
www.ebook3000.com

http://www.ebook3000.org

www.ebook3000.com

http://www.ebook3000.org

PROBLEM-BASED
LEARNING IN
COMMUNICATION
SYSTEMS USING
MATLAB AND SIMULINK

www.ebook3000.com

http://www.ebook3000.org

IEEE Press
445 Hoes Lane

Piscataway, NJ 08854

IEEE Press Editorial Board
Tariq Samad, Editor in Chief

George W. Arnold Xiaoou Li Ray Perez
Giancarlo Fortino Vladimir Lumelsky Linda Shafer
Dmitry Goldgof Pui-In Mak Zidong Wang
Ekram Hossain Jeffrey Nanzer MengChu Zhou

Kenneth Moore, Director of IEEE Book and Information Services (BIS)

Technical Reviewer

Nirwan Ansari, New Jersey Institute of Technology, USA

www.ebook3000.com

http://www.ebook3000.org

PROBLEM-BASED
LEARNING IN
COMMUNICATION
SYSTEMS USING
MATLAB AND SIMULINK

KWONHUE CHOI
Yeungnam University, Gyeongsan, Korea

HUAPING LIU
Oregon State University, Corvallis

www.ebook3000.com

http://www.ebook3000.org

Copyright © 2016 by The Institute of Electrical and Electronics Engineers, Inc.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. All rights reserved.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data is available.

ISBN: 978-1-119-06034-5

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

www.ebook3000.com

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com
wiley_group
Typewritten Text

http://www.ebook3000.org

CONTENTS

Preface xiii

Acknowledgments xvii

Notation and List of Symbols xix

List of Acronyms xxi

Content-Mapping Table with Major Existing Textbooks xxiii

Lab Class Assignment Guide xxv

About the Companion Website xxvii

1 MATLAB and Simulink Basics 1

1.1 Operating on Variables and Plotting Graphs in MATLAB, 1
1.2 Using Symbolic Math, 3
1.3 Creating and Using a Script File (m-File), 4
1.4 [A]User-Defined MATLAB Function, 7
1.5 Designing a Simple Simulink File, 8
1.6 Creating a Subsystem Block, 12

2 Numerical Integration and Orthogonal Expansion 16

2.1 Simple Numerical Integration, 16
2.2 Orthogonal Expansion, 18
References, 23

v

www.ebook3000.com

http://www.ebook3000.org

vi CONTENTS

3 Fourier Series and Frequency Transfer Function 24

3.1 Designing the Extended Fourier Series System, 24
3.2 Frequency Transfer Function of Linear Systems, 25
3.3 Verification of the Frequency Transfer Function of Linear Systems

in Simulink, 27
3.4 Steady-State Response of a Linear Filter to a Periodic Input Signal, 29
References, 31

4 Fourier Transform 33

4.1 The Spectrum of Sinusoidal Signals, 33
4.2 The Spectrum of Any General Periodic Functions, 36
4.3 Analysis and Test of the Spectra of Periodic Functions, 37
4.4 Spectrum of a Nonperiodic Audio Signal, 40
References, 44

5 Convolution 45

5.1 Sampled Time-Limited Functions, 45
5.2 Time-Domain View of Convolution, 48
5.3 Convolution with the Impulse Function, 50
5.4 Frequency-Domain View of Convolution, 51
Reference, 54

6 Low Pass Filter and Band Pass Filter Design 55

6.1 [T]Analysis of the Spectrum of Sample Audio Signals, 55
6.2 Low Pass Filter Design, 57
6.3 LPF Operation, 61
6.4 [A]Band Pass Filter Design, 63
Reference, 65

7 Sampling and Reconstruction 66

7.1 Customizing the Analog Filter Design Block to Design an LPF, 66
7.2 Storing and Playing Sound Data, 67
7.3 Sampling and Signal Reconstruction Systems, 68
7.4 Frequency Up-Conversion without Resorting to Mixing with

a Sinusoid, 75
References, 77

8 Correlation and Spectral Density 78

8.1 Generation of Pulse Signals, 78
8.2 Correlation Function, 79
8.3 Energy Spectral Density, 87
References, 89

www.ebook3000.com

http://www.ebook3000.org

CONTENTS vii

9 Amplitude Modulation 90

9.1 Modulation and Demodulation of Double Sideband-Suppressed
Carrier Signals, 90

9.2 Effects of the Local Carrier Phase and Frequency Errors on
Demodulation Performance, 95

9.3 [A]Design of an AM Transmitter and Receiver without Using an
Oscillator to Generate the Sinusoidal Signal, 98

Reference, 100

10 Quadrature Multiplexing and Frequency Division Multiplexing 101

10.1 Quadrature Multiplexing and Frequency Division Multiplexing
Signals and Their Spectra, 101

10.2 Demodulator Design, 104
10.3 Effects of Phase and Frequency Errors in QM Systems, 105
Reference, 108

11 Hilbert Transform, Analytic Signal, and SSB Modulation 109

11.1 Hilbert Transform, Analytic Signal, and Single-Side Band
Modulation, 109

11.2 Generation of Analytic Signals Using the Hilbert Transform, 111
11.3 Generation and Spectra of Analytic and Single-Side Band

Modulated Signals, 114
11.4 Implementation of an SSB Modulation and Demodulation

System Using a Band Pass Filter, 117
References, 122

12 Voltage-Controlled Oscillator and Frequency Modulation 123

12.1 [A]Impact of Signal Clipping in Amplitude Modulation
Systems, 123

12.2 Operation of the Voltage-Controlled Oscillator and Its Use in an
FM Transmitter, 126

12.3 Implementation of Narrowband FM, 130
References, 134

13 Phase-Locked Loop and Synchronization 135

13.1 Phase-Locked Loop Design, 135
13.2 FM Receiver Design Using the PLL, 142
13.3 [A]Data Transmission from a Mobile Phone to a PC over the

Near-Ultrasonic Wireless Channel, 146
References, 150

www.ebook3000.com

http://www.ebook3000.org

viii CONTENTS

14 Probability and Random Variables 151

14.1 Empirical Probability Density Function of Uniform Random
Variables, 151

14.2 Theoretical PDF of Gaussian Random Variables, 152
14.3 Empirical PDF of Gaussian RVs, 153
14.4 Generating Gaussian RVs with Any Mean and Variance, 155
14.5 Verifying the Mean and Variance of the RV Represented by

MATLAB Function randn(), 155
14.6 Calculation of Mean and Variance Using Numerical

Integration, 156
14.7 [A]Rayleigh Distribution, 158
References, 159

15 Random Signals 160

15.1 Integration of Gaussian Distribution and the Q-Function, 160
15.2 Properties of Independent Random Variables and Characteristics

of Gaussian Variables, 162
15.3 Central Limit Theory, 165
15.4 Gaussian Random Process and Autocorrelation Function, 168
References, 173

16 Maximum Likelihood Detection for Binary Transmission 174

16.1 Likelihood Function and Maximum Likelihood Detection over
an Additive White Gaussian Noise Channel, 174

16.2 BER Simulation of Binary Communications over an AWGN
Channel, 178

16.3 [A]ML Detection in Non-Gaussian Noise Environments, 182
References, 183

17 Signal Vector Space and Maximum Likelihood Detection I 184

17.1 [T]Orthogonal Signal Set, 184
17.2 [T]Maximum Likelihood Detection in the Vector Space, 185
17.3 MATLAB Coding for MLD in the Vector Space, 187
17.4 MLD in the Waveform Domain, 189
References, 191

18 Signal Vector Space and Maximum Likelihood Detection II 192

18.1 Analyzing How the Received Signal Samples Are Generated, 192
18.2 Observing the Waveforms of 4-Ary Symbols and the Received

Signal, 195
18.3 Maximum Likelihood Detection in the Vector Space, 196

www.ebook3000.com

http://www.ebook3000.org

CONTENTS ix

19 Correlator-Based Maximum Likelihood Detection 200

19.1 Statistical Characteristics of Additive White Gaussian Noise in
the Vector Space, 200

19.2 Correlation-Based Maximum Likelihood Detection, 205
Reference, 208

20 Pulse Shaping and Matched Filter 209

20.1 [T]Raised Cosine Pulses, 209
20.2 Pulse Shaping and Eye Diagram, 210
20.3 Eye Diagram after Matched Filtering, 216
20.4 Generating an Actual Electric Signal and Viewing the Eye

Diagram in an Oscilloscope, 218
References, 223

21 BER Simulation at the Waveform Level 224

21.1 EB/N0 Setting in Baseband BPSK Simulation, 224
21.2 Matched Filter and Decision Variables, 228
21.3 Completing the Loop for BER Simulation, 230
21.4 [A]Effects of the Roll-off Factor on BER Performance When

There Is a Symbol Timing Error, 234
21.5 Passband BPSK BER Simulation and Effects of Carrier Phase

Errors, 235
Reference, 238

22 QPSK and Offset QPSK in Simulink 239

22.1 Characteristics of QPSK Signals, 239
22.2 Implementation of the QPSK Transmitter, 241
22.3 Implementation of the QPSK Receiver, 243
22.4 SNR Setting, Constellation Diagram, and Phase Error, 245
22.5 BER Simulation in Simulink Using a Built-in Function sim(), 247
22.6 Pulse Shaping and Instantaneous Signal Amplitude, 249
22.7 Offset QPSK, 252
References, 253

23 Quadrature Amplitude Modulation in Simulink 254

23.1 Checking the Bit Mapping of Simulink QAM Modulator, 254
23.2 Received QAM Signal in AWGN, 258
23.3 Design of QAM Demodulator, 260
23.4 BER Simulation, 262
23.5 Observing QAM Signal Trajectory Using an Oscilloscope, 266
References, 268

x CONTENTS

24 Convolutional Code 269

24.1 Encoding Algorithm, 269
24.2 Implementation of Maximum Likelihood Decoding Based on

Exhaustive Search, 273
24.3 Viterbi Decoding (Trellis-Based ML Decoding), 277
24.4 BER Simulation of Coded Systems, 284
References, 287

25 Fading, Diversity, and Combining 289

25.1 Rayleigh Fading Channel Model and the Average BER, 289
25.2 BER Simulation in the Rayleigh Fading Environment, 292
25.3 Diversity, 295
25.4 Combining Methods, 296
References, 300

26 Orthogonal Frequency Division Multiplexing in AWGN Channels 302

26.1 Orthogonal Complex Sinusoid, 302
26.2 Generation of Orthogonal Frequency Division Multiplexing

Signals, 303
26.3 Bandwidth Efficiency of OFDM Signals, 306
26.4 Demodulation of OFDM Signals, 307
26.5 BER Simulation of OFDM Systems, 307
References, 310

27 Orthogonal Frequency Division Multiplexing over Multipath
Fading Channels 311

27.1 Multipath Fading Channels, 311
27.2 Guard Interval, CP, and Channel Estimation, 314
27.3 BER Simulation of OFDM Systems over Multipath Fading

Channels, 319
References, 323

28 MIMO System—Part I: Space Time Code 324

28.1 System Model, 324
28.2 Alamouti Code, 327
28.3 Simple Detection of Alamouti Code, 330
28.4 [A]Various STBCs, Their Diversity Orders, and Their Rates, 334
References, 335

29 MIMO System—Part II: Spatial Multiplexing 336

29.1 MIMO for Spatial Multiplexing, 336
29.2 MLD Based on Exhaustive Search for SM MIMO, 337

CONTENTS xi

29.3 Zero Forcing Detection, 340
29.4 Noise Enhancement of ZF Detection, 341
29.5 Successive Interference Cancellation Detection, 343
29.6 BER Simulation of ZF, SIC, OSIC, and ML Detection Schemes, 347
29.7 Relationship among the Number of Antennas, Diversity, and

Data Rate, 350
References, 352

30 Near-Ultrasonic Wireless Orthogonal Frequency Division
Multiplexing Modem Design 353

30.1 Image File Transmission over a Near-Ultrasonic
Wireless Channel, 353

30.2 Analysis of OFDM Transmitter Algorithms and the Transmitted
Signals, 355

30.3 Analysis of OFDM Receiver Algorithms and the
Received Signals, 357

30.4 Effects of System Parameters on the Performance, 361

Index 363

PREFACE

THE CHALLENGES OF LEARNING AND TEACHING
COMMUNICATIONS

Many digital communication topics taught in the traditional way require understand-
ing mathematical expressions and algorithmic procedures to learn abstract concepts.
The majority of existing textbooks facilitate teaching this way with systematic and
thorough explanation of communication theories and concepts, mainly via mathemat-
ical models and algorithmic procedures. This is the natural outcome when computers
and software were not so universally accessible decades ago as they are today. How-
ever, most students find such a way of learning digital communications ineffective
and often frustrating. And even if they are able to follow the instructors in the class-
room, their understanding of the concepts is often superficial. The accessibility of
powerful software like MATLAB/Simulink and the Internet to students could be
exploited to revolutionize the teaching of math intensive subjects such as digital
communications. Through decades of classroom experience, we have learned that
students’ learning becomes significantly more effective if they are led to “construct”
the system themselves and observe waveforms and statistics at various stages of the
system or algorithm, a process called “active” learning here.

However, given the tools and texts available on the market to the instructors, imple-
menting this active learning process is by no means easy. First, the majority of the
textbooks are optimized for instruction in the traditional way. Some recent textbooks
provide problems that involve the use of MATLAB/Simulink or similar software and
codes or computer models to perform certain simulation. Readers can replicate these
codes/models and conduct simulation, which would certainly reinforce some aspects
they have learned. Such an approach is still far short of encouraging active learning

xiii

xiv PREFACE

by students. Second, there are some existing hardware training kits designed for edu-
cational purposes that can be used for labs/experiments of communications classes.
However, these training kits are often expensive and cover only a limited number
of topics of communications. Additionally, students need to learn hardware design
skills such as DSP programming and VHDL to be able to use such a tool.

UNIQUE FEATURES OF THIS BOOK

This book is written to encourage active learning of communication theories and
systems by its readers. Toward this goal, major communication concepts and algo-
rithms are examined through carefully designed MATLAB/Simulink projects. Each
project implements the simulation construction and execution steps or sequences that
match how an actual communications system or algorithm works. These steps pro-
gressively explore the intermediate results between steps that students can “see” and
comprehend what happens behind theories and mathematical expressions. The bulk
of MATLAB simulation codes or Simulink models for these projects are provided.
This ensures that students will be able to complete even complex projects such as
Viterbi decoding, multiple-input multiple-output (MIMO) detection, and orthogonal
frequency division multiplexing (OFDM) demodulation.

However, important parameters and codes lines or model blocks that are critical
for learning the algorithm or communications process are left out for students to
complete. This makes mechanically executing a certain completed code without
understanding the technical details impossible. Step-by-step instructions are designed
for each problem. Readers can conveniently check the results of each intermediate
step and compare the various parameter choices and their effects and are thus led to
actively figure out the intended answers and build up a complete system/algorithm.

Summarizing it, this book is written with the following three main goals in mind:

1. The framework of the codes/models provided in the book efficiently guides
students through the simulation and actively engages students in learning the
materials.

2. The codes/blocks provided minimize the amount of time students need to
complete their simulations and ensure that they will be able to complete even
complex projects without getting lost in the middle and giving up.

3. In completing the main algorithm/concept-specific incomplete parts, students
will effectively be internalizing the theories.

In Chapters 4, 7, 9, 10, 11, 13, 20, 22, 23, and 30, students will learn how to convert
constructed waveforms in simulations into electric signals and then to listen to those
signals if they are audio signals, or observe the eye-patterns, scatter plots, or signal
trajectories by using an oscilloscope for digitally modulated signals. In Chapters 13
and 30, students are encouraged to complete actual wireless communications in the
band near-ultrasonic frequencies, requiring only a mobile phone and a PC with a
microphone. We have found that all such present-day projects that embrace student

PREFACE xv

interests can motivate them to explore more intensely how communication systems
work.

Although, students are not required to know MATLAB/Simulink to use this book,
Chapter 1 provides carefully designed projects that enable students to self-learn the
MATLAB/Simulink skills needed for the rest of the projects in this book. All that
a student needs are access to MATLAB, a headphone and an oscilloscope for some
projects.

THE STRUCTURE OF THIS BOOK

The 30 chapters of this book cover MATLAB/Simulink basics (Chapter 1), basic sig-
nals and systems (Chapters 2–8), analog communications (Chapters 9–13), probabil-
ity and random signals (Chapters 14–15), basics of digital communication techniques
(Chapters 16–24), and wireless communication techniques (Chapters 25–30).

The majority of these chapters are structured as follows.

Aims: Summarize the topics and goals of the chapter.

Prelab: The theoretical background for the topic, if necessary; prerequisite prob-
lem sets for students to become familiar with the required MATLAB functions
and features for the chapter.

Main lab: Problems for the main topic.

Further studies: Problems for advanced topics, if there are any.

A user’s guide is provided at the beginning of the book, where the problem numbers
corresponding to the prelab, main lab, and further studies of all chapters are tabulated.

To minimize the time students would otherwise have to spend on nonessential (in
terms of learning core concepts and algorithms) but necessary and time-consuming
tasks, MATLAB code script (incomplete m-files), Simulink models (incomplete
.mdl/.slx files), and data files (.mat files) are provided so that students can easily
access the core materials.

HOW TO EFFICIENTLY USE THIS BOOK

Teaching with this book:

1. As a supplementary textbook (mainly for assigning labs and projects) for
undergraduate- and junior-level graduate communications and wireless com-
munications classes as well as undergraduate signal and systems classes. A
content-mapping table of the sections of this book with the sections of four
widely adopted existing textbooks that cover essentially the same materials is
provided.

xvi PREFACE

2. As the main textbook for the aforementioned courses. While this book is not
written to compete with existing communications theory and system textbooks,
it is all-inclusive in that it covers, all major topics of communications.

With option 1, instructors can conveniently make lab assignments using the
content-mapping table to choose appropriate projects from this book to reinforce
student’s learning experience. Because the projects in this book are designed to guide
students step by step toward more complex projects, instructors need only spend
minimal time and effort to cover all the material in class.

With option 2, instructors can use their own lecture notes to summarize the theory
parts of the chapters/sections of this book that they plan to teach in class. For graduate
classes, such class presentations may not be needed, since graduate students should
be able to search for additional information, if needed. Students should nevertheless
follow through the projects and write reports.

These uses of the book will reduce the amount of work that the instructors need to
put into the class presentations, but the students still gain a thorough understanding of
each concept through active learning. Instructors can customize the different chapters
for different courses. For example, when this book is used for an undergraduate signals
and systems class, Chapters 1–7 would be ideal, plus some materials on z-transform
(for most curricula, students should have learned Laplace transform before taking
signals and systems). In the first two to three weeks, students could complete Chapter
1 by themselves while the instructor focuses on basic signals and system properties.
When the instructor is ready to start teaching signals and systems in both time and
frequency domains, filter design, and sampling and reconstruction, students will then
have all the MATLAB/Simulink skills needed to work on the corresponding projects.
For an analog communications class, Chapters 1 and 8–13 should be covered. For a
junior-level digital communications course, Chapters 1 and 14–24 may be covered.
For a junior-level graduate wireless communications course (provided that students
have taken digital communications), some or all of Chapters 1 and 25–30 can be
covered.

SUPPLEMENTS

The following supplements are available from the companion website:

All MATLAB code or Simulink model samples and templates (incomplete m-files
and incomplete .mdl/.slx models) and data files (.mat files).

Correction table for each edition if found.

Content-mapping table of the sections of this book with the sections of widely
adopted existing textbooks if updated.

ACKNOWLEDGMENTS

This book has gone through many revisions over the past 12 years to make it a useful
tool for instructors and effective guide for students learning communications systems.
The writing of the book would have been impossible without the tremendous help
from many of our colleagues and students. In particular, we thank Dr. Bong-seok
Kim for checking every technical detail and Ms. Sahar Amini for proofreading the
manuscript.

Our editor, Mary Hatcher, has very competently steered us through this project.
We especially appreciate her steadfast support of our book and patience in guiding
us through the publication process.

Huaping Liu is also extremely grateful to his wife Catherine and sons Frank,
Ethan, Raymond, and Andrew for their endurance and not making demands on his
time during the writing of this book. He also offers special thanks to two of his sons,
Ethan and Raymond, for giving him many useful writing tips and for helping him
revise the writing of chapters.

xvii

www.ebook3000.com

http://www.ebook3000.org

NOTATION AND LIST OF SYMBOLS

[WWW]: Sections or problems that require a data file or problems for which a script-
file (m-file) is provided from the companion website (http://www.wiley.com/
go/choi_problembasedlearning).

[T]: Theory-based sections or problems that do not require MATLAB or Simulink.

[A]: Advanced problems or materials.

m-file: MATLAB script-files

Terms using this style and font: MATLAB/Simulink-related terms, for example, vari-
able/parameter/function/block/file name.

xix

http://www.wiley.com/go/choi_problembasedlearning
http://www.wiley.com/go/choi_problembasedlearning

LIST OF ACRONYMS

AM amplitude modulation
AWGN additive white Gaussian noise
BER bit error rate
CLT central limit theory
CNR carrier-to-noise ratio
CP cyclic prefix
CSI channel state information
DSB-LC double side-band with a large carrier
DSB-SC double side-band-suppressed carrier
EGC equal gain combining
ESD energy spectral density
FDM frequency division multiplexing
ICI inter-carrier interference
IFFT inverse Fast Fourier transform
ISI inter-symbol interference
LSSB lower single-side band
MIMO multiple input multiple output
ML maximum likelihood
MLD maximum likelihood detection (or decoding)
MPSK M-ary phase shift keying
MRC maximum ratio combining
NBFM narrowband FM
NUS near ultrasonic
OFDM orthogonal frequency division multiplexing
OQPSK offset QPSK

xxi

xxii LIST OF ACRONYMS

OSIC ordered successive interference cancellation
PAM pulse amplitude modulation
PD phase detector
PDF probability density function
PLL phase locked loop
PSD power spectral density
QAM quadrature amplitude modulation
QM quadrature multiplexing
QPSK quadrature phase shift keying
SD spatial diversity
SDC selection diversity combining
SIC successive interference cancellation
SM spatial multiplexing
SRRC square-root raised cosine
SSB single-side band
STBC space time block code
USSB upper single-side band
VCO voltage controlled oscillator
WSS wide-sense stationary
ZF zero forcing

CONTENT-MAPPING TABLE WITH
MAJOR EXISTING TEXTBOOKS

NOTE: Mapping table for newer versions of the major textbooks will be updated on
the companion website.

PART I. COMMUNICATION SYSTEM

Corresponding Sections of Widely Adopted Existing Textbooks

Chapter

Introduction to Communication
Systems by Ferrell G. Stremler, 3rd ed.
Addison Wesley, 1990.

Introduction to Analog and Digital
Communication by S. Haykin and
M. Moher, 2nd ed. John Wiley & Sons,
2007

2 2.5∼2.7 –
3 2.12, 2.13, 2.15, 3.3, 3.9 2.1∼2.3, 2.5
4 3.2, 3.5, 3.6, 3.15, 3.17 2.6
5 3.5∼3.9 2.3
6 2.19, 3.11∼3.13 2.7
7 3.15, 3.16 5.1∼5.2
8 4.1∼4.7.1 2.8
9 5.1, 5.2 3.1∼3.3

10 5.3 3.5, 3.9
11 5.4 3.6, 3.8
12 6.1, 6.2 4.1∼4.2, 4.4
13 6.7.2, 6.7.3 4.8

xxiii

xxiv CONTENT-MAPPING TABLE WITH MAJOR EXISTING TEXTBOOKS

PART II. DIGITAL COMMUNICATION

Corresponding Sections of Widely Adopted Existing Textbooks

Chapter

Digital Communications:
Fundamentals and Applications by
B. Sklar, 2nd ed. PHIPE, 2002

Digital Communications by
J. G. Proakis, 5th ed. McGraw-Hill,
2008

14 1.1∼1.5 2.3
15 1.4∼1.5.5 2.3, 2.7-1
16 3.1∼3.2.1 2.3, 4.2-1
17, 18 3.1.3, 3.2.5.3, 4.2.6, 4.3.1 4.2, 5.1∼5.1-1
19 4.3.2 2.2, 2.3, 4.2-2
20 3.2.3, 3.4.2 9.2∼9.2-3
21 4.1∼4.4.2, 4.7.1 3.2-2, 4.2-2
22 4.4.3∼4.8.3, 9.8.1, 9.8.2.1 3.2-2, page 124 (OQPSK)
23 9.8.3, 9.5.1 3.2-3
24 7.1∼7.4 8.1∼8.1-1, 8.2∼8.2-1, 8.3, 8.4
25 15.5.4 13.1, 13.4
26 11.2, 13.6
27 11.2, 13.6
28 15.4
29 15.1∼15.2
30 11.2, 13.6

LAB CLASS ASSIGNMENT GUIDE

1. Prelab report: Mainly theoretical background and prerequisites.

2. Lab repot: To be completed during lab sessions.

3. Further study report: To be completed after lab. Mainly advanced problems.

Chapter Prelab Main lab Further study

1 1.A∼B, 1.C∼1.E*, 5 2.A, 3.A, 3.B, 4.A, 4.B,
4.C, 6

2.B, 3.C, 3.D

2 1.A∼1.G, 1.H∼1.J, 2.A,
2.E-1

2.B, 2.C, 2.E-2∼2.E-4 2.D, 2.E-5, 2.F∼G

3 1, 2.A∼2.C, 4.A 2.D∼F, 3, 4.B, 4.C
4 1, 2, 3.A∼3.C 3.D, 4 –
5 1, 2.A-1∼2, 2.G-1 2.A-3∼4, 2.B∼2.F,

2.A∼2.F, 2.G-2, 4.A∼D
3.A∼B, 4.E, 4.F

6 1, 2.A∼2.C 2.D-1∼2.D-9, 3, 4.A∼C 2.D-10∼2.D-12, 4.D
7 1, 2, 3.A, 3.B, 3.E-2 3.C, 3.D, 3.E-1,

3.E-3∼3.E-9
4

8 1, 2.A, 2.E-1, 2.E-5,
2.G-1, 2.H, 2.1, 2.I,
2.J-4, 3.A-1

2.B∼2.D-2, 2.E-2∼2.E-4,
2.E-6, F, 2.G-2∼2.G-8,
2.H-2∼2.H-4,
2.J-1∼2.J-3, 2.J-5∼2.J-9,
3.A-2, 3.A-3, 3.B,
3.C-1∼3.C-3

2.D-3∼4, 3.C-4

9 1, 2.A-1, 2.C-1 2.A-2∼2.B, 2.C-2∼2.C-7 3
10 1, 3.B-1 2, 3.A, 3.B-2∼3.B-6 3.C

(Continued)

xxv

xxvi LAB CLASS ASSIGNMENT GUIDE

Chapter Prelab Main lab Further study

11 1, 4.B-1 2.A, 2.B-1∼2.B-4, 3 2.B-5∼2.B-10,
4.A∼4.D

12 1.A∼2.D, 3.A-1∼3,
3.A-4∼5

2.E, 3.B∼3.E

13 1 2.A, 2.C, 2.D-4 2.D-5, 2.E
14 1, 2, 3, 4.A 4.B∼6 7
15 1, 2, 3.A, 3.B∼C,

3.D∼E, 4.A∼B, 4.C,
4.D∼E, 5, 7.B-8

6.A∼6.B, 6.E-1∼6.E-3,
7.A-1∼7.A-5, 7.B-
1∼7.B-7,7.C-1∼7.C-3,
7.C-5

6.C∼6.D, 6.E-4,
6.E-5, 7.A-6,
7.A-7,
7.B-9∼7.B-11,
7.C-4, 7.C-6,
7.C-7, 7.D

16 1, 2.D-1∼3 2, 3.A∼3.B 3.C∼G
17 1, 2 3, 4
18 1.A∼B 1.C, 2, 3
19 1 2
20 1 2.A∼C 2.D∼3 4, 5 (Oscilloscope

needed)
21 1, 2, 3.A 3.B∼4 5
22 1,2,3 4, 5.A∼5.C-2, 5.C-4 5.C-3, 5.C-5, 5.C-6,

6, 7
23 1, 2, 3.B, 4.E, 4.F-2∼3 3.C∼3.F, 4.A∼4.D 4.F-1, 4.F-4, 5

(Oscilloscope
needed)

24 1, 2, 3.B 3.C, 4.A∼4.B-2, 4.C-1 3.D,3.E,
4.B-3∼4.B-5,
4.C-2∼4.C-4

25 1.A, 1.B, 1.C-1∼6,
1.C-7, 1.D, 2.A∼I,
2.J, 3, 4.C-1

4 (except 4.C-6) 4.C-6, 5

26 1, 2, 3, 4.A 4.B∼5
27 1 2.A-1, 2.A-3∼2.A-5,

2.B-2∼2.B-4, 3.A∼3.D
(except 3.B-2)

2.A-2, 2.A-6, 2.B-1,
3.B-2, 3.E

28 1, 2.A 2.B, 3.A, 3.B-1∼3.B-5 3.B-6, 3.B-7, 4
29 1, 2 3, 5, 6 4, 7
30 1 2, 3 4

ABOUT THE COMPANION WEBSITE

This book is accompanied by a companion website:

www.wiley.com/go/choi_problembasedlearning

The website includes:

� All MATLAB code or Simulink model samples and templates (incomplete
m-files and incomplete .mdl/.slx models) and data files (.mat files).

� Correction table for each edition if found.
� Content-mapping table of the sections of this book with the sections of widely

adopted existing textbooks if updated.

xxvii

http://www.wiley.com/go/choi_problembasedlearning

1
MATLAB AND SIMULINK BASICS

� Arithmetic operators.
� Vector and matrix manipulation.
� Symbolic math.
� Script file (m-file) and user-defined functions.

1.1 OPERATING ON VARIABLES AND PLOTTING GRAPHS
IN MATLAB

The fundamental MATLAB commands can be categorized into six groups, each
of which is covered in one subsection. The first four subsections deal with the
operations of different variable types and the last two subsections deal with the
plotting commands that are frequently used in this book. On a PC that is installed
with MATLAB, start MATLAB. A command window will appear where one can
type in and execute MATLAB commands. Execute the set of commands/codes in
the boxes and check the results. This self-study method is one of the fastest ways to
master the basic MATLAB commands.

In a report, document what each command does. Focus on the specific actions
and purposes, rather than the execution results. For commands that return an error
message, document the reasons. Follow this guideline for all exercises in Section 1.1.

A sample report is available from the companion website. For information to
access this website, refer to the guide at the beginning of this book.

Problem-Based Learning in Communication Systems Using MATLAB and Simulink, First Edition.
Kwonhue Choi and Huaping Liu.
© 2016 The Institute of Electrical and Electronics Engineers, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/choi_problembasedlearning

1

http://www.wiley.com/go/choi_problembasedlearning

2 MATLAB AND SIMULINK BASICS

1.A Operation of scalar variables.

1. X 6. X*Y-X*3-Y 11. X=12e6

2. X=12 7. X=Yˆ2 12. clc

3. X=X+2 8. Z=sqrt(Y) 13. x=rand

4. Y=X+3 9. X=2; Y=4; Z=X+Y 14. x=rand

5. Y*6 10. Z=XˆY 15. help rand

In addition, explain why the same command executed twice in item 13 and item
14 generates different results.

1.B Operation of complex numbers.

1. i 6. Z=X*Y 11. angle(Z)

2. j 7. real(Z) 12. who

3. X=1+3*j 8. imag(Z) 13. whos

4. Y=-2+j ; 9. conj(Z) 14. clear

5. Z=X+Y 10. abs(Z) 15. who

1.C Operation of vectors.

1. X=2 : 2: 10 12. Y=[2; 1; 4; -3] 23. Y=rand(1,5)

2. Y=1 : 5 13. Z=Y’ 24. Y=rand(4)

3. Z=X + Y 14. Z(1) 25. Y=[7 3 -1 2]

4. Z=X.*Y 15. Z(2) 26. mean(Y)

5. Z=X*Y 16. Z(1:3) 27. var(Y)

6. Z=X./Y 17. Z(2:4) 28. min(Y)

7. Z=X/Y 18. length(Z) 29. max(Y)

8. 2*Y 19. X=[2 4 8 16] 30. [a b]=min(Y)

9. Z=0 : 10 20. Y=log2(X) 31. sort(Y)

10. sum (Z) 21. Yˆ2 32. Y=[Y 5]

11. Y=[2 1 4 –3] 22. Y.̂ 2 33. Z=[Y(3:4) X(1:2)]

1.D Operation of matrices.

1. X=[3 6 -2 -1; 0 5 2 1; 7 -1 4 8]; 11. Y(1, :)=X(2, :) 21. Z=X.̂ 2 +3*Y

2. X(2,1) 12. Y(2, :)=X(1, :) 22. max(Z)

3. X(2,3) 13. Y(3, :)=[1 2 3 4] 23. [T1 T2]=max(Z)

4. X(1, :) 14. Z=X – Y 24. mean(Z)

5. X(:, 2) 15. Z=X*Y 25. max(mean(Z))

6. X(1:2,:) 16. Z=X*Y’ 26. max(max(Z))

7. X(: , 2:3) 17. Z=X.* Y 27. Z=rand(4)

8. Y=[1 0 2; 3 2 1; 2 3 4] 18. Z=Xˆ2 28. X=inv(Z)

9. Y’ 19. Z=X.̂ 2 29. Y=X*Z

10. Y=zeros(3,4); 20. Z=2.̂ X 30. size(Z)

USING SYMBOLIC MATH 3

1.E Plotting some basic functions.

1. x=0:0.1:10 9. plot(x,y2) 17. plot(x,y1)

2. y1=sin(x) 10. y3=exp(-x) 18. subplot(3,1,2)

3. y2=cos(x); 11. plot(x,y3,’r’) 19. plot(x,y2)

4. plot(x) 12. legend(’sin(x)’,’cos(x)’,’exp(-x)’) 20. subplot(3,1,3)

5. plot(y1) 13. axis([-5 15 -3 3]) 21. plot(x,y3)

6. plot(x,y1) %Compare to 5 14. axis([0 10 -2 2]) 22. semilogy (x,y3)

7. grid 15. figure 23. help plot

8. hold on 16. subplot(3,1,1) 24. help semilogy

1.F Boolean operations and plotting graphs over a limited range of the x axis.

1. A=[0 1 2 3 4]; 7. C=([1 0 1 1 1]==[1 0 1 0 0]) 13. y=(1<x)&(x<4);

2. A<3 8. C=([1 0 1 1 1]∼=[1 0 1 0 0]) 14. plot(x,y); axis([0

10 -2 2]); grid;

3. B=(A>2) 9. x=0:0.01:10; 15. y=1<x<4;

4. C=([1 1 0 0] & [1 1 1 0]) 10. y=(x<3); 16. plot(x,y); axis([0

10 –2 2]); grid;

5. C=([1 1 0 0] | [1 1 1 0]) 11. figure

6. C=∼[1 0 1 0 0] 12. plot(x,y); axis([0 10 -2 2]); grid;

In addition, explain the difference between items 13 and 15.

1.2 USING SYMBOLIC MATH

In the symbolic math in MATLAB, the characters (or words) such as a, b, and temp
are treated as symbolic variables, not numeric variables. Mathematical expressions
can be computed or manipulated in symbolic forms. Find out what else can be done
using symbolic math in the following problems.

2.A Write down what each of the lines in the following box does and capture the
execution result.

>>syms a b c x t
>>y=sin(t);
>>diff(y)
>>int(y)
>>int(y, t, 0, pi)
>>z=int(xˆ2*exp(-x),x,1,3)
>>double(z)
>>limit(sin(t)/t,t,0)
>>symsum(xˆ2, x,1,4)
>>T=solve(a*xˆ2+b*x+c,x)

4 MATLAB AND SIMULINK BASICS

>>T2=solve(a*xˆ2+b*x+c,b)
>>a=1;b=2;c=3;
>>z=eval(T)
>>a=t;
>>z=eval(T)

2.B Verify the following quantities by using the symbolic math. Capture the calcu-
lation results.

∫
∞

−∞
e−z2

dz =
√
𝜋, (1.1)

∞∑
r=1

(1
3

)r
=
(1

2

)
, (1.2)

lim
x→∞

(
1 + 1

x

)x
= e. (1.3)

2.C Calculate the following integral by using the symbolic math. Be sure to perform
double(c) after symbolic integration. Also explain why executing double () is needed
to obtain the solution.

c = ∫
2

1
sin(z)e−zdz. (1.4)

1.3 CREATING AND USING A SCRIPT FILE (m-FILE)

The commands and functions we have covered so far are all executable directly in
the command window. Using a “script file,” which is also called an “m-file” in the
earlier versions of MATLAB, users can execute various algorithms or can implement
user-defined functions. In this book, the traditional term “m-file” will be used to refer
to a MATLAB “script file.”

3.A Follow the steps below and learn how to create and execute an m-file.

Step 1. Open a new script file editing window.

Step 2. [WWW]Shown in the box below is an m-file that plots y = x sin(ax), for the
cases of a = 0.1, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 over the range 0 < x < (10 +
D), where D = the last digit of your student ID number. Write this m-file and save
it as CH1_3A.m. The m-file name must begin with a letter; files with a name that
begins with a number will not execute in MATLAB. Be sure not to use a space or
mathematical operator (e.g., +, −, /, *) in the file name.

NOTE: For the parts with the superscript [WWW] prefixed, the companion website
provides the supporting file or the required data. For information to access this
website, refer to the guide section: “ABOUT THE COMPANION WEBSITE” at the
beginning of this book.

CREATING AND USING A SCRIPT FILE (m-FILE) 5

clear
x=0:0.1:(10+The last digit of your student ID number);
for n=1:8

a=n/10;
if (a==0.2)

a=0.25;
end
y(n,:)=x.*sin(a*x);

end
plot(x,y)
xlabel(’x’)
ylabel(’y=x sin(ax)’)
legend(’a=0,1’,’a=0.25’,’a=0.3’,’a=0.4’,’a=0.5’,’a=0.6’,’a=0.7’,’a=0.8’)
grid on

3.A-1 Add a comment to explain each line in the m-file. Capture the commented
m-file.

3.A-2 Execute the m-file you have created. You can either click ‘run’ button in the
menu bar of the m-file editor or press the F5 key on the keyboard or type the m-file
name in the command window as

>>CH1_3A

Capture the result. To capture a figure, you may navigate to ‘Edit/Copy Figure’ in the
menu of the figure and then paste it in your report.

3.A-3 Execute the following commands in the MATLAB command window. Based
on the results, document the meanings of the two variables. Do not capture the
execution results.

>>x
>>y

3.B Let us write an m-file to plot sine waveforms of 10 different frequencies by
properly modifying the m-file created in 3.A.

3.B-1 Consider 10 sine waveforms whose frequencies are 1, 2, 3, 4, …, 10 Hz.
In your code, calculate the smallest period (the highest frequency) among these
waveforms and denote it by T. Then, overlay the 10 sine waveforms in the range of
−2T < t < 2T, the range of the time axis (x axis) in the graph. Use legend() to label
the 10 waveforms. Use a ‘for’ loop as done in the m-file in 3.A.

Capture the m-file and the execution result.

6 MATLAB AND SIMULINK BASICS

3.B-2 Use the command mesh() to plot the 10 sinusoids in a three-dimensional plot.
Then click the axis rotation button in the menu of the figure to rotate the axis of the
graph. Execute the m-file and capture the plot.

3.C The objective of this problem is to write an m-file to find the position of the
maximum value in each column (or row) of a matrix and to calculate the mean of
each column/row of the matrix.

3.C-1 [WWW]The m-file below, by using rand(), generates a 10 (row) × 9 (column)
matrix A. The elements of the matrix are independent and identically and uniformly
distributed between 0 and 3. By using max() twice, the m-file finds the maximum
elements of A and its row and column indexes.

%Do not append ’;’ at the end of the lines in this m-fie in order to see the result
of each line.
clc; clear
A=3*rand(9,10)

[B C]=max(A)
[D E]=max(B)

Max=D
Position=[C(E) E]

(a) Add a comment for each line to explain what it does. Capture the m-file.
(b) Execute the m-file. Capture all the execution results displayed in the command

window. You may need to scroll up or down the command window to avoid
missing any part of the execution results.

(c) Is the execution result of each line what you expected to see?

3.C-2 In the m-file of 3.C-1, add the part that computes the mean (use the function
mean()) of each row of the matrix. Also add the function to find the row with the
largest mean value. Capture the m-file and the execution result.

3.D [WWW]The m-file below plots the discontinuous function y(t) given in equation
(1.5) using logical operators.

y(t) =

{
sin

(
2𝜋 × 5t + 𝜋

3

)
1 ≤ t ≤ 2,

0 0 ≤ t < 1 or 2 < t ≤ 5.
(1.5)

clear;
t=0:0.01:5;
x=(1<=t)&(t<=2);
x2=sin(2*pi*5*t+pi/3);
y=x.*x2;
plot(t, y); axis([-1 6 -2 2])

[A]USER-DEFINED MATLAB FUNCTION 7

f(t)

t(s)1/2
1

2

FIGURE 1.1 Periodic function f (t).

3.D-1 (a) Add your explanation to each line as a comment and capture the m-file.
(b) Execute this m-file and capture the result.

3.D-2 Write an m-file to plot f (t) in Fig. 1.1 using sin() (or cos()) and Boolean
operators (==, >, < , <=, >=). Capture your m-file and the execution result.

1.4 [A]USER-DEFINED MATLAB FUNCTION

Similar to many other programming languages, MATLAB also supports the use of
user-defined functions to avoid repeatedly editing the main body of a code. User-
defined functions are similar to the built-in MATLAB commands or functions; they
follow certain syntax and are normally saved in the same folder where the main m-file
is located in, but it can be saved in a different folder. Through the following problem
you will learn how to write and to use user-defined MATLAB functions.

4.A Let us write a MATLAB function that converts a number in linear scale into dB
scale. In MATLAB, open the script file editor and write the following m-file. Save
the m-file as lin2dB.m (if you click “save,” the default file name will be lin2dB.m).

function xdB=lin2dB(x)
xdB=10*log10(x);

4.A-1 Execute lin2dB(100) in the command window. Capture the result.

4.A-2 Execute lin2dB([1 2 10 20 1/10]) in the command window. Capture the result
and check whether or not the results are correct.

4.B Let us write a MATLAB function that plots the Gaussian probability density
function.

4.B-1 Write the following m-file and save it. Add your comments explaining what
each line does or means.

function plot_gaussian(m, v)
x=m+sqrt(v)*(-5:0.01:5);
fx=1/sqrt(2*pi*v)*exp(-(x-m).̂ 2/(2*v));
plot(x,fx)

8 MATLAB AND SIMULINK BASICS

4.B-2 Execute plot_gaussian(0, 1) in the command window and capture the result.

4.B-3 Try a few arbitrary values for the arguments (i.e., the mean m and variance v)
of plot_gaussian(). Capture your results.

4.C Write a user-defined function swap(A,row0col1,c,d) that swaps two rows (or
columns) of a matrix. If row0col1 is 0, then swap(A, row0col1,c,d) swaps the c-th row
and the d-th row of a matrix A and returns the swapped matrix. If row0col1 is 1, then
swap(A,row0col1,c,d) swaps the c-th column and the d-th column of a matrix A and
returns the swapped matrix.

4.C-1 [WWW]An incomplete version of swap.m is provided below. Complete all
parts marked by ‘?’ and add a comment for each line you are completing.

function e=swap(A,row0col1,c,d)
e=A;
if row0col1==0

e(d,:)=A(c,:);
e(?,:)=A(?,:);

end

if row0col1==1
??;
??’

End

4.C-2 Execute the following command lines and capture the results. Check whether
or not your swap function works correctly.

>>x=rand(4,5)
>>y=swap(x,0,2,4)
>>z=swap(y,1,5,1)

1.5 DESIGNING A SIMPLE SIMULINK FILE

Complete all of the following steps but document only the results of Step 5.F-2 and
Step 5.G-6 in a report.

5.A Creating a new Simulink design file.

Step 5.A-1 Start MATLAB.

Step 5.A-2 In the command window, execute simulink to start Simulink as shown
below. You can also start Simulink from the menu bar, which might be different for
different MATLAB versions.

DESIGNING A SIMPLE SIMULINK FILE 9

>> simulink

Step 5.A-3 Press ‘Cntrl+N’ keys when the Simulink Library browser window is
active. A Simulink design window, which we call “design window” in short hereafter,
will open. Alternatively, you can use the shortcut icon in the menu bar, which may
be different for different Simulink versions.

5.B Adding blocks to the Simulink design window.
In the design window, you can import and add various functional blocks from the

Simulink library.

Step 5.B-1 The left side of Simulink Library browser window provides a list of the
function blocks.

Let us add a block that generates a sine waveform in the new Simulink model. The
sine waveform generator is one of the Simulink sources. A click on Simulink/Sources
will show all the blocks in the source directory. In order to get familiar with Simulink,
you might navigate to different categories such as Math Operations and Logic and
Bit Operations to check out the blocks in these directories.

Step 5.B-2 Click the block Sine Wave in Simulink/Sources and drag it into the
empty design window created in Step 5.A-3. This can also be done by right-clicking
the block and then choose ’Add…’.

Step 5.B-3 Browse through the Simulink/Sinks category and add the Scope block
in your design window as shown in Fig. 1.2.

If you are not sure in which directory (category) your desired block is, you can
search for it by entering the block name in the search input field in the menu of
Simulink Library Browser window.

5.C Connecting the blocks.
In order to get a desired system function, we must properly connect the output

of each block to the input of another block. Let us connect the output of the Sine
Wave block to the input of the Scope block. This can be done by simply clicking and
dragging the output port of the Sine Wave block to the input port of the Scope. One
can click on the source block and then ‘Cntrl+click’ on the destination block.

5.D Setting block parameters and simulation time.

Sine Wave Scope

FIGURE 1.2 Adding blocks to a new design.

10 MATLAB AND SIMULINK BASICS

The Simulink blocks typically have their default parameters. Double-click the
block to open the parameter setting window where a description of that block is also
provided.

NOTE: The same block may have different names, parameter names, and proce-
dures to set its parameters in different Simulink versions. If the instructions do not
work for your Simulink version, you may use the completed Simulink design files
uploaded on the companion website.

Step 5.D-1 Open the parameter setting window of the Sine Wave block. Check all
the parameters and try to understand what each of these parameters means.

Step 5.D-2 In this tutorial, we consider an example to generate sin(4𝜋t). Read the
description of the Sine Wave block and properly set Amplitude, Bias, Frequency
(rad/s), Phase (rad) to generate sin(4𝜋t). Note that in MATLAB pi is a reserved
variable equal to 𝜋.

Set the parameter Sample time of Sine Wave block to 1/100. The note below
provides some details about the parameter Sample time that is required for most of
the blocks to be used later.

NOTE: All the signals generated in Simulink blocks have their own Sample time
parameter. The Sample time parameter sets the sample time interval of the signal
generated by the block. Typically, Sample time should be set much smaller than the
inverse of the Nyquist rate. Such setting will make the sampled signal look like a
continuous signal when plotted. On the contrary, too small a value for Sample time
will increase simulation time. Note that for blocks with input port(s), Sample time of
-1 simply copies (inherits) the Sample time of the input signal(s).

Step 5.D-3 Open the Scope display window by double-clicking the Scope block.
Then, in the menu bar of the Scope display window, click the icon named Configu-
ration Properties (or Parameters in some old versions) to open the Scope parameter
setting window.

(a) The parameter Number of ports (Number of axes or simply Axes in some old
versions) determines the number of input ports of the Scope block. Set it as
1, since only one Sine Wave block’s output will be monitored.

(b) Click the Logging (History or Data History in some old versions) tab and
unselect the check box Limit data points to last.

Be aware that the graphical user interface such as the menu bar and the parameter
input fields might be different for different versions of Simulink.

Step 5.D-4 There is one input field in the menu bar of the design window. That
input field is for a parameter Simulation stop time. The number typed in that field
determines the execution time of the simulation, that is, the time up to which point
the signal is generated and processed, not the actual time required for running the
simulation. In this tutorial, we want to see 20 cycles of the output waveform of the
Sine Wave block set in Step 5.D-2, that is, sin(4𝜋t). Thus, we set the Simulation stop
time to 20 × (2𝜋∕4𝜋) = 10 seconds. Type in 10 in that input field.

DESIGNING A SIMPLE SIMULINK FILE 11

5.E Saving the files.
By using ‘File/Save as’ in the menu bar, save your design (currently untitled*). In

the Simulink versions before R2012a, the file extension is *.mdl. For R2012a and
newer versions, the file extension is *.slx by default, but the extension *.mdl is still
supported. You can save your design in any folder of your choice. Save your design
file as a new file.

5.F Running the simulation and observing the output waveforms.

Step 5.F-1 On the left side of the Simulation stop time input field, there is a play
button. Click it to run the simulation.

Step 5.F-2 If the simulation is complete, double-click the Scope block to open the
Scope display window. Capture the Scope display window. Examine whether the
waveform displayed in the Scope display window displays 20 cycles of the desired
sine waveform, that is, sin(4𝜋t).

Step 5.F-3 Change the parameters of the Sine Wave block to generate a different
sine waveform and capture your result. Examine whether the waveform is generated
as you set.

5.G Adding more blocks and observing multiple waveforms.
Before proceeding to the following steps, be sure to restore the parameters of Sine

Wave to those set in Step 5.D-2 to generate sin(4𝜋t).

Step 5.G-1 If more than one block of the same function are needed for the design,
you can copy and paste the one configured by right-clicking it and selecting copy in
the pop-up menu and then right-clicking anywhere else in the design and selecting
paste. You can also copy and paste the block by ‘Cntrl+C’ and ‘Cntrl+V’. Add one more
Sine Wave block using copy and paste. By default, the pasted block will be named
Sine Wave1.

Step 5.G-2 Search for the block Add (or Sum) in the Simulink library browser and
add it to the slx (or mdl) file.

Step 5.G-3 Referring Step 5.D-3, set Number of ports of the Scope block to 3.
Then, set Layout to 3×1 (no need in some old versions). Now the Scope block should
display three input ports.

NOTE: Throughout this book, be sure to properly set Layout dimension of the
Scope blocks to separately display the input signals as done here.

Step 5.G-4 Change the parameter Amplitude of Sine Wave into 2 to generate
2 sin(4𝜋t) and set the parameters of Sine Wave1 to generate sin(5.2𝜋t).

Step 5.G-5 Connect the blocks as shown in Fig. 1.3. To connect an output of a
block to the inputs of multiple destination blocks, left click and drag for connecting
to the first destination block. Then, right-click and drag for connecting to the rest of
the destination blocks.

Step 5.G-6 Run the simulation. Capture the Scope display window.

12 MATLAB AND SIMULINK BASICS

ScopeAdd
Sine Wave1

Sine Wave

FIGURE 1.3 A test design for sine waveform generation and observation.

Step 5.G-7 You can change the viewing ranges of the x axis (time axis) and y
axis in the Scope display window using the zoom icons in the menu bar. Locate the
corresponding icons for Zoom (to zoom in on data in both the x and y directions),
‘Zoom X-axis’, ‘Zoom Y-axis’, and Autoscale. Autoscale displays the whole graph.
Selecting any of the other three allows you to use the cursor to specify any viewing
range.

1.6 CREATING A SUBSYSTEM BLOCK

In a Simulink model, right-clicking any component will pop-up a menu that allows
the user to ‘Create Subsystem from Selection’, among many other functions. This
feature allows us to group certain parts, for example, the frequently used parts of a
design, into a single subsystem. The subsystem can be saved as a “user-defined” block
to enrich the library Simulink provides. For a complex design with large number of
components, creating subsystems will make the design a lot easier to read and to
understand.

In this section, we design two user-defined blocks, a Sound Source and a Spectrum
Viewer, that will be used frequently later in other chapters. Complete all of the
following steps but document only the results of 6.C-1 and 6.C-2 in a report.

6.A Creating the Sound Source subsystem block.

Step 6.A-1 [WWW]Download sound.mat from companion website and save it in
your work directory. Design a new Simulink model as shown in Fig. 1.4.

Set the parameters of each block as follows. Do not change other parameters not
mentioned here.

Analog
Filter Design

From File

untitled.mat

butter

FIGURE 1.4 Design for the subsystem named Sound Source.

CREATING A SUBSYSTEM BLOCK 13

Sound Source

Out1

FIGURE 1.5 Creating a subsystem Sound Source.

1. From File
� File name = sound.mat

2. Analog Filter Design
� Passband edge frequency[rads/s] = 2*pi*4e3

Step 6.A-2 Select both blocks. This can be done either by pressing and holding your
primary mouse button (typically the left button) while dragging the cursor to box in
all components you want to select or by holding down the ‘Shift’ key while selecting
the individual components one by one. To select all components in the design, you
can simply use ‘Cntrl+A’.

Then right-click one of the selected blocks to activate a pop-up menu and select
‘Create Subsystem from Selection’, or simply press ‘Ctrl+G’. Change the default sub-
system name, Subsystem, into Sound Source as shown in Fig. 1.5. Save the current
design as Sound_Source.mdl/slx in a directory.

Step 6.A-3 Double-click the Sound Source block to see the internal design. Capture
the internal design window.

6.B Creating the Spectrum Viewer subsystem block

Step 6.B-1 Open a new design window and design a new Simulink model as
shown in Fig. 1.6. Note that the Spectrum Analyzer was named Spectrum Scope
in earlier versions of Simulink. Be sure to use the Signal Specification block in
the Simulink/Signal Attribute category and use the Spectrum Analyzer block in DSP
System Toolbox/Sinks.

Step 6.B-2 For old Simulink versions that provide Spectrum Scope, instead of
Spectrum Analyzer, set the parameters of Spectrum Scope as follows. Do not change
any parameters not mentioned here.

inherit

Signal Specification

Spectrum
Analyzer

FIGURE 1.6 Design for the subsystem named Spectrum Viewer.

14 MATLAB AND SIMULINK BASICS

1. Scope Properties tab
� Spectrum Units = dBm (only for the versions that have this parameter)
� Buffer input : Select (check the box)
� Buffer size = 1024
� Number of spectral averages = 200

2. Axis Properties tab
� Frequency range = [-Fs/2 … Fs/2] (only for the versions that have this parame-

ter)
� Minimum Y-limit = -40
� Maximum Y-limit = 25

For Simulink versions that provide Spectrum Analyzer, instead of Spectrum
Scope, set the parameters of Spectrum Analyzer as follows.

1. Open the Spectrum Analyzer display window and browse ‘View/Spectrum Set-
tings’ from the menu bar or click the icon named Spectrum Settings on the
toolbar. Then, set the parameters as shown below. Do not change any other
parts not mentioned here.
� Main options/Type = Power
� In Main options, change RBW(Hz), which is default selection into Window

length and set Window length = 1024.
� Windows options/Overlap (%) = 6.25
� Trace options/Units = dBm
� Trace options/Average = 200

2. Browse View/Configuration Properties… from the menu bar or click the icon
named Configuration Properties on the toolbar. Set the parameters as follows.
� Y-limits (Minimum) = -40
� Y-limits (Maximum) = 25

The details of the parameter settings above have been tested in several Simulink
versions. For some other Simulink versions or future versions, you may need to
investigate a bit more, but the process will be pretty similar.

Step 6.B-3 Set the parameters of the Signal Specification block as follows. Do not
change other parameters not mentioned here.

� Sample time = 1/16e4

Step 6.B-4 As done in Step 6.A-2, select all and create the subsystem. Change the
subsystem name from Subsystem into Spectrum Viewer. Save the current design as
Spectrum_Viewer.mdl/.slx.

6.C Testing the subsystems created.
In this section, we observe the output spectrum of the Sound Source user-defined

block created in 6.A using the Spectrum Viewer user-defined block created in 6.B.

6.C-1 Design a new mdl/.slx as shown in Fig. 1.7. To import Sound Source and
Spectrum Viewer to your new design window, open Sound_Source.mdl/.slx and

CREATING A SUBSYSTEM BLOCK 15

Sound Source Spectrum Viewer

In1Out1

FIGURE 1.7 Design for testing the user-defined blocks Sound Source and Spectrum Viewer.

Spectrum_Viewer.mdl/.slx that you have saved as mentioned in in 6.A and 6.B and
copy and paste them.

Capture the competed design window.

6.C-2 Set Simulation stop time to 3 seconds and run the simulation. After simulation
is finished, capture the Spectrum analyzer display window. Follow the guidelines in
the note below for capturing the window.

NOTE: Before capturing the Spectrum Analyzer display window, be sure to
decrease the height of the window to get a width:height ratio of about 7:1 for the
graph portion as shown in Fig. 4.4 in Chapter 4. Also do not autoscale or change the
axis limits unless you are instructed to do so. Follow this guideline throughout all
the problems in this book that require the Spectrum Analyzer display window.

2
NUMERICAL INTEGRATION AND
ORTHOGONAL EXPANSION

� Calculate definite integrals using numerical integration.
� Express an arbitrary function as a linear combination of orthogonal basis

functions.

2.1 SIMPLE NUMERICAL INTEGRATION

In MATLAB, numerical integration of an arbitrary function can be done by using
the so-called “Riemann sum” [1,2]. The numerical integration method introduced in
this chapter will be used extensively in this book. An m-file example that calculates
the definite integral ∫ 12

x= 3 2xe−2xdx using the simplest version of “Riemann sum” is
shown below:

clear
a=3;
b=12;
xstep=0.01;
x=a:xstep:b ;
y=2*x.*exp(-2*x);
S=sum(y)*xstep

Problem-Based Learning in Communication Systems Using MATLAB and Simulink, First Edition.
Kwonhue Choi and Huaping Liu.
© 2016 The Institute of Electrical and Electronics Engineers, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/choi_problembasedlearning

16

http://www.wiley.com/go/choi_problembasedlearning

SIMPLE NUMERICAL INTEGRATION 17

1.A Write the m-file above and add a comment for each line explaining what it
does. (a) Capture the commented m-file. (b) Execute the m-file and capture the result.

1.B The function sum(x) computes the sum of the elements of vector x. Hence,
the last line of the above code, sum(y)*xstep, can also be written as xstep* y(1)+
xstep*y(2)+ xstep*y(3) +…, where the n-th term, that is, xstep* y(n), is equal to the
area of a rectangle with a width xstep and height y(n). Explain why sum(y)*xstep is
an approximate to the definite integral ∫ 12

x= 3 2xe−2xdx.

1.C The value of this integral approximately equals 0.0088. Change the step size
of variable x to 0.05, 0.1, 0.5, and 1 and execute the m-file for each case. Show
the results and explain why the error, that is, the difference between the numerical
integration result and the actual value, becomes larger as xstep increases.

1.D Write an m-file that calculates ∫ 5
x=−1 x2exdx using numerical integration. Cap-

ture the m-file and execution result.

1.E Write an m-file that calculates ∫ x= 5.01
x= 5 x3e−xdx using numerical integration.

Capture the m-file and execution result.

1.F Write an m-file that calculates ∫ 250
x = 0

e−x

2x+1
dx using numerical integration. Cap-

ture the m-file and execution result.

1.G Calculate the integrals in 1.D∼1.F by using symbolic math discussed in Sec-
tion 1.2 of Chapter 1. Be sure to perform double() after symbolic integration to get
the real values.

1.G-1 Compare the results obtained by using symbolic math with the numerical
integration result. Use the normalized error defined below to compute the difference
of these results:

Normalized error =
||||
Exact value − Numerical integration result

Exact value

|||| × 100%. (2.1)

1.G-2 If the normalized error is large, say, greater than 1%, explain why.

1.G-3 Make proper changes to your numerical integration code until the normalized
error is small. Capture the results.

1.H [A]Consider the two functions f (x) = 2x, g(x) = e−x. Write an m-file that cal-
culates ∫ t

0 f (𝜏)g(t − 𝜏)d𝜏 for t = 1 by using numerical integration. Capture the m-file
and execution result.

1.I [A]Write an m-file that calculates ∫ 10
0 2t × ej𝜔tdt for 𝜔 = −1, 0, 2, 1e3 by

using numerical integration. Capture the m-file and execution result.

1.J [A]Calculate the integrals given in 1.H and 1.I using symbolic math. (a) Capture
the m-file and execution result. (b) Compare the results with the numerical integration
results.

18 NUMERICAL INTEGRATION AND ORTHOGONAL EXPANSION

2.2 ORTHOGONAL EXPANSION

2.A Set the variable T = 8.XXX, where XXX = the last three digits of your student
ID number. For example, if your student ID is 20840258, then T = 8.258. Let s1(t) be
a sine waveform with period 2T and sn(t) be a sine waveform with a frequency that
equals n times of the frequency of s1(t).

The goal is to check whether or not the elements of a signal set {s1(t), s2(t), s3(t),…}
are mutually orthogonal over the range 0 ≤ t ≤ T using numerical integration and
symbolic math methods.

2.A-1 [T]Mathematically verify that {s1(t), s2(t), s3(t),…} is an orthogonal set 1.
The signal s1(t) defined above can be expressed as s1(t) = sin(2𝜋f1t) with a period
2T. Thus, f1 = 1/(2T). Similarly, sn(t) defined above can be expressed as sn(t) =
sin(2𝜋nf1t). Show that the inner product ∫ T

0 sl(t)s
∗
k (t)dt equals 0 for any positive

integers l and k by substituting sl(t) and sk(t) into this expression.

2.A-2 [WWW]Complete the following m-file, which generates the sample vectors
for s1(t) and s2(t) over the range 0 ≤ t ≤ T and calculates the energy of s1(t) and s2(t)
using numerical integration. Document the complete m-file and the execution results.

clear
T=8.XXX ; % The last three digits of your student ID number
t_step=1e-3;
t=0:t_step:T;
f1=1/(2*T); % Frequency of s1(t)
s1t=sin(2*pi*f1*t); % Sampled vector of s1(t)
s2t=sin(??); % Sampled vector of s2(t)
E1=sum(abs(s1t).̂ 2)*t_step % Create the energy E1= ∫ T

0 |s1(t)|2dt with numerical
integration
E2=??
%Do not attach ’;’ to the last two lines calculating E1 and E2.

2.A-3 [WWW]From the signal set {s1(t), s2(t), s3(t),…}, select sl(t) and sk(t), where l
equals the last digit of your student ID plus 1 and k equals the second to the last digit
of your student ID plus 1. The following is an incomplete m-file, which generates the
sample vectors of sl(t) and sk(t) and verifies that the inner product of the two vectors
equals 0 with numerical integration.

(a) Complete this m-file, that is, determine all the quantities marked by ‘?’. Capture
the complete m-file and the execution result.

(b) Determine whether or not the two signals are orthogonal. Note that with
numerical methods, there is always a residual error.

ORTHOGONAL EXPANSION 19

clear
T=8.XXX ; % XXX=The last three digits of your student ID number.
t_step=1e-3;
t=0:t_step:T;
f1=1/(2*T); % Frequency of s1(t)

l=A+1; % A = The last digit of your student ID number
k=B+1; % B= The second last digit of your student ID number.

slt=sin(2*pi*f1*l*t); % Sampled vector of sl(t).
skt=??; % Sampled vector of sk(t).

InnerProduct=sum(slt.*conj(?))*? %Do not attach ’;’ to see the result.

2.A-4 [WWW]Now, we verify that the inner product is 0 by using symbolic math,
where t is a symbolic variable, rather than a sampled time vector. Complete the
following m-file and show the execution result.

clear
T=8.XXX ; % The last three digits of your student ID number
syms t
f1=1/(2*T);

l=A+1; % A = The last digit of your student ID number.
k=B+1; % B= The second last digit of your student ID number.

slt=sin(2*pi*l*f1*t);
skt=??;

InnerProduct=int(?*conj(?),t,?,?)
double(InnerProduct)

2.B [WWW]Consider the function f(t) = t3e−tcos(t) over the range of 0 ≤ t ≤ T,
where T takes the same value as given in 2.A. We will approximate this function as
f (t) ≅

∑N
n= 1 fnsn(t) using the orthogonal set {s1(t), s2(t), s3(t),…} given in 2.A. Note

that fn, which minimizes the approximation error between f(t) and
∑N

n = 1 fnsn(t), is
derived as a function of f(t) and sn(t) as

fn =
∫ T

0 f (t)s∗n(t)dt

∫ T
0 sn(t)s∗n(t)dt

, (2.2)

where s∗n (t) is the complex conjugate of sn(t).

20 NUMERICAL INTEGRATION AND ORTHOGONAL EXPANSION

The incomplete m-file below calculates f1, f2, …, fn using numerical integration
and plots the curves for both f(t) and

∑N
n=1 fnsn(t), with N = 3 as an example.

clear
N=3;
T=8.XXX ; % XXX= The last three digits of your student ID number
t_step=1e-3;
t=0:t_step:T;
ft=(t.̂ 3).*exp(-t).*cos(t) ; % Sampled vector of f(t)=t3e-tcos(t)
f1=1/(2*T);
ft_approx= zeros(1, length(t)); %Generate an all-zero vector of the same length as the
sampled time vector ‘t’.
for n=1:N

snt=sin(2*pi*n*f1*t); % Sampled vector of sn(t).
f_n=(sum(?.*conj(?))*t_step)/(sum(?.*conj(?))*t_step);
%Generate fn in (2.2) with numerical integration.

ft_approx = ft_approx + f_n*snt ; % Calculate the partial sum
N∑

n = 1
fnsn(t).

end
figure
plot(t, ft)
hold on
plot(t, ft_approx, ’r’)
legend(’ft’, ’ft_{approx}’)

2.B-1 Complete the m-file above (fill in the places marked by ‘?’ with appropriate
MATLAB variables) and capture the completed m-file.

2.B-2 Complete Table 2.1; that is, determine the mathematical expression that
corresponds to each the MATLAB variables in the m-file above.

2.B-3 Execute the m-file and capture the resulting graph.

2.C Execute the m-file of 2.B for the cases of N = 5, 7, and 15. Check whether∑N
n = 1 fnsn(t) approximates f(t) better as N increases. Analyze the resulting figure to

validate your observation.

TABLE 2.1 Variables and Corresponding
Expression in the m-file in 2.B.

Variable Expression

ft
Snt sin(2𝜋nf1t)
f_n
ft_approx

www.ebook3000.com

http://www.ebook3000.org

ORTHOGONAL EXPANSION 21

2.D [A]Consider the case in which the period of the sine waveform s1(t) is T, rather
than 2T. The frequency of sn(t), which equals n times of the frequency of s1(t), is
different from those in 2.A-1 as well.

2.D-1 Modify the line ‘f1=1/(2*T)’ into ‘f1=1/T’ in the m-file created in 2.B. Set N =
35 in the modified m-file and execute it. Capture the execution result.

2.D-2 Compare the plot obtained in 2.D-1 with the plots obtained in 2.C for which
the period was set to 2T. Check whether or not the set {s1(t), s2(t), s3(t),…} in 2.D-1
is a “complete” orthogonal set based on the note below.

NOTE: A property of a “complete” orthogonal set: An orthogonal set {s1(t), s2(t),
s3(t),…} is “complete” if the difference between the original function f(t) and the
approximated functions

∑N
n = 1 fnsn(t) converges to 0 as N approaches infinity [3–6].

2.E Consider a periodic function fT(t) with a period T = t2 − t1 generated by period-
ically extending a time limited function f(t) defined over t1 ≤ t ≤ t2. The exponential
Fourier series coefficient of fT(t) is calculated as [7, 8]

Fn =
∫ t2

t1
f (t)e−jn𝜔0tdt

∫ t2
t1

ejn𝜔0te−jn𝜔0tdt

= 1
t2 − t1 ∫

t2

t1

f (t)e−jn𝜔0tdt.

(2.3)

2.E-1 (a) [T]Complete the Fourier series coefficient expression in equa-
tion (2.3) by expressing 𝜔0 as the function of t1 and t2. (b) Prove that
with the 𝜔0 obtained in (a), the elements of the set of complex sinusoids
{… , e−j2𝜔0t, e−j𝜔0t, ej0×𝜔0t, ej𝜔0t, ej2𝜔0t, …} are mutually orthogonal over t1 ≤
t ≤ t2.

2.E-2 [WWW]Calculate the exponential Fourier series coefficients Fn of the periodic
function fT(t), for which the time limited function f(t) is given in 2.B. Perform the
orthogonal expansion over the interval 0 ≤ t ≤ T by using the complex sinusoids set
{…, e−j2𝜔0t , e−j𝜔0t, ej0×𝜔0t, ej𝜔0t, ej2𝜔0t,… }. The following m-file calculates the
exponential Fourier series coefficient Fn using the numerical integration method and
plots f(t) and

∑3
n=−3 Fnejn𝜔0t over the interval 0 ≤ t ≤ T . Execute the m-file below

and show the execution result.

clear
N=3;
T=8.XXX ; % XXX=The last three digits of your student ID number.

t1=0;
t2=T;
t_step=1e-3;
t=t1:t_step:t2;

22 NUMERICAL INTEGRATION AND ORTHOGONAL EXPANSION

ft=(t.̂ 3).*exp(-t).*cos(t) ;

w0=2*pi/(t2-t1); % For this problem, we may directly set w0= 2*pi/T.

ft_approx=zeros(1, length(t));
for n=-N:N

nth_exp=exp(j*n*w0*t);
f_n=(sum(ft.*conj(nth_exp))*t_step)/(sum(nth_exp.*conj(nth_exp))*t_step);%or
(sum(ft.*conj(nth_exp))*t_step)/T
ft_approx = ft_approx + f_n*nth_exp;

end

figure
plot(t, ft)
hold on
plot(t, ft_approx, ’r’)
legend(’ft’ , ’ft_{approx}’)

2.E-3 Modify the m-file to plot
∑7

n =−7 Fnejn𝜔0t and
∑15

n =−15 Fnejn𝜔0t. Execute the
modified m-file and capture the results.

2.E-4 Based on the result in 2.E-3, check whether or not the orthogonal function
set in 2.E-2, that is, {… , e−j2𝜔0t, e−j𝜔0t, ej0 × 𝜔0t, ej𝜔0t, ej2𝜔0t, …}, with a proper
𝜔0 is “complete.”

2.E-5 [A]Explain why the orthogonal function set in 2.D is not “complete” and the
orthogonal function set in 2.E-2 is “complete” although the smallest frequency (the
fundamental frequency or frequency spacing) used in 2.D and 2.E-2 is the same.

2.E-6 [A]Explain why the orthogonal function set used in 2.A to 2.C is “complete”
although it consists of only real-valued sine functions just like those used in 2.D,
which is “incomplete.”

2.F [A]Perform the orthogonal expansion of an arbitrary time-limited function; that
is, express an arbitrary function as a linear combination of orthogonal functions.
Equations (2.4)–(2.6) illustrate three examples of the time-limited functions.

f (t) = t2 + 2t + 4, −1 ≤ t ≤ 3, (2.4)

f (t) =
log(5 + t)esin(x)

t2 + 1
, 2 ≤ t ≤ 10, (2.5)

f (t) = sin(5t) + 3
e−t + 0.1

+ 0.05t2, 0.5 ≤ t ≤ 5. (2.6)

REFERENCES 23

2.F-1 Choose one of your own continuous-time function f(t) defined over the period
of t1 ≤ t ≤ t2 with your own choices of t1 and t2. You may choose one of the examples
given in equations (2.4)–(2.6). Write your chosen f(t).

2.F-2 Write an m-file to plot your chosen f(t) over the time interval t1 ≤ t ≤ t2.
Be sure to set t_step sufficiently small so that your graph looks smooth. Show your
graph.

2.F-3 Properly modify the m-file completed in 2.E-2 to generate
∑15

n = −15 Fnejn𝜔0t

for your chosen f(t). Overlay the resulting curve on the curve of f(t) over the period
t1 ≤ t ≤ t2. Check whether

∑15
n =−15 Fnejn𝜔0t approximates f(t) well over the time

period t1 ≤ t ≤ t2.

REFERENCES

[1] G. E. Shilov and B. L. Gurevich, Integral, Measure, and Derivative: A Unified Approach,
Mineola, New York: Dover, 1978.

[2] T. Apostol, Mathematical Analysis, North Reading, MA: Addison-Wesley, 1974.

[3] D. C. Lay, Linear Algebra and Its Applications, 3rd ed., Boston, Columbus, North Reading,
MA: Addison-Wesley, 2006.

[4] G. Strang, Linear Algebra and Its Applications, 4th ed., Belmont, CA: Brooks/Cole, 2006.

[5] S. Axler, Linear Algebra Done Right, 2nd ed., New York: Springer, 2002.

[6] W. Rudin, Real and Complex Analysis, New York: McGraw-Hill, 1987.

[7] W. Rudin, Principles of Mathematical Analysis, 3rd ed., New York: McGraw-Hill, Inc.,
1976.

[8] A. Zygmund, Trigonometric Series, 3rd ed., Cambridge, UK: Cambridge University Press,
2002.

3
FOURIER SERIES AND FREQUENCY
TRANSFER FUNCTION

� Obtain the Fourier series of periodic signals and conduct simulation in Simulink.
� Obtain the frequency transfer function of a linear system and simulate it in

Simulink.

3.1 DESIGNING THE EXTENDED FOURIER SERIES SYSTEM

The periodic square wave fT (t) with period T can be represented by the Fourier series
[1, 2] as

fT (t) = 4
𝜋

(
cos𝜔0t − 1

3
cos 3𝜔0t + 1

5
cos 5𝜔0t −⋯

)
, where 𝜔0 = 2𝜋

T
. (3.1)

The goal of this section is to check, in Simulink, whether the right-hand side of
(3.1) converges to fT (t). Since the right-hand side of equation (3.1) is the sum of
infinite number of scaled cosine waveforms of different frequencies, it is impossible
to generate it exactly in Simulink. Thus, we will perform a partial-sum approximation.

1.A In the following steps, set T to the last two digits of your student ID number.

1.A-1 Determine the value of T; for example, if your student ID is 20123247, then
T = 47.

1.A-2 Calculate the fundamental frequency 𝜔0 for the T value obtained in 1.A-1.

Problem-Based Learning in Communication Systems Using MATLAB and Simulink, First Edition.
Kwonhue Choi and Huaping Liu.
© 2016 The Institute of Electrical and Electronics Engineers, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/choi_problembasedlearning

24

http://www.wiley.com/go/choi_problembasedlearning

FREQUENCY TRANSFER FUNCTION OF LINEAR SYSTEMS 25

1.B Design a slx/mdl file as shown in Fig. 3.1.

Sine Wave

Sine Wave1 Sine Wave2 Sine Wave3 Sine Wave4 Sine Wave5 Sine Wave6 Sine Wave7 Sine Wave8 Sine Wave9

Scope

FIGURE 3.1 Design for a partial-sum approximation of fT (t).

Be sure to properly arrange the Sine Wave blocks so that their names occur in
numerical order as shown in Fig. 3.1. Set the parameters of the Sine Wave blocks as
follows:

� Phase = pi/2
� Sample time = 0.1

1.B-1 Determine the trigonometric formula and explain the reason for setting the
Phase of all Sine Wave blocks to 𝜋/2 in order to approximate the right-hand side of
equation (3.1).

1.B-2 Set Amplitude and Frequency (rad/s) for all Sine Wave blocks according to
equation (3.1) given the value of T set for your design. For example, if T = 47, then
set Amplitude = 4/pi*(−1/7) and Frequency (rad/s) = 7*(2*pi/47) for Sine Wave3.

1.B-3 Run the simulation for a duration of 20 T. For example, if T = 47, then the
simulation stop time = 47*20. Make sure that Layout of the Scope display window is
properly set to separately display the input signals and then capture the Scope display
window.

1.B-4 Document your observations on the Fourier series approximation of the
periodic square wave as the number of sinusoids increases in the sum. Assess both
the shape and the period of the approximated waveform.

3.2 FREQUENCY TRANSFER FUNCTION OF LINEAR SYSTEMS

If a complex sinusoid of frequency 𝜔 rad/s—that is, exp(j𝜔t)—is applied as the input
of a linear system, the steady-state output is also a complex sinusoid of the same fre-
quency 𝜔 rad/s. The amplitude and phase of output complex sinusoid are determined
by the system frequency response. In other words, the output g(t) can be expressed
as g(t) = H (𝜔) exp (j𝜔t), where H (𝜔) is a complex-valued function of the input
frequency 𝜔. Rewrite g(t) as g(t) = H (𝜔) exp (j𝜔t) = |H (𝜔)| ej∡H(𝜔) exp(j𝜔t) =|H (𝜔)| exp(j𝜔t + j∡H(𝜔)). Clearly, the magnitude and the phase of the output com-
plex sinusoid g(t) are equal to |H (𝜔)| and ∡H (𝜔), respectively. The function H (𝜔),

26 FOURIER SERIES AND FREQUENCY TRANSFER FUNCTION

C

R

f(t) g(t)i(t)

FIGURE 3.2 RC low pass filter.

which is the Fourier transform of the system impulse response, is called the frequency
transfer function [3,4]. We will explain this concept using a simple RC circuit [5,6].

2.A [T]Let f(t) and g(t) denote, respectively, the input and the output voltages of the
RC circuit shown in Fig. 3.2. Prove that the input and the output relationship of this
circuit can be written as a linear differential equation expressed as

f (t) = RC
dg(t)

dt
+ g(t). (3.2)

2.B [T]To find H (𝜔), substitute the input f (t) = exp (j𝜔t) and the output g(t) =
H (𝜔) exp (j𝜔t) into the differential equation derived in 2.A and then rearrange the
equation. Show that H (𝜔) can be written as H (𝜔) = 1∕(1 + j𝜔RC).

2.C [T]Assume R = 0.5 kΩ and C = (1000 + the last three digits of your student ID
number) μF. For example, if your student ID is 20123465, the set C = 1465e-6 F. For
each of the input frequencies 𝜔 in the first column of the following table, calculate|H (𝜔)| and ∡H (𝜔) for H (𝜔) given in 2.B and complete Table 3.1.

TABLE 3.1 Output Amplitude and Phase of an RC Low Pass Filter Shown
in Fig. 3.2.

Input frequency
𝜔 [rad/s] Amplitude of output |H (𝜔)| Phase of output, ∡H (𝜔),

where ∡H (𝜔) = arctan
(

Im(H(𝜔))

Re(H(𝜔))

)
rad

−120
−40
−10
−5

0
5

10
40

120

VERIFICATION OF THE FREQUENCY TRANSFER FUNCTION 27

2.D [WWW]Complete the m-file below that plots |H (𝜔)| as a function of 𝜔 in the
range of 𝜔 = [−120 ∼ 120] using the following steps:

Step 1. Define a vector w that represents the discrete version of𝜔, and set its initial
value at −120 and final value of 120 with a step size of 0.1.

Step 2. Calculate |H (𝜔)| for each element of 𝜔. Avoid using the ‘for’ loop since
the results for all elements of the vector can be calculated using a single line of
MATLAB code via vector operation.

Step 3. Plot |H (𝜔)| versus 𝜔 using the plot() command.

clear
w=-120:0.1:120;
R=0.5e3;
C= 1XXXe-6; % XXX is the last three digits of your student ID number
Hw=??; % Be sure to use ./, instead of /, if you divide element by element.
plot(?, abs(?))

2.E Modify the m-file completed in 2.D to plot ∡H (𝜔) in the range of 𝜔 =
[−120 ∼ 120] and capture your modified m-file.

2.F Examine the execution results of the m-files completed in 2.D and 2.E. Also
explain why this RC circuit is called a “low pass filter” based on the simulation
results.

3.3 VERIFICATION OF THE FREQUENCY TRANSFER FUNCTION
OF LINEAR SYSTEMS IN SIMULINK

In this section, we verify the answers to the problem in Section 3.2 in Simulink. Make
sure that your MATLAB/Simulink copy has Simulink toolbox SimPowerSystems. If
you are not sure whether your MATLAB copy has this toolbox or whether you cannot
locate this toolbox from the library list in the Simulink Library Browser, you can type
in SimPowerSystems in the search input field of the Simulink Library Browser to
search for it.

3.A [WWW]First, model the RC circuit in Fig. 3.2 in Simulink. Design an mdl/.slx
file as shown in Fig. 3.3. Search and add powergui, Sine Wave, Controlled Voltage
Source, two Series RLC Branch, Voltage Measurement, and Ground. The correct
Simulink library path for Ground here is Sim power systems\Elements. To rotate any
of the blocks, right-click the block to pop-up a menu.

Next, set the parameters of each block as follows. Do not change the parameters
not mentioned below.

1. Sine Wave
� Sample time = 1e-4

28 FOURIER SERIES AND FREQUENCY TRANSFER FUNCTION

Series RLC Branch

Series RLC Branch1

Continuous

powergui

v+
–

Voltage
Measurement

Sine Wave

Scopes
– +

Controlled
Voltage Source

+

+

FIGURE 3.3 Simulink design for RC low pass filter shown in Fig. 3.2.

2. Series RLC Branch
� Branch type = R
� Resistance (Ohm) = 0.5e3

3. Series RLC Branch1. Note that the Series RLC Branch 1 shown in Fig. 3.3 is
rotated clockwise by 90◦.
� Branch type = C
� Capacitance (F)= 1XXXe-6, where XXX= the last three digits of your student

ID number.

4. Scope: Open Scope display window and then select the Parameters icon.
� Unselect Limit data points to last in the Logging tab or Data Logging tab in

some Simulink versions.

3.A-1 Capture the Simulink design window of the mdl/.slx file you designed.

3.A-2 Determine which port of which block corresponds to the input f(t) and output
g(t) in Fig. 3.2, respectively.

3.B In the following steps, change the input frequency in the mdl/.slx file completed
in 3.A and measure the corresponding amplitude and the frequency of the output.

3.B-1 Set the input frequency to 120 rad/s, that is, set the parameter Frequency
(rad/s) of the Sine Wave block to 120 and then run the simulation for 10 seconds.
After the simulation is completed, Autoscale the Scope display window. Capture the
Scope display window.

3.B-2 Measure and record the output signal frequency from the window captured
in 3.B-1. Compare the measured output frequency with the input frequency.

3.B-3 Measure and record the output signal amplitude after the transient response
disappears. Also assess whether it matches the answer in the table completed
in 2.C.

STEADY-STATE RESPONSE OF A LINEAR FILTER TO A PERIODIC INPUT SIGNAL 29

TABLE 3.2 Output Frequency and Amplitude of the RC Low Pass Filter
in Section 3.A.

Input frequency 𝜔 (rad/s)
Output
frequency

Amplitude of output
in steady state

−120
−40
−10
−5

0 (Set Phase of the Sine Wave to pi/2)
5

10
40

120

3.B-4 Repeat 3.B-1 to 3.B-3 for each of the frequencies in Table 3.2. Measure the
frequency and amplitude of the output and complete the table.

Note that a negative value is not allowed for the parameter Frequency (rad/s) of
the Sine Wave block. However, using the identity sin (−𝜔t) = − sin (𝜔t), a negative
frequency can be realized by setting Amplitude to −1 with a positive value for
Frequency (rad/s).

3.B-5 Compare your theoretical results of the output amplitudes in the second
column of the Table 3.1 and the simulation results in 3.B-4.

3.4 STEADY-STATE RESPONSE OF A LINEAR FILTER TO A
PERIODIC INPUT SIGNAL

In this section, we determine the output signal g(t) when a nonsinusoidal, periodic
signal f(t) is applied as the input to the RC circuit shown in Fig. 3.2. First, we derive
the output expression using the linearity property of the filter. Then, we simulate the
system in Simulink to verify the theoretical results.

Suppose that f(t) is a periodic square function of period 2 expressed as

f (t) =
{

1 0 ≤ t < 1
−1 1 ≤ t < 2

and f (t) = f (t + 2) ∀t. (3.3)

Recall that the periodic function f(t) can be represented by the Fourier series as

f (t) =
∞∑

n=−∞
Fnejn𝜔0t, where 𝜔0 = 2𝜋

T(= 2)
= 𝜋 and Fn =

{
2

jn𝜋
, n = odd,

0, n = even.

(3.4)

30 FOURIER SERIES AND FREQUENCY TRANSFER FUNCTION

Equation (3.4) shows that the periodic square wave is represented as a weighted
superposition of complex sinusoids (… , ej(n − 1)𝜔0t, ejn𝜔0t, ej(n + 1)𝜔0t, …). Based
on the linearity property of linear systems (the RC circuit in this case) and the concept
of frequency transfer function, the system output g(t) can also be written as a weighted
superposition of complex sinusoids. The following projects explore this problem.

4.A [T]Let H (𝜔) be the system frequency transfer function. For the special input
signal ej𝜔t, the output is expressed as H (𝜔) ej𝜔t.

4.A-1 The frequency of ejn𝜔0t is n𝜔0 rad/s. Determine the output for the input signal
ejn𝜔0t.

4.A-2 Determine the output for the input signal Fnejn𝜔0t. Explain how the linearity
property is applied in reaching this output signal.

4.A-3 Determine the output expression for the input F−2e−j2𝜔0t + F−1e−j𝜔0t +
F0ej0𝜔0t + F1ej𝜔0t + F2ej2𝜔0t. Again, explain how the linearity property is used in
deriving this output signal.

4.A-4 Explain why the output g(t) can be expressed as g(t) =
∞∑

n=−∞
Gnejn𝜔0t with

Gn = H
(
n𝜔0

)
Fn if the input f(t) is a periodic function, which can be expressed as

∞∑
n=−∞

Fnejn𝜔0t.

4.A-5 Based on the result in 4.A-4, explain why the output g(t) is also periodic if
the input f(t) is a periodic signal.

4.B In this subsection, we plot the output g(t) =
∞∑

n=−∞
Gnejn𝜔0t with Gn obtained in

4.A-4.

4.B-1 [WWW]The exact signal g(t) requires infinite number of terms in the Fourier
series expansion. The following m-file plots the partial-sum (gt_approx in the m-file)
approximation of g(t) with n taking on the integers from −100 to 100.

Complete the places marked by ‘?’ in the m-file below. Add a comment for each
line of the m-file to explain what it does. Especially for the lines with the sign ‘=’,
explain what the variables on the left-hand side represent and the reason (why and
how) the right-hand side expression is appropriately constructed accordingly.

Capture the completed m-file.

clear
R=0.5e3;
C=1XXXe-6; % XXX is the last three digits of your student ID.
t=0:(1/1000):20;
T=2;
w0=(2*pi)/?;
gt_approx=0;

REFERENCES 31

for n=-100:100
if mod(n,2)==0

Fn=0; % Equation (3.4)
else

Fn=?; % Equation (3.4)
end
w=n*w0;
Hw=1/(1+j*R*C*w);
Gn=Hw*?; % 4.A-4
gt_approx=gt_approx + Gn*exp(j*n*w0*t);

end
figure
plot(t,gt_approx);
grid

4.B-2 Execute the m-file above. Capture the plot.

4.C The theoretically output waveform derived in 4.B-2 can be verified in Simulink.
In the mdl/.slx file designed in 3.A, replace the Sine Wave block with a Signal
Generator block (you may search for it in the Simulink Library Browser).

Set the parameters of the Signal Generator block as follows.

� Wave form = Square
� Amplitude = −1
� Frequency = 1/2

4.C-1 Run the simulation for 20 seconds. After the simulation is completed, select
Autoscale on the Scope display window and then capture the result.

4.C-2 Assess whether the input waveform in 4.C-1 is consistent with equation (3.3).

4.C-3 Determine whether the simulated output waveform in 4.C-1 is the same as
the theoretical output waveform derived and plotted in 4.B-2. The (x, y) coordinates
of the local peaks are good checkpoints for this assessment. Also, in comparing the
waveforms, exclude the initial portion of the simulated output waveform since it takes
the system some time to reach the steady state.

REFERENCES

[1] W. Rudin, Principles of Mathematical Analysis, 3rd ed., New York: McGraw-Hill, Inc.
1976.

[2] A. Zygmund, Trigonometric Series, 3rd ed., Cambridge, UK: Cambridge University Press,
2002.

32 FOURIER SERIES AND FREQUENCY TRANSFER FUNCTION

[3] C. L. Phillips, J. M. Parr, and E. A. Riskin, Signals, Systems and Transforms, Upper Saddle
River, NJ: Prentice Hall, 2007.

[4] J. P. Hespanha, Linear System Theory, Princeton, NJ: Princeton University Press, 2009.

[5] A. Agarwal, J. H. Lang, Foundations of Analog and Digital Electronic Circuits, Cambridge,
MA: Morgan Kaufmann, 2005.

[6] J. D. Irwin, Basic Engineering Circuit Analysis, River Street, Hoboken, NJ: Wiley, 2006.

4
FOURIER TRANSFORM

� Investigate signal spectra in Simulink.
� Perform the Fourier transform of the sampled audio signals.

4.1 THE SPECTRUM OF SINUSOIDAL SIGNALS

1.A [T]Determine the inverse Fourier transforms of the following three sig-
nals expressed in the frequency domain using the defining equation f (t) =
1

2𝜋
∫ ∞
−∞ F(𝜔)ejt𝜔d𝜔 [1–3]. For simplicity, we will use the term “spectrum” to refer to

the Fourier transform of a time function when it does not cause confusion.

1.A-1 2𝜋𝛿(𝜔 − 𝜔0).

1.A-2 𝜋

[
𝛿(𝜔 − 𝜔0) + 𝛿(𝜔 + 𝜔0)

]
.

1.A-3 −j𝜋
[
𝛿(𝜔 − 𝜔0) − 𝛿(𝜔 + 𝜔0)

]
.

1.B [WWW]Start a new Simulink design as shown in Fig. 4.1. For the multiple copies
of the same block (the two Sine Wave blocks and three Spectrum Viewer subsystem
blocks), make sure that numbers in the names of these blocks occur in numerical
orders from left to right in the model, as shown in Fig. 4.1.

Problem-Based Learning in Communication Systems Using MATLAB and Simulink, First Edition.
Kwonhue Choi and Huaping Liu.
© 2016 The Institute of Electrical and Electronics Engineers, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/choi_problembasedlearning

33

http://www.wiley.com/go/choi_problembasedlearning

34 FOURIER TRANSFORM

Sine Wave1 Gain

j

Add

+
+

In1 In1 In1

Spectrum

Viewer

Spectrum

Viewer1

Spectrum

Viewer2

Sine Wave

FIGURE 4.1 System to observe the spectra of sinusoids.

Set the parameters of each block as follows. Do not change the parameters not
mentioned below.

1. Sine Wave
� Frequency (rad/s) = 2*pi*(20+Last digit of your student ID number)*1000
� Phase = pi/2

2. Sine Wave1
� Frequency (rad/s) = 2*pi*(20+Last digit of your student ID number)*1000
� Phase = 0

3. Spectrum Viewer, Spectrum Viewer1, and Spectrum Viewer2

Download Spectrum_Viewer_only_for_CH4.mdl/.slx from the companion website.
Copy the subsystem Spectrum Viewer saved in that file and paste it in your design
if your Simulink version is compatible (i.e., it opens the .mdl/.slx file without a
problem).

If your Simulink version is not compatible, then copy and paste the subsystem
Spectrum Viewer created in 6.B of Chapter 1 and revise the parameter of Spectrum
Analyzer (previously Spectrum Scope) inside Spectrum Viewer.

� For versions 2013 and 2014b, View/Spectrum Setting/Trace options/Unit =
Watts

� For version 2009, Spectrum Unit of Scope properties tab = Watts
� For version 2007, Amplitude scaling of Axis properties tab = Squared magni-

tude

In these versions, the setting typically displays the spectrum in linear scale, not
dB scale.

THE SPECTRUM OF SINUSOIDAL SIGNALS 35

For convenience, set the parameter for the first Spectrum Viewer only and then
make two copies of this subsystem to maintain the same set of parameters. Do not
modify the original copy of Spectrum Viewer in Spectrum_Viewer.mdl/slx created in
6.B of Chapter 1. We will open this file and use this original copy in other chapters
in order to observe the spectrum in dB scale.

4. Gain
� Gain = j

1.B-1 Complete the output mathematical expressions of the following blocks:

(a) Sine Wave1: ? (The answer will be sin (2𝜋 × 25000t) if the last digit of your
student ID is 5)

(b) Sine Wave: ? (Use the identity sin (x + 𝜋∕2) = cos (x))
(c) Gain: ?
(d) Add: ?

1.B-2 Run the simulation for 10 seconds. After the simulation is completed, capture
the scope windows of the three Spectrum Viewers. Since we have not changed the
scope window location setting, the three scope windows will overlap. Move the
windows away from one another so that they do not overlap. Follow the guideline at
the end of Chapter 1 for capturing the scope window.

1.B-3 Again, note that the scope window of Spectrum Viewer shows the absolute
value of the spectrum (Fourier transform) of the input signal. We should be able to
clearly see the line spectra in all three Spectrum Viewer scope windows. Determine
the following items for each window:

(a) Number of spectral lines
(b) Position of the spectral lines (the x axis values and provide the unit)
(c) Whether the number of spectral lines and the positions of the spectral lines are

consistent with your answers to Problem A

1.B-4 Change the Frequency (rad/s) parameter of the Sine Wave1 block to 2*pi*3e3,
and run the simulation again. Capture the Spectrum Viewer1 scope window. Deter-
mine the positions of the spectral lines and check whether they are consistent with
your answer to 1.A.

1.B-5 Set the Phase of the Sine Wave1 block to any real number and run the
simulation again. Capture the Spectrum Viewer1 scope window. Assess whether the
position of line spectrum depends on the phase. Why?

36 FOURIER TRANSFORM

4.2 THE SPECTRUM OF ANY GENERAL PERIODIC FUNCTIONS

We now analyze the spectrum of any general periodic functions. The Fourier transform
F
[
fT (t)

]
of the periodic function fT (t) with period T is given as

F
[
fT (t)

]
=

∞∑
n=−∞

2𝜋Fn𝛿
(
𝜔 − n𝜔0

)
, (4.1)

where𝜔0 = 2𝜋∕T is the fundamental frequency and Fn is the Fourier series coefficient
obtained as [1–3]

Fn = 1
T ∫

T

0
fT (t)e−jn𝜔0tdt

(
or ∫

t0+T

t0

fT (t)e−jn𝜔0tdt

)
, (4.2)

where t0 is an arbitrary real number.

2.A [T]Prove equation (4.1) through the following steps.

2.A-1 Complete the expression of the Fourier series expansion of fT (t), that is,
fT (t) =

∑∞
n=−∞ ? × ejn𝜔0t (determine the quantity marked by ‘?’).

2.A-2 Take the Fourier transform of both sides of the equation completed in 2.A-
1 F

[
fT (t)

]
= F

[∑∞
n =−∞ ? × ejn𝜔0t

]
. Then, by using the linearity property of the

Fourier transform and the Fourier transform of complex exponential functions, that
is, F

[
ejn𝜔0t

]
= 2𝜋𝛿 (𝜔 − ?), prove equation (4.1). You might refer to 1.A-1.

2.B [T]Determine the Fourier transform of the periodic signal shown in Fig. 4.2
using the following two steps:

2.B-1 Derive Fn by using equation (4.2).

2.B-2 Substitute Fn into equation (4.1) and simplify the equation.

1

0 t[s]

Td = 5e-5 s

Ts = 5e-4 s

FIGURE 4.2 Periodic signal fT (t).

ANALYSIS AND TEST OF THE SPECTRA OF PERIODIC FUNCTIONS 37

Pulse

Generator

Pulse

Generator1Spectrum

Viewer

In1 In1 In1 In1

Spectrum

Viewer1

Spectrum

Viewer2

Spectrum

Viewer3

Scope

Pulse

Generator2

Pulse

Generator3

FIGURE 4.3 System to observe the waveforms and spectra of the periodic signals.

4.3 ANALYSIS AND TEST OF THE SPECTRA OF PERIODIC
FUNCTIONS

3.A Start a new Simulink design as shown in Fig. 4.3.
Set the parameters of each block as follows. Do not change any parameters not

mentioned below.

1. Pulse Generator
� Period = 5e-4
� Pulse Width(% of period) = 5

2. Pulse Generator1
� Period = 5e-4
� Pulse Width(% of period) = 10

3. Pulse Generator2
� Period = 2.5e-4
� Pulse Width(% of period) = 10

4. Pulse Generator3
� Period = 2.5e-4
� Pulse Width(% of period) = 20

5. Spectrum Viewer, Spectrum Viewer1, Spectrum Viewer2, and Spectrum
Viewer3: Copy and paste Spectrum Viewer in the design file of 1.B.

3.A-1 Set Simulation stop time to 2e-3 and run the simulation for 2 microseconds.
Properly resize the Scope block’s display window and capture it. Prior to capturing,
right-click option Axes Properties on all three signal waveforms to set Y_min to −0.5
for better presentation.

3.A-2 From the Scope block’s display window, measure the parameters below. You
might need to properly enlarge the x axis of the Scope block’s display window to
obtain an accurate value.

(a) Output of Pulse Generator: frequency(=1/period) = 1/0.5e-3 = 2 kHz, pulse
width = 2.5e-5 s

(b) Output of Pulse Generator1: frequency = ? kHz, pulse width = ? s
(c) Output of Pulse Generator2: frequency = ? kHz, pulse width = ? s
(d) Output of Pulse Generator3: frequency = ? kHz, pulse width = ? s

38 FOURIER TRANSFORM

3.A-3 Now run the simulation for 3 seconds. Reposition the four scope windows
of the Spectrum Viewer blocks so that they do not overlap. Autoscale all figures and
capture them. Note that the method to Autoscale a figure might be different depending
on Simulink version.

3.B Let us examine the spectral characteristics of the periodic function.

3.B-1 The spectra of the four signals captured in 3.A-3 commonly have the shape
of a line spectrum. Is this consistent with the Fourier transform expression of periodic
functions given in equation (4.1)? From equation (4.1), discuss what causes the line
spectrum.

3.B-2 Measure and record the line spectrum intervals in kHz of the four signals
captured in 3.A-3, and check whether they are consistent with equation (4.1).

3.C We now analyze the relationship between the envelope of the line spectrum
and the pulse width.

3.C-1 The envelope of the line spectrum has the shape of a sinc function, or, more
exactly, the absolute value of the sinc function, since the scope shows the “magnitude”
spectrum. Explain why this spectrum shape makes sense.

3.C-2 We can see that the envelopes of the line spectrum of Pulse Generator and
Pulse Generator2 have their first null points (the point where y = 0) at 40 kHz. How-
ever, the envelopes of the line spectrum of Pulse Generator1 and Pulse Generator3
have their first null points at 20 kHz. From this observation, answer the following
questions: (1) Does the frequency or the pulse width of the periodic signal determine
the shape of line spectrum envelope? (2) From this observation, what is the general
relationship between the pulse shape and the line spectrum envelope?

3.C-3 We want to create a period signal that has the line spectrum as shown in
Fig. 4.4. The interval of spectral lines is ? kHz, and the first null of the sinc-shaped
envelope occurs at 80 kHz. Find the frequency (=1/period) and pulse width of this
periodic signal.

(a) Frequency = ? Hz
(b) Pulse width = ? second

15

×10
–3

10

5

0

–150

RBW=468.75 Hz

W
a

tt
s

–100 –50 0

Frequency (kHz)

50 100 150

FIGURE 4.4 Spectrum of a desired periodic signal.

ANALYSIS AND TEST OF THE SPECTRA OF PERIODIC FUNCTIONS 39

10

8

×10
–3

6

4
2

0

–80 –60

RBW=234.37 Hz

W
a
tt
s

–40 –20 0

Frequency (kHz)

20 40 60 80

FIGURE 4.5 Desired line spectrum.

3.C-4 Properly set the parameters of Pulse Generator3 so that the output frequency
and the pulse width equal the values given in C-3. Only for this problem, set Spec-
trum Viewer3/Signal specification/Sample time = 1/32e4. Again, do not modify the
parameters of the original block saved in Spectrum_Viewer.mdl/.slx.

Run the simulation for 3 seconds. Capture the Spectrum Viewer3 display window.
If the result is not the same as the spectrum in 3.C-3, it means that the parameters
were not set correctly. If this happens, correct the parameter settings.

3.D [A]In this subsection, we wish to generate a periodic signal that has the same
line spectrum as Pulse Generator1 but does not have the line component located at
6 kHz. That is, we wish to generate a periodic signal that has the line spectrum as
shown in Fig. 4.5.

3.D-1 Denote the output of Pulse Generator1 as fT (t). Consider a signal g(t) =
fT (t) − F3ej3𝜔0t, where 𝜔0 is the frequency (=1/period) of fT (t) and Fn is the nth
Fourier series coefficient of fT (t). Then g(t) will have the line spectrum as shown in
Fig. 4.5. Explain why.

3.D-2 From the answer in 3.A-2, the output of Pulse Generator1 is same as fT (t)
shown in Fig. 4.2. By substituting fT (t) in Fig. 4.2 into equation (4.2) and with some
manipulations (can use symbolic math), show that the Fourier series coefficient F3 of
fT (t) is approximately equal to 0.0505 − 0.0694j. You may use the answer to 2.B-1
for this calculation.

3.D-3 The mdl/slx file in Fig. 4.6 generates g(t) in 3.D-1 to observe its spectrum.
Properly set the parameters of each block to complete the design.

The following notes might be helpful for completing this design:

(a) Pulse generator1 is the same one as the Pulse generator1 in the design of the
Section 3.A. You can copy it from that design.

(b) Use Euler’s identity to express ej3𝜔0t as the sum of a sine signal and a cosine
signal, and set the parameters of Sine Wave, Sine Wave1, and Gain so that the
output of the Add block equals ej3𝜔0t. Set Frequency = 3*(2*pi)*(1/5e-4) and
Phase = pi/2 for the Sine Wave block. Also properly set the parameters of
Sine Wave1 and Gain.

(c) Set Gain1 to be the complex number −F3 so that the output of the Add1 block
equals g(t) = fT (t) − F3ej3𝜔0t.

40 FOURIER TRANSFORM

Pulse

Generator1

Sine Wave

Sine Wave1 Gain

Gain1

j

Add

+

+

Add1

In1

Spectrum

Viewer 4

+

+

-K-

FIGURE 4.6 System for generating a desired line spectrum.

(d) Spectrum Viewer4 in this design is the same one as Spectrum Viewer in the
design of 1.B or 3.A. Copy and paste it. The suffix number 4 is appended
just to distinguish Spectrum Viewer in this design from those in the design of
Fig. 4.3.

Capture the completed design.

3.D-4 Execute the completed mdl/slx file for 3 seconds. Autoscale the scope win-
dow of Spectrum Viewer4 and capture the window. Check whether the spectrum line
located at 6 kHz is removed.

3.D-5 Modify the mdl/slx file to remove the spectrum line element located at −2
kHz. Capture the scope window of Spectrum Viewer4 to verify that your design is
correct.

4.4 SPECTRUM OF A NONPERIODIC AUDIO SIGNAL

4.A [WWW]Download sampled_ft.mat from the companion website into your
MATLAB work folder. Your MATLAB work folder path is specified in the menu
bar of the MATLAB main window. Execute the following lines of code to import the
variables saved in sampled_ft.mat into the workspace and determine the name and
the size of the variables imported:

>>load sampled_ft.mat

>>whos

4.B The variable ft_vector in sampled_ft.mat is a sampled vector of an audio signal
f(t), and the vector t_vector contains the corresponding sampling time instants.

4.B-1 Execute the following in the command window to see the sampling interval.
Is it equal to 1/8192?

SPECTRUM OF A NONPERIODIC AUDIO SIGNAL 41

>>t_vector(2) - t_vector(1)

4.B-2 Execute the following in the command window to observe the waveform.
Capture the resulting figure.

>>plot(t_vector, ft_vector)

4.C Examine the figure captured in 4.B-2 by zooming into various parts of it and
determine whether ft_vector is a nonperiodic signal.

4.D Let F(𝜔) be the Fourier Transform of f(t). Note that ft_vector is the sampled
version of f(t). In this subsection, we calculate F(𝜔) at three different frequencies,
F(30), F(70), and F(200) using numerical integration. Refer to Section 2.1 of Chapter
2 for numerical integration.

4.D-1 [T]Express F(𝜔) as an integral of f(t) using the defining equation of the Fourier
transform. Suppose that f (t) = 0 outside of the sampling interval 0 ≤ t ≤ 2. Under
this assumption, the integration interval of the Fourier transform can be set as [0∼2]
seconds, rather than [−∞ ∼ ∞].

4.D-2 [WWW]The following m-file computes F (30), F (70), and F (200) via numeri-
cal integration. Complete the quantities marked by ‘?’ in the m-file and add a comment
for each line of the m-file to explain what it does. Especially for the lines with the sign
‘=’, explain what the variables on the left-hand side represents and the reason (why
and how) the right-hand side expression is appropriately constructed accordingly.
The comment for the line in bold shows an example. Capture the completed m-file.

clear

load sampled_ft.mat %Note that there are ‘ft_vector’ and ‘t_vector’ saved in sam-

pled_ft.mat.

t_step= t_vector(2) - t_vector(1);

Fw30=sum(?.*exp(-j*30*t_vector))*t_step %Left: F(30), Right: numerical calculation

of ∫ ∞
−∞ f (t)e−j30tdt.

Fw70=?

Fw200=?

4.E [WWW]The following m-file calculates F(𝜔) for𝜔 = −25000 : 50 : 25000. This
sampled version of F(𝜔) is denoted by Fw_vector. This m-file also plots the magnitude
spectrum.

42 FOURIER TRANSFORM

clear

load sampled_ft.mat %Note that there are ’ft_vector’ and ’t_vector’ saved in sam-

pled_ft.mat.

t_step= t_vector(2) - t_vector(1);

Fw_vector=[];

w_vector=[];

for w=-25000:50:25000

Fw=sum(?.*exp(-j*?*t_vector))*t_step;

w_vector=[w_vector w];

Fw_vector=[Fw_vector Fw];

end

plot(w_vector,abs(Fw_vector))

xlabel(‘Frequency [rad/sec]’)

grid

4.E-1 Complete the places marked by ‘?’ in the m-file and add a comment for each
line of the m-file to explain what it does. Especially for the lines with the sign ‘=’,
explain what the variables on the left-hand side represents and the reason (why and
how) the right-hand side expression is appropriately constructed accordingly. Capture
the completed m-file.

4.E-2 In the m-file shown above, the line in bold computes the Fourier transform
numerically. Explain why it is repeated in the ‘for’ loop.

4.F Complete the following steps:

4.F-1 Execute the m-file completed in 4.E-1 and capture the magnitude spectrum.

4.F-2. Determine the approximate frequency range in kHz of the main spectral lobe
of f(t). Be sure to properly convert the frequency unit, since the x axis of the captured
spectrum is in rad/s.

4.G After executing the m-file, execute the following in the command window to
determine the frequency where the spectrum of f(t) reaches the maximum value.
Capture the execution result.

>> [T1 T2]=max(abs(Fw_vector)) % T2 is the index of the largest element of Fw_vector.

>>abs(w_vector(T2))% Read/display the frequency where the absolute value of

Fw_vector reaches the peak.

SPECTRUM OF A NONPERIODIC AUDIO SIGNAL 43

NOTE: The magnitude spectrum in 4.F-1 is symmetric to zero frequency. Thus the
command max() in the first line may find the maximum point in the negative frequency
range. This is why we take abs() in the second line abs(w_vector(T2)).

4.H From books or Internet materials, determine the typical audio signal frequency
range. Based on your answers to 4.F and 4.G above, determine whether f(t) could be
an audio signal.

4.I Connect a speaker or headphone to the audio output of your PC. Execute the
following line in the command window to play ft_vector, that is, the sampled vector
of f(t). Describe what you hear.

>> soundsc(ft_vector) % Execute ‘>>help sound’ for details about sound() or soundsc().

4.J In this problem, we interpret differentiation from linear filter perspectives. To
this end, we plot the spectrum of df (t)∕dt, the derivative of the audio signal f(t), and
listen to the resulting signal df (t)∕dt.

4.J-1 Recall that t_step denotes the sample interval of ft_vector. Explain why the
differentiation (slope) at the nth sample of the vector ft_vector can be approximated
as (ft_vector(n+1)-ft_vector(n))/t_step.

4.J-2 If we create a new vector diffout by performing ‘diffout= (ft_vector(2:L)-
ft_vector(1: (L-1))/t_step’, where L denotes the length of ft_vector, then according
to 4.J-1 above, the vector diffout approximates the sampled version of df (t)∕dt. In
the following m-file, a vector Dw_vector denotes a sampled version of the Fourier
transform of df (t)∕dt. The m-file generates Dw_vector by numerically performing
the Fourier transform on the vector diffout and then plots the magnitude spectrum.

Complete the places marked by ‘?’ in the m-file and add a comment for each line
of the m-file to explain what it does. Especially for the lines with the sign ‘=’, explain
what the variables on the left-hand side represent and the reason (why and how) the
right-hand side expression is appropriately constructed accordingly.

(a) Capture the completed m-file.
(b) Execute the m-file and capture the magnitude spectrum of df (t)∕dt.

clear

load sampled_ft.mat

t_step= t_vector(2) - t_vector(1);

L=length(ft_vector);

diff_out=(ft_vector(2:L)-ft_vector(1:(L-1)))/t_step;

t_vector=t_vector(1:(L-1)); %To delete the last time instance for new ‘t_vector’ of diff_out

whose length is L-1 not L.

Dw_vector=[];

w_vector=[];

44 FOURIER TRANSFORM

for w=-25000:50:25000

w_vector=[w_vector w];

Dw=sum(?.*exp(-j*?*?))*t_step; % To numerically calculate the Fourier transform
of df (t)∕dt at 𝜔=w.

Dw_vector=[Dw_vector Dw];

end

plot(w_vector,abs(Dw_vector));

xlabel(’Frequency [rad/sec]’);

grid

4.J-3 Solve the following problems:

(a) [T]Prove that |D(𝜔)| = |𝜔| × |F(𝜔)|, where F(𝜔) and D(𝜔) are the Fourier
transforms of f (t) and df (t)∕dt, respectively.

(b) From the equation |D(𝜔)| = |𝜔| × |F(𝜔)|, describe how the frequency
changes the difference between the shapes of |D(𝜔)| and |F(𝜔)|.

(c) Check whether |F(𝜔)| captured in 4.F-1 and |D(𝜔)| captured in 4.J-2(b) are
consistent with your description in (b). Be sure to compare the overall shapes
of the two spectra, rather than the exact values of the spectra along the y axis.
Focus on the differences in the shape of the two spectra.

4.J-4 Execute the command soundsc(ft_vector) again to play f (t) in the command
window. Carefully listen to the sound and notice that there is a bass guitar sound
of very slow beat in the background. You are advised to use an earphone or head-
phone because a regular PC speaker does not produce the bass well. Next execute
soundsc(diff_out) to play df (t)∕dt.

(a) Compare the volumes of the bass guitar sounds in f (t) and in df (t)∕dt.
(b) Explain what has caused the sound differences on the basis of your answer to

4.J-3(b).

4.J-5 Explain (a) why differentiation is considered as a linear system and (b) why
it is considered sort of a high pass filter.

REFERENCES

[1] R. Bracewell, The Fourier Transform and Its Applications, New York: McGraw-Hill, 1978.

[2] J. Duoandikoetxea, Fourier Analysis, Providence, RI: American Mathematical Society,
2001.

[3] H. Dym and H. McKean, Fourier Series and Integrals, Waltham, MA: Academic Press,
1985.

5
CONVOLUTION

� Generate the sampled time-limited functions and process them.
� Calculate the convolution of two arbitrary time functions using numerical inte-

gration.
� Verify the properties of convolution with the impulse function.
� Investigate the frequency domain properties for convolution in the time domain.

5.1 SAMPLED TIME-LIMITED FUNCTIONS

1.A We can create a sampled vector of a time-limited signal using Boolean opera-
tions.

1.A-1 Execute the following m-file and capture the result.

clear all;
t=-5:0.01:5;
y=(-2<t)&(t<-1);
plot(t, y)
axis([-5 5 -1 2]);grid on

Problem-Based Learning in Communication Systems Using MATLAB and Simulink, First Edition.
Kwonhue Choi and Huaping Liu.
© 2016 The Institute of Electrical and Electronics Engineers, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/choi_problembasedlearning

45

http://www.wiley.com/go/choi_problembasedlearning

46 CONVOLUTION

f1(t)

0.5

1 t

FIGURE 5.1 A sample function f1(t).

1.A-2 Explain what each line does. Also comment on the shape of the graph
generated in 1.A-1.

1.B [WWW] The m-file below creates two vectors f1 and f2, which are the sampled
versions of f1(t) and f2(t) shown in Figs. 5.1 and 5.2, respectively. Complete the m-file
(determine the quantities marked by ‘?’) and capture the completed m-file.

clear all;
tstep=0.01;
t=-5:tstep:5;

f1=0.5*((t>?)&(t<?));
f2=((t>-1)&(t<0)) - ((t>0)&(t<1)) ;

1.C Execute the m-file above. Then execute the following lines of code to plot f1(t).
Capture the figure and verify that f1 is correctly generated.

>>figure
>>plot(t,f1);
>>axis([-5 5 -5 5]);grid on

f2(t)

1

0

–1

–1 1 t

FIGURE 5.2 A sample function f2(t).

SAMPLED TIME-LIMITED FUNCTIONS 47

1.D Execute the following lines of code to plot f2(t). Capture the figure and verify
that f2 is correctly generated.

>>figure
>>plot(?,?);
>>axis([-5 5 -5 5]);grid on

1.E [WWW]We know that f1 (−𝜏) is the reflected signal of f1 (𝜏) about the y axis.
The m-file below creates the sampled version (vector name f1mirror) of f1 (−𝜏) and
plots it over the range of −5 ≤ 𝜏 ≤ 5. (a) Execute the m-file and capture the result.
(b) Check whether it generates f1 (−𝜏).

clear
tau_step=0.01;
tau=-5:tau_step:5;
f1mirror=0.5*((tau>-1)&(tau<0));
plot(tau,f1mirror); axis([-5 5 -5 5]);grid on;

1.F Once we have the sampled version of a certain function x(t), the sampled version
of function x(t − t0) can be created by using the command circshift().

1.F-1 Execute the following lines of codes and capture the results. Note that the
notation a’ denotes complex conjugate transpose of matrix (or vector) a; it simply
does transposition for a real quantity a. Explain what each line does.

>>rand(1, XXXX); % XXXX= The last four digits of your student ID. Do not explain
this line.

>>temp=rand(1,10)
>>temp2=circshift(temp’,1)’
>>temp2=circshift(temp’,3)’
>>temp2=circshift(temp’,-1)’

1.F-2 Execute ‘temp=circshift(f1mirror’,100); plot(tau, temp); axis([-5 5 -5 5]); grid
on;’ in the command line and capture the resulting plot. If you have cleared the
vector f1mirror in MATLAB workspace, then repeat 1.E to regenerate f1mirror before
starting this problem.

1.F-3 The plot in 1.F-2 shows f1mirror right-shifted by 1 second. Provide a discus-
sion on how the 1 second of time-shift is introduced.

48 CONVOLUTION

5.2 TIME-DOMAIN VIEW OF CONVOLUTION

In this problem, we investigate convolution in the time domain [1], mainly by
visualizing the intermediate process of convolution.

2.A Graphical interpretation of f1 (a − 𝜏)

2.A-1 [T]By how much and in which direction along the 𝜏 axis should f1 (−𝜏) be
shifted to generate f1 (a − 𝜏)?

2.A-2 [T] For the signal f1(t) shown in Fig. 5.1, sketch f1 (a − 𝜏) as a function of 𝜏
for the cases a = −1, 0, and 2.5.

2.A-3 [WWW]The m-file below creates and plots the sampled versions (vectors) of
f1 (a − 𝜏) by using circshift() for a = −1, −0.5,0, 0.5, 1, 2.5, and 3 over the range
−5 ≤ 𝜏 ≤ 5. For instance, in the first line in bold, the variable f1mirror_delayed
corresponds to the sampled vector of f1 ((−1) − 𝜏); in the second line in bold, the
variable f1mirror_delayed corresponds to the sampled vector of f1 ((−0.5) − 𝜏). The
seven graphs will be placed vertically in one window using subplot(7,1,1), …, sub-
plot(7,1,7).

Add the portion for a = 0.5, 1, 2.5, and 3 to complete the m-file. Execute
the completed m-file. Stretch the figure window vertically for a better view and
capture it.

clear
tau_step=0.01;
tau=-5:tau_step:5;
f1mirror=0.5*((tau>-1)&(t<0));
figure

a=-1;
delay_samples=round(a/(tau_step));
f1mirror_delayed=circshift(f1mirror’,delay_samples)’;
subplot(7,1,1)
plot(tau,f1mirror_delayed); axis([-5 5 -0.5 1]);grid on

a=-0.5;
delay_samples=round(a/(tau_step));
f1mirror_delayed=circshift(f1mirror’, delay_samples)’;
subplot(7,1,2)
plot(tau,f1mirror_delayed); axis([-5 5 -0.5 1]); grid on

%Repeat the lines of code above for a=0, 0.5, 1, 2.5 and 3.
…
…

TIME-DOMAIN VIEW OF CONVOLUTION 49

2.A-4 Examine the plots in the figure to assess whether your sketches in 2.A-2 are
correct.

2.B [WWW]To the m-file in 2.A-3, insert the line ‘f2=((tau>-1)&(tau<0))-((tau>0)&
(tau<1));’, which generates the sampled vector of f2 (𝜏). Further modify the m-file to
create the sampled versions (vectors) of f2 (𝜏) × f1 (a − 𝜏) for a = −1, −0.5,0, 0.5,
1, 2.5, and 3 over the range −5 ≤ 𝜏 ≤ 5. Then plot the corresponding seven curves
as a function of 𝜏 and display them vertically in one figure. Execute the m-file and
capture the figure. Stretch the figure window vertically for a better view.

2.C From the captured graph in 2.B, explain why for the functions f1(t) and f2(t)
being considered, the indefinite integral ∫ ∞

−∞ f2 (𝜏) × f1 (a − 𝜏) d𝜏 can be replaced by

the definite integral ∫ 5
−5 f2 (𝜏) × f1 (a − 𝜏) d𝜏 regardless of the value of the parameter

a.

2.D Computing ∫ ∞
−∞ f2 (𝜏) × f1 (a − 𝜏) d𝜏 using numerical integration.

2.D-1 [WWW]The m-file below calculates ∫ ∞
−∞ f2 (𝜏) × f1 (t − 𝜏) d𝜏 for the case of

t = 0.2, using numerical integration. The last line of the m-file displayed in bold
computes the integral ∫ ∞

−∞ f2 (𝜏) × f1 (0.2 − 𝜏) d𝜏 numerically. Refer to Section 2.1
of Chapter 2 for the numerical integration processes.

Execute the m-file and capture the result.

clear
tau_step=0.01;
tau=-5:tau_step:5;
f2= ((tau>-1)&(tau<0)) -((tau>0)&(tau<1)) ;
f1mirror=0.5*((tau>-1)&(tau<0));

t=0.2;
delay_samples=round(t/tau_step);
f1mirror_delayed=circshift(f1mirror’, delay_samples)’;

sum(f2.*f1mirror_delayed)*tau_step

2.D-2 Manually calculate ∫ ∞
−∞ f2 (𝜏) × f1 (t − 𝜏) d𝜏 for t = 0.2 and assess whether

it matches the numerical integration result.

2.D-3 You can calculate ∫ ∞
−∞ f2 (𝜏) × f1 (t − 𝜏) d𝜏 for other values of t by changing

the line ‘t=0.2;’. Execute the m-file with several different values of t in the range of
(−1, 2). Compare the numerical results with the manual calculation results.

2.E [WWW]The m-file below numerically calculates ∫ ∞
−∞ f2 (𝜏) × f1 (t − 𝜏) d𝜏 for t

from −3 to 4 with a step of 0.05 and generates a vector f2convf1.

50 CONVOLUTION

clear
tau_step=0.01;
tau=-5:tau_step:5;
f1mirror=0.5*((tau>-1)&(tau<0));
f2= ((tau>-1)&(tau<0)) -((tau>0)&(tau<1)) ;
t_vector=[];
f2convf1=[];
for t=?:0.05:?

delay_samples=round(t/tau_step);
f1mirror_delayed=circshift(f1mirror’, delay_samples)’;
f2convf1_at_t=sum(f2.*f1mirror_delayed)*tau_step;

t_vector=[t_vector t];
f2convf1=[f2convf1 f2convf1_at_t];

end
figure
plot(t_vector, f2convf1); grid on

2.E-1 Complete this m-file (determine the quantities marked by ‘?’) and then cap-
ture it.

2.E-2 The line ‘f2convf1_at_t = sum(f2.*f1mirror_delayed)*tau_step;’ implements
the convolution expression ∫ ∞

−∞ f2 (𝜏) × f1 (t − 𝜏) d𝜏 by using numerical integration
and stores the result in the variable f2convf1_at_t. Explain why this numerical inte-
gration needs to be performed repeatedly inside the ‘for’ loop.

2.E-3 Identify the differences between the two variables, f2convf1_at_t and
f2convf1.

2.F Execute the completed m-file in 2.E-1 and capture the convolution result graph.

2.G Manual calculation of convolution.

2.G-1 [T]Obtain the expression of f1(t)* f2(t) for f1(t) and f2(t) given, respectively,
in Figs. 5.1 and 5.2, and sketch f1(t)* f2(t).

2.G-2. Check whether your sketch in 2.G-1 is consistent with the graph in 2.F.

5.3 CONVOLUTION WITH THE IMPULSE FUNCTION

3.A Convolution with an impulse located at the origin.

3.A-1 [WWW]The m-file below plots another example of f1(t) that is different from
the one in Fig. 5.1. Execute the m-file and the capture the resulting figure.

www.ebook3000.com

http://www.ebook3000.org

FREQUENCY-DOMAIN VIEW OF CONVOLUTION 51

clear
t_step=0.01;
t=-5:t_step:5;
f1=1/t_step*(t==0);
figure
plot(t, f1); axis([-5 5 -5 10]);grid on

3.A-2 The graph of f1(t) generated in 3.A-1 should look like a well-known function.
What is this function?

3.A-3 In the m-file of 2.E, recall that f1mirror is the sampled version of f1 (−𝜏). For
the function f1(t) in 3.A-2, modify the line ‘f1mirror = 0.5 * ((tau>-1)&(tau<0))’ of the
m-file in 2.E into ‘f1mirror = 1/tau_step*(tau==0);’. Execute the modified m-file and
capture the convolution result graph.

3.A-4 Compare the convolution result graph with the graph of f2(t). From this
comparison, summarize the properties of convolution with the function observed in
3.A-2.

3.B. Convolution with the shifted impulse.

3.B-1 In the m-file in 3.A-1, modify the line ‘f1=1/t_step*(t==0);’ into
‘f1=1/t_step*(t==1.5);’. Execute the modified m-file and capture the resulting fig-
ure. Identify the difference between the two examples of f1(t) before and after this
modification.

3.B-2 For the f1(t) in 3.B-1, modify the line ‘f1mirror = 1/tau_step*(tau==0);’ of the
m-file in 3.A-3 into ‘f1mirror = 1/tau_step*(tau==-1.5);’. Execute the modified m-file
and capture the convolution result graph.

3.B-3 Compare the graph of f2(t) and the convolution result graph in 3.B-2. Based
on the comparison, generalize the properties you summarized in 3.A-4.

5.4 FREQUENCY-DOMAIN VIEW OF CONVOLUTION

4.A The m-file below calculates the Fourier transforms of f1(t) in Fig. 5.1 and f2(t)
in Fig. 5.2 numerically. It also plots the magnitude and phase spectra of the two
signals. We have used the two vectors f1 and f2 to represent the time-domain sampled
versions of f1(t) and f2(t). Let two other vectors Fw1 and Fw2 represent the frequency-
domain sampled vectors of the Fourier transforms of f1(t) and f2(t), respectively. The
numerical approach to compute the Fourier transform is described in Section 4.E of
Chapter 4.

52 CONVOLUTION

clear
tstep=0.01;
t=-5:tstep:5;
f1=0.5*((t>0)&(t<1));
f2= ((t>-1)&(t<0)) -((t>0)&(t<1));

Fw1=[];
Fw2=[];
w_vector=[];
w_step=2*pi*0.01;
for w=(2*pi*?):w_step:(2*pi*?) % Note that frequency ‘w’ has the unit of rad/sec not Hz.

Fw1_at_w=sum(f1.*exp(-j*w*t))*tstep;
Fw2_at_w=?;

w_vector=[w_vector w];

Fw1=[Fw1 Fw1_at_w];
Fw2=[Fw2 Fw2_at_w];

end
save Fw1_Fw2.mat Fw1 Fw2
figure(1)
subplot(2,1,1)
plot(w_vector, abs(Fw1)) % Amplitude spectrum of f1(t)
subplot(2,1,2)
plot(w_vector, angle(Fw1)) % Phase spectrum of f1(t)
figure(2)
subplot(2,1,1)
plot(w_vector, abs(?))% Amplitude spectrum of f2(t)
subplot(2,1,2)
plot(w_vector, angle(?)) % Phase spectrum of f2(t)

4.A-1 This m-file is incomplete; quantities to be determined are marked by ‘?’.
Complete this m-file. To this end, set the frequency range as [−10 ∼ 10] Hz and the
step size Fw1 (and Fw2 as well) as 0.01 Hz. Execute the completed m-file and capture
the execution result.

4.A-2. The line ‘Fw1_at_w=sum(f1.*exp(-j*w*t))*tstep;’ in the m-file computes the
Fourier transform ∫ ∞

−∞ f1(t)e−j𝜔tdt numerically. Explain why it should be calculated
repeatedly in the ‘for’ loop.

4.B The incomplete m-file below numerically calculates the convolution of f1(t)
and f2(t), f2(t)* f1(t), and the Fourier transform of f2(t)* f1(t). Note that the vector
f2convf1 is the time-domain sampled version of f2(t)* f1(t), and Fourier_f2convf1 is
the frequency-domain sampled vector of the Fourier transform of f2(t)* f1(t).

FREQUENCY-DOMAIN VIEW OF CONVOLUTION 53

Complete this m-file and then execute it. Capture the amplitude and phase spectra
of f2(t)* f1(t). Do not clear the vector Fourier_f2convf1 in the workspace, since it will
be needed for the next problem.

clear
tau_step=0.01;
tau=-5:tau_step:5;
f1mirror=0.5*((tau>=-1)&(tau<0));
f2= ((tau>=-1)&(tau<=0)) -((tau>=0)&(tau<=1)) ;

t_vector=[]; f2convf1=[];
w_vector=[]; Fourier_f2convf1=[];
tstep=0.05

for t=-3:tstep:4
delay_samples=round(t/tau_step);
f1mirror_delayed=circshift(f1mirror’, delay_samples)’;
f2convf1_at_t=sum(f2.*f1mirror_delayed)*tau_step; % Convolution of f2 and f1

t_vector=[t_vector t];
f2convf1=[f2convf1 f2convf1_at_t];

end

for w=(2*pi*-10):(2*pi*0.01):(2*pi*10)
Fourier_f2convf1_at_w=sum(?.*exp(-j*?*t_vector))*tstep;
w_vector=[w_vector w];
Fourier_f2convf1=[Fourier_f2convf1 Fourier_f2convf1_at_w];

end
figure
subplot(2,1,1)
plot(w_vector, abs(Fourier_f2convf1))% The amplitude spectrum of f2 (t) ∗ f1 (t).
subplot(2,1,2)
plot(w_vector, ?) % Phase spectrum of f2 (t) ∗ f1 (t).

4.C Note that in the m-file completed in 4.A-1, Fw1 and Fw2 have been generated
and saved in Fw1_Fw2.mat. Execute the following in the command window and
capture the plot.

>>load Fw1_Fw2.mat
>>figure
>>plot(w_vector, abs(Fw1.*Fw2 - Fourier_f2convf1));
>>axis([-10 10 -2 2])

54 CONVOLUTION

4.D Examine the plot in 4.C and determine whether Fourier_f2convf1 is identical
to Fw1.*Fw2. This verifies a well-known property of convolution. Provide a summary
of this property.

4.E If f(t) is applied to a linear system with impulse response h(t), then the output g(t)
equals the convolution of f(t) and h(t). However, by the well-known property verified
in 4.D, it is possible to determine the output g(t) without resorting to convolution in
the time domain. Develop a detailed procedure to accomplish this.

4.F [T]Consider the two time functions f1 (t) = e−(k+1)tu (t) and f2 (t) = e−tu (t),
where k is the last digit of your student ID. Solve the following problems. You may
use symbolic math. Note that the unit step function u(t) is not defined in symbolic
math. However, we can still employ symbolic math by taking into account the fact
that any form of u(t) in the integrand is equivalent to limiting the integration boundary
without u(t) appearing in the integrand.

4.F-1 Determine the convolution of the two functions, f1(t)* f2(t).

4.F-2 Determine the Fourier transform of f1(t)* f2(t) obtained in 4.F-1.

4.F-3 Determine the Fourier transform of f1(t), F1 (𝜔).

4.F-4 Determine the Fourier transform of f2(t), F2 (𝜔).

4.F-5 Verify that the answer to 4.F-2 equals F1 (𝜔) × F2 (𝜔).

REFERENCE

[1] S. Damelin and W. Miller, The Mathematics of Signal Processing, Cambridge, UK:
Cambridge University Press, 2011.

6
LOW PASS FILTER AND BAND PASS
FILTER DESIGN

� Design low pass filters (LPF) and band pass filters (BPF).
� Use LPF or BPF to extract desired spectral components.
� Study the frequency characteristics and impulse responses of LPF and BPF.

6.1 [T]ANALYSIS OF THE SPECTRUM OF SAMPLE AUDIO SIGNALS

1.A Execute ‘help audiovideo’ in the MATLAB command window to see the audio
data files provided in MATLAB. Write down the names of all the audio data files.

1.B Select any one of the audio data files and execute ‘load selected_file_name’
(e.g., load gong) in the command window to load the selected audio file into the
workspace. Then execute whos and capture the execution result. The variables y and
Fs are generated in the workspace. The variable y is the audio sample vector and the
variable Fs is the sampling frequency of the sampled vector y.

1.B-1 Type in Fs in the command window to see the sampling frequency. Write
down the sampling frequency and calculate the sample interval.

1.B-2 Determine the length (in seconds) of the selected audio sample, that is, the
size of the audio sample vector y and its sampling interval.

1.C [T]Execute soundsc(y) in the command window to play the audio signal.
Load the six audio sample files provided in MATLAB one by one and play all

Problem-Based Learning in Communication Systems Using MATLAB and Simulink, First Edition.
Kwonhue Choi and Huaping Liu.
© 2016 The Institute of Electrical and Electronics Engineers, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/choi_problembasedlearning

55

http://www.wiley.com/go/choi_problembasedlearning

56 LOW PASS FILTER AND BAND PASS FILTER DESIGN

of them. Describe the sound you heard for each of these signals (what it is, e.g., train
whistle).

1.D The MATLAB command pwelch() calculates and plots the power spectral
density (PSD) of the input (sampled vector). Here, PSD is equivalent to the
magnitude square of the Fourier transform (spectrum). The MATLAB function
pwelch(ht,[],[],[],Fs), where ht is the sampled version of a time function h(t) and
Fs is the sampling frequency, generates the PSD plot of h(t), that is, |H(𝜔)|2 in
dB-scale.

1.D-1 Execute the following in the command window to load and to plot, using
subplot, the PSD of each of the six audio data samples provided in MATLAB in
one figure. Stretch the figure vertically to clearly show all PSDs before capturing the
window.

>> figure
>> subplot(6,1,1);load chirp;pwelch(y,[],[],[],Fs)
>> subplot(6,1,2);load gong;pwelch(y,[],[],[],Fs)
>> subplot(6,1,3);load handel;pwelch(y,[],[],[],Fs)
…
…
…

1.D-2 Based on the sound, which one of six audio data samples has the highest
frequency (pitch)? Explain whether or not the PSD plots captured in 1.D-1 are
consistent with what you heard. Do not focus on the absolute level of each PSD;
instead, evaluate where the majority of the frequency components of each signal are
located at in the frequency domain.

1.E The PSD plots in 1.D show the signal spectra in the positive frequency range
only. This is because the magnitude spectrum of a real-valued function h(t) is an even
function, that is, |H(𝜔)| = |H(−𝜔)|, where H(𝜔) is the Fourier transform of h(t).
Prove that |H(𝜔)| = |H(−𝜔)| if h(t) is a real-valued signal.

1.F [WWW]The m-file below creates an audio sampled vector y_plus_tone and plots
its PSD. The vector y_plus_tone is the sum of the audio data vector y in the audio
sample file handel and the sampled vector of a 3.? kHz sine wave named tone, where
‘?’ should be set equal to the last digit of your student ID number.

clear
load handel
t_step=1/Fs;
t=0:t_step:(length(y)-1)*t_step;
tone=sin(2*pi*3.?e3*t); %?=the last digit of the student ID number, e.g.,

sin(2*pi*3.5e3*t) if the last digit is 5.

LOW PASS FILTER DESIGN 57

y_plus_tone=y’+tone;
figure
pwelch(y_plus_tone,[],[],[],Fs)

1.F-1 This m-file is incomplete and quantities to be completed are marked by ‘?’.
Complete this m-file. Then execute it and capture the PSD plot.

1.F-2 Determine whether the PSD plot in F-1 is what you expect and why.

1.F-3 Execute soundsc(y_pluse_tone) in the command window to play the sound
and describe how y_pluse_tone sounds. Explain the reason why it sounds so.

6.2 LOW PASS FILTER DESIGN

2.A [T]Suppose that the frequency transfer function of a linear system is H(𝜔).

2.A-1 If the Fourier transform of the input signal is X(𝜔), express the output Fourier
transform Y(𝜔) in terms of H(𝜔) and X(𝜔).

2.A-2 The impulse response h(t) of this system can be obtained from its frequency
transfer function H(𝜔). Express h(t) in terms of H(𝜔).

2.A-3 From the answers to 2.A-1 and 2.A-2, we can show that the output y(t) given
input x(t) can be obtained as

y(t) = h(t) ∗ x(t), where ∗ denotes convolution. (6.1)

Derive this equation. To this end, start from the answer to 2.A-1 and use the fact
that the multiplication in frequency domain is equivalent to the convolution in time
domain.

2.B [T]Consider a linear system with the following frequency transfer function:

H(𝜔) =
{

1 if |𝜔| ≤ 2𝜋B [rad∕s],
0 if |𝜔| > 2𝜋B [rad∕s].

(6.2)

2.B-1 Explain why this system is called a low pass filter [1] using the answer
to 2.A-1.

2.B-2 What is the bandwidth of this LPF in Hz?

2.B-3 Determine H(𝜔) in the equation (6.2) as B approaches infinity. Using this
result and the answer to 2.A-1, explain why Y(𝜔) = X(𝜔) if the filter has an infinite
bandwidth.

2.C In this problem, we determine the impulse response h(t) of a linear time invari-
ant system from its frequency transfer function H(𝜔).

58 LOW PASS FILTER AND BAND PASS FILTER DESIGN

2.C-1 [T]Using the answer to 2.A-2, show that the impulse response of the LPF
given in equation (6.2) can be derived as

h(t) = 2B sinc(2Bt), where sinc(x)
Δ
= sin(𝜋x)

𝜋x
. (6.3)

NOTE: In some of the existing textbooks, sinc(x) is defined as sin(x)/x. In this
book, we adopted the definition in equation (6.3), which is also what the MATLAB
function sinc(x) implements. In some literature, sinc(x) is written as Sa(x).

2.C-2 [WWW]The m-file below creates and plots the sampled and truncated version
of h(t) expressed in equation (6.3), assuming that B = 200 Hz in the range of t =
[−0.02 0.02]. The sampling interval is set to 1/8192, which is equal to the sampling
interval of y_plus_tone created in 1.F-1.

clear
B=200;
t=-0.02:(1/8192):0.02;
ht=2*B*sinc(2*B*t);
plot(t,ht);
grid

Execute this m-file and capture the resulting figure.

2.C-3 Execute the m-file above for the cases of B equaling 100 Hz and 400 Hz and
capture the figure for each case. From the captured plots, summarize the relationship
between the bandwidth of the LPF and the length of its impulse response. The first
zero crossing point in the impulse response is a good metric to quantify the impulse
response length.

2.C-4 If B increases to infinity, what kind of function do you expect h(t) to converge
to?

2.C-5 Determine y(t) in equation (6.1) by substituting the answer in 2.C-4 into h(t)
in equation (6.1).

2.C-6 Is the result in 2.C-5 consistent with the answer to 2.B-3?

2.C-7 Explain why filters with the impulse responses as shown in 2.C-2 and 2.C-3
are impractical to implement?

2.D Consider an LPF with a causal impulse response expressed as

h(t) =
{

2B sinc(2B(t − td)), 0 ≤ t ≤ 2td,
0 elsewhere.

(6.4)

LOW PASS FILTER DESIGN 59

2.D-1 [WWW]The m-file below creates and plots the sampled vector of h(t) expressed
in equation (6.4) for B = 200 Hz and td = 0.02. Execute the m-file and capture the
result.

clear
B=200;
td=0.02
t=0:(1/8192):2*td;
ht=2*B*sinc(2*B*(t-td));
plot(t,ht);
grid

2.D-2 Explain why the linear system with the impulse response shown in 2.D-1
is practical as opposed to the system with the impulse responses shown in 2.C-2 or
2.C-3?

2.D-3 [WWW]Since the function h(t) in equation (6.4) is different from the h(t) in
equation (6.3), the transfer functions corresponding to equations (6.3) and (6.4) are
also different. We can obtain H(𝜔) of h(t) expressed in equation (6.4) by taking its
Fourier transform. However, it is mathematically cumbersome to calculate the Fourier
transform of a truncated sinc function. In this problem, we resort to the numerical
integration method to obtain H(𝜔), more precisely, the sampled version of H(𝜔) in
the frequency domain. Numerical integration method was discussed in Section 2.1 of
Chapter 2.

The MATLAB code fragment below generates a vector Hw_vector, the sampled
version of H(𝜔). Each element of Hw_vector will be calculated through a separate
numerical integration of ht, the sampled version of h(t). The magnitude spectrum|H(𝜔)| and phase spectrum H(𝜔) are also plotted.

Some useful information for completing this m-file:

� Outside of the time period 0 ≤ t ≤ 0.04, h(t) = 0; thus the integration boundary
is [0, 0.04] and the Fourier transform of h(t) can be written as ∫ ∞

−∞ h(t)e−j𝜔tdt =
∫ 0.04

0 h(t)e−j𝜔tdt.
� For each value of 𝜔 = −20000 : 10 : 20000 rad/s, H(𝜔) is calculated via a

separate numerical integration.

Recall that the vector ht is the sampled version of h(t). The line ‘Hw=sum(?.*exp(-

j*?*t))*t_step;’ numerically implements ∫ 0.04
0 h(t)e−j𝜔tdt for each specific value

of 𝜔 from −20000 rad/s to 20000 rad/s in a ‘for’ loop. Complete the two
places marked by ‘?’ and execute the completed m-file. Capture the execution result.

clear
B=2000; %bandwidth, currently set to 2 KHz.
td=0.02; %delay

60 LOW PASS FILTER AND BAND PASS FILTER DESIGN

t_step=1/8192;
t=0:t_step:0.04;

ht=2*B*sinc(2*B*(t-td)); % Equation (6.4)

Hw_vector=[];
w_vector=[];
for w=-20000:10:20000

w_vector=[w_vector w];
Hw=sum(?.*exp(-j*w*?))*t_step;
Hw_vector=[Hw_vector Hw];

end

figure
subplot(3,1,1)
plot(t,ht);xlabel(’t [sec]’);ylabel(’h(t)’);grid
subplot(3,1,2)
plot(w_vector,abs(Hw_vector))
xlabel(’w [rad/sec]’);ylabel(’|H(w)|’);grid
subplot(3,1,3)
plot(w_vector,angle(Hw_vector));
xlabel(’w [rad/sec]’);ylabel(’\angle H(w)’);grid;axis([-50 50 -1 1])

2.D-4 From the magnitude spectrum, measure as accurate as possible the 3dB
bandwidth of the LPF in Hz.

2.D-5 Measure the slope of the phase spectrum.

2.D-6 Repeat the above experiment for td=0.01 and td=0.03. Capture the execution
result for each case.

2.D-7 The three plots, one captured in 2.D-3 and two captured in 2.D-6, show h(t-td)
(top subplot) and its magnitude spectrum (middle subplot) and phase spectrum (bot-
tom subplot) for three different delay values (td = 0.02, 0.01, and 0.03), respectively.
Measure the delays of each of the three top subplots and the slopes of each of the
three phase spectra and record them in Table 6.1.

2.D-8 Based on the results in Table 6.1, determine the effect of the delay, that is,
the center of symmetry of h(t − td) (which equals td in equation (6.4)), on its phase

TABLE 6.1 Time Delay and the Slope of the Phase Spectrum.

Delay Measured delay (center of h(t-td)) Measured slope of the phase spectrum

td = 0.01
td = 0.02 Replicate the answer to 2.D-5 here
td = 0.03

LPF OPERATION 61

spectrum H(𝜔). Determine the functional relationship between td and the slope of
H(𝜔).

2.D-9 Based on the plots captured in 2.D-3 and 2.D-6, summarize the effect of
delay of the signal h(t) on its magnitude spectrum |H(𝜔)|.
2.D-10 [A]Execute the m-file for two more cases: B = 250 and B = 1000. Measure
the bandwidth from the magnitude spectrum and check whether it is equal to B.

2.D-11 [A]In a time invariant linear system like the LPFs we have designed, the
input signal undergoes the same amount of delay as the delay of h(t). This is not
desirable for real-time systems. In order to reduce the output delay of the LPF, reduce
td to 0.001 in the m-file and execute it again. Capture the resulting plot. Based on the
plot, comment on the penalty one has to pay in terms of the magnitude spectrum in
order to reduce the output delay.

2.D-12 [A]Explain why reducing the delay causes the problem observed in 2.D-11.

6.3 LPF OPERATION

Suppose that c(t) denotes the convolution of a(t) and b(t), that is, c(t) = a(t) ∗ b(t).
Let the sampled vectors of a(t) and b(t) be at and bt, respectively. Then the sampled
vector of c(t), ct, can be simply created by using the command ‘ct=conv(ht ,gt);’. We
will use this approach to perform low pass filtering in the following problems.

3.A [WWW]In the following m-file, we input the audio sample vector saved in
handel.mat to an LPF with a bandwidth of 2 kHz. The LPF outputs the vector yt.

clear
B=2000; %bandwidth, set to 2 kHz currently
td=0.02; % delay (= center of symmetry of the delayed sinc pulse ht)

t_step=1/8192;
t=0:t_step:0.04;
ht=2*B*sinc(2*B*(t-td)); % ht is the sampled vector of h(t), i.e., impulse response for

LPF.

load handel
xt=y’;
%xt is a variable declared for the sampled vector of x(t), input signal to LPF.
%In the command conv(a,b), the argument vectors a and b need to be row vectors. So,

we need to change the column vector y (=audio sample vector in handel) into the row
vector xt by using transpose operator (’).

yt=conv(?,xt); % Use a theory about the relationship among input, output, and
impulse response of linear system.

62 LOW PASS FILTER AND BAND PASS FILTER DESIGN

3.A-1 Determine the uncompleted variable in the m-file (marked by ‘?’).

3.A-2 Execute the completed m-file. Then execute the following in the command
window to listen to the input as well as the output sounds of the LPF. Compare the
input and output sounds and summarize their differences.

>>soundsc(xt)
Execute the following when playing is completed.
>>soundsc(yt)

3.A-3 Change the bandwidth B of the LPF to 500 Hz in the m-file above and execute
the completed m-file. Then listen to the sound of yt again. Repeat this experiment
for B = 4000 Hz. Describe how the sound changes as the bandwidth of the LPF
changes.

3.A-4 Execute the following lines in the command window and capture the execu-
tion result.

>> t_axis=1/8192*(1:length(yt));
>> plot(t_axis, yt)
>> axis([0 0.1 -8000 8000])
>> grid

3.A-5 From the graph in 3.A-4, determine the starting time, the point where the
LPF output signal yt starts to rise to a visually noticeable level. Explain why the
starting time is roughly equal to the delay of the impulse response of the LPF.

3.B The goal of this problem is to recover the audio signal interfered by a large
sinusoidal signal by using a properly designed LPF.

3.B-1 [WWW]The following m-file creates a sampled audio signal xt by adding a
sine wave to the sampled sound vector y in handel.mat. It also plots the PSD of xt.
Execute the m-file and capture the resulting PSD.

clear
load handel
rand(1, XXXX); % XXXX= the last four digits of your student ID number. Be sure to

include this line.
f=3250+500*rand;
tone=sin(2*pi*f*(1:length(y))*1/Fs);
xt=y’+ tone;
pwelch(xt,[],[],[],Fs)
clear f;

[A]BAND PASS FILTER DESIGN 63

3.B-2 Based on the PSD plot of xt, estimate the frequency of the added sine wave
as accurately as possible. Properly enlarge the PSD plot for accurate reading.

3.B-3 Execute the following line in the command window to play xt. Describe how
xt sounds.

>>soundsc(xt)

3.B-4 [WWW]By passing xt through an LPF, we can remove the beeping sound
(caused by interference) without significantly distorting the original audio signal y in
handel.mat. In the following m-file, we will generate the output of the LPF yt so that
it sounds almost the same as the original audio signal y.

Do not include the command ‘clear’ in the m-file because the variable xt created
in 3.B-1 will be needed. Read the comments for each line first and then complete the
three places marked by ‘?’. Capture the completed m-file.

B=?; % Determine the LPF bandwidth (constant) to filter out(eliminate) the sine wave
included in xt.

td=0.02; %delay time
t_step=1/8192;
t=0:t_step:0.04;
ht=2*B*sinc(2*B*(t-td)); % The sampled vector of h(t), i.e., the impulse response of

LPF.
yt=?(?,xt); % Pass xt through LPF to create the output yt. The first ? is the function name.

The second ? is the variable name.

3.B-5 Justify your choice of the value of B set in the m-file above.

3.B-6 Execute the m-file in 3.B-4 and then execute the following line in the com-
mand window to play yt. Describe how yt sounds. Has the beeping sound been
removed without distorting the sound of the original signal? If there is still a beeping
sound or the original sound is noticeably distorted, go back to 3.B-4 and properly
change B until you get the desired sound.

>>soundsc(yt)

6.4 [A]BAND PASS FILTER DESIGN

4.A Execute the following lines in the command window to generate the impulse
response of the LPF with a bandwidth of 300 Hz and plot its PSD. Capture the PSD
plot.

64 LOW PASS FILTER AND BAND PASS FILTER DESIGN

>>t=0: (1/8192):0.04;
>>B=300;td=0.02;
>>ht=2*B*sinc(2*B*(t-td));
>>pwelch(ht,[],[],[], 8192);

4.B [T]Denote the Fourier transform of x(t) by X(𝜔). Then prove that the Fourier
transform of x(t) cos(𝜔0t) is 1

2
[X(𝜔 + 𝜔0) + X(𝜔 − 𝜔0)].

4.C The following problems provide an intuitive approach on how to design a
BPF [1].

4.C-1 After executing the lines of code in 4.A, continue to execute the following
lines. The first line creates a 3 kHz cosine waveform vector cos3000 of the same
length as that of ht created in 4.A. The second line multiplies cos3000 by ht to
create ht_times_cos, which is the sampled vector of a frequency up-converted signal
h(t) cos(2𝜋 × 3000t). The third line plots the PSD of ht_times_cos. Capture the
resulting PSD plot.

>>cos3000=cos(2*pi*3000*t);
>>ht_times_cos=ht.*cos3000;
>>pwelch(ht_times_cos,[],[],[], 8192)

4.C-2 Using the frequency-shift formula derived in 4.B, validate the PSD result
generated in 4.C-1. Note that pwelch(a,[],[],[],b) shows only the positive frequency
components.

4.C-3 Consider an arbitrary signal x(t) whose spectrum spreads over 0 to 4.5 kHz
and denote its sampled vector by xt. Describe the difference of the PSD shape of
conv(xt,ht_times_cos) in comparison with the PSD of xt. In your description, use the
PSD shape of ht_times_cos and the frequency-domain view of convolution in the
time domain (see Section 5.4 of Chapter 5).

4.D Fig. 6.1 shows the frequency transfer function of an ideal band pass filter that
passes only the spectral components of the input signal in the frequency range of
[BL BH].

–BH –BL BL BH f(Hz)

FIGURE 6.1 Frequency response of an ideal band pass filter.

REFERENCE 65

4.D-1 Now, we denote the sampled impulse response of the BPF shown in Fig. 6.1 by
ht. Based on the discussions in 4.A–4.C, describe the steps to create ht in MATLAB.

4.D-2 [WWW]The following m-file performs the BPF operation to extract only the
beeping sound from xt created in 3.B-1. Determine the appropriate values for the two
places marked by ‘?’ and justify your answer.

B=?; %B is used to generate ht below.
td=0.02;
t_step=1/8192;
t=0:t_step:0.04;
ht=2*B*sinc(2*B*(t-td)).*cos(2*pi*?*t); % Sample vector impulse response h(t) for BPF
yt = conv(xt,ht);

4.D-3 Execute the m-file above and then execute soundsc(yt) in the command
window to play the BPF output yt. Describe how yt sounds. In case xt created in
3.B-1 has been cleared, execute the m-file in 3.B-1 first before executing the m-file
above.

REFERENCE

[1] A. S. Sedra and K. C. Smith, Microelectronic Circuits, 3rd ed., Philadelphia: Saunders,
1991.

7
SAMPLING AND RECONSTRUCTION

� Study how the sampling changes the signal spectrum.
� Reconstruct a signal from its sampled version using low pass filtering.
� Implement frequency up-conversion using sampling and a band pass filter.

7.1 CUSTOMIZING THE ANALOG FILTER DESIGN BLOCK TO
DESIGN AN LPF

1.A Start Simulink and open a new mdl/slx file and add the blocks as shown in
Fig. 7.1. These blocks can be easily identified by searching for them in the Simulink
library using block names.

Set the internal variables of the Sine Wave block and Analog Filter Design block
as follows.

1. Sine Wave
� Sample time = 1/3e4

2. Analog Filter Design
� Design method = Chevyshev II
� Filter type = Low pass
� Filter order = 32
� Stop band edge frequency = 2*pi*1000
� Stop attenuation in dB = 40

Problem-Based Learning in Communication Systems Using MATLAB and Simulink, First Edition.
Kwonhue Choi and Huaping Liu.
© 2016 The Institute of Electrical and Electronics Engineers, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/choi_problembasedlearning

66

http://www.wiley.com/go/choi_problembasedlearning

STORING AND PLAYING SOUND DATA 67

Sine Wave

cheby2

Analog
Filter Design

Scope

FIGURE 7.1 Test system for Analog Filter Design block.

1.A-1 The Analog Filter Design block is customized as an LPF with the above
parameter setting. Determine the bandwidth of this LPF in Hz.

1.A-2 Set Simulation Stop Time to 0.05. Then set the parameter Frequency (rad/s)
of the Sine Wave block as specified in Table 7.1. Run the simulation for each of these
cases and measure the corresponding amplitudes of the LPF output and record them
in the table.

1.A-3 Based on the simulation result, determine whether the LPF is designed cor-
rectly and why?

7.2 STORING AND PLAYING SOUND DATA

2.A Open Sound_Source.mdl (or Sound_Source.slx) designed in 6.A of Chap-
ter 1. If you do not have this file, go through 6.A of Chapter 1.

Add the To file block from the Simulink library to the design and connect it to the
Sound Source subsystem as shown in Fig. 7.2. Save the design as a new file and do
not overwrite Sound_Source.mdl/slx, since it will be needed for other projects later.

Capture your design window.

TABLE 7.1 Test Inputs to LPF and the Output Amplitude.

Frequency (rad/s) of the Sine Wave block
Amplitude of
the LPF output

2*pi*(400 + XX)
XX = Last two digits of your student ID number
2*pi*900
2*pi*950
2*pi*1000
2*pi*1050
2*pi*1500
2*pi*3000

68 SAMPLING AND RECONSTRUCTION

Out1

Sound Source

signal.mat

To File

FIGURE 7.2 Test system for the subsystem Sound Source.

2.B Set the block parameters of the design in 2.A through the following steps.

2.B-1 [WWW]Download sound_CH7.mat from the companion website to your
MATLAB work folder. Your MATLAB work folder path is specified in the menu
bar of the MATLAB main window.

Execute the following in the command window to verify whether downloading is
successful.

>> ls *.mat

2.B-2 Set the parameter File name of the From File block in the subsystem Sound
Source to sound_CH7.mat. Capture your parameter setting window.

2.B-3 Set the parameters of the To File block as follows. Capture your parameter
setting window.

� Save format = Array (not required for old versions)
� File name = signal.mat
� Sample time = 1/8192

2.C Set Simulation stop time to 20 seconds and run the simulation. After the simu-
lation is finished, execute the following in the command window. Describe the sound
you heard.

>> clear; load signal.mat; soundsc(ans(2,:))

7.3 SAMPLING AND SIGNAL RECONSTRUCTION SYSTEMS

Fig. 7.3 is a simple block diagram of a sampling [1, 2] and reconstruction system to
restore the original signal from its sampled version by using an LPF.

3.A In Fig. 7.3, x(t) (=output of the Sound Source block) is an audio signal whose
bandwidth B equals 4 kHz. For simplicity, we assume that the Fourier transform of
x(t), X(𝜔), has a triangular shape with a one-sided bandwidth of 4 kHz, as shown in
Fig. 7.4.

SAMPLING AND SIGNAL RECONSTRUCTION SYSTEMS 69

x(t):output of sound
source block

p(t):output of pulse generator block

×
s(t) r(t)

–W

LPF(W = ?)
W

FIGURE 7.3 Sampling and signal reconstruction system.

X() = F[x(t)]ω

B = 4kHz = 2 × 4 × 103 rads/s π

FIGURE 7.4 Spectrum of the sound signal x(t).

3.A-1 [T]What is the minimum sampling frequency Fs of the periodic sampling
pulse signal p(t) in Fig. 7.3 so that x(t) can be reconstructed from its sampled version
without distortion? Justify your answer.

3.A-2 [T]Suppose that the sampling pulse signal p(t) is as shown in Fig. 7.5, with a
sampling frequency Fs = 2B = 8 kHz, pulse amplitude 1, and pulse width equaling
1/10 of the period.

The Fourier transform of the sampled signal s(t) (=x(t)p(t)) can be derived con-
sidering the following facts:

1. Since p(t) is a periodic signal, it exhibits a line spectrum, and the magnitude
of nth spectral line is 2𝜋Pn, where Pn denotes the Fourier series coefficient of
p(t) (refer to Section 4.2 of Chapter 4).

Td = 0.1 Ts

Ts = 1/Fs, (Fs = 1B)
t (s)

FIGURE 7.5 Sampling signal p(t).

70 SAMPLING AND RECONSTRUCTION

2. The Fourier transform of the product of two functions in the time domain
corresponds to the convolution of the Fourier transforms of the two respective
signals in the frequency domain (refer to Section 5.4 of Chapter 5).

Now for the sampling signal p(t) in Fig. 7.5, determine the two quantities marked
by ‘?’ in the following equation:

S(𝜔) = F[s(t)] =
∞∑

n=−∞
? × X(𝜔 − n × ?), (7.1)

where F[s(t)] denotes the Fourier transform of s(t). From this equation, sketch S(𝜔).

3.B In this problem, we design the system shown in Fig. 7.3 in Simulink. We first
sample the signal s(t). This is done by sampling the output of the Sound Source
block. Then we reconstruct x(t) from its sampled version using an LPF. We use the
Pulse generator block, Product block, and Analog Filter Design block to realize these
signal processing steps.

First, modify the mdl/slx file in Section 7.2 as shown in Fig. 7.6:

signal.mat

To File1

To File

To File2

Out1

In1

Spectrum
Viewer

Product

butter

Analog
Filter Design

sampled.mat

recovered.mat

Scope

Spectrum Viewer1 Spectrum Viewer2 Spectrum Viewer3

Sound
Source

Pulse
Generator In1 In1 In1

FIGURE 7.6 Simulink design of a sampling and signal reconstruction system.

Then, set the parameters of each block as follows. Do not change the parameters
not mentioned here.

1. Product
� Sample time = 1/(16e4)

2. Pulse Generator
� Period = 1/(8e3)
� Pulse Width (% of Period) = 10

SAMPLING AND SIGNAL RECONSTRUCTION SYSTEMS 71

3. To File1
� Save format = Array (not required in old versions)
� File name = sampled.mat
� Sample time = 1/8192

4. To File 2
� Save format = Array (not required in old versions)
� File name = recovered.mat
� Sample time = 1/8192

5. Spectrum Viewer, Spectrum Viewer1, Spectrum Viewer2, … : Use the subsys-
tem block created in Section 1.6.B of Chapter 1. In case you do not have it, go
through Section 1.6.B of Chapter 1 to create it. Make sure that the numbers in
the names of these blocks occur in numerical order as shown in Fig. 7.6.

3.B-1 Capture the design window of your completed mdl/slx file.

3.B-2 Set Simulation stop time to 5e-4 seconds and run the simulation. Upon com-
pleting the simulation, properly enlarge the sampling signal p(t) (=output of Pulse
generator) in the Scope display window to measure its frequency and pulse width.
Record the measured values together with the captured waveform. Is the captured
waveform the same as shown in Fig. 7.5? NOTE: Prior to capturing the waveform,
right-click the figure to set Y-min to −0.5 and Y-max to 1.5.

3.B-3 Set Simulation stop time to 1e-2 seconds and run the simulation. Upon com-
pleting the simulation, right-click to Autoscale x(t) and s(t) in the Scope display
window. Then zoom into the range of [0.006, 0.01] along the x axis. Capture the
Scope display window.

3.B-4 From the captured window in B-3, determine whether the sampled signal s(t)
is correctly created. That is, is it equal to x(t) p(t)?

3.B-5 Set the Simulation stop time to 4 seconds and run the simulation. Executing
the following line of code in the command window will play which of the four signals
{x(t), p(t), s(t), r(t)} defined in Fig. 7.3?

>>load sampled.mat; soundsc(ans(2,:))

3.B-6 Execute the command above and describe the sound you hear. Does the signal
sound right and why?

3.B-7. Capture the internal Spectrum Analyzer (Spectrum Scope in some old MAT-
LAB versions) display windows of Spectrum Viewer, Spectrum Viewer1, and Spec-
trum Viewer2 (except Spectrum Viewer3). Before capturing the Spectrum Analyzer
display windows, decrease the height of the window to get a width:height ratio of
about 7:1 for the graph portion as shown in Fig 4.4 in Chapter 4. Do not Autoscale.
Follow this guideline throughout all the problems in this book that require the Spec-
trum Analyzer display window.

72 SAMPLING AND RECONSTRUCTION

The line spectrum should appear in the Spectrum Viewer1/Spectrum Analyzer
display window.

(a) Explain the reasons that cause the line spectrum.
(b) Determine the frequency interval of the line spectrum.
(c) Based on the signals chosen for the system, determine the minimum frequency

interval between the spectrum lines and compare it with the observed value
in (b).

3.B-8 Is the spectrum in the Spectrum Viewer2/Spectrum Analyzer display window
consistent with your sketch in 3.A-2? The spectrum will change as time goes by.
In making this assessment, focus on (1) the overall spectral shape such as spectral
envelope and (2) the frequency interval between the spectrum lines.

3.B-9 Determine how the frequency interval between the spectrum lines changes if
the parameter Period of the Pulse Generator block is changed to 1/(32e3).

3.B-10 Change the parameter Period of the Pulse Generator block to 1/(32e3)
and run the simulation again. Observe the spectrum of s(t) in the Spectrum
Viewer2/Spectrum Analyzer display window. Upon completing the simulation, cap-
ture the Spectrum Viewer2/Spectrum Analyzer display window. Is the captured spec-
trum consistent with the answer to 3.B-9?

3.B-11 Restore the parameter Period of the Pulse Generator block back to 1/(8e3).
If we reduce Pulse Width (% of Period) to 1, will the spectrum in the Spectrum
Viewer2/Spectrum Analyzer display window be different from the one captured in
3.B-7? Assess the difference in terms of the spectral envelope that connects the peaks
of the replicas (called “harmonics”). Which one has a wider envelope? Provide a
mathematical justification for your assessment.

3.B-12 Change the Pulse Width (% of Period) of the Pulse Generator block to 1
and run the simulation. Capture the Spectrum Viewer2/Spectrum Analyzer display
window. Is the result consistent with your answer to 3.B-11?

3.C The aim of this problem is to reconstruct the original signal x(t) from the
sampled signal s(t). Set Period = 1/(8e3), Pulse Width (% of Period)=10 of Pulse
Generator.

3.C-1 If the goal is to transmit or to store the information contained in the original
signal x(t), it is more convenient to use s(t), instead of x(t), as long as there is no
information loss by using s(t). Summarize the advantages of using s(t) in terms signal
processing and storage requirements.

3.C-2 In 3.B-6, we have checked that s(t) sounds completely differently from x(t).
Hence we first reconstruct the original signal x(t) from s(t).

In the Scope display window captured in B-3, s(t) is equal to x(t) only for 10% of
time and is 0 during the remaining 90% of time. In other words, s(t) carries only 10%
of the waveform of x(t). If we further reduce the pulse width of the sampling pulse
p(t) for the advantages discussed in 3.C-1, the portion of time that s(t) = x(t) will be

SAMPLING AND SIGNAL RECONSTRUCTION SYSTEMS 73

reduced accordingly. Recovering the original signal from the sampled signal requires
recovering the lost part of the waveform. Intuitively, from the captured waveform of
s(t) in 3.B-3, would it be possible to recover the lost part, say, 90% of the waveform
of x(t)?

3.C-3 Based on S(𝜔) obtained in A-2 (or the display window of Spectrum
Viewer2/Spectrum Analyzer captured in 3.B-7), intuitively X(𝜔) could certainly be
recovered from S(𝜔). Therefore x(t) could also be recovered from s(t). Design a
scheme that employs an LPF with a bandwidth B = 4 kHz to recover x(t).

3.C-4 In the mdl/slx design simulated in Section 3.B, determine a proper value for
the parameter Passband edge frequency of the Analog Filter Design block so that it
generates the reconstructed signal. Note that the unit is rad/s.

3.C-5 Set Passband edge frequency of the Analog Filter Design block as obtained
in 3.C-4. Set Simulation stop time to 5e-2 seconds and run the simulation. After
the simulation is completed, Autoscale (right click) all the waveforms in the Scope
display window and then capture the display window.

3.C-6 Check whether or not the shape of the restored signal r(t), that is, the output
of the Analog Filter Design block, is same as x(t). Focus on the shapes not the signal
magnitude.

3.C-7 If the design is correct, then r(t) should be nearly identical to x(t), except
a scaling factor of 1/10. Analytically explain this. You may refer to the answer to
3.A-2.

3.C-8 Set Simulation stop time to 4 seconds and run the simulation. You may set it
larger if the computing power of your PC can handle it. If we run the following line
of code in the command window after the simulation, which one of the four signals
{x(t), p(t), s(t), r(t)} defined in Fig. 7.3 will be played?

>>load recovered.mat;soundsc(ans(2,:))

3.C-9 Execute the command above. Compare the played sound with the original
sound (signal.mat) you heard in 2.C.

3.D In this problem, we simulate a system that approximates the ideal impulse
sampling (sampling pulse width equals 0).

3.D-1 To approximate the impulse sampling, set Pulse Width (% of Period) of Pulse
Generator to 1 in the mdl/slx file. With this setting, what percentage of the waveform
of x(t) is directly carried through to s(t)?

3.D-2 Run the simulation for 4 seconds. Upon completing the simulation, execute
the following in the command window to play r(t) (= Analog Filter Design output
signal). Does it sound the same as the original signal x(t)?

74 SAMPLING AND RECONSTRUCTION

>>load recovered.mat;soundsc(ans(2,:))

3.E The goal of this problem is to investigate the relationship between the sampling
frequency and the feasibility to reconstruct the original signal from its sampled
version.

3.E-1 Another method to reduce the nonzero portion of the sampled signal s(t) is to
increase the Period of Pulse Generator. Suppose that the pulse width is fixed. Should
the parameter Period be increased or decreased in order to reduce the nonzero portion
of the sampled signal s(t)?

3.E-2 [T]At this point, the sampling signal p(t); that is, the output of Pulse Generator
is shown in Fig. 7.5, where the sampling frequency Fs is set to twice of the bandwidth
of the original signal x(t). If the sampling period is doubled, that is, 1/4e3, which is
equivalent to reducing the sampling frequency Fs to B, then the answers to the two
quantities marked by ‘?’ in equation (7.1) should be modified accordingly. Determine
the second quantity (for this problem, the first quantity is not of our concern). Modify
the sketch of S(𝜔) completed in 3.A-2 according to the new quantity.

3.E-3 If the parameter Period of the Pulse Generator block is doubled to 1/4e3,
Pulse Width (% of Period) should be decreased from 10% to 5% in order to make the
actual pulse width remain unchanged.

Set Period= 1/(4e3) and Pulse Width (% of Period)= 5 and run the simulation
for 4 seconds. Observe the spectrum of s(t) in the display window of Spectrum
Viewer2/Spectrum Analyzer while the simulation is in progress. After the simulation
is completed, run the simulation again and capture the display window of Spectrum
Viewer2/Spectrum Analyzer.

3.E-4 Is the spectrum captured in 3.E-3 consistent with your sketch in 3.E-2? The
magnitude of the instantaneous spectrum might change. Thus, in comparing the
results in 3.E-3 and 3.E-2, focus only on their overall shapes.

3.E-5 What is the main difference between the spectra captured in 3.E-3 and in
the display window of Spectrum Viewer2/Spectrum Analyzer of 3.B-7. From this
observation, explain why it is impossible to reconstruct x(t) from s(t) if Fs = B =
4 kHz.

NOTE: A phenomenon whereby the spectrum replicas in the sampled signal
overlap with one another due to an insufficient sampling frequency is called “aliasing.”

3.E-6 Run the simulation for 4 seconds. After the simulation is complete, execute
the following to play the recovered signal r(t), the output of the Analog Filter Design
block. Judged from the sound of the recovered signal, is the original signal recovered
from its sampled version?

>>load recovered.mat;soundsc(ans(2,:))

FREQUENCY UP-CONVERSION WITHOUT RESORTING TO MIXING WITH A SINUSOID 75

3.E-7 Repeat the simulation for each of the following sampling periods: 1/(2e3),
1/(5e3), 1/(6.4e3), and 1/(10e3). Describe how the spectrum of s(t), S(𝜔), displayed
by Spectrum Viewer2/Spectrum Analyzer differs with the difference sampling fre-
quencies. After each simulation, play the recovered signal r(t) and describe what it
sounds like.

3.E-8 From the simulation results so far, can you develop a condition on the min-
imum sampling frequency Fs with which x(t) can be recovered from s(t) without
distortion?

3.E-9 Quantitatively justify your conclusion made in 3.E-8.

7.4 FREQUENCY UP-CONVERSION WITHOUT RESORTING
TO MIXING WITH A SINUSOID

Consider the scenario that in Fig. 7.3, the LPF is replaced by a BPF with a bandwidth
2B centered at the sampling frequency FS. For the following problems, we assume
that the sampling signal p(t) is the one shown in Fig. 7.5 and denote the BPF output
by z(t).

4.A Based on equation (7.1) and sketch of S(𝜔) completed in 3.A-2 or the display
window of Spectrum Viewer2/Spectrum Analyzer captured in 3.B-7, it is straightfor-
ward to express Z(𝜔), the output spectrum of the BPF, by using two Fourier series
coefficients of p(t) and the X(𝜔). Write the expression of Z(𝜔) assuming that the BPF
is ideal and the delay is negligible.

4.B [T]The time-domain output of the BPF z(t) can be written as

z(t) = x(t) × A cos(𝜔t + 𝜃). (7.2)

Derive A, 𝜔, and 𝜃.

4.C We verify the answer to 4.B through simulation. Revisit the mdl/slx file
designed in Section 7.3 and make sure that Period of the Pulse Generator block
equals 1/(8e3), Pulse Width (% of Period) of the Pulse Generator block equals 10, so
that the sampling signal p(t) is the same as shown in Fig. 7.5.

4.C-1 To implement a BPF by Analog Filter Design, set the parameter Filter type =
BPF. The two new parameters Lower pass band edge frequency and Upper pass band
edge frequency, which are defined as shown in Fig. 7.7, must be set as well. Set these
two parameters to implement the BPF that has a center frequency of 8 kHz (which
equals the sampling frequency) and a bandwidth W (which equals 2B = 8 kHz).
Capture your parameter setting window. Note that the unit is rad/s.

4.C-2 Modify the mdl/slx file as shown in Fig. 7.8. Set the parameters of the Sine
Wave block properly so that the output of Product 1 is equal to the right-hand side of
equation (7.2), with the parameters A,𝜔, and 𝜃 derived in 4.B. Capture your parameter

76 SAMPLING AND RECONSTRUCTION

W

–fc fc f [Hz]
Lower passband
edge frequency

Upper passband
edge frequency

FIGURE 7.7 Definitions of the parameters of the Analog Filter Design block for the BPF
design.

setting window of the Sine Wave block. Attention should be paid to the phase setting
of the Sine Wave block so that it outputs A cos(𝜔t + 𝜃), not A sin(𝜔t + 𝜃).

4.C-3 Run the simulation for 0.02 seconds. Upon completing the simulation,
Autoscale all the waveforms in the Scope display window and capture the window.

4.C-4 In order to check whether the answer to 4.B is correct, we can compare
the waveforms in the captured window. (a) Which waveforms should we compare?

signal.mat

To File

To File1

sampled.mat

Analog
Filter Design

butter
Scope

To File2

In1

Spectrum
Viewer

Spectrum
Viewer1

Spectrum
Viewer2

Spectrum
Viewer3

Product1

Product

Out1

Sound
Source

Pulse
Generator

Sine Wave

In1 In1 In1

recovered.mat

FIGURE 7.8 Design of frequency up-conversion through sampling and filtering.

REFERENCES 77

(b) Is the answer to 4.B correct from the comparison? Note that the BPF introduces
a certain amount of delay.

4.C-5 Run the simulation for 0.1 seconds. Capture the display window of the
Spectrum Viewer3/Spectrum Analyzer.

4.C-6 Does the result in 4.C-5 match the answer to the problem in 4.A?

4.C-7 The signal can be up-converted to another center frequency above 8 kHz
without increasing the sampling frequency FS. Develop the method and determine
the possible center frequencies.

4.D From the problems completed so far, generalize the process to up-convert any
arbitrary signal to a desired center frequency𝜔0 without using a mixer with a sinusoid.

REFERENCES

[1] A. V. Oppenheim, Applications of Digital Signal Processing, Englewood Cliffs, NJ:
Prentice-Hall, 1978.

[2] E. J. Baghdady, Lectures on Communication Systems Theory, New York: McGraw-Hill,
1960.

8
CORRELATION AND SPECTRAL
DENSITY

� Calculate the correlation function of two time functions using numerical inte-
gration.

� Locate a pulse in severe noise using correlation.
� Estimate the shape and parameters of unknown periodic signals in severe noise

using correlation.
� Investigate the relationship between the correlation function and the spectral

density.

8.1 GENERATION OF PULSE SIGNALS

1.A [WWW]The following m-file generates a vector psint, the sampled version of a
truncated 50 Hz sine waveform with a length of 0.05 seconds. The reference time
vector t equals −5 to 5 seconds with a step size of 0.001 seconds. The truncation
vector tmp is generated by Boolean operation introduced in Section 5.1 of Chapter 5.

clear
t_step=0.001;
t=-5:t_step:5;
tmp=(0<t) & (t<0.05);
figure(1)
plot(t,tmp); title(‘tmp’);axis([-5 5 -2 2]);

Problem-Based Learning in Communication Systems Using MATLAB and Simulink, First Edition.
Kwonhue Choi and Huaping Liu.
© 2016 The Institute of Electrical and Electronics Engineers, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/choi_problembasedlearning

78

http://www.wiley.com/go/choi_problembasedlearning

CORRELATION FUNCTION 79

tone=sin(2*pi*50*t);
psint=tone.*tmp;
figure(2)
plot(t,psint); title(‘sine pulse’);axis([-5 5 -2 2]);grid on;

1.A-1 Add a comment to each line to explain what it does.

1.A-2 Execute the m-file above. Use x axis zoom-in button in the menu bar (or use
axis() properly) to enlarge the [−0.1 0.1] portion of the two resulting figures. Capture
the figures and comment on whether or not the waveform in the second figure is a
truncated 50 Hz sine waveform with a length of 0.05 seconds.

1.B Add the following lines at the end of the m-file in 1.A to create the sampled
vector pt of the time-limited square-wave pulse signal p(t) in range of 0 ≤ t ≤ 0.05
with a frequency of 50 Hz.

% Add the following to the m-file in 1.A.
pt=sign(psint);
figure(3)
plot(t,pt); title(‘pt’);axis([-5 5 -2 2]);grid on;

1.B-1 Execute the m-file and capture the waveform of p(t).

1.B-2 From the graph captured in 1.B-1, calculate the energy of p(t) whose sampled
vector is pt.

8.2 CORRELATION FUNCTION

2.A The process to shift the elements of a vector using circshift() was introduced
in Section 1.F of Chapter 5. Execute the following lines of code in the command
window. Record the results and justify the results for each case.

>> temp=rand(1,12)
>> temp2=circshift(temp’,1)’
>> temp2=circshift(temp’,4)’
>> temp2=circshift(temp’,-5)’

2.B [WWW]The vector pt created in the m-file in 1.B is a sampling vector of the
50-Hz pulse signal p(t) with a length of 0.05 seconds and a sampling interval of 0.001
seconds.

Suppose that the pulse signal p(t) is transmitted and its delayed version p(t − td)
is received in additive white Gaussian noise n(t). The delay td is due to the distance

80 CORRELATION AND SPECTRAL DENSITY

between the transmitter and the receiver. Thus the received signal b(t) is expressed as
b(t) = p(t − td) + n(t). Let us denote the sampled vector of the received signal b(t) by
bt. In the following problems, we generate the sampled vector of the received signal
b(t).

2.B-1 [WWW]Add the following lines to the end of m-file created in 1.B. Add a
comment to each of the lines in bold to explain what the variable on the left-hand
side represents and justify how the right-hand side expression is properly formulated
accordingly.

% Add the following to the m-file in 1.B.
randn(1,XXX); %XXX=the last three digits of your student ID number. This is irrele-
vant to the contents but be sure to add.
td=2+2*rand;
delayed_pt = circshift(pt’, round(td/t_step))’ ;
nt=randn(1,length(delayed_pt));
bt= delayed_pt+nt;
figure(4)
plot(t, bt);axis([-5 5 -5 5]);
save mydelay.mat td
clear td delayed_pt

2.B-2 Note that rand() randomly generates a real valued number that is uniformly
distributed between 0 and 1. From the line in the m-file in 2.B-1 that generates the
delay time td, calculate the possible range of td. Do not use load mydelay to answer
this question.

2.B-3 Execute the m-file and capture the waveform of b(t) (= p(t − td) + n(t)).
Estimate the location of the pulse, that is, estimate td from the captured waveform.
You might need to zoom into any portion of the waveform for a close examination.

2.C The autocorrelation of a signal f(t) denoted by rf (𝜏) is given as [1–3]

rf (𝜏) = ∫
∞

−∞
f ∗ (t) f (t + 𝜏) dt. (8.1)

In the following problem, we calculate the autocorrelation function using numer-
ical integration. Numerical integration was discussed in Section 2.1 of Chapter 2.

2.C-1 The following code fragment determines the autocorrelation function rn (𝜏)
of the noise signal n(t) for a given 𝜏 = 1.5.

(a) Determine the two quantities marked by ‘?’.
(b) Explain what the variable on the left-hand side represents and justify how the

right-hand side expression is properly formulated accordingly.

CORRELATION FUNCTION 81

% Execute the m-file in 2.B-1 first and execute the following code fragment in the com-
mand window.
>>tau=1.5;
>>shift_samples=round(tau/t_step);
>>nt_tau=circshift(nt’, -shift_samples)’;
>>rn_tau=sum(conj(?).*?)*t_step % Refer to the numerical integration dis-
cussed in Section 1 of Chapter 2.

2.C-2 Execute the commands above in the command window and show the execu-
tion result of rn (1.5).

2.C-3 Repeat the process in 2.C-1 to find rn (𝜏) for 𝜏 = 0, −1.5, and 2.72.

2.D [WWW]In the code fragment below, the delay 𝜏 increases from −4 to 4 with a
step size of 0.001. The autocorrelation rn (𝜏) is calculated for each value of 𝜏. Finally,
rn (𝜏) is plotted as a function of 𝜏.

% Add the following to the m-file in 2.B-1.
tau_vector=[];
rn_vector=[];
for tau=-4:0.001:4

tau_vector=[tau_vector tau];
shift_samples=round(?/t_step);
nt_tau=circshift(nt’, -shift_samples)’;
rn_tau=sum(conj(?).*?)*t_step;
rn_vector=[rn_vector rn_tau];

end
figure(5)
plot(tau_vector, rn_vector)

2.D-1 Complete the three places marked by ’?’ in the code fragment and add it to
the end of the m-file in 2.B-1. Capture the completed m-file.

2.D-2 Execute the m-file and capture the noise autocorrelation function rn (𝜏) dis-
played in Figure 5.

2.D-3 Summarize the characteristics of the white Gaussian noise on the basis of its
autocorrelation function graph in 2.D-2. Discuss whether or not the graphical result
is what you expected.

2.D-4 (a) [T]From equation (8.1), prove that the autocorrelation at 𝜏 = 0 is equal to
the signal energy. (b) From (a) and the autocorrelation function captured in 2.D-2,
determine the energy of n(t).

NOTE: With the ideal model (unrealistic), the background noise has infinite power
and thus infinite energy. However, n(t) in the m-file of 2.D corresponds to the sampled

82 CORRELATION AND SPECTRAL DENSITY

noise after a filter of finite bandwidth. Thus, within the time interval where the noise
is truncated, it has a finite energy.

2.E The m-file completed in 2.D can be modified to plot the autocorrelation function
of any pulse signal p(t) whose sampled vector is represented by pt.

2.E-1 [T]Write the expression for rp (𝜏). You may modify equation (8.1).

2.E-2 [WWW]From the equation obtained in 2.E-1, properly modify the related lines
of the m-file in 2.D to plot rp (𝜏), instead of rn (𝜏), and identify the modified lines.
Let rp_vector denote the vector for the sampled rp (𝜏).

2.E-3 Execute the modified m-file in 2.E-2 and capture the graph of rp (𝜏). Prior to
capturing the graph, zoom into the range of [−0.2 0.2] along the x axis using axis()
or the magnifying button in the menu bar in order to clearly see the shape of rp (𝜏).

2.E-4 Find the energy of p(t) from its autocorrelation function captured in 2.E-3. Is
it consistent with the answer to 1.B-2?

2.E-5 [T]Prove that rf (𝜏), the autocorrelation function of f(t), given in equation (8.1)
satisfies the Hermitian symmetry property, that is,

rf (−𝜏) = r∗f (𝜏) . (8.2)

2.E-6 Check whether the graphs of rn (𝜏) and rp (𝜏) captured in 2.D-2 and 2.E-3,
respectively, match the results given by equation (8.2).

2.F The cross-correlation function of two signals f(t) and g(t) denoted by rfg (𝜏) is
calculated as [1–3]

rfg (𝜏) = ∫
∞

−∞
f ∗ (t) g (t + 𝜏) dt. (8.3)

2.F-1 [WWW]The code fragment below calculates rpn (𝜏), the cross-correlation of
p(t) and n(t), by using numerical integration. Recall that pt and nt are the sampled
vectors of p(t) and n(t), respectively. The variable rpn_tau represents rpn (𝜏) for a
given value of 𝜏(=tau).

Determine what should be placed at ‘?’ in the line ‘rpn_tau=sum(conj
(?).*?)*t_step;’ to implement the cross-correlation equation expressed in equation
(8.3). After completing this line, add the code fragment to the end of m-file in 2.B-1
and capture the complete m-file.

% Add the following code fragment to the m-file in 2.B-1.
tau_vector=[];
rpn_vector=[];
for tau=-4:0.001:4

tau_vector=[tau_vector tau];
shift_samples=round(tau/t_step);

CORRELATION FUNCTION 83

nt_tau=circshift(nt’, -shift_samples)’;
rpn_tau=sum(conj(?).*?)*t_step;
rpn_vector=[rpn_vector rpn_tau];

end
figure(6)
plot(tau_vector, rpn_vector); axis([-4 4 -0.05 0.05]);

2.F-2 Execute the completed m-file above and capture the waveform of rpn (𝜏)
displayed in MATLAB Figure 6.

2.F-3 From the plots generated in 2.D-2, 2.E-3, and 2.F-2, determine the maximum
values of rn (𝜏), rp (𝜏), and rpn (𝜏).

2.F-4 Explain the results in 2.F-3. Why is the peak value of rpn (𝜏) smaller than the
peak values of rn (𝜏) and rp (𝜏)?

2.G The cross-correlation rpb (𝜏) between the pulse p(t) and the received signal b(t)
(= p(t − td) + n(t)) can be written as

rpb (𝜏) = rp

(
𝜏 − td

)
+ rpn (𝜏) . (8.4)

2.G-1 [T]Derive this equation.

2.G-2 From equation (8.4) and the shapes of rp (𝜏) and rpn (𝜏) captured in 2.E-3
and 2.F-2, we can more or less predict the approximate shape of rpb (𝜏). Since the
delay td is an unknown variable at this point, give td an arbitrary value to determine
the shape of rpb (𝜏).

(a) Develop your process to determine the shape of rpb (𝜏).
(b) Where along the 𝜏 axis does the peak of rpb (𝜏) occur?

2.G-3 From the answer in 2.G-2, develop a process to use rpb (𝜏) to locate the
pulse in the received signal, which consists of the pulse and a noise signal that is
independent of the pulse. In other words, find td from rpb (𝜏).

2.G-4 [WWW]The following code fragment generates rpb_vector, the sampled vector
of rpb (𝜏), using the numerical integration technique and generates its graph. The
variable bt_tau represents the sampled vector of b (t + 𝜏) for a given value of 𝜏(=tau).
Using a similar code structure as the m-files in 2.F-1, complete the places marked
by ‘?’ and then add this code fragment to the end of the m-file completed in 2.B-1.
Next, execute this m-file and capture the waveform of rpb (𝜏) displayed in MATLAB
Figure 7.

% Add the following code fragment to the m-file in 2.B-1
tau_vector=[];
rpb_vector=[];
for tau=-4:0.001:4

tau_vector=[tau_vector tau];
shift_samples=round(tau/t_step);

84 CORRELATION AND SPECTRAL DENSITY

bt_tau= circshift(bt’, -shift_samples)’;
rpb_tau=sum(conj(?).*?)*t_step;
rpb_vector=[rpb_vector rpb_tau];

end
figure(7)
plot(tau_vector, rpb_vector); axis([-4 4 -0.07 0.07]);grid on;

2.G-5 From the graph of rpb (𝜏) captured in 2.G-4, obtain an estimate of the pulse
delay td. Zoom into the desired portion of the figure will help increase the estimation
accuracy.

2.G-6 Execute the following in the command window to obtain the actual value
of td, that is, td in the m-file. Check whether the estimate in 2.G-5 is correct. There
might be a slight mismatch between these two values because of approximation in
numerical calculation or variation of the instantaneous noise.

>>load mydelay.mat
>>td

2.G-7 Each time the m-file is executed, td and the sampled noise vector are updated.
Run the simulation multiple times to generate multiple td values. In each simulation,
compare the estimated delay with the actual value to verify that the estimation method
is correct. Capture your comparison results.

2.G-8 [A]Change the line ‘pt=sign(psint);’ in the m-file into ‘pt=psint;’ to replace
the rectangular pulse by a sinusoidal signal for p(t). Execute the m-file and estimate
td. Does the estimate depend on the pulse type?

2.H The pulse signal p(t) is deterministic and is, in general, independent of the
background Gaussian noise n(t). Under this condition, rb (𝜏), the autocorrelation of
the received signal b(t) (= p(t − td) + n(t)) can be expressed as

rb (𝜏) = rp (𝜏) + rn (𝜏) . (8.5)

2.H-1 [T]Derive equation (8.5).

2.H-2 Revisit the m-file in 2.B-1 and change the line ‘nt=randn(1,length
(delayed_pt));’ into ‘nt=0.075*randn(1,length(delayed_pt));’. Also execute the fol-
lowing two lines of code in the command window to calculate the energy of the
revised noise sample vector nt.

>> nt=0.075*randn(1,length(delayed_pt));
>> sum(nt.̂ 2)*t_step

CORRELATION FUNCTION 85

2.H-3 [WWW]If you have finished 2.G-8, change the line ‘pt=psint;’ in the revised
m-file in 2.H-2 back to ‘pt=sign(psint);’. Then add the following code fragment to
the end of the revised m-file. Execute the m-file and capture the graph of rb (𝜏).

tau_vector=[];
rb_vector=[];
for tau=-4:0.001:4

tau_vector=[tau_vector tau];
shift_samples=round(tau/t_step);
bt_tau=circshift(bt’, -shift_samples)’;
rb_tau=sum(conj(bt).*bt_tau)*t_step;
rb_vector=[rb_vector rb_tau];

end
figure(5)
plot(tau_vector,rb_vector);
grid on;
axis([-0.2 0.2 1.5*min(rb_vector) 1.5*max(rb_vector)]);

2.H-4 Assess whether the plot captured in 2.H-3 is consistent with equation (8.5).
Identify first which problems and their answers are relevant for this assessment.

2.I [T]The correlation function of any power signal f(t) is defined as [1–3]

Rf (𝜏) = lim
T→∞

1
T

T
2

∫
− T

2

f ∗ (t) f (t + 𝜏) dt. (8.6)

A periodic signal is a power signal. For periodic power signals with period P,
Rf (𝜏) can be expressed as

Rf (𝜏) = 1
P

P
2

∫
− P

2

f ∗ (t) f (t + 𝜏) dt. (8.7)

2.I-1 [T]Show that equation (8.6) is equivalent to equation (8.7) if f(t) is periodic.

2.I-2 [T]Fig. 1.1 in the Chapter 1 illustrates a special case of a rectangular peri-
odic function. Using equation (8.7), derive the correlation function of a periodic
rectangular function f(t) with period P, pulse width W (W < P/2), and height A.

2.I-3 [T]Sketch by hand Rf (𝜏) of the function given in 2.I-2 versus 𝜏.

2.J Suppose that an unknown periodic signal f(t) is received together with an
additive noise signal n(t), that is, r(t) = f(t) + n(t). In this problem, we identify the
periodic signal f(t) and determine its parameters from the received signal r(t).

86 CORRELATION AND SPECTRAL DENSITY

2.J-1 [WWW]Download rt_sampled.mat from the companion website and execute
the following lines of code. Record the name and the length of a vector contained in
rt_sampled.mat.

>> clear
>> load rt_sampled.mat
>> whos

2.J-2 The vector rt contained in the data file rt_sampled.mat is the sampled vector
of the received signal r(t) with a sampling interval of 0.001 seconds and its length is
20 seconds. Execute the following to draw the waveform of r(t) and capture it.

>> plot(0:0.001:20, rt)

2.J-3 Closely observe the waveform of r(t) by zooming into the various portions
of the figure. Based on your observation, describe the shape of the period signal f(t)
distorted by noise and estimate its parameters such as period or amplitude.

2.J-4 [T]The autocorrelation function of r(t) is the sum of the autocorrelation func-
tions of f (t) and n(t) expressed as

Rr (𝜏) = Rf (𝜏) + Rn (𝜏) . (8.8)

Prove equation (8.8).

2.J-5 [WWW]The following m-file calculates Rr (𝜏), the autocorrelation function of
the received signal r(t), via numerical integration and plots it. Since the signal period
is unknown and the received signal is given as a vector that represents only 20
seconds of the continuous time signal in the m-file, we use equation (8.6) and set T
at 20 seconds, rather than infinity, in the numerical integration.

Add a comment to each of the lines in bold to explain what the variable on the
left-hand side represents and justify how the right-hand side expression is properly
formulated accordingly.

clear
load rt_sampled.mat

t_step=0.001;
Rr_vector=[];
tau_vector=[];
for tau=-4:0.01:4

tau_vector=[tau_vector tau];
shift_samples=round(tau/t_step);

ENERGY SPECTRAL DENSITY 87

rt_tau=circshift(rt’, -shift_samples)’;
Rr_tau=1/20*sum(conj(rt).*rt_tau)*t_step;
Rr_vector=[Rr_vector Rr_tau];

end
figure
plot(tau_vector, Rr_vector);grid on;

2.J-6 Execute the m-file above and capture the graph of Rr (𝜏).

2.J-7 Using the figure of Rr (𝜏) captured in 2.J-6 and equation (8.8), sketch Rf (𝜏)
and justify your sketch.

2.J-8 Note that the sketch of Rf (𝜏) in 2.J-7 should be similar to the sketch in 2.I-3.
Compare these two and estimate the parameters P, W, and A. With the estimated
parameters, sketch the estimated periodic signal f(t).

2.J-9 Develop a method to systematically determine the shape and estimate the
parameters of an unknown periodic signal distorted by an additive noise.

8.3 ENERGY SPECTRAL DENSITY

3.A In this subsection we calculate the energy spectral density (ESD) [4] using
numerical integration.

3.A-1 [T]The ESD of an energy signal f(t) is defined as |F (𝜔)|2, where F (𝜔) is the
Fourier transform of f(t). (a) Establish relationship between rf (𝜏), the autocorrelation

function of f(t), and its ESD |F (𝜔)|2; that is, calculate |F (𝜔)|2 from rf (𝜏) or vice
versa. (b) Prove this relationship.

3.A-2 [WWW]Revisit the m-file in 2.E-2. If you have completed 2.G-8, change the
line ‘pt=psint;’back to ‘pt=sign(psint);’. Recall that pt is the sampled vector of a pulse
signal p(t), whose graph has been captured in 1.B-1, and rp_vector is the numerically
calculated vector of the autocorrelation function rp (𝜏).

The code fragment below calculates and plots |P (𝜔)|2, the ESD of the pulse signal
p(t) using the relationship established in A-1. The variable ESD_vector denotes the
numerically calculated vector of the ESD of p(t). The frequency f increases from
0 Hz to 500 Hz with a 3-Hz step size, and the ESD at each frequency is via numerical
integration and concatenated to the vector ESD_vector. Add a comment to the line in
bold to explain what the variable on the left-hand side represents and justify how the
right-hand side expression is properly formulated accordingly.

% Add the following code fragment to the m-file in 2.E-2.
tau=-4:0.001:4;
f_vector=[]; ESD_vector=[];
for f=0:3:500

88 CORRELATION AND SPECTRAL DENSITY

f_vector=[f_vector f];
ESD_f=sum(rp_vector.*exp(-j*2*pi*f*tau))*0.001;
ESD_vector=[ESD_vector ESD_f];

end
figure(8)
plot(f_vector,ESD_vector) grid on
xlabel(‘frequency [Hz]’)

3.A-3 Add the code fragment above to the end of the m-file in 2.E-2 and execute
the completed m-file. Capture the ESD graph of p(t).

3.B From the captured ESD graph, (a) find the frequency where the ESD reaches
the maximum. (b) Is the answer to (a) consistent with the waveform of p(t) captured
in 1.B-1? Justify your answer.

3.C [WWW]The following code fragment calculates P (𝜔), the Fourier transform of
p(t), via numerical integration and then calculates the ESD |P (𝜔)|2 directly from
P (𝜔), rather than using the autocorrelation.

% Add the following code fragment to the m-file in 2.E-2.
f_vector=[]; P_vector=[];
for f=0:3:500

f_vector=[f_vector f];
P_f=sum(pt.*exp(-j*2*pi*f*t))*0.001;
P_vector=[P_vector P_f];

end
figure(9)
plot(f_vector,abs(P_vector).̂ 2)
grid on
xlabel(‘frequency [Hz]’)

3.C-1 Add a comment to the line in bold to explain what the variable on the left-hand
side represents and justify how the right-hand side expression is properly formulated
accordingly.

3.C-2 Add the code fragment above to the end of the m-file in 2.E-2 and execute
the m-file. Capture the resulting Figure 9 window.

3.C-3 (1) Are the graphs in 3.C-2 and 3.A-3 the same? (2) This result validates the
answer to which problem in this chapter?

3.C-4 Develop two different methods to calculate the ESD of an energy signal, one
uses the autocorrelation function and one does not.

REFERENCES 89

REFERENCES

[1] A. C. Aitken, Statistical Mathematics, 8th ed., Edinburgh: Oliver & Boyd, 1957.

[2] S. Dowdy and S. Wearden, Statistics for Research, New York: Wiley, 1983.

[3] G. U. Yule and M. G. Kendall, An Introduction to the Theory of Statistics, 14th ed.,
Glasgow: Charles Griffin, 1950.

[4] J. Y. Stein, Digital Signal Processing: A Computer Science Perspective, Hoboken, NJ:
Wiley, 2000.

9
AMPLITUDE MODULATION

� Modulate and demodulate the double sideband-suppressed carrier (DSB-SC)
amplitude modulation (AM) signals.

� Investigate the effects of frequency and phase errors on the demodulation per-
formance.

� Modulate and demodulate AM signals by using the sampling and band pass
filter (BPF) technique.

9.1 MODULATION AND DEMODULATION OF DOUBLE
SIDEBAND-SUPPRESSED CARRIER SIGNALS

Over an additive noise channel, the received DSB-SC AM signal can be expressed
as [1]

𝜙(t) = f (t) × A cos(𝜔ct) + n(t), (9.1)

where f (t) is the information signal, A cos(𝜔ct) is the carrier wave, and n(t) is the
background noise.

In the receiver, the demodulated signal y(t) is obtained through two major steps.
First, a sinusoid cos(𝜔ct), called “local carrier,” is generated with its frequency and

Problem-Based Learning in Communication Systems Using MATLAB and Simulink, First Edition.
Kwonhue Choi and Huaping Liu.
© 2016 The Institute of Electrical and Electronics Engineers, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/choi_problembasedlearning

90

http://www.wiley.com/go/choi_problembasedlearning

MODULATION AND DEMODULATION OF DSB-SC SIGNALS 91

phase synchronized to those of the carrier wave of the received signal. The received
signal is multiplied by the local carrier to generate the following signal:

g(t) = 𝜙(t) cos(𝜔ct). (9.2)

Second, g(t) is passed through a low pass filter (LPF) to generate the demodulated
signal y(t) as

y(t) = LPFBf
[g(t)], (9.3)

where Bf is the bandwidth of f (t). The notation LPFD[x(t)] denotes the output of an
ideal (distortionless with zero-delay) LPF with a bandwidth D. Note that the notation
LPFD[x(t)] will be used frequently in the remainder of this book.

1.A [T]Suppose that n(t) is zero in equation (9.1). By substituting equation (9.1)
into (9.2), and then into (9.3), show that y(t) = (A∕2) × f (t). Assume that the carrier
wave frequency 𝜔c is greater than Bf , the bandwidth of the signal.

1.B [WWW]The mdl/slx design shown in Fig. 9.1 is designed to simulate the DSB-
SC AM system. In the transmitter, an audio signal from the Sound source block
is modulated into a DSB-SC AM signal. In the receiver, the transmitted signal is
received with an additive Gaussian noise and then demodulated to obtain the original
audio signal.

Download sound_CH9.mat from the companion website to your MATLAB work
folder. Design the mdl/slx file as shown in Fig. 9.1. Set the parameters of the blocks
as follows. Leave the blocks not mentioned as they are; they will be set later.

Add

Gaussian

Gaussian Noise
Generator

Analog
Filter Design

butter

Scope

Spectrum
Viewer

Spectrum
Viewer2

Spectrum
Viewer1

Spectrum
Viewer3

Spectrum
Viewer4

Spectrum
Viewer5

Product1
Product

Out1

Sound
Source

Sine
Wave Sine Wave1

In1

In1 In1

In1
In1 In1

demodulated.mat

To File

FIGURE 9.1 Simulink design of a DSB-SC AM system.

92 AMPLITUDE MODULATION

1. Sound Source : Use the subsystem designed in Section 1.6.A of Chapter 1. If
you do not have it, design it again.
� From File/File name = sound_CH9.mat

2. Sine Wave
� Frequency = 2*pi*(20+The last digit of your student ID number)*1e3
� Phase = pi/2

3. Gaussian Noise Generator : If you are using a Simulink version that does not
have this block in the library, then use the design file on the companion website.
� Variance = 1e-3
� Sample time = 1/16e4

4. To File
� Save format = Array (not required for old versions)
� File name = demodulated.mat
� Sample time = 1/8192

5. Spectrum Viewer, Spectrum Viewer1, Spectrum Viewer2, … blocks: Use the
subsystem created in Section 1.6.B of Chapter 1. If you do not have it, design
it again. Make sure that the numbers in the names of these blocks occur in
numerical order as shown in Fig. 9.1.

Save the completed mdl/slx file. Also make another copy for use in the remainder
of this chapter. Preserve (do not revise) the original copy, which will be used in
Chapter 12.

1.B-1 Capture the completed mdl/slx design window.

1.B-2 The output of the Sound Source block corresponds to the information signal
f (t) in equation (9.1). We want to modulate f (t) into a DSB-SC AM signal and then
demodulate the received signal 𝜙(t) to recover f (t).

Using equations (9.1)–(9.3), complete the quantities marked by ‘?’for the following
eight blocks. The first two blocks are completed for your reference.

� Sound Source output = f (t)
� Sine Wave output = A cos(𝜔ct)
� Product output = ?
� Gaussian Noise Generator output = ?
� Add output = ?
� Sine Wave1 output = ?
� Product1 output = ?
� Analog Filter Design output = ?

1.B-3 Determine the frequency (in Hz) of the carrier wave signal A cos(𝜔ct) accord-
ing to the parameter setting in 1.B-1.

1.B-4 Explain why the parameter Phase of the Sine Wave block in B-1 is set to
pi/2. You may use the identity cos(x) = sin(x + 𝜋∕2).

1.C In this problem, we analyze the output waveform and spectrum of each block.

MODULATION AND DEMODULATION OF DSB-SC SIGNALS 93

1.C-1 Run the simulation for 0.01 seconds by setting Simulation stop time to 0.01
seconds. First, Autoscale the Scope display window and then zoom into the range
of [0.008 0.01] seconds along the x axis. (1) Capture the Scope display window. (2)
Based on the captured window, explain whether or not the DSB-SC AM signal, that
is, f (t) × A cos(𝜔ct), the second waveform from the top in the Scope, is correctly
generated.

1.C-2 Change the Simulation stop time to 3 seconds and run the simulation. Capture
the Spectrum Analyzer display windows of Spectrum Viewer, Spectrum Viewer1, and
Spectrum Viewer2 in this order. Minimize the remaining three Spectrum Viewer
windows at this point.

Before capturing the Spectrum Analyzer display windows, decrease the height of
the window to get width:height ratio of about 7:1 for the graph portion as shown in
Fig. 4.4. Do not Autoscale.

1.C-3 Discuss whether the spectrum shapes in the three captured windows in 1.C-2
are consistent with their corresponding equations in 1.B-2.

1.D Analysis of the spectrum of the background noise.

1.D-1 [T]In Section 3 of Chapter 8, we have explored the relationship between the
autocorrelation function rf (𝜏) and the energy spectral density of an energy signal.
This relationship holds for power signals as well, that is, relationship between the
autocorrelation function Rf (𝜏) and power spectral density (PSD) Sf (𝜔) of a power
signal. Write down this relationship.

1.D-2 [T]Sketch the autocorrelation function of the white Gaussian noise [1], which
is often used to model the idealized additive background noise in a radio receiver
(you may refer to Section 8.2.D of Chapter 8).

1.D-3 [T]Based on the answers to 1.D-1 and 1.D-2, sketch the PSD of the back-
ground noise.

1.D-4 Capture the display window of Spectrum Viewer3/Spectrum Analyzer.

1.D-5 Is the spectrum captured in 1.D-4 consistent with the sketch in 1.D-3?

1.D-6 Analyze the spectrum captured in 1.D-4 and determine whether the output
of Gaussian Noise Generator is white.

1.E Spectrum of received signals in a noisy environment.

1.E-1 Capture the display window of Spectrum Viewer4/Spectrum Analyzer.

1.E-2 Is the captured spectrum in 1.E-1 what you expected to see? Why?

1.E-3 Measure and record the carrier-to-noise ratio (CNR) of the received signal in
dB. Refer to the following note for the definition of CNR.
NOTE: CNR is the difference in dB between the peak value of the signal PSD and
the background noise PSD level.

94 AMPLITUDE MODULATION

1.F In this problem, we complete the demodulation steps so that the output of the
Analog Filter Design block generates the demodulated signal, that is, y(t) in equation
(9.3).

1.F-1 We want to make the output of the Product1 block on the right-hand side
of the design equal g(t) given in equation (9.2). Determine the proper setting of the
parameters Frequency and Phase of the Sine Wave1 block of the design.

1.F-2 Set the parameters obtained in 1.F-1 and run the simulation for 3 seconds.
Capture the display window of Spectrum Viewer5/Spectrum Analyzer. If the setting
in 1.F-1 is correct, the spectrum plot should show three clusters of nonzero spectral
components. Determine the center frequencies of these components from the Spec-
trum Viewer5/Spectrum Analyzer display window and justify these values on the basis
of the mathematical expression of the signal at the input of Spectrum Viewer5.

1.F-3 Set the parameter Passband edge frequency (rad/s) of the Analog Filter
Design block to 2*pi*500. Run the simulation for at least 5 seconds (up to 20 seconds
if your PC’s computing power allows it). Upon completing the simulation, complete
the place marked by ‘??’ in the command below and execute it in the command
window to play the demodulated signal.

>> load ??;soundsc(ans(2,:))

1.F-4 Repeat 1.F-3 for each of the following two cases: Passband edge frequency
(rad/s) = 2*pi*4e3 and 2*pi*40e3. (a) Describe the sound difference among the
cases with Passband edge frequency (rad/s) = 2*pi*500, 2*pi*4e3, and 2*pi*40e3.
(b) Which value for the parameter Passband edge frequency results in the best sound
quality?

1.F-5 Based on the spectrum in 1.F-2, explain why the sound quality with Passband
edge frequency (rad/s) = 2*pi*500 is worse than that with Passband edge frequency
(rad/s) = 2*pi*4e3.

1.F-6 Based on the spectrum in 1.F-2, explain why the sound quality with Passband
edge frequency (rad/s) = 2*pi*40e3 is worse than that with Passband edge frequency
(rad/s) = 2*pi*4e3.

1.F-7 Restore the parameter Passband edge frequency (rad/s) of the Analog Fil-
ter Design block back to 2*pi*4e3. In the Logging tab (it may differ for different
versions of MATLAB/Simulink) of the parameter window of the Scope block,
uncheck Limit data points to last. Run the simulation for 0.5 seconds by setting
Simulation stop time to 0.5 seconds. Autoscale the Scope display window and
capture it.

1.F-8 Properly zoom into the Scope display window in 1.F-7 to check whether the
demodulated signal y(t) is, or at least approximates well Af (t)∕2. If not, then the

EFFECTS OF THE LOCAL CARRIER PHASE AND FREQUENCY ERRORS 95

parameter setting is incorrect. In this case, correct the parameter setting and run the
simulation again. If yes, capture the zoomed-in Scope display window.

9.2 EFFECTS OF THE LOCAL CARRIER PHASE AND FREQUENCY
ERRORS ON DEMODULATION PERFORMANCE

2.A The effect of the local carrier phase error.

2.A-1 [T]Consider the case when the phases the received signal and the local carrier
differ by 𝜃 (phase error); that is, the local carrier of the receiver is cos(𝜔ct + 𝜃),
instead of cos(𝜔ct), in equation (9.2). In this case, equation (9.2) should be modified
as g(t) = 𝜙(t) cos(𝜔ct + 𝜃).

Substitute this modified equation into equation (9.3) and show that y(t) =
(A cos 𝜃∕2)f (t). Ignore the noise n(t) as done in 1.A.

2.A-2 We will verify the result in A-1 with simulation. Set the parameters of the
relevant blocks as follows.

1. Gaussian Noise Generator
� Variance = 0 (only for verifying the answer to 2.A-1)

2. Sine Wave1
� Frequency = 2*pi*(20+The last digit of your student ID number)e3
� Phase(rad) = pi/2+pi/4. (Maintain Phase(rad) of Sine Wave block in the

transmitter = pi/2.)

3. Analog Filter Design
� Passband edge frequency (rad/s) = 2*pi*4e3

With the parameters above, what is the phase error 𝜃 between the received signal
and the local carrier?

2.A-3 Set Simulation stop time to 0.25 seconds and run the simulation. Autoscale
the Scope display window and capture it.

2.A-4 Does the result in A-3 verify that the demodulated signal is y(t) =
(A cos(𝜃)∕2)f (t)? That is, is the demodulated signal y(t) equal to f (t) with a fac-
tor of A cos(𝜃)∕2. Zoom into f (t) and y(t) at the same time instant and measure the
ratio of their magnitudes to estimate the scaling factor.

2.A-5 [A]Run the simulation for each of the following values of 𝜃: -pi/4, pi/3, pi/2,
-pi/2, and pi. (a) Capture the demodulated signal y(t) for each case. (b) Do the
simulation results match the theoretical results?

2.B The effect of phase error in an environment with background noise.
In order to add a noise signal n(t) to the received signal, restore the parameter

Variance of the Gaussian Generator back to 1e-3.

2.B-1 Restore the parameter phase of the Sine Wave1(local carrier) block to pi/2.
Run the simulation for 3 seconds. (a) Capture the display window of Spectrum

96 AMPLITUDE MODULATION

Viewer5/Spectrum Analyzer; (b) Measure the peak value of the baseband signal spec-
trum, the background noise level (noise PSD), and the CNR of the baseband signal
in dB.

� Peak value of baseband signal spectrum = ? dB
� Background noise level (noise PSD) =? dB
� Baseband signal CNR = ? dB

2.B-2 Set the parameter Phase of the Sine Wave1 (local carrier) block to
pi/2+7*pi/16 and repeat the steps in 2.B-1.

� Peak value of baseband signal spectrum = ? dB
� Background noise level (noise PSD) =? dB
� Baseband signal CNR = ? dB

2.B-3 From the results in 2.B-1 and 2.B-2, after the background noise is multiplied
by the local carrier, how does the phase error affect the background noise PSD?

2.B-4 (a) Prove that the phase error 𝜃 results in a reduction of the baseband signal
power after the local carrier multiplication and the reduction factor is cos2

𝜃. (b)
Verify the reduction factor using the results in 2.B-1 and 2.B-2.

2.B-5 (a) From the results of 2.B-3 and 2.B-4, explain that the CNR loss of the
baseband signal after the local carrier multiplication is equal to 10 log10 cos2

𝜃[dB].
(b) Measure the CNR loss in dB in the spectrum of 2.B-2 when compared with the
spectrum of 2.B-1. (c) Does the measured CNR loss match the theoretical value, that
is, 10 log10 cos2

𝜃 [dB]?

2.B-6 Restore the parameter Phase of the Sine Wave1 (local carrier) block to pi/2.
Run the simulation for 3 seconds and then execute the following line to play the
demodulated signal. Pay attention to the sound quality.

>> load demodulated;soundsc(ans(2,:))

Set the parameter Phase of the Sine Wave1 (local carrier) block to pi/2+7*pi/16
and run the simulation again. Play the demodulated signal.

(a) How does the sound quality change according to the phase error?
(b) Explain why the sound quality changes?

2.B-7 (a) Discuss your expected sound of the demodulated signal if the parameter
Phase of the Sine Wave1 (local carrier) block is set to 0. (b) Mathematically justify
your answer.

2.B-8 Set the parameter Phase of the Sine Wave1 (local carrier) block to 0. Run the
simulation and play the demodulated signal. Does it sound like what you expected?

EFFECTS OF THE LOCAL CARRIER PHASE AND FREQUENCY ERRORS 97

2.B-9 Capture the display window of Spectrum Viewer5/Spectrum Analyzer.
Explain the spectrum shape by deriving the mathematical expression of g(t) in equa-
tion (9.2) for the case of phase setting in 2.B-8.

2.B-10 [A,T]In this problem, we mathematically justify the answer to 2.B-3. Sup-
pose that the PSD of the background noise n(t) is N0∕2. Denote the noise multiplied

by the local carrier with phase error 𝜃 as nc(t), that is, nc(t)
Δ
= n(t) cos(𝜔ct + 𝜃). We

can show that regardless of the value of 𝜃, the PSD of nc(t) equals N0∕4 through
the following two steps: (a) show that the autocorrelation function of nc(t), i.e.,

Rnc
(𝜏)

(
= lim

T→∞
1∕T ∫ T∕2

−T∕2 n∗c (t)nc(t − 𝜏)dt
)

equals
(

N0
/
4

)
𝛿(𝜏); (b) apply the rela-

tionship between the autocorrelation function and the PSD.

2.C The effect of local carrier frequency error.

2.C-1 [T] Consider the case when the frequencies of the received signal and the local
carrier differ by Δ𝜔 (frequency error); that is, in equation (9.2), the local carrier is
cos((𝜔c + Δ𝜔)t), instead of cos(𝜔ct). In this case, equation (9.2) should be modified
as g(t) = 𝜙(t) cos((𝜔c + Δ𝜔)t).

Substitute this modified equation into equation (9.3) and show that y(t) =
(A cos(Δ𝜔t)∕2)f (t). Ignore the noise n(t) as done in 1.A.

2.C-2 (a) If the parameter Frequency of the Sine Wave block is set to 2*pi*25e3 and
Frequency of the Sine Wave1 block to 2*pi*(25e3+0.2), what should the demodulated
signal sound like? (b) Mathematically justify your answer.

2.C-3 Set the parameter Frequency of Sine Wave to 2*pi*25e3 and Frequency of
Sine Wave1 to 2*pi*(25e3+0.2). Run the simulation for 10 seconds and play the
demodulated signal.

Describe how the demodulated signal sounds differently from the case when
Frequency(rad/s) of Sine Wave1 is set to 2*pi*25e3.

2.C-4 Autoscale the Scope display window and then capture it.

2.C-5 Does the demodulated signal captured in 2.C-4 match the theoretical result
derived in 2.C-1?

2.C-6 Set Frequency(rad/s) of the Sine Wave1 block to 2*pi*24.5e3. Run the simu-
lation again and play the demodulated signal. Describe the sound you hear.

2.C-7 Based on the simulation results so far, summarize the effects of frequency
error on the demodulated signal.

98 AMPLITUDE MODULATION

9.3 [A]DESIGN OF AN AM TRANSMITTER AND RECEIVER WITHOUT
USING AN OSCILLATOR TO GENERATE THE SINUSOIDAL SIGNAL

In Section 7.3 of Chapter 7, we investigated the spectral characteristics of the sampled
signal. Sampling was accomplished by multiplying the information signal by a peri-
odic pulse train. In Section 7.4 of Chapter 7, we introduced frequency up-conversion
through sampling and BPF, rather than by multiplication with a sinusoid. In the fol-
lowing problems, we revisit this method and design an AM transmitter and receiver
without using an oscillator to generate a sinusoid. In other words, we will implement
AM and demodulation without using the Sine Wave block in Simulink.

3.A Design an mdl/slx file as shown in Fig. 9.2.
Set the parameters of the blocks as follows. Parameters for blocks not mentioned

here will be set later.

1. Sound Source/From File
� File name = sound_CH9.mat

2. Pulse Generator
� Period = 1/(2e4)
� Pulse Width (% of period) = 5

3.A-1 Set Simulation stop time to 5 seconds and run the simulation. Capture the
Spectrum Analyzer display windows of Spectrum Viewer, Spectrum Viewer1, and
Spectrum Viewer2 (except Spectrum Viewer3) in the order listed.

3.A-2 You will see the line spectrum with equal spacing in the display window of
Spectrum Viewer1/Spectrum Analyzer. Explain why the output of the Pulse Generator
exhibits a line spectrum.

Pulse
Generator

Analog
Filter Design Analog

Filter Design1

butter butter

Scope
Spectrum Viewer

Spectrum
Viewer2

Spectrum
Viewer1

Spectrum
Viewer3

Product1
Product

Out1

Sound
Source

Sine
Wave

In1

In1 In1

In1

demodulated.mat

To File

FIGURE 9.2 AM without using the sinusoidal signal.

[A]DESIGN OF AN AM TRANSMITTER AND RECEIVER 99

3.A-3 (a) Measure the frequency spacing of the line spectrum. (b) Mathematically
explain the frequency spacing.

3.A-4 By using the Fourier transform property of multiplication of two signals in
the time domain, or by expanding the product of the information signal and the pulse
train into multiple terms, each of which is the product of the information signal and
a complex sinusoid, mathematically justify the spectrum shape shown in the display
window of Spectrum Viewer2/Spectrum Analyzer.

3.B Passing the sampled signal through a properly designed BPF will result in a
signal whose spectrum shape is the same as that of the DSB-SC AM signal.

3.B-1 If we set the parameters of the Analog Filter Design block as shown below,
the output of this block will be the DSB-SC AM signal with a carrier frequency at
20 kHz. The definitions of the parameters are shown in Fig. 7.7.

Justify the settings of the following three parameters.

� Filter type = Bandpass
� Lower passband edge frequency (rad/s) = 2*pi*16e3
� Upper passband edge frequency (rad/s) = 2*pi*24e3

3.B-2 After setting the parameters given in 3.B-1, run the simulation. After the
simulation is completed, Autoscale the display window of the Scope block and then
zoom into the range of [4.995 5] seconds. (a) Capture the display window. (b) Does
the output of the BPF look like the waveform of a DSB-SC AM signal? (c) Measure
the carrier frequency from the waveform generated.

3.B-3 (a) Capture the display window of Spectrum Viewer3/Spectrum Analyzer.
(b) Does the spectrum represent a DSB-SC AM signal with a carrier frequency of
20 kHz?

3.B-4 Even if we set the frequency (the inverse of the parameter Period) of the
Pulse Generator block to a value lower than the current frequency of 20 kHz, the
output of the Analog Filter Design block could still be a DSB-SC AM signal with a
carrier frequency of 20 kHz. (a) Find such value(s) of the Period that are greater than
the current setting of 1/2e4. (b) Justify your solution.

3.B-5 Apply the Period value(s) obtained in 3.B-4 to the Pulse Generator block
and then run the simulation. (a) Capture the display windows of the four Spectrum
viewers. (b) Is your answer to 3.B-4 correct?

3.B-6 A DSB-SC AM signal with carrier frequency of 40 kHz can be generated
by changing only the parameters of the Analog Filter Design block. Properly set
the parameters and run the simulation. Capture the display window of Spectrum
Viewer3/Spectrum Analyzer.

3.C Demodulation of the DSB-SC AM signal through sampling and BPF. First
set the parameter Period of the Pulse generator block to 1/(2e4) and then set the
parameters of the Analog Filter Design block to the values given in 3.B-1.

100 AMPLITUDE MODULATION

3.C-1 The DSB-SC AM signal, that is, the output of the Analog Filter Design block,
can be demodulated by properly setting the parameters of the Sine Wave and Analog
Filter Design1 blocks in the mdl/slx file. Set the parameters of these two blocks and
capture the parameter setting windows.

3.C-2 Set the parameter Simulation stop time to 0.5 seconds and run the simulation.
(a) Autoscale the display window of Scope and capture it. (b) Is the DSB-SC AM
signal demodulated correctly?

3.C-3 In the To file block, set File name=demodulated.mat, sample time=1/8192,
and run the simulation for 5 seconds. Then execute the following in the command win-
dow to play the demodulated signal. Judged by the sound, is the signal demodulated
correctly?

>>clear;load ??;soundsc(ans(2,:))

3.C-4 We can demodulate a DSB-SC AM signal without using the Sine Wave block.
Delete the Sine Wave block and revise the mdl/slx file so that the received DSB-SC
AM signal can still be successfully demodulated. (a) Capture the revised mdl/slx. (b)
Justify the parameter setting for the newly added blocks, if there are any.

3.C-5 Run the simulation using the mdl/slx revised in 3.C-4 for 0.5 seconds. (a)
Autoscale all the waveforms in the display window of the Scope block and capture
it. (b) Is the signal demodulated correctly?

REFERENCE

[1] S. Haykin and M. Moher, An Introduction to Analog and Digital Communications, 2nd
ed., Hoboken, NJ: Wiley, 2006.

10
QUADRATURE MULTIPLEXING
AND FREQUENCY DIVISION
MULTIPLEXING

� Design a modulation and demodulation system for quadrature multiplexing
(QM) amplitude modulation (AM).

� Design a frequency division multiplexing (FDM) system.
� Analyze the effects of phase and frequency errors in QM systems.
� Create stereo sound effects using intentional frequency error in QM methods.

10.1 QUADRATURE MULTIPLEXING AND FREQUENCY DIVISION
MULTIPLEXING SIGNALS AND THEIR SPECTRA

Consider three audio signals x(t), y(t), and z(t) all having the same bandwidth of
4 kHz. Each of them is DSB-SC amplitude modulated. Then the three AM signals
are transmitted at the same time over a wireless channel. The receiver will observe a
superposition of the three transmitted signals. As an example, let the received signal
𝜔(t) be expressed as

𝜔(t) = x(t) cos(2𝜋f1t + 𝜃1) + y(t) sin(2𝜋f1t + 𝜃1) + z(t) cos(2𝜋f2t + 𝜃2) + n(t),

(10.1)

where f1 = 35000, 𝜃1 = 𝜋∕6, f2 = 16000, 𝜃2 = −𝜋∕1000, and n(t) are the back-
ground noise.

Problem-Based Learning in Communication Systems Using MATLAB and Simulink, First Edition.
Kwonhue Choi and Huaping Liu.
© 2016 The Institute of Electrical and Electronics Engineers, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/choi_problembasedlearning

101

http://www.wiley.com/go/choi_problembasedlearning

102 QUADRATURE MULTIPLEXING AND FREQUENCY DIVISION MULTIPLEXING

Signal z(t) can be easily separated from x(t) and y(t) because they occupy different
frequency bands that do not overlap. Such a scheme where different signals are
transmitted at different nonoverlapping frequency bands is called “frequency division
multiplexing” (FDM) [1].

1.A Here, we analyze the passband bandwidth required for transmitting x(t), y(t),
and z(t) in equation (10.1).

1.A-1 [T]The bandwidth of the baseband signal z(t) is 4 kHz. Calculate the band-
width of z(t) cos(2𝜋f2t + 𝜃2), the DSC-SC AM signal of z(t) in equation (10.1).

1.A-2 [T]The bandwidths of x(t) and y(t) are also 4 kHz. Calculate the bandwidth of
x(t) cos(2𝜋f1t + 𝜃1) + y(t) sin(2𝜋f1t + 𝜃1), of the sum of the two DSB-SC AM signals
of x(t) and y(t) in equation (10.1).

1.A-3 [T]The information signals x(t) and y(t) of the same bandwidth are modulated
with the same carrier frequency; thus their spectra overlap with each other and the
total bandwidth required for transmitting both signals is the same as that for a single
signal. This method is called “quadrature multiplexing” (QM).

Mathematically explain how we can demodulate the two quadrature multiplexed
information signals free of interference even though they occupy the same frequency
band.

1.B In the following problems, we assume that 𝜔(t) in equation (10.1) is generated
by using the example of the three audio signals x(t), y(t), and z(t) given at the beginning
of Section 10.1. The sampled version of 𝜔(t) is saved as a matrix and stored in a data
file wt.mat, which is available for download from the companion website.

1.B-1 Download wt.mat from the companion website to your MATLAB work folder.
Execute the following command in the command window. Determine the name and
dimension (size) of the matrix saved in wt.mat.

>> clear;load wt.mat;whos

1.B-2 The first row of the matrix contains the sampling time instants with a sam-
pling rate of 160 kHz; the second row contains the sampled values of 𝜔(t) at the
corresponding sampling instants.

From the number of samples of 𝜔(t) and the sampling frequency (=160 kHz):
(a) Calculate the total time duration of 𝜔(t) in seconds; (b) Check whether or not it
equals the last element of the first row. If so, explain why.

1.C In this subsection, we analyze the spectra of QM and FDM signals. In Sec-
tion 10.2, we will demodulate the audio signals x(t), y(t), and z(t) from the sampled
data wt.mat. Design an mdl/slx file as shown in Fig. 10.1.

Set the parameters of the blocks as follows. The main parameters for the demod-
ulator will be determined in Section 10.2.

QUADRATURE MULTIPLEXING AND FREQUENCY DIVISION MULTIPLEXING 103

FIGURE 10.1 Demodulation of QM and FDM signals.

1. From file
� File name = wt.mat
� Sample time = 1/(16e4)

2. Sine Wave, Sine Wave1, Sine Wave2
� Sample time = 1/(16e4)

3. Product: Keep the default setting
� Sample time = -1

4. To file, To file1, To file2: Make sure that the number in the names of these blocks
occurs in numerical order as shown in Fig. 10.1.
� Save format = Array (not required for old versions)
� File name = xt_dem.mat for To file, yt_dem.mat for To file1, and zt_dem.mat

for To file2 as shown in Fig. 10.1.
� Sample time =1/8192

5. Spectrum Viewer, Spectrum Viewer1, Spectrum Viewer2: Use the subsystem
created in Section 1.6.B of Chapter 1. If you do not have it, design it before
continuing. Make sure that the number in the names of these blocks occurs in
numerical order as shown in Fig. 10.1.

1.C-1 Run the simulation for 5 seconds (set Simulation stop time=5). Capture the
display window of Spectrum Viewer/Spectrum Analyzer, the one that is connected to
the From File block whose output is the sampled version of 𝜔(t). Before capturing

104 QUADRATURE MULTIPLEXING AND FREQUENCY DIVISION MULTIPLEXING

the Spectrum Analyzer display windows, decrease the height of the window to get a
width:height ratio of about 7:1 for the graph portion. Do not Autoscale.

1.C-2 The captured plot in 1.C-1 should show that the DSB-SC AM signal z(t)
(= z(t) cos(2𝜋f2t + 𝜃2)) is centered at 16 kHz.

(a) Measure the bandwidth of the DSB-SC AM signal z(t). Ignore the mirror
image in the negative frequency range.

(b) Establish the relationship between the bandwidth of the baseband signal z(t)
and the bandwidth of its DSB-SC AM signal z(t) cos(2𝜋f2t + 𝜃2); that is,
compare the bandwidths before and after DSB-SC AM.

1.C-3 Equation (10.1) shows that 𝜔(t) consists of three terms associated with the
audio information signals x(t), y(t), and z(t). Therefore the output of the From File
block, which is the sampled version of 𝜔(t), contains three modulated terms of the
audio signals. However, the captured plot in 1.C-1 shows only two blocks of spectral
components. Explain why.

1.C-4 (a) Measure the total bandwidth occupied by the DSB-SC AM signals of x(t)
and y(t) in the captured plot in 1.C-1. (b) What is the advantage of the DSB-SC AM
signals of x(t) and y(t) compared with the DSB-SC AM signal of z(t)?

10.2 DEMODULATOR DESIGN

2.A In this problem we finish designing the mdl/slx file from Section 10.1. First,
we demodulate the audio information signals x(t), y(t), and z(t) from wt.mat. Then,
we save the demodulated data in xt_dem.mat, yt_dem.mat, and zt_dem.mat for x(t),
y(t), and z(t), respectively.

2.A-1 Set the parameters of the Sine Wave, Sine Wave1, Sine Wave2 blocks and the
Analog Filter design block as below: (a) Complete all places marked by ‘?’ below.
Equation (10.1) is a good starting point for determining most of these parameters.
(b) Comment on your parameter settings.

1. Sine Wave
� Frequency (rad/s) = ? (make sure you are using the proper unit)
� Phase (rad) = pi/2+pi/6 (explain the setting by using the identity cos(x) =
sin(x + 𝜋∕2)).

2. Sine Wave1
� Frequency (rad/s) = ?
� Phase (rad) = pi/6 (explain the setting)

3. Sine Wave2
� Frequency (rad/s) = ?
� Phase (rad) = ?

4. Analog Filter Design, Analog Filter Design1, Analog Filter Design2
� Passband edge frequency (rad/s) = 2*pi*4e3 (explain the setting.)

EFFECTS OF PHASE AND FREQUENCY ERRORS IN QM SYSTEMS 105

TABLE 10.1 Blocks of Spectrum in Spectrum Viewer1.

Spectrum Expression Center frequency

Center spectral block x(t)/2 0

1st symmetric pair (closest
to the center)

z(t)
2

cos[2𝜋(f1 − f2)t + 𝜃1 − 𝜃2] 19 (= f1 − f2) kHz

2nd symmetric pair
3rd symmetric pair (remotest

from the center)

2.A-2 After the parameters in 2.A-1 are determined, capture the completed mdl/slx
design window.

2.B Run the simulation for 10 seconds. Perform the following steps after the simu-
lation is complete.

2.B-1 Run the following in the command window to play the demodulated signal
of x(t). Describe the sound you hear.

>> load ??;soundsc(ans(2,:))

2.B-2 Play the demodulated signal of y(t). Describe the sound you hear.

2.B-3 Play the demodulated signal of z(t). Describe the sound you hear.

2.B-4 Capture the display window of Spectrum Viewer1/Spectrum Analyzer.

2.B-5 If the setting of the parameters of the Sine Wave block is done properly, we
should see seven blocks of spectral components including the mirror images in the
negative frequency range in the captured plot in 2.B-4.

Complete Table 10.1 (a portion of the table is completed already). To this end,
substitute 𝜔(t) in equation (10.1) into 𝜔(t) × cos(2𝜋f1t + 𝜃1) and expand it by using
the trigonometric identity. Then properly map each term into the corresponding block
of spectrum in the captured plot in B-4.

2.B-6 Capture the display window of Spectrum Viewer2/Spectrum Analyzer.

10.3 EFFECTS OF PHASE AND FREQUENCY ERRORS
IN QM SYSTEMS

3.A [A]In a stereo audio system, the sound from the left speaker is not identical to
the sound from the right speaker. Hence, in order to transmit a stereo audio signal,
two audio signals should be transmitted simultaneously. Suppose that x(t) and y(t)
in equation (10.1) form a stereo audio signal and are to be quadrature multiplexed
and then transmitted. The transmission requires the same bandwidth as required for
transmitting only one of them (refer to 1.A-3).

106 QUADRATURE MULTIPLEXING AND FREQUENCY DIVISION MULTIPLEXING

If we execute soundsc(x), where x is a two-column matrix, then the sampled sound
signals in the first and the second columns are played from the left and right speakers,
respectively.

Execute the following lines of code to play the stereo sound pair x(t), y(t). Describe
the sounds you hear from the left speaker and the right speaker.

>>clear;
>>load xt_dem.mat;st_data(1,:)=ans(2,:);
>>load yt_dem.mat;st_data(2,:)=ans(2,:);
>>soundsc(st_data’)

3.B [A]As done in 3.A, in order to play a stereo sound from an audio receiver,
the left-hand side and right-hand-side signal pair x(t), y(t) must be demodulated
separately. This requires two sets of sine waves, multipliers, and LPFs in the mdl/slx
design in Section 10.2. In other words, the stereo radio receiver with the QM method
requires two separate AM demodulators for the left-hand side and right-hand side
audio signals. If our goal is to check out both audio signals, rather than listening to
the stereo signal, then we can use a mono AM receiver, that is, only one set of local
oscillator, mixer, and LPF.

Revise the mdl/slx file designed in 2.A by adding eight additional blocks and
deleting the three spectrum viewers as shown in Fig. 10.2. Note that another DSB-
SC AM demodulator is added at the bottom of the design.

Analog
Filter Design

butter

Analog
Filter Design1

butter

Analog
Filter Design2

butter

Analog
Filter Design3

butter

1/sqrt(2)

1/sqrt(2)

Gain

Gain1

Scope

Product

Product1

Product2

Product3

Sine Wave

Sine Wave1

Sine Wave2

Sine Wave3

From File

wt.mat
xt_dem.mat

To File

yt_dem.mat

To File1

zt_dem.mat

To File2

xt_yt_mono.mat

To File3

FIGURE 10.2 Mono receiver for QM modulated stereo sounds.

EFFECTS OF PHASE AND FREQUENCY ERRORS IN QM SYSTEMS 107

Set the parameters of the newly added blocks as follows.

1. Sine Wave3
� Frequency (rad/s) = 2*pi*35e3
� Phase (rad) = pi/2+pi/6 - pi/4
� Sample time = 1/(16e4)

2. Analog Filter Design3
� Passband edge frequency (rad/s) = 2*pi*4e3

3. To File3
� Save format = Array (not required for old versions)
� File name = xt_yt_mono.mat
� Sample time = 1/8192

4. Gain, Gain1
� Gain = 1/sqrt(2)

3.B-1 [A,T]The setting above results in the sum of x(t) and y(t), more precisely,
1∕

2
√

2
(x(t) + y(t)), be demodulated and saved in the file xt_yt_mono.mat. Mathemat-

ically justify this.

3.B-2 [A]Execute the completed mdl/slx file for 10 seconds. If the simulation speed
is too slow, then remove the Scope block temporarily. Upon completing the sim-
ulation, execute the following in the command window to play the sound data in
xt_yt_mono.mat. Describe the sound you hear.

>>load xt_yt_mono.mat;soundsc(ans(2,:))

3.B-3 [A]If you have removed the Scope block, add it back and connect it again.
Run the simulation for 0.02 seconds (set Simulation stop time to 0.02). (a) Autoscale
the Scope display window and capture it. It should show that the two signals in the
scope are the same. (b) What does this result verify and why? Note that x(t)/2, not
x(t), is saved in xt_dem.mat.

3.B-4 [A]Let us summarize the results so far: if a pair of audio signals in stereo
format is QM modulated, summarize the process to listen to the pair of audio signals
together by using a mono radio receiver, that is, a receiver with only one set of sine
wave generator, multiplier, and LPF.

3.B-5 [A,T]Change the value of Phase (rad) of Sine Wave3 to pi/2+pi/6-pi/3. If we
still want the two waveforms in Scope to be identical with this revised setting, then
the gains of the two Gain blocks (Gain and Gain1) must be changed accordingly.
Derive the proper gain values for the two Gain blocks.

3.B-6 [A]Apply the gains obtained in 3.B-5 to the Gain and Gain1 blocks and run
the simulation. (a) Autoscale and then capture the Scope display window. (b) Are
the two signals identical? Since the two signals might still look very similar even

108 QUADRATURE MULTIPLEXING AND FREQUENCY DIVISION MULTIPLEXING

with incorrect settings, the two waveforms must be closely examined in making this
comparison.

3.C [A]In this subsection, we create the surrounding sound effect by introducing an
intentional frequency error in the stereo signal system with the QM method.

3.C-1 [A]Set the parameter Frequency (rad/s) of both Sine Wave and Sine Wave1 to
2*pi*(35e3+0.05). Increase Simulation stop time to 10 seconds and run the simulation.
Upon completing the simulation, execute the following commands again to listen the
stereo sound. Be sure to use a headphone/earphone because the PC speaker does not
produce well the surrounding effect.

(a) Describe the sound you hear.
(b) Compare the sound with the one you heard in 3.A.

>>clear;
>>load xt_dem.mat;st_data(1,:)=ans(2,:);
>>load yt_dem.mat;st_data(2,:)=ans(2,:);
>>soundsc(st_data’)

3.C-2 [A,T]If the design is correct, the sound volumes of the two audio signals, a
voice signal and a music signal, will not change but one of the audio signals will
sound like moving from left to right and the other one moving right to left.

(a) Mathematically explain why it sounds like that the sound sources are moving.
(b) Mathematically explain why the total sound volume of the voice signals,

that is, the sum of the voice signal power distributed in the left and right
headphone/earphone, does not change. Also why the total sound volume of
the music signal does not change?

(c) From Frequency (rad/s) of Sine Wave and Sine Wave1, which are set to
2*pi*(35e3+0.05), calculate the moving cycle (in seconds) of the two sound
sources.

(d) Execute soundsc(st_data’) again to play the sound signal generated in 3.C-1.
Measure the moving cycle in seconds of the two sound sources. Is it consistent
with the calculated results in (c)?

3.C-3 [A]How should the setting of Frequency (rad/s) of Sine Wave and Sine Wave1
be changed in order to double the sound source moving speed of the signal in 3.C-1?

3.C-4 Verify the answer to 3.C-3 in simulation and play the sound. Does the played
sound move twice faster?

REFERENCE

[1] H. P. E. Stern and S. A. Mahmoud, Communication Systems: Analysis and Design, Upper
Saddle River, NJ: Prentice Hall, 2006.

11
HILBERT TRANSFORM, ANALYTIC
SIGNAL, AND SSB MODULATION

� Understand and implement the Hilbert transform.
� Generate analytic signals using the Hilbert transform.
� Generate single-side band (SSB) modulation signals using the Hilbert transform.
� Generate SSB modulation signal using a band pass filter.
� Design an SSB demodulation system.

11.1 HILBERT TRANSFORM, ANALYTIC SIGNAL, AND SINGLE-SIDE
BAND MODULATION

The Hilbert transform is a linear operator. The system that performs the Hilbert
transform (called a “Hilbert transformer”) is a linear system with a frequency transfer
function defined as [1, 2]

H(𝜔) ≡ −j × sgn(𝜔) =
{
−j, 𝜔 > 0,
j, 𝜔 < 0.

(11.1)

Let F(𝜔) and f̂ (t) denote, respectively, the Fourier transform and Hilbert transform
of an arbitrary signal f(t). From equation (11.1), the Fourier transform of f̂ (t) can be
written as

F̂(𝜔) = H(𝜔)F(𝜔) =
{
−jF(𝜔), 𝜔 > 0,
jF(𝜔), 𝜔 < 0.

(11.2)

Problem-Based Learning in Communication Systems Using MATLAB and Simulink, First Edition.
Kwonhue Choi and Huaping Liu.
© 2016 The Institute of Electrical and Electronics Engineers, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/choi_problembasedlearning

109

http://www.wiley.com/go/choi_problembasedlearning

110 HILBERT TRANSFORM, ANALYTIC SIGNAL, AND SSB MODULATION

If f(t) is a real signal, then the analytic signal z(t) of f(t) is defined as [1, 2]

z(t) = 1
2

[f (t) + j × f̂ (t)]. (11.3)

The analytic signal is a conceptual complex signal, but it is widely used in signal
analysis. We will examine the spectral characteristics of the analytic signal in 1.A
and 1.B.

1.A [T]Prove that the Fourier transform of z(t) can be calculated as

Z(𝜔) =
{

F(𝜔), 𝜔 > 0,
0, 𝜔 ≤ 0.

(11.4)

1.B [T]Using equation (11.4), summarize the unique features of the spectrum of
analytic signal with respect to the spectrum of the original real signal.

1.C [T]The impulse response of the Hilbert transformer can be calculated by taking
the inverse Fourier transform of H(𝜔), and it is expressed as

h(t) = 1
𝜋t
. (11.5)

Equation (11.2) can be rewritten in the time domain as

f̂ (t) = h(t)?f (t). (11.6)

Complete the operation in equation (11.6) left as a question mark.

1.D [T]The analytic signal of the AM signal f (t) cos𝜔ct (assuming that 𝜔c is suf-

ficiently large) is 1
2
f (t)ej𝜔ct. This can be verified easily by consulting your answer

to 1.B.

1.D-1 Compare the spectrum shapes of f (t) cos𝜔ct and 1
2
f (t)ej𝜔ct and verify this

conclusion.

1.D-2 However, the analytic signal of f (t) cos𝜔ct is not always 1
2
f (t)ej𝜔ct. In order

to guarantee that the analytic signal of f (t) cos𝜔ct is 1
2
f (t)ej𝜔ct, the carrier frequency

𝜔c should be higher than the bandwidth of f(t), as illustrated in Fig. 11.1. Explain
why.

)F(ω

[rads/ s]ω

1

BB−

FIGURE 11.1 Fourier transform of f(t).

GENERATION OF ANALYTIC SIGNALS USING THE HILBERT TRANSFORM 111

1.E [T]Suppose that the spectrum of f(t) is a triangle as shown in Fig. 11.1.

1.E-1 The Fourier transform of f (t) cos𝜔ct(𝜔c ≥ B) is given as 1
2
(F(𝜔 − 𝜔c) +

F(𝜔 + 𝜔c)). For the F(𝜔) shown in Fig. 11.1, sketch the Fourier transform of
f (t) cos𝜔ct.

1.E-2 Express the Fourier transform of f̂ (t) sin𝜔ct in terms of F̂(𝜔).

1.E-3 The Fourier spectra of f̂ (t) sin𝜔ct and f (t) cos𝜔ct are identical for |𝜔| ≤ 𝜔c;
for |𝜔| ≥ 𝜔c, they have opposite polarities. Prove this using the relationship between
F̂(𝜔) and F(𝜔). Also sketch their Fourier spectra and check your answer.

1.E-4 For the F(𝜔) shown in Fig. 11.1, sketch the Fourier spectrum of
1
2
(f (t) cos𝜔ct + f̂ (t) sin𝜔ct). You may use your sketch in 1.E-3.

1.E-5 For the F(𝜔) shown in Fig. 11.1, sketch the Fourier spectrum of
1
2
(f (t) cos𝜔ct − f̂ (t) sin𝜔ct). You may use your sketch in 1.E-3.

11.2 GENERATION OF ANALYTIC SIGNALS USING THE
HILBERT TRANSFORM

The analytic signal z(t) of a real signal f(t) is given as

z(t) = 1
2

(f (t) + jf̂ (t)). (11.7)

In the following problems, the sampled vector of the Hilbert transform f̂ (t) is generated
from the sampled vector of an audio signal f(t). The sampled vector of an analytic
signal z(t) is then generated by the relationship given in equation (11.7).

2.A The sampled vector of an audio signal f(t) and the corresponding sampling
time vector are given in .mat format. The goal of this problem is to analyze this
signal.

2.A-1 [WWW]Download sound_CH11.mat from the companion website to your
MATLAB work folder. Then execute the following commands in the command
window. Is data(2,:) an audio signal?

>>load sound_CH11.mat; soundsc(data(2,:))

2.A-2 Write and then execute the following m-file, which extracts from the file
sound_CH11.mat the sampled vector of the audio signal f(t), ft_vector, and the corre-
sponding sampling time vector, t_vector.

112 HILBERT TRANSFORM, ANALYTIC SIGNAL, AND SSB MODULATION

clear ;
load sound_CH11.mat
t_vector=data(1,1:4000);
ft_vector=data(2,1:4000);

2.A-3 The variable ft_vector generated in 2.A-2 is the sampled vector of f(t) with
a sampling rate of 8000 Hz. The length of the vector is 4000 samples. The vari-
able t_vector is a vector whose elements correspond to the sampling instants of
each element of ft_vector. Therefore t_vector=[0:1/8000:0.5]. Execute the following
command to plot f(t) and capture the result.

>>figure; plot(t_vector,ft_vector)

2.B The Hilbert transform f̂ (t) (let Hilbert_ft_vector be its sampled vector) of f(t)
can be obtained by the following steps:

� Step 1. Use numerical integration (refer to Section 2.1 of Chapter 2) to obtain
the Fourier transform of ft_vector. This generates a vector Fw_vector that is the
sampled version of F(𝜔).

� Step 2. From Fw_vector, use equation (11.2) to generate a vector
Hilbert_Fw_vector that is the sampled version of F̂(𝜔).

� Step 3. Use numerical integration to obtain the inverse Fourier transform of
Hilbert_Fw_vector. This generates a vector Hilbert_ft_vector that is the sampled
version of f̂ (t).

2.B-1 [WWW]The m-file below generates Hilbert_ft_vector via the three steps above.
The time interval for numerical integration in Step 1 is set to 1/8000, the same as
the sampling interval of ft_vector. The frequency interval for generating the discrete
version of F(𝜔) is set to 2𝜋 rad/s. Thus the frequency interval for the numerical
integration in Step 3 must also be set to 2𝜋 rad/s.

Identify the line numbers of the m-file that correspond to each of the three steps
above.

Step 1: ? ∼ ? line

Step 2: ? ∼ ? line

Step 3: ? ∼ ? line

clear ;
load sound_CH11.mat
t_vector=data(1,1:4000);
ft_vector=data(2,1:4000);

t_step=t_vector(1,2)-t_vector(1,1);
w_vector=[]; w_step=2*pi;

GENERATION OF ANALYTIC SIGNALS USING THE HILBERT TRANSFORM 113

Fw_vector=[]; Hilbert_Fw_vector=[];
for w=(-2*pi*4000):w_step:(2*pi*4000)

w_vector=[w_vector w];
Fw=sum(?.*exp(-j*w*t_vector))*t_step;
Fw_vector=[Fw_vector Fw];
if ? >0

Hilbert_Fw=-j*Fw;
else

Hilbert_Fw=j*Fw;
end
Hilbert_Fw_vector=[Hilbert_Fw_vector Hilbert_Fw];

end

w_step=2*pi;
Hilbert_ft_vector=[];
for t=t_vector

Hilbert_ft=1/(2*pi)*sum(?.*exp(j*t*w_vector))*w_step;
Hilbert_ft_vector=[Hilbert_ft_vector Hilbert_ft];

end

Data(1,:)=t_vector;
Data(2,:)=ft_vector;
save ft.mat Data

Data(1,:)=t_vector;
Data(2,:)=real(Hilbert_ft_vector);
save Hilbert_ft.mat Data

2.B-2 Create the m-file above. The variables indicated by the question mark ‘?’ in
the m-file are to be completed. Determine these variables and complete the m-file.

2.B-3 (a) For each of lines in bold, add a comment to explain what it does. Especially
for the lines with ‘=’, explain what the variable on the left-hand side represents and
justify how the right-hand side expression is formulated accordingly. (b) Capture the
commented m-file.

2.B-4 Execute the m-file above. Then execute the following lines in the command
window. Capture the result.

>>figure
>>plot(t_vector,ft_vector)
>>hold on
>>plot(t_vector, Hilbert_ft_vector,’r’)

114 HILBERT TRANSFORM, ANALYTIC SIGNAL, AND SSB MODULATION

2.B-5 [A]The plot obtained in 2.B-4 should show that if the amplitude of f(t) is large,
then the amplitude of f̂ (t) is also large. This comes from the linearity property of the
Hilbert transform.

(a) Explain why this observation supports the linearity of the Hilbert transform.
(b) From equation (11.6), mathematically explain why Hilbert transform is linear.

2.B-6 Execute the following command for the plot generated in 2.B-4 and then
capture it.

>>axis([0 0.04 -0.5 0.5]); grid on

2.B-7 [A]The plot generated in 2.B-6 should show that if f(t) crosses zero with a
negative slope at t = t0, then the positive local peak values of f̂ (t) are located at t =
t0. Let us clarify this by graphically analyzing f̂ (t) = f (t) ∗ 1∕

𝜋t.
Note that the convolution a(t)*b(t) is equal to the integration of a(𝜏)b(t − 𝜏) over

the entire range of the 𝜏 axis, where b(t − 𝜏) is the t-second shifted version of
b(−𝜏), the left-right reflected signal of b(𝜏). From this graphical representation of
convolution, first, overlay 1∕𝜋(t − 𝜏) onto f (𝜏) in the plot of 2.B-6, with 𝜏 being the
horizontal axis. Then, roughly sketch their product f (𝜏) × 1∕𝜋(t − 𝜏) and observe
the changes as a function of the shift t. Note that 1∕𝜋(t − 𝜏) has an odd symmetry at
t. As this symmetry center moves to and then away from the zero-crossing points of
f (𝜏), observe the resulting product.

Explain why f̂ (t) has a positive local peak at the zero-crossing points of f(t) with
a negative slope.

2.B-8. [A]The observations made in 2.B-7 can be extended to assess how the shape
of f̂ (t) changes around the four typical points of particular interest of f(t): local
minima, local maxima, zero-crossing points with a positive slope, and zero-crossing
points with a negative slope. Estimate the shape of f̂ (t) around these points and
confirm your answer in the plot captured in 2.B-6.

2.B-9. [A]Based on the results in 2.B-6 to 2.B-8: (a) What would you expect f̂ (t) to
be if f(t) is cos(𝜔ct)? (b) Verify your answer using equation (11.2).

2.B-10 Based on the answer to 2.B-9, explain why the Hilbert transformer is called
as “𝜋∕2 phase shifter”?

11.3 GENERATION AND SPECTRA OF ANALYTIC AND SINGLE-SIDE
BAND MODULATED SIGNALS

3.A Let us verify 1.A in simulation using the sampled waveforms of f(t) and f̂ (t)
generated in Section 11.2. To this end, import the sampled vectors of these two signals
into Simulink to generate the analytic signal and observe its spectrum. First, design
an mld/slx file as shown in Fig. 11.2.

ANALYTIC AND SINGLE-SIDE BAND MODULATED SIGNALS 115

From File1

j

Gain

Gain1

Spectrum Viewer

In1

In1

Spectrum Viewer1

Add

+
+

1/2
From File

ft.mat

Hilbert_ft.mat

FIGURE 11.2 Simulink design to generate the analytic signal.

Set the parameters of the blocks as follows.

1. From File, From File1
� File name: As shown in Fig. 11.2.

2. Gain, Gain1: As shown in Fig. 11.2.
3. Spectrum Viewer, Spectrum Viewer1: Use the subsystem created in Section 6.B

of Chapter 1. It is recommended to add the Spectrum Viewer block first and set
its parameter as
� Signal Specification(sub-block)/Sample time = 1/4e4.

Then make a copy of Spectrum Viewer of the same parameter setting, which will
be named Spectrum Viewer1.

3.A-1 Complete the expressions of the output of each block in Table 11.1.

3.A-2 Run the simulation for 0.5 seconds (Simulation stop time = 0.5) and cap-
ture the display windows of Spectrum Viewer/Spectrum Analyzer and Spectrum
Viewer1/Spectrum Analyzer. Before capturing the Spectrum Analyzer display win-
dows, be sure to decrease the height of the window to get a width:height ratio of
about 7:1 for the graph portion as shown in Fig. 4.4. Also do not autoscale.

TABLE 11.1 Expressions of the Output of Each Block in Fig. 11.2.

Block name Expression

From File f(t)
From File1
Gain
Add f(t) + j × ?
Gain 1

116 HILBERT TRANSFORM, ANALYTIC SIGNAL, AND SSB MODULATION

3.A-3 Does the result in 3.A-2 verify the answer to 1.A? Why?

3.A-4 Determine how the spectrum shape of Spectrum Viewer 1 changes if the
value of Gain is set to –j. Properly revise equation (11.3) and reformulate equation
(11.4) to answer this question.

3.A-5 Set the value of Gain to –j and run the simulation again. Capture the display
window of Spectrum Viewer1/Spectrum Analyzer.

3.B Now, let us verify 1.E-4 in simulation using the sampled waveforms of f(t)
and f̂ (t) generated in Section 11.2. We will import the sampled vectors of these two
signals into Simulink to generate the single-side band (SSB) modulation signal and
observe its spectrum. First, design the following mdl/slx file.

Set the parameters of the blocks as follows.

1. From File, From File1, Gain (as shown in Fig. 11.3)
2. Sine Wave

� Frequency (rad/s) = 2*pi*(7+The last digit of your student ID number)*1e3
� Phase (rad) = pi/2

3. Sine Wave1
� Frequency (rad/s) = 2*pi*(7+The last digit of your student ID number)*1e3
� Phase (rad) = 0

Product

Product1
From File1

GainAdd

+
– 1/2

In1

In1

Spectrum
Viewer1

Spectrum
Viewer

From File

Sine Wave

Sine Wave1

ft.mat

Hilbert_ft.mat

FIGURE 11.3 Simulink design for generating an SSB signal.

IMPLEMENTATION OF AN SSB MODULATION AND DEMODULATION SYSTEM 117

4. Add
� List of signs = +− (with no space)

5. Spectrum Viewer, Spectrum Viewer1 (Copy and paste the ones used in 3.A.)
� Signal Specification (sub-block)/Sample time = 1/4e4.

3.B-1 Complete the expressions that correspond to the output of each of the eight
blocks in Table 11.2.

TABLE 11.2 Expressions of the Output of Each Block in Fig. 11.3.

Block name Expression

From File f(t)
From File1
Sine Wave cos(2𝜋 × (7 + x) × 1000t) where x = the last digit of your student

ID number.
Sine Wave1
Product
Product1
Add
Gain

3.B-2 Run the simulation for 0.5 seconds (Simulation stop time = 0.5) and cap-
ture the display windows of Spectrum Viewer/Spectrum Analyzer and Spectrum
Viewer1/Spectrum Analyzer.

3.B-3 Verify the answer to 1.E-5 using the simulation results in 3.B-2. Are the two
results consistent with each other?

3.B-4 Predict how the spectrum shape of Spectrum Viewer1 will change if List of
signs of the Add block is set to ++ (with no space in-between the two + signs). Sketch
your predicted spectrum.

3.B-5 Set the List of signs of the Add block to ++ and run the simulation. (a)
Capture the display window of Spectrum Viewer1/Spectrum Analyzer. (b) Does the
result verify the answer to 1.E-4?

11.4 IMPLEMENTATION OF AN SSB MODULATION AND
DEMODULATION SYSTEM USING A BAND PASS FILTER

Fig. 11.4(a) shows the block diagram of an SSB modulation system using a band pass
filter (BPF). The signal 𝜙DSB−SC(t) is the passband DSB-SC signal obtained by mul-
tiplying f(t) with cos(𝜔ct), and 𝜙USSB(t) is the upper single-side band (USSB) signal
generated by passing𝜙DSB−SC(t) through a BPF. The operation is best explained in the

118 HILBERT TRANSFORM, ANALYTIC SIGNAL, AND SSB MODULATION

ω0

DSB-SC ()ωΦ

0Cω− Cω

(b) Spectrum of the original signal

(c) Spectrum of the DSB-SC signal

ω

cos Ctω

BPF, HBPF ()ω USSB(t)φ×f(t)

(a) SSB modulation system block

DSB-SC(t)φ

BPF ()H ω

ωCω−

USSB ()ωΦ

(d) Frequency transfer function of the BPF

(e) Spectrum of the USSB signal modulated after passing through the BPF

0 Cω

ωCω− 0 Cω

F()ω

FIGURE 11.4 USSB modulator using a BPF and the spectra at each stage.

frequency domain. An example of the spectrum of f(t) is shown in Fig. 11.4(b). The
spectrum of the corresponding DSB-SC signal 𝜙DSB−SC(t) is shown in Fig. 11.4(c).
Let HBPF(𝜔) denote the frequency response of the BPF. With the ideal BPF HBPF(𝜔)
as shown in Fig. 11.4(d), the passband lower edge, which corresponds to the Lower
passband edge frequency of the Analog Filter Design block, equals the carrier fre-
quency, and the bandwidth of HBPF(𝜔) is set to be greater than the bandwidth of f(t).

IMPLEMENTATION OF AN SSB MODULATION AND DEMODULATION SYSTEM 119

The USSB modulation signal as shown in Fig. 11.4(e) is generated by passing
𝜙DSB−SC(t) through HBPF(𝜔).

Next, we design a system that generates SSB signals at the output of the From File
block using a BPF.

4.A Design an mdl/slx as shown in Fig. 11.5.

Product
Product1

butter butter

Analog
Filter Design Analog

Filter Design1

From File

Sine Wave Sine Wave1

sound_EX11.mat

rcvd.mat

To File

Spectrum
Viewer

Spectrum
Viewer1

Spectrum
Viewer2

Spectrum
Viewer3

In1 In1 In1 In1

FIGURE 11.5 Simulink design for SSB signal generation with a BPF.

Set the parameters of the blocks as follows. The parameters of any blocks not
mentioned below do not need to be set at this stage; they will be set later.

1. From File
� File name = sound_CH11.mat

2. To File :
� Save format =Array (not required for old versions)
� File name = rcvd.mat
� Sample time = 1/8192

3. Sine Wave
� Frequency (rad/s) = 2*pi*7e3
� Phase (rad) = pi/2

4. Analog Filter Design
� Filter type = Bandpass
� Filter order = 32
� Lower passband edge frequency (rad/s) = 2*pi*7e3
� Upper passband edge frequency (rad/s) = 2*pi*11e3

5. Spectrum Viewer, Spectrum Viewer1, Spectrum Viewer2, Spectrum Viewer3:
Copy and paste the ones used in 3.A.
� Be sure to set Signal Specification(sub-block)/Sample time = 1/4e4.

4.A-1 The signal f(t) in Fig. 11.4(a) corresponds to the output of the From file block
in the mdl/slx file. The outputs of which blocks correspond to the DSB-SC signal
𝜙DSB−SC(t), the carrier wave cos(𝜔ct), and the USSB signal 𝜙USSB(t), respectively,
in Fig. 11.4(a)? Complete Table 11.3.

120 HILBERT TRANSFORM, ANALYTIC SIGNAL, AND SSB MODULATION

TABLE 11.3 Corresponding Block’s Output to the Signal in Fig. 11.4(a).

Signal in Fig. 11.4(a) Corresponding block’s output

Information signal f(t) From File
DSB-SC signal 𝜙DSB−SC(t),
Carrier wave cos(𝜔ct),
USSB signal 𝜙USSB(t)

4.A-2 Answer the following questions:

1. Determine the carrier frequency on the basis of the parameter setting in the
mdl/slx file.

2. What is the reason to set Lower passband edge frequency (rad/s) of the Analog
Filter Design block to 2*pi*7e3?

4.A-3 Run the simulation for 10 seconds (Simulation stop time = 10). Upon
completing the simulation, capture the two display windows of Spectrum
Viewer/Spectrum Analyzer and Spectrum Viewer1/Spectrum Analyzer.

4.A-4 (a) From the result in 4.A-3, measure the bandwidths of 𝜙DSB−SC(t) and
𝜙USSB(t). For consistency, here let us define bandwidth as the distance in frequency
between the two points where the spectrum crosses the x axis from the positive
frequency range. (b) Is the USSB modulation done correctly?

4.B In this problem, we will demodulate 𝜙USSB(t).

4.B-1 [T]From 1.E-5, the USSB modulation signal 𝜙USSB(t) of f(t) is expressed
as 1

2
(f (t) cos𝜔ct − f̂ (t) sin𝜔ct). Substitute it into the left-hand side of the following

equation:

LPFBf
[𝜙USSB(t) cos(𝜔ct)] = 1

4
f (t), (11.8)

where Bf is the bandwidth of f(t).
NOTE: The notation LPFD[x(t)] denotes the output of an ideal (distortionless with

zero-delay) LPF with bandwidth D for input x(t). This notation will be used at many
other places in this book.

4.B-2 Generating a USSB demodulation is equivalent to implementing
LPFBf

[𝜙USSB(t) cos(𝜔ct)]. The output of the Analog Filter Design block on the left-
hand side of the mdl/slx file in 4.A corresponds to 𝜙USSB(t), and the three blocks on
the right-hand side, Sine Wave1, Product1, and Analog Filter Design1, are required to
create LPFBf

[𝜙USSB(t) cos(𝜔ct)]. Assuming that the parameters of these three blocks
are set correctly (will set these in the next problem), determine the expressions of
each block’s output in Table 11.4.

IMPLEMENTATION OF AN SSB MODULATION AND DEMODULATION SYSTEM 121

TABLE 11.4 Expressions of the Output of Each Block in Fig. 11.5.

Block in Fig. 11.5 Expression of the output

Analog Filter Design 𝜙USSB(t)
Sine Wave1
Product1
Analog Filter Design

4.B-3 Properly set the parameters of Sine Wave1 and Analog Filter Design1 to
generate LPFBf

[𝜙USSB(t) cos(𝜔ct)]. Capture the parameter setting windows of each
block.

4.B-4 Run the simulation for 10 seconds again and capture the two display windows
of Spectrum Viewer2/Spectrum Analyzer and Spectrum Viewer3/Spectrum Analyzer.

4.B-5 Spectrum Viewer2 should show three blocks of spectra. Mathematically
explain this.

4.B-6 Explain whether or not the captured spectrum of Spectrum Viewer3 is what
you expect to see.

4.B-7 Execute the following in the command window to play the demodulated
signal. Does it sound the same as the original signal?

>>clear; load rcvd.mat; soundsc(ans(2,:))

4.C USSB modulation and demodulation are implemented in 4.A and 4.B. The
parameter settings of this implementation can be changed to perform L(Lower)SSB
modulation and demodulation. For this, set the parameters of Analog Filter Design
(the one on the left) as

� Lower passband edge frequency (rad/s) = 2*pi*3e3
� Upper passband edge frequency (rad/s) = 2*pi*7e3

4.C-1 Justify the settings above for LSSB systems.

4.C-2 (a) Determine the parameter(s) of the block(s) on the right-hand side of the
mdl/slx file that need to be changed for the LSSB demodulator, and (b) justify your
answers.

4.C-3 After setting the parameters for the Analog Filter Design block, run the sim-
ulation for 10 seconds. Capture the display windows of Spectrum Viewer1/Spectrum
Analyzer, Spectrum Viewer2/Spectrum Analyzer, and Spectrum Viewer3/Spectrum
Analyzer.

4.C-4 (a) Judged from the figures generated in 4.C-3, are the LSSB modulation and
demodulation results what you expected? (b) Justify your answer.

122 HILBERT TRANSFORM, ANALYTIC SIGNAL, AND SSB MODULATION

4.D [A]Examine how the frequency error, that is, the difference between the carrier
frequency generated in the modulator and the local carrier frequency generated in the
demodulator, influences the demodulated signal in the SSB system.

4.D-1 [WWW]Download sound_billy.mat from the companion website to your
MATLAB work folder. Then execute the following in the command window. Does
data(2,:) saved in sound_billy.mat sound like a voice signal?

>>clear; load sound_billy.mat; soundsc(data(2,:),11025)

4.D-2 Let us perform SSB modulation and demodulation on a voice signal. Change
the variable File name of the From file block in the mdl/slx file in 4.B (or 4.C) to
sound_billy.mat. Run the simulation for 10 seconds. After completing the simulation,
execute the following command and assess whether the demodulated signal sounds
the same as the original voice signal.

>>clear; load rcvd.mat; soundsc(ans(2,:))

4.D-3 Now we consider the case with frequency errors. Change the parameter
Frequency (rad/s) of the Sine Wave1 block to 2*pi*(7e3+150) to introduce a frequency
error of 150 Hz. Run the simulation for 10 seconds. After the simulation is completed,
play the demodulated signal and describe the difference between the sounds of the
demodulated signal and the original. Does the demodulated signal have a higher or
lower tone than the original signal?

4.D-4 Change the variable Frequency (rad/s) of the Sine Wave1 block to 2*pi*(7e3-
150) to change the frequency error to −150 Hz. Run the simulation for 10 seconds
and then play the demodulated signal. Describe the difference between the sounds of
the demodulated signal and the original signal. Does the demodulated signal have a
higher or lower tone than the original signal?

4.D-5 There should be a noticeable difference between the sounds of the demod-
ulated signals in 4.D-3 and 4.D-4. (a) Assume that the original voice signal has the
spectrum shape in 1.D-2 for simplicity. Sketch the spectra of the demodulated signal
with a positive as well as a negative frequency offset. (b) Explain how and why the
sound of the demodulated signal changes if the frequency error is positive or negative.

REFERENCES

[1] R. Bracewell, The Fourier Transform and Its Applications, 2nd ed., New York: McGraw-
Hill, 1986.

[2] J. Duoandikoetxea, Fourier Analysis, Providence, RI: American Mathematical Society,
2000.

12
VOLTAGE-CONTROLLED
OSCILLATOR AND FREQUENCY
MODULATION

� Analyze the impact of signal clipping in amplitude modulation systems.
� Investigate the operation of voltage-controlled oscillator.
� Design a frequency modulation transmitter and demodulator.

12.1 [A]IMPACT OF SIGNAL CLIPPING IN AMPLITUDE
MODULATION SYSTEMS

Like some components in a communications system transmitter, the amplifiers and
analog-to-digital converters in the receiver also have their linear operation regions.
When the instantaneous input signal exceeds the dynamic operation region of these
components, for example, due to slow automatic gain control responses, the input
signal will be clipped. In this problem, we study the impact of signal clipping (due to
components/processes in the transmitter or in the receiver) in amplitude modulation
(AM) systems.

1.A [WWW]Open the DSB-SC amplitude modulation and demodulation system
mdl/slx file designed in Section 1.B of Chapter 9; if you do not have this file, complete
Section 1.B of Chapter 9 first. Modify the mld/slx file as shown in Fig. 12.1:

Problem-Based Learning in Communication Systems Using MATLAB and Simulink, First Edition.
Kwonhue Choi and Huaping Liu.
© 2016 The Institute of Electrical and Electronics Engineers, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/choi_problembasedlearning

123

http://www.wiley.com/go/choi_problembasedlearning

124 VOLTAGE-CONTROLLED OSCILLATOR AND FREQUENCY MODULATION

Out1

Sound
Source

Product

Product1
Analog

Filter Design

Gain
Add

butter

Scope

To File

Demodulated.mat

Gaussian

Gaussian Noise
Generator

1

Sine Wave
Sine Wave1

FIGURE 12.1 Simulink design for AM in an additive white Gaussian noise channel.

First, complete the following parameter settings:

1. Set Frequency and Phase of Sine Wave the same as those of Sine Wave1.
2. Set passband edge frequency(rad/s) of Analog Filter Design to 2*pi*4e3.
3. Set the parameters of To File as follows.

� File name = demodulated.mat
� Sample time = 1/8192

Then, make the following changes:

1. Remove all Spectrum Viewer blocks to speed up the simulation.
2. Download sound_CH12.mat from the companion website to your MATLAB

work.
3. Set the parameter File name of Sound Source/From File(sub_block) =

sound_CH12.mat.
4. Add the Gain block to the output of the transmitter to scale the DSB-SC signal

amplitude.
5. Set the parameter Variance of the Gaussian Noise Generator block to 1e-6 (it

was set to 1e-3 in Chapter 9).

1.A-1 Execute the mdl/slx file for 5 seconds (set simulation stop time=5). Then
execute the following to play the demodulated signal. Can you clearly hear the audio
sound?

>>clear;load demodulated.mat;soundsc(ans(2,:))

1.A-2 Increase the parameter Variance of the Gaussian Noise Generator block to
1e2. Then execute the mdl/slx file for 5 seconds and play the demodulated signal.
Describe the sound quality.

1.A-3 In order to achieve the same sound quality as the scenario where the signal is
not amplified and Variance of the Gaussian Noise Generator block is set to 1e-6, the
parameter Gain of the Gain block should be set to 1e4 (=10000). Justify this setting.

[A]IMPACT OF SIGNAL CLIPPING IN AMPLITUDE MODULATION SYSTEMS 125

Product

Product1

Saturation
Add

demodulated.mat

Scope

To File

butter

Analog
Filter Design

Gaussian

Gaussian Noise
Generator

Sound
Source

Out1

Sine Wave

Sine Wave1

1

Gain

FIGURE 12.2 Simulink design for an AM system in the presence of amplitude clipping.

1.A-4 Set the parameter of the Gain block to 1e4. Run the simulation and play the
demodulated signal. Is the original sound quality restored?

1.B From the results in 1.A, the quality of the demodulated signal is not determined
by the signal power or noise power alone but by the signal-to-noise power ratio. To
maintain the same quality, if the noise power increases, the signal power must be
increased proportionally.

For practical applications, however, maintaining a strong received signal to meet a
high received signal-to-noise ratio (SNR) might not always be possible. For example,
component nonlinearity might cause signal clipping if the input signal is too strong.
Also, for wireless systems, a strong received signal is often not possible. This section
focuses on studying the impact of signal clipping in AM systems.

Modify the mdl/slx file completed in 1.A as follows.

1. Add the Saturation block as shown in Fig. 12.2. Set the two parameters, Upper
limit and Lower limit of the Saturation block to 10 and −10, respectively.

2. Increase the input port number of the Scope block to 4 and connect the output
of the Saturation block to the third input as shown in Fig. 12.2.

The Saturation block in the mdl/slx file implements the clipping effect in the
transmitter, for example, due to power amplifier nonlinearity. If the input is larger
than the parameter Upper limit (currently set at 10), the output will be equal to Upper
limit; if the input is smaller than the parameter Lower limit (currently set at −10), the
output will be equal to Lower limit. Otherwise, the output equals the input.

In 1.B-1 to 1.B-5 below, the processes in 1.A-1 to 1.A-4 will be repeated with the
revised mdl/slx file, where a Saturation block is added.

1.B-1 As in 1.A-1, change the parameter Gain back to 1 and the parameter Variance
of the Gaussian Noise Generator block back to 1e-6. Execute the mdl/slx file for
5 seconds. Autoscale all the waveforms in the Scope display window and capture the
Scope display window.

1.B-2 Explain why the input and output of the Saturation block are identical.

1.B-3 Play the demodulated signal. Is the audio clearly hearable?

126 VOLTAGE-CONTROLLED OSCILLATOR AND FREQUENCY MODULATION

1.B-4 As in 1.A-2, increase the Variance of the Gaussian Noise Generator block
to 1e2 and execute the mdl/slx file again. Play the demodulated signal. Describe the
sound quality.

1.B-5 In order to achieve an SNR identical to the case of 1.B-1, set the value of
Gain to 1e4 as in 1.A-3 and 1.A-4. Run the simulation again. Play the demodulated
signal. Is the original sound quality restored as in 1.A-4?

1.B-6 Autoscale all the waveforms in the Scope display window and then set the y
axis range of the third waveform, that is, the output of the Saturation block, in the
Scope window to [–20 20]. Capture the Scope display window.

1.B-7 The signals before and after the Saturation block, that is, the second and third
waveforms in the captured windows in 1.B-6, should show that even though the signal
is scaled in the transmitter, the transmitted signal (the third waveform) is still smaller
than the desired scaled signal (the second waveform) due to clipping by the saturation
block. This results in an SNR that is lower than what is desired in the receiver. Thus
the received signal (the fourth waveform) is still severely distorted by noise.

Next, we disconnect the Gaussian noise generator block in the mdl/slx file sim-
ulated in 1.B-6. The SNR is thus infinity since the noise power is zero. (a) If the
demodulated audio signal is played in this case, do you expect it to sound like the
original signal? (b) Justify your answer.

1.B-8 In the mdl/slx file simulated in 1.B-6, disconnect the Gaussian noise gener-
ator block from the Add block in order to emulate the ideal case of an infinite SNR.
Run the simulation again and play the demodulated signal. (a) Is the sound what you
expected to hear as discussed in B-7? (b) If not, what has caused it?

1.B-9 Summarize some of the drawbacks of AM, keeping in mind that many blocks
along the communications chain could be nonlinear.

12.2 OPERATION OF THE VOLTAGE-CONTROLLED OSCILLATOR
AND ITS USE IN AN FM TRANSMITTER

2.A This section focuses on voltage-controlled oscillator (VCO) [1–3] operation
by using a Simulink design. We apply various inputs to the VCO and determine how
the VCO output changes for each of these input signals. Design an mdl/slx file as
shown Fig. 12.3.

Constant

Continuous-Time
VCO

Scope
Continuous-Time

VCO

1

FIGURE 12.3 A VCO test system.

OPERATION OF THE VOLTAGE-CONTROLLED OSCILLATOR 127

Set the parameters of the Scope block via the following steps before proceeding
to the next problems. Note that the settings for the Scope block might be slightly
different for different Simulink versions.

1. Double click the Scope block to open the Scope display window.
2. Click the icon Parameters in the menu bar for the Scope display window to

open the Scope parameter window.
3. Click the General tab in the Scope parameter window. In the Sampling option

at the bottom, select Sample time and set it to 1e-4.
4. Click the Logging (History or Data History in some old Simulink versions) tab

in the Scope parameter window. Uncheck the option Limit data points to last.

Next, set the parameters of the Continuous time VCO block as follows. Hereafter,
for simplicity, we will simply call the Continuous time VCO block VCO.

� Quiescent frequency = X + 1, X = Last digit of your student ID number
� Input sensitivity = 1

2.A-1 After completing the settings of the Scope and the VCO blocks, run the
simulation for 1 second.

(a) Capture the Scope display window.
(b) Measure the frequency of the VCO output on the basis of the waveform.

Counting the number of cycles per second is one of the ways to measure the
frequency. Determine the measured frequency in [rad/s], not [Hz].

2.A-2 Denote x = Constant value of the Constant block, y = Quiescent frequency,
and z = Input sensitivity of VCO, respectively. Run the simulation for each of the 12
combinations of the three parameters listed in Table 12.1. Count the number of cycles
per second to determine the VCO output frequency. Complete the fourth and fifth
columns of the table with the measured values. Note that the unit of frequency is rad/s.

TABLE 12.1 VCO Output Frequency According to the Parameters.

x (VCO
input)

y (Quiescent
frequency)

z (Input
sensitivity)

Number of cycles per
second of VCO output

𝜔i(= VCO output
frequency)[rad/s]

1 0 4
2 0 2
2 0 4
4 0 2
1 1 4
2 1 2
2 1 4
4 1 2
1 4 4
2 4 2
2 4 4
4 4 2

128 VOLTAGE-CONTROLLED OSCILLATOR AND FREQUENCY MODULATION

2.B Based on the measured result in 2.A, show that the VCO output frequency 𝜔i
in rad/s can be expressed as

𝜔i = (2𝜋 × y) + (2𝜋 × x × z). (12.1)

2.C [T]Let us determine the relationship between the input information signal and
the output (the modulated signal) of the frequency modulator.

2.C-1 The instantaneous frequency denoted by 𝜔i(t) is defined as the derivative of
the instantaneous phase 𝜃(t) w.r.t. time t as 𝜔i(t) = d𝜃(t)∕dt. From this definition,
derive the instantaneous phase 𝜃(t) from 𝜔i(t):

𝜃(t) = ? (12.2)

2.C-2 In frequency modulation (FM), the relationship between the input infor-
mation signal to be modulated, f(t), and the instantaneous frequency of the output
modulated signal, 𝜔i(t), is given as

𝜔i(t) = 𝜔c + kf f (t), (12.3)

where 𝜔c is the carrier frequency and kf is FM index.
First, substitute equation (12.3) into the expression of 𝜃(t) as a function of 𝜔i(t) as

derived in 2.C-1. Then, simplify this expression to obtain 𝜃(t), instantaneous phase of
the frequency modulated signal, as a function of the information signal f(t). Finally,
substitute 𝜃(t) into𝜙FM(t) = A cos(𝜃(t)) to express the FM signal 𝜙FM(t) as a function
of 𝜔c, kf , and f(t).

2.D The VCO can be implemented as a frequency modulator. The fundamental rela-
tionships that enable this implementation are the VCO operation equation formulated
in 2.B and equation (12.3).

2.D-1 Show that if x, y, and z given below are the input, Quiescent frequency, and
input sensitivity of the VCO block,

x = f (t), y =
𝜔C

2𝜋
, z =

kf

2𝜋
, (12.4)

then the VCO output frequency in 2.B is equal to the instantaneous frequency of the
FM signal given in equation (12.3).

2.D-2 The result in 2.D-1 shows that if an information signal f(t) is applied as the
input of the VCO block whose parameters Quiescent frequency and input sensitivity
are set properly, then the VCO output frequency will be equal to the right-hand side
of equation (12.3). This implies that the VCO operation is mathematically equivalent
to FM, which allows us to employ the VCO as a frequency modulator.

OPERATION OF THE VOLTAGE-CONTROLLED OSCILLATOR 129

Signal
Generator

Continuous-Time
VCO

Continuous-Time
VCO

Scope

FIGURE 12.4 VCO test system II.

Consider an example with a goal to have the VCO generate an FM signal with a
carrier frequency of 𝜔c = 3e4 rad/s and a modulation index of kf = 50 from its input
f(t). Determine the proper values for the parameters Quiescent frequency and Input
sensitivity of the VCO block.

2.E Replace the Constant block with the Signal Generator block as shown in
Fig. 12.4.

Set the parameters of each block as follows.

1. Signal Generator
� Waveform = sawtooth
� Amplitude = 1
� Frequency = 2
� Units = Hertz

2. VCO
� Quiescent frequency = (80 + Last digit of your student ID number)
� Input sensitivity = 40

3. Scope: Copy the Scope block from the mdl/slx file completed in 2.A and inherit
all parameters of the block except the number of input ports, which should be
increased to 2 as shown Fig. 12.4. Connect the output of Signal Generator to
the first input port.

2.E-1 Execute the mdl file for 2 seconds (Simulation stop time = 2). Capture the
Scope display window.

2.E-2 At around t = 0.4 seconds, zoom into the range of a couple of periods of
the VCO output along the x axis. (a) At t = 0.4 seconds, measure the VCO input
voltage and the VCO output frequency. (b) In the VCO operation equation completed
in 2.B, replace the variables x, y, and z with the measured VCO input voltage, the
current Quiescent frequency, and the Input sensitivity of VCO, respectively. What is
the theoretical VCO output frequency at t = 0.4? (c) Does the measured VCO output
frequency match the theoretical value? Ignore small measurement errors.

2.E-3 Repeat the simulation for Input sensitivity= 20 and 80. (a) Capture the Scope
display window for each case. (b) Describe how the VCO output waveform changes
in response to the change of Input sensitivity. (c) In terms of how the parameter Input

130 VOLTAGE-CONTROLLED OSCILLATOR AND FREQUENCY MODULATION

sensitivity affects the VCO output, is the result you observed in simulation what you
expected to see? Justify your answer.

12.3 IMPLEMENTATION OF NARROWBAND FM

3.A [T]The FM signal is expressed as

𝜙FM(t) = A cos
(
𝜔ct + kf ∫

t

0
f (𝜏)d𝜏

)
, (12.5)

where f(t) is the information signal,𝜔c is the carrier frequency, and kf is the modulation
index.

3.A-1 We can rewrite equation (12.5) as 𝜙FM(t) = X cos(𝜔ct) + Y sin(𝜔ct) using
the trigonometric identity. Find the expressions for the quantities X and Y.

3.A-2 According to Carson’s rule [4], if the magnitude of kf ∫ t
0 f (𝜏)d𝜏 (defined as 𝛽

in the related textbooks) in equation (12.5) is kept in a small range, say much smaller
than 1, then 𝜙FM(t) is called a “narrowband FM” (NBFM) signal.

Show that if 𝜙FM(t) in equation (12.5) is an NBFM signal, that is, the magnitude
of kf ∫ t

0 f (𝜏)d𝜏 is much smaller than 1, then equation (12.5) can be approximated as

𝜙NBFM(t) ≈ A cos(𝜔ct) + kf ∫
t

0
f (𝜏)d𝜏 × (−A sin(𝜔ct))

= A cos(𝜔ct) − Akf ∫
t

0
f (𝜏)d𝜏 × sin(𝜔ct).

(12.6)

3.A-3 Prove the following relationship:

d
dt

LPFBf
[𝜙NBFM(t) × (− sin(𝜔ct))] ≈

Akf

2
f (t), (12.7)

where Bf denotes the bandwidth of f(t). The notation LPFD[x(t)] denotes that the
output of an ideal LPF (distortionless and zero-delay) with bandwidth is D for input
x(t). The carrier frequency 𝜔c is assumed to be greater than the signal bandwidth Bf
as always.

3.A-4 The NBFM signal 𝜙NBFM(t) can be generated following equation (12.6)
without using a VCO. The Simulink blocks that perform the differentiation and
integration are Difference and Integrator, respectively.

Identify all the required Simulink blocks in order to generate 𝜙NBFM(t) on the
basis of equation (12.7).

IMPLEMENTATION OF NARROWBAND FM 131

Sine Wave

Sine Wave1

Sine Wave2Product

Product1

butter butter

demNBFM.mat

To File

Scope

Analog
Filter Design

Analog
Filter Design1

Difference

z-1
zAdd

Sound
Source

Integrator

1
s

Gain

350Out1

FIGURE 12.5 Simulink design for NBFM.

3.A-5 Identify the four required Simulink blocks to demodulate𝜙NBFM(t) according
to the left-hand side of equation (12.7).

3.B Design the NBFM signal generation and demodulation system as shown in
Fig. 12.5, where the information signal f(t) is the output of the Sound Source block
in the mdl/slx designed in Section 12.1. The output of the Add block corresponds to
𝜙NBFM(t), and the output of the Difference (differentiator) block corresponds to the
demodulated signal.

Set the parameters of each block as follows.

1. Sound Source: Copy the block from the mdl/slx file designed in Section 12.1.
The parameter File name of the From file subblock is set as:
� From file(subblock)/File name = sound_CH12.mat

2. Gain
� Gain = 350

3. Sine Wave
� Frequency (rad/s) = 2*pi*10e3
� Phase (rad) = pi/2

4. Sine Wave1, Sine Wave2
� Amplitude = −1
� Frequency (rad/s) = 2*pi*10e3
� Phase (rad) =0

5. Analog Filter Design, Analog Filter Design1
� Pass band edge frequency (rad/s) = 2*pi*4e3

6. To File
� Save format = Array (not required for old versions)
� File name = demNBFM.mat
� Sample time = 1/8192.

132 VOLTAGE-CONTROLLED OSCILLATOR AND FREQUENCY MODULATION

7. Scope: Add a new scope from the Simulink library with the default parameter
setting of Limit data points to last = 5000, but increase the number of input
ports to 6 (Number of ports = 6) as shown in Fig. 12.5.

3.B-1 The output of the Add block corresponds to 𝜙NBFM(t) in equation (12.6).
Complete the output expressions of each block of the transmitter listed in Table 12.2.

TABLE 12.2 Expressions of the Output of Each
Block in the Transmitter Part of Fig. 12.5.

Block name Output expression

Sound Source f(t)
Integrator ∫ t

0 f (𝜏)d𝜏
Gain 350 ∫ t

0 f (𝜏)d𝜏
Sine Wave cos(2𝜋 × 10000t)
Sine Wave1
Product
Add

3.B-2 The output of Difference (differentiator block) corresponds to the demodu-
lated signal given in equation (12.4). Now complete the output expressions of each
block of the receiver listed in Table 12.3. To determine the output of Analog Filter
Design, rewrite the output of Product 1 by using trigonometric identities and keep
the term that remains after LPF.

3.C Run the simulation for 0.2 seconds.

3.C-1 Autoscale all the waveforms in the Scope display window and then zoom
into the range of [0.195∼0.2] along the x axis and capture the window.

3.C-2 (a) In the captured window in 3.C-1, the first waveform is the information
signal f(t) and the third waveform is the NBFM signal 𝜙NBFM(t). Summarize how the
amplitude of the NBFM signal 𝜙NBFM(t) varies in response to the change of f(t)?

(b) The term −Akf ∫ t
0 f (𝜏)d𝜏 × sin(𝜔ct) in the NBFM signal 𝜙NBFM(t) given in

equation (12.6) is not a constant amplitude sinusoid because the scaling factor

TABLE 12.3 Expressions of the Output of Each Block in the Receiver Part of
Fig. 12.5.

Block Output expression

Sine Wave2 − sin(2𝜋 × 10000t)
Product 1 [cos(2𝜋 × 10000t) − 350 ∫ t

0 f (𝜏)d𝜏 × sin(2𝜋 × 10000t)] ×
[− sin(2𝜋 × 10000t)]

Analog Filter Design
Difference

IMPLEMENTATION OF NARROWBAND FM 133

−Akf ∫ t
0 f (𝜏)d𝜏 is time-varying. Explain why the amplitude of𝜙NBFM(t) is nearly con-

stant despite the non–constant amplitude sinusoidal term −Akf ∫ t
0 f (𝜏)d𝜏 × sin(𝜔ct).

The properties of NBFM signals might be a good starting point to explain this obser-
vation made.

3.C-3 The constant amplitude of the NBFM signal 𝜙NBFM(t) as observed in 3.C-2
is consistent with the properties of FM signals; for FM, the signal’s frequency, rather
than its amplitude, changes in response to the information signal.

From the waveforms captured in 3.C-1, is the change in the frequency of the
NBFM signal 𝜙NBFM(t) according to f(t) noticeable to the naked eyes?

3.C-4 Autoscale all the waveforms in the Scope display window. (a) Capture the
display window. (b) Is the information signal f(t) demodulated properly?

3.C-5 Because of numerical calculation employed by the Difference (differentiator)
block, there are some distortions in the output of the Difference block. Thus an LPF
(Analog Filter Design1) is added in the final stage of the demodulator to remove this
distortion. Does the LPF output have the same shape as that of the information signal
f(t)?

3.D Run the simulation for 5 seconds. Complete the quantity marked by ‘??’ in the
following commands and execute them to play the demodulated signal. Describe the
sound you hear.

>>clear;load ??;soundsc(ans(2,100:40961)) % Note that it is not ans(2,:)
as usual !

3.E In this subsection, we perform FM modulation and demodulation in the pres-
ence of amplitude clipping as done in Section 12.1. Insert a Saturation block in the
mdl/slx file as shown in Fig. 12.6.

Sine Wave Add

1
s

Integrator

Sine Wave1

350

Gain
Product

Product1

Sine Wave2

butter

Analog
Filter Design

z-1
z

Difference

butter

Analog
Filter Design1

Scope

demNBFM.mat

To File

Out1

Sound
Source

Saturation

FIGURE 12.6 Simulink design for the FM system.

134 VOLTAGE-CONTROLLED OSCILLATOR AND FREQUENCY MODULATION

Set the parameters of the Saturation block as follows.

� Upper limit = 0.1
� Lower limit = −0.1

3.E-1 Run the simulation for 5 seconds. Autoscale all the waveforms in the Scope
display window and then zoom into the range of [4.995∼5] seconds along the x axis.
Right-click the Saturation block output (the third waveform) and then select the Axes
properties option and adjust the y axis range to [−0.2 0.2]. (a) Capture the Scope
display window. (b) Is the transmitted signal (the Saturation block output) clipped?

3.E-2 (a) With the Saturation block added, is the information signal f(t) demodulated
successfully? (b) If yes, explain why.

3.E-3 Play the demodulated signal. Describe the sound you hear.

3.E-4 The double side-band with a large carrier (DSB-LC) AM signal for the
information signal f(t) is written as [5]

𝜙DSB-LC(t) = A cos(𝜔ct) + Amf (t) cos(𝜔ct). (12.8)

Equations (12.6) and (12.8) have a similar signal structure: they both consist of two
terms. The first term Acos(𝜔ct) is a sinusoidal term that does not bear the information
signal, which is called the “pilot.” This term is common to both equations (12.6)
and (12.8). The second terms, that is, −Akf ∫ t

0 f (𝜏)d𝜏 × sin(𝜔ct) in equation (12.6)
and Amf (t) × cos(𝜔ct) in equation (12.8), are similar in that they both carry the
information signal.

In 3.E-2 and 3.E-3, we have observed that the information signal in equation (12.6)
can be demodulated successfully even though the transmitted signal is clipped. (a)
Noticing the similar structures of the signals in equations (12.8) and (12.6), discuss
whether or not the signal in equation (12.8) (which is a DSB-LC AM signal) can also
be demodulated successfully if the transmitted signal is clipped. (b) If not, explain
why?

REFERENCES

[1] R. E. Best, Phase-Locked Loops: Design, Simulation and Applications, 6th ed.,
New York: McGraw-Hill, 2007.

[2] W. F. Egan, Phase-Lock Basics, Hoboken, NJ: Wiley, 1998.

[3] D. H. Wolaver, Phase-Locked Loop Circuit Design, Upper Saddle River, NJ, Prentice Hall,
1991.

[4] J. R. Carson, “Notes on the Theory of Modulation,” Proceedings IRE, Vol. 10, No. 1, 1922,
pp. 57–64.

[5] F. G. Stremler, Introduction to Communication Systems, Upper Saddle River, NJ: Prentice
Hall, 1990.

13
PHASE-LOCKED LOOP AND
SYNCHRONIZATION

� Understand the function and operation of the phase-locked loop (PLL).
� Design a PLL and use it to perform synchronization in the presence of phase

and frequency errors.
� Design an FM demodulator using the PLL.
� Implement a near-ultrasonic wireless data transmission system from a mobile

phone to a PC.

13.1 PHASE-LOCKED LOOP DESIGN

Design an mdl/slx file for the phase-locked loop (PLL) system [1–5] as shown in
Fig. 13.1 and save it as PLLtest.mdl/slx.

Set the parameters of each block as follows.

1. Sine Wave
� Frequency (rad/s) = 2*pi*93.XXe3 (XX denotes the last two digits of your

student ID number.)

2. Continuous Time VCO
� Quiescent frequency (Hz) = 93.XXe3 (XX denotes the last two digits of your

student ID number.)
� Input sensitivity= 1000

Problem-Based Learning in Communication Systems Using MATLAB and Simulink, First Edition.
Kwonhue Choi and Huaping Liu.
© 2016 The Institute of Electrical and Electronics Engineers, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/choi_problembasedlearning

135

http://www.wiley.com/go/choi_problembasedlearning

136 PHASE-LOCKED LOOP AND SYNCHRONIZATION

3. Analog Filter Design
� Design method = Chebyshev II
� Filter type: Lowpass
� Filter order = 32
� Stopband edge frequency (rad/s) = 2*pi*50e3
� Stopband attenuation in dB = 40

4. Gain = 8
5. Gain1 = 1e5

1.A In Fig. 13.1, the Sine Wave block is added to generate a test input to the PLL.
All the remaining blocks consist of a PLL.

1.A-1 Denote the output of the Sine Wave block as PLLIN(t). Check the parameter
settings of the Sine Wave block and complete the following expression:

PLLIN(t) = sin(?). (13.1)

1.A-2 Right-click the Continuous Time VCO block (hereafter, we call it VCO for
simplicity) and select Help, which shows how the VCO output is mathematically
related to its input. Using this information and the current parameter setting as well
as the current input of VCO (‘0’ since there is no input connected currently), complete
the mathematical expression of the output of VCO denoted by VCOO(t).

VCOO(t) = ?. (13.2)

1.B Phase detector and its operation.
The phase detector (PD) detects the input signal’s phase. This is accomplished by
multiplying the reference sinusoidal signal with the input and then extracting the
low frequency component in the multiplier output. In Fig. 13.1, the Product block
and Analog Filter Design block form a typical type of PD. In this subsection, we
investigate the operation of the PD.

Sine Wave
Product

cheby2

Analog
Filter Design

Integrator

8

Gain
Add

1e5

Gain1

Scope

1
s

Continuous-Time
VCO

Continuous-Time
VCO

FIGURE 13.1 PLL system under construction.

PHASE-LOCKED LOOP DESIGN 137

1.B-1 Based on the answers to 1.A-1, 1.A-2, and the Stopband edge frequency
setting of Analog Filter Design, derive the mathematical expression of the PD output
(= output of Analog Filter Design). For all derivations in this chapter, assume that
Analog Filter Design is ideal, that is, distortionless with zero delay.

1.B-2 Denote input phase (=the parameter Phase of the Sine Wave block) by 𝜃IN
and the VCO initial phase (=the parameter Initial Phase of the VCO block) by 𝜃VCO.
They are set to 0 in the current mdl/slx file.

Now, consider the case when 𝜃IN and 𝜃VCO are given some typical values.

(a) Show that the PD output can be expressed as a function of the phase difference
as

PDO(t) = 0.5 sin(𝜃IN − 𝜃VCO). (13.3)

(b) Show that for a small phase difference, the PD output is approximately pro-
portional to the phase difference.

(c) Is this result consistent with what a PD is supposed to function?

1.B-3 Set the Simulation (stop) time to 0.001 seconds. Run the simulation of PLL-
test.slx/mdl for each of the values of 𝜃ERROR (≜ 𝜃IN − 𝜃VCO = Phase of Sine Wave−
Initial Phase of VCO) listed in Table 13.1. For each value of 𝜃ERROR listed in the
first column of the table, set the pair of parameters (𝜃IN, 𝜃VCO) to any values so that
𝜃IN − 𝜃VCO is equal to 𝜃ERROR. Examples are provided for the cases of 𝜃ERROR =
-pi and pi/6, where the numbers 3.7 and −4.1 can be replaced by any other arbitrary
numbers.

After each simulation, Autoscale the output waveform of Analog Filter Design
in the Scope display window and read the steady state output of the PD after

TABLE 13.1 PD Output Test Result.

Arbitrary setting of (𝜃IN, 𝜃VCO) such
that 𝜃IN − 𝜃VCO is equal to 𝜃ERROR. PD output PDO(t)

𝜃IN (= Phase of 𝜃VCO (= Initial Experimental (Analog Theoretical
𝜃ERROR Sine Wave) Phase of VCO) Filter Design output) (PDO(t) = 0.5 sin(𝜃))

-pi 3.7 (example) 3.7 + pi (example)
-2*pi/3
-pi/2
-pi/3
0
pi/6 −4.1 + pi/6 −4.1 (example)

(example)
pi/4
2*pi/3
3*pi/4

138 PHASE-LOCKED LOOP AND SYNCHRONIZATION

convergence. If the waveform fluctuates slightly around a constant, treat that constant
as the converged value.

(a) Complete the following table with the simulated and theoretical values of the
PD output.

(b) Are the simulated values consistent with the theoretical ones?

1.C Closed-loop connection in PLL and operation with phase error.
In this subsection we make a closed feedback loop connection and investigate how
PLL operates when there exists a constant phase error.

1.C-1 (a) We introduce a phase error 𝜃ERROR (≜ 𝜃IN − 𝜃VCO) that equals 𝜋∕4 as an
example. First, in the design PLLtest.slx/mdl, set 𝜃IN (=Phase (rad) of Sine Wave) and
𝜃VCO (= Initial Phase of VCO) to the values you set for 𝜃ERROR = 𝜋∕4 in Table 13.1.

(b) Connect the output of the Add block to both of the input of VCO and the open
input (the fifth input) of the Scope block as shown in Fig. 13.2. Does the revised
system now form a closed loop?

(c) Run the simulation with the revised PLLtest.slx/mdl. Autoscale the PD output
waveform in the Scope display window and capture it.

1.C-2 In 1.C-1 (c), the PD output should converge to 0 irrespective of the phase
settings of the PLL input and VCO output. The PD output approaching 0 means that
the phase error between the PLL input and the VCO output phase approaches 0.

The closed-loop structure of the PLL exploits the feedback mechanism. The
subblocks are cascade connected in a loop and work jointly so that the PD output,
that is, the phase error, converges to 0.

Sine Wave
Product

cheby2

Analog
Filter Design

Continuous-Time
VCO

Continuous-Time
VCO

8

Gain

Integrator

-K-

Gain1

Scope

1
s

Add

FIGURE 13.2 Closed-loop connection in the PLL.

PHASE-LOCKED LOOP DESIGN 139

Next we investigate how the output of each block influences the output of its next
block in the loop. This allows us to clearly see how the PD output converges to 0,
that is, how the VCO output phase tracks the phase of the PLL input.

(a) Substitute the values of 𝜃IN and 𝜃VCO set in 1.C-1(a) into equation (13.3) and
calculate PDO(t = 0). Also determine the polarity of the PD output.

(b) Note that the PD output is scaled by Gain (= 8) and then fed into the VCO input
in the design. Given the polarity of the PD output obtained in (a), is VCO
input positive or negative?

(c) Based on the VCO properties, should the instantaneous frequency of the VCO
output increase or decrease given the polarity of the VCO input obtained in
(b)?

(d) From the relationship between the instantaneous frequency and phase, will the
VCO output phase increase or decrease given the answer in (c)? Note that here
we are not referring to the initial setting of 𝜃VCO but the internally updated
𝜃VCO via feedback.

(e) Assume that the increment or decrement of the updated 𝜃VCO is smaller than
the initial phase gap, which equals the difference between 𝜃IN and initial setting
of 𝜃VCO. From the answer in (d), does the PD output get closer to 0 than its
initial value, which equals PDo (t = 0) as calculated in (a)? Justify your answer
by substituting the updated 𝜃VCO into equation (13.3), even though the exact
value of the updated 𝜃VCO is unknown.

(f) As the feedback process described in (b)–(e) continues, will the PD output
successively get closer to 0?

(g) Imagine a special case that the increment or decrement of the updated 𝜃VCO
is greater than the current phase gap. This implies that VCO phase will be
overcompensated, causing the phase error polarity to be opposite from the
initial phase error polarity. Go through the feedback processes in (b)–(f) for
this case and show that eventually the phase error will also converge to 0.

1.C-3 Note that for convenience of explaining the PLL operation, the VCO output
is expressed in the form of a cosine function cos(𝜔t + 𝜃VCO), with 𝜃VCO being the
VCO output phase, whereas the PLL input is expressed in the form of a sine function
sin(𝜔t + 𝜃IN) with 𝜃IN being the PLL input phase. Thus the inputs of the VCO and
PLL have a phase difference of 𝜋∕2. This choice allows the PD output to be described
by equation (13.3). This also leads to the following relationship, which is assumed
for other problems in this section:

The phase error of the PD output is expressed as

𝜃IN − 𝜃VCO = Actual phase difference between the PLL input and

VCO output waveforms + 𝜋∕2 (13.4)

= 𝜔 × (tVCO out peak − tPLL in peak) + 𝜋∕2, (13.5)

where𝜔 is the PLL input frequency, which equals 2*pi*93.XXe3 with XX being the last
two digits of your student ID number, and is currently equal to the VCO quiescent

140 PHASE-LOCKED LOOP AND SYNCHRONIZATION

frequency, tVCO_out_peak is the time instant of a positive peak of the VCO output, and
tPLL_in_peak is the time instant of a positive peak of the PLL input near tVCO_out_peak.

(a) Provide a more detailed explanation of equation (13.4).
(b) Provide a more detailed explanation of equation (13.5).
(c) A zero phase error in the PD output means that the positive peak of the VCO

output waveform is a quarter wavelength ahead of the positive peak of the
PLL input waveform. Explain this in more detail.

1.C-4 When the PD output converges to 0, which implies no phase error, we call this
status “PLL is locked.” In this problem we observe how the VCO output waveform
changes until PLL has been completely locked.

First in the Scope display window, Autoscale the Sine Wave output waveform and
the VCO output waveform.

(a) Zoom into the beginning part of the waveforms, for example, approximately
the time range of [0 2e-5] seconds. Capture the Scope display window.

(b) From the waveforms in the Scope display window, measure the phase error
using equation (13.5). To improve reading accuracy, sufficiently zoom into the
target peak. Denote the measured phase error by ph_err. If ph_err is out of the
range [− 𝜋 𝜋], then perform mod(ph_err+pi, 2*pi)- pi in the command line.
Record the measured phase error.

(c) Is the measured value in (b) approximately equal to 𝜋∕4, which is the initial
phase error 𝜃ERROR (≜ 𝜃IN − 𝜃VCO) set in 1.C-1(a)?

(d) Again, zoom into the last part of the waveforms, say the time interval of
[9.8e-4∼1e-3] seconds. Capture the Scope display window.

(e) From the waveforms in the Scope display window, measure the phase error
using equation (13.5). Sufficiently zoom into the target peak to obtain accurate
reading. Record the measured phase error.

(f) Is the measured value in (e) approximately equal to 0?
(g) Is the phase correctly locked?
(h) As the system locks into the input signal phase, has the VCO output phase

(= 𝜙) or the PLL input phase (= 𝜑) changed from its initial value?

1.C-5 Execute PLLtest.slx/mdl for each of the following cases: 𝜃ERROR = −2*pi/3,
-pi/2, 0, pi/6 and pi.

(a) For each case, capture the last portion of the VCO output and the PLL input
waveforms (approximately in the range of [9.8e-4 1e-3]) and check whether
or not the PLL is locked.

(b) For each case, determine whether PLL is locked using a method described in
1.C-3(c).

1.C-6 Set the parameter phase of the Sine Wave block to 3*pi/4 and Initial phase of
VCO to 0. Execute PLLtest.slx/mdl for each of the following values of the Gain block
(not the Gain1 block): 2, 8, 16, 32, and 64. After each simulation, Autoscale the PD
output waveform in the Scope display window and observe the waveform. No need
to capture the waveforms.

PHASE-LOCKED LOOP DESIGN 141

(a) Based on the simulation result for the case of Gain= 2, summarize the problems
if the gain is set too small? Explain the reason that causes this problem.

(b) Based on the simulation result for the case of Gain = 64, summarize the
problems if the gain is set too large? Explain the reason that causes this
problem.

1.D PLL operation with frequency error.
We introduce a 1-kHz frequency error in the PLL input as an example. Change the
parameter Frequency of the Sine Wave block to (93e3+1e3) Hz (= ? rad/s) and change
Quiescent frequency of VCO to 93e3 Hz.

1.D-1 Execute PLLtest.slx/mdl for each of the following values of the Gain block
(not the Gain1 block): 2, 8, 16, 32, and 64. After each simulation, Autoscale the PD
output waveform in the Scope display window and observe the waveform. Measure
and record the value that the PD output converges to for each value of Gain. Suffi-
ciently zoom into the last portion of the PD output to accurately read the converged
values.

1.D-2 Try various gain values of the Gain block to find a proper value with which
the PLL will lock, that is, the PD output converges to 0. Record this value if it is
found; if such value does not exist, then provide an explanation.

1.D-3 The current PLL structure cannot lock on to the phase if there exists a
frequency error between the PLL input and the VCO output. Next we investigate why.

(a) If the PLL successfully locks on to its input phase, then the VCO output
frequency should be automatically synchronized with the PLL input frequency
because the frequency is the derivative of the phase. Consider the design
PLLtest.slx/mdl completed in 1.D-2 and its current setting of the frequency
error between the PLL input frequency and the VCO quiescent frequency. To
ensure successful phase lock, how much should the VCO output frequency be
increased or decreased?

(b) Determine the VCO input that results in the VCO output frequency change
obtained in (a). Note that input sensitivity of VCO is set to 1000 Hz/V. To
understand how VCO operates, alternatively, you may use help in the param-
eter setting window of VCO, or refer to Section 12.2 of Chapter 12.

(c) A successful phase lock means that the phase of the input signal is being
tracked closely. Thus the PD output should converge to zero. In the current
PLL structure, the PD output is scaled by Gain and then connected to the VCO
input. With this structure, is it possible that the PD output converges to 0 while
the VCO input is equal to the value obtained in (b)?

(d) From the discussion in (a)–(c), explain why the current PLL structure cannot
lock on to the phase if there is a frequency error.

1.D-4 Set the value of Gain to 8 and connect the output of the Gain1 block to the
open input of the Add block as shown in Fig. 13.3. Then execute PLLtest.slx/mdl.
Does the PD output converge to 0?

142 PHASE-LOCKED LOOP AND SYNCHRONIZATION

Sine Wave
Product

cheby2

Analog
Filter Design

Continuous-Time
VCO

Continuous-Time
VCO

8

Gain

Integrator

-K-

Gain1

Scope

1
s

Add

+
+

FIGURE 13.3 PLL structure for the case with frequency error.

1.D-5 With the revised structure in 1.D-4, it is now possible that the PD output
converges to 0 while the VCO input is equal to the value obtained in 1.D-3(b) because
of the newly added blocks. Justify this.

1.D-6 Capture the VCO input waveform in the Scope display window. Does the
VCO input converge to the value obtained in 1.D-3(b)?

13.2 FM RECEIVER DESIGN USING THE PLL

2.A Make sure that in the PLLtest.slx/mdl file revised in 1.D-4, Quiescent frequency
of VCO is set to 93e3 Hz and then save the file.

In PLLtest.slx/mdl, right-click all blocks one by one except Sine Wave and Scope
while holding down the Shift key. This selects all blocks except Sine Wave and Scope.
Create a subsystem with the selected blocks and name it PLL. Make sure that the
VCO input is connected to Out4 among the output ports of PLL as shown in Fig. 13.4,
which shows the inside of subsystem PLL.

2.A-1 Suppose that the frequency of the PLL input is (93 + x) kHz. Show that if
PLL is locked, then the VCO input of the PLL subsystem will converge to x.

2.A-2 Execute PLLtest.slx/mdl for each of the following PLL input frequencies
(Frequency of the Sine Wave block): 89.8, 91.7, 93.5, 95.3, and 97 kHz. (a) After
each simulation, accurately measure and record the converged value of the VCO input.
(b) Are the measured values consistent with the result in 2.A-1?

FM RECEIVER DESIGN USING THE PLL 143

1

1

In1

Out1

2

Out2

4

3

Out4

Out3

Product

cheby2

Analog
Filter Design

Continuous-Time
VCO

Continuous-Time
VCO

8

Gain

Integrator

-K-

Gain1

1
s

Add

+

+

FIGURE 13.4 Making a subsystem PLL.

2.A-3 Extend 2.A-1 to the case of slowly time-varying frequency errors.

(a) Prove that if the PLL input frequency is equal to 𝜔i(t) = 𝜔c + kf f (t), where
𝜔c = 2𝜋 × 93e3 rad/s and f(t) is a slowly time-varying signal, then the VCO
input will be kf f (t)∕(2𝜋 × kv), where kv is Input sensitivity [Hz/V] of VCO.

(b) From (a), if the PLL input is an FM signal with a carrier frequency of 93 kHz,
then the PLL is equivalent to an FM demodulator. Justify this conclusion.

2.A-4 If PLL is used as an FM demodulator, which subblock input inside the
subsystem PLL is equal to the FM demodulated signal? Ignore the scaling factor in
the demodulated signal.

2.B Execute the following in the command window to create sound_file.mat, which
will be used as the information signal to be modulated in the next problem. Show the
execution result of the last command ls *.mat.

>> clear
>> load handel
>> tmp=(1:length(y))/Fs;
>> snd(1,:)=tmp;
>> snd(2,:)=y;
>> save sound_file.mat snd
>> ls *.mat

2.C Modify PLLtest.slx/mdl as shown in Fig. 13.5 and save it as PLL_FMdemod
.slx/mdl.

Set the parameters of the newly added blocks as follows.

1. From File
� File name = sound_file.mat

144 PHASE-LOCKED LOOP AND SYNCHRONIZATION

Continuous-Time
VCO

Continuous-Time
VCO PLL

Out1

Out2

Out3

Out4

In1

Scope

sound_file.mat

From File

FIGURE 13.5 FM signal generation using a PLL.

2. Continuous Time VCO
� Quiescent frequency = 93e3 kHz
� Input sensitivity = 1000

2.C-1 Open the Scope display window and click the parameter icon in the menu
bar to open the Scope parameters window. In the Main (General in some old versions)
tab, set Sample time to 1/93e4. Then, in the Logging (History or Data History in some
old versions) tab, be sure to change Limit data points to last to 50000, not 5000.

Capture the parameter setting windows.

2.C-2 The output of the newly added VCO block corresponds to the frequency-
modulated signal of the information from the From File block. For details, refer to
2.D in Chapter 12.

Recall that the FM signal is expressed as

𝜙FM(t) = A cos
(
𝜔ct + kf ∫

t

0
f (𝜏)d𝜏 + 𝜃0

)
. (13.6)

In 2.D-2 of Chapter 12, we studied the relationship between the modulation index kf
and the VCO input sensitivity kv.

Based on the parameter setting of the new VCO block, determine the carrier
frequency 𝜔c and the modulation index kf.

2.C-3 Set the Simulation stop time to 0.02 seconds and execute
PLL_FMdemod.slx/mdl. Autoscale all three waveforms in the Scope display
window and then horizontally zoom into the time period of [1e-3 1.8e-3] seconds by
using the horizontal zoom-in button in the menu bar. The second (middle) waveform
is the FM signal.

(a) Capture the Scope display window.
(b) From the FM signal waveform, is there a noticeable variation in the instan-

taneous frequency? In other words, can the information imbedded in the FM
signal be estimated by examining the waveform?

FM RECEIVER DESIGN USING THE PLL 145

2.C-4 Connect the output of the new VCO block, that is, the FM signal, to the input
of the PLL block and execute PLL_FMdemod.slx/mdl again.

(a) Autoscale all the waveforms in the Scope display window. If the waveform
is not properly scaled even after autoscaling, manually zoom in by using the
vertical zoom-in button in the menu bar. Repeat this step for the remaining
problems if any waveform is not properly autoscaled.

Capture the Scope display window.
(b) Are the shapes of the demodulated signal by the PLL (the third waveform) and

the information signal (first waveform) similar? Note that the demodulated
signal displayed in Scope might not look like a clean line since Gain and
Gain1 are not optimized. Ignore this in making this comparison. Also ignore
signal-scaling factor.

2.D In this subsection, a frequency error will be introduced in the FM signal.

2.D-1 Change the Quiescent frequency of VCO of the FM modulator to 94.5 kHz.
Recall that the Quiescent frequency of VCO in the FM demodulator is set to 93 kHz.
Calculate the frequency error of the received FM signal?

2.D-2 How is the frequency error introduced in 2.D-1 expected to change the
demodulated waveform as compared with the demodulated waveform captured in
2.C-4?

2.D-3 Run the simulation with PLL_FMdemod.slx/mdl revised in 2.D-1. Autoscale
all the waveforms in Scope display window and capture it.

2.D-4 Is the captured waveform in 2.D-3 what you expected as discussed in 2.D-2?

2.D-5 Let us denote the information signal from the From file block by f(t).

(a) Express the instantaneous frequency of the PLL input (= output of VCO in the
FM modulator). Note that the parameter Quiescent frequency of VCO in the
FM modulator has been changed to 94.5 kHz.

(b) To derive the demodulated signal (= VCO input in PLL), repeat the derivation
done in 2.A-1 after replacing the PLL input frequency by the answer obtained
in (a). Document the derived expression. Is it consistent with the captured
waveform in 2.D-3?

2.D-6 Change the Quiescent frequency of VCO of the FM modulator to 91.8 kHz.
Run the simulation with PLL_FMdemod.slx/mdl.

(a) Autoscale all the waveforms in the Scope display window and capture them.
(b) Is the demodulated signal what you expected to see? Justify it.

2.E [A]In this subsection we investigate whether or not the PLL will still work for
clipped input signals or for the nonsinusoidal input signals.

2.E-1 Insert the saturation block into the PLL_FMdemod.slx/mdl as shown in
Fig. 13.6.

146 PHASE-LOCKED LOOP AND SYNCHRONIZATION

Continuous-Time
VCO

Continuous-Time
VCO PLL

Saturation

Out1
Out2
Out3
Out4

In1

Scope

sound_file.mat

From File

FIGURE 13.6 FM system in the presence of amplitude clipping.

Set the parameters of the blocks as follows:

1. VCO in the FM modulator
� Output amplitude(V) = 10
� Quiescent frequency (Hz) = 93e3

2. Saturation
� Upper limit = 0.X, Lower limit = −0.X (X is the last digit of your student ID

number.)

Run the simulation with PLL_FMdemod.slx/mdl for 1e-4 seconds (Simulation stop
time = 1e-4).

(a) Autoscale all the waveforms in Scope display window and capture them.
(b) Compare the FM signal (= VCO output, 2nd waveform) with the clipped FM

signal (= Saturation output, 3rd waveform). Explain why the clipped FM
signal has the captured waveform shape.

2.E-2 Set the simulation stop time to 0.02 and run the simulation again.

1. Autoscale all the waveforms and capture them.
2. Do the shapes of the demodulated signal (the fourth waveform) and the infor-

mation signal (the first waveform) look similar? As discussed in 2.C-4(b), the
demodulated signal displayed in Scope might not look like a clean line since
Gain and Gain1 are not optimized. Ignore this in making this comparison. Also
ignore signal scaling factor.

2.E-3 Can the PLL design completed, named PLL_FMdemod.slx/mdl, be used to
demodulate an FM signal if the FM signal is modulated by a nonsinusoidal periodic
signal? Justify your answer.

13.3 [A]DATA TRANSMISSION FROM A MOBILE PHONE TO A PC
OVER THE NEAR-ULTRASONIC WIRELESS CHANNEL

In this section we implement near-ultrasonic wireless data transmission from a mobile
phone to a PC. In this system, the mobile phone transmits an FM signal in a band near

[A]DATA TRANSMISSION FROM A MOBILE PHONE TO A PC 147

the ultrasonic frequencies wirelessly. A PC receives the FM signal and then samples
and demodulates the signal.

3.A In this subsection, we transmit an FM signal at a frequency near the ultrasonic
band from a phone by simply playing it in the phone.

3.A-1 [WWW]Download file FMmodWordX.wav (X = Last digit of your student ID
number) from the companion website to your PC. Then move the downloaded .wav
file into the memory or disk of your mobile phone via email or USB cable. Do not
accept any file format conversion or encoding if you are asked during the process of
transferring the .wav file to your phone. For iPhones, Gmail (Google mail) attachment
and outlook attachment are the two ways confirmed working.

This .wav file is one of the sample FM signals with a carrier frequency in the
near-ultrasonic band.

(a) Identify the size (or playing time) of the .wav file downloaded into your phone.
(b) Search the literature and determine the minimum frequency of the ultrasonic

band.

3.A-2 Play the downloaded file FMmodWordX.wav using any media player on the
phone. Describe the sound you hear.

3.A-3 [WWW]The m-file below samples the input signal to the internal microphone
(mic) of a laptop or desktop PC and then saves the sampled signal into a .mat file.
The last line plots the spectrum of the sampled signal.

Go through the following experimental steps:

Step 1. Place the phone within 5 cm from the internal mic of the laptop or
desktop PC where MATLAB is running. In the audio setting in your PC, select the
internal mic as the default and disable any sound effects to avoid the distortion and
unnecessary filtering during the recording process. Refer to the following substeps
to disable the sound effect.

Step 1-a. In your PC, go to “Control Panel/Sound” and select the “Recording”
tab.

Step 1-b. Select the internal mic (which you need to set as the default mic) and
click the button “Properties” at the bottom.

Step 1-c. Select the “Enhancements” tab. If “Enhancements” does not exist, no
need to do the next substep (Step 1-d).

Step 1-d. Check “Disable all sound effects.”

Step 2. Play the downloaded file FMmodWordX.wav with maximum volume in the
phone.

Step 3. After you start playing the file, immediately (preferably within 1 second
after the play starts) execute the m-file below to sample the near-ultrasonic FM
signal contained in the file FMmodWordX.wav. The m-file takes about 5 seconds
to finish executing. Place the phone within 5 cm form the mic until the execution
completely finishes.

148 PHASE-LOCKED LOOP AND SYNCHRONIZATION

clear
fs=40000;
T=5;

r = audiorecorder(fs, 16, 1);
record(r); pause(T);stop(r); y=getaudiodata(r)’;
recorded(1,:)=1/fs*(1:length(y));
recorded(2,:)=y’;

save FM_record.mat recorded
pwelch(y,[],[],[],fs);

Now let us continue the following steps:

(a) Capture the spectrum plot of the digitized received signal in the displayed
Figure 1 window.

(b) If the preceding steps have been completed successfully, then the spectrum
plot should have a clear local spectrum peak located at a frequency in the
near-ultrasonic band. As the m-file is being executed, if the environment is
noisy, that is, other interfering audio signals are present at the same time, then
the spectra of these interfering audio signals will also appear in the spectrum
plot. If a local spectrum peak at near-ultrasonic frequencies cannot be clearly
identified, then you cannot move forward to the next steps. In this case, repeat
the steps above with a shorter distance between the phone and the laptop or
desktop PC, a higher volume of the media player, and while the environment
is less noisy. Also orient the speaker of the phone toward the mic of the laptop
or the desktop PC. Sufficiently zoom into the spectrum peak at near-ultrasonic
frequencies to estimate the FM carrier frequency. Record the carrier frequency
in [rad/s].

3.B [WWW]Now design an FM demodulator in Simulink as shown in Fig. 13.7, which
demodulates the information signal from the digitized received FM signal contained
in the file FM_record.mat. For PLL, use the subsystem designed in Section 13.2.

demodulated

To Workspace

PLL

Saturation
Out3

VCO out

VCO in

PD out

In1

Scope

FM_record.mat

butter

Analog
Filter Design

butter

Analog
Filter Design1

From File

FIGURE 13.7 Demodulation of the information signal from the digitized received FM
signal.

[A]DATA TRANSMISSION FROM A MOBILE PHONE TO A PC 149

Set the parameters of the blocks as follows:

1. From File
� File name = FM_record.mat

2. Analog Filter Design (connected to From file)
� Filter type = Bandpass
� Lower passband edge frequency (rad/s) = Answer to 3.A-3(b) – 2*pi*1e3
� Upper passband edge frequency (rad/s) = Answer to 3.A-3(b) + 2*pi*1e3

3. Analog Filter Design1 (connected to PLL)
� Filter type = Lowpass
� Passband edge frequency (rad/s) = 2*pi*4e3

4. To workspace (Be sure that it is not To file as before.)
� Variable name = demodulated
� Sample time = 1/(8192/3)
� Save format = Array

5. Scope: Open the Scope display window and click the parameter icon in the
menu bar to open the Scope parameters window. In Logging (Data History in
some older versions) tab, unselect the option Limit data points to last.

Set the parameters of the subblocks inside PLL as follows.

1. PLL/VCO
� Quiescent frequency (Hz) = Answer to 3.A-3(b)
� Input sensitivity (Hz/V) = 1000

2. PLL/Analog Filter Design
� Stopband edge frequency (rad/s) = 2*pi*4e3.

3. PLL/Gain
� Gain = 0.25.

4. PLL/Gain1
� Gain = 50.

3.B-1 Answer the following questions:

(a) Based on the parameter setting of Analog Filter Design (connected to From
file), explain the role of Analog Filter Design.

(b) Explain why the Sign block needs to be inserted between Analog Filter Design
and PLL.

(c) Explain why Quiescent frequency (Hz) of VCO should be set to the value
obtained in 3.A-3(b).

3.B-2 Set simulation stop time to 5 seconds and run the simulation.

(a) After simulation is completed, Autoscale the two waveforms in the Scope
display window. Capture the Scope display window.

150 PHASE-LOCKED LOOP AND SYNCHRONIZATION

(b) Using the DC-bias value in the demodulated signal (the second waveform) and
the VCO’s input sensitivity, calculate the difference between the visually mea-
sured carrier frequency (answer to 3.A-3(b)) and the exact carrier frequency.
Record your calculated frequency error.

3.B-3 Execute the following command. If the demodulation is successful, you will
hear a certain word. Record the word you hear.

>>soundsc(demodulated)

3.B-4 [WWW]Demodulate the other sample file, FMmodWordX.wav with different
values of X from your ID, which are also made available for download from the
companion website. Each sample file has a different carrier frequency. Hence be sure
to properly change the related parameters in the mdl/slx file of Fig. 13.7 for each
sample file.

(a) Record the words you hear from the demodulated FM wav files.
(b) Obtain the carrier frequency of each file and list them in a table along with the

answer to (a).

3.B-5 [A]Identify the .wav file with which the demodulated signal gives the clearest
sound of the word. With this file, repeat the demodulation experiment in a noisy
environment. During the steps in 3.A-3, let the laptop or desktop PC independently
play an audio sound loudly to act as an interfering signal to the desired FM signal.

(a) Before this experiment begins, do you still expect successful demodulation of
the message in the presence of the audio signal interference?

(b) Perform the experiment in a noisy environment as mentioned above. Is the
result consistent with what you expected and why?

3.B-6 [A]Repeat the demodulation experiment for different distances between the
phone and the laptop or desktop PC. What is the maximum distance that allows you
to successfully demodulate the signal and hear the word?

REFERENCES

[1] A. Blanchard, Phase-Locked Loop, New York: Wiley, 1976.

[2] R. E. Best, Phase-Locked Loops: Design, Simulation and Applications, 6th ed.,
New York: McGraw-Hill, 2007.

[3] W. F. Egan, Phase-Lock Basics, Hoboken, NJ: Wiley, 1998.

[4] D. H. Wolaver, Phase-Locked Loop Circuit Design, Upper Saddle River, NJ: Prentice Hall,
1991.

[5] J. R. Carson, “Notes on the Theory of Modulation,” Proceedings IRE, Vol. 10, No. 1, 1922,
pp. 57–64.

14
PROBABILITY AND RANDOM
VARIABLES

� Generate uniform and Gaussian random variables (RVs).
� Empirically obtain the probability density function (PDF) of RVs and compar-

ison with the theoretical PDF [1, 2].
� Compare the empirically obtained statistics with the theoretical values.

14.1 EMPIRICAL PROBABILITY DENSITY FUNCTION OF UNIFORM
RANDOM VARIABLES

1.A [WWW]The following m-file plots the empirically obtained probability distribu-
tion of a fair die.

clear
Nsim=6;
count=zeros(1,6);
for n=1:Nsim

x=ceil(rand*6);
if x==1

count(1)=count(1)+1;

Problem-Based Learning in Communication Systems Using MATLAB and Simulink, First Edition.
Kwonhue Choi and Huaping Liu.
© 2016 The Institute of Electrical and Electronics Engineers, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/choi_problembasedlearning

151

http://www.wiley.com/go/choi_problembasedlearning

152 PROBABILITY AND RANDOM VARIABLES

elseif x==2
count(2)=count(2)+1;

…
end

end
Px=count/?;
stem(1:6,Px)

1.A-1 Explain how the command ceil(rand*6) simulates the occurrence of each face
of a die. Use ‘help ceil’ or ‘help rand’ in the command line if needed.

1.A-2 The m-file above executes x=ceil(rand*6) repeatedly for Nsim times and then
stores the number of the event (occurrence) of x being equal to n in count(n). Finally,
the vector Px has the simulated (empirical) probability of each case (face of the die)
as its elements. For example, Px(3) is the simulated probability of the die face 3. Fill
in all the incomplete parts and show the completed m-file.

1.B (a) Execute the m-file above and capture the resulting figure. (b) Is the distri-
bution shown in the graph consistent with the theoretical distribution of a fair die? If
not, why?

1.C Let XXX denote the last three digits of your student ID. Run the simulation
with the m-file above after the line ‘Nsim=6’ is replaced by ‘Nsim=(1000+XXX)’.
Repeat this after the line ‘Nsim=6’ is replaced by ‘Nsim=(10000+XXX)’.

(a) Capture the empirical probability density function (PDF) plots for both cases.
(b) What are the differences among the three PDF plots? Give reasons that have

caused such differences.

14.2 THEORETICAL PDF OF GAUSSIAN RANDOM VARIABLES

2.A [T]Let fX(x) denote the PDF of a random variable (RV) X. Write the PDF fX(x)
of the Gaussian RV X with mean mX and variance 𝜎2

X [1, 2].

2.B [WWW]The m-file below plots fX(x) of a Gaussian RV X with zero mean and
variance 1. The vectors x and Px denote the sampled version of variable x and the
sampled version of the PDF fX(x), respectively. The vector x is set from −5 to 5 with
a step size of 0.01, that is, ‘x=-5:x_step:5’. Complete the Px generation line on the
basis of the fX(x) in 2.A. Capture the completed line.

clear
x_step=0.01;
x=-5:x_step:5;
Px=1/sqrt(?)*exp(-((x-?).̂ 2)/?);
plot(x,Px);

EMPIRICAL PDF OF GAUSSIAN RVs 153

2.C Execute the m-file for each of the following cases:

� mean = 0, variance = 3
� mean = 0, variance = 0.2
� mean = 2, variance = 1
� mean = −3, variance = 1

2.D Do the shapes of the PDF plots in 2.C reflect the different means and variances
of the cases simulated?

14.3 EMPIRICAL PDF OF GAUSSIAN RVs

Using MATLAB functions such as random(), rand(), and randn(), we can generate
various kinds of RVs. By conducting a large number of independent experiments, we
can obtain the empirical PDF of an RV. Although the built-in function histogram() is
convenient for generating the empirical distribution, we will go through the detailed
steps to obtain the distribution to gain an in-depth understating of the PDF concept.

The overall procedure is as follows.

� Step 1. Partition the x axis of a PDF plot into a number of the small segments
(also called “bins” in a histogram). Create the vector x that determines the
boundary of the partitions, that is, the first partition is [x(1) x(2)], the second
partition is [x(2) (x3)], and so on.

� Step 2. Tick the center of each bin.
� Step 3-1. Independently generate outcomes for the RV, say, Nsim times.
� Step 3-2. In parallel with Step 3-1, for each random generation of an outcome,

check which partition the outcome falls into and increase the occurrence counter
for the corresponding partition.

� Step 4. After finishing Nsim runs, normalize the number of occurrence for each
bin by Nsim. The normalized count for each bin corresponds to the PDF of the
RV sampled at the center of the bin.

3.A [WWW]The MATLAB function randn, every time it is invoked, generates a
sample (also called “an outcome”) of the Gaussian RV with zero mean and unit
variance. The following m-file obtains the empirical PDF of the zero mean, unit
variance Gaussian RV by using randn in the procedure described above.

clear
rand(1XX); % XX= last two digits of your student ID. This is not relevant to the aim
of the code but mandatory.
Nsim=100;
xstep=0.01;
xmin=-5;
xmax=5;

154 PROBABILITY AND RANDOM VARIABLES

x=xmin:xstep:xmax;
Number_of_partitions=(xmax-xmin)/xstep;
PartitionCenters=(xmin+xstep/2):xstep:(xmax-xstep/2);

CountAtEachPartition=zeros(1,Number_of_partitions);

for n=1:Nsim

random_sample=randn;

for k=1:Number_of_partitions

kth_partition_left_end= x(k);
kth_partition_right_end=x(k+1);

if (kth_partition_left_end<=random_sample)&(random_sample<kth_partition_
right_end)
CountAtEachPartition(k)=CountAtEachPartition(k)+1;

end
end

end
Px=CountAtEachPartition/xstep/Nsim;
figure
plot(PartitionCenters,Px,’r’)
grid on

3.A-1 Identify the parts or lines for each of the four steps and mark them in the m-
file (using comments for each line, for example, % Step 2, etc.). Capture the marked
m-file.

3.A-2 What does the condition checking line ‘if (kth_partition_left_end<=random_
sample) & (random_sample<kth_partition_right_end)’ do?

3.B Execute the m-file in 3.A. Then execute hold on in the command window and
execute the m-file in 2.B to plot the theoretical PDF together with the empirical PDF.
Capture the resulting plot.

3.C Repeat 3.B for Nsim = 1e4 and for Nsim = 1e6.

3.D. The empirical PDF should not look very similar to the theoretical PDF when
Nsim is small. Why?

VERIFYING THE MEAN AND VARIANCE OF THE RV 155

14.4 GENERATING GAUSSIAN RVs WITH ANY MEAN
AND VARIANCE

4.A [T]Consider a Gaussian RV X. If RV Y is given as Y = aX + b, where a and b
are some constants; then Y is another Gaussian RV. Let the mean and variance of X
be mX and 𝜎2

X , respectively. Show that the mean and variance of Y are amX + b and
a2
𝜎

2
X , respectively.

4.B Based on the derivation above, complete the line below to create z, a sample of
a Gaussian RV with mean −3 and variance = 0.01, using the function randn.

z= ?*randn+? ;

4.C Repeat 3.B for each of the following two cases. Be sure to set Nsim = 1e6 and
properly change the line ‘random_sample=randn;’ in the m-file in 3.A and the mean
and variance in the m-file in 2.B.

� mean = 0, variance = 0.2
� mean = −3, variance = 1

14.5 VERIFYING THE MEAN AND VARIANCE OF THE RV
REPRESENTED BY MATLAB FUNCTION RANDN()

Using ’X=randn(1,N)’, we can create an N-element vector X, whose elements are
independently drawn observations on the zero-mean, unit-variance Gaussian RV. In
5.A and 5.B, we calculate the empirical mean and variance of the RV using the
elements of X to verify the theoretical mean and variance of the RV.

5.A The empirical mean of an RV is defined as

m =
∑N

k=1 x(k)

N
, (14.1)

where x(k) denotes the kth element of X; that is, the kth observation on the RV.

(a) Complete the line to calculate m, the sample mean of the RV, in the following
lines of code.

(b) Capture the execution result.

>>N=1XXX; %XXX= the last three digits of you student ID number.
>>X=randn(1,N);
>>m = sum(?)/? ;

156 PROBABILITY AND RANDOM VARIABLES

5.B Denote the variance of the RV by v, calculated as

v =
∑N

k=1 x2(k)

N
− m2

. (14.2)

Complete the line below to calculate v and capture the result.

>> v = ??/N - mˆ2 ; % m is the value obtained in 5.A

5.C (a) Are the empirically obtained mean and variance of randn(), that is, m and
v, almost identical to the theoretical values?

(b) If not, increase the value of N to 10 times of its current value and recalculate
m and v. Capture the results.

5.D Empirically calculate the mean and variance of RV, z, in 4.B using the method
completed in 5.A to 5.C. To this end, generate an N-element vector, whose elements
are independently drawn observations on z. So change the line that creates z in 4.B
to ‘Z=?*randn(1,N)+?’ and then calculate the mean and variance of Z according to
equations (14.1) and (14.2).

(a) Capture the empirically calculated mean and variance of Z.
(b) Are they almost identical to the theoretical values, that is, mean = −3 and

variance = 0.01? Small numerical errors should be taken into consideration in
making this judgment.

14.6 CALCULATION OF MEAN AND VARIANCE USING NUMERICAL
INTEGRATION

In 2.B, we created a vector Px that is the sampled version of fX(x), the PDF of a
zero-mean, unit-variance Gaussian RV X. In this section, we calculate the mean and
the variance of X using numerical integration. Numerical integration was studied in
Section 2.1 of Chapter 2.

6.A The mean of an RV X is calculated from its PDF fX(x) as

mX ≜ E[X] = ∫ xfX(x)dx. (14.3)

Append the line below, which calculates the mean by numerical integration, to
the end of the m-file completed in 2.B. (a) Execute the revised m-file and capture the
calculated mean. (b) Is the result approximately equal to the theoretical value?

CALCULATION OF MEAN AND VARIANCE USING NUMERICAL INTEGRATION 157

m_x=sum(x.*Px)*x_step

6.B The variance of an RV X is calculated from its PDF fX(x) as

𝜎
2
X ≜ E

[
(X − mX)2] = ∫ (x − mX)2fX(x)dx. (14.4)

Complete the line below, which calculates the variance by numerical integration,
and append it at the end of the m-file completed in 6.A. (a) Execute the revised
m-file and capture the calculated variance. (b) Is the result approximately equal to
the theoretical value?

v=sum(???.*Px)*x_step

6.C (a) Provide the detailed steps for obtaining the second and third equalities in
the following equation:

𝜎
2
X = ∫ (x − mX)2fX(x)dx

= ∫ x2fX(x)dx − m2
X

= E[X2] − m2
X .

(14.5)

(b) Complete the following line, which calculates the second line of equation
(14.5), by numerical integration and append it at the end of the m-file
completed in 6.B. Execute the revised m-file and capture the calculated
variance.

sum(???)*x_step-m_xˆ2;

(c) Is the resultequal to the value calculated in another form in 6.B?

6.D (a) Execute the m-file in 6.C for each pair of the following mean and variance
values:
� mean = 0, variance = 3
� mean = 0, variance = 0.001
� mean = −2, variance = 1

(b) Depending on the values of the mean and variance, the calculation errors
differ. Justify this observation.

158 PROBABILITY AND RANDOM VARIABLES

14.7 [A]RAYLEIGH DISTRIBUTION

One of the commonly encountered fading channel [3–5] models in wireless com-
munications is the Rayleigh fading [5] model, which will be employed in Chapters
25, 27, 28, and 29. In the simplest form, the received signal over a Rayleigh fading
channel is expressed as

r = 𝛼s + n, (14.6)

where s is the transmitted signal, n the Gaussian noise, and 𝛼 the fading coefficient
modeled as a Rayleigh RV whose PDF is expressed as [6]

f
𝛼
(x) =

⎧⎪⎨⎪⎩
x
𝜎2

exp
(
− x2

2𝜎2

)
, x ≥ 0,

0, x < 0.
(14.7)

The mean square value 𝛼,E[𝛼2], is equal to 2𝜎2.

7.A Solve the following:

(a) Show that ∫ ∞
−∞ f

𝛼
(x)dx = 1.

(b) Calculate E[𝛼2] using f
𝛼
(x) and show that it is equal to 2𝜎2.

(c) Repeat (a) and (b) using symbolic math.

7.B The Rayleigh RV 𝛼 is typically generated by using two independent Gaussian
RVs as

𝛼 =
√

z2 + y2, (14.8)

where z and y are independent Gaussian RVs with mean 0 and variance 𝜎2.

(a) For the case of 𝜎2 = 1, complete the following command line, which creates
alpha_sample, a sample of 𝛼 according to equation (14.8). You may use
MATLAB function randn().

alpha_sample= ?;

(b) Repeat (a) for the case 𝜎2 = 0.5.

7.C We plot an empirical PDF of the Rayleigh RV 𝛼 with 𝜎2 = 1 via the method
used in Section 14.3. Here we set xstep=0.1, xmin=0, xmax=5, and Nsim=10000.
Properly revise the m-file completed in 3.A to generate 𝛼 according to equation (14.8)

REFERENCES 159

and check to which partition the generated value for 𝛼 belongs. Also properly revise
the part that plots the theoretical PDF given in equation (14.7).

(a) Capture the revised m-file.
(b) Capture the resulting figure. If the empirical PDF curve is not smooth, suffi-

ciently increase the value of Nsim.

7.D Repeat 7.C for the cases of 𝜎2 = 0.5 and 3.

REFERENCES

[1] T. M. Cover and J. A. Thomas, Elements of Information Theory, Hoboken, NJ: Wiley-
Interscience, 2006.

[2] D. M. Bertsekas and J. N. Tsitsiklis, Introduction to Probability, Belmont, MA: Athena
Scientific, 2002.

[3] T. S. Rappaport, Wireless Communications: Principles and practice, 2nd ed., Upper Saddle
River, NJ: Prentice Hall, 2002.

[4] D. Tse and P. Viswanath, Fundamentals of Wireless Communication, Cambridge, UK:
Cambridge University Press, 2005.

[5] B. Sklar, “Rayleigh Fading Channels in Mobile Digital Communication Systems Part I:
Characterization,” IEEE Communications Magazine, Vol. 35, No. 7, 1997, pp. 90–100.

[6] A. Papoulis and S. Pillai, Probability, Random Variables and Stochastic Processes,
New York: McGraw-Hill, 2002.

15
RANDOM SIGNALS

� Integration of the Gaussian probability density function and the Q-function.
� The weighted sum of random variables and properties of Gaussian variables.
� The central limit theorem.
� Ensemble average, autocorrelation functions of random processes.
� Statistical properties of additive white Gaussian noise (AWGN).

15.1 INTEGRATION OF GAUSSIAN DISTRIBUTION
AND THE Q-FUNCTION

The distribution of a Gaussian random variable X with mean m and variance 𝜎2 is
denoted by X ∼ N(m, 𝜎2). The Q-function Q(k) is defined as the probability of the
Gaussian random variable X being greater than m + k𝜎 [1]. It equals the integration
of fX(x) from m + k𝜎 to infinity as

Q(k)
Δ
= Pr{X ≥ (m + k𝜎)}, where X ∼ N(m, 𝜎2)
= ∫ ∞

m+k𝜎 fX(x)dx.
(15.1)

1.A By replacing m + k𝜎 with t in equation (15.1), we can express the probabil-
ity of Gaussian random variable X being greater than any real number t, that is,

Problem-Based Learning in Communication Systems Using MATLAB and Simulink, First Edition.
Kwonhue Choi and Huaping Liu.
© 2016 The Institute of Electrical and Electronics Engineers, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/choi_problembasedlearning

160

http://www.wiley.com/go/choi_problembasedlearning

INTEGRATION OF GAUSSIAN DISTRIBUTION AND THE Q-FUNCTION 161

Pr{X ≥ t}, by the Q-function as

Pr{X ≥ t} = Q(?), where X ∼ N(m, 𝜎2). (15.2)

Determine the quantity marked by ‘?’ in terms of t, m, and 𝜎 in equation (15.2).

1.B In recent versions of MATLAB, there is a built-in function qfunc() for cal-
culating the Q-function Q(k). The Q-function can also be calculated by using the
complementary error function erfc(x) as [1, 2]

Q(x) = 1
2

erfc

(
x√
2

)
. (15.3)

The relationship given by equation (15.3) will be used for problems in this chapter.
The m-file below calculates Q(x) by using erfc() and equation (15.3) for each

element of the vector x=0:0.01:6. It also plots the graph of Q(x) versus x with the y
axis shown in the logarithmic scale. Complete the m-file and execute it. Capture the
completed m-file and the resulting figure.

clear;
x=0:0.01:6;
Qx=??;
semilogy(x, Qx);

1.C Use equations (15.2) and (15.3) to complete the following equation:

Pr {X ≥ t} = 0.5 × erfc(?), where X ∼ N(m, 𝜎2). (15.4)

1.D Calculate the following probabilities of the Gaussian random variables using
equation (15.4) with the MATLAB built-in function erfc():

1.D-1

Pr {X ≥ 1.5} , where X ∼ N(1, 0.5).

1.D-2

Pr {X ≥ 2.5} , where X ∼ N (2, 1) .

1.D-3

Pr {X ≥ 0} , where X ∼ N (1.5, 0.25) .

162 RANDOM SIGNALS

1.D-4

Pr {X ≤ −1.5} , where X ∼ N (1, 0.5) .

Note that the probability density function (PDF) of the Gaussian random variable
is symmetric about the mean.

1.E Verify the probability obtained in 1.D-1 with simulation. Use the process dis-
cussed in Section 4.B of Chapter 14 to generate samples of the Gaussian random
variable X ∼ N (1, 0.5).

1.E-1 [WWW]The m-file below simulates Pr{X ≥1.5}, which is represented by the
variable P in the m-file. This code generates X repeatedly until the number of outcomes
when X 1.5 or greater reaches a preset number Nid. Complete the m-file and capture it.

clear
Nid=1XXX; %XXX= last three digits of your student ID.
cnt=0;
trials=0;
while cnt < Nid
X=?*randn+?;
if X >= 1.5

cnt=cnt+1;
end
trials=trials+1;

end
P=?/?

1.E-2

(a) Execute the m-file above and check the simulated value for Pr{X ≥1.5} in the
command window. (b) Is the result consistent with the one obtained by using
the function erfc() in 1.D-1? Note that there always exists a simulation error
because of the finite number of trials.

1.F Revise the m-file in 1.E-1 to simulate the probabilities in 1.D-2, 1.D-3, and
1.D-4, respectively. Execute the m-file for each case and verify that the simulation
results are consistent with the ones obtained by using the function erfc().

15.2 PROPERTIES OF INDEPENDENT RANDOM VARIABLES AND
CHARACTERISTICS OF GAUSSIAN VARIABLES

This section investigates important properties of independent random variables and
the unique properties of Gaussian variables [3, 4].

PROPERTIES OF INDEPENDENT RANDOM VARIABLES 163

2.A [T]Let X1 and X2 be two independent RVs and fX1
(x) and fX2

(x) represent,
respectively, their PDFs. Let X3 = X1 + X2. Using the properties of independent
RVs, we can calculate the PDF of X3, fX3

(x), from fX1
(x) and fX2

(x). Establish this
relationship.

2.B [T]Now we consider the more general case of the sum of K independent RVs
as S =

∑K
k=1 Xk. We can extend the theorem in 2.A to calculate the PDF of S, fS(x),

from fX1
(x), fX2

(x),… , fXK
(x). Establish this relationship.

2.C [T]Let Y be a linear combination (a weighted sum) of K independent RVs
expressed as Y =

∑K
i=1 (aiXi + bi), where ai and bi are some constants. The mean of

Y is derived as

mY = E[Y] = E

[
K∑

i=1
(aiXi + bi)

]
=

K∑
i=1

[aiE[Xi] + bi]

=
K∑

i=1
[aimXi

+ bi].

(15.5)

Prove that the variance of Y can be expressed as

𝜎
2
Y =

K∑
i=1

a2
i 𝜎

2
Xi
. (15.6)

2.D [WWW]Consider X1 ∼ N (1, 2) , X2 ∼ N (−2, 9) , X3 ∼ N (0, 4) and Y = X1 +
3X2 − 2X3. Numerically, X1, X2, X3, and Y can be generated by using randn as

X1=sqrt(?)*randn+? ;
X2=sqrt(?)*randn+? ;
X3=sqrt(?)*randn+? ;
Y= ? ;

The following m-file empirically calculates the mean mY and variance vY of Y by
repeatedly generating Nid samples of Y stored in the 1 × Nid vector Y.

clear
Nid=1XXX; %XXX is the last three digits of your student ID.
for n=1:Nid
X1=sqrt(?)*randn+? ;
X2=sqrt(?)*randn+? ;
X3=sqrt(?)*randn+? ;
Y(n)= ? ;

end
mY=?; %Refer to 5.A of Chapter 14. Do not use the MATLAB built-in function mean().
vY=?; %Refer to 5.B of Chapter 14. Do not use the MATLAB built-in function var().

164 RANDOM SIGNALS

2.D-1 Determine all the quantities marked by ‘?’ to complete the m-file. Execute
the completed m-file and capture the simulation result.

2.D-2

(a) Calculate the mean and variance of Y using equations (15.5) and (15.6). (b) Are
the simulated values in 2.D-1 consistent with the theoretical values?

2.E Suppose that Xi (i = 1, 2, 3, …, K) are K independent Gaussian RVs and their
linear combination is expressed as Y =

∑K
i=1 aiXi.

2.E-1 [T]According to the theorem for Gaussian RVs, what distribution should RV
Y follow?

2.E-2 [T]For the PDF of Y obtained in 2.E-1, fY (x), is completely determined by the
mean and the variance of Y. Consider the example of Y given in 2.D, whose mean
and variance have been derived in 2.D-2 (a). Determine its PDF fY (x).

2.E-3 [T]The probability of the RV Y given in 2.D being 10 or greater, Pr {Y ≥ 10},
can be calculated by using equation (15.4) as follows. Complete the following two
lines of code and record the execution result.

>>m=? ; v= ?; t=?;
>>Pr=?*erfc(?)

2.E-4 [WWW]The m-file below simulates Pr {Y ≥ 10} for the RV Y given in 2.D.

(a) Document the complete m-file.
(b) Record the simulation result.
(c) Is it consistent with the theoretical result in 2.E-3?

clear
Nid=1XXX; % XXX= the last three digits of your student ID number.
cnt=0;
Trials=0;
while cnt < Nid
X1=sqrt(?)*randn+? ;
X2=sqrt(?)*randn+? ;
X3=sqrt(?)*randn+? ;
Y= ? ;
if Y >= ?

cnt=cnt+1;
end
Trials=Trials+1;

end
P=?/?

CENTRAL LIMIT THEORY 165

2.E-5 Repeat 2.E-3 and 2.E-4 for Pr {Y ≤ −15}. You may use the property that the
Gaussian distribution is symmetric about its mean. Show that the theoretical values
and the simulation results are consistent with each other.

15.3 CENTRAL LIMIT THEORY

Suppose that Xi (i = 1, 2,…,M) are independent RVs, all having the same uniform dis-
tribution over the set [1, 2, 3,…,6]. Let Y be the sum of Xi (i= 1, 2,…,M) expressed as

Y =
M∑

i=1

Xi. (15.7)

3.A For the case of M = 2, Y can be numerically generated as

X(1)=ceil(rand*6);
X(2)=ceil(rand*6);
Y=sum(X)

3.A-1

(a) Record all possible values that Y can take for M = 2. (b) Given any value of M,
the minimum possible value of Y is M. What is the maximum possible value
of Y as a function of M?

3.A-2 [WWW]The following m-file repeatedly generates the samples of Y with M =
2 for Nid*100 times and plots the distribution of Y based on the outcome. Complete
the places marked by ‘?’ and then execute the m-file. Capture the resulting plot.

clear
M=2;
Nid=1XXX; % XXX = last three digits of your student ID number.
rand(Nid); % Irrelevant to the main goal of this m-file, but be sure to insert this line.
Nsim=Nid*100;

Possible_Y=M:1:? ; %Fill in ? with the maximum possible value of Y accord-
ing to the answer to 3.A-1(b).
count=zeros(1,length(Possible_Y));

for n=1:Nsim
for ii=1:M

X(ii)=ceil(rand*6);
end
Y=sum(?);

166 RANDOM SIGNALS

for k=1:length(Possible_Y)
if Y==Possible_Y(k)

count(k)=count(k)+1;
end

end
end
P_Y=?/Nsim;
plot(Possible_Y,P_Y)
xlabel(’Y’)
ylabel(’Pr[Y]’)

3.B Execute the modified m-file for each of the following M values: 4, 8, 16, and 50.
(a) Capture the distribution of Y for each value of M. (b) Describe how the distribution
shape changes as M increases.

3.C We repeat 3.B for another distribution of Xi. If we replace the line
‘X(ii)=ceil(rand*6)’ by ‘X(ii)=ceil((randˆ2)*6)’ in the m-file completed in 3.B, then
the possible values of Xi (which equals X(ii) in the m-file) will still be from the set [1,
2, 3,…,6]. However, it is not uniformly distributed.

3.C-1 Replace the line ‘X(ii)=ceil(rand*6)’by ‘X(ii)=ceil((randˆ2)*6)’, set M=1, and
determine the empirical distribution of Xi.

(a) Execute the revised m-file and capture the distribution of Xi.
(b) Describe the shape of the distribution of Xi, that is, how Xi is distributed over

[1, 2, 3,…,6]), in comparison with the uniform distribution case.
(c) Intuitively explain why Xi is more likely to take on the smaller values from

the set [1, 2, 3,…,6].

3.C-2

(a) If the distribution of Xi is nonuniform as observed in 3.C-1, then will
Y=

∑M
i=1 Xi change as M increases? Will the distribution of Y=

∑M
i=1 Xi still

converge to Gaussian as M increases like the case where {Xi} are uniformly
distributed?

(b) Execute the modified m-file for the following values of M: 4, 8, 16, and 50.
Capture the distribution of Y for each value of M.

(c) Describe how the distribution shape changes as M increases.

3.D Do the results in 3.B and 3.C verify the central limit theorem (CLT) [3, 4]?

3.E In 3.B and 3.C, in order to verify the CLT, we resorted to the empirically
generated distribution. A problem with the empirical distribution method is that it
needs a large number of random variable generations and it is rather time-consuming.
In this section we verify the CLT with a different approach that does not require
generating outcomes of RVs.

3.E-1 Execute the following two lines of code in the command window. In the first
line, be sure to replace the elements of the vector ID by the digits of your student

CENTRAL LIMIT THEORY 167

ID number. The length of pX does not matter. In the rest of this section, we treat the
vector pX as a discrete probability distribution function of random variable X. For
example, pX(1), pX(2), … denote the probability of random variable X being equal to
1, 2,…, respectively.

(a) Capture the generated pX.
(b) From the generated pX, calculate Pr(X = 3).

>> ID=[2,0,8,4,3,8,1,2] % Example assuming your student ID is 20843812.
>> pX=ID/sum(ID) % To normalize pX such that sum(pX) =1.

3.E-2 In order to check the overall shape of the probability distribution function of
X, execute plot(pX) in the command line and capture the plot.

3.E-3 The MATLAB command conv(a,b) outputs the convolution result of the
vectors a and b. In the command window,

(a) Execute ‘pX=conv(pX,pX);plot(pX)’ and capture the plot of the convolution
result.

(b) Repeat (a) for 5 times. Do not create an m-file to execute the commands at
once; execute the commands one by one. After each execution, check the
convolution plot and capture it.

>> pX=conv(pX,pX);plot(pX) %Execute it and capture the plot.
>> pX=conv(pX,pX);plot(pX) %Execute it and capture the plot.
… Repeat for 5 times

3.E-4 Set pX in 3.E-1 to a different vector of an arbitrary length with any nonnegative
real-valued elements. Repeat 3.E-3 with this pX and capture the convolution plots.

3.E-5 We should see Gaussian distribution–shaped curves in 3.E-3 and 3.E-4, which
are not obtained by generating samples to obtain a histogram but by convolution.
Vector pX is a deterministic vector, and we plotted the final pX itself, rather than
the histogram of the elements of pX. The results in 3.E-3 and 3.E-4 still properly
verify the CLT, which can be done using the results in 2.B. Provide the details of this
verification.

3.E-6 Create at least 6 arbitrary nonnegative real-valued vectors as shown below.
The vectors do not have to be of the same length.

>> pX1=[1, 0.3, 4.3, 8, 3];
>> pX2=[2, 0, 5, 1, 8];
>> pX3=[9, 11.5, 6.7, 1.02, 8];
…
>> pX6=[0.1, 4, 3, 0, 2];

168 RANDOM SIGNALS

Recursively convolve these vectors as below:

>> pX=pX1;
>> pX=conv(pX, pX2); plot(pX)
>> pX=conv(pX, pX3); plot(pX)
…
>> pX=conv(pX, pX6); plot(pX)

(a) Capture the plot after each convolution.
(b) Using the result in (a), generalize the CLT.

3.E-7

(a) Repeat 3.E-1∼3.E-3 by setting ID=[10, 1, 1, 1, 1, 1, 1, 10].
(b) Design a vector with nonnegative elements so that it will never converge to

the typical shape of Gaussian PDF despite the recursive convolutions as done
in 3.E-3.

(c) Verify the answer(your design) in (b).
(d) If you correctly designed a vector in (b), theoretically explain why your

designed vector does not converge to the typical shape of Gaussian PDF.

15.4 GAUSSIAN RANDOM PROCESS AND
AUTOCORRELATION FUNCTION

4.A [WWW]Consider a certain random process x(t). At each iteration of the ‘for’
loop in the m-file below, a realization (observation or outcome) of x(t) is generated,
and then sampled; the samples are stored in the vector xt. Assume that the sampling
interval is 1 second. The following m-file plots the sampled waveform of a newly
realized x(t) every time you press any key.

clear
figure
ID=[2,5,3,8,1,5,7,1];% Replace the elements of the vector ID with the full dig-
its of your student ID number.
for trial=1:100
xt=conv(randn(1,100),ID)+4.35;
%The line above is for realization of x(t). Don’t worry about the right-hand side of the
command at this point.
plot(xt)
xlabel(’t [sec]’)

pause
end

GAUSSIAN RANDOM PROCESS AND AUTOCORRELATION FUNCTION 169

4.A-1 Replace the elements of the vector ID with the full digits of your student ID
number and execute the m-file.

(a) Whenever you press any key, a sampled waveform of a new realization of x(t)
will be plotted. Capture at least four sampled waveforms of x(t). Press Ctrl-C
key to terminate the execution of the m-file.

(b) Based on the captured plots in (a), determine whether or not x(t) is a random
process. Justify your answer.

4.A-2 Is it possible to determine whether or not x(t) is a Gaussian random process
[3, 4] based only on the captured plots in 4.A-1(a)? Justify your answer.

4.A-3 [WWW]Let us collect the realizations of x(t) at t = t0. In the m-file below, we
repeatedly generate observations of x(t), expressed in the simulation code as xt. For
each observation, the t0-th element of xt, that is, the observation evaluated at t = t0,
is saved in the vector xt_at_t0 as a new element. In the m-file below, t0 is set to 23 for
illustration. Finally, the m-file returns the mean of x(t)|t=t0

and plots the distribution
of x(t)|t=t0

using histogram.

(a) Identify the variable that corresponds to one observation of x(t)|t=t0
in the

m-file below.
(b) If we plot xt_at_t0 using the command plot(xt_at_t0), what does the x axis of

the resulting figure represent.
(c) The line mean(xt_at_t0) returns the average of the random process x(t). Is this

the time average or the ensemble average [3]? Justify your answer.

clear
figure
ID=[2,5,3,8,1,5,7,1]; % Replace the elements of the vector ID with the full dig-
its of your student ID number.
t0= 23 ;
for trial=1:50000
%You may set total trial number to be larger than 50000 if the PC comput-
ing power allows.
%You may set total trial number to be smaller than 50000 for speedy simula-
tion, but the simulation error increases.

xt=conv(randn(1,100), ID)+4.35;
xt_at_t0(trial)=xt(t0);

end
mean(xt_at_t0)
hist(xt_at_t0,100)

4.A-4 Execute the m-file above. Capture the result from executing the command
mean(xt_at_t0) and the PDF graph generated by hist(xt_at_t0,100).

4.A-5 Change t0 to an arbitrary integer between 1 and 100 and execute the m-file.
Try at least four different values of t0 and capture the execution results

170 RANDOM SIGNALS

4.A-6 Is the process x(t) realized through the m-file a Gaussian random process?
Justify your answer on the basis of the execution results, not based on the code lines
in the m-file.

4.B Autocorrelation function of random process.
The autocorrelation of a random process x(t) denoted by Rx(t1, t2) is defined as

[3, 4]

Rx(t1, t2) = E[x(t1)x∗(t2)]
= E[x(t1)x(t2)] when x(t) is a real-valued random process.

(15.8)

4.B-1 [WWW]Consider the same random process x(t) that was considered in 4.A.
The m-file below calculates the autocorrelation between the samples x(t1) and x(t2),
Rx(t1, t2). For each of lines, add a comment to explain what the variable on the
left-hand side represents and justify how the right-hand side expression is properly
formulated accordingly. Capture the commented m-file.

clear
ID=[2,5,3,8,1,5,7,1]; % Replace the elements of the vector ‘ID’ with the full dig-
its of your student ID number.
t1= 51 ;
t2= 87 ;
for trial=1:50000
%You may set total trial number to be larger than 50000 if the PC comput-
ing power allows.
%You may set total trial number to be smaller than 50000 for speedy simula-
tion, but the simulation error increases.

xt=conv(randn(1,100), ID)+4.35;
xt1_mult_xt2(trial)=xt(t1)*xt(t2);

end
mean(xt1_mult_xt2)

4.B-2 Does the command mean() in the last line calculate the time average or the
ensemble average? Justify your answer.

4.B-3 Let us execute the m-file for various pairs of (t1, t2).

(a) Consider at least four pairs of the time instants (t1, t2) that satisfy the time
difference constraint t2 − t1 = 3 and range constraints 8 < t1 < 100 and 8 <
t2< 100. For example, t1 = 37 and t2 = 40. Execute the m-file for each of
the four different pairs. Record the simulation results of Rx(t1, t2) for the four
cases in a table.

(b) Assume that the time difference constraint is t2 − t1 = 5 and repeat the process
discussed in (a). Record the simulated Rx(t1, t2) values for the four cases in
the same table created in (a).

GAUSSIAN RANDOM PROCESS AND AUTOCORRELATION FUNCTION 171

(c) From the results in (a) and (b), summarize the main properties of the correlation
function Rx(t1, t2) of the random process x(t) considered. If the simulation
results are not what you expected to see, then increase the total number of
trials in the m-file to reduce the simulation error.

4.B-4 [WWW]In the m-file below, the variable tau represents the time difference t2−
t1 for generating Rx(t1, t2), that is, t2 is set to t1 + tau. It calculates the autocorrelation
by fixing t1 = 51 and changing the value of tau and plots the autocorrelation as a
function of tau.

For each of the lines, add a comment to explain what the variable on the left-hand
side represents and justify how the right-hand side expression is properly formulated
accordingly. Capture the commented m-file.

clear
figure(1)
ID=[2,5,3,8,1,5,7,1]; % Replace the elements of the vector ‘ID’ with the full dig-
its of your student ID number.
t1= 51 ;

R_vector=[];
tau_vector=[];
for tau= (-t1+1):(-t1+100)

t2=t1+tau;
for trial=1:10000

%You may set total trial number to be larger than 10000 if the PC comput-
ing power allows.
%You may set total trial number to be smaller than 10000 for speedy simula-
tion, but the simulation error increases.

xt=conv(randn(1,100), ID)+4.35;
xt1_mult_xt2(trial)=xt(t1)*xt(t2);

end
tau_vector=[tau_vector tau];
R_at_tau= mean(xt1_mult_xt2);
R_vector=[R_vector R_at_tau];

end
plot(tau_vector,R_vector);
axis([-50 50 min(R_vector) max(R_vector)]);
hold on
xlabel(‘tau’)
grid on

4.B-5

(a) Execute the m-file above and capture the resulting graph. (b) After analyzing
and understanding the m-file, for a point x0 along the x axis of the graph, what
does the corresponding value of that point along the y axis represent?

172 RANDOM SIGNALS

4.B-6 Set t1 to a different integer arbitrarily chosen between 40 and 60 and execute
the m-file again. Run the simulation for at least four different values of t1 and capture
the resulting graphs of Rx(t1, t1 + x0).

4.B-7 From the graphs of Rx(t1, t1 + x0) generated in 4.B-6, determine whether
Rx(t1, t1 + x0) is a function of t1 or x0 or both.

4.B-8 [T]Summarize the definition of “wide-sense stationary random processes”
[3, 4].

4.B-9 Is the random process x(t) generated by the m-file wide-sense stationary?
Analyze the results in 4.B-7 to justify the answer.

4.B-10 Based only on the results obtained so far, determine the value of
E[x(77)x(82)] without further simulation.

4.B-11 [A]Let L denote the length of the vector ID in the m-file. From the auto-
correlation figures generated in 4.B-6, the autocorrelation is found to be nearly 0
for tau<-L or L<tau. This implies that if x(t) is evaluated at two time instants that
are at least L seconds apart, then the RVs corresponding to the random process at
these two instants are uncorrelated. This can be explained by examining the line
‘xt=conv(randn(1,100), ID)+4.35’ in the m-file. Justify this conclusion in detail.

4.C Statistical properties of additive white Gaussian noise.

4.C-1 The MATLAB command randn(1,b) generates a 1×b vector whose elements
are realizations of independent and identically distributed Gaussian random variables
with zero mean and unit variance.

If the line ‘xt=conv(randn(1,100), ID)+4.35’ in the m-file in 4.B-4 is changed into
‘xt=randn(1,100);’, without simulating this case, discuss how the autocorrelation will
change.

4.C-2 Change the line ‘xt=conv(randn(1,100), ID)+4.35’ of the m-file in 4.B-4 into
‘xt=randn(1,100);’ and execute the m-file. Is the resulting autocorrelation plot what
you expected to see as discussed in 4.C-1?

4.C-3 Based on only the autocorrelation plot captured in 4.C-2, can we determine
whether x(t) is a Gaussian random process or not? Why?

4.C-4 Now we analyze the m-file and identify which line(s) shows that x(t) is a
Gaussian random process, although this conclusion cannot be made by observing
only the autocorrelation function.

4.C-5 Change the line ‘xt=conv(randn(1,100), ID)+4.35’ in the m-file in 4.A-3 into
‘xt=randn(1,100)’and execute the m-file for at least four different values of t0. Capture
the result of each case. Based on these results, determine whether x(t) is Gaussian.

4.C-6 The distribution graphs captured in 4.C-5 do not say anything about the
whiteness of x(t), but it is true that x(t) is white. Review problem 4.C-2 and its
associated autocorrelation results and then explain why x(t) is a white process.

REFERENCES 173

4.C-7 Also, from the line ‘xt=randn(1,100)’ in the m-file, explain why x(t) is white.

4.D The output characteristics of a linear system with a Gaussian random process
as its input.

4.D-1 Modify the line ‘xt=conv(randn(1,100), ID) + 4.35’ in the m-file in 4.A-3 into
‘xt=conv(randn(1,100), ID)’.

Change ID to an arbitrary real-valued vector of any length and execute the m-file.
Capture the distribution plots for the several different values of t0. Repeat this for at
least four different values of ID.

4.D-2 From the plots obtained in 4.D-1, summarize the common characteristics of
the distribution of the random process x(t) at t = t0.

4.D-3 Summarize the analytical relationship among the input, the output, and the
impulse response of a linear system in the time domain.

4.D-4

(a) From the relationship summarized in 4.D-3 and the line ‘xt=conv(randn(1,100),
ID)’ in the m-file, the vector xt can be considered as the output of a linear system
whose input is equal to the vector generated by rand(1,100). Then, which
quantity (variable) represents the impulse response of this linear system?

(b) From (a) and the characteristic of the distributions observed in 4.D-2, summa-
rize an important property of Gaussian random process when it passes through
a linear system.

REFERENCES

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, New York: Dover, 1965.

[2] L. C. Andrews, Special Functions of Mathematics for Engineers, Bellingham, WA: SPIE
Press, 1992.

[3] A. Papoulis, Probability, Random Variables, and Stochastic Processes, New York:
McGraw-Hill, 1965.

[4] A. Leon-Garcia, Probability and Random Processes for Electrical Engineering, 2nd ed.,
Boston, Mass, North Reading, MA: Addison-Wesley, 1994.

16
MAXIMUM LIKELIHOOD DETECTION
FOR BINARY TRANSMISSION

� Derivation of the likelihood function.
� Maximum likelihood detection.

16.1 LIKELIHOOD FUNCTION AND MAXIMUM LIKELIHOOD
DETECTION OVER AN ADDITIVE WHITE GAUSSIAN
NOISE CHANNEL

The additive white Gaussian noise (AWGN) is a random process that is widely used
to model the background noise in a communications system receiver [1,2]. The name
AWGN well describes the characteristics of the background noise: it is “additive” (to
the received desired signal), “white” (because of its flat spectral density being over a
very wide range of frequencies), and follows the “Gaussian” distribution.

If the channel impulse response hc(t) is a delta function, and the received signal is
corrupted by only AWGN, then this channel is called an “AWGN channel.” Consider a
binary digital communications system where signals s1(t) and s2(t) represent data bits
‘1’and ‘0’, respectively. The received signal r(t) over an AWGN channel is expressed as

r(t) =
{

s1(t) + n(t), if transmitted bit is ′1′,
s2(t) + n(t), if transmitted bit is ′0′,

(16.1)

where n(t) is the AWGN.

Problem-Based Learning in Communication Systems Using MATLAB and Simulink, First Edition.
Kwonhue Choi and Huaping Liu.
© 2016 The Institute of Electrical and Electronics Engineers, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/choi_problembasedlearning

174

http://www.wiley.com/go/choi_problembasedlearning

LIKELIHOOD FUNCTION AND MAXIMUM LIKELIHOOD DETECTION 175

∑
ˆ

or
ˆ

mi

ui

r(t)

AWGN

Transmitted
Waveform

Frequency
Down-

Converter

Received Waveform

Optional Elements

Conversion to Baseband

Baseband Pulse
(Possibly distorted)

Baseband Pulse Decision
Variable

Estimated
Message Symbol

or
Channel Symbol

Receive
Filters

Essential Elements

r(t) = si(t) ∗ hc(t) + n(t)

z(t) z(T)

z(t) = ai(t) + n0(t)

z(T) = ai(T) + n0(T)

m̂i

ûi

si(t)
H1

H2

z(T) γ<
>

Equalization
Filters

Predetection
Point

Stage 2
Decision

Comparison
Sample
at t = T

Channel Equalization

Sampling & Demodulation

Stage 1
Received Signal (converted to discrete-time

samples)

FIGURE 16.1 Basic demodulation/detection steps.

Fig. 16.1 shows the basic demodulation and detection steps in a typical digital
communications system. In the first stage, the received signal is frequency down-
converted into baseband, filtered, and then sampled to generate the decision variable
z(T). If r(t) is baseband modulated, then frequency down conversion is not needed.
Over an AWGN channel, the equalization filter is not needed. Thus the filtered
baseband signal z(t) is expressed as

z(t) =
{

a1(t) + n0(t), for bit ′1′,
a2(t) + n0(t), for bit ′0′,

(16.2)

where ai(t), i = 1, 2 is the filtered output of the signal term si(t), i = 1, 2 and n0(t) is
the filtered noise signal.

Consider the simplest case where the input is a single random variable. The filtered
baseband signal z(t) is sampled at the sampling instant t = T to generate the decision
variable z(T), which is simply denoted by z since there is only one transmitted symbol,
and is expressed as

z =
{

a1 + n0 if s1(t) (bit = ′1′) is transmitted,
a2 + n0 if s2(t) (bit = ′0′) is transmitted,

(16.3)

where ai denotes ai(T) and n0 denotes the Gaussian noise n0 (T) with zero mean and
variance 𝜎2

0 , that is, n0 ∼ N(0, 𝜎2
0).

1.A

(a) [T]From the study in 4.A of Chapter 14: if X ∼ N(0, 𝜎2) and Y = Ax + b, then
Y ∼ N(?, ?). Complete the quantities marked by ‘?’.

(b) [T]Equation (16.3) shows that the decision variable z is equivalent to a Gaussian
random variable whose mean is determined by the transmitted bit. Let fz|s1

(z)
and fz|s2

(z) denote the conditional probability density functions (PDFs) of z,
assuming that s1(t) (bit = ‘1’) and s2(t) (bit = ‘0’) are transmitted, respectively.
Determine the expressions of fz|s1

(z) and fz|s2
(z).

176 MAXIMUM LIKELIHOOD DETECTION FOR BINARY TRANSMISSION

1.B [T]In Stage 2 of Fig. 16.1, the symbol (bit in this problem) decision, that is, to
determine whether the transmitted bit is ‘1’ or ‘0’ because binary signal is considered,
is made on the basis of the decision variable z. In this problem we focus on maximum
likelihood (ML) detection [3–5], which minimizes the bit error rate (BER) over an
AWGN channel, assuming that ‘1’ and ‘0’ are equally probable. The ML detector
chooses the bit from the alphabet to maximize the likelihood function [3–5]. For the
binary case considered, the bit decision can be made by comparing the likelihood
ratio denoted by Λ(z) with a threshold expressed as

d̂ =
{ ′1′ if Λ(z) > 1,

′0′ if Λ(z) < 1,
where Λ(z)

Δ
=

Pr(s1|z)

Pr(s2|z)
. (16.4)

By using the Bayes’s theorem [1,2], the likelihood ratio in equation (16.4) can be
expressed as

Λ(z)

(
Δ
=

Pr(s1|z)

Pr(s2|z)

)
=

fz|s1
(z)Pr(s1)

fz|s2
(z)Pr(s2)

, (16.5)

where Pr(s1) and Pr(s2) are the prior probabilities of s1, s2, which correspond to,
respectively, ‘1’ and ‘0’ being transmitted, and fz|s1

(z) and fz|s2
(z) denote the conditional

PDFs of z conditioned on s1 and s2.

(a) Derive equation (16.5).
(b) The binary bits ‘1’ and ‘0’ are typically equally probable, that is, Pr(s1) =

Pr(s2) = 0.5. In this case, the likelihood ratio expressed in equation (16.5) can
be simplified as

Λ(z) =
fz|s1

(z)

fz|s2
(z)
. (16.6)

By substituting the complete expressions of Pr(z|s1) and Pr(z|s2) derived in Prob-
lem 1.A into equation (16.6), show that Λ(z) can be written as a function of a1, a2,
and 𝜎0 as

Λ(z) = exp

(
−

a2
1 − a2

2

2𝜎2
0

+
z(a1 − a2)

𝜎
2
0

)
. (16.7)

(c) For equally probable binary data, by using equations (16.4) and (16.6), show
that the ML detection rule is equivalent to the decision rule below:

d̂ =
{ ′1′ if f (z|s1) > f (z|s2),

′0′ if f (z|s2) > f (z|s1).
(16.8)

LIKELIHOOD FUNCTION AND MAXIMUM LIKELIHOOD DETECTION 177

1.C Assume a1 > a2. By substituting equation (16.7) into (16.4) and rearranging,
we can derive two regions (ranges) of z, according to which the transmitted bit is
detected as ‘0’ and ‘1’, respectively, as expressed in equation (16.9):

d̂ =
⎧⎪⎨⎪⎩

′1′ if z > a1+a2
2

,

′0′ if z < a1+a2
2
.

(16.9)

1.C-1 [T]Derive equation (16.9).

1.C-2 [T]We can interpret equation (16.9) as shown below. Specify the two decision
regions R1 and R2.

� If the decision variable z falls in region R1, that is, z ∈ R1, then we decide that
‘1’ is transmitted.

� If the decision variable z falls in region R2, that is, z ∈ R2, then we decide that
‘0’ is transmitted.

R1 and R2 are called the “decision regions.”

1.C-3 [T]From equation (16.9), explain that ML detection of binary signals over an
AWGN channel reduces to comparing z with a certain threshold.

1.D We can find the probability that the ML detection expressed by equation (16.9)
generates an incorrect bit decision.

1.D-1 [T]Complete the following problems.

(a) Assume that ‘1’ is transmitted. From equation (16.9), a bit error (d̂ = ‘0’)
occurs if z is ‘?’ (smaller than or larger than) ‘?’ (threshold). Determine the two
quantities marked by ‘?’.

(b) By using the PDF fz|s1
(z) derived in 1.A, show that the probability of the

condition in (a) that leads to an erroneous bit decision can be written in the
form of the Q-function as

BER when ′1′ is transmitted = Pr(d̂ = ′0′|s1) = Q

(
a1 − a2

2𝜎0

)
. (16.10)

Note that the Q-function expressed in terms of the Gaussian PDF is studied in
Section 1.A of Chapter 15.

1.D-2 [T]Similar to 1.D-1, show that the BER when ‘0’ is transmitted is also equal

to Q
(

a1−a2
2𝜎0

)
.

1.D-3 [T]If Pr(s1) = Pr(s2) = 0.5, show that the average BER is given as

pb = Q

(
a1 − a2

2𝜎0

)
. (16.11)

178 MAXIMUM LIKELIHOOD DETECTION FOR BINARY TRANSMISSION

1.E By using the BER formula in equation (16.11) and the erfc() function in
MATLAB, calculate the BERs for the following cases:

1. a1 = 8, a2 = −8, 𝜎2
0 = 4

2. a1 = 2, a2 = −2, 𝜎2
0 = 0.25

3. a1 = 1, a2 = −1, 𝜎2
0 = 0.5

4. a1 = 4, a2 = 0, 𝜎2
0 = 0.25

5. a1 = 10, a2 = −6, 𝜎2
0 = 4

1.F

(a) Compare the BERs of the five cases in 1.E and identify the cases that have the
same BER.

(b) From the BER formula in 1.D-3, derive the conditions on a1, a2, and 𝜎2
0 that

result in the same BER.
(c) Are the results in (a) and (b) consistent with each other?

1.G [A]Under the fixed energy constraint, that is, a1
2 + a2

2 = constant, find the
conditions on a1 and a2 that minimize the BER.

16.2 BER SIMULATION OF BINARY COMMUNICATIONS OVER
AN AWGN CHANNEL

2.A [WWW]The m-file below simulates ML detection of binary data communication
systems in an AWGN channel environment. In PART1 of the MATLAB code, the
decision variable z in equation (16.3) is generated; in PART2, the decision is made by
employing the ML detection rule expressed by equation (16.9). For generating the
decision variable in equation (16.3), we consider the simple case with a1 = 1, a2 =
−1, and, 𝜎2

0 = 1.5.

clear
%%%%% PART 1 %%%%%%%%%%%
a1=1; % = a1in (16.3)
a2=-1; % = a2 in (16.3)

vn=1.5; % = 𝜎2
0 of n0 in (16.3)

n0=randn*sqrt(vn); % = n0 in (16.3)

d = (rand > 1/2); % = d, transmitted binary data (‘1’ or ‘0’), i.e., bit

if d==1 z_nonoise = a1; end % z_nonoise implies z for the case when there is no
noise.
if d==0 z_nonoise = ? ; end

z=z_nonoise+n0 % = z in (16.3)

BER SIMULATION OF BINARY COMMUNICATIONS OVER AN AWGN CHANNEL 179

%%%%%%%%%%%%%%%%%%%%%%

%%%%% PART 2 %%%%%%%%%%%%%
if z> ? d_estimate=1; end % Implement ML rule in (16.9)
if z< ? d_estimate=?; end % Implement ML rule in (16.9)
decision_check=(d_estimate==?) %If the decision is correct, decision_check
will be 1, otherwise, it will be 0.
%%%%%%%%%%%%%%%%%%%%%%

2.A-1 Explain the following settings:

(a) Why should n0 be set to randn*sqrt(vn)?
(b) Why should d be set to (rand > 1/2)?

2.A-2 Complete the quantities marked by ‘?’ in the MATLAB code and then capture
the m-file. Make sure that these parameters are formulated in such a way that they
can be changed in relation to the settings of a1, a2, and 𝜎2

0 for simulating different
cases.

2.A-3 Execute the completed m-file at least three times. Check whether the bit
decision is made correctly each time.

2.A-4 [WWW]Modify the m-file as shown below. We repeat the steps for generating
data and noise and the ML detection in the m-file completed in 2.A-2 until the number
of incorrect bit decisions reaches Nid. The simulated BER is calculated as the ratio
of the number of erroneous bit decisions to the total number of bits simulated.

Complete all the quantities marked by ‘?’ and capture the completed m-file.

clear
Nid=1XXX; %XXX are the last three digits of your student ID number.
a1=1;
a2=-1;
vn=1.5;

errcnt=0;
bitcnt=0;
while errcnt <Nid

d= (rand > 1/2);
if d==1 z_nonoise=a1; end
if d==0 z_nonoise=a2; end

n0=randn*sqrt(vn);

z=z_nonoise+n0;

180 MAXIMUM LIKELIHOOD DETECTION FOR BINARY TRANSMISSION

if z> ? d_estimate=1; end
if z< ? d_estimate=?; end

if d_estimate∼=?
errcnt=errcnt+1;

end

bitcnt=bitcnt+1;
end

BER= ?/?;

2.A-5 Execute the m-file and capture the BER result.

2.B [WWW]In the m-file below, we consider the antipodal signaling, that is, a2 =
−a1 and use an outer loop to simulate the BER for each of the following cases: a1 =
0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5. This allows us to plot the simulated
BERs as a function of a. In generating the BER plot, use semilogy(), instead of plot(),
to display the y axis in log scale.

clear
Nid=1XXX;
vn=1.5;

a1_vector=[0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5];
for n=1:length(a1_vector)

a1=a1_vector(?);
a2=-a1;
errcnt=0;
bitcnt=0;
while errcnt <Nid
… % Copy the body inside the while loop of m-file in 2.A-4

end
BER(n)= ?/?;

end
figure
semilogy(a1_vector,?)
xlabel(’a_1’); ylabel(’BER’);
grid on

2.B-1 Complete all the quantities marked by ‘?’ and capture the completed m-file.

2.B-2 Execute the completed m-file and capture the BER graph. Save the figure in
.fig format for use in the problem in 2.C.

BER SIMULATION OF BINARY COMMUNICATIONS OVER AN AWGN CHANNEL 181

2.B-3 The BER graph captured in 2.B-2 should show that the BER decreases as a1
increases. Explain the reason.

2.C In the MATLAB command window as shown below, we calculate the theoret-
ical BER values using equation (16.11) for a1 = 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75,
2, 2.5, 3, 3.5, and overlay the theoretical BER curve on the simulated BER curve
obtained in 2.B-2.

(a) Execute the following and capture the figure.

>> a2_vector=-a1_vector;
>>BER_exact=0.5*erfc(((a1_vector-(a2_vector))./(2*sqrt(vn)))/sqrt(2));

%Calculate the BER vector at once by using vector operation.
>> hold on
>> semilogy(a1_vector,BER_exact, ‘r’);

(b) Compare theoretical and simulated BER curves. Do they match each other?

2.D. [A]Consider binary data d with nonequal prior probabilities described as

Pr (d = 1) = Pr(s1) = 1
10

, Pr (d = 0) = Pr(s2) = 9
10
. (16.12)

2.D-1 [T]A bit sequence satisfying the priors described in equation (16.12) can be
generated by replacing the line ‘d=(rand > 0.5);’ in the m-file of 2.B with ‘d=(rand >
0.9);’. Justify this approach.

2.D-2 Complete the revision of the line described in 2.D-1 and execute the m-file.
Capture the simulated BER graph.

2.D-3 [T]According to the ML decision rule in equation (16.9), the bit decision is
made by comparing z with the threshold (a1 + a2)/2. However, the likelihood function
in equation (16.7) and ML decision rule in equation (16.9) are derived for equally
probable binary data, that is, Pr(s1) = Pr(s2) = 1/2.

(a) For bits with unequal probabilities as expressed in equation (16.12), derive
again the likelihood function and the ML decision rule.

(b) Compared with the decision threshold for the case with equally probable bits,
that is, (a1 + a2)/2, is the decision threshold derived in (a) larger or smaller?

(c) Intuitively explain why for the case expressed in equation (16.12) the threshold
is not (a1 + a2)/2 anymore.

2.D-4 In the m-file of 2.D-2, modify the lines ‘if z > ? ….’ and ‘if z < ? …’ on the
basis of the new ML decision threshold derived in 2.D-3(a). Execute command hold
on in the command window and run the m-file.

Capture the simulated BER graph.

2.D-5 Compare the BERs with the new decision threshold and the previous BERs
on the basis of the decision threshold (a1+ a2)/2.

182 MAXIMUM LIKELIHOOD DETECTION FOR BINARY TRANSMISSION

16.3 [A]ML DETECTION IN NON-GAUSSIAN NOISE ENVIRONMENTS

In equation (16.3), the term n0 denotes the noise component of the decision variable
z and is assumed to be Gaussian. Consider an environment where the PDF of n0 is
not Gaussian but is expressed as

pn0
(x) =

{|x|, −1 ≤ x ≤ 1,
0, elsewhere.

(16.13)

Also a1 and a2 denote the signal component in the decision variable z when s1(t)
(bit ‘1’) and s2(t) (bit ‘0’) are transmitted, respectively. In this section we assume a1 =
0.75 and a2 = −0.75.

3.A Complete the following problems.

3.A-1 Sketch the PDF of n0 in equation (16.13). Draw the x axis by a thin but solid
line and the PDF curve by a solid and thick line from x = −3 to x = 3.

3.A-2 Show that the area under the PDF curve equals 1.

3.B For the case where the noise component n0 has the PDF as expressed in equation
(16.13), sketch the following two conditional PDFs of z:

3.B-1 fz|s1
(z): The conditional PDF of z when s1(t) is transmitted, that is, z = a1 +

n0.

3.B-2. fz|s2
(z): The conditional PDF of z when s2(t) is transmitted, that is, z = a2 +

n0.
Draw the x axis by a thin line and the PDF curve by a solid thick line from x = −3

to x = 3. Use the fact that if Y = X + C, where X is a random variable and C is a
constant, then the PDF of Y is a shifted version of the PDF of X.

3.C Recall from equation (16.8) that for equally probable binary data, the ML rule
is equivalent to making a decision on the basis of which one of fz|s1

(z) and fz|s2
(z) is

bigger. Based on the conditional PDF curves sketched in 3.B, complete the following
problems.

3.C-1 Find the region (range) of z that satisfies fz|s1
(z) > fz|s2

(z).

3.C-2 Find the region (range) of z that satisfies fz|s2
(z) > fz|s1

(z).

3.C-3 According to equation (16.8), if the decision variable z falls in the region
obtained in 3.C-1, how should the transmitted bit, ‘0’ or ‘1’, be estimated?

3.D The BER of ML decision in a Gaussian noise environment was derived in 1.D.
Using a similar approach, calculate the BER of the ML decision derived in 3.C for
the system considered in this subsection.

3.E.
(a) We can generate a random variable that has a PDF in equation (16.13). Execute

the following in the command window and capture the histogram.

REFERENCES 183

>>n0_samples=sign(rand(1,1e5)-0.5).*sqrt(rand(1,1e5));
>>hist(n0_samples,100); axis([-2 2 0 5e3])

(b) Is the histogram shape consistent with the sketch in 3.A-1?
(c) Revisit the m-file created in 2.A-4 and change the line ‘n0=randn*?;’ to

‘n0=sign(rand-0.5)*sqrt(rand)’ to generate the noise sample n0 that has a PDF
expressed in equation (16.13). In addition, in the second and third lines, set
‘a1=0.75’, ‘a2=-0.75’. Do not change other parts of the m-file.

Execute the modified m-file and show the BER result.

3.F In addition to the modifications made in 3.E(c), modify the lines ‘if z>? …’ and
‘if z <?…’ of the m-file properly according to the decision regions derived in 3.C-1
and 3.C-2.

3.F-1 Capture the two modified lines.

3.F-2 Execute the modified m-file and capture the BER result.

3.F-3 Is the simulated BER in 3.F-2 consistent with the theoretical BER derived in
3.D? Note that the limited number of bits simulated could result in a BER value that
is not very precise. If they are not consistent, your derivation or simulation (or both)
may be incorrect. In that case, try to correct one or both.

3.G Compare the simulated BERs in 3.E and 3.F-2. Explain the reasons that have
caused the difference.

REFERENCES

[1] A. Papoulis, Probability, Random Variables, and Stochastic Processes, New York:
McGraw-Hill, 1965.

[2] A. Leon-Garcia, Probability and Random Processes for Electrical Engineering, 2nd ed.,
North Reading, MA: Addison-Wesley, 1994.

[3] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Upper
Saddle River, NJ: Prentice Hall, 1993.

[4] H. V. Poor, An Introduction to Signal Detection and Estimation, New York: Springer, 1998.

[5] H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part 1, Hoboken, NJ:
Wiley-Interscience, 2001.

17
SIGNAL VECTOR SPACE AND
MAXIMUM LIKELIHOOD
DETECTION I

� Map an M-ary symbol into a point in the vector space.
� Implement maximum likelihood detection (MLD) by using the Euclidean dis-

tance in the vector space and difference energy in the waveform domain in the
additive white Gaussian noise (AWGN) environment.

17.1 [T]ORTHOGONAL SIGNAL SET

Consider the orthogonal signal set {x1(t), x2(t), x3(t),…} over the time interval [0 T]
expressed as

xn(t) = A cos(2𝜋nΔf t), where Δf =
1
T
. (17.1)

1.A What is the difference of the frequencies of the two signals, xn(t) and xn+1(t)?

1.B Calculate the correlation between xn(t) and xm(t) over the time interval t = [0 T]
and show that these two signals are orthogonal when n ≠ m.

1.C Calculate the energy En of xn(t).

1.D Let us define another signal set {𝜓1(t),𝜓2(t),𝜓3(t),…}, where 𝜓n(t) is defined
as xn(t)∕

√
En. Show that the signal set {𝜓1(t),𝜓2(t),𝜓3(t),…} is an orthonormal set

[1–4] over the time interval [0 T].

Problem-Based Learning in Communication Systems Using MATLAB and Simulink, First Edition.
Kwonhue Choi and Huaping Liu.
© 2016 The Institute of Electrical and Electronics Engineers, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/choi_problembasedlearning

184

http://www.wiley.com/go/choi_problembasedlearning

[T]MAXIMUM LIKELIHOOD DETECTION IN THE VECTOR SPACE 185

17.2 [T]MAXIMUM LIKELIHOOD DETECTION
IN THE VECTOR SPACE

2.A Consider a case with A = 1 and T = 1 in equation (17.1). Substitute A = 1 and
T = 1 into the expressions of 𝜓1(t), 𝜓2(t), and 𝜓3(t) in the answer of 1.D and write
them as a function of time t only:

𝜓1(t) = ?, 𝜓2(t) = ?, 𝜓3(t) = ?. (17.2)

2.B Consider an 8-ary transmission system using eight waveforms si(t), i = 1, 2,
3,…, 8. Each waveform represents 3 bits. The eight waveforms are constructed by
linearly combining the three orthonormal basis functions 𝜓1(t), 𝜓2(t), and 𝜓3(t).
Table 17.1 shows the mapping between the index i of si(t), and the three data bits
represented by si(t). The table also shows how each of each of the eight waveforms
is constructed from the linear combination of 𝜓1(t), 𝜓2(t), and 𝜓3(t).

For example, consider the following data bit stream to be transmitted:
0100011100110101001010101110101 . . ., for which s3(t), s2(t), s7(t) ? ? ? ? ? . . .

will be transmitted in order. Complete the quantities marked by ? ? ? ? ? . . . with a
proper signal sequence.

2.C. Suppose that one of the 8-ary signals {s1(t), s2(t),…, s8(t)} is transmitted. In
the receiver, it is received together with the noise component n(t). Let r(t) denote
the received signal. To make the analysis mathematically tractable, we use a single
function to represent the sum of signal plus noise expressed as

r(t) = si(t) + n(t) = cos(1.532𝜋t), 0 ≤ t ≤ 1. (17.3)

Although this simplification is unrealistic in a practical system because, in general,
a single sinusoidal signal does not approximate well the signal plus a random noise
term, it does not affect the description of the maximum likelihood detection (MLD)
procedure. In the following problems, we demodulate the three data bits from the
received signal r(t) given in equation (17.3) by using MLD.

TABLE 17.1 Construction of si(t) From 𝝍1(t), 𝝍2(t), and 𝝍3(t) and the Three Bits Each
Waveform Represents.

Signal index i Three data bits Construction of si(t)

1 000 s1(t) = −2𝜓1(t) − 𝜓2(t) − 5𝜓3(t)
2 001 s2(t) = 𝜓1(t) − 2𝜓2(t) − 3𝜓3(t)
3 010 s3(t) = 0.5𝜓1(t) + 4𝜓2(t) + 2𝜓3(t)
4 011 s4(t) = 3𝜓1(t) − 𝜓2(t) − 𝜓3(t)
5 100 s5(t) = −𝜓1(t) − 4𝜓2(t) + 3𝜓3(t)
6 101 s6(t) = 𝜓1(t) + 3𝜓2(t) − 0.5𝜓3(t)
7 110 s7(t) = −𝜓1(t) − 6𝜓2(t) + 3𝜓3(t)
8 111 s8(t) = −2𝜓1(t) − 3𝜓2(t) + 𝜓3(t)

186 SIGNAL VECTOR SPACE AND MAXIMUM LIKELIHOOD DETECTION I

r(t)

1(t)ψ

N(t)ψ …

= Z
Z Decision

circuits
(ML detector)

m̂

Z1

ZN

Z1

ZN

…

…

0

T

∫

0

T

∫

FIGURE 17.1 Block diagram of the two-stage MLD in a vector space.

2.C-1 Express each element of the 8-ary signal set {s1(t), s2(t),… , s8(t)} as a corre-
sponding point in the 3-D vector space where 𝜓1(t), 𝜓2(t), and 𝜓3(t) are orthonormal
vectors, representing the x, y, and z axes, respectively. For example, in Table 17.1,
s1(t) is mapped as a point (−2,−1,−5) in this 3-D vector space. Following the conven-
tion, we express this mapping as s1(t) ⇒ s1 = (−2,−1,−5). Complete the quantities
marked by ‘?’ in equation (17.4) below:

s2(t) ⇒ s2 = (?, ?, ?), s3 ⇒ s3 = (?, ?, ?),… , s8 ⇒ s8 = (?, ?, ?). (17.4)

2.C-2 Fig. 17.1 shows the block diagram of the two-stage MLD for M-ary signaling
in the vector space. The block enclosed by the left-side rectangular box corresponds
to the step to convert the received signal r(t) into a vector Z (the coordinates of a
point) in the vector space as

r(t) ⇒ Z = (Z1, Z2,… , ZN). (17.5)

Note that we have chosen symbol Z (rather than r) to represent the vector corre-
sponding to r(t), since by convention symbol Z is often used to represent the decision
variable.

(a) From Fig. 17.1, complete the expressions on the right-hand side of each ‘=’
sign in equation (17.6) that computes Z1, Z2,…, ZN , the elements of the vector
Z, from r(t), 𝜓1(t), 𝜓2(t), and 𝜓3(t).

Z1 = ∫ ?dt, Z2 = ?, Z3 = ?,…, ZN = ? (17.6)

(b) The integration interval T in Fig. 17.1 should be set equal to the duration of
the considered M-ary signal. For the signal given in equation (17.3), T = 1. The
dimension of the vector space is N = 3, since the 8-ary signals considered are
generated from three orthonormal basis vectors (see Table 17.1). Substitute
r(t) expressed in equation (17.3), and 𝜓1(t), 𝜓2(t), and 𝜓3(t) expressed in

MATLAB CODING FOR MLD IN THE VECTOR SPACE 187

equation (17.2) into the expressions completed in (a) above and calculate the
values of Z1, Z2, and Z3. Record the calculated values.

(c) In the noiseless case, r(t) equals si(t), which is the ith signal of the 8-ary signal
set in Table 17.1. Repeat the calculation in (b) for this case and show that Z is
equal to si obtained in 2.C-1.

2.C-3 Calculate the Euclidean distances between r(t) and each of si(t) (i = 1, 2,
3,…, 8) in the vector space.

2.C-4 Answer the following questions:

(a) Which of the eight signals si(t) (=1, 2, 3,…, 8) is closest to r(t) in terms of the
Euclidean distance?

(b) From the answer to question (a), estimate the three data bits transmitted, that
is, the MLD result for the three data bits transmitted.

2.C-5 Repeat the MLD steps in 2.C-2 to 2.C-4 for the received signal r(t) below:

r(t) = cos(4.53𝜋t), 0 ≤ t ≤ 1. (17.7)

17.3 MATLAB CODING FOR MLD IN THE VECTOR SPACE

3.A [WWW]The m-file below creates a vector p2t, which is the sampled version of
𝜓2(t) without using the expression derived in equation (17.2). Note that the term
“vector” in the context of the sampled version of a waveform differs from the term
“vector” in the context of converting (mapping) a waveform into a “vector” (point) in a
vector space. In the m-file, the energy of x2(t) is calculated via numerical integration,
rather than the derivation in 1.C. Refer to Section 2.1 of Chapter 2 for numerical
integration.

For each of the lines in bold, explain what the variable on the left-hand side
represents and justify how the right-hand side expression is properly formulated
accordingly.

Ts=1;
tstep=Ts/10000;
tvector=0:tstep:Ts;

Delta_f=1/Ts;
f2=2*Delta_f;

x2t=cos(2*pi*f2*tvector);
E2=sum(x2t.ˆ2)*tstep; % numerical integration (refer to Section 2.1 of Chapter 2)
p2t=x2t/sqrt(E2); %the sampled version of 𝜓2(t)

188 SIGNAL VECTOR SPACE AND MAXIMUM LIKELIHOOD DETECTION I

3.B [WWW]The m-file below implements the MLD steps in 2.C-1 to 2.C-4. The
vectors rt, p1t, p2t, and p3t are the sampled versions of the received signal r(t),
the orthonormal basis functions 𝜓1(t), 𝜓2(t), and 𝜓3(t), respectively. Again, all the
required integration processes such as calculating the signal energy or mapping the
received signal into a point in the vector space (see equation (17.6)) are implemented
using numerical integration.

clear
rand(1XXX);
% XXX=the last three digits of your student ID number. This is irrelevant to the main
goal of m-file, but be sure to include this.
Ts=1;
tstep=Ts/10000;
tvector=0:tstep:Ts;

Delta_f=1/Ts;
f2=2*Delta_f;

x2t=cos(2*pi*f2*tvector);
E2=sum(x2t.̂ 2)*tstep; % Numerical integration. Refer to Section 1 of Chapter 2 for
numerical integration.
p2t=x2t/sqrt(E2); %the sampled vector of 𝜓2(t)

% Add the part to generate p1t (= the sampled version of 𝜓1(t))
x1t=?;.
E1=?;
p1t=?;
% Add the part to generate p3t (= the sampled version of 𝜓3(t))
x3t=?;.
E3=?;
P3t=?;

rt=cos(?); % the equation (17.3) or (17.7)

% Create the vectors (the coordinates in the vector space) for each of 8-ary signals in the
equation (17.4).
s1t_in_vector_space=[?,?,?]; %=s1

s2t_in_vector_space=[?,?,?];
…
s8t_in_vector_space=[?,?,?];

% Implement the expressions in the equation (17.6) by the numerical integration method.
Z1=sum(????)*tstep;
Z2=???;

MLD IN THE WAVEFORM DOMAIN 189

Z3=???;
rt_in_vector_space=[?,?,?]; % = Z in the equation (17.5)

% Implement the calculation performed in 2.C-3.

ED_rt_s1t=sum(abs(rt_in_vector_space - ?).̂ 2); % Euclidean distance ‘square’
between r(t) and s1(t) in the vector space

% Add the part to generate ED_rt_s2t ∼ ED_rt_s7t below.
ED_rt_s2t=sum(abs(?-?).̂ 2);
…
…
ED_rt_s8t=sum(abs(?-?).̂ 2);

% Implement the calculation carried out in 2.C-4.
[T1 T2]=min([ED_rt_s1t, ?,?,…, ED_rt_s8t]);
T2

3.B-1 Refer to the explanations provided in the comments and complete the
unknown quantities marked by ‘?’. Capture the completed m-file.

3.B-2 Run the completed m-file for the received signal r(t) in equation (17.3).

(a) Record the value of T2.
(b) Record the MLD result, that is, the three estimated data bits according to the

result in (a).
(c) Are the execution results consistent with the results in 2.C-4?
(d) Repeat (a), (b), and (c) for the received signal r(t) given in equation (17.7).

3.B-3 Note that in the m-file, we compare the square of the Euclidean distance,
instead of the Euclidean distance itself.

(a) Explain why it makes no difference in terms of the decision result of MLD.
(b) What are the advantages of using the Euclidean distance square, rather than

the Euclidean distance itself in terms of implementation.

17.4 MLD IN THE WAVEFORM DOMAIN

The energy of the difference between r(t) and si(t) can be calculated in the waveform
domain as

Er(t)−si(t)
=

T

∫
0

|r(t) − si(t)|2dt. (17.8)

190 SIGNAL VECTOR SPACE AND MAXIMUM LIKELIHOOD DETECTION I

In this section we write an m-file to compute the energy of the difference of two
signals given in equation (17.8). Based on this quantity, we perform MLD for the two
examples of r(t) given in equations (17.3) and (17.7).

4.A [WWW]First, create vectors s1t, s2t, s3t, …, s8t, which are the sampled versions
of the eight basis waveforms si(t) (i = 1, 2, 3,…, 8) in Table 17.1 as shown at the
bottom of the m-file below. Refer to the explanations provided as comments and
complete the unknown quantities marked by ‘?’. Capture the completed m-file.

clear
Ts=1;
tstep=Ts/10000;
tvector=0:tstep:Ts;

Delta_f=1/Ts;
f2=2*Delta_f;

x2t=cos(2*pi*f2*tvector);
E2=sum((x2t.̂ 2)*tstep);
p2t=x2t/sqrt(E2);

% Add the part to generate p1t (= the sampled vector of 𝜓1(t))
x1t=?;.
E1=?;
p1t=?;
% Add the part to generate p3t (= the sampled vector of 𝜓1(t))
x3t=?;.
E3=?;
P3t=?;
% Add the part to generate the vectors s1t (= the sampled vector of s1(t)), s2t,…, s8t.
% For example, ‘s1t’ is generated as follows:
s1t=?*p1t+?*p2t+?*p3t; %Refer to Table 17.1.
s2t=?
…
…
s8t=?

4.B [WWW]Add the following code fragment to the end of the m-file above to
calculate the energy expressed in equation (17.8) using numerical integration. Capture
the added part.

% Add the followings to the m-file in 4.A.
rt=cos(?);% equation (17.3) or equation (17.7)

REFERENCES 191

E_rt_s1t= sum(abs(???).̂ 2)*tstep; % Implement Er(t)−si(t)
=

T∫
0
|r(t) − si(t)|2dt by the

numerical integration.
…
…
…
E_rt_s8t= sum(????)*?tstep;

4.C To the m-file in 4.B, further add the part to find si(t) that minimize Er(t)−si(t)
using the command ‘[T1 T2]=min()’ as done in the m-file in 3.B. Capture the added
part.

4.D Run the completed m-file separately for the two cases of the received signal
r(t) given in equations (17.3) and (17.7).

(a) Determine si(t) that minimize Er(t)−si(t)
for the two cases.

(b) Are the results consistent with the results using the minimum Euclidean dis-
tance method in vector space, that is, the results in 3.B-2(a) and 3.B-2(d)?

4.E Does the m-file completed in 3.B require more computation than the m-file in
4.D? Why?

REFERENCES

[1] D. C. Lay, Linear Algebra and Its Applications, 3rd ed., Boston: Addison-Wesley, 2006.

[2] G. Strang, Linear Algebra and Its Applications, 4th ed., Belmont, CA: Brooks Cole, 2006.

[3] S. Axler, Linear Algebra Done Right, 2nd ed., New York: Springer, 2002.

[4] W. Rudin, Real and Complex Analysis, New York: McGraw-Hill, 1987.

18
SIGNAL VECTOR SPACE AND
MAXIMUM LIKELIHOOD
DETECTION II

� Perform maximum likelihood detection (MLD) on M-ary signal sequence
received with additive white Gaussian noise (AWGN) and detect the data bit
sequence in the M-ary signal sequence.

� Generate a random data sequence received with AWGN and detect the data bits
by MLD .

18.1 ANALYZING HOW THE RECEIVED SIGNAL SAMPLES
ARE GENERATED

Consider a 4-ary transmission system where each signal si(t) represents a bit pair as
shown in Table 18.1.

1.A [T]For example, the bit sequence 0110110100011101001110 is mapped into
the signal sequence s2(t), s3(t), s4(t), s2(t), s1(t), s2(t), s4(t) ?, ?, ?, ? for transmission.
Complete the unknown quantities marked by ‘?’ with the 4-ary symbols shown in
Table 18.1.

1.B [WWW]From the companion website, download st_and_rt.mat to the work direc-
tory and execute load st_and_rt.mat and then whos in the command window. Capture
the results showing the variables saved in the mat file.

Problem-Based Learning in Communication Systems Using MATLAB and Simulink, First Edition.
Kwonhue Choi and Huaping Liu.
© 2016 The Institute of Electrical and Electronics Engineers, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/choi_problembasedlearning

192

http://www.wiley.com/go/choi_problembasedlearning

ANALYZING HOW THE RECEIVED SIGNAL SAMPLES ARE GENERATED 193

TABLE 18.1 Mapping Bit Pair and 4-Ary Signals.

Data bit pair Transmitted signal si(t)

00 s1(t)
01 s2(t)
10 s3(t)
11 s4(t)

1.C [WWW]All the variables saved in st_and_rt.mat were created by executing the
m-file rt_gen.m shown below. The vectors s1t, s2t, s3t, and s4t are the sampled
versions of the 4-ary signals s1(t), s2(t), s3(t), and s4(t), respectively. The vector
rt is the sampled version of the received signal r(t) for the case where 100 data
bits are transmitted according to the signal mapping in Table 18.1 over an additive
white Gaussian noise channel. The details of rt_gen.m shown below are for your
reference only. Do not run rt_gen.m because running it will update the variables in
st_and_rt.mat.

clear
T=1; %M(4)-ary signal duration
L=32; % Number of samples per 4-ary symbol (length of the sampled versions of
4-ary symbols below)
tstep=T/L;
tvector=tstep:tstep:T;

%%%%%%%%%%%%%%% 4-ary symbol set generation %%%%%%%%%%%%%
p1t=sqrt(2)*cos(3*pi*tvector); % z-axis orthonormal basis for 2-D vector space
p2t=sqrt(2)*sin(3*pi*tvector); % y-axis orthonormal basis
a= ? ; b= ?; c= ?; d= ?; e= ?; f= ?; g= ?; h= ? ; %Intentionally not shown for the problem.
s1t=a*p1t + b*p2t;
s2t=c*p1t + d*p2t;
s3t=e*p1t + f*p2t;
s4t=g*p1t + h*p2t;
%%

%%%%%% data bit stream generation %%%%%%%%%%%%%%%%%%%%%%
databits=(rand(1,100)>0.5); % databits = data bit stream
%%

%%%%%%%%%%%%% Transmitter signal x(t) generation %%%%%%%%%%%%
xt=[] %Initialize the transmit signal vector
for k=1:50 %% 100 bits = ? 4-ary symbols

%%% 2 bits => 4-ary symbol Mapping %%%%%%%%%%%%%%%%%
if databits([2*k-1, 2*k]) == [0 0]

st=s1t;

194 SIGNAL VECTOR SPACE AND MAXIMUM LIKELIHOOD DETECTION II

elseif databits([2*k-1, 2*k]) == [0 1]
st=s2t;

elseif databits([2*k-1, 2*k]) == [1 0]
st=s3t;

else
st=s4t;

end
%%%

xt=[xt st]; %Concatenate ‘st’ to ‘xt’. Consequently, ‘xt’ becomes a transmit signal
vector for 100 bit data stream.
end

%%

xt_len=L*50; % or length(xt), i.e., vector length of ‘xt’

%%%%%%%%% Received signal after AWGN channel %%%%%%%%%%%%%%
noise_sample=6*randn(1,xt_len); %AWGN
rt=xt+noise_sample; %noise addition
%%

save st_and_rt.mat L T tstep tvector p1t p2t s1t s2t s3t s4t rt
save data_bits.mat databits

Examine rt_gen.m above and then complete the following problems.

1.C-1 Complete all unknown quantities marked by ‘?’ in the following description.
(a) The vectors s1t, s2t, s3t, and s4t, the sampled versions of the 4-ary symbols,
are created from a linear combination of the two vectors ‘?’ and ‘?’, which are the
sampled versions of the two orthogonal basis functions 𝜓1(t) and 𝜓2(t) for a 2-D
vector space.

(b) In the two code lines that generate two orthogonal bases, tvector contains
the sampling time instants. The vectors s1t, s2t, s3t, s4t as well as p1t and p2t
have the same sample interval and signal duration in seconds as those of tvector.
Therefore the duration of the 4-ary symbols is ‘?’ seconds, and the sampling interval
of their sampled versions is determined by the variable ‘?’, which has a value of ‘?’
seconds.

1.C-2. The vector data_bits is the transmitted bit stream with a length of ‘?’ bits. It
is converted into ‘?’ (how many) 4-ary symbols.

1.C-3 As commented in the m-file above, p1t and p2t are the sampled versions of
the two orthogonal basis functions 𝜓1(t) and 𝜓2(t), from which s1t, s2t, s3t, and s4t
are generated by linear combination.

OBSERVING THE WAVEFORMS OF 4-ARY SYMBOLS AND THE RECEIVED SIGNAL 195

(a) Execute the following lines and capture the results.

>>load st_and_rt.mat
>>sum(p1t.̂ 2)*tstep
>>sum(p2t.̂ 2)*tstep
>>sum(p1t.*p2t)*tstep

(b) The last three commands in (a) perform numerical integration (see Section 2.1
of Chapter 2). For example, the first numerical integration in (a) corresponds
to ∫ 1

0 (𝜓1(t))2dt. Write the mathematical expressions that correspond to the
other two numerical integrations.

(c) Based on the execution results in (a), explain why p2t and p1t are two orthonor-
mal basis functions. Ignore the numerical integration error.

1.C-4 The vector xt is the sampled version of the 4-ary symbol stream to be trans-
mitted. Note that xt is formed by concatenating the sampled vectors s1t, s2t, s3t, and
s4t one by one, which are selected according to every two-tuple of data bits and the
mapping rules in Table 18.1. In the final step of the m-file, the sampled version of the
received signal rt is generated from xt. Explain what this final step does.

1.C-5 The first L samples of rt, that is, rt(1:L), are the sampled received signal for
the first transmitted 4-ary symbol; the next L samples, that is, ‘rt((L+1):(L+L))’, are the
sampled received signal for the second transmitted 4-ary symbol, and so on. Properly
set the sample indexes in r(?:?) to obtain the sampled received signal for the nth
transmitted 4-ary symbol.

18.2 OBSERVING THE WAVEFORMS OF 4-ARY SYMBOLS AND THE
RECEIVED SIGNAL

2.A We can plot s1(t), using the variables saved in st_and_rt.mat through the
following three lines of code. Plot the graphs of s1(t), s2(t), s3(t), and s4(t) and
capture them.

>>load st_and_rt.mat
>>plot(tvector, s1t);
>>grid on;

2.B The command below plots the part of the received signal that contains the first
six 4-ary symbols (12 data bits).

>>plot(tstep:tstep:(6*T), rt(1 :(6*L))); xlabel(‘t [sec]’)

196 SIGNAL VECTOR SPACE AND MAXIMUM LIKELIHOOD DETECTION II

(a) Execute the command above and capture the plot.
(b) Compare the received signal waveform over the first 4-ary symbol period with

each of 4-ary waveforms in 2.A and determine which one of {s1(t), s2(t), s3(t),
s4(t)} is transmitted. Repeat this process for the last five 4-ary symbols.

(c) If a decision cannot be made using visual inspection, explain why.

18.3 MAXIMUM LIKELIHOOD DETECTION IN THE VECTOR SPACE

The transmitted bit stream data_bits is not saved in st_and_rt.mat. In this section we
estimate data_bits from the received signal sample vector rt using the other sampled
vectors, p1t, p2t ,s1t, s2t, s3t, s4t, saved in st_and_rt.mat. To this end, go through
the following steps.

3.A If M-ary signals s1(t),…, sM(t) are expressed as a linear combination of N
orthonormal basis functions 𝜓n(t), n = 1,…, N, that is, as

si(t) =
N∑

k=1

aik𝜓k(t), i = 1,…, M (generally N ≤ M), (18.1)

then each of the M-ary signals can be mapped into a point in the N-dimensional vector
space, which is spanned by the N orthonormal basis functions 𝜓n(t), n = 1,…, N as

si (t) ⇒ si =
(
ai1, ai2,…, aiN

)
. (18.2)

The value of aij can be calculated from si(t) and the orthogonal basis functions
𝜓n (t) , n = 1,…, N, as

aij = ∫ t2
t1

si(t)𝜓
∗
j (t)dt

= ∫ t2
t1

si(t)𝜓j(t)dt for real-valued 𝜓j(t),
(18.3)

where t1 and t2 are the boundaries of the symbol period, which are common to all of
s1(t),…, sM(t) and 𝜓n(t), n = 1,…, N.

3.A-1 [T]Substitute equation (18.1) into the right-hand side of equation (18.3) and
show that it equals aij.

3.A-2 Next, using equation (18.3), we convert the 4-ary (M = 4) signals in rt_gen.m
into some of the points in the vector space expressed in equation (18.2).

(a) Determine the value of N from the file rt_gen.m.
(b) The integral in equation (18.3) can be calculated by using numerical inte-

gration. The m-file below calculates a11 and a12 in equation (18.3), which
correspond to the (x, y) coordinates of a point s1 in the 2-D vector space

MAXIMUM LIKELIHOOD DETECTION IN THE VECTOR SPACE 197

for the signal s1t. Complete the m-file by properly filling in the quantities
marked by ‘?’. Revisit Section 18.1 to review the variables that correspond to
the sampled versions of s1(t), …, s4(t) and 𝜓n (t), n =1, 2(=N).

Capture the completed m-file and the execution results.

clear
load st_and_rt.mat
a11=sum(s1t.*p1t)*tstep;%numerical integration a11= ∫ 1

0 s1 (t)𝜓1 (t) dt
a12=sum(????)*tstep; %numerical integration
s1=[a11,a12]

3.A-3 Expand the m-file in 3.A-2 by adding the code lines that calculate the vec-
tor space coordinates of the remaining 4-ary signals s2t, s3t, and s4t. Capture the
completed m-file and the execution results.

3.B [WWW]The following steps complete the maximum likelihood detection (MLD)
process. Go through the following steps and complete the code fragment below. Then
append the completed code fragment to the end of the m-file in 3.A-3.

� Step 1. Set n = 1. This variable is used as the time index of the 4-ary symbol
stream in rt (the sampled version of r(t)).

� Step 2. Recall that the variable L is the number of samples per 4-ary symbol
in rt. Therefore, if rt_nth denotes the sampled vector for the nth received 4-ary
symbol in rt, then it is extracted from rt as ‘rt_nth = rt(((n-1)*L+1) : n*L);’.

� Step 3. As done in 3.A-2 and 3.A-3, convert rt_nth into a point in the vector space
denoted by z, whose (x,y) coordinates are denoted by z1 and z2, respectively.

� Step 4. Calculate the Euclidean distances between z and all the points of the
4-ary symbols in the vector space. The 4-ary symbol that is closest to z will be
chosen as the 4-ary symbol transmitted.

� Step 5. De-map the detected 4-ary symbol into 2 bits using Table 18.1.
� Step 6. Increase the value of n by 1 through ‘n=n+1’ to proceed to detect the

next received 4-ary symbol. Return to Step 2 and complete the process again.

% Add the following fragment to the m-file in 3.A-3
data_bits_hat=[]; % Initialize a vector to concatenate the demodulated bit steam.
for n=1:50

rt_nth= rt(((n-1)*L+1) : n*L); % Step 2
z1= sum(rt_nth.*p1t)*tstep; z2= ???; % Step 3
z=[z1,z2]; % Step 3
ED_z_s1=sum(abs(z-s1).̂ 2); %Step 4: Euclidean Distance between z and s1.
ED_z_s2=???;
ED_z_s3=???;
ED_z_s4=???;

198 SIGNAL VECTOR SPACE AND MAXIMUM LIKELIHOOD DETECTION II

[T1 T2]=min([ED_z_s1, ED_z_s2, ED_z_s3,ED_z_s4]); %Step 4: Find the clos-
est point to z.

if T2==1
twobits_hat= [0 0] ; % Step 5: Set twobits_hat by the detected two bits accord-

ing to Table 18.1.
elseif T2==2

??? ;
elseif T2==3

??? ;
else

??? ;
end

data_bits_hat=[data_bits_hat twobits_hat];%Concatenate the detected bits until all of
4-ary symbols are detected.

end

3.B-1 Capture the completed m-file. Be sure to save the completed m-file because
it will be used in the next chapter.

3.B-2 Remove all the existing comments and add a comment to explain what each
line does. Especially for the lines with ‘=’, explain what the variable on the left-hand
side represents and justify how the right-hand side expression is properly formulated
accordingly.

3.C Run the m-file above. Then execute data_bits_hat(1:12) in the command win-
dow to display the first 12 demodulated bits. Capture the results.

3.D [WWW]Download data_bits.mat from the companion website to the work folder
and execute load data_bits.mat in the command window. The variable databits saved
in data_bits.mat is the actual transmitted data bits that were used to create rt in file
rt_gen.m.

(a) Execute databits(1:12) and capture the results.
(b) Compare the transmitted bits with the detection results in 3.C. Are

there any bit errors? To check the number of bit errors, execute
sum(data_bits_hat∼=databits) in the command window.

3.E [WWW]As in Section 17.4 of Chapter 17, the m-file below performs MLD in
the waveform domain; that is, it demodulates the transmitted data bit stream by
calculating the energy of the difference between rt_nth and each of s1t, s2t, s3t, and
s4t. Complete this m-file and then capture it. Be sure to save the completed m-file
because it will be needed in the next chapter.

clear
load st_and_rt.mat
data_bits_hat=[];

MAXIMUM LIKELIHOOD DETECTION IN THE VECTOR SPACE 199

for n=1:50
rt_nth= rt(((n-1)*L+1) : n*L);

E_rt_s1t=sum(abs(?-?).̂ 2)*?; %Numerical integration to calculate the energy of
the difference between rt_nth and s1t.
…
…
E_rt_s4t=??;

[T1 T2]=min([E_rt_s1t,?,?,?]);
if T2==1

twobits_hat=? ;
elseif ??
…
elseif ??
…
else
…
end

data_bits_hat=[data_bits_hat twobits_hat];

end

3.F Execute the m-file above and then execute data_bits_hat(1:12) in the command
window to display the first 12 demodulated bits. (a) Capture the results. (b) Are the
transmitted bits correctly demodulated?

19
CORRELATOR-BASED MAXIMUM
LIKELIHOOD DETECTION

� Investigate the statistical properties of additive white Gaussian noise (AWGN)
in the vector space.

� Implement a correlation-based maximum likelihood detector.

19.1 STATISTICAL CHARACTERISTICS OF ADDITIVE WHITE
GAUSSIAN NOISE IN THE VECTOR SPACE

1.A We check the statistical characteristics of (AWGN) in the vector space through
simulation.

1.A-1 [WWW]Recall that the file st_and_rt.mat used in Chapter 18 contains the
sampled versions of the 4-ary signals s1t, s2t, s3t, and s4t, the sampled versions
of the two orthogonal basis functions p1t and p2t, and the sampled version of the
received signal rt.

In the m-file below, we generate rt for the case where only the AWGN is received
and replace the original received signal rt saved in st_and_rt.mat. In this case the
sample length of rt is set to 100,000 times L, which is the sample length of 4-ary
symbols.

Problem-Based Learning in Communication Systems Using MATLAB and Simulink, First Edition.
Kwonhue Choi and Huaping Liu.
© 2016 The Institute of Electrical and Electronics Engineers, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/choi_problembasedlearning

200

http://www.wiley.com/go/choi_problembasedlearning

STATISTICAL CHARACTERISTICS OF ADDITIVE WHITE GAUSSIAN NOISE 201

Create the m-file below.

clear
load st_and_rt.mat
noise_sample= 2*randn(1,L*100000); %AWGN
rt=noise_sample; % AWGN only received signal

1.A-2 [WWW]As done in the Section 3.B of Chapter 18, the code fragment below
converts 70,000 received symbols in rt into their corresponding points in the vector
space. The coordinates of the points in the vector space are calculated. Note that rt
contains noise only.

It is informative to see whether or not z1 and z2 are correlated. As one of empirical
ways to check the correlation between z1 and z2, we collect z2 when z1 falls in two
disjoint regions R1 and R2 and then check whether or not the conditional probability
density function (PDF) of z2 on the two regions of z1 are the same. In the m-file, for
illustration, R1 and R2 are set to [0 0.1] and [0.2 0.3], respectively. If z1∈R1, then
z2 is appended to the vector z2when_z1inR1 as its new element; if z2∈R2, then z2 is
appended to z2when_z1inR2 as its new element.

(a) Complete the two quantities marked by ‘?’ in the code fragment below.
(b) Append this code fragment to the m-file completed in 1.A-1 and capture the

completed m-file.

z1s=[]; z2s=[]; z2when_z1inR1=[]; z2when_z1inR2=[];
for n=1:70000

rt_nth= rt(((n-1)*L+1): n*L); %Received signal sample vector during the n-th 4-ary
symbol duration.

z1=sum(rt_nth.*?)*tstep; % Refer to (18.3) for converting a waveform into a point in
a vector space.

z2=sum(rt_nth.*?)*tstep; % Refer to (18.3) for converting a waveform into a point in
a vector space.

if 0<=z1 & z1<=0.1
z2when_z1inR1=[z2when_z1inR1 z2]; %Collect z2 samples only whey z1 falls in

the region R1.
end

if 0.2<=z1 & z1<=0.3
z2when_z1inR2=[z2when_z1inR2 z2];

end

z1s=[z1s z1]; z2s=[z2s z2];
end

202 CORRELATOR-BASED MAXIMUM LIKELIHOOD DETECTION

1.B Execute the m-file completed in 1.A-2 and then execute the following in the
command window to plot the empirical distributions of z1 and z2.

>>figure
>>hist(z1s,100)
>>figure
>>hist(z2s,100)

1.B-1 Capture the resulting plots.

1.B-2 Do the histograms look like Gaussian distributions?

1.B-3 [T,A]Note that the elements of vector rt_nth are realizations of i.i.d. Gaussian
random variables with a mean 0 and variance 4. Also, from the code lines that generate
z1 and z2 in the m-file, z1 and z2 are the weighted sums of the elements of rt_nth with
the weighting vectors p1t and p2t, respectively. From these observations, explain why
z1 and z2 should follow the Gaussian distribution.

1.C Execute the following in the command window to calculate the mean and
variance of z1s and z2s.

>>mean(z1s)
>>var(z1s)
>>mean(z2s)
>>var(z2s)

1.C-1 Capture the execution results.

1.C-2 Are the means and variances of z1 and z2 approximately equal? Ignore small
errors due to a finite number of samples simulated.

1.C-3 [T,A]From the note made in 1.B-3 and using equations (15.5) and (15.6), we
can derive the theoretical mean and variance of z1 and z2.

(a) Prove that the theoretical means of z1 and z2 are both zero.
(b) From equation (15.6), explain why the theoretical variances of z1 and z2 can

be calculated by the following commands.

>>z1variance= sum((p1t*tstep).̂ 2)*4
>>z2variance= sum((p2t*tstep).̂ 2)*4

(c) Execute the commands above and capture the results. Are the simulation
results in 1.C-1 approximately equal to the theoretical results?

(d) Using the fact that z1 and z2 are Gaussian and their theoretical mean and
variance are known, write the exact PDFs of z1 and z2.

STATISTICAL CHARACTERISTICS OF ADDITIVE WHITE GAUSSIAN NOISE 203

1.D Execute the following in order to plot the histograms of the elements in
z2when_z1inR1 and z2when_z1inR2 and calculate their variances.

>>figure
>>hist(z2when_z1inR1,30)
>>figure
>>hist(z2when_z1inR2,30)
>>var(z2when_z1inR1)
>>var(z2when_z1inR2)

1.D-1 Capture the plots and the calculated variances.

1.D-2 From the results in 1.D-1, determine the distributions of the elements of
z2when_z1inR1 and z2when_z1inR2. Are they Gaussian and are their mean and
variance the same as those of the elements of z2s?

Note that compared with the histograms obtained in 1.B-1, here the number of bins
along the x axis is decreased to 30 because the number of samples of z2when_z1inR1
and z2when_z1inR2 is much smaller than that of z2s.

1.D-3 Set different regions for z1, that is, R1 and R2, for example, R1 = [−2 0],
R2 = [3 6]. Then execute the m-file completed in 1.A-2 for each setting. After each
simulation, plot the histograms of the elements of z2when_z1inR1 and z2when_z1inR2
and check their variances as done in 1.D-1. Note that if R1 or R2 is set further away
from 0, then the number of samples of z2 that fall into that region becomes smaller.
Thus the histogram will become less accurate.

(a) Judged from the simulation results, are the distributions of the elements of
z2when_z1inR1 and z2when_z1inR2 identical regardless of z1’s region?

(b) If the answer in (a) is yes, then it means that z1 and z2 are independent. Explain
why this result can verify the independence of z1 and z2.

1.E [T,A]In this subsection, we mathematically investigate the statistical properties
of z1 and z2. From equation (18.3), the coordinates denoted by (z1, z2) of the received
noise in the vector space can be calculated as

z1 = ∫
T

0
n(t)𝜓1(t)dt for real-valued 𝜓1(t),

z2 = ∫
T

0
n(t)𝜓2(t)dt for real-valued 𝜓2(t),

(19.1)

204 CORRELATOR-BASED MAXIMUM LIKELIHOOD DETECTION

where n(t) is the AWGN, T is the duration of the 4-ary signal, which is set to be 1 in
the m-file, and the two orthogonal basis functions 𝜓1(t) and 𝜓2(t) considered in the
m-file are given as

𝜓1(t) =
√

2 cos(3𝜋t), 0 ≤ t ≤ 1,

𝜓2(t) =
√

2 sin(3𝜋t), 0 ≤ t ≤ 1.
(19.2)

Note that the vector noise_sample in the m-file is the sampled version of n(t) in
equation (19.1). Also, from the answer to 1.A-2(a), p1t and p2t in the m-file are the
sampled versions of 𝜓1(t) and 𝜓2(t) in equation (19.2), respectively. Consequently z1
and z2 in the m-file are the numerically represented versions of z1 and z2 in equation
(19.1).

1.E-1 Explain why z1 and z2 in equation (19.1) follow the Gaussian distribution.

1.E-2 The autocorrelation of AWGN n(t) is given as N0∕2𝛿(𝜏), where N0∕2 is the
two-sided power spectral density of n(t) [1]. Show that the mean and variance of both
z1 and z2 are 0 and N0∕2, respectively.

1.E-3 Show that the correlation between z1 and z2, E[z1z2] is zero.

1.E-4 Can we say that z1 and z2 are independent Gaussian random variables?

1.E-5 Revise 𝜓2(t) as 𝜓2(t) =
√

2 sin(3𝜋t + 𝜋∕3) (0 ≤ t ≤ 1), which is not orthog-
onal to 𝜓1(t). Show that the correlation between z1 and z2, E[z1z2], is 0.5 now.

1.F In 1.C-3(c), we showed that if the received signal contains noise only, that is,
‘rt = noise_sample’, then, the (x,y) coordinates in vector space, that is, z1 and z2, are
zero-mean Gaussian random variables with a variance 0.125. In 3.A-2 of Chapter
18, we converted the 4-ary signals into points in the vector space. For example, the
sample vector of the first 4-ary signal, s1t, is mapped into (a11, a12).

1.F-1 Consider the case that s1t is received with noise. This can be implemented by
inserting ‘rt_nth=rt_nth+s1t’ below the line ‘rt_nth= rt(((n-1)*L+1): n*L);’ in the m-
file in 1.A-2. Then, z1 will be a Gaussian random variable with mean a11 and variance
0.125, and z2 will be a Gaussian random variable with mean a12 and variance 0.125.
Justify these conclusions.

1.F-2 Now consider the case that s3t is received with noise. Determine the PDFs
of z1 and z2 for this case.

1.G [A]Recall from rt_gen.m in Section 1.C of Chapter 18 that p2t saved in
st_and_rt.mat is the sampled version of 𝜓2(t), that is, sqrt(2)*sin(3*pi*tvector). Let
us modify p2t to be the sampled version of 𝜓2(t) given in 1.E-5. To this end, add the
following line before the ’for’ statement in the m-file in 1.A-2.

CORRELATION-BASED MAXIMUM LIKELIHOOD DETECTION 205

p2t=sqrt(2)*sin(3*pi*tvector+pi/3);

1.G-1 Execute the modified m-file and then repeat 1.B-1, 1.B-2, 1.C-1, 1.C-2, 1.D-
1, and 1.D-2. In which problem(s) is the result different from the original result
obtained before p2t is modified? Ignore the small difference between the results due
to a finite number of samples generated in the simulation.

Capture the results that are different from original ones.

1.G-2 Based on the result in 1.G-1, are z1 and z2 still independent after p2t is
modified? Justify your answer using the result in 1.G-1.

1.G-3 For the problems that have the same results as the original ones, explain why
they are not changed even after p2t is modified.

1.H Here we investigate the effect of the orthogonal basis vectors on the noise
vector.

1.H-1 If the basis vectors in the vector space are mutually orthogonal, then the
elements of the Gaussian noise vector in the vector space are independent of one
another. Among the problems completed in this chapter so far, which one and its
answer empirically verify this? Also which problem and its answer theoretically
verify this?

1.H-2 If the basis vectors in the vector space are not mutually orthogonal, then the
elements of noise vector in the vector space will be dependent. Among the problems
completed in this chapter so far, which problem and its answer empirically verify
this? Also which problem and its answer theoretically verify this?

19.2 CORRELATION-BASED MAXIMUM LIKELIHOOD DETECTION

Consider an M-ary signal transmission system in an AWGN environment. Let T
denote the M-ary symbol duration. Denote the complex-valued M-ary signals by
si(t)(i = 1, 2, …, M) and the received signal by r(t).

2.A [T]The left-hand side of equation (19.3) is the index of the estimated signal that
results in the minimum squared error with the received signal.

argmin
k ∫

T

0
|r(t) − sk(t)|2dt = argmax

k
Re

[
∫

T

0
r(t)s∗k (t)dt

]
. (19.3)

Equation (19.3) holds if all the M-ary signals si(t) (i = 1, 2,…, M) have the same
energy, that is, Es1(t) = Es2(t) = ... = EsM(t). Note that the term ∫ T

0 r(t)s∗k (t)dt on the
right-hand side is the correlation between r(t) and sk(t). This equation shows that for
signaling schemes such as MPSK and MFSK, for which all the M-ary signals si(t)
(i = 1,2,…, M) have the same energy, MLD could be implemented on the basis of

206 CORRELATOR-BASED MAXIMUM LIKELIHOOD DETECTION

correlation, rather than the Euclidean distance. Such implementation results in the so
called “correlation-based maximum likelihood receiver.”

2.A-1 Prove equation (19.3).

2.A-2 (a) Prove ∫ T
0 r(t)s∗k (t)dt = ⟨z, s∗k⟩, where z and sk denote, respectively, the

coordinates of r(t) and sk(t) in the vector space, and ⟨z, s∗k⟩ denotes the inner product
of z and sk.

(b) Using the identity in (a), show that equation (19.3) can be written as
argmink ∫ T

0 |r(t) − sk(t)|2dt = argmaxk Re[< z, s∗k >].

2.A-3. Describe the advantage of using argmaxk Re[< z, s∗k >] over using the left-
or right-hand sides of equation (19.3) for detection in terms of computational com-
plexity.

2.B [WWW]The m-file below demodulates a received signal using the correlation-
based MLD. As done in Chapter 18, we first load the sampled version of r(t), that is,
rt, and the sampled version of si(t), that is, s1t, s2t, s3t, and s4t, from st_and_rt.mat.
Recall that in Chapter 18, we have already demodulated rt in st_and_rt.mat by using
the Euclidean distance-based MLD.

In the line ‘C_rt_nth_s1t=sum(rt_nth.*s1t)*tstep’, the right-hand side
sum(rt_nth.*s1t)*tstep is the numerically calculated correlation of the received signal
with one of the M-ary waveforms s1(t), that is, ∫ T

0 r(t)s∗1(t)dt. Since r(t) and si(t) (i =
1,2,…, M) are all real-valued in the considered system, we do not need an additional
operation to take the real part. In the next line ‘[T1 T2]=max([C_rt_nth_s1t,?,?,?])’,
we find which one among si(t) (i = 1,2,…, M) has the highest correlation with r(t).

clear
load st_and_rt.mat

data_bits_hat=[]; %Initialize the vector for saving the demodulated bits
for n=1:50

rt_nth= rt(((n-1)*L+1) : n*L); %Sampled version of received signal during n-th M-ary
symbol duration

C_rt_nth_s1t=sum(rt_nth.*s1t)*tstep; %Correlation between the received signal and
s1(t) by the numerical integration.
…
…

C_rt_nth_s4t=???;

[T1 T2]=max([C_rt_nth_s1t,?,?,?]); %Find the most highly correlated M-ary signal
with the received signal.

if T2==1
twobits_hat= ?? %Refer to Table 18.1 for mapping data bit pair and 4-ary symbol.

CORRELATION-BASED MAXIMUM LIKELIHOOD DETECTION 207

elseif T2==2
…
else
…
end

data_bits_hat=[data_bits_hat twobits_hat]; % Connect the detected bit to bit stream
end

2.B-1 Complete the m-file and capture it.

2.B-2 Execute the following in the command window to check whether all of the
100 bits are correctly demodulated. (a) Capture the result. (b) How many bits are
incorrectly demodulated?

>>load data_bits.mat
>>sum(data_bits_hat ∼= databits)

2.B-3 In Chapter 18, we performed the Euclidean distance-based MLD on the same
received sample vector rt and confirmed that all of the 100 data bits are correctly
demodulated. The study in 2.A shows that the correlation-based detection is equiva-
lent to the Euclidean distance-based MLD. However, the result in 2.B-2 should show
that correlation-based detection results in some errors.

Identify the aspects in the considered case that have caused the correlation-based
detection being not equivalent to the MLD.

2.C [T]Let us simulate the case where the 4-ary symbols have the same energy. By
properly setting the values of a, b, c, …, h in rt_gen.m as was analyzed in Chapter
18, s1t, s2t, s3t, and s4t could have the same energy. Then we can regenerate a new
rt on the basis of the modified s1t, s2t, s3t, and s4t.

2.C-1 Assume that a signal s(t) is mapped into a vector s in a vector space. Calculate
the energy of s(t) from s.

2.C-2 [WWW]From the companion website, download rt_gen.m into your current
MATLAB work folder.

(a) Open rt_gen.m and set a=2 and b=−1, which are the (x, y) coordinates of s1t
in the vector space. Show that the energy of s1t equals 5 using the answer to
2.C-1.

(b) Properly set the values of c, d, e, f, g, and h so that the other three signals,
s2t, s3t, and s4t, all have the same energy as s1t, that is, 5. Note that there are
multiple sets of solutions. Select one set of them.

208 CORRELATOR-BASED MAXIMUM LIKELIHOOD DETECTION

2.D Run rt_gen.m that was completed in 2.C-2 to create the equi-energy 4-ary
signals s1t, s2t, s3t, and s4t, and regenerate the received signal rt using these newly
created 4-ary signals.

2.D-1 Identify and record the file creation date of st_and_rt.mat, which contains
s1t, s2t, s3t, s4t, and rt. Is it updated?

2.D-2 Save the m-file created in Section 3.B of Chapter 18 in the current work
folder where the updated version of st_and_rt.mat resides. Then execute the m-file
to perform MLD on the updated rt with the updated s1t, s2t, s3t, and s4t. After this
is done, execute ’data_bits_hat_by_MLD=data_bits_hat’ in the command window.
Capture the execution result.

2.D-3 Execute the m-file completed in 2.B-1 again to perform the correlation-based
detection on the updated rt with the updated s1t, s2t, s3t, and s4t.

(a) After running the m-file, execute sum(data_bits_hat ∼= data_bits_hat_by_
MLD) in the command window. Capture the execution result. Explain what
this command does.

(b) Does the result in (a) show that the correlation-based detector and MLD
perform the same?

(c) Document the condition(s) that guarantees the equivalence between the MLD
and the correlation-based detection.

REFERENCE

[1] A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd ed., New York,
NY: McGraw-Hill, 1991.

20
PULSE SHAPING AND MATCHED
FILTER

� Perform raised cosine pulse shaping and plot the eye diagram.
� Investigate the spectrum and eye diagram for different roll-off factors of raised

cosine pulse shaping.
� Perform matched filtering to the pulse-shaped signal and analyze the eye

diagram.
� Convert a MATLAB signal into an actual electric signal and observe the eye

diagram in an oscilloscope.

20.1 [T]RAISED COSINE PULSES

The built-in MATLAB function rcosine(1,L,‘normal’,r) outputs the sampled version
of a raised cosine pulse [1–3]. The argument r is a desired roll-off factor and the
argument L is the desired number of samples per symbol. For example, the raised
cosine pulse with a roll-off factor of 0.5 can be plotted in MATLAB as follows.

>>Ts=1; % symbol duration
>>L=16; % number of samples per symbol
>>r=0.5; %roll-off factor
>>t=-3:Ts/L:3; % time vector for x-axis
>>pt =rcosine(1,L,’normal’,r); % sampled version of the raised cosine pulse

Problem-Based Learning in Communication Systems Using MATLAB and Simulink, First Edition.
Kwonhue Choi and Huaping Liu.
© 2016 The Institute of Electrical and Electronics Engineers, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/choi_problembasedlearning

209

http://www.wiley.com/go/choi_problembasedlearning

210 PULSE SHAPING AND MATCHED FILTER

>>plot(t,pt)
>>grid on
>>hold on

1.A Execute the commands above. Then generate and plot pt for each of the fol-
lowing values of the roll-off factor: 0, 0.25, 0.75, and 1. Plot the four curves with
different line colors and use legend() to indicate the corresponding roll-off factor for
each curve.

1.B Note that rcosine() generates the truncated version of the raised cosine pulse
centered at time zero. Record the length of the truncated raised cosine pulse using
the symbol period as the unit.

1.C (a) From the related literature or textbooks (see the content mapping table at
the beginning of this book), review and summarize the conditions on the pulse for
zero intersymbol interference (ISI) [2–4]. (b) Based on the shape of pt, determine
whether or not ISI exists if pt is used for pulse shaping. Justify your answer?

1.D If the parameter normal in rcosine(1,Ns,‘normal’,r) is replaced by sqrt, then
this function creates the sampled version of the square-root raised cosine (SRRC)
pulse. Replace normal by sqrt and repeat 1.A to plot the SRRC pulses for each of the
following roll-off factors: 0, 0.25, 0.5, 0.75, and 1.

1.E Based on the shape of pt in 1.D, determine whether ISI exists if the SRRC
pulse is used for pulse shaping. Justify your answer.

NOTE: At this point we are checking the ISI condition with the pulse-shaped signal
itself, not the signal after any additional processing such as matched filtering in the
receiver (will be discussed in Section 20.3). The overall pulse shape is determined
by filters applied in both the transmitter and the receiver.

20.2 PULSE SHAPING AND EYE DIAGRAM

2.A Consider a system where the pulse shape p(t) is a triangular waveform as shown
in Fig. 20.1.

2.A-1 The pulse-shaping process is equivalent to performing convolution between
the impulse-modulated data stream and the pulse p(t). First, consider a case where
signal x1(t) contains a single data symbol that is impulse modulated at time zero, as

p(t)

0 t[s]T–T

FIGURE 20.1 Triangular pulse p(t).

PULSE SHAPING AND EYE DIAGRAM 211

t[s]T0 2T 3T–T

p(t)

0 T–T

∗ = ?

x1(t) = (t)δ

FIGURE 20.2 Signal x1(t) and pulse p(t).

t[s]T0 2T 3T 4T–T

p(t)

0 T–T

∗ = ?

x2(t) = (t – 3T)δ

FIGURE 20.3 Signal x2(t) and pulse p(t).

t[s]T0 2T 3T 4T 5T

x3(t)

–T

p(t)

0 T–T

∗ = ?

(t – 3T)δ (t)δ

FIGURE 20.4 Signal x3(t) and pulse p(t).

shown on the left of Fig. 20.2. Sketch the pulse-shaped signal, that is, the convolution
of x1(t) and p(t).

2.A-2 Second, consider a case where signal x2(t) contains a single data symbol
that is impulse modulated at t = 3T , as shown on the left of Fig. 20.3. Sketch the
pulse-shaped signal, that is, the convolution of x2(t) and p(t).

2.A-3 Third, consider a case where signal x3(t) contains two data symbols that are
impulse modulated, one is at t = 0 and the other at t = 3T , as shown on the left of
Fig. 20.4. Sketch the pulse-shaped signal, that is, the convolution of x3(t) and p(t).

2.A-4 Now consider the general case of data signal x(t) as shown on the left of
Fig. 20.5, where four consecutive bits are impulse modulated. One might think that
by using the linearity property, the pulse-shaped signal should be easily obtained as
shown in Fig. 20.6. Explain why the sketch in Fig. 20.6 is incorrect, and sketch the
correct pulse-shaped waveform.

t[s]T0 2T 3T 4T 5T

x(t)

–T

p(t)

0 T–T
∗

= ?

(t – T)δ (t – 3T)δ

(t – 2T)–δ

 (t)δ

FIGURE 20.5 General signal x(t) and the pulse p(t).

212 PULSE SHAPING AND MATCHED FILTER

t[s]T0 2T 3T 4T 5T–T

x(t) ∗ p(t)

FIGURE 20.6 Incorrect sketch of x(t) pulsed-shaped by p(t).

2.B [WWW]From the companion website, download tx_sig_gen.m into your
MATLAB work folder. The m-file tx_sig_gen.m shown below creates tx_signal,
that is, the sampled version of the transmitted signal s(t). This signal contains 100
randomly generated binary data bits that are pulse shaped by the raised cosine pulse
with a roll-off factor of 0.25.

%tx_sig_gen.m
clear
rand(1,1XXX); % XXX= the last three digits of your student ID. Irrelevant to the goal
of this m-file but mandatory.
Ts=1;
L=16;
t_step=Ts/L;
%%%%%%%%%<1. Pulse waveform generation >%%%%%%%%%%%%%%%%%
pt=rcosine(1,L,’normal’,?);

%%%%%%%%%<2. 100 bit (binary symbol) generation>%%%%%%%%%%%%%%
Ns=?;
data_bit=(rand(1,Ns)>0.5); % You may alternatively use ‘data_bit=randi([0 1],1,Ns)’
instead.

%%%%%%%%%<3. Unipolar to Bipolar (amplitude modulation)>%%%%%%%%%%
amp_modulated=2*data_bit-1; % 0=> -1, 1=>1

%%%%%%%%%<4. Impulse modulation>%%%%%%%%%%%%%%%%%%%%%
impulse _modulated=[];
for n=1:Ns

delta_signal= [amp_modulated(n) zeros(1, L-1)];
impulse_modulated=[impulse_modulated delta_signal];

end

%%%%%%%%<5.Pulse shaping (Transmitter filtering)>%%%%%%%%%%
tx_signal=conv(impulse_modulated, pt);

PULSE SHAPING AND EYE DIAGRAM 213

2.B-1 Complete the two quantities marked by ‘?’ in the m-file. Save the com-
pleted m-file as tx_sig_gen_Nid.m. In the subsequent problems in this section, use
tx_sig_gen_Nid.m, not tx_sig_gen.m. The original file tx_sig_gen.m will be needed
again in Section 20.4 of this chapter.

Capture tx_sig_gen_Nid.m.

2.B-2 For each line that contains ‘=’, provide a comment to explain what the variable
at the left-hand side represents and justify how the right-hand side expression is
formulated accordingly.

2.B-3 At the end of tx_sig_gen_Nid.m, append the code fragment below and execute
the m-file.

(a) Capture the figure with two subplots.
(b) Based on the waveforms in the figure, explain the effects of impulse modulation

and pulse shaping.

figure(100)
subplot(2,1,1)
stem(t_step:t_step:(Ns*Ts), impulse_modulated,’.’);
axis([0 Ns*Ts -2*max(impulse_modulated) 2*max(impulse_modulated)]);
grid on
title(‘impulse modulated’)
subplot(2,1,2)
plot(t_step:t_step:(t_step*length(tx_signal)), tx_signal);
axis([0 Ns*Ts -2*max(tx_signal) 2*max(tx_signal)]);
grid on
title(’pulse shaped’)

2.B-4. By only visual inspection of the pulse-shaped waveform in B-3, is it easy
to determine whether there exists ISI? Note that for the binary signaling simulated
(a positive pulse represents a bit ‘1’ and a negative pulse represents a bit ‘0’), ISI can
be checked by determining whether tx_signal equals 1 or −1 at time instants that are
equal to integer multiples of one bit duration.

2.C In this section we generate the sampled waveform tx_signal using the m-file
tx_sig_gen_Nid.m completed in 2.B and plot the eye diagram [2,3].The window size
for the eye diagram is set to three bit periods for the binary system considered.

Before we start, set the variable Ns to 1XXX, where XXX is the last three digits of
your student ID.

2.C-1 Note that tx_signal is the sampled version of the transmitted signal s(t) with
L samples per symbol. Therefore, if we execute tmp=tx_signal(1:(3*L)), then tmp will
be the sampled version for the first 3 symbol periods of s(t).

The following command extracts the k-th three-bit period of s(t) and stores this
portion of the signal in variable tmp. For example, if k = 2, tmp will be the sampled

214 PULSE SHAPING AND MATCHED FILTER

version of s(t), 3Ts < t ≤ 6Ts; if k = 3, tmp will be the sampled version of s(t), 6Ts <

t ≤ 9Ts, and so on. Test this out.

tmp=tx_signal(((k-1)*3*L+1) : (k*3*L));

2.C-2 [WWW]Now we overlay the waveform traces over every three-bit period
on top of one another in the same graph. Append the code fragment below to
tx_sig_gen_Nid.m. Note that in the ‘for’ loop, we start with k = 1 to exclude the
first three-bit portion because the peak of the raised cosine pulse for the first symbol
(bit) appears at t = 3Ts due to the delay in the convolution process with pt, whose
peak is at t = 3Ts.

%Append the following lines to tx_sig_gen_Nid.m
figure(200)
for k=2:floor(Ns/3) % k is the index of three consecutive symbol portion.

tmp=tx_signal(? : ?); % k-th three consecutive symbol portion. Refer to 2.C-1.
plot(t_step*(0:(3*L-1)), tmp);

axis([0 3 min(tx_signal) max(tx_signal)]);
grid on; hold on
pause

end
hold off

(a) Complete the quantities marked by ‘?’ and capture the completed line.
(b) Before you run the completed file tx_sig_gen_Nid.m, sketch what you expect

to see when you run it.
(c) Execute the completed tx_sig_gen_Nid.m and press any key repeatedly. When-

ever you press a key, the next three-bit period of the transmitted signal will be
overlaid in the figure. Capture the resulting figure after you press the key for
3, 10, and 30 times, respectively.

2.C-3 Press Ctrl-C to stop executing the m-file. Inside the ‘for’ loop of the m-file,
comment out the line pause, and run the m-file again. (a) Capture the resulting eye
diagram. (b) Does your sketch in 2.C-2(b) look similar to the eye diagram? (c) Do
the curves on the eye diagram intersect exactly at 1 or −1 at integer multiples of the
symbol period? (d) If the answer in (c) is “yes,” then we say there is no ISI. Why?

2.C-4 Note that the same eye pattern repeats every symbol duration. In the eye
pattern for one symbol duration, draw four lines connecting the pair of points where
the curves intersect at one time instant to the next pair of points. For each of these
four branches, specify the two corresponding bits.

PULSE SHAPING AND EYE DIAGRAM 215

2.C-5 Does the eye diagram captured in 2.C-3 verify your answer to 1.C?

2.D In this section we consider 4-ary PAM signals. To this end, modify the line that
generates the vector amp_modulated in tx_sig_gen_Nid.m as follows.

amp_modulated=2*ceil(rand(1,Ns)*4)-5; %Now Ns is not the number of data bits but
the number of 4-ary data symbols.

2.D-1 In the modified m-file, record all the possible values of the elements of
amp_modulated. To verify the answer, repeatedly execute 2*ceil(rand*4)-5 in the
command window.

2.D-2 Suppose that the first eight elements of amp_modulated are [–1 3 3 –3 –1 1 1
–3]. Sketch the waveform tx_signal after pulse shaping for this eight-symbol duration.

2.D-3 [WWW]Make sure that in tx_sig_gen_Nid.m, the line ‘amp_modulated=
2*data_bit-1;’ is modified as ‘amp_modulated=2*ceil(rand(1,Ns)*4)-5;’ for 4-ary PAM
signals. Execute the modified ‘tx_sig_gen_Nid.m’ and capture the eye diagram.

2.E Let us compare the eye diagrams of 4-ary pulse amplitude modulation (PAM)
signals with different roll-off factors.

2.E-1 Execute tx_sig_gen_Nid.m for each of the following roll-off factors: 0, 0.5,
0.75, and 1.

(a) Capture the four corresponding eye diagrams.
(b) Observe the changes in the eye diagram according to the roll-off factor value.

Document the differences especially in terms of eye opening, that is, whether
or not the eye is open wider as the roll-off factor increases.

2.E-2 The code lines below plot the one-sided PSD of tx_signal in dB scale.

figure(300)
pwelch(tx_signal, L*8, [], 2048,16);
axis([0 1 -10 15])
hold on

Append the code lines above to the end of tx_sig_gen_Nid.m and then execute the
m-file for each of the following roll-off factor values: 0, 0.5, 0.7, and 1. After this is
completed, set the four curves in different colors. This can be accomplished by using
the edit plot icon in the menu bar. Finally, execute the following in the command
window to add a legend for the PSD curves.

>>legend(‘r =0’, ‘r=0.5,’ ‘r=0.7’ , ‘r=1’)

Capture the resulting PSD plot.

216 PULSE SHAPING AND MATCHED FILTER

2.E-3 Analysis of the spectrum of raised cosine pulse-shaped signals and the 6-dB
bandwidth.

(a) From the captured PSD plot in 2.E-2, read and record the PSD value (y axis)
at the center frequency of the spectrum, which is zero Hz.

(b) The 6-dB bandwidth is defined as the frequency B where the PSD value is
6 dB below the PSD value at the center frequency. Read and record the 6-dB
bandwidths of the raised cosine pulse-shaped signals with the four different
roll-off factors.

2.E-4 In 2.E-3(b), is the 6-dB bandwidth of the raised cosine pulse-shaped signals
equal to 0.5, regardless of the roll-off factor? Go through the following steps and
explain it.

(a) Denote Rs as the symbol rate in Hz and HRC(f) as the Fourier transform of the
raised cosine pulse. Then HRC(f) decreases to a certain value at f = Rs∕2 Hz,
regardless of the roll-off factor. What is that value?

(b) Calculate the power reduction in dB as the amplitude decreases by 50%.
(c) From (a) and (b), explain why all PSDs in 2.E-2 have the same 6-dB bandwidth

and why it equals 0.5.

2.E-5 The bandwidth of the raised cosine pulse-shaped signals.

(a) From the captured PSD plot in 2.E-2, measure the 20-dB bandwidths of the
four raised cosine pulse-shaped signals.

(b) Establish a relationship between the roll-off factor and the bandwidth.

2.E-6 Based on the results in 2.E-1(b) and 2.E-5(b), summarize the advantages and
disadvantages of a small or a large roll-off factor.

20.3 EYE DIAGRAM AFTER MATCHED FILTERING

If the pulse-shaped signal received with additive white Gaussian noise (AWGN)
passes through a filter matched to the pulse applied at the transmitter, then the signal-
to-noise ratio of the filter output is maximized. Such a filter is called a “matched
filter” [5, 6]. The impulse response of the matched filter for a pulse p(t) is written
as p∗(−t). Hence we can generate the matched filter output by using convolution
between the received signal and p∗(−t).

3.A Suppose that the pulse p(t) is a raised cosine pulse. For this case, explain why
the matched filter’s impulse response p∗(−t) is equal to p(t).

3.B From 3.A, if the pulse-shaped signal tx_signal is received with noise, we can
implement the matched filtering process by convolving pt with the received signal.
Let us first perform matched filtering to the noise-free received signal to see how
matched filtering changes the eye diagram.

Below the line ‘tx_signal=conv(impulse_modulated, pt);’ in the m-file tx_sig_gen_
Nid.m, insert the following line to generate the matched filter output, matched_out.

EYE DIAGRAM AFTER MATCHED FILTERING 217

matched_out=conv(tx_signal,pt);

Inside the second ‘for’ loop, which plots the eye diagram, replace all tx_signal by
matched_out to plot the eye diagram using signal matched_out, rather than tx_signal.
Set the roll-off factor to 0.5 and execute the modified tx_sig_gen_Nid.m for the binary
as well as the 4-ary PAM signaling cases. Capture the eye diagrams obtained using
matched_out for the binary and the 4-ary PAM cases.

3.C (a) Check whether ISI exists or not at the matched filter output. In other words,
at the time instants equaling integer multiples of the symbol duration, that is, at
t = 1, 2, seconds, do the curves in the eye diagram intersect exactly at 1 and −1 for
the binary case, and exactly at 3, 1, −1, −3 for the 4-ary PAM case? (b) If ISI exists,
explain why.

3.D Here we investigate why the SRRC pulse, rather than the raised cosine pulse,
should be used for pulse shaping at the transmitter if a matcher filter is applied at the
receiver. To this end, in tx_sig_gen_Nid.m, modify the line ’pt=rcosine(1,L,‘normal’,
?);’ as ’pt=rcosine(1,L,‘sqrt’,r);’ to implement pulse shaping with the SRRC pulse.

First, let us check the eye diagram with signal tx_signal, not matched_out, for
SRRC pulse shaping. To this end, replace again all matched_out inside the second
‘for’ loop by tx_signal.

Execute the modified tx_sig_gen_Nid.m for both the binary and the 4-ary signaling
cases and capture the corresponding eye diagrams obtained with tx_signal.

3.E Check whether or not ISI exists in tx_signal.

(a) Explain why ISI exists.
(b) It is important to note that for symbol detection, ISI in the transmitted signal

before the matched filter does not matter. Design a method to remove ISI in
the receiver and justify your approach.

3.F Now let us examine the eye diagram obtained using matched_out, assuming
SRRC pulse shaping. To this end, replace again all tx_signal inside the second ‘for’
loop by matched_out. Execute the modified tx_sig_gen_Nid.m for both the binary
and the 4-ary signaling cases. Capture the corresponding eye diagrams obtained using
matched_out.

3.G System with SRRC pulse shaping in the transmitter and a matched filter in the
receiver.

(a) In such a system, does ISI exist in the matched filter output? Why?
(b) We have seen two ISI-free cases: SRRC pulse shaping, followed by matched

filtering in the receiver and raised cosine (RC) pulse shaping with an ideal
LPF at the receiver. Explain why at the symbol detection stage, no ISI for both
cases.

3.H Execute tx_sig_gen_Nid.m for each of the following five roll-off factors: 0,
0.25, 0.5, 0.75, and 1. After each case is finished, capture the eye diagram obtained
using matched_out. Do these for both the binary and the 4-ary PAM signaling cases.

218 PULSE SHAPING AND MATCHED FILTER

3.I Theoretically, the filtered SRRC pulse by a matched filter is equivalent to an
RC pulse. Thus ISI does not exist regardless of the roll-off factor. However, from
the captured eye diagrams in 3.H, the matched_out at symbol decision instants is
not exactly 1 or −1 for the binary case (−3, −1, 1, 3 for the 4-ary PAM case) as the
roll-off factor decreases.

From 1.B and 1.D, you may find the difference between the ideal SRRC pulse and
the practical SRRC pulse used in the m-file. Based on this, explain what causes ISI,
especially for cases with a small roll-off factor.

3.J To investigate pulse shaping and matched filtering over an AWGN channel,
insert the following line right below the line ‘tx_signal=conv(impulse_modulated,
pt);’ in tx_sig_gen_Nid.m.

rx_signal =tx_signal + 0.15* randn(1, length(tx_signal));

To see the eye diagram of the noisy received signal, replace all matched_out inside
the second ‘for’ loop by rx_signal. Set the roll-off factor to 1 and execute the m-file
for the binary as well as the 4-ary PAM signaling cases. Capture the resulting eye
diagrams.

3.K Effects of matched filtering when applied to noisy received signals.

3.K-1 To see the eye diagram of a noisy received signal after matched filtering,
properly modify the line ’matched_out=conv(tx_signal, pt);’. Capture your modified
m-file.

3.K-2 Replace all rx_signal inside the second ‘for’ loop by matched_out and exe-
cute the m-file for the binary and the 4-ary PAM signaling cases. Capture the resulting
eye diagrams.

3.K-3 Compare the eye diagrams in 3.J and 3.K-2 and assess the eye opening after
matched filtering.

(a) We have seen the eye opening with matched filtering for the noiseless case in
3.D and 3.F. Compared with the eye diagram over a noisy channel obtained in
3.K-2, the impact of match filtering to the eye opening is more significant for
which environment—noiseless or noisy environment?

(b) From (a), document two of the main functions of matched filtering assuming
SRRC pulse shaping in an AWGN channel.

20.4 GENERATING AN ACTUAL ELECTRIC SIGNAL AND VIEWING
THE EYE DIAGRAM IN AN OSCILLOSCOPE

In this section we first convert the pulse-shaped signal generated in MATLAB into an
actual electric signal through the PC’s audio port. Then we observe the eye diagram
of the actual electric signal in an oscilloscope.

GENERATING AN ACTUAL ELECTRIC SIGNAL AND VIEWING THE EYE DIAGRAM 219

(a) (b)

FIGURE 20.7 Audio cable after sheath removed (left) and connection to the audio out port
of a PC (right).

Before we start the experiment, complete the following steps:

Step 1. Obtain a 3.5 𝜙 audio cable, which is commonly used in any audio
device. You may use an earphone cable instead, but it will be cut for this
experiment.

Step 2. Remove the sheath of the 3.5𝜙 audio cable as shown on the left of Fig. 20.7,
and you will see three wires. The uncovered wire ① will be connected to the
ground port of the oscilloscope later in the experiment. Wire ② (typically
white) is for the symbol clock output, and wire ③ (typically red) is for the
raised cosine pulse-shaped waveform.

Step 3. Connect the audio cable to the audio output of a PC that is running
MATLAB as shown on the right of Fig. 20.7.

Step 4. Connect wire ① of the cable to the ground clip of two oscilloscope probes
for CH A and CH B, respectively, as shown on the left of Fig. 20.8. Then
connect the two probes to wires ② and ③ of the cable as shown on the
right of Fig. 20.8.

(a) (b)

FIGURE 20.8 Connection to the ground clips of two probes (left) and the connection of the
stereo audio signal wires to the probes (right).

220 PULSE SHAPING AND MATCHED FILTER

Step 5. Set the PC audio output volume at around 75% of the maximum. NOTE:
depending on the PC configuration, the left and right stereo outputs of
the sound card might be mixed and the signal waveform may not appear
correctly. In this case, change the audio sound setting on the control panel
to separate the left and right stereo outputs.

NOTE: This audio cable will be reused in Chapter 23.

4.A Now we check whether or not the preparation has been done correctly. Execute
the following commands in the command window:

>>t=0:0.001:100;
>>x=sin(2*pi*t);
>>y=cos(4*pi*t);
>>z(1,:)=x;
>>z(2,:)=y;
>>soundsc(z’, 1000)

It will take 100 seconds for the last command soundsc(z’, 1000) to finish. While the
command soundsc(z’, 1000) is running, first push the autoscale (or autoplay) button
of the oscilloscope for instant triggering. Then properly adjust the time axis scale
by SEC/DIV dial so that two sine waveforms can be displayed for several periods
as shown in Fig. 20.9. Also adjust the amplitude scale by VOTS/DIV dial of CH1
and CH2.

Capture the oscilloscope screen. It is recommended to save the screen in an image
file if the oscilloscope supports it.

FIGURE 20.9 Captured oscilloscope screen.

GENERATING AN ACTUAL ELECTRIC SIGNAL AND VIEWING THE EYE DIAGRAM 221

4.B Observe the raised cosine pulse-shaped signal in the oscilloscope. Before we
start this experiment, if the last command soundsc(z’, 1000) in 4.A is still running,
press Ctrl-C to stop it.

4.B-1 [WWW]From the companion website, download tx_sig_gen.m into your
MATLAB work folder. Append the code fragment below to the end of the m-file
and save it as eye_diagram.m. This m-file first creates a two-row matrix, signal_out:
the first row of the matrix is the symbol clock signal; the second row of the matrix
is the raised cosine pulse-shaped signal. Then signal_out is converted into a stereo
audio signal through the PC’s audio output. Note that the variable Nrepeat determines
the number of repetitions of audio signal conversion, and the variable n controls the
symbol clock rate.

In the m-file, set Ns = 10000 and XX = the last two digits of your student ID.
Capture the completed m-file.

%%%%%%%%%%%%%%%%%%% Creation of Symbol Clock %%%%%%%%%%%
clk=[];
for di=1:ceil(length(tx_signal)/(L/2))

clk=[clk (-1)ˆdi*ones(1,L/2)];
% No of samples per clock period (1 clock period)= L samples.

end
clk=clk(1:length(tx_signal)); %Match the length of clk with the length of tx_signal.

%%%%%%Converting the symbol clock and pulse shaping waveform into an stereo
audio signal%%%%%%
signal_out=[clk’ tx_signal’]’;
XX=??; % Set XX = Last two digits of your student ID
n=ceil(40*(XX+1)/100);
Nrepeat=n;
for k=1:Nrepeat %Repeat n times to output

soundsc(signal_out’,8000*n);
% The sample rate is 8000*n Hz. Therefore the symbol(clock) rate is 8000*n/L Hz
done=k

end

4.B-2 Under the same experimental setting in 4.A, execute eye_diagram.m. Note
that the symbol clock signal and the raised cosine pulse-shaped waveform will appear
in CH1 and CH2, respectively.

Now go through the following steps:

Step 1. Properly adjust the amplitude scale by using the VOTS/DIV dial of CH1
and CH2 to observe the signal waveforms clearly as shown in Fig. 20.10.
Note that the clock signal will not be a rectangular pulse due to the
distortions caused by the PC’s sound card.

Step 2. Adjust the SEC/DIV dial to show 10–20 cycles of the clock signal as
shown in Fig. 20.10.

222 PULSE SHAPING AND MATCHED FILTER

FIGURE 20.10 Oscilloscope screen still cut.

(a) Press the Run/Stop button repeatedly for 3–4 times and observe the still cuts
of the pulse-shaped signal. If the setting is correct, you should see the still cut
similar to what is shown in Fig. 20.10. Capture the still cuts.

(b) From the still cuts, is it possible to check whether ISI exists in the pulse-shaped
signal? Justify your answer.

4.B-3 In order to see the eye diagram of the pulse-shaped signal, first trigger the
symbol clock signal to hold still. If eye_diagram.m finishes running, execute it again
and go through the following steps:

Step 1. Disconnect the probe whose CH displays the raised cosine waveform.
Leave the other probe for the clock signal connected.

Step 2. Press the TRIG MENU button and select the clock signal as the triggering
signal source.

Step 3. Adjust the TRIG Level control dial to keep the clock signal in the screen
to hold still.

Step 4. Adjust the time axis scale by SEC/DIV dial so that 3–4 clock cycles are
displayed in the screen.

Capture the oscilloscope screen.

4.B-4 Record the frequency of the clock signal in Hz measured in the oscilloscope.

4.C Observe the eye diagram of the raised cosine pulse-shaped waveform. First,
complete the following steps:

Step 1. Reconnect the audio cable wire that carries the raised cosine pulse-shaped
signal to the open probe, which was disconnected in Step 1 of 4.B-3.

Step 2. If eye_diagram.m has finished running, run it again and properly adjust
the amplitude scale by VOTS/DIV dial of both CH1 and CH2 to observe
the signal waveforms clearly as shown in Fig. 20.10.

REFERENCES 223

FIGURE 20.11 Illustration of eye diagram.

Step 3. Increase the “memory duration” in the “display mode” menu. Select a
proper memory duration that gives the best view of the eye diagram. If
everything has been done properly, the screen should display something
like what is shown in Fig. 20.11, where the pulse-shaped signal is shifted
up and the clock signal is shifted down for better presentation.

(a) Modify the roll-off factor in eye_diagram.m and rerun it. Observe the eye
diagram with the modified roll-off factor. Capture the eye diagrams in the
oscilloscope screen for roll-off factors of 0, 0.5, 0.75, and 1 for the binary
signaling case.

(b) Change the line ‘amp_modulated=2*data_bit-1;’ into ‘amp_modulated=2*
ceil(rand(1,Ns)*4)-5;’ to generate the 4-ary PAM signals. Capture the eye dia-
grams in the oscilloscope screen for roll-off factors of 0, 0.5, 0.75, and 1, for
the 4-ary PAM signaling.

REFERENCES

[1] H. Nyquist, “Certain Topics in Telegraph Transmission Theory,” Transactions of the
American Institute of Electrical Engineers, Vol. 47, 1978, pp. 617–644.

[2] K. Feher, Digital Communications : Microwave Applications, Englewood Cliffs, NJ: Pren-
tice Hall, 1980.

[3] J. Proakis, Digital Communications, 3rd ed., New York: McGraw-Hill, 1995.

[4] E. R. Kretzmer, “Generalization of a Technique for Binary Data Communication,” IEEE
Transactions on Communications Technology, Vol. 14, 1966, pp. 67–68.

[5] D. O. North, “An analysis of the factors which determine signal/noise discrimination in
pulsed carrier systems,” Rep. PTR-6C, Princeton, NJ: RCA Laboratories, 1963.

[6] G. L. Turin, “An Introduction to Matched Filters,” IRE Transactions on Information
Theory, Vol. 3, No. 6, 1960, pp. 311–329.

21
BER SIMULATION AT THE
WAVEFORM LEVEL

� Design a binary phase shift keying (BPSK) system that includes pulse shaping
and matched filtering, and perform bit error rate (BER) simulation.

� Set the variance of the noise samples according to the signal-to-noise ratio
(SNR).

� Understand the effects of the roll-off factor on BER when there exists a symbol
timing error.

� Perform passband modulation and demodulation, and observe the power spectral
density (PSD) of the passband signal and the effects of phase error on BER.

21.1 EB/N0 SETTING IN BASEBAND BPSK SIMULATION

In evaluating the error performance of a digital communications system, the BER is
often plotted as a function of Eb/N0 in dB with a certain step size (e.g., 2 or 5 dB). If
a fixed pulse with energy Eb is used in the simulation, the desired Eb/N0 can be set
by adjusting N0, the single-sided noise power spectral density. For most commonly
used signaling schemes such as M-ary PSK and M-ary QAM, BER simulation at the
waveform level typically involves the following steps:

Step 1. Design an appropriate pulse shape. For example, the pulse should meet
the bandwidth requirement while maintaining intersymbol interference
(ISI)-free operation.

Step 2. Calculate the energy of the designed pulse, which is equal to the bit
energy denoted by Eb for binary signaling.

Problem-Based Learning in Communication Systems Using MATLAB and Simulink, First Edition.
Kwonhue Choi and Huaping Liu.
© 2016 The Institute of Electrical and Electronics Engineers, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/choi_problembasedlearning

224

http://www.wiley.com/go/choi_problembasedlearning

EB/N0 SETTING IN BASEBAND BPSK SIMULATION 225

Step 3. Set Eb/N0 [dB] value.

Step 4. Convert the Eb/N0 value in dB into the Eb/N0 value in the linear scale.

Step 5. Calculate N0 using Eb/N0 in the linear scale obtained in Step 4 and Eb
obtained in Step 2.

Step 6. Set the variance of the noise samples according to the value of N0.

Step 7. Generate the sampled transmitted signal vector, the sampled noise vector
according to the value of N0, and the sampled received signal vector.
Then estimate the transmitted bit (or bits) from the sampled received
signal vector. Count the number of erroneously detected bits and store
this information.

Step 8. Repeat Step 7 with independently generated transmitted bits and received
noise until the total number of bits simulated is sufficiently large to
generate a statistically meaningful average BER.

Step 9. Change the Eb/N0 [dB] value and perform Steps 4–8 again to generate
the corresponding BER; this is repeated until BERs for all target Eb/N0
[dB] are simulated.

Step 10. Plot the BER curve as a function of Eb/N0 [dB].

1.A [WWW]The following m-file first designs the pulse pt and then performs Step1–
Step 5 mentioned above to calculate N0 for each of the given Eb/N0 [dB] values. The
variable EbN0dB is Eb/N0 in the dB scale, and EbN0 is Eb/N0 in the linear scale. We
consider a square-root raised cosine pulse with a roll-off factor of 0.5. We set the
symbol (which is a bit for BPSK considered in this chapter) duration at Ts=1 second,
and the number of samples per symbol at L=16.

Complete all quantities marked by ‘?’ in the m-file. Capture the completed
m-file.

clear
%%%Signal pulse design %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Ts=1; L=16;
t_step=Ts/L;
pt=rcosine(1,?,?,?); N=length(pt);
%We consider a square-root raised cosine pulse with a roll-off factor of 0.5. Refer to 1.D

of Chapter 20 for the use of the function rcosine().

%%% Calculation of Signal (bit in case of BPSK) Energy %%%%%%%%%%%%%%%
Eb=sum(?)*t_step ;
% We will go through the same process in tx_sig_gen.m in 2.B of Chapter 20 to

generate the transmitted signal. A bit is converted into a discrete unit impulse
if bit is ‘1’ and its inverted version if bit is’0’. The discrete unit impulse (or its inverted
version) is convolved with the shaping pulse pt obtained above. Summing it up, this is
equivalent to transmitting pt if bit is ‘1’ and -pt if bit is ‘0’. Consequently,
the bit energy Eb is equal to the energy of pt. Refer to 3.A of Chapter 17 regarding
how to numerically calculate the energy of a sampled signal.

226 BER SIMULATION AT THE WAVEFORM LEVEL

%%%% N0 setting part %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
EbN0dB=100; % Suppose Eb/N0 [dB] = 100dB.

EbN0=10ˆ(?); %Conversion into linear scale.
N0= ? ; % Eb and EbN0 have been set already and EbN0 means Eb/N0.
% In the two lines above, do not hard code the values of EbN0 and N0 for the specific

case of EbN0dB=100; instead, complete EbNO and N0 as a function of EbN0dB
so that if we change the value of EbN0dB to any different value, EbNO and N0 will
be changed accordingly.

1.B Execute the m-file completed in 1.A and then execute (type and enter) N0 in
the command window to see the calculated value of N0. Capture the execution result.

1.C [T]Fig. 21.1 illustrates the digital filtering process performed on the sampled
signal after noise rejection by the analog filter. The received signal r(t) is the sum of
the transmitted signal s(t) and the AWGN n(t) with a spectral density N0/2. Set the
bandwidth of the noise rejection filter to a half of the filter output sampling frequency,
that is, bandwidth = 0.5*(1/t_step).

1.C-1 The left-hand side of Fig. 21.2 shows the PSD of the noise n(t). Draw the
exact PSD of the noise after it passes through the noise rejection filter.

1.C-2 How is the signal power calculated from the signal PSD? Write an equation
that establishes this relationship.

1.C-3 Let Pn,NRF denote the noise power at the noise rejection filter output before
sampling. It can be calculated as

Pn,NRF =
N0

2 × t step
. (21.1)

1
2t_step

�

c[0] c[N − 1]

N−1

n=0

r[k − n]c[n]z[k] = ∑

r[k] = s[k] + n[k]

∑

r(t) = s(t) + n(t)

f [Hz]

1

1

2t_step
−

c[1]

0
>

<

Noise rejection filter

delay delay delay

symbol
clock

Matched filter

estimated_date_bit

At every other L samples
where eyes are maximally opened

Sample at
T = kt_step

FIGURE 21.1 Noise rejection and matched filter.

EB/N0 SETTING IN BASEBAND BPSK SIMULATION 227

Noise rejection filterPSD of input noise (AWGN) n(t)

N0/2

f [Hz] 1
2t_step

Output PSD ?
Power ?

f [Hz]1

1

2t_step
−

FIGURE 21.2 PSD and signal power before and after passing through the noise rejection
filter.

Prove equation (21.1) using the exact PSD function obtained in 1.C-1 and the
equation obtained in 1.C-2.

1.C-4 Let us examine the distribution and correlation model of the noise samples at
the noise rejection filter output. Since the noise rejection filter is a linear system, the
noise samples after passing through the noise rejection filter …, n[k − 1], n[k], n[k +
1],… remain to be zero mean and identically distributed Gaussian random variables.

We can show that the noise samples …, n[k − 1], n[k], n[k + 1],… are independent.

(a) First, find the noise autocorrelation Rn(𝜏), that is, the inverse Fourier transform
of the noise PSD at the noise rejection filter output.

(b) Then show that the correlation values of the noise samples are zero except at
k = 0, that is, Rn(k*t_step) = 0,∀ integer k ≠ 0. Therefore these uncorrelated
samples are also independent of one another because they are Gaussian.

1.C-5 Next, let us find out the variance of the noise samples at the noise rejection
filter output. Although we cannot say, in general, that the variance (ensemble average
of the squared samples) of any zero-mean sequence equals the signal power (time
average of the squared samples), the variance of noise samples is equal to the noise
power given in equation (21.1). This is due to a certain statistical property that the
noise signal has. What is this property?

1.D As mentioned in 1.C, the noise samples …, n[k − 1], n[k], n[k + 1],… are zero
mean independent Gaussian random variables whose variances can be calculated as
equation (21.1). Let v_n denote the variance of the noise samples. Add the following
line that generates v_n to the end of the code in 1.A and properly complete the
quantity marked by ‘?’.

%Add to the m-file in 1.A
v_n=?; %As a function of N0 and t_step

1.E Now we can generate the sampled vector of the received signal in Fig. 21.1,
including both the signal and the noise… , r[k − 1], r[k], r[k + 1],… (the corre-
sponding MATLAB variable is r_samples). Since the noise rejection filter bandwidth

228 BER SIMULATION AT THE WAVEFORM LEVEL

1/(2*t_step) is greater than the bandwidth of data signal s(t), the data signal term at
the noise rejection filter output remains to be s(t).

The code fragment below, first, generates the sampled signal vector…, s[k −
1], s[k], s[k + 1],… (the corresponding MATLAB variable is tx_signal) through
similar steps used in tx_sig_gen.m in Chapter 20. Then, it generates the sampled
noise vector…, n[k − 1], n[k], n[k + 1],… of the same length (the corresponding
MATLAB variable is n_samples). Finally, it adds the two sampled vectors together.
Add this code fragment to the end of the m-file completed in 1.D.

% Append the following to the m-file in 1.D

% First, copy and paste the parts 2, 3, 4, and 5 (as listed below) from tx_sig_gen.m in
Chapter 20.

<2. Ns bit binary symbol generation>
<3. Unipolar to Bipolar (amplitude modulation)>
<4. Impulse modulation>
<5. Pulse shaping (Transmitter filtering)>

%%%%%%< Noise sample generation >%%%%%%%%%%%%%%%%%%%%%
n_samples=sqrt(v_n)*randn(1,length(tx_signal));%Generate n[k]

%%%%%%<Generation of received signal sample>%%%%%%%%%%%%
r_samples = tx_signal + n_samples;

1.E-1 Complete the m-file and capture it.

1.E-2 Note that in the line that generates the noise samples, there is a scaling factor
sqrt(v_n). Justify why it is needed there.

21.2 MATCHED FILTER AND DECISION VARIABLES

The m-file in Section 21.1 generates the sampled vector …, r[k − 1], r[k], r[k +
1],… of the received signal modeled in Fig. 21.1. The right-hand side of Fig. 21.1
(after sampling) shows matched filtering applied to the sampled signal.

2.A Add a line to the m-file in 1.E to generate the sampled matched filter output
vector …, z[k − 1], z[k], z[k + 1], … (the corresponding MATLAB variable is
z_samples) as follows. Complete the two quantities marked by ‘??’, one with a
proper function name and one with a proper variable name. The materials in Section
3.B of Chapter 20 can help answer this question.

MATCHED FILTER AND DECISION VARIABLES 229

Capture the completed line.

z_samples=??(r_samples,??);

2.B In order to examine the waveforms of z_samples and impulse_modulated,
execute the m-file and then execute the following commands in the command window.
Capture the resulting plot.

>>figure
>>subplot(2,1,1)
>>stem(impulse_modulated(1:20*L),’.’);
>>grid on
>>subplot(2,1,2)
>>plot(z_samples(1:20*L));
>>grid on

2.C Note that in the line ‘N=length(pt)’ of the m-file, the variable N is set to the
length of pt, which is equal to the pulse-shaping filter length and the matched filter
length as well. Type N in the command window to see its value. Capture the execution
result.

2.D The plot obtained in 2.B shows that there is a delay of N samples between
z_samples and impulse_modulated. Explain why this delay exists. The following
steps will help answer this question.

Step 1. Execute plot(pt) and find the sample index of the peak of pt, which is the
center of even symmetry of pt.

Step 2. The right-hand side of Fig. 21.1 (after sampling) shows the matched
filtering step, which is the convolution of the input and pt. Therefore the filter
coefficients are c[0] = pt(N), c[1] = pt(N-1), …, c[N-2] = pt(2), c[N-1] = pt(1).
Suppose that the initial values of the delay line inside the filter are set to all 0s
and the sequence 1, 0, 0, 0, 0, 0…, is a trial input to the delay line. Then the filter
output sequence will be pt(N), pt(N-1), pt(N-1), …. Find out the sample index of
the peak of the filter output sequence. How large a delay (in samples) does the
convolution operation, conv([1 0 0 0 0 …], pt), introduce?

Step 3. In the transmitter and the receiver, how many times of convolution between
impulse_modulated and pt are performed to obtain z_samples?

2.E Based on the number of samples per bit and the delay between z_samples
and impulse_modulated, z_samples(N+(n-1)*L) is the decision variable of the nth
transmitted bit, data_bit(n). In other words, we estimate data_bit(n) on the basis
of the sample z_samples(N+(n-1)*L). Explain why the sample index of z_samples
should be set to N+(n-1)*L.

230 BER SIMULATION AT THE WAVEFORM LEVEL

2.F Using the decision variable in 2.E, we can detect the first 5 bits of data_bit by
executing the commands below in the command window. Explain why the decision
variable for the nth bit should be set to (z_samples(N+(n-1)*L) > 0). The part of the
m-file under <3. Unipolar to bipolar (amplitude modulation)> will help answer this
question.

>>estimated_data_bit(1)= (z_samples(N+(1-1)*L) >0) ;
>>estimated_data_bit(2)= (z_samples(N+(2-1)*L) >0) ;
>>estimated_data_bit(3)= (z_samples(N+(3-1)*L) >0) ;
>>estimated_data_bit(4)= (z_samples(N+(4-1)*L) >0) ;
>>estimated_data_bit(5)= (z_samples(N+(5-1)*L) >0) ;
>>estimated_data_bit
>>data_bit(1:5)

2.G (a) Execute the commands listed in 2.F and capture the result. (b) Is esti-
mated_data_bit identical to data_bit(1:5)?

2.H All Ns bits in the vector data_bit can be detected by the code fragment below.
Append this fragment to the m-file in 2.A.

for k=1:Ns
estimated_data_bit(k)= (z_samples(N+(k-1)*L) >0) ;

end

2.H-1 Execute the m-file and then execute sum(estimated_data_bit∼=data_bit) in
the command window. Capture the result.

2.H-2. Does the result in 2.H-1 imply no error? Why?

21.3 COMPLETING THE LOOP FOR BER SIMULATION

Now we are ready to implement Step 8 and Step 9 explained at the beginning of
Section 21.1. After this, we complete the whole simulation loop and obtain the BER
curve.

3.A [WWW] Implementation of Step 8. After incorporating the code fragment below,
the m-file will be capable of simulating the BER for the case of Eb/N0 = 0 dB.

[Step 1∼Step6]: Copy and paste the m-file completed in 1.D. Be sure to set EbN0dB=0.

sum_Ne=0; % Initialize the number of total errors
N_frame=20; % Number of frames for simulation

COMPLETING THE LOOP FOR BER SIMULATION 231

[for loop in order to implement Step 8]
for frame_number=1:N_frame

[Step 7] Copy and paste the added parts in 1.E, 2.A and 2.H as follows
< Ns bit binary symbol generation>
< Unipolar to Bipolar (amplitude modulation)>
< Impulse modulation>
< Pulse shaping (Transmitter filtering)>
%%%%%%< Noise sample generation>%%%%%%%%%%%%%%%%%%%%

n_samples=sqrt(v_n)*randn(1,length(tx_signal));%Generate…, n[k-1], n[k],
n[k+1],…

%%%%%%<Generation of received signal sample>%%%%%%%%%%%%
r_samples=tx_signal + n_samples;

z_samples=conv(r_samples, pt); %Matched filter

estimated_data_bit= (z_samples(N+((1:Ns)-1)*L)>0); % Data bit estimation in 2.H

[Newly added part for Step 8]
Ne=sum(estimated_data_bit∼=data_bit); % ?
sum_Ne=sum_Ne +Ne; % ?

end

%Calculate the BER by the definition, i.e., BER= Total number of bit errors /Total num-
ber of transmitted bits
Total_bit=?*?;
BER=sum_Ne/Total_bit

3.A-1 How many bits are generated in one frame and how many frames are used to
calculate the BER?

3.A-2 The following two lines are added in the ‘for’ loop in Step 8. Explain what
these two lines do.

…
Ne=sum(estimated_data_bit∼=data_bit); % ?
sum_Ne=sum_Ne +Ne; % ?
…

3.A-3 Complete the m-file and execute it.

(a) Complete the quantities marked by ‘?’ in the line ‘Total_bit=?*?’ so that
Total_bit is a function Ns and N_frame (i.e., do not hard code the value of

232 BER SIMULATION AT THE WAVEFORM LEVEL

variable Total_bit for a specific number of bits and frames). Justify your
answer.

(b) Execute the completed m-file and capture the simulated BER results.

3.B Let us check whether or not the simulated BER result obtained in 3.A-3 matches
the theoretical BER of BPSK through the following steps.

3.B-1 The theoretical BER of BPSK is given in the form of the Q-function. The
Q-function can be calculated by using the MATLAB built-in function erfc() as
below.

BER_exact=0.5*erfc(?)

(a) Complete the quantity marked by ‘?’ in the command above; this quantity is a
function of EbN0 so that BER_exact is the theoretical BER.

(b) Execute the completed command above in the command window and capture
the result.

3.B-2 Check whether or not the simulated BER approximately matches the theo-
retical BER.

3.C Change EbN0dB to 9 and execute the m-file again. After this, execute the
command in 3.B-1.

3.C-1 Capture the simulated BER result and the theoretical BER result. Check
whether or not the simulated BER matches the theoretical BER.

3.C-2 If these BERs do not match, investigate what might have caused this mis-
match.

3.D [WWW]In the m-file in 3.C, replace the ‘for’ loop with a ‘while’ loop. Modify
the m-file as shown below.

[Maintain all the part before the ‘for’ loop of the m-file simulated in 3.C and modify the
line ‘N_frame=20’ as follows]

N_frame=0; % Initialize the variable which counts the number of frames

[Change the ‘for’ loop as follows]
while ? < 25
[Maintain all the parts inside the for loop and add the following line to count the num-
ber of the simulated frames]
N_frame=N_frame+1;
end

COMPLETING THE LOOP FOR BER SIMULATION 233

Total_bit=?*?; %As you completed in 3.A-3.
BER=(sum_Ne/(Total_bit))
BER_exact=0.5*erfc(?) %As you completed in 3.B-1(a).

3.D-1 With the modified m-file, iteration will stop when the total number of bit
errors reaches 25.

(a) What is the proper variable for ‘?’ in the line ‘while ? < 25’.
(b) Execute the modified m-file again with ‘EbN0dB=9’, and examine whether the

simulated BER approximately equals the theoretical BER.

3.D-2 The issue of the inaccurate simulated BER in 3.C should have been resolved
in the modified m-file in 3.D-1, since the number of frames simulated is sufficiently
large. Note that in the m-file in 3.D-1, the number of frames to simulate is not explicitly
specified. Explain how the number of frames simulated automatically increases to a
sufficiently large value when a ‘while’ loop is used.

3.E [WWW]Now add the last steps (Steps 9 and 10) to the m-file in 3.D. Modify the
m-file as below to repeatedly simulate the BERs for Eb/N0 = 1, 3, 5, 7, 9 dB. Make
a copy of this m-file for use in Section 21.5.

Execute the modified m-file and capture the resulting BER figure.

clear
EbN0dB_vector=[1 3 5 7 9];
for snr_i=1:length(EbN0dB_vector)

EbN0dB=EbN0dB_vector(snr_i);

[Copy and paste whole contents of the m-file in 3.D and delete the first line ’clear’ and the
line ‘EbN0dB=9’ in the middle]

BER_vector(snr_i)=BER;
BER_exact_vector(snr_i)=BER_exact;

end

figure
semilogy(EbN0dB_vector, BER_vector);
hold on
semilogy(EbN0dB_vector, BER_exact_vector, ’r’);
xlabel(‘Eb/N0 [dB]’);ylabel(‘BER’);legend(‘Simulated’, ‘Theory’);grid on; hold off;

3.F The plot captured in 3.E shows both the theoretical BER curve and the simulated
BER curve. Compare these two curves. Does the simulated BER curve match the
theoretical curve?

234 BER SIMULATION AT THE WAVEFORM LEVEL

21.4 [A]EFFECTS OF THE ROLL-OFF FACTOR ON BER
PERFORMANCE WHEN THERE IS A SYMBOL TIMING ERROR

4.A If the actual sampling instants to obtain the decision variables are not exactly
at the optimal sampling instants, then we say that there is a symbol timing error [1].
This problem studies how symbol timing errors affect the BER performance.

4.A-1 In the m-file in 3.E, perfect symbol timing is assumed in forming the decision
variables from the received signal z_samples. Recall that the number of samples per
bit is L and that in 2.D we examined that there is a delay of N samples between
z_samples and impulse_modulated. Hence z_samples(N+(n-1)*L) corresponds to the
decision variable of the nth bit at the maximum eye-opening instant.

Execute the following commands in the command window and capture the result
that shows the sample indexes for the first 10 symbols.

>>sample_index=N+((1:Ns)-1)*L;
>>sample_index(1:10)

4.A-2 Now let us introduce a symbol timing error. Execute the following commands
in the command window.

>>t_offset=2;
>>sample_index=N+t_offset+((1:Ns)-1)*L;
>>sample_index(1:10).

Note that for simplicity, here we introduced a fixed timing error. In practical
systems, the timing error is caused by many factors such as clock jitter, which could
result in both periodic and random timing errors that might be different for different
symbols.

(a) Capture the execution result.
(b) Compare the results with those in 4.A-1 and explain the role of the parameter

t_offset; that is, explain what it implies when sample_index in 4.A-2(a) is used
for obtaining the symbol decision variables.

4.A-3 In the m-file in 3.E, replace the line ‘estimated_data_bit=(z_samples
(sample_index) >0);’ by the following three lines. Now the sampling instants where
the decision variables are obtained will be the two samples off the maximum eye-
opening points.

t_offset=2;
sample_index=N+t_offset+((1:Ns)-1)*L;
estimated_data_bit= (z_samples(sample_index) >0) ;

PASSBAND BPSK BER SIMULATION AND EFFECTS OF CARRIER PHASE ERRORS 235

TABLE 21.1 BERs According to the Symbol Timing Errors with Different Roll-Off
Factors.

Timing offset [samples] 0 2 4 8
Roll-off factor

0.25
0.5
0.75

(a) Run the m-file and capture the BER plot.
(b) Compare the simulated BER with the theoretical BER that assumes perfect

symbol timing.

4.B Replace the line ‘EbN0dB_vector=[1 3 5 7 9];’ with ‘EbN0dB_vector =4;’ and
modify ‘while sum_Ne<25’ into ‘while sum_Ne<500’. Run the modified m-file for
the cases of t_offset=0, 2, 4, 8 and the roll-off factor = 0.25, 0.5, 0.75, a total of 12
different combinations. Record the simulated BER in Table 21.1.

4.C BER performance versus timing error and roll-off factor.

(a) Describe how the BER changes as the timing error increases.
(b) For nonzero timing error cases, for example, t_offset = 2, 4, or 8, describe

how the BER changes as the roll-off factor increases.
(c) Using the result in 3.H of Chapter 20, explain why the BER performance

improves as the roll-off factor increases when there exists a symbol timing
error.

4.D Summarize the advantages and disadvantages of using a large and a small
roll-off factor in terms of bandwidth efficiency and robustness against symbol timing
errors.

21.5 PASSBAND BPSK BER SIMULATION AND EFFECTS OF
CARRIER PHASE ERRORS

The goal of this section is to simulate the performance of BPSK in the passband and
investigate the effects of carrier phase errors on the BER performance. The passband
BPSK signal will be generated by multiplying the pulse-shaped baseband signal with
a sinusoidal signal, called “carrier.”

Open the m-file completed in 3.E. Make sure that the roll-off factor is set to 0.5
and no symbol timing error is introduced.

5.A [WWW]Insert the following code fragment right below the line that generates
r_samples in the m-file. For each of the inserted lines, add a comment to explain what
the variable on the left-hand side of the ‘=’ sign represents and how the right-hand
side expression is formulated accordingly.

236 BER SIMULATION AT THE WAVEFORM LEVEL

carrier_wave=cos(2*pi*3.2*(1:length(tx_signal))*t_step); % ??
passband_tx_signal=tx_signal.*carrier_wave; % ??
r_samples_pass = passband_tx_signal + n_samples; % ??

5.B Let us first observe the spectrum of the transmitted passband signal (MATLAB
variable passband_tx_signal). Modify the line ‘EbN0dB_vector=[1 3 5 7 9];’ into
‘EbN0dB_vector =10;’ and modify ‘while sum_Ne<25’ into ‘while sum_Ne<1’. Then
execute the modified m-file and the following in the command window.

>>figure
>>BW_v=fft(passband_tx_signal,1024);
>>plot([-512:511]/1024*L, abs(fftshift(BW_v)))

5.B-1 Capture the resulting plot.

5.B-2 Is the spectrum what you expected to see and why?

5.C [WWW]The transmitted bit sequence can be detected after converting the pass-
band signal r_samples_pass into the baseband. Right below the line ‘r_samples_pass
= passband_tx_signal + n_samples;’ insert the following two lines, which convert
the received passband signal, r_samples_pass, into the baseband by multiplying it
with a local carrier wave. The local carrier has the same frequency and phase as the
carrier wave used in the transmitter.

local_carrier=cos(2*pi*3.2*(1:length(tx_signal))*t_step);
mult_out=r_samples_pass.*local_carrier;

Execute the revised m-file and then the following in the command window. The
resulting plot shows the PSD of mult_out (not passband_tx_signal).

>>figure
>>BW_v=fft(mult_out,1024);
>>plot([-512:511]/1024*L, abs(fftshift(BW_v)))

5.C-1 Capture the plot.

5.C-2 Is the spectrum what you expected to see and why?

5.D The PSD of mult_out obtained above contains the spectral components at 6.4 Hz
(=3.2*2 Hz). In order to get the baseband signal only, the 6.4 Hz components should
be eliminated by passing mult_out through an LPF as done in AM demodulation.
However, let us skip this low pass filtering process and directly perform the matched
filtering operation.

PASSBAND BPSK BER SIMULATION AND EFFECTS OF CARRIER PHASE ERRORS 237

5.D-1 [WWW]Replace r_samples by mult_out in the line ‘z_samples=conv
(r_samples, pt);’ to perform matched filtering directly on mult_out. Execute the m-file
and then the following in the command window. Capture the resulting spectrum plot.

>>figure
>>BW_v=fft(z_samples,1024);
>>plot([-512:511]/1024*L, abs(fftshift(BW_v)))

5.D-2 Explain why the baseband signal can still be restored although the low pass
filtering step is skipped.

5.E [WWW]Restore the line ‘EbN0dB_vector =10;’ back to ‘EbN0dB_vector= [1 3 5
7 9];’ and restore the line ‘while sum_Ne<1’ back to ‘while sum_Ne<25’. Execute the
m-file and capture the resulting BER curve.

5.F If all the processes discussed so far have been followed properly, the simulated
BER in 5.E should not match the theoretical BER.

5.F-1 In general, the symbol energy (bit energy in the case of BPSK) should be
measured at the stage right before noise is added. If the signal is processed (e.g., up-
conversion) before noise is added, then the energy per symbol should be recalculated.
The simulated BER curves obtained in 5.E should show that, to achieve the same
BER, the Eb/N0 required is 3 dB (a factor of 2 in linear scale) higher than the
theoretical value. This is caused by the up-conversion process in which tx_signal is
multiplied by carrier_wave. Mathematically explain why the up-conversion process
reduces the symbol energy by a half.

5.F-2 To resolve the above problem, the line ‘carrier_wave = cos(2*pi*3.2*
(1:length(tx_signal))*t_step);’ should be modified into ‘carrier_wave = sqrt(2)*cos
(2*pi*3.2*(1:length(tx_signal))*t_step);’. Explain how this modification resolves the
problem.

5.F-3 Modify the m-file as described in 5.F-2 and execute the modified m-file.
Capture the BER versus Eb/N0 plot.

5.F-4 Also explain why it is unnecessary to multiply local_carrier by sqrt(2) as
done to carrier_wave.

5.G Consider the case where carrier phase synchronization is imperfect. Modify
the line that generates local_carrier as follows.

local_carrier= cos(2*pi*3.2*(1:length(tx_signal))*t_step+pi/4);

This leads to a𝜋∕4 phase error between the transmitted carrier wave (carrier_wave)
and the local carrier (local_carrier).

5.G-1 Execute the modified m-file and capture the BER plot.

238 BER SIMULATION AT THE WAVEFORM LEVEL

5.G-2 Compare the simulated BER curve with the phase error and the theoretical
BER curve that assumes perfect phase synchronization [1]. Measure the SNR gap at
a BER of 10−3, that is, the difference in the required Eb/N0 in dB to achieve a BER
of 10−3 between the two cases.

5.G-3 Mathematically explain the SNR gap measured in 5.G-2.

5.G-4 Calculate the SNR gap if the phase error is 𝜋∕8.

5.G-5 Modify the m-file properly and verify the answer to 5.G-4 in simulation.

5.G-6 Summarize why phase synchronization is essential to ensure a good BER
performance.

REFERENCE

[1] S. Bregni, Synchronization of Digital Telecommunications Networks, Hoboken, NJ: Wiley,
2002.

22
QPSK AND OFFSET QPSK
IN SIMULINK

� Design a passband quadrature phase shift keying (QPSK) transmitter and
receiver in Simulink.

� Obtain bit error rate (BER) curves by using a Simulink design in conjunction
with an m-file.

� Generate an offset QPSK (OQPSK) waveform and investigate its characteristics.
� Observe the eye diagrams, constellation, and the signal trajectories of QPSK

and OQPSK.

22.1 CHARACTERISTICS OF QPSK SIGNALS

A passband QPSK signal (non–pulse-shaped) is expressed as [1]

si(t) =

√
2Es

Ts
cos(𝜔ct − 𝜙i), 0 ≤ t ≤ Ts, i = 1, 2, 3, 4, (22.1)

where Es denotes the symbol energy, Ts denotes the symbol duration, and the phase
𝜙i is determined according to two data bits bI and bQ, which form one 4-ary (or
quaternary) symbol as shown in Table 22.1.

Problem-Based Learning in Communication Systems Using MATLAB and Simulink, First Edition.
Kwonhue Choi and Huaping Liu.
© 2016 The Institute of Electrical and Electronics Engineers, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/choi_problembasedlearning

239

http://www.wiley.com/go/choi_problembasedlearning

240 QPSK AND OFFSET QPSK IN SIMULINK

TABLE 22.1 Phase-Bit Mapping for 4-Ary Symbols.

4-Ary symbol index i bI bQ 𝜙i

1 11 𝜋∕4
2 10 −𝜋∕4
3 01 3𝜋∕4
4 00 −3𝜋∕4

Let the two orthonormal basis functions be 𝜓1(t) =
√

2∕Ts cos(𝜔ct), 𝜓2(t) =√
2∕Ts sin(𝜔ct). The QPSK signal si(t) can be written in terms of the basis func-

tions as

si(t) =
√

Es cos(𝜙i)𝜓1(t) +
√

Es sin(𝜙i)𝜓2(t), i = 1,… , 4. (22.2)

1.A [T]Prove equation (22.2) by using the two methods to be discussed next.

1.A-1 Directly expand equation (22.1) by using the trigonometric identity for
cos(A-B).

1.A-2. Convert si(t) into a point in the two-dimensional (2-D) vector space spanned
by the orthonormal basis functions 𝜓1 (t) and 𝜓2 (t).

(a) The x coordinate of si(t) in the vector space, that is, the projection of si(t) onto
the basis function 𝜓1 (t), is obtained as ∫ Ts

0 si (t)𝜓∗
1 (t) dt. Calculate the (x, y)

coordinates of si(t) in the vector space.
(b) Use the result in (a) to express si(t) as a linear combination of 𝜓1 (t) and 𝜓2 (t).

1.B [T]Substitute the values of 𝜙i in Table 22.1 to equation (22.2) and rewrite s1(t),
s2(t), s3(t), and s4(t).

1.C [T]Consider a 2-D vector space where 𝜓1 (t) is the x axis (called in the in-phase
channel or the I channel) unit vector and 𝜓2 (t) is the y axis (called the quadrature
channel or the Q channel) unit vector.

1.C-1 From the results in 1.A-2(a) and 1.B, determine the (x, y) coordinates of s1(t),
s2(t), s3(t), and s4(t) in the vector space.

1.C-2 Draw the x and y axes of the 2-D space, and in the space, identify the points
corresponding to s1(t), s2(t), s3(t), and s4(t). Also specify the two data bits that
correspond to each point.

1.D [T]In the answer to 1.C-2, read the phase of each symbol point, that is, the angle
of the line from the origin to the symbol point in the 2-D space, and record them. Are
they consistent with the values of 𝜙i listed in Table 22.1?

1.E [T]Generally, an MPSK signal is expressed as si(t) =
√

2Es∕Ts cos(𝜔ct −
2𝜋(i − 1)∕M), i = 1, 2,… , M, where Es denotes the energy per M-ary symbol.

IMPLEMENTATION OF THE QPSK TRANSMITTER 241

1.E-1 For the case of M = 8, calculate the coordinates of each si(t), i = 1,
2,… , 8, in the vector space spanned by 𝜓1(t) and 𝜓2(t). Recall that 𝜓1(t) =√

2∕Ts cos(𝜔ct), 𝜓2(t) =
√

2∕Ts sin(𝜔ct) in this chapter.

1.E-2 Establish the relationship between the M-ary symbol energy Es and bit energy
Eb in an equation.

1.F From 1.B and 1.E-2, we can express si(t) in equation (22.2) as

si(t) = x(t) + y(t), (22.3)

where

x(t) =

{ √
Eb𝜓1(t) if bI = 1,

−
√

Eb𝜓1(t) if bI = 0,
y(t) = ?. (22.4)

Complete the expression marked by ‘?’ in equation (22.4). According to equation
(22.4), x(t) and y(t) can be viewed as follows.

� x(t) is an antipodal (BPSK) signal, which transmits the bit bI using the basis
function 𝜓1(t), that is, the dimension along the x axis.

� y(t) is an antipodal (BPSK) signal that transmits the bit bQ using the basis
function 𝜓2(t), that is, the dimension along the y axis.

Consequently the QPSK signal si(t) can be viewed as the sum of two independent
BPSK signals, one carrying bI and one carrying bQ.

22.2 IMPLEMENTATION OF THE QPSK TRANSMITTER

In this section we design a QPSK modulator that generates si(t) in Simulink. The
main parameters of the modulator are set as follows.

� QPSK symbol duration Ts = 1 second
� Carrier frequency fc(= 𝜔c∕2𝜋) = 30 Hz
� Bit energy Eb = 16
� Number of samples per symbol in passband QPSK waveform = 256

2.A Recall from 1.F that the QPSK signal si(t) is the sum of two orthogonal BPSK
signals, one carrying bI and one carrying bQ. Based on equations (22.3) and (22.4),
design an mdl/slx file for the QPSK transmitter as shown in Fig. 22.1.

2.A-1 Identify the blocks whose outputs correspond to bI, bQ, 𝜓1 (t), 𝜓2 (t), x(t),
y(t), and si(t) in equations (22.3) an (22.4), respectively.

242 QPSK AND OFFSET QPSK IN SIMULINK

Bernoulli
Binary

Bernoulli Binary
Generator

Bernoulli
Binary

Unipolar to
Bipolar

Converter

Unipolar to
Bipolar

Converter

4

Gain

Sine Wave

Sine Wave1

Product

Product1

Scope

++

Gain1

4
Unipolar to

Bipolar
Converter

Unipolar to
Bipolar

Converter1

Bernoulli Binary
Generator1

FIGURE 22.1 QPSK transmitter design.

2.A-2 Set the parameters of the blocks as specified in Table 22.2 and then save
the design file as QPSK_TX_SEC6.mdl/slx. This file will be used again in Sec-
tion 22.6. For the problems in this section, save the design file in a different
name, QPSK_TX.mdl/slx, and use it; leave QPSK_TX_SEC6.mdl/slx untouched until
Section 22.6.

Justify the parameter settings in Table 22.2.

TABLE 22.2 Parameter Settings for the QPSK Transmitter Design in Simulink.

Block Parameter setting Reason

Bernoulli Binary
Generator

Bernoulli Binary
Generator1

Sample time = 1

Output data type =
Boolean

QPSK symbol duration
Ts = 1

To convert into Boolean
type

Bernoulli Binary
Generator

Initial seed = Your student
ID number

Bernoulli Binary
Generator1

Initial seed = Default
setting (do not change)

Unipolar to bipolar
convertor,

Unipolar to bipolar
convertor1

M-ary number = 2

Gain, Gain1 Gain = 4
Amplitude = sqrt(2)

Sine wave, Sine wave1 Frequency (rad) = 60*pi
Sample time =1/256

Sine wave phase = pi/2
Sine wave1 phase = 0

IMPLEMENTATION OF THE QPSK RECEIVER 243

Out1

Out2

Out3

QPSK_TX

Sine Wave Product

Integrate
and Dump

Scope

Integrate
adn Dump

FIGURE 22.2 Correlation step to extract the in-phase component.

2.B In this problem, we create si(t) that consists of 20 QPSK symbols.

2.B-1 Determine the setting of Simulation time to simulate 20 QPSK symbols and
justify the answer.

2.B-2 Run the simulation and capture the Scope display window that shows the
waveforms of bI, bQ, and si(t).

2.C Compare the signal bandwidths of x(t), y(t), and si(t) in equation (22.3). Explain
how si(t) and x(t) as well as y(t) have the same bandwidth even though si(t) carries
two separate information signals x(t) and y(t) without mutual interference.

2.D Create a subsystem for the QPSK modulator as follows.

� Select all blocks except the Scope.
� Right-click in the selected area and choose Create subsystem.
� Change the subsystem name to QPSK_TX.

Capture the mdl/slx design.

22.3 IMPLEMENTATION OF THE QPSK RECEIVER

The Simulink design QPSK_TX completed in Section 22.2 outputs the transmitted
signal QPSK si(t), which is equivalent to the sum of two orthogonal BPSK signals;
the I-channel carries bI and the Q-channel carries bQ, as shown in Section 1.F. In this
section, we design the QPSK receiver that estimates bI and bQ from si(t). Because of
the orthogonality between the I and Q channels, the QPSK receiver is effectively two
BPSK receivers running in parallel.

3.A Fig. 22.2 illustrates the correlation step between si(t) and 𝜓1(t) used to extract
the in-phase component. Complete an mdl/slx file to extract the quadrature compo-
nent. Then complete the whole receiver that will demodulate both the in-phase and
quadrature components.

244 QPSK AND OFFSET QPSK IN SIMULINK

The following notes will help in this design:

� Create the two basis functions 𝜓1 (t) and 𝜓2 (t). The Simulink subsystem
QPSK_TX created in 2.D has two sinusoidal blocks, Sine Wave and Sine Wave1,
that generate the two basis functions. Since the receiver needs the same pair of
basis functions, you can copy these two blocks for the receiver or create them
the new blocks but set their parameters the same as these two blocks.

� The two Product blocks and the two Integrate and dump blocks, one for the
in-phase component and one for the quadrature component, are identical.

3.A-1 The integration interval should be equal to the bit duration. Set the internal
parameter Integration period (Number of samples) of the two Integrate and dump
blocks to 256. Justify this setting.

3.A-2 Complete the design and capture it.

3.A-3 Capture the parameter setting windows of the two sinusoidal blocks and the
two integrate-and-dump blocks.

3.B To verify the operation of the Integrate and dump blocks, connect the input and
output of Integrate and dump for the I channel to the Scope block. Set the simulation
time to 20 seconds and run the simulation.

3.B-1 Capture the display window of the Scope window.

3.B-2 From the results, determine whether the Integrate and dump block operates
as expected. Focus on the overall shape rather than the signal level.

3.C Search for the Compare To Constant block in the library and add it to the mdl/slx
design. To detect the binary bits using the decision variable, connect the output of
Integrate and dump to the input of Compare To Constant. Set the parameters of
Compare To Constant as follows:

� Operator: >
� Constant value: 0

Justify these settings.

3.D Recall that the port Out1 of the transmitter subsystem, QPSK_TX, corresponds
to the I-channel binary data bI. Connect this port as well as the output of Compare To
Constant to the Scope block.

3.D-1 Run the simulation and capture the waveforms of the I-channel binary data
bI (transmitted bit stream) and the corresponding detected bit stream.

3.D-2 The result in 3.D-1 should show that relative to the transmitted waveform,
the detected bit stream is delayed by one bit duration. Justify this.

SNR SETTING, CONSTELLATION DIAGRAM, AND PHASE ERROR 245

Out1

Out2

Out3

QPSK_TX

Sine Wave

Sine Wave1

Product

Integrate
and Dump

Integrate
and Dump

Re

Im
Real-Imag to

Complex

Scope

Constellation
Diagram

Integrate
and Dump

Integrate
and Dump1

Product1

FIGURE 22.3 QPSK receiver design with a constellation diagram scope.

3.E Repeat the modifications to the mdl/slx design made in 3.C and 3.D for the Q
channel; that is, let the output of the Integrate and dump block in the Q channel pass
through Compare To Constant and connect the port Out2 of QPSK_TX as well as the
output of Compare To Constant to the Scope block.

Run the simulation and capture the waveforms of the Q-channel binary data bQ
(transmitted bit stream) and its corresponding detected bit stream.

3.F Like the eye diagram, the constellation diagram [1], which provides a visual
insight on the performance, is also an important diagram for digital communication
systems. In order to observe the constellation diagram of the received QPSK symbols,
modify the mdl/slx file as shown in Fig. 22.3. The major changes are that we have
added the Real-Imag to complex block and the Constellation Diagram block to the
outputs of the Integrate and dump block for both the I and Q channels.

3.F-1 Capture the modified mdl/slx file.

3.F-2 Open the display window of Constellation Diagram and click the Configura-
tion Properties icon in the menu bar. Set the parameter Symbols to display to 1000.
In the mdl/slx design window, set the Simulation stop time to 2000 and run the sim-
ulation. Click the icon named Scale X & Y Axes Limits and then capture the display
window of Constellation Diagram.

22.4 SNR SETTING, CONSTELLATION DIAGRAM,
AND PHASE ERROR

Double-click to open the subsystem QPSK_TX in the mdl/slx file modified in 3.F.
Insert a Gaussian Noise Generator block, connect it as shown in Fig. 22.4, and set
its parameter Sample time to 1/256. If you are using a version that does not have a

246 QPSK AND OFFSET QPSK IN SIMULINK

Bernoulli
Binary

Unipolar to
Bipolar

Converter

Unipolar to
Bipolar

Converter

4

Gain

Gain1

Sine Wave1

Sine Wave

Product

1
Out1

2
Out2

3
Out3

++ ++

Product1

Gaussian Noise
Generator

Gaussian

4
Unipolar to

Bipolar
Converter

Unipolar to
Bipolar

Converter1

Bernoulli Binary
Generator

Bernoulli
Binary

Bernoulli Binary
Generator1

FIGURE 22.4 Model of the received QPSK signal over an AWGN channel.

Gaussian Noise Generator block in the library, then use the completed design file on
the companion website. Now the output port Out3 of QPSK_TX is the received QPSK
signal over an AWGN channel.

4.A The following steps verify the setting of the parameter Variance of the Gaussian
Noise Generator block, assuming Eb/N0 = 13 dB. Document the calculation details.

� Convert Eb/N0 [dB] into the linear scale value.
� Find N0 from Eb/N0 and the current Eb set in the mdl/slx file.
� Substitute N0 into the noise variance setting expression, that is, the variance

of noise sample = N0/(2 × t_step), that was derived in 1.C-3 of Chapter 21
for the waveform level simulation over AWGN channels. The parameter t_step
denotes the sample interval of the sampled waveforms. Thus it is set to be equal
to 1/256 in this chapter.

4.B Set the parameter Variance of the Gaussian Noise Generator block as derived
in 4.A and run the simulation. Capture the display window of Constellation Diagram.
Prior to capturing, select the automatic axis scaling option in the display window
menu.

4.C Repeat 4.A and 4.B for Eb/N0 =1, 15, and 30 dB. Describe the changes in the
constellation diagram according to the SNR setting and justify this change.

4.D In this subsection, we will observe the constellation diagram when there is a
phase error.

4.D-1 Set the parameter Variance of the Gaussian Noise Generator block to 0 to
simulate the noiseless case. Open the parameter setting windows of Sine Wave and

BER SIMULATION IN SIMULINK USING A BUILT-IN FUNCTION sim() 247

FIGURE 22.5 Completed mdl/slx file for QPSK BER simulation.

Sine Wave1 and add pi/4 to the current setting of their parameter Phase (rad). Run
the simulation and capture the display window of Constellation Diagram.

4.D-2 Repeat 4.D-1 for phase errors of 15◦, 30◦, and 60◦, and justify the results
generated in the simulation.

22.5 BER SIMULATION IN SIMULINK USING A BUILT-IN
FUNCTION sim()

Obtaining a statistically meaningful BER in simulation requires simulating a number
of independently generated bits and noise samples. How many bits to be simulated
are sufficient? Over an AWGN channel, at a specific SNR, 10 to 100 times the inverse
of the BER is typically acceptable.

For the systems designed in Simulink, we can simulate the BER curve using the
Error Rate Calculation block and the built-in MATLAB function sim(). The Error
Rate Calculation block can be conveniently used to simulate the BER for each specific
SNR value; the function sim() provides an efficient way to simulate the Simulink
model at different SNR values.

Modify the mdl/slx file in Section 22.4 as follows. Insert two Compare To Constant
blocks as done in 3.C. To calculate the BERs of both channels, insert an Error Rate
Calculation block for each channel. The output ports of the Error Rate Calculation
blocks are configured as follows. These ports are connected to an Add block a Gain
stage and finally a To Workspace block as shown in Fig. 22.5.

5.A Set the parameters of the following blocks:

1. Two Bernoulli Binary Generator blocks in the subsystem QPSK_TX
� Output data type: Boolean (select)

2. Gaussian Noise Generator in the subsystem QPSK_TX
� Variance: v_n
� Sample time: 1/256

3. Two Compare to Constant blocks: As done in 3.C.

248 QPSK AND OFFSET QPSK IN SIMULINK

4. Two Error Rate Calculation blocks:
� Receive delay: 1 (Refer to 3.D-2 for reason.)
� Output data: Port (select)
� Stop simulation: On (enable)
� Target number of errors: Nerrs
� Maximum number of symbols: inf

5. To Workspace
� Variable name: BER
� Limits data points to last: 1
� Save format: Array

6. Gain
� Gain : 1/2 (in order to average I and Q channels)

Capture the parameter setting windows of all the blocks mentioned above.

5.B Set the Simulation stop time to inf and save the completed mdl/slx file as
QPSK_BER.slx (or QPSK_BER.mdl in old Simulink versions).

Capture the completed mdl/slx design. Do not use File/Copy menu because this
method does not capture the window frame, which shows the file name and the
Simulation stop time settings. Instead, click the design window to select it and then
press alt + print screen.

5.C The MATLAB built-in function sim() enables us to simulate an mdl/slx
model within an m-file. In this section we will write an m-file that repeatedly calls
QPSK_BER.slx (QPSK_BER.mdl) to simulate the system BER performance at differ-
ent Eb/N0 values. The parameters not set in 5.A such as v_n and Nerrs will be set
in this m-file. In particular, v_n will be set within each loop when QPSK_BER.slx is
invoked to simulate the BER at a certain Eb/N0.

5.C-1 The m-file below uses function sim() to invoke QPSK_BER.slx/mdl for each
of the following Eb/N0 [dB] values: 0, 1, 3, 5, and 7, and plots the BER versus Eb/N0
curve. Complete the places marked by ‘?’ and capture the completed m-file.

clear
Nerrs=50; %For fast simulation, decrease Nerrs but the simulation error will increase.
EbN0dB_vector=[0 1 3 5 7];
Eb=16;t_step=1/256;
for n=1:length(EbN0dB_vector)

EbN0dB=EbN0dB_vector(n);
EbN0=?; % Convert EbN0dB into the linear scale value.
N0=Eb/EbN0;
v_n= ?; % Set noise variance as a function of N0 and t_step. Refer to the for-

mula in the equation (21.1)
sim(‘QPSK_BER’) % Simulate QPSK_BER.slx/mdl file
BER_vector(n)=BER(1)

PULSE SHAPING AND INSTANTANEOUS SIGNAL AMPLITUDE 249

%‘Error rate calculation’ outputs 3-element array ‘BER’ in the form of [BER, num-
ber of bit errors, number of total bits].

BER_theory(n)=0.5*erfc(sqrt(EbN0));
end
figure
semilogy(EbN0dB_vector, BER_vector) %Plot BER curve.
hold on;
semilogy(EbN0dB_vector, BER_theory,’r’)
legend(‘Simulated’,‘Theory’);grid on; hold off

5.C-2 Execute the completed m-file. The parameter Nerrs denotes the number of
bit errors to be accumulated until simulation stops. Decreasing the value of Nerrs will
speed up the simulation, but insufficient number of bit errors accumulated will result
in statistically nonrepresentative BER results.

(a) Capture the simulated BER curve.
(b) Does the simulated BER curve match the theoretical BER curve of BPSK?

5.C-3 [T]Note that in the m-file in 5.C-1, BER_theory is the theoretical BER of
BPSK. Explain why the simulated BER of QPSK should be identical to the theoretical
BER of BPSK.

5.C-4 In the file QPSK_BER.slx/mdl, modify the phase settings of Sine Wave and
Sine Wave1 to introduce a phase error of pi/6. Save the modified QPSK_BER.slx/mdl
and then execute the m-file in 5.C-1. Capture the simulated BER curve. Repeat the
simulation for a phase error of pi/2.

5.C-5 Complete the following steps.

(a) [T]Derive the theoretical BER of QPSK as a function of the phase error 𝜃.
(b) Modify the line ‘BER_theory(n)=0.5*erfc(sqrt(EbN0));’ of the m-file in 5.C-1

to calculate the theoretical BER of QPSK derived in (a) assuming 𝜃 = pi/6.
(c) Execute the modified m-file and capture the simulated BER curve. Do the

simulated and theoretical BER curves match?

22.6 PULSE SHAPING AND INSTANTANEOUS SIGNAL AMPLITUDE

6.A Open the QPSK_TX.mdl file saved in 2.A-2. Note that the baseband signal
multiplied by the output of Sine Wave becomes the passband signal whose spectrum
is centered at the carrier frequency of 30 Hz. Thus the outputs of Gain and Gain1
correspond to the baseband signals of the I channel and Q channel, respectively. We
investigate the pulse shape of the baseband signals in the current design.

6.A-1 Connect the outputs of Gain and Gain1 to the Scope and run the simulation
for 10 seconds. Capture the display window of Scope.

6.A-2 Based on the captured plot, describe the shape of the current pulse p(t).

250 QPSK AND OFFSET QPSK IN SIMULINK

6.B The rectangular pulse in the time domain corresponds to a sinc function in
the frequency domain. Thus pulse shaping using a rectangular pulse is bandwidth
inefficient. Let us perform the raised cosine pulse shaping.

To this end, insert a Raised cosine Transmit Filter block between the Gain and
Product blocks and another one between the Gain1 and Product1 blocks. Set the
parameters as follows. Note that the parameter names could differ in the different
versions of Simulink.

� Roll-off factor: 0.75
� Output samples per symbol: 256
� Input processing: Element as channels (sample-based)

Capture the modified mdl/slx design.

6.C Let I(t) and Q(t) denote, respectively, the pulse shaped I- and Q-channel signals,
that is, the outputs of the Raised cosine Transmit filter blocks. The passband signal
s(t) is written as

s (t) = I (t)
√

2
Ts
cos

(
𝜔ct

)
+ Q (t)

√
2
Ts
sin

(
𝜔ct

)
=
√

2
Ts

(
I (t)2 + Q (t)2) cos [𝜔ct − tan−1

(
Q(t)
I(t)

)]
.

(22.5)

Note that the instantaneous amplitude of s(t) is
√

2
/

Ts

(
I (t)2 + Q (t)2), and that

the term
√(

I (t)2 + Q (t)2) equals the magnitude of a vector (I(t), Q(t)) on the
X-Y plane. Therefore the fluctuation of the amplitude of s(t) can be predicted by
observing how the magnitude of the vector (I(t), Q(t)) changes as a function of t. The
plot showing the trajectory of the time-varying vector (I(t), Q(t)) is called the “signal
trajectory” plot.

6.C-1 In order to observe the eye diagram of the pulse-shaped baseband signal
I(t) and Q(t), and the signal trajectory of the passband signal s(t), further modify
the mdl/slx file in 6.B as shown in Fig. 22.6. If you are using a version that does
not have the Discrete-Time Signal Trajectory Scope block in the library, then use the
completed design file on the companion website.

Configuration Property setting for the Discrete-Time Signal Trajectory Scope
block: Samples per symbol = 256

Configuration Property setting for the Discrete-Time Eye Diagram block: Samples
per symbol = 256, Symbols per trace = 2.

Capture the modified mdl/slx file and the Configuration Property setting windows
of Discrete-Time Signal Trajectory Scope and Discrete-Time Eye Diagram.

6.C-2 Before observing the signal trajectory and eye diagram, check the waveform
of the pulse-shaped passband QPSK signal s(t). Set the simulation stop time to 18
seconds and execute the simulation.

PULSE SHAPING AND INSTANTANEOUS SIGNAL AMPLITUDE 251

Bernoulli
Binary

Unipolar to
Bipolar

Converter

Unipolar to
Bipolar

Converter

Unipolar to
Bipolar

Converter

Unipolar to
Bipolar

Converter1

4

Gain

4

Gain1

Sine Wave1

Product1

Sine Wave
Scope

Discrete-Time
Signal Trajectory

Scope

Discrete-Time
Eye Diagram

Re

Im
Real-Imag to

Complex

Square root

Square root

Raised Cosine
Transmit Filter

Raised Cosine
Transmit Filter1

Product

++

Bernoulli Binary
Generator

Bernoulli
Binary

Bernoulli Binary
Generator1

FIGURE 22.6 Pulse-shaped QPSK system with signal trajectory and eye diagram observa-
tion blocks.

(a) Right-click the pulse-shaped passband QPSK signal at the bottom of the Scope
display window to autoscale it and then capture it.

(b) Does the amplitude of the signal change substantially?

6.C-3 In order to observe the signal trajectory over a sufficiently long time period,
set the simulation stop time to inf and execute the simulation. Right-click the display
windows of Discrete-Time Signal Trajectory Scope and Discrete-Time Eye Diagram
Scope to autoscale them. After the Autoscale feature is turned on, capture the display
windows of Discrete-Time Signal Trajectory Scope and Discrete-Time Eye Diagram
Scope.

6.C-4 Based on the captured signal trajectory plot,

(a) Describe how significantly the instantaneous amplitude
√

I (t)2 + Q (t)2

changes.
(b) In the captured eye diagrams of I(t) and Q(t), find the time instants when

the signal trajectory of
√

I (t)2 + Q (t)2 crosses the origin. Are these instants
occurring at the maximum eye-opening points or occurring at the middle
between the maximum eye-opening points?

6.D Here we investigate the reason that causes the zero instantaneous amplitude of
s(t) to occur at the middle of two adjacent maximum eye-opening points.

6.D-1 Focus on the time instants when the signal trajectory crosses the origin. At
these time instants, the signal trajectory moves from which quadrant and into which
quadrant?

6.D-2 Write all possible QPSK bit pair (bI, bQ) transitions that cause the signal
trajectory to cross the origin.

252 QPSK AND OFFSET QPSK IN SIMULINK

22.7 OFFSET QPSK

7.A If the instantaneous amplitude of the transmitted signal fluctuates over a wide
range, then the linear operation range of the analog circuits (especially the power
amplifier) should be large accordingly. This is not desirable in terms of hardware
cost and power efficiency. The fluctuation of the instantaneous amplitude of the
transmitted pulsed-shaped QPSK signals can be reduced by simply modifying one of
the QPSK signal generation steps above.

In the mdl/slx design in 6.C-1, insert a Delay block between the pulse-shaping
filter and the product block (Product1) in the Q channel only (or the I channel only)
as shown in Fig. 22.7. Set Delay Length of the Delay block to 128, which corresponds
to half of the QPSK symbol period. The resulting signal s(t) is called the “Offset
QPSK (OQPSK signal)” [1, 2].

7.A-1 Complete the mdl file as shown in Fig. 22.7 and run the simulation.

(a) Capture the signal trajectory.
(b) Compare the signal trajectories of OQPSK and the conventional QPSK signals.

Examine both the regular QPSK and the OQPSK signals and then discuss how
you expect the instantaneous amplitudes of both signals to change. Which one
will likely change over a smaller range?

7.A-2 (a) Capture the eye diagram. (b) The half a symbol delay in the OQPSK trans-
mitter places the maximum eye-opening points of the I and Q channels maximally
apart from each other. Explain how this characteristic reduces the amplitude fluctua-
tion of the OQPSK signals. In other words, how does this avoid the simultaneous bit
pair transition?

Bernoulli
Binary

Unipolar to
Bipolar

Converter

Unipolar to
Bipolar

Converter

Unipolar to
Bipolar

Converter

Unipolar to
Bipolar

Converter1

4

Gain

4

Gain1

Sine Wave1

Product1

Sine Wave
Scope

Discrete-Time
Signal Trajectory

Scope

Discrete-Time
Eye Diagram

Re

Im

Real-Imag to
Complex

Square root

Square root

Delay

Z
–128

Raised Cosine
Transmit Filter

Raised Cosine
Transmit Filter1

Product

++

Bernoulli Binary
Generator

Bernoulli
Binary

Bernoulli Binary
Generator1

FIGURE 22.7 Offset QPSK transmitter.

REFERENCES 253

7.B Set the simulation stop time to 18 seconds and run the simulation again.

7.B-1 (a) Capture the display window of the Scope block. (b) Does the instantaneous
amplitude change of OQPSK verify your observations made in 7.A-1?

7.B-2 Compare the captured waveform in 7.B-1 with the result captured in 6.C-2.

REFERENCES

[1] J. Proakis, Digital Communications, 3rd ed., New York: McGraw-Hill, 1995.

[2] S. Pasupathy, “Minimum Shift Keying: A Spectrally Efficient Modulation,” IEEE Com-
munications Magazine, Vol. 17, No. 4, 1979, pp. 14–22.

23
QUADRATURE AMPLITUDE
MODULATION IN SIMULINK

� Design the quadrature amplitude modulation (QAM) transmitter and receiver
in Simulink and obtain the bit error rate (BER) graphs through simulation.

� Compare the BER graphs obtained through simulation with the theoretical BER.
� Convert the pulse-shaped QAM signal into an electrical signal and observe the

signal trajectory using an oscilloscope.

23.1 CHECKING THE BIT MAPPING OF SIMULINK QAM
MODULATOR

The block Rectangular QAM Modulator Baseband provided in Simulink takes the
input of a row vector composed of log2M bits and outputs the two-dimensional
coordinates of QAM symbols in the two-dimensional vector space [1].

1.A In order to check the mapped points of four data bits in the vector space of
16-QAM, let us design a test system as shown in Fig. 23.1.

Set the parameters of the three blocks as follows.

1. Constant
� Constant value: [0 0 0 0]’ (Be sure to include the transposition operation.)
� Interpret vector parameters as 1-D: Uncheck
� Sampling mode: Frame based
� Frame period: 1

Problem-Based Learning in Communication Systems Using MATLAB and Simulink, First Edition.
Kwonhue Choi and Huaping Liu.
© 2016 The Institute of Electrical and Electronics Engineers, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/choi_problembasedlearning

254

http://www.wiley.com/go/choi_problembasedlearning

CHECKING THE BIT MAPPING OF SIMULINK QAM MODULATOR 255

[4×1]

Constant

Rectangular

16-QAM
qamsymbol

To Workspace
Rectangular QAM

Modulator

Baseband

FIGURE 23.1 Test system for checking the 16-QAM bit mapping.

2. Rectangular QAM Modulator Baseband
� Input type: Bit
� M-ary number: 16

3. To Workspace
� Variable name: qamsymbol
� Decimation: 1
� Save format: Array

Capture the parameter setting windows of each block.

1.B Set Simulation time stop time to 0.5 seconds and run the simulation. This
will generate the QAM-modulated symbol (MATLAB variable: qamsymbol) in the
MATLAB work space.

1.B-1 Execute the following line in the command window and record the result.

>>qamsymbol

1.B-2 For every four bits set in the parameter Constant value of the Constant block,
a complex qamsymbol will be generated in the work space after the simulation. Assign
the 16 combinations of the 4-bit streams from [0 0 0 0]’ to [1 1 1 1]’ to the parameter
Constant value of the Constant block one by one, execute the simulation for each
combination, and record the value of qamsymbol. Note that since column vectors are
required, you must be sure to transpose the 4-bit vector (to make it a column vector)
for setting Constant value of the Constant block.

1.B-3 (a) Based on the results in 1.B-2, record the corresponding 4 bits on each of
the constellation points in Fig. 23.2, for example, 0000 for point (−3.3). (b) Click View
Constellation in the parameter window of the Rectangular QAM Modulator Baseband
block. Is it the same as your mapping in (a)?

1.B-4 [T]The energy of each QAM symbol in the constellation equals the square of
the distance between the point and the origin. For example, the energy of the symbol
corresponding to the 0000 bit stream is 32 + 32 = 18. So the symbol energy might
vary depending on its location in the constellation.

(a) Determine the symbol energy of each of the 16 symbols and calculate the
average symbol energy of 16-QAM Es.

256 QUADRATURE AMPLITUDE MODULATION IN SIMULINK

2(t)ψ

1(t)ψ

3

1

1−

3−

311−3−

FIGURE 23.2 Bit mapping of the Rectangular QAM block.

(b) The theoretical average symbol energy formula for QAM with lattice distance
of 2 is given as Es = 2(M-1)/3. Compare the result in (a) with the theoretical
average symbol energy.

1.B-5 (a) Write the relationship between bit energy Eb and M-ary symbol energy
Es. (b) By using this relationship, show that the bit energy Eb of 16-QAM with a
constellation as shown in Fig. 23.2 is equal to 2.5.

1.B-6 The mapping confirmed in 1.B-3 is called “Gray mapping” [1,2]. Summarize
the general conditions of Gray mapping and the advantages of Gray mapping.

1.C A QAM signal received through an AWGN channel can be converted into a
point in the 2-D vector space as shown in Fig. 23.2. Let (z1, z2) denote the point
(coordinate) of the received signal. Because of the Gaussian noise, (z1, z2) will not
fall exactly on one of 16 constellation points in Fig. 23.2, and both z1 and z2 can be
any real values in the range of [−∞∞].

In this subsection, we estimate the four transmitted bits using MLD on the received
signal vector (z1, z2).

1.C-1 For 16-QAM, MLD is equivalent to calculating the distance between (z1, z2)
and each of the 16 constellation points, and the one closest to (z1, z2) is chosen as
the estimated transmitted symbol. For rectangular QAM like the one in Fig. 23.2,
the estimate can be done by comparing each of the values of z1 and z2 with a set of
thresholds.

For example, with 16-QAM, if z1 is positive, then the estimated transmitted symbol
for (z1, z2) will be one of the eight points in the first and fourth quadrants. Because of
the mapping structure, the first bit (MSB) of these eight constellation points is always
‘1’. Thus the first bit can be estimated as ‘1’ without having to determine which of the
eight constellation points is closest to the received symbol.

CHECKING THE BIT MAPPING OF SIMULINK QAM MODULATOR 257

TABLE 23.1 Decision Boundaries of 16-QAM With Gray Mapping.

Data bit Decision condition

b4 IF z1>0 b4_estimate= 1, ELSE b4_estimate= 0.
b3
b2
b1

Simple decision rules can be formulated for the other three data bits in a similar
way. Complete the decision rules to estimate the four transmitted bits from (z1, z2) and
record them in Table 23.1, in which the four data bits are denoted as b4, b3, b2,
and b1 in the order from MSB to LSB, and b4_estimate, b3_estimate, b2_estimate,
and b1_esimate denote their estimates.

1.C-2 From the table completed in 1.C-1, explain whether or not calculating the
actual distance for MLD is required.

1.D [T, A]Derivation of the BER of 16-QAM as a function of Eb/N0. For simplicity,
let 𝛾 represent Eb/N0.

1.D-1 Substitute Eb (which equals 2.5 as obtained in 1.B-5) into the equation
Eb∕N0 = 𝛾 and then express N0 as a function of 𝛾 .

1.D-2 With white Gaussian noise added to the signal component, z1 follows the
Gaussian distribution with variance N0/2 and mean equaling the real part of the
corresponding constellation point in Fig. 23.2. Similarly, z2 also follows the Gaus-
sian distribution with variance N0/2 and mean equaling the imaginary part of the
corresponding constellation point.

Consider the example that 0000 are transmitted. Then z1 becomes a Gaussian
random variable with a mean −3 and variance N0/2. From this distribution of z1 and
using the Q function, express the error probability of b4, that is, the probability that
b4_estimate is different from b4, according to the decision rules given in Table 23.1.
For the considered example that 0000 are transmitted, the error probability of b4 is
the probability that b4_estimate is equal to 1 since b4 is 0.

Repeat this process to obtain the error probability of b4 for the other 15 constel-
lation points. Then derive an expression of the average BER of b4.

1.D-3 Similarly, derive the BER expressions for b3, b2, and b1, also using the
Q-function.

1.D-4 Are the BERs of b4, b3, b2, and b1 identical? If not, compare these BER
values and explain why.

1.D-5 Derive the average BER expression of b4, b3, b2, and b1 as a function of
only 𝛾 . Make sure that the answer to 1.D-1, which established N0 as a function of 𝛾 ,
is applied in the average BER expression, if this has not been done yet.

258 QUADRATURE AMPLITUDE MODULATION IN SIMULINK

1.D-6 The MATLAB function berawgn() can be used to calculate the theoretical
BER of various modulation and demodulation methods. Execute the following lines
of code to calculate the BER of 16-QAM assuming 𝛾 = 10. Compare the result with
the value calculated from the answer to 1.D-5.

>> EbN0=10;

>> EbN0dB=10*log10(EbN0);

>> berawgn(EbN0dB,’qam’,16,’gray’);

23.2 RECEIVED QAM SIGNAL IN AWGN

2.A Design a Simulink block as shown in Fig. 23.3. You can search and import
each block by typing in the block name in the Simulink library browser. Capture the
completed design.

2.B Set all the parameters of each block as follows. Attention should be paid to
Sample time.

1. Bernoulli Binary Generator
� Initial seed: Your student ID number
� Sample time: 1
� Frame-based outputs: Check the box.
� Samples per frame: 4
� Output data type: Boolean

2. Frame Conversion
� Sampling mode of output signal: Sample-based

Bernoulli

Binary

Bernoulli Binary

Generator

To

Sample

Frame

Conversion

Rectangular

16-QAM

Rectangular QAM

Modulator

Baseband

Sine Wave

Sine Wave1

Product

Product1

Add

Gaussian

Gaussian Noise

Generator

Unbuffer

Add1

Re

Im

Complex to

Real-Imag

FIGURE 23.3 Block diagram of 16QAM_AWGN for generating the received QAM signal
over an AWGN channel.

RECEIVED QAM SIGNAL IN AWGN 259

3. Rectangular QAM Modulator Baseband
� Input type: Bit
� M-ary number: 16

4. Sine Wave
� Amplitude: sqrt(2)
� Frequency (rad/s): 2*pi*20
� Phase (rad): pi/2
� Sample time: 1/100

5. Sine Wave1
� Amplitude: sqrt(2)
� Frequency (rad/s): 2*pi*20
� Phase (rad): 0
� Sample time: 1/100

6. Gaussian Noise Generator
� Variance (vector or matrix): 0
� Sample time: 1/100

2.B-1 Capture the parameter setting windows of each block.

2.B-2 In the menu of the design window in 2.A, select Edit/Select all to select all
the blocks in the design. Then left-click the selected blocks and choose Edit/Create
subsystem to create a subsystem. Change the name of the created subsystem into
16QAM_AWGN. Capture the subsystem 16QAM_AWGN.

2.C Make sure that the Out1 port of 16QAM_AWGN is the sum of the passband
QAM signal and AWGN, and Out2 port of 16QAM_AWGN is the four data bits of the
QAM signal.

2.C-1 Double-click the subsystem 16QAM_AWGN to open it. Import a Scope block
and connect the two outputs of the Complex to Real-Imag block to the Scope block
and run the simulation for 50 seconds. Capture the Scope display window.

2.C-2 Based on the block parameters set in 2.B for the 16QAM_AWGN block, what
is the carrier frequency of the passband QAM signal at Out1 port?

2.C-3 Based on the block parameters set in 2.B for the 16QAM_AWGN block,
explain why the in-phase basis function 𝜓1(t) and quadrature basis function 𝜓2(t)
used for generating the passband QAM signal at Out1 port are expressed 𝜓1(t) =√

2 cos(2𝜋 × 20t), 𝜓2(t) =
√

2 sin(2𝜋 × 20t), respectively.

2.C-4 Consider the example that the first four data bits are 0110, that is, the output
of the Bernoulli Binary generator block inside the 16QAM_AWGN block is 0110, and
assume that there is no noise. Then the passband QAM waveform r(t) at Out1 port is
expressed as r(t) = −𝜓1(t) − 3𝜓2(t). Justify this.

260 QUADRATURE AMPLITUDE MODULATION IN SIMULINK

23.3 DESIGN OF QAM DEMODULATOR

3.A Let r(t) represent the signal at the Out1 port of the 16QAM_AWGN block.
Complete the following equations that generate z1 and z2, the real and imaginary
components of the nth received QAM symbol:

z1 = ∫
nT

(n−1)T
r(t) × 𝜓1(t)dt, z2 = ∫

nT

(n−1)T
? × ?dt. (23.1)

3.B Design a Simulink file (mdl/slx file) to generate z1 and z2 from r(t); that is,
implement (23.1) in a Simulink design. Some useful guides for this implementation:

1. The basis functions 𝜓1(t) and 𝜓2(t) can be generated the same way as the ones
generated in 16QAM_AWGN.

2. The integration over one symbol period can be implemented using the Integrate
and dump block. But the following settings are critical:
� Set the internal variable Integration period of the Integrate and dump block

to the number of samples per 16-ary symbol (=100).
� The output of the Integrate and dump block should be multiplied by the sam-

ple interval (=1/100). This is similar to the numerical integration discussed
in Section 2.1 of Chapter 2, in which sum() should be multiplied by t_step.

3. Fig. 23.4 shows the design to generate z1.

3.B-1 Complete the Simulink file that generates z1 and z2 from r(t). Capture the
completed design window.

3.B-2 Add the following two blocks in Fig. 23.5 on the right-hand side of the design
in 3.B-1 and connect the generated z1 and z2, respectively, to the Re and Im ports of
the Real-Imag to Complex block. In the configuration parameters of the Constellation
Diagram block, set the parameter Symbols to display to 1000. Set the Simulation stop
time to inf and run the simulation. You may stop the simulation after the constellation
diagram has converged properly. Click the icon named Scale X & Y Axes Limits and
then capture the Constellation Diagram.

3.B-3 Judged from visual inspection of the constellation diagram obtained in 3.B-2,
have z1 and z2 been generated correctly?

Sine Wave

Out1

Out2

16QAM_AWGN

Product

Integrate

and Dump

Integrate

and Dump

1/100

Gain

FIGURE 23.4 Part of the design that generates z1.

DESIGN OF QAM DEMODULATOR 261

Re

Im

Real-Imag to

Complex Constellation

Diagram

FIGURE 23.5 Connection for the Constellation diagram block.

3.B-4 Set the parameter Variance (vector or matrix) of the Gaussian Noise
Generator block inside the 16QAM_AWGN block to 10 and run the simulation again.
Capture the constellation diagram.

3.B-5 Change the frequency of the two Sine Wave (I, Q basis) blocks used for gener-
ating z1 and z2 to 2*pi*20.00001 rad/s and run the simulation. Capture the constellation
diagram.

3.B-6 With the current parameter settings, does the frequency error or the noise
variance degrade more the BER performance? Explain the reason.

3.B-7 From the answers in B-5 and B-6, explain why QAM signals require coherent
detection.

3.C In the design completed in 3.B-1, add the part that generates the estimates of b4,
b3, b2, and b1 denoted by b4_estimate, b3_estimate, b2_estimate, and b1_esimate,
respectively. Apply the decision rules established in Table 23.1 to z1 and z2. Fig. 23.6
shows the incomplete design that generates only b4_estimate. Complete the remain-
ing part to generate b3_estimate, b2_estimate, and b1_esimate. Properly use the abs
and compare to constant blocks. Capture the completed design.

3.D To convert the estimated bits b4, b3, b2, and b1 that each 16-QAM symbol
represents into a serial bit sequence, connect the related blocks as shown in Fig. 23.7.
To this end, go through the following steps.

1. Select the demodulation part, that is, all the blocks added in 3.B-1 and 3.C, and
create a subsystem.

2. Add all the other required blocks as shown in Fig. 23.7.

Sine Wave

Out1

Out2

16QAM_AWGN

Product

Integrate

and Dump

Integrate

and Dump

1/100

Gain

Abs

> 0

Compare

To Constant1

b4_estimate

b3_estimate

b2_estimate

b1_estimate

⎪u⎪

FIGURE 23.6 Incomplete design that detects only b4.

262 QUADRATURE AMPLITUDE MODULATION IN SIMULINK

Out1

Out1

Out2
In1

Out3

Out4

Subsystem

Counter

Limited

1

z

Unit Delay

1

z

Unit Delay1

1

2

3

Multiport

Switch

Scope
∗,

u + 1

Bias

Out2

16QAM_AWGN

FIGURE 23.7 System that compares the transmitted bits with the estimated bits.

3. Set the following parameters:
� Upper limit of the Counter Limited block: 3
� Bias of the Bias block: 1
� Number of data ports in the Multiport Switch block: 4
� Sample time of the two Unit Delay blocks: 1

Capture the competed design.

3.E In the design completed in 3.D, make sure that the Variance of the Gaussian
Noise Generator block inside the 16QAM_AWGN block is set to 0, and the frequency of
the two Sine Wave (I and Q basis functions) blocks inside the demodulation subsystem
is set to 2*pi*20 rad/s.

Set the Simulation time to 50 and set the variable Initial Seed of the Bernoulli
Binary Generator block inside the 16QAM_AWGN block to your student ID. Run the
simulation and capture the display window of the Scope block.

3.F Are the transmitted and received bits identical?

23.4 BER SIMULATION

In this section we simulate the BER performance of 16-QAM using a method similar
to the one used in Chapter 22: employing a combination of a Simulink design and a
MATLAB script file.

4.A We start the simulation for a fixed Eb/N0 and take Eb/N0= 10 dB as a test case.
Continue the following steps to calculate the variance of the noise samples, that is,
the value for the parameter Variance of the Gaussian Noise Generator block inside
the 16QAM_AWGN block, and set Eb/N0 = 10 dB.

4.A-1 Convert this Eb/N0 value in [dB] to a value in linear scale.

4.A-2 Use the answers to 4.A-1 and 1.B-5 to determine the value of N0.

BER SIMULATION 263

FIGURE 23.8 BER simulation-ready Simulink design.

4.A-3 In the simulations in Chapter 21, the sampled versions of the signal and noise
waveforms with an interval t_step were used. Thus the variance of the noise samples
should be calculated as

Variance of the noise samples = N0∕(2 ∗ t step). (23.2)

The details of this relationship can be found in 1.A–1.D of Chapter 21.
In the Simulink design of this chapter, the noise sampling interval (i.e., sample

time of 16QAM_AWGN/Gaussian Noise Generator) is set to 1/100; thus, t_step=
1/100. The parameter Variance of 16QAM_AWGN/Gaussian Noise Generator can be
found by substituting t_step and the calculated value of N0 in 4.A-2 into equation
(23.2). Show that the value for the Variance of Gaussian Noise Generator is 12.5.

4.B Fig. 23.8 shows the final Simulink design, which is nearly ready for BER
simulation in conjunction with an m-file except the settings of some parameters as
follows.

1. Set Simulation stop time to inf and remove all Scope blocks if any (e.g.,
waveform, eye diagram, constellation), which are irrelevant to BER simulation.

2. Set the Variance of Gaussian Noise Generator inside the subsystem
16QAM_AWGN as
� Variance (vector or matrix): v_n (The variable v_n will be set in the m-file

later.)

3. Set the parameters of Error Rate Calculation block as follows:
� Stop simulation: Check (select)
� Output data: Workspace.

4. Save the modified design as QAM_BER.mdl/slx.

4.B-1 Capture the completed design file QAM_BER.mdl/slx.

4.B-2 Execute the following line in the command window. The number 12.5 corre-
sponds to the value of the Variance of 16QAM_AWGN/Gaussian Noise Generator to
set Eb/N0 = 10. Refer to 4.A-3.

264 QUADRATURE AMPLITUDE MODULATION IN SIMULINK

>> v_n=12.5

Then run the simulation using QAM_BER.mdl/slx. After the simulation is finished,
the Error Rate Calculation block returns a vector ErrorVec whose first element cor-
responds to the simulated BER. Execute ErrorVec(1) in the command window and
capture the simulated BER.

4.C Compare the simulated BER with the theoretical BER of 16-QAM (derived in
1.D-5).

4.D The m-file below simulates the BER curve of 16 QAM in conjunction with the
Simulink design QAM_BER.mdl/slx.

clear

EbN0dB_vector=2:2:12;

Eb=?; %Answer to 1.B-5

t_step=1/100; % Sample time of ‘out1’ port in ‘16QAM_AWGN’ block which is also

same as the noise sample interval.

for n=1:length(EbN0dB_vector)

EbN0dB=EbN0dB_vector(n);

EbN0=?; % Convert EbN0dB [dB] into a value in linear scale.

N0=Eb/EbN0; % Calculate N0 value

v_n=?; % Variance setting. Refer to (23.2)

sim(’QAM_BER’) % Execute QAM_BER.mdl/slx file
BER_vector(n)=ErrorVec(1) %BER of workspace is saved as a vector.

end

figure

semilogy(EbN0dB_vector , BER_vector) %Plot the BER as the function of Eb/N0[dB]

BER_theory=berawgn(EbN0dB_vector,‘qam’,16,‘gray’);

hold on

semilogy(EbN0dB_vector,BER_therory,‘r’)

grid on; xlabel(‘EbN0 [dB]’);ylabel(‘BER’);legend(‘Simulated’,’Theory’);

4.D-1 Complete the places marked by ‘?’ in the m-file and capture the completed
m-file.

4.D-2 Execute the m-file and capture the simulated BER curve. Does the simulated
BER match the theoretical result?

4.D-3 Insert a Gain block between 16QAM_AWGN and the demodulator subsystem,
and set Gain to 10. Then execute a following line in the command window to set
Eb/N0 to infinity.

BER SIMULATION 265

>> v_n=0

Run the simulation using QAM_BER.mdl/slx first. Then execute a following line
of command in the command window to see the simulated BER.

>> ErrorVec(1)

(a) Capture the simulated BER result. Justify why the BER is not 0 even though
Eb/N0 is set to infinity.

(b) Note that the simulated BER is approximately equal to 1/4. This is because
the decision rule in Table 23.1 should be adjusted according to the received
signal scaling factor but it was not. Explain why the current decision rule in
Table 23.1 results in a BER equal to 1/4, not 1/2, which is the worst_case
BER.

(c) In order to obtain the correct BER while the received signal is scaled by a
factor of 10, the parameters of which blocks of QAM_BER.mdl/slx should
be modified and to what values? Just provide the answers but do not modify
these parameters in the mdl/slx file.

(d) In contrast to the QAM system, in the QPSK system, even if the received signal
is scaled, the detection thresholds do not need to be adjusted accordingly.
Justify this.

4.D-4 Summarize the disadvantages of M-ary QAM (M > 4) over QPSK in terms
of receiver complexity and signal processing overhead.

4.E In the Simulink Library Brower, search for the Spectrum Analyzer block in the
DSP System Toolbox. To see the spectrum of 16QAM signals, connect the Spectrum
Analyzer to the Out1 port of the 16QAM_AWGN block in the design file.

4.E-1 Execute the mdl file and stop the simulation when the spectrum appears
properly. (a) Capture the spectrum displayed in the window. (b) Record the passband
center frequency. Comment on whether or not it is what you expected.

4.E-2 Zoom into the main lobe of the passband signal in the positive frequency
range and measure the 20-dB bandwidth. For accurate measurement, zoom into the
range of 18 Hz to 22 Hz along the x axis. (a) Capture the zoomed-in window. (b)
Measure and record the 20-dB bandwidth of the main lobe. Is the measured bandwidth
equal to the theoretical bandwidth?

4.F In this problem we analyze the trade-off between bandwidth and BER perfor-
mance for a given modulation order M in QAM systems.

4.F-1 Examine again the BER graph of QPSK (equivalent to 4-QAM) obtained in
Chapter 22. Compare the BER performances between 4-QAM and 16-QAM. Explain
why there is a performance gap in terms of the required Eb/N0 to achieve the same
BER.

266 QUADRATURE AMPLITUDE MODULATION IN SIMULINK

4.F-2 [T]Assuming pulse shaping with a roll-off factor of 0, data bit rate Rb, and
QAM alphabet size M, show that the QAM symbol rate is Rs = Rb /log2M and the
passband bandwidth is B = Rb/(2 log2M).

4.F-3 [T]The bandwidth efficiency is defined as [1]:

Bandwidth efficiency = Data bit rate
Bandwidth

=
Rb[bits∕s]

B[Hz]
. (23.3)

Calculate and compare the bandwidth efficiencies of QPSK (=4-QAM), 16-QAM,
and 64-QAM.

4.F-4 Explain how bandwidth efficiency and BER performance change (degrade or
improve) depending on the QAM constellation size M.

23.5 OBSERVING QAM SIGNAL TRAJECTORY USING
AN OSCILLOSCOPE

5.A [T]The baseband signal in the 16QAM_AWGN block refers to the signals right
before the mixer, that is, the two outputs of the Complex to Real-Imag block. Connect
the I and Q components of the baseband signals to the Scope blocks and observe
their waveforms. Based on the waveforms observed, write an expression of the pulse
shape of the baseband signal p(t).

5.B [T]The pulse in 5.A is not suitable for practical systems. Why?

5.C Download the m-file tx_sig_QAM.m from the companion website to your work
folder. This file generates the baseband I and Q signals of an M-ary QAM signal
and plays the baseband I and Q signals as a stereo audio signal. The vector vari-
ables tx_signal_I and tx_signal_Q in the m-file correspond to the I and Q signals,
respectively. Note that the pulses used to generate tx_signal_I and tx_signal_Q are a
raised-cosine pulse.

For the lines in bold, explain what the variables on the left-hand side represent
and justify how the right-hand side expression is properly formulated accordingly.

clear

a=1; b=1;

M=16;Ts=1;L=16;

t_step=Ts/L;

%%%%%%%%%<1. Pulse waveform generation>%%%%%%%%%%%%%%%%%

pt=rcosine(1,L,‘normal’,0.75);

%%%%%%%%%<2. Generation of Ns number of M-ary symbols >%%%%%%%%%

OBSERVING QAM SIGNAL TRAJECTORY USING AN OSCILLOSCOPE 267

Ns=5000;

dI=2*ceil(rand(1,Ns).̂ a*sqrt(M))-(sqrt(M)+1);%Ns is the number of M-ary data symbols

dQ=2*ceil(rand(1,Ns).̂ b*sqrt(M))-(sqrt(M)+1);

%%%%%%%%<3. Impulse modulation>%%%%%%%%%%%%%%%%%%%%%%

impulse_modulated_I=[];

impulse_modulated_Q=[];

for n=1:Ns

impulse_signal_I=[dI(n) zeros(1, L-1)];
impulse_modulated_I=[impulse_modulated_I impulse_signal_I];
impulse_signal_Q=[dQ(n) zeros(1, L-1)];

impulse_modulated_Q=[impulse_modulated_Q impulse_signal_Q];

end

%%%%%%%%<4.Pulse shaping (Transmitter filtering)>%%%%%%%%%%

tx_signal_I=conv(impulse_modulated_I, pt);
tx_signal_Q=conv(impulse_modulated_Q, pt);

signal_out=[tx_signal_I’ tx_signal_Q’]’;

n=10;

Nrepeat=n*4;

for k=1:Nrepeat %Output repeated for Nrepeat times

soundsc(signal_out’,8000*n);

%Sample rate is 8000*n Hz, Symbol rate is 8000*n/L Hz

done=k

end

5.D Here we go through the following steps to see the signal trajectory of QAM in
an oscilloscope.

Step 1. Similar to the procedure of observing the eye diagram with an oscilloscope
in Section 20.4 of Chapter 20, connect the stereo (left/right) audio output
signals of a PC to the two probing ports of the oscilloscope (left channel to
port A and right channel to port B). You may reuse the audio cable made
for experiments in Section 20.4 of Chapter 20.

Step 2. Set the display mode of the oscilloscope to XY plot and adjust the shift
dial of A and B ports to place the curser in the center of the screen.

Step 3. Set the PC audio volume to maximum and execute the m-file
tx_sig_QAM.m. Then the pulse-shaped I and Q signals will appear in
the oscilloscope as shown in Fig. 23.9. You may need to adjust the scale
of the amplitude of A and B ports to observe the signal shape clearly. Be
sure to set the same amplitude for both A and B ports.

5.D-1 Repeat Step 3 above for each of the following values of M: 4, 16, and 64
(change the value of M in the m-file tx_sig_QAM.m). Capture the oscilloscope screens
for each case.

268 QUADRATURE AMPLITUDE MODULATION IN SIMULINK

FIGURE 23.9 Illustration of the signal trajectory observed in an oscilloscope.

5.D-2 For M =16, capture the oscilloscope screens when the roll-off factor is set to
0, 0.5, and 1.

5.D-3 Replace the second line of the m-file tx_sig_QAM.m by the two lines below.
Then repeat 5.D-1 with the roll-off factor set to 0.7 and capture the resulting screen.

a=0.5+0.015*XX; % XX=Last 2 digits of your student ID number.

b=1/a;

5.E Analyze the captured signal trajectory results in 5.D-1, 5.D-2, and 5.D-3.

5.E-1 From the result in 5.D-1, describe the difference in the signal trajectories
according to M and justify what you observe.

5.E-2 From the result in 5.D-2, describe the difference in the signal trajectories
according to the roll-off factor and justify what you observe.

5.E-3 [A]From the result in 5.D-3, describe the difference in the signal trajectories
according to a and b, and justify what you observe.

REFERENCES

[1] J. Proakis, Digital Communications, 3rd ed., New York: McGraw-Hill, 1995.

[2] F. Gray, Pulse communication, US Patent 2,632,058.

24
CONVOLUTIONAL CODE

� Implement the encoding and decoding algorithms of convolutional codes [1–4].
� Simulate the bit error rate (BER) of convolutional codes.
� Observe the changes in the coded BER according to the parameter of the

convolutional code.

24.1 ENCODING ALGORITHM

1.A Review 4.A and 4.B of Chapter 1 and solve the problems in these sections
again to get refreshed on creating a used-defined MATLAB function.

1.B [T]Fig. 24.1 shows the structure of the convolutional encoder considered in this
section. The variable m(k) denotes the kth input data bit and the pair (u1(k), u2(k))
denotes the kth encoded bit pair; that is, if m(1), m(2), m(3),… are the encoder input
bits, then the encoder outputs u1(1), u2(1), u1(2), u2(2), u1(3), u2(3),… in order.

1.B-1 Determine the code rate [1–4] of the encoder shown in Fig. 24.1.

1.B-2 Determine the constraint length [2–4] of the encoder shown in Fig. 24.1.

1.B-3 Create a 5-bit vector m randomly in the MATLAB command window as
shown below and capture the result. Do not clear the vector m created since it will be
used in 1.C.

Problem-Based Learning in Communication Systems Using MATLAB and Simulink, First Edition.
Kwonhue Choi and Huaping Liu.
© 2016 The Institute of Electrical and Electronics Engineers, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/choi_problembasedlearning

269

http://www.wiley.com/go/choi_problembasedlearning

270 CONVOLUTIONAL CODE

m(k)
D(1) D(2) D(3)

u1(k)

u2(k)

+

+

+ = modulo 2 addition (XOR)

FIGURE 24.1 Convolutional code considered.

>>rand(1,XXX); %XXX=the last three digits of your student ID.
>>m=(rand(1,5)>0.5) %Do not append ‘;’ to display the result. Alternatively, you may

use m=randi([0 1],1,5) .

1.B-4 Suppose that the data vector m created in 1.B-3 is passed to the input of the
encoder that is in the all-zero initial state. Manually encode m and record the encoder
output bit sequence.

1.C [WWW]The following user-defined MATLAB function implements the encoder
in Fig. 24.1. Executing enc(m) for any input bit stream m will return the corresponding
encoding result.

% Save the m-file as same as the function name, i.e., save it as enc.m.
function coded = enc(data_bit)
Nb=length(data_bit);
D=zeros(1,3); % Initialize the states.
coded=[];
for n=1:Nb % n = clock index. Since one bit comes in at each clock period, Nb clock

periods will be required.
D(1)=data_bit(n);
%%%%%%%output (u1, u2) generation logic part %%%%%%
u1=xor(D(1),D(3));
u2=xor(xor(D(1),D(2)),D(3));

%%%%%%Coded bit concatenation %%%%%%%
coded=[coded u1 u2];

%%%%%%%% memory updating %%%%%%%
D(3)=D(2); %During each clock period, the bit in the memory shifts, i.e., D(2) =>D(3).
D(2)=D(1); %During each clock period, the bit in the memory shifts, i.e., D(1) =>D(2).

end

ENCODING ALGORITHM 271

1.C-1 The values (outputs) of state memories (D(2), D(3)) in Fig. 24.1 are synchro-
nized for bit-by-bit operation. Each time the clock cycle changes, the output of the
previous register will be applied as the input of the next shift register. The memory
updating part at the bottom of the ‘for’ loop in enc.m implements this. Explain why
the execution orders of these two lines should not be switched.

1.C-2 Execute enc(m) in the command window and check whether the result is
same as the manually obtained answer in B-4.

1.D The free distance [2–4] of this encoder.

1.D-1 Execute enc([0 0 0 0 0]) in the command window to obtain the encoder output
for the input [0 0 0 0 0]. Capture the result.

1.D-2 Using the linearity property of convolutional codes, explain why the encoder
output for an all-zero input sequence is also an all-zero sequence as observed in
1.D-1.

1.D-3 Execute enc([1 0 0 0 0]) in the command window to obtain the encoder output
for the input [1 0 0 0 0]. (a) Capture the result. (b) Count the number of bit ‘1’ in the
encoder output sequence.

1.D-4 Execute the following lines to regenerate m and another 5-bit sequence
m_diff, which is equal to m except one of the first three bits is inverted. Capture the
result to show the generated sequences m and m_diff.

>>m=(rand(1,5)>0.5) %Do not add ‘;’ at the end to display the result. Alterna-
tively you may use m=randi([0 1],1,5).
>>m_diff=m;
>>m_diff(1)=not(m(1)) %You may execute m_diff(2)=not(m(2)) or m_diff(3)=not(m(3))
instead. Do not append ‘;’ either.

1.D-5 Execute the following lines of code to see the encoded outputs for the input
m and m_diff, respectively. Capture the result.

>>enc(m) %Do not append ‘;’ to display the result.
>>enc(m_diff) %Do not append ‘;’ to display the result.

1.D-6 The two input sequences m and m_diff in 1.D-4 differ by only one bit. Suppose
that such a pair of sequences is each applied at the input of the encoder, generating two
corresponding output sequences. The number of bits that these two output sequences
differ from each other (Hamming distance) is called the “free distance.” From the
encoded output results in 1.D-5, determine the free distance of the convolutional code
shown in Fig. 24.1.

272 CONVOLUTIONAL CODE

1.D-7 Repeat 1.D-4 and 1.D-5 several times to check the free distance for other
random input bit sequence pair m and m_diff (which differs from m by only one bit).

(a) Does the free distance depend on the specific encoder input sequence m?
(b) Is the free distance equal to the answer obtained in 1.D-3(b)?

1.D-8 Execute xor(enc(m), enc(m_diff)) in the command window and capture the
result.

(a) Note that the sequence captured in 1.D-3(a) (which is the encoded output
for the input [1 0 0 0 0]) has the pattern “110111,” followed by a sequence
of 0s. Does this 5-bit pattern appear in the execution result of xor(enc(m),
enc(m_diff))?

(b) Using the linearity property of convolutional encoder, explain the observation
made in (a), that is, why xor(enc(m), enc(m_diff)) has the 5-bit pattern of the
encoded output for the input [1 0 0 0 0].

(c) Extend the discussion in (b) to explain the results in 1.D-7(a) and 1.D-7(b).

1.D-9 Denote the free distance of a convolutional code by dfree [2–4], then emin, the
correcting capability, that is, the number of errors that can be corrected is equal
to⌊(dfree − 1)∕2⌋, where ⌊x⌋ denotes the floor function, for example, ⌊3.7⌋ = 3.
Calculate emin of the convolutional code in Fig. 24.1.

1.E Consider another convolutional encoder as shown in Fig. 24.2. For the input bit
sequence m(1), m(2),…m(k), ..., the encoder outputs u1(1), u2(1), u3(1), u1(2), u2(2),
u3(2), …, u1(k), u2(k), u3(k),… in order.

1.E-1 Determine the code rate and constraint length.

1.E-2 Properly modify enc.m in 1.C to implement this encoder. Change the function
name enc() into enc2() and save the modified m-file as enc2.m. Capture the completed
m-file.

1.E-3 Execute enc2([1 0 0 0 0]) in the command window. (a) Capture the result. (b)
Identify the free distance dfree and the correcting capability emin.

m(k)
D(1) D(2) D(3)

u1(k)

u2(k)

u3(k)

+

+

FIGURE 24.2 Convolutional encoder example 2.

IMPLEMENTATION OF MAXIMUM LIKELIHOOD DECODING 273

m(k)
D(1) D(2)

u1(k)

u2(k)
+

FIGURE 24.3 Convolutional encoder example 3.

1.E-4 Execute m=(rand(1,5)>0.5) in the command window to generate a 5-bit
sequence m. (a) Capture the generated m. (b) Let m be the input sequence. Man-
ually perform the encoding process and record the encoder output.

1.E-5 Execute enc2(m) in the command window and capture the result. Is the result
consistent with your manual encoding result in 1.E-4?

1.F Let us consider another convolutional code shown in Fig. 24.3.

1.F-1 Determine the code rate and constraint length.

1.F-2 Properly modify enc.m in 1.C to implement this encoder. Change the function
name enc() into enc3() and save the modified m-file as enc3.m. Capture the completed
m-file.

1.F-3 Execute enc3([1 0 0 0 0]) in the command window. (a) Capture the result.
(b) Identify the free distance dfree and the correcting capability emin.

1.F-4 Execute ‘m=(rand(1,5)>0.5)’ in the command window to generate a 5-bit
sequence m. (a) Capture the generated m. (b) Let m be the input sequence. Manually
perform the encoding process and record the encoder output.

1.F-5 Execute enc3(m) in the command window and verify the result in 1.F-4.

24.2 IMPLEMENTATION OF MAXIMUM LIKELIHOOD DECODING
BASED ON EXHAUSTIVE SEARCH

2.A [WWW]The m-file below performs channel encoding on a 4-bit stream m by
using enc() for transmission employing antipodal signaling. It also creates the sampled
received signal, a vector r, in an AWGN channel. Add a comment to each line to
explain what it does or means. Capture the m-file with comments.

274 CONVOLUTIONAL CODE

clear
rand(1,1XXX); % XXX=Last three digits of your student ID number. This is irrele-
vant of the goal of this code, but be sure to include it here anyway.
Nb=4;
m=rand(1,Nb)>0.5;
coded_m=enc(m);
s=2*coded_m-1;
r=s+randn(1,length(s));

2.B [WWW]We estimate m using maximum likelihood decoding, which consists of
the following steps.

Step 1. Create a matrix m_set whose rows consist of all possible m, that is, the 16
combinations for 4 bits.

Step 2. Perform the following processes for each of the 16 4-bit sequences in
m_set:

Step 2-1. Encode the 4-bit sequence to create its corresponding encoded bit
sequence m_k.

Step 2-2. Form the antipodal modulated transmitted sequence s_k for m_k.

Step 2-3. Calculate the distance (or distance square) between the received
vector r and s_k.

Step 3. Among the 16 distances calculated, identify the smallest one. From the s_k
that is closest to r we identify the corresponding 4-bit message in m_set, which is
the ML decoding result.

The code fragment below implements Step 1 and Step 2.

% Add the following to the m-file in 2.A
m_set(1,:)=[0,0,0,0];
m_set(2,:)=[0,0,0,1];
m_set(3,:)=[0,0,1,0];
…. % Complete all possible 4-bit sequences in order.
m_set(16,:)=[1,1,1,1];

for k=1:16
m_k=m_set(k,:);
coded_m_k=enc(m_k);
s_k=2*coded_m_k-1;

D_k(k)=sum((r-s_k).̂ 2); % Use sum(abs(r-s_k).̂ 2) for complex signal-
ing such as QPSK.
end
D_k %Incomplete Step 3.

IMPLEMENTATION OF MAXIMUM LIKELIHOOD DECODING 275

2.B-1 Complete the m-file. Identify the lines in the m-file that implement each of
the two steps. Add a comment to mark the lines (e.g., add % Step 1 or % Step 2 to the
corresponding lines). Capture the completed m-file.

2.B-2 The m-file above implements decoding. However, the encoding function
enc() is used inside the ‘for’ loop. Discuss what this encoding step does for ML
decoding.

2.B-3 Make sure that enc.m is saved in your MATLAB work folder. Execute the
m-file.

(a) Display D_k and capture the result.
For example, D_k(4) is the Euclidean distance between the received signal

r and the encoded and transmitted signal for the 4-bit sequence [? ? ? ?].
Complete the 4 bits marked by ‘?’.

(b) From D_k, determine the ML decoding result of the transmitted bit sequence
m.

(c) Execute (type) m in the command window to see the transmitted data sequence.
Check whether or not the ML decoding in (c) has generated correct results.

2.B-4 Add the following two lines to the m-file to complete Step 3. The vector
m_hat is the decoding result, that is, the estimate for m.

[T1 T2]=min(D_k);
m_hat=m_set(?,:);
dec_err=sum(m∼=m_hat) % number of error bits after decoding.

Complete the quantity marked by ‘?’.
HINT: The command ‘[T1 T2]=max(a)’ returns T2 as the index of the maximum
element of vector a.

(a) Execute the m-file and capture the result.

2.B-5 The ‘for’ loop does Step 2 for all of the 16 4-bit data sequences. If the data
bit sequence length is increased from 4 to 100, then how many times Step 2-related
processes need to be repeated within the ‘for’ loop?

2.B-6 The preceding implementation of the ML decoding relies on the exhaustive
search approach. Explain why such an approach is impractical.

2.C [WWW]The vector r in the m-file of 2.B contains both the signal and the noise
components. This m-file implements soft decision ML decoding.

As shown in the simulation code below, add the two lines in bold to the m-file to
implement hard decision decoding [2–5]. In hard decision decoding, the bit detection
is made by using ‘z=(r>0)’, where r is the received signal. Then the Euclidean distance
D_k is calculated by comparing z with coded_m_k, instead of s_k.

276 CONVOLUTIONAL CODE

clear
rand(1,1XXX); % XXX=Last three digits of your student ID number, irrelevant to the goal
of this code, but be sure to include.

Nb=4;
m=rand(1, Nb)>0.5;
coded_m=enc(m);
s=2*coded_m-1;
r=s+randn(1,length(s));
z=(r>0);
m_set(1,:)=[0,0,0,0];… m_set(16,:)=[1,1,1,1];

for k=1:16
m_k=m_set(k,:);
coded_m_k=enc(m_k);

s_k=2*coded_m_k-1;
%D_k(k)=sum((r-s_k).̂ 2); %For Soft decision decoding.
D_k(k)=sum(xor(z,coded_m_k)); %For Hard decision decoding.

end

[T1 T2]=min(D_k);
m_hat=m_set(?,:);
dec_err=sum(m∼=m_hat)

2.C-1 The square of Euclidean distance between vectors z and coded_m_k can
be calculated as ‘D_k(k)=sum((z-coded_m_k).ˆ2)’. Note that in the second boldfaced
line in the m-file above, we used sum(xor(z,coded_m_k)), which is the Hamming
distance, rather than the Euclidean distance square sum((z-coded_m_k).ˆ2). However,
the decoding results for both cases are the identical. Explain why.

2.C-2 Summarize the advantages of using sum(xor(z,coded_m_k)) over using
sum((z-coded_m_k).ˆ2).

2.C-3 Let us compare the performances of hard decision decoding and soft decision
decoding [2–5].

(a) Execute the m-file above that implements hard decision decoding repeatedly
for at least 20 times and count the number of decoding errors, that is, the cases
where dec_err is not equal to 0.

Uncomment the line ‘D_k(k)=sum((r-s_k).ˆ2);’ and comment out the line
‘D_k(k)=sum(xor(z,coded_m_k));’ to implement soft decision decoding. Then
execute the m-file repeatedly for at least 20 times and count the number of
decoding errors.

(b) Compare the performances of hard decision decoding and soft decision
decoding.

2.C-4 Justify why soft decision decoding outperforms hard decision decoding.

VITERBI DECODING (TRELLIS-BASED ML DECODING) 277

24.3 VITERBI DECODING (TRELLIS-BASED ML DECODING)

[WWW]From the companion website, download convolutional_code.pdf. This pdf file
consists of three parts:

1. Construction of the state diagram (pp. 2–21).
2. Construction of the Trellis diagram (pp. 22–69).
3. Implementation of the Viterbi decoding [1–6] algorithm (pp. 70–173).

3.A [WWW]In this subsection we construct the state diagram and the trellis diagram
of the encoder in Fig. 24.1.

First, carefully review pp. 2–21 of convolutional_code.pdf to learn the state dia-
gram, and pp. 22–69 to learn the trellis diagram. Note that the encoder example used
in the pdf file is different from the encoder shown in Fig. 24.1.

3.A-1 Fig. 24.4 shows the incomplete state diagram of the encoder in Fig. 24.1. The
two bits inside the four circles correspond to the four possible states of [D(2) D(3)]
shown in Fig. 24.1. If the input bit m(k) is 0, then the state [D(2) D(3)] will change
from the current state to the destination state indicated by a sold arrow; if m(k) is 1,
then the state [D(2) D(3)] will change from the current state to the destination state
indicated by a dashed arrow. In other words, if the current state, that is, [D(2) D(3)]
at t = k, is equal to the two bits inside one of the circles, then the next state, that is,
[D(2) D(3)] at t = k + 1, becomes the two bits inside the destination circle.

Complete the contents inside the two circles marked by ‘?’ in Fig. 24.4.

3.A-2 The two bits specified on each arrow corresponds to u1(k + 1) and u2(k + 1),
that is, the decoder output when m(k) enters the encoder.

For example, let us assume that the current state [D(2) D(3)] is [0 0] at t = k and
the input bit m(k) is 0. Then, according to Fig. 24.1, the next state [D(2) D(3)] at t = k
+ 1 will be [0 0]. Thus the solid arrow points toward the state [0 0] again. Meanwhile,

b = 10

a = 00

c = ?

d = ?

11
Input bit = 0

Input bit = 1

00

?

? ?

?

01

?

FIGURE 24.4 State diagram of the encoder in Fig. 24.1

278 CONVOLUTIONAL CODE

t1 t2 t3 t4 t5 t6 t7 t8
a = 00

Input bit 0

Input bit 1

b = 10

c = 01

d = 11

FIGURE 24.5 Trellis diagram of the encoder in Fig. 24.1.

according to Fig. 24.1, the decoder output at t = k + 1 is [u1(k + 1) and u2(k + 1)] =
[0 0]; hence we specify 00 on the arrow. On the contrary, if the input bit m(k) is 1
at the current state [D(2) D(3)] of [0 0], then the dashed arrow points toward [D(2)
D(3)] = [1 0] at t = k + 1 and the decoder output at t = k + 1 is [u1(k + 1) and u2(k
+ 1)] = [1 1]. Hence we specify 11 on the arrow.

Using this process, complete all the places marked by ‘?’ on the arrows in
Fig. 24.4.

3.A-3 Based on the state diagram completed in 3.A-2, complete the trellis diagram
in Fig. 24.5. This trellis diagram will be used again in 3.B. Thus it is recommended
that the trellis branch be drawn with a pencil; for the decoding algorithm in 3.B, some
of the branches can be conveniently erased. The basic rules are as follows.

1. Use a sold line for the state transition branch (simply called “branch” hereafter)
if the encoder input bit m(k) is 0 and a dotted line if the encoder input bit m(k)
is 1.

2. Specify the corresponding encoder output on the branch, which is called the
“branch output.”

3. Copy the branch pattern from t3 to t4 for the remaining time instants up to t8.

Capture the completed trellis diagram.

3.B We now use this trellis diagram to manually decode a test input sequence. To
this end, generate a hard decision decoder input z by using the lines of code below.
The vector coded_m is the encoder output of the 5-bit message data m. The last two
bits [0 0] appended at the end of the encoder input are called the “tail bits.” The tail bits
reset the memory of the encoder after encoding is completed. We will use the vector
z in the final line as a test input for hard decision decoding in the following problems.

>>rand(1,1XXX); %XXX=Last three digits of your student ID number.
>>m=rand(1,5)>0.5;
>>coded_m=enc([m 0 0]);
>>z=coded_m;
>>z([1 2])=not(z([1 2]))

VITERBI DECODING (TRELLIS-BASED ML DECODING) 279

3.B-1 Execute the five code lines above and capture the execution results.

3.B-2 We will decode the message m from z captured in 3.B-1. From the result of
the last code line, identify the erroneously detected bits.

3.B-3 [WWW]We go through the decoding process using the trellis diagram created
in 3.A-3. The decoding process is explained with animation in the supplemental
materials convolutional_code.pdf (starting from p. 70). Note again that the encoder
used in the pdf file is different from the one in Fig. 24.1 that is considered in this
section. The decoding steps are summarized below.

Step1: Select one of the trellis branches between time instants t1 and t2. Calculate
the distance, that is, the number of different bits between the first two bits of z
and two bits on the selected branch (branch output). Record the distance on top of
the destination (next) state of the selected branch. Do this for all (two in our case)
branches between time instants t1 and t2.
NOTE: The distance between the branch output and the decoder input is called
the “branch metric” [1–6].

Step 2: For all branches between the instants t2 and t3, repeat Step 2-1 and Step
2-2 below.

Step 2-1: Calculate the branch metric, that is, the distance between the next
two bits of z (=[z(3) z(4)]) and the selected branch output.

Step 2-2: At the source (previous left-hand) state of the selected branch, there
is a branch metric previously recorded in Step 1. Add this previous metric to
the current branch metric calculated in Step 2-1 and record their sum on top of
the destination (next) state of the selected branch.
NOTE: The connected branch is called a “path” and the sum of the branch
metrics is called the “accumulated metric” or path metric [1–6].

Step 3: For all branches between the instants t3 and t4, repeat Step 3-1, Step 3-2,
and Step 3-3 below.

Step 3-1: Calculate the branch metric, that is, the distance between the next
two bits of z and the selected branch output.

Step 3-2: At the source state of the selected branch, there is a path metric
previously recorded. Add this previous path metric to the current branch metric
calculated in Step 3-1 and record their sum on top of the destination state of
the selected branch.

Step 3-3: Note that after t4, two branches merge into one of the four destination
states; thus there will be only two path metrics after Step 3-2 for all the
branches. Select the branch with a smaller path metric and erase (or mark
X on) the unselected branch and its path metric. If the two path metrics are
identical, arbitrarily select one of them.
NOTE: The selected path is called a “survivor path” [1–6].

Step 4: Repeat Step 3 for all the remaining time instants.

280 CONVOLUTIONAL CODE

Step 5: After completing Step 4, select one path with the smallest path metric
among the survivor paths. Recall that a solid branch corresponds to an input bit
0 and a dashed branch corresponds to an input bit 1. Using this information,
identify the input bit corresponding to each of the branches (seven branches in this
example) connected in the selected survivor path. Finally, concatenate the seven
input bits to form the decoding result m.

(a) Now capture the trellis diagram that shows the manual decoding process and
record the first five bits of the seven decoded bits (the last two bits are the
tail bits). It is best to highlight the selected path in the trellis diagram with a
different color.

(b) Display the value of the original message m in the command window. Recall
that the first two bits of z are erroneously detected. From the result in (a), has
the decoding process corrected these errors?

3.C [WWW]In this section we implement trellis-based decoding using a user-defined
MATLAB function, dec(), provided below, assuming the encoder in Fig. 24.1. Let z
denote the hard decision decoder input (code word). Then dec(z) outputs the decoding
result of z, that is, the message m carried in z.

In the m-file dec(), comments are provided to explain the eight main variables:
d1, d2, d3, d4, output1, output2, output3, and output4. In the table provided at the
bottom of pp. 72–172 of convolutional_code.pdf, how these variables are calculated
and updated during the decoding process is illustrated in detail.

In the kth iteration of the ‘for’ loop, these eight variables are calculated and updated
for the transition period from tk to tk + 1 in the trellis diagram.

% Save the file name as dec.m
function result = dec(z)
d1=0; d2=0; d3=0; d4=0; %Initialize the accumulated metrics of the 4 states

(00, 10, 01, 11).
output1= []; output2=[]; output3=[]; output4=[];
% In trellis-based decoding, each of the 4 states updates its own survivor path at

every time instant (t1,t2,t3,…). Since we do not know which one of the 4 survivor
paths will be selected at the end in Step 5 of 3.B-3, the corresponding encoder
inputs for all four survivor paths should be kept during decoding. For example, the
variable output1 is updated to save the encoder input that corresponds to the state

1 (00) at the current time instant. In other words, the variable output1 memorizes the
encoder inputs corresponding to the branches forming the survivor path to the
state 1 of the current time instant.

for k=1:1:(length(z)/2)
temp = [z(2*k-1) z(2*k)]; %current 2 bits of the decoder input.

dis00=sum(xor([0 0],temp));dis10=sum(xor([1 0],temp));
dis01=sum(xor([0 1],temp));dis11=sum(xor([1 1],temp));

VITERBI DECODING (TRELLIS-BASED ML DECODING) 281

%Distances between temp and each of the four patterns. Save these as the
variables as they are used frequently.

if k==1
new_output1 = [output1 0]; new_d1 = d1 + dis00;
new_output2 = [output2 1]; new_d2 = d2 + dis11;

elseif k==2
new_output1 = [output1 0]; new_d1=d1+dis00;
new_output2 = [output1 1]; new_d2=d1+dis11;
new_output3 = [output2 0]; new_d3=d2+dis01;
new_output4 = [output2 1]; new_d4=d2+dis10;

else
%%
if d1+dis00 < d3+dis11;

new_output1 = [output1 0]; new_d1=d1+dis00;
else

new_output1 = [output3 0]; new_d1=d3+dis11;
end
%%
if d1+dis11 < d3+dis00;

new_output2 = [output1 1]; new_d2=d1+dis11;
else

new_output2 = [output3 1]; new_d2=d3+dis00;
end
%%
if d2+dis01 < d4+dis10

???
else

???
end
%%
if ??? < ???

???
else

???
end
%%

end

% variables update
if k==1

d1=new_d1; d2=new_d2;
output1=new_output1; output2=new_output2;

else
d1=new_d1; d2=new_d2; d3=new_d3; d4=new_d4;

282 CONVOLUTIONAL CODE

output1=new_output1; output2=new_output2;
output3=new_output3; output4=new_output4;

end
end

output = [output1; output2; output3; output4];
d=[d1 d2 d3 d4];
ML_state_index=find(d==min(d));
result = output(ML_state_index(1),:);

3.C-1 Review the methods to concatenate a new element to a vector in MATLAB.
Explain what the command ‘a=[b 1]’ does if b is an arbitrary row vector.

3.C-2 Code lines similar to ‘new_output2 = [output1 1]’ and ‘new_output1 = [out-
put3 0]’ appear in many places in dec(). Explain what these lines do.

3.C-3 Identify the lines in the m-file that implement each step in 3.B-3. Add a
comment to each line to indicate the number for its corresponding step.

3.C-4 Based on the trellis diagram in 3.A-3, complete the six places marked by
‘???’ in the m-file and capture the completed m-file.

3.C-5 For the last two lines ‘ML_state_index = find(d==min(d));’ and ‘result = out-
put(ML_state_index(1),:);’, explain what the variable on the left-hand side represents
and justify how the right-hand side expression is formulated accordingly.

3.C-6 Recall that in 3.B-1, a test decoder input z was generated. The m-file dec.m
was completed in 3.C-4. Execute dec(z) in the command window and capture the
result. Is the decoding output correct?

3.D [A]In this section we implement the decoder for other convolutional encoders.

3.D-1 Draw the trellis diagram for the convolutional encoder in Fig. 24.2 up to
the time instant t5. The easiest way would be to determine the differences between
the encoders in Figs. 24.1 and 24.2 first and then modify the trellis diagram for the
encoder in Fig. 24.1.

3.D-2 [WWW]The code below is the incomplete user-defined function dec2(), which
performs trellis-based decoding for the encoder in Fig. 24.2. Complete the m-file and
save it as dec2.m. Capture the completed m-file.

% Save the file as dec2.m
function result = dec2(z)

output1=[]; output2=[]; output3=[]; output4=[];

for k=1:1:(length(z)/3)
temp = [z(3*k-2) z(3*k-1) z(3*k)];

VITERBI DECODING (TRELLIS-BASED ML DECODING) 283

dis000=sum(xor([0 0 0],temp)); dis011=sum(xor([0 1 1],temp));
dis100=sum(xor([1 0 0],temp)); dis111=sum(xor([1 1 1],temp));

% In the encoder structure in Fig. 24.2, we can see that one more bit is added to the
encoder output in Fig. 24.1 at each time instance. Therefore, for example, dis10
in dec.m is modified into dis100 in dec2.m as shown above.

if k==1
new_output1 = [output1 0]; new_d1 = d1 + dis000;
new_output2 = [output2 1]; new_d2 = d2 + dis111;

elseif k==2
?
…
?

else
?
…
?

end

% memory update
if k==1

d1=new_d1; d2=new_d2;
output1=new_output1; output2=new_output2;

else
d1=new_d1; d2=new_d2; d3=new_d3; d4=new_d4;
output1=new_output1; output2=new_output2;
output3=new_output3; output4=new_output4;

end
end

output = [output1; output2; output3; output4];
d=[d1 d2 d3 d4];
ML_state_index=find(d==min(d));
result = output(ML_state_index(1),:);

3.D-3 The two lines ‘for k=1:1:(length(z)/3);’ and ‘temp = [z(3*k-2) z(3*k-1) z(3*k)];’
are different from the corresponding lines in dec.m. Explain why these lines should
be modified as they are, or suggest a better way to modify them properly.

3.D-4 Draw the trellis diagram for the encoder in Fig. 24.3 up to t4.

3.D-5 Based on the trellis diagram in 3.D-4, write a MATLAB function dec3() to
perform trellis-based decoding, save it, and capture it.

3.E [A]So far, the m-files dec.m, dec2.m, and dec3.m implement the hard decision
decoding; that is, the decoder input is a bit sequence (0s and 1s). In this section

284 CONVOLUTIONAL CODE

we implement soft decision decoding, with which the decision variables (r) for the
coded bits that consist of both the received signal and noise are directly passed to
the decoder. To implement soft decision decoding, only the part that calculates the
distance variable in dec.m needs to be modified as below.

dis00=sum(([-1 -1]-temp).̂ 2);
dis01=sum(([-1 1]-temp).̂ 2);
dis10=sum(([1 -1]-temp).̂ 2);
dis11=sum(([1 1]-temp).̂ 2);
% sum(abs(branch output -temp).̂ 2) for complex modulation such as QPSK

3.E-1 Justify these modifications.

3.E-2 Explain why the other parts of dec.m do not require modifications for soft
decision decoding.

3.E-3 Also change the function name into dec_SD() and then save the m-file as
dec_SD.m.

3.E-4 Modify dec2.m properly for soft decision decoding. Also change the function
name into dec2_SD() and then save it as dec2_SD.m. Capture the revised part only.

3.E-5 Modify dec3.m properly for soft decision decoding. Also change the function
name into dec3_SD() and then save it as dec3_SD.m. Capture the revised part only.

24.4 BER SIMULATION OF CODED SYSTEMS

4.A [WWW]The m-file below simulates the uncoded BER of binary phase shift
keying (BPSK) over an additive white Gaussian noise (AWGN) channel.

clear
EbN0dBvector=0:1:9;
DataBitSize=1000;
Eb=1; % because we consider a bipolar signal which takes +1 and −1.

See the line generating ‘ChannelSymbols’ below.
for snri=1:length(EbN0dBvector)

EbN0dB=EbN0dBvector(snri);
EbN0=10ˆ(EbN0dB/10);
N0=Eb/EbN0;
BitErrNum=0;
TotalBits=0;
while BitErrNum<100

DataBits=(rand(1,DataBitSize)>0.5);
ChannelSymbols=sqrt(Eb)*(2*DataBits−1);

BER SIMULATION OF CODED SYSTEMS 285

r=ChannelSymbols+sqrt(N0/2)*randn(1,length(ChannelSymbols));
DataBitsHat=r>0;
BitErrs=sum(DataBits∼=DataBitsHat);
BitErrNum=BitErrNum+BitErrs;
TotalBits=TotalBits+DataBitSize;

end
uncodedBER(snri)=?/?

end

4.A-1 Complete the quantities marked by ‘?’ in the m-file. Add a comment to every
line that has an ‘=’ sign to explain what the variable on the left-hand side represents
and justify how the right-hand side expression is properly formulated accordingly.
Capture the completed m-file.

4.A-2 Execute the completed m-file above and then execute the following com-
mands to plot the uncoded BER curve. Capture the result.

>>figure
>>semilogy(EbN0dBvector,uncodedBER)
>>grid

4.B [WWW]With slight modifications to the m-file in 4.A as shown below, we can
simulate the BER of coded systems. Here enc() is the encoding function.

clear
DataBitSize=1000;
coderate=1/2;
Eb=1; % because we consider a bipolar signal which takes +1 and −1.
Eb_coded=Eb*coderate; %Energy of channel symbol (coded bit). See the line

generating ‘ChannelSymbols’ below.
EbN0dBvector=0:1:8;
for snri=1:length(EbN0dBvector)

EbN0dB=EbN0dBvector(snri);
EbN0=10ˆ(EbN0dB/10);

N0=Eb/EbN0;
BitErrNum=0;
TotalBits=0;
while BitErrNum<100
DataBits=(rand(1,DataBitSize)>0.5);
EncodedBits=enc(?);
ChannelSymbols=sqrt(Eb_coded)*(2*EncodedBits-1);
r=ChannelSymbols+sqrt(N0/2)*randn(1,length(ChannelSymbols));
z=r>0; %For hard decision decoding.

286 CONVOLUTIONAL CODE

DecodedBits=?(?);
BitErrs=sum(DataBits∼=DecodedBits);
BitErrNum=BitErrNum+BitErrs;
TotalBits=TotalBits+DataBitSize;
end
CodedBER(snri)=?/?
end

4.B-1 Examine the modified or newly inserted lines.
We define “channel symbol ” as the received symbol through the channel. The

variable Eb denotes the energy per data bit, and the variable Eb_coded denotes the
energy per channel symbol. The variables Eb_coded, ChannelSymbols, and r are
generated sequentially. From these processes we make the following observations:

(a) The channel symbols correspond to the encoder output.
(b) For the example we are considering, the channel symbol is BPSK modulated

with an energy equal to Eb_coded, not Eb.

The line ‘Eb_coded = Eb*coderate;’ indicates that Eb_coded and Eb differ only
by the factor of coderate. Justify the use of this scaling factor.

4.B-2 Complete the places marked by ‘?’ in the m-file with an appropriate function
name or variable. Execute the completed m-file, and then in the command window,
execute the lines of command below. If the simulation takes too long, you can
properly decrease the maximum value of elements of EbN0dBvector to shorten its
length.

Capture the coded BER graph.

>>figure
>>semilogy(EbN0dBvector,CodedBER)
>>grid

4.B-3 To simulate the coded BER for the encoder in Fig. 24.2, that is, enc2(), which
lines of the m-file completed in 4.B-2 should be modified and how?

4.B-4 (a) Modify the m-file completed in 4.B-2 to simulate the coded BER of the
encoder in Fig. 24.3, that is, enc3(). (b) Execute the modified m-file and
plot the simulated BER. Capture the simulated BER plot.

4.B-5 (a) To simulate the coded BER with soft decision decoding for the encoder
in Fig. 24.1, that is, enc1(), which lines of the m-file completed in 4.B-2
should be modified and how? (b) Execute the modified m-file and capture
the simulated BER plot.

4.C Comparison of BER performances of different system configurations.

REFERENCES 287

4.C-1 Uncoded versus coded BER.

(a) Overlay the uncoded BER curve obtained in 4.A-2 on top of the coded BER
plots obtained in 4.B-2 using the functions enc() and dec(). Refer to the note
below for techniques to overlay curves from different figures. Capture the
resulting BER plot.

NOTE: To copy a curve in a figure and paste it into another figure, first,
in the source figure with the curve to be copied, left-click the arrow icon in
the menu bar and then right-click the desired curve and choose Copy from the
pop-up menu. Next, in the destination figure, left-click the arrow icon in the
menu bar and then right-click anywhere in the figure and select Paste from
the pop-up menu to paste the curve copied from the source figure.

(b) Coding gain refers to the SNR difference (typically in dB) to achieve the same
BER [1–6]. Based on the overlaid BER curves, measure the coding gain at a
BER of 10−4.

4.C-2 [A]Hard decision decoding versus soft decision decoding.

(a) Overlay the coded BER curve with soft decision decoding obtained in 4.B-5
on top of the coded BER curve with hard decision decoding obtained in 4.B-2.
Capture the plot that shows the overlaid BER curves.

(b) Based on the overlaid BER curves, measure the SNR gain in dB of soft decision
over hard decision at a BER of 10−4.

4.C-3 [A]Coderate = 1/2 versus coderate = 1/3.

(a) In the m-files in 4.B-2 and 4.B-3, modify the line ‘EbN0dBvector=0:1:6;’
into ‘EbN0dBvector= 0:2:12;’. Then execute the two modified m-files and plot
the simulated BER graphs. Note that the simulation may take a long time
depending on the configuration of your PC. Overlay the two simulated coded
BER curves in a single figure. Capture the resulting figure.

(b) In the low-SNR region, which code performs better? In the high-SNR region,
which code performs better? Justify such BER performance behavior.

4.C-4 [A]Free distance = 3 versus free distance = 5.

(a) Overlay the coded BER curve with a free distance of 3 and code rate of 1/2
obtained in 4.B-4 onto the coded BER curve with a free distance of 5 and also
rate of 1/2 obtained in 4.B-2. Capture the resulting figure.

(b) Which code achieves a better BER performance? Why?

REFERENCES

[1] A. J. Viterbi and J. K. Omura, Principles of Digital Communication and Coding, New
York: McGraw-Hill, 1979.

[2] J. G. Proakis, Digital Communications, 5th ed., New York: McGraw-Hill, 2008.

[3] B. Sklar, Digital Communications: Fundamentals and Applications, 2nd ed., Boston:
Phipe, 2001.

288 CONVOLUTIONAL CODE

[4] S. Haykin and M. Moher, Introduction to Analog and Digital Communication, 2nd ed.,
Hoboken, NJ: Wiley, 2006.

[5] S. Lin and D. J. Costello, Error Control Coding, 2nd ed., Upper Saddle River, NJ: Prentice
Hall, 2004.

[6] G. D. Forney, “The Viterbi Algorithm,” Proceedings of the IEEE, Vol. 61, No. 3, 1973,
pp. 268–278.

25
FADING, DIVERSITY, AND
COMBINING

� Derive and simulate the bit error rate (BER) in the Rayleigh fading environment
and compare it with the BER in the additive white Gaussian noise environment
(AWGN).

� Understand the concept of diversity and the diversity combining.
� Compare the performances of various diversity-combining methods.

25.1 RAYLEIGH FADING CHANNEL MODEL AND THE
AVERAGE BER

Consider a two-dimensional modulation such as quadrature amplitude modulation
(QAM) and MPSK, and denote s as the coordinate of the modulated symbol in the
complex plane. Then, the real and imaginary parts of s correspond to the in-phase
and quadrature components, respectively. The symbol energy Es is equal to E[|s|2].

With this signal model, the receiver’s matched filter output in a frequency nonse-
lective fading channel can be expressed as

r = hs + n, (25.1)

where h is the signal scaling coefficient due to fading [1–3], which is often called the
“fading coefficient,” and n is the AWGN term, which follows the complex Gaussian
distribution with zero mean and variance N0∕2.

1.A For Rayleigh fading, the fading coefficient h follows a complex Gaussian
distribution, expressed as h = z + jy, where z and y are real-valued independent

Problem-Based Learning in Communication Systems Using MATLAB and Simulink, First Edition.
Kwonhue Choi and Huaping Liu.
© 2016 The Institute of Electrical and Electronics Engineers, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/choi_problembasedlearning

289

http://www.wiley.com/go/choi_problembasedlearning

290 FADING, DIVERSITY, AND COMBINING

Gaussian variables with zero mean and variance 1/2 [3–5]. The command line below
generates a sample of h. Complete the quantities marked by ‘?’.

>>h=?*randn + ?*?*?

1.B The fading coefficient can be expressed in polar coordinate form as

h = |h|ej∠h
. (25.2)

1.B-1 [T]Express the fading magnitude square, that is, |h|2, as a function of z and y.

1.B-2 [T]From the result in 1.B-1 and the fact that z and y are independent Gaussian
random variables with zero mean and variance 1/2, determine E[|h|2].

1.C To create the decision variable D, the receiver derotates the received signal r
by using the phase of h as

D = re−j∠h

= (hs + n)e−j∠h

= |h|ej∠he−j∠hs + ne−j∠h

= |h|s + ne−j∠h
.

(25.3)

As a result, the signal term in the decision variable, |h|s, has the same phase as
that of the original symbol s.

1.C-1 The noise element ne−j∠h of the decision variable D is still a complex Gaus-
sian random variable, which has the same distribution as n. Therefore, rotating the
phase due to fading does not affect the statistical characteristics of the noise in the
decision variable D. On the contrary, fading affects the signal term by a scaling factor|h|. This scaling factor is the magnitude of a complex Gaussian random variable,
which has the Rayleigh distribution [4, 5] given as

f|h|(x) =
{

2x exp(−x2) x ≥ 0
0 x < 0.

(25.4)

Execute the following lines of command to plot equation (25.4). Capture the result.

>>x=0:0.01:5;
>>f=2*x.*exp(-x.̂ 2);
>>figure
>>plot(x,f)

1.C-2 Define c
Δ
= |h|2. Then c is the magnitude square of a complex Gaussian

variable and follows the exponential distribution expressed as [4, 5]

fc(x) = exp(−x), x ≥ 0. (25.5)

RAYLEIGH FADING CHANNEL MODEL AND THE AVERAGE BER 291

Execute the following lines of commands to plot equation (25.5). Capture the
result.

>>x=0:0.01:5;
>>f_c=exp(-x);
>>figure
>>plot(x,f_c)

1.C-3 [T]We can find the expected value of c as E[c] = ∫ ∞
0 (?) × fc(x)dx. Determine

the quantity marked by ‘?’.

1.C-4 (a) [T]Calculate the average of c using the completed equation in C-3. (b) Is
the calculated result equal to the answer in 1.B-2? Also use symbolic math (discussed
in Section 1.2 of Chapter 1) to verify the result in (a).

1.C-5 [T]In the absence of fading (i.e., h = 1), the energy (mean square) of the
signal term in the decision variable D, E[||h|s|2], equals Es. For Rayleigh fading for
which h follows the distribution given by equation (25.4), calculate the energy of the
signal term, E[||h|s|2], and prove that it is still equal to Es.

1.C-6 [T]The result in 1.C-5 shows that the average symbol energies of the received
signals over a Rayleigh fading channel and a Gaussian channel are same. This is
based on the assumption that the power of Rayleigh fading channel coefficients is
normalized to unity. Provide a discussion on the relative performances (a conjecture
on what you expect to see) of the same signaling scheme over a Rayleigh fading
channel and over an AWGN channel.

1.C-7 [A]Prove that the noise term ne−j∠h in the decision variable D given in equation
(25.3) is a complex Gaussian random variable and it has the same distribution as n.

1.D In a Rayleigh fading channel, |h| in equation (25.3) is a random variable fol-
lowing the distribution in equation (25.4). The instantaneous symbol energy received
over the fading channel is |h|2Es. Let c = |h|2. Therefore, for BPSK, the instan-
taneous BER is given as Q(

√
2cEb∕N0), where Eb = E. The average BER can be

obtained by taking the expected value of the instantaneous BER over c as

BERfading = Ec

[
Q

(√
2cEb

N0

)]

= Ec

[
0.5

{
1 − erf

(√
cEb

N0

)}]
. (25.6)

1.D-1 [WWW]The following m-file calculates equation (25.6) using symbolic math.
Add a comment to each line to explain what that line does. Capture the completed
m-file with the comments.

292 FADING, DIVERSITY, AND COMBINING

clear
syms c EbN0
instantBER=0.5*(1-erf(sqrt(c*EbN0)));
BER_fading=int(instantBER*exp(-c),c,0,inf);
pretty((BER_fading))

1.D-2 The closed-form expression for equation (25.6) is given as

Pe =
1
2

⎛⎜⎜⎝1 −

√
Eb∕N0

1 + Eb∕N0

⎞⎟⎟⎠ . (25.7)

Execute the m-file in 1.D-1 and capture the result. Is the symbolic math result the
same as equation (25.7)?

1.D-3 Modify the second line of the m-file in D-1 into ‘syms c EbN0 positive’. Here
the argument positive is not a symbolic variable but a MATLAB argument to specify
that the symbolic variables c and EbN0 are positive (and real, of course). Execute
the modified m-file and capture the results. Is the symbolic math result the same as
equation (25.7) now?

NOTE: If the type of the symbolic variables is not specified, then symbolic math
will try to derive a general solution assuming that the symbolic variables are complex.
In such a case, it often fails to find the solution.

25.2 BER SIMULATION IN THE RAYLEIGH FADING ENVIRONMENT

2.A [WWW]The following m-file simulates the BER of BPSK over a Rayleigh fading
channel.

clear
EbN0dB_vector=0:2:20;

Eb=1;

for snr_i=1:length(EbN0dB_vector)
EbN0dB=EbN0dB_vector(snr_i);
EbN0=10.̂ (EbN0dB/10);
N0=Eb/EbN0;
sym_cnt=0;
err_cnt=0;
while err_cnt<500

s=sqrt(Eb)*sign(rand-0.5);
h=sqrt(1/2)*(randn+j*randn);

BER SIMULATION IN THE RAYLEIGH FADING ENVIRONMENT 293

n=sqrt(N0/2)*(randn+j*randn);

r=?*s + ?;

D=r*exp(-j*angle(h));
s_hat=sign(D);
if ?

err_cnt=err_cnt+1;
end
sym_cnt=sym_cnt+1;

end
BER(snr_i)=err_cnt/sym_cnt

end
figure
semilogy(EbN0dB_vector, BER)
xlabel(‘E_b/N_0 [dB]’)
ylabel(‘BER’)
grid

2.A-1 (a) Explain why the three parts in bold in the m-file are set as they are. (b)
Complete the places marked by ‘?’, and add a comment to each line of the m-file. For
lines that involve the operator ‘=’, use the comment to explain what the variable on the
left-hand side represents and justify how the right-hand side expression is properly
formulated accordingly. Capture the completed m-file.

2.A-2 Explain why the line ‘h=sqrt(1/2)*(randn+j*randn);’ should not be placed
before the ‘while’ loop.

2.A-3 If the line ‘h=sqrt(1/2)*(randn+j*randn);’ is placed before the ‘while’ loop,
what will happen to the resulting BER.

2.B Execute the completed m-file in 2.A and capture the resulting BER graph.

2.C We should find that the BER values in 2.B are all equal to 1. This is because the
line ‘s_hat=sign(D);’ is incorrect. It should be corrected as ‘s_hat = sign(real(D));’.
Explain why it is necessary to take the real part of the decision variable D although
the signal term of D (sqrt(Eb) or -sqrt(Eb)) is already real-valued.

2.D Modify the line ‘s_hat=sign(D);’ into ‘s_hat=sign(real(D));’ and execute the
m-file. Capture the BER result.

2.E The theoretical BER of BPSK signaling over a Rayleigh fading channel was
given in equation (25.7). Execute the following commands in the command window
to overlay the theoretical BER on top of the simulated BER curve obtained in 2.D.
Capture the resulting figure.

294 FADING, DIVERSITY, AND COMBINING

>>EbN0_vector=10.̂ (EbN0dB_vector/10);
>>BER_theory=0.5*(1-sqrt((EbN0_vector)./(1+EbN0_vector)));
>>hold on;
>>semilogy(EbN0dB_vector, BER_theory,‘r’)
>>legend(‘Rayleigh fading, Simulation’, ‘Rayleigh fading, Theory’)

2.F Do the simulated and theoretical BER values match each other?

2.G In this section we compare the BER performances of BPSK over Rayleigh
fading and Gaussian channels.

2.G-1 Rewrite the BER expression of BPSK in an AWGN channel as a function of
Eb∕N0.

2.G-2 Execute the commands below to overlay the BPSK BER curve in an AWGN
channel on top of the BER curve obtained in 2.D or 2.E. Capture the result.

>>BER_AWGN=0.5*erfc(sqrt(EbN0_vector));
>>hold on;
>>semilogy(EbN0dB_vector, BER_AWGN,‘g’)
>>legend(‘Rayleigh fading, Sim’, ‘Rayleigh fading, Theory’, ‘AWGN’)
>>axis([0 20 1e-6 1])

2.H Summarize the characteristics of the BER curves of BPSK over Rayleigh
fading and Gaussian channels in terms of the changing rate of BER and performance
gap as Eb∕N0 increases and decreases.

2.I Are the observations made in 2.H from simulation consistent with what was
discussed in 1.C-6?

2.J [A]Next we modify the m-file in 2.D to simulate the BER performance of QPSK
over a Rayleigh fading channel. The modified m-file is given below.

2.J-1 The parts in bold are the modified parts from the previous m-file for BPSK
BER simulation. Add a comment to each of these lines to justify the modifications
made. Capture the completed m-file.

clear
EbN0dB_vector=0:2:20;
Eb=1;
for snr_i=1:length(EbN0dB_vector)

EbN0dB=EbN0dB_vector(snr_i);
EbN0=10.̂ (EbN0dB/10);
N0=Eb/EbN0;
sym_cnt=0;

DIVERSITY 295

err_cnt=0;
while err_cnt<500

s=sqrt(Eb)*sign(rand-0.5)+j*sqrt(Eb)*sign(rand-0.5);
h=sqrt(1/2)*(randn+j*randn);
n=sqrt(N0/2)*(randn+j*randn);
r=h*s+n;
D=r*exp(-j*angle(h));
s_hat=sign(real(D));
s_hat2=sign(imag(D));
if sign(real(s)) ∼= s_hat

err_cnt=err_cnt+1;
end
if sign(imag(s)) ∼= s_hat2

err_cnt=err_cnt+1;
end
sym_cnt=sym_cnt+2;

end
BER(snr_i)=err_cnt/sym_cnt

end
figure
semilogy(EbN0dB_vector, BER)
xlabel(‘E_b/N_0 [dB]’)
ylabel(‘BER’)
grid

2.J-2 Execute the m-file in 2.J-1 and capture the simulated BER plot.

2.J-3 Compare the simulated BER curve of QPSK with the BER curve of BPSK
obtained in 2.E. They should be identical (ignore the small simulation errors). Justify
why they should be the same.

25.3 DIVERSITY

In 1.D we defined the variable c, which determines the instantaneous symbol energy
in a Rayleigh fading channel. From the distribution of c, we can easily explain why
the BER performance of BPSK in a Rayleigh fading channel is significantly worse
than that in an AWGN channel (no fading). The instantaneous symbol energy cEb
could change from 0 to infinity due to fading, and the instantaneous BER given as
Q(

√
2cEb∕N0) almost exponentially decreases as c increases. If c becomes larger than

1, then the BER is lower than the BER over an AWGN channel. However, the error
rate will be dominated by the bit errors when c is smaller than 1. For a mathematical
proof, refer to Jensen’s inequality [4, 5], which is covered in most of the existing
textbooks.

296 FADING, DIVERSITY, AND COMBINING

If there is a method that will drastically reduce the probability of encountering a
small instantaneous symbol energy, then the BER performance will improve signif-
icantly. One such method is the diversity technique [5]. Diversity here refers to the
mechanism that multiple independently faded copies of the same signal are available
for use in the detection process. Common diversity methods include spatial diver-
sity (refer to Chapter 28), temporal/time diversity, frequency diversity, and multipath
diversity. Spatial diversity could be achieved by transmitting the same data through
multiple transmit antennas or receiving the same data through multiple receive anten-
nas. For such schemes to be effective, the transmit antennas or the receive antennas
must operate independently or at least have sufficiently low correlations. Multipath
diversity is unique [5]: if multiple received signal paths are resolvable, then this
case may be considered a form of time diversity; however, the resolvable paths are
closely related to the fact that the channel is frequency selective, that is, the dif-
ferent frequency components of the desired signal are faded differently (refer to
Chapter 27).

In this section we consider the scenario that L independently received copies,
r(1), r(2),…, r(L), all carrying the same transmitted signal s, are available for use
in the detection process. These copies could be exploited to achieve a maximum
diversity order of L. The received signal copies are expressed as

r(1) = h(1)s + n(1), r(2) = h(2)s + n(2),…, r(L) = h(L)s + n(L), (25.8)

where h(1), h(2),…, h(L) are assumed to be independent and identically distributed
(i.i.d.), all having the same distribution as h created in 1.A; the noise terms
n(1), n(2),…, n(L) are also i.i.d. with the same distribution as n in equation (25.1),
and the transmitted signal s is a BPSK signal, taking on the values of

√
Es∕L or

−
√

Es∕L with equal probability.

3.A [T]Assuming a noiseless and the nonfading condition (h(1) = … = h(L) = 1
and n(1) = … = n(L) = 0), prove that the total received symbol energy from all L
branches, that is, |r(1)|2 + |r(2)|2 +…+ |r(L)|2, equals Es.

25.4 COMBINING METHODS

This section investigates techniques for combining the L branches of the received
signals to form the decision variable [5,6]. Three commonly used combining methods
are as follows:

1. Selection diversity combining (SDC)
2. Equal gain combining (EGC)
3. Maximum ratio combining (MRC)

The fading coefficients h(1), h(2),…, h(L) are assumed to be known in the receiver.
In practice, most communications channels can be classified as “slow” fading chan-
nels, for which the fading coefficients will be nearly constant over many symbol
periods. This allows the receiver to estimate the fading coefficients.

COMBINING METHODS 297

4.A Selection diversity combining.
In SDC, the branch with the largest fading coefficient is selected for detection and

the rest are not used. The decision variable D is generated as

Step 1. Set kbest = argmaxk |h(k)|,
Step 2. Set D = r(kbest)e

−j∠h(kbest).
(25.9)

4.A-1 [WWW]The following m-file simulates the BER of BPSK over a Rayleigh
fading channel with three SDC branches, that is, L = 3. Complete the places marked
by ‘?’. Add a comment to each of the lines in bold to explain what the line does.
Especially for the lines with ‘=’, explain what the variable on the left-hand side
represents and justify how the right-hand side expression is properly formulated
accordingly.

Capture the completed m-file.

clear
EbN0dB_vector=0:3:15;
Eb=1;
L=3;
for snr_i=1:length(EbN0dB_vector)

EbN0dB=EbN0dB_vector(snr_i);
EbN0=10.̂ (EbN0dB/10);
N0=Eb/EbN0;
sym_cnt=0;
err_cnt=0;
while err_cnt<100 % If you increase err_cnt (currently 100), the accuracy increases

and time also increase.
b=sign(rand-0.5); %BPSK symbol {1,-1}
s=sqrt(Eb/L)*b;
for k=1:L

h(k)=sqrt(1/2)*(randn+j*randn);
n(k)=sqrt(N0/2)*(randn+j*randn);
r(k)=?*s+?;

end

[T1 T2]=max(?); % Refer to (25.9). To see how to use max(), execute ‘>>help
max’ in the command window.

D=r(?)*exp(-j*angle(h(?))); %Refer to (25.9).

b_hat=sign(real(D));
if b_hat∼=b;

err_cnt=err_cnt+1;
end
sym_cnt=sym_cnt+1;

298 FADING, DIVERSITY, AND COMBINING

end
BER(snr_i)=err_cnt/sym_cnt

end
figure
semilogy(EbN0dB_vector, BER)
xlabel(‘E_b/N_0 [dB]’)
ylabel(‘BER’)
grid

4.A-2 Execute the completed m-file and capture the simulated BER.

4.A-3 Execute the m-file separately for each of two other cases: L = 1 and 5. Then
plot the three BER curves in a single figure. Methods to overlay curves from different
figures in a single plot were discussed in Section 4.C-1 of Chapter 24. Finally, execute
legend(‘L=1’,‘L=3’,‘L=5’) in the command window and capture the resulting plot. Save
this figure in .fig format and name it Ch25_4A_3.fig, as it will be needed later in this
chapter.

4.A-4 (a) Analyze how the slope of the BER curves changes as the diversity order
L increases, and intuitively explain the reason that causes such characteristics. (b)
Explain why the BER becomes slightly worse in the low-SNR region as the diversity
order L increases.

4.B Equal gain combining.
In EGC, r(1), r(2),…, r(L) are combined with the same weight regardless of the

magnitudes of the L instantaneous fading coefficients. For coherent combining, the
phase rotation due to fading at each branch is compensated first and the decision
variable D is written as

D =
L∑

k=1

r(k)e−j∠h(k)
. (25.10)

4.B-1 In the m-file completed in 4.A-1, modify the right-hand side of the line
‘D=r(?)*exp(-j*angle(h(?)));’ into ‘D=sum(r.*exp(-j*angle(h)));’ and complete this line
properly to implement the right-hand side of equation (25.10). Capture the modified
m-file.

4.B-2 In addition, modify the line ‘EbN0dB_vector=0:3:15’ into
‘EbN0dB_vector=0:3:12’. Execute the modified m-file for each of the follow-
ing cases: L = 1, L = 3, and L = 5. Then overlay the three BER curves in a single
figure. After this, execute legend(‘L=1’, ‘L=3’, ‘L=5’) in the command window and
capture the figure. Save this figure in .fig format and name it Ch25_4B_2.fig, as it
will be needed later in this chapter.

4.B-3 Analyze how the BER and the slope of the BER curves change as the diversity
order L changes.

COMBINING METHODS 299

4.B-4 Compare the BER results with EGC in 4.B-2 and with SDC in 4.A-3. This
can be done best by overlaying all six curves in a single figure. Focus on the relative
BER values and the slopes of the BER curves of the same diversity order obtained
by using the two combining techniques.

4.C Maximum ratio combining.
Maximum ratio combining is similar to EGC in the sense that all branches are

combined in both schemes. Unlike EGC, MRC employs different combining weights
that are proportional to the fading magnitude of each branch. The decision variable
is expressed as

D =
L∑

k=1

|h(k)|r(k)e−j∠h(k)
. (25.11)

4.C-1 [T]Show that equation (25.11) can be simplified as

D =
L∑

k=1

h∗(k)r(k). (25.12)

4.C-2 In the m-file completed in 4.A-1, modify the right-hand side of the line
‘D=r(?)*exp(-j*angle(h(?)));’ into ‘D=sum(conj(?).*?);’, and complete this line properly
to implement the right-hand side of equation (25.12). Capture the completed line.

4.C-3 In addition, modify the line ‘EbN0dB_vector=0:3:15’ into
‘EbN0dB_vector=0:3:12’ as done in 4.B-2. Execute the modified m-file for
each of the following cases: L = 1, L = 3, and L = 5. Then overlay the three
BER curves in a single figure. After this, execute legend(‘L=1’, ‘L=3’, ‘L=5’) in the
command window and capture the resulting figure. Save this figure in .fig format
and name it Ch25_4C_3.fig, which will be needed later in this chapter.

4.C-4 Analyze how the BER and the slope of the BER curves change as the diversity
order L changes.

4.C-5 Compare the BER results with MRC in 4.C-3 and with EGC in 4.B-2. As in
4.B-4, this can be done best by overlaying all six curves in a single figure. Focus on
the relative BER values and the slopes of the BER curves of the same diversity order
obtained by using the two combining techniques.

4.C-6 [A,T]Prove that MRC maximizes the SNR among all three combining methods
using the Cauchy Schwarz inequality [7].

4.D Now we compare the performances all three combining methods.

4.D-1 Open the figure files (.fig files) saved in 4.A-3, 4.B-2, and 4.C-3 if you have
closed these figures. Overlay all of the nine BER curves in one figure. Change the

300 FADING, DIVERSITY, AND COMBINING

line color of the BER curves for SDC to blue, for EGC to green, and for MRC to red.
Add a legend for all nine curves. Then capture the completed figure.

(a) For the same diversity order L, which combining scheme performs the best?
(b) For L = 5, analyze the BER gaps among the three schemes as SNR changes

and summarize the observations.

4.D-2 Based on the decision variables in equations (25.9), (25.10), and (25.12),
which combining method has the lowest implementation complexity and which one
is most difficult to implement? Why?

4.E In this problem we investigate the diversity gain.

4.E-1 Summarize the common trend in the change of BER values with the three
methods as L increases and explain the reason that causes this trend.

4.E-2 Revisit the m-file completed in 4.C for MRC. Set L=5 and modify the ‘for’
loop inside the ‘while’ loop as shown below. The distribution of h(k) after this
modification remains the same as that in the original version. Explain why.

hk=sqrt(1/2)*(randn+j*randn);
for k=1:L

h(k)=hk;
n(k)=sqrt(N0/2)*(randn+j*randn);
r(k)=?*s+?;

end

4.E-3 Execute the modified m-file and capture the BER graph.

4.E-4 (a) Compare the BER curve in 4.E-3 with the BER curve obtained from the
original m-file. (b) Observe that these two BER curves are significantly different.
Justify it; that is, explain why the modified m-file cannot achieve any diversity gain
although the distribution of h(k) remains the same as before.

4.E-5 Based on the results in 4.E-3 and 4.E-4, determine the conditions on the
statistical properties of the fading coefficients h(1), h(2), …, h(L), so that the diversity
gain is maximized and the BER is minimized accordingly.

REFERENCES

[1] T. S. Rappaport, Wireless Communications: Principles and Practice, 2nd ed., Upper Saddle
River, NJ: Prentice Hall, 2002.

[2] D. Tse and P. Viswanath, Fundamentals of Wireless Communication, Cambridge, UK:
Cambridge University Press, 2005.

[3] B. Sklar, “Rayleigh Fading Channels in Mobile Digital Communication Systems Part I:
Characterization,” IEEE Communications Magazine, Vol. 35, No. 7, 1997, pp. 90–100.

REFERENCES 301

[4] A. Papoulis, Probability, Random Variables, and Stochastic Processes, New York:
McGraw-Hill, 1965.

[5] J. G. Proakis, Digital Communications, 5th ed., New York: McGraw-Hill, 2008.

[6] D. G. Brennan, “Linear Diversity Combining Techniques,” Proceedings IRE., Vol. 47,
1959, pp. 1075–1102.

[7] G. Strang, Linear Algebra and Its Applications, 4th ed., Belmont, CA: Brooks Cole, 2005.

26
ORTHOGONAL FREQUENCY
DIVISION MULTIPLEXING
IN AWGN CHANNELS

� Generate orthogonal frequency division multiplexing (OFDM) signals.
� Implement the demodulation process of OFDM signals.
� Simulate the bit error rate (BER) performance of OFDM signaling in AWGN

environments.

26.1 ORTHOGONAL COMPLEX SINUSOID

1.A [T]Suppose that two complex signals x(t) and y(t) are orthogonal over the range
𝛼 ≤ t ≤ 𝛽. Express this proposition in an equation.

1.B [T]Consider the following two complex sinusoids a(t) and b(t):

a(t) = Aej(2𝜋ft+𝜃a),
b(t) = Bej{2𝜋(f+Δf)t+𝜃b}

.
(26.1)

Show that Δf = n∕T with any nonzero integer n is a sufficient and necessary
condition for a(t) and b(t) to be orthogonal over the interval t0 ≤ t ≤ t0 + T, regardless
of the amplitudes and phases of the sinusoids.

1.C. [T]Given the orthogonality condition in 1.B.

(a) Show that the minimum frequency separation between two complex orthogo-
nal sinusoids over a time period of T is 1/ T.

(b) Discuss how the minimum frequency separation will change as T increases.

Problem-Based Learning in Communication Systems Using MATLAB and Simulink, First Edition.
Kwonhue Choi and Huaping Liu.
© 2016 The Institute of Electrical and Electronics Engineers, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/choi_problembasedlearning

302

http://www.wiley.com/go/choi_problembasedlearning

GENERATION OF ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING SIGNALS 303

1.D. [T]Let Δf = 1∕T in equation (26.1). Show that a(t − 𝜏a) and b(t − 𝜏b) are still
orthogonal over the time period x ≤ t ≤ x + T for any values of 𝜏a and 𝜏b.

26.2 GENERATION OF ORTHOGONAL FREQUENCY DIVISION
MULTIPLEXING SIGNALS

2.A. In orthogonal frequency division multiplexing (OFDM) systems [1, 2], Nc
complex sinusoids, also called subcarriers, are used to modulate up to Nc data symbols
for transmission in parallel over an ODFM symbol duration T. The frequencies of
any two adjacent subcarriers are separated by the minimum separation required to
maintain orthogonality between them. The OFDM signal over one OFDM symbol
duration T is expressed as

x(t) =
Nc−1∑
k=0

s(k)
ej2𝜋kfΔt√

T
, 0 ≤ t ≤ T , (26.2)

where s(k) denotes the kth data symbol and fΔ is the frequency separation between
two adjacent subcarriers.

2.A-1 [T]To ensure that the data symbols transmitted in parallel can be demodu-
lated free of interference at the receiver, the complex sinusoids must be mutually
orthogonal. Show that to maintain orthogonality among the subcarriers, the mini-
mum subcarrier frequency spacing fΔ equals 1/T. Also derive the total bandwidth
(minimum) of the OFDM signal x(t).

2.B System parameter setting.
Consider an OFDM system with the following system parameters:

� Modulation: quadrature phase shift keying (QPSK)
� OFDM symbol duration: T = 10−4 seconds
� Channel: AWGN (Extension to multipath fading channels will be discussed in

the next chapter.)
� Number of subcarriers: Nc = 16

2.B-1 [T]Determine the minimum subcarrier frequency spacing fΔ to maintain
mutual orthogonality among the subcarriers.

2.B-2 [T]Substitute the answer to 2.B-1 into equation (26.2) and show that the
highest frequency of all subcarriers is (Nc − 1)/T.

2.B-3. [T]We want to generate the sampled version of the waveform expressed in
equation (26.2) in MATLAB. Let t_step denote the sample interval variable; the
sampling frequency is thus 1/t_step.

304 ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING IN AWGN CHANNELS

Using the Nyquist sampling criterion, determine the maximum value of t_step if
the bandwidth of the OFDM signal x(t) in equation (26.2) is Nc /T (The bandwidth
of OFDM signal will be covered in Section 3 of this chapter).

2.C Generate the sampled waveform of the OFDM signal in equation (26.2) as a
MATLAB vector via the following steps.

2.C-1 Set the maximum sample interval to t_step = T/Nc. Then show that the
number of samples per OFDM symbol is equal to the number of subcarriers.

2.C-2 The following lines of commands illustrate the process to create the sampled
vector of the third subcarrier (which corresponds to index k = 2 in equation (26.2),
since k starts from 0), that is, 1√

T
ej2𝜋kfst, k = 2. Complete the quantities marked

by ‘?’.

>>k=2;
>>Nc=16;T=10e-5;
>>f_delta=1/?;
>>t_step=T/Nc;
>>t_vector=0:t_step:(T-t_step) %or t_vector= t_step*(0:Nc-1)
>>sub_carrier=1/sqrt(T)*exp(j*2*pi*?*?*t_vector);

2.C-3 Execute the commands in 2.C-2. Then execute the commands below and
capture the result. Assess whether the third subcarrier is generated correctly and justify
your assessment. This can be done by measuring the frequency and phases of the real
and imaginary parts from the plots and comparing them with 1√

T
ej2𝜋kfst, k = 2.

>>figure
>>plot(t_vector, real(sub_carrier))
>>hold on
>>plot(t_vector, imag(sub_carrier),‘r’)
>>hold off

2.C-4 [WWW]The following m-file generates the sampled version of the OFDM
signal x(t) in equation (26.2) as a MATLAB vector xt based on the system parameters
given at the beginning of 2.B. Complete the quantity marked by ‘?’ in the third to the
last and capture the completed line.

clear
Nc=16;T=10e-5;
f_delta=1/T;
t_step=T/Nc;
t_vector=0:t_step:(T-t_step) % or t_vector=t_step*(0:Nc-1)

GENERATION OF ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING SIGNALS 305

for k=0:(Nc-1)
k_th_subcarrier=1/sqrt(T)*exp(j*2*pi*k*f_delta*t_vector);
subcarrier_matrix(k+1,:)=k_th_subcarrier;
%Save subcarriers as the rows in subcarrier_matrix in order to use them for OFDM

modulation and demodulation.
end

s_vector=sign(rand(1,Nc)-0.5)+j*sign(rand(1,Nc)-0.5);
%Nc number of QPSK symbols

xt=zeros(1,length(t_vector));
for k=0:(Nc-1)

s_k=s_vector(k+1);
k_th_subcarrier=subcarrier_matrix(k+1,:);
xt=xt+ ?*k_th_subcarrier ; %Refer to (26.2).

end
xt

2.C-5 Execute m-file and capture the result.

2.C-6 Execute the following two lines and capture the results. The first command
line computes the inverse fast Fourier transform (IFFT) of the symbol vector. Com-
plete the equation x(t) = ? × IFFT of [s(1), s(2),…, s(Nc)].

>>ifft(s_vector)
>>sqrt(T)/Nc*xt

2.C-7 [WWW]From the results obtained in 2.C-6, we can significantly simplify the
m-file completed in 2.C-4 as follows. Complete the last line and capture the m-file.

clear
Nc=16;T=10e-5;
f_delta=1/T;
s_vector=sign(rand(1,Nc)-0.5)+j*sign(rand(1,Nc)-0.5);
xt=?*ifft(?)

2.C-8 From the results obtained in 2.C-7, OFDM signal generation is equivalent
to performing how many points of IFFT of the symbol stream with a proper scaling
factor?

2.C-9 [A,T]Verify the conclusion that the IFFT of the symbol vector [s(1), s(2),

…, s(Nc)] equals the OFDM signal scaled by
√

T∕Nc, that is,
√

T
Nc

x(t), through the

following problems.

306 ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING IN AWGN CHANNELS

(a) Write the expression for the nth sample of the sampled OFDM waveform xt
(i.e., xt(n)). The steps implemented in the m-file in 2.C-4 to generate xt would
be a good starting point.

(b) Execute help fft in the MATLAB command window and review the mathemat-
ical expression of the IFFT output. Show that the expression obtained in (a)
scaled by

√
T∕Nc is equal to the nth output of the IFFT of [s(1), s(2),…, s(Nc)].

26.3 BANDWIDTH EFFICIENCY OF OFDM SIGNALS

3.A First, we revisit the single-carrier modulation methods. Let the symbol rate
be Rs.

3.A-1 [T]Express the symbol duration as a function of Rs.

3.A-2 [T]Suppose that the raised cosine pulse with roll-off factor of 𝛼 is used for
pulse shaping. (a) Sketch the spectrum of the passband signal. (b) Using the sketch
in (a), show that the passband null-to-null bandwidth is equal to Rs(1 + 𝛼).

3.B Consider the OFDM signaling with Nc subcarriers. For a fair comparison of its
bandwidth with that of the single-carrier system, we also let the symbol rate be Rs
here.

3.B-1 [T]The OFDM symbol duration T defined in equation (26.2) equals Nc times
of the symbol duration for the single-carrier system. Justify this relationship using the
fact that during each OFDM symbol interval, multiple data symbols are transmitted
in parallel.

3.B-2 [T]Based on the results in 3.B-1 and 3.A-1, show that T = Nc/Rs.

3.B-3 [T]Show that the subcarrier frequency spacing fΔ is equal to Rs/Nc using the
relationship between fΔ and T in 2.A-1 and the relationship established in 3.B-2.

3.B-4 [T]The bandwidth of the OFDM signal equals the separation between the
highest frequency and lowest frequency of the signal spectrum. Show that it can be
well approximated as (Nc − 1)fΔ = Nc−1

Nc
Rs.

3.B-5 [T](a) For a sufficiently large Nc, which is the case for most practical OFDM
systems, show that the OFDM signal bandwidth is further approximated as Rs.
(b) Determine the ratio of the OFDM signal bandwidth (Rs) to the single-carrier
system bandwidth given in 3.A-3. (c) Based on the result in (b), compare the band-
width efficiency of OFDM and single-carrier systems.

BER SIMULATION OF OFDM SYSTEMS 307

26.4 DEMODULATION OF OFDM SIGNALS

4.A [T]The symbol s(n) modulated on the nth subcarrier as expressed by equation
(26.2) can be extracted out as

s(n) = ∫
T

0
x(t)

e−j2𝜋nfΔt√
T

dt. (26.3)

Substitute equation (26.2) into equation (26.3) and prove equation (26.3).

4.B In this section we implement the right-hand side of equation (26.3) through
numerical integration in MATLAB and verify the result. Numerical integration was
discussed in Section 2.1 of Chapter 2.

In the m-file in 2.C-4, the sampled vector of the nth subcarrier 1√
T

e−j2𝜋nfΔt is stored

in the (n + 1)th row of the matrix subcarrier_matrix, that is, subcarrier_matrix(n+1,:).
The three lines of code below calculate the right-hand side of equation (26.3) via
numerical integration. The result is then compared with s(n) (s_vector(n+1) in
MATLAB).

Execute the three code lines below for several values of n (integer) from 0 to Nc-1
and capture the results.

NOTE: If the workspace has been cleared after executing the m-file in 2.C-4,
then execute this m-file before executing the three lines. Is the OFDM demodulation
scheme expressed in equation (26.3) verified for all values of n simulated?

>>n=? ; %Select an arbitrary integer from 0 to Nc-1
>>t_step*sum(xt.*conj(subcarrier_matrix(n+1,:)))
>>s_vector(n+1)

26.5 BER SIMULATION OF OFDM SYSTEMS

5.A [WWW]In a practical OFDM communications system, data are transmitted in
frames. Each frame typically consists of many OFDM symbols. The m-file below
generates one OFDM frame. The variable Nf denotes the number of OFDM symbols
per frame.

For the lines in bold, explain what the variable on the left-hand side represents
and justify how the right-hand side expression is properly formulated accordingly.

clear
Nf=10;
Nc=16;T=10e-5;
f_delta=1/T;
t_step=T/Nc;

308 ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING IN AWGN CHANNELS

t_vector=0:t_step:(T-t_step);
for k=0:(Nc-1)

subcarrier=1/sqrt(T)*exp(j*2*pi*k*f_delta*t_vector);
subcarrier_matrix(k+1,:)=subcarrier;

end
xt_frame=[];
for m=1:Nf
s_vector=sign(rand(1,Nc)-0.5)+j*sign(rand(1,Nc)-0.5);

xt=zeros(1,length(t_vector));
for k=0:(Nc-1)

s_k=s_vector(k+1);
xt=xt+s_k*subcarrier_matrix(k+1,:);

end
xt_frame=[xt_frame xt];
end

5.B In this section we simulate the BER of OFDM transmission over an AWGN
channel. Here are the simulation steps:

Step 1: Create OFDM symbols.
Step 2: Concatenate OFDM symbols to form an OFDM frame.
Step 3: Create the sampled noise vector and add it to the transmitted signal to

create the received signal.
Step 4: Divide the received OFDM frame into OFDM symbols.
Step 5: Demodulate the data symbols contained in each received OFDM symbol.
Step 6: Compare the demodulated and transmitted data symbols to calculate the

error rate.

5.B-1 [WWW]The m-file below implements the steps above and simulates the BER.
Identify the line(s) that corresponds to each step above. Add a comment to the line(s)
to indicate the corresponding step it implements. Capture the m-file with comments
added.

clear
Nf=10;
Nc=16;T=10e-5;
f_delta=1/T;
t_step=T/Nc;
t_vector=0:t_step:(T-t_step); %=t_step*(0:Nc-1)
Ns=length(t_vector); %Number of samples in one OFDM symbol duration T
Eb=1;
EbN0dBvector=0:3:9;
for k=0:(Nc-1)

BER SIMULATION OF OFDM SYSTEMS 309

k_th_subcarrier=1/sqrt(T)*exp(j*2*pi*k*f_delta*t_vector);
subcarrier_matrix(k+1,:)=k_th_subcarrier;

end
for snr_i=1:length(EbN0dBvector)

EbN0dB=EbN0dBvector(snr_i);
EbN0=10ˆ(EbN0dB/10);
N0=Eb/EbN0;
vn=N0/(2*t_step); % % Refer to Problem 1 of Exercise 21

bitcnt=0; errcnt=0;
while errcnt<100

%%%%%%%%%%%%% Transmitter %%%%%%%%%%%%%%%
OFDM_frame=[];
for m=1:Nf

data_symbols_in_OFDMsymbol=sign(rand(1,Nc)-0.5)+j*sign(rand(1,Nc)-0.5);
data_symbols_in_OFDMframe(m,:)=data_symbols_in_OFDMsymbol;
xt=zeros(1,Ns);
for k=0:(Nc-1)

s_k=data_symbols_in_OFDMsymbol(k+1);
xt=xt+s_k*subcarrier_matrix(k+1,:);

end
OFDM_frame=[OFDM_frame xt];

end

%%%%%%%%% AWGN Channel and received signal generation %%%%%%%
noise=sqrt(vn)*(randn(1,length(OFDM_frame))+j*randn(1,length(OFDM_frame)));
rt_frame=OFDM_frame+noise;

%%%%%%%%%%%%%% Receiver %%%%%%%%%%%%%%%%%%%%%%
for m=1:Nf

mth_OFDMsymbol_in_rt=rt_frame((m-1)*Ns+(1:Ns));
for k=0:(Nc-1)

k_th_subcarrier =subcarrier_matrix(k+1,:);
D=t_step*sum(mth_OFDMsymbol_in_rt.*conj(k_th_subcarrier));
estimated_data_symbols_in_OFDMframe(m,k+1)=sign(real(D))+j*sign

(imag(D));
end

end

Ierrs=sum(sum(real(data_symbols_in_OFDMframe)∼=real(estimated_
data_symbols_in_OFDMframe)));
Qerrs=sum(sum(imag(data_symbols_in_OFDMframe)∼=imag(estimated_
data_symbols_in_OFDMframe)));
errcnt=errcnt+(Ierrs+Qerrs);

310 ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING IN AWGN CHANNELS

bitcnt=bitcnt+Nc*Nf*2;
end

BER(snr_i)=errcnt/bitcnt
BERtheory(snr_i)=0.5 *erfc(sqrt(EbN0));

end
figure
semilogy(EbN0dBvector, BER,‘b’)
hold on
semilogy(EbN0dBvector, BERtheory,‘r’)
grid
legend(‘Simulated, OFDM’,‘Theoretical, single-carrier QPSK(or BPSK)’)

5.B-2 For each of the lines in bold, explain what the variable on the left-hand side
represents and justify how the right-hand side expression is formulated accordingly.

5.B-3 Execute the m-file and capture the simulated BER graph.

5.B-4 Change the values of Nf, Nc, and T to a different set of values. (a) Execute
the m-file again with this set of new values. Capture the BER graph and record the
parameter values on the graph. (b) Check whether or not the simulated BER matches
the theoretical BER of single-carrier QPSK (or BPSK), regardless of the parameter
setting.

5.B-5 Modify the m-file so that each subcarrier carries a BPSK symbol, instead of
a QPSK symbol. Document all the modified lines and add a short explanation to each
of these lines.

5.B-6 Execute the modified m-file for BPSK modulation. Capture the simulated
BER graph.

5.B-7 Based on the simulation results in 5.B-3 and 5.B-6, compare the BER per-
formances of the single-carrier system and the OFDM system in an AWGN channel.
Explain why their BER performances should be or should not be the same.

REFERENCES

[1] A. R. S. Bahai and B. R. Saltzberg, Multi-Carrier Digital Communications: Theory and
Applications of OFDM, Alphen aan den Rijn, Netherlands: Kluwer, 1999.

[2] R. Prasad, OFDM for Wireless Communications Systems, London: Artech House
Publishers, 2004.

27
ORTHOGONAL FREQUENCY
DIVISION MULTIPLEXING OVER
MULTIPATH FADING CHANNELS

� Create the impulse response of a multipath channel and analyze the relationship
between the power-multipath magnitude profile and channel response.

� Generate orthogonal frequency division multiplexing (OFDM) signals with
cyclic prefix (CP) added and demodulate them in multipath fading environments.

� Analyze the bit error rate (BER) performance of OFDM systems over multipath
fading channels.

27.1 MULTIPATH FADING CHANNELS

1.A [WWW]The user-defined MATLAB function below, ht_mp_ch(), outputs the
sampled version of the impulse response hmp(t) of the multipath fading channel [1–3]
as a vector. The last line is for normalizing the total energy of hmp(t) to unity.

The input variables are as follows.

� L: Number of multipath components.
� max_delay: The maximum excess delay of the channel in seconds. The delay

of the first arrival path is assumed to be zero seconds; the arrival times of the
remaining L-1 multipath components are assumed to be uniformly distributed
over [0 max_delay].

Problem-Based Learning in Communication Systems Using MATLAB and Simulink, First Edition.
Kwonhue Choi and Huaping Liu.
© 2016 The Institute of Electrical and Electronics Engineers, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/choi_problembasedlearning

311

http://www.wiley.com/go/choi_problembasedlearning

312 OFDM OVER MULTIPATH FADING CHANNELS

� decay_base: The base of the exponentially decaying profile. The multipath
amplitude at t = max_delay decays to the value of (decay_base × the amplitude
of the first arrival path).

� t_step: Sample interval of the output vector impulse_response, that is, the
sampled version of the multipath channel impulse response.

function impulse_response=ht_mp_ch(max_delay,L,decay_base,t_step)

t_vector=0:t_step:max_delay;
mp_tmp=0*(t_vector);

path_delays=[0 sort(rand(1,L-1)*max_delay)];
impulse_positions=floor(path_delays/t_step);
mp_tmp(impulse_positions+1)=exp(j*2*pi*rand(1,L));
mp_tmp=mp_tmp.*(decay_base.̂ (t_vector/max_delay));
impulse_response=mp_tmp/sqrt(sum(abs(mp_tmp).̂ 2));

1.A-1 Create and save the m-file above as ht_mp_ch.m. We simulate the system
assuming with L=10 paths, the channel maximum excess delay= 1 μs, decay_base =
1/8, and the sample interval of the channel impulse response = 0.01 μs. Complete
the four quantities marked by ‘?’ in the lines of code below.

>>figure
>>A=?;B=?;C=?,D=?;
>>ht=ht_mp_ch(A,B,C,D);
>>stem(0:D:A, abs(ht),‘.’);

1.A-2 Execute the last two lines in 1.A-1 repeatedly at least 10 times and check the
resulting multipath amplitudes. Capture two of the realizations and examine them.
Are these results what you expect to see?

1.B [WWW]The m-file below plots the multipath magnitude profile |hmp (t) | and its
magnitude spectrum denoted by |HMP (f) |.

clear
L=5; max_delay=1e-6; decay_base=1e-6; t_step=1e-8;
ht=ht_mp_ch(max_delay,L,decay_base,t_step);

ht4plot=[ht zeros(1,1024-length(ht))]

figure(1)
subplot(2,1,1);

MULTIPATH FADING CHANNELS 313

stem((0:1023)*t_step,abs(ht4plot), ‘.’);
title(‘Multipath magnitude profile(=|h_{mp}(t)|)’);xlabel(‘time [sec]’);

axis([-100*t_step 1023*t_step 0 1]);grid on
subplot(2,1,2);
plot((0:1023)/1023/t_step,abs(fft(ht4plot)));
title(‘Channel response in the frequency domain (=|H_{MP}(f)|)’);xlabel(‘frequency [Hz]’);
axis([0 1/t_step 0 max(abs(fft(ht4plot))+0.2)]);grid on

1.B-1 Execute the m-file repeatedly at least five times for each of the following
values of max_delay: 1e-6, 1e-7, and 1e-8. Capture one sample figure for each case.

1.B-2 (a) Describe the shape that the multipath magnitude profile |hmp (t) | con-
verges to as max_delay approaches 0.

(b) Describe the shape that the magnitude spectrum |HMP (f) | converges to
as max_delay approaches 0.

(c) Justify the answer in (b) on the basis of the relationship between |hmp (t) |
and |HMP (f) |.

1.B-3 Set max_delay to 1e-6 and execute the m-file for each of the following cases:
decay_base = 1, 1e-2, 1e-4, and 1e-6. Capture one sample figure for each case
and describe the changes in the shapes of |hmp (t) | and |HMP (f) | as decay_base
decreases. Also justify the changes.

1.B-4 If the magnitude spectrum of the channel response, that is, |HMP (f) |, varies
appreciably within the signal bandwidth, the channel is classified as being “frequency
selective” to the signal. If |HMP (f) | is fairly flat in the signal bandwidth, then the
channel is “frequency nonselective” or “frequency flat” to the signal.

From the observations made in 1.B-2 and 1.B-3, summarize the conditions on
decay_base and max_delay for the channel to be frequency selective to a channel
with a certain bandwidth.

1.B-5 [T]The multipath channel can be modeled as a linear time invariant filter with
impulse response hmp (t). Express the channel output y(t) in terms of an input signal
x(t) and hmp (t).

1.B-6 [T]Let X(f), Y(f), and HMP(f) denote the Fourier transforms of x(t), y(t), and
hmp (t), respectively. From the time domain relationship obtained in 1.B-5, prove the
corresponding frequency domain relationship Y(f) = HMP(f)X(f).

1.B-7 According to the frequency domain relationship equation Y(f) = HMP(f) ×
X(f), the flatter the channel frequency response is over the signal band, the less the
transmitted signal is distorted. In the extreme case that the channel is frequency flat;
that is, HMP(f) equals a constant, the transmitted signal simply undergoes a constant
scaling. From these observations, answer the following questions:

(a) For a given bandwidth of the transmitted signal, determine the conditions on
the multipath channel parameters decay_base and max_delay that result in
less distortion to the transmitted signal spectrum.

314 OFDM OVER MULTIPATH FADING CHANNELS

(b) For a given channel response HMP(f), determine the conditions on the band-
width of X(f) that result in less distortion to the received spectrum Y(f).

(c) From the conditions determined in (b), we should be able to conclude that
the transmitted signal will be distorted less by the channel if the period of
the transmitted data symbols is larger. Provide a proper justification of this
conclusion.

1.B-8 Recall that in 3.B-1 of Chapter 26, we concluded that the OFDM symbol
duration is Nc times of the single-carrier symbol duration, where Nc is the number of
subcarriers. From this and the conclusion made in 1.B-7(c), compare the robustness
of OFDM and single-carrier modulations (and assume the same data rate) against
frequency selective fading.

27.2 GUARD INTERVAL, CP, AND CHANNEL ESTIMATION

2.A In a multipath fading channel, the received signal is a sum of the scaled and
delayed copies of the same transmitted signal. If the maximum excess delay relative
to the symbol duration is small (e.g., 10–20% of the symbol duration), then only a
small portion of the delayed versions of the preceding symbol will overlap with a
current symbol. Even such a small overlap will cause undesirable effects. In a single-
carrier system, this causes ISI between adjacent symbols. In an OFDM system, in
addition to ISI (inter-OFDM-symbol interference), since the starting and ending
boundaries of the delayed versions of the same OFDM symbol are not aligned up,
the subcarriers are no longer mutually orthogonal, causing intercarrier interference
(ICI) [4, 5].

Here we focus on OFDM systems. In order to minimize the impacts of ICI and ISI,
a guard interval with a minimum length equal to the channel excess delay can be left
in front of each OFDM symbol. In addition, the last portion of each OFDM symbol
of the same length as the guard interval is copied and inserted in the guard interval.
This portion of the signal is called the “cyclic prefix.” In the receiver, the CP for the
first arrival path is removed before OFDM demodulation. Since the OFDM symbol
boundaries of the delayed versions lie within the guard interval of the following
OFDM symbol, ISI is removed. In addition, the insertion of the CP will still maintain
the orthogonality among the subcarriers despite the delayed versions, and this allows
ICI to be eliminated after OFDM demodulation.

2.A-1 [WWW]Copy the m-file in 5.B-1 of Chapter 26, give it a new file name, and
save it. Insert the lines in bold shown below to the m-file. In the modified m-file,
the guard interval is set to 1/4 of the OFDM symbol duration T. The last 25% of
each OFDM symbol is copied and inserted in the guard interval before the OFDM
symbol.

For each of the lines in bold, explain what the variable on the left-hand side
represents and justify how the right-hand side expression is formulated accordingly.

GUARD INTERVAL, CP, AND CHANNEL ESTIMATION 315

clear
…
Ns=length(t_vector); %Number of samples per OFDM symbol(T seconds) before

inserting CP.
GI=1/4;
Ns_in_GI=ceil(Ns*GI);
Ns_total=Ns+Ns_in_GI;
Eb=1;
…
for snr_i=1:length(EbN0dBvector)
…
while errcnt<100
…
for m=1:Nf
…
for k=0:(Nc-1)
…

end
xt_tail=xt((Ns-Ns_in_GI+1):Ns);
xt=[xt_tail xt];
OFDM_frame=[OFDM_frame xt];

end
…
for m=1:Nf

first_index_of_mth_OFDM symbol=(m-1)*Ns_total+ Ns_in_GI + 1 ;
mth_OFDM symbol_in_rt=rt_frame(first_index_of_mth_OFDM symbol+

(0:Ns-1));
for k=0:(Nc-1)
…

end
end
…

end
…

end
…

2.A-2 [WWW]In order to implement the multipath fading channel, modify the m-
file in 2.A-1 further by adding the lines in bold in the code below. In the modified
m-file, the received signal rt_frame is the OFDM frame that has passed through the
multipath channel. Explain why the line ‘ht = ht_mp_ch(max_delay, L, decay_base,
t_step);’ should be placed inside, not outside of the ‘while’ loop.

316 OFDM OVER MULTIPATH FADING CHANNELS

clear
Nf=10;
L=5; max_delay=1.25e-5; decay_base=1;
Nc=16; T=8*max_delay;
t_step=(T/Nc)/16;
f_delta=1/T;
t_vector=0:t_step:(T-t_step); %=t_step*(0:Nc-1)
Ns=length(t_vector); %Number of samples per OFDM symbol(T seconds) before

inserting CP.
GI=1/4;
Ns_in_GI=ceil(Ns*GI);
Ns_total=Ns+Ns_in_GI;
Eb=1;
EbN0dBvector=0:3:9;

…
for snr_i=1:length(EbN0dBvector)
…
while errcnt<500
…
for m=1:Nf
…

end
ht=ht_mp_ch(max_delay,L,decay_base,t_step);
OFDM_frame_after_ht=conv(OFDM_frame,ht);
frame_length=length(OFDM_frame_after_ht);
noise=sqrt(vn)*(randn(1,frame_length)+j*randn(1,frame_length));
rt_frame=OFDM_frame_after_ht+noise;

for m=1:Nf
…

end
end
…

end
…

end
…

2.A-3 In the added line ‘OFDM_frame_after_ht=conv(OFDM_frame,ht);’, explain
what the variable OFDM_frame_after_ht represents and justify how the right-hand
side expression is properly formulated accordingly.

GUARD INTERVAL, CP, AND CHANNEL ESTIMATION 317

2.A-4 According to the modified m-file in 2.A-2, do the Nf OFDM symbols in one
frame go through the same multipath channel or each of the Nf OFDM symbols goes
through a different multipath channel? In other words, does the impulse response of
the channel change within one frame? Justify your answer.

2.A-5 Execute the modified m-file in 2.A-2 and capture the result of the vector BER
displayed in the command window. Check to see whether the simulated BERs are
around 0.5, regardless of the signal-to-noise ratio (SNR) values.

2.A-6 To simulate the noiseless case, modify the line ‘rt_frame = OFDM_frame_
after_ht+noise;’ into ‘rt_frame = OFDM_frame_after_ht;’. Execute the modified m-
file and check the BER values. The BERs should still be around 0.5. Give the reason
why.

2.B Recall that in the AWGN channel environment, the decision variable Dk (=
D(k) in the m-file) of the k-th subcarrier is modeled as

Dk = sk + nk, k = 0, 1, 2,…, Nc − 1, (27.1)

where sk is the data symbol on the kth subcarrier and nk is the noise term.
In the frequency selective multipath fading channel, we saw in Section 27.1 that

the channel frequency response HMP(f) is not a constant over the signal band. Hence
the fading gains for different subcarriers are in general not identical. The decision
variable Dk of the kth subcarrier can be expressed as

Dk = Fksk + nk, k = 0, 1, 2,…, Nc − 1, (27.2)

where Fk denotes the fading gain of the kth subcarrier at the frequency fk and is
obtained as Fk = HMP(fk).

2.B-1 Justify equation (27.2).

2.B-2 [WWW]In the OFDM receiver, the fading gain Fk for each subcarrier should
be estimated and applied to form the proper decision variable Dk,compensated as

Dk,compensated = Dk∕Fk
= sk + nk∕Fk.

(27.3)

The process to estimate the fading gain Fk is called “channel estimation,” and the
process expressed in equation (27.3) is called “channel compensation” (or channel
inversion) [5].

Commonly used OFDM channel estimation uses a pilot approach; known data
symbols called “pilot symbols” are transmitted. Within each frame there exist many
OFDM symbols, and the pilots are transmitted in some or all OFDM symbols,
depending on how fast the channel changes in time. Let pk denote the pilot symbol

318 OFDM OVER MULTIPATH FADING CHANNELS

on the kth subcarrier and Dk,pilot denote the corresponding decision variable. The
estimated fading gain of the kth subcarrier denoted by F̂k is obtained as

F̂k = Dk,pilot∕pk =
(
Fkpk + nk

)
∕pk = Fk + nk∕pk. (27.4)

The estimation error term nk/pk can be reduced by transmitting the pilot multiple
times or by boosting up the pilot symbol energy.

Next we simulate the BER of OFDM systems over multipath fading channels
assuming that perfect channel estimates are available. To this end, in the m-file, the
noise term is not added for pilot symbols, which allows us to obtain perfect channel
estimates. In practice, this approximates well the case that the pilots are received with
a very high SNR. Also the pilot symbols are set to 1 for all subcarriers for simplicity.

The lines in bold in the m-file below are added for estimating the channel gain Fk,
k = 0,1,…, Nc. Note that in the m-file, the variable F(k+1) corresponds to Fk because
the vector index starts from 1 in MATLAB but OFDM subcarrier index starts from 0.
The channel impulse response ht is generated randomly. The complex fading gains
Fk, k = 0,1,…, Nc are calculated by using equation (27.4).

Add a comment for each of the lines in bold to explain what the variable on the
left-hand side represents and justify how the right-hand side expression is properly
formulated accordingly.

clear
L=5; max_delay=1.25e-5; decay_base=1;
Nc=16; T=8*max_delay;
t_step=(T/Nc)/16;
f_delta=1/T;
t_vector=0:t_step:(T-t_step); %=t_step*(0:Nc-1)
Ns=length(t_vector); %Number of samples per OFDM symbol(T seconds) before insert-
ing CP
GI=1/4;
Ns_in_GI=ceil(Ns*GI);
Ns_total=Ns+Ns_in_GI;
for k=0:(Nc-1)

subcarrier=1/sqrt(T)*exp(j*2*pi*k*f_delta*t_vector);
subcarrier_matrix(k+1,:)=subcarrier;

end

pilot_sk=ones(1,Nc);
xt=zeros(1,Ns);
for k=0:(Nc-1)

s_k=pilot_sk(k+1);
xt=xt+s_k*subcarrier_matrix(k+1,:);

end
xt_tail=xt((Ns-Ns_in_GI+1):Ns);

BER SIMULATION OF OFDM SYSTEMS OVER MULTIPATH FADING CHANNELS 319

pilot_OFDM symbol=[xt_tail xt];

ht=ht_mp_ch(max_delay,L,decay_base,t_step);

rt_pilot=conv(pilot_OFDM symbol,ht);
for k=0:(Nc-1)

D=t_step*sum(rt_pilot(Ns_in_GI+(1:Ns)).*conj(subcarrier_matrix(k+1,:)));
F(k+1)=D/pilot_sk(k+1);

end
stem(abs(F));grid on

2.B-3 Modify the line ‘T=8*max_delay’ into ‘T=8*1.25e-5’ and execute the m-file
for each of the following values of max_delay: 1.25e-5, 1.25e-6, and 1.25e-7.

(a) Capture the results for each case.
(b) Describe how the fading gains change as max_delay decreases. Justify the

results.

2.B-4 Modify the m-file to set ‘T=8*1.25e-5’, ‘max_delay=1.25e-5’, and ‘L=1’. Exe-
cute the modified m-file and capture the result. Justify the result.

27.3 BER SIMULATION OF OFDM SYSTEMS OVER MULTIPATH
FADING CHANNELS

[WWW]The m-file below implements the whole OFDM system and simulates the BER
in the multipath fading channel.

clear
Nf=10;
L=5; max_delay=1.25e-5; decay_base=1;
Nc=16; T=8*max_delay;
t_step=(T/Nc)/16;
f_delta=1/T;
t_vector=0:t_step:(T-t_step); %=t_step*(0:Nc-1)
Ns=length(t_vector); %Number of samples per OFDM symbol(T seconds) before

inserting Cyclic Prefix
GI=1/4;
Ns_in_GI=ceil(Ns*GI);
Ns_total=Ns+Ns_in_GI;
Eb=1;
EbN0dBvector=0:3:18;

320 OFDM OVER MULTIPATH FADING CHANNELS

for k=0:(Nc-1)
subcarrier=1/sqrt(T)*exp(j*2*pi*k*f_delta*t_vector);
subcarrier_matrix(k+1,:)=subcarrier;

end

pilot_sk=ones(1,Nc);
xt=zeros(1,Ns);
for k=0:(Nc-1)

s_k=pilot_sk(k+1);
xt=xt+s_k*subcarrier_matrix(k+1,:);

end
xt_tail=xt((Ns-Ns_in_GI+1):Ns);
pilot_OFDM symbol=[xt_tail xt];

for snr_i=1:length(EbN0dBvector)
EbN0dB=EbN0dBvector(snr_i);
EbN0=10ˆ(EbN0dB/10);
N0=Eb/EbN0;
vn=N0/(2*t_step); % Refer to Section 1.C and 1.D of Chapter 21.

bitcnt=0; errcnt=0;
while errcnt<1000

%Reduce 1000 to a smaller value if the simulation takes long time. The simulation
error will increase instead.

OFDM_frame=[];
for m=1:Nf

datasymbols_in_OFDM symbol=sign(rand(1,Nc)-0.5)+j*sign(rand(1,Nc)-0.5);
datasymbols_in_OFDMframe(m,:)=data symbols_in_OFDM symbol;
xt=zeros(1,Ns);
for k=0:(Nc-1)

s_k=datasymbols_in_OFDM symbol(k+1);
xt=xt+s_k*subcarrier_matrix(k+1,:);

end
xt_tail=xt((Ns-Ns_in_GI+1):Ns);
xt=[xt_tail xt];
OFDM_frame=[OFDM_frame xt];

end

ht=ht_mp_ch(max_delay,L,decay_base,t_step);
OFDM_frame_after_ht=conv(OFDM_frame,ht);
frame_sample_length=length(OFDM_frame_after_ht);

noise=sqrt(vn)*(randn(1,frame_sample_length)+j*randn(1,frame_sample_length));
rt_frame=OFDM_frame_after_ht+noise;

BER SIMULATION OF OFDM SYSTEMS OVER MULTIPATH FADING CHANNELS 321

rt_pilot=conv(pilot_OFDM symbol,ht);
for k=0:(Nc-1)

D=t_step*sum(rt_pilot(Ns_in_GI+(1:Ns)).*conj(subcarrier_matrix(k+1,:))/
sqrt(T));

F(k+1)=D/pilot_sk(k+1);
end

for m=1:Nf
first_index_of_mth_OFDMsymbol=(m-1)*Ns_total+ Ns_in_GI + 1 ;
mth_OFDM symbol_in_rt=rt_frame(first_index_of_mth_OFDMsymbol+

(0:Ns-1));
for k=0:(Nc-1)

D=t_step*sum(mth_OFDMsymbol_in_rt.*conj(subcarrier_matrix(k+1,:))
/sqrt(T));

Dc=D/F(k+1); %Dc means the channel compensated decision
variable in (27.3).

estimated_data symbols_in_OFDMframe(m,k+1)=sign(real(Dc))+j*sign
(imag(Dc));

end
end

Ierrs=sum(sum(real(data symbols_in_OFDMframe)∼=real(estimated_data
symbols_in_OFDMframe)));

Qerrs=sum(sum(imag(data symbols_in_OFDMframe)∼=imag(estimated_data
symbols_in_OFDMframe)));

errcnt=errcnt+(Ierrs+Qerrs);
bitcnt=bitcnt+Nc*Nf*2;

end
BER(snr_i)=errcnt/bitcnt
%BERtheory(snr_i)=qfunc(sqrt(2*EbN0))
BERtheory(snr_i)=1/2 - EbN0ˆ(1/2)/(2*(EbN0 + 1)ˆ(1/2))

end
figure
semilogy(EbN0dBvector, BER,‘b’)
hold on
semilogy(EbN0dBvector, BERtheory,‘r’)
grid
legend(‘BER simulation’,’BER theory (Rayleigh fading)’)

3.A The three parts in bold implement the following functions:

� The first part: creates the pilot symbols.
� The second part: estimates the fading channel coefficients for all Nc subcarriers.
� The third part: implements equation (27.3) to form the decision variable.

322 OFDM OVER MULTIPATH FADING CHANNELS

These functions should be implemented in the proper locations in the code. Discuss
why it is appropriate to implement the three parts at their current locations as shown
in the m-file.

3.B The effect of the number of paths L on the BER performance.

3.B-1 Execute the m-file in 3.A for each of the following cases: L = 2, 3, 5, and
7. Overlay the simulated BER curves for all cases in one figure and capture the plot
(the process to copy curves displayed in different figures generated in MATLAB and
overlay them in one figure was discussed in 4.C-1 of Chapter 24)

3.B-2 Compare the simulated BER values with the theoretical BER of coherent
QPSK over Rayleigh fading channels. We should see that as L increases, the simulated
BER approaches the theoretical BER of coherent quadrature phase shift keying
(QPSK) over Rayleigh fading channels. Determine the distribution of the fading gain
for each subcarrier by invoking the central limit theorem (discussed in Section 15.3
of Chapter 15) and then explain the result above.

3.C The effect of the guard interval length GI on the BER performance.

3.C-1 Set L = 5 again and execute the m-file for each of the following cases: GI =
1/2, 1/4, 1/8, 1/32, 1/64, and 0. Overlay the simulated BER curves in one figure and
capture the plot.

3.C-2 The results in 3.C-1 should show the following BER characteristics.

� The BER results are almost the same for GI = 1/2, 1/4, and 1/8.
� The BER increases significantly as GI decreases to 1/32, 1/64, and 0.

Justify these simulation results (notice the value of max_delay set in the m-file).

3.C-3 Set GI = 1/64. Modify the line ‘rt_frame = OFDM_frame_after_ht + noise;’
into ‘rt_frame = OFDM_frame_after_ht + 0*noise;’ and then execute the modified
m-file.

(a) Capture the BER result. Note that although without further modifications to
the m-file the BER figures will show the x axis range to be from 0 to 18 dB, the
effective SNR is actually infinity because noise is not added to the received
signal.

(b) The result should show that the BER value is not 0 despite the infinite SNR
values. Explain why.

3.D The effect of the multipath decaying factor, decay_base, on the BER perfor-
mance.

3.D-1 Set L = 5 and GI = 1/4. Restore the line ‘rt_frame = OFDM_frame_after_ht
+ 0*noise;’ back to the original ‘rt_frame = OFDM_frame_after_ht+noise;’. Then
execute the m-file for each of the following cases: decay_base=1, 1e-1, and 1e-6.
Overlay the three simulated BER curves in the single graph and capture the plot.

REFERENCES 323

3.D-2 The results in 3.D-1 should show that the BER values become signifi-
cantly lower than the theoretical BER in the Rayleigh fading channel as decay_base
decreases.

(a) Provide a theoretical justification of this result.
(b) As decay_base approaches 0, the BER values converge to the BER perfor-

mance in which type of channel?

3.E The effect of the number of subcarriers, Nc, on the BER performance.

3.E-1 Set L = 5, GI = 1/4, and decay_base = 1. Execute the m-file for each of the
following cases: Nc = 4, 16, and 64. Overlay the three simulated BER curves in a
single graph and capture the plot. Are the simulated BERs approximately the same
regardless of the value of Nc?

3.E-2 Set GI = 1/16 and execute the m-file for each of the following cases: Nc =
4, 16, and 64. Overlay the three simulated BER curves in one figure and capture the
plot. Does the BER increase or decrease as Nc increases and why?

3.E-3 Note that the fourth line of the m-file sets two parameters, Nc = 16 and
T=8*max_delay. If Nc is set larger than 16, will the bandwidth of the OFDM signal
increase or decrease? Why?

3.E-4 In order to simulate the performance of the system with different values
of Nc while the signal bandwidth is kept the same as the case with Nc = 16, the
OFDM symbol duration T should be scaled by Nc/16. This can be done by changing
the line ‘T=8*max_delay;’ into ‘T=(Nc/16)*8*max_delay;’. Justify this modification to
maintain the same bandwidth for different values of Nc.

3.E-5 Modify the line ‘T=8*max_delay;’ into ‘T=(Nc/16)*8*max_delay;’ and repeat
3.E-2. Overlay the three simulated BER curves in one figure and capture the plot.
Does the BER increase or decrease as Nc increases and why?

3.E-6 Judged from the results in 3.E-5, for a given total OFDM bandwidth, will an
increase to Nc help mitigate the effects of ICI and ISI caused by multipath fading?

REFERENCES

[1] T. S. Rappaport, Wireless Communications: Principles and Practice, 2nd ed., Upper Saddle
River, NJ: Prentice Hall, 2002.

[2] D. Tse and P. Viswanath, Fundamentals of Wireless Communication, Cambridge, UK:
Cambridge University Press, 2005.

[3] J. G. Proakis, Digital Communications, 5th ed., New York, NY: McGraw-Hill, 2008.

[4] A. R. S. Bahai and B. R. Saltzberg, Multi-Carrier Digital Communications: Theory and
Applications of OFDM, Alphen aan den Rijn, Netherlands: Kluwer, 1999.

[5] R. Prasad, OFDM for Wireless Communications Systems, London: Artech House, 2004.

28
MIMO SYSTEM—PART I: SPACE
TIME CODE

� Investigate the structure of Alamouti code, one of the most commonly used
space time codes.

� Implement Alamouti code and verify its performance through the simulation.
� Analyze the rates and the diversity orders of various space time block codes.

28.1 SYSTEM MODEL

1.A [WWW]Received signal model for the single transmit antenna system.
The m-file below simulates the received signal in a slow and frequency flat

Rayleigh fading channel. For the last five lines in bold, explain what the variable
on the left-hand side represents and justify how the right-hand side expression is
formulated accordingly.

clear
EsN0= ; %Es/N0; set it to a desired value
s= ;
% Create the complex symbols according to the modulation method, for example
% in case of QPSK, s=sign(rand-0.5)+j*sign(rand-0.5), and in case of BPSK,
s=sign(rand-0.5);

Problem-Based Learning in Communication Systems Using MATLAB and Simulink, First Edition.
Kwonhue Choi and Huaping Liu.
© 2016 The Institute of Electrical and Electronics Engineers, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/choi_problembasedlearning

324

http://www.wiley.com/go/choi_problembasedlearning

SYSTEM MODEL 325

Es=abs(s)ˆ2;
N0=Es/EsN0;
h=sqrt(1/2)*(randn+j*randn);
n=sqrt(N0/2)*(randn+j*randn);
r=h*s+n;

NOTE: If a BER simulation includes creating the received waveform and calcu-
lating the decision variable from the received waveform as done in Chapters 21, 22,
23, 26, and 27, then we call it “waveform level BER simulation.” On the contrary,
if a BER simulation starts with the decision variable model and skips the process of
generating the received signal waveform as done in Chapters 24, 25, and this chapter,
then we call it “decision variable level simulation.”

1.B [T]System with two transmit antennas.
The complex Gaussian variable h in the m-file in 1.A is the fading gain. As

discussed in Section 25.1 of Chapter 25, abs(h) has the Rayleigh distribution. Also
the multiplicative distortion—the desired signal is multiplied by h at the receiver—
as implemented in the last line of the m-file above degrades the BER performance
significantly. The discussion in Chapter 25 has shown that spatial diversity is a very
effective way to mitigate the effects of fading. However, implementing multiple
antennas at both sides of a communications link is not necessarily feasible for many
applications. If one side of the link must be simple and have only one antenna (e.g.,
the mobile side), but the other side can have multiple antennas, how to realize spatial
diversity at the one-antenna terminal?

Let us consider a system where the transmitter has two antennas, one named
“antenna A” and the other “antenna B,” and the receiver has only one antenna. The
goal is to design a scheme to provide spatial diversity at the receiver. Let hA and
hB be two independent complex Gaussian random variables that denote the Rayleigh
fading coefficients from antenna A and antenna B to the receive antenna, respectively.

There are a number of ways to use the two transmit antennas. Next we consider
two simple methods.

1.B-1 The first scheme is described in Table 28.1, where T1, T2, … denote the
transmission time slots and s1, s2, s3, … are the data symbols to be transmitted. The
transmission delay from the transmitter to the receiver is neglected without affecting
the description of the transmission and reception processes.

TABLE 28.1 Space Time Symbol Mapping Method I.

Time

Space T1 T2 T3 T4 …

Antenna A s1 s2 s3 s4 …
Antenna B s1 s2 s3 s4 …

326 MIMO SYSTEM—PART I: SPACE TIME CODE

At T1, the received signal is the sum of hA*s1 and hB*s1.

(a) The m-file below simulates the received signal for the method described
in Table 28.1. Justify the use of the scaling factor 2 in the fourth line
‘Es=2*abs(s1)ˆ2;’ that calculates the transmitted energy per symbol.

clear
EsN0= ; %Es/N0, set to a desired value
s1= ; % Create any symbol randomly according to the modulation method
Es=2*abs(s1)ˆ2; N0=Es/EsN0;

hA=sqrt(1/2)*(randn+j*randn);
hB=sqrt(1/2)*(randn+j*randn);
n=sqrt(N0/2)*(randn+j*randn);
sA=s1; % antenna A transmit signal
sB=s1; % antenna B transmit signal
r=hA*sA+hB*sB+n;

(b) The BER performance cannot be improved by using the method in Table 28.1
compared with the single antenna system discussed in 1.A. Prove that the
diversity order of this scheme is still 1 even though both transmit antennas are
used in the transmission process.

HINT: You may rewrite the received signal as ‘r=(hA+hB)/sqrt(2)*s +n’, and then
determine the distribution of the effective fading coefficient ‘(hA+hB)/sqrt(2)’.

1.B-2 The diversity gain can be realized only if multiple independent observations
of the same transmitted signals are available at the receiver, like the receive diversity
case described by equation (25.8) in Chapter 25. The second scheme is described in
Table 28.2.

(a) The code fragment below generates the received signal for the method
described in Table 28.2. Since the same transmitted data symbol is received
independently twice over two adjacent time slots, one from antenna A and one
from antenna B, these two observations of the same data symbol should be
combined before detection. Complete the last line of the code fragment to form
the decision variable by employing MRC (which was discussed in Chapter 25).

TABLE 28.2 Space Time Symbol Mapping Method II.

Time

Space T1 T2 T3 T4 …

Antenna A s1 No signal s2 No signal …
Antenna B No signal s1 No signal s2 …

ALAMOUTI CODE 327

.

.

.
hA=sqrt(1/2)*(randn+j*randn);
hB=sqrt(1/2)*(randn+j*randn);
n1=sqrt(N0/2)*(randn+j*randn); %received noise at T1
n2=sqrt(N0/2)*(randn+j*randn); %received noise at T2
r1=hA*s1+n1; % received signal at T1
r2=hB*s1+n2; % received signal at T2
z=conj(?)*r1+conj(?)*r2; % decision variable after MRC.

(b) Substitute the expressions of r1 and r2 into the expression of z and show that
the signal scaling factor in the decision variable z is abs(hA)ˆ2 +abs(hB)ˆ2.

(c) Also show that the noise term in z is conj(hA)*n1+conj(hB)*n2 and that it has
a zero mean and instantaneous variance equal to (abs(hA)ˆ2+abs(hB)ˆ2)*N0.

(d) From (b) and (c), show that the instantaneous Eb∕N0 with the decision variable
z obtained from MRC is (abs(hA)ˆ2+abs(hB)ˆ2)*EbN0.

(e) From the instantaneous Eb∕N0, show that the method in Table 28.2 achieves a
diversity order of 2.

(f) However, the method in Table 28.2 has a major disadvantage compared with
the single transmit antenna system discussed in 1.A in terms of bandwidth
efficiency. Explain why.

28.2 ALAMOUTI CODE

Alamouti code [1] is the simplest and most widely used space time block code
(STBC) [1–5]. This method transmits the data symbol pairs as shown in Table 28.3.
For proper operation of Alamouti code, the fading coefficients hA and hB of the two
transmission antennas should remain the same over at least two consecutive time
slots.

2.A Let s1 and n1 denote, respectively, the signal and the noise terms received at
the first time slot T1, and let s2 and n2 denote, respectively, the signal and the noise
terms received at the second time slots T2. Then, r1 and r2 can be created as shown
below.

TABLE 28.3 Space Time Symbol Mapping of Alamouti Code.

Time

Space T1 T2 T3 T4 T5 T6 …

Antenna A s1 conj(s2) s3 conj(s4) s5 conj(s6) …
Antenna B s2 -conj(s1) s4 -conj(s3) s6 -conj(s5) …

328 MIMO SYSTEM—PART I: SPACE TIME CODE

s1= ;
s2= ;
.
.
.
hA=sqrt(1/2)*(randn+j*randn);
hB=sqrt(1/2)*(randn+j*randn);
n1=sqrt(N0/2)*(randn+j*randn); %Received noise at T1.
n2=sqrt(N0/2)*(randn+j*randn); %Received noise at T2.
r1=hA*s1+hB*s2+n1; % received signal at T1
r2= ? ; % received signal at T2

Complete the last line to create r2 and capture the competed line.

2.B [A]The receiver is assumed to have perfect channel state information (CSI) (the
channel gains hA and hB). The data symbol pair s1 and s2 are estimated by using r1,
r2, hA, and hB. Next we decode Alamouti code using MLD on the basis of exhaustive
search implemented through the following steps:

Step 1. Create a data symbol pair (s1, s2) and the fading gains (hA, hB) from the
two transmit antennas to the receive antenna.

Step 2. Perform Alamouti coding on the data symbol pair (s1, s2) and create the
received signals r1 and r2.

Step 3. Prepare all possible data symbol pairs (candidate pairs) of (s1, s2) for
exhaustive MLD. For example, for binary phase shift keying (BPSK), the pairs
are {(1,1), (1,-1), (-1,1), (-1,1)}.

Step 4. For each candidate pair, perform Step 4-1 and Step 4-2.

Step 4-1. Perform Alamouti coding on the current candidate data symbol pair
and construct the virtual received signal without noise.

Step 4-2. Calculate the Euclidean distance between the received signal (r1, r2)
in Step 2 and the virtual received signal constructed in Step 4-1.

Step 5. Among all candidate data symbol pairs, select the candidate pair that has
the smallest Euclidean distance with the estimated data symbol pair.

2.B-1 Review the MLD concept and justify why Step 4 and Step 5 above implement
the MLD process.

2.B-2 [WWW]The m-file below simulates the BER of a BPSK system with Alamouti
STBC.

(a) Identify the code lines that correspond to each of the steps described above.
Complete the places marked by ‘?’. For each of the lines in bold, add a

comment to explain what the variable on the left-hand side represents and
justify how the right-hand side expression is properly formulated accordingly.
Capture the completed m-file.

ALAMOUTI CODE 329

clear
EbN0dB_vector=[0 3 6 9 12 15]; % Set EbN0 values in dB.
Eb=2; %Total bit energy for two time slots T1 and T2. Refer to Table 28.3.

for snri=1:length(EbN0dB_vector)
EbN0dB=EbN0dB_vector(snri);
EbN0=10ˆ(EbN0dB/10);
N0=Eb/EbN0;
errcnt=0; symcnt=0;
while errcnt<500 %Decrease errcnt limit(=500) if the simulation takes long time but

the result will be less accurate.

s1=sign(rand-0.5);
s2=sign(rand-0.5);

%%%Creation of fading coefficients and noise %%%%%%%%%%%%%
hA=sqrt(1/2)*(randn+j*randn);
hB=sqrt(1/2)*(randn+j*randn);
n1=sqrt(N0/2)*(randn+j*randn); %Received noise at T1.
n2=sqrt(N0/2)*(randn+j*randn); %Received noise at T2.

%%%

%%%%%Generating Alamouti coded received signal%%%%%%%%%%%
r1=hA*s1+hB*s2+n1; %received signal at T1.
r2=?; %received signal at T2. Refer to Table 28.3

%%%

%%%%%%ML decoding %%%%%%%%%%%%%%%%%%%%%%%%%%%%
s1s2pairCandidate=[[1,1];[1,-1];[-1,1];[-1,-1]];
N_set=4; %Number of candidates
for k_set=1:N_set

s1candidate=s1s2pairCandidate(k_set,1);
s2candidate=s1s2pairCandidate(k_set,?);
r1candidate=hA*s1candidate+hB*s2candidate;

%Create a virtual r1 assuming that (s1, s2)=(s1candidate, s2candidate) and there
is no noise.

r2candidate=? ;

distance(k_set)=sum(abs([r1, r2]-[r1candidate,r2candidate]).ˆ2);
end
[A B]= min(?);
s1_hat=s1s2pairCandidate(B,1);
s2_hat=s1s2pairCandidate(B,2);

%%%

330 MIMO SYSTEM—PART I: SPACE TIME CODE

if(s1_hat∼=s1)
errcnt=errcnt+1;

end
if(s2_hat∼=s2)

errcnt=errcnt+1;
end
symcnt=symcnt + 2;

end

BER(snri)=errcnt/symcnt;
save alamouti_ML_BER.mat EbN0dB_vector BER

end
figure
semilogy(EbN0dB_vector, BER);
title(’Alamouti coded, BPSK, Rayleigh fading’);
xlabel(’Eb/N0 [dB’);ylabel(’BER’);
grid on

2.B-3 Explain why the part ‘creation of the fading coefficients and the noise’should
not be placed outside of the ‘while’ loop.

2.B-4 In an actual system, the streams of symbol pairs are continuously transmitted
as illustrated in Table 28.3. However, in the m-file of 2.B-2, a loop is used to repeatedly
transmit one symbol pair (s1, s2) at a time. Justify why we do not need to explicitly
simulate other symbol pairs (s3, s4), (s5, s6), and so on.

2.B-5 Execute the completed m-file and capture the simulated BER plot.

2.B-6 Recall that the m-file completed in Section 4.C of Chapter 25 simulates the
BER of MRC in Rayleigh fading channels. Open that m-file and set L = 2. Execute
the m-file. Overlay the simulated BER of MRC with L = 2 on the BER graph in 2.B-5.
(The process to copy curves displayed in different figures generated in MATLAB and
overlay them in one figure was discussed in 4.C-1 of Chapter 24.)

(a) Capture the resulting BER graph.
(b) Compare the two BER curves and check whether or not the BER of

Alamouti code with MLD is equal to that of two-branch (L=2) receive diversity
with MRC.

28.3 SIMPLE DETECTION OF ALAMOUTI CODE

3.A One of the excellent features of Alamouti code is that detection based on a
decision variable obtained by linearly combining the received signal pair (r1, r2)
achieves the MLD performance. Let z1 and z2 denote the decision variables for

SIMPLE DETECTION OF ALAMOUTI CODE 331

s1 and s2, respectively. They can be created by linearly combining r1 and r2
[1].

z1=conj(hA)*r1 - hB* conj(r2);
z2=conj(hB)*r1 + hA* conj(r2);

3.A-1 [T]Substitute the expressions for r1 and r2 completed in the m-file in 2.A into
the expressions of z1 and z2 above.

(a) Rearrange the two expressions so that s2 does not appear in the expression z1
and s1 does not appear in the expression z2.

(b) Show that the scaling terms for s1 in z1 and for s2 in z2 are both equal to
‘(abs(hA)ˆ2+abs(hB)ˆ2)’.

(c) Show that the noise terms in z1 and z2 have a zero mean and variance equal
to ‘(abs(hA)ˆ2+abs(hB)ˆ2)*N0’.

(d) From (b) and (c), show that the instantaneous Eb∕N0 values in z1 and z2 are
‘(abs(hA)ˆ2+abs(hB)ˆ2)*EbN0’.

(e) Based on the instantaneous Eb∕N0 for z1 and z2, show that the linear decoding
process given above achieves the same performance as MRC with a diversity
order L = 2.

(f) In 2.B-6(b), we showed that Alamouti code with MLD achieves the same
performance as MRC with L = 2. From the results so far, does detection based
on the decision variables obtained by linearly combining the received signals
achieve the MLD performance? Justify your answer.

3.A-2 [T]Compare the instantaneous Eb∕N0 values of Alamouti code and the method
described in Table 28.2, which were derived in 1.B-2(b)–1.B-2(e).

(a) Based on this comparison, assess the relative error performances of these two
schemes.

(b) An Alamouti code is bandwidth more efficient than the scheme described in
Table 28.2. Derive the relative bandwidth efficiency of the two schemes.

3.B [WWW]The m-file below simulates the BER with the simple linear combining
method introduced in 3.A.

clear
EbN0dB_vector=[0 3 6 9 12 15]; % Set EbN0 values in dB.
Eb=2; %Total bit energy for two time slots T1 and T2. Refer to Table 28.3.

for snri=1:length(EbN0dB_vector)
EbN0dB=EbN0dB_vector(snri);
EbN0=10ˆ(EbN0dB/10);
N0=Eb/EbN0;
errcnt=0; symcnt=0;

332 MIMO SYSTEM—PART I: SPACE TIME CODE

while errcnt<500 %Decrease errcnt limit(=500) if the simulation takes long time but
the result will be less accurate.

s1=sign(rand-0.5);
s2=sign(rand-0.5);

%%%Generating fading coefficient and noise %%%%%%%%%%%%%
hA=sqrt(1/2)*(randn+j*randn);
hB=sqrt(1/2)*(randn+j*randn);
n1=sqrt(N0/2)*(randn+j*randn); %Received noise at T1.
n2=sqrt(N0/2)*(randn+j*randn); %Received noise at T2.

%%%

%%%%%Generating Alamouti coded received signal%%%%%%%%%%%
r1=hA*s1+hB*s2+n1; %received signal at T1.
r2=?; %received signal at T2. Refer to Table 28.3

%%%

%%%%%%Simple linear combining for decoding!!!!%%%%%%%%
z1= ?; % Decision variable for s1
z2= ?; % Decision variable for s2
s1_hat=sign(real(z1));
s2_hat=sign(real(z2));

%%%

if(s1_hat∼=s1)
errcnt=errcnt+1;

end
if(s2_hat∼=s2)

errcnt=errcnt+1;
end
symcnt=symcnt + 2;

end

BER(snri)=errcnt/symcnt;
save alamouti_BER.mat EbN0dB_vector BER

end
figure
semilogy(EbN0dB_vector, BER);
title(’Alamouti coded, BPSK, Rayleigh fading’);
xlabel(’Eb/N0 [dB’);ylabel(’BER’);
grid on

3.B-1 Complete the places marked by ‘?’ and capture the completed m-file.

SIMPLE DETECTION OF ALAMOUTI CODE 333

3.B-2 Compare the computational complexities of the exhaustive MLD imple-
mented in the m-file of 2.B-2 and the simple linear combining method.

3.B-3 Execute the m-file and capture the simulated BER graph. Do not close the
figure since it will be needed in 3.B-4.

3.B-4 Execute the m-file completed in 2.B-2 to generate the file alam-
outi_ML_BER.mat in the MATLAB work folder. After this, execute the three lines of
code below to plot the BER of exhaustive MLD together with the BER of the simple
linear combining scheme.

(a) Capture the resulting BER graph with the two BER curves.
(b) From the two BER curves, summarize the BER performances of MLD and

the simple linear combining schemes for Alamouti code.

>>load alamouti_ML_BER.mat
>>hold on
>>semilogy(EbN0dB_vector, BER,‘r’)

3.B-5 Modify the m-file in 3.B-1 to extend the modulation method from BPSK to
QPSK. (a) Capture the modified part. (b) Execute the modified m-file and capture the
simulated BER graph.

3.B-6 [T]Other than the space time mapping given in Table 28.3, there are other
mapping schemes that also maintain the Alamouti code properties.

(a) Design one or more of such mapping schemes and record them using the
format shown in Table 28.4. Do not consider trivial variations to the mapping
in Table 28.3 such as interchange the positions of s1 and s2 in time or in space.

(b) For each of the schemes designed in (a), derive its corresponding linear com-
bining rule for the decision variables z1 and z2 and compare them with those
for Alamouti code.

TABLE 28.4 Different Version of Alamouti Code.

Time

Space T1 T2

Antenna A ? ?
Antenna B ? ?

334 MIMO SYSTEM—PART I: SPACE TIME CODE

28.4 [A]VARIOUS STBCs, THEIR DIVERSITY ORDERS,
AND THEIR RATES

4.A [T]Alamouti code is a two-dimensional (space time) code. The received signal
vector can be written in vector-matrix form as [1][

r1
r2

]
=
[
? ?
? ?

] [
hA
hB

]
+
[

n1
n2

]
. (28.1)

4.A-1 Complete the space time code matrix in equation (28.1) so that the expres-
sions of r1 and r2 are the same as those implemented in the last two lines of the code
fragment in 2.A.

4.A-2 Do the columns of the space time code matrix correspond to different time
slots or different space elements (antennas)?

4.A-3 Define the rate R of the space time code as [2–5]

R =
Number of different symbols composing the space time code matrix

Number of time slots used for transmitting one space time code
(= Number of rows in the space time code matrix)

. (28.2)

For the single transmit-antenna system, this rate equals 1. Determine the R of
Alamouti code.

4.B [T]Now consider an STBC with the following received signal vector:

⎡⎢⎢⎢⎣
r1
r2
r3
r4

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

s1 s2 s3
−s∗2 s∗1 0
s∗3 0 − s∗1
0 s∗3 − s∗2

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

hA
hB
hC

⎤⎥⎥⎦ +
⎡⎢⎢⎢⎣

n1
n2
n3
n4

⎤⎥⎥⎥⎦
. (28.3)

4.B-1 Determine the number of transmission antennas and the number of time slots
in a block.

4.B-2 Determine the rate R of this code.

4.B-3 Determine the diversity order of this code.

4.C [A,WWW]Modify the m-file in 2.B-2 to simulate the BER of the STBC given in
equation (28.3) by using exhaustive MLD.

4.C-1 Capture the modified m-file and the simulated BER plot.

4.C-2 Recall that the m-file completed in Section 4.C of Chapter 25 simulates the
BER of MRC in Rayleigh fading channels. Open that m-file and set L = 3. Execute
the m-file. Overlay the simulated BER curve of MRC with L = 3 on the BER graph
generated in 4.C-1.

(a) Capture the resulting BER graph with both BER curves.

REFERENCES 335

(b) Compare the two BER curves, one for the code expressed in equation (28.3)
with MLD and one for MRC with L = 3, and summarize the relative BER
performance of these two systems. Then check whether your answer to 4.B-3
is correct.

REFERENCES

[1] S. M. Alamouti, “A Simple Transmit Diversity Technique for Wireless Communications,”
IEEE Journal on Selected Areas in Communications, Vol. 16, No. 8, 1998, pp. 1451–1458.

[2] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space–Time codes for High Data Rate
Wireless Communication: Performance Analysis and Code Construction,” IEEE Transac-
tions on Information Theory, Vol. 44, No. 2, 1998, pp. 744–765.

[3] V. Tarokh, A. Naguib, N. Seshadri, and A. R. Calderbank, “Space-Time Codes for High
Data Rate Wireless Communication: Performance Criteria in the Presence of Channel
Estimation Errors, Mobility and Multiple Paths,” IEEE Transactions Communications,
Vol. 47, 1999, pp. 199–207.

[4] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space–Time Block Coding for Wireless
Communications: Performance Results,” IEEE Journal on Selected Areas in Communica-
tions, Vol. 17, No. 3, 1999, pp. 451–460.

[5] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space–Time Block Codes from Orthogo-
nal Designs,” IEEE Transactions on Information Theory, Vol. 45, No. 5, 1999, pp. 744–765.

29
MIMO SYSTEM—PART II: SPATIAL
MULTIPLEXING

� Implement detection processes for spatial multiplexing MIMO systems.
� Compare the performances of MIMO system with various detection methods.
� Investigate the performances of MIMO system with different system parameters.

29.1 MIMO FOR SPATIAL MULTIPLEXING

1.A System model.
MIMO systems may be broadly classified into two categories: spatial diversity

(SD) systems and spatial multiplexing (SM) systems [1–3]. SD MIMO systems
achieve diversity. Some simple SD MIMO systems were introduced in Chapter 28.
SM MIMO systems exploit the multiple transmit and receive antennas to transmit
multiple data streams simultaneously in the same frequency band to increase the
spectral efficiency. Some of the existing literature defines only SM MIMO systems
as MIMO systems.

In this chapter we study SM MIMO systems. Since the multiple streams of data
are transmitted simultaneously in the same frequency band, there exists mutual inter-
ference among these data streams.

Let NT and NR denote the number of transmit (TX) and receive (RX) antennas,
respectively. The signals received by the NR RX antennas, written as an NR × 1
column vector r, can be expressed as

r = Hs + n, (29.1)

Problem-Based Learning in Communication Systems Using MATLAB and Simulink, First Edition.
Kwonhue Choi and Huaping Liu.
© 2016 The Institute of Electrical and Electronics Engineers, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/choi_problembasedlearning

336

http://www.wiley.com/go/choi_problembasedlearning

MLD BASED ON EXHAUSTIVE SEARCH FOR SM MIMO 337

s(1)

1

s(2)

)Ts(N

2

TN

1

2

RN

r(1)

r(2)

)Rr(N

H(1,1)

H(?,?)

H(1, 2)

)TH(1,N

H(?,?)

H(?,?)

H(?,?)

H(?,?)

H(?,?)

FIGURE 29.1 Fading coefficient diagram for SM MIMO.

where s is the NT × 1 data symbol vector whose kth element, s(k), denotes the
data symbol transmitted from the kth TX antenna, n is an NR × 1 noise vector
whose elements are complex Gaussian random variables, and H is the NR × NT
fading coefficient (or channel gain) matrix. The model of the elements of H will be
discussed next.

1.A-1 [T]From equation (29.1), the received signal at the kth RX antenna, r(k), can
be expressed as

r(k) = H(?, ?)s(1) + (?, ?)s(?) +⋯ + (?, ?)s(NT) + n(?). (29.2)

Complete equation (29.2).

1.A-2 [T]From the model given by equation (29.1), the (n,m)th element of the
channel matrix H, H(n,m), is the fading coefficient for the link from the ?-th TX
antenna to the ?-th RX. Complete the two quantities marked by ‘?’.

1.A-3 [T]Fig. 29.1 shows the fading coefficient diagram from the TX antennas to the
RX antennas. Complete all the places marked by ‘?’ on the basis of equation (29.2).

29.2 MLD BASED ON EXHAUSTIVE SEARCH FOR SM MIMO

In this section, for convenience, whenever it does not cause a confusion, the vari-
ables/expressions we use in MATLAB and in the texts such as the number of RX
antennas (NR ,Nr), the received signal vector (r, r), the noise vector (n,n), and so
forth, will be used interchangeably.

338 MIMO SYSTEM—PART II: SPATIAL MULTIPLEXING

2.A [WWW]The m-file ml_Nt4_bpsk.m below is a user-defined MATLAB function
that performs MLD (exhaustive search based) of an SM MIMO BPSK system with
NT = 4. The number of RX antennas NR could be any nonnegative integer. This
function takes the NR × 1 received signal vector r and the NR × 4 complex channel
coefficient matrix H as its inputs and outputs s_hat, the estimate of the NT × 1
transmitted symbol vector s.

function s_hat=ml_Nt4_bpsk(r,H)

s_candidate_set=[];
dist_set=[];

for b1_candidate=[-1 1]
for b2_candidate=[-1 1]

for b3_candidate=[-1 1]
for b4_candidate=[-1 1]

s_candidate=[b1_candidate b2_candidate b3_candidate b4_candidate]’;
r_candidate=H*s_candidate;
dist= sum(abs(? - r_candidate).̂ 2);

s_candidate_set=[s_candidate_set s_candidate];
%Add s_candidate as a new column of s_candidate_set
dist_set=[dist_set dist];
%Add dist as an new element of dist_set

end
end

end
end

[A B]=min(dist_set);
s_hat=s_candidate_set(:,B);

2.A-1 Determine the variable names that should replace ‘?’ left in the code and
justify it.

2.A-2 For each of the lines that contain ‘=’, add a comment to explain what the vari-
able on the left-hand side represents and justifies how the right-hand side expression
is formulated accordingly. Capture the completed m-file with the comments.

2.B Extension to the different number of TX antennas.

2.B-1 [WWW]We can extend the m-file in 2.A to the case of NT = 3 as shown below.
Complete the m-file and save it as ml_Nt3_bpsk.m. Compare ml_Nt3_bpsk.m with
ml_Nt4_bpsk.m to find all modified or deleted lines and explain why these lines
should be modified or deleted.

MLD BASED ON EXHAUSTIVE SEARCH FOR SM MIMO 339

function s_hat=ml_Nt3_bpsk(r,H)

s_candidate_set=[];
dist_set=[];

for b1_candidate=[-1 1]
for b2_candidate=[-1 1]

for b3_candidate=[-1 1]
s_candidate=[b1_candidate b2_candidate b3_candidate]’;
r_candidate=H*s_candidate;
dist= sum(abs(?-r_candidate).̂ 2);

s_candidate_set=[s_candidate_set s_candidate];
%Add s_candidate as a new column of s_candidate_set
dist_set=[dist_set dist];
%Add dist as an new element of dist_set

end
end

end

[A B]=min(dist_set);
s_hat=s_candidate_set(:,B);

2.B-2 Similarly, modify the m-file for the case of NT = 2. Save the modified m-file
as ml_Nt2_bpsk.m. Capture ml_Nt2_bpsk.m.

2.C [WWW]Modify ml_Nt4_bpsk() as follows in order to extend to the case of
quadrature phase shift keying (QPSK). Save the modified m-file as ml_Nt4_qpsk().
Explain why the modified lines should be modified so.

function s_hat=ml_Nt4_qpsk(r,H)
…
for b1_candidate=[-1-j, -1+j, 1-j, 1+j]

for b2_candidate=[-1-j, -1+j, 1-j, 1+j]
for b3_candidate=[-1-j, -1+j, 1-j, 1+j]

for b4_candidate=[-1-j, -1+j, 1-j, 1+j]
…

end
end

end
end
…

340 MIMO SYSTEM—PART II: SPATIAL MULTIPLEXING

2.D Complexity of maximum likelihood detection (MLD).

2.D-1 In the nested ‘for’ loops of ml_Nt4_bpsk.m in 2.A, count the total number of
iterations needed to generate a new candidate (hypothesis) of the received signal and
to calculate the distance between the candidate and the received signal.

2.D-2 In the nested ‘for’ loops of ml_Nt4_qpsk.m in 2.C, count the total number of
iterations needed to generate a new candidate (hypothesis) of the received signal and
to calculate the distance between the candidate and the received signal.

2.D-3 Generalize the results in 2.D-1 and 2.D-3 into an NR × NT MIMO system
that employs a modulation with an alphabet size M.

2.D-4 Summarize the problems using MLD based on exhaustive search.

29.3 ZERO FORCING DETECTION

For systems with NR ≥ NT , zero forcing (ZF) detection is a method to multiply the
received signal r by the pseudo-inverse of the channel matrix H to generate the
decision variables in a vector z for the NT simultaneously transmitted symbols:

z = (HTH)−1HT × r
= (HTH)−1HT × (Hs + n)
= s + (HTH)−1HTn,

(29.3)

where (⋅)T denotes transpose and (HTH)−1HT is the pseudo-inverse of H; if H is
a full-rank square matrix, then it equals the inverse of H. Note that the signal term
in z is equal to s, which shows that ZF detection completely eliminates the mutual
interference among the simultaneously transmitted symbols in forming the decision
variables.

3.A [WWW]The user-defined MATLAB function zf_bpsk() below implements ZF
detection for BPSK MIMO systems. It takes the received signal vector r and channel
matrix H as its inputs. The function pinv(⋅) computes the pseudo-inverse of a matrix.
Complete the second line and save the m-file as zf_bpsk.m. Capture the completed
m-file.

function s_hat=zf_bpsk(r,H)
z=pinv(?)*r;
s_hat=sign(real(z));

3.B Explain why real() and sign() are used in the last line.

3.C [WWW]Modify zf_bpsk.m for QPSK simulation as shown below. Complete the
second and third lines and save the m-file as zf_qpsk.m. Capture the completed m-file.

NOISE ENHANCEMENT OF ZF DETECTION 341

function s_hat=zf_qpsk(r,H)
z=pinv(?)*r;
s_hat=sign(real(z))+ j * ??;

29.4 NOISE ENHANCEMENT OF ZF DETECTION

4.A [WWW]In the ZF detection expressed by equation (29.3), the data symbol vector
s is recovered exactly for any invertible channel matrix H. However, the noise term
after ZF becomes pinv(H)n. Therefore the performance of ZF detection will be
determined by the variance of the elements of the vector pinv(H)n.

The variance of the elements of pinv(H)n depends on the condition of H. Let us
compare the variances of the elements of pinv(H)n for the following two examples
of H, expressed as Ha and Hb.

>> Ha=[2, 1; 1, 2]
Ha =

2 1
1 2

>> Hb=[1, 1; 1, -1]
Hb =

1 1
1 -1

4.A-1 Since the channel matrices Ha and Hb are 2 by 2 matrices, the received
vector n is a 2(=Nr) × 1 vector and the noise vector after ZF is also a 2 by 1 vector.
Substituting Ha given above into pinv(H)*n, we can express the two elements of
pinv(H)*n as the linear combination of n(1) and n(2). For example, because pinv(Ha) =

(Ha)−1 =
[

2∕3 −1∕3
−1∕3 2∕3

]
, the first element of the vector pinv(Ha)*n is expressed as

(2/3)*n(1) +(-1/3)*n(2). Similarly, express the second element of the vector pinv(Ha)*n,
the first and second elements of the vector pinv(Hb)*n, as the linear combination of
n(1) and n(2).

4.A-2 The two elements n(1) and n(2) are i.i.d. complex Gaussian random variables.
Let v_n denote the variance of n(1) and n(2). Based on the expressions obtained in
4.A-1 and using the formula in equation (15.6), show that the variance of elements
of pinv(Ha)*n is equal to 5/9*v_n and the variance of elements of pinv(Ha)*n is equal
to 1/2*v_n.

4.A-3 According to 4.A-2, for ZF detection, does channel Ha or Hb result in a lower
BER? Justify the answer.

342 MIMO SYSTEM—PART II: SPATIAL MULTIPLEXING

4.A-4 According to 4.A-3, for ZF detection, the channel Ha results in a higher
BER compared with the channel Hb although the elements of Ha are greater than the
elements of Hb. This phenomenon is called “noise enhancement.” Explain what kind
of channel matrices cause a high noise enhancement.

4.A-5 When the channel matrix is ill-conditioned (like Ha), ZF will result in a high
noise. Give another example of an ill-conditioned channel matrix that causes an even
higher noise enhancement than the channel matrix Ha, that is, a channel matrix whose
elements’ magnitudes are greater than those of Ha but will result in a worse BER
performance if ZF is used. Mathematically justify your example.

4.B [WWW]The m-file below simulates the BERs of ZF detection and MLD assuming
that the channel matrix H is equal to the Ha given in 4.A.

clear
Nr=2;
Ha=[2, 1;1, 2];
Hb=[1, 1;1, -1];

EsN0dB=3;
EsN0=10ˆ(EsN0dB/10);
Es=Nr*1;
N0=Es/EsN0;
ErrCntZF=0; ErrCntML=0;SymCnt=0;
while ErrCntML<500
%Change 500 to a smaller value to speed up simulation. However, the simula-
tion error will increase instead.

s=sign(rand(2,1)-0.5);
H=Ha; % Change to H=Hb in case of simulating the BER of the channel Hb
n=sqrt(N0/2)*(randn(2,1)+j*randn(2,1));
r=H*s+n;

s_hat_zf=zf_bpsk(r,H); % zf_bpsk() should be in the same folder.
ErrCntZF=ErrCntZF+sum(s∼=s_hat_zf);

s_hat_ml=ml_Nt2_bpsk(r,H); % ml_Nt2_bpsk() should be in the same folder.
ErrCntML=ErrCntML+sum(s∼=s_hat_ml);

SymCnt=SymCnt+2;
end
ber_zf=ErrCntZF/SymCnt
ber_ml=ErrCntML/SymCnt

SUCCESSIVE INTERFERENCE CANCELLATION DETECTION 343

4.B-1 For each of the lines in bold, explain what the variable on the left-hand
side represents and justify how the right-hand side expression is properly formulated
accordingly.

4.B-2 (a) Execute the m-file and capture the BER results.
(b) Change the line ‘H=Ha’ in the m-file into ‘H=Hb’. Execute the m-file and

capture the results.

4.C If the columns of the channel matrix are orthogonal, then ZF achieves the same
performance as MLD. (a) Do the results in 4.B-2 confirm this fact? (b) [A]Explain
why ZF achieves the same performance as MLD if the columns of the channel matrix
are mutually orthogonal.

4.D Based on the results obtained in 4.B-2, compare the BERs of ZF detection for
the two example channel matrices Ha and Hb. Are the BER results consistent with
the noise variance analysis result in 4.A-2 and 4.A-3?

4.E In the m-file, set the channel matrix H to the one selected in 4.A-5 and execute
the modified m-file. Capture the results and determine whether your answer to 4.A-5
is correct.

29.5 SUCCESSIVE INTERFERENCE CANCELLATION DETECTION

The successive interference cancellation (SIC) detection scheme for SM MIMO
typically involves the following steps [1, 2].

Step 1: Multiply the received signal vector by a linear detection matrix to create
the decision variable vector z. For example, if the linear ZF scheme is applied,
then the linear detection matrix would be pinv(H).

z=pinv(H)*r;

Step 2: From z, detect only the NT-th symbol (the corresponding MATLAB variable
is s(Nt)) and store the detection result.

s_hat(Nt) =sign(real(z(Nt))); % for BPSK
s_hat(Nt) =sign(real(z(Nt)))+j*sign(imag(z(Nt))); % for QPSK

Step 3: Assuming a correct decision in Step 2, that is, assuming that s_hat(Nt) is
equal to s(Nt),

Step 3-1. Reconstruct the signal portion for s(Nt) in the received signal vector r.
Refer to the note below for this step.

344 MIMO SYSTEM—PART II: SPATIAL MULTIPLEXING

H(:,Nt)*s_hat(Nt);;

NOTE: The desired signal in the received vector r given by equation (29.1) can
be decomposed as

r = H (:, 1) × s(1) + H (:, 2) × s(2) +⋯ + H
(
:, NT

)
× s(NT), (29.4)

where H (:, k) denotes the kth column vector of H. From this decomposition, we
note that the contribution of s(k) in r is H (:, k) × s(k).

Step 3-2. Since the signal portion that carries s(Nt) in the received signal vector r
acts as the interference to the remaining Nt-1 symbols, we cancel this interference
from the received signal. Hence we replace the received vector r as follows.

r=r-H(:,Nt)*s_hat(Nt);

Step 4: At this point, to the other Nt-1 data streams the updated r in Step 3-2 is
equivalent to the received signal as if the Nt-th TX antenna did not transmit any
signal, effectively reducing the system to an Nr × (Nt-1) MIMO system. Now we
replace H and Nt as follows.

H=H(:, 1:(Nt-1));
Nt=Nt-1;

Step 5: Repeat Steps 1–4 with r updated in Step 3-2, and H and Nt updated in Step
4 until all Nt symbols are detected.

Step 6: Return s_hat whose elements are successively stored in Step 2.

5.A [WWW]The m-file sic_zf_bpsk.m below is a user-defined MATLAB function
that performs SIC for the received signal vector r and the channel matrix H assuming
BPSK modulation.

function s_hat=sic_zf_bpsk(r,H)

[Nr Nt]=size(H);
s_hat=zeros(Nt,1); %To initialize s_hat.

while Nt>0
z=pinv(H)*r;
s_hat(Nt)=sign(real(z(Nt)));
r=r-H(:,Nt)*s_hat(Nt); % or r = r-H*[0 0 0….s_hat(Nt)]’;
H=H(:,1:(Nt-1));
Nt=Nt-1;

end

SUCCESSIVE INTERFERENCE CANCELLATION DETECTION 345

5.A-1 Add a detailed explanation to each line as a comment. Refer to the steps
explained above.

5.A-2 [WWW]The function below extends the function sic_zf_bpsk.m so that it
works with QPSK modulation, for which the data symbols candidates are {-1-j, -1+j,
1-j, 1+j}. For this extension, only the line that computes s_hat (the 6th line) needs
to be changed. Complete this line and save the m-file as sic_zf_qpsk(). Capture the
completed m-file.

function s_hat=sic_zf_qpsk(r,H)

[Nr Nt]=size(H);
s_hat=zeros(Nt,1);

while Nt>0
z=pinv(H)*r;
s_hat(Nt)=sign(real(z(Nt))) + j* ? ;
r=r- H(:,Nt)*s_hat(Nt); %or r=r-H*[zeros(Nt-1, 1); s_hat(Nt)];
H=H(:,1:(Nt-1));
Nt=Nt-1;

end

5.B Ordered SIC.

5.B-1 Note that inside the ‘while’ loop in the m-file, we substitute r=H*s+n into
z=pinv(H)*r to generate the ZF decision variable vector z, resulting in z=s+pinv(H)*n,
where pinv(H)*n is the noise vector. Let Hinv denote the matrix pinv(H) and v_n denote
the variance of elements of the received noise vector n. Each element of the noise
vector after ZF, Hinv*n, is a linear combination of the elements of n, where the
weights depend on the channel matrix. Specifically, the k-th element of Hinv*n is a
linear combination of the elements of n with weights equal to Hinv(k,:), the k-th row
of Hinv. Analyzing it a bit further, we can show that the variance of the k-th element
of Hinv*n is equal to sum(Hinv(k,:).ˆ2) *v_n. Prove this relationship.

5.B-2 According to 5.B-1, after ZF, the instantaneous variances of the effective noise
to the Nt simultaneously transmitted symbols, s(k), ⋅⋅⋅, s(Nt), are sum(Hinv(k,:).ˆ2)*v_n,
k=1, ⋅⋅⋅, Nt, respectively. Apparently, the instantaneous noise variances for the Nt data
symbols are different, depending on the instantaneous channel matrix. Therefore it is
possible to improve the performance of the SIC scheme described above by switching
the antenna indexes between the symbol with the smallest noise component and the
original symbol at the Nt-th antenna, allowing the detection to start with the data
symbol that has the smallest noise component. Such a scheme is called an ordered
successive interference cancellation (OSIC) scheme [1–3].

346 MIMO SYSTEM—PART II: SPATIAL MULTIPLEXING

The code fragment below implements this reordering process. Explain in detail
how the variable B is set to the index of the element with the minimum variance
among all the elements of the noise vector pinv(H)*n.

sym_index=1:Nt;
Hinv=pinv(H);
T=sum(abs(Hinv’).̂ 2);%sum(A) is the column vector which takes the sum of each row
of the matrix A as its elements.
[A B]=min(T);

C=H(:,Nt); H(:,Nt)=H(:,B); H(:,B)=C;
D=sym_index(Nt); sym_index(Nt)=sym_index(B);sym_index(B)=D;

5.B-3 The last line ‘D=sym_index(Nt); sym_index(Nt)=sym_index(B);sym_index
(B)=D;’ is for storing the original symbol index in the rearranged symbol order. Let us
assume that Nt = 4 and the second symbol in z has the minimum noise variance before
we execute the code lines in 5.B-2. Determine sym_index after executing these lines.

5.B-4 Equation (29.4) shows that if we rearrange the order of the symbols in vector
s on the basis of the variances of the noise component associated with each symbol,
then the columns of the channel matrix H must be rearranged accordingly. The line
‘C=H(:,Nt); H(:,Nt)=H(:,B); H(:,B)=C;’ accomplishes this. Explain how this line works
in detail.

5.B-5 [WWW]The m-file osic_zf_bpsk.m below is a user-defined MATLAB function
that implements OSIC given the received signal vector r assuming BPSK modulation
and the channel matrix H. Compare this m-file with sic_zf_bpsk.m completed in 5.A
for nonordered SIC. For the two lines in bold, explain what they do and in what way
they differ from the two corresponding lines in sic_zf_bpsk.m completed in 5.A.

function s_hat=osic_zf_bpsk(r,H)

[Nr Nt]=size(H);
sym_index=1:Nt;

while Nt>0
Hinv=pinv(H);
T=sum(abs(Hinv’).̂ 2);
[A B]=min(T);

C=H(:,Nt); H(:,Nt)=H(:,B); H(:,B)=C;
D=sym_index(Nt); sym_index(Nt)=sym_index(B);sym_index(B)=D;

z=pinv(H)*r;
s_hat(sym_index(Nt))=sign(real(z(Nt)));

BER SIMULATION OF ZF, SIC, OSIC, AND ML DETECTION SCHEMES 347

r=r-H(:,Nt)*s_hat(sym_index(Nt));
H=H(:,1:(Nt-1));
Nt=Nt-1;

end

5.B-6 [WWW]The function below extends the function sic_zf_bpsk.m so that it works
with QPSK modulation, for which the data symbols candidates are {-1-j, -1+j, 1-j,
1+j}. Only the line that computes s_hat needs to be changed. Complete this line and
save the modified m-file as osic_zf_qpsk(). Capture the completed m-file.

function s_hat=osic_zf_qpsk(r,H)
…
while Nt>0
…
s_hat(sym_index(Nt))=sign(real(z(Nt)))+j*??;
…

End

5.B-7 We will see in the next section that OSIC outperforms SIC. Justify why
identifying the most reliable symbol and canceling it first at each SIC iteration
improves the performance of SIC.

29.6 BER SIMULATION OF ZF, SIC, OSIC, AND ML
DETECTION SCHEMES

6.A [WWW]The m-file below simulates the BER performances of ZF, SIC, OSIC,
and ML detection methods for an SM system with Nr = 4, Nt = 4, and BPSK
modulation. Examine the two scaling factors in bold in the two lines that generate H
and n, and explain why they should be set as they are.

clear
EbN0dB_vector=0:5:30; %Lower the limit of EbN0dB(currently 30) to speed up the sim-
ulation.
Eb=1; %Because we set the symbol by s=sign(rand(Nt,1)-0.5) below.
Nr=4;Nt=4;

for snr_i=1:length(EbN0dB_vector)
EbN0dB=EbN0dB_vector(snr_i);
EbN0=10ˆ(EbN0dB/10);
N0=Eb/EbN0;

Nerrs_zf=0; Nerrs_sic=0; Nerrs_osic=0; Nerrs_ml=0;
Nbits=0;

348 MIMO SYSTEM—PART II: SPATIAL MULTIPLEXING

Nerrs_stop=100;%Decrease Nerrs_stop if the simulation takes long time but the
simulation error will increase.
while Nerrs_osic < Nerrs_stop

s=sign(rand(Nt,1)-0.5);

H=sqrt(0.5/Nr)*(randn(Nr,Nt)+j*randn(Nr,Nt));
n=sqrt(N0/2)*(randn(Nr,1)+j*randn(Nr,1));

r=H*s+n;

shat_zf=zf_bpsk(r,H); shat_sic=sic_zf_bpsk(r,H);
shat_osic=osic_zf_bpsk(r,H); shat_ml=ml_Nt4_bpsk(r,H);

Nerrs_zf=Nerrs_zf+sum(shat_zf∼=s);
Nerrs_sic=Nerrs_sic+sum(shat_sic∼=s);
Nerrs_osic=Nerrs_osic+sum(shat_osic∼=s);
Nerrs_ml=Nerrs_ml+sum(shat_ml∼=s);

Nbits=Nbits+Nt;
end

BER_vector(snr_i,:)=[Nerrs_zf Nerrs_sic Nerrs_osic Nerrs_ml]/Nbits

end
figure
semilogy(EbN0dB_vector, BER_vector)
legend(’ZF’, ’SIC’,’OSIC’, ’ML’)
xlabel(’E_b/N_0’);ylabel(’BER’);grid

6.B Execute the m-file. (a) Capture the simulated BER graph. (b) Order the detection
schemes according to their BER performances from highest to lowest.

6.C [WWW]Modify the m-file in 6.A as shown below to simulate the case with Nr =
2 and Nt = 2.

…
Nr=2;Nt=2;
…
for snr_i=1:length(EbN0dB_vector)
…
while Nerrs_osic < Nerrs_stop
…
shat_ml=ml_Nt2_bpsk(r,H);
…

BER SIMULATION OF ZF, SIC, OSIC, AND ML DETECTION SCHEMES 349

TABLE 29.1 BER Comparison of Various Detection Schemes.

Detection scheme
Does the BER increase or decrease as Nr
and Nt increase? (Yes/No) Justification

ZF
SIC
OSIC
ML

6.C-1 Execute the modified m-file and capture the simulated BER graph.

6.C-2 Answer the following questions:

(a) Is the order of the detection schemes according to their performances with
Nr = 2 and Nt = 2 the same as that in 6.B(b), that is, the case with Nr = 4 and
Nt = 4?

(b) Let us assume that the order of the four schemes according to their error
performance from highest to lowest is DS1, DS1, DS3, and DS4. At BER =
10e-3, measure (from the figure) the relative performance gap in dB between
DS1 and DS2, and between DS2 and DS3, and between DS3 and DS4 for the
case of (Nr, Nt) = (2,2). Also do the same for the case of (Nr, Nt) = (4,4). How
do the gaps change (increase or decrease) as the number of antennas changes
from (2,2) to (4,4)?

6.C-3 As the number of antennas increases from (2,2) to (4,4), does the BER of
each detection scheme increase or decrease? Justify your answer in Table 29.1.

6.D [WWW]The m-file in 6.A has been modified to simulate the QPSK system with
Nr = 4 and Nt = 4. The modified parts are highlighted in bold below.

clear
…
…
for snr_i=1:length(EbN0dB_vector)
…

while Nerrs_osic < Nerrs_stop
s=sign(rand(Nt,1)-0.5)+j*sign(rand(Nt,1)-0.5);
…
shat_zf=zf_qpsk(r,H); shat_sic=sic_zf_qpsk(r,H);
shat_osic=osic_zf_qpsk(r,H); shat_ml=ml_Nt4_qpsk(r,H);

Nerrs_zf=Nerrs_zf+sum(real(shat_zf)∼=real(s))+sum(imag(shat_zf)∼=
imag(s));

350 MIMO SYSTEM—PART II: SPATIAL MULTIPLEXING

Nerrs_sic=Nerrs_sic+sum(real(shat_sic)∼=real(s))+sum(imag(shat_sic)∼=
imag(s));
Nerrs_osic=Nerrs_osic+sum(real(shat_osic)∼=real(s))+sum(imag(shat_
osic)∼=imag(s));
Nerrs_ml=Nerrs_ml+sum(real(shat_ml)∼=real(s))+sum(imag(shat_ml)∼=
imag(s));
…
Nbits=Nbits+2*Nt;

…

6.D-1 Justify why the line ‘Nbits=Nbits+Nt’ should be changed into
‘Nbits=Nbits+2*Nt’.

6.D-2 Execute the modified m-file and capture the simulated BER curves.

6.D-3 Compared with the BPSK system, have the relative BER performances of
the four detection schemes changed?

29.7 RELATIONSHIP AMONG THE NUMBER OF ANTENNAS,
DIVERSITY, AND DATA RATE

[WWW]The m-file below simulates the BER performance of MLD for each of the
following cases of (Nr, Nt): (2, 2), (3, 2), and (2, 3).

clear
EbN0dB_vector=0:5:15;
Eb=1;

for snr_i=1:length(EbN0dB_vector)
EbN0dB=EbN0dB_vector(snr_i); EbN0=10ˆ(EbN0dB/10); N0=Eb/EbN0;

Nerrs_2by2=0; Nerrs_2by3=0; Nerrs_3by2=0;
NsymsNt2=0; NsymsNt3=0;
Nerrs_stop=200;
while Nerrs_2by3 < Nerrs_stop

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Nr=2;Nt=2;
s=sign(rand(Nt,1)-0.5);
H=sqrt(1/Nr)*(randn(Nr,Nt)/sqrt(2)+j*randn(Nr,Nt)/sqrt(2));
n=sqrt(N0/2)*(randn(Nr,1)+j*randn(Nr,1));
r=H*s+n;
shat=ml_Nt2_bpsk(r,H);
Nerrs_2by2=Nerrs_2by2+sum(shat∼=s);

RELATIONSHIP AMONG THE NUMBER OF ANTENNAS 351

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Nr=3;Nt=2;
s=sign(rand(Nt,1)-0.5);
H=sqrt(1/Nr)*(randn(Nr,Nt)/sqrt(2)+j*randn(Nr,Nt)/sqrt(2));
n=sqrt(N0/2)*(randn(Nr,1)+j*randn(Nr,1));
r=H*s+n;
shat=ml_Nt2_bpsk(r,H);
Nerrs_3by2=Nerrs_3by2+sum(shat∼=s);

NsymsNt2=NsymsNt2+2;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Nr=2;Nt=3;
s=sign(rand(Nt,1)-0.5);
H=sqrt(1/Nr)*(randn(Nr,Nt)/sqrt(2)+j*randn(Nr,Nt)/sqrt(2));
n=sqrt(N0/2)*(randn(Nr,1)+j*randn(Nr,1));
r=H*s+n;
shat=ml_Nt3_bpsk(r,H);
Nerrs_2by3=Nerrs_2by3+sum(shat∼=s);

NsymsNt3=NsymsNt3+3;
end

BER_vector(snr_i,:)=[Nerrs_2by2/NsymsNt2 Nerrs_3by2/NsymsNt2 Nerrs_2by3/
NsymsNt3]

end
figure
semilogy(EbN0dB_vector(1:snr_i), BER_vector)
legend(’Nr=2, Nt=2’, ’Nr=3, Nt=2’,’Nr=2, Nt=3’)
xlabel(’E_b/N_0’);ylabel(’BER’);grid

7.A Execute the m-file above and capture the simulated BER curves.

7.B Compare the slope of the BER curves for the cases of (Nr, Nt) = (2, 2) and
(3, 2).

(a) For which case does the BER curve have a larger slope?
(b) The relationship between the slope of the BER curve and diversity order was

investigated in Chapter 25. Justify why the slope of the BER curve increases
as Nr increases.

7.C Compare the BER curves for the cases of (Nr, Nt) = (2, 2) and (2, 3).

(a) Which case has a worse BER performance?
(b) Justify why the BER performance is worse for the case of Nt = 3.

7.D Although the BER performance decreases as Nt increases, a larger Nt is bene-
ficial to the system in a different perspective. Summarize the benefits.

352 MIMO SYSTEM—PART II: SPATIAL MULTIPLEXING

7.E Find scenarios where a system with Nr > Nt is preferable to a system with Nr
< Nt. Also find scenarios where the latter is preferable to the former.

REFERENCES

[1] G. J. Foschini, “Layered Space–Time Architecture for Wireless Communication in a
Fading Environment When Using Multiple Antennas,” Bell Labs Technical Journal, Vol.
1, No. 2, 1996, pp. 41–59.

[2] G. D. Golden, G. J. Foschini, R. A. Valenzuela, and P. W. Wolniansky, “Detection Algo-
rithm and Initial Laboratory Results Using V-BLAST Space–Time Communication Archi-
tecture,” Electronics Letters, Vol. 35, No. 1, 1999, pp.14–16. .

[3] D. Tse and P. Viswanath, Fundamentals of Wireless Communication, Cambridge, UK:
Cambridge University Press, 2005.

30
NEAR-ULTRASONIC WIRELESS
ORTHOGONAL FREQUENCY
DIVISION MULTIPLEXING
MODEM DESIGN

� Transmit an image file through a near-ultrasonic (NUS) wireless channel.
� Investigate transmit and receive algorithms for NUS orthogonal frequency divi-

sion multiplexing systems.
� Observe and analyze the waveforms and spectra of NUS systems at major

processing stages.

30.1 IMAGE FILE TRANSMISSION OVER A NEAR-ULTRASONIC
WIRELESS CHANNEL

In this section we transmit an image file over a near-ultrasonic (NUS) wireless
channel. The image file is orthogonal frequency division multiplexing (OFDM) mod-
ulated and transmitted from the speaker of a phone over an NUS wireless channel.
The microphone in a PC samples the received signal and demodulates it to restore
the image data.

1.A Prepare a handheld audio device (e.g., a smartphone) that is capable of playing
.wav files through its internal speaker. Also prepare a laptop or desktop PC with an
internal microphone (MIC) that has installed MATLAB on it.

Step 1. [WWW]Copy the following three files into the MATLAB work folder in
your laptop or desktop PC.

Problem-Based Learning in Communication Systems Using MATLAB and Simulink, First Edition.
Kwonhue Choi and Huaping Liu.
© 2016 The Institute of Electrical and Electronics Engineers, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/choi_problembasedlearning

353

http://www.wiley.com/go/choi_problembasedlearning

354 NEAR-ULTRASONIC WIRELESS OFDM MODEM DESIGN

� NUS_AOFDM_TX.m and NUS_AOFDM_DEM.m from the companion
website.

� Your photo image file. If you do not have one in your PC, take one with
your phone and transfer it to the MATLAB work folder via email or a
USB cable.

Step 2. Change the filename of your photo to myphoto and maintain the file
extension.

Step 3. Execute NUS_AOFDM_TX.m. NOTE: If your photo file extension is not
‘jpg’, then open NUS_AOFDM_TX.m and replace the argument jpg in the
fourth line ‘A = imread(‘myphoto’ , ’jpg’) with your photo file extension.

Step 4. Make sure that NUS_AOFDM_TX.wav is created in the MATLAB work
folder. Move it to your phone memory or disk via email or USB cable. Do
not accept any file format conversion or encoding if you are asked during
the process of transferring the .wav file to your phone. For iPhones, the
Gmail (Google mail) attachment and outlook attachment are two ways
confirmed working.

Step 5. In the audio setting of your laptop, for recording, select the internal MIC
as the default MIC. To avoid distortion in recording, disable the sound
effects if there are any.

Step 6. Get ready so that you can start to run NUS_AOFM_DEM.m immediately
and at any time needed. For example, you may type in NUS_AOFM_DEM
in the command window but do not press the return key to run it; when
you need to run this file, just need to press the return key. Alternatively,
you may open NUS_AOFM_DEM.m and get ready to click the green play
(run) button.

Step 7. Set the phone speaker volume to the maximum level and place the phone
within 5 cm from the PC’s internal MIC. Orient the speaker of the phone
(not the receiver speaker that will be placed near your ear while you are
making a phone call) toward the PC’s MIC.

Step 8. Play NUS_AOFDM_TX.wav in the phone. After the wave file starts play-
ing, run NUS_AOFDM_DEM.m which has been set ready to run in the
PC in Step 6. Be sure not to stop or pause playing the wav file until
NUS_AOFDM_DEM.m finishes running.

1.A-1 When all these steps are finished, capture the following.

(a) Figure 1. Be sure to maximize the window size prior to capturing. Save the
Figure 1 in .fig format, since it will be needed in Section 30.3.

(b) Figure 3.
(c) The value of fo_pilot returned in the command window. This value will be

used later in 3.D-3.

1.A-2 Increase the distance between the phone and the PC bit by bit and repeat
Step 7 at each distance. No need to save Figure 1, nor to record the value of fo_pilot.
Record the maximum distance where the demodulated image data in Figure 3 is
recognizable.

ANALYSIS OF OFDM TRANSMITTER ALGORITHMS 355

30.2 ANALYSIS OF OFDM TRANSMITTER ALGORITHMS AND THE
TRANSMITTED SIGNALS

2.A In the part ‘OFDM signal parameter’ of NUS_AOFDM_TX.m, all system param-
eters to generate the NUS OFDM signal are set and their definitions are explained
using comments.

2.A-1 Tabulate the parameter names, definitions, and values.

2.A-2 From the values tabulated in 2.A-1, calculate the following.

(a) Subcarrier frequency spacing in [Hz].
(b) The total signal bandwidth in [Hz], that is, the highest subcarrier frequency

minus the lowest subcarrier frequency.
(c) The guard interval (cyclic prefix) length in [seconds].

2.B In the part ‘OFDM modulated image data packet generation’ of the file
NUS_AOFDM_TX.m, the image data are represented by the elements of the vector
Pixel. This data stream is then OFDM modulated, and the complex baseband OFDM
signal is stored in vector x.

In this part of the m-file, in the inner ‘for’ loop, a certain number of image pixels
are modulated into one OFDM symbol. Then a certain number of ODFM symbols
are concatenated to generate one OFDM frame. In the outer ‘for’ loop, the multiple
OFDM frames for the entire image are concatenated to form one transmission packet.
That is, k in the outer ‘for’ loop is the OFDM frame index in the transmission packet
and kk is the OFDM symbol index in each OFDM frame.

2.B-1 Fig. 30.1 shows the data packet structure as a frequency (subcarrier)–time
(OFDM symbol) matrix for the transmission of one image. Each cell denotes one
subcarrier of an OFDM symbol. From the definition of parameters listed in 2.A-1 and
the part ‘OFDM modulated image data packet generation’ of the m-file, determine the
values of the three variables, A, B, and C in the diagram.

2.B-2 In part ‘OFDM modulated image data packet generation’ of the m-file, the
input to the IFFT for generating an OFDM symbol is contained in the vector D.
According to the m-file, a certain subcarrier is allocated as the pilot subcarrier. (a)
Determine the pilot subcarrier index. (b) Shade all the cells for the pilot subcarriers
in Fig. 30.1.

2.B-3 The outer and inner ‘for’ loops show that each OFDM frame has one fixed
OFDM symbol, which is called the “pilot OFDM symbol.” The pilot OFDM symbol is
known to the receiver for frame synchronization and the channel estimation, whereas
the pilot subcarrier described in 2.B-2 is used for carrier recovery in the receiver.
Analyze the m-file, determine the OFDM symbol position in each OFDM frame, and
mark all shaded OFDM symbols in Fig. 30.1.

2.B-4 Examine the m-file and determine (a) How many image data symbols (ele-
ments of the vector Pixel) are carried by one subcarrier of one OFDM symbol? (b) If

356 NEAR-ULTRASONIC WIRELESS OFDM MODEM DESIGN

Time

F
requency

1 2 3 … A

2

3 1 2 C

…

1st OFDM frame 2nd OFDM frame C-th OFDM frame

B

FIGURE 30.1 Packet structure to transmit one image.

one subcarrier carries more than one image data symbol, explain how it is possible
to transmit multiple symbols on a single subcarrier.

2.C In part ‘up conversion’ of the file NUS_AOFDM_TX.m, the complex baseband
signal vector x is first up-converted into NUS frequencies. Then the sampled vector
of the real-valued passband OFDM signal tx is generated.

2.C-1 After up-conversion, the frequency of the first (leftmost) subcarrier equals
fc. Explain this on the basis of the m-file.

2.C-2 Based on the pilot subcarrier location determined in 2.B-2(a) and the fre-
quency of the first subcarrier, determine the pilot subcarrier frequency in the pass-
band.

2.D Execute NUS_AOFDM_TX.m and capture Figure 2.

2.D-1 According to the m-file, what are plotted in Figure 2?

2.D-2 Based on the plots in Figure 2, summarize all evidences observed that verify
that the OFDM signal is generated correctly in the NUS band.

2.D-3 In the top subplot of Figure 2, zoom in the area of the OFDM spectrum and
capture it.

2.D-4 From the figure in 2.D-3, (a) measure the bandwidth of the OFDM signal
and record it. (b) Is the measured bandwidth consistent with the answer to 2.A-2(b)?
If not, revisit 2.A-2(b).

2.D-5 From the captured figure in 2.D-3, (a) measure the pilot subcarrier frequency
and record it. (b) Is the measured bandwidth consistent with the answer to 2.C-2? If
not, revisit 2.C-2.

2.E In the first line of the part ‘Packet repetition and side lobe suppression’ of the
m-file, OFDM modulated image data packet tx is repeated one more time in order to

ANALYSIS OF OFDM RECEIVER ALGORITHMS AND THE RECEIVED SIGNALS 357

avoid a packet loss in the receiver even if we start executing the m-file late after the
.wav file is being played.

In the second line, the side lobes (spectrum skirt) of the OFDM signal are sup-
pressed by passing the OFDM signal through a bandpass filter. To check the necessity
of this bandpass filtering, comment out the second line ‘tx=conv(tx,bpf)’ and run
NUS_AOFDM_TX.m again.

2.E-1 (a) Capture Figure 2. (b) Compare the captured figure with the one in 2.D.
Assess the difference of the OFDM spectra with and without bandpass filtering.

2.E-2 Execute soundsc(tx,fs) in the command line. You may or may not hear any
sound. Explain why it should be the case.

2.E-3 Based on 2.E-1 and 2.E-2, document why bandpass filtering for the OFDM
signal is required prior to it being transmitted.

2.E-4 Uncomment the line ‘tx=conv(tx,bpf)’ and run NUS_AOFDM_TX.m again.
Then repeat 2.E-2.

30.3 ANALYSIS OF OFDM RECEIVER ALGORITHMS AND THE
RECEIVED SIGNALS

3.A In the part ‘Near ultrasonic sound sampling’ of the file NUS_AOFDM_DEM.m,
the received signal by the MIC in the PC is sampled and converted into a MATLAB
vector.

3.A-1 Open Figure 1 saved in 1.A-1. According to the m-file, what are plotted in
the first and second subplots of Figure 1?

3.A-2 Compare the first and second subplots with the captured plots in 2.D. (a)
Document the main differences (b). Explain what causes such differences.

3.B In the part ‘Front end BPF stage’ of the file NUS_AOFDM_DEM.m, the OFDM
spectrum located in the NUS band is extracted by bandbass filtering.

3.B-1 According to the m-file, what are plotted in the third and fourth subplots of
Figure 1?

3.B-2 In Figure 1, compare the first subplot with the third one; also compare the
second subplot with the fourth one. Document the reasons that bandpass filtering is
needed at this stage.

3.B-3 For all the lines in the part ‘Front end BPF stage’, explain what the variable
of the left-hand side represents and how the right-hand side expression is formulated
accordingly.

3.B-4 In the fourth subplot, zoom in the area of OFDM spectrum and capture it.

358 NEAR-ULTRASONIC WIRELESS OFDM MODEM DESIGN

3.B-5 According to the captured spectrum in 3.B-4, determine whether or not the
wireless channel is frequency selective for the signal being transmitted. Justify your
answer.

3.C In the part ‘Down conversion’ of the file NUS_AOFDM_DEM.m, the output of
the BPF is down-converted into the baseband. The vector cbb is the sampled version
of the complex baseband signal.

For all the lines in the part ‘Down conversion’, explain what the variable of the
left-hand side represents and how the right-hand side expression is formulated accord-
ingly.

3.D In the part ‘Carrier recovery’ of the file NUS_AOFDM_DEM.m, the residual
frequency offset in the complex baseband signal after down-conversion is measured
and compensated. The vector rcbb is the sampled version of the frequency-offset-
compensated complex baseband signal.

Since a carrier signal of the same frequency fc is required for up-conversion in
the TX and for down-conversion in the RX (see the part ‘Down conversion’), ideally
there should not be a carrier frequency offset in the down-converted complex baseband
signal. In practice, however, the D/A converter clock for the phone audio device that
plays the .wav file and the A/D converter clock for the PC audio device cannot be
identical. This results in a residual frequency error in the down-converted complex
baseband signal vector cbb, which should be compensated for before demodulation.

If the residual frequency offset is zero, then the pilot subcarrier frequency in the
complex baseband signal rcbb is zero, and thus the pilot subcarrier spectrum is
located at zero frequency. On the contrary, if the frequency offset is not zero, then
the pilot subcarrier spectrum is located at the frequency offset. Thus, in the part
‘Carrier recovery’ of NUS_AOFDM_DEM.m, the pilot subcarrier in cbb is extracted
by a narrowband low pass filter, and then its center frequency, which is equal to the
residual frequency offset, is measured by using FFT. In the first three lines, ‘cbb’ is
down-sampled 100:1 to lower the computational complexity of FFT to a practically
reasonable level.

3.D-1 For the fourth line to the last line of the part ‘Carrier recovery’, explain what
the variable of the left-hand side represents and how the right-hand side expression
is formulated accordingly.

3.D-2 The fifth subplot in Figure 1 shows the spectrum of the pilot subcarrier
extracted from rcbb by using a low pass filter. Zoom in the spectrum peak to measure
the residual frequency error and record it.

3.D-3 The value of fo_pilot recorded in 1.A-1(c) is the estimated residual frequency
error. Is the measured frequency error in 3.D-2 approximately equal to fo_pilot?

3.E To demodulate each OFDM symbol, we need to separately perform FFT on the
properly partitioned portions of rcbb. Proper partitioning of rcbb requires locating
the starting sample of each OFDM symbol. The part ‘Frame synchronization’ in
NUS_AOFDM_DEM.m locates the starting point of the frame first. Then the starting
point of each OFDM symbols is determined by using the frame starting point.

ANALYSIS OF OFDM RECEIVER ALGORITHMS AND THE RECEIVED SIGNALS 359

First, the complex baseband signal vector rcbb passes through the matched filter,
which is matched to the pilot OFDM symbol. The filter output is then partitioned
into parts, each with a length equal to OFDM frame length. After this, the parts are
aligned up in parallel and summed up. Because the same pilot OFDM symbol is
repeatedly and periodically inserted in every OFDM frame, the pilot OFDM symbols
at the matched filter output throughout the packet are coherently added up while the
data OFDM symbols are added up randomly.

Consequently, as the accumulation goes on, the peak value of the matched filter
filtered pilot OFDM symbol gets significantly larger than the off-peak value in the
accumulator output. The starting sample of the pilot OFDM symbol is one OFDM
symbol ahead of the peak sample point of the filtered (by the matched filter) pilot
OFDM symbol.

In the first three lines, in order to lower the computational complexities of frame
synchronization, the complex baseband signal sample vector rcbb is down-sampled
to generate its down-sampled version rcc_dec.

3.E-1 From the fifth line to the last line of the part ‘Frame synchronization’, the
output of the matched filter, which is matched to the pilot OFDM symbol, is parti-
tioned into parts, each with a length equal to the frame length and then accumulated
to find the peak point. The starting sample index of the pilot OFDM symbol is then
determined and stored in the variable ST.

Document what the variable on the left-hand side of the equal sign represents and
how the right-hand side expression is properly formulated accordingly.

3.E-2 The fourth line ‘rcbb_dec=abs(conv(rcbb_dec, conj(Pf_GI_dec(end:-1:1))));’
realizes the filtering process by a filter whose impulse response is equal to
‘conj(Pf_GI_dec(end:-1:1))’ and then takes the absolute value of the filter output.

(a) The variable Pf_GI_dec is the down-sampled version of the vector Pf_GI that
is defined in the transmitter m-file NUS_AOFDM_TX.m. The impulse response
of the filter ‘conj(Pf_GI_dec(end:-1:1))’ is the conjugate and time-reflected
(left-right) version of Pf_GI_dec.

Explain what the filtering process in the fifth line is supposed to do.
(b) Based on the purpose of the filtering, explain why the impulse response of

the filter is set as ‘conj(Pf_GI_dec(end:-1:1))’, that is, why Pf_GI_dec is time-
reflected and conjugated.

(c) Assuming imperfect carrier recovery, explain why abs() is performed after
this filtering process.

3.E-3 The sixth subplot of Figure 1 shows the filtered and accumulated OFDM
frame. Is this result shown in this plot what you expected to see? Justify the answer.

3.F In the part ‘OFDM demodulation with Channel compensation’, the OFDM sym-
bols in the packet are demodulated one by one by using FFT. The channel gains at
each subcarrier are estimated by using the FFT output of the periodically inserted

360 NEAR-ULTRASONIC WIRELESS OFDM MODEM DESIGN

pilot OFDM symbols. The FFT output vector of the data OFDM symbols is compen-
sated for by using the estimated channel fading gains. Finally, the image data stream
Pixel is recovered.

3.F-1 The OFDM symbols are demodulated through the outer ‘for’ loop one by
one by increasing the OFDM symbol index k. (a) In the ‘for’ loop, the first line
‘T=fft(rcbb(ST+GI+ NpGI*(k-1)+(1:Np)));’ performs FFT of the up-sampled vector of
the current (k-th) OFDM symbol. Explain why the index of the vector rcbb is set as
‘ST+GI+ NpGI*(k-1)+(1:Np)’.

(b) The second line ‘D=T(1:N);’ extracts the first N samples of the FFT output
to get the modulated symbol vector at N subcarriers. Explain why D, that is, the
first N samples of the FFT output, corresponds to the modulated symbol vector at N
subcarriers.

3.F-2 Inside the outer ‘for’ loop, the line ‘if mod(k,Ns)==1’ checks whether the
current (k-th) OFDM symbol is pilot or data. Explain how it does this.

3.F-3 For the two lines ‘ch=D./P;’ and ‘ch_tbl(frcnt,:)=ch;’ below the line ‘if
mod(k,Ns)==1’, document what the variable on the left-hand side of the equal sign
represents and why it is set or computed as the right-hand side. The index frcnt is
the frame counter. The vector P is defined in the part ‘OFDM signal parameter’ of
NUS_AOFDM_TX.m. Section 2.B of Chapter 27 will help answer this question.

3.F-4 In the line ‘D_buffer=[D_buffer ; D];’below ‘else’, the data symbol vector D for
the current OFDM symbol in the current OFDM frame is accumulated and stored as
an additional row of the matrix D_buffer. If the condition checking ‘if mod(k,Ns)==1’
returns ‘true’ after each iteration, then a new frame will start. Thus, at this point,
all the data symbol vectors of the current frame have been stored in D_buffer. Then
the innermost ‘for’ loop performs channel compensation for the data symbols in the
current OFDM frame in D_buffer to generate the final demodulation values of the
data symbols and recover the Pixel stream in the current OFDM frame.

According to the frame structure investigated in 2.B-3, the data OFDM symbols
in each frame are packed between two pilot OFDM symbols of two adjacent frames.
Inside the innermost ‘for’ loop, Pch and Cch are the estimated channel gain vectors
from the pilot OFDM symbols of the current frame and the next frame, respectively.
The channel gain vectors for the data OFDM symbols in the middle are estimated
through linear interpolation using the two end values, that is, Pch and Cch.

For the three lines inside the innermost ‘for’ loop, document what the variable on
the left-hand side of the equal sign represents and why it is set or computed as the
right-hand side.

3.F-5 Recall that the fourth subplot in Figure 1 shows the received signal spectrum.
Zoom into its spectrum portion. The seventh subplot shows the 3-D surface of the
estimated channel gain magnitude over the time and frequency matrix. Compare these
two subplots. Does the estimated channel gain magnitude match well the actual one?
Justify your answer.

EFFECTS OF SYSTEM PARAMETERS ON THE PERFORMANCE 361

3.F-6 Based on the seventh subplot in Figure 1, is the current wireless channel more
selective in time or in frequency? Justify your answer.

3.G The last part ‘Image packet synchronization’ first locates the start of the image
data packet from the demodulated pixel steam DemPixel. Then the vector DemPixel
is cyclically shifted so that the first element of it becomes the beginning of the packet.

3.G-1 For all lines in the part ‘Image packet synchronization’, document what the
variable on the left-hand side of the equal sign represents and why it should be set or
computed as the right-hand side.

3.G-2 What does the ninth subplot in Figure 1 show? Is it what you expected to
see?

30.4 EFFECTS OF SYSTEM PARAMETERS ON THE PERFORMANCE

4.A Insert the following two lines right after the line ‘RX_time=TX_time+1;’ at the
beginning part of NUS_AOFM_DEM.m and save the m-file.

� load NUS_AOFDM_TX_tx.mat;
� soundsc(tx,fs)

Now, running NUS_AOFM_DEM.m will transmit the NUS OFDM signal from the
PC’s speaker, which is then received and demodulated. Therefore, without playing
the .wav file in the phone, transmission and reception are executed within the m-file.

4.A-1 Maximize the PC audio volume and then run NUS_AOFM_DEM.m. Capture
the received image in Figure 3.

4.A-2 Open NUS_AOFDM_TX.m. and change the line ‘GI=ceil(Np*1/8);’ into ‘GI=0’.
Run NUS_AOFDM_TX.m and then run NUS_AOFDM_DEM.m. Capture the received
image in Figure 3.

4.A-3 Compare the quality between the received images in 4.A-1 and 4.A-2. Justify
the comparison result.

4.B Answer the following questions:

4.B-1 In NUS_AOFDM_TX.m, Np is set proportional to N. This maintains a constant
total data speed regardless of N. Prove this assuming GI = 0.

4.B-2 Recall that the total bandwidth has been calculated from N, Np, and fs. Show
that with Np proportional to N, the total bandwidth is also constant, regardless of N.

4.B-3 Run NUS_AOFDM_TX.m with N= 16 and 256 and capture the received images
in Figure 3 for both cases.

362 NEAR-ULTRASONIC WIRELESS OFDM MODEM DESIGN

4.B-4 Compare the transmitted signal waveforms in terms of the peak amplitude
for N = 16, 64 (captured in 2.D), and 256. Which case has the highest peak power
and why?

4.C Restore N = 64 in NUS_AOFDM_TX.m. The line ‘Pixel=Pixel(ILindex)’ in
NUS_AOFDM_TX.m interleaves the image pixel elements in Pixel. Comment out
this line and run NUS_AOFDM_TX.m.

4.C-1 Capture Figure 2. Compare the transmitted signal waveform with the one
captured in 2.D. Which one has a higher peak?

4.C-2 Considering the typical characteristics of adjacent pixels of a photo, explain
why the transmitted waveform has a high peak power if the pixel stream is only
OFDM-modulated as is.

4.C-3 Explain why interleaving of the pixel elements decreases the peak power of
the OFDM modulated waveform.

4.D The algorithms and the parameter settings in the two m-files provided could be
improved in terms of performance and complexity.

4.D-1 Revise the two m-files to improve the received image quality. (a) Explain
where and why you revise so. (b) Capture the received images before and after the
revision and confirm that the image quality did improve after the revision. For fair
comparison, be sure to maintain the same signal bandwidth and the same channel
environment, for example, noise level and audio volume.

4.D-2 Revise the two m-files to achieve a higher spectral efficiency, for example,
a lower bandwidth while the packet transmission time is not changed, or a shorter
packet transmission time while the bandwidth is not changed. (a) Explain where and
why you revise so. (b) Capture the results that show a higher spectral efficiency, for
example, smaller bandwidth or shorter transmission time. (c) Capture the received
images before and after the revision to confirm that the image quality is not reduced
due to the revision.

4.D-3 Revise the two m-files to reduce the computational complexity without low-
ering the received image quality. (a) Explain where and why you revise so. (b)
Calculate the computation reduction ratio for the algorithm part revised. (c) Capture
the received images before and after the revision to confirm that the image quality is
not reduced due to the revision.

INDEX

A
accumulated metric, 279
additive white Gaussian noise (AWGN),

172, 174
Alamouti code, 327
aliasing, 74
amplitude modulation (AM), 90
analytic signal, 110
autocorrelation, 80, 85, 170
autocorrelation function of random process,

170
AWGN channel, 174

B
background noise, 82, 93
band pass filter, 63
bandwidth, 57
bandwidth efficiency, 266, 306
baseband, 96, 235
basis functions, 188, 240
bit error rate (BER), 177
Boolean operations, 3
branch, 278

branch metric, 279
branch output, 278

C
carrier, 235
carrier phase error, 235
carrier phase synchronization, 237
carrier-to-noise ratio (CNR), 93
carrier recovery, 358
carrier wave, 90, 235
Carson’s rule, 130
causal impulse response, 58
central limit theory (CLT), 165, 322
channel compensation, 317, 359
channel estimation, 317
channel inversion, 317
channel state information (CSI), 328
channel symbol, 286
CNR loss, 96
code rate, 269
coded BER, 286
coding gain, 287
command window, 1

Problem-Based Learning in Communication Systems Using MATLAB and Simulink, First Edition.
Kwonhue Choi and Huaping Liu.
© 2016 The Institute of Electrical and Electronics Engineers, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/choi_problembasedlearning

363

http://www.wiley.com/go/choi_problembasedlearning

364 INDEX

complex sinusoids, 21
complex Gaussian, 289, 290
complete orthogonal set, 21
constellation diagram, 245
constraint length, 269
convolution, 48
convolutional code, 269
correcting capability, 272
correlation, 78
correlation function

energy signal, 80
power signal, 85
random process, 170

cross correlation function, 82
cyclic prefix (CP), 314

D
decision regions, 177
decision variable, 177, 178
decision variable-level simulation, 325
delay, 60
design window, 9
digital filtering, 226
diversity, 296
diversity combining, 296
diversity order, 298, 334
diversity technique, 296
double side-band with a large carrier

(DSB-LC), 134
double side-band-suppressed carrier

(DSB-SC), 90
double side-band with a suppressed carrier

(DSB-SC), 90
down conversion, 358

E
encoder, 269
encoding, 269
energy of the difference, 189
energy spectral density (ESD), 87
ensemble average, 169, 227
equal gain combining (EGC), 298
erfc(), 161
Euclidean distance, 187
exhaustive search, 328
exponential distribution, 290
exponential Fourier series coefficient, 21
eye diagram, 213

F
fading, 158, 289
fading channel, 289
fading coefficient, 289
Fourier series, 24
Fourier series coefficient, 21
Fourier series expansion, 36
Fourier transforms, 33
frame synchronization, 358
free distance, 271
frequency division multiplexing (FDM),

101, 102
frequency error, 97
frequency flat, 313
frequency non-selective, 289, 313
frequency selective, 313
frequency selective fading, 314
frequency transfer function, 26, 57
frequency up-conversion, 75, 98
fundamental frequency, 36

G
Gaussian probability density function, 7
Gaussian random process, 168
Gaussian random variables, 152
Gray mapping, 256
guard interval, 314

H
Hamming distance, 271
harmonics, 72
hard decision decoding, 275
Hilbert transform, 109
histogram(), 153
Hermitian symmetry, 82
high pass filter, 44

I
impulse function, 50
impulse modulation, 213
impulse response, 57
independent, 203
independent random variables, 162
input sensitivity of VCO, 127
inter-carrier interference (ICI), 314
inter-symbol interference (ISI), 210, 314
inverse Fast Fourier transform (IFFT), 305
inverse Fourier transform, 33

INDEX 365

J
Jensen’s inequality, 295

L
likelihood function, 176
likelihood ratio, 176
linear system, 25
line spectrum, 38
local carrier, 90, 236
lower side-band (LSSB), 121
low pass filter, 57

M
magnitude spectrum, 41
M-ary signals, 196
M-ary phase shift keying (MPSK), 240
matched filter, 216
MATLAB command window, 1
maximum excess delay, 311
maximum likelihood (ML) detection, 176
maximum likelihood (ML) decoding, 274
maximum ratio combining (MRC), 299
mean, 155
m-file, 4
minimum sampling frequency, 69
modulation index, 130
multipath diversity, 296
multipath magnitude profile, 312
multipath fading channels, 311
multiple input multiple output (MIMO),

324, 336

N
narrowband FM (NBFM), 130
near ultrasonic (NUS), 146, 353
noise enhancement, 341
noise rejection filter, 226
null-to-null bandwidth, 306
numerical integration, 16

O
offset QPSK (OQPSK), 252
ordered successive interference cancellation

(OSIC), 345
orthogonal expansion, 18
orthogonal frequency division multiplexing

(OFDM), 302
orthogonal set, 18

orthogonal signal set, 184
orthonormal basis functions, 188, 240
orthonormal set, 184
oscilloscope, 219

P
passband, 235
path metric, 279
periodic function, 30
phase detector (PD), 136
phase error, 95, 235
Phase locked loop (PLL), 135
phase shifter, 114
phase spectrum, 59
phase synchronization, 238
pilot, 134, 317
pilot symbols, 317
power spectral density (PSD), 56, 93
probability density function (PDF), 151
pulse amplitude modulation (PAM), 215
pulse shaping, 210
pwelch(), 56

Q
Q-function, 160
quadrature amplitude modulation (QAM),

254
quadrature multiplexing (QM), 102
quadrature phase shift keying (QPSK), 239
quaternary symbol, 239
quiescent frequency of VCO, 127

R
raised cosine pulse, 209
Rayleigh distribution, 158, 290
Rayleigh fading, 289
rcosine(), 209
Riemann sum, 16
roll-off factor, 209

S
Sa(), 58
Sample time, 10
sampling, 68
script file, 4
scope, 9
selection diversity combining (SDC), 297
side lobe, 356

366 INDEX

signal clipping, 123
signal trajectory, 250, 267
sim(), 247
simulation stop time, 10
Simulink, 8
Simulink design window, 9
Simulink library browser, 9
sinc(), 38, 58
single-side band (SSB), 116
slow fading, 296
soft decision decoding, 276
Sound Source, 12
space time block code (STBC), 327, 334
space time code, 334
space time code matrix, 334
spatial diversity (SD), 296, 336
spatial multiplexing (SM), 336
spectrum, 33
Spectrum Viewer, 12
square-root raised cosine (SRRC) pulse,

210
state diagram, 277
subcarriers, 303
subsystem, 12
successive interference cancellation (SIC),

343
survivor path, 279
symbol timing error, 234

synchronization, 135
symbolic math, 3
symbolic variables, 3

T
tail bits, 278
three-dimensional plot, 6
time average, 169
trellis based decoding, 282
trellis diagram, 277

U
upper-side single side band (USSB), 117
user-defined functions, 7

V
variance, 156
vector space, 186
Viterbi decoding, 277
voltage controlled oscillator (VCO), 126

W
waveform-level BER simulation, 325
white Gaussian noise, 81
wide-sense stationary (WSS), 172

Z
zero forcing (ZF) detection, 340

IEEE PRESS SERIES ON
DIGITAL AND MOBILE COMMUNICATION

John B. Anderson, Series Editor
University of Lund

1. Wireless Video Communications: Second to Third Generation and Beyond
Lajos Hanzo, Peter J. Cherriman, and Jurgen Streit

2. Wireless Communications in the 2lst Century
Mansoor Sharif, Shigeaki Ogose, and Takeshi Hattori

3. Introduction to WLLs: Application and Deployment for Fixed and
Broadband Services
Raj Pandya

4. Trellis and Turbo Coding
Christian B. Schlegel and Lance C. Perez

5. Theory of Code Division Multiple Access Communication
Kamil Sh. Zigangirov

6. Digital Transmission Engineering, Second Edition
John B. Anderson

7. Wireless Broadband: Conflict and Convergence
Vern Fotheringham and Shamla Chetan

8. Wireless LAN Radios: System Definition to Transistor Design
Arya Behzad

9. Millimeter Wave Communication Systems
Kao-Cheng Huang and Zhaocheng Wang

10. Channel Equalization for Wireless Communications: From Concepts to
Detailed Mathematics
Gregory E. Bottomley

11. Handbook of Position Location: Theory, Practice, and Advances
Edited by Seyed (Reza) Zekavat and R. Michael Buehrer

12. Digital Filters: Principle and Applications with MATLAB
Fred J. Taylor

13. Resource Allocation in Uplink OFDMA Wireless Systems: Optimal Solutions
and Practical Implementations
Elias E. Yaacoub and Zaher Dawy

14. Non-Gaussian Statistical Communication Theory
David Middleton

15. Frequency Stabilization: Introduction and Applications
Venceslav F. Kroupa

16. Mobile Ad Hoc Networking: Cutting Edge Directions, Second Edition
Stefano Basagni, Marco Conti, Silvia Giordano, and Ivan Stojmenovic

17. Techniques for Surviving the Mobile Data Explosion
Dinesh Chandra Verma and Paridhi Verma

18. Cellular Communications: A Comprehensive and Practical Guide
Nishith D. Tripathi and Jeffrey H. Reed

19. Fundamentals of Convolutional Coding, Second Edition
Rolf Johannesson and Kamil Sh. Zigangirov

20. Trellis and Turbo Coding, Second Edition
Christian B. Schlegel and Lance C. Perez

21. Problem-Based Learning in Communication Systems Using MATLAB
and Simulink
Kwonhue Choi and Huaping Liu

WILEY END USER LICENSE
AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook
EULA.

http://www.wiley.com/go/eula

