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Preface

Transport engineering structures are }subjected to loads that vary in both
time and space. In general mechanics parlance such loads are called moving
loads. It is the aim of the book to analyze the effects of this type of load on
various elements, components, structures and media of engineering me-
chanics.

In recent years all branches of transport have experienced great advances
characterized by increasingly higher speeds and weights of vehicles. As
a result, structures and media over or in which the vehicles move have been
subjected to vibrations and dynamic stresses far larger than ever before.

The author has studied vibrations of elastic and inelastic bodies and
structures under the action of moving loads for many years. In the course
of his career he has published a number of papers dealing with various
aspects of the problem. On the strength of his studies he has arrived at
the conclusion that the topic has so grown in scope and importance as
to merit a comprehensive treatment. The book is the outcome of his
attempt to do so in a single monograph.

The subject matter of the book is arranged in 27 chapters under six
main Parts. The Introduction — a review of the history and the present
state of the art — is followed by Part II, the most extensive of all, devoted
to the discussion of dynamic loading of one-dimensional solids. The latter
term refers to all kinds of beams, continuous beams,.frames, arches,
strings, etc. with a predominant length dimension — a typical feature of
transport engineering structures. The exposition covers beams with sever-
al types of support and various alternatives of moving load, and presents
the method of computing their deflections and stresses at different speeds
of the moving objects.

Part ITI deals with two-dimensional solids such as rectangular plates and
infinite plates on elastic foundation. Part IV is focused on stresses in three-
dimensional space produced by moving forces. There, too, consideration
is given to all types of speed, i.e. subsonic, transonic and supersonic.
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PREFACE

Part V is a lengthy treatise devoted to special problems. It deals, for
example, with the effect of variable speed of the load, the action of an
axial force and the longitudinal vibration of beams. Study is also made
of three-dimensional vibrations of thin-walled beams under moving loads,
and of the effect of shear and rotatory inertia on beam stresses. Consider-
able attention is accorded to the inelastic properties of materials, i.e. to
viscoelasticity and plasticity in connection with beam analyses. The con-
cluding part examines the effects of random loads, a very topical problem
at present.

The Appendix contains comprehensive tables of integral transforma-
tions frequently used throughout the book, and of practical importance
in general.

The methodological approach adopted in the book is as follows: the
exposition starts with a theoretical analysis of the problem at hand and
solves it for all possible cases likely to be met with. The most important
results established in this phase are expressed by formulas, represented
by diagrams, etc. Many of the theoretical findings are verified experi-
mentally and the test values compared with the computed ones. The
conclusion of each chapter outlines the possible applications of the theory
explained, and gives a list of recommended reading.

The broad range of problems discussed in the book makes the author
hopeful that his work will be found equally useful in civil as in mechanical,
transport, marine, aviation and astronautical engineering, for moving
loads are present in all these fields. The publication may serve research
scientists as an incentive to further development of an interesting and
very modern branch of science, project engineers and designers as a guide
to safer and more economic design of structures, and students as an ad-
vanced text in engineering mechanics and dynamics.

As the results presented in the book are deduced in detail, all that is
necessary on the part of the reader is a knowledge of the fundamentals of
mechanics, dynamics, vibration and elasticity theories, analysis, theory
of differential and integral equations, functions of the complex variable
and integral transformations.

In conclusion grateful acknowledgment is due to all those who in any
way have contributed towards the successful termination of the book.
In the first place the author wishes to thank his wife, Mrs. Dagmar
Frybova, for her rare understanding and support of his scientific work,
as well as for her effort of typing most of the manuscript. He is indebted
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PREFACE

to Mr. Petr Chaloupka for his careful work of drawing all the illustra-
tions and computing some of the diagrams, and is deeply grateful to his
colleagues in the Research Institute of Transport in Prague where the
book originated in the course of his theoretical and experimental re-
search.

Very special thanks are extended to Professor Vladimir Kolousek,
DrSc., corresponding member of the Czechoslovak Academy of Sciences,
the scientific editor of the book, to Josef Henrych, DrSc., the referee,
both from the Technical University in Prague, and to Professor A.D. de
Pater, the reviewer, from the Technological University in Delft, for their
thorough study of the manuscript and many valuable suggestions which
the author has gratefully incorporated in the last revision.

Ladislav Fryba
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Preface to the third edition

The first edition of this book appeared in English in 1972 as the co-edition
of the publishing houses Academia, Prague, and Noordhoff International
Publishing, Groningen. The second edition was published in Czech by
Academia, Prague, in the year 1989.

The subject of the book proved interesting and progressive and the
monograph became known worldwide in a short time. In 1975 to 1996, e.g.,
the journal Science Citation Index recorded 166 citations of the monograph
and, moreover, the book was cited in several hundreds of other books,
journals, reports and theses. Many authors and PhD students used the
material of the monograph as reference data with which they compare their
own results. Consequently, the book has been out of print for a long time
and I was asked by several colleagues and students to republish it in the
third edition.

The fast development of the science in the past years has affected also the
problem of moving loads. As it was hardly possible to rewrite the whole book
and as the theory and basic equations have remained valid I decided to
correct some errors and attach an extensive supplementary bibliography in
which the reader can find several other fields of the problem studied in detail.

First of all, it is the finite element method and the wide application of
computers that have made possible to solve the effect of moving loads in
many other cases, see [298, 317, 340, 354, 359, 408, 415, 420].

Structural dynamics and fatigue of structures developed quite separately
for almost 100 years, although it is clear that affect each other. Their
interaction has been studied recently in detail, [265, 277, 278, 282, 289,
290, 294, 298, 363].

New types of ground transportation systems have been developed, e.g.
magnetically levitated vehicles, [245, 298, 371], while the classic railway
reached the speeds of 300 to 500 km/h. However, the methods and basic
equations of this book have remained valid even in these cases, [264, 295,
298].

XVII



PREFACE

Active feedback control began to be applied to the structures under
moving loads and affect the vibrations of the system in an active way, [238,
346, 378, 388].

Modal analysis and identification have brought about new knowledge
and the testing of structures subjected to moving vehicles has become more
effective, [239, 250, 261, 268, 287, 288, 292, 298, 318, 382, 383, 404].

The stochastic approach to the problem, introduced in the Chapter 26 of
the book, initiated a wide-ranging research with many applications, [275,
276, 277, 278, 279, 283, 284, 291, 293, 349, 350, 351, 352, 353, 354, 418,
419].

The international investigations in this field have been in progress in the
Office for Research and Experiments (ORE) and continue in the European
Rail Research Institute (ERRI) of the International Union of Railways (UIC).
The author has been active in the research programmes either as a member
or as the chairman (marked by *) of the following committees: ORE D 23,
101, 128*, ERRI D 191%*, 214, and 216* dealing with several aspects of
transport structures subjected to moving loads. The various programmes
confirm that the problem has remained an evergreen because the modern
means of transport require ever faster and heavier vehicles while the
structures over which they move are becoming slenderer and lighter, see
[263, 264, 265, 361, 362, 363, 364].

In conclusion, I should like to thank both editors, Ms Elaine Stott from
Thomas Telford, London, and Mr Ale¥ Badura from Academia, Prague,
who enabled the third corrected edition to be published.

Ladislav Fryba
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Symbols

This is an alphabetical list of the basic symbols used throughout the
book. Symbols specific to the matter at hand will be explained as they
first come up in the text.

R R 88888

Q
- =

S o O

a constant

parameter expressing the depth of track uneveness
parameter expressing the variable stiffness of roadway
acceleration or deceleration of motion

distance

real coordinate in the complex plane

+1+a

coefficients in a power series

parameter expressing a harmonic force

a constant

parameter expressing the length of track uneveness
parameter expressing the length of the variable stiffness of
roadway

parameter of non-uniform motion

imaginary coordinate in the complex plane

track gauge

parameter expressing the frequency of a harmonic force
speed of motion

speed of displacement

critical speed

velocity of propagation of longitudinal or bending, and
transverse or shear waves, respectively

a constant

wheel base parameter

frequency

frequency of sprung or unsprung parts of vehicle

XIX
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py(t)
q

q

ai) 1)
r
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SYMBOLS

natural frequency

natural frequency of a loaded beam

a function

centred value of function f(x, t)

equation of motion at non-uniform speed

9-81 m/s? acceleration of gravity

initial deflection of a beam

initial speed of a beam

self-weight load of a beam, or of a cable, respectively
integration step

height difference

plate thickness

beam depth

influence function

impulse function

1,2,3,...

—1 imaginary unit

1,2,3,...

a constant

coefficient of Winkler elastic foundation

1,2,3,...

Thomson function of the zero order

span

length

mass of load P

mass of sprung or unsprung parts of vehicle
expression (23.29) dependent on beam and foundation prop-
erties

1,2,3

roots of the characteristic equation

half the number of vehicle axles

external load

complex variable in the Laplace-Carson integral transformation
expansion of load in normal modes

complex variable in the Fourier integral transformation
continuous load

generalized deflection

radius of a wheel, of an arch, of gyration, respectively



SYMBOLS

auxiliary variable

radius in polar coordinates

Q+ow

ordinate of track uneveness

auxiliary variable

coordinate of point of load application
number of equations

time

displacement in the x-direction

tangential displacement

auxiliary function

displacement in the y-direction

radial displacement

displacement of joints

vertical displacement of a moving load, of sprung or un-
sprung parts of vehicle, respectively

beam deflection

natural mode of beam vibration

static deflection produced by load P

n-th approximate solution of function v(x, )
dimensionless deflection of an infinite beam on elastic foun-
dation

displacement in the z-direction

coordinate

point of contact between vehicle and beam
fixed point

coordinate of plastic hinge

coordinate

exact, approximate solution

solution at integration step h

dimensionless beam deflection

dimensionless vertical displacement of load, sprung or un-
sprung parts of vehicle, respectively

cable sag

coordinate

auxiliary variable or complex variable

cable deflection

function dependent on boundary conditions

XXI



SYMBOLS

A a constant
A centre of flexure
A? = (1—-ad)(1 —a3)
A poles of the function of a complex variable
A, A; integration constant dependent on boundary conditions
A, A distance between track irregularities
A(Y) reaction at beam left-hand end
B a constant
B parameter of acceleration or deceleration of motion
= a2 — m*(1 — af)
B, B; integration constant dependent on boundary conditions
B(1) reaction at beam right-hand end
C a constant
C spring constant
C C; integration constant dependent on boundary conditions
C, coefficient of viscous damping in vehicle springs
C(x) Fresnel integral
C,(x,t)  coefficient of variation of function f(x, )
D a constant
D vehicle base
D bending stiffness of plate
D operation of partial or ordinary differentiation
E Young’s modulus

E*(p) Laplace-Carson integral transformation of a time variable
Young’s modulus

E[f(x,?)] mean value of function f(x, )

F cross-sectional area

F(q) Fourier integral transformation of function f(x)
F(%) functions tabulated in [130]

F(a, b, c, x) hypergeometric series

G beam weight

G modulus of elasticity in shear

G(x, s) influence or Green’s function

G,,(j)  Fourier transformation of initial functions g, ,(x)
H vehicle height

H horizontal force of a string

H(x) Heaviside function

H,(x) impulse function of the second order
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H(g, w)
I
I

Im
J
J.(x)
K

K
K

SYMBOLS

transfer function

impulse

mass moment of vehicle inertia

imaginary part of the function of a complex variable
moment of inertia

Bessel function of the first kind of index n

spring constant

material constant

beam curvature

K (%1, X3, 3, t,) correlation function (covariance)

goggghb‘l‘*

RWOOZZZZ;

W o
= _*
S =

Q

Q;
o(t)
Q1)
R{(t)
R

Re

S
S(x)

differential operator

vehicle length

auxiliary datum

bending moment

torsion moment

static bending moment produced by load P
limit bending moment

horizontal force

normal force

printing after N steps

number of impulses

wheel circumference

vehicle centre of gravity

concentrated constant force

concentrated force generally varying in time
Laplace-Carson integral transformation of force P(t)
weight of sprung and unsprung parts of vehicle
linear differential operator

amplitude of harmonic force

dimensionless static axle pressure

harmonic force

generalized force

force acting between vehicle and beam

radius

real part of the function of a complex variable
axial force

Fresnel integral

S 41> g2, w1, ) spectral density of function f(x, t)
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shear force

vertical force of a string

time of load traverse over beam

time interval

period of free vibration

Fourier integral transformation of function u

Fourier integral transformation of function v

expression (6.6)

Fourier sine finite integral transformation of function v(x, ¢)
Laplace-Carson integral transformation of function V(j, t)

‘Fourier integral transformation of function w

the Wronskian

coordinate axis of the centre of gravity
longitudinal force acting on bar gh at point g
force per unit volume along axis x;
coordinate axis of the centre of gravity
transverse force acting on bar gh at point g
coordinate axis of the centre of gravity

force acting along axis Z

Laplace-Carson integral transformation of function
2(0, 1, 1)

force acting in spring C;

damping force acting in spring C;

speed parameter

parameter inversely proportional to speed
cfc;

damping parameter

frequency parameter of sprung and unsprung parts of
vehicle

shear strain in plane x,x;

dynamic coefficient (impact factor)

Dirac delta function

Kronecker delta symbol

Oorl

relative elongation (strain)

cross-section rotation

error
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SYMBOLS

imaginary coordinate in the complex plane

straight line along which a force moves

viscosity coefficient

auxiliary variable

logarithmic decrement of damping

weight parameter

weight parameter of unsprung and sprung parts of vehicle
coefficient expressing elastic foundation and stiffness of a
beam or plate

coefficient expressing rotation of sprung parts of vehicle
Lamé’s constant

value dependent on natural frequency

mass per unit length of beam or unit area of plate

mass appertaining to external load p

Poisson’s ratio (v < 1)

x[l dimensionless length coordinate

dimensionless coordinate of the point of contact

x — ct length coordinate in the moving coordinate system
auxiliary variable

real coordinate in the complex plane

mass per unit volume

radius in polar coordinates

stress component

Fourier integral transformation of stress o

standard deviation of function f(x, )

variance of function f(x, )

dimensionless time

auxiliary time variable

tangential stress

Fourier integral transformation of stress t

polar angle

rotation of sprung parts of vehicle

function

linearly independent functions satisfying boundary condi-
tions

beam section rotation

Euler’s psi-function

circular frequency
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()] circular frequency expressing load motion

Wy, circular frequency of damping

@) natural circular frequency

4 expression (2.13)

A4 dynamic increment of deflection or stress

v Laplace’s operator

(2] relative volume change

O(x, t) rotation of transverse section about the centre of flexure

(o) frequency

z summation sign

P central angle of an arc

@ angle between a straight line and axis x

P polar angle

¥(j, 1) Fourier integral transformation of function y(x, f)

¥*(j, p)  Laplace-Carson integral transformation of function ¥(j, 1)

¥(q) Fourier integral transformation of function y(s)

Q circular frequency of a harmonic force

Q circular frequency of non-uniform motion

Subscripts

b damping

cr critical or limit value of a quantity

g left-hand end of a beam

h homogeneous

h right-hand end of a beam

i = 1,2,3

j = 1,2,3,...

k = 1,2,3,...

P particular

j/ plastic

0 initial conditions

1 unsprung

1 left-hand end

1 first general linearly independent solution of the homogene-
ous differential equation

2 sprung or unsprung
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2 right-hand end
2 second general linearly independent solution of the homo-
geneous differential equation
3 sprung
Superscripts
rom IV derivatives with respect to the length coordinate
! damped vibration
! in the oblique direction
dots over the letter denote derivatives with respect to the time
coordinate
(n) n-th derivative
- bar over the letter denotes a loaded quantity
- bar over the letter denotes a quantity with a dimension
Units
International System SI
length: metre [m], centimetre [cm], kilometre [km]
force: Newton [N], kilo Newton [kN], mega Newton
[MN]
1 kilopond = 1 kilogram force = 9:806 65 N =
= 10N
mass: kilogram [kg], metric ton [t]
time: second [s], hour [h]
frequency: cycle per second = Hertz [Hz]
circular frequency: [s™']
speed: metre per second [m/s], kilometre per hour [km/h]
stress: Newton per square centimetre [ N/cm?],

kilo Newton per square centimetre [kN/cm?]
coordinate system: right-handed.
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Introduction

In this book we shall study in detail the effects of one type of load, i.e.
of a moving load, on elastic and inelastic solids, elements and parts of
structures, structures composed of those elements and parts, and on
elastic media. Moving loads have a great effect on dynamic stresses in
such bodies and structures, and cause them to vibrate intensively, espe-
cially at high velocities. Their peculiar feature is that they are variable
in both time and space.

Vibration of a three-dimensional body may generally be described as
an operator relation between the vector displacement r(x, y, z, t) at
a point with coordinates x, y, z and time t, and the external load
p(x, y, z, 1) of the body, in the form

L[r(x, y, z, )] = p(x, y, 2, 1) .

Symbol L denotes a linear or a nonlinear differential operator. Together
with the boundary and the initial conditions, the above equation, or sets
of such — usually partial differential — equations define the behaviour
of the body.

If we think of a moving load as of a mass body moving in a generally
curved path over the structure being examined, we see that according
to d’Alembert’s principle its effects are twofold: the weight, or gravita-
tional, effect of the moving load, and the inertial effects of the load mass
on the deformed structure.

If only the weight effect is considered, and the mass of the moving load
neglected against the mass of the structure, the computation of strains
in the solid is na easy enough matter. It becomes more complicated in the
other extreme case, i.e. when the structure mass is assumed to be negli-
gible against the load mass. But the most difficult of all is the problem
involving both the gravitational and the inertial action of moving loads
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having masses commensurable with the mass of the structure. In this book,
solutions of all three cases for several types of elastic as well as inelastic
elements and structures are presented. Particularly, the first case is treated
in Chapters 1—6 (with the exception of Chap. 3, where the effect of the
mass of a continuous load is approximately taken into account), the sec-
ond case in Chapter 7 and the general case in Chapters 8 — 10 for a simple
beam. ,

A set of differential equations is not the only way of describing vibra-
tion of a solid. Sometimes the primary equation is in the form of the
operator relation

r(x, y, z, t) = L[p(x, y, 2, t), r(x, y, z, 1)]

which leads to linear or non-linear integro-differential equations. This
method, though somewhat more laborious than the solution of differen-
tial equations, will be used in Chap. 5 for computing beam stresses.
From the historical viewpoint the problem of moving load is reviewed
in detail in [219], Sects. 40 and 88. Its coming-into-being can be traced
to the beginning of the nineteenth century, the time of erection of the
early railway bridges. This makes it one of the original problems of
structural dynamics in general. At that time, the engineering profession
was split in two factions: one claiming that the effects of a moving load
will resemble those of an impact, the other arguing that during rapid
traverse of a locomotive over a bridge there will be not enough time for
the structure to deform. It was the second class of thought that appealed
to science fiction: in his well-known novel ‘“Round the World in 80
Days” Jules Verne records the passage of a locomotive over a damaged
bridge — a feat which has not been scientifically explained until recently,
with the aid of the theory of plastic reserves in the material (see Chap. 25).
Theoretically, the problem of moving load was first tackled for the case
in which the beam mass was considered small against the mass of a single,
constant load. The original approximate solution is due to R. Willis
[233], one of the early experimenters in the field. G. G. Stokes [207] and
H.Zimmermann [236] approached the problem under similar assumptions.
The other extreme case, i.e. that of the load mass small against the
beam mass, was originally examined for a simply supported beam and
a constant concentrated force by A. N. Krylov [139] using the method
of expansion of the eigenfunctions, and by S. P. Timoshenko [215].
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A. N. Lowan [146] and N. G. Bondar® [23] solved it with the aid of
Green’s functions and integral equations, respectively.

S. P. Timoshenko [216] is also credited with the solution to the prob-
lem of the effects of a harmonic force moving over a beam at a constant
speed — an idealization of the effects of counterweights on the locomotive
driving wheels.

The problem involving both the load mass and the beam mass, con-
siderably more complicated than the preceding special cases, was not
solved until much later. It was first examined by H. Saller [196], then by
H. H. Jeffcott [115] whose iterative method becomes divergent in some
cases, and by H. Steuding [206] who studied several of its aspects.
A satisfactory method (a Fourier series with unknown coefficients for the
path of a single concentrated load of constant magnitude acting on
a beam) was introduced by A. Schallenkamp [197]. V. M. Muchnikov
[162] and M. Ya. Ryazanova [192] applied to the problem the method of
integral equations, J. Naleszkiewicz [166] Galerkin’s method, and
V. V. Bolotin [21] the approximate method of asymptotic solutions in
quadratures.

In a special class belongs the treatise by C. E. Inglis [111] who used
harmonic analysis to solve all the practically important cases likely to
come up in dynamic calculations of railway bridges traversed by steam
locomotives (e.g. motion of a concentrated force, sprung and unsprung
masses and harmonic forces acting on a beam, etc.). Its results — in
excellent agreement with experimental findings — were later compared
by A. H. Chilver [34] with those arrived at by K. Mise and S. Kunii
[156] with the aid of elliptical functions.

General systems as well as statically complex systems have been studied
by help of normal-mode analysis by S. T. Odman [172] and worked out
in full by V. Kolousek [130]. The results of the latter author, obtained
by that method for continuous beams and arches, agree very well with
experiments.

Problems specifically relating to the effects of moving loads on railway
bridges have been treated by a number of authors. Next to the now
classical treatises of Inglis [111] and Kolousek [130], [131], studies by
B. Briickmann [29], I. I. Kazei [121] and by the author [70, 73, 74, 76,
77, 84] may be quoted as examples of more recent work in the field.

In all the references mentioned so far, the vehicle was idealized by
a single mass point. It goes without saying that for modern means of
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transport with distinctly differentiated unsprung and sprung masses
such a simplification is no longer in order.*) The first solution of the
motion of sprung masses on a beam is due to A. Hillerborg [107] who
obtained it by means of Fourier’s method and the method of numerical
differences. Further advances in that direction were made possible by
the arrival of digital computers. The topical problem was thus solved by
J. M. Biggs, H. S. Suer and J. M. Louw [16] using Inglis’ method, and by
T. P. Tung, L. E. Goodman, T. Y. Chen and N. M. Newmark [224]
using Hillerborg’s method, and the solution was applied to vibration of
highway bridges.

At the present time the problems of moving load are studied in tech-
nically advanced countries the world over. In Czechoslovakia, the theore-
tical and experimental foundations for their scientific treatment were laid
by V. Kolousek in his authoritative series of books [130]. The work is
now continued by the author [68 to 88], [247, 248].

In the USSR the effects of moving loads on solids .and structures are
followed in several institutions. One of those worthy of special mention
is the Kharkov school of Professor A. P. Filippov [61, 62, 98, 127, 214]
which has successfully dealt with many of the theoretical aspects of the
problem. Theoretical studies are also conducted in Kiev [192 to 194].
A host of theoretical and experimental problems having to do with rail-
way bridges has been investigated by the Dnepropetrovsk school of
Professor N. G. Bondar’ [23 to 25, 222]. The research institutes of Mos-
cow and Leningrad have been engaged in extensive experimental studies
of railway bridges traversed by diverse kinds of vehicles [121, 137, 141,
169]. Their work has a tradition of long standing [10, 58, 110, 176].

In the USA the work proceeded mostly along the experimental lines
involving first railway bridges [191], [209], and [242], later also highway.
bridges dynamically tested up to failure [1], [268, 272]. Many of the
theoretical studies that have been appearing of late in an ever greater
number are aimed at application in naval, aircraft and astronautical
engineering. Research into the effects of moving load is conducted at the
universities in Urbana (University of Illinois) [168], [229], East Lansing
(Michigan State University) [230 to 232], Evanston (Northwestern Uni-
versity) [3, 4], Stanford University [5 to 7], [205], [235], Massachusetts
Institute of Technology [39], and elsewhere.

*) This fact was acknowledged by both Inglis [111] and Kolou3ek [130], Vol. 1I.
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In Europe, Poland [92to 95], [116 to 119], [138], the German Demo-
cratic Republic [181], [199], [261], Switzerland [190] and several other
countries concentrate on the dynamics of highway bridges, while the
German Federal Republic [28] and France [33], [46] carry out tests
of railway bridges, especially at high speeds. Great Britain was the first
to undertake large-scale experimental studies of railway bridges in the
twenties [111], [157], [187]. Work on many of these problems under
way in Japan and India is a source of much theoretical and experimen-
tal information on the effects of moving load on structures [173], [257],
[27].

The dynamics of railway bridges has been greatly enhanced by inter-
national research assignments of several years’ duration set up in part
by the “Organization for Railways Cooperation” (OSShD) [24], [78], in
part by the “Office for Research and Experiments” (ORE) of the Inter-
national Union of Railways (UIC) [258]. Within the framework of the
assignments, many European countries succeeded in collecting vast
amounts of experimental data on stresses in a variety of railway bridges
traversed by diverse types of locomotives, cars and trains at speeds up
to 200 km/h. The experiments were supplemented by model research
entrusted to Switzerland. The author had the privilege of contributing to
the research of both organizations by several treatises, the gist of which
is presented in Chaps. 8 to 10.

Since in each chapter the detailed explanation of the subject is preceded
by a brief historical note, the list of references appended to the book
quotes only the fundamental or more recent works from this as well as
from allied fields to which the author has turned for information. It is
clear from the extensive and far from complete bibliography on the
effects of moving load that the pertinent questions are very actual,
modern, and by no means answered satisfactorily. The aim of the book
is to scientifically classify the broad theme, supply hitherto missing
answers to the basic questions, and explain the methods best applicable
to the problem at hand. _

The load considered in the book is in the form of a moving force of
constant magnitude, harmonic force, force generally variable in time,
continuous load, moving impulses, etc., oftentimes with the inertial effects
of the mass included. Attention is also accorded to special loads, such
as those produced by multi-axle vehicles with unsprung and sprung
masses, loads of random magnitude, etc. For the most, the load is as-
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sumed to move at constant speed; however, Chap. 19 also deals with
uniformly accelerated and decelerated motions.

The solids discussed in the book are nearly all elements familiar from
engineering mechanics and theory of elasticity and plasticity — namely
beams of constant and variable cross section with various kinds of sup-
port, cantilever beams, infinite beams on elastic foundations, continuous
beams, frames, arches, frame structures, strings, plates, elastic space,
half-space, half-plane, thin-walled beams, rigid-plastic beams, etc. A parti-
cularly detailed examination is made of simply supported beams and of
infinite beams on elastic foundations, under the action of all kinds of
load, speed, damping, shear and rotatory inertia. The reason for this
close attention are the immense possibilities of those two elements in actual
structures.

The theoretical considerations are likely to find application in calcula-
tions relating to dynamic stresses in railway and highway bridges, suspen-
sion bridges, rails, sleepers, crane runways, cable and other types of cranes,
cable railways, roadways and airport runways, underground railways,
tunnels, foundations for all types of high- and railways, pipelines, etc.

The methods explained in the book can further be applied to calcula-
tions relating to motion of ground vehicles, such as automobiles, loco-
motives and railway cars, cranes, conveyors, etc., and they serve well in
research of naval, acronautical, and astronautical structures.

Modern means of transport are ever faster and heavier, while the struc-
tures over which they move are ever more slender and lighter. That is
why the dynamic stresses they produce are larger by far than the static
ones. On the strength of this the book devotes particular attention to the
effects of speed, weight of the vehicle and structure, as well as of other
parameters substantially bearing on the dynamic stresses in solids.

A theoretical examination of solids and elements subjected to a moving
load may proceed along one of the following two lines: expansion in
series, used for elements of finite length — a method whose advantage is
a comparatively easy solution and whose shortcoming is slow convergence
in some instances, especially at high speeds. The other method applicable
to solids and elements of very large dimensions (infinite at the limit) con-
siders only the steady-state vibration of the body as the load moves from
infinity to infinity. This method is advantageous in that it supplies solu-
tions in closed form; however, in many. cases the solution is difficult to
attain. An attempt to reconcile the two methods is made in Chap. 24.

8
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Nearly all the problems contained in the book are solved by the meth-
ods of integral transformations which have proved unusually well suited
and efficacious in studies of moving loads. The most frequently used are
the Fourier transformation for the length coordinates and the Laplace-
Carson transformation for the time coordinate. Comprehensive tables of
integral transformations referred to in the text or applicable to solutions
of other problems — most of them published for the first time — are at
the end of the book. | |

With a very few exceptions, the vibrations of solids and elements of
finite dimensions will be examined only during the period of the load
traverse. Once the load departs from it, the structure begins to vibrate
in free vibration, and this process no longer falls within the scope of our
discussion. The attentuation of the whole phenomenon is greatly affected
by the damping characteristics of both the structure and the material.
However, in the course of the load traverse proper — an affair of relative-
ly short duration — the qualitative effects of damping are not too intense
and all they do — though sometimes substantially — is to reduce vibra-
tion amplitudes. That is the reason why in this book we have adopted
the most elementary of all damping hypotheses — Voigt’s — according
to which damping is proportional to vibration velocity. Though we are
well aware of the existence of more elaborate damping theories [140],
we find this hypothesis wholly appropriate for our purposes, the more so
that it is also in very good agreement with experiments conducted on
actual structures subjected to moving loads.

Despite its fairly broad scope, the book can hardly be expected to do
equal justice to all the aspects of the problem. Among the themes
meriting but still awaiting lengthy treatment belong, for example, the
effects of stress waves propagating from the point of action of the
moving forces, the contact problem, the effects on layered homogeneous
and non-homogeneous solids and structures, the relation between moving
loads on the one hand and strength, fatigue and failure of materials on
the other, etc.

What has been included as worthy of detailed exposition are the funda-
mentals of the most modern methods of structural design, i.e. those
exploiting plastic reserves in the material when the structure is subjected
to loads of a deterministic or in the case of elastic structures — a stochas-
tic character (Chaps. 25 and 26). Those are highly advanced methods
which — following further refinement — will be indispensable for design

9
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of structures with minimum weight or of structures which satisfy the
theory of limit states. The final goal of such a design are structures opti-
mal as regard safety, reliability, economy and long service life.

It is a sincere wish of the author that the book might become a de-
pendable theoretical guide to economic design of new, and prolonged
life of old, civil, mechanical and other engineering structures.
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Simply supported beam subjected to a moving
constant force

Of the wide range of problems involving vibration of structures and
solids subjected to a moving load, the easiest one to tackle is that of
dynamic stresses in a simply supported beam, traversed by a constant
force moving at uniform speed. This classical case was first solved by
A. N. Krylov [139], then by S. P. Timoshenko [215]. Other solutions
worthy of mention are those by C. E.dnglis [111] and V. Kolousek [130].
In what follows we shall first outline the basic results arrived at through
the application of the method of integral transformations, and then extend
them to all possible cases of speed and viscous damping.

1.1 Formulation of the problem
In the solution we shall adopt the following assumptions (Fig. 1.1):

‘P

x l n

Fig. 1.1. Simple beam subjected to ct
a moving force P. l

E.d

1. The beam behaviour is described by Bernoulli-Euler’s differential
equation deduced on the assumption that the theory of small deforma-
tions, Hooke’s law, Navier’s hypothesis and Saint-Venant’s principle can
be applied. The beam is of constant cross-section and constant mass per
unit length.

2. The mass of the moving load is small compared with the mass of
the beam; this means that we shall consider only the gravitational effects
of the load.
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3. The load moves at constant speed, from left to right.

4. The beam damping is proportional to the velocity of vibration.

5. The computation will be carried through for a simply supported
beam, i.e. a beam with zero deflection and zero bending moment at both
ends. Further, at the instant of force arrival, the beam is at rest, i.e.
possesses neither deflection nor velocity.

Under the above assumptions the problem is described by the equation

av*(x, t) ov?(x, t) ov(x, 1)
EJ—227 4 "7 4 duw, ———~ = 6(x —ct) P; (1.1
ox* o ot (e = <) (19

the boundary conditions are

v(0,1) =0; u(l,7) =0,
2 2
0%v(x, t) ~0;° d*v(x, 1) _o0, (1.2)
ax2 x=0 axz x=1
and the initial conditions
o5 0 =0; 2580 _o. (1.3)
ot |i=0

The symbols used in Egs. (1.1) to (1.3) and throughout the subsequent
chapters (see also Fig. 1.1) have the following meaning:

x — length coordinate with the origin at the left-hand end of the
beam,
t — time coordinate with the origin at the instant of the force

arriving upon the beam,
v(x, t) — beam deflection at point x and time ¢, measured from the equi-
librium position when the beam is loaded with own weight,

E — Young’s modulus of the beam,
J — constant moment of inertia of the beam cross section,
7] — constant mass per unit length of the beam,
Wy — circular frequency of damping of the beam,
P — concentrated force of constant magnitude,
! — span (length) of the beam,
c — constant speed of the load motion.
5(x) = $H) (1.4)
dx

14



BEAM SUBJECTED TO A MOVING CONSTANT FORCE

is the so-called Dirac (impulse, also delta) function that — as a general-
ized function — expresses the concentrated load as follows

p(x, 1) = &(x) P. (1.5)

The Dirac function is not a function in the conventional sense. It is
a so-called generalized function and by Eq. (1.4) may be defined as the
distributional derivative of the Heaviside function H(x) (3.23) — for
further details refer to [154]. In mechanics, the Dirac function §(x) may
be thought of as a unit concentrated force acting at point x = 0.

The following relations hold for the Dirac function (a, b, ¢ denote
constants and f(x) is a continuous function in the interval {a, b))*)

J " adx =1, (L6)
[ o - ) 05 = 10 (1.7)

or
0 for ¢ <a<b

ﬁa(x — O f(x)dx = { f(&) for a<E<b

0 for a<b<i

For the n-th generalized derivative of the Dirac function it holds more
generally

" 0 for (<a<b
J‘é(")(x — &) f(x)dx = (—1)" f (")(.f) for a<&é&<b
a 0 for a<b<é

Substitution of ¢(x) having zero value at some (single) point ¢

[#(¢) = 0] gives 1

o[e(x)] = o @)

é(x — &).

In the special case of ¢(x) = ax

5(ax) = é 5(x) . (1.8)

*) The derivation of the following relations may be found in [154] and in:
V. V. Novitskil: Delta-function and its Application in Engineering Mechanics (in
Russian). Raschet prostranstvennykh konstruktsii. Volume 8. Gosstroiizdat,
Moscow, 1962, 207—244,
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1.2 Solution of the problem

Eq. (1.1) together with conditions (1.2) and (1.3) will be solved by the
methods of integral transformations, the theory of which is expounded
at length in [48], [49], [204] and other well-known publications, e.g.
[53].

Each term of Eq.(1.1) will first be multiplied by sin jnx/l and then inte-
grated with respect to x between 0 and I. We shall make use of the follo-
wing fundamental relations of the Fourier sine (finite) integral trans-
formation [cf. (27.67)]:

1 .
V(j, 1) =J‘v(x, t)sin]—;ricdx, j=1,2,3,...
0

2 3 ) . J
o(x, 1) =7 ¥ V(j, 1)sin f_’l‘_" (1.9)
J=

where we speak of V(j, t) as of the transform of the original v(x, ?).
By the procedure just outlined, using the boundary conditions (1.2) and
the properties of the Dirac function (1.7) we shall get by (27.69), (27.70)
and (27.74)

4_4 .
Jl—:t EJV(j,t) + p V(j, ) + 2uw, V(j, t) = Psin J—ﬂ;ﬁ . (1.10)

We denote now the circular frequency at the j-th mode of vibration
of a simply supported beam by
+4_ 4
2 j'nt EJ
u
the corresponding natural frequency by

-2 1/2
_0y _Jm EJ 1.12

and the circular frequency by

o = % (1.13)
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Using this notation we rearrange Eq. (1.10) to give it the form
V3G, 1) + 20, V(j, 1) + @), V(j, 1) = P in jot . (1.14)
U

To solve Eq.(1.14) we apply the method of the Laplace-Carson integral
transformation, i.e. multiply the equation by e™#, integrate each of its
terms with respect to ¢ between 0 and oo, and then multiply it by p (p is
a variable in the complex plane). The basic relations of this transforma-
tion are [cf. (27.1)]

V*(j, p) = pj V(j, ) e~ dt,
0

ap + i oo *( :
v(j, f) = if ew V2o D) g, (1.15)

21“ ap—io p

where a, in the second relation signifies that the integration is carried out
along a straight line parallel to the imaginary axis lying to the right of all
the singularities of the function of the complex variable e* V(j, t)[p (the
real argument of all the singularities is therefore less than ag).
Transforming now Eq. (1.14) in accordance with (1.15) will give us —
in view of the initial conditions (1.3) and the relations (27.2) to (27.4),
(27.18) -
p* V*(j, p) + 20,0 V*(ji, p) + 00 V*(j, p) =
Pjo _p
P (1.16)

from which it is not difficult to compute the transformed solution

. Pjw )/ 1
V*(j, p) = : -
p o p*+ jfo? p? + 2m0,p + ©f

(1.17)

Depending on the position of the poles of the function of complex
variable (1.17), distinction is made between several cases whose analysis
is rendered easier by the introduction of the following two dimensionless

parameters
1/2
4o @ __¢ =T(1)=f£_l‘_ =_€_’ (1.18)
wgqy 2fayl 2T wm \EJ C.,
2 1/2
=2 -2l ) -2 (1.19)
@1) n“ \EJ 2n
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characteristic of the effect of speed — « and of the effect of damping — B.
In the above the new symbols denote

Ty = 1/f1) — period of the first free vibration,

T = lJc — time of traverse of the force over the beam,
2o il 12
., = _fﬂ)_ ~ T (E{) ; j=1,2,3,... — critical speed, (1.20)
J I\ p
3 = wy[fy — logarithmic decrement of damping of the beam.

Symbol v, designates the deflection at mid-span of a beam loaded with
static force P at point x = 1/2(*)

PP 2P _ 2PP

= usEs plwd, =*EJ’ (1-21)
The circular frequency of a damped beam with light damping is
w(jy = og — o, (1.22)
that of a damped beam with heavy damping
oG = of — of, . (1.23)

In the case of light damping the four poles of function (1. 17) are
tijo, —w, * iwg,, where w; 1s described by Eq. (1.22). Since p? +
+ 2w + 05 = (p + ®,)* + w3, the original V(j, ) may be com-
puted with the aid of relation (27.41), so that following the inverse
Fourier transformation (1.9) we get directly — after rearrangement —
the solution of the basic case (for ¢ < T)

. s 1
ux,t)=v
(x, 1) 0121 PG = o?) + 4a22]
_ Joj(* — o) — 287]
(¢ — B2
— 2jap(cos jwt — e~ cos wy j)t)] sin 11;_x . (1.24)

[ JA( jzb — o2) sin jot —

bt .2 ’
Sin (D(J)t -

*) With a few exceptions in Chaps. 5,9 and 10, the last two expressions of (1.21)
are used for v, throughout the discussion.
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BEAM SUBJECTED TO A MOVING CONSTANT FORCE

The bending moment M(x, t) and the shear force T(x, t) are obtained
from the relations

2
M(x, 1) = —gg 2450 (1.25)
ox?
3
T(x, 1) = —EJ° o 1) (1.26)
ox3
Denoting by
MO = P_l ’ (1.27)
4
T, =P (1.28)

the bending moment and the difference of shear forces, respectively, at
mid-span of the beam, produced by static force P at point x = /2 we get
> 82 . jmx 1

M(x,t) =M sin .
(of) = Mo, “asin T PP - @) + 4a*p7]

2. .. iaf 22 — o«2) — 282 —ont e
. []2(12 — a?) sin jot — jlj ((;4 - Bz))l/z £l e” " sin oyt —
— 2jap(cos jot — ™% cos wy j,t):] ,
23 jmx 1
T(x,t) = T — oS : .
( ) 01;1 p l j2[j2(j2 _ a2)2 + 4“232]
o o o[ 272 — «®) — 2821 up .
. [12(12 - ocz) Sin jwt _ [] 84 — ﬂz))uz B ]e »f sin Ot —
— 2jop(cos jot — e”*" cos w(j)t)] : (1.29)

Series (1.24) for the beam deflection converges very fast, approximately
like the series f 1/j*; series (1.29) for the bending moment and shear
force, on the th;ér hand, converge far more slowly, approximately like
the series iil/ j* and il(—l)" *1[j, respectively — see Chap. 5 for

j= j=

further details.
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PART Il — ONE-DIMENSIONAL SOLIDS
1.3 Special cases
Let us now analyze Egs. (1.17) and (1.24) for several special cases of the
values of parameters « and fS.
1.3.1 Static case (« = 0)

If we set « = 0 in Eq. (1.24), then

v(x, 1) = v, Z — sin % sin jwt . (1.30)
Jj=1 J

This is the case of static deflection of a beam at point x if the beam is
loaded with force P at point ct. Eq. (1.30) is therefore the equation of the
influence line of beam deflection at point x expanded in the Fourier
series (the deflections are magnified P-times). Fig. 1.2 shows the functlon
for x = I]2.

1.3.2  Case with no damping (f = 0)

1321 a#j,8=0

For this case we get from Eq. (1.24) for § = 0 or from Eq. (1.17) for w, =
= 0 using (27.32)

o . jmx 1 . o .
vix,t) =v sin sin jwt — —sinwnt ). (1.31
(51 = v0 3 sin T s (sin o = %sin eyt (131

Fig. 1.2a shows Eq. (1.31) for x = I/2 and parameters « = 0-5, 8 = 0.

1.322a=n, =0

If « happens to be just equal to one of the numbers j = 1, 2, 3; ..., say to
number n, then for j = n the poles of functlon (1 17) will merge in two
double poles +inw since in this case wl,, = n*w};, = nw? and n =
= w[w(, = a. For this term of the series, j = n, relation (27.35) must
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a)

1
v (l/2, U/ Vo

19

b)

1...
v (L/2,t)/v,

14
v (1/2,)/v, !

v(l2t)v,

Fig. 1.2. Dynamic deflection at mid-span of a beam, v(//2, 1)[vy, for various values of
speed and damping. a) f=0; a = 0,05,1,2,b) f=01;a=0,05,1,2,¢c) =
= ﬁcr =1 a=0,05, ].,Z,d)ﬁ= 2;0=0,05,1,2.
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PART II — ONE-DIMENSIONAL SOLIDS

be resorted to, whereas for the remaining omnes, j =1,2,...,n — 1,
n + 1, ... there holds the preceding solution (1.31)

1. . NEX
v(x, t) = vo — (sin nwt — nwt cos nwt) sin —— +
2n* !

w .
. Jmx 1 .. o .
+ v sin sin jwt — — sin @, ;t 1.32
0;=1§~¢n ] jz(jz — az)( J i (j)) ( )

where the symbols underneath the summation sign indicate that the
summation includes all j’s except j = n.

In the case of a« = n, the displacements of one point of the beam grow
with time; as the process is transient (0 < ct[l < 1), they do not, however,
attain infinite values at t = T = l/c.

We may also think of this case as of one of a beam subjected — in ad-
dition to force P — to a centrally applied compressive force S = uc?.
Since the critical force of a simply supported beam S, = (n?[I*) EJ, it
also holds [cf. (1.18)]

- g. _ (1.33)

For &« = 1, B = 0 the case discussed is illustrated in Fig. 1.2a for
x = 1[2. There n = 1, and the values for j = 2,3, ... are very small
(or zero) against the first term of Eq.(1.32). Fig. 1.2a also shows the case
ofa = 2, = 0(n = 2)in which for x = I[2it s, of course, sin nnl[(2])=
= 0, and the expressions for j = 3, 4, ... are very small (or zero) against
the first term of the series at j = 1; therefore, the numerical computation
was made using practically only the first term of the series in the second
portion of Eq. (1.32).

1.3.3  Light damping (B < 1)
1331 a+j, <1

When the damping is very light, the terms with f and 82 may be neglected
in (1.24), and the expression then approximately gives

Jjmx
l j2(j2 — aZ)

For a = 0-5, B = 0-1, Eq. (1.34) with x = 12 is plotted in Fig. 1.2b.

v(x, t) & vy Y. sin (sin jot — X ™" sin w(j)t) . (1.34)
=1 j .
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BEAM SUBJECTED TO A MOVING CONSTANT FORCE

1332 a=n, <1

For this case of n = w/w, = «, Eq. (1.24) gives

1 [ oy n? _ . nmx
v(x, 1) & vy — | e”*** sin nwt — — cos nwf(l — e~ ") | sin —= +
2n 8 | 1

—pt
+ v Z — (sin jot — = sin w( J)t) sin 1% . (1.35)
I3 (J a’) j l

Fig. 1.2b shows Eq. (1.35) with x = I/2 for B =01, « = 1 and « = 2.
For reasons stated in connection with case 1.3.2.2, the numerical com-
putation for ¢ = 1 was made using the first term of Eq. (1.35), for a =2,
the first term of the series in the second of expressions (1.35).

1.3.4  Critical damping (B = B., = n*)

The value of critical damping is attained whenever wy,, = 0 [cf. (1.22)]
for some j = n. Then w, = wg,, = w,n* and therefore

Bop=—2 =n?. (1.36)

D(1)
For j = n, the poles of expression (1.17) being +inw and the double
pole — w,, we shall use for the inverse transformation relation (27.38)
which after some handling gives

o(x, 1) = v, T 1+ p {(n* — a?) sin nwt — 2na cos nwt +
+ ¢~ 2™ [(n* + o) nwt + 2na]} sin nnx(l. (1.37)

For j < n, we must add to expression (1.37) the solution for supercritical
damping (1.39), and for j > n, the basic solution (1.24). Bearing this in
mind we computed the deflection at mid-span (x = I/2) of a beam with
critical damping f = B, = 1 for speeds a = 05, 1, 2, and plotted it in
Fig. 1.2c.

1.3.5 Supercritical damping (B > B.,)

Supercritical damping occurs whenever the damping is so heavy that for
Jj <n, wg;, according to Eq. (1.23) is positive. At the same time it must be
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PART 1 — ONE-DIMENSIONAL SOLIDS
w; > wy, = j*o?, and thus also w; > n*w}), and therefore

=2 5 p2, (1.38)

In such a case the poles of expression (1.17) are +ijw and —w, + wy;).

The inverse transformation is computed using expression (27.39) which
after some handling leads to

o, 1) = 5, - :

=1 G = @) + 4a?p]

wpt

{ j2(j* — o?) sin jot —

. : joe™ 20
— 2jap cos jot + 7 — )7 [(28* — j*(j* — «®) +
+ 2B(B* — jH)2) e’ — (2% — (2 — a?) — 2B(B? — j*)'?) x
X e""'“"]} sin 11;_’_‘ ) (1.39)

For j > n, the basic solution (1.24) with the summation including j=
=n+1,n+2,... must be added to (1.39). If the critical damping
exists at some higher j, expression (1.37), too, must appear in the solu-
tion. Note that (1.22) applies to j > n, (1.23) to j < n(*). Expression
(1.39) computed for x = 1/2, f = 2 and a = 0-5, 1, 2 is shown in Fig.
1.2d.

14 Application of the theory

1.4.1 The effect of speed

It is clear to see in Figs. 1.2a to 1.2d that at subcritical speeds, a < 1,
the maximum deflection at mid-span of the beam is produced already
during the load traverse, while at supercritical speeds, a = 1, it is not
observed until instant ¢t = T, i.e. when the moving force departs from the
beam. The dynamic deflection is soon dampened out by damped free

*) This means that supercritical damping holds for lower, subcritical damping

for higher natural modes. It is, however, of no practical significance to consider
a larger number of terms in the expression of v(x, ¢).
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BEAM SUBJECTED TO A MOVING CONSTANT FORCE

vibration that set in subsequently; that is the reason why the case of
t. > T is of no further interest to us.

Fig. 1.3 shows the maximum deflection at mid-span of the beam,
max v(l[2, t)/v,, as a function of parameter a (i.c. speed) for damping
B =0,01, 03, B, = 1, 2. In the diagram the maximum dynamic de-

max v(L/2t)/vy } p=0
4 ﬂ=0.1
f=0.3
1—.
P=Per=1
p=2
e A

Fig. 1.3. Maximum dynamic deflection at mid-span of a beam, max v(//2, t)[v,, in
dependence on speed «, for various values of damping, # = 0, 0-1, 03, f., = 1, 2.

flection is associated with speeds a ~ 0-5 to 0-7. For large «’s, the de-
flection rapidly tends to zero, for small o’s it is practically equal to the
static deflection.

The critical speed as defined by (1.20) is fairly high. By substituting
in (1.20) the empirical formula (1.55) of the first natural frequency of
steel railway bridges for f(,,, we approximately get

3
¢ = oyl ~ 21 % — 500mfs = 1800km/h.  (1.40)

1.4.2 Application to bridges

The theory expounded in the preceding paragraphs has found its widest
field of application in calculations relating to large-span railway and
highway bridges. Such bridges, simply supported in most instances, have
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PART II — ONE-DIMENSIONAL SOLIDS

a mass much larger than the mass of the vehicle, and very low first
natural frequencies. That is why — if vibration of vehicles on own springs
is neglected, too — the effects of moving vehicles may approximately be
replaced by the effects of moving forces.

Since the damping of large-span bridges is light, the dynamic deflection
may be computed from formula (1.34). For the very low speeds attainable
in practice, i.e. for « < 1, Eq. (1.34) further simplifies to (1.30) of which
all we need to take is the first term because the terms with j > 1 are
negligible compared to it. This results in

v(x, f) = v, sin wt sin n_lx , (1.41)

which can be used as a dynamic deflection formula wholly satisfactory
for practical purposes.

1.4.3 Approximate solution of the effects of a moving mass

In his approximate solution [111] of the effects of vehicles moving over
large-span bridges, C. E. Inglis introduced an assumption according to
which the gravitational effects of the load may be separated from the
inertial ones. In the calculation the force is considered as moving along
the beam (this is the case which we have solved in Sects. 1.1 to 1.3)
while the mass of the vehicle acts at a definite, constant point x,.

Let us now analyze whether or not the second part of the assumption
is justified. Mass m of load P (P = mg, g — acceleration of gravity)
acts on the beam at point x, by its intertial effects, a case that may be
described by the differential equation

d*v(x, t)

4 2
EJa v(x,t)+u?_v("’__t)+2ﬂwb@%’_t)=-.5(x--x0)m 2

ox* ot x=%o
(1.42)
Assuming that the solution v(x, t) will be in the form of the second of
relations (1.9), and using the first of relations (1.9), conditions (1.2) and

equations (27.69) and (27.74), we get the Fourier transform of Eq. (1.42)

j41t4
e

EJV(j, t) + p V(j, t) + 2p0, V(j, 1) = — 3? V(j, 1) sin“llxﬂ ,
(1.43)
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BEAM SUBJECTED TO A MOVING CONSTANT FORCE

the transform on the right-hand side of the equation is but approximate,
since it is assumed that

0*v(x, 1) 2 . N . jWXg
= —V{(Jj, t)sin
ot? ! (1)

X=X0

Eq. (1.43) may then be given the form

V(j, t) + 2@, V(j, t) + @, V(i 1) = 0 (1.44)
where
_ B o2 _
By = “’(21'):7 By =BGy — By s (1.45)
&, = wbi—;, (1.46)
i=u (1 + -2-61—) sin? ”"‘0), (1.47)
l
P juxg\ 1
For = fo (1 + % sin? J—’EI’-‘E) and (1.48)
G = ulg — weight of the bridge. (1.49)
fin/fen PG =0
1—
0.1
PG =2
o o T ] XAl

Fig. 1.4. First natural frequency of loaded beam, f(;/f(;), dependence on mass
position, x,/!, for various values of ratio P/G = 0, 01, 05, 1, 2.

Eq. (1.44) is the same as the left-hand side of Eq. (1.14), except that wy)
and w, of the latter are replaced by quantities @; and @, expressing
the fact that the beam is loaded at point x, with immobile mass m.
Accordingly, if we are out to compute the effects of a moving force with
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PART II — ONE-DIMENSIONAL SOLIDS

an approximate expression of the mass effects, we shall use Egs. (1.24)
to (1.39) with w;), w,, and f;, replaced by the corresponding values with
bar @j), By, f(jy, By = @i5) — @, etc.

All that remains to be done is to determine point x, where mass m is
to be located. A means to this end is Fig. 1.4, plotting the dependence of
the first natural frequency of a loaded beam fy,/f(y, versus the point of
action of mass m, x,/I, described by Eq.(1.48), for several values of the P/G
ratio. As the figure clearly shows, the natural frequency of a loaded bridge
varies with the position of mass m. Near the centre of a simply supported
beam this variation is rather small, particularly for small values of the
P/G ratio. That is why, in cases of this sort, mass m is usually placed at
mid-span of the beam, i.e. at x, = I/2; then Eqgs. (1.47) and (1.48) approx-

imately are i = u(l + 2P[G), (1.50)
Fa, = fa(1 + 2P|G)™ 1/ (1.51)

1.4.4 Experimental results

Experimental data necessary for computations according to the theory
explained above were collected in the course of extensive measurements
made under author’s leadership on various steel railway bridges (for
further details refer to [70], [73], [74]). The measurements proved the
approximate formula (1.41) to be valid for large-span bridges on the
condition that both the track and the wheels are ideally smooth and the
vehicle has no unbalanced rotating masses.

6
MND //
3 / =
2 ,gfo/
(0]
1 oY
(0]
0
0 10 20 30 40 50 60 70 80 90 ([m]

Fig. 1.5. Total weight of steel railway bridges G as a function of span / (the curve
represents the variations smoothed according to empirical formulae given in [74]).
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BEAM SUBJECTED TO A MOVING CONSTANT FORCE
The total weight G, according to (1.49), of the most diverse types of

steel railway bridges that have been subjected to the tests is shown in
Fig. 1.5.

b o
Ju [Hz]

{Hz] 80
o \
14 60
Y
12 \ 40
X
10 20

8 N 0o \oﬁ
ﬂ\ x 0 0 20 30 ! Ilm)
+ 6 N
¥ o

7/

X O experiment

1o

+ ¥ x X (142)
4 P~ x + (1.53)

o — s

2
0
(4] 10 20 30 <0 50 60 70 80 90 ( (m]

Fig. 1.6. First natural frequency f(l) of vertical vibration of steel railway bridges
under no load, as function of span /.

The natural frequency of unloaded steel railway bridges as a func-
tion of span is plotted in Fig. 1.6. The graph shows the experimental data
as well as the values computed using formula (1.12). The value of u sub-
stituted in (1.12) was obtained from Eq. (1.49) and from data of Fig. 1.5.
Even though the main girders of steel bridges are of no constant cross
section, they may approximately be calculated as prismatic beams. That
is why the moment of inertia J of trussed bridges was computed from the
formula

J = §(F, + F,) h? (1.52)

where F,, (F,) is the cross-sectional area of one upper (lower) chord at
mid-span of the bridge, and h is the theoretical height of the panel at mid-
span of the bridge.
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PART II — ONE-DIMENSIONAL SOLIDS

To describe the effect of the roadway, we computed the first natural
frequency from the approximate formula

5-62
fay = i (1.53)

st

where f,y, is in [Hz], and &, in [cm]. In the above formula &, may be
regarded as the measured deflection produced by bridge’s own weight ug.
Since this deflection cannot be measured directly we computed it from
the relation o, = v, /v, Where v, is the computed deflection produced
by uniformly distributed own weight ug, ¥, and v, the measured and
computed, respectively, deflection produced by the test load, for example
by a locomotive. In so doing we took advantage of the approximate pro-
portionality between the measured and the theoretical deflections pro-
duced by two kinds of load. The deflection at mid-span of the equivalent
constant cross-section plate girder substituting for the bridge structure,
subjected to uniform load ug, thus turns out to be

5 pgl*t 4 ugl*
Use = ~ 5 o1

384 EJ n° EJ

(1.54)

Computing ul*/(EJ) from this equation and substituting it in (1.12)
give — after enumeration in the above units — the empirical formula
(1.53).

The measured values of the first natural frequencies f(;, of the bridges
were also smoothed out by the so-called group method(*) according to
which the most satisfactory of all is the empirical dependence

1000
fy al (1.55)
where f,;,is in [Hz], ! in [m]. Dependence (1.55) plotted in Fig. 1.6 works
well for steel railway bridges over a broad range of spans, say from to
5 to 70 m, and agrees with the results reported abroad [24], [121].
Damping of bridge structures is a highly complicated problem (cf.
[121]) in which both linear and nonlinear dependences come into play.

*) The group method (also the method of means) requires that the sum of errors
should be zero in every group, of which there are as many as there are unknown
parameters. See Z. Horak: Practical Physics (in Czech), Publishing House SNTL,
Prague, 1958, p. 106.
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Damping is usually considered as proportional to ihe velocity of vibra-
tion. This approximate damping theory is quite suitable for cases with
a small range of possible frequencies. And that is just the case of simply
supported railway bridges, where at present-day speeds the frequencies
of the locomotive driving wheels practically do not reach but the first
natural frequencies of the bridges.

Damping proportional to the velocity of vibration is characterized by
the logarithmic decrement of damping 3 defined as the natural logarithm
of the ratio of two succeeding amplitudes (cf. [130]). This ratio was
measured and 3 computed from it. The experimental data thus obtained
are plotted in Fig. 1.7 relative to span. For spans up to about 70 m, the

» (o}

09
|

08

0.7
0.6
0.5 \
04 \ © experiment

\ — (1.56)

9\
0.2

0.1

o<,

O 0O
® o - Q
(0]

0.
o 0 20 30 40 50 60 70 80 90 ( Iml

Fig. 1.7. Logarithmic decrement of damping & of steel railway bridges as function
of span /.
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measured values are well represented by the empirical formula

9 = 1
03] — 12 x 10732

(1.56)

where 9 is a dimensionless number, ! in [m] This dependence as arrived
at by the group method is also shown in Fig. 1.7.

The circular frequency of damping is calculated from the logarithmic
decrement with the aid of the formula (cf. [130])

Wy = sf(,l) (1.57)
where f;, = 0(;,[(27) = f(); see (1.22).

1.5 Additional bibliography

(1,7, 15,19, 24, 28, 46, 65, 67, 70, 73, 74,94, 111, 114, 116, 121, 130, 131, 135, 139, 145, 150,
173, 182, 215, 220, 241, 244, 275, 290, 295, 298, 302, 306, 311, 328, 333, 340, 345, 372, 395].
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Moving harmonic force

Another of the problems of fundamental importance is that of a harmonic
force moving along a simply supported beam. It was first solved by
S. P. Timoshenko [216] and worked out in detail by C. E. Inglis [111]
and V. Kolousek [130]. What we are going to do here is to deduce the
basic results, set them forth in the form of useful formulae and compare
them with experimental data.

2.1 Formulation and solution of the problem

The solution of the problem of a harmonic concentrated force moving at
constant speed ¢ over a simply supported beam with span [/ is carried out
under the same assumptions as that discussed in Chap. 1. The time-
variable concentrated force is of the form

P(t) = Q sin Q1 (2.1)

where Q is the amplitude and Q the circular frequency of the harmonic
force. Vibration of the beam is then described by the equation

4 2
EJ?L%%L) + uéia(;’—t—) + 2uwb§%t—) =6(x —ct) QsinQt, (2.2)
by the boundary conditions (1.2) and by the initial conditions (1.3). The
symbols used in (2.2) have the same meaning as those of Chap. 1.

Eq. (2.2) together with conditions (1.2) and (1.3) will again be solved
by the method of integral transformations. Following the Fourier sine
transfomation according to (1.9), Egs. (2.2) and (1.2) give

2 > 7
4V, 1) Zg’ ) + 2w, d—Vc%—t) + wg)V(j, t) = € Sin 0t sin jot. (2.3)
I
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Solving the above with (1.3) by the Laplace-Carson transformation
(1.15) — making use of Eq. (27.24) in doing so and of the notation
rn=2+jow; r, =0 — jo (2.4)

V*(j.p)=—g( 1 . ) P . (25)

2u\p* + 13 p*+ 11/ (p + 0) + @}

we get

After inverse transformations of Eq. (2.5) according to (27.24) and (1.9)
the required result for t < T is

o) =5, & ey |0t .

j=1 pul - r§)2 + 4w}ir?

- : w
. (cos rpt — €7 cos ;) 1) + 2wy, sinrt — —- (w0f;, + 13).

1270

1

—wpt ’ 2 2

. ¢ b sin w(j)t] - 2 N2 4 2 2 ((D(j) - rl) .
(w(]) -_— rl) + wbrl

. (cos rit — e cos w(pt) + 20,y sin ryt —

— _w,_,, (wf), + r7) e sin o] j)t]} sin 7% (2.6)
@) !

We shall now simplify Eq. (2.6) to fit the cases most frequently met
with in practical applications. Thus, for example, it is entirely satisfactory
to use only the first of its terms (j = 1); further, as we know from Chap. 1,
parameters « and f are usually much smaller than 1 (¢ = wfw, < 1,
B = w,/wyy < 1). And finally, since in practice a harmonic force is
always accompanied by a constant force P, we shall introduce in (2.6)

also the deflection v, according to (1.21). Following these simplifications
Eq. (2.6) takes on the form

Q 1 1
SCRES
0? Q0 Q2

2 2 2731/2
{[(9’-“—’ — 1) + 4%’2—’;] sin (Qt + ¢) sin wt +

QZ

v(x, 1) = v,

+ 2 g (cos Qt cos wt — e~ " cos w(l)t)} sin ? (2.7)
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where
20p/Q

g =— ————.
Wi,/ — 1

The beam reaches the state of highest dynamic stressing in the region
of resonance, i.c. whenever Q is close or just equal to w(y), i.e.

Q = a)(l) . (2.8)

In such a case Eq. (2.7) can further be simplified to

o(x, 1) = v, Qe cos w(l)tz [w(cos wt — ™) — w, sin wt] sin Flﬁ .

2P o* + w,
(2.9)

2.2 The dynamic coefficient

In practice the dynamic coefficient is oftentimes defined as the ratio of
the maximum dynamic deflection to the static deflection at mid-span of
a beam (see [74])

_ max v(1/2, 1) .

Vo

5 (2.10)

The above is written on the consideration that the beam is traversed
simultaneously by forces P 4+ Q sin Qt; its resultant vibration is therefore
given by the sum of Egs. (1.41) and (2.7) where v, is described by Eq.
(1.21).

The maximum deflection of the first component of motion at centre
x = 1[2 of the beam is v, (according to Eq. (1.41)), i.e. a deflection at
the instant of the force passing over the centre of the beam.The maximum
dynamic deflection produced by the motion of the harmonic force occurs
at the instant the force is past the centre of the beam. However, we assume
approximately that the maximum deflection of the second component
of motion also occurs at instant ¢t = T/2 = I/(2¢). In this case sin wt =
=1, cos wt = 0, cf. (1.13). The maximum deflection in Eq. (2.7) is at
cos w(;yt = —1, and in saying so we assume, too, that sin (Qt + go) = 1.
On substituting these values in Eq. (2.7), we get from (2.10)— with (1.41)
and (2.7) included — the dynamic coefficient
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Eq. (2.11), expressing the dependence of the dynamic coefficient on
speed, is sometimes called the resonance curve.

The dynamic coefficient attains its maximum at resonance, i.e. at
Q = (3. Then Eq. (2.11) becomes

Q 60(1) —wpl/(2c Q
0=1+ = —""—(we )t w)=14+=4 2.12
2P 0 + o} ( ) P (212)

where 4, with the substitution of the speed and dgmping parameters o
and B according to Egs. (1.18) and (1.19), is
_1 1
2 a2 + ﬂz

Fig. 2.1 shows 4 as a function of the speed parameter a for several values
of the damping parameter f.
4

(ae™ ™20 4 Y. (2.13)

6

A
PN

1

\%k

0 o1 02 03 0.4 05 06 o7 08 09 10 o

Fig. 2.1. Dependence of expression 4 [Eq. (2.13)] on speed a for various values of
damping B.

36



MOVING HARMONIC FORCE
23 Application of the theory

A classical example of the application of the theory expounded above are
the dynamic effects of steam locomotives on large-span railway bridges
[11], [130], [70], [74]. Steam two-cylinder locomotives have driving
wheels provided with unbalanced counterweights, the right-hand ones
being placed 90° against the left-hand ones. In motion the counterweights
produce a harmonic force on either side of the locomotive; their resultant
is likewise a harmonic force of the form of (2.1). The amplitude of this
additional force depends on the velocity of wheel rotation. Thus, for
example, according to tests, the resultant amplitude of the Czechoslovak
steam locomotive CSD 524.1 is

Q =24 to 3 xN? (2.14)

where Q — amplitude of the force in kN,
N = ¢[0 — revolutions per second of the driving wheels,
Q = 2nN = ¢[r — circular frequency of force (2.1),
r, O — radius, circumference of the driving wheels, respec-
tively.

The whole passage of a steam locomotive over a large-span bridge may
be idealized by a moving concentrated force P representing the force
action of the locomotive, and by a harmonic force Q sin Qt expressing
the dynamic effects of the counterweights. According to the deductions
of paragraph 1.4.3, the locomotive mass is assumed to be placed station-
ary at mid-span of the bridge. In this way we may describe — approxi-
mately at least — the effects of the moving mass by using the equations
evolved in Chaps. 1 and 2 with the quantities w;), w, and u replaced by
those with bar, i.e. @;), @,, ji according to Egs. (1.45), (1.46) and (1.50).

In bridges with spans over 30 or 40 m, resonance according to (2.8)
is likely to set in even at speeds attainable in practice. In that case Eq.

2.8) become

(28) becomes Q=a&, or N=f,. (2.15)
From there follows the equation for determining the critical speed at
which the dynamic effects of a steam locomotive reach their maximum,

namely Cor = Ji1)O (2.16)

where f,, is the first natural frequency of a bridge loaded at mid-span
with a locomotive — cf. Eq. (1.51).
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2.3.1 Comparison of theory with experiments

In practical instances the resultant beam deflection is described by Egs.
(1.41) and (2.7).

To illustrate, we shall now compute the deflection at mid-span (x
= 1f2) of a steel railway bridge with span ! = 56-56 m, weight G
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1
a ) 0 L " . A 0.15 n N 2 L ] CE_/l

1
v (L2t) v 1

b) 0 ) a5 1 Ct/l

q-
v (L/2,t)/ v, |

c) o . . . 5 . 1 ct/l

1
v (12,1 vp0

Fig. 2.3. Time variation of the deflection at the centre of a bridge with span / =

= 56-56 m traversed by a steam locomotive type 524.1 at speed: a) c = 34-7 km/h,

b) ¢,, = 40-6 km/h, ¢) ¢ = 46'5 km/h. Computed according to the theory expound-
ed in Chap. 8.

= 1-64 MN, first natural frequency (measured) f,, = 42 Hz, logarith-
mic decrement of damping 3 = 0-05 (see [74]), traversed by a steam
locomotive type 524.1, with weight P = 0097 MN, r = 0:63m, O =
=396m, Q = 3 x N2
The first natural frequency of the loaded bridge (1.51) is f;, = 2-85 Hz,
the critical speed (2.16), ¢, = 40-6 km/h. From Eqs. (1.41) and (2.7) we
get the time variation of the deflection at mid-span of the bridge when
traversed by a 524.1 locomotive at speeds: a) ¢ = 34-7 km/h, b) ¢, =
= 40-6 km/h, c) ¢ = 46-5 km/h. The deflections computed with the aid
of the approximate theory are shown in Fig. 2.2, while Fig. 2.3 depicts
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o, 0 i 2 2 ICt./l. 1 1
4 v(l/2,t)
Vo a)
1s
0 L
0
y v(l/2,t)
Vo
b)
1s .
lL lct‘/lj 1
0
y v(l/2,t)
% )
1s

Fig. 2.4. Time variation of the deflection at the centre of a bridge with span / =

= 5656 m traversed by a steam locomotive type 524.1 at speed: a) ¢ = 34-7 km/h,

b) ¢ = 38-:8 km/h (speed close to ¢, = 40-6 km/h), c) ¢ = 46-5 km/h. Experi-
ments,

the same deflections obtained by the application of the theory of Chap. 8,
in which consideration is also given to the motion of the locomotive mass.
Fig. 2.4 reproduces the corresponding deflections arrived at experi-
mentally — see [74].

Comparing Figs. 2.2, 2.3 and 2.4 we see that both the approximate
(Chaps. 1 and 2) and the exact (Chap. 8) theoretical results agree very
well with experimental records, especially at subcritical and critical
speeds, with the locomotive near the centre of the bridge.

Fig. 2.5 shows the resonance curve computed for our case from Eq.
(2.12). The figure also shows the experimental results and the theoretical
dependence of the dynamic coefficient on speed computed using the exact
theory of Chap. 8. It is clear that both the exact and the approximate
theoretical results compare well with the experiments. The resonance
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curve according to the exact theory is somewhat flatter than that accord-
ing to the approximate theory, and describes the values measured outside
the resonance range more fittingly. In the resonance range both theories
agree nearly perfectly with the experimental results.

L
14
h\
1.3 | .\eo
" \
| ! \\ °°
12 f T
| \ x\
aQ Il \\
11 24 AN o2
. \ \"4
[o] / [~
/b \\\
o - -
(el L~ =
oo ==
1.0 S -
0 10 20 30 40 50 60 clkm/h]

Fig. 2.5. Theoretical and experimental dependences of dynamic coefficient 4 on

speed c. Bridge with span !/ = 56:56 m, steam locomotive type 524.1. a) exact

theory according to Chap. 8, b) approximate theory according to Chap. 2, O —
experiment.

2.3.2 Critical speed and maximum dynamic coefficient for bridges
of various spans

We have applied the approximate theory to bridges with spans larger
than 30 m traversed by a steam locomotive type 524.1, the worst balanced
of all Czechoslovak Railways’ engines. The pertinent calculations were
made using the smoothed values of weight, first natural frequency and
logarithmic decrement of damping of the respective bridges (Figs. 1.5,
1.6 and 1.7).

The critical speeds thus computed [Egs. (2.16) and (1.51)] relative to
the bridge span are plotted in Fig. 2.6 (curve p = 0). As the figure sug-
gests, the critical speed falls off with growing span.

Fig. 2.7 shows the measured and the computed [Eq. (2.12)] values of
maximum dynamic coefficient resulting in bridges of various spans from
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Fig. 2.6. Critical speed c,, of steam locomotive type 524.1 hauling continuous
load p = 0, 20, 40, 60, 80, 100 kN/m, in dependence on span /.
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Fig. 2.7. Maximum theoretical and experimental dynamic coefficients 6 produced

by a steam locomotive type 524.1 in bridges with various spans /. -+~ theory, @ ex-

periment, — according to Eq. (2.12) at ¢ = ¢, -~ — according to Eq. (2.12)
at ¢ = 50 km/h. '
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the action of the 524.1 locomotive. It also plots the dependence of the
dynamic coefficient of span, computed from Eq. (2.12) and the smoothed
values in Figs. 1.5 to 1.7, for the critical speeds indicated in Fig. 2.6,
p = 0 (solid line). Since in the bridge tests the locomotive failed to attain
speeds over 50 km/h, we also computed the dynamic coefficient-span de-
pendence (in the same way as before) for ¢ = 50 km/h (dashed line).

As we can see from Fig. 2.7, the maximum dynamic coefficient grows
with growing span up to about | = 54 m. Up to this span the critical
speed according to Fig. 2.6, p = 0, is namely higher than 50 km/h,
a value the test locomotive was unable to reach. In the subsequent tests
in which the critical speeds were attained, the dynamic effects fall off
with span. The measured values, though somewhat lower than the com-
puted ones, follow the two dependences with a fair degree of fit.

2.4 Additional bibliography

[24, 34, 70, 74, 111, 114, 121, 130, 131, 156, 198, 216, 220, 290, 298, 313, 319, 328].
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Moving continuous load

For large-span bridges the problem of the effects of a moving continuous
load is of equal — if not greater — importance than the problem of a moving
concentrated force. It has been treated at length by several authors,
L. I. Gol’denblat [97] and V. V. Bolotin [20] among them. In the next
sections we shall deduce a stationary solution for the case of a moving
endless strip of load also with the approximate effect of its mass, and an
approximate solution for the load arrival to and departure from the
beam. In conclusion we shall review some of our experimental results.

3.1 Steady-state vibration

Consider a strip of load moving at constant speed ¢ over a simply sup-
ported beam. Relative to the moving coordinate system

E=x—ct (3.1)

the strip of load has magnitude g(¢, t) and mass p (&) = q(¢, 1)/g per
unit length of the beam, see Fig. 3.1.

Adopting the assumptions set forth in Sect. 1.1 we may describe this
case by the different’al equation

4 2
EJa v(x, ?) 4 u@ (x, t)

6v(x )
+ 2uw
ox* ot? HE ot

) (32)

where the symbols are as those used in Sect. 1.1 and p(x, t) denotes the
load per unit length of the beam at point x and time ¢. If the mass of the
moving strip is considered, too, the load becomes

d v(x t) .

px, 1) = q(&, 1) — u (&) — 5 (33)
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The second term on the right-hand side of (3.3) describes the inertial
action of mass p (&) on a deformed beam. According to d’Alembert’s
principle, it is the product of mass and acceleration. The acceleration is
calculated from the total differential (see [186], p. 366)

2 2 2
d?v(x, t) = di? olx, 1) + 2dx dta—m + dx? Q—v—(’—c——t-) (3.4)
ot? ox?

O0x Ot
/q(;,t) —C
Y
X b §
ct
! )

Fig. 3.1. Simple beam subjected to a moving strip of load.

Since the independent variables are related through (3.1) and in
uniform motion d¢/dt = 0, the differentiation of Eq. (3.1) d¢/dt =
= dx/dt — c gives

dx = cdt. (3.5)

With this, the total differential (3.4) may be written as

0 v(x t) 0*v(x, 1) +

Ox Ot

0 v(x,

d?v(x, t) = dr? + 2cde? c¢? dr?

) (36)
and from there the acceleration

2 2 2 2
d*o(x, 1) _ 0%v(x, 1) + 2 d*v(x, t) + e 0*v(x, t) .
de? or? dx Ot ox?

(37)

Starting from the equality sign, the terms on the right-hand side of
(3.7) represent: the effect of acceleration in the direction of deflection
v(x, t), the effect of the so-called Coriolis force (complementary accelera-
tion), and the effect of the path curvature (centripetal acceleration). In
practical instances the effects of the third, and in particular of the second,
term are smaller by far than those of the first term.
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Eq. (3.2) with the right-hand side (3.3) including (3.7) is readily solved
for the case of steady-state vibration of a beam subjected to continuous
moving load q(¢,t) = ¢, p(¢) = p, = q/g9." The boundary conditions
are the same as (1.2) while the initial conditions may be chosen at will —
for example zero as in (1.3) because what is actually determined in the
calculation of steady-state vibration is the limit »(x, t) for ¢ — oo, when
the effect of the initial conditions is already damped out.

Let us first neglect the effect of the second term of Eq. (3.7)*). The
equation to be solved is then

0*v(x, 1) 0*v(x, t) 0*v(x, 1)
EJ —2 4 p e —=—= + (u + pg) — 5
oxt ol (4 1) or?
+ 2w, 250 (3.9)
ot
Introduce the following notation
x =1t (3.9)
JT;
g=p+p,=pl+2x), (3.10)
By = Opli, (3.11)
@, = oppfil, (3.12)
:2..2 .2
o) = By — i—?{c“ #_—q = w(zj)g(l - ’13 “2”) (3.13)
i i j

where the speed parameter a is the same as in (1.18).

Transforming (3.8) in accordance with (1.9) and using boundary con-
ditions (1.2) and relations (27.68), (27.69), (27.71), give

.4_4 21132

T : J . _ b o
]—14— EJV(j, 1) — TS uet VG, ) + BV(, 1) + 2uw, V(j, t) =

2—.(11 for j=13,5,...

=37 (3.14)
0 for j=2,4,6,...
*) This in fact is the case of a two-track torsionally rigid bridge traversed on one

track by load ¢/2 with mass y,/2 at speed c, and on the other track by the same load
at speed —c. Under such conditions the second term of (3.7) drops out.
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Transforming (3.14) in accordance with (1.15) and using (1.3) and
(27.4) give

—2—q—l for j=1,3,5,...

P* V*(j, p) + 2@,p V*(j, p) + @}, V*(j, p) = ) jnit
0 for j =2,4,6,...

(3.15)
so that the transformed solution is
29! . ! _ for j=1,35,..
V*(j, p) = { jnit p* + 2@,p + (3.16)
0 for j=2,4,6,...

For the inverse transformation according to (1.15) we use expression
(27.20) or directly the limit of the expression V*(j, p) for p — 0 according
to (27.14)

2‘1_1- for j=1,3,5,...

lim V*(j, p) = { jriwg; (3.17)
pmos 0 for j=24,6,...

Following the inverse transformation in accordance with (1.9) and some
handling, the required solution turns out to be

. < 1 . Jmx
lim v(x, t) = v sin 3.18
10 (1) oj=1§,5,...j5(1 — a’x[j?) l (3.18)

where
5 ql* - 4q1*  4q
384 EJ n°EJ] muwl,

(3.19)

Vo

is the deflection at mid-span (x = I/2) of the beam produced by conti-
nuous load q.

Solution (3.18) satisfies the differential equation (3.2) with (3.3) sub-
stituted in, as well as the boundary conditions (1.2). It is, therefore, the
solution of steady-state vibration of a beam traversed by an infinite
strip of continuous load. It is of interest to note that expression (3.18)
is independent of damping and for

.4

j = jla*x or ¢, = 2f il /(j%”z); i=13,5,... (3.20)
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tends to infinity. The dependence of v(I/2, o0)[v, on speed « is shown in
Fig. 3.2 for several values of load x.
For low speeds, « < 1, Eq. (3.18) may be simplified to

Q0 .
v(x,0) =vy Y L gind™ o D sin (3.21)
J=1.3,5,... j° l l

when computed with the first term of the series only.

vi( [72,00)/ |
5 r

+ L 1 ] L I 'J l T
0 02 0% 05 08 w[ 12 14 o
Gc’-h = 1) (* = 0.5)

Aerlde=15)
or(ee=2)
Fig. 3.2. Dependence of v(//2, o)/v, on speed a for several values of load x» (for
j= 1.

3.2 Arrival of a continuous load on a beam

To obtain an approximate solution of this case we neglect the effect of
the second term on the right-hand side of (3.3) and write

p(x, 1) = gq[1 — H(x — c1)] (3.22)

where function H(x) is the so-called Heaviside unit function defined as

follows: 0 for x <0

H(x) = {1 for x=0. (3.23)
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In expression (3.22) function (3.23) describes the arrival of a continuous

load on a beam (Fig. 3.3a). At the instant of arrival, the simply supported
beam is at rest.

Eq. (3.2) with (3.22) for the right-hand side, is again solved by the
transformation in accordance with (1.9). For boundary conditions (1.2)
the use of (27.69) to (27.73) and some handling give

V0, §) + 20, V(i 1) + 0 Vi, ) = 5 (1 = cos jof)  (3.24)
Jjru

/q

q
Fig. 3.3. a) Arrival of a continuous xact L & b)
load on a beam, b) Departure of 7 I,
a continuous load from a beam. {

L |

and transformation (1.15), together with initial conditions (1.3) and the
use of relations (27.4), (27.17) result in

qljw? 1
V*(j, p) = : 3.25
U e (p? + j20®) [(p + 0p)* + o, (:29)

Following the inverse transformations in accordance with (1.9) and
(27.40), Eq. (3.25) and some manipulation give

2 402 2

v(x,t)——Z—m : x 70 a).
Sl J'Z(J'2 — o) +dalp o

(1 = cos o) — [(* — &) — 48] (1 = ™" cos afy) —

3B ﬂ

- sin jot + (—W [2/* + j*(j* — «?) — 4B*] €™ ***sin a’(i)t} .

(3.26)
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In the above expression, (1.18) and (1.19) were used for the speed para-
meter o and the damping parameter f, respectively.

For low speeds, a < 1, light damping, 8 < 1, and j = 1, Eq. (3.26)
becomes quite simple, namely

o(x, 1) ~ 229 (1 = cos wt) sin 1‘15 . (3.27)

This last relation is suitable for calculations relating to large-span
bridges, the case that has been considered when deducing the theory in
this chapter. Egs. (3.26) and (3.27) apply only to the arrival of a conti-
nuous load, i.e. at 0 < t < Ie.

33 Departure of a continuous load from a beam

This case is solved analogously to the one just discussed (see Fig. 3.3b).
The initial conditions now are those given by (3.21)

j=1,3,5... j°

i(x,0) = 0 (3.28)

because at the beginning of the process the beam is assumed to be per-
forming steady-state vibration in the sense of Sect. 3.1.
The load now is '

u(x,0)=v, Y —l—sinﬂ;f,

p(x,t) = gH(x — ct). (3.29)

Writing (3.2) with (3.29) on the right-hand side, and solving it in accord-
ance with (1.9) with the use of boundary conditions (1.2) and relations
(27.69) and (27.72) give after a bit of handling

V(j, 1) + 20,V(j, 1) + ¢, V(j, 1) = q—l (cos jwt — cos jm). (3.30)
jmp

In view of initial conditions (3.28) and relations (27.4), (27.19) transfor-
mation (1.15) will give

1
(p + 0p)* + g,

_ 2
+ 4 (Ff__z_z — cos jn)] (3.31)

V*(j, p) = [vo-, 0) p(p + 2) +

jmu Jo
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where ¥(j, 0) is the Fourier transform of initial conditions (3.28)

vl & 1
2o 23 —. (3.32)

2 j=1,3,5.. 7]

V(j,0) = J v(x, 0) sin —l—- X dx = ]

Applying the inverse transformations (1.9) and (27.22), (27.42), (27.20)
we get from (3.31)

o Jmx oyt B
— -y ’ . ,
U(x, t) = Z — sin=—— ] |]:e (COS (D(j)t + m Sm (D(j)t)

.i=1]

+
Jj=1,3,5...

1 j4 22 2 - - wpt 4
+ - — o) (COS jwt — € COS W nt) +
> {jz(jz Z o2 4 do2f? [(J ) (cos j Wt

2aB . . B

_ +2 2 —wpt . ’ _ .
+ —j—smjwt Ty (> + a®) e sin a)(j)t:l cos jr .

. [1 - e-wbt(cos ot + (j4 _ﬁﬁz)m sin wzj)t)]}:ﬂ . (3.33)

As in Chap. 1, expressions (1.18) and (1.19) were again used for the speed
parameter o and the damping parameter B, respectively. For a < 1,
B < 1andj = 1, Eq. (3.33) simplifies to

o(x, t) = -1;—0(1 + cos wt) sin 1tl_x , (3.34)

a formula suitable for the calculation of large-span bridges.

Egs. (3.33) and (3.34) again apply only during the time of departure
of a continuous load from a beam, i.e. for 0 < t < I/c.

34 Application of the theory

The foregoing theory is frequently used in the calculation of dynamic
stresses in large-span railway bridges, resulting from the traverse of a train
of cars hauled by a locomotive [74]. According to experience, the bridge
vibration produced by the cars is very irregular, with a lot of damping
coming into play, too. The reasons for this are track irregularities, the
condition and lateral movements of the cars, damping of the car springs,
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damping in the connecting rods and other, mostly random causes.*)
More often than not the dynamic effects of the locomotive are damped
out by the train of cars.

3.4.1 Approximate calculation of large-span railway bridges

In the calculations that follow the load of the cars is assumed to be
transferred to the main girders of the bridge as a continuous load, g,
which moves behind a locomotive producing effects described in Sect.
2.3. The locomotive is assumed to be heavier than the cars, with un-
balanced counterweights producing large dynamic forces.

Let us first examine free vibration of a bridge loaded with a loco-
motive stationed at mid-span, and a continuous load, g, extended from
the left-hand end to the centre of the bridge. In the case of a heavy loco-
motive and not so heavy cars, the position is decisive for the calculation
of free vibration of the bridge, and analogous to that of the case dis-
cussed in paragraph 1.4.3.

For free vibration of a beam thus loaded the right-hand side of Eq.
(1.42) is

azv(x, t)
5(x — 12) m pw

oy D e - 1)) (339)

x=1/2 ot

Proceeding as in paragraph 1.4.3 we find that in the first approximation
the differential equation of the beam vibration has the form of (3.2) in
which the coefficients

- 2P ql

=ul(l +=—+ =), 3.36

w145+ 36) (@39

Dy = wpu[fi (3.37)

have been substituted for y and w,.
Similarly, the frequencies are

B(jy = WMl By = By — By (3.38)

i =foll + 2P[G + ql[(2G)] /2. (3.39)

Depending on the length of the train being considered, the calculation
of forced vibration may be divided into the following stages:

*) The random concept of the whole phenomenon is examined in detail in
Chap. 26.
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Stage 1 — The motion of the locomotive followed by the cars (a con-
centrated force and a continuous load). It lasts from the instant the
locomotive arrives on the bridge until it departs from it. In this stage the
free vibration is computed from formulae (3.35) to (3.39).

Stage 2 — The motion of the continuous load. It lasts from the instant
the locomotive departs from the bridge until the end car arrives on it.
The bridge deflection is approximately described by Eq. (3.18).

Stage 3 — Departure of the continuous load from the bridge. It lasts
from the instant the end car arrives on the bridge until it departs from it.
The bridge deflection is approximately described by Eq. (3.34).

Stage 4 — The bridge is under no load, free vibration sets in (this case
does not concern us).

In the course of each stage the bridge behaves in conformance with the
character of the load imposed, and its vibration is also affected by the
pertinent initial conditions. We shall presently return to stage 1 because —
as we have assumed — vibration in its course is the most intensive of all,
and the other two stages have in fact been solved in Sects. 3.1 and 3.3.

In the course of stage 1 the beam is loaded with a moving force, P (cf.
Chap. 1), a harmonic force, Q sin Qt (cf. Chap. 2), and a continuous
load, g (cf. Sect. 3.2). In view of the linear character of the problem, the
total deflection of the beam is described by the equation

v(x, t) = vp(x, t) + vg(x, t) + v,(x, 1) (3.40)

where vp(x, 1), vo(x, t) and v (x, t) are described by Egs. (1.41), (2.7) and
(3.27), respectively, with values ji, @,, @, according to Egs. (3.36) to
(3.39) substituted for y, w,, o).

3.4.2 Comparison of theory with experiments

The theory expounded in the foregoing will next be applied to the exami-
nation of a bridge having span I = 56:56 m traversed by a 524.1 type
locomotive (for data see paragraph 2.3.1) hauling three cars; the conti-
nuous load produced by them is ¢ = 39-5 kN/m. From (3.36) and (3.39)

pli = 0:351; Jy, = 420 x 0-3511/2 = 249 Hz .

The measured first natural frequency of the bridge under load was
f1y = 2-44 Hz, a value in very good agreement with the computed one.
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MOVING CONTINUOUS LOAD

Resonant vibration sets in at speed [see (3.44)] c., = 249 x 3-96 =
= 9-85m/s = 35-5 km/h. The test speed nearest to the critical was ¢ =
= 34-0 km/h. The deflection at mid-span of the bridge, corresponding
to c., was computed from Eqs. (3.40), (3.18) and (3.34). It is shown in
Fig. 3.4, the measured deflection in Fig. 3.5. In the latter v, = 17 cm
[vp = vo; for vy see Eq. (1.21)], v, = 2-52 cm [v, = v,; for v, see Eq.
(3.19)], and o[l[2, 1J(2¢)]sae = v[1[2, }/(2¢)] + v,[1[2, 1/(2¢)] = vp +
+ v,/2 = 2:96 cm. Comparing Figs. 3.4 and 3.5 we see that the theory is
in qualitative agreement with experiments. Actually, however, the damp-
ing was far in excess of that used in the computation.

3.4.3 The dynamic coefficient

The most intensive vibration is found to arise at the instant the locomotive
is in the neighbourhood of three fourths of the bridge span. To make up
for the effect of damping, let us calculate the dynamic coefficient according
to (2.10) and (3.40) for the instant the locomotive is at midspan, i.e.
t = TJ2 = 1J(2¢):
_ ve(lf2, T[2) + vg(12, T[2) + v(1]2, T|2) _
ve([2, T[2) + v/(1]2, T|2)

vo(1/2, T[2) 1
w2, TR) | (2 T]2)
vp(1[2, T[2)
Coefficient 4p, expresses the effect of the harmonic force and equals
the second term on the right-hand side of Eq. (2.11) in which @y, and @,
according to (3.38) and (3.37) are substituted for oy, and w,. Coefficient

A4p, describes the effect of the continuous load and is deduced via cal-
culation from Egs. (1.41), (1.21), (3.27) and (3.19):

1

=14 dpgdp,. (341)

= —, 3.42
™71+ qlf(xP) (342

In the case of resonance, 2 = @4,, Eq. (3.41) simpliﬁes to
S=1+2 20 (gemiea 4 gy 1 (343

2P o? + @} 1+ ql/(nP)

Eq. (3.41) represents the resonance curve computed for the 56-56 m-
span bridge, type 524.1 locomotive with three cars producing load
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q = 39-5kN/m. The result of the computation is shown in Fig. 3.6

together with the measured values. It is clear to see from the figure that

the theory agrees well with the experiments. The bridge vibration is also

affected by damping in the car springs, a factor hard to express correctly.
Maximum effects again arise at resonance, i.e. at speed

Cor = ](1)0 (3.44)

analogous to (2.16) except that in the above f,, is given by (3.39).

Fig. 2.6 plots the critical speed (3.44) versus the span for loads p =
= q = 0, 20, 40, 60, 80 and 100 kN/m. As the figure indicates, conti-
nuous load exerts a strong effect on the critical speed.

é
12

£y
1.0 y f \‘

0 10 20 30 40 50 ¢ lkmih]

Fig. 3.6. Theoretical (—) and experimental (O) dependences of dynamic coefficient
J on speed c. Bridge with span / = 56-56 m, steam locomotive type 524.1 with
three cars, ¢ = 39-5 kN/m.

3.4.4 Pipelines carrying moving liquid

The method of calculation outlined above may also be employed in
analyses relating to vibration of pipelines conveying liquid flowing with
velocity c¢. The pipeline is taken for a beam, the liquid is assumed to be
ideal and incompressible, and its velocity distribution across the pipeline
cross section approximately uniform. On these assumptions we can use
Egs. (3.2) to (3.7) and the approximate solution deduced in Sect. 3.1,
with g and p, denoting respectively the weight and mass of the liquid
per unit length of pipeline.

3.5 Additional bibliography

[19, 20, 25, 74, 97, 132, 159, 213, 266, 276, 290, 298].
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Moving force arbitrarily varying in time

We shall now turn to the case of a simply supported beam with span [
traversed at constant speed ¢ by concentrated force P(t) arbitrarily varying
in time. The calculation will also be carried out for several special cases
of P(t).

With the notation of Chap. 1 the problem is described by the differen-
tial equation

Sx 1) 2
£y 0 v(x,'t) + ua v(x, t) 200 (3v(x t)

ox* ot?

= 8(x — ct) P(t) (4.1)

and by the boundary and initial conditions (1.2) and (1.3). Eq. (4.1) will
again be solved by the Fourier integral transformation according to
(1.9) and (27.74)

VG, 1) + 20, V0, 1) + w2, V(j, 1) = = P(i)sinjot  (4.2)
7]

and by the Laplace-Carson transformation (1.15). In so doing we shall
also use relation (27.11) so that in view of (1.3) we get the transformed
solution in the form

. 1 1 P¥p — jjo P¥p + jjw
V*(], P) = = - — [ (P ] ) (P ] )] (4_3)
p(p+ o) + 032 p—ijo p + ijo

where

Pp) = p I “P(t) e~ dt (4.4)

0

is the Laplace-Carson integral transform of concentrated force P(¢), and
the other symbols are as in Chap. 1. On computing the inverse transform
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PART II — ONE-DIMENSIONAL SOLIDS

with the aid of relations (27.5) and (27.21) we get the result

- 2 : jnx ‘ S —op(t—1) o2 ’
ox,t) =) ———sin P(7) sin jot e~ sin wy,(t — 1) dr .
i=1 plog, 0 (4.5)

In this way we can calculate the deflection of, and stresses in, a beam
subjected to arbitrary force P(t) either specified in advance or obtained,
say, experimentally. The integral of Eq. (4.5) can even be evaluated
numerically.

In what follows we shall discuss several special cases of force P(t).

4.1 Force linearly increasing in time

Consider force P(t) to be of the form
t n
P(t) = P|— 4.6
- (;) (4

where P is the constant force of Chap. 1,
T — a definite reference time,
n=0123,...

According to (27.15) the transform of Eq. (4.6) is

P n!
P*(p) = ~ % . (4.7)
Substitution of (4.7) in (4.3) gives
ve(j, p) = Pn! 1 p (p + jjo)*! — (p — jjo)y*?
’ T (p + wy)* + 0 2i (P + jPo?)*! |

(4.8)

We shall solve Eq. (4.8) for the special case of force P(t) linearly in-
creasing in time, i.e. for n = 1 in Eq. (4.6) — see Fig. 4.1a. Then (4.8)
gives

. 2Pjw p’
V*(j, p) = , _ . (49)
1T [(p + @) + 03] (p* + j207)
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MOVING FORCE ARBITRARILY VARYING IN TIME

The original of (4.9) is obtained by help of relation (27.66). For w, = 0
the solution is

o(x, t) = iv 2 x - ozzjaot sin jot — cos jot +
’ j= 1 0 T(D(l) j3(j2 - az)z 2“2
+ cos o ,.)t) sin ”‘Tx : (4.10)
Eq. (4.10) is written in terms of (1.18) and (1.21).
al b)
[ {
Pil) Pt Pit) /f
x=ct T xsct
P

0 7 = x 0 1 “x

Fig. 4.1. a) Moving force linearly increasing in time.
b) Moving force linearly decreasing in time.

For a linearly decreasing force (Fig. 4.1b)
Tt t
P(t) =P =Pl - — 4.11
@-rTZi—p(1-1) (@11

the procedure is analogous and the solution consists of that of Chap. 1
minus Eq. (4.10).

4.2 Force exponentially varying in time

According to (27.16), the transform of a force exponentially varying in
time (Fig. 4.2)

P(t) = Pe~* (4.12)
s P*p)=pP -2 (4.13)
P= p+d '

Substitution of (4.13) in (4.3) leads to the transformed solution
Pjw D
b o+ @) + 0p] [(p + d) + j0’]

V*(j, p) = (4.14)
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and the use of (27.45) and (1.9) to the original solution. For w, = 0, for
example, the beam deflection

) = - 2Pjo . jnx 1
v(x, _.Z‘l l s I (dz + 2w? — ? )2 + 4d%w? )
j=1 -H J ) 1)
da? + j2w? — 0l . a? — j20® + oty _g . .
[ tJ D sin w;,t + J : + DGy g-ar sin jot —
0 J@
- 2d(COS CO(J)t -_ e_dt CoSs J(Dt)] . (4.15)
ptt) ¢
Xect
p
Fig. 4.2. Moving force exponentially
' - decreasing in time.
0 { X

4.3 Moving impulses

Equally interesting is the case of a beam subjected to moving instanta-
neous impulses acting at regular time intervals (see Fig. 4.3). In such
a case force P(t) is

P(f) = iI&(t A (4.16)

where I — force impulse [force x time],
T, — time interval,
N — finite number of impulses acting, on the beam during the
traverse.

By (27.7) the transform of force (4.16) is

P*(p) =n§11pe”"T°". (4.17)

Substitution of (4.17) in (4.3) and a bit of handling give the transformed
solution

N _I_ p
n=1 pu (p + wp)? + 0

V*(j, p) = e "T°? sin jn Ty (4.18)
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whence — according to (27.10), (27.21) and (1.9) —

(¢ o] N 21 ) .nx
U(x, t) = Z 2 ; sin J Sin jnToa) e—wb(t-—nTo) )
i=1 =1 plo;,

. Sin (D('J)(t - nTo) H(t - nTo) . (4.19)
In view of the definition of unit function (3.23), the form of writing of

(4.19) indicates that after each impulse there is added to the solution
another component characterized in (4.19) by the next number n.

Hyt)
i} _
¢ /\]
—x =ct
I -
0 t
Ta
0 ] T X
Fig. 4.3. Moving impulses. Fig. 4.4. Impulse function of the

second order.

The case is solved analogously also for the impulse function of the
second order.*) To that end, the function H,(¢) is defined as the general-
ized derivative of the Dirac function d(¢) in the distributive sense

H () = 20 (4.20)
dt
The moving force is written in the form
N ,
P(t) = Y. I,H,(t — nTy) (4.21)
n=1

*) The impulse function of the second order, H;(t), imparts unit displacement to
unit mass (Fig. 4.4). In terms of variable x, H,(x) denotes a concentrated unit bending
moment. If at point x = a from interval {0, /) function f(x) has the first derivative,
it also holds that

l
I H(x — a) f(x)dx = — 9—@ . (4.20a)

0 dx x=a
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PART II — ONE-DIMENSIONAL SOLIDS

where I, is the impulse of the second order [force x square of time].
By (27.8) the transform of force P(t) is

N
P*(p) = Y I,p*e " (4.22)
n=1
Substitution of (4.22) in (4.3) gives

N
I .
V*(j,p) =Y -+ p2 — (p sin jnTow — jo cos jnTow) e™"ToP
e e 42

and the subsequent application of (27.10), (27.21), (27.22) and (1.9)

0 N

vx, ) =3 Y 21 G I gmante-nTo) {[cos w(t — nT,) —

j=1n=1 ul l

Wy . .. jo .
— —2sin wy(t — nTp) | sin jnTow — —- sin @t — nT).
O @i

. cos jn Tow} H(t — nT,). (4.24)

4.4 Application of the theory

Forces in the form of Egs. (4.6), (4.11) or (4.12) are used in calculations
of structures exposed to the effects of explosion, pressure waves, etc.
Moving impulses such as those described in Sect. 4.3 can be made to
represent, for example, impacts of flat wheels on large-span railway
bridges (see also Chap. 9).

But the problem in which the theory expounded above has found its
widest application is that relating to impacts of rolling stock wheels on
rail joints on bridge structures [121], [24].*) It differs from the one
just discussed by that the rail joint (Fig. 4.5) is at a fixed point x, on the
bridge, and the wheels produce in it — in more or less regular time inter-
vals T, — impact loads that may be represented by simple impulses. The
load acting on the beam owing to the impacts is then

p(x, 1) = P(t) 5(x — xo) (4..25)

*) The problem of rail joints is very complicated and the solution given in the
present Section 4.4 is only an approximate approach.
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where — similarly as in (4.16) the force
Pty =>16(t — nT). (4.26)
n=0
The above equations are written on the assumption that the number of

impacts is large, i.e. N = oo; in practice this means a train with a large
number of wheels, which is much longer than the bridge span.

.
N T T T T Y Y N
a8 -y
Fig. 4.5. Wheel impacts on rail joint x| 1
at point x,. 4 4

Substitution of (4.25) in the right-hand side of Eq. (4.1) and a procedure
analogous to that used in handling the latter lead to the transformed
solution [cf. Eq. (27.74)]

. .
V*(j, p) = 1 P(p) sin 22%

: (4.27)
p(p + o) + of ]

The transform of force (4.26) can now be summed like a geometric series
[cf. Eq. (27.7)]

PH(p) = Y Ipe™ ™ = 12, (4.28)
n=0

1 — e—PTo ’

hence — by (27.28) and (1.9) — the inverse transformation of (4.27)
becomes

- wpt

o 2 . jux . jmx, e
(x, 1) = Z - sin l sin al Payer " oo -
i=1 U w(J) € (610 1) (DU) 0 + ¢

opTo

T, 3 1
(1 = "0 cos wy(;, T,) sin wgjt — e**"° sin w(;, Ty cos w(,t] +

200/, <« 1
+ — 02 — 4n2m? T2 .
T, nz'o (¢, — 4n*n?[T§)? + 16n*n’wl| TS [( O [To)
cos 2nmt + 4nrw, sin 2nnt . (4.29)
TO To To
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Eq. (4.29) is the general solution to the problem of a beam with zero
initial conditions (1.3) on which there starts to act an infinite number of
impulses I in regular time intervals T,. After a time the beam will evident-
ly be set to vibrate in forced steady-state vibration whose maximum
amplitude

A=Y, 2 Gin ™ sin ™0 L

i=tplog, I (1 — 2e”7™ cos w(; T, + e>°7°)'/?
(4.30)

derives from the largest possible amplitude of the term in the first brackets
on the right-hand side of Eq. (4.29).

Amplitude (4.30) attains its maximum whenever interval T, is equal
to some period of beam free vibration Tj;, = 2x/w;, or to an integer
multiple thereof.

It might happen in practice that the train passing over a rail joint
consists of cars with equal wheel bases or of groups of identical cars.
The rail joint is then subjected to so-called group impacts that are apt
to set the bridge structure even to resonant vibration.

Such cases have been observed and given detailed theoretical treatment
in the USSR [121], [24]. The value of impulses I was also determined
empirically as ranging from 1 to 2kN's, and expressed analytically in
dependence on speed by the formula

= ac(1 — 0-012¢) P}/? (4.31)
or for short-span bridges by the formula
I = 0-011P;"%. (4.32)

In the above the old unit of force (megapond = 1 Mp = 10kN) has
been used:

I is in [Mps],

a — an empirical constant,

¢ — speed in [m/s],

P, — weight of the unsprung mass of the axle in [Mp],
| — spanin [m].
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In a like manner one can also obtain the amplitude of forced steady-
state vibration in the case of second-order impulses. Then

PX(p) = I,p’[(1 — ¢

and the maximum amplitude resulting from (4.27) and (27.29) viathe
procedure applied to (4.29) and (4.30) is

o 21 0 in jrx oo Jnxo 1
=1 plog;, ! I (1 — 2e™7 cos w(j) To + e*™™°)1/?

(4.33)

A=

4.5 Additional bibliography

[24, 88, 121, 146, 295].
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Beam stresses

Up to now we have been satisfied with finding the dynamic deflection
from its expression in the form of a series. The comparatively fast con-
vergence of the series enabled us to obtain adequately accurate results
even with the use of only the first term. Sometimes, however, we might
wish to establish also the other quantities of interest, i.e. the rotations of
cross sections '

dv(x, t)
— 5.1
P (5.1)
the bending moments
2
M(x, i) = —E5 2% (5.2)
ox?
and the shear forces
3
T(x, 1) = —EJ 2A%0) (5.3)
ox?

From the point of beam stress calculations, the most important of the
above quantities are the bending moments. This chapter will show several
methods of computing them for a simply supported, assumably un-
damped beam traversed by a constant force. Though illustrated by way
of this simple example, some of the methods are equally well applicable
to computations involving beams with other loads and support condi-
tions, damped vibration, as well as the remaining quantities — i.e. the
deflection, rotation and shear forces.

5.1 Calculation by expansion in series

As we have pointed out at the end of Sect. 1.2, differentiation of the de-
flection expression with respect to x impairs the convergence of the series.
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We shall now demonstrate the truth of this statement with a numerical
example*). :

According to the theory of the Fourier series, Eq. (1.31), the solution
of the motion of constant force P over a simply supported beam, is a uni-
formly convergent series on intervals 0 S x <[, 05t < l/c. Like
a Fourier series the equation, rewritten to a somewhat different form,
may be differentiated term by term according to (5.2) and (5.3). The
operation will give us respectively the deflection, the bending moment,
and the shear force of an undamped beam in the form

e = 50 % %7 96 L

=17t j¥(1 - o?[)%)
8 1 .. o . . Jmx
—E ( 2/]2) sin J(Dt - } sin Q)(J)t sin ‘T Y

T(x,1) = Py, > — 2
isinjl -«

. o . . J|x
sin jwt — — sin w(;t ) sin —T ,
J

M(x, t) = MO Zl
Jj=

.. o . Jjnx
— [ sin jot — —sin o; t) cos —— (5.4)
2% ( J (:) !

where according to (1.21) and (1.27) v, = PI*/(48EJ) and M, = Pl[4 are
the deflection and the static moment at the centre of the beam span upder
the action of load P at point x = I [2. (These expressions are used through-
out in Chap. 5.) The speed parameter is defined by Eq. (1.18).

Expressions (5.4) were computed for the centre of the beam span,
x = 1[2, and the instant when the force passes over it, ¢ = I/(2c) with
speed a = 1/2. Only the shear force was determined for instant t =
= 3I/(4c) — i.e. for the load at 3[4 of the span — because all the terms
of the series turn out zero for t = I[(2c).

*) Generally, this is what is being merely proved: If series Z f( J)(x) is uniformly
convergent on the interval (0 I'> and if series E f( J)(x) is convergent for at least
one x, € €0, 7), then series Z f( Hx) s umformly convergent on the whole interval
0,1 ) differentiable term by term and satisfying the condition d[Z f( ] [dx =
= j};& [df, j)(x)]/dx. So far as the Fourier series are concerned, the sufﬁc1ent condi-

tion for function f(x) to be differentiable term by term is that f(x) should be conti-
nuous and f”(x) in parts continuous over the interval {0, ) (cf. [186], pp. 557 and
592).
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The partial sums for several terms j of the series are set out in Tables
5.1, 5.2 and 5.3. As the tables indicate, the convergence of series (5.4) is
comparatively very fast for the deflection but much less so for the bending
moment, and in particular for the shear force.

Table 5.1 Deflection v(//2, I/(2¢))/v,

Method Number of terms
series j=1 j=13 Jj=13,5 j=1,3,5717
Eq. (5.4) 1-314 046 1-326 561 1-328 154 1-328 573
combined j=1 j=13 Jj=1,3,5
Eq. (5.72) 1 1-328 511 1-328 859 1-328 875

Table 5.2 Bending moment M(//2, I/(2c))/ M,

Method Number of terms
series j=1 j=173 j=13,5 j=1,3,517
Eq. (5.4) 1-080 759 1-173 396 1-:206 146 1222 773
integro-
differential n=20 n=1
Eq. (5.60) 1 1-205 617 1-256 351 1-269 018
error n 0-040 954 ' 0-:002 560
combined j=1 j=13 j=13,5
Eq. (5.71) 1 1-270 190 1-:272 763 1-273 091

Table 5.3 Shear force T(I[2, 31/(4c))/(P[4)

Method Number of terms
series j=12 j=1t06 j=1to10 j=1to16
Eq. (5.4) 1-358 122 0-930 741 1-186 027 1-003 903
combined ji=12 j=1to6 j=1to10
Eq. (5.73) 1 1-084 883 1-078 947 1-080 223
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5.2 The integro-differential equation

Using the influence function G(x, s) (called Green’s function in mathe-
matics — see [8], [186]) we may write the integro-differential equation

o(x, t) = J. G(x, s) p(s, t) ds — J G(x, s) u(s) —=~* 0 v(s, t) ds (5.5

describing — as does the partial differential equation (3.2) — vibration
of a beam with variable mass u(x) subjected to load p(x, t) per unit
length. Function G(x, s) represents the beam deflection at point x pro-
duced by static load P = 1 placed at point s.

Analogously to the above we may write the equations of the bending
moment

M(x, i) = f’

0

Gar(, 5) p(s, ) ds — j Gl 5) (5) ?-za"(ts—zt-) ds  (5.6)

J O

and of the shear force

! ! d%u(s, t)
T(x, ) = J G(x, 5) p(s, 1) ds — J Grlx, ) uls) 22 s (5)
0 0
In the above, Gy(x, s) and G(x, s) are the influence functions of the
bending moment and the shear force, respectively (that is to say their
values at point x produced by static load P = 1 placed at point s).
Eq. (5.5), i.e. the deflection equation, was solved directly by N. G.
Bondar’ [23] for the case of a constant force moving over a simply sup-
ported uniform beam with the influence functions

EEE[ —(1 = s)x? +(212—3ls+sz)s]x for x<s
G(x,s) = (5.8)

____._[ (I —x)s*> + (212 — 3lx + x*)x]s for x2=s

6EJI
s
(1—~)x for x <s
0’G(x,s) _ !

Gulx,s) = —EJ
0x* (1 - E) s for x2s
] P

(5.9)
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s
, 1 - ; for x <s
Galx, s) = —Es 2859 _ (5.10)
0x® =3 for x> s
I

We shall now show how to compute directly the bending moment ac-
cording to Eq. (5.6) for the same case. Let us first write the expression
of the quasi-static bending moment produced by load p(x,t) =
=6(x — ct) P

M (x, t) = J:GM(x, s) p(s, t) ds = -r Gu(x,5)0(s — ct) Pds =

0

= P Gy(x, ct). (5.11)
In Eq. (5.6) we shall also substitute the expression
l
v(x, t) = 1 J Gulx, s) M(s, 1) ds (5.12)
EJ ],

which we have found — by differentiating twice with respect to x — to
be analogous to the expression

d*v(x, t) 1
A = — — M(x,t 5.13
Ox? EJ (<. 1) ( )
because
Gy(x, s)[ox? = —5(x — ). (5.14)

Next we write Eq. (5.6) in the form
1 pl 2
M(x, 1) = M, 1) = 2 [ [ Guulxr 1) Guelr, ) ZMC D g g5 (5.15)
EJ oJo ’ atz
On substituting (5.9) we get the integral
!
‘[ Gu(x, 1) Gp(r, s) dr = EJ G(x, s) (5.16)
0
and using (5.16) are ready to write Eq. (5.15) in the form

M(x, t) = M,(x, t) — uJ G(x, s) 9 M(s, t) ds

0 ot?

(5.17)
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Eq. (5.17) is an integro-differential equation for computmg the bending
moment under the boundary conditions

MO, ) =0; M(,t)=0 (5.18)
and the initial conditions
M(x,0) =0; M(x,0) =0, (5.19)

provided the influence function G(x, s) also satisfies the boundary condi-
tions of a simply supported beam.

The solution of Eq. (5.17) consists of the particular solution M (x, t)
of the non-homogeneous equation (5.17) and of the solution of the ap-
pertaining homogeneous equation M,(x, ¢), i.e.

M(x,t) = M(x,1) + My(x, ). (5.20)

5.2.1 Particular solution of the non-homogeneous integro-differential
equation

The particular solution of the non-homogeneous integro-differential
equation (5.17) will be carried out by using the method of successive ap-
proximations, each subsequent approximation being computed from the
preceding one via the recurrent formula

My it 1) = Mo, ) — 1 j ; G(x, )

Taking the quasi-static bending moment (5.11) for the zero approxima-
tion

2M, (s, )
a2 ds. (5.21)

Mo(x, ) = M,(x, 1) = P Gp(x, ct) (5.22)
we get from (5.21) the first approximation
My(x, t) = M,(x, t) + pc*P G(x, ct) =
= P Gy, ct) + pc®P G(x, ct) . (5.23)

In computing the integral in Eq. (5.21) we make use of the symmetry of
the influence function Gy(x, r) = Gy(r, x) so that by (5.14) and at r = ct

FOulx,1) _ O*Gulx 1) (dr\* _ 2 8Gulrx) _ _ 250, 4y (5.4
or orr  \at or?

71



PART 1I — ONE-DIMENSIONAL SOLIDS

Substitution of (5.23) in (5.21) gives the second approximation
My(x, t) = P Gy(x, ct) + uc*P G(x, ct) —

] 2
u2c*P J G(x, s) QGG(%“) ds (5.25)
0

and of (5.25) in (5.21) the third approximation

Mj(x, t) = P Gp(x, ct) + pc?P G(x, ct) —
! 2 3.6
— 2P| G(x,s) ?_is;c_t) ds+E2°p G(x, s) G(s, ct)ds. (5.26)
0 ot EJ ),

Proceeding in this manner up to the limit we obtain the particular solu-
tion of the non-homogeneous equation in the form of an infinite series,
while assuming that the successive approximations converge

M,(x,t) = Ppc2§0 [(;ﬁ&)» Jl G(x, 5) G,(s, ct) ds —

E7) ],
2,4\n-1 pl 2
ulc 02G(s, ct)
- G,(x, s) L2 4 | 5.7
1S I KDk (527)

In the above
Go(x, s) = 6(x — )
Gy(x, s) = G(x, s)

1

G(x, s) = J. G,—1(x, r) G(r, s) dr (5.28)

0

and according to (5.9)

9%G(x, ct c?
-—_é(F_—)- = — E_J GM(x, Ct) . (5.29)

Of course, we now have to see whether the successive approximations
(5.27) converge. Let us denote by C2 the least upper bound of the integral

Cl =z j;lG,(x, s)|? ds (5.30)
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that exists except for the value C; for n = 0. For integral (5.28) we shall
use the Cauchy-Bunyakovski-Schwarz inequality

|G, 5)|* = J ;lG,,,l(x, r)|* dr. f ;lG(r, s)|? dr (5.31)

and integrate it with respect to s:

! ! B? B2
f G,(x,5)|?ds < J G- 1(x, )|? dr — = Cc3_, — . (532
0 o U K

In the above we have used the notation

1l
B? = yzj '{ |G(x, 5)|* dx ds . (5.33)
oJo

In view of (5.30), inequality (5.32) results in the recurrent inequality

c<c B (5.34)
n = “n—1 .

2

which — if we start from C3 — may be rearranged as follows:

c < ¢ (9)2"_2 (5.35)
n = 1 1 . .

Now we are in a position to apply the Cauchy-Bunyakovski-Schwarz
inequality to the first of the integrals in Eq. (5.27)

f ;G(x, 5) Go(s, cf) ds

2l 1
< —[ |G(x, s)|* ds J |G(s, ct)|?> ds < CiC? <

0 0

=C (-1-3-)2"_2 : (5.36)

u

The general term of the first of the addends in the brackets of (5.27) will
therefore be less than

2,.4\n n—-1 2 4 n
EC Y ¢ (1—3 _ KCi (B Y (5.37)
EJ u B \ EJ
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This means that the first part of series (5.27) will converge faster than
a geometric series, provided its quotient will meet the condition

puct

<1. 5.38
57 (5.38)

Because of (1.18) and the estimate of B (see [11]),

D1y

inequality (5.38) also implies the condition

a<l1. (5.40)
In a similar way we get the value of the second of the integrals in Eq.
(5.27)
1 2
JG (x, )8 G(s ct) —J‘ 1Gy(x, 5)] ds'j 9*G(s, ct) <
0 0 0 5t i
B 2n—-2
< Cip? < ¢? (—) D? (5.41)
7]

where the upper estimate D? of the integral is

1
ngj
.

The general term of the second of the addends (5.27) is therefore less

than
2. 4\n—-1 n—1 4 n—-1
ucc B uc
C,|— D= uC,D|— . 5.43
#(E,) (u) ot (EJ ) (543)

This means that the second term of the series, too, will converge faster
than a geometric series, provided the quotient of the former meets the
the conditions (5.38) and (5.40).

Since its upper bound is a geometric series, series (5.27) is a uniformly
convergentonefor 0 < x<1,0s<1,0=5t < l/c by the Weierstrass
criterion. As proved for the general case of integral equations in [153],
solution (5.27) converges solely for subcritical speeds (5.40) and is unique.

0*G(x, ct)|?

L (5.42)
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Knowing the properties of the majorant geometric series we may also
estimate the error resulting from our taking from series (5.27) only
n + 1 terms, i.e. summing terms 0, 1, 2, ..., n. The error of the first series
of (5.27) is

2,.2,2 2.2,2 .n+l
no=PPCi(s_s5)-ptecid (5.44)
B B 1-g
where
© 1 n . 1 — n . 1 — ntl
S=qu=—"9 Sn=zq1= q+q= 9 R
=0 1—-g¢ j=0 1-g¢g 1-g¢g

and of the second series

1 = PHC, DS - 5) = PPC,D L (549)
where
SPRES! -1 1 - i-1 1, 1-4
S=Zq =q '+ —), Sn=2q =q '+
j=0 1—gq j=0 1—gq

and where by (5.38) and (5.40) the quotient is approximately ¢ = a*.

According to (5.27), (5.44) and (5.45) the absolute error of the bending
moment will thus be less than

a4u

n= |’11 - 'Izl = Pu*c’C, 1 !

C,at
B

_ D‘ . (5.46)

52.2 General solution of the homogeneous integro-differential equation

As indicated in [8] the general solution of the homogeneous integro-
differential equation [see (5.17)]

M(x, ) = —uJG(x 5 MG, 1)

i (S ) ds (5.47)

is a uniformly convergent series for 0 S x <, 0t s l/c
My(x, t) = Y (4, sin oyt + B; cos w;t) v(;(x) (5.48)
j=1

75



PART II — ONE-DIMENSIONAL SOLIDS

where v;(x) are the normal modes of vibration, and coefficients 4; and
B, are determined from the initial conditions (5.19). Since M,(x, 0) = 0,
the first of the initial conditions (5.19) results in B; = 0. The second
initial condition (5.19) and (5.48) gives

j=1
On multiplying Eq. (5.49) by vg,(x), integrating with respect to x from
0 to I and taking advantage of the orthogonal properties of the normal

modes of vibration [j v;)(x) v)(x) dx = O for j + k, we get after re-
arrangement

1 -
A, = — M (x, 0) v .)(x) dx . (5.50)
’ A jy f:> vf‘,-)(x) dx Jo ? !

For a simply supported beam

: !
v(x) = sin ]—1;—)5 , J- v5(x) dx = ;— : (5.51)
0

If we take but one term of Eq. (5.27) — see (5.22) — then according
to (5.9) we get for s < x

M (x, 0) = PTC (1%, (5.52)

and on substituting (5.50) to (5.52) in (5.48), the solution of the homoge-
neous equation

My(x,t) = ZI_M°§55 sin @ ;t sin 1—1—;5 : (5.53)

j=
It is plain to see from (5.53) that the solution of the homogeneous equa-
tion converges very rapidly, even with just one term taken for the
calculation of (5.50) and (5.52). Moreover, (5.53) attenuates very quickly
on account of damping which has not been included in the calculation
at all.

In accord with (5.20), the solution of Eq. (5.17) is given by the sum of
Egs. (5.27) and (5.53).
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5.2.3 Numerical example

For our case of a simply supported uniform beam subjected to a constant
moving force, Eq. (5.8) gives the following relations

1
G(x, s) G(s, r)ds = 1

f o (6EJY 1

TN + L Prx(x* + r*) + L [7*x3(x* + r?) — Ir’x.
105 10 20

{14110 [rx(x® + r°) — Ix"] +

Lt + 3xY)] + 13X (—;— - 1) - 12—5— Frx(x? + rz)} for x < r, (5.54)

4
1 2
G¥(x, s) ds = ——— (3x® — 12Ix® + 14I2x* — TI*x? + 2I), (5.55)
0 9451(EJ)?
1 2 2
Gx,5) 2O g - X [10x2r(r? — 3Ir + 21%) +
o o2 360(EJ)?

+ 3x*(r — 1) + r3(3r* — 15Ir + 201%) — 81*r] for x S r,r = ct. (5.56)

On account of the symmetry G(s, x) = G(x, s), the necessary integrals
for x = r are obtained from (5.54) and (5.56) by interchanging x for r
and r for x.

For x = 1[2, t = I[(2¢c), i.e. x = r = ct = 1[2, (5.54) or (5.55) gives

! 1717
G(x, s) G(s, r) ds = (5.57)
.[0 x=1/2,r=1/2 80 640(EJ)2
from (5.56)
1 2 | 215
J 6(x, 5) ° G(sz’ ") ds - — __C’_z (5.58)
0 ot x=1/2,r=1/2 480(EJ)
and also
GM(x, Ct) = l l ,
x=1/2,t=1/(2¢) 4
G(x, cf) P (5.59)
x, ct = i )
x=1/2,t=1/(2¢) 48EJ
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In our case of a = 12, t = I/(2c) and x = /2 the solution of the homo-
geneous equation (5.53) turns out zero. From the particular solution
(5.27) we take only two terms of the series, n = 0, 1, and consider merely
Eq. (5.26). In view of (5.20) and (1.18), the latter — with (5.57) to (5.59)
substituted in — gives

22 2t 17
M(J2, 1(20)) = Mo (1 + 5 + + .
(12, 1)(2¢) °< 12EJ  120(EJ)* 20160

3.6716 2 4 6
Bl YoM (1+ s Tty AT p ). (5.60)
(EJ)? 12 120 20160

For a = 1/2 the successive sums of (5.60) are set out in Table 5.2.
As the table indicates, the convergence is now much faster than it was
with the first method. So far as practical computations are concerned it is
sufficient to take but two terms of series (5.60) for which no time-
consuming quadratures are needed either — see Egs. (5.23).

To compute the error, we first find from (5.30), (5.33), (5.42) and
(5.55) the quantities

l l
Cciz J |G(x, 5)|*ds; Ci= j G*(x, s) ds
0

oo
x=yz 80 640(EJ)?’

(5.61)

2 — 121x7 + 1412x5 — TI%x* + 215x) dx =

9451(EJ)2 J (7

u218
= 5.62
9450(EJ)? (562
1 2 2 413
p? = [ [26x T 4, L (5.63)

and then substitute them in (5.46). For n = 0 and n = 1 the errors are
set out in Table 5.2. As we see from the table, already for n = 0 the error
is so small (less than 4%) as to be negligible in practice.

5.3 Combined method

Either of the two methods described in Sects. 5.1 and 5.2 has advantages
as well as shortcomings. The first method is simple but converges very
slowly. The fast convergence of the second method, on the other hand,
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is more than outweighed by the laboriousness of the computation. We
shall now show how to combine the two methods to get a solution at once
simple and quickly convergent and applicable to any load or support
conditions.

We start out from Eq. (5.6) in the second integral, on the right-hand
side of which we substitute the solution v(x, f) expanded in normal
modes v(;(x) and generalized coordinates g ;(¥):

s, 1) = 3 0(5) 20 (564

which is a series uniformly convergent in 0 < x <, 0 < t < Ifc. The
influence function G(x, s), too, may be expanded in normal modes to
form a uniformly convergent series in x € 0, I), s € <0, I, (see [8])

G(x, s) = {E vp(%) v(s) (5.65)

IS NN,
where

l
Vi = [ neb) ax.

0
Series (5.64) and (5.65) may therefore be differentiated term by term;
the order of integration and summation may be interchanged, too.
Further, by making use of the orthogonal properties of normal modes

Jo v5(x) vy(x) dx = 0 for j + k, and of (5.9), (5.64) and (5.65) we get
for the second of the integrals in (5.6)

.[ :Gu(x’ ) H ‘fg(;_’t) ds = J | i Edvinkx) o) K Z v)(8) () ds =

ok=1 (k)Vk J=1

[ o]

= 21 "(1)(") dgt) - (5.66)

(f)
In view of (5.11) the solution of Eq. (5.6) will thus become
M(x, 1) = My(x, 1) + Z — ”(j)(x) (1) » (5.67)
(J)

the boundary conditions being already automatically satisfied in expres-
sions M,,(x, t) and v(;(x), and the initial conditions in expression q,(?).

79



PART II -— ONE-DIMENSIONAL SOLIDS

These expressions must of course be known, for example, from a previous
solution of the deflection (5.64) and from the static solution.

The above method can also be used for other quantities, such as de-
flection, shear forces, support reactions, cross section rotation, etc. For
the deflection and the shear forces it gives

[o o}

o9 = o) =3 — v() o0

@ jy

T(x, t) = Tylx, 1) + ): ()”f'ﬁ)(x) du(t) (5.68)

where v,(x, t) and T,(x, t) are the respective static quantities

rl

vex, t) = | G(x,s) p(s, t) ds,

J O

rl

T.(x,t) = | Gg(x,s) p(s, t)ds. (5.69)

Jo

Next to uniform beams it can handle beams of variable cross section
as well as other structures.

As an éxample of its application considér our case of a constant force
moving along a simply supported uniform beam. By (5.11), (5.9), (1.31)

M, (x,t) =P GM(x, ct),

op(x) = - —12 S°n T
2P o . o .
dplt = sin @t — — sin jwt 5.70
(f)( ) ﬂl ](1 _ azljz) ( 6)} ] ) ( )

and the bending moment according to (5.67)

4 a
M(x, 1) = M, [1 Gul t) + 3. = T
: (‘-x- sin jot — sin w(j)t) sin J—T;f] : (5.71)
j
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Similarly, the deflection
- 96 a

v(x, 1) = vy(x, t) + vg Z

St - ?f)

(oc sin jot — sin o ])t) sin L’;— , (5.72)
J
T(x, t) = s(x,t)+PZ— x :
‘ =1 w21 — o3[ 53)
. (o_z sin jot — sin wu)t) cos i’-;f . (5.73)
J

Expressions (5.71) to (5.73) were enumerated for x = I/2, t = I[(2c)
[or t = 31/(4c) for the shear force] and « = 1/2, and set out in Tables
5.1, 5.2, 5.3. Consulting them we see that with the combined method the
solution converges much faster than with the series method. Thus, for
example, the bending moment computed with only the first term of series
(5.71) differs from that computed with five terms by as little as 3°/o,.
The faster convergence of expressions (5.71) to (5.73) is due to the fact
that the power of j in the denominator is higher by one than that of the
analogous expressions in (5.4).

The combined method outlined above takes the quasi-statical effects
of load for the basic ones and expands in normal modes merely the dif-
ference between the actual solution and the quasi-statical effects*). That
is why it is particularly well suited for cases in which the quasi-statical
effects predominate over the inertial forces, i.e. when the first terms on the
right-hand sides of (5.5) to (5.7) are larger by far than the second ones.

5.4 Application of the theory

Of particular importance for practice is the answer to the question of
which is the larger of the two: the dynamic coefficient computed from the
deflection or that obtained from the bending moment. Going by the analy-
sis of the motion of a constant force along a simply supported beam we

*) In contrast to the first method (Sect. 5 1) that immediately expands the whole
solution in normal modes.

81



PART II — ONE-DIMENSIONAL SOLIDS

find that the dynamic coefficient of bending moment, J,,, is somewhat
smaller than the dynamic coefficient of deflection, &, (cf. Tables 5.1 and
5.2). For low speeds (¢ < 1) of the force motion, and referring to (5.60)
and [23] we may write the approximate formulae of the dynamic coef-
ficients for the centre of the beam span and the instant the force passes
through that point, as follows*):

5 = ”(1/2’ l/(2c)) =1 +"_2 2

" u(1[2, 1(2¢) 10"
_ M2, 4Q2) _ L,
= M) L+ o (5.74)

For other beam cross sections, other loads, other definitions of the
dynamic coefficients (of which there exists a whole number — see [107]),
and particularly if the track irregularities are taken into consideration,
we may expect results even totally different than (5.74).

Another important conclusion that can be drawn from this chapter,
is the finding concerning the high effectiveness of the combined method
which has proved equally suitable for the deflection as for the bending
moment. Frequently both quantities are obtained accurately enough with
just the first terms of its series taken into account.

5.5 Additional bibliography

[8,11,23,62,111, 117, 162, 174, 192, 193, 235, 270, 282].

*) Similar situation has been observed to also arise in more complex systems
moving along a simply supported beam without track irregularities (see Chaps. 9
and 10, especially Figs. 9.7, 9.8, 9.10 to 9.15, 10.6). There, too, the relative dynamic
increment of stress is somewhat less than the analogous increment of deflection,
even though the dynamic coefficients are defined in a slightly different way and Eqgs.
(5.74) naturally holds no longer.
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to a moving load

The only problems considered so far have been those involving beams on
simple supports. However, we may just as readily solve the problem of
the effects of a moving load for uniform bars with general support con-
ditions. The method we plan to use for that purpose is the generalized
method of finite integral transformations which leads to results formally
identical with the method of expansion in normal modes.

6.1 Generalized method of finite integral transformations

This method is defined by the following relations between the original
(x, t) and its transform V(j, t):

V(i 1) = le(x, Yo dx; j=1,23... (6.1
ofx, 1) =J_§=°§l Ly, 1 o) (62)

The first relation defines the transformation of function 1(x, t), the second
the inverse of this transformation. In Egs. (6.1) and (6.2),

v;(x) = sin %—f + A; cos—A;—x + B; sinh'l—;i + C; cosh}'—’;—c— (6.3)

is the j-th normal mode of vibration of a uniform beam (in this particular
arrangement it is also called “the beam function” in literature),

I — is the bar length,

A;, A;, B;, C; are constants obtained by substituting (6.3) in the bound-
ary conditions*).

*) Tables of these constants for various modes of support are to be found, for
example, in [8].

83



PART II — ONE-DIMENSIONAL SOLIDS

The natural modes (6.3) satisfy the homogeneous differential equation
d*v;
ps S0l _ pory vx) = 0 (6.4)
dx*
where the natural circular frequency wy;, is in the form

A; EJ
2
Further, in (6.1) and (6.2):
p denotes the mass per unit length of beam,
1
v, = I o2 (x) dx . (6.6)
o

Following substitution in (6.3) and integration, the last expression may
be rearranged to

V}:%’{l + A2 - B} + C} +11;[2€,-2A,.B,.—B,.c,.—§.
(1 — A%)sin 24; + 24, sin* 4; + (B} + Cj)sinh 4; cosh 4; +
+ 2(B; + A,C;)cosh A;sin A; + 2(—B; + A4;C;)sinh 4; .
.cos A; + 2(C; + A;Bj)sinh A;sin 4; + 2(—C; + A4;B)).

.cosh 4; cos 4; + B;C; cosh 21,-]} . (6.7)

The proof to establish the validity of the mutual transformation re-
lations, (6.1) and (6.2), will be made on the assumption that series (6.2)
is uniformly convergent in the interval <0, I); therefore, the integral of
such series will also be uniformly convergent in that interval and the
order of integration and summation may be changed. Further, it is as-
sumed that the normal modes possess orthogonal properties, i.e. that

g 0 for j+k
j 1 0y(X) V(%) dx = {V for 1 (6.8)
o VvV, for j=k.

Assuming the above, the first expression; (6.1), is proved by substi-
tuting in its right-hand side the right-hand side of (6.2) in which the sum-
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mation is now made with respect to k

Qo

z:vwwwmmu—zywm

- k

[ reol ww ax = v, (69)

0

The validity of the second equation, (6.2), is proved by first multiplying
both its left-hand and its right-hand side by expression v,(x) and then
integrating with respect to x from 0 to [:

f;v(x, t) vgy(x) dx = 2 v, V( J» 1) (%) (%) dx =

0o Jj=1

i

% V(i 1) f 0” v(x) vo(x) dx = V(k, 7). (6.10)

Accordingly, the transformation relations (6.1) and (6.2) hold good for
functions v;(x) with the orthogonal properties (6.8), uniformly conver-
gent in <0, I, for all j = 1, 2, 3, ..., with notation (6.6) applying. Func-
tion v(;(x) need not even be of the “beam” form (6.3). Formally, of
course, the required solutions (6.2) are obtained expanded in normal
modes, a result that can also be arrived at by another method known
from the vibration theory.

Integral transformations (6.1) and (6.2) are actually a generalization
of the Fourier finite transforms hitherto used (see, for example [204])
in either the sine or the cosine form. The Fourier finite sine transform is
a special case of our transformations (6.1) and (6.2) in which the normal
mode is used in the form (6.3) where 4; = B; = C; =0, 4; = jn [cf. Eq.
(1.9)]. The cosine transform is another special case if all that remains of
(6.3) is cos jrx/l.

When this method is applied to beam vibration, the point of impors-
tance is the calculation of the transform of the fourth derivative of the
deflection with respect to x. It is effected by integration by parts used
four times:

J‘ 0 64:;(:, t) 0,(x) dx = [63v(x, t) v(%) — 62v(x, t) dvm(x)

J

dx

5”(": ) d?v;(x) ~ o(x, 1) d v(,-,(x)]
dx3

ox dx?

+ Lv(x, t)(j%L(—Jf)dx. (6.11)

0
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The function of time in the brackets is dependent in variable x only on
the boundary conditions, and as such may be written as follows:

20, 1, 1) = [6 3v(x, t) o(%) — d%v(x, t) do, j)(x)

ox? dx
+ dv(x, 1) dvy(x) _ v(x, ) o (x)] , (6.12)
ox dx? dx* ]

The right-hand side of (6.12) is evaluated by establishing the difference
between the values of the expression for x = I and x = 0. It is to be
noted that in conventional cases (self-adjoint differential operators with
homogeneous boundary conditions), the function z(0, 1, f) is usually
equal to zero because at least one of the geometric*) or dynamic bound-
ary conditions of the deflection or of the normal mode is zero.

For beams, the fourth derivative of the normal modes can be computed
from Eq. (6.4); the integral on the right-hand side of (6.11) then becomes

.r v(x, f) — 2= d*oy(x) )(x) dx = ~— o} j‘:v(x, )ogplx)dx.  (6.13)

0 dx* EJ

With reference to (6.1), (6.12) and (6.13), the transform (6.11) of the
fourth derivative of function v(x, t) with respect to x may be written in
the form

J'o 0 1;(;, t) (ﬂ(x) dx = Z(O l t) + E}w(j) V(_], t) (614)

6.2 Motion of a force generally varying in time, along a beam

With damping neglected, the differential equation of vibration of a
straight uniform beam subjected to a moving force P(z) is in the well-
known form
4
pred 206 5oy p(). (6.15)
ox* or?
ov(x, t)
ox

*) The geometric boundary conditions are v(x,?)|x=0,x=1,

x=0,x=l’
2v(x, 1) 3u(x, t)

]

3x2 x=0’x=l 3x3

and simi-

the dynamic boundary conditions
. x=0,x=1

larly so for the normal modes v, J-)(x).
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The boundary conditions will be considered wholly general but unique-
ly specifying expression z(0, I, t). The initial conditions, too, will be con-
sidered generally different from zero

= g5(x) (6'16)

t=0

o e = 01(x) s 20

and it will be assumed that there exist generalized transforms of these
functions in the sense of (6.1) and (6.2) |

G(j) = J‘;g 1(x) vp(x) dx,  Ga(j) = J:)g:(x) vy(x) dx

0:(8) = T £ 6. 0 =3 L6 og. (617)
j=1

J j=17V;

We are in a position to solve Eq. (6.15) by the generalized method of
finite integral transformations. On multiplying both sides of (6.15) by

v;(x) and integrating with respect to x from 0 to I we get — in view of
(6.14) and (1.7) —

EJ [z(O, Lt) + E‘fj— gy V3, t)] + p V(j, t) = P(t) vy(ct), (6.18)
and after rearrangement
. 2 1l s 1 EJ

By (6.16) and (6.17) the boundary conditions of this ordinary differential
equation are

V(is Ols=0 = G1(i) 5 V(i )i=0 = G2(J) (6.20)

and the equation is solved by the Laplace-Carson integral transforma-
tion (1.15) and the use of (27.4) to give

P> V*(j, p) — p* G1(j) — p G.(j) + w(zj) V*(j, p) =

= Lpo(p) - EL z0p) (6.21)
u T
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in which
P*(p) = p | P(t) vyct)e™" dt,
JoO
ol
Z*(p) =p | 20,1, t)e P dt (6.22)
J o

denote the Laplace-Carson transforms of expressions P(t) v ;(ct) and
(0, 1, 1).
With respect to unknown V*(j, p), Eq. (6.21) may be rearranged to

V*(j, p) = [1 P(p) - Z1220) + 2 Gi() + » Gz(f)]-

P* + () Lu
(6.23)

With regard to (27.5), (27.18), (27.19) and (6.22), the inverse Laplace-
Carson transformation of Eq. (6.23) gives

Vi, f) = J’ '[P(2) vycx) — EJ 2(0, 1, 7)] sin gt — ) de +

KOGy Jo

+ G4(j) cos ;t + L G,(j) sin @t . (6.24)
Dy

Following the use of relations (6.17) the inverse transformation of Eq.
(6.24) according to (6.2) of our generalized method becomes

o9 = 3, {52 o0le) [ [P6) sulew) = B 20.19].

1
Viog)

. sin @)t — 7) dt + —:—:— G4(J) v(x) cos ot +
J

+ F G,(J) vjp(x) sin o j)t} . (6.25)
Viog

Eq. (6.25) describes the deflection of a beam with general boundary and
initial conditions, traversed by a concentrated force variable in time. To
get the stresses in the beam we would apply the procedure outlined in
Chap. §.

In the special case of constant force P(t) = P and the beam function
(6.3), the integral in Eq. (6.25) is easy to evaluate. To simplify still further,
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assume that z(0, I, f) = 0 and the initial conditions are also zero. Then
using the notation
o= i;f : ~ (6.26)

Eq. (6.25) turns out as follows:
o(x, 1) = Y P v(%) {—2—1-—3 [sin ot — 2.
j= ) w

1,....k-1,k+1,... I/) o~ (D(j)

. 1 .
.sin @;t + (cos wt — cos w;t) Aj] + 5 [(smh ot —
oy + @

w .
— —— S1n CO(j)‘) BJ + (COSh wt — COoS a)(j)t) Cj]} +

@)
+ 2 U(k)(x) [Sin a)(,‘)t -— (D(k)t CcoSs (D(k)t 4+
+ Ayt Sin gt + (sinh oyt — sin dgt) By +
+ (cosh wgyt — cos wgyt) Ci] - (6.27)

The term within the summation sign is the solution for ; * » while
the next one is the solution for j = k at which o, = @ (the resonant
case).

Next we shall obtain the deflection of a beam over which foree P moves
from right to left. This means that load p(x, t) is in the form

p(x,t) =8(x — 1 + ct) P. (6.28)

Applying the procedure outlined in connection with the deduction of
Eqgs. (6.25) and (6.27), Eq. (6.15) with (6.28) for its right-hand side gives

o P 1 . .
o(x, 1) = 3 =0 x) {——2——-—-2 [(sm ot — — sin oy j)t) :
=1 ¥, @ — @ @)
.(—cos 4; + A;sin 1)) + (cos wt — cos &;t) (sin 4; +
1 i w
+ A; cos }Cj)] + - (sinh wt — — sin w(j)t) .
wg + o' L )
. (=B, cosh A; — C;sinh A;) + (cosh wt — cos w;t) .

. (B, sinh 4; + C; cosh 4;) } : (6.29)
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Expression (6.29) will be made use of in Chap. 11. Similarly as in (6.27)
the resonant case would occur at g, = .

If the force in (6.25) is a harmonic one
P(t) = Qsin Qt,

the expression obtained after evaluation of the integrals is
o0
o(x, 1) = )

i=1 2V,

— o cos wt cos t + Aj(ry sin w(;t — ry cos ot sin Qt +

1, . .
v(%) {:2————-—(;2— [@ cos w;t — r, sin wt sin 2t —
2 _

+ o sin ot cos Qf)] + —2-—1——-; [Bj(w cos oyt —
ri+ow

— r, sinh ot sin @t — o cosh wt cos Q1) +
+ C{(r, sin w(;t — ry cosh ot sin 2t — o sinh ot cos Q)] +

1 . .
+ 50— [—wcos gt + r; sin wt sin Qt + w cos wt cos Qt +
r, —o .
+ Ar, sin o ;t + r, cos ot sin Qt — w sin ot cos Q)] +
1

+
rn+o

> [B{—w cos ot + r, sinh ot sin Q¢ +

+ @ cosh wt cos Qt) + C(r, sin w;t + r, cosh wt sin Qt +
+ o sinh wt cos Qt)]} (6.30)

where
ry = g - (D(j) ’ rz = Q + CD(]) . (6.31)

The resonant cases r;, = w or r, = ® would be computed in an analogous
manner. Another case of interest is that in which the frequency of the
harmonic force equals some of the frequencies of free vibration, Q =
= wq). Then naturally, r;, = 0 and the respective k-th addend in Eq.
(6.30) is obtained by simple substitution of r; = 0.

Expressions (6.25), (6.27), (6.29) and (6.30) represent the generalization
of the results of Chaps. 1, 2 and 4 to bars of constant cross section on any
kind of supports. In the main, series (6.25), (6.27), (6.29) and (6.30) con-
verge more slowly than their counterparts for simply supported bars.
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BEAMS WITH VARIOUS BOUNDARY CONDITIONS
6.3 Motion of a force along a cantilever beam

We shall illustrate the theory expounded in the foregoing by computing
the vibration ‘of a cantilever bar along which moves a constant force P.

ct P

a) il

o X

4
v
k

b)

0.5

’...
v(0,t)/x

Fig. 6.1. a) Cantilever with free left-hand end subjected to a moving force. b) De-
flection of the cantilever free end, v(0, £)[vy, for various values of speed, a; =
= 0, 0-1, 0-5, 1.

The cantilever is free on the left-hand and clamped on the right-hand end
(Fig. 6.1a). Accordingly, the boundary conditions are

v"(0,1) =0; v"(0,£) =0; o,t)=0; v'(L,1)=0
and hence also
v(5(0) = 0; v(3(0) = 0; v(l) =03 v(l) =0. (6.32)
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On substituting (6.32) in (6.12) we see that z(0, I, £) = 0. The initial con-
ditions are assumed to be zero, i.e. g,(x) = g,(x) = 0. Substitution of
the last four boundary conditions from (6.32) in Eq. (6.3) leads to four
equations for the unknowns A;, 4;, B;, C; and after rearrangement to

1+ cosdjcoshi; =0; 4, =1-875;...

sin 4; + sinh 4;
cos 4; + cosh 4;

B;=1. (6.33)

J

C, = —1362; ...

V; is computed from Eq. (6.27) and for j = 1, V; = 1-856ul.

- ct P
a 4
) 1
X
iy 1 L
0 0.5 1 ct/l
b) h >
g=1
0.5-
q=05
] =01
: W o
vil, t)/v, \ 1

Fig. 6.2. a) Cantilever with free right-hand end subjected to a moving force:
b) Deflection of the cantilever free end, v(l, t)/v,, for various values of speed,
«; = 0,01,05,1.

A cantilever clamped on the left-hand and free on the right-hand end
(Fig. 6.2a) is computed in a like manner. The boundary conditions now
are

v0,1) =0; v'(0,6)=0; v"(L)=0; v (L)=0 (6.34)

and the constants turn out to be

Ay =1875; Ay = —C; = —1:362; B, = —1; V, = 1-856pl . (6.35)
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The free-end deflections produced by constant force P traversing the
cantilever from left to right (Figs. 6.1b and 6.2b) were computed for
both cases considered. They were referred to the static free-end deflection

PI3
= . 6.36
" = 3EJ (6.36)

The computation was made with only the first term of the series in
Eq. (6.27), that is to say for j = 1 at w; #+ @, and k =1 at 0, = w.
Figs. 6.1b and 6.2b show the free end deflections of the respective canti-'
levers at several speeds

A oc

o, = — (6.37)
where
@ ==, (6.38)
D)

6.4 Application of the theory

It is evident from Figs. 6.1 and 6.2 that stresses in a cantilever beam are
far more unfavourable if the force applied starts to move from the free
end than if it does from the clamped one. At low speeds of motion, the
former case results in very intensive, the latter in very light beam vibra-
tions.

This fact ought to be borne in mind when designing or building bridges
with overhung ends, hinged beams, etc.

6.5 Additional bibliography

[8,99, 142, 172, 232, 235, 356, 422).
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Massless beam subjected to a moving load

In Chap. 1 we have solved the case of a beam traversed by a load with
mass negligible against the beam mass. Now we shall tackle the other
extreme case, i.e. that of the beam mass very small compared to the mass
of the moving load. As this primary assumption implies, our computa-
tion will have to take account not only of the force effects of the moving
load but according to d’Alembert’s principle, of its inertia effects as well.

It is of interest to recall that this case — though actually more difficult
than that discussed in Chap. 1 — was studied much earlier, in fact in the
first half of the nineteenth century, in connection with the erection
of the first railway bridges in England. The problem was originally for-
mulated and approximately solved by R. Willis [233], the first experi-
menter in this field. Its exact solution was offerd by G. G. Stokes [207]
and later on, by H. Zimmermann [236].

7.1 Formulation of the problem

Consider a simply supported beam with span I and negligible mass tra-
versed by load P with mass m = P[g moving at constant speed c, see Fig.
7.1. The load acts on the beam by force P and according to d’Alembert’s
principle, also by inertia force —md?v(ct, t)/dt> dependent on vertical
acceleration at point x = ct at which the load is situated at the time con-
sidered.

Accordingly, by Eq. (5.5) in which we set pu(x) =0 and p(x, ) =
= 8(x — ct) [P — md®v(ct, t)/dt*], the beam deflection at point x and
time ¢t is described by the equation

ox, 1) = [p —m ‘ﬁ’étij-’-)] G(x, ct) (7.1)
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and by the boundary and initial conditions (1.2) and (1.3). In the above
G(x, ct) is the influence function according to (5.8). The vertical displace-
ment v,(¢) of mass m is equal to the beam deflection at the point of load

action
v,(t) = ovet, 1) (7.2)
m
JaY LA o
et | ‘v, (t) [
Fig. 7.1. Massless beam with a moving mass. { il

so that after substituting (7.2) in (7.1)
2
0y(1) = [p —m dT":Z(‘-)] G(ct, cf) (7.3)

while the initial conditions are

vl(t)|t=o =0; doy(1)

o =0 (7.4)

t=0

We can solve Eq. (7.1) provided we know the solution of Eq. (7.3).

7.2 Exact solution

If expression (5.8) is taken in place of G(ct, ct), Eq. (7.3) will assume the
following form

0,(t) = [p —m dz”l(‘)] el — c)” (7.9)

de? 3EJI

This is an ordinary linear differential equation of the second order with
variable coefficients. It can be written somewhat more clearly mathe-
matically with a new independent variable

= el (7.6)

a dependent variable using the static deflection v, at the centre of the
beam according to (1.21)

W(z) = 01(1)fvo, (7.7)
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and the constant
o = 12EJg .
Plc?

(7.8)
With expressions (7.6) to (7.8) in, Eq. (7.5) becomes

(1 - o S8 4 ) = i - o, (19)
Eq. (7.9) has the initial conditions

Y(@)|e=0 = 0; ic—yigi) =0, (7.10)

and we shall solve it in the interval 0 £ t < 1, the solution naturally
having regular singular points at 1 = O and 7 = 1.

Eq. (7.9) was solved by G. G. Stokes [207], G. Boole [26] and H. Zim-
mermann [236]. According to [120] (Egs. Nos. 2.380 and 2.381), the
general solutions of the homogeneous equation associate to (7.9) are the
expressions

yi(r) = (1 - o)t 7F, (7.11)

yar) = 171 - o) (7.12)
where

’

k(k—1)+§—=0, ie.

k,, =31+ (@1 -)?]. (7.13)

Solutions (7.11) and (7.12) are linearly independent one of another be-
cause the Wronskian

W(1) = yi(t) y2(r) = y1(2) yalr) = 1 — 2k (7.14)

is different from zero over the whole interval of z. The only exception is
the case of k = 1/2 for which it is necessary to set up a new pair of linearly
independent solutions of the homogeneous equation associate to (7.9).

yi(7) = 31 = o)V%, (7.15)

ya(s) = (1 = ) In - ‘.
—t

(7.16)
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The Wronskian of expressions (7.15) and (7.16) is really different from
zero in the whole interval because

W) = n@ 5 - 1@y =1. (117

The particular solution of the non-homogeneous Eq. (7.9) is obtained,
for example, by the method of variation of parameters — see [186],
p. 648 — on the basis of our knowledge of the fundamental systems
(7.11), (7.12), or (7.15), (7.16).

The general solution of (7.9) then is

¥(1) = [Al -

4 ’

y2(2) dt] yi(e) + |:A2 b J y4(2) dr] ya(2)

W(z
(7.18)

4o
w(7)

which satisfies both Eq. (7.9) and the initial conditions (7.11) with any
choice of integration constants A, 4,. Depending on whether o’ & 1 or
o' = 1, the values of y,(t), y,(z), W(z), k to be substituted in Eq. (7.18)
are those defined by (7.11) to (7.14) or by (7.15) to (7.17).

Eq. (7.9) implies directly the solutions of the following two extreme
cases:

a) c¢-—0,ie o« — oo (static case)

y(t) = 16731 — 1)?, (7.19)
b) ¢— oo,ie. o — 0 [in view of (7.10)]
W) =0. (7.20)

Expression (7.18) is the exact solution of Eq. (7.9); of course, it con-
tains quadratures not amenable to further closed-form solution*). As
suggested by H. Zimmermann in [236], the solutions of homogeneous
Egs. (7.11) (7.12) as well as of (7.15), (7.16) may also be expressed in
terms of geometric and hyperbolic functions. However, expression (7.18)
is very inconvenient for numerical evaluation in any case.

*) The exception to this statement is the case of fy,(?) dr with (7.15) sub-
stituted for y,(r). Then

1 T 1/2
jyl(r) dr =7 {[1 —20—912 (1 — D2 + arctg (1 — ) }
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7.3 Approximate solutions

For the reasons just explained Eq. (7.9) is better solved numerically or
approximately. The numerical method of Runge-Kutta was applied by
A. P. Filippov and S. S. Kokhmanyuk [61], [62] to find the deflection
underneath the moving load. Fig. 7.2 representing their results shows the
dependence of maximum deflection underneath the load on parameter
1/o’, i.e. also on speed — see (7.8). Comparing Figs. 1.3 and 7.2 we see
that if the beam mass is considered and the load mass neglected, dynamic
stresses in the beam first grow but very slowly with growing speed (Fig.
1.3). If, on the other hand, the beam mass is neglected and the load mass
considered (Fig. 7.2), this growth is first very fast, the effects are at their
maximum at about 1/a’ =
max v, (t)/v,} = 0-2, then slowly fall off
- and become zero at infinite

speed.

Fig. 7.2. Dependence of the
maximum deflection of beam
underneath the load,
v,(#)[vy, on parameter 1/a’;
o’ defined by (7.8).

0 ' ' ' 05 " ="/cz'

7.3.1 The perturbation method
This method is applied to advantage at low speeds, i.e. at 1/a’ < 1, for
then we can put to good use the fact that we know the solution of (7.9)

for 1/o’ = 0, which is Eq. (7.19). We shall therefore assume that the
solution of (7.9) is in the form

¥(1) = 16:%(1 — 7 [1 + L@+ i) + ] . (@21)
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On substituting (7.21) in (7.9) and comparing the coefficients of terms
containing the same powers of 1/a’ we get very simple differential equa-
tions in functions y,(t), y,(7), ... which we solve successively. This gives

yi(t) = —8(1 — 61 + 67?),
ya(7) = 64(1 — 247 + 10212 — 156¢° + 78¢%),  (1.22)

........................................

If 1/o’ is small enough and the number of equations thus solved n, Eq.
(7.21) describes quite accurately the required function (except for the
terms of the n + 1 and higher orders).

Thus, for example, for the deflection of the centre x = | /2 of the beam,
v(1[2, 1/(2¢)) at the instant of the load passing over it, t = I/(2c) we get

by (7.1)
w20 48 (7.23)

We have evaluated Eq. (7.23) by computing from (7.1) — after substitu-
tion of (7.6) to (7.8) and (5.8) —

W) _ 1)

7.24
Vo 4o dr? (7.24)
vil/72,1/2c)/v,
a) | b)
1 vil/2,1/2c) /v,
_ / !
1 4
0.1
.
o0 ' g5 Va oo T T T g5 @

Fig. 7.3. Dependence of the deflection at the centre of a beam at the instant of load
passing over it. Approximate solution for a) low speeds, b) high speeds.
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The derivative in (7.24) was found from (7.9)

N _ g [1 _ ] (7.25)

dz? 167%(1 — 1)?

and the approximate solution (7.21) together with (7.22) substituted in
(7.25). Eq. (7.23) in dependence on parameter 1/o’, i.e. on speed, is
graphically represented in Fig. 7.3a.

7.3.2 Method of successive approximations

Results similar to the foregoing are also obtained by the method of suc-
cessive approximations. With the latter method we start out from Eq.
(7.9) and compute the approximations according to the following pro-
cedure )

(1) = 167%(1 — 7)* [1 - L M] : (7.26)

4o’  dr?

Assuming that the zero approximation has the second derivative equal
to zero, jo(t) = 0, we get successively from (7.26)

yi(r) = 167%(1 — 7)?,

yar) = 167%(1 — 7)?| 1 — —8—,(1 — 61 + 612)] ,
o

yo(z) = 16231 — 2 [ 1 — S (1 = 6c + 62%) +
L 04

. 64
#2010 — 240+ 11477 — 1800 9014)], (7.27)

............................................

Sequence y,(t) is assumed to converge uniformly in the interval
0 < 7 £ 1 toward the solution of Eq. (7.9). In practice this method is
applicable only at low speeds, i.e. for 1/a’ < 1. In that case the first and
second approximations give wholly identical, and the third approxima-
tion only slightly different results than does the preceding method
(paragraph 7.3.1) — cf.-Egs. (7.22) and (7.27).
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7.3.3 Expansion in power series

In solutions involving high speeds, i.e. for a’ < 1, it is useful to expand
the particular integral of the non-homogeneous equation (7.9) in a power
series. With regard to the regular singular points T = 0 and © = 1, we
shall consider the particular solution of Eq. (7.9) to be in the form

yu(7) = 2(1 — 'c)z"i::oa,,t". (7.28)

Coefficients a, are determined by substituting (7.28) in (7.9) and com-
paring the coefficients of terms containing the like powers of 7. This
operation leads to equations from which one can successively compute a,.
The computation results in

4 — 160’
0 8 + o
a, 32a 24 (7.29)

—24+oc'8+oz”

The general solution of Eq. (7.9) is the sum of the fundamental system
of solutions of the homogeneous equation and the particular solution
[cf. Eq. (7.18); the equation that follows is in fact an expression of the
terms with integrals in (7.18) written with the aid of a power series]

¥(1) = A; y1(z) + A3 ya(7) + 72(1 - t)znzoa,;c" . (7.30)

Substituting the above solution in (7.25) and (7.24) and choosing 4; =
= — A, we get

olf2, 1)(20) _ o (1 LA +> (7.31)

o 8 + o 24 + o

The graph in Fig. 7.3b represents Eq. (7.31) in dependence on parameter
o', i.e. according to (7.8) in indirect dependence on speed.
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7.4 Application of the theory

The theory outlined above has found application in dynamic computa-
tions of short-span bridges [131] and crane runways [71]. In both in-
stances the beam mass is really very small against the moving load mass,
and as such may be neglected.

It should be noted, however, that in the two cases quoted the effect
of the moving mass is fairly small compared to other factors producing
high dynamic stresses in those structures. Thus, for example, in short-
span railway bridges, it is the effect of impacts of flat wheels, rail joints,
etc. — in crane runways the effect of sudden lifting and braking of the
load, of track irregularities, etc. that predominate over that of the moving
load. Moreover, in short-span bridges, the vehicle can no longer be
idealized by a single mass point.

7.5 Additional bibliography

[7. 26, 46, 61, 62, 71, 83, 150, 207, 233,236, 322].
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Beam subjected to a moving system with two degrees
of freedom

The problem in which the moving load mass and the beam mass are both
taken into account is far more complicated than the special cases analyzed
in Chaps. 1 and 7. It is described by the differential equation

d*v(x, t) 0*v(x, t) dv(x, t)
o S SRR W L) S P L)
oxt ' oe PO o

= §(x — ct) [P - m d—z'i(—c—t-ﬂ] (8.1)

dr?

the right-hand side of which expresses the motion of force P with mass m
including the inertia effects. Because of the second derivative on the rigth-
hand side, the solution to Eq. (8.1) is fairly difficult compared to that of
the special cases in which either mass m (Chap. 1) or the beam mass p
(Chap. 7) is neglected.

The first authors to tackle the solution of Eq. (8.1) were H. Saller [196],
H. H. Jeffcott [115] whose iterative method fails to converge in some
cases, and H. Steuding [206] who treated several specific cases. A satis-
factory method (Fourier series with unknown coefficients for the tra-
jectory of the moving mass) was devised by A. Schallenkamp [197].
V. V. Muchnikov [162] and M. Ya. Ryazanova [192] solved the problem
by the method of integral equations, J. Naleszkiewicz [166] by Galer-
kin’s method and V. V. Bolotin [21] by a method that leads to approxi-
mate asymptotic solutions in quadratures. C. E. Inglis [111] and V. Ko-
lousek [130] studied the problem in relation to vibrations of railway
bridges. ‘

Eq. (8.1) describes the case in which the vehicle is idealized by a single
mass point. However, such a simplification is no longer satisfactory for
modern vehicles with clearly differentiated unsprung and sprung masses.
That is why A. Hillerborg [107] made a study of the motion of a sprung
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mass along a beam, some earlier attempts in that direction having been
made by C. E. Inglis [111] and V. Kolousek [130]. Further advances in
the solution of the problem were contingent on the arrival of automatic
computers. With their help J. M. Biggs, H. S. Suer, J. M. Louw [16] and
T. P. Tung, L. E. Goodman, T. Y. Chen, N. M. Newmark [224] solved
the problem originally treated by Hillerborg, and applied the solution
to vibrations of highway bridges.

In modern bridges where the theory finds its widest field of application
the actual conditions are more complicated still. It is now a well-known
fact that track irregularities, elastic properties of roadways on railway
bridges and tires on highway bridges, unbalanced components of unsprung
masses and other factors are apt to bear considerable effect on dynamic
stresses in the respective structures. In order that all those effects might
be accounted for, the problem was theoretically generalized and is now
divided in two classes differing by the ratio between vehicle length and
bridge span. To adhere to this classification we will discuss one class —
large-span bridges — in this chapter, and the oth