an ordered set of arguments, either bound or not to some
data object (if some is not bound, the memo is hence partially specified). For instance,
the philosopher agent uses a memo hungry to take note that its state is now hungry
and it needs the forks, and stopped to keep track that it needs to terminate. A basic
set of internal actions is available to agents to work atomically with the memo-space:
+memo is used to create a new memo with a specific label and a variable number of
arguments, ?memo and -memo to get/remove a memo with the specified label.

The computational behaviour of an agent can be defined as a hierarchy of activities
(corresponding to the execution of some tasks). Activities can be simple or structured. A
simple activity is composed by just a flat sequence of actions, as a single control flow,

126 F. Damiani et al.

agent Main {
activity main() { Table t = make Table(new boolean[5]);
spawn Philosopher(0,1,t); spawn Philosopher(1,2,t);
spawn Philosopher(2,3,t); spawn Philosopher(3,4,t);
spawn Philosopher(4,0,t); }

}
artifact Table { boolean[] isBusyFork;
operation getForks(int left, int right)
:guard ((not(.isBusyFork[left]) and (not(.isBusyFork[right])))
{ .isBusyFork[left] = true; .isBusyFork[right] = true;
signal(forks_acquired);

}
operation releaseForks(int left, int right) :guard true
{ .isBusyFork[left] = false; .isBusyFork[right] = false; }

}
agent Philosopher { Sns s;
activity main(int left, int right, Table table)

:agenda (prepare() :pre true,
living(left,right,table) :pre memo(hungry)

:pers not(memo(stopped))) { }
activity prepare() { +memo hungry; }
activity living(int left, int right, Table table)

:agenda (eating(left,right,table) :pre memo(hungry),
thinking() :pre completed(eating),
shutdown() :pre failed(eating)) { }

activity thinking() { ... /* think */ +memo hungry; }
activity eating(int left, int right, Table table)
{ use table.getForks(left,right) :sns s
sense s :filter forks_acquired;
... /* eat */
use table.releaseForks(left,right);
-memo(hungry);

}
activity shutdown() { +memo(stopped); }

}

Fig. 1. The five dining philosophers problem

while structured activities have a non-empty agenda specifying sub-activities, which
in turn can be possibly executed in the context of such super-activity—hence leading
to the hierarchical structure of behaviour. At the language level, simple activities are
represented by activity blocks, providing the name of the activity and parameters.
By default each agent has a main activity, which can be either simple or structured.
In the dining philosophers example shown in Figure 1, the Philosopher agent has
the simple activities, prepare, eating, thinking, and shutdown. A structured
activity has a non-empty agenda, specifying a set of todos representing sub-activities
that must be executed in the context of the parent activity—also called super-activity. In
the philosophers example, main and living are structured activities. A todo contains
the name of the sub-activity to be executed, a precondition over the inner state of the

A Calculus of Agents and Artifacts 127

agent that must be hold for the specified sub-activity to start, and attributes related to
sub-activity execution, such as persistency. Preconditions are expressed as a boolean
expression over a basic set of predefined predicates. Essentially, the predicates make it
possible to specify conditions on the current state of the activity agenda, in particular
on (i) the state of the sub-activitities (if they started, completed, or aborted) and on (ii)
the local inner state of the agent, that is the memo space. For instance, the predicate
memo(M) is true if the specified memo M is found in the memo space. In the example,
in the structured activity living, sub-activity eating is executed as soon as a memo
hungry is found in the memo space. When the precondition of a todo item holds (for
an activity in execution listing such todo in the agenda), the todo is removed from the
agenda and an instance of the sub-activity is created and executed. So, multiple sub-
activities can be executed concurrently and asynchronously, in the context of the same
parent activity. Sub-activities execution can be then synchronized by properly specify-
ing preconditions in todos, hence in a declarative way. If a todo is declared persistent,
as soon as the sub-activity is completed the todo is re-inserted into the agenda. The per-
sistency attribute can specify also the condition under which the activity should persist.
For instance, the todo item about living sub-activity in philosopher agent is declared
persistent until a stopped memo is found.

The Artifact Programming Model. An artifact is composed by three main parts: (i)
observable properties, which are attributes that can be observed by agents without an
explicit agent action towards the artifact; (ii) a description of the inner non-observable
state, composed by set of state variables analogous to private instance fields of ob-
jects; and (iii) operations, which embody the computational behaviour of artifacts.
The Table artifact in the philosopher example in Figure 1 has no observable prop-
erties, an inner state variable isBusyFork, an array of booleans, and two operations,
getForks and releaseForks, the first used to acquire two forks and the latter for
releasing forks. Both state variables and observable properties are declared similarly to
instance fields in objects; observable properties are prefixed by obsprop qualifier. In
both cases, a dot notation (e.g. .isBusyFork) is used both for l-value and r-value, to
syntacatically distinguish them from parameters.

Operations can be defined by method-like blocks qualified as operation, speci-
fying the name and parameters of the operation and a computational body. It is worth
noting that no return parameter is specified, since operations in artifacts are not ex-
actly like methods in objects. For each operation, implicitly an interface control
in the usage interface is defined, with the specified signature. Operations can be either
atomic, executed as a single computational step, or structured, i.e. composed by mul-
tiple atomic operation steps. For sake of space, in this paper we consider only atomic
operations. For each operation a guard can be specified (:guard declaration), repre-
senting the condition that must hold for the related control in the usage interface to be
enabled. For instance, the getForks operation in Table artifact is available – i.e.
the related control is enabled in the usage interface – when the specified forks are not
busy.

To be useful, an artifact typically should provide some level of observability. This is
achieved both by generating observable events through the signal primitive, and by
defining observable properties. In the former case, the primitive generates observable

128 F. Damiani et al.

artifact Counter { obsprop int count;
Counter(int c){ .count = c; }
operation inc() { .count = .count+1; }

}
agent Main {
activity main() {

Counter c = make Counter(0);
spawn Observer(c); spawn User(c); spawn User(c); }

}
agent Observer { Sns s;
activity main(Counter c)

:agenda (prepare(c),
monitoring(c) :pre completed(prepare)

:pers (not memo(finished)) { }
activity prepare(Counter c) { focus (c,s); }
activity monitoring(Counter c) {

sense s :filter prop_updated;
int value = observe c.count;
... // do something
if (value >= 100){ +memo(finished); } }

}
agent User {

activity main(Counter c)
:agenda (usingCount(c) :pers true) {}

activity usingCount(Counter c) { use c.inc(); }
}

Fig. 2. A simple program with an Observer agent continuously observing a CounterArtifact,
which is concurrently used by two User agents

events that can be observed by the agent using the artifact – i.e. by the agent which has
executed the operation. An observable event is represented by a labelled tuple, whose
label represents the kind of the event and the information content. For instance, in
the Table artifact getForks operation generates the forks acquired(Left,
Right) tuple. Actually, the observable event op exec completed is automati-
cally generated – without explicit signals – as soon as the execution of an op-
eration is completed. In the latter case, observable properties are instance variables
qualified as obsprop. Any time the property changes, an observable event of type
prop updated is fired with the new value of the property as a content. The observ-
able events is observed by all the agents that are focussing (observing) the artifact (more
details in next subsection). An example of simple artifact with observable properties
is the Counter artifact shown in Figure 2: this artifact – working as an observable
counter – has just a single observable property named count and an inc operation to
update this count. Each time the operation is executed, the observable property and the
event prop update(count,Value) are automatically generated.

The Agent-Artifact Interaction Model. As already stated, artifact use and observation
are the basic form of interaction between agents and artifacts. Artifact use by an agent

A Calculus of Agents and Artifacts 129

involves two basic aspects: (i) executing operations on the artifact, and (ii) perceiving
through agent sensors the observable events generated by the artifact. Conceptually sen-
sors represent a kind of “perceptual memory” of the agent, used to detect events coming
from the environment, organize them according to some policy – e.g. FIFO and priority-
based – and finally make them available to the agent. In the abstract language presented
here, sensors used by an agent are declared at the beginning of the agent block.

In order to trigger operation execution, the use action is provided, specifying the
target artifact, the operation to execute – or, more precisely, the usage interface control
to act upon, which activates the operation – and optionally, a timeout and the identifier
of the sensor used to collect observable events generated by the artifact. The action
is blocked until either the action execution succeeds – which means that the specified
interface control has been finally selected and the related operation has been started –
or fails, either because the specified usage interface control is invalid (for instance it
is not part of the usage interface) or the timeout occurred. If the action execution fails
an exception is generated. In the philosopher example, a Philosopher agent (within
its eating activity) executes a use action so as to execute the getForks operation,
specifying the s sensor. On the artifact side, if the forks are busy the getForks usage
interface control is not enabled, and the use is suspended. As soon as the forks become
available the operation is executed and the use action succeeds.

It is important to note that no control coupling exists between an agent and an arti-
fact while an operation is executed. However, operation triggering is a synchronization
point between the agent (user) and the artifact (used): if the use action is successfully
executed, then this means that the execution of the operation on the artifact has started.

In order to retrieve events collected by a sensor, the sense primitive is provided.
The primitive waits until either an event is collected by the sensor, matching the pattern
optionally specified as a parameter (for data-driven sensing), or a timeout is reached,
optionally specified as a further parameter. As result of a successful execution of a
sense, the event is removed from the sensor and a perception related to that event is
returned. In the philosopher example, after executing getForks the philosopher agent
blocks until a forks acquired event is perceived on the sensor s. If no perception
are sensed for the duration of time specified, the action generates an exception. Pattern-
matching can be tuned by specifying custom event-selection filter: the default filter is
based on regular-expression patterns, matched over the event type (a string).

Besides sensing events generated when explicitly using an artifact, a support for
continuous observation is provided. If an agent is interested in observing every event
generated by an artifacts – including those generated as a result of the interaction with
other agents – two actions can be used, focus and unfocus. The former is used to
start observing the artifact, specifying a sensor to be used to collect the events and op-
tionally the filter to define the set of events to observe. The latter one is used to stop
observing the artifact. In the example shown in Figure 2, an Observer agent continu-
ously observes a Counter artifact, which is used by two User agents. After executing
a focus on the artifact in the prepare activity, in the monitoring activity the ob-
server prints on a console artifact the value of the observable property count as soon
as it changes.

130 F. Damiani et al.

U ::= G | A | C Agent / artifact / basic value types
T ::= U | Sns Types

GD ::= agent G { Sns s̄; Act } Agent (class) definition
Act ::= activity a (T x) :agenda (SubAct) {e; } Activity definition

SubAct ::= a(e) :pers e :pre e Subactivity definition

AD ::= artifact A {U f; U p; Op } Artifact (class) definition
Op ::= operation o (U x) :guard e {e; } Operation definition

e ::= x | c Expressions: variable / basic value
| spawn G(e) | make A(e) agent and artifact instance creation
| e; e sequential composition

| .f | .f = e artifact-field access / update
| .p | .p = e artifact-property access / update
| signal(l(e)) event generation

| .s | use e.o(e) :sns e | sense e :filter l sensor / operation use / event sensing
| focus(e, e) | unfocus(e, e) focus / unfocus
| observe e.p get property value
| ?memo(l) | -memo(l) | +memo(l(e)) memo operations
| memo(l) memo predicate
| started(a) | completed(a) | failed(a) activity state predicates
| fail activity error

Fig. 3. Syntax

3 The Core Calculus

Syntax. The syntax of FAL is summarised in Figure 3 where we assume a set of basic
values, ranged over by the metavariable c. Types for basic values are ranged over by
the metavariable C. We only assume the basic values true and false (of type Bool)
which are used as the result of the evaluation of preconditions, persistency predicates
and guards. We use the overbar sequence notation according to [7].

There are minor differences between the syntax of the calculus and the one of the lan-
guage used for the examples. Namely: instead of tuples for memos in memo-spaces (and
event in sensors) we use values; and specifiers (:agenda, :pers, :pre, :guard
and :sns), that are optional in the language, are mandatory in the calculus.

Labels are used as keys for the associative maps representing the content of sensors
and memo-spaces. The metavariable l range over labels.

The expression fail model failures in activities, such as the evaluation of
?memo(l) and -memo(l) in an agent in which the memo-space does not have a memo
with label l. Note that the types of parameters, in artifact operations and the type of
fields and properties may not be sensors so artifacts. Moreover, the signal expression,
signal(l(e)), does not specify a sensor. Therefore, sensors may not be explicitly
manipulated by artifacts.

The language is provided with a standard type system enforcing the fact that ex-
pressions occur in the right context (artifact or agent), operation used, and activities
mentioned in todo lists are defined, and only defined fields and properties are ac-
cessed/modified.

Operational Semantics. The operational semantics is described by means of a set of
reduction rules that transform sets of instances of agents/artifacts/sensors (configura-
tions). In this section we first define configurations, and then introduce the reduction
rules, via examples.

A Calculus of Agents and Artifacts 131

Configurations are non-empty sets of agent/artifact/sensor instances. Each agent/ ar-
tifact/sensor instance has a unique identity, provided by a reference. The metavariable
γ ranges over references to instance of agents, α over artifacts, σ over sensors.

Sensor instances are represented by σ = 〈l v〉Sns, where σ is the instance identifier,
and l v is the queue of association labels/values representing the events generated (and
not yet perceived) on the sensor.

Agent instances are represented by γ = 〈l v, σ, R〉G, where γ is the agent identifier,
G is the type of the agent, l v is the content of the memo-space, σ is the sequence of
references to the instances of the sensors that the agent uses to perceive, and R is the
state of the activity, main, that was started when the agent was created. The sensor
instances in σ are in one-to-one correspondence with the sensor variables declared in
the agent and are needed since every agent uses it own set of sensor instances.

An instance of an activity, R, describes a running activity. As explained in Section 2,
before evaluating the body of an activity we have to complete the execution of its
sub-activities, so we also represent the state of execution of the sub-activities.

R ::= a(v)[Sr1 · · · Srn]{e} | faileda

The name of the activity is a, v are the actual parameters of the current activity instance,
Sr1 · · · Srn is the set of sub-activities running, and e is the state of evaluation of the
body of the activity. (Note that the evaluation of the body starts only when all the sub-
activities have been fully evaluated.) With faileda we say that activity a has failed. If
the evaluation of a sub-activity is successful then it is removed from the set Sr1 · · · Srn.
So when n = 0 starts the evaluation of the body e.

For a sub-activity, Sr, the process of evaluating its precondition (we do not consider
the persistency predicate that would be similar), is represented by the term, a(v)〈e〉
where e is different from true or false (it is the state of evaluation of the precondition)
when e = true, the term a(v)〈true〉 is replaced with the initial state of the evaluation
of the activity awith parameters v. When e = false the evaluation of the precondition
of a is rescheduled. Therefore:

Sr ::= a(v)〈e〉 | R

Artifact instances are represented by α = 〈f = v, p = w, σ, O1 · · · On〉A where α is the
artifact identifier, A the type of the artifact, the sequence of pairs f v associates a value
to each the field of A, the sequence of pairs p w associates a value to each property of
A, the sequence σ represents the sensors that agents focusing on A are using, and Oi,
1 ≤ i ≤ n, are the operations that are in execution. We consider O1 · · · On a queue
with first element On and last O1. (For simplicity, we do not consider steps in this paper,
although we have a full formalization including them.) Artifacts are single threaded and
(differently from agents that may have more activity running at the same time) only the
operation On is being evaluated.

A running operation, O, is defined as follows.

O ::= (σ, o〈e〉{e′})
where σ identifies the sensor associated with the operation which was specified by the
agent containing the use that started the operation, and that is used to collect events

132 F. Damiani et al.

generated during the execution of the operation by signal. If the expression 〈e〉 is
different from true or false the operation is evaluating its guard e. If e = true then
the operation is evaluating its body. If e = false then the operation is removed from
the queue and put at the end of it so that when it will be rescheduled it will restart
evaluating its guard.

The initial configuration for the program in Fig. 1 is:1

(1) γMain = 〈∅, ∅, main

⎡

⎢⎣
Tablet=make Table(newBool[5]);
spawn Philosopher(0,1,t);
...
spawn Philosopher(4,0,t)

⎤

⎥⎦ { }〉Main

This means that at the beginning we have only the agent Main with the running activity
main, that does not have any subactivity, so the execution of its body starts from the
first instruction. In the following we show how the reduction rules transform this initial
term. The semantics is non deterministic. At each step,

– either an expression in an activity or operation is selected for execution, or
– some scheduling/disposing of an activity, or a subactivity, or an operation is

performed.

In the initial configuration (1) the first expression that can be evaluated is new Bool[5]

whose evaluation produces to the array [f,f,f,f,f] (In the array we use f for false
and t for true.) Then the expression make Table([f,f,f,f,f]) reduces to an ar-
tifact reference α and adds to the configuration the initial artifact instance that follows:

α = 〈.isBF = [f,f,f,f,f], ∅, ∅, ∅〉Table

After the initialization of the local variable t the agent instance γMain becomes

γMain = 〈∅, ∅, main
[
spawn Philosopher(0,1,α);

...
spawn Philosopher(4,0,α)

]
{ }〉Main

The five spawn expressions are evaluated from left to right. The evaluation of the
expressions spawn Philosopher(0,1,α) reduces to γ0 and adds to the configura-
tion the agent instance

(2) γ0 = 〈∅, σ0,main

[
prepare() 〈true〉 ,

living(0,1,α) 〈memo(hungry)〉

]
{ }〉Phil.

and the sensor instance σ0 = 〈∅〉Sns. Similarly, the reduction of the other spawn
expressions generates four agent instances and four sensor instances producing the
configuration:

γMain = 〈...〉 σ0 = 〈∅〉 · · · σ4 = 〈∅〉 α = 〈...〉 γ0 = 〈...〉 · · · γ4 = 〈...〉
1 The syntax of FAL does not include local variables and array object values. In this exam-

ple, we will handle the local variable t by replacing, after its declaration/inizialization, all its
occurrences with its value.

A Calculus of Agents and Artifacts 133

in which the agent γMain is inactive, having finished the evaluation of its body. The
artifact α does not have any pending operation, and all the agent philosophers may start
the execution of the sub-activities of their main activity (by starting the evaluation of the
preconditions of prepare and living). Our modeling make use of nondeterministic
evaluation rules, but parallel execution could be modeled.

Going back to (2), since the precondition of the run-time sub-activity prepare()
of the activity main of the agent γ0 is true the expression prepare() 〈true〉 is replaced
by prepare()[]{+memo(hungry)} (whose evaluation causes the insertion of the label
hungry into the memo of γ0) and then since the body is fully evaluated prepare is
removed from the sub-activities of main , yielding

(3) γ0 = 〈hungry, σ0,main
[
living(0,1,α) 〈memo(hungry)〉

]
{ }〉Phil.

If instead of evaluating the sub-activity prepare we would have evaluated the precon-
dition of the sub-activity living, the result would have being

γ0 = 〈∅, σ0, main

[
prepare() 〈true〉,
living(0,1,α) 〈false〉

]
{ }〉Phil.

Next time the sub-activity living was scheduled for execution living(0,1,α)
〈false〉 would have been replaced with living(0,1,α) 〈memo(hungry)〉.

Continuing from (3) the precondition memo(hungry) of living evaluates to true
and the sub-activity living(0,1,α) 〈true〉 is replaced by the corresponding run-
time activity resulting in the following:

living(0,1,α)

⎡

⎣eating(0,1,α) 〈memo(hungry)〉 ,
thinking() 〈completed(eating)〉,
shutdown() 〈failed(eating)〉

⎤

⎦ { }

The precondition memo(hungry) evaluates to true and the sub-activity
eating(0,1,α)〈true〉 is replaced by the corresponding run-time activity resulting in
the following

(4) eating(0,1,α)[]

⎧
⎪⎪⎨

⎪⎪⎩

use α.getForks(0,1) :sns σ0 ;
sense σ0 :filter forks acquired;
/* eat */
use α.releaseForks(0,1);
-memo(hungry)

⎫
⎪⎪⎬

⎪⎪⎭

(Note that both completed(eating)and failed(eating)would evaluate to false.)
The evaluation of the body of eating can now start by reducing the expression use

α.getForks(0,1) :sns σ0, that schedules the operation getForks in the artifact
instance α yielding

α = 〈.isBF = [f,f,f,f,f], ∅, ∅, (σ0, getForks 〈e′0〉 {e0})〉Table

where e′0 is (not(.isBF[0]) and (not(.isBF[1]))) and e0 is

.isBF[0] = true; .isBF[1] =true; signal(forks acquired).

The guard e′0 reduces to true. The reduction of e0 updates the array ι to [t, t, f,

f, f] and adds the label forks acquired to the queue of events of the sensor in-
stance σ0, yielding σ0 = 〈forks acquired〉Sns. Other agents may schedule operation

134 F. Damiani et al.

the artifact α. For instance, if the agent γ1 and γ2 invoke the operation getForks on
α, when the evaluation of getForks for the agent γ0 was completed the state of the
artifact would be

α = 〈.isBF = [t,t,f,f,f], ∅, ∅,
(σ2, getForks 〈e′2〉 {e2}) (σ1,getForks 〈e′1〉 {e1})〉Table

So the guard e′1 ((not(.isBF[1]) and (not(.isBF[2])))) would evaluate
to false, and the associated operation would be rescheduled and put at the rear of the
queue yielding the following

α = 〈.isBF = [t,t,f,f,f], ∅, ∅,
(σ1, getForks 〈e′1〉 {e1}) (σ2,getForks 〈e′2〉 {e2})〉Table

so the evaluation of the guard of the getForks operation invoked by γ2 may start (and
will successfully acquire the forks for γ2). At the same time, the expression sense σ0

:filter forks acquired in (4) could be evaluated, perceiving the event
forks acquired and removing it from the sensor instance σ0 which becomes σ0 =
〈∅〉Sns. The code “/* eat */” may be executed and, at the end of its execution the
expression use α.releaseForks(0,1) schedules the operation releaseForks
on the artifact α and then -memo(hungry)removes the label hungry from the memo
completing the execution of the sub-activity eating. The sub-activity eating is dis-
carded and therefore the predicate completed(eating) becomes true and the sub-
activity thinking could be executed resulting in γ0 to be:

〈∅, σ0, main[living(0,1,α)

⎡

⎣
thinking()[]{
/* think */ +memo(hungry)}
shutdown() 〈failed(eating)〉

⎤

⎦ { }]{ }〉Phil.

(If the evaluation of the predicate completed(eating) was done before completion
of predicate eating the result would have been false, and then its evaluation resched-
uled.) Once the sub-activity living completes its execution, in the example of Fig. 1
it would be rescheduled (since its persistency condition is true).

Properties. We have defined a type system for FAL – not reported in the paper for
lack of space. The soundness of the type system implies that the execution of well-
typed agents and artifacts does not get stuck. The following properties of interaction
between well-typed agents and artifacts, which are useful in concurrent programming
with SIMPA, hold: (i) there is no use action specifying an operation control that is not
part of the usage interface of the artifact; (ii) there is no observe action specifying an
observable property that does not belong to the specified artifact; and (iii) an executing
activity may be blocked only in a sense action over a sensor that does not contain the
label specified in the filter—i.e., the agent explicitly stops only for synchronization pur-
poses. Moreover, a type restriction on sensors – not present in the current type system –
may be defined to enforce that there is no sense action indefinitely blocked on sensing
event e due to the fact that the corresponding triggered operation was not designed to
generate e.

A Calculus of Agents and Artifacts 135

4 Related Work and Conclusions

The extension of the OO paradigm toward concurrency — i.e. object-oriented concur-
rent programming (OOCP) — has been (and indeed still is) one of the most important
and challenging themes in the OO research. Accordingly, a quite large amount of the-
oretical results and approaches have been proposed since the beginning of the 80’s,
surveyed by works such as [4,16,2,11]. We refer to [13] for a comparison of the agent
and artifact programming model with active objects [9] and actors [1] and with more
recent approaches extending OO with concurrency abstractions, namely POLYPHONIC

C# [3] and JOIN JAVA [8] (both based on Join Calculus [6]). Another recent proposal
is STATEJ [5], that proposes state classes, a construct for making the state of a concur-
rent object explicit. The objective of our approach is quite more extensive in a sense,
because we introduce an abstraction layer which aims at providing an effective support
for tackling not only synchronisation and coordination issues, but also the engineer-
ing of passive and active parts of the application, avoiding the direct use of low-level
mechanisms such as threads.

In this paper we described FAL, a core calculus to provide a rigorous formal frame-
work for designing agent-oriented languages and studying properties of agent-oriented
programs. To authors knowledge, the only attempt that has been done so far applying
OO formal modelling techniques like core calculi to study properties of agent-oriented
programs and of agent-oriented extensions of object-oriented systems is [13].2Future
work concerns a comprehensive study and discussion of the type system, exploring its
usage for the analysis of the computational behaviour of agents and artifacts. Properties
that we are investigating mainly concerns the correct execution of activities, in partic-
ular: (i) there is no activity which are never executed because of their pre-condition;
(ii) post-conditions for activity execution can be statically known, expressed as set of
memos that must be part of the memo space as soon as the activity has completed; (iii)
invariants for activity execution can be statically known, expressed as set of memos that
must be part of the memo space while the activity is in execution; (iv) there is no in-
ternal action reading or removing memos that has not been previously inserted. We are
investigating the suitable definition of pre/post/invariant conditions in terms of sets of
memos that must be present or absent in the memo space, so that it would be possible to
represent high-level properties related to set of activities, such as the fact that an activity
A would be executed always after an activity A′ or that an activity A and A′ cannot be
executed together. On the artifact side, the computational model of artifacts ensures a
mutually exclusive access to artifact state by operations executed concurrently; more
interesting properties could be stated by considering not only atomic but also structured
operations, not dealt in this paper.

References

1. Agha, G.: Actors: a model of concurrent computation in distributed systems. MIT Press,
Cambridge (1986)

2 The paper revises and extends the formalisation proposed in [13], in particular by formalising
a larger set of features, including – for example – the agent agenda.

136 F. Damiani et al.

2. Agha, G., Wegner, P., Yonezawa, A. (eds.): Research rections in concurrent object-oriented
programming. MIT Press, Cambridge (1993)

3. Benton, N., Cardelli, L., Fournet, C.: Modern concurrency abstractions for C#. ACM Trans.
Program. Lang. Syst. 26(5), 769–804 (2004)

4. Briot, J.-P., Guerraoui, R., Lohr, K.-P.: Concurrency and distribution in object-oriented pro-
gramming. ACM Comput. Surv. 30(3), 291–329 (1998)

5. Damiani, F., Giachino, E., Giannini, P., Drossopoulou, S.: A type safe state abstraction for
coordination in java-like languages. Acta Inf. 45(7-8), 479–536 (2008)

6. Fournet, C., Gonthier, G.: The reflexive chemical abstract machine and the join calculus. In:
POPL 1996, pp. 372–385. ACM, New York (1996)

7. Igarashi, A., Pierce, B., Wadler, P.: Featherweight Java: A minimal core calculus for Java and
GJ. ACM TOPLAS 23(3), 396–450 (2001)

8. Itzstein, G.S., Kearney, D.: Join Java: an alternative concurrency semantics for Java. Techni-
cal Report ACRC-01-001, Univ. of South Australia (2001)

9. Greg Lavender, R., Schmidt, D.C.: Active object: an object behavioral pattern for concurrent
programming. In: Pattern languages of program design, vol. 2, pp. 483–499. Addison-Wesley
Longman Publishing Co., Inc., Boston (1996)

10. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent systems.
Autonomous Agents and Multi-Agent Systems, 19 (2009); Special Issue on Foundations,
Advanced Topics and Industrial Perspectives of Multi-Agent Systems

11. Philippsen, M.: A Survey of Concurrent Object-Oriented Languages. Concurrency Compu-
tat.: Pract. Exper. 12(10), 917–980 (2000)

12. Ricci, A., Viroli, M.: SIMPA: An agent-oriented approach for prototyping concurrent appli-
cations on top of java. In: PPPJ 2007, pp. 185–194. ACM, New York (2007)

13. Ricci, A., Viroli, M., Cimadamore, M.: Prototyping concurrent systems with agents and ar-
tifacts: Framework and core calculus. Electron. Notes Theor. Comput. Sci. 194(4), 111–132
(2008)

14. Ricci, A., Viroli, M., Piancastelli, G.: SIMPA: An agent-oriented approach for program-
ming concurrent applications on top of java. Science of Computer Programming (2010),
doi:10.1016/j.scico.2010.06.012

15. Sutter, H., Larus, J.: Software and the concurrency revolution. ACM Queue: Tomorrow’s
Computing Today 3(7), 54–62 (2005)

16. Yonezawa, A., Tokoro, M. (eds.): Object-oriented concurrent programming. MIT Press,
Cambridge (1986)

Using Trace to Situate Errors in Model Transformations

Vincent Aranega1, Jean-Marie Mottu2, Anne Etien1, and Jean-Luc Dekeyser1

1 LIFL - UMR CNRS 8022, INRIA - University of Lille 1
Lille, France

2 LINA - UMR CNRS 6241 - University of Nantes
Nantes, France

{vincent.aranega,anne.etien,jean-luc.dekeyser}@lifl.fr,
jean-marie.mottu@univ-nantes.fr

Abstract. Model Driven Engineering (MDE) promotes models as main artifacts
in software development process. Each model represents a viewpoint of a sys-
tem. MDE aims to automatically generate code from an abstract model, using
various intermediary models. Such a generation relies on successive model trans-
formations shifting a source model to a target one. The resulting transformation
sequence corresponds to the skeleton of an MDE based approach, similarly to
compiler in traditional ones.

Transformations are used many times in order to justify their development
effort. If their are faulty, they can largely spread errors to models. Thus, it is
indispensable to test them and possibly debug them. In this paper, we propose
an error localization algorithm based on a traceability mechanism in order to
ease the transformations debugging. We illustrate this approach in the context of
embedded system development.

Keywords: Model transformation, Error localization, Metamodels, Traceability,
Tests.

1 Introduction

Model Driven Engineering (MDE) promotes models as main artifacts in the life cycle
of complex systems. A key component of MDE is the definition and application of
model transformation that shift a source model to a target one. These transformations
are composed of rules and are defined in terms of metamodels relative to the source and
the target languages. Transformations can be chained if the source metamodel of one
of them is the target metamodel of another one. Thus model transformations form the
skeleton of the system development.

Using traditional approaches, errors observed in the execution of the system may
come from the compiler or the source program. In an MDE approach, such a distinc-
tion can be established, between errors in the transformation definition and errors in the
source model. Errors in transformation may have huge consequences. Indeed, transfor-
mations are used many times to justify the efforts relative to their development. So if
they are erroneous, they can spread fault to models several times. Furthermore, systems
may evolve, leading to errors and implying changes in different sub-parts to lead to a
new stable configuration. Even if these issues are common to any system, they require
a specific management when a model driven development approach is used.

J. Cordeiro, A. Ranchordas, and B. Shishkov (Eds.): ICSOFT 2009, CCIS 50, pp. 137–149, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

138 V. Aranega et al.

Traceability is potentially relevant to help designers to solve these issues. The trace
is usually used to link the requirements to the implementation artifacts. However, trace-
ability also establishes relationships between products of a development process,
especially products bound by a predecessor-successor or master-subordinate relation-
ship [1]. Regarding MDE and more specifically model transformations, the traceability
mechanism links elements of different models in order to specify elements useful to
generate others. Those links can also be used to analyze impacts of model evolutions
onto other models in the transformations chain. Finally, it is reasonable to consider
traceability as a bridge between the business and the transformation world, if the trans-
formation parts are explicitly associated to the links. Business is so materialized by the
models useful to generate the system.

We have already defined a traceability algorithm based on two metamodels [2]. One
captures the trace relative to a single transformation, whereas the other manages the
relationships all along the transformation chain. These metamodels are rich enough to
support algorithms dedicated to the resolution of the previously cited issues. In this pa-
per, we focus on error localization in model transformation and we propose an algorithm
based on our traceability metamodels. From a given generated element, our approach
identifies the rule sequence of each intermediate transformation of the complete trans-
formation chain. First, tests identify incorrect parts of the produced model, then, the
erroneous rule which causes this failure is detected. We have successfully applied this
algorithm on a case study in the context of embedded system development.

This paper is organized as follows. Section 2 presents existing traceability solutions
in MDE. Section 3 gives different ways to exploit trace. In section 4, the trace meta-
models are introduced and the use of the trace models for faulty transformation rules
identification is described. Section 5 illustrates our approach with a case study based
on a QVT transformation. Finally, we conclude the paper and suggest future works in
section 6.

2 Related Work

In MDE, many solutions for traceability are proposed in the literature [3], [4], each of
them responding to specific needs of projects.

MDE has as main principle that everything is a model, so the trace information is
stored as models [5]. Classically, two main approaches exist. The first focuses on the
addition of trace information on the source or target model [6]. The major drawback of
this solution is that it pollutes the models with additional information and it requires the
metamodels adaptation in order to take into account traceability. However it produces
the most comprehensive traces. The second solution focuses on the storage of the trace
as an independent model. Using a separate trace model with a specific semantics has
the advantage of keeping trace information independent of original models [5]. To deal
with the advantage of these two techniques, a solution consist on the possibility to merge
on-demand the trace model with the transformation source or target model [7].

Several metamodels have been proposed as the foundation of traceability approaches
[5], [8], [9]. These metamodels are structurally, relatively different and often depend
on a specific transformation language. However, they always gather the same basic in-
formation. The traceability metamodel defined by Jouault [5] only contains minimal

Using Trace to Situate Errors in Model Transformations 139

information, i.e. elements and links between them. The name of the transformation rule
which creates the elements is associated to the link as a property. Based on these works,
Yie et al. propose an advanced trace for ATL [10]. The proposed trace gathers fine
grained information of the ATL transformation execution. However, the implementa-
tion is really dependent from the ATL metamodel and the ATL Virtual Machine. Our
local trace metamodel is an extension of the one defined by Jouault “core” trace pro-
viding a more finer grain trace and separating the rule concept from the link to ease
manipulations.

Collecting the trace information can be easily performed during the transformation
execution since this only incurs a small cost [9]. Indeed the trace model is thus viewed
as an additional target model. For this reason, trace generation could be manually im-
plemented in transformations to produce an additional trace target model or it can be
supported by the transformation engine [11]. In [5], an automatic generation of trace
code into rule code is presented, based on the fact that transformation programs are
models that could be transformed into another model that contains trace code. Never-
theless, these solutions impose to inject code in transformation rules or transformation
engine. To remain the less intrusive as possible, Amar et al. propose another technique
using aspect programming [12]. Regrettably, for the moment, this solution cannot be
used with every transformation languages.

Once the trace is generated, the main interest for the user is to have access to the in-
formation he needs. However, in case of transformations chain, the trace models relying
only on the two concepts Element and Link, which are produced during the transforma-
tions, are not enough. One solution is to add the concept of Step, referring to a transfor-
mation, in the trace model such as in the trace mechanism of Kermeta [8]. Traceability
links are gathered by step (i.e. by transformation) what thus allows to manage transfor-
mation chains. An other solution is to externalize the navigation between initial models
and trace models of a whole transformation chain in another model, called megamodel.
It refers to the traceability in the large, whereas model to model transformations refer
to a traceability in the small [13].

3 Using Traceability in Model Driven Engineering

In the introduction, we identified three different issues that can be encountered in the
development of complex systems: fix the system itself, fix the transformations gener-
ating the system and manage the impact of evolutions on the whole system. We have
suggested that a traceability mechanism can solve these issues. In this section, we show
that, while remaining in MDE, each of these purposes requires different traceability
information.

3.1 Needed Trace Information

When an error in the generated system is found or when an unexpected behavior is ob-
served, the system has to be fixed. For this purpose, the elements of the input models that
engender the (or one of the) incorrect element(s) have to be identified. Such information
are at the heart of any traceability mechanism and are materialized by links between
source elements and target elements. These can also be used to analyze the impact of the

140 V. Aranega et al.

input model evolutions on the output model and to propagate these changes. However,
when the system evolves, the transformation may also evolve. To overcome this issue,
the rule engendering a traceability link must be associated to it. Furthermore, the trace-
ability mechanism has to be adapted to the model driven development reality. Indeed,
complex systems do not rely on a single transformation but on one or several transfor-
mation chain. Therefore traceability should support relationships all along the chain.

As a first conclusion, we have demonstrated that links between source and target
elements are not enough to build an efficient traceability mechanism dedicated to sys-
tem fixing and system evolution. Information relative to the transformation rules and
allowing the navigation in the transformation chain are required.

It can be noticed that fixing the system can be performed only if we are confident
in the transformations that generate it. In the following subsection, we focus on using
traceability in transformation test and show that information relative to the input/output
elements relationships, transformation rules and navigation in the transformations chain
are, in that case, also required.

3.2 Trace Exploitation for Model Transformation Testing

In this subsection, we briefly present the transformation test and then we show how
trace can be used in this context.

Model Transformation Testing. By automating critical operations in system devel-
opment, model transformations are time and effort saving. However, they may also
introduce additional errors if they are faulty. Therefore, systematic and effective testing
of transformations is necessary to prevent the production of erroneous models.

Several problems need to be solved when tackling model transformation testing.
First, we need to detect the presence of errors by observing wrong execution of the
model transformation. Corresponding challenges are efficient test data production and
observation of error in the system. We then have to locate the error in the transformation
and to fix it. Figure 1 sketches the test transformation process and associates its different
parts to the corresponding test problematics.

Efficient test data production and error observation are challenges out of this pa-
per scope. Nevertheless, we briefly illustrate them. In this paper, we focus on error
localization.

Transformations manipulate models, which are very complex data structures. This
makes the problems of test data generation, selection, and qualification, as well as error
observation very difficult.

Fig. 1. Test transformation process

Using Trace to Situate Errors in Model Transformations 141

Test data generation consists in building models conform to the input metamodel.
Their number is potentially infinite so the first challenge is to define criteria for test
data generation [14]. Then, the resulting test models set has to be qualified, depending
on their coverage of the input domain or on their ability to detect potential errors.

Error observation relies on the detection of an error in a model produced by the
transformation. In [15] we proposed an approach based on the construction of oracles.
The oracle checks the validity of the output model resulting from the transformation of
one test model. It relies either on properties between elements of the input and output
models or properties only concerning the output model. These properties have to be
formalized and must cover the whole metamodels. Defining oracles is difficult since
human intervention is required. Indeed, extracting information to produce oracle from
the model transformation requirements cannot be automatized.

Error Localization in Model Transformation. Errors observed in the output model
can concern: wrong property value, additional/missing class, etc. They result from er-
rors in the transformation. Where are they and what are they, are two questions that
remain unanswered.

The error can be everywhere in the transformation. Its detection is easier if the search
field is reduced to the faulty rule, i.e. the rule that creates the incorrect element (or
doesn’t create an expected element) in the output model. Once the error localized in
the transformation, in order to fix it, the input model elements leading to this incorrect
output element have to be identified.

Finally, due to the non exhaustiveness of test and the complexity of building ora-
cles, test of a single transformation can be missed at the expense of test of the whole
transformation chain.

4 Traceability Metamodels Description

To solve the problems we want manage (e.g. system debugging, transformation debug-
ging, design alternative exploration...), we have defined our own trace approach [2].
This approach provides a traceability in the small and in the large [13], which we
refer as local and global traceability respectively. It relies on two metamodels: the Lo-
cal Trace metamodel corresponding to the model to model traceability and the Global
Trace metamodel helping in the global navigation. These two metamodels are com-
pletely independent from the transformation language and can even be used with var-
ious languages. Only the trace generation changes. Our traceability mechanism allows
users to trace elements all along a transformation chain where each transformation may
be written in different languages.

4.1 Local Trace Metamodel

The Local Trace metamodel is used to capture the traces between the input and the
output of one transformation. The metamodel is based on the trace metamodel presented
in [5]. Figure 2 shows the Local Trace metamodel.

The Local Trace metamodel contains two main concepts: Link and ElementRef ex-
pressing that one or more source elements are possibly bound to target elements. Those

142 V. Aranega et al.

Fig. 2. Local Trace Metamodel

concepts are the same as in [5]. All the other concepts have been added to provide a
finer and more complete trace. In our metamodel ElementRef is an abstract class repre-
senting model elements that can be traced (i.e. properties and classes). It owns a name
attribute catching the classes and properties names (if they exist in the traced models).
Property values referring to a primitive types like Integer, Double, String etc. are traced
using the PrimitivePropertyRef concept. It gathers the property value (using the value
attribute) and the property type (using the type attribute). Properties typed by a class are
traced by ClassRef.

More information is needed in order to trace the transformation rules and black-
boxes. The rule producing the link is traced using the RuleRef concept. A rule can
be associated to several links, so the association is many to one between RuleRef and
Link. The RuleRef concept is optional and doesn’t need to be generated if it is not
used. In case of error localization such information is definitively useful. Black-Boxes
are special kind of rules: producing some output model elements from input model
elements. So, they can be traced with Link. The treatment performed by a black-box
may be externalized (such as a native library call) but in every case is opaque to the
designers. We take care to differentiate black-boxes and rules since test only deals with
rules. The BlackBox concept is a subclass of RuleRef. Both establish a bridge with the
transformation world.

An ElementRef refers to the real element (EObject) of the input (resp. output) model
instantiating the ECore metamodel. The LocalTrace concept represents the root of the
Local Trace model. It contains possibly one RulesContainer and several ElementsCon-
tainers (one for each source (respectively destination) models), gathering RuleRefs and
ElementRefs, respectively . Separating sources and targets elements helps in reducing
the cost of search of input or output elements.

4.2 Global Trace Metamodel

The Global Trace model [2,13] links together the local traces following the transfor-
mation chain. Thus, the Global Trace model ensure the navigation from local trace
models to transformed models and reciprocally as well as between transformed mod-
els. The global trace can also be used to identify the local trace associated to a source or
destination model.

Using Trace to Situate Errors in Model Transformations 143

Fig. 3. Global Trace Metamodel

It also provides a clear separation of trace information, which leads to a better flexi-
bility for trace creation and exploitation. Without this global trace all traceability links
of the whole transformation chain are gathered in a unique trace model.

Figure 3 shows the global trace metamodel. Each TraceModel produced during a
transformation and referring to a LocalTrace, binds two sets of LocalModels. These are
shared out transformations, indicating that they are produced by one transformation and
consumed by another. The GlobalTrace concept represents the root of the model.

4.3 Trace Generation

The proposed metamodels are completely language independent. However trace gen-
eration requires information contained in the transformation and so relies on the trans-
formation language. Whatever the transformation language, the trace generation is a
two steps algorithm. The first step corresponds to the production of a local trace for
each transformation and the second, to the generation of the global trace specifying the
transformation chain.

In the following, we only focus on the trace generation from transformation written
in QVTO [16], an implementation of the standard QVT language [17].

The local trace generation has to be, if possible, non-intrusive in the transformation
code or in the engine. The execution of the QVTO transformations uses a trace mecha-
nism to store a mapping between model elements and to resolve reference. This trace is
relatively complex and dedicated to the transformation execution. However, it gathers
the information useful to generate the local trace models conformed to our local trace
metamodel. In particular, it refers the source elements, their associated target elements
and the rule used to produce the latter from the former. The produced QVTO trace is
transformed into a local trace.

The global trace production is based on information relative to the generated local
traces. From the local traces, the transformation sequence can be rebuilt. Indeed, the
models never appearing as output models in any local traces are the start models. From
these models and traces, the other can be deduced.

If the transformation languages evolve, only the local trace generation may be im-
pacted. Indeed, this latter directly relies on the used transformation language, whereas
the global trace is build from the local traces.

144 V. Aranega et al.

4.4 Error Localization Algorithm

Our error localization algorithm requires that an error has been beforehand observed in
an output model. The transformation producing this model contains errors. Our algo-
rithm aims to reduce the investigation field by highlighting the rule sequences which
lead to the observed error.

Our algorithm is based on the following hypothesis. Let us consider two elements
A and B of the output model created by the rules toA() and toB() respectively. If A
references B through an association, it assumes that the rule toA() calls the rule toB() or
makes an operation to reference B.

In case of an erroneous property (e.g. with an unexpected value) in an element, the
faulty rule is easily identified. It corresponds to the RuleRef coupled to the Link associ-
ated to the ElementRef referring the selected element. In case of an error on an element
(e.g. added or missing), the faulty rule is one which calls the last rule involved in the
creation of the selected element. Causes can be a missing or misplace rule call.

We detail the algorithm in the second case:

1. select the faulty element and identify the model to which it belongs
2. from the Global Trace model, recover the Local Trace model whose the previously

identified model is one of the output models
3. look for the ElementRef corresponding to the selected element in the local trace

destContainer
4. recover the RuleRef associated to the ElementRef by navigating through the trace

links,
5. store the RuleRef and the eObject type
6. search, in the destContainer, the ElementRef which have their eObject linked by

an association to the eObject corresponding to the ElementRef identified in step 3
7. apply recursively the algorithm from step 3 on each element found in step 4

The recursive call stops when no direct linked eObject can be found in step 6. The rule
is called by no other one; it is an entry point of the transformation. Technically, it is
materialized by the storage of a null pointer.

Thus, the algorithm results in a kind of tree representing the successions of rules
producing the selected element. It has been applied with success on transformations
written with different transformation languages (QVTO and a Java API).

5 Case Study

Debugging transformations, even if they are simple, is often a tough job. As soon as
we operate a scale-up, this task becomes unmanageable. In this section, we illustrate
how our approach eases transformation debugging in the Gaspard2 environment by
automating the error localization.

5.1 Overview

Gaspard [18] is a co-design environment for Embedded Systems. In this environment,
the hardware architecture and the application are separately designed at a high level of

Using Trace to Situate Errors in Model Transformations 145

Fig. 4. MDE skeleton of Gaspard

abstraction using UML enriched with the MARTE profile [19] dedicated to modeling
and analysis of real time and embedded system. In order to generate code that will be
used for hardware-software co-simulation, functional verification or circuitry synthe-
sis, several intermediate metamodels representing different levels of abstraction have
been specified. Each metamodel introduces new concepts more platform-dependent.
Transformations between these metamodels have been written in order to automatically
produce intermediate models and generate code. Thus several transformations chains
have been defined; one per targeted platform. Figure 4 shows an overview of the MDE
skeleton of the Gaspard environment by specifying the metamodels and languages in
presence and the transformations between them [20].

In this case study, we only focus on a single transformation from the MARTE meta-
model to the Deployed metamodel. This transformation is written with QVTO. The
MARTE metamodel contains around 80 metaclasses whereas the output metamodel is
in fact decomposed into five metamodels and contains around 60 metaclasses.

The main idea is to test this transformation on an input test model and, for example
using an oracle in order to observe an error on the produced model. The oracle checks,
among others, that any model produced by the transformation from the MARTE to the
Deployed metamodel has a unique root. This root is a DeploymentSpecificationModel
instance has been produced from an instance of the MARTE Model metaclass.

5.2 Illustration of the Localization Algorithm

Using our localization algorithm and from the error reported by the oracle, we can
debug more precisely the transformation. First, the models corresponding to the local
and the global traces, have to be generated.

The top of Figure 5 shows a fragment of the output model. It contains several roots
whose some (the PortImlpementedBy) are not instance of the Downscaler:Deployment-
SpecificationModel. An error on an element is thus detected in the transformation. We
apply our error localization algorithm on one of the output model “misplaced” elements
in order to highlight the rule sequence and identify the faulty rule.

146 V. Aranega et al.

Fig. 5. Excerpt of The generated output model(top) and of the manually produced model (bottom)

Figure 6 shows a sketch of the output model and its associated traces. The algorithm
begins with the selection of a PortImplementedBy element. For example, we select the
pi1:PortImplementedBy element that belongs to the deploy.gaspard2 model. The local
trace associated to this model is recovered using the global trace model.

In the lt1:LocalTrace, cr2:ClassRef:ElementRef corresponds to the pi1:PortImple-
mentedBy. Navigating through the l2:Link associated to cr2:ClassRef, the toImplement-
edBy:RuleRef rule is identified and stored. Then, ElementRefs are scanned to identify
elements linked to pi1:PortImplementedBy. Here, neither the deploy.gaspard2 model
nor other models produced by the transformation own elements linked through an as-
sociation (including compositions) to the pi1:PortImplementedBy. So, this step returns
nothing, the toImplementedBy:RuleRef rule is not called by another rule. Thus a null
pointer is stored and the algorithm stops executing. The produced rule calls tree contains
only two elements: the RuleRef named toPortImplementedBy associated to the type of
the eObject on which it is applied; (PortImplements) and the null pointer.

In Figure 7 we present a piece of the QVTO transformation code illustrating that the
rule is called by the main function (line 77). The code of the rule itself corresponds to
line 1698 to 1705.

The precedent analysis leads to the conclusion that the toPortImplementBy rule may
be called by another rule or a reference is missing in a rule. Further analysis can be done
by manually specifying an expected output model (top of Figure 5) corresponding to
the input model. Comparing the generated output model to this new one, we can see that
the DeploymentModel contains PortImplementedBy elements. So the rule call should
be moved from the main entry point to the rule which creates the DeploymentModel
element.

The example developed here is quite simple, but illustrates the easiness to identify
a faulty rule in a huge transformation (more than 2000 lines of code). This algorithm
has to be used in the context of a transformation test. It requires the results of the test

Using Trace to Situate Errors in Model Transformations 147

Fig. 6. Excerpt of the output model, of the local and the global trace models

Fig. 7. QVTO Transformation Excerpt

generation and the errors observation steps. It reduces the field of potential faulty rule
to the only rules involved in an element creation. Thus, using this approach, we have
reduced the search field for the previous example to one rule.

5.3 Error Localization in Transformation Chain

The algorithm presented in section 4.4 is dedicated to error localization in a single
transformation, but we develop a variation adapted to transformation chain. Not only
the successive rules are stored but also any element of the input model that was useful
to the creation of the faulty output element. The algorithm is then again applied on
each of these elements. The final result is a set of rules corresponding to the set of
potential faulty rules on the whole transformation. For sake of space we do not illustrate
this algorithm which has nevertheless be successfully implemented and used with the
Gaspard transformation chain.

148 V. Aranega et al.

6 Conclusions and Future Works

In this paper, we have proposed a traceability based mechanism to locate errors in a
single model transformation or a transformation chain. It reduces the investigation field
to the rules called to create an output element identified as erroneous in a preliminary
test phase. The localization is based on three main parts: an error observed in an output
model, our trace models and the localization algorithm. The error can be point out by
an oracle whereas the traces give the support for the localization algorithm.

As the algorithm is based on our traces metamodels, it is purely language indepen-
dent and can be reused for any transformation languages as long as the local and the
global trace are generated. For the experimentation, we use our approach on transfor-
mation written in QVTO. It has also been successfully tested on transformations using a
dedicated Java API. Our approach has shown its efficiency on the transformation chains
of the Gaspard framework. We have also shown in [21], that the trace provided by de-
fault with QVTO and defined in the QVT specifications is not adapted in lot of contexts,
for example, when information concerning properties are needed.

Currently, the localization gives a set of potential faulty rules. To exactly determine
the faulty rule, the set returned by the algorithm must be manually analyzed. This final
step can be automatized by introducing new oracle answers. Indeed, with some addi-
tional information, we could, little by little, reduce the search field to a faulty rule and
find the rule to modify.

Based on these results we have started works on mutation analysis [22] in order to
test model transformation [23]. Mutation analysis aims to validate a set of test input
model. It relies on the identification of fault voluntary injected in transformations. In-
deed, variants of a transformation to test are created by injecting a single error each
time. The output models generated by the original transformation and its variants are
compared. If no difference is observed, a new input model has to be created. Traceabil-
ity mechanism and the algorithms developed in this paper help to create this new model
by anticipating what should be the difference observed in the output models.

Acknowledgements. This work was supported by Ministry of Higher Education and
Research, Nord-Pas de Calais Regional Council and FEDER through the ’Contrat de
Projets Etat Region (CPER) 2007-2013’.

References

1. IEEE: IEEE standard computer dictionary : a compilation of IEEE standard computer glos-
saries. IEEE Computer Society Press, New York (1991)

2. Glitia, F., Etien, A., Dumoulin, C.: Traceability for an MDE Approach of Embedded System
Conception. In: ECMDA Tracibility Workshop, Germany (2008)

3. Galvao, I., Goknil, A.: Survey of traceability approaches in model driven engineering. In: The
Eleventh International IEEE EDOC Conference (EDOC 2007), pp. 313–324. IEEE Com-
puter Society Press, Los Alamitos (2007)

4. Reshef, A.N., Nolan, B.T., Rubin, J., Gafni, S.Y.: Model traceability. Ibm Systems Journal 45
(2006)

5. Jouault, F.: Loosely coupled traceability for atl. In: ECMDA Workshop on Traceability
(2005)

Using Trace to Situate Errors in Model Transformations 149

6. Velegrakis, Y., Miller, R.J., Mylopoulos, J.: Representing and querying data transformations.
In: Proceedings of the International Conference on Data Engineering, ICDE, pp. 81–92.
IEEE Computer Society, Washington (2005)

7. Kolovos, D.S., Paige, R.F., Polack, F.A.: On-demand merging of traceability links with mod-
els. In: ECMDA Workshop on Traceability, Bilbao, Spain (2006)

8. Falleri, J.R., Huchard, M., Nebut, C.: Towards a traceability framework for model transfor-
mations in kermeta, HAL - CCSd - CNRS (2006)

9. Vanhooff, B., Ayed, D., Van Baelen, S., Joosen, W., Berbers, Y.: Uniti: A unified transforma-
tion infrastructure. In: MoDELS, pp. 31–45 (2007)

10. Yie, A., Wagelaar, D.: Advanced traceability for ATL. In: 1st International Workshop on
Model Transformation with ATL (MtATL 2009), Nantes, France (2009)

11. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM
Systems Journal 45(3), 621–646 (2006)

12. Amar, B., Leblanc, H., Coulette, B.: A Traceability Engine Dedicated to Model Transforma-
tion for Software Engineering. In: ECMDA Traceability Workshop, Berlin, pp. 7–16 (2008)

13. Barbero, M., Didonet, M., Fabro, D., Bézivin, J.: Traceability and provenance issues in global
model management. In: ECMDA Traceability Workshop (2007)

14. Fleurey, F., Baudry, B., Muller, P.-A., Le Traon, Y.: Towards dependable model transforma-
tions: Qualifying input test data. SoSyM (2007)

15. Mottu, J.M., Baudry, B., Le Traon, Y.: Model transformation testing: oracle issue. In:
MoDeVVa Workshop Colocated with ICST 2008, Norway (2008)

16. Borland: Qvt - o (2007), http://www.eclipse.org/m2m/qvto/doc
17. Object Management Group, Inc.: MOF Query / Views / Transformations (2007),

http://www.omg.org/docs/ptc/07-07-07.pdf; OMG paper
18. DaRT Team: Graphical Array Specification for Parallel and Distributed Computing

(GASPARD2) (2009), http://www.gaspard2.org/
19. Object Management Group: A UML profile for MARTE (2007),

http://www.omgmarte.org
20. Gamatié, A., Le Beux, S., Piel, E., Etien, A., Ben Atitallah, R., Marquet, P., Dekeyser, J.-L.:

A Model Driven Design Framework for High Performance Embedded Systems. Technical
Report 6614, INRIA (August 2008)

21. Aranega, V., Mottu, J.-M., Etien, A., Dekeyser, J.-L.: Using an alternative trace for qvt. In:
Multi-Paradigm Modeling, Oslo, Norway (2010)

22. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: Help for the prac-
ticing programmer. Computer 11(4), 34–41 (1978)

23. Aranega, V., Mottu, J.-M., Etien, A., Dekeyser, J.-L.: Using traceability to enhance mutation
analysis dedicated to model transformation. In: MoDeVVa, Oslo, Norway (2010)

J. Cordeiro, A. Ranchordas, and B. Shishkov (Eds.): ICSOFT 2009, CCIS 50, pp. 150–163, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Design of SOA Services: Experiences from Industry

Susanne Patig

University of Bern, Institute of Business Information Systems
Engehaldenstrasse 8, CH-3012 Bern, Switzerland

susanne.patig@iwi.unibe.ch

Abstract. Because of the unknown usage scenarios, designing the elementary
services of a service-oriented architecture (SOA), which form the basis for later
composition, is rather difficult. Various design guidelines have been proposed
by academia, tool vendors and consulting companies, but they differ in the rigor
of validation and are often biased toward some technology. For that reason a
multiple-case study was conducted in five large organizations that successfully
introduced SOA in their daily business. The observed approaches are contrasted
with the findings from a literature review to derive some recommendations for
SOA service design.

Keywords: Service-oriented architecture (SOA), Service design, Case study.

1 Motivation

Service-oriented architecture (SOA) has quantifiable benefits: For example,
SWISSTOPO, the Swiss federal geo-information centre, provides map information as
Web services (e.g., http://www.ecogis.admin.ch/). According to cost estimates, devel-
oping new GIS (Geographic Information System) applications using these Web
services requires 20 person days of development effort and causes 15,000-30,000
Swiss francs operating costs per year – compared to 200-400 person days and 200,000
– 500,000 Swiss francs for the development of the same GIS application without the
Web services.

To realize these benefits, the services of an SOA must be properly designed. But,
finding the appropriate SOA design approach is difficult. Therefore it is the aim of
this paper to classify, compare and consolidate the distinct ways to design the
(elementary) services of an SOA and to give some recommendations for the initial
service design. The later composition of these elementary services (e.g., by BPEL
engines) is not the topic of this paper.

As any design approach is influenced by the underlying understanding of SOA, we
derive the SOA definition used here in Section 2. Based on a literature review,
Section 3 sketches and compares approaches to design SOA that have been proposed
by practice and academia. Academic approaches do not necessarily work outside the
scientific ‘clean room’, and practical approaches usually aim at selling tools or
consulting. For that reason we have conducted an independent multiple-case study of
five large organizations that successfully introduced SOA in their daily business (see
Section 4). The number and deliberate distinction of the cases guarantee the validity
of our conclusions in Section 5.

 Design of SOA Services: Experiences from Industry 151

2 Defining Service-Oriented Architecture

Based on a literature review, this section aims at deriving a representative definition
of SOA. Only validated (see Section 3) academic SOA design approaches were
considered; moreover, we focused on materials in English1. The academic literature
mostly piggybacks on SOA statements proposed in practice. Here, major analysts
[26], pioneering practitioners [5], large SOA software vendors [1], [8] and [25]),
consulting companies [2] as well as standards [14], [17] represent reliable sources.

SOA is frequently defined by referring to its main constituents, the services, and
several attributes or supplements known as SOA design principles. A design principle
is a generalized, accepted (industry) best practice to build some kind of software
solution [4]. For SOA, the following design principles (see also [4]) are applied:

1. Abstraction ([26], [5], [16]): Services hide information on technology and logic
from the outside world.

2. Standardized contract (e.g., [26], [5], [14], [1], [8], [2], [12]): Services provide a
technical interface by which they can be accessed, which serves as a contract between
the service and its client(s) and keeps to some standard definition language. At the
very least, an interface consists of operations and their signatures.

3. Loose coupling ([5], [3], [25], [21]): A defined service contract is independent of
both the service’s implementation and the service consumer.

4. Cohesion [21]: The functionality provided by a service is strongly related.

5. Reusability ([26], [5], [17], [1], [12], [13], [3], [21]): The functionality encapsu-
lated by a service is sufficiently generic for unanticipated usage scenarios.

6. Composability ([5], [16], [8], [12]): New services can be built (‘composed’) from
existing ones.

7. Statelessness ([5], [2]): Between consecutive service calls, no information must be
kept within the service.

8. Autonomy ([5], [12], [13], [21]): A service implementation has a significant degree
of control over its environment, and services are independent of each other.

9. Discoverability ([26], [5], [14], [1]): Services are supplemented by meta data by
which they can be found and interpreted.

10. (Business) Alignment (e.g., [16], [1], [13], [3]): The functionality provided by a
service contributes to business.

The listing above represents the superset of SOA design principles. Closer examina-
tion reveals that some principles are related: Contracts (interfaces), whether standard-
ized or not, imply abstraction. Abstraction is in the tradition of ‘information hiding’:
Not only the interface as a whole, but each operation signature masks implementation
[19]. Moreover, abstraction is a prerequisite to reusability, and composition is a
special form of reuse. Autonomy in the sense of maximum independence between
services is achieved if the functionality of each service is cohesive, and autonomy

1 An exception is made for [2], as this is the only available SOA design approach of a

vendor-neutral consulting company.

152 S. Patig

facilitates reuse. Finally, loose coupling expects discoverability. Consequently, the
‘minimal’ set of disjoint SOA principles comprises standardized contract, loose
coupling, statelessness, autonomy, and (business) alignment.

Abstraction, contract, autonomy, reusability and statelessness immediately follow
from the definition of a software component as a unit of composition with contractu-
ally specified interfaces and explicit context dependencies only. Components are
given in binary form, can be deployed, produced and acquired independently and are
subject to composition by third parties [27]. As opposed to objects, components do
not have a persistent state (statelessness) [27].

Historically, component models (such as CORBA or Enterprise JavaBeans)
defined standards for the definition, interaction and composition of components. But,
the standards of distinct component models were incompatible [9]. A goal of Web
service (WS) technology was standardization - of interfaces with the WSDL [30] and
REST (Representational State Transfer [7]) and of contracts with the complete
WS-* stack of specifications [28]. This standardization sets SOA services apart from
software components.

Consequently, we use the following definition for our work: Service-oriented
achitecture (SOA) consists of a set of software components that provide their func-
tionality via interfaces as services. Services are design objects in their own right,
described with some standard definition language and independent of both the
service’s implementation and the service consumers (loose coupling). The services
should contribute to business.

3 State-of-the-Art of SOA Service Design

Our focus is the design of elementary services for a service-oriented architecture.
Thus, papers dealing with the composition of more complex services out of existing
ones or service modeling as well as design approaches for specific service properties
(e.g., security) are disregarded.

Instead of aiming for completeness, our review tries to gather the commonalities
and specifics in designing services for SOA over the distinct sources of such
approaches (academia, practitioner, vendor, consulting). By approach we mean a
systematic way to achieve some goal.

Only validated SOA service design approaches were considered. In order of
decreasing strength of evidence, the following types of validation exist (see Table 1):
validation by widespread SOA tools or SOA-based software, validation by application
in (recurring) consulting practice, validation by application in a (singular) industrial
case and validation by a (somehow constructed) sample. Table 1 summarizes the
results of the literature review.

Practical approaches to design services for SOA are either based on patterns or
hierarchical, whereas academic approaches are always hierarchical. Best practices
[25] or SOA patterns (e.g., [8]; shaded in Table 1), a special form of best practices,
are proven solutions that guarantee that some designed software adheres to the SOA
design principles (see Section 2). They are helpful in making detailed architectural
decisions, evaluating or implementing services. However, only three patterns (‘utility
abstraction’, ‘entity abstraction’, ‘task service model’ [5]) deal with ‘discovering’

 Design of SOA Services: Experiences from Industry 153

Table 1. Reviewed SOA service design approaches

 Vendors Consulting Academia

 IBM [1] Oracle
[8], [29]

SAP [25] sd&m [2] [12] [13] [3] [20] [33]

Scenario All Mainly
W

All All All All All All R

Direction Mainly TD Mainly
BU

Mainly TD TD Mainly TD Mainly
TD

Hybrid TD BU

Process Yes ⎯ ⎯ Yes Yes Yes Yes Yes Yes

Validation SOA Tools (and
consulting)

Software Consulting Industry case Example

I. Service Identification

Goals (1) Scoping ⎯ (2) Single
goals

⎯ ⎯ ⎯ (1) ⎯

Functional
Areas

(2) Hier-
archal

decomposi-
tion

⎯ (1) Hierarchi-
cal decomposi-

tion

(1) Scoping (Scoping) ⎯ ⎯ (2) Needed
functions

Processes (3) Activi-
ties, control

flow

BPEL,
Control-

ler

X (Optional) (3) Activi-
ties, control

flow

(1)
Activiities

(1)
Activities

(2) ⎯

Other (5) Business
rules,

variations

Façade,
Business

rules,
Events

Industry
Standards

(2) Single
roles

(2) Stake-
holder

(3) Roles ⎯ Standards ⎯

Existing
applications

(6) Func-
tions

Adapter,
Proxy

(X) ⎯ (Implemen-
tation)

((4) Ser-
vice list)

(2)
Functions

(3) (1) Function

Information
Objects

(4) CRUD ⎯ X (3) Data
handling

Only for
grouping

((2) State
changes)

⎯ ⎯ ⎯

II. Service Refinement

Single service
in isolation

Validation
by stake-
holders

Coarse-
grained

SType,
Number of
operations,

right
grained, aligned

SType (D, F,
P, I); com-
pensable
business;
coarse;

idempotent;
context-free

Low data
transfer, not

time
critical,

reusable,
autonomous

Princi
ples;

SType
(P, R, E);

legal
require-
ments

Business
value,

reusable,
loose

coupling

Reusable,
right

grained

Loose
coupling,
cohesion,
reliability,
business

Set of Services Group
operations
by logical

affinity

⎯ Transactions,
data analysis,
master data

Split by
stability,

functionality,
type, object

Group
operations
by SType

(task,
entity)

Avoid
functional

overlap

Group
functions

(data,
code)

 Autonomy

III. Service
specification

⎯ Small
interface
preferred,

WSDL

4-6
operations

per interface,
WSDL

Small Inter-
face

⎯ ⎯ Structure,
behavior,

policy

Structure,
behavior,
policy;
WSDL

WSDL,
right

granularity

Abbreviations: BU: Bottom-up; R: Reengineering; SType: Service type - D: Data, E: Entity,
F: Function, I: Interaction P: Process, R: Rule, T: Task: TD: Top-down; W: Wrapping.

services. Moreover, the selection and combination of the patterns is left to the soft-
ware developers. In all, pattern-based approaches are not suited as a guideline for
SOA projects because they do not provide a design process from requirements to
services.

Such design processes are prescribed by hierarchical SOA design approaches (e.g.
[1], [2], [12], [13]) that proceed from some level of abstraction to a set of services.
Common steps of these approaches are the identification of candidate services, their
refinement and the specification of the refined services; see Table 1. The main differ-
ences consist in the direction and the sources of service identification: Services are

154 S. Patig

identified either top-down from business requirements or bottom-up from existing
applications. Hybrid approaches combine both directions, though in the practical
approaches usually one direction dominates. The sequences in which the sources of
services are consulted are given by the numbers in Table 1; simultaneous checks have
the same number. Altogether, top-down approaches dominate (see Table 1).

Top-down service identification usually starts from functional business areas [2],
[13] or business processes [3], [13]. Functional areas are sets of related tasks refer-
ring to, e.g., departments or products; business processes additionally consider the
order of tasks (control flow) as well as the roles performing the tasks. Mostly, candi-
date services are identified by hierarchically decomposing functional areas to atomic
functions that correspond to (automated) activities in business processes. The control
flow within the business processes is only used for the composition of services by
BPEL engines (e.g., Oracle, IBM).

In some approaches, service identification relies on goals [1], [20] and information
objects. Goals describe what should be achieved by a service [10]; they are either
used to determine the functional scope of the SOA-based application [1] or to refine
services and align them with business [2]. An information object is strongly interde-
pendent information with similar life cycle that is important to business and can be
the input or the output of activities in business processes. Information objects can be
derived top-down from business requirements, domain ontologies or standards [1].

Bottom-up service identification usually starts from functions of existing applica-
tion systems [8].

Service refinement involves the assessment of the identified service candidates by
stakeholders. Criteria for refinement consider a SOA service in isolation (mostly its
conformance to the SOA design principles) or in relation to other ones (e.g., grouping,
splitting, avoiding overlap); see Table 1. Two additional criteria for refinement appear
in Table 1: services types and granularity. Services types [12], [13] characterize the
functionality provided by a service. Common service types are entity or data services
(containing CRUD – create, retrieve, update, delete – operations with business seman-
tics on information objects), task or function services (containing operations other than
CRUD and meaningful to business) and process services (encapsulating the control
flow between IT-supported activities; mostly the result of compositions). The term
granularity is seldom defined (only in [20]). Coarse-grained services, which are a goal
of refinement in several approaches [8], [2], alternatively mean business-relevant and
aggregated functionality [8], [33], [20], a small number of operations with ‘compre-
hensive’ business scope [2] or the realization of business processes [9]. In contrast,
fine-grained services correspond to a large number of interfaces and operations [6] or
business objects [9]. So, implicit measures of granularity seem to be the ‘amount’ of
business semantics of a service (large equals coarse-grained [24]) and the number of
operations and interfaces (large equals fine-grained [6]).

Finally, service specification defines the service interface (operations and their
signatures, given by message types for inbound and outbound messages). Existing
practical SOA design approaches advocate small interfaces that group only ‘a few’
(four to six, [25]) operations.

Chronologically, academic approaches to design SOA lag behind the practical ones.
Moreover, they often focus on service identification and, thus, only rudimentary dis-
cuss service refinement and specification. Solely the approaches [12] and [13] are

 Design of SOA Services: Experiences from Industry 155

validated in a real industrial case; the validation of the other academic approaches
consists in artificial samples. The industry-validated academic SOA design approaches
[12] and [13] resemble the practical top-down ones.

Most of the approaches (see Table 1) are universal, some apply to distinct devel-
opment scenarios only, namely [20]: green field development, where the SOA-based
system doesn’t exist yet; reengineering, where existing applications are newly
implemented (or at least altered) based on SOA, or wrapping that leaves the existing
applications unchanged and just adds an encapsulating SOA layer on their top.

4 Multiple-Case Study of Successful SOA Projects

4.1 Research Design

The challenges of SOA service design result from the complexity of real-world appli-
cation situations, e.g., the required functionality and quality characteristics, heteroge-
neous IT infrastructures and the distribution of software units over business partners.
The restricted validation of the academic SOA design approaches does not guarantee
success in real-world settings. The validation of the practical approaches is doubtful
as well – from a methodical point of view (done by the authors themselves) and from
a strategic point of view (commercial interest in selling tools or consulting).

To get clarity about the factors that truly influence the design of the elementary
services in service-oriented architectures, a multiple-case study was conducted. A
case study is a qualitative empirical investigation of some contemporary phenomenon
within its real-life context without the possibility to control the situation [32]. Here,
five cases representing a variety of situations are analyzed. Generalizations of
phenomena occurring in at least three distinct cases are assumed to be valid [31].

A case is a project where a large organization realizes SOA for some application
software (or a landscape thereof) by implementing software services. Excluded are,
thus, pure middleware or academic projects as well as projects where services are not
yet implemented or only composed out of existing ones. To count as ‘service-
oriented’, the architecture of a system or a system landscape must be in line with the
definition of SOA derived in Section 2. Because of the outstanding importance of the
WS-* standards (see Section 2), we require that WSDL specifications exist or can be
generated for some of the service interfaces.

The phenomena to be observed within each case are the SOA services and the
process of their design. We equate a SOA service with functionality, i.e., either opera-
tion or interface. A SOA service design process usually comprises steps in some
chronology and design principles.

Each case has its context, which potentially influences service design, namely:

• General context: the company’s branch, size, IT department and system landscape

• Project context: SOA motive, project scope, timing

• Development context: scenario (see Section 3), service provisioning (only within
some controllable service inventory vs. to unknown consumers), and
• Requirements: functionality and quality.

The respective information for each case was gathered by a series of interviews (both
face-to-face and by phone) with persons representing distinct roles (e.g., software

156 S. Patig

Table 2. Case context and SOA implementation results

 Case 1 Case 2 Case 3 Case 4 Case 5
Context

Branch Banking Mail order business Oil- and gas-
production

Software industry Swiss federal admini-
stration

Employees 46,700 in 40 coun-
tries

50,000 in 20 coun-
tries

30,000 in 40 coun-
tries

48,500 in 50 coun-
tries

Not investigatable 1
country

IT stuff 300 200 800 700 1750
System
landscape

500 applications,
mainframe (PL/1)

200 applications,
central mainframe
application (assem-
bly language)

Custom-made
applicat-ions
(PL/SQL), packaged
software, external IS

(irrelevant) ≈ 50,000 applications;
technologically
heterogeneous

SOA
motivation

1. Reducing
complexity
2. Integration
3. Flexibility
4. Testing use cases

1. Integration
2. Flexibility

1. Openness
2. Flexibility

1. Managing
complexity
2. Flexibility

1. Reusability
2. Openness
3. Integration
4. Testing use cases

Scope System landscape Application
(order processing)

Set of applications
(oil and gas core)

Application (ERP for
mid-sized companies)

System landscape

Start 1998/2002 2002 1997/2001 2002 2003
Scenario Wrapping Reengineering Reengineering Green field (&

wrapping)
All

Implemented Services
Consumer Mostly known Usually known Partially unknown Known and unknown Mostly unknown
Number 650 operations

250 interfaces (50
infrastructure
services)

80 interfaces (20
infrastructure ser-
vices)

420 operations > 70 interfaces

Operations
per Inter-
face

1 1… 9
(majority: 1; many 3)

3…5 1 …2 1 … 22
(majority 1)

Versioning Minor/major changes
(3 concurrent
versions)

Minor/major changes
(2-3 times a year)

In preparation New service in
another namespace

Minor/major changes (1
time a year); 2 concur-
rent versions

Service Development and Deployment
Style CORBA; WSDL WSDL WSDL WSDL WSDL, REST
Platform JavaEE, PL/1 JavaEE JavaEE Proprietary .NET, JavaEE
Develop-
ment
Process

Waterfall V Model, since
2009: Agile (Scrum)

Waterfall,
since 2005: Agile
(Scrum)

Iterative, derived
from waterfall [11]

Waterfall

architects, software developers, project managers), by document analysis (design
guidelines, service specifications, models) as well as by system analysis (interface
descriptions, mostly in WSDL, of sample services). The final case report was checked
for correctness by the contact persons of the companies. The following sections
condense the most important case information.

4.2 Context of the Cases

The multiple-case study comprises five large organizations from distinct countries
(Germany, Norway and Switzerland); see Table 2. In contrast to the Swiss federal
administration, the four companies act world-wide. All organizations use several
hundreds (thousands in the administration case) of heterogeneous applications. The
heterogeneity of the applications refers to functionality, technology, life cycle phase,
authorship (custom-made vs. packaged software) and controllability (in the compa-
nies or at business partners). Only applications at the business level were considered
(e.g., enterprise resource planning, order management, customer data management,
vehicle scheduling, residents’ registration); neither desktop applications (such as word
processing or spreadsheet software) nor Internet browsers or development tools.

 Design of SOA Services: Experiences from Industry 157

Common motives to introduce SOA (see Table 2) were the integration of heteroge-
neous systems, openness, i.e., the capability to easily incorporate new service
consumers (e.g., business partners), flexibility that enables quick reactions to new
requirements by recomposing existing services, and reuse. From the clear cut of the
SOA services the organizations expected reduced complexity. Finally, in two cases the
capability to test isolated use cases (realized by services) was important.

All projects conceptually started around 2000; implementation mostly began
around 2002/3. In three cases the whole system landscape should be based on SOA;
the other cases focused on particular applications. All development scenarios are
represented. In Case 4, program code from another ERP system was included
(by wrapping) in the new SOA-based ERP system.

Focusing on an application usually dictates the services to be implemented from a
functional point of view (service inventory [4]). However, if business partners are
intended to use the services (SOA motive ‘openness’) or if the organization is split up
in many independent sub-units, the service consumers are not known, and the services
must be designed for unanticipated usage contexts. The corresponding service design
processes are described in Section 4.3.

4.3 Service Design Processes

When the projects started in the five cases, practical SOA was in its infancy and no
design guidelines were readily accessible. Each organization found its own process of
designing services (see Table 3). In the Cases 1, 2 and 4, internal service design
guidelines were created in the beginning of the projects, but only Case 1 and Case 4
had an accompanying governance process to review designed services.

Service design was always triggered by functional requirements stemming from the
applications to be implemented (i.e., the necessary service inventory) or from ad-hoc
requests. The rationale behind request-driven design was avoiding the (expensive)
implementation of not ever consumed services. Quality criteria influencing service
design were response time, secure data access and the ACID-properties (atomicity,
consistency, isolation, durability) of transactions.

Roughly, the service design processes consist of four phases: (1) Service identifica-
tion defines where to look for candidate services; (2) initial design states criteria the
identified services have to keep; (3) refinement comprises checks that can trigger
modifications of the initially designed services, and (4) service specification provides
constraints or recommendations for the formal design in some definition language.

According to Section 3, potential sources of service identification are goals, func-
tional areas, business processes, existing applications and information objects. The
numbers in Table 3 reflect the sequences in which these sources were consulted; equal
numbers for some case indicate concurrency.

All organizations analyzed information objects (called business entities, analysis
classes or business objects; see Table 3) and their methods (operations) at the very
beginning of service identification. Information objects such as ‘customer’, ‘order’
and ‘product’ exist in each case. Life-cycle operations (CRUD) of such information
objects express distinct business semantics. For example, the candidate service
‘Update Vessel’ of Case 3 verifies that some vessel selected for an oil cargo meets all
legal requirements [22]. Many business tasks can be easily transformed to CRUD
operations, e.g., in the banking domain (Case 1) the activity ‘Buy Equities’
corresponds to the CRUD operation ‘Create Stock Exchange Order’.

158 S. Patig

Table 3. Service design processes of the cases

 Case 1 Case 2 Case 3 Case 4 Case 5
Design Trigger Request Inventory Inventory, Request Inventory Request, Inventory
Quality criteria Performance (response

time), mass data transfer
Performance (response
time), security

⎯ Transactionality Security

Direction Hybrid Hybrid, bottom-up
leads

Hybrid, top-down
leads

Bottom-up Mostly bottom-up

Governance Yes Design guidelines In preparation Yes Partially

Service Identification
Goals ⎯ ⎯ ⎯ ⎯ (3) Capabilities

Functional
areas

SOA Scope, service types Decomposition ⎯

Processes (2) Sequences of activi-
ties

(1) Application (=
business) functions
(atomic interaction
sequences of a use
case)

(1) Similar activi-
ties in functional
business areas (2) A group of

business object
services

⎯

Other (3) Business rules
(4) Events

⎯ (3) Events
(4) Business rules

⎯ (2) Events
(Standards)

Applications ⎯ ⎯ (2) Functions ⎯ (1) Interfaces
Information

Objects
(1) Predefined operations
on business entities;
CRUD

(1) Methods of
analysis classes

(1) CRUD (1) Methods of
business objects

(1) Information
providing

Initial
Design

(Principles)

Abstraction; generaliza-
tion (coarse-grained
functions, big messages);
business semantics;
SType
(D, P, BR); set-oriented
services; test modus

Abstraction; smallest
application (= busi-
nesss) function;
statelessness;
idempotence

Contract first’
design; reuse data
types; SType
(E, T, I)

Business semantics;
SType (A2A, B2B,
A2X) + interaction
patterns; modular-
ity; context inde-
pendence

Include flag ‚test’

Service
Refinement

Similarity; formal
correctness of interface;
performance assessment

Same access rights;
reusability;
similarity; stability

Split: same infor-
mation object +
context; same
business rules

Several steps of
approval during
bottom-up design
[11]

Service market;
minimal messages

Service
Specification

Exactly one, preferably
coarse-grained operation
per interface; schema

⎯ Small interface,
stable operations

Operations of the
same interaction
sequence

Small interfaces /
operations /
messages

Abbreviations: SType: Service type - D: Data, E: Entity, F: Function, I: Interaction P: Process, R: Rule,
T: Task.

The second most important source of candidate services were atomic business
functions (tasks), which can be gathered by

• Decomposing functional domains (Case 4) - in combination with bottom-up aggre-
gation of business object services [11]

• Generalizing activities occurring in several business processes of some functional
area (Case 3 [18])

• Grouping sequences of related activities (Case 1) or interactions (Case 2).

Thirdly, events and the operations to handle them were a source of candidate services.
We observed the following types of events: state changes of information objects
(e.g., Case 3: ‘Delivery completed’; Case 4: ‘Person married’; Case 1: ‘Data synchro-
nization’), messages sent or received (e.g., Case 3: ‘Invoice sent’; Case 4: ?Moving in
from municipality’), timing (duration, time points – e.g., ‘New month’) and start/end
of processes (Cases 1, 3).

Further sources of candidate services were the currently provided interfaces
(Case 5) that hint at functional requirements of existing consumers, business rules and
general capabilities that should be provided according to the organization’s goals
(Case 5). Capability analysis ensures the completeness of a set of services, though it is
usually bounded during refinement for pragmatic reasons (project efficiency).

 Design of SOA Services: Experiences from Industry 159

During initial service design, SOA design principles such as abstraction and state-
lessness played a role. Moreover, services were designed to conform to some service
type. Service types were defined from either a functional point of view (entity, task
etc.) or from the interaction point of view, e.g., services between applications of one
business partner (A2A), between systems at several business partners (B2B) or
between an application and unknown consumers (A2X) [11].

Two cases explicitly provided a ‘service test modus’ by either incorporating a
specific ‘test only flag’ (Cases 1 and 5) or by designing a distinct ‘validation service’
if the test modus requires less input data (Case 1).

Only Case 1 considered service granularity: Initial service design aimed at coarse-
grained services, which are associated with big messages and at the most two depen-
dent entities as path length in service calls.

Reusability as well as context played a role in both initial service design and re-
finement: Context independence was an explicit design principle in Case 4. In Case 3,
services were split during refinement to refer to the same information object in the
same semantic context. For example, the information concept ‘Cargo’ has distinct
interpretations depending on whether it is used in connection with terminal opera-
tions, e.g., storing at the port, or with supply operations, e.g., lifting, selecting a
vessel. Hence, separate services must be defined.

Service refinement tries to increase the efficiency and effectiveness of the SOA
project. Efficiency relates to the effort for service implementation, which was
decreased by the following means: First, services that were derived during identifica-
tion, but not demanded by some consumer (service market), were not implemented
(Case 5). Secondly, if the functionally of a candidate service was already provided by
an existing one (overlap ≥ 50 %), the existing one was extended (similarity).

Effectiveness postulates that the service qualities are kept: Performance was
assessed during refinement (Case 1). Security was guaranteed by splitting software
services according to access rights (Case 2), by including only the necessary data in
(small) messages (Case 5) or by using database functionality (Case 1). Reliable
messaging and transactional data transfer were realized by event bus middleware in
the Cases 1 and 5.

Service specification guides the design of the service interfaces: Small interfaces
consisting of a few operations were preferred. Requiring just one operation per inter-
face resulted from implementation (REST [7] in Case 5) or the wish to increase the
stability and reusability of a service (Case 1). Stability of operations was a criterion
for refinement (Case 2) or for specification (Case 3). The fact that several criteria
appear in distinct phases demonstrates the independence of the service design
approaches in the cases and the lack of a common guideline.

4.4 Implementation

Table 2 summarizes the results of the service design processes of Section 4.3 in terms
of the current implementation. Only in Case 4 implementation is finalized.

All cases realized SOA by Web services described by WSDL (because of limited
tool capabilities often WSDL 1.1) or REST [7]. REST was used in Case 5 for the
GIS-application service (see Section 1), which just provides information without

160 S. Patig

transactional or security requirements and relies on a standard [15] that is naturally
implemented by REST. Java Enterprise Edition (JavaEE) was the preferred implemen-
tation platform in the cases.

The tools for service deployment and integration are heterogeneous. Event bus
middleware exists in the Cases 1 and 5; the Cases 2 and 4 rely on mainly message-
oriented (EAI) middleware. The middleware of the Cases 1 and 4 also supports
Remote Procedure Calls (RPC) – in Case 1 even within the CORBA component
model. Message exchange via XML files is shared by the Cases 1, 3 and 5.

The total number of services per case ranges from currently close to one hundred to
several hundreds. When we asked the companies for the number of ‘services’, they
counted either (WSDL) interfaces or operations (see Table 2). Each interface
comprises between one and around ten operations. Usually, the average number of
operations per interface is low, i.e., many interfaces have one operation, the other
ones two to three. The general design rationale behind small interfaces was stability;
Case 5 additionally aimed at access protection. Huge interfaces mainly resulted from
poor design in the ‘SOA learning phase’ (Case 5).

Service versioning is dealt with by the concept of minor and major changes [29].
Minor changes are backwards compatible, i.e., existing service consumers can remain
unchanged while successfully using the new service versions. Examples of minor
changes are the definition of new attributes or operations or the conversion of manda-
tory elements to optional ones. In contrast, deleting or renaming operations, changing
data types of messages or semantic modifications of operations (even with unchanged
syntax) are major changes, which are not backwards compatible and require the
adaption of the service consumers. The organizations usually bundle major changes
and roll them out two to three times a year; mostly two to three active versions of
some service are allowed at the same time.

In the Cases 2 and 3, the development process of the services is agile – to speed up
development. In the other cases, service development follows the waterfall process,
usually with at least one return from refinement to service identification if initial
design criteria are violated. Several return possibilities lead to the overall iterative
software service design process in Case 4 [10]. Because of the mandatory bidding
process, any form of iterative or agile service development is excluded in Case 5.

4.5 Comparison of the Cases

All development scenarios (see Section 3) are represented. The SOA design
approaches of the cases are hierarchical and identify services either hybrid (3 ap-
proaches) or bottom-up (2 approaches). To identify services, information objects are
always checked first. Functional areas and aggregated activities are the second most
important source, followed by events and business rules in alternating importance.

The reasons for preferring design that starts from information objects were distinct
in each case:

• The organization of the company is not process-centric, but functional (Case 2).

• Information objects help in discovering similarities between business process
models and, thus, keep the overall number of services small and their functionality
generic (Case 3) [18].

 Design of SOA Services: Experiences from Industry 161

• The business processes consuming the services are beyond the control of the
organization designing the services (Case 5) [22].

• Service design by top-down decomposition of functional areas or business
processes with dozens of variants [22] consumes too much time (Case 4); and the
long analysis phase interferes with the principles of agile software development
(Cases 2 and 3).

• Rank growth of ad-hoc services is avoided if design starts from information objects
(Case 1 and Case 5).

Security is either incorporated in service refinement or handled outside the service (by
middleware) or inside (the encapsulated application), respectively. Middleware
assures reliable messaging and transactionality.

5 Conclusions

As a generalization of the successful SOA projects in the cases and the common ideas
of the reviewed literature, the following recommendations concerning the design the
elementary services for SOA can be given: The majority of approaches in the
Tables 1 and 3 are hierarchical. Thus, a hierarchical approach should be used –
 because of the project structure it provides. The approach should consist of the
(common) steps service identification, refinement and specification.

Service identification should aim at entity, task and infrastructure services. Service
types, rarely used in the reviewed literature (see Table 1), were a common design
principle in the cases as they give hints on where to look for services. Entity services
are (business-driven) CRUD operations on information objects, i.e., the key terms of a
domain that can be easily gathered from domain experts. Task services correspond to
operations that are more complex than CRUD; they may involve more than one in-
formation object, represent interaction sequences or be guided by business rules. The
cases relied on aggregated functions or (process) activities to identify task services, as
opposed to detailed activities in the academic approaches. Infrastructure services are
not business-driven, but needed for the systems to operate.

Refinement should check the services for reusability, service qualities (such as per-
formance or security) as well as project efficiency (see Section 4.3). Project efficiency
was largely ignored by the reviewed literature. Refinements are mostly realized by
stakeholder reviews.

Service specification currently relies on the WS-* stack of specifications [23]. If
services do not have requirements concerning transactionality and security and if
appropriate tools exist, REST can be used (see Section 4.4). Service interfaces should
group a small number (one to five) of operations, see Table 2. Small interfaces (e.g.,
4-6 operations [25]) are also preferred by the practical approaches (see Table 1), not
only with respect to granularity, but to isolate changes [19].

The validity of our contribution can be assumed for the following reasons: First,
distinct methodologies (review, case study research) were applied. Secondly, the
cases investigated are sufficiently disjoint in context, yet comparable – and vendor
neutral (Case 4 refers to the internal SOA design approach of a software vendor).

162 S. Patig

Moreover, the proposed service identification is in line with more general criteria to
decompose software into modules [19], namely data structure handling (entity
services), sequences of functions (task services) and aids (infrastructure services).

References

1. Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ganapathy, S., Holley, K.: SOMA: A
method for developing service-oriented solutions. IBM Systems Journal 47, 377–396
(2008)

2. Engels, G., Hess, A., Humm, U., Juwig, O., Lohmann, M., Richter, J.P., Voß, M.,
Willkomm, J.: Quasar Enterprise: Service-oriented Design of Application Landscapes
[Anwendungslandschaften serviceorientiert gestalten*]. dpunkt, Heidelberg (2008) (in
German only)

3. Erradi, A., Anand, S., Kulkarni, N.: SOAF: An Architectural Framework for Service Defi-
nition and Realization. In: Proc. IEEE Int. Conf. on Service Oriented Computing (SCC
2006). IEEE, Los Alamitos (2006)

4. Erl, T.: SOA Principles of Service Design. Prentice Hall, Upper Saddle River (2008)
5. Erl, T.: SOA Design Patterns. Prentice Hall, Upper Saddle River (2008)
6. Feuerlicht, G.: Design of services interfaces for e-business applications using data nor-

malization techniques. Information Systems and e-Business Management 3, 363–376
(2005)

7. Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architec-
tures. PhD Theses. University of California, Irvine (2000)

8. Fronckowiak, J.: SOA Best Practices and Design Patterns. Keys to Successful Service-
Oriented Architecture Implementation. White paper, Oracle Corporation (2008),
http://www.oracle.com/technologies/soa/docs/soa-bp-design-
patterns-whitepaper.pdf

9. Heineman, G.T., Councill, W.T.: Component-based Software Engineering – Putting the
Pieces together. Addison-Wesley, Boston (2001)

10. Kaabi, R.S., Souveyet, C., Rolland, C.: Eliciting service composition in a goal driven
manner. In: Aiello, M., et al. (eds.) Proc. of the Second Int. Conf. on Service Oriented
Computing (ICSOC 2004), pp. 305–308. ACM Press, New York (2004)

11. Kätker, S., Patig, S.: Model-driven Development of Service-oriented Business Application
Systems. In: Proc. 9. Int. Conf. Wirtschschaftsinformatik (WI 2009), vol. 1, pp. 171–180,
Österreichische Computergesellschaft, Wien (2009)

12. Klose, K., Knackstedt, R., Beverungen, D.: Identification of Services - A Stakeholder-
based Apporach to SOA development and its application in the area of production plan-
ning. In: Österle, H., et al. (eds.) Proc. of the 15th European Conf. on Information Systems
(ECIS 2007), St. Gallen, pp. 1802–1814 (2007)

13. Kohlmann, F.: Service identification and design - A Hybrid approach in decomposed fi-
nancial value chains. In: Reichert, M., Strecker, S., Turowski, K. (eds.) Proc. of the 2nd
Int. Workshop on Enterprise Modeling and Information Systems Architecture (EMISA
2007), pp. 205–218. Koellen-Verlag, Bonn (2007)

14. OASIS: Reference Model for Service Oriented Architecture 1.0. Committee Specification
(2006)

15. OpenGIS: OpenGIS® Web Map Server Implementation Specification, Version 1.3.0.
Document Number OGC® 06-42 (2006)

 Design of SOA Services: Experiences from Industry 163

16. The OpenGroup: SOA source book,
http://www.opengroup.org/projects/soa-book/

17. OpenSOA: Service Component Architecture: Assembly Model Specification, SCA
Version 1.0 (2007)

18. Patig, S., Wesenberg, W.: Role of Process Modeling in Software Service Design. In:
Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC 2009. LNCS, vol. 5900, pp. 420–428.
Springer, Heidelberg (2009)

19. Parnas, D.L.: On the Criteria To Be Used in Decomposing Systems into Module. Commu-
nications of the ACM 15, 1053–1058 (1992)

20. Papazoglou, M.P., van den Heuvel, W.-J.: Service-oriented design and development meth-
odology. Int. Journal of Web Engineering and Technology 2, 412–442 (2006)

21. Papazoglou, M.P., van den Heuvel, W.-J.: Service oriented architectures: approaches,
technologies, research issues. The VLDB Journal 16, 389–415 (2007)

22. Patig, S., Müller, W.: Event-driven Design of SOA for the Swiss Citizen Registration
[Event-Driven-Design serviceorientierter Architektur für das schweizerische Personen-
meldewesen*]. In: Proc. Vernetzte IT für einen effektiven Staat Fachtagung Verwal-
tungsinformatik (FTVI). LNI, vol. 162, pp. 183–194. Gesellschaft für Informatik, Bonn
(2010) (in German only)

23. Pautasso, C., Zimmermann, O., Leymann, F.: RESTful Web Services vs. ”Big” Web Ser-
vices: Making the Right Architectural Decision. In: Proc. 17th international Conf. on the
World Wide Web (WWW 2008), pp. 805–814 (2008)

24. Sametinger, J.: Software Engineering with Reusable Components. Springer, Berlin (1997)
25. SAP AG: Enterprise Services Design Guide (2009),

http://www.sap.com/platform/netweaver/pdf/BWP_ES_Design_Guide.
pdf

26. Schulte, R.W., Natis, Y.V.: Service Oriented Architectures, Part 1. Research Paper, ID
Number SPA-401-068, Gartner (1996)

27. Szyperski, C.: Component Software: Beyond Object-Oriented Programming. Addison-
Wesley, Harlow (1996)

28. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.F.: Web Services
Platform Architecture – SOAP, WSDL, WS-Policy, WS-Addressing, WS_BPEL, WS-
Reliable Messaging, and More. Prentice Hall, Upper Saddle River (2005)

29. Wright, M., Reynolds, A.: Oracle SOA Suite Developer’s Guide. PACKT, Birming-
ham/Mumbai (2009)

30. W3C: Web Services Description Language (WSDL) 2.0, Part I: Core Language. W3C
Note (2007)

31. Yin, R.K.: The Case Study as a Serious Research Strategy. Knowledge: Creation, Diffu-
sion, Utilization 3, 97–114 (1981)

32. Yin, R.K.: Case Study Research: design and Methods, 4th edn. SAGE Publications, Thou-
sand Oaks (2004)

33. Zhang, Z., Liu, R., Yang, H.: Service Identification and Packaging in Service Oriented
Re-engineering. In: Proc. of the 17th Int. Conf. on Software Engineering and Knowledge
Engineering (SEKE 2005), Skokie, pp. 620–625 (2005)

Part III

Distributed Systems

J. Cordeiro, A. Ranchordas, and B. Shishkov (Eds.): ICSOFT 2009, CCIS 50, pp. 167–180, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Division of Water Supply Systems into District Metered
Areas Using a Multi-agent Based Approach

Joaquín Izquierdo, Manuel Herrera, Idel Montalvo, and Rafael Pérez-García

Fluing-IMM, Universidad Politécnica de Valencia, Cno. de Vera, s/n, 46022 Valencia, Spain
{jizquier,mahefe,imontalvo,rperez}@upv.es

Abstract. Technical management of large water supply systems (WSS) is an
increasingly complex problem. Water companies managing these systems have
witnessed how the mathematical models of their networks lose accuracy and
their engineering tools become obsolete. Consequently, they have no clear
vision of the balance between production and distribution, that is to say,
between supply and demand. As a result, water companies are interested in
improving the control and management of their networks. One of the methods
attracting great interest is that of division into DMAs (district metered areas).
Division into DMAs splits an interconnected and intricate network into smaller,
virtually independent sub-networks that can be better managed. However, the
complexity of the problem of creating DMAs demands efficient techniques. In
this contribution we use a multi-agent based approach that takes advantage of
the distributed nature of WSS.

Keywords: Water supply management, Distributed systems, District metered
area, Multi-agent systems.

1 Introduction

During the past fifteen years, the Multi-agent Systems (MAS) paradigm has been
applied in a large number of fields including not only multimedia and computer
entertainment, virtual reality, web-based interfaces, and tutoring systems. Moreover,
as MAS technology is now mature, it is being applied in new fields where design and
implementation of distributed intelligent systems could be useful. MAS modelers can
handle different levels of representation within a unified conceptual framework –
ranging from simple individuals to very complex groups. Such versatility makes MAS
especially suitable for simulating complex systems. MAS are used in an increasing
number of scientific domains: sociology, biology, physics, chemistry, ecology,
economy, etc. [1].

In the water field, the trend in recent years has been to include multi-agent
techniques as an interesting alternative for solving complex problems. See, for
example, [2] on multi-agent applications in urban hydraulics; [3] on control systems
for municipal water; [4] on water pollution diagnosis; [5] on water demand
management for a free access water table; [6] on water quality; [7] on water
management at catchment scale; [8] on water management at river basin scale; [9] on
allocation of scarce water; [10] combining multiobjective optimization with MAS in a

168 J. Izquierdo et al.

new paradigm called agent swarm optimization (ASO); [11] for visualizing plastic
pipes in WSS using GPR (ground penetrating radar) images; [12] for simulation of
hydraulic transients.

However, urban water supply management, thoroughly plagued with complexity,
has received little impact from MAS so far. Some examples include [13] using agents
to control the physical equipment of a water supply; [14] following this research line
and examining a criterion for maintaining continuity and reliability in water supply;
[15] developing a modified multi-agent genetic algorithm to optimize water-using
networks; and [16] building a suitable environment to simulate DMA partitions in a
WSS by using the multi-agent metaphor. This last work may be considered as an
antecedent of the current contribution in relation to the methodology and approached
water problem.

1.1 Water Supply Complexities

Water supply is one of the more recognizable and important public services
contributing to quality of life. It exhibits a number of characteristics that are quite
different from those of other public services. Distribution is irregular, both in
temporal and spatial terms. In addition, operation can be analyzed from very different
perspectives. As water is for consumption, aspects related to health need to be
considered: water quality and the appropriate control measures to maintain quality
during residence time in the network. However, water systems suffer a number of
operational and environmental conditions, which lead to progressive and insidious
deterioration. There are a variety of factors involved: loss of pressure, due to
increasing inner roughness of pipes; breakage or cracking of pipes, caused by
corrosion and mechanical and thermal charges; and loss of water (leaks), due to pipe
breaks and cracks, with their corresponding economic loss, and third party damage.
All these factors can create a risk of contamination. Because of the complexity of
water systems, mainly due to the interconnected nature of sources and consumption
points, it is extremely difficult to balance production and distribution, that is to say, to
control the water supplied and consumed. Division of the network into DMAs follows
a divide-and-conquer strategy that splits a large and highly interconnected distribution
network into smaller and virtually independent networks – each supplied by a pre-
fixed number of sources.

Independence can be physically achieved in a number of ways: by closing valves
in existing pipes, by sectioning existing pipes, by introducing new pipes that
redistribute the flow, etc.

Manageable DMAs will enable action to be taken to improve the control and
management of such important aspects of water distribution as water quality and the
intensity and spatial and temporal distribution of leaks. DMAs will help reduce
unaccounted-for water loss and improve the water-tightness of the system – thereby
saving huge amounts of water and preserving water quality. Substantial water savings
can be forecasted if sectorization is enforced systematically.

1.2 Division of WSS into District Metered Areas

Real water distribution systems may consist of thousands of consumption nodes
interconnected by thousands of lines, as well as the necessary elements to feed the

 Division of WSS into District Metered Areas Using a Multi-agent Based Approach 169

network. These networks are not usually the result of a unique process of design, but
the consequence of years of anarchic response to continually rising demands. As a
consequence, their layouts lack a clear structure from a topological point of view.
This fact renders these networks difficult to understand, control, and manage. In the
case of small networks, simple techniques, sometimes of a visual character, enable
division into a few DMAs. But this task is unthinkable for very large networks
because their complexity renders the problem virtually unfeasible. As a consequence,
new algorithmic capabilities, not implicitly contained in the hydraulic model, would
be of great interest.

The main objective of creating DMAs (also called sectorization) is to obtain the
distributed and manageably scaled information necessary to perform key actions in
each sector [17]. These actions include:

• Audit the hydraulic efficiency or NRW (non-revenue water),
• Characterize the demand curve, especially the night flow,
• Quickly detect leaks by analyzing the evolution of the night minimum flow,
• Check the results of search campaigns and repair leaks quickly,
• Detect fraud, under-registration, or diverse errors of measurement,
• Reduce maintenance costs,
• Plan investments when guiding supply to the sectors with more NRW.

Working on a sector reduces the system inspection area. It thereby facilitates the
detection, identification and monitoring of possible abnormal states of water supply
[18]. Other improved water management topic is about predictive models. These are
more accurate in a DMA than in the whole network, avoiding biases derived from
achieving forecasts in smaller areas than DMA [19]. Other promising lines are the
optimization of DMAs pumping scheduling, and the problem of sensor location
detecting pathogen intrusion in real-time.

The procedure to define the hydraulic sectors implies [20]:

1. Obtaining the number of independent sectors in a network layout. A sector of the
network is said to be independent when it is supplied exclusively from its own
water sources, and is not connected to other sectors in the network.

2. Obtaining the set of network nodes belonging to each individual sector.
3. Revising proposed sectorization actions, such as valve closing or pipe sectioning,

in case such actions may cut the water supply for some parts of the network.
4. Defining the area served by each water source, and the contribution of each source

to the consumption of each network node.

The first and third of these four tasks are crucial for detecting errors in the network
layout and in proposed sectorization decisions. The second task is essential for water
audits, and the fourth task is important for defining and visualizing any proposed
sectorization.

A district metered area is a part of the water distribution network that is
hydraulically isolated, temporally or permanently, and ideally has just one supply
node equipped with a flow meter. DMAs are small zones of the system and usually
contain between 500 and 3000 service connections.

The concept of DMA management was first introduced to the UK water industry in
the early 1980s [21], and it has been used as an instrument to monitor and reduce the

170 J. Izquierdo et al.

level of leaks in water supply systems. The technique was mainly developed in
Europe, and has been used in Latin America since the 1990s, while it is less often
used in the United States and Canada. The development of DMAs has been strongly
empirical, being based on technical experience and with very few scientific
contributions. It is necessary to highlight the contributions in UKWIR [22] and IWA
[23]. Recently, some proposals have been presented for a conceptual and scientific
framework – such as [24] relative to the periodic acoustic surveys in a DMA; or [20]
in applying graph theory to establish the division of DMAs.

In this contribution, we explore the division of a water supply system into DMAs
by using a multi-agent approach. Complex problems, such as the problem considered
in this article, can be resolved using distributed agents because the agents can handle
combinatorial complexity in a real-time suboptimal approach [25].

The structure of this work is as follows. Firstly, we introduce the agent-based
ingredients, then describe the used implementation, and finally, present the main
results. A conclusions section closes the work.

2 Multi-agent Metaphor

In the study of complex systems, computer programs have played an important role.
However, the actual process of writing software is a complicated technical task with
much room for error. The multi-agent philosophy adopts a modeling formalism based
on a collection of independent agents interacting through discrete events. Simulation
of discrete interactions between agents stands in contrast to continuous system
simulations, where simulated phenomena are quantities in a system of coupled
equations.

An agent is any actor in a system: any entity that can generate events that affect
itself and other agents. In the problem we consider here, agents are consumption
nodes, connecting pipes, supply sources, ground and underground patches containing
the network; as well as district metered areas, which are sets of nodes, pipes, sources,
and patches. Even the whole network is an agent following specific scheduled actions.
In these last two cases, the behavior of an agent is defined by the emergent actions of
the agents it contains.

Agents define the basic objects in the system – the simulated components. The
simulation occurs in the modeled world itself, and it is frequent to speak of agents as
living in an environment, which, as said, can be an agent itself.

Agents are one of the abstractions that have been most frequently used to describe
and implement proactive intercommunication among modules in intelligent
distributed systems. There are some properties which agents should satisfy [26]:
reactivity, perceiving their environment; pro-activeness, being able to take initiative;
and social ability, interacting with other agents. The MAS paradigm proposes a
scenario where independent, goal-directed, and environment-aware units (the agents)
become coordinated (by collaborating or competing) to accomplish complex tasks
[27]. Some advantages of MAS are a solid conceptual grounding (they can be
depicted using well-defined abstract entities and operations), encapsulation of their
components (which hides agent policies and promotes scalability), communication
facilities (high-level protocols are used), and parallel execution (resulting in better
performance and robustness) [28].

 Division of WSS into District Metered Areas Using a Multi-agent Based Approach 171

Once agents have been defined and their relationships established, a schedule of
discrete events for these objects defines a process occurring over time. Individual
actions take place at some specific time; and time only advances alongside events
scheduled at successive times. A schedule is a data structure that combines actions in
the specific order in which they should execute. The passage of time is modeled by
the execution of the events in some sequence. Instructions are given to hundreds or
thousands of independently operating agents. This makes it possible to explore the
connection between the micro-level behavior of individuals; and the macro-level
patterns that emerge from the interaction of many individuals.

A final step consists in observing the model and recording what is happening.
Observers perform these actions. In most platforms there are also agents with specific
tasks, such as plotting, storing data, monitoring and displaying certain variables, etc.

Agents should possess the following properties: autonomy, mobility, reactivity,
pro-activity, adaptability, communicativeness, robustness, learning ability, task-based
orientation, and goal-based orientation [29].

3 Implementation

NetLogo [30] is an environment for developing complex, multi-agent models that
evolve over time. It is possible to create populations of changing agents in a suitable
grid of stable agents. The evolution of agents can take different forms. Agents can be
created, move, change their properties, change their behavior, change their nature or
breed, and even die.

Our model is created from GIS data defining the physical and topological network
characteristics. The experimental data were obtained from GIS models of two real
moderately-sized networks that have been studied by the authors within a joint
research project with an international water company. These networks are parts of two
water distribution systems in two Latin American cities.

The area is divided into squares (patches), which gives some raster format to the
environment. Patches represent the ground (underground) where pipes and nodes are
buried. Figure 1 shows a section of one network. Patches are used to define areas
occupied by the different divisions that will be created. Consumption nodes (small
circles) are agents (turtles) of a certain breed with a number of associated variables.
Among the user-defined variables, elevation and demand are the most important.
During the process, color is used to define the DMA that the agents belong to. Pipes
(lines) are links (in the problem under consideration they are undirected links). Each
pipe connects two different nodes and also has some associated variables. The main
user-defined variables are diameter and length. Source points (squares) are another
breed of turtles, whose variables are the average of the demand they supply and the
DMAs they feed. Patches, sources, nodes, and pipes are spatially fixed agents in the
sense that, obviously, they do not change their position with time. Instead, they
change their properties, especially color, and as a result they eventually belong to one
DMA or another. Initially, sources, nodes, and pipes are presented in light grey, since
no district structure is available at the setup. In this model, the user decides the
number of DMAs to be built. Then, randomly the same number of source points are
selected to be the seeds for the corresponding districts.

172 J. Izquierdo et al.

Fig. 1. Detail of a network in NetLogo environment

Two consecutive processes are launched that perform the sought division into
DMAs. First, a process of clustering by exploration provides an initial division; then a
fine-tuning process of negotiation of boundaries optimizes the division.

3.1 Clustering by Exploration

Upon setup, these turtles start a process of probing their neighboring nodes and
checking the likelihood of their neighbors being assimilated into the same would-be
DMA as themselves. This likelihood is derived from a number of tests, which are
performed on the basis of sources, nodes, and pipe properties:

• The total length of the current DMA must be bounded by minimum and maximum
values for the total length of the set of its members,

• The elevation of a new candidate must be in a certain range around the average
elevation of the current DMA,

• The total demand of the sector must be between certain pre-fixed limits,
• The associated sources must be able to meet that demand,
• The geometrical properties of the area occupied by a DMA must exhibit certain

basic requirements (connectivity, convexity, etc.),
• Other properties.

Nodes and pipes passing these tests are assimilated to the winning DMA, and the
process is repeated again. To this purpose, neighboring nodes for every hydraulic
sector or division are explored in each step of the algorithm. These nodes are given a
certain probability of belonging to a given district. This probability reflects the
difference between the elevation of the node and the average elevation of the district;
and the difference between its demand and the average demand of the sector. In this
way, simple greedy competition based on minimum distance among the districts adds
increased probabilistic richness to the process. As a result, the model agents,
performing a mixture of individual and collective actions, can explore good network
sectorization layouts by trying to meet the equation

[]∑ = −α+−αC
c cidciz ddzzMin 1)()(, (1)

 Division of WSS into District Metered Areas Using a Multi-agent Based Approach 173

where αz and αd are the associated weights to level, z, and demand, d, to carry out the

clustering configuration; cz and cd are the level and demand averages in cluster c,

respectively. C is the total number of different DMAs or clusters.
Decisions performed this way achieve homogeneity in the proposed DMAs. Table 1

present a pseudo-code for this algorithm.

Table 1. MAS-clustering algorithm based on homogeneity of the districts

Global: 0. Initial settings

Global: 1. Select source nodes: assign different groups to them

2. Scan cluster neighboring:
 2.1 Select a random node from their neighborhood
 2.2 Is it on my cluster?
 Yes: Go to 2.1
 No: Continue

Agent:

3. Check selected neighbor:
 3.1 Is difference on demands and levels < Limit1?
 Yes: Add to cluster and Go to 2
 No: Go to 2.1

Once a new configuration has been built, other requisites (sector size, connectivity,
etc.) are checked before validating the configuration. Borders between sectors –
which can be fuzzy – are identified by specific pipes, showing the location of cut-off
valves, which are used to isolate the sectors during operation.

The natural consequence of this process is that different DMAs are built and
minimal sets of sectioning lines are identified. Nevertheless, some nodes may end up
disconnected and borders between sectors may be poorly defined. Even though the
main objective is the identification of DMAs and cut-off lines, the information about
disconnected nodes and overlaps between nodes and pipes of different sectors can
also be used by the network manager. These circumstances, which show that the
desired balance is still undergoing some debate regarding assignations, can be used to
detect errors in network data, propose candidate areas for sensitivity analyses, and
encourage various actions aimed at improving the layout and/or the topology of the
network. The next paragraph describes an interesting sensitivity analysis based on
energy efficiency.

3.2 Negotiation of Boundaries

Most of the points furthest from water sources are near boundaries between districts.
These points are usually the worst represented by the clusters to which they belong.
We propose adding an energy criterion after performing the first division to re-assign
these points in an efficient way. So far, we have established sectors based on level and
demand distances. Now, we improve this dissimilarity measure by taking into account

174 J. Izquierdo et al.

the length of the paths from source points to the boundaries and changing the average
district level to the level of source points. A sensitivity analysis is thereby proposed
that negotiates the boundaries previously established from an energy point of view.
This process continues following our previous main target of homogeneity and
minimal number of used valves. As a result, the global behavior of the model agents,
which perform a mixture of individual and collective actions, can explore the best
network layout that provides efficient supply.

To this end, nodes close to the boundaries are activated to negotiate their cluster
membership. The new paradigm re-classifies these points to a different membership if
the cost associated with supplying them is sufficiently large. Now, the general agent-
classification process derives from equation (2):

[] []{ }∑∑ =α=β −α+−αλ+−β+βλ C
c cidciz

C
c cizcil ddzzzzlMin 11 ,)()()(, (2)

where lβ is the associated weight to distance in coordinates, cil , , between the

checking node and the source point of district c; zβ is the weight of the difference

between levels in the supply. βλ is the importance of negotiating the energy effort of

the hydraulic system and αλ weights the above equation (1) by homogenizing DMA

demands and levels.
The second phase of the algorithm takes into account the energy costs associated

with supply (see Table 2). Working with the same agents will provide continuity for
the process. Nevertheless, these agents will change their point of view with respect to
the clustering problem and will change certain memberships if the distances from the
sources to consumption nodes are large; so following the idea behind equation (2).

Table 2. Negotiating cluster boundaries

Global: 0. Set the boundaries of the clustering solution

Global: 1. Select random nodes: verifying their cluster membership

2. Scan neighboring cluster:
 2.1 Select a random node from neighborhood
 2.2 Is it on my cluster?
 Yes: Go to 2
 No: Continue

Agent:

3. Check selected neighbor:
 3.1 Is distance to the proposed new water source
 < current distance to source?
 Yes: Is difference on demands and levels < Limit2?
 Re-assign to cluster and go to 2
 No: Go to 2.1

 Division of WSS into District Metered Areas Using a Multi-agent Based Approach 175

Two constraints, namely Limit1 and Limit2, are used in these algorithms. Both are
related with homogeneity conditions to establish suitable clusters in the sense of
becoming efficient DMAs. Limit1 specifies the maximum allowed difference between
node levels and demands, and identical variables (on average) for each cluster. This
gives support to agents making decisions about whether to add a node to a cluster.
However, this decision is poorly achieved in the cluster boundaries. Limit2 enables
the negotiation of each membership for those areas, relaxing the homogeneity
constraints of the first algorithm and taking into account energy gains in the supply.

3.3 Practical Issues for Implementation

Through the use of additional interface elements, the user can manage the course of
the simulation by changing various parameters (Figure 2 shows the interface for one
of the studied networks).

The membership probability measurements of a node with respect to a district
depend on elevation and demand, and can be modified by using the slider labeled
‘weight-demand’. The user can also decide a priori the number of hydraulic sectors to
be built by selecting an option from the chooser labeled ‘n-clus’. By using the switch
labeled ‘zoning’ the user can also ask the program to color the patches occupied by
the different hydraulic sectors. This option, as well as offering an interesting visual
value, enables the user to decide if the districts displayed exhibit good topological
properties. Certain convexity and/or compactness properties are desirable for districts.
By default (option off) the different colors for the pipes and nodes make clear the
division of the hydraulic network into districts. By flipping the switch to ‘on’, patches
are colored according to the color of the nodes and pipes they contain. This option is
useful for revealing overlaps between sectors which, as explained before, can be used
to produce suitable sensitivity analyses.

The simulation results can be visualized on screens, plots, and graphs; and data can
be stored for further processing in hydraulic simulation software and for decision-
making support.

Figure 2 also presents several displays showing some of the used parameters, such
as the average elevation of the different sectors and the number of pipes in the sectors.
Of special importance is the display labeled ‘n-valves’ which shows the number of
sectioning links connecting different sectors; these are pipes that enable isolation-
communication between two sectors and provide the engineer with useful information
about the candidate pipes for sectioning and where to install cut-off valves to isolate
the districts. Engineers must make important decisions about the need to install
closing valves in existing pipes, and about sectioning those pipes, and/or introducing
new pipes that redistribute the flow in more a reasonable manner.

The process is able to find good solutions for the connectivity between DMAs. As a
consequence, the number and location of the closure valves is optimized for a given
layout. In addition, nodes are assigned to sectors in a remarkably stable way that further
stabilizes during the evolution of the process (see the demand plot on Figure 2).
In addition, the best partitions can be found with more frequency during different runs
of the process. As a result, by repeating the process a certain number of times, the
engineer can make a final decision that may, or may not, coincide with any of the

176 J. Izquierdo et al.

Fig. 2. Interface including parameter selectors and monitors

obtained partitions – these being used as a basis for the decision. Our simulation
model helps managers communicate with domain experts, because they can perform
their analyses using solved modeled situations.

4 Results

To show the performance of the described process we present for the sake of brevity,
only the results corresponding to one of the studied networks (see Figure 3) fed by six
reservoirs and made from 479 lines and 333 consumption nodes; total length being 48
km, and total consumed flowrate being 91 liters per seconds.

After 20 runs of the model simulating the partition of this network into hydraulic
sectors, the configuration shown in Figure 4 was obtained in 80% of the cases. As a
result, three sectors are obtained and these are isolated with 34 cut-off valves.

These sectors have 118, 199, and 162 pipes, respectively. The average elevations
for these sectors are 155m for the upper-right sector, 157m for the left sector, and
again 155m for the lower-right sector.

All of these sectors satisfy the requirements for becoming valid hydraulic sectors in
terms of maximum and minimum total pipe lengths.

Finally, it is noteworthy that the validity of the district division has been checked
using EPANET2 [31]. The analyses performed show that the proposed division
effectively cuts the water supply for the desired parts of the network. Also, the entire
network and individual sectors maintain all the design requirements. As a
consequence, the proposed division into DMAs is perfectly feasible and reliable.

 Division of WSS into District Metered Areas Using a Multi-agent Based Approach 177

Fig. 3. Layout of the studied network

5 Conclusions

The multi-agent metaphor has been used with success in various areas and is
reasonably applicable in the water management field. In addition to the traditional
centralized architecture of a single reasoning agent (the computing counterpart of
human decision support), it is possible to use systems of reasoning agents, or to apply
multi-agent simulations to verify hypotheses about various processes in water
distribution. Partial implementations of multi-agent applications are expected to
simplify communication with domain experts during the process of modeling expert
knowledge, identifying needs, and summarizing requirements for the final
application. Among the various scenarios using multi-agent systems in the scope of
decision support for a water management company, we have focused on the division
of a network into district metered areas.

The inclusion of agents with negotiation abilities proposes a sensitivity analysis of
the solution previously found via agent cooperation and competition. However, in
addition, it is the start line for multi-objective approaches to be developed in the future.

The model may be applied to larger networks. Indeed, taking into account that the
considered network in Figure 3 is medium-sized and running times are slow (ranging
between 10 and 20 seconds on a PC with an Intel Core 2 Duo T5500 1.66 GHz
processor for the case considered), no added difficulties are foreseen.

178 J. Izquierdo et al.

Fig. 4. Final distribution of hydraulic sectors for one of the studied networks

Division into DMAs helps the decision-making process, as well as the
implementation of suitable actions to improve the control of a network and give
solutions for important aspects of water distribution management – such as leaks and
water quality.

Various lines of research may be followed in the future. One line of action will
be addressed by exploiting the presented model in a number of ways: adding new
conditions to cluster building; refining the implemented clusters following
new criteria; and generally improving the performance of the model. An
interesting improvement would consider starting the process automatically, instead
of requiring the user to define a priori the number of sectors, and so make a
division into an optimum number of sectors. Another line of research will focus on
the development of other scenarios for multi-agent applications in the water
supply field, including aspects related to water quality and other management
issues.

Acknowledgements. This work has received the support of the project IDAWAS,
DPI2009-11591, of the Dirección General de Investigación of the Ministerio de
Ciencia e Innovación of Spain, including FEDER funds, and the action
ACOMP/2010/146 of the Generalitat Valenciana. The use of English in this paper
was revised by John Rawlins.

 Division of WSS into District Metered Areas Using a Multi-agent Based Approach 179

References

1. Drogoul, A., Vanbergue, D., Meurisse, T.: Multiagent based simulation: Where are the
agents? In: Sichman, J.S., Bousquet, F., Davidsson, P. (eds.) MABS 2002. LNCS (LNAI),
vol. 2581, pp. 1–15. Springer, Heidelberg (2003)

2. Izquierdo, J., Montalvo, I., Pérez, R.: Aplicaciones de la inteligencia colectiva
(multiagente) para la optimización de procesos en hidráulica urbana. VIII Seminario
Iberoamericano – SEREA Influencia sobre el Cambio Climático, la eficiencia energética,
de operaciones y Sistemas de Seguridad en el abastecimiento y el drenaje urbano (2008)

3. Kotina, R., Maturana, F.P., Carnahan, D.: Multi-agent control system for a municipal
water system. In: Proceedings of the 5th WSEAS International Conference on Artificial
Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, pp. 464–469 (2006)

4. Nichita, C., Oprea, M.: Water Pollution Diagnosis with a Multi-Agent Approach. In:
Proceedings of Artificial Intelligence and Soft Computing (2007)

5. Feuillette, S., Bousquet, F., Le Goulven, P.: SINUSE: a multi-agent model to negotiate
water demand management on a free access water table. Environmental Modelling and
Software 18(5), 413–427 (2003)

6. Hai-bo, L., Guo-chang, G., Jing, S., Yan, F.: Multi-agent immune recognition of water
mine model. Journal of Marine Science and Application 4(2), 44–49 (2005)

7. Becu, N., Perez, P., Walker, A., Barreteau, O.: CatchScape: An integrated multi-agent
model for simulating water management at the catchment scale, a northern Thailand case
study. In: Ghassemi, F., et al. (eds.) Integrating Models for Natural Resources
Management Across Disciplines, Issues and Scales. International Congress on Modelling
and Simulation, Canberra, Australia, pp. 1141–1146 (2001)

8. Mikulecký, P., Bodnárová, A., Olševičová, K., Ponce, D., Haviger, J.: Application of
multi-agent systems and ambient intelligence approaches in water management. In: 13th
IWRA World Water Congress, Montpellier, France (2008)

9. Hailu, A., Thoyer, S.: Multi-Unit Auctions to Allocate Water Scarcity Simulating Bidding
Behaviour with Agent Based Models. LAMETA Working paper 2005-01, EconWPA
(2005)

10. Montalvo, I., Martínez, J. B., Izquierdo, J., Pérez-García, R.: Water Distribution System
Design using Agent Swarm Optimization. In: Water Distribution System Analysis 2010 –
WDSA 2010, Tucson, AZ, USA (2010)

11. Ayala-Cabrera, D., Herrera, M., Izquierdo, J., Pérez-García, R.: Towards the visualization
of water supply system components with GPR images. In: Mathematical Models of
Addictive Behaviour, Medicine & Engineering, UPV, Valencia, Spain (2010)

12. Izquierdo, J., Montalvo, I., Pérez-García, R., Izquierdo, F.J.: Hydraulic Transient
Simulation in Networks using a Multi-agent based approach. In: Water Distribution
System Analysis 2010 – WDSA 2010, Tucson, AZ, USA, September 12-15 (2010)

13. Gianetti, L., Maturana, F.P., Discenzo, F.M.: On the Computational Geometry of Pocket
Machining. LNCS, pp. 500–510. Springer, Heidelberg (2005)

14. Maturana, F.P., Kotina, R., Staron, R., Tichý, P., Vrba, P.: Agent-based water\waste water
control system architecture. In: IADIS International Conference Applied Computing
(2006)

15. Cao, K., Feng, X., Ma, H.: Pinch multi-agent genetic algorithm for optimizing water-using
networks. Computers & Chemical Engineering 31(12), 1565–1575 (2007)

16. Izquierdo, J., Herrera, M., Montalvo, I., Pérez-García, R.: Agent-based division of water
distribution systems into District Metered Areas. In: International Conference on Software
Data Technologies, Sofia, pp. 83–90 (2009)

180 J. Izquierdo et al.

17. Aguas de Valencia: Sectorización,
https://www.aguasdevalencia.es/portal/web/Tecnologia/
Tecnologia/GestionRedes/Sectorizacion.html (accessed: 24 September
2010)

18. Herrera, M., Pérez-García, R., Izquierdo, J., Montalvo, I.: Scrutinizing changes in water
demand behavior. In: Positive Systems Lecture Notes in Control and Information Sciences,
pp. 305–313. Springer, Heidelberg (2009)

19. Herrera, M., Torgo, L., Izquierdo, J., Pérez-García, R.: Predictive models for forecasting
hourly water demand. Journal of Hydrology 387, 141–150 (2010)

20. Tzatchkov, V.G., Alcocer-Yamanaka, V.H., Bourguett-Ortíz, V.: Graph Theory Based
Algorithms for Water Distribution Network Sectorization Projects. In: 8th Annual Water
Distribution Systems Analysis Symposium, Cincinnati, Ohio, USA, August 27-30 (2006)

21. Morrison, J.: Managing leakage by District Metered Areas: a practical approach. Water 21,
44–46 (2004)

22. UK Water Industry Research Ltd: A Manual of DMA Practice. UK Water Industry
Research, London (1999)

23. IWA Water Loss Task Force: District Metered Areas: Guidance Notes. Version, p. 100
(February 2007), http://www.waterlinks.org/upload_file/8f4be72e-
5027-cbe8-40ed-ee12d1fe6495.pdf (accessed September 24, 2009)

24. Hunaidi, O.: Economic comparison of periodic acoustic surveys and DMA-based leakage
management strategies. In: Proceedings of Leakage 2005 Conference, Halifax, N.S.,
Canada, pp. 322–336 (2005)

25. Maturana, F.P., et al.: Real time collaborative intelligent solutions. SMC (2), 1895–1902
(2004)

26. Wooldridge, M.: An introduction to MultiAgent Systems. John Wiley & Sons, Chichester
(2002)

27. Weiss, G. (ed.): Multiagent systems: a modern approach to distributed artificial
intelligence, p. 619. MIT Press, Cambridge (1999)

28. Stone, P., Veloso, M.: Multiagent Systems: A survey from a Machine Learning
perspective. Autonomous Robots 8(3), 345–383 (2000)

29. Lee, R.S.T.: Fuzzy-Neuro Approach to Agent Applications: From the AI Perspective to
Modern Ontology. Springer, Heidelberg (2006)

30. NetLogo homepage (2007), http://ccl.northwestern.edu/netlogo/
31. Rossman, L.A.: EPANET 2 User’s Manual. Cincinati (IN), USA, Environmental

Protection Agency (2000)

Rateless Codes for Reliable Data Transmission over
HomePlug AV Based In-Home Networks

J.P. Muñoz-Gea, P.J. Piñero-Escuer, J. Malgosa-Sanahuja, P. Manzanares-Lopez,
and J.C. Sanchez-Aarnoutse

Department of Information Technologies and Communications
Polytechnic University of Cartagena

Campus Muralla del Mar, 30202, Cartagena, Spain
{juanp.gea,pedrop.escuer,josem.malgosa,pilar.manzanares,

juanc.sanchez}@upct.es

Abstract. With the appearance of peer-to-peer networks and the rapid progress
being made in the technologies used to deploy them, in-home networks are likely
to play a highly important role in what is being called the Future Internet. There
are different candidate technologies to widespread an in-home network. Among
them, broadband communications over power line networks have attracted much
interest in academy and industry recently. However, there are several aspects of
the PLC medium that make it difficult to share resources fairly, such as time-
vaying behaviour or the broadcast nature of the channel. For these reasons TCP
protocol may not be the adequate mechanism for reliable data transmission over
PLC networks. In this work, the main characteristics of the PLC channel and the
feasibility of using rateless Codes for reliable data transmission in these kind of
networks are evaluated.

Keywords: Fountain codes, Online codes, power-line communication,
HomePlug AV, home networking.

1 Introduction

Nowadays, home appliances are becoming information appliances and they can be net-
worked to exchange their information. Therefore, it is necessary a home network able
to provide support for video and data transmission from a variety of sources in the
home. Candidate networking technologies to provide convenient and widespread res-
idential networking services may be categorized as wireless, wired and no-new-wires
networks. For the no-new-wires networks category, broadband communication over low
voltage (220v) power lines or PLC (Power Line Communications) has attracted much
interest in the academic and industrial context recently. There are different PLC tech-
nology standards, but the most popular is HomePlug AV (HomePlug Audio and Video,
or simply HPAV). This standard, which was presented by Homeplug Powerline Alliance
[1] in 2005, employs advanced physical and medium access control (MAC) technolo-
gies that provide a 200 Mbps power-line network. The physical layer utilizes this 200
Mbps rate to provide a 150 Mbps information rate. Nowadays, there are about 70 cer-
tified HomePlug products [4]. They range from a simple HomePlug Ethernet adapter

J. Cordeiro, A. Ranchordas, and B. Shishkov (Eds.): ICSOFT 2009, CCIS 50, pp. 181–191, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

182 J.P. Muñoz-Gea et al.

(which connects the Ethernet devices to the HomePlug network) to 1 Gbps high perfor-
mance low-voltage PLC modem [3]. On the other hand, nowadays some companies are
adding HomePlug circuits directly into multimedia home entertainment equipment. By
this way, it will not be necessary any additional equipment (like Ethernet adapters) to
connect the electrical appliances to the PLC network.

However, it is necessary to take into account that there are several aspects of the PLC
medium that make it difficult to share resources fairly. For example, all the electronic
or electrical equipments connected to the power lines are considered as noise resources
on the power grid [6]. As a consequence, the HPAV modems must adapt their data rate
in order to avoid packet losses. Therefore, our first goal in this work is to characterize
the network behavior in presence of electrical equipment of a typical home when using
a commercial HPAV modem.

Another important aspect in PLC networks is that, although the HPAV MAC layer
provides a connection-oriented service based on TDMA to support QoS requirements,
almost all commercial HPAV modems only support traditional connectionless, priori-
tized contention service based on CSMA/CA to transmit best-effort applications and
applications that rely on prioritized QoS. In other words, the PLC channel is broadcast
(i.e. shared) and half-duplex by nature. This fact made us think that the use of unidi-
rectional rateless codes to transmit the information may be advantageous as opposed
to traditional solutions based on bidirectional (full-duplex) TCP protocol. Moreover,
TCP protocol is designed to be used over constant rate links as it chooses its parame-
ters according to the RTT (Round trip time) value, however, as said before, the rate in
PLC links can vary according to the power grid noise. Rateless codes are also known
as Fountain codes because the sender is theoretically always sending coded packets.
Some of them are lost in the noisy channel but when the destination node has received
enough of them, the information can be completely restored. They are mainly used in
multimedia applications, such as IPTV or radio broadcasting, because in these cases
there is usually no feedback channel, and it is impossible to take advantage of any type
of error or flow control. Online Codes are a free-software Fountain codes alternative,
which achieve linear cost for encoding and decoding operations. In this work, the fea-
sibility to use Online Codes for reliable data transmission in an in-home PLC network
is evaluated.

The remainder of the paper is organized as follows. Section 2 presents the HomePlug
AV specification. Section 3 introduces the encoding and decoding procedure used by
Online Codes. Section 4 evaluates the use of Online Codes for data transmission in a
real scenario. Finally, Section 5 concludes the paper.

2 HomePlug AV

As it was previously introduced, there are several aspects of the PLC medium that make it
difficult to share resources fairly. In order to solve these problems, advanced coding and
modulation mechanisms are used. The Physical Layer (PHY) operates in the frequency
range of 2 - 28 MHz and provides a 200 Mbps channel rate and a 150 Mbps information
rate. It uses OFDM and a powerful Turbo Convolutional Code (TCC). OFDM is a spec-
trum efficient modulation technique, which uses simultaneous transmission of a large

Rateless Codes for Reliable Data Transmission 183

number of narrow band carriers. These carriers divide a large frequency channel into a
number of subchannels. Subchannels can differ greatly in their quality, defined by their
signal to noise ratio- SNR-. Adaptive coding modulation for each subchannel solves this
problem by giving each subchannels an appropriate capacity, and by switching off those
with a poor channel condition.

HomePlug AV provides two kinds of communication services: a connection-oriented
contention free service, based on periodic Time Division Multiple Access (TDMA) al-
locations of adequate duration, to support the QoS requirements of demanding appli-
cations; and a connectionless, prioritized contention service, based on Collision Sense
Multiple Access/Collision Avoidance (CSMA/CA), to support both best-effort applica-
tions and applications that rely on prioritized QoS. To efficiently provide both kinds
of communication service, HomePlug AV implements a flexible, centrally-managed ar-
chitecture. The central manager is called a Central Coordinator (CCo). The CCo es-
tablishes a beacon period and a schedule which accommodates both the cotention free
allocations and the time allotted for contention-based traffic. The Beacon Period is di-
vided into 3 regions: beacon region, CSMA region and TDMA region.

3 Fountain Codes

3.1 Description

The main idea behind Fountain codes is that the transmitter is represented like a foun-
tain of water that is able to produce an infinite number of water drops. The receiver
represents a bucket that needs to collect a number of these water drops to obtain the
information. The main advantage of these codes is that the receiver can obtain the in-
formation irregardless of which drops it has collected. Therefore, Fountain codes should
have the following properties:

– A transmitter can generate a potentially infinite amount of encoded packets from
the original data.

– A receiver can decode a message that would require K packets from any set of K ′

encoded packets, for K ′ slightly larger than K .

The most important implementations of Fountain codes are LT codes [7], Raptor codes
[10] and Online Codes [8]. LT codes were the first practical realization of a fountain
code. The only drawback of these codes is that their encoding and decoding costs scale
as KlogeK , where K is the file size. Raptor codes are an evolution of LT that achieve
linear cost for encoding and decoding. Finally, Online Codes are a free-software alter-
native to Raptor codes that also achieve linear cost for both operations.

There are lots of application of Fountain codes in digital communications. They are
mainly used in multimedia applications, such as IPTV or radio broadcasting because in
these cases there is no feedback channel. Therefore, it is impossible to take advantage of
any type of error or flow control. Another kind of service that could also use these codes
is multicast transmission. When a transmitter sends a file to different receivers, each
of these receivers could experience independent losses, delays, jitter, etc. Without the
Fountain codes facility, the number of control packets needed to maintain the multicast
connection could be very high.

184 J.P. Muñoz-Gea et al.

Fig. 1. Structure of Online Codes

3.2 Online Codes

Online Codes are characterized by two parameters ε and q. The first parameter is related
to the number of coded blocks (also called check blocks) that the receiver needs in order
to decode the original message, and the second one has an effect on the probability of
succesful decoding. In particular, the receiver can recover the original message from
any (1 + 3ε)K check blocks with a success probability determined by 1 − (ε/2)q+1.

The structure of Online Codes is depicted in Fig. 1. The encoding process is divided
into two layers, the inner code and the outer code. The inner code is in charge of gener-
ating the check blocks. Every check block is computed as the XOR operation of d blocks
uniformly chosen from the message (d represents the degree of the check block). The
probability that d = i is given by the probability distribution ρi:

ρ1 = 1 − (1 + 1/F)
(1 + ε)

(1)

ρi =
(1 + ρ1)F

(F − 1)i(i − 1)
i = 2, 3, ..., F (2)

where F is given by

F =
ln(ε2/4)

ln(1 − ε/2)
(3)

However, due to the random selection of the message blocks, some of them may not be
selected in the inner coding process. One solution to this problem is to add a preliminar
coding process (called outer coding) which generates 0.55qεK auxiliary blocks from
the original message. The message blocks that do not participate in the inner process
will be able to be decoded thanks to this redundancy. In fact, the input blocks of the inner
coding are the message blocks plus auxiliary blocks. All this set is called composite
message.

From all the available procedures to generate redundancy (Reed-Solomon, Cyclic
Redundancy Check, Parity Bits, etc.), Online Codes uses one of the simplest: for each
block of the original message, q auxiliary blocks are chosen. Each auxiliary block is
computed as the XOR operation of the original message blocks assigned to it.

The original message can be decoded from the check blocks, with the success prob-
ability showed before. The decoding process is also divided into two steps. In the first

Rateless Codes for Reliable Data Transmission 185

step a 1 − ε/2 fraction of composite message blocks should be recovered. The knowl-
edge of this fraction of blocks is enough to decode the original message: the composite
message has such a property thanks to the redundancy added by the outer code. The
second step consists of recovering the original message from the composite message
blocks recovered in the first step.

In order to successfully recover the needed fraction of composite message blocks, it
is necessary to get to know the degree of each check block and the composite message
blocks from which it is made up (also called adjacent blocks). A way to send this
information to the receiver must be implemented on the transmitter side. However, if the
receiver uses the same random number generation algorithm as the transmitter, it will
only be necessary to send the seed to reach this objective. Next, the decoding process
can start. It has the following steps:

1. Find a check block with only one adjacent block (d = 1) and recover this composite
message block.

2. Remove this recovered block from other check blocks that also have this recovered
block as adjacent (by simple substracting it; that is, computing the XOR again).
After this, some check blocks can become degree-one blocks.

3. Continue with this process until a 1 − ε/2 fraction of composite message blocks is
recovered.
The process can fail if in some of these steps there are no degree-one blocks.

When all the needed composite message blocks are recovered, the same process can be
used to obtain the original message blocks. In this case the success probability is close
to one because only the auxiliary blocks have a degree higher than one.

4 Evaluation

In this section we want to evaluate two characteristics of HomePlug AV specification:
First, the variable capacity model of the physical layer; and second, the contention-
based service of the MAC layer. All the evaluations presented in this section have been
made using a laboratory test-bed. The lab has three phases of 220 volts, and all the PLC
adapters and PC computers used in the evaluation are connected to the main phase. We
have used the PLE200 HomePlug AV Ethernet adapters of Linksys [2]. This adapter
connects the Ethernet device of a computer to the 220 V power line.

4.1 Evaluation of the Variable Capacity of the Physical Layer

Our first objective is to evaluate the adaptation of the data transmission rate accord-
ing to the noise level. For this aim, we use two computers connected to the HomePlug
AV network using the corresponding Ethernet adapters. Their power suppliers are con-
nected to another electrical phase of the lab, different from the one used to implement
the HomePlug AV network. Knowing that in Europe the common point of two distinct
phases is located in the low voltage transformer, the distance between two elements
connected to different phases is around 300 meters. This distance is large enough to
ensure the absence of interference among devices connected to different phases.

186 J.P. Muñoz-Gea et al.

 5e+07

 5.5e+07

 6e+07

 6.5e+07

 7e+07

 7.5e+07

 8e+07

 8.5e+07

 9e+07

 0 5 10 15 20

T
hr

ou
gh

pu
t [

M
bp

s]

Time [secs]

Fig. 2. Evaluation of the network capacity

In order to measure the capacity of the network, we used a UDP traffic generator
which transmits traffic to the maximum capacity allowed by the physical network. We
achieved the results presented in Fig. 2. In particular, it can be observed that the net-
work is able to achieve a maximum capacity around of 87 Mbps. This transmission rate
corresponds with the 100 Mbps Ethernet transmission rate of the computer, minus the
HPAV physical and link layer overhead. Next, after 8 seconds, we connected a mobile
phone charger to the electrical phase of the HomePlug AV network. In Fig. 2 it can
be observed that the connection of the mobile phone charger to the power line causes
the reduction of the network capacity to 60 Mbps. After 12 seconds, we disconnected
the charger from the electrical line and we detected that the transmission rate slowly
increased up to 87 Mbps again. The reason for this phenomenom is that the powerful
coding and modulation technique used in HomePlug AV is able to adapt the transmis-
sion speed according to the noise level generated by the electrical devices in order to
avoid the losses of packets.

The previous experiment has been repeated with other electronic devices. Table 1
represents the reduction of the capacity of the network for every device. Among the
most usual devices the mobile charger and energy efficient light bulb are the noisiest.
On the other hand, a simple extension lead (without any connected devices) reduces the
capacity to 72 Mbps.

These sudden data rate variations cause a poor behaviour of the TCP protocol, as it
defines most of its parameters according to the RTT value. This is one the the facts that
make us think that the use of rateless codes for reliable data transmission over HPAV
networks may be advantageous as opposed to TCP.

4.2 Evaluation of the Contention-Based Service of the MAC Layer

As it was previously introduced, the HomePlug AV MAC layer offers a contention
service based on CSMA/CA. In packet communication networks, contention is a media

Rateless Codes for Reliable Data Transmission 187

Table 1. Channel capacity with different electrical devices connected to the power line. 95%
confidence intervals.

Device Channel capacity [Mbps]

Without noise 86.921 ± 0.131

Mobile phone charger 60.600 ± 0.458

Laptop 84.045 ± 0.253

Wishk 82.236 ± 0.824

Heater 83.884 ± 0.142

Multimedia hard disk 86.379 ± 0.229

PC screen 76.303 ± 0.141

Electric heater 59.061 ± 0.780

Reading lamp 79.519 ± 0.118

Extension lead 72.106 ± 0.125

Energy efficient light bulb 57.058 ± 0.726

Table 2. Proportion of lost packets in UDP connections

File size [MB] Losses [%]
1 0
2 16.66
3 36.5
4 38.17
5 30.84
6 40.77
8 34.73

10 41.45
15 37.25
20 37.73

access method that is used to share a broadcast medium. In this method all the hosts
connected to the medium compete in order to transmit to the broadcast medium and they
can only do that when the channel is “idle”. In order to evaluate this characteristic of
HomePlug networks, in our next experiment we establish three simultaneous (compete
against one another) file transmissions using UDP connections, and we evaluate the
performance of one of them. The size of the transmitted file varies from 1 up to 20
Mbytes and the distance between the PLC devices of the measured connection is about
45 meters. This is aproximately the longest distance between two PLC devices in a real
in-home scenario (worse case). The most remarkable result is the big proportion of lost
packets, represented in Table 2. It means that the UDP receiver is not able to receive
the full files. These losses are mainly due to the buffer overflow at the PLC interface
because the incoming packet rate is greater than the outgoing rate at which CSMA/CA
can transmit packets. Therefore, in this environment the use of UDP applications which
do not implement any flow control is not recommended for reliable data transmission.

188 J.P. Muñoz-Gea et al.

4.3 Online Codes for Reliable Data Transmission

In order to avoid the losses of packets in a contention environment, like a HomePlug
networks, there are two options: first, using a protocol that implements a flow control
mechanism, for example TCP (Transmission Control Protocol); second, using an ap-
plication that implements some kind of forward error correction, for example, the use
of Fountain codes. In the following experiments, we want to compare the performance
achieved by two file tranmission applications, one of them uses TCP as transport pro-
tocol, and the other one uses a kind of Fountain codes (concretely Online codes).

We used the scp program [9] as a TCP-based file transmission application. On the
other hand, in order to implement the application based on Online codes, we used the
Online Codes implementation available in [5]. UDP transmission capability has been
added to this implementation. In contrast with some real-time multimedia applications,
in a file transmission application the packet loss probability must be zero (i.e., the file
must be fully received). In order to achieve this with Online Codes, the decoding fail-
ure possibility must be eliminated. This is obtained by trying to decode the original
information for every received block. When the process fails, the receiver waits for the
next check block and it tries to decode it again. With this method the number of check
blocks that need to be decoded is a little bigger than (1+3ε)K , but the decoding failure
probability is zero.

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
[s

ec
s]

File Size [MB]

TCP
Online Codes

Fig. 3. Duration of TCP (scp) and Online Codes sessions in a noisy channel with two (back-
ground) data flows sharing the channel. The confidence interval has been set to 95%.

However, our application does not really decode the received blocks, it only deduces
whether the received packets are enough to decode the original file, and it finishes when
it has already received enough packets in order to decode it. This program implements
a “light decoding” process and it gives as a result the previous amount of packets. The
decoding mechanism can be implemented by another concurrent program, or it may be
performed when the previous program has finished, that is, when it has received the
necessary blocks to decode the original file. On the other hand, the packets can also be

Rateless Codes for Reliable Data Transmission 189

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
[s

ec
s]

File Size [MB]

TCP
Online Codes

Fig. 4. Duration of TCP (scp) and Online Codes sessions in a noisy channel with four (back-
ground) data flows sharing the channel. The confidence interval has been set to 95%.

stored in a coded way. This second option could be a good choice if the coded packets
are going to be retransmited (e.g. in a P2P network) or if a OS implements a facility
that is able to recognize this kind of coded files.

Both file transmission applications are evaluated in a contention scenario, with other
two simultaneous file transmission connections. The size of the transmitted file varies
from 1 up to 20 Mbytes. In this case, both applications are able to receive the full file
without errors. Therefore, in the evaluation we are going to compare them taking into
account the necessary time to receive the full file. The distance between the PLC devices
of the measured connection is about 45 meters, like in the UDP scenario. Fig. 3 shows
the average duration of the scp and Online Codes sessions, extracted from 5 different
sessions. In addition, the figure also represents the 95% confidence interval. The first
result that can be concluded from the previous figure is that the Online Codes sessions
are always faster than the scp sessions. In addition, the increase of the scp sessions
with respect to the Online Codes sessions is approximately constant and equal to 1
second, though for big files this increment increases up to 2 seconds. Therefore, we can
draw that in a contention scenario the performance achieved by an Online Codes-based
file transmission application is better than the performance achieved by a TCP-based
file transmission application. Although not represented, we have also tested the FTP
protocol, which also uses TCP as transport protocol. In this case, the sessions duration
are always higher than with scp, and therefore the difference between the Online Codes
application and FTP is also higher.

Next, both file transmission applications are evaluated again in a contention scenario,
but in this case, with four simultaneous file transmission connections. Fig. 4 shows the
average duration of the scp and Online Codes sessions, extracted again from 5 different
sessions, and the associated 95% confidence interval. In this scenario, the Online Codes
sessions are also faster than the scp sessions. However, in this case the increase of the
scp sessions with respect to the Online Codes sessions is higher than in the previous

190 J.P. Muñoz-Gea et al.

scenario, approximately equal to 2 second, and for big files this increment increases up
to 4 seconds. On the other hand, if we compare these results with those presented in
Fig. 3, we can observe that the increase of simultaneous file transmission connections
causes an increase in the length of the sessions. This result is absolutely obvious because
in this case the broadcast medium has to be shared by a bigger number of users.

As a conclusion, in multiple access networks (like in-home PLC based networks),
the access control mechanism produces losses in unidirectional (like UDP) transmis-
sions. In these cases, it is necessary to add some type of flow control (e.g. using TCP
as transport protocol), or implementing some kind of forward error correction, for ex-
ample, the use of Online Codes. We have compared the session lengths of a TCP file
transmission application and an Online Codes based application, and we have extracted
that the Online Codes sessions are always faster than the TCP sessions. Therefore, we
have proved that in contention scenarios the performance achieved by Online Codes is
better than the performance achieved by a TCP-based file transmission application.

5 Conclusions

Online Codes must be mainly used when the network or the application is unidirectional
(broadcast-TV, satellite, IP live-TV, etc.) or in applications that cannot directly use TCP
(like Application Layer Multicast). However, in a multiple access in-home network
(HPAV, wireless 802.11, PhonePNA, etc.) the Online Codes are a good alternative to
TCP for reliable data transmission.

Acknowledgements. This research has been supported by project grant TEC2010-
21405-C02-02/TCM (CALM) and it is also developed in the framework of “Programa
de Ayudas a Grupos de Excelencia de la Región de Murcia, de la Fundación Séneca,
Agencia de Ciencia y Tecnologı́a de la RM (Plan Regional de Ciencia y Tecnologı́a
2007/2010)”. Pedro José Piñero-Escuer also thanks “Fundación Séneca” for a Séneca
Program FPI pre-doctoral fellowship (Exp. 13251/FPI/09).

References

1. Afkhamie, K.H., Katar, S., Yonge, L., Newman, R.: An overview of the upcoming homeplug
av standard. In: Proceedings of 2005 Internacional Symposium on Power Line Communica-
tions and its Applications (April 2005)

2. Cisco-linksys (2009), http://www.linksysbycisco.com/
3. Gigle semiconductor (2009), http://www.gigle.biz/
4. Homeplug certified products (2009), http://www.homeplug.org/kshowcase/

view
5. Implementation of online codes (2009), http://sourceforge.net/projects/

onlinecodes/
6. Jensen, B., Kjarsgaard, S.: Benchmarking and qos of in-house powerline equipment under

noisy conditions. In: Proceedings of 2007 Internacional Symposium on Power Line Commu-
nications and its Applications (April 2007)

Rateless Codes for Reliable Data Transmission 191

7. Luby, M.: Lt codes. In: Proceedings of the 43rd Annual IEEE Symposium on Foundations
of Computer Science, pp. 271–280 (2002), http://dx.doi.org/10.1109/SFCS.
2002.1181950

8. Maymounkov, P., Mazières, D.: Rateless codes and big downloads. In: Kaashoek, M.F., Sto-
ica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 247–255. Springer, Heidelberg (2003)

9. Scp - secure copy (2009), http://www.mkssoftware.com/docs/man1/scp.1.
asp

10. Shokrollahi, A.: Raptor codes. IEEE/ACM Trans. Netw. 14(SI), 2551–2567 (2006)

Replication Strategies for Business Objects in SOA

Michael Ameling1, Bernhard Wolf1, Thomas Springer2, and Alexander Schill2

1 SAP AG, SAP Research
Chemnitzer Str. 48, 01187 Dresden, Germany

2 Technische Universität Dresden
Nöthnitzer Str. 46, 01187 Dresden, Germany

{michael.ameling,b.wolf}@sap.com,
{thomas.springer,alexander.schill}@tu-dresden.de

Abstract. Business applications, e.g., enterprise resource planning, can be
hosted on distributed application servers within a multi-tier architecture. Business
objects (BOs) are used as data containers cached at the middle-tier. The applica-
tions are replicated to achieve scalability and fast local access for the clients.
Therefore, a synchronization of the BOs is mandatory to fulfill consistency re-
quirements. Following the service-oriented architecture the synchronization of
BOs through common services is time consuming and can be optimized. In this
paper, replication strategies are presented that allow for an efficient synchroniza-
tion of BOs based on profiles of BOs and of the hosting systems. A cost model
based on an experimental evaluation allows to find the proper strategy. An initial
configuration of the synchronization strategy can be adapted during runtime uti-
lizing continuously updated profiles.

Keywords: Replication, Synchronization, Business object, Web service, SOA,
Application server.

1 Introduction

Recent software solutions for mid-size companies provide functionalities of typical
business applications e.g., Customer Relationship Management (CRM), Project Man-
agement (PM) and Supply Chain Management (SCM). Applications are hosted typ-
ically on application servers within a multi-tier architecture which allows resource
sharing and thin client support. However, the number of clients can be very high. High
activity of users can lead to low performance of the applications. Furthermore, clients
can be globally distributed which results in long latencies.

Replication is a solution to achieve scalability and provide fast local access. Several
instances of business applications can be hosted at one application server or might even
be replicated across different application servers. Since the replicated data within the
applications has to be up-to-date and consistent replica control is strongly required.

Common solutions provide replication at the database level where replica control
has been investigated very well over the last two decades. However, data containers
in business applications are large and complex business objects (BOs). The BOs pro-
vide services to be read, created, modified and deleted. They are involved in business

J. Cordeiro, A. Ranchordas, and B. Shishkov (Eds.): ICSOFT 2009, CCIS 50, pp. 192–204, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Replication Strategies for Business Objects in SOA 193

Table 1. Trade-Off Full Copy vs. Delta

Case Sender Network Receiver

I. copy full BO transfer copy replace BO

II. process delta transfer delta integrate delta

processes and link to other BOs. Especially, data belonging to one BO is usually dis-
tributed over multiple database tables. Read and write access is provided by services
and always executed in the context of business operations. A replication at database
level has to operate on its schema specifications only, without any assumption about the
application context the data is changed in. This results in a loss of application knowl-
edge and the separate handling of information that belongs together. Furthermore, the
application servers do not necessary access the same database type at the persistence
layer. Therefore, the replication of BOs at application level is aimed where the applica-
tion context can be considered and existing services can be used. The synchronization
of BOs is time consuming since BOs are complex data containers to be processed and
their size leads to a large data volume to be transferred. A synchronization always takes
place from the changed BO at the primary (called sender) to the replicated BO at the
secondary (called receiver). The replication strategy has to be carefully selected. In ex-
ample the trade-off either to send the full copy or the delta of a changed BO has to be
found. The two cases are listed in Table 1. In Case I, copying the BO at the sender and a
replacement at receiver side is not very time consuming. On the other hand, a message
including a full copy results in long transfer time. In Case II, the sending of a delta
means additional effort at sender and receiver for processing the delta of the BO and in-
tegrating the changes. However, this way the message size can be reduced significantly,
if just a subset of the BO data has been changed. Therefore, transfer time can be saved
compared to case I.

Our solution focuses on an adaptive synchronization for BOs at the middle-tier to
support an efficient update process for replicated BOs. We consider a primary copy ap-
proach where write access is only granted to one master BO. We introduce a profiling
of BOs and a profiling of the system environment to achieve an efficient synchronization
process exploiting knowledge about the BO structure and application level context of
change. In order to achieve efficiency we provide a cost model based on a BO model
used for profiling of BOs and a system model used for profiling of the system environ-
ment. In Fig. 1 the conceptual steps of our approach are depicted. The first step (1) is
the profiling of BOs based on the BO model. BO instances are profiled individually. The
second step (2) is the determination of system parameters. The profile of each system
is stored persistently as well. The third step (3) is the execution of the cost model where
the BO profiles and system profiles are used to determine the costs for the synchroniza-
tion processes based on our cost model. In step four (4) the result of step three can be
used to choose and configure the replication strategy to achieve an efficient replication
process. Since BOs are changing, BO and system profiles have to be updated and repli-
cation parameters have to be adjusted accordingly. Step (5) performs an adaptation of
replication parameters during runtime.

194 M. Ameling et al.

Fig. 1. System Support for Efficient Synchronization of Business Objects

The rest of the paper is organized as follows: In Section 2 the synchronization of BOs
in SOA is described in detail. It is followed by related work in Section 3. Afterwards,
we follow the conceptual steps in separate sections as depicted in Fig. 1: profiling of
BOs in Section 4, determination of system parameters in Section 5, execution of cost
model in Section 6 and the selection of the replication strategy in Section 7. In Section
8 a short conclusion and outlook is given.

2 Synchronization of Business Objects in SOA

According to a multi-tier architecture the application logic is executed at the middle-tier.
At this tier, BOs are instantiated and cached for local access and efficient processing.
This set-up allows implementing agents watching BOs for changes. A change pointer
which references changed BOs is advisable since agents slow down the response time
for clients. However, synchronization agents at sender and receiver include the replica
control observing the BOs for changes, assembling synchronization messages and inte-
grating the changes. Following a service-oriented architecture (SOA) the business logic
of the applications is exposed through well defined interfaces. The same applies for
replication processes such as the synchronization of BOs. At application level Web Ser-
vices [17] are used to send synchronization messages via the network.

In widely distributed systems the lazy primary copy approach is often used [1].
Primary copy performs well for read intensive applications and simplifies concurrency
control [6]. Modifications can be performed on BOs at the primary (master) only. Sec-
ondaries have to pass changes to the primary. The goal is to keep all BOs consistent.
We assume that all BOs at secondaries have the same state. Therefore, the same syn-
chronization message is sent to all secondaries (receivers).

Summarized, the synchronization of BOs in SOA can be distinguished in processes
taking place at the sender, the transport of the synchronization message and the pro-
cesses taking place at the receiver. A confirmation message is not mandatory within
an optimistic approach and therefore not considered. In Fig. 2 a time based division in
sender (TS), network (TN) and receiver (TR) is depicted. TS concludes the time for all
processes at the sender. It starts once the transaction of a client is committed and the
BO B was changed to BO B∗. It ends when the synchronization message is assembled

Replication Strategies for Business Objects in SOA 195

Fig. 2. Synchronization Process

and passed to the infrastructure. TN concludes the time for the transport of the synchro-
nization message. Several receivers can be addressed in parallel. Therefore, the longest
transport time is relevant to reach consistency of the complete system. TR concludes the
time for processing the message and updating the BO B′ to (B∗)′ at one receiver. The
synchronization process is finished when all replicas have the same state as the primary.

3 Related Work

The synchronization of BOs requires an understanding of replica control at application
level. We took advantage of the replication strategies well known for databases ([11],
[12], [15]). Approaches implementing a replication at the middle-tier are Middel-R [9],
Ganymed [14] and CORBA ([10], [7]) but mainly focus on one single algorithm or the
replicated application servers share one single database. The introduced primary copy
approach is used in research solutions [5], [4] as well as industrial solutions such as
JBoss and WebSphere since it performs well for read intensive applications. Most ap-
proaches are primarily designed to achieve fault-tolerance ([18]). The only approaches
mainly focusing on the replication of BOs are [16] and [13] but use specific algorithms.
In [2] a cost model for an efficient BO replication was introduced which is included
in the proposed solution. Furthermore, a framework for simulating the configuration of
different replication strategies was introduced in [2].

4 Profiling Business Objects

The schema of a BO defines which elements belong to a BO, where they are placed
and which elements are mandatory or optional. The choice of optional elements and
cardinalities do not allow determining BO structure. In the following a BO model is in-
troduced that allows a profiling of the structure and further parameters of BO instances.

4.1 Business Object Model

The BO model defines the parameters used for profiling BOs. It covers the parameters
that influence the synchronization process. In combination with the cost model a rec-
ommendation for the configuration of replication strategies can be provided. In [2] we
introduced a cost model for an efficient BO replication based on the structure of BOs.
Therefore, we defined a structure model for BOs. The following BO model includes the

196 M. Ameling et al.

structure model as one parameter set. Further parameters are completeness, access ratio
and occurrences of BOs. An introduction of all BO model parameters follows.

The structure of BOs allows to determine processing times for BOs at sender and
receiver side. A determination on processing times based on the size of BOs only is not
possible since the structure has significant influence on the overall synchronization time
[2]. The structure model includes the number of elements, their size, and their position
within the BO. Therefore, TS and TR based on the data of synchronization messages
can be provided.

The completeness expresses the use of mandatory elements according to the schema.
Therefore, empty values and non used elements can be identified. Since optional ele-
ments and cardinalities increase the use of elements an additional value for complete-
ness including optional elements and cardinalities has to be profiled as well.

The access to BOs by client applications plays a significant role for the synchro-
nization process. Read access affects priority of synchronization of BOs. A small read
ratio might be prioritized as low. Synchronization of often read BOs can be defined
with higher priority. On the other hand, the write ratio has influence on the amount of
synchronization messages. Each write implicates a change which results in a need for
synchronization.

The value occurrences indicates the number of BO instances existing within a sys-
tem. It is the only value not related to one BO instance but to BO classes. It has influence
on e.g., the number of messages to expect.

Finally, all the introduced parameters compose the BO model which is the founda-
tion for BO profiling. Each profile of a BO holds all parameters of the BO model. An
example profile is given in Table 2.

4.2 Profiling of Business Object Instances

BO instances are profiled to get the structure model parameters. The other parameters
of the BO model are only determinable from BO instances as well.

In Table 2 an example of a Sales Order profile is given. A selection of structure model
parameters [2] are listed: N - number of nodes, L - number of levels, K - number of
attributes, Λ - maximum number of positions, W - size of all attributes in bytes, V - total
size of leaf nodes, F - number of links, and a selection of Nl - number of nodes at level
l. Furthermore, values for the size of the complete BO, the completeness (incl. optional
elements and cardinalities in parentheses), read ratio, write ratio and occurrences are
listed.

The profiling of the BO’s structure can be done for all BOs right after the instanti-
ation of the BO. During runtime profiles have to be updated when BOs were changed.
The time for updating profiles can be ignored for write operations. The Algorithm 1
describes how to create a structure profile for a node. Algorithm can be used iteratively
to get a complete structure profile of a node. The parameters for number of nodes (N),
levels (L), attributes (K) and links (F) are collected. The size of attributes (W) and
values (V) are determined as well. Furthermore, the parameters for certain nodes, po-
sitions and levels have to be collected. Therefore, the indexes l (level), n (node) and λ
(position in a node) are used.

Replication Strategies for Business Objects in SOA 197

Table 2. Example Sales Order Profile

STRUCTURE

N L K Λ W V F ...

865 27 1, 345 27 899, 455 13 12 ...

N1 N2 N3 N4 N5 N6 N7 ...

3 12 43 23 44 33 12 23

SIZE 380.233 Byte

COMPLETENESS 63% (391%)

ACCESS

read ratio 3.78 h−1 write ratio 1.18 h−1

OCCURRENCES 589, 333

Algorithm 1. getProfile(nodes, level) determination of profile parameters

Require: node n, level l
1: N + +; Nl + +;
2: if node contains attributes then
3: λ = 0;
4: for all attribute k do
5: K + +; Kl + +; Kn + +; Kλ + +; λ + +;
6: W = W + W (k); Wl = Wl + W (k);
7: Wn = Wn + W (k); Wn,λ = Wn,λ + W (k);
8: end for
9: end if

10: if node contains sub nodes then
11: if L < l + 1 then
12: L + +;
13: end if
14: for all sub node u do
15: getProfile(u, l + 1);
16: end for
17: else if node has value then
18: V = V + V (v); Vl = Vl + V (v); Vn = Vn + V (v);
19: if value is a link then
20: F + +; Fl + +;
21: end if
22: end if

The update of the structure profile works similarly. Adding and deleting of elements
increases and decreases parameter values. Modification of elements only affects the
parameters for size of elements. The read ratio is logged during system operation. The
write ratio can be determined from timestamps and versioning of BOs. We assume that
the schema of a BO is available. Therefore, the completeness can be determined with a
comparison of the structure profile and the BO schema.

198 M. Ameling et al.

4.3 Business Object Analysis Tool

The profiling of BOs can be done within the application or as a loosely coupled service.
We developed a Business Object Analysis Tool (BOAT) that provides profiling as a
Web Services. BOs can be sent as XML documents in the request. The response is a
BO profile.

BOAT allows to group profiles. Therefore, it is possible to make general assumptions
about BOs. In example profiles can be grouped by a BO type or even for a specific
domain. A user interface providing chart views is implemented. The schemas of BOs
are stored in a repository to allow a comparison and to determine the completeness.

Fig. 3. Business Object Analysis Tool

In Fig. 3 the scenario for profiling BOs from an application including the architec-
ture of BOAT is depicted. The applications allow requesting BOs through services (a)
(1). The services (b) provided by the BOs (B1, B2, B3) themself are used to get full
copies (2) and finally return the BO instances. The BOs can be stored locally at any ap-
plication. BOAT provides the Web Service (c) to profile BOs (4). Once the Web Service
is called the BO document is processed (5) and an analysis is done (6). The result in
form of a profile is stored persistently (7). The response of the Web Service (c) includes
the profile. BOAT provides a user interfaces which allows e.g., a statistical analysis of
profiles as mentioned above.

5 Determination of System Parameters

5.1 System Model

The system model provides the parameters describing the costs for a single process for
synchronization. In Fig. 2 we already divided a BOs synchronization into processes at
sender, network and receivers. For simplification we assume that each receiver behaves
equally.

At the sender the parameters for identifying changes, parse the BO and message as-
sembling are crucial. The first parameter describes the time an agent needs to compare
a new version of a BO with the previous version of that BO until all changes are identi-
fied. The parsing of the BO can be determined by single parameters for processing each
element of a BO. The parameters for the processing time for a node a, of an attribute b,

Replication Strategies for Business Objects in SOA 199

Table 3. Example System Profile

SENDER

al in ns bλ in ns c in ms d in ms e in ns

43.53 l 47.596 λ 106.24 145.87 90.684

TRANSPORT

BW in MBit/s LW in ns RF

5.443 127 12

RECEIVER

al in ns bλ in ns c in ms d in ms e in ns

21.765 l 23.798 λ 58.119 72.934 45.342

of a Byte of an attribute value c, of a Byte of an node value d and for resolving a link e
are used. Further parameters are for identifying changes and message assembling e.g.,
creation of a SOAP message.

For the transport process we use the bandwidth BW and latency LW as system model
parameters as introduced in [1]. Additionally the replication factor RF is one parameter
which describes the number of receivers to be addressed.

At the receiver the parameters for the processing time of the message has to be de-
fined. Parameters for the parsing of the received synchronization message are the pro-
cessing time for a node, attribute, etc. Since changes have to be integrated the parameter
for this step has to be defined as well.

A higher granularity for the processes at sender and receiver side exists but is not
focus in this paper. Additional processes during synchronization require further param-
eters. In example a process for security check can be added which requires an additional
parameter. However, since the single process steps for a synchronization are executed
sequentially parameters can be added easily.

5.2 Parameter Determination

The parameter determination to provide a system profile can be done before operational
mode. A profile includes the costs for processes at sender and receiver. The transport
parameters are included as well.

The determination of the parsing parameters was done in an experimental evalua-
tion. In Table 3 an example of a system profile with a selection of parameters is given.
Synchronization process steps at sender and receiver side have to be measured during
execution. The bandwidth and latency for transportation of synchronization messages
have to be determined by sending normalized messages.

In the sender profile the parameters for the processing time of a node in dependency
of the level al, the processing time for an attribute in dependency of the position within
a node bλ and the other determined parameters are listed. We determined the param-
eters by measuring BO documents that were individually created. This way, we were
able to solely modify the number of one type of element. Afterwards, we measured the

200 M. Ameling et al.

Fig. 4. System Profiling

processing time of each created BO document and were able to determine each pa-
rameter. Since different parsers are possible a comparison of different implementations
parsers was done. The implementation also affects the dependency of the processing
time on the structure. The listed result just present one set of the results but validate that
we are able to determine the parameters with our solution.

The determination of the system profile can be done with an experimental setup
which is detailed described in [2] and [3]. In Fig. 4 the measurements for increasing the
number of nodes f(al), the number of attributes f(bλ), the size of attribute values f(c),
and size of node f(d) are depicted. The intersection with the ordinate is the value for
processing a BO without content. The method of least squares allows determining func-
tions out of the discrete measurements. In this way e.g., a function for the processing
time of a node in dependency of the level f(al) can be determined. The function f(c)
shows a linear increase for an linear increase of the attribute value. The slope exactly
reflects the processing time of a Byte of an attribute value (parameter c). In Table 3 the
results of the experiments for the parameter determination are listed.

6 Execution of Cost Model

In the previous sections the BO and the system model were introduced. The models are
used for profiling BOs and the systems used in the replicated environment. In [2] the
part of the cost model for determining the parsing time of BOs was introduced. It uses
the structure parameters of the BO profile. The following equation enables to calculate
the processing at the sender side:

TS = Toffset +
L∑

l=0
(Nl × al) +

Kn∑
λ=1

(Kλ × bλ) + W × c + V × d + F × e

The defined cost model presents a sum of the time needed for all process steps for
one synchronization of a changed BO. The lazy primary copy approach for replica-
tion is used. Therefore, we consider the synchronization from a master to the replicas.

Replication Strategies for Business Objects in SOA 201

However, our cost model does also apply for the use of other replication strategies. In
example, a termination strategy does require an additional confirmation message result-
ing in additional message assembling at receiver side, an additional transport of that
message and a processing at the sender. A switch to the update every approach can
be covered [6]. Additional process steps can be easily inserted into the sequence of
synchronization process steps. A comparison between different replication strategies is
planned for future work. The current focus is the configuration of the currently used
replication strategy.

The validation of the cost model was done experimentally with the use of dumps of
BOs. BOAT was used to do a profiling of BOs. To avoid an implementation within a live
system the replication environment introduced in [2] was used. Therefore, we were able
to determine processing time of BOs and to simulate a synchronization of changed BOs.
The determination of read and write ratio usually requires a comprehensive observation
of representative applications.

7 Selection of Replication Strategy

The cost model including profiling is used to support an efficient configuration of the
synchronization process. The following two examples for the selection of the replication
strategy are given: the sending of a full copy of a BO verses the sending of the delta
(amount of changes between two different BO versions) and the bulking of BO changes.
Both strategies can be combined.

7.1 Full Copy vs. Delta

To reach more efficiency the time efforts for case I and case II have to to be compared
(Table 1) to choose the most beneficial. Therefore, the processing times TP and the
transfer times TN for both cases have to be determined. The processing time TP sum-
marizes the process steps of the synchronization at the sender (TS) and at receiver (TR).
All values for case I (TP (full), TN(full)) and case II (TP (delta), TN (delta)) can be
determined with the introduced cost model based on profiling.

The decision either to use case I or case II depends on the trade-off between the time
that can be saved at transfer (ΔTN) and the additional effort for processing (ΔTP). In
Fig. 5 a method to describe the trade-off and to find the break-even-point to switch
between the replication strategy is depicted. The method considers the relative size of
the delta compared to the full size of the BO. The function ΔTP (delta) defines the
processing time that can be saved sending a full copy (case I) where ΔTP (delta) =
TP (delta)− TP (full). The function ΔTN(delta) defines the transfer time that can be
saved sending a delta message (case II) where ΔTN (delta) = TN (full)−TN(delta).
For simplification we assume that the used BO has a fixed size. Therefore, both func-
tions depend only on the size of the delta since the size of a full copy is constant if no
additional elements are added to the BO (TN (full) = const.).

The function ΔTN(delta) decreases with a larger delta size since less transfer time
can be saved sending a delta message. The intersection with the ordinate is the transfer
time of a full copy ΔTN (0) = TN (full). It equals the maximum transfer time that can

202 M. Ameling et al.

Fig. 5. Decision Model

be saved. No time can be saved when the delta equals a full copy (ΔTN(100%) = 0).
The function ΔTP (delta) lightly increases since a larger delta results in more ef-
fort for processing in case II. The intersection with the ordinate is the processing
time for an empty delta message (TP (delta)). Finally, the intersection of the func-
tions ΔTN (delta) and ΔTP (delta) equals the delta value to switch between the two
cases. If the saved transfer time ΔTN (delta) sending a delta exceeds the saved addi-
tional effort ΔTP (delta) sending a full copy then case II is more efficient (case II:
ΔTN (delta) > ΔTP (delta) - left side). Visa versa case I is used if ΔTP (delta) ex-
ceeds ΔTN (delta) (case I: ΔTP (delta) ≥ ΔTN (delta) - right side).

The previous example was given for one BO with a fixed size. The method to find
the trade-off considers the relative delta. The structure of the BO was fixed and is re-
flected in the cost model. Let’s assume another BO with a smaller size is changed. For
simplification the function for the saved processing time ΔTP (delta) does not change
due to e.g., more complex structure. The smaller size of the BO results in a decrease
of TN (full). The function ΔTN (delta) is below the previous function (gray line in
Fig. 5). Finally, the intersections of the functions ΔTP (delta) and ΔTN (delta) moves
to a smaller delta resulting in an earlier switch from case II to case I. The introduced
cost model and the profiling allow predicting both functions for any BO. Finally, we are
able to decide either to send immediately a full copy or a delta message for each BO
based on the size of the delta and the structure of the BO.

7.2 Bulking

A high write ratio of BOs causes frequent synchronization messages which can result in
high network traffic. Consistency constraints allow that not synchronized BOs are still
valid for e.g., a certain amount of time. Therefore, several changes can be bundled in
one message. The so called bulking enables to reduce the traffic and the overhead that is
needed for each single message. The cost model allows predicting the time needed for
a synchronization process. Therefore, we are able to determine the latest possible point
in time to send the synchronization message for a certain change. Currently bulking of
delta messages containing independent changes is considered, i.e. no change will be
overwritten. Full-copy update messages and overlapping changes are already examined
but not described in this paper.

In [8] coherency predicates for consistency are introduced. These are version dis-
tance, value divergence and temporal distance. The predicates define if a BO replica is

Replication Strategies for Business Objects in SOA 203

still valid after a master was changed. The distance between the BO versions, the differ-
ences of the BO content or just a certain amount of time must not exceeded. The bulk-
ing of changes results in a delay for synchronization messages. Therefore, the temporal
distance Δt for the replicas is crucial. It must not be exceeded to fulfill the consistency
constraints.

Fig. 6. Delay of Synchronization Message

For simplification we assume that Δt is constant for all BOs. The temporal distance
defines the maximum time until a change of a BO has to be incorporated at all replicas.
In Fig. 6 three changes of a BO at random time are depicted. The version of the BO
changes from V0 to V1 to V2 to V3. The changes are committed at the times t1, t2
and t3. Once a change was committed the temporal distance for each change must not
exceed t1 + Δt for V1, t2 + Δt for V2, and t3 + Δt for V3.

The assembling and disassembling of the message header and the transfer of the
overhead is necessary for each message and takes a fixed amount of time TOffset

(called offset). In Fig. 6 the bulking of the changes of V1 and V2 is depicted. Both
changes are included in one synchronization message. Due to the temporal consistency
restriction the time t1 +Δt must not exceeded. Therefore, we have to consider the time
that is needed to process and transfer the message. Additionally to TOffset the times for
processing the synchronization message of the first change TP,1 as well as the transfer
time TN,1 are necessary. The times for the second change are TP,2 and TN,2. An addi-
tional offset for the second change is not necessary because it is sent within the same
synchronization message. All values can be determined with the help of the cost model.
The synchronization message can sent at the latest at (t1 + Δt) − (TOffset + TP,1 +
TN,1 + TP,2 + TN,2) which equals t4.

In the example, the third change at t3 cannot be included in the same synchronization
message. The sum of all processing times TP,1, TP,2, TP,3, all transfer times TN,1, TN,2,
TN,3 and the offset exceeds the time left between t3 and t1 + Δt. Bulking all three
changes in on synchronization message violates the temporal distance Δt for the first
change V1.

8 Conclusions

This paper discusses an approach for adaptive synchronization of business objects repli-
cated at the middle-tier. We introduced a profiling for BOs and system parameters. Pro-
filing allows determining the processing and transfer costs for the synchronization. The

204 M. Ameling et al.

sending of full copies of BOs or delta synchronization messages as well as temporal
consistency constraints are considered. A cost model based on an experimental evalua-
tion allows configuring the used replication strategy to achieve an efficient synchroniza-
tion. A validation was done by profiling real BO instances and the implementation of
a simulation environment. The introduced approach of adaptive synchronization is ap-
plicable for an initial configuration of the replication strategy for BOs and an adaption
during runtime.

References

1. Ameling, M., Roy, M., Kemme, B.: Replication in service oriented architectures. In: IC-
SOFT, pp. 103–110 (2008)

2. Ameling, M., Wolf, B., Armendariz-Inigo, J.E., Schill, A.: A cost model for efficient business
object replication. In: AINA Workshops 2009, pp. 304–309 (2009)

3. Ameling, M., Wolf, B., Springer, T., Schill, A.: Experimental evaluation of processing time
for synchronizatioin of xml-based business objects. In: Bhowmick, S.S., Küng, J., Wagner,
R. (eds.) DEXA 2009. LNCS, vol. 5690, pp. 255–265. Springer, Heidelberg (2009)

4. Barga, R., Lomet, D., Weikum, G.: Recovery guarantees for general multi-tier applications.
In: ICDE (2002)

5. Felber, P., Narasimhan, P.: Reconciling replication and transactions for the end-to-end relia-
bility of CORBA applications. In: (DOA) (2002)

6. Gray, J., Helland, P., O’Neil, P., Shasha, D.: The dangers of replication and a solution. In:
SIGMOD, pp. 173–182 (1996)

7. Killijian, M.-O., Fabre, J.C.: Implementing a reflective fault-tolerant CORBA system. In:
SRDS (2000)

8. Lenz, R.: Adaptive distributed data management with weak consistent replicated data. In:
SAC 1996, pp. 178–185. ACM, New York (1996)

9. Marta Pati, N.-M., Jiménez-Peris, R., Kemme, B., Alonso, G.: Middle-r: Consistent database
replication at the middleware level. ACM Trans. Comput. Syst. 23, 375–423 (2005)

10. Othman, O., O’Ryan, C., Schmidt, D.C.: Strategies for CORBA middleware-based load bal-
ancing. In: IEEE Distributed Systems (2001),
http://www.computer.org/dsonline

11. Pacitti, E., Minet, P., Simon, E.: Fast algorithm for maintaining replica consistency in lazy
master replicated databases. In: VLDB, pp. 126–137 (1999)

12. Pedone, F., Guerraoui, R., Schiper, A.: The database state machine approach. Distributed and
Parallel Databases 14(1), 71–98 (2003)

13. Perez-Sorrosal, F., Patiño-Martı́nez, M., Jiménez-Peris, R., Kemme, B.: Consistent and scal-
able cache replication for multi-tier j2ee applications. In: Cerqueira, R., Pasquale, F. (eds.)
Middleware 2007. LNCS, vol. 4834, pp. 328–347. Springer, Heidelberg (2007)

14. Plattner, C., Alonso, G.: Ganymed: Scalable replication for transactional web applications.
In: Jacobsen, H.-A. (ed.) Middleware 2004. LNCS, vol. 3231, pp. 155–174. Springer, Hei-
delberg (2004)

15. Plattner, C., Alonso, G., -Özsu, M.T.: Extending DBMSs with satellite databases. The VLDB
Journal (2007)

16. Salas, J., Perez-Sorrosal, F., Marta Pati, N.-M., Jiménez-Peris, R.: Ws-replication: a frame-
work for highly available web services. In: WWW (2006)

17. W3C. Web services (2002), http://www.w3.org/2002/ws/
18. Wu, H., Kemme, B.: Fault-tolerance for stateful application servers in the presence of ad-

vanced transactions patterns. In: (SRDS) (2005)

A Hybrid Approach for Database Replication: Finding
the Optimal Configuration between Update Everywhere

and Primary Copy Paradigms

M. Liroz-Gistau1, J.R. Juárez-Rodrı́guez1, J.E. Armendáriz-Íñigo1

J.R. González de Mendı́vil1, and F.D. Muñoz-Escoı́2

1 Dpto. de Ing. Matemática e Informática, Universidad Pública de Navarra
Campus de Arrosadı́a s/n, 31006 Pamplona, Spain

2 Instituto Tecnológico de Informática, Universidad Politéctinca de Valencia
Camino de Vera s/n, 46022 Valencia, Spain

{miguel.liroz,jr.juarez,enrique.armendariz,mendivil}@unavarra.es
fmunyoz@iti.upv.es

Abstract. Database replication has been subject of two different approaches,
namely primary copy and update everywhere protocols. The former only allows
performing update transactions in the primary replica, while the rest are only
used to execute read-only transactions. Update everywhere protocols, on the other
hand, allow the system to schedule update transactions in any replica, thus in-
creasing its capacity to deal with update intensive workloads and overcoming fail-
ures. However, synchronization costs augment and its throughput may fall below
the ones obtained by primary copy approaches. Under these circumstances, we
propose a new database replication paradigm, halfway between primary copy and
update everywhere approaches, which improve system’s performance by adapt-
ing its configuration depending on the workload submitted to the system. The core
of this approach is a deterministic replication protocol which propagate changes
so that broadcast transactions are never aborted. We also propose a recovery al-
gorithm to ensure fault tolerance.

1 Introduction

Database replication is considered as a joint venture between database and distributed
systems research communities. Each one pursues its own goals: performance improve-
ment and affording site failures, respectively. These issues bring up another important
question that is how different replicas are kept consistent, i.e. how these systems deal
with updates that modify the database state. During a user transaction lifetime it is a
must to decide in which replica and when to perform updates [8]. We focus on eager
solutions and study the different alternatives that exist according to where to perform
updates.

The primary copy approach allows only one replica to perform the updates [5,16].
Changes are propagated to the secondary replicas, which apply them in an ordered
fashion. Data consistency is trivially maintained since there is only one server executing
update transactions. Secondaries are just allowed to execute read-only transactions. This
approach is suitable for workloads dominated by read-only transactions, as it tends to

J. Cordeiro, A. Ranchordas, and B. Shishkov (Eds.): ICSOFT 2009, CCIS 50, pp. 205–217, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

206 M. Liroz-Gistau et al.

be in many modern web applications [5,16]. However, the primary replica represents
a bottleneck for the system when dealing with a large amount of update transactions
and, furthermore, it is a single point of failure. The opposite approach, called update-
everywhere [14,11], consists of allowing any replica to perform updates. In this way,
system’s availability is improved and failures can be tolerated. Performance may also be
increased, although a synchronization mechanism is necessary to keep data consistent.
This may suppose a significant overload in some configurations.

Several recent eager update-everywhere approaches [11,13,14,20] take advantage of
the total-order broadcast primitive [4]. Certification-based and weak-voting protocols
are the ones which obtain better results [19]. Among them, certification-based algo-
rithms decide the outcome of a transaction by means of a deterministic certification test,
mainly based on on a log of previous committed transactions [14,20,6]. On the contrary,
on weak-voting protocols the delegate replica decides the outcome of the transactions
and informs the rest of the replicas by sending a message in an additional round. In an
ideal replication system all message exchange should be performed in one round (as
in certification-based) and delivered writesets should be committed without storing a
redundant log (as it is done in weak-voting).

In this paper we propose a novel approach that circumvents the problems of the
primary-copy and update-everywhere approaches. Initially, a fixed number of primary
replicas is chosen and, depending on the workload, new primaries may be added or re-
moved by sending a special control message. A deterministic mechanism governs who
acts as the primary at a given time. Thus, at a given time slot, only those update trans-
actions coming from a given replica are allowed to commit: A primary replica applies
the writesets in order (aborting local conflicting transactions if necessary), and when
its turn arrives, local transactions waiting for commit are committed and their write-
sets broadcast to the rest of the replicas. This avoids the need of extra communication
rounds and the access to the log in order to certify transactions. Moreover, replicas con-
figuration can be modified dynamically both by changing the role of existing replicas
(turning a primary into a secondary or vice versa) or by adding new secondaries.

Fault tolerance issues are also treated in this work, since a recovery protocol is also
presented. This protocol guarantees that a (re)joining replica will recover its missed
state and then continue normal processing of transactions without the need of sev-
eral rounds to accelerate the process [12,17,18]. One of the most important features of
the replication protocol is that received remote transactions have always to be applied
without further verification. This is very attractive from the point of view of recovery
since it makes normal application of remote transactions as faster as the application of
missed transactions in the recovery process, avoiding the use of extra rounds to speed up
recovery.

If we assume that the underlying DBMS at each replica provides Snapshot
Isolation (SI) [2], the proposed protocol will provide Generalized SI [6,7] (GSI). The
rest of this paper is organized as follows: Section 2 depicts the system model. The
replication protocol is introduced in Section 3 and fault tolerance is discussed in Sec-
tion 4. Experimental evaluation is described in Section 5. Finally, conclusions end the
paper.

A Hybrid Approach for Database Replication 207

Determ. Scheduler

Primary Secondary Secondary Secondary Secondary

Determ. Scheduler Determ. Scheduler Determ. Scheduler Determ. Scheduler

Replica #1 Replica #3 Replica #4 Replica #5

Clients Clients Clients Clients Clients

1 1 1

Read-Only
Txns

Update
Txns

<rep_turn, <1, trs_list>>

Replica #2

1

Fig. 1. Startup configuration with one primary and main components of the system

2 System Model

We assume a partially synchronous distributed system where message propagation time
is unknown but bounded. The system consists of a group of sites M = (R0, ..., RM−1),
N primary replicas and M − N secondaries, which communicate by exchanging mes-
sages. Each site holds an autonomous DBMS providing SI that stores a physical copy of
the replicated database schema, i.e., we consider a full-replicated system. An instance
of the replication protocol is running on each replica over the DBMS. It is encapsu-
lated at a middleware layer that offers consistent views and a single system entry point
through a standard interface, such as JDBC. Middleware layer instances of different
sites communicate among them for replica control purposes.

A replica interacts with other replicas by means of a Group Communication Sys-
tem [4] (GCS) that provides two multicast primitives, reliable multicast and uniform
multicast; and a FIFO point-to-point channel between every pair of replicas. This GCS
includes also a membership service which monitors the set of participating replicas and
provides them with consistent notifications in case of failures, either real or suspected.
The service is provided by means of views, which represent the set of active and con-
nected process at a particular moment. Changes on those sets are notified through view
change events. Sites may only fail by crashing, i.e., Byzantine failures are excluded.
They may later recover and rejoin the system, triggering a recovery procedure whose
aim its to apply the missed state.

The membership service runs under the virtual synchrony model [3,4] with the send-
ing view delivery [4] and primary-partition properties. In order to simplify the recovery
procedure [12,10], we consider an extension based on the enriched virtual synchrony
model [1]. Views processes are grouped in three different subviews: pr sv, which
comprises all primary replicas; sec sv which includes all secondaries; and rec sv,
containing the rest of processes, which are recovering from a failure. Changes in the
composition of views are triggered by the GCS, while changes in the compositions of
subviews within a given view are requested by one of its processes.

208 M. Liroz-Gistau et al.

Clients access to the system through their delegate replicas to issue transactions. The
way the delegate replica is chosen depends on the transaction type. A transaction is com-
posed by a set of read and/or write operations ended either by a commit or an abort op-
eration. A transaction is said to be read-only if it does not contain write operations and
an update one, otherwise. Read-only transactions are directly executed (and committed,
without any further coordination) over primary or secondary replicas, while update ones
are forwarded to the primaries where their execution is coordinated by the replication
protocol.

3 Replication Protocol

3.1 Extending Primary-Copy Approach

In this paper, we extend the primary copy approach to improve its performance (mainly
increasing the capacity of handling a high number of updates) and its fault tolerance.
This new approach allows different replicas to be primaries alternatively (and hence to
execute updates) during given periods of time by means of a deterministic protocol. As
pointed out before, this protocol follows at each replica (primary or secondary) the most
straightforward scheduling policy: at a given slot, only those writesets coming from a
given primary replica are allowed to commit. In the primaries, other conflicting local
concurrent transactions should be aborted to permit those writesets to commit [15]. Sec-
ondary replicas do not raise this problem since they are not allowed to execute update
transactions (read-only transactions do not conflict under SI).

3.2 Protocol Description

In the following, we explain the operation of the deterministic protocol executed by the
middleware at a primary replica Rk (Algorithm 1) Lines 9,10,29 and 30 are necessary
for the recovery protocol and will be explained later in Section 4. In a nutshell, it is a
replication protocol where replicas multicast their transactions in turns, so that it is en-
sured that when a transaction is sent it can be safely committed. Sites order themselves
in a circular sequence and multicast their transactions in an ordered fashion; hence, the
algorithm can be seen as a sort of round robin based protocol, where, at a given turn,
only one replica acts as a primary. However, the commit of transactions is decoupled
from its sending; in this way, the system is not limited by the throughput of the slower
site. Prior to the sending of a transaction, it is checked that it will not conflict with any
of the transactions that are pending to commit; hence, ensuring that the transaction will
not be aborted.

All operations of a transaction t are submitted to the middleware of its delegate
replica Rk. All except the commit request are simply forwarded to the DBMS for its
execution and their responses are sent back to the client (lines 2-3). When a com-
mit request is received, the protocol has to ensure that consistency and isolation are
maintained; thus, its execution is delayed. Since, under SI, read-only transactions never
cause conflicts; thus, they are straightforwardly committed (line 5). In the case of up-
date transactions, they are stored in trs to send for further propagation (line 6). Note

A Hybrid Approach for Database Replication 209

Algorithm 1. Replication
1: upon operation request op for t from local client
2: if op is SELECT, UPDATE, INSERT or DELETE then
3: execute operation and return to client
4: else if op is COMMIT then
5: if t’s writeset is empty then commit t and return to client
6: elseappend t to trs to send

7: upon receiving message 〈rep turn, 〈turn, trs list〉〉 from Rj

8: include 〈turn, trs list, Rj〉 in reorder
9: if turn > max rcv turn then update max rcv turn and max rcv turn site

10: if turn is the first turn after rejoining then set last turn to recover to turn

11: upon 〈last in pending + 1, trs list, Rj〉 is in reorder
12: append 〈last in pending + 1, trs list〉 to pending
13: remove 〈last in pending + 1, trs list, Rj〉 from reorder
14: increment last in pending
15: if Rj is my predecessor then
16: set my turn to true

17: upon my turn is true
18: remove from trs tosend transactions which conflict with others in pending
19: UniformMcast 〈rep turn, 〈last in pending + 1, trs to send〉〉
20: empty trs to send
21: set my turn to false

22: upon 〈turn, trs list〉 is the first in pending
23: for each transaction t ∈ trs list do
24: remove from trs to send and abort transactions which conflict with t
25: if t is local then
26: commit t and return to client
27: else
28: apply t and commit

29: store 〈turn, trs list〉 in the log
30: increment last applied turn
31: remove 〈turn, trs list〉 from pending

that for secondary replicas, only the first situation is possible; hence, there is no need to
maintain trs to send variable.

At a given time, only one process is allowed to multicast the transactions that have
requested commit. We refer to that process as turn master, and it acts as a primary
for that turn. Replicas send transactions in turns according to a predefined sequence;
in particular, primary replicas are ordered according to their identifiers and the list is
traversed in a circular way. Since there is no guarantee in the message ordering, the
processing of messages is divided into two steps. When the message is received (lines
7-10) it is first stored, together with its sender, in a special set, called reorder, which
acts as a reordering buffer. When holes are filled (lines 11-16), the messages can be
transferred to another queue, pending, which stores the received turns pending to be
applied in the database in an ordered fashion. Moreover, when that transfer takes place,
the replica checks whether it is the next one in the sequence of primaries (secondary

210 M. Liroz-Gistau et al.

replicas may skip this step). If so, it becomes the turn master and it can multicast trans-
actions in trs to send (lines 17-21). Each replica maintains both the list of primary and
secondary replicas that compose the system at each moment; therefore, it can determine
easily whether a given replica is its predecessor in the sequence.

Turns stored in pending queue are consumed asynchronously with respect to the
sending of messages (lines 22-31). For each transaction belonging to a given turn, firstly,
conflicting transactions in trs to send are removed and aborted. Next, if the transaction
is local, it is straightforwardly committed and the commit response is sent back to the
client. If, otherwise, the transaction is remote, its changes have to be previously applied
and then committed. If a DBMS with the first updater wins (e.g., PostgreSQL [9]) rule
is used, progress must be ensured by a block detection mechanism, as the one presented
in [15], which aborts all local conflicting transactions that may be blocking the remote
transactions. When a DBMS with the first committer wins rule is used, such an extension
is not necessary.

As it has been pointed out before, a specific feature of this protocol is that multicast
transactions are never aborted. Let us see how this property works. When a process is
allowed to multicast its transactions (line 19), it has already received all the transac-
tions that must be committed prior to them. These transactions are the only ones that
may cause the abort of the transactions being sent. The received transactions which
have been already committed have aborted in their commit process all local concur-
rent conflicting transactions (line 24). Moreover, local transactions which had already
requested their commit have been also removed from trs to send in that procedure.
Then, the transactions that have survived in trs to send might only be aborted by the
transactions that have been received but not committed yet. However, before local trans-
actions in trs to send are allowed to be multicast, a sort of small certification is made
and the ones that conflict with the received transactions that are pending to be commit-
ted (those in pending) are also removed from trs to send (line 18). That ensures that
the transactions that are finally multicast are never going to be aborted.

3.3 Dynamic Load-Aware Replication Protocol

Initial system configuration sets the number of primary and secondary replicas which
compose the replicated system. However, this is not a fixed configuration. Our proto-
col may easily adapt itself dynamically to different transaction workloads by turning
primaries into secondaries and vice versa. This makes it possible to handle different
situations. Note that a great number of primary replicas increases the overhead of the
protocol, since delay between turns is increased and there are more update transactions
from other primary replicas that need to be locally applied. Therefore, it is clear that
this leads to higher response times of transactions.

This feature improves the system capacity to handle workloads predominated by
update transactions. On the other hand, increasing the number of secondary replicas
does not involve a major problem, since data consistency is trivially maintained in these
replicas as they are only allowed to execute read-only transactions. Thus, this improves
the system capacity to handle this type of transactions, although it does not enhance
the possibility of handling update ones or putting up with failures of a single primary.
Therefore, the system performance is a trade-off between the number of primaries and

A Hybrid Approach for Database Replication 211

Determ. Scheduler

Primary Secondary Secondary Secondary Crashed

Determ. Scheduler Determ. Scheduler Determ. Scheduler Determ. Scheduler

Replica #1 Replica #3 Replica #4 Replica #5

Clients Clients Clients Clients Clients

Read-Only
Txns

Update
Txns

Replica #2

<view_change, <{1},{2,3,4},{5}>>

(a) A failed replica rejoins the system

Determ. Scheduler

Primary Secondary Secondary Secondary Recovering

Determ. Scheduler Determ. Scheduler Determ. Scheduler Determ. Scheduler

Replica #1 Replica #3 Replica #4 Replica #5

Clients Clients Clients Clients Clients

Read-Only
Txns

Update
Txns

Replica #2

<subview_change, <{1,2},{3,4},{5}>>

(b) A secondary replica becomes primary

Determ. Scheduler

Primary Secondary Secondary Recovering

Determ. Scheduler Determ. Scheduler Determ. Scheduler Determ. Scheduler

Replica #1 Replica #3 Replica #4 Replica #5

Clients Clients Clients Clients Clients

Read-Only
Txns

Update
Txns

Replica #2

<rep_turn, <1, trs_list>>

21 21 21 21 21

<rep_turn, <2, trs_list'>>

Primary

0

(c) The system continues processing with two primaries

Fig. 2. System reconfiguration

the number of secondaries, depending on the workload characteristics. This elasticity
ensures the most appropriate configuration for each moment in terms of resources and

212 M. Liroz-Gistau et al.

operational cost when compared to an under-utilized static system that over-provisions
for peak update load.

In this way, our protocol is able to elastically adapt itself to the particular behavior
of the workload processed in the replicated system. For this, we can think in a mon-
itoring process at a given primary replica. Every replica periodically sends messages
to this process that contains information about its load, i.e., the percentage of update
transactions (empty in the case of a secondary), the number of transactions processed
and other system usage parameters. The monitoring process aggregates this informa-
tion across the entire system over a period of time to infer the load characteristics. We
think that the simplest mechanism is to give a threshold to add, or respectively remove,
primaries in the system. Let us consider a set of replicas where one is the primary and
the others are secondaries, we can turn a secondary easily into a new primary in or-
der to handle better a workload where update transactions become predominant (see
Figure 2b-c). For this, it is only necessary that a primary replica request a change in
subview composition, so that the pr sv subview contain the new primary. When the
corresponding subview change is received, the selected replica will detect that it now
belongs to the set of primaries and act as one of them. In the same way, when the
workload becomes dominated by read-only transactions, we can turn a primary replica
into a secondary one through a similar process that updates the number of primaries
and removes the corresponding entry in the working queue at each replica of the sys-
tem. Finally, we would like to point out that the study and implementation of different
elasticity policies (apart from the threshold one) is not the aim of this paper and this
protocol simply provides the required mechanisms to reconfigure the system.

4 Fault Tolerance

In the system treated so far, replicas may fail, rejoin or new replicas may come to satisfy
some performance needs. The proposed approach deals also with these issues. In this
way, the protocol is extended with the actions presented in Algorithm 2, which com-
prises all tasks needed in case a replica fails, a replica recovers or the subviews compo-
sitions changes. Note that we differentiate regular view changes (lines 1-12) from the
view changes that take place within a given view because of variations on the composi-
tion of its subviews (lines 13-14).

When a replica fails, a view change is received and it is not included in the new
installed view. If the failed replica is the turn master, the next primary has to continue
the sequence of turns (lines 3-4). If, moreover, there are no primaries in the new view,
secondary replicas has to initiate a procedure by which some of them will promote to
primaries (lines 5-6). The liveness of the algorithm is ensured provided that there is a
primary view with at least one node up-to-date (either primary or secondary).

To perform the recovery procedure, it is necessary to store at each replica a log
indicating which turns have been already applied in the database. It is updated whenever
a replica applies and commits all transactions of a given turn (line 29 of Algorithm 1).
This log is persistent and its contents are maintained even if the replica fails.

When a replica (re)joins the system, it fires a view change that initiates a recovery
procedure. The recovering replica has to obtain the last applied turn from the log and

A Hybrid Approach for Database Replication 213

Algorithm 2. Recovery

1: upon receiving 〈view change, 〈pr sv, sec sv, rec sv〉〉
2: update primaries subview and secondaries subview
3: if I am primary and max recv turn site is my predecessor then
4: set my turn to true
5: else if I am secondary and all primaries have left then
6: start a procedure to elect a new set of primaries
7: else if I am recovering and recoverer has left then
8: ReliableMcast 〈rec request, 〈last applied turn, last turn to recover〉〉
9: else if I am new in view V then

10: get last applied turn from the log
11: set last turn to recover to unknown
12: ReliableMcast 〈rec request, 〈last applied turn, last turn to recover〉〉
13: upon receiving 〈subview change, 〈pr sv, sec sv, rec sv〉〉
14: update primaries subview and secondaries subview

15: upon receiving message 〈rec request, 〈begin turn, end turn〉〉 from Rj

16: if I am the selected recoverer then
17: if end turn is unknown then set end turn to last view turn
18: for turn← begin turn to end turn do
19: get trs list from log for turn
20: SendFIFO 〈rec turn, 〈turn, trs list〉〉 to Rj

21: upon receiving message 〈rec turn, 〈turn, trs list〉〉
22: for each transaction t ∈ trs list do
23: apply t and commit

24: store 〈turn, trs list〉 in the log
25: increment last applied turn
26: if it is the last message of recovery then
27: join the secondaries subview

send a message to all replicas in order to obtain a recoverer. This recoverer may be
selected by the recovering replica among the up-to-date nodes or it may be selected by
a deterministic procedure executed at each replica. In any case, the recoverer will send
back the turns in order to the recovering replica, which will apply them in the database
in an ordered fashion. This process could be optimized grouping and compacting several
turns in a single message [17,18]. Meanwhile, the recovering replica will be receiving
turns corresponding to the regular replication messages, but their application has to be
delayed until the ending of the recovery procedure. At that moment, the recovering
replica will request for its inclusion in the sec sv, which will trigger a subview change.
If during the recovery procedure, the recoverer fails, a view change event will be fired,
and the recovering replica will ask for a new one (lines 7-8). Note that some turns
may have been already applied and do not need to be transferred again. This situation is
prevented by line 10 in Algorithm 1, where last turn recover is updated. This variable
will indicate a upper bound in the recovery transference.

214 M. Liroz-Gistau et al.

5 Experimental Results

To verify the validity of our approach we performed some preliminary tests. We have
implemented the proposed protocol on a middleware architecture called MADIS [15],
taking advantage of its capabilities provided for database replication. For the experi-
ments, we used a cluster of 4 workstations (openSUSE 10.2 with 2.6.18 kernel, Pen-
tium4 3.4GHz, 2Gb main memory, 250Gb SATA disk) connected by a full duplex Fast
Ethernet network. JGroups 2.1 is in charge of the group communication. PostgreSQL
8.1 was used as the underlying DBMS, which ensured SI level. The database consists
of 10 tables each containing 10000 tuples. Each table contains the same schema: two
integers, one being the primary key. Update transactions modify 5 consecutive tuples,
randomly chosen from a table of the database. Read-only transactions retrieve the val-
ues from 1000 consecutive tuples, randomly chosen from a table of the database too.
The PostgreSQL databases were configured to enforce the synchronization of write op-
erations (enabling the fsync function). We used a load generator to simulate different
types of workloads depending on the ratio of update transactions (10%, 50%, 90%).
We simulated 12 clients submitting 500 transactions each one with no delay between
them. The load generator established with each working replica the same number of
connections than simulated clients. Transactions were generated and submitted through
connections to replicas according to their role: update transactions to primary ones and
read-only transactions to both primary and secondary ones. Note that, as these are pre-
liminary tests, we have not paid much attention to the way transactions were distributed
among the replicas and therefore results are not the best ones.

Experimental results are summarized in Figure 3. In the first two tests, we have tested
the performance of our proposal working as a primary-copy and an update-everywhere
approach respectively. Thus, starting from a primary replica (needed in both cases),
we have increased the number of replicas depending on the evaluated approach: pri-
maries for the update-everywhere operation and secondaries for the primary-copy one.
As shown in Figure 3a, increasing the number of secondaries permits the system han-
dling better read-only predominant loads (10% updates). However, in this primary-copy
approach, it is impossible to enhance its performance when working with loads with a
great number of updates (50% or 90% updates). In these cases, increasing the number
of secondaries means no improvement, since additional secondaries do not increase the
system capacity to process update transactions. In fact, all the update transactions are
executed in the primary replica, and this overloads the replica.

On the other hand, the update-everywhere operation provides better results (see
Figure 3b) than the primary-copy approach with loads including many update trans-
actions (50% and 90% updates). In these cases, increasing the number of primaries
allows to handle a greater number of update transactions and therefore the performance
is improved. However, all the replicas are able to execute update transactions that may
overload them and this may lead to higher response times when executing read-only
transactions in these replicas. Besides, the coordination of the primary replicas involves
also a greater overhead in their protocols than in a secondary protocol. For these rea-
sons, the performance of the update-everywhere approach is poorer than the primary-
copy one when the system works with a great number of read-only transactions.

A Hybrid Approach for Database Replication 215

(a) Primary-copy (b) Update-everywhere (c) Mixed configurations

Fig. 3. Throughput for different analyzed workloads and configurations

We have seen that each approach behaves better under different loads. Hence, it is
interesting to test how an intermediate approach (mixing several primaries and secon-
daries) performs. We have tested the behavior of mixed compositions, considering a
fixed number of replicas. As shown in Figure 3c, mixed configurations with 4 replicas
provide in general near the same and usually better results for each load considered
in our tests. In particular, for a 10%-update load the best behavior (192TPS) is not
provided by a pure primary-copy approach but by 2 primaries and 2 secondaries. This
happens because using a single primary that concentrates all update transactions pe-
nalizes a bit the read-only transactions in such single primary replica, but with two
primaries none of them gets enough update transactions for delaying read-only transac-
tion service. Once again, for a 50%-update load the best throughput (76TPS) is given
by 3 primaries and 1 secondary, outperforming a primary-copy configuration (51TPS)
and an update-everywhere one (69TPS). This proves that intermediate configurations
are able to improve the throughput achievable.

6 Conclusions

This paper has presented a new database replication approach, halfway between
primary-copy and update-everywhere paradigms. The result is an improved perfor-
mance, which is obtained since the protocol can change its configuration depending
on the load. Moreover, it also allows to increase the fault-tolerance of primary-copy
protocols. This is feasible thanks to the use of a deterministic database replication pro-
tocol that takes the best qualities from both certification and weak-voting approaches.
This protocol establishes a unique schedule in all replicas based on primaries identifiers,
which ensures that broadcast writesets are always going to be committed.

We have also discussed how this protocol can adapt itself dynamically to different
environments (by turning secondaries into primaries to handle heavy-update workloads

216 M. Liroz-Gistau et al.

or primaries into secondaries when read-only transactions become predominant). Fi-
nally, we have performed some preliminary experiments to prove the feasibility of this
approach, showing how system can provide better performance adapting its configura-
tion to the load characteristics, although we have still to make a great effort to achieve
more significant results.

Acknowledgements. This work has been supported by the Spanish Government under
research grant TIN2009-14460-C03.

References

1. Babaoğlu, Ö., Bartoli, A., Dini, G.: Enriched view synchrony: A programming paradigm for
partitionable asynchronous distributed systems. IEEE Trans. Comput. 46(6), 642–658 (1997)

2. Berenson, H., Bernstein, P.A., Gray, J., Melton, J., O’Neil, E.J., O’Neil, P.E.: A critique of
ANSI SQL isolation levels. In: SIGMOD, pp. 1–10. ACM Press, New York (1995)

3. Birman, K.P., Joseph, T.A.: Exploiting virtual synchrony in distributed systems. In: SOSP,
pp. 123–138 (1987)

4. Chockler, G., Keidar, I., Vitenberg, R.: Group communication specifications: a comprehen-
sive study. ACM Comput. Surv. 33(4), 427–469 (2001)

5. Daudjee, K., Salem, K.: Lazy database replication with snapshot isolation. In: VLDB, pp.
715–726. ACM, New York (2006)

6. Elnikety, S., Pedone, F., Zwaenopoel, W.: Database replication using generalized snapshot
isolation. In: Symposium on Reliable Distributed Systems, Orlando, FL, USA, pp. 73–84.
IEEE-CS, Los Alamitos (2005)

7. de Mendı́vil, J.R.G., Armendáriz-Iñigo, J.E., Muñoz- Escoı́, F.D., Irún-Briz, L., Garitagoitia,
J.R., Juárez-Rodrı́guez, J.R.: Nonblocking ROWA protocols implement GSI using SI repli-
cas. Technical Report ITI-ITE- 07/10, Instituto Tecnológico de Informática (May 2007)

8. Gray, J., Helland, P., O’Neil, P.E., Shasha, D.: The dangers of replication and a solution. In:
SIGMOD Conference, pp. 173–182. ACM, New York (1996)

9. PostgreSQL Global Development Group. PostgreSQL: The world’s most advanced open
source database (2009), http://www.postgresql.org/

10. Jiménez-Peris, R., Patiño-Martı́nez, M., Alonso, G.: Non-intrusive, parallel recovery of repli-
cated data. In: IEEE Symposium on Reliable Distributed Systems, vol. 0, p. 150 (2002)

11. Kemme, B., Alonso, G.: A new approach to developing and implementing eager database
replication protocols. ACM Trans. Database Syst. 25(3), 333–379 (2000)

12. Kemme, B., Bartoli, A., Babaoglu, Ö.: Online reconfiguration in replicated databases based
on group communication. In: Proceedings of the 2001 International Conference on Depend-
able Systems and Networks (formerly: FTCS), DSN 2001, Washington, DC, USA, pp. 117–
130. IEEE Computer Society, Los Alamitos (2001)

13. Kemme, B., Pedone, F., Alonso, G., Schiper, A., Wiesmann, M.: Using optimistic atomic
broadcast in transaction processing systems. IEEE TKDE 15(4), 1018–1032 (2003)

14. Lin, Y., Kemme, B., Patiño-Martı́nez, M., Jiménez-Peris, R.: Middleware based data replica-
tion providing snapshot isolation. In: SIGMOD Conference, pp. 419–430. ACM, New York
(2005)

15. Muñoz-Escoı́, F.D., Pla-Civera, J., Ruiz-Fuertes, M.I., Irún-Briz, L., Decker, H., Armendáriz-
Iñigo, J.E., de Mendı́vil, J.R.G.: Managing transaction conflicts in iddleware-based database
replication architectures. In: SRDS, pp. 401–410. IEEE-CS, Los Alamitos (2006)

16. Plattner, C., Alonso, G., Özsu, M.T.: Extending DBMSs with satellite databases. VLDB
J. 17(4), 657–682 (2008)

A Hybrid Approach for Database Replication 217

17. Ruiz-Fuertes, M.I., Pla-Civera, J., Armendáriz-Iñigo, J.E., González de Mendı́vil, J.R.,
Muñoz-Escoı́, F.D.: Revisiting Certification-Based Replicated Database Recovery. In:
Chung, S. (ed.) OTM 2007, Part I. LNCS, vol. 4803, pp. 489–504. Springer, Heidelberg
(2007)

18. Vilaça, R.M.P., Pereira, J.O., Oliveira, R.C., Armendariz-Inigo, J.E., González de Mendivil,
J.R.: On the cost of database clusters reconfiguration. In: Proceedings of the 2009 28th IEEE
International Symposium on Reliable Distributed Systems, SRDS 2009, Washington, DC,
USA, pp. 259–267. IEEE Computer Society, Los Alamitos (2009)

19. Wiesmann, M., Schiper, A.: Comparison of database replication techniques based on total
order broadcast. IEEE TKDE 17(4), 551–566 (2005)

20. Wu, S., Kemme, B.: Postgres-R(SI): Combining replica control with concurrency control
based on snapshot isolation. In: ICDE, pp. 422–433. IEEE-CS, Los Alamitos (2005)

Educational Resource Scheduling Based on
Socio-inspired Agents

Juan I. Cano1,2, Eloy Anguiano2,3, Estrella Pulido2, and David Camacho2,�

1 Instituto de Ingenierı́a del Conocimiento, Spain
2 Escuela Politécnica Superior - Universidad Autónoma de Madrid, Spain

3 Centro de Referencia Linux UAM–IBM, Spain
{inaki.cano,david.camacho,estrella.pulido

eloy.anguiano}@uam.es

Abstract. Scheduling a set of constrained resources is a difficult task, specially
when there is no clear definition of ‘optimal’. When the constraints depend not
only on physical or temporal issues but also in human desires or preferences the
task gets harder. This is the case of educational resources, for example when a set
of students must be distributed into a limited set of laboratories to attend to peri-
odical practical sessions, in this case weekly. The preferences of the students may
vary during the process for reasons such as the number of people already in that
group. This paper presents a socio–inspired solution implemented as a multiagent
system. The agents enroll themselves in the lab sessions based on their prefer-
ences and negotiate with other agents, using the resources they already have, to
obtain desired groups that were already full.

Keywords: Scheduling, Multiagent system, Multiagent resource allocation,
Constraint satisfaction problem, Socio–inspired, Complexity science.

1 Introduction

Resource allocation has always been a huge concern for administrators. These prob-
lems, from the family of constraint satisfaction problems, can be seen in several do-
mains, as for example the allocation of processing time to the users of a mainframe [5]
or the assignment of runways to planes in an airport [4]. Finding a way to solve these
problems efficiently is important as some of them appear in time critical situations.

In general, in a resource allocation problem we have a set of resources that are limited
and a set of agents that need these resources in some specific way. The nature and
characteristics of these resources are very important when deciding a solution as they
define part of the constraints to take into account. The rest of the constraints are defined
by the agents or are imposed externally. A solution of the problem is found when we can
make a feasible allocation (every agent has a resource assigned) or we find the optimal
allocation. In the latter case we must decide on a way to measure the optimality of a
solution. Also, there are cases where there is no possible solution.

� This work has been partially supported by the Spanish Ministry of Science and Innovation
under grants TIN 2007-65989, TIN 2007-64718, and TIN 2010-19872.

J. Cordeiro, A. Ranchordas, and B. Shishkov (Eds.): ICSOFT 2009, CCIS 50, pp. 218–230, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Educational Resource Scheduling Based on Socio-inspired Agents 219

This kind of problems have been treated in many different ways [3,7]. One approach
recently developed is MultiAgent Resource Allocation (MARA)[2], which uses mul-
tiagent systems to solve the allocation problem. This approach comes very natural as
instead of programming an abstract algorithm we design a model of the problem, create
some behavior for the agents and let system evolve to a solution. The key of this method
is to capture the relevant aspects of the problem and define some utility function for the
agents.

In the first section of this chapter there is a precise description of the problem, start-
ing with an overview of the problem and then dealing with the relevant details to build
the solution. In the second section we explain the design of the built system and why
some decisions were made based on the description of the problem. Next, we will try
to analyze the system from a complexity science point of view, identifying inputs, out-
puts, feedbacks and how they affect the system. Finally, we will show some results and
conclusions, and how this system could be improved.

2 Description of the Problem

The problem to be solved was chosen for its familiarity and difficulty. Every year, in our
university, the students enroll in some courses, usually five per term. The majority of
this courses have two parts, one theoretical and one practical. The theoretical part of the
courses are usually not a problem when allocating students, there are enough teachers
and classrooms for the lectures, but for the practical part of the courses the laboratory
space is limited. Even if there were huge computer labs, the relation between student
and teacher is crucial for this part.

The practical sessions take place once a week. At the beginning of each term, the
coordinator of the practical sessions for each course defines the number of groups, who
is going to teach each of them and when the practical session for each group takes
place. The group size is limited by space available in the lab. Students can join any
of these groups, but once they choose a group they are required, unless there’s a good
reason, to attend to that group until the end of the term. This creates some conflict and
competition among the students as they have time restrictions and preferences over the
teachers (see fig. 1), and the group size limit makes that not every student is satisfied
with her assigned groups.

This gets even more complicated as they have more than one course, usually five as
mentioned earlier (see fig. 2). A student cannot join groups that overlap in time and this
adds a dynamic restriction to the problem: once a student is assigned to a group, the time
slot when the sessions take place are no longer available for other course’s groups. This
is a big problem from a CSP point of view, what once was a feasible solution or even
an optimal solution can change after one assignment and become a terrible solution,
and the other way around, what once was a terrible solution can become an optimal
solution.

Once explained the problem in general terms, we can analyse it precisely to build a
solution. In the following description we are going to use Resource Set (RS) for courses
and Educational Resource (ER) for the groups. This way ER1 will be the course num-
ber one and RS1,1 will be the first group of the first course. To address correctly the

220 J.I. Cano et al.

Fig. 1. Student preferences in a course with three groups. The whole square represent the course,
the vertical divisions the groups. White dots are available places, black dots are occupied seats.
The student in this figure preferes the first group, cannot assist to sessions in the third group and
shows herself indifferent about the second group.

Fig. 2. A student’s global situation. Each RS (Resource Set) represents a course, and each course
is divided as explained in fig. 1. The values between curly brackets represent the preferences of
the student. For example, {P,I,F} means that the student prefers the first group (P), is indifferent
about the second group (I) and cannot assist to the third group (F).

problem, it will be described by a set of properties and characteristics (resource types,
preference representation, social welfare, allocation procedures, complexity, and simu-
lation) from [2], which can be used to characterize MARA systems and applications.

– Resource Type
• Discrete vs Continuous: The ER are discrete, they cannot be represented with

real numbers nor it can be divided.
• Divisible or not: The ER are not divisible.
• Sharable or not: Each ER can be assigned to more than one agent at the same

time, but they have limits (seats/places).
• Static or not: The ERs doesn’t change during the negotiation, they’re not con-

sumable nor perishable.

Educational Resource Scheduling Based on Socio-inspired Agents 221

• Single–unit vs Multi–unit: Each ER is unique, it can’t be confused with another
ER.
• Resource vs Task: The ER is assigned as a resource, not as a task.

– Preference Representation
• Preference structure: Although our model distinguishes between three differ-

ent choices (Preferred (P), Indifferent (I), Forbidden (F)) of a particular edu-
cational item, and we could construct an ordinal preference structure (where
P > I > F), we use an evaluation function that translates the agent preference
into an integer which is used later to obtain a quantitative value, so a cardinal
preference structure is the structure used.
• Quantitative preferences: A utility function is used to map the bundle of re-

sources assigned to an agent into a quantitative value, which will be later max-
imized.
• Ordinal preferences: Not applicable.

– Social Welfare
Our approach is based on Collective Utility Function (CUF) because the aim is to
maximize the average value of individual agent welfares. In the egalitarian social
welfare, the aim is to improve the agent with the lowest welfare and in the utilitar-
ian social welfare the aim is to improve the sum of all welfares, whereas in our ap-
proach the global state of the whole agent society by means of the average welfare
is the aim of optimisation. Among the different possibilities (pareto optimality, col-
lective utility function (CUF), leximin ordering, generalisations, normalised utility
or envy–freeness) a CUF has been selected that defines the utilitarian social welfare
as the total sum of agent cardinal values divided by the total number of agents.

– Allocation Procedures
• Centralized vs Distributed: Our approach is fully distributed, since the solution

is reached by means of a local negotiation amongst agents and there is not a
global perspective of the ERA problem. An aggregation of individual prefer-
ences is used and the agent preferences are used to assess the quality of the
global resource allocation.
• Auction protocols: No auction algorithm is considered.
• Negotiation protocols: A simplified version of the Concurrent Contract–Net

Protocol (CCNP) has been implemented, where each agent can act as a man-
ager and a bidder in the simulation step[9].
• Convergence properties: Our negotiation algorithm needs a multilateral deal,

where any interested agent in a particular educational item can negotiate with
the manager (in our approach the agent who is trying to obtain a specific allo-
cation).

– Complexity
Analysis of the models and assumptions, or the computational vs. communication
complexity, used in our approach is not relevant for now.

– Simulation
A Multi–Agent Simulation Toolkit (MASON) has been used to deploy and test our
proposed solution [6,8].

To summarize the restrictions of this problem, we have that each student must have
one, and only one, group assigned for each course with practical sessions. The students

222 J.I. Cano et al.

have preferences over the groups and are limited by other courses they are assisting,
so the solution should maximize the student’s happiness and can’t assign to a student
groups that overlaps in time. To these preferences we add that the groups must be evenly
distributed and, by our institution requirement, courses from higher levels must have
preference over the rest.

3 The Design of the System

The main objective of this work was to design a light system capable of solving this
problem efficiently. Another objective was to use ideas and concepts that comes nat-
ural with the problem described. The multiagent approach let’s the researcher use the
problem terminology when constructing solution and the built system can be said to be
socially inspired.

While building the solution, we created a model of how students interact between
themselves when enrolling into groups. We observed that when signing into a group’s
list, students negotiate between them exchanging positions they have for the ones they
want to have. This process is very local as they only contact friends and usually limit
themselves to one subject or one group. In the model created, students negotiate with
every other student that have something to offer. The exact negotiation process will be
explained bellow.

Before explaining the negotiation, we need to understand how the students perceive
their status and evaluate the proposals. We define the student’s happiness or utility func-
tion as a function that increases with the number of groups assigned that they deem pre-
ferred. We have to maintain the groups balanced as this is good for the students as it is
for the teachers, so the student happiness also varies with the occupation of the group in
relation with the occupation of the other groups of this course. The happiness function
would have the following form:

H(ai) =
∑n

i=1(f1(RSi(a)) + f2(q, RSi(a)))
n

In this equation we have RSi(a) that returns the group assigned to student a in the
RSi, q is the group’s ocupation, f1 maps the student preference to an integer value, f2

represents how the student perceive the balance of the group and n is the number of
subjects the student has.

As explained in the above section, each student can assign one of three preference
categories to each subject: P for Preferred, I for Indifferent and F for Forbidden. The
values of f1 for each preference category is 5 for P, 3 for I and 1 for F. We chose this
values so that P > I + F and F is better than not assigning a group.

The f2 function assigns a value between 1 and 5 to the group occupation. The max-
imum value is achieved when the group occupation is exactly the same as the mean
occupation of the groups, that is the number of students in a course divided by the num-
ber of groups that course has. To enroll in an empty group is always better than a full
group, so full groups receive the minimum value. The shape of the f2 function can be
seen in fig. 3.

Educational Resource Scheduling Based on Socio-inspired Agents 223

Fig. 3. Shape of the function that assigns a value to the occupation of a group. q1 and q2 are mean
occupation of the course, N is the total number of students in the course. The slope of the function
varies, depending on the number of students a course has.

This is the general version of the happiness function, during the execution of the
system there are some variations. The first variation is that, to enforce the assignment
of groups for the last year’s courses (as required by the institution), when calculating
the mean happiness this groups are valued double, we multiply the values of f1 and
f2 by two. The other variation is that, when negotiating the students can ask once and
again for the same group (we will see this later). To avoid this situation, each time a
student cannot get a group in a negotiation, the happiness this group gives her will be
reduced by a 10%.

The negotiation algorithm employed is a simplification of the Contract-Net Protocol
[9]. The negotiation only takes place when a student wants to enter a group that is
already full. In that case, the student interested in the group, let’s call her the initiator,
sends a list of groups she has already been assigned to to the students in that group,
whom we will call the receivers. The list of groups sent only includes the groups that,
if changed for the group the initiator is interested in, doesn’t decrease her current level
of happiness. The first receiver interested in an offered group, that is, his happiness is
not reduced, swaps places with the initiator. A pseudocode of the algorithm can be seen
below.

offer: = AssignedGroups(Initiator)
Filter(offer)

for all Receiver in Group do
if Receiver is interested in $ER_x \in$ offer then

Swap places
return true

end if
end for
return false

Before starting a negotiation, the student evaluates where would she be better. With the
list of courses and groups she has assigned, she evaluates which group assignment can

224 J.I. Cano et al.

be improved. If changing one group for another can be done, that is, the new group
has enough space, the student swaps there directly. If the new group is already full, the
student starts a negotiation with the students enrolled in that group. If there’s no one to
negotiate with or there’s no group we can offer because any change would decrease the
happiness, a desist factor is applied to that group. The happiness that group contributes
to the student happiness is reduced by a 10% and at some point the student will start
asking for a different group, possibly in a different course.

To find a solution for the problem, we let this model evolve until an equilibrium state
is achieved. This equilibrium state is the state where no student wants to swap places
with another student. The students start with no groups assigned and have complete
freedom to enroll any group that is not full. As we stated before, MARA let’s the de-
signer use terminology and ideas from the problem to be solved with little abstractions
needed.

4 Experimental Setup and Results

Once the system was built it needed to be tested. This section will detail the datasets
employed and how the system built responded. To deepen in the study, the system was
compared with a traditional CSP approach, as described in [1].

4.1 Data Sets

Several data sets, with incremental constraint–based complexity, have been considered.
They have been generated by using real statistical information from the Escuela Politc-
nica Superior at Universidad Autnoma de Madrid (UAM). For each course, the number
of laboratories available, students registered for each course, capacity of labs, and time
tables, has been considered. This data has been used to generate a probability distribu-
tion of students/course and the number/capacity of labs that students need to attend. A
four year degree has been considered (it corresponds to the current degree in Computer
Engineering at UAM). Table 1 shows the student enrollment distributions by course
(only those courses with laboratories are considered), the number of courses for which
students have enrolled and the distribution of students with this number of courses.

Table 1. Distribution of labs by course

Year No. Courses Percentage of Students
1st 2 100%
2nd 2 - 3 - 4 20% - 50% - 30%
3rd 4 - 5 - 6 15% - 70% - 15%
4th 4 - 5 - 6 15% - 70% - 15%

Table 1 assumes that students from any year has at least one course from that year and
no courses from higher years. This means that a third year student has at least one third
year course and no fourth year courses. This can also mean that a third year students

Educational Resource Scheduling Based on Socio-inspired Agents 225

can be enrolled in first and second year courses. To simplify the tests, we limited this so
that a student can only have courses from one year and the immediatly below. The first
and second year has a total number of 2 courses with practical sessions, we don’t take
into account theoretical–only courses, while third and fourth year have 5 courses with
practical sessions.

As an example of how to read the table, the second row represents the second year
students. This students can have 2, 3 or 4 courses, and some of them can be from the
first year, up to 2 as there are only 2 courses in the first year. From the total number
of second year students, a 20% have 2 courses, 50% have 3 courses and 30% have 4
courses.

As mentioned above, students can have courses from one year below the current year.
In the second year, students with only 2 courses have both from second year, students
with 3 have 1 course from first year and students with 4 have 2 from first year. In
Table 2 the fraction of courses from another year are shown for the third and fourth
years. The table shows the distribution of courses of different years for each student.
By examining the real data, it can be noted that the number of students with at least one
course from another year is higher than the number of students that have courses only
of their own year. In addition, the number students with 6 courses of the same year are
very low.

Table 2. Distribution of labs for 3rd and 4th year courses

No. enrolled All the same One course Two courses Three courses
courses year (%) from one from one from one (%)

year back (%) year back (%) year back (%)
4 20 60 20 0
5 10 40 50 0
6 5 40 40 15

Based on the previous information, six data sets of 1000 students were generated.
The synthetic restrictions for each student were also randomly generated by using some
historic data related to previous years. Table 3 summarizes the basic features for each
data set, where Ds0 considers only one Preferred group per ER and StudentAgent (e.g.
〈〈P, I, I〉, 〈P, I, I〉〉), whereas Ds5 considers that 30% of ERs are marked as Preferred
and the rest (70%) are Forbidden. For example, 〈〈P, F, F 〉, 〈P, F, F 〉, 〈P, F, F 〉〉 makes
a 30–70 distribution. The number of Forbidden and Preferred constraints has been ad-
justed along different datasets to cover different complexity situations.

The difference between the percentage of P and F is the precentage of I. This way,
the most restrictive datasets are DS6 and DS7 because the number of I is reduced and
in some cases, many cases, there will be no I in the student preferences.

4.2 Results

Two systems were tested using these datasets, a CSP [1] and the multiagent system
described in the previous section. Tables 4 and 5 show the results obtained for both sys-
tems. Since the happiness functions were obtained by using different preference values,

226 J.I. Cano et al.

Table 3. Student datasets

Data Set Preferred groups (P) Forbidden groups (F)
Test 100% 0%
Ds0 1P/(RS,agent) 0%
Ds1 30% 0%
Ds2 1P/(RS,agent) 20%
Ds3 30% 20%
Ds4 1P/(RS,agent) 50%
Ds5 30% 50%
Ds6 1P/(RS,agent) 70%
Ds7 30% 70%

Table 4. CSP experimental results for datasets considered

Data Mean Happiness Mean Distribution P’s I’s F’s
Set Happiness Deviation Distribution Deviation (%) (%) (%)
Test 9.85 0.07 81.5 0,66 100 0 0
Ds0 9.69 0.15 81.3 21.8 86.9 13.1 0
Ds1 9.78 0.1 81.2 15,2 94.2 5.8 0
Ds2 9.32 0.25 81 17.7 89.8 1.07 9.19
Ds5 7.82 1.09 80.6 17.9 61.3 15.6 23.1
Ds6 7.03 1.12 80.8 15.8 66 8.2 25.8
Ds7 6.02 1.59 80.9 19.5 71.9 0 28.1

they are not comparable across systems but they give a good estimation of their perfor-
mance with different restrictions. The key values for the comparison are the percentage
of P, I, and F in the final allocation.

As seen in Table 4, the CSP gives a good result for the first datasets, but when the re-
strictions are increased the overall happiness decreases and the percentage of F assigned
is very high. Altough the execution time was not registered, it was comparatively high
when comparing with the MARA approach. While MARA took only a few seconds,
the CSP approach need hours to do the assignment. For datasets 3 and 4, it took so long
that it was stopped before completion, after 6 hours of execution.

The results obtained for the MAS model are shown in Table 5. This method is able,
by using the negotiation-based approach, to maintain the global happiness of the solu-
tions found. Although “happiness” values cannot be directly compared between CSP
and MAS solutions (because their equations are different), the percentage of allocated
F can be compared. In the worst situation (DS7) only the 4% of the students needs to be
assigned to a forbidden ER (F), and the 96% of student teams are satisfactory allocated.
Finally, the low variation of the happiness among the different datasets can be remarked
compared to the variation of this value for the CSP solutions. This is due to the facility
(given by the Multi-agent approach) to change preference values, or to exchange the
current ER allocation with other agent in the system.

Educational Resource Scheduling Based on Socio-inspired Agents 227

Table 5. MAS experimental results for datasets considered

Data Mean Happiness Mean Distribution P’s I’s F’s
Set Happiness Deviation Distribution Deviation (%) (%) (%)
Test 9.85 0.07 81.5 0,66 100 0 0
Ds0 9.3 0.29 81.3 4.21 85.3 14.7 0
Ds1 9.7 0.14 81.4 0.64 94 6 0
Ds2 9.4 0.24 81.1 4.36 86.9 12.75 0.35
Ds3 9.8 0.12 80.4 2.04 95.8 3.67 0.49
Ds4 9.2 0.33 80.8 6.94 85.7 12.5 1.8
Ds5 9.7 0.19 81.0 0.89 95.5 2.42 2.05
Ds6 9.1 0.43 81.0 5.92 86.0 11.1 2.9
Ds7 9.7 0.29 80.9 0.91 95.8 0 4.2

5 A Complexity Science View

Although there is no agreement on a definition of complex, we will use its etymological
definition. The word comes from latin complexus: com- (“together”) and plectere (“to
weave, braid”). If we refer to its etimology, something complex should have at least two
elements and have some intricate relationship between its elements. Thus, a complex
system should be a system with different elements and a mesh of relationships among
them.

In this system we can identify two sources of complexity. On one hand we have the
problem itself. The courses and groups are related to each other, and also are the stu-
dents. The relationships between the different parts of the problem makes it a complex
environment and if we introduce some change in it, e.g. change a group’s time slot or
the student preference, the reaction is unpredictable as we can’t determine how other
students will react or how the constraints will change during a simulation, among other
things.

On the other hand we have the built system. As cyberneticists say, the best way
to deal with a complex system is with another complex system. The built system is
completely based on the problem, each part of it is a model of some aspect or aspects of
the problem. This makes the built system to be adaptive and flexible: after a solution is
found, we can translate any change in the original environment into the system and let
it find a new solution. This adativity and flexibility is not available in other methods as,
for example, backtracking. If we want to introduce a change in the problem, we would
need to run the backtracking algorithm from the begining because some branches that
where not useful before can lead to solutions now.

The built system is composed of different agents, each one of them can be differen-
tiated from the others by the courses they have and the preferences over the groups in
each course. The interaction between the agents is local, they can only communicate
with a limited part of the system. At most, an agent can establish communication with
other agents in the same courses it has, but normally they will communicate with only a
subset of these agents. Although this communication is local, we have a global situation
that the agents are not aware of.

228 J.I. Cano et al.

The outcome of the system, the stable state, cannot be traced back to its agents. We
can say that agent X enrolled in a group she can’t attend, i.e. has an F for that group
in her preference vector, because the group she wanted was full and no one there is
interested in other groups she has. But then we need to go back and see why nobody
is interested or why she couldn’t enter the group in the first place because everyone
had an equal chance to get into it. This causal chain is long, complicated and full of
suppositions and, although we could find some probabilities over the links, we cannot
fully explain why the resulting state is the one it is.

Complex self–organizing systems have feedback mechanisms. Feedback mechanisms
defines how outputs are related to inputs, positive feedback increases the effect of an
input while negative feedback reduces this effect. Before defining inputs and outputs
we must define where are the borders of the system, in other words, what is part of
the system and what is part of the environment. As we don’t expect changes in the
courses or groups, we define the system as the group of agents and the environment as
the courses and groups. This way we have that the problem defines an environment with
the following variables:

– List of courses
– Number of groups for each course
– Size of the groups
– Groups’ hours
– Number of agents
– Enrolled courses for each agent
– Preference vectors for each agent

This variables can be understood as how the agent models its environment and its goals,
they belong to both, the environment and the system, but they are not fed into the system
nor they are extracted from it. Previously we discussed the adaptivity of this kind of
systems and how we could change the environment while the system is running. This
stays true after this separation, what changes is how we introduce these modifications.

The rest of variables depends directly on the agents and they can modify them as
they wish. From this variables we will define as an output, i.e. variables that the system
shows to its environment, the assigned groups for each agent, and the only input would
be the distribution of students in groups. To define the state of an agent we use the list
assigned groups, the number of time it has attempted to enter a group and its happiness.

To recapitulate, we have that the problem is defined by variables that determine the
courses and groups and their relationship with the agents. We can consider this variables
as immutable and part of the agents’ internal representation of the world. The list of
groups assigned, the number of times an agent has attempted to enter a group and its
happiness are the only variables necessary to determine the agents state. The system
constantly receives information about the state of the groups, meaning that it knows
what students are already in a group or if a group is full. In exchange, the system informs
about changes it makes in the groups.

We can see clearly that there is a feedback loop, the state of the groups is fed to the
agents and the agents inform about any changes in them. This loop doesn’t determine
by itself if it is a positive or negative feedback, it depends on how the system treats this

Educational Resource Scheduling Based on Socio-inspired Agents 229

information. In our case, this loop is managed in two ways: with the insistence factor
and the f2 function, both in the happiness equation.

The insistence factor is applied when the agents try to enter any group more than
once without any success. The relation with the feedback is a little difficult to see, first
the agent receives the status of the groups for the courses it has enrolled. The agent
evaluates if there is a group that would increase its happiness and, if the group is full, it
tries to negotiate with other student to enter. It is possible that the list of groups an agent
receives doesn’t change from one attempt to the next and the agent finds that the group
that improves it happiness is the same full group each turn. To dissuade the agents, the
insistence factor is applied. This makes the feedback loop negative as it turns the output
to be, after some time, the same as the input, whatever the input is, and the agents to
stop trying to change groups.

For the other way to manage feedback, the f2 function, it is clearer that it affects
the feedback, but wether it does in a positive or negative way is hard to decide. When
a group is below what was defined as the optimal occupancy this function encourages
the agents to enroll this group. Once this quota is filled, the function dissuades agents
from entering and sending them to other groups that are less full by reducing very fast
the happiness this group can provide.

The value for the insistince factor and the shape of the f2 function must be chosen
carefully and with a goal in mind. This two mechanisms reduce the agent activity and
drives the system to a stable state. The insistence factor is negative in nature as it forces
the students to stop their activity. The f2 can have a positive and negative effect, de-
pending if the occupancy of the group is below the optimal or over it. This function also
increases the variety of options, as agents does not only search for preferred group but
also for groups that are not overcrowded.

As we can see, the built system is complex and self–organizes. This gives great
flexibility when finding a solution, but makes the system hard to control. By introducing
mechanisms to control the feedback we can ensure that the system will come to an
equilibrium where the agents would stop searching, but a fine tuning of the system or
proving that it will find the optimal solution are very difficult tasks if not impossible.

6 Conclusions

Scheduling problems are always difficult to solve. The elements of the problems usually
have intrincated relations between them and usually, as in our case study, this relations
makes the restrictions to vary during the process of solution. Traditional approaches as
backtracking and related prove to be very accurate finding the solutions, but the cost in
time and computional power is very high. Also, they are not easily comprehensible and
cannot adapt to changes in the initial conditions.

The use of multiagent systems to solve this kind of problems overcomes these ob-
stacles, as the agents can be simple computationally speaking and their behavior can be
easily explained using the problem terminology. The concurrent and distributed nature
of multiagent systems makes them very robust and adaptive.

The problem with the multiagent approach is the design process, as small perturba-
tions in the agents behavior can result in very different behaviors of the system as a
whole. One way to deal with this is to design the system as a model of some natural or

230 J.I. Cano et al.

social system that solves the same problem or a similar one. In this case, the agents are
modelled as the students of the university that negotiate with each other for the groups
they want.

The models considers three characteristics of the students: their preferences, the
search for a group that is not empty nor full and the fatigue from trying to enter a group
without success. With these three characteristics included in the model, the results are
very good in comparison with an implementation of a backtracking algorithm.

For a successful implementation of a system like the one presented, it is needed to
understand the roles of positive and negative feedback. Positive feedback makes a sys-
tem more controllable but unpredictable, because small inputs can render big changes.
The system can be moved to another state, but the new state is not predictable. On
the other hand, negative feedback makes the system uncontrollable but predictable as
even big inputs cannot change the system state. A balance between these two feedback
mechanisms can drive a system to self–organize.

To sum up, when trying to solve a complex problem it is useful to adopt ideas from
natural and social systems that solve similar problems. The use of multiagent systems is
highly recommendable as they can be, if well constructed, resilient and adaptive. Taking
into account the interplay of positive and negative feedback in the design process is
important for self–organization, giving independence to the agents and not considering
this mechanisms can lead to disastrous outcomes as the system can never get to a stable
state or get there too soon.

References

1. Cano, J.I., Sánchez, L., Camacho, D., Pulido, E., Anguiano, E.: Allocation of educational re-
sources through happiness maximization. In: Proceedings of the 4th International Conference
on Software and Data Technologies (2009)

2. Chevaleyre, Y., Dunne, P.E., Endriss, U., Lang, J., Lemaı̂tre, M., Maudet, N., Padget, J.,
Phelps, S., Rodrı́guez-Aguilar, J.A., Sousa, P.: Issues in multiagent resource allocation. Spe-
cial Issue: Hot Topics in European Agent Research II Guest Editors: Andrea Omicini 30
(2006)

3. Choueiry, B., Faltings, B., Noubir, G.: Abstraction methods for resource allocation. Tech.
Rep. TR-94/47, Dèpartement d’informatique, Institut d’informatique fondamentale IIF
(Laboratoire d’intelligence artificielle LIA) (1994)

4. Gilbo, E.P.: Optimizing airport capacity utilization in air traffic flow management subject to
constraints at arrival and departure fixes. IEEE Transactions on Control Systems Technol-
ogy 5(5) (1997)

5. Jain, R., Chiu, D., Hawe, W.: A quantitative measure of fairness and discrimination for re-
source allocation in shared computer systems. DEC Research Report TR-301 (1984)

6. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K.: Mason: A new multi-agent simulation
toolkit. In: Proceedings of the 2004 Swarm Fest Workshop (2004)

7. Modi, P., Jung, H., Shen, W., Tambe, M., Kulkarni, S.: A dynamic distributed constraint satis-
faction approach to resource allocation. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, p. 685.
Springer, Heidelberg (2001)

8. Railsback, S.F., Lytinen, S.L., Jackson, S.K.: Agent-based simulation platforms: review and
development recommendations. Simulation 82(9) (2006)

9. Smith, R.G.: The contract net protocol: High-level communication and control in a distributed
problem solver. IEEE Transactions on Computers (1980)

Part IV

Data Management

Managing Risks by
Integrity Constraints and Integrity Checking

Hendrik Decker�

Instituto Tecnológico de Informática, Universidad Politécnica de Valencia
Ciudad Politécnica de la Innovatión, c. Vera 8G, 46022 Valencia, Spain

http://web.iti.upv.es/∼hendrik/

Abstract. Semantic properties of any kind, and in particular the riskiness of data
can be modeled and monitored by conventional database integrity technology.
As opposed to conventional integrity constraints, occasional violations of some
of the constraints that capture risk aspects may be tolerable, even for extended
periods of time. Traditional integrity checking methods are intolerant wrt. any
constraint violation. They insist that all constraints are totally satisfied before up-
dates can be checked for integrity preservation. Inconsistency-tolerant methods
can waive that insistence. Thus, if risks are modeled by constraints, they can be
monitored by any integrity checking method that is inconsistency-tolerant. We
illustrate that by an extended example, in which our inconsistency-tolerant solu-
tion is also compared to some alternative approaches.

Keywords: Risk management, Constraints, Integrity checking, Inconsistency
tolerance.

1 Introduction

In relational databases, knowledge bases and decision support systems, first-order pred-
icate logic sentences called assertions or, more specifically, integrity constraints, or
simply constraints, are used to express conditions that are required to be invariantly
satisfied across state changes caused by updates.

The expressive power of logic also can be used to capture any other semantic in-
formation that goes beyond the simple structures of common database content. For ex-
ample, the quality of data can be modeled by sentences that have the form of integrity
constraints, and then measured, monitored and maintained by methods that otherwise
are used for integrity checking, as shown in [5].

Similarly, conditions for characterising risks associated to any state of the database
can also be expressed in the syntax of constraints, and monitored by integrity checking
methods, as we are going to see in this paper.

The basic idea of managing risks by constraints is that the stored data can be con-
sidered to be risk-free if the database satisfies all constraints that capture conditions
indicating risks. More generally, the number of violated instances of constraints can be

� Partially supported by EU ERDF and the Spanish grants TIN2009-14460-C03, TIN2010-
17193.

J. Cordeiro, A. Ranchordas, and B. Shishkov (Eds.): ICSOFT 2009, CCIS 50, pp. 233–246, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

234 H. Decker

considered as a measure of the extant risk as reflected by the current contents of the
database. If a critical amount of constraint violations is surpassed, then corresponding
risks have increased beyond tolerable proportions. Each update that would increase the
amount of extant risk beyond a certain threshold should be rejected.

In other words, violations of constraints that capture low risks may be tolerable,
while the avoidance of violations of constraints that capture high risks should have
higher priority. Thus, the higher the risk associated to a constraint (or, more precisely,
the higher the risk expressed by a particular violation of a constraint), the lower should
be the tolerance with which such violations are met by the integrity maintenance module
of the database system.

Usually, constraints are sentences that involve universal quantifications of variables
in several relations with conditions that correspond to possibly huge joins of large ta-
bles. Thus, the evaluation of constraints tends to be prohibitively expensive. Hence,
efficient methods for simplifying the evaluation of integrity constraints are needed.
However, since the intended semantics of risk constraints may be different from that
of integrity constraints, the use of integrity checking methods for simplifying the eval-
uation of assertions about risks is questionable.

Traditional integrity checking insists on total constraint satisfaction. However, that
is not suitable in general for monitoring risks constraints, since some of them may
be occasionally violated, even for extended periods of time, without impairing ongo-
ing routine operations. As opposed to that, we are going to see that integrity checking
methods that are able to tolerate extant violations of constraints also are able to monitor
the dynamics of risky data.

More precisely, we show how to gain a better control over the riskiness and possible
imperfections of stored data, by expressing risk properties as constraints, and monitor-
ing them with inconsistency-tolerant integrity checking methods.

Conditions that model risk properties may either qualify data positively, e.g., as trust-
worthy, secure or robust, or negatively, e.g., as imperfect, uncertain, vague, corrupt, out
of range, etc. In general, positively stated properties assert the absence of risk, while
negatively stated properties assert the presence of risk. In both cases, a risk constraint
is said to be satisfied if the truth value of the property it describes implies that no risk
associated to that property has to be feared. Conversely, a risk constraint is violated if
its truth value entails that some risk is manifest in the data.

Capturing risk properties of data by describing them in the form of integrity con-
straints yields a double benefit. Firstly, it shows that the expressive power of the syntax
of semantic constraints can indeed be used also for modeling more general properties
of data, such as their risk potential. Secondly, it enables the use of established integrity
checking methods in order to efficiently monitor the risk potential of stored and incom-
ing new data.

In section 2, we first strive to gain a better understanding of the similarities and
differences between constraints for integrity and risk. Then, we claim that, in spite
of seemingly severe differences, it is possible to capture risk conditions by integrity
constraints, and to monitor them by using methods for integrity checking. This claim
is substantiated in the remainder of the paper. In section 3, we recapitulate the concept
of inconsistency-tolerant integrity checking [4,6]. Inconsistency here is synonymous to

Managing Risks by Integrity Constraints and Integrity Checking 235

integrity violation. We show that it is precisely the inconsistency tolerance of methods
that makes them apt to be used for monitoring risks. In section 4, we elaborate an
extended example that illustrates how inconsistency-tolerant integrity checking can be
used for risk management. It will become obvious that risk management is a special case
of managing the quality of data. In section 5, we address related work. In section 6, we
conclude.

2 Risk and Integrity

In 2.1, we analyse the similarities and in 2.2 the differences between constraints that
either model risk or integrity. By several examples, we illustrate that, syntactically,
conditions for integrity and for risk are very similar. Semantically, they differ since
integrity constraints and their evaluation traditionally are much more exigent than asser-
tions about risks. As explained in 2.3, this difference is reconciled and can be overcome
by the inconsistency tolerance of methods for integrity checking. With such methods,
constraints can be evaluated upon updates even if some instances of the constraints are
violated already before the update.

2.1 Similarities

Traditionally, integrity constraints are used to express correctness conditions with which
all stored data must comply in each state of the database. Upon each issued update, the
constraints imposed on the database are checked. Updates are committed only if they do
not cause integrity violation. For example, in a hospital database, the integrity constraint

∀x∀y∀z(glycohemoglobin(x,y, z)→ person(x)∧ percent(y)∧ datetime(z)

requires that the first attribute of the glycohemoglobin table always is a person, the
second a percentage value and the third of type datetime. Thus, inserting

glycohemoglobin(john,’low’, 2010-09-27.11:15)

into the database would violate its integrity, since the value ’low’ is ruled out by the
constraint. Similarly, the denial

← glycohemoglobin(x,y1, z), glycohemoglobin(x,y2, z), y1 �= y2

imposes a primary key constraint on the combination of the first and the third column,
thus preventing duplicate entries for the same person with different glycohemoglobin
levels at the same time.

Also conditions for characterising database entries that are risky can be modeled in
the syntax of integrity constraints.

For instance, consider the denial constraint

← risk(x, z)

where the predicate risk is defined by

risk(x, z)← person(x), glycohemoglobin(x,y, z), above-threshold(y)

and above-threshold(y) is defined by comparing the value of y with a suitable constant.
This constraint qualifies the well-being of each person x to be at risk at time z if the
glycohemoglobin level y is above a permissible threshold value.

236 H. Decker

Another example of a risk constraint is

← birth-date(x, z), z < 1900

by which each entry of persons x in the register of living persons of some municipal
administration with birth date z before the 20th century can be characterised as dubious
and thus risky, in terms of trustability.

By amalgamating higher-order predicates into first-order terms [3], also sentences
such as

confidence(row(x, y), z) ∧ z < th → ∼trustworthy(x)
may serve as constraints for indicating risks associated to rows x in database tables y
such that the confidence value z of x is below a certain threshold value th.

So, we have seen that it is possible to characterize risky data by the syntax of integrity
constraints. Hence, it suggests itself that it could as well be possible to use integrity
checking methods in order to check tuples that are requested to be inserted or deleted
for violations of risk constraints. In the following subsection, we are going to see that
this is not as straightforward as it may seem at first thought.

2.2 Differences

In 2.1, we have seen that the representation of properties describing the logical con-
sistency of stored data or their risk potential is very similar. Both can be modeled by
integrity constraints.

However, there is a significant difference between risk and integrity violation. Data
that lack integrity are not just risky, but definitely bad, while risky data may or may
not have integrity. Essentially, the difference is that integrity is two-valued (i.e., satis-
fied or violated), while risk is not binary, no matter if risk is defined qualitatively or
quantitatively. In other words, risky data may be imperfect and may have an impaired
quality, but they are not necessarily invalid or inconsistent. In fact, data that violate in-
tegrity are usually considered detrimental, harmful and unwanted, while data that are
risky typically may carry useful information. For example, the integrity constraint

violated ← emp(x), age(x, y), y < 14

expresses that integrity is violated by underage employment (because there is a law by
which this constraint is enforced), while the assertion

risky ← emp(x), age(x, y), y > retirement age

expresses that overage employment qualifies as risky. Here, riskiness may be interpreted
in various ways. One way could be that the correctness of the information captured by
the fact age(x, y) should be considered doubtable (since it may contradict an employer’s
general policy that a person beyond retirement age would remain employed), or prob-
lematic in terms of health considerations, or because of a labour legislation that rules
out most cases of overage employment.

Another example for illustrating the semantic difference between integrity and risk
is, on one hand, the integrity constraint

violated ← email(x), sent(x,y), received(x,z), y > z

Managing Risks by Integrity Constraints and Integrity Checking 237

which declares that integrity is violated if the sent-date of an email item is after its
received-date (assuming that both x and y are normalised wrt the same time zone). On
the other hand, the formula

suspect(x) ← email(x, from(y)), ∼authenticated(y)

rates an email item x received from y as suspect if the latter cannot be authenticated,
although the message content of x may well be valid and unproblematic.

Although essentially the same syntax can be used to represent conditions for integrity
and (lack of) risk, the use of known integrity checking methods for monitoring the risk-
iness of data must be deemed questionable, if not unfeasible, for the following reason.

All methods for efficient integrity checking insist that integrity must be satisfied be-
fore a given update is checked for integrity. That way, the evaluation of constraints can
focus on the relevant part of the data that are actually affected by the update, while
the rest can be ignored, since it is known to satisfy integrity. In general, it would be
unrealistic, however, to always insist on total integrity satisfaction by requiring that,
before each update, all stored data should comply perfectly with all requirements im-
posed by constraints. After all, certain defects of quality and risks associated to the data
can never be excluded with complete certainty. Thus, not all data can be assumed to be
perfectly risk-free whenever an update needs to be checked for introducing higher risks.
Examples of data the reliability of which is risky are given by the contents of each large
thesaurus or encyclopedia (think, e.g., of Wiktionary or Wikipedia).

In principle, a way out of this dilemma could be to use a method that does not insists
on total integrity before each update. The only method in the literature that does not
require the total satisfaction of all constraints is the so-called brute-force method. It
exhaustively evaluates all constraints upon each update, without any simplification. But
brute-force evaluation may be prohibitively expensive, due to the high complexity of
constraints. Another way out could be to repair all violated constraints before or after
each update.

A more elegant and less expensive solution of using integrity checking methods for
monitoring risk constraints is presented in the following section.

2.3 Reconciliation

Inconsistency-tolerant integrity checking has been discussed in [4,6]. In particular, it
has been shown that, contrary to common belief, many well-known integrity checking
methods, although not all of them, can waive the requirement that each consistency
constraint be totally satisfied before updates can be checked efficiently for integrity
preservation. An important feature of each inconsistency-tolerant method is that none
of its functionality and efficiency is compromised by arbitrarily high amounts of extant
constraint violations.

Since risk-related properties can be expressed by the syntax of integrity constraints,
it follows that inconsistency-tolerant integrity checking methods can be used to also
monitor such properties. In particluar, the use of inconsistency-tolerant methods enables
an efficient way of evaluating risk constraints even if there are data that do not fully
comply with all of them.

Nevertheless, inconsistency-tolerant methods are capable of detecting and rejecting
each impairment of risk constraints upon each update, no matter if the extant

238 H. Decker

infringements of such assertions are minor shortcomings, serious risk indicators or
even major corruptions of data. Thus, the task of reducing risks (or, more generally,
of improving the quality of damaged data) can be delegated to separate, possibly off-
line processes. Such processes may be run at any convenient point of time. In partic-
ular, they need not be run at update time, as required by traditional integrity checking
approaches.

3 Inconsistency Tolerance

In this section, we recap the main definitions of inconsistency-tolerant integrity check-
ing [4,6]. Unless specified otherwise, we use terminology and notations that are con-
ventional in the databases community (see, e.g., [12]).

Throughout, let ‘method’ always signify an integrity checking method. We assume
that each constraint is represented in prenex form, i.e., an implicit or explicit quantifier
precedes a quantifier-free matrix. This includes the two most common forms of rep-
resenting a constraint, either as a denial (i.e., a clause without head whose body is a
conjunction of literals) or in prenex normal form (i.e., quantifiers outermost, negations
innermost). An integrity theory is a set of constraints. An update is a bipartite finite set
of database clauses to be inserted or deleted.

From now on, let the symbols D, IC, U , I and M always denote a database, an
integrity theory, an update, a constraint and, resp., a method. For each update U , we
write DU to denote the updated database, and also refer to D and DU as the old and
the new state, respectively.

We assume that the semantics of D and IC is given by a distinguished unique Her-
brand model of D. Thus, I is satisfied (violated) in D if I is true (resp., false) in that
model. As usual, IC is called satisfied (violated) in D if each I ∈ IC (resp., at least
one I ∈ IC) is satisfied (resp., violated) in D. For convenience, we write D(IC) = true
and D(I)= true for denoting that IC or, resp., I is satisfied in D, and D(IC) = false
(D(I)= false) that it is violated. ‘Consistency’ and ‘inconsistency’ are synonymous
with ‘satisfied’ and, resp., ‘violated’ integrity.

Each correct methodM can be formalized as a mapping that takes as input a triple
(D,IC,U) such that D(IC)= true, and outputs upon termination either ok or ko. Here, ok
means thatM accepts U because U does not violate any constraint, and ko means that
M does not accept U . For inconsistency-tolerant methods, the premise D(IC) = true
can be waived without penalty. For simplicity, we only consider input triples (D, IC, U)
such that the computation of M(D,IC,U) terminates. In practice, that can always be
achieved by a timeout mechanism with output ko.

Each constraint I can be conceived as a set of particular instances, called ‘cases’,
of I , such that I is satisfied if and only if all of its cases are satisfied. Thus, integrity
maintenance can focus on cases, and check if their satisfaction is preserved across up-
dates. Violated cases can thus be temporarily tolerated and possibly be repaired at any
convenient moment. That is captured by the following definition.

Definition (Inconsistency-tolerant Integrity).
a) A variable x is called a global variable in I if x is ∀-quantified in I and ∃ does not
occur left of the quantifier of x.

Managing Risks by Integrity Constraints and Integrity Checking 239

b) For a constraint I and a substitution ζ of its global variables, let Iζ be obtained by
replacing each global variable in I by the term assigned to it in ζ. Each such Iζ is called
a case of I .

c) Let SC(D, IC) denote the set of all cases C of all I ∈ IC such that D(C) = true,
i.e., C is satisfied in D.

d) M is called inconsistency-tolerant if, for each triple (D, IC, U), the output
M(D, IC, U) = ok entails that DU (C) = true, for each C ∈ SC(D, IC).

In words, the definition above means: If an inconsistency-tolerantM accepts an update
without insisting that each constraint be satisfied before the update, then the output ok
guarantees that each case of IC that was satisfied in D remains satisfied in DU .

Example. For relations p, q, let the second column of q be subject to the foreign key
constraint I = ∀x,y ∃z(q(x, y) → p(y, z)), which references the primary key col-
umn of p, constrained by I ′ =← p(x, y), p(x, z), y �= z. The global variables of I are
x and y; all variables of I ′ are global. For U = insert q(a, b), a typical method M
only evaluates the simplified basic case ∃z p(b, z) of I . If, for instance, (b, b) and
(b, c) are rows in p,M outputs ok, ignoring all irrelevant violated cases such as, e.g.,
← p(b, b), p(b, c), b �= c and I ′, i.e., all extant violations of the primary key constraint.
M is inconsistency-tolerant if it always ignores irrelevant violations. M outputs ko if
there is no tuple matching (b, z) in p.

It is easy to see that inconsistency-tolerant integrity checking significantly gener-
alizes the traditional approach, which does not legitimize the use of methods in the
presence of extant constraint violations.

As shown in [4,6], many known methods for integrity checking are inconsistency-
tolerant. The reasoning of such methods, and also of methods that are not inconsistency-
tolerant, is featured in section 4.

4 Risk Management

In this section, we illustrate how to use the evaluation of assertions by integrity checking
methods for managing risks.

A risk is a negative quality. Its positive counterpart may be characterized by prop-
erties related to security, dependability, reliability, safety and the like. Risks can often
not be totally excluded, while it is always requisite to minimize and to control them for
lowering their probability to increase.

In general, the amount of tolerable risk depends on the application and often also
on its users (think, e.g., of stock market transactions). The example elaborated below
is open to interpretation. By assigning convenient meanings to predicates, it could be
interpreted as a risk model of, e.g., financial services (think, e.g., of Basel II), or a
nuclear power plant.

Of course, a single example can always be criticized to be statistically irrelevant.
However, for each of the mentioned alternatives, several typical features that are in-
dependent of the particular example are illustrated. In particular, we are going to see
that, for safety-critical applications, the use of a method that is inconsistency-tolerant

240 H. Decker

is more dependable than to use one which is not. Our example will show that using a
non-inconsistency-tolerant method for monitoring risks may have fatal consequences.

We are going to compare inconsistency-tolerant integrity checking with the follow-
ing alternative approaches to monitor risk: brute-force evaluation, non-inconsistency-
tolerant integrity checking, repairing, and consistent query answering [1]. In detail, we
address the following points 1) - 6), in subsections 4.1 - 4.6.

1) The cost of the brute-force method.

2) The cost of inconsistency-tolerant methods.

3) The dependability of methods.

4) The cost of repairing the old state.

5) The cost of repairing the new state.

6) The risk of consistency query answering.

Let us consider a database D whith the following definitions of view predicates rl, rm,
rh that model risks of low, medium and, respectively, high degree.

rl(x)← p(x, x)
rm(y)← q(x, y), ∼p(y, x)
rm(y)← p(x, y), q(y, z), ∼p(y, z), ∼q(z, x)
rh(z)← p(0, y), q(y, z), z > th

In the clause defining rh, let th be a threshold value that we assume to be always greater
or equal 0. Now, let the risks be denied by the following integrity theory:

IC = {← rl(x), ← rm(x), ← rh(x)}.
Before populating D with facts about p and q, let us verify that IC is satisfiable at all
by any extension of D. Indeed, it is, e.g., by each extension of p such that no fact of
the form p(0, y) is in p and any of the following alternatives holds: either p = q, or D
contains {q(2, 1), p(1, 2), p(2, 1)} and arbitrarily many facts of the form p(n, n + m),
for n > 1, m > 0.

Now, let the extensions of p and q be as follows.

p(0, 0), p(0, 1), p(0, 2), p(0, 3), . . . , p(0, 10000),

p(1, 2), p(2, 4), p(3, 6), p(4, 8), . . . , p(5000, 10000)

q(0, 0), q(1, 0), q(3, 0), q(5, 0), q(7, 0), . . . , q(9999, 0)

Clearly, there is a single violated low-risk case in D, which is caused by p(0, 0). Let us
make sure that there is no other violated risk case in D, but trying to refute each denial
about rl, rm and rh.

First of all, there obviously is no other low-risk cause of form p(x, x) that would
violate← rl(x).

Next, let us try to find an instance of the body of the first clause of rm that would be
true in D. Since the second column of q is always 0, q(x, 0),∼p(0, x), would have to
be true. That, however, cannot be, since p(0, x) /∈ D for each x such that q(x, 0) ∈ D.

For trying to find a satisfied instance of the body of the second clause of rm, let e
stand for an even number greater or equal 0, o for an odd number greater or equal 1, and

Managing Risks by Integrity Constraints and Integrity Checking 241

n for any natural number greater or equal 0. Further note that each p-fact in D is either
of the form p(0, e) or p(0, o) or p(n, 2n), for n > 1. So, since the second column of p
joins with the first column of q only if their value is an even number, the only possible
instances of that clause which could make its body true are of one of the following three
forms:

p(0, e), q(e, z), ∼p(e, z), ∼q(z, 0)
or

p(0, o), q(o, 0), ∼p(o, 0), ∼q(0, 0)
or

p(n, 2n), q(2n, 0), ∼p(2n, 0),∼q(0, n)

Obviously, none of these instances can become true, because q(e, z) does not hold for
any z, q(0, 0) is true in D, and q(2n, 0) is false for each n > 0.

Last, the clause of rh: to make its body true would require that 0 > th, but we have
excluded that. Hence, we have verified that← rl(0) is the only violated risk case of IC
in D, and that p(0, 0) is its only cause.

Now, consider the update U = insert q(0, 9999), for illustrating 1) - 6) above.

4.1 Brute-Force Risk Management

The cost of brute-force checking for any update is high. That is a commonplace, but
let us see in some more detail to what brute-force evaluation of IC amounts, for later
comparison.

Evaluation of← rl(x) involves a scan of all of p. Evaluation of← rm(x) involves
joins of p and q, a join of local p with remote q, plus possibly many lookups in p and q.
Evaluation of← rh(x) involves a join of local p with remote q, plus the evaluation of
possibly many ground expressions of the form z > th.

With large extensions of p and q, the evaluation outlined above may last too long,
particularly if safety-critical risks are monitored in real time. In 4.2, we shall see that it is
far less expensive to use an inconsistency-tolerant method that simplifies the evaluation
of integrity constraints by taking the update into account and by limiting its focus on
the data that are affected by the update.

4.2 Inconsistency-Tolerant Risk Management

We are going to see that the cost of inconsistency-tolerant integrity checking of U is
much lower than to use brute-force evaluation. But, before we go into details, recall
that the use of any traditional method that insists on the satisfaction of IC in the old
state D is prohibited for the database in our example, since D(IC) = false.

Typical simplification methods compile pre-simplifications for update patterns at
constraint specification time. Thus, the cost of such pre-simplifications at update time is
nil. U matches the update pattern q(a, b), which in turn matches precisely the following
unfoldings of← rm by the two clauses defining rm, and of← rh, respectively.

← q(x, y), ∼p(y, x)
← p(x, y), q(y, z), ∼p(y, z), ∼q(z, x)
← p(0, y), q(y, z), z > th

242 H. Decker

Thus, the pre-simplifications complied for the patter for insertions of facts of the form
q(a, b), are as follows.

←∼p(b, a)
← p(x, a), ∼p(a, b), ∼q(b, x)
← p(0, a), b > th

Substituting (a, b) by the inserted values (0, 9999) at update time yields the following
simplifications.

←∼p(9999, 0)
← p(x, 0), ∼p(0, 9999), ∼q(9999, x)
← p(0, 0), 9999 > th

By a simple lookup of p(9999, 0) for evaluating the first of the three denials, it is in-
ferred that← rm is violated.

Since a medium risk has been detected, there is in principle no need to continue
checking the remaining two simplified denials. However, we are going to do that, in
order to build a bridge to point 3).

Evaluating the second denial from left to right amounts to the cost of answering the
query← p(x, 0). The single answer is x = 0. Then, a lookup of q(9999, 0) succeeds.
Hence, the second denial is true, which means that there is no further medium risk.

Since p(0, 0) is true, the third denial turns out to be violated if 9999 > th holds,
which indicates a high security risk.

To conclude, let us summarize this subsection. Inconsistency-tolerant integrity check-
ing of U essentially costs a simple access to the p relation. Only one more lookup is
needed if all constraints are evaluated. And, perhaps more importantly, inconsistency-
tolerant integrity checking prevents medium- and high-risk violations that would be
caused by the update if it were not rejected.

4.3 Dependable Risk Management

Inconsistency-tolerant constraint checking is dependable. It is not if a non-inconsistency-
tolerant method (e.g., as described in [9,10]) is used. This claim is substantiated by the
inconsistency-intolerant reasoning as outlined below.

Since the p relation is not affected by U , the truth value of the unfolding← p(x, x)
of the constraint ← rl(x) is the same in D and DU . Since each method that is not
inconsistency-tolerant insists on the premise that all constraints be satisfied in the old
state, such methods, when applied to our example, conclude that the unfolded denial
← p(x, x) is true in D and DU , even though p(0, 0) ∈ D. That conclusion is then
applied to the third of the simplified unfoldings from 2), i.e., to ← p(0, 0), 9999 > th,
which thus is wrongly concluded to be satisfied in DU if 9999 > th holds.

The subsumption-based reasoning of methods that are not inconsistency-tolerant
can be summarized as follows: Applying the premise that ← p(x, x) is satisfied to
← p(0, 0), 9999 > th infers that the latter also remains satisfied in DU , because it
is subsumed by ← p(x, x). Thus, non-inconsistency-tolerant integrity checking may
wrongly conclude that the high risk constraint← rh(z) is not violated in DU .

Managing Risks by Integrity Constraints and Integrity Checking 243

4.4 Repair-Based Risk Management (Repairing the Old State)

The traditional integrity checking approach insists on total constraint satisfaction in the
old state. To comply with that, in order to use traditional approaches for risk manage-
ment, all extant violations need to be repaired before each update. Yet, we are going to
see that repairing the old state is costly.

In general, the identification of all extant violations may already be very expensive
in large databases, and indeed unaffordable at update time. Fortunately, however, there
is only a single low-risk constraint violation in our example, as we have already seen
before: p(0, 0) is the only cause of the only constraint violation← rl(0) in D. Thus, to
repair D means to request the update R = delete p(0, 0), and to execute R if it preserves
all constraints.

To check R for integrity preservation means to check the simplified denials

← q(0, 0)
and
← p(x, 0), q(0, 0), ∼q(0, x)

obtained from resolving ∼p(0, 0) with the bodies of the two clauses defining rm, since
precisely those two clauses are affected by the deletion of p(0, 0). Hence, no constraint
other than← rm(y) is potentially violated by the intended repair.

Of the two simplified denials above, the second one clearly is satisfied in DR, since
no fact of the form p(x, 0) remains in the database after p(0, 0) is deleted. However, the
first one is violated, since q(0, 0) is true in DU . Hence, another repair action is needed.
The obvious candidate is delete q(0, 0). That update request affects the constraint

rm(y)← p(x, y), q(y, z), ∼p(y, z),∼q(z, x)

and yields the simplified check of

← p(0, y), q(y, 0), ∼p(y, 0).

Obviously, this denial is violated by facts in D that are of the form p(0, o) and q(o, 0),
where o is an odd number in the interval [1, 9999]. Thus, to delete q(0, 0) for repairing
the violation caused by deleting p(0, 0) causes the violation of each case of the form
← rm(o), for each odd number o in [1, 9999].

Clearly, many facts about p or q would have to be deleted in order to repair each of
these violated cases. For simplicity, we won’t follow them through, since the point that
repairing D is very complex and tends to be much more expensive than inconsistency-
tolerant integrity checking has become obvious already. We only recall the big advan-
tage of inconsistency-tolerant integrity checking that repair actions do not have to take
place at update time. Instead, they can be taken off-line, at any convenient moment.

4.5 Repair-Based Risk Management (Repairing the New State)

Also repairing the new state is more costly than to simply tolerate extant constraint vio-
lations until they can be repaired at some better moment. In our example, this becomes
obvious by recalling from 1) that, in DU , there are three violated cases: the low-risk
case that is already violated in D and the medium- and high risk cases as detected by
inconsistency-tolerant integrity checking. To repair them is indeed even more compli-
cated than to only repair the violated low-risk case, as attempted in 4).

244 H. Decker

Moreover, it should be noted for risk management that it is no good idea in general to
simply accept an update without checking for potential violations of constraints, and to
attempt repairs only after the update is committed, because repairing takes time, during
which an updated but unchecked state may contain malicious risks of any order.

4.6 Consistent Query Answering for Risk Management?

Consistent query answering in inconsistent databases (CQA) is a popular approach to
cope with extant constraint violations for query answering [1]. Although query answer-
ing is not the topic of this paper, a connection between inconsistency-tolerant integrity
checking and CQA can easily be drawn, because the monitoring of risk constraints
involves their evaluation. Thus, the idea may arise to use CQA for evaluating con-
straints as queries, in order to avoid wrong answers hat could be due to extant constraint
violations.

Unfortunately, to evaluate constraints or simplifications thereof by CQA is not rec-
ommendable, because consistent answers are defined to be those that are true in each
minimally repaired state of the datbase. Thus, for each queried constraint, CQA will by
definition return the empty answer, which indicates the satisfaction of the constraint.
Thus, answers to queried constraints that are computed by CQA have in fact no mean-
ingful interpretation.

For instance, CAQ computes the empty answer to the query← rl(x) as well as to the
query← rh(z), for any extension of the relations p and q. However, the only sensibly
correct answer to the first query in D is x = 0. Similarly, the only reasonable answer
to the second query in DU is x = 9999, assuming that 9999> th. These answers are
reasonable because they correctly indicate risks contained in D and DU , respectively.

This shows that, despite of many unquestionable merits of CQA, it should not be
used for monitoring risks if risks are modeled by integrity constraints.

5 Related Work

Although semantic properties such as integrity and risks associated to data are intu-
itively related, they never have been approached in a uniform manner, to the best of our
knowledge, neither in theory nor in practice.

Kinships and semantic differences between the integrity of data and data that in-
volve some sort of risk, in the sense of being uncertain, are observed in a collection
of work on modeling and managing uncertain data [11]. In that book, largely diverse
approaches to handle data that involve some risk of uncertainty are proposed. In par-
ticular, approaches such as probabilistic and fuzzy set modeling, exception handling,
repairing and paraconsistent reasoning are discussed. However, no particular approach
to integrity checking is considered.

Similar to uncertainty, also quality impairment can be understood as a special kind
of riskiness of data. Several paraconsistent logics that tolerate inconsistency and qual-
ity impairment of data have been proposed, e.g., in [7,2]. Each of them, however, de-
parts from classical first-order logic, by adopting some annotated, probabilistic, modal

Managing Risks by Integrity Constraints and Integrity Checking 245

or multivalued logic, or by replacing standard axioms and inference rules with non-
standard axiomatizations. As opposed to that, inconsistency-tolerant integrity checking
fully conforms with standard datalog and does not need any extension of classical logic.

Further work on the management of semantic inconsistencies in databases is go-
ing on in the field of measuring inconsistency [8,5]. As shown in [5], inconsistency
measures can be used for a form of inconsistency-tolerant integrity checking that is dif-
ferent from the approach outlined in section 3. It accepts an update only if the measured
amount of inconsistency in the old state does not increase in the new state. There are
several possible ways to measure inconsistency. Two that are directly related to section 3
are to count the number of violated cases, or to compare the set of violated cases before
and after the update [4]. In [5], some more measures related to inconsistency-tolerant
integrity checking are discussed.

6 Conclusions

We have shown that risks can be modeled by integrity constraints and monitored by
inconsistency-tolerant integrity checking methods.

Traditionally, no method for simplified integrity checking has tolerated a database
that is inconsistent with its constraints. However, as shown in [6], it is possible to
waive that intolerance without any penalty. Hence, assertions that model risk con-
straints, the occasional violation of which is tolerable, can be monitored efficiently by
inconsistency-tolerant integrity checking methods.

As illustrated in the extended example of section 4, inconsistency tolerance is es-
sential, since wrong, possibly fatal conclusions can be inferred from deficient data by
using a method that is not inconsistency-tolerant. Many methods that are inconsistency-
tolerant, and some that are not, have been identified in [4,5,6].

Ongoing work is concerned with establishing a closer relationship of inconsistency-
tolerant integrity checking with the fields of repairing, inconsistency measuring and
consistent query answering.

References

1. Arenas, M., Bertossi, L., Chomicki, J.: Consistent query answers in inconsistent databases.
In: 18th PODS, pp. 68–79. ACM Press, New York (1999)

2. Bertossi, L., Hunter, A., Schaub, T. (eds.): Inconsistency Tolerance. LNCS, vol. 3300.
Springer, Heidelberg (2005)

3. Bowen, K., Kowalski, R.A.: Amalgamating language and metalanguage. In: Clark, K.,
Tärnlund, S.A. (eds.) Logic Programming, pp. 153–172. Academic Press, London (1982)

4. Decker, H., Martinenghi, D.: Classifying integrity checking methods with regard to incon-
sistency tolerance. In: 10th PPDP, pp. 195–204. ACM Press, New York (2008)

5. Decker, H., Martinenghi, D.: Modeling, Measuring and Monitoring the Quality of Informa-
tion. In: Heuser, C.A., Pernul, G. (eds.) ER 2009. LNCS, vol. 5833, pp. 212–221. Springer,
Heidelberg (2009)

6. Decker, H., Martinenghi, D.: Inconsistency-tolerant Integrity Checking. IEEE Transac-
tions on Knowledge and Data Engineering. Abstract and preprint available at (2010),
http://doi.ieeecomputersociety.org/10.1109/TKDE.2010.87
(to appear)

246 H. Decker

7. Decker, H., Villadsen, J., Waragai, T. (eds.): ICLP 2002 workshop on Paraconsistent Com-
putational Logic. Datalogiske Skrifter, vol. 95. Roskilde University, Denmark (2002)

8. Grant, J., Hunter, A.: Measuring inconsistency in knowledgebases. J. Intelligent Information
Systems 27(2), 159–184 (2006)

9. Gupta, A., Sagiv, Y., Ullman, J., Widom, J.: Constraint checking with partial information. In:
13th PODS, pp. 45–55. ACM Press, New York (1994)

10. Lee, S.Y., Ling, T.W.: Further improvements on integrity constraint checking for stratifiable
deductive databases. In: 22nd VLDB, pp. 495–505. Morgan Kaufmann, San Francisco (1996)

11. Motro, A., Smets, P.: Uncertainty Management in Information Systems: From Needs to So-
lutions. Kluwer, Dordrecht (1996)

12. Ramakrishnan, R., Gehrke, J.: Database Management Systems. McGraw-Hill, New York
(2003)

Energy Efficient Data Sorting Using Standard Sorting
Algorithms

Christian Bunse1, Hagen Höpfner2, Suman Roychoudhury3, and Essam Mansour4

1 University of Applied Sciences Stralsund
Zur Schwedenschanze 15, 18439 Stralsund, Germany

2 Bauhaus University of Weimar, Bauhausstr. 11, 99423 Weimar, Germany
3 Tata Research Development and Design Center

54-B, Hadapsar Industrial Estate, Pune, MH, 411013, India
4 King Abdullah University of Science and Technology

Thuwal 23955-6900, Kingdom of Saudi Arabia
Christian.Bunse@fh-stralsund.de,

http://www.imenco.eu,
hoepfner@acm.org,

http://www.hoepfner.ws,
suman.roychoudhury@tcs.com,
essam.mansour@ieee.org,

http://elab.ws

Abstract. Protecting the environment by saving energy and thus reducing car-
bon dioxide emissions is one of todays hottest and most challenging topics. Al-
though the perspective for reducing energy consumption, from ecological and
business perspectives is clear, from a technological point of view, the realization
especially for mobile systems still falls behind expectations. Novel strategies that
allow (software) systems to dynamically adapt themselves at runtime can be ef-
fectively used to reduce energy consumption. This paper presents a case study
that examines the impact of using an energy management component that dy-
namically selects and applies the “optimal” sorting algorithm, from an energy
perspective, during multi-party mobile communication. Interestingly, the results
indicate that algorithmic performance is not key and that dynamically switching
algorithms at runtime does have a significant impact on energy consumption.

Keywords: Energy awareness, Software engineering, Adaptivity, Mobile infor-
mation systems.

1 Introduction

Mobile and embedded devices become more and more important in all areas of the
daily life. Nowadays, they also form the basis of the ubiquitous or pervasive computing
paradigm. Information is accessible everywhere at any time via mobile phones, small
sensors collectively measure environmental parameters, and micro controller based
computers are embedded in many devices starting from toys and ending with cars or
air planes. In fact, the landscape of embedded computing changes dramatically. Un-
fortunately, all these small components share a need for a (mobile) power supply. As

J. Cordeiro, A. Ranchordas, and B. Shishkov (Eds.): ICSOFT 2009, CCIS 50, pp. 247–260, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

248 C. Bunse et al.

smaller the device, as more the uptime depends on the efficient usage of the limited
energy resource. So, all parts of a mobile or embedded system have to be energy aware.

Recently signifcant research effort has been spent on optimizing hardware related
energy consumption [1]. However, less importance has been given towards energy ef-
ficient usage of hardware components by optimizing the underlying software. This
particular aspect of software optimization is addressed in this paper. Devices contain
several hardware components (e.g. CPU, external memory, communication devices),
which have different levels of energy consumption (cf. [13]). Therefore, the software
must be able to adapt itself to meet the underlying user requirements while conserving
maximum energy. In previous works [11] we therefore introduced the concept of re-
source substitution. Preliminary results [4] have shown that different implementations
of algorithms result in varying energy consumptions. In particular, we implemented
various sorting algorithms because sorting efficiency is relevant to almost all applica-
tions. Furthermore, many database management algorithms that implement join (e.g.
Sort-Merge-Join) or set operations implicitly use sorting algorithms. Our experiments
revealed that memory intensive implementations consumed much more energy than in-
place implementations i.e., Quicksort in general consumed more energy that Insertion-
sort. However, if processing speed is given priority over energy, Insertionsort performs
slower than Quicksort, thus resulting in a longer execution time. Therefore the question
is, how much data can be sorted by an algorithm implementation by keeping an optimal
balance between energy comsumption and processing speed.

In this paper we present our approach for energy saving software by choosing the
appropriate algorithm. Based on experimental results, we introduce trend functions for
each implementation of the examined sorting algorithms. These trend functions are
then used to decide on which algorithm to use under certain conditions or based on
the users needs (faster speed vs. saving energy). Furthermore, we describe a dynamic
optimization approach that changes the used implementation at runtime.

Please note, this paper is an extended version of [5]. Based on the reviews and the
conference discussions organizers selected the paper for the publication in this book.

The remainder of this paper is structured as follows: Section 2 describes the related
work. Section 3 briefly introduces the researched sorting algorithms. Section 4 intro-
duces the optimizer component and the trend functions. Section 5 explains the exper-
imental setup and the experiments performed as proof of concept. Section 6 includes
the interpretation of the experimental results. Section 7 discusses the validity of these
results. Section 8 summarizes the paper and gives an outlook to future research.

2 Related Work

Due to the orientation towards mobile- and embedded systems, several research projects
have been conducted regarding the topic of energy consumption. Optimizing energy
consumption is one of the most fundamental factors for an efficient battery-powered
system. Research on energy consumption falls into one of the following categories:
(1) Hardware, or (2) Software [14]. Research that belongs to the hardware category,
attempts to optimize the energy consumption by investigating hardware usage, such
as [6,17], and innovating new hardware devices and techniques, such as [25,26]. Re-
search in the second category attempts to understand how the different methods and

Energy Efficient Data Sorting Using Standard Sorting Algorithms 249

techniques of software affect energy consumption. Research in this category can be fur-
ther classified according to the main factors affecting energy consumption: networking,
communication, application nature, memory management, and algorithms. Concern-
ing networking work such as [7,21], provide new routing techniques that are aware of
energy consumption. Other efforts of this category focus on providing energy-aware
protocols for transmitting data in wireless networks [20,22] and ad-hoc networks [9].
Memory consumption is an important factor concerning a system’s energy consump-
tion. In this regard work such as [15,18] have provided energy-aware memory manage-
ment techniques. In battery-powered systems, it is not sufficient to analyze algorithms
based only on time and space complexity. Energy-aware algorithms such as [14] sup-
porting randomness, [19] focusing on cryptographic, and [24] investigating into wire-
less sensor networks were published.

3 Sorting Algorithms

In the first days of computing, sorting data (numbers, names, etc.) was in focus of re-
search. One reason might be that although sorting appears to be “easy”, its efficient
execution by machines is inherently complex. Even today, sorting algorithms are still
being optimized or even newly invented. When it comes to mobile systems and infor-
mation retrieval, efficient sorting is a major concern regarding performance and energy
consumption. In the following we describe the set of sorting algorithms that were used
in the context of this study. This set was defined to include major algorithms that are
either used in form of library functions (e.g., Quicksort), are easily programmable (e.g.,
Bubblesort) or that are regularly taught to computer science students. In other words,
our goal was to cover those algorithms that are in widespread use. More details on them
can be found in standard text books on algorithms and data structures such as [16].

– Bubblesort belongs to the family of comparison-based sorting. It works by re-
peatedly iterating through the list to be sorted, comparing two items at a time and
swapping them if they are in the wrong order. The worst-case complexity is O(n2)1

and the best case is O(n). Its memory complexity is O(n).
– Heapsort is a comparison-based sorting algorithm and part of the selection sort

family. Although somewhat slower in practice on most machines than a good im-
plementation of Quicksort, it has the advantage of a worst-case time complexity of
O(n log n).

– Insertionsort is a naive algorithm that belongs to the family of comparison-based
sorting. In general insertion sort has a time complexity of O(n2) but is known to be
efficient on data sets which are already substantially sorted. Its average complexity
is O(n2/4) and linear (O(n)) in the best case. Furthermore insertion sort is an
in-place algorithm that requires a linear amount O(n) of memory space.

– Mergesort was invented by John von Neumann and belongs to the family of com-
parison-based sorting. Mergesort has an average and worst-case performance of
O(n log n). Unfortunately, Mergesort requires three times the memory of in-place
algorithms such as Insertionsort.

1 n represents the size of input; the number of elements to be sorted.

250 C. Bunse et al.

– Quicksort was developed by Sir Charles Antony Richard Hoare [10]. It belongs to
the family of exchange sorting. On average, Quicksort makes O(n log n) compar-
isons to sort n items, but in its worst case it requires O(n2) comparisons. Typically,
Quicksort is regarded as one of the most efficient algorithms and is therefore typi-
cally used for all sorting tasks. Quicksort’s memory usage depends on factors such
as choosing the right Pivot-element, etc. On average, having a recursion depth of
O(log n), the memory complexity of Quicksort is O(log n) as well.

– Selectionsort belongs to the family of in-place comparison-based sorting. It typi-
cally searches for the minimum value, exchanges it with the value in the first posi-
tion and repeats the first two steps for the remaining list. On average Selectionsort
has a O(n2) complexity that makes it inefficient on large lists. Selectionsort typi-
cally outperforms bubble sort but is generally outperformed by Insertionsort.

– Shakersort [2] is a variant of Shellsort that compares each adjacent pair of items
in a list in turn, swapping them if necessary, and alternately passes through the list
from the beginning to the end then from the end to the beginning. It stops when
a pass does no swaps. Its complexity is O(n2) for arbitrary data, but approaches
O(n) if the list is nearly in order at the beginning.

– Shellsort is a generalization of Insertionsort, named after its inventor, Donald Shell.
It belongs to the family of in-place sorting but is regarded to be unstable. It per-
forms O(n2) comparisons and exchanges in the worst case, but can be improved
to O(n log2 n). This is worse than the optimal comparison-based sorts, which are
O(n log n). Shellsort improves Insertionsort by comparing elements separated by
a gap of several positions. This lets an element take “bigger steps” toward its ex-
pected position. Multiple passes over the data are taken with smaller and smaller
gap sizes. The last step of Shellsort is a plain Insertionsort, but by then, the list of
data is guaranteed to be almost sorted.

4 Optimizing Energy

To dynamically adapt/optimize the energy consumption of a mobile and/or embed-
ded system (i.e., the sorting node used thorughout our experiment), we developed an
architecture (see Figure 1) that closely follows the idea of the energy management
component presented in [3]. EMC aimed at optimizing the communication effort of
a system. Here the focus is on using the “optimal” algorithm concerning energy and
processing speed.

At its core, the experiment system defines a family of sorting strategies (algorithms),
encapsulates each of these, and makes them interchangeable. This is nicely supported
by the strategy pattern defined by [8]. The strategy pattern supports the development of
software systems as a loosely coupled collection of inter-changeable parts. The pattern
decouples a strategy from its host, and encapsulates it into a separate class. It thus,
supports the separation of an object and its behaviour by organizing them into two
different classes. This allows switching to the strategy that is needed at a specific time.

There are several advantages of applying the strategy pattern for an adaptable soft-
ware system. First, since the system has to choose the most appropriate strategy con-
cerning performance and energy it is simpler to keep track of them by implementing

Energy Efficient Data Sorting Using Standard Sorting Algorithms 251

energy profile user preferences concerning

Optimizer

the energy management
(i.e., determining the delta)

cost via trend functionapplication
Host 1 1Host 1

1

Sorting
ComChannel

1

1

+Strategy()Host 2 1

Quicksort Insertionsort Mergesort
BlueTooth

Qu c so t

+Strategy()

se t o so t

+Strategy()

e geso t

+Strategy()
…

Fig. 1. Algorithm-Energy Optimizer

each strategy by a separate class instead of embedding it in the body of a method. Hav-
ing separate classes allows simply adding, removing, or changing any of the strategies.
Second, the use of the strategy pattern also provides an alternative to sub-classing an
object. This also avoids the static behavior of sub-classing. Changes therefore require
the creation/instantiation of a different subclass and replacing that object with it. The
strategy pattern allows switching the object’s strategy, and it will immediately change
how it behaves. Third, using the strategy pattern also eliminates the need for various
conditional statements. When different strategies are implemented within one class, it
is difficult to choose among them without resorting according to the conditional state-
ments. The strategy pattern improves this situation since strategies are encapsulated as
an object that is interchangeable at runtime.

To select the most appropriate strategy/algorithm, the optimizer has to be aware of
the cost of its execution with respect to energy. Therefore, a cost model is needed that
provides a “rough” estimate of an algorithms energy consumption based on the input
size. However, it has to be noted that the used cost model instance is only valid for
the actually used platform. Basically we followed the empirical data gathered in the
context of [4] concerning the energy consumption of sorting algorithms running on
AVR processors.

We used the extrapolated trend functions of the different sorting algorithms (see
Figure 2) as a basis for the cost functions. The trend function calculates an estimation
of the required energy for 1,000 executions2 of an algorithm, based on the input size n.
In detail, the trend functions listed in Table 1 were extrapolated, whereby the R2 value
that represents the goodness of fit was 1.

Since our goal was to find the optimal balance between sorting performance and
energy consumption it was not sufficient to simply use the trend functions as cost func-
tion. Due to the linear nature of the trend function the result would always indicate

2 To level out measurement errors.

252 C. Bunse et al.

Table 1. Trend functions

Algorithm trend function
Quicksort F (n) = n1.1388 · 0.1533
RQuicksort F (n) = n1.1771 · 0.1467
Insertionsort F (n) = n1.0679 · 0.09121467
Mergesort F (n) = n1.1035 · 0.1912
RMergesort F (n) = n1.1384 · 0.3221
Heapsort F (n) = n · 0.2324 + 0.0286
Shellsort F (n) = n2 · 0.0071 + n · 0.0047

+0.0939
Selectionsort F (n) = n2 · 0.013 − n · 0.0236

+0.1908

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 t
re

n
d

Number of data items

Quicksort
recursive Quicksort

Insertionsort
Mergesort

recursive Mergesort
Heapsort

Fig. 2. Trend functions - excerpt

Insertionsort as the most energy-efficient algorithm. Keeping these formulas and as-
sumptions in mind the following selection algorithm can be defined:

1. By using the size n of the set as an input the energy-related costs for all algorithms
are calculated and stored.

2. The minimum result and thus the most energy-efficient algorithm is identified.
3. Based on the algorithmic complexity, the minimum value is compared to those

values that are related to algorithms of “lower” complexity classes.
4. If the difference in energy-consumption is below a predefined threshold or delta the

“faster” algorithm is chosen.

The goal of an adaptive application (e.g., our experimental system) is to optimize the
Quality-of-Service (QoS) perceived by the user. Unfortunately, often optimization ap-
proaches either enforce predetermined (fixed) policies or offer only limited mechanisms

Energy Efficient Data Sorting Using Standard Sorting Algorithms 253

for controlling optimization. According to [23], these limitations prevent adaptive sys-
tems from addressing these important issues. User goals often entail trade-offs among
different aspects of quality (e.g., enhancing battery life or faster execution times).

The Optimizer architecture (see Figure 1) allows users to actually determine the
trade-off between performance and energy consumption, simply by changing the cost
function delta. As larger the delta becomes as higher the sorting performance and as
lower the battery-lifetime of the system. Thus, the delta determines the size of data-sets
to be sorted by a specific algorithm. In the context of our experiments we experimented
with different delta values and observed that defining the delta as 1, 200 provides the
“best” optimization results.

5 Experimental Design

Our previous experiments provided some insight into the area of software-related
energy consumption. In these experiments we collected data concerning the energy con-
sumption of sorting algorithms as well as algorithms that apply them. The results show
that energy consumption is driven by factors such as memory consumption and per-
formance leading to the fact that the fastest algorithm (e.g., Quicksort) is not the most
efficient algorithm concerning energy-consumption.

In this sense we developed a simple system (see Figure 3). An embedded node wire-
lessly receives data-sets, sorts them and sends the sorted set to another recipient. The
goal of the node is to primarily sort data. However, since the node is battery powered
and the end-user expects short response times, sorting is optimized according to re-
sponse time and average energy consumption (i.e., maximize up-time). On application
scenario for such a node is a wireless sensor network that collects position or life-data
of cattle. Notes are communicating wirelessly (e.g., ZigBee or Bluetooth), whereby
the controller-node (i.e., the node that pre-processes the data) finally provides the pre-
processed data to a PC. In the context of our experiments we use a simplified version
for brevity of illustration.

The system comprises a micro controller (i.e., ATMega128, external SRAM, running
on a STK500/501 board) and two Bluetooth interfaces (i.e., BlueSmirf modules). The
system establishes two data-connections to different hosts via its Bluetooth modules.
It reads values (variable size sets of unsorted integers) via on data-connections, selects
the most appropriate sorting algorithm according to its optimization goal, and transmits
the sorted set to another host via the second data-connection.

5.1 Experimental Runs

Within this experiment we compared three different approaches to optimization con-
cerning their performance (time and size) and their energy consumption. In the first
run the data was sorted by only using the Quicksort algorithm, Thus, this run was opti-
mized for speed. In the second run,the data was sorted by only using the Insertionsort
algorithm. This represents an optimization for energy-efficiency (max. battery lifetime)
based on our previously reported findings[4]. In the third run we then made use of
the algorithm optimizer/selector (see Figure 1). The Optimizer aims at balancing speed

254 C. Bunse et al.

Galvanic Separation

Computer

Data Acquisition
Digital Oscilloscope

& Logger

Energy
Calculation

Result DB

Program
Pool

Evaluation
Board

Measurement Add On

Bluetooth
Communication

Host 1

Host 2

Fig. 3. Experiment System Overview

(performance) and energy efficiency to increase the amount of sorted data and process-
ing speed while at the same time increasing battery lifetime through energy savings.

5.2 Data Collection

As described previously the experiment systems is connected to two different hosts
via Bluetooth (i.e., Figure 3 provides an overview). It receives sets (i.e., sequences
of random integer values) of varying sizes from the first host. The actual size of a
transmitted set is limited to 1,000 elements but is randomly chosen.

According to the actual experimental run, the system either applies a specific sorting
algorithm (i.e., Quicksort or Insertionsort) or selects the “best” sorting algorithm from
a set of algorithms and applies the selected algorithm to the received set. The sorted set
is then sent to Host 2 and the next data set is received. This cycle is executed until the
battery is empty.

Send and receive (Host 1 and Host 2) are synchronized by the clock. This leaves
sufficient time for sorting and retransmission. In addition the Bluetooth modules (exter-
nally powered) provide send/receive buffers to level out overlaps.

During the experimental runs the following data was collected:

– The size of every set to be sorted (i.e., n). The size was randomly chosen but limited
to a maximum of 1,000 elements.

– The number of sets sorted (i.e., N). This is the overall number of successfully
executed sorting requests throughout the experimental run.

– The battery level (i.e., V). V was measured at fixed time intervals, whereby we
assume that the actual voltage level of a battery indicates its status and charge level.

Energy Efficient Data Sorting Using Standard Sorting Algorithms 255

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

Vo
lt

ag
e

(m
V

)

Time (hh:mm:ss)

Without Optimization - QS

Without Optimization - Ins

Optimized

Fig. 4. Battery Lifetime

– Run and Execution Time (i.e., P). Run and execution time was measured by hosts
one and two (i.e., time when a set was sent and when the sorted set was received).
Times were not measured at the target platform in order to not falsify the measure-
ments.

6 Evaluation of Results

Initial measurement within the experimental runs shows that optimization results are as
expected. When looking at the battery level V over time (i.e., up-time of our system) it
supports the initial assumption that the uptime of a systems is directly related towards
the energy consumption related to the executed software system. However, a closer look
at Figure 4 shows that a non-adaptive approach either results in an excellent or a poor
energy efficiency. Interestingly, the results for the adaptive are close to those of the
non-optimized Insertionsort variant.

When recalling the results of Figure 4 the question arises why should we adapt the
system or is optimization really necessary. It seems that by choosing a specific algorithm
better results can be achieved than by dynamic adaption. Therefore, we have to examine
the performance of the different variants concerning the amount of sorting requests and
the amount of data.

Figure 5 supports the initial assumption concerning the trade-off between energy
efficiency and performance. High-performing variants (i.e., Quicksort) handle more
sorting requests (i.e., N) in a shorter period of time but result in a very limited V .
Energy-efficient variants (i.e., Insertionsort) result in an optimal V but handle signif-
icantly less sorting requests. Only adaptive (i.e., optimized) systems provide a good
balance of energy-efficiency and performance.

256 C. Bunse et al.

0

500

1000

1500

2000

2500

3000

3500

0:
00

:0
0

4:
00

:0
0

8:
00

:0
0

12
:0

0:
00

16
:0

0:
00

20
:0

0:
00

24
:0

0:
00

28
:0

0:
00

32
:0

0:
00

36
:0

0:
00

40
:0

0:
00

44
:0

0:
00

48
:0

0:
00

52
:0

0:
00

56
:0

0:
00

60
:0

0:
00

64
:0

0:
00

68
:0

0:
00

72
:0

0:
00

76
:0

0:
00

80
:0

0:
00

84
:0

0:
00

88
:0

0:
00

92
:0

0:
00

96
:0

0:
00

10
0:

00
:0

0
10

4:
00

:0
0

10
8:

00
:0

0
11

2:
00

:0
0

11
6:

00
:0

0
12

0:
00

:0
0

12
4:

00
:0

0

Fulfilled Sorting Requests

No Opt. - QS

Optimized

No Opt. - Ins

Fig. 5. Request Performance

This is also supported by Figure 6, which shows the total number of elements that
were sorted over time. Measurement results expose a linear growth that roughly repre-
sent the sums of sorting requests sizes. The results confirm our initial assumption that an
optimization for speed (Quicksort variant) results in a fast growing curve that covers a
short time period. Optimization for energy (Insertionsort variant) results in a curve that
spans a broad time range but that does not grow as fast as the Quicksort related curve.
Finally, the optimized system seems to combine the advantages of other approaches.
It covers a broad time range and sorts a high number of elements. In others words, the
optimized system variant provides a well-balanced behavior regarding performance and
energy consumption.

The findings concerning the effects of dynamically choosing an algorithm at runtime
are also supported by the fact that this approach sorts more data in total than the other
two approaches. Thus, optimization does not provide results somewhere between those
of the non-adaptive systems but uses their synergy effects to provide even better results.

7 Threats to Validity

The authors view this study as exploratory. Thus, threats limit generalization of this
research, but do not prevent the results from being used in further studies.

Construct Validity is the degree to which the independent and dependent variables ac-
curately measure the concepts they purport to measure. In specific, energy consumption
is a difficult concept to measure. In the context of this paper it is argued that the chosen
approach (assessing the battery voltage level V) is an intuitively reasonable measure. Of

Energy Efficient Data Sorting Using Standard Sorting Algorithms 257

0

20000000

40000000

60000000

80000000

100000000

120000000

0:
00

:0
0

4:
00

:0
0

8:
00

:0
0

12
:0

0:
00

16
:0

0:
00

20
:0

0:
00

24
:0

0:
00

28
:0

0:
00

32
:0

0:
00

36
:0

0:
00

40
:0

0:
00

44
:0

0:
00

48
:0

0:
00

52
:0

0:
00

56
:0

0:
00

60
:0

0:
00

64
:0

0:
00

68
:0

0:
00

72
:0

0:
00

76
:0

0:
00

80
:0

0:
00

84
:0

0:
00

88
:0

0:
00

92
:0

0:
00

96
:0

0:
00

10
0:

00
:0

0

Sorted Elements - Total

No Opt. - QS

No Opt. - Ins

Optimized

Fig. 6. Total Number of Sorted Elements

course, there are several other dimensions of the energy measurement problem but this
is future work. However, in a simple study it is unlikely that all the different dimensions
of a concept can be captured.

Internal Validity is the degree to which conclusions can be drawn about the causal
effect of independent variables on the dependent variable. In specific, a history effect
may result from measuring systems at different times (varying context temperature).
Additional experiments and runs have shown that the temperature effect in a heated lab
room can be neglected.

External Validity is the degree to which the results of the research can be general-
ized to the population under study and other research settings. In specific, the materials
(platforms, software, etc.) may not be representative in terms of size and complexity.
However, experiments in a university context do not allow the use of realistic systems
for reasons such as cost, availability, etc. However, the authors view this study as ex-
ploratory and view its results as indicators that allow further research.

In order to improve the empirical study and address some of the threats to validity
identified above, the following actions can be taken:

– Improve data collection. Data collection can be improved in several ways. First, by
measuring not only battery voltage as an indirect energy consumption indicator but
also the exact energy consumption, in joule, of the platform regarding each algo-
rithmic run. Second, by increasing the sampling/measurement frequency (e.g., have
sampling rates of 1 microsecond or below). A third option would be to automate
the whole experimental procedure, thereby making time collection trivial.

258 C. Bunse et al.

– Improve the distinction of algorithmic complexities. The actual experiment used
random data that was only comparable between runs. However, we did not made
any distinction regarding best-, worst- and average-case data. By separating and
explicitly distinguishing between these cases would allow for fine-grained analysis.

– Improve the generalizability of results by running the experiment on different plat-
forms. Currently, results are limited to the AVR processor family and can thus, only
serve as an indicator of the general situation. Therefore the experiment needs to be
replicated on different platforms to get more and more reliable data.

8 Summary and Conclusions

Given the rising importance of mobile and small embedded devices, energy consump-
tion becomes increasingly important. Currents estimates by EUROSTATS predict that
in 2020 10-35 percent (depending on which devices are taken into account) of the global
energy consumption is consumed by computers and that this value will likely rise [3].
Therefore, means have to be found to reduce the energy consumption of such devices.

The focus of this paper is on dynamically adapting a simple system at runtime by
algorithm substitution as a means for energy saving. Following the ideas of resource
substitution strategies as presented in [11] we presented an Optimizer Component that
follows the ideas of the dynamic energy management component EMC [3] and that can
be plugged into other component based systems.

At its core the optimizer uses the energy-related trend functions of different sorting
algorithms. In detail, the optimizer uses the different trend functions for determining the
energy-related cost of a specific algorithm with respect to the algorithm’s input-size. It
then compares the results and uses a user-defined delta for selecting the best algorithm.

Our initial results are based on a micro-controller system (AVR processor family, cf.
[12]) that communicate wirelessly by BlueTooth. The main system functionality is to
receive data of varying size, sort it and to send it to another host. The data collected for
different system variants was then used to examine if energy-consumption and sorting
performance can be significantly improved. The collected data reveals that by optimiza-
tion the amount of sorted data, battery lifetime. Moreover, the overall performance can
be significantly increased. The experiments show the impact of software onto a systems
energy consumption and a way to easily optimize a system in this regard.

To systematically evaluate the observed effects and to rule out the aforementioned
threats to validity we currently prepare a case study for mobile information systems
running on a PDA or Smartphone.

References

1. Bardine, A., Foglia, P., Gabrielli, G., Prete, C.A.: Analysis of static and dynamic energy con-
sumption in NUCA caches: initial results. In: Proceedings of the 2007 workshop on MEmory
performance: DEaling with Applications, systems and architecture, pp. 105–112. ACM, New
York (2007)

2. Brejová, B.: Analyzing variants of Shellsort. Information Processing Letters 79(5), 223–227
(2001)

Energy Efficient Data Sorting Using Standard Sorting Algorithms 259

3. Bunse, C., Höpfner, H.: Resource substitution with components — Optimizing En-
ergy Consumption. In: Cordeiro, J., Shishkov, B., Ranchordas, A.K., Helfert, M. (eds.)
Proceedings of the 3rd International Conference on Software and Data Technologie,
vol. SE/GSDCA/MUSE, pp. 28–35. INSTICC press, Setúbal (2008)

4. Bunse, C., Höpfner, H., Mansour, E., Roychoudhury, S.: Exploring the Energy Consumption
of Data Sorting Algorithms in Embedded and Mobile Environments. In: Proceedings of the
10th International Conference on Mobile Data Management: Systems, Services and Middle-
ware, Taipei, Taiwan, May 18-20, pp. 600–607. IEEE Computer Society Press, Los Alamitos
(2009)

5. Bunse, C., Höpfner, H., Roychoudhury, S., Mansour, E.: Choosing the “best” Sorting Algo-
rithm for Optimal Energy Consumption. In: Proceedings of the 4th International Conference
on Software and Data Technologie (ICSOFT 2009), Setúbal, Portugal, July 26-29, vol. 2, pp.
199–206. INSTICC press, Setúbal (2009)

6. Chen, J.-J., Thiele, L.: Expected system energy consumption minimization in leakage-aware
DVS systems. In: Proceeding of the Thirteenth International Symposium on Low Power
Electronics and Design, ISLPED 2008, pp. 315–320. ACM, New York (2008)

7. Feeney, L.M.: An Energy Consumption Model for Performance Analysis of Routing Proto-
cols for Mobile Ad Hoc Networks. Mobile Networks and Applications 6(3), 239–249 (2001)

8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional, Reading (1995)

9. Gurun, S., Nagpurkar, P., Zhao, B.Y.: Energy consumption and conservation in mobile peer-
to-peer systems. In: Proceedings of the 1st International Workshop on Decentralized Re-
source Sharing in Mobile Computing and Networking, MobiShare 2006, pp. 18–23. ACM,
New York (2006)

10. Hoare, C.A.R.: Quicksort. Computer Journal 5(1), 10–15 (1962)
11. Höpfner, H., Bunse, C.: Resource Substitution for the Realization of Mobile Information

Systems. In: Filipe, J., Helfert, M., Shishkov, B. (eds.) Proceedings of the 2nd International
Conference on Software and Data Technologie, vol. Software Engineering, pp. 283–289.
INSTICC Press, Setúbal (2007)

12. Höpfner, H., Bunse, C.: Energy Aware Data Management on AVR Micro Controller Based
Systems. ACM SIGSOFT Software Engineering Notes 35(3) (May 2010)

13. Höpfner, H., Bunse, C.: Towards an energy-consumption based complexity classification
for resource substitution strategies. In: Balke, W.T., Lofi, C. (eds.) Proceedings of the 22.
Workshop on Foundations of Databases (Grundlagen von Datenbanken), Bad Helmstedt,
Germany, May 25-28. CEUR Workshop Proceeding, vol. 581 (2010), CEUR-WS.org

14. Jain, R., Molnar, D., Ramzan, Z.: Towards understanding algorithmic factors affecting energy
consumption: switching complexity, randomness, and preliminary experiments. In: Proceed-
ings of the 2005 Joint Workshop on Foundations of Mobile Computing, Workshop on Dis-
crete Algothrithms and Methods for MOBILE Computing and Communications, pp. 70–79.
ACM, New York (2005)

15. Koc, H., Ozturk, O., Kandemir, M., Narayanan, S.H.K., Ercanli, E.: Minimizing energy con-
sumption of banked memories using data recomputation. In: Proceedings of the 2006 Inter-
national Symposium on Low Power Electronics and Design, ISLPED 2006, pp. 358–362.
ACM, New York (2006)

16. Lafore, R.: Data Structures and Algorithms in Java, 2nd edn. SAMS Publishing, Indianapolis
(2002)

17. Liveris, N., Zhou, H., Banerjee, P.: A dynamic-programming algorithm for reducing the en-
ergy consumption of pipelined system-level streaming applications. In: Proceedings of the
2008 Conference on Asia and South Pacific Design Automation, ASP-DAC 2008, Seoul,
Korea, pp. 42–48. IEEE Computer Society Press, Los Alamitos (2008)

260 C. Bunse et al.

18. Ozturk, O., Kandemir, M.: Nonuniform Banking for Reducing Memory Energy Consump-
tion. In: Proceedings of the Conference on Design, Automation and Test in Europe, DATE
2005, pp. 814–819. IEEE Computer Society Press, Washington (2005)

19. Potlapally, N.R., Ravi, S., Raghunathan, A., Jha, N.K.: A Study of the Energy Consumption
Characteristics of Cryptographic Algorithms and Security Protocols. IEEE Transactions on
Mobile Computing 5(2), 128–143 (2006)

20. Seddik-Ghaleb, A., Ghamri-Doudane, Y., Senouci, S.-M.: A performance study of TCP vari-
ants in terms of energy consumption and average goodput within a static ad hoc environment.
In: Proceedings of the 2006 International Conference on Wireless Communications and Mo-
bile Computing, IWCMC 2006, pp. 503–508. ACM, New York (2006)

21. Senouci, S.-M., Naimi, M.: New routing for balanced energy consumption in mobile ad hoc
networks. In: Proceedings of the 2nd ACM International Workshop on Performance Eval-
uation of Wireless ad hoc, Sensor, and Ubiquitous Networks, PE-WASUN 2005, Montreal,
Quebec, Canada, pp. 238–241. ACM Press, New York (2005)

22. Singh, H., Singh, S.: Energy consumption of TCP Reno, Newreno, and SACK in multi-hop
wireless networks. ACM SIGMETRICS Performance Evaluation Review 30(1), 206–216
(2002)

23. Sousa, J.P., Balan, R.K., Poladian, V., Garalan, D., Satyanarayanan, M.: User Guidance of
Resource-Adaptive Systems. In: Cordeiro, J., Shishkov, B., Ranchordas, A., Helfert, M.
(eds.) Proceedings of the Third International Conference on Software and Data Technolo-
gies, ICSOFT 2008, vol. SE/MUSE/GSDCA, pp. 36–45. INSTICC Press, Setúbal (2008)

24. Sun, B., Gao, S.-X., Chi, R., Huang, F.: Algorithms for balancing energy consumption in
wireless sensor networks. In: Proceeding of the 1st ACM International Workshop on Foun-
dations of Wireless ad hoc and Sensor Networking and Computing, FOWANC 2008, pp.
53–60. ACM, New York (2008)

25. Tuan, T., Kao, S., Rahman, A., Das, S., Trimberger, S.: A 90nm low-power FPGA for battery-
powered applications. In: Proceedings of the 2006 ACM/SIGDA 14th International Sympo-
sium on Field Programmable Gate Arrays, FPGA 2006, pp. 3–11. ACM, New York (2006)

26. Wang, L., French, M., Davoodi, A., Agarwal, D.: FPGA dynamic power minimization
through placement and routing constraints. EURASIP Journal on Embedded Systems (1),
7 (2006)

Part V

Knowledge-Based Systems

J. Cordeiro, A. Ranchordas, and B. Shishkov (Eds.): ICSOFT 2009, CCIS 50, pp. 263–276, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Analysis of Emergent and Evolving Information:
The Agile Planning Case

Rasmus Rosenqvist Petersen and Uffe Kock Wiil

The Maersk Mc-Kinney Moller Institute, University of Southern Denmark
Campusvej 55, 5230 Odense M, Denmark

{rrp,ukwiil}@mmmi.sdu.dk

Abstract. Some information structures are by nature emergent and evolving
and as a consequence the retrievable knowledge keeps shifting patterns like a
kaleidoscope. Hence, information analysis can be a complex and tedious task.
The planning task of agile teams is an example of such a complex information
analysis task. In this paper, we present a lightweight planning tool. ASAP is
inspired by concepts and principles from spatial hypertext, which have proven
successful in supporting information analysis tasks. ASAP runs on a large
interactive vertical display on which electronic task cards can be organized into
iterations and releases using card hierarchies and separators (a novel visual
concept). Several views of the evolving plan are automatically generated to
assist the agile team with overviews of tasks, estimates, and assignments. Views
are instantly updated to reflect changes to the plan.

Keywords: Information Analysis, Spatial Hypertext, Agile Planning, Electronic
Task Cards, Interactive Displays, Automatically Generated Views.

1 Introduction

Some information structures are by nature emergent and evolving and as a
consequence the retrievable knowledge keeps shifting patterns like a kaleidoscope [1].
Hence, information analysis can be a complex and tedious knowledge management
task. But the fluent nature of the information makes the generated knowledge highly
valuable. It can help users make informed decisions by revealing otherwise non-
comprehensible or hidden patterns. Spatial hypertext has proven successful in
supporting information analysis tasks [2], [3], [4], [5]. The planning task of agile
teams is an example of a complex information analysis task that can be supported by
spatial hypertext concepts and principles.

Project planning in agile teams is a collaborative process relying on face-to-face
communication and shared information to succeed. A commonly used approach to
planning involves teams using a large table to plan iterations using paper cards to
represent tasks to be carried out. When a planning session is over, the plan is somehow
recorded, and the cards are removed from the table. One downside to this is that cards’
location on the table and their proximity to other cards may contain important
information for the overall plan. When cards are removed from the table, their
arrangement is often lost and with it so is the proximity and location information [6].

264 R.R. Petersen and U.K. Wiil

Our overall goal is to develop a software tool to support agile planning, while
preserving the benefits of physical card based planning. Card based planning is
suggested by several agile development methods [7] [8] and is used by many agile
software teams. During the development of ASAP, we have been working closely
with local software companies to identify requirements for the planning tool, to get
feedback on suggested features, and to test various versions of the planning tool. A
number of important overall requirements have come out of this collaboration:

• A planning tool should support the work of the agile team in a manner that
resembles the physical card based approach.

• A planning tool should be lightweight offering only the features that are
necessary to solve the task at hand.

• A planning tool should visualize the consequences of the planners’ actions
allowing them to make informed decisions regarding the plan.

ASAP has been developed to fulfill these overall requirements. It runs on a large
interactive vertical display on which electronic task cards can be moved around freely
and organized into iterations and releases using card hierarchies and separators
(a novel visual concept). Generated plans can be stored, printed, exported, and
retrieved again later for future planning sessions.

Once paper cards become electronic, several new opportunities arise. Different
views can be automatically generated based on the layout and the attributes of the task
cards. ASAP provides overviews of tasks, estimates, status, and assignments. Views
in ASAP are instantly updated to reflect the changes made by the planners, thus
supporting the planners by visualizing the current status of the plan.

The remainder of the paper is structured as follows. Section 2 introduces the basics
of information analysis and spatial hypertext. Section 3 reviews some well-known
agile software development methods to identify agile planning practices and
techniques. Section 4 looks at existing software support for agile planning. Section 5
presents ASAP, including requirements, design concepts and features, current status
and ongoing work, and evaluation. Section 6 briefly describes our approach towards a
framework for information analysis based on ASAP. Section 7 summarizes the paper.

2 Information Analysis and Spatial Hypertext

Marshall and Shipman [2] note that information analysts faced with the task of
organizing and understanding large amounts of data develop structures over this data
over time. As their understanding of the information space changes, the structures
they use to characterize the space also change. Systems designed for such analysts are
required to support emerging and evolving structures that avoid the problems
associated with premature organization and formalization, as discussed, e.g., by
Halasz [3] and Marshall et al. [4].

Marshall and Shipman [2] have proposed spatial hypertext to meet these
requirements. Spatial hypertext systems allow users to represent pieces of information
as visual “icons”. Analysts can represent relationships among objects implicitly by
varying certain visual attributes (color, size, shape) of the icons and by arranging the
icons in arbitrary ways in a two dimensional space.

 Analysis of Emergent and Evolving Information: The Agile Planning Case 265

A spatial parser can then recognize the spatial patterns formed by these icons.
Examples of such spatial structures might be lists of red rectangles that contain text or
piles of blue ovals that contain images. Both the user and the system can use the
structures recognized by this parser to support the task of analysis. For example, the
system may recognize some particular type of structure as occurring frequently and
conclude that it represents a meaningful abstraction to the analyst. It may then prompt
the analyst to recognize this type of structure formally, perhaps by naming it. This
formal recognition may allow additional functionality to be provided, such as
searches for instances of the structure in the space or replacement of the structure with
a new visual symbol that may be “expanded” into its constituent parts.

VKB (Visual Knowledge Builder) [5] is a prominent general purpose spatial
hypertext system that supports information analysis as described above.

3 Agile Planning

A number of agile software development practices and techniques focus on and
involve planning. We will briefly look at some of these to investigate what types of
activities ASAP should be able to support.

The Scrum agile software development method suggests several work practices
where planning plays a role: pre-game planning and staging, sprint planning, and the
daily meeting [7]. Pre-game planning and staging focuses on identifying desired
features which are recorded in the Product Backlog and possibly one or more Release
Backlogs. Iterations (sprints) start with two sprint planning meetings where the tasks
for the upcoming iteration are planned and estimated. At the daily meeting the sprint
plan is reviewed and tasks may end up in the Sprint Backlog.

Extreme Programming (XP) is a well-known agile method that includes 12 core
practices – including the Planning Game [7]. The Planning Game is a meeting that
occurs once per iteration. The Planning Game is divided into two parts. Release
Planning Game focuses on determining what features are included in the next release,
and when they should be delivered. Iteration Planning Game focuses on planning the
activities and tasks of the developers in the upcoming iteration.

The Crystal family of agile methodologies [8] includes the Blitz Planning
technique. Blitz Planning is based on paper task cards laid out on a table surface. The
overall idea is to gather the right people, discuss the project details, and end up with a
project plan as a result of working through ten predefined steps. Blitz Planning is a
variation of the XP Planning Game described above. The two differ in three ways [8]:

• The planning game cards list user stories, and the Blitz Planning cards list tasks.
• The planning game has the people assume there are no dependencies between

stories, while Blitz Planning has people analyze the dependencies between tasks.
• The planning game assumes fixed-length iterations, while Blitz Planning does

not assume anything about iteration length.

Another technique included in the Crystal family is the Daily Stand-up Meeting; this
is quite similar to Scrum’s daily meeting described above.

The above reviews show that planning is a central activity in agile software
development. If we go one step deeper into the practices and techniques, they suggest
the use of cards and larges surfaces (tables and whiteboards) to create and revise
plans.

266 R.R. Petersen and U.K. Wiil

4 Related Work

Over the last years, many commercial and open source tools have become available to
support agile planning. Liu [9] identified three categories of planning support
systems: form-based, combined Wiki- and form-based, and board-based.

Form-based. The majority of tools that support agile planning belong to this
category. Typical representatives of this category are browser based and provide
forms to store a predefined set of information, e.g., effort estimates or priority
rankings. Form-based systems provide basic functionality for creating and deleting as
well as editing and prioritizing project planning artifacts and can derive
supplementary information like total efforts for iterations or remaining work effort
from existing data. Existing form-based tools comprise commercial products like
Rally [10], VersionOne [11], and ScrumWorks [12] as well as open source products
like XPlanner [13].

Wiki- and form-based. Tools like MASE [14] (University of Calgary) take the form-
based approach one step further and combine it with another very popular way to
share information between people. Users can attach Wiki-pages to stories that can be
used to provide additional information related to a task.

Board-based. This category comprises tools like CardMeeting [15], AgilePlanner [9],
Distributed AgilePlanner [16], and MasePlanner [17]. A commonality of board-based
systems is that they are all mimicking card based planning to a certain extent. They
provide ways to create, edit, and delete cards and visually group those cards to
indicate relationships. CardMeeting attempts to bridge the gap between browser based
systems and physical card based planning. It displays electronic index cards in a web
browser. It is primarily focused on the visual aspect of card based planning. It does
not provide the iterations and progress tracking that other agile planning tools have.
AgilePlanner and its successor Distributed Agile Planner (University of Calgary) are
card based tools for collocated and distributed agile planning. Synchronous
distributed planning meetings are supported by providing a shared workspace
(displayed on vertical displays and/or digital tabletops) for creating, organizing, and
editing electronic index cards. Changes made by one team member become visible
immediately on connected clients all over the world. MasePlanner (also from
University of Calgary) builds on features from MASE and AgilePlanner and is
implemented as an Eclipse plug-in with web services for remote connectivity.

ASAP is a board-based agile planning tool supporting collocated agile teams. The
ability to support well-known agile practices and techniques such as Crystal Clear’s
Blitz Planning and XP’s Planning Game has played a major role in determining the
features of the tool. ASAP is developed to run on large interactive vertical displays.
Many of University of Calgary’s tools have special support for interactive horizontal
displays (such as rotation of cards). According to the chosen lightweight strategy, it
should be easy (and inexpensive) to run ASAP in existing meeting rooms. Very few
meeting rooms have interactive horizontal displays (tabletops), while interactive
vertical displays are more common. Commercial tools like the Tool-Tribe Connector
(www.tool-tribe.dk) offer a simple, portable, and inexpensive solution that turns any
whiteboard into an interactive surface. This allows ASAP to be used in any meeting

 Analysis of Emergent and Evolving Information: The Agile Planning Case 267

room equipped with a whiteboard. The development of ASAP is inspired by
techniques from spatial hypertext. This makes the features and interaction in ASAP
different from existing board-based tools. Task cards are easy to create, manipulate,
and organize. Besides the traditional spatial organization of task cards on a surface,
ASAP provides two additional organization features – a hierarchical view of the
organization of tasks and subtasks and a novel visual concept (the separator) used to
separate and group task cards.

5 The ASAP Approach

This section presents ASAP including requirements, design concepts and features,
current status and ongoing work, and evaluation.

5.1 Requirements

Based on interactions with local software companies three overall requirements for
agile planning tools were identified:

• A planning tool should support the work of the agile team in a manner that
resembles the physical card based approach. A computer tool like ASAP
should not alter a workflow that works. It should simply support the existing
workflow (in this case board-based planning) and, if possible, provide additional
support for the individual steps in the workflow enabling the user to perform the
tasks better and/or faster.

• A planning tool should be lightweight offering only the features that are
necessary to solve the task at hand. There are many examples of tools that
provide a lot more features than necessary to solve a given task. Let us consider
Microsoft Word. Typical Word users only make use of a very limited subset of
the features in Word (say 10 %) to solve most of their writing tasks (say 90 %).
This can result in complex tools that are difficult to use. The entry barrier
becomes higher for new users. The overhead of using the tool may outweigh the
benefits of the tool. ASAP goes the other way and provides only the most
essential features for agile planning. A lightweight planning tool that is intuitive
and easy to use will result in a much lower entry barrier for new users and will
be able to support most of their planning needs.

• A planning tool should visualize the consequences of the planners’ actions
allowing them to make informed decisions regarding the plan. The agile team is
in charge of the planning process. The tool supports the team by using its
computing power to instantly visualize the consequences of the individual steps
in the planning process.

In particular, two local software companies have contributed to the generation of the
above overall requirements. Mikro Værkstedet (www.mikrov.dk) is a small software
development company (<50 employees) focusing on educational software. KMD
(www.kmd.dk) is a large software development company (3000+ employees)
focusing primarily on software for the public sector.

268 R.R. Petersen and U.K. Wiil

Formal interviews have been conducted with agile software development team
managers at both places regarding requirements for an agile planning tool. Earlier
versions of ASAP were discussed with the same team managers to focus the
development of ASAP on the most essential features. Finally, the team managers are
currently using ASAP in ongoing software development projects using agile practices.
Feedback from the use has been collected and ASAP has been enhanced based on this
(see Section 5.4).

A set of functional requirements for ASAP have been derived based on the overall
requirements and the desire to support existing agile planning practices and
techniques. These requirements are not surprisingly somewhat overlapping with the
agile planning requirements presented by Liu [9] and Morgan [16].

1. Supporting Agile Planning Objects. Creating, editing, and deleting task cards
are core agile planning activities. We have adopted the Crystal Clear Blitz
Planning notation of tasks instead of user stories.

2. Organizing Agile Planning Objects. The ability to move task cards around
freely and organize them into iterations and releases are core agile planning
practices.

3. Supporting Multiple Iterations. Agile teams should be able to make both short
term planning (next iteration) and long term planning (future iterations and
releases).

4. Supporting Hierarchies of Planning Objects. Breaking down tasks into
subtasks is a well-known strategy for handling complexity (divide and
conquer). Hierarchies also provide a way to handle large projects with many
tasks (addressing the scalability issue).

5. Visualizing Consequences of Planning Actions. Visualizing the consequences
of the planners’ actions allows them to make informed decisions regarding the
plan.

6. Supporting Estimation and Tracking [18]. Adding estimates to tasks cards
allows the agile team to get an overview of the duration of iterations. Adding
task status to Task Cards allows the agile team to track the status of single
tasks as well as iterations.

7. Managing Team Members and Resources. Assigning tasks to team members
allows agile teams to plan their resources.

8. Re-using Experiences from Past Planning Sessions. Access to old planning
sessions allows the team members to include past experiences in their current
planning sessions.

We consider requirements 1 through 5 to be essential to support agile planning the
ASAP way. Requirements 6 through 8 are also important, but according to the chosen
strategy they will be provided in a lightweight manner.

5.2 Design Concepts and Features

The concepts used in ASAP are developed based on the three overall and eight
functional requirements listed above. Figure 1 illustrates a planning session with
physical cards laid out on a table.

 Analysis of Emergent and Evolving Information: The Agile Planning Case 269

Hierarchy

Card

Separation

Surface

Fig. 1. A planning session with physical cards on a table

Several visual features can be observed in the figure: The use of task cards, the
large surface used to organize the cards, the organization of cards into hierarchies, the
visual separation of cards, the location of cards, the proximity of cards, etc. These
observations have influenced the design of concepts and features in ASAP.

The design of the user interface in ASAP is based on well-known interaction
principles (such as direct manipulation, drag and drop, and cut and paste), interaction
features (such as menus, toolbars, and shortcut icons), and interaction metaphors
(Windows Explorer style hierarchies and Windows desktop style surface).

Fig. 2. The main window in ASAP

Figure 2 provides a screenshot of the main window in ASAP consisting of three
parts – two views as well as the menus and toolbar at the top. The View to the left
provides an overview of the task hierarchy using an interaction metaphor similar to
the one used in Windows Explorer. The View to the right provides a large surface
(Space) on which task cards can be organized freely using an interaction metaphor
similar to the one used by the desktop in Windows. Each central design concept and
tool feature of ASAP is explained below.

270 R.R. Petersen and U.K. Wiil

The Space (right hand View in Figure 2) is a well-known concept adopted from
spatial hypertext. A Space in ASAP is a large two dimensional surface used to
organize electronic task cards. The Hierarchy (left hand View in Figure 2) provides a
tree overview of the organization of tasks and subtasks. The tree root reflects the
name of the planning session, nodes in the tree are tasks containing subtasks, and
leafs in the tree are tasks with no subtasks. The Hierarchy View and the Space View
are synchronized in the sense that changes made in one View are instantly reflected in
the other View. There are no limitations to the number of nested hierarchies. The two
Views are separated by a divider that can be moved left or right to expand/minimize
the Views depending on the users’ preference. A zooming feature on the toolbar
allows the user to view cards in the space in varying sizes (50%, 75%, 100%, and
150%). The default size is 100%.

The Task Card is the basic planning object used in ASAP. It represents the paper
equivalent. It is overlaid with a grid (3 by 3 cells) in which each cell is assigned
specific meaning. The value of cells can be changed by the user. Task Cards are
created by making a dragging gesture inside a Space that resembles the shape of a
Task Card. A Task Card is deleted when pressing the “red cross” in the upper right
hand corner. The icon in the lower right hand corner is used to create and traverse
hierarchies. The icon can have two different forms. A card with no subtasks is
depicted with an icon similar to an “H”. If the user clicks the “H” icon, then a new
subspace is created and opened. The user can now add subtasks in the subspace. A
subspace offers exactly the same functionality as a Space. A card with subtasks is
depicted with a different icon in the lower right hand corner. If the user clicks this
icon, then the subspace opens allowing the user to manipulate the subtasks. We use
the term Space to cover both the top level Space and the subspaces. The “C” icon is
used to manage comments relevant to the task card (in a separate window). Task
Cards can have different colors (toolbar option).

Task Cards can be configured using a Card Editor. Since the optimal Task Card
design may differ depending on the project team and planning task, a Card Editor
allows for configuration (personalization) of the Task Card layout. By default the cell
in the upper left hand corner is named Person and is of type [PERSON], the cell in the
lower left hand corner is named Estimate and is of type [TIME], the cell in the middle
is named Task and is of type [TASK], and the cell below the Task cell is named
Tracking and is of type [TIME]. The Person, Estimate, and Tracking cells are used for
estimates and tracking and for handling team members and resources. The Tracking
cell is only visible when tracking is turned on (toolbar option).

A Separator (red vertical bar) is used to group vertically dependent Task Cards
visualizing the horizontal separation of dependencies (e.g., a time line). Separators are
created by making a dragging gesture inside a Space that resembles the shape of a
Separator. Separators can be assigned a name (description), a date, and a type.
Currently, the following types of Separators exist: Separation, iteration, walking
skeleton, release, and milestone. The Separator is a novel visual structuring concept
that is introduced to support the planning task by visualizing dependencies and
groupings among Task Cards.

The Space is immediately parsed by a Spatial Parser every time a change occurs.
The algorithms parsing the Separator(s) sort them according to their position, and then
apply methods to detect Task Cards to the left, to the right, and between two

 Analysis of Emergent and Evolving Information: The Agile Planning Case 271

Separators. Spatial parsing is done along the y-axis clarifying vertical dependencies.
The algorithms parse the Task Cards grouped together by Separators, according to
their y-coordinates. The Card with the lowest y value is identified as the first task in
the grouping (e.g., iteration) and so forth. The concept of a spatial parser is a well-
known concept adopted from spatial hypertext. The Spatial Parser automatically
generates Views that are relevant to the planning task. The generated Views visualize
the consequences of the planners’ actions. The Spatial Parser can currently generate
two types of Views.

Fig. 3. The auto-generated Estimates & Tracking View

The Estimates & Tracking View (Figure 3) is auto-generated based on the layout
of Task Cards in the Space (and subspaces), the time estimates of Task Cards, and the
position of Separators in the Space (and subspaces). When a Task Card or Separator is
moved or when a time estimate is changed, the Estimates & Tracking View is
immediately updated to show the revised Plan. The time line at the top indicates the
number of planning units (hours, half days, or days) assigned to a task. The Estimate
cell stores the assigned time estimate of a task, while the Tracking cell stores the
estimated effort needed to complete the task. The grey indicators show estimates of
tasks and the red indicators show the remaining effort needed to complete the tasks
(only visible when tracking is turned on).

The Team Members & Resources View (Figure 4) is auto-generated based on the
cells of type PERSON and TIME in the Task Card. The Team Members & Resources
View allows the names of team members to be added. Once names are added, each
task can be assigned to a team member by updating the cell of type PERSON. The
View also shows the estimate of each task as well as the total estimate of the tasks
assigned to a person. The Team Members & Resources View is instantly updated
when a task has been assigned to a team member and when an estimate has been
changed.

A Planning Session is something that is not normally finished in one go; most
often, there is a need to revise an existing plan. This implies the need for storing
Planning Sessions and continuing (revising) them at a later time. ASAP allows
Planning Sessions to be stored and opened again later. ASAP defines its own file type
(*.psd – planning session data) for this purpose. This functionality is available both in
the “Session” menu and on the toolbar through shortcut icons.

272 R.R. Petersen and U.K. Wiil

Fig. 4. The auto-generated Team Members & Resources View

Plans can also be exported to XML and CSV (comma separated value) formats.
Visual objects are serialized into an XML string which can be saved in a text file. The
XML format contains information about Separators and Task Cards including a
unique ID, cell information, card location, card size, color, font size, and other font
information. Information about cells, their type and location is also stored. The CSV
format includes the values of the name, estimate, tracking, and person cells of all
cards. The use of XML and CSV as interchange formats makes it possible to
transform the plan generated in ASAP into formats that can be imported by other
agile planning tools or third-party project management applications.

Finally, plans can be printed – either on paper or to a PDF file. It is possible to
print a single View (i.e., current Space or Estimates & Tracking View). A full print of
the plan consists of the following parts:

• An overview of the Task Cards in each Space – the hierarchy (tree structure) is
traversed and printed in a depth-first manner: top Space, all subspaces of the
first Task Card, all subspaces of the second Task Card, etc.

• An overview of the Estimates (as seen in the Estimates & Tracking View).
• An overview of the Team Members and their assignments (as seen in the Team

Members & Resources View).
• A page for each team member with a list of assigned tasks.

5.3 Current Status and Ongoing Work

The current version of ASAP (September 2010) fulfills most of the identified
functional requirements for an agile planning tool:

Requirements 1-6: Fully supported. All the desired features are supported.
Requirement 7: Partly supported. Management of team members is supported.

Management of resources is not yet supported.

 Analysis of Emergent and Evolving Information: The Agile Planning Case 273

Requirement 8: Partly supported. To some extent, this feature is already
available in the current version. It is possible to load an old planning session into
ASAP and reuse it as a starting point for a new planning session. In this way,
experiences from an earlier project can be reused.

Our future work plan involves the following features:

• Management of resources. We plan to add lightweight support for
management of resources.

• Multiple sessions. We plan to add an additional level of support allowing reuse
from multiple past planning sessions.

• Interchange. We are currently testing how well the provided XML and CSV
formats interface to existing project management tools (i.e., Microsoft Project)
as well as existing commercial agile planning tools.

• History. We are currently implementing a history feature similar to the one
available in VKB [5]:
This feature will support unlimited undo of actions as well as scrolling back in
history and possibly exploring alternate planning steps.

• Collaboration. Currently, we only provide support for collocated meetings. We
plan to provide support for distributed planning meetings also.

5.4 Evaluation

ASAP has been developed to support agile planning practices and techniques from
well-known software development methods. We have previously shown [19] that an
earlier version of ASAP (January 2008) can support the activities of the Blitz
Planning technique from the Crystal family [8]. The current version is developed to
provide support for a broader set of planning tasks as specified in the software
development methods reviewed in Section 3.

ASAP is developed as a lightweight planning tool providing only the most
essential features for agile planning. Features are provided in an independent manner
that allows the planners to only use the features that they need for the task at hand.
Features in ASAP can be divided into two categories: basic features provided by the
Space and Hierarchy Views and additional features provided by the Estimates &
Tracking and the Team Members & Resources Views. Planners engaged in simple
planning tasks may only need the basic features provided by the Space View. More
complex planning tasks require the use of additional Views. Thus, planners only
“pay” for what they use in terms of tool complexity. There is no additional overhead
for features that are not being used.

ASAP is currently being used and evaluated in software projects conducted at local
software companies. Figure 5 depicts a typical set up of ASAP in planning sessions at
the local software companies. The main window of ASAP (providing the Space and
Hierarchy Views) is displayed on a large interactive surface (e.g., a SMART
BoardTM) allowing the software team members to jointly plan and interact with the
planning objects. The additional Views (Estimates & Tracking and Team Members &
Resources) allowing the team members to instantly see the consequences of their
actions are displayed on a separate screen.

The purpose of the evaluations is to explore the borders of the applicability of our
lightweight approach to agile planning. Projects are monitored with respect to project
size and the required feature intensity. We wish to find out if there is a limit to the

274 R.R. Petersen and U.K. Wiil

Fig. 5. Typical use of ASAP in a planning session

size of projects that ASAP can support (primarily in terms of numbers of tasks). We
also wish to find out what features are being used in what types of projects. Finally,
we wish to find out if the features provided by ASAP are sufficient for most agile
planning purposes. Evaluations are still ongoing. However, the results and feedback is
positive and encouraging as indicated below by statements from end users:

• “It is a good idea to base the interaction in ASAP on well known concepts. The
tool is intuitive and easy to use.”

• “Plans are faster to make with ASAP than our previous method. ASAP supports
an effective planning process.”

• “We believe that the plans generated with ASAP are better than our usual plans.
Plans are easy to store, revise, and distribute.”

• “We always keep an overview of the plan visible in the project room. It helps
the team members in their daily work.”

Thus, we are confident that the chosen lightweight strategy turns out to be successful.
Suggestions for improving the tool received from companies have already resulted in
enhancements of existing features (export and tracking features) and addition of new
features (card colors and zooming feature). A demo version of ASAP can be
downloaded for evaluation from www.planitnow.dk.

6 Towards a Framework for Information Analysis

We are currently developing a framework for information analysis based on ASAP.
The framework contains generic information analysis and software tool functionality
in its basic framework components (Figure 6). These components can be used to
support specific information analysis tasks from various application domains. So far
the framework has been used to develop applications for two domains: agile planning
(ASAP) and intelligence analysis (the CrimeFighter Investigator tool).

 Analysis of Emergent and Evolving Information: The Agile Planning Case 275

Fig. 6. A framework for information analysis and two application domains

7 Conclusions

The ASAP approach to agile planning has been developed based on different types of
analysis work:

• Involving End Users. We have interacted with software companies that
practice agile planning to get their input.

• Exploring Methods. We have explored planning practices and techniques from
several agile software development methods.

• Studying Related Work. We have found inspiration from existing agile
planning tools.

Together, this resulted in three overall and eight functional requirements that have
guided the development. Currently, most of the envisioned features are supported and
the tool is being used and evaluated by local software companies.

ASAP is inspired by previous work on the use of spatial hypertext to support the
knowledge management task known as information analysis. ASAP is based on the
Construct Space Tool [20]. The work has so far resulted in three main contributions:

• We have developed a board-based agile planning tool to help software teams
plan their projects. The tool offers only the features that are necessary to solve
the task at hand according to the chosen lightweight strategy.

• Agile planning is viewed as a complex knowledge management task
(information analysis). Specific features have been developed to support the
planning requirements. The work has resulted in novel ideas such as the visual
Separator concept, the Hierarchy View, and the use of the Spatial Parser to auto-
generate Views that are relevant to the planning process.

• A novel framework for supporting information analysis tasks has evolved from
the work on ASAP. The framework is currently being used to implement
support for information analysis tasks related to intelligence analysis.

We believe that the inspiration from several fields combined with the chosen
lightweight approach has resulted in a tool that is well suited for agile planning.

276 R.R. Petersen and U.K. Wiil

Acknowledgements. This paper is an extended and revised version of a paper
previously published at the International Conference on Software and Data
Technologies (ICSOFT 2009) [21].

References

1. Hjørland, B., Albrechtsen, H.: Toward a New Horizon in Information Science: Domain-
Analysis. Journal of the American Society for Info. Science 46(6), 400–425 (1995)

2. Marshall, C.C., Shipman, F.M.: Spatial hypertext: Designing for Change. Communications
of the ACM 38(8), 88–97 (1995)

3. Halasz, F.: Reflections on NoteCards: Seven issues for the Next Generation of Hypermedia
Systems. Communications of the ACM 31(7), 836–852 (1988)

4. Marshall, C.C., Shipman, F.M., Coombs, J.H.: VIKI: Spatial Hypertext Supporting
Emergent Structure. In: Proceedings of the European Conference on Hypermedia
Technologies (ECHT 1994), Edinburgh, Scotland, pp. 13–23 (1994)

5. Shipman, F.M., Hsieh, H., Maloor, P., Moore, J.M.: The Visual Knowledge Builder: A
Second Generation Spatial Hypertext. In: Proceedings of Hypertext 2001, Aarhus,
Denmark, pp. 113–122. ACM Press, New York (September 2001)

6. Morgan, R., Walny, J., Kolenda, H., Ginez, E., Maurer, F.: Using Horizontal Displays for
Distributed & Collocated Agile Planning. In: Concas, G., Damiani, E., Scotto, M., Succi,
G. (eds.) XP 2007. LNCS, vol. 4536, pp. 38–45. Springer, Heidelberg (2007)

7. Larman, C.: Agile & Iterative Development – A Manager’s Guide. Addison-Wesley,
Reading (2004)

8. Cockburn, A.: Crystal Clear – A Human-Powered Methodology for Small Teams.
Addison-Wesley, Reading (2005)

9. Liu, L.: An Environment for Collaborative Agile Planning. M.Sc. Thesis, Department of
Computer Science, University of Calgary (2006)

10. Rally Software, Rally’s Agile Lifecycle Management Solutions, (2009),
http://www.rallydev.com/products.jsp

11. VersionOne, Agile Project Management Tools (2009),
http://www.versionone.com/products.asp

12. Danube, ScrumWorks (2009), http://www.danube.com/scrumworks/basic
13. XPlanner, XPlanner Overview (2009), http://www.xplanner.org/index.html
14. Maurer, F.: Supporting Distributed Extreme Programming. In: Wells, D., Williams, L.

(eds.) XP 2002. LNCS, vol. 2418, pp. 13–22. Springer, Heidelberg (2002)
15. CardMeeting, CardMeeting (2009), http://www.cardmeeting.com
16. Morgan, R.: Distributed AgilePlanner: A Card Based Planning Environment for Agile

Teams. M.Sc. Thesis, Department of Computer Science, University of Calgary (2008)
17. Morgan, R., Maurer, F.: MasePlanner: A Card-Based Distributed Planning Tool for Agile

Teams. In: Proceedings of ICGSE 2006, Florianopolis, Brazil, pp. 132–138. IEEE
Computer Society Press, Los Alamitos (2006)

18. Cohn, M.: Agile Estimation and Planning. Prentice-Hall, Englewood Cliffs (2006)
19. Petersen, R.R., Wiil, U.K.: ASAP: A Planning Tool for Agile Software Development. In:

Proceedings of Hypertext 2008, Pittsburgh, PA, pp. 27–32. ACM Press, New York (June
2008)

20. Wiil, U.K., Hicks, D.L.: Tools and Services for Knowledge Discovery, Management and
Structuring in Digital Libraries. In: Proceedings of CE 2001, Anaheim, CA, pp. 580–589
(August 2001)

21. Petersen, R.R., Wiil, U.K.: ASAP: A Lightweight Tool for Agile Planning. In: Proceedings
of the Fourth International Conference on Software and Data Technologies (ICSOFT
2009), Sofia, Bulgaria, pp. 265–272. INSTICC Press (July 2009)

J. Cordeiro, A. Ranchordas, and B. Shishkov (Eds.): ICSOFT 2009, CCIS 50, pp. 277–289, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Emotion Based User Interaction in Multimedia
Educational Applications

Efthymios Alepis1, Maria Virvou1, and Katerina Kabassi2

1 Department of Informatics, University of Piraeus
80 Karaoli & Dimitriou St., 18534, Piraeus, Greece

{talepis,mvirvou}@unipi.gr
2 Department of Ecology and the Environment, Technological Educational Institute of the

Ionian Islands, 2 Kalvou Sq., 29100 Zakynthos, Greece
kkabassi@unipi.gr

Abstract. Towards building an affective educational system we explore the
human-computer interaction that is based on two modalities, namely the
computer’s keyboard and the computer’s microphone. The resulting system is
affective by having the ability to recognize human emotional signals, as well as by
being able to generate emotions for pedagogical educational reasons. Both for the
recognition and for the generation of emotions within the educational
environment we have incorporated two sophisticated theories that are used as
mechanisms for human-machine emotional interaction. The first mechanism
emerges from a well known decision making theory, while the second mechanism
uses quite recent findings in the area of cognitive psychology. In our research, we
have investigated the recognition of emotions from the above mentioned
modalities with respect to six basic emotional states, namely happiness, sadness,
surprise, anger and disgust as well as the emotion-less state which we refer to as
neutral. The purpose of the incorporation of the supplementary emotional
interaction between users and computers was to assist the educational processes in
e-learning applications and also to support the instructors’ work during their
authoring duties.

Keywords: E-learning, affective interaction, bi-modal interaction, generation of
emotions, OCC theory, decision making theories, educational agents.

1 Introduction

One of the most important challenges in educational software is to produce e-learning
and tutoring systems that can be characterized as intelligent. Incorporating
“intelligence” in educational systems may enhance the whole learning process and
also make the interaction between users and computers more friendly and profitable.
Perceiving, learning and adapting to the world around us are commonly labeled as
intelligent behavior [1]. In many situations human-computer interaction may be
improved by multimodal emotional interaction in real time [2], [3]. Affective
computing has recently become a very important field of research because it focuses
on recognizing and reproducing human feelings within human computer interaction.

278 E. Alepis, M. Virvou, and K. Kabassi

Human feelings are considered very important but only recently have started being
taken into account in software user interfaces. Thus, the area of affective computing is
not yet well understood and needs a lot more research to reach maturity.

In the last decade, education has benefited a lot from the advances of Web-based
technology. Indeed, there have been many research efforts to transfer the technology
of ITSs and authoring tools over the Internet. Past reviews [4, 5] have shown that all
well-known technologies from the areas of ITS have already been re-implemented for
the Web. Some important assets include platform-independence and the practical
facility that is offered to instructors of authoring e-learning courses at any time and
any place. However, this independence from real instructors and classrooms may
cause emotional problems to students who may feel deprived of the benefits of
human-human interaction. This may affect the educational process in a negative way.
A remedy for these problems may lie in rendering human-computer interaction more
human-like and affective in educational software. To this end, the incorporation of
speaking, animated educational agents in the user interface of the educational
application can be very important.

Indeed, the presence of animated, speaking educational agents has been considered
beneficial for educational software [6, 7]. Instructors that may use educational
authoring tools should not necessarily be computer experts and should be helped to
develop sophisticated educational applications in an easy and cost-effective way [8].
Affective computing may be incorporated into sophisticated educational applications
by providing adaptive interaction based on the user’s emotional state. Regardless of
the various emotional paradigms, neurologists/psychologists have made progress in
demonstrating that emotion is at least as and perhaps even more important than reason
in the process of decision making and action deciding [9]. Moreover, the way people
feel may play an important role in their cognitive processes as well [10].

As Picard points out that one of the major challenges in affective computing is to
try to improve the accuracy of recognizing people’s emotions [11]. Ideally, evidence
from many modes of interaction should be combined by a computer system so that it
can generate as valid hypotheses as possible about users’ emotions. It is hoped that
the multimodal approach may provide not only better performance, but also more
robustness [1].

In previous work, the authors of this paper have implemented and evaluated with
quite satisfactory results from the users’ perspective, other educational systems with
emotion recognition capabilities [12]. As a next step we have extended our affective
educational system by employing fully programmed educational agents that are able
to express a variety of emotions.

Educational agents may be parameterized in many aspects, the way they speak, the
pitch, speed and volume of their voice, their body-language, their facial expressions
and the content of their messages. Educational agents are able to express specific
pedagogical emotional states by the incorporation of the OCC [13] model. The
resulting educational system incorporates an affective authoring module that relies on
the OCC theory. The system uses the OCC cognitive theory of emotions for
modelling possible emotional states of users-students and proposing tactics to
the instructors for improving the interaction between the educational agent and the
student while using the educational application. Through the incorporation of the
OCC model, the system may suggest that the tutoring educational agent should
express a specific emotional state to the student for the purpose of motivating her/him

 Emotion Based User Interaction in Multimedia Educational Applications 279

while s/he learns. Consequently, the educational agent may become a more effective
instructor, reflecting the instructors’ vision of teaching behaviour.

However, as yet there are no authoring tools that provide parameterization in user
interface components such as speech-driven, animated educational agents. The
present educational system provides the facility to authors to develop tutoring systems
that incorporate speaking, animated emotional agents who can be parameterized by
the authors-instructors in a way that reflects their vision of teaching behaviour in the
user interface of the resulting applications.

2 Overview of the System

The resulting system supports either the installation of a standalone application, or
alternatively the installation of a client module. As a result, the educational
application can be installed either on a public computer where both students and
instructors have access, or alternatively each student may have a copy on his/her own
personal computer. The underlying reasoning of the system is based on the student
modelling process of the educational application. The system monitors and records all
students’ actions while they use the educational application and tries to diagnose
possible problems, recognise goals, record permanent habits and errors that are made
repeatedly. Adaptive help is provided through the tutoring agents that not only
support the students’ educational process, but also interact affectively with the
students by expressing emotional states for pedagogical purposes. The incorporated
model that controls the tutoring agents’ behavior is described in section 4. The
inferences made by the system concerning the students’ characteristics are recorded in
their student model. Hence, the system offers advice adapted to the needs of
individual students. The system’s database is used to hold all the necessary
information that is needed for the application to run and additionally to keep
analytical records of the performance of all the students that use the educational
application.

While using the educational application from a desktop computer, students are able
to retrieve information about a particular course. In the example of Figure 1 a student
is using the e-learning system for a medical course about anatomy. The information is
given in text-form while at the same time an animated agent reads it using a speech
engine. Students may choose specific parts of the theory and the available information
is retrieved from the system’s database. Both each course’s data as well the way these
data are presented to the users (orally or acoustically) is controlled by the authoring
“back-stage” module that is operated by the instructors of each e-learning course.
Each user has privileges in specific parts of the educational system and each user’s
rights are determined by the systems user modeling mechanism. As an example, users
as students have access to the forms of the educational application that are illustrated
in figures 1 and 2, while their instructors have also supplementary access to the forms
of the educational application that are illustrated in the next section in figures 4 and 5.
As it is illustrated in figure 2, students are able to take tests that include questions,
answers, multiple-choice, etc, concerning specific parts of the theory. The tutoring
agent is also present in these modes, in order to make the interaction more human-like
and to assist the student by providing pedagogical assistance when it is needed.

280 E. Alepis, M. Virvou, and K. Kabassi

Fig. 1. The educational application with the presence of a tutoring agent

For example the tutoring agent may whisper a help tip to a student if the system
determines that this student is confused. Alternatively, if a student makes a small
spelling mistake (while s/he obviously knows the correct answer to a question), the
animated agent may prompt this student to check his/her spelling. The agent’s entire
interaction is emotional, which means that the agent is expected to behave in a way
that expresses basic emotional states, such as happiness, boredom, fear and surprise.
Correspondingly, the agents’ behavior incites the users of the educational application
to express themselves emotionally and freely and thus give more evidence to the
system’s emotion recognition module.

3 Educational Agents

In this section we describe the animated agents that are incorporated in the
educational system. The tutoring courses that result from the authoring process
described in this paper incorporate animated tutoring agents that act as tutors within

 Emotion Based User Interaction in Multimedia Educational Applications 281

Fig. 2. A snapshot of the educational application while a user is taking a test

Fig. 3. Animated affective agents

the educational environment. All the animated agents are fully programmable and
have the important ability to act emotionally. The agents can move around the
tutoring text and can show parts of the theory in real time (Figure 3). They also
incorporate features of human body-language, such as gestures, facial expressions and
special movements. The educational agents may show patience while the students
read theory for a certain period of time, boredom if the student is not responding to
the system, wonder if the student makes an unexpected move, etc. The agent’s
behaviour is programmatically controlled by an underlying mechanism that relies on
the OCC theory, described in the next section.

Instructors may choose from 27 available speech engines that the system
incorporates. These speech engines are synthesisers that produce different voices. The
system also offers the facility of parameterising these voices by changing the pitch,
speed and volume, as illustrated in figure 4. Thus, the resulting tutoring system may
use the voices differently in different contexts to show enthusiasm, when the student

282 E. Alepis, M. Virvou, and K. Kabassi

Fig. 4. Setting parameters for the voice of the tutoring agent

is doing particularly well, to imitate whisper, when it judges that the student needs
help, or even to show anger when the student is consistently careless and does not pay
any attention to the educational system.

In order to produce an “angry” tone of speaking for the animated agent, as an
example, instructors may increase the pitch the speed and the volume of the speech
engine. This may also be achieved by selecting an appropriate speech engine from the
ones that are available. Additionally, the instructor may use the form illustrated in
Figure 5 that provides pre-installed voice tones for the agents.

The system incorporates built in tools, to which only the instructors have access.
These tools help the instructors modify the behavior of the characters further, with the
agents’ emotion generation facility as the final objective. Not only can the instructor
command the assistant to say something under certain circumstances, but s/he can
also add commands in the text that will be spoken, in a way that the agent may seem
to express a specific emotional state. These commands are understood by the system
and are interpreted into changing speech attributes, body movements, facial
expressions, etc.

4 Emotion Recognition and Emotion Generation

4.1 Recognizing Emotional States

For emotion recognition purposes, a user monitoring component has been used to
capture all user input data during the interaction with the educational application. The

 Emotion Based User Interaction in Multimedia Educational Applications 283

Fig. 5. Pre-installed tones for the voice of the tutoring character

monitoring component is illustrated in figure 6. Input data consist of audio
information that has been collected through the keyboard, as well as audio
information that has been collected through the microphone.

The analysis of the data collected by the monitoring component, revealed some
statistical results that associated user input actions through the computer’s keyboard
and microphone with possible emotional states of the users. More specifically,
considering the keyboard we have the following categories of user actions: a) user
types normally b) user types quickly (speed higher than the usual speed of the
particular user) c) user types slowly (speed lower than the usual speed of the
particular user) d) user uses the “delete” key of the keyboard often e) user presses
unrelated keys on the keyboard f) user does not use the keyboard.

Considering the users’ basic input actions through the computer’s microphone we
have 7 cases: a) user speaks using strong language b) users uses exclamations c) user
speaks with a high voice volume (higher than the average recorded level) d) user
speaks with a low voice volume (low than the average recorded level) e) user speaks
in a normal voice volume f) user speaks words from a specific list of words showing
an emotion g) user does not say anything.

Therefore, whenever an input action is detected the system records a vector of
input actions through the keyboard (k1, k2, k3, k4, k5, k6) and a vector of input
actions through the microphone (m1, m2, m3, m4, m5, m6, m7).

All the above mentioned attributes are used as Boolean variables. In each moment
the system takes data from the bi-modal interface and translates them in terms of
keyboard and microphone actions. If an action has occurred the corresponding
attribute takes the value 1, otherwise its value is set to 0. Therefore, for a user that
speaks with a high voice volume and types quickly the two vectors that are recorded

284 E. Alepis, M. Virvou, and K. Kabassi

Fig. 6. Snapshot of operation of the user modelling component

by the system are: k= (0, 1, 0, 0, 0, 0) and m= (0, 0, 1, 0, 0, 0, 0). These data are
further processed by the decision making model for determining the emotion of the
user.

A previous empirical study revealed the attributes that are taken into account when
evaluating different emotions [14]. However, these attributes were not equally
important for evaluating different emotions. In this study human experts resulted that
one input action does not have the same weight while evaluating different emotions.
Therefore, the weights of the attributes (input actions) were calculated in order to be
used by the decision making model.

For the evaluation of each alternative emotion the system uses SAW [15, 16] for a
particular category of users. According to SAW, the multi-attribute utility function for
each emotion in each mode is estimated as a linear combination of the values of the
attributes that correspond to that mode.

The SAW approach consists of translating a decision problem into the
optimisation of some multi-attribute utility function U defined on A . The decision
maker estimates the value of function ()jU X for every alternative jX

 and selects the

one with the highest value. The multi-attribute utility function U can be calculated in
the SAW method as a linear combination of the values of the n attributes:

 1

()
n

j i ij
i

U X w x
=

= ∑ (1)

where Xj is one alternative and xij is the value of the i attribute for the Xj alternative.
In view of the above, for the evaluation of each emotion taking into account the

information provided by the keyboard is done using formula 2.

 Emotion Based User Interaction in Multimedia Educational Applications 285

 1 1 1 1 11 1 2 2 3 3 4 4ke e k e k e k e kem w k w k w k w k= + + +

1 15 5 6 6e k e kw k w k+ +
(2)

Similarly, for the evaluation of each emotion taking into account the information
provided by the second mode (microphone) is done using formula 3.

1 1 1 1 11 1 2 2 3 3 4 4me e m e m e m e mem w m w m w m w m= + + +

1 1 15 5 6 6 7 7e m e m e mw m w m w m+ + +
(3)

1keem is the probability that an emotion has occurred based on the keyboard actions

and
1meem is the probability that refers to an emotional state using the users’ input

from the microphone
1keem and

1meem take their values in [0,1].

In formula 1 the k’s from k1 to k6 refer to the six attributes that correspond to the
keyboard. In formula 2 the m’s from m1 to m7 refer to the seven attributes that
correspond to the microphone. The w’s represent the weights of the attributes. These
weights correspond to a specific emotion and to a specific input action and were
calculated in the pre mentioned empirical study.

In cases where both modals (keyboard and microphone) indicate the same emotion
then the probability that this emotion has occurred increases significantly. Otherwise,
the mean of the values that have occurred by the evaluation of each emotion using
formulae 1 and 2 is calculated.

The system compares the values from all the different emotions and selects the one
with the highest value of the multi-attribute utility function. The emotion that
maximises this function is selected as the user’s emotion.

4.2 Agents That Act Emotionally

Through the incorporation of the OCC theory, the system may suggest that the
educational agent should express a specific emotional state to the student for the
purpose of motivating her/him while s/he learns. Accordingly, the agent becomes a
more effective instructor.

In OCC theory, emotional states arise from cognitive models that measure positive
and negative reactions of users to situations consisting of events, agents and objects.
Correspondingly, events match user goals that are key elements in the OCC theory.

Tables 1 and 2 illustrate representative subsets of intensity variables concerning user
input actions and application events that are used by the system’s adapted OCC emotion
model in order to propose an emotional state as a educational tactic for the animated
agent. The variables illustrated in tables 1, 2 have been specified in our own
implementation and adaptation of OCC in our educational application. The application’s
user interface is multi-modal, thus it is possible for the system to monitor and record
user actions such as speed of typing through the keyboard as well as low voice volume
through the microphone etc. The proposed authoring system integrates the OCC model
by comprising a subset of five basic emotional states, namely happiness, sadness, anger,
fear and surprise. Each one of the above mentioned five emotional states can be
synthesized by the animated agent, as it is illustrated in figure 7.

286 E. Alepis, M. Virvou, and K. Kabassi

Table 1. Variables for calculating the intensity of events for the OCC theory

Event variables
• a mistake (the user may receive an error message by the application or

navigate wrongly)
• many consecutive mistakes
• absence of user action for a period of time
• action unrelated to the main application
• correct interaction
• many consecutive correct answers (related to a specific test)
• many consecutive wrong answers (related to a specific test)
• user aborts an exercise
• user aborts reading the whole theory
• user requests help from the agent
• user takes a difficult test
• user takes an easy test
• user takes a test concerning a new part of the theory
• user takes a test from a well known part of the theory

Table 2. Variables for user actions through the microphone and the keyboard

Variables of user actions through keyboard and microphone

• user types normally
• user types quickly (speed higher than the usual speed of the particular user)
• user types slowly (speed lower than the usual speed of the particular user)
• user uses the backspace key often
• user hits unrelated keys on the keyboard
• user does not use the keyboard
• user speaks words from a specific list of words showing an emotion
• user does not say anything
• user speaks with a low voice volume (lower than the average recorded level)
• user speaks in a normal voice volume
• user speaks with a high voice volume (higher than the average recorded

level)

As an example we describe a situation where a student is taking a multiple choice
test after having read the corresponding theory of that lesson. The “default” goal for
each user is to succeed in answering correctly the questions of each test. In our
example we assume that the difficulty level of the test is high and the student has
already answered a couple of questions correctly. At this point in accordance with the
system’s incorporated OCC model the student is pleased that s/he has answered
correctly the previous questions and is also experiencing hope that s/he will continue
answering correctly. The corresponding intensity variables for this event are
illustrated in table 1 as “many consecutive correct answers (related to a specific test)”
and “user takes a test concerning a new part of the theory”. The second variable
indicates that succeeding in such a test is difficult, thus can invoke admiration by the
educational agent. The user’s hope of continuing to answer correctly may then be
encouraged by the educational agent by expressing admiration for the student’s

 Emotion Based User Interaction in Multimedia Educational Applications 287

Fig. 7. Events-Actions of the agent for the synthesis of an emotional state

success and encouraging her/him to continue answering successfully. In this case the
student has a “goal” for answering correctly. If the student continues her/his
successful course the educational agent will express happiness, by saying something
in a “happy voice” and/or by smiling or doing a positive gesture. This behaviour by
the agent results by the analysis of the event variables of the interaction as well as by
the goals both the student and the agent have set. The incorporation of the OCC
theory provides the reasoning mechanism in deciding which emotional state is more
appropriate for the agent in each sequence of events and user actions. Finally each one
of the possible OCC states are translated by means of the five basic emotions the
agent can express (for example confirmed hope, joy and admiration are OCC states
that the agent expresses as happiness). Intensity variables as well as user and agents
goals are illustrated in our simplified OCC model in figure 8.

5 Conclusions and Future Work

In this paper we have combined two well known theories, one from the field of
decision making (SAW) and one from the field of cognitive psychology (OCC), in
order to provide emotional interaction within an educational system. More
specifically, we have described the implementation of an affective educational
application that recognizes students’ emotions based on keyboard and microphone
input actions and proposes tactics for the behaviour of educational agents based on
pedagogical procedures. The resulting educational application employs a bi-modal
user interface. For the elicitation of user emotions, as well as for providing a more
user friendly environment, animated tutoring agents are present in each mode of the
educational system. Their behavior is fully programmable and is controlled by the
OCC model as a reasoning mechanism. All user input actions are processed through a
decision making model which gives the system the important capability to make
accurate hypothesis about the users’ emotional states.

It is among our future plans to evaluate the affective educational system in order to
determine the degree of the system’s usefulness and usability for the students and also
for their instructors. Furthermore, we intend to support the system’s multi-modal
interaction by incorporating a third modality of interaction, visual this time [17]. By

288 E. Alepis, M. Virvou, and K. Kabassi

incorporating the visual modality the system is expected to make even more accurate
assumptions about the users’ emotional state which will provide additional
advantages to the educational process.

Fig. 8. Incorporation of the OCC model for specifying the agent’s emotional state

References

1. Pantic, M., Rothkrantz, L.J.M.: Toward an affect-sensitive multimodal human-cumputer
interaction. In: Proceedings of the IEEE, Institute of Electrical and Electronics Engineers,
vol. 91, pp. 1370–1390 (2003)

2. Jascanu, N., Jascanu, V., Bumbaru, S.: Toward emotional e-commerce: The customer
agent. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds.) KES 2008, Part I. LNCS (LNAI),
vol. 5177, pp. 202–209. Springer, Heidelberg (2008)

 Emotion Based User Interaction in Multimedia Educational Applications 289

3. Bernhardt, D., Robinson, P.: Interactive control of music using emotional body
expressions. In: Proceedings on Conference on Human Factors in Computing Systems, pp.
3117–3122 (2008)

4. Lane, H.C. Intelligent Tutoring Systems: Prospects for Guided Practice and Efficient
Learning. In: Whitepaper for the Army’s Science of Learning Workshop, Hampton, VA
(2006)

5. Brusilovsky, P.: Adaptive and Intelligent Technologies for Web-based Education. In:
Rollinger, C., Peylo, C. (eds.) Künstliche Intelligenz, vol. 4, pp. 19–25 (1999); Special
Issue on Intelligent Systems and Teleteaching

6. Johnson, W.L., Rickel, J., Lester, J.: Animated Educational Agents: Face-to-Face
Interaction in Interactive Learning Environments. International Journal of Artificial
Intelligence in Education 11, 47–78 (2000)

7. Lester, J., Converse, S., Kahler, S., Barlow, S., Stone, B., Bhogal, R.: The Persona Effect:
affective impact of animated educational agents. In: Pemberton, S. (ed.) Proceedings of
Conference Human Factors in Computing Systems, CHI 1997, pp. 359–366. ACM Press,
New York (1997)

8. Virvou, M., Alepis, E.: Mobile educational features in authoring tools for personalised
tutoring. Computers & Education 44(1), 53–68 (2005)

9. Leon, E., Clarke, G., Gallaghan, V., Sepulveda, F.: A user-independent real-time emotion
recognition system for software agents in domestic environments. Engineering
Applications of Artificial Intelligence 20(3), 337–345 (2007)

10. Goleman, D.: Emotional Intelligence. Bantam Books, New York (1995)
11. Picard, R.W.: Affective Computing: Challenges. Int. Journal of Human-Computer

Studies 59(1-2), 55–64 (2003)
12. Alepis, E., Virvou, M., Kabassi, K.: Knowledge Engineering for Affective Bi-modal

Human-Computer Interaction. In: SIGMAP (2007)
13. Ortony, A., Clore, G., Collins, A.: The cognitive structure of emotions. Cambridge

University Press, Cambridge (1990)
14. Alepis, E., Virvou, M.: Emotional Intelligence: Constructing user stereotypes for affective

bi- modal interaction. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS
(LNAI), vol. 4251, pp. 435–442. Springer, Heidelberg (2006)

15. Fishburn, P.C.: Additive Utilities with Incomplete Product Set: Applications to Priorities
and Assignments. Operations Research (1967)

16. Hwang, C.L., Yoon, K.: Multiple Attribute Decision Making: Methods and Applications.
Lecture Notes in Economics and Mathematical Systems, vol. 186. Springer, Berlin (1981)

17. Stathopoulou, I.O., Tsihrintzis, G.A.: Detection and Expression Classification System for
Face Images (FADECS). In: IEEE Workshop on Signal Processing Systems, Athens,
Greece (2005)

Author Index

Alepis, Efthymios 277
Ameling, Michael 192
Anguiano, Eloy 218
Aranega, Vincent 137
Armendáriz-́Iñigo, J.E. 205

Beckhaus, Arne 85
Benfell, Adrian 18
Bergel, Alexandre 107
Berthold, Henrike 3
Bettini, Lorenzo 107
Braun, Iris 35
Bunse, Christian 247

Callaway, Bob 46
Camacho, David 218
Cano, Juan I. 218
Cardoso, Jorge 3
Cuadrado, Félix 59

Damiani, Ferruccio 124
Decker, Hendrik 233
Dekeyser, Jean-Luc 137
Dueñas, Juan C. 59

Etien, Anne 137

Garćıa-Carmona, Rodrigo 59
Giannini, Paola 124
González-Baixauli, Bruno 94
González de Mend́ıvil, J.R. 205
Graf, Christian A. 85
Grottke, Michael 85

Habib, Mursalin 46
Hattori, Satoshi 71
Herrera, Manuel 167
Höpfner, Hagen 247

Izquierdo, Joaqúın 167

Juárez-Rodŕıguez, J.R. 205

Kabassi, Katerina 277
Kaiya, Haruhiko 71
Karg, Lars M. 85

Laguna, Miguel A. 94
Liroz-Gistau, M. 205
Liu, Kecheng 18

Malgosa-Sanahuja, J. 181
Mansour, Essam 247
Manzanares-Lopez, P. 181
Montalvo, Idel 167
Mottu, Jean-Marie 137
Muñoz-Escóı, F.D. 205
Muñoz-Gea, J.P. 181

Neumann, Dirk 85

Patig, Susanne 150
Pérez-Garćıa, Rafael 167
Petersen, Rasmus Rosenqvist 263
Piñero-Escuer, P.J. 181
Pulido, Estrella 218

Ricci, Alessandro 124
Rodriguez, Adolfo 46
Roychoudhury, Suman 247
Ruiz, José Luis 59

Saeki, Motoshi 71
Sanchez-Aarnoutse, J.C. 181
Schill, Alexander 35, 192
Spillner, Josef 35
Springer, Thomas 192

Viniotis, Yannis 46
Viroli, Mirko 124
Virvou, Maria 277
Voigt, Konrad 3

Wiil, Uffe Kock 263
Winkler, Matthias 3
Wolf, Bernhard 192

	Cover
	Communicationsin Computer and Information Science 50
	Software andData Technologies
	ISBN 9783642201158
	Preface
	Conference Committee
	Table of Contents
	Invited Papers
	IoS-Based Services, Platform Services, SLA and Models for the Internet of Services
	Introduction
	The Concept, Value and Characteristics of Services
	The Concept of Service
	The Economical Value of Services
	Intrinsic Characteristics Services

	Platform Services
	Managing Dependencies in IoS-Based Service Compositions
	Introducing Dependencies
	Approach to Managing Dependencies
	Dependency Model Creation

	Models for the Internet of Services
	Integrated Service Engineering
	Support by Model Matching

	Conclusions
	References

	Pragmatic Web Services: A Semiotic Viewpoint
	Introduction
	Service Oriented Architecture and Web Services – A Motivating Example
	The Pragmatic Web
	Semiotics as the Theoretical Underpinning
	Affordances, Norms and Deontic Logic
	Speech Act Theory

	Embedding Semiotics into Web Service Discovery
	Conclusions
	References

	Part I: Enterprise Software Technology
	Unified Hosting Techniques for the Internet of Tradeable and Executable Services
	Introduction
	Related Work
	Abstraction of Service Packages
	Abstraction of Containers
	A Formal Notation for Containers
	Unified Hosting Environment
	Deployment
	Monitoring and Adaptation
	Testing
	Interfaces

	Discussion and Conclusions
	References

	Service Differentiation in Multi-tier Application Architectures
	Introduction
	Service Differentiation
	Mechanisms for Service Differentiation

	Problem Formulation
	Prior Work

	Algorithm Description
	Definitions
	Algorithm Summary
	SAA/SDA Activation and Deactivation Algorithm

	Simulation and Analysis
	Simulation Goals and Assumptions
	Simulation Results and Analysis

	Conclusions
	References

	Lessons Learned on the Development of an Enterprise Service Management System Using Model-Driven Engineering
	Introduction
	Model-Driven Engineering
	Case Study Description
	System Requirements
	Technical Approach
	Tool Selection

	Report on Experience
	System Description
	Process Practices

	Discussion
	Quantitative Analysis
	Lessons Learned

	Conclusions
	References

	Part II: Software Engineering
	Checking Regulatory Compliance of Business Processes and Information Systems
	Introduction
	Regulation
	Representing Regulations
	Describing FSMs

	Checking Process
	Overview
	Example
	Terminology Matching
	Model Checking

	An Example of Exemption
	Related Work
	Conclusions and Future Work
	References

	A Decision Support Scheme for Software Process Improvement Prioritization
	Introduction
	Related Work
	Software Process Improvement
	COQUALMO

	Proposed Decision Support Scheme
	Differentiation from COQUALMO
	Definition

	Case Studies
	Conclusions
	References

	Development of a Family of Personalized Mobile Communicators
	Introduction
	Seamless SPL Development
	Case Study: Communicators for People with Disabilities
	Feature Analysis
	Product Line Design
	Product Line Implementation

	Related Work
	Conclusions
	References

	Reverse Generics: Parametrization after the Fact
	Introduction
	Reverse Generics
	Dealing with the Language Features
	Discussion
	Related Work
	Conclusions
	References

	A Calculus of Agents and Artifacts
	Introduction
	The Programming Model
	The Core Calculus
	Related Work and Conclusions
	References

	Using Trace to Situate Errors in Model Transformations
	Introduction
	Related Work
	Using Traceability in Model Driven Engineering
	Needed Trace Information
	Trace Exploitation for Model Transformation Testing

	Traceability Metamodels Description
	Local Trace Metamodel
	Global Trace Metamodel
	Trace Generation
	Error Localization Algorithm

	Case Study
	Overview
	Illustration of the Localization Algorithm
	Error Localization in Transformation Chain

	Conclusions and Future Works
	References

	Design of SOA Services: Experiences from Industry
	Motivation
	Defining Service-Oriented Architecture
	State-of-the-Art of SOA Service Design
	Multiple-Case Study of Successful SOA Projects
	Research Design
	Context of the Cases
	Service Design Processes
	Implementation
	Comparison of the Cases

	Conclusions
	References

	Part III: Distributed Systems
	Division of Water Supply Systems into District Metered Areas Using a Multi-agent Based Approach
	Introduction
	Water Supply Complexities
	Division of WSS into District Metered Areas

	Multi-agent Metaphor
	Implementation
	Clustering by Exploration
	Negotiation of Boundaries
	Practical Issues for Implementation

	Results
	Conclusions
	References

	Rateless Codes for Reliable Data Transmission over HomePlug AV Based In-Home Networks
	Introduction
	HomePlug AV
	Fountain Codes
	Description
	Online Codes

	Evaluation
	Evaluation of the Variable Capacity of the Physical Layer
	Evaluation of the Contention-Based Service of the MAC Layer
	Online Codes for Reliable Data Transmission

	Conclusions
	References

	Replication Strategies for Business Objects in SOA
	Introduction
	Synchronization of Business Objects in SOA
	Related Work
	Profiling Business Objects
	Business Object Model
	Profiling of Business Object Instances
	Business Object Analysis Tool

	Determination of System Parameters
	System Model
	Parameter Determination

	Execution of Cost Model
	Selection of Replication Strategy
	Full Copy vs. Delta
	Bulking

	Conclusions
	References

	A Hybrid Approach for Database Replication: Finding the Optimal Configuration between Update Everywhere and Primary Copy Paradigms
	Introduction
	System Model
	Replication Protocol
	Extending Primary-Copy Approach
	Protocol Description
	Dynamic Load-Aware Replication Protocol

	Fault Tolerance
	Experimental Results
	Conclusions
	References

	Educational Resource Scheduling Based on Socio-inspired Agents
	Introduction
	Description of the Problem
	The Design of the System
	Experimental Setup and Results
	Data Sets
	Results

	A Complexity Science View
	Conclusions
	References

	Part IV: Data Management
	Managing Risks by Integrity Constraints and Integrity Checking
	Introduction
	Risk and Integrity
	Similarities
	Differences
	Reconciliation

	Inconsistency Tolerance
	Risk Management
	Brute-Force Risk Management
	Inconsistency-Tolerant Risk Management
	Dependable Risk Management
	Repair-Based Risk Management (Repairing the Old State)
	Repair-Based Risk Management (Repairing the New State)
	Consistent Query Answering for Risk Management?

	Related Work
	Conclusions
	References

	Energy Efficient Data Sorting Using Standard Sorting Algorithms
	Introduction
	Related Work
	Sorting Algorithms
	Optimizing Energy
	Experimental Design
	Experimental Runs
	Data Collection

	Evaluation of Results
	Threats to Validity
	Summary and Conclusions
	References

	Part V: Knowledge-Based Systems
	Analysis of Emergent and Evolving Information: The Agile Planning Case
	Introduction
	Information Analysis and Spatial Hypertext
	Agile Planning
	Related Work
	The ASAP Approach
	Requirements
	Design Concepts and Features
	Current Status and Ongoing Work
	Evaluation

	Towards a Framework for Information Analysis
	Conclusions
	References

	Emotion Based User Interaction in Multimedia Educational Applications
	Introduction
	Overview of the System
	Educational Agents
	Emotion Recognition and Emotion Generation
	Recognizing Emotional States
	Agents That Act Emotionally

	Conclusions and Future Work
	References

	Author Index

