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Preface

In a given signal scenario, the phased array is expected to radiate in such a way that
sufficient gain is maintained towards the desired directions, with no energy trans-
mitted towards the hostile radars. This can be achieved with the help of an adaptive
array processing, which involves an efficient adaptive algorithm. Further other
design parameters of antenna array, platform effect, mutual coupling between the
antenna elements affects the array performance. The surface over which antenna
array is mounted affects the radiation and scattering characteristics of phased array.

This book describes the probe suppression in a cylindrical microstrip patch and
dipole array. The effect of both conducting and dielectric cylinder is discussed. For
such non-planar geometry, the radiation pattern synthesis is done by transforming
element pattern using Euler rotation matrix. The optimal weights are calculated
using the modified improved LMS algorithm. The adapted and quiescent antenna
array patterns are generated for a given signal environment consisting of both
desired and probing sources. It is shown through several illustrations that the array
mounted over a cylinder along with an efficient adaptive algorithm is able to cater to
the impinging signals, whether desired or hostile sources. The adapted pattern
maintains a sufficient gain towards the desired sources with accurate and deep nulls
towards each of the probing sources. This book includes the detailed analytical
description of the active cancellation of probing sources by phased arrays mounted
on non-planar conducting and dielectric surfaces, algorithm for weight adaptation
towards the generation of antenna pattern, and numerous simulation results.

Bangalore, India Hema Singh
Mausumi Dutta

P.S. Neethu
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About the Book

This book considers a cylindrical phased array with microstrip patch antenna
elements and half-wavelength dipole antenna elements. The effect of platform and
mutual coupling effect is included in the analysis. The non-planar geometry is
tackled by using Euler’s transformation towards the calculation of array manifold.
Results are presented for both conducting and dielectric cylinders. The optimal
weights obtained are used to generate adapted pattern according to a given signal
scenario. It is shown that the array along with adaptive algorithm is able to cater to
an arbitrary signal environment even when the platform effect and mutual coupling
is taken into account. This book provides a step-by-step approach for analyzing the
probe suppression in non-planar geometry. Its detailed illustrations and analysis
will be useful for graduate and research students, scientists and engineers working
in the area of phased arrays, low observables and stealth technology.
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Abstract

The probe suppression capability of phased arrays has applications in stealth
technology. The suppression of hostile radar sources attempting to probe the phased
array mounted on an aerospace structure facilitates the low observability. The
modified improved LMS algorithm is known to be an efficient algorithm for active
cancellation of probing in phased arrays. This motivates its usage in conformal
adaptive array processing. This book considers a cylindrical phased array with
microstrip patch antenna elements and half-wavelength dipole antenna elements.
The effect of platform and mutual coupling effect is included in the analysis. The
non-planar geometry is tackled by using Euler’s transformation towards the cal-
culation of array manifold. Results are presented for both conducting and dielectric
cylinder. The optimal weights obtained are used to generate adapted pattern
according to a given signal scenario. It is shown that an array along with adaptive
algorithm is able to cater to an arbitrary signal environment even when the platform
effect and mutual coupling is taken into account.

This book provides a step-by-step approach for analyzing the probe suppression
in non-planar geometry. Its detailed illustrations and analysis would be a useful text
for the graduate and research students, scientists, and engineers working in the area
of phased arrays, low-observables and stealth technology.

Keywords Conformal phased array � Probe suppression � Modified improved
LMS algorithm � Adapted pattern � Nulls
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Probe Suppression in Conformal Phased
Array

1 Introduction

When the antenna elements are mounted over a non-planar platform, the radiation
and scattering characteristics are very different from that of planar surface. In planar
antenna array the alignment of elements is along a specific axis, in contrast the
orientation of antenna elements in non-planar array depends on the varying surface
curvature. The element pattern is polarization dependent and hence depends on the
individual element pattern apart from the geometry of the array. The analysis of
non-planar arrays requires transformation of antenna pattern from local coordinate
system to global coordinate system. This may be carried out using methods like
Euler angle rotation, geometric algebra, etc. The design and analysis of non-planar
array is complex and has constraints such as cross polarization, mutual coupling
effect and limited operational bandwidth. However, such arrays are known to have
reduced radar cross section (RCS), less aerodynamic drag and greater angular
coverage. In open-domain methods such as alternative projection method (Wang
et al. 2008; Wang and He 2010) and iterative least squares based synthesis method
(Vaskelainen 1997) have been proposed for the pattern synthesis of non-planar
arrays.

Moreover, the antenna elements placed close to each other results in mutual
coupling effect. This degrades the array performance both in terms of radiation and
radar cross section. Thus, it is required that radiation pattern analysis and RCS
estimation of phased array should include both mutual coupling and platform effect.
The design parameters of phased array mounted on the surface should be optimized
so as to have reduced scattering and optimum radiation characteristics.

One of the important issues faced by antenna designers and researchers in the
design of antenna array systems mounted on platform is the current that flows over
the surface, substantially affecting the radiation pattern of antenna array.
Consequently, to ensure control over the antenna performance it is critically
important to determine the effect of the platform over which the antenna system is

© The Author(s) 2017
H. Singh et al., Probe Suppression in Conformal Phased Array,
SpringerBriefs in Computational Electromagnetics,
DOI 10.1007/978-981-10-2272-2_1
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placed. In most of the aerospace structures, the platform is more or less cylindrical
in shape. This allows the usage of the formulation for the finite cylinder towards an
approximate solution. The far-field radiation pattern of dipole antenna placed near
an infinite conducting cylinder has been derived using the principle of reciprocity
(Carter 1943). The corresponding analysis for finite conducting cylinder was
reported by (Kuehl 1961). The portions of the infinite cylinder above and below the
cylindrical section considered are ignored with the assumption that the current on
the remaining portion of the cylinder remains unchanged. The far-field of this
unchanged portion of the current is added to the dipole field to arrive at the total
far-field due to dipole antenna placed near a finite cylinder.

This book focuses on phased array such as dipole array, microstrip patch array,
placed on a right circular cylinder. The modified improved LMS algorithm (Singh
and Jha 2013) is used for weight adaptation so as to determine the array pattern for
a signal environment Signal environment consisting of multiple narrowband radar
sources. The Euler’s rotation is used for transformation of local coordinates to
global coordinates towards the extraction of antenna element pattern for cylindrical
surface. Multiple desired and probing sources are assumed to impinge the cylin-
drical array. Results are shown for both conducting and dielectric cylinder. The
radiation pattern of dipole antenna placed over a cylindrical surface is computed
and validated against the results available in open domain. If multiple antennas
share the same ground plane, surface currents can cause unwanted coupling
between them. Here, the effect of mutual coupling on the radiation pattern of dipole
array is taken into account. The probe suppression is demonstrated for various
signal scenarios consisting of multiple desired and probing sources.

2 Steering Vector of Conformal Phased Array

In order to generate the antenna array pattern for a given signal environment , the
first step is to determine the array manifold or steering vector.

In non-planar array, the steering vector may be expressed in a global coordinate
system (Karimzadeh et al. 2011), as

Sðh;/Þ ¼
XN
n¼1

anðh;/Þ expðj ko rn � v Þ ð1Þ

where, an(θ, ϕ) represents the nth element pattern in the global cartesian coordinate
system, ko = 2π/λ is the propagation constant, λ is wavelength of the impinging
signal. rn = [xn, yn, zn] is position vector from the origin to the centre of the nth
element and v = [sinθcosϕ, sinθsinϕ, cosϕ]T is unit radial vector from the coordinate
origin to the observation point.

The unit vector pointing in the direction (θ, ϕ) of the global coordinate system is
given by,
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ðx; y; zÞ � ðr; h; /Þ ¼ sin h cos/ x þ sin h sin/ y þ cos / z ð2Þ

Thus, (2) may be rewritten as

Sðh; /Þ ¼
XN
n¼1

anðh; /Þ ejko ðsin h cos/ xn þ sin h sin/ yn þ cos / znÞ ð3Þ

2.1 Euler Rotation Method

The radiation pattern of an individual element in a non-planar array is not same as
that of an isolated element pattern. In non-planar array such as cylindrical array, the
element pattern significantly depends on the element position and the polarization.
The normal to each antenna element placed over the non-planar surface points in
different directions. In order to bring each surface normal in same direction, the
transformation is required.

The transformation from one coordinate system to the other may be carried out
using different methods. One of the ways is the Euler rotation, which is used for
describing the relationship between two Cartesian-coordinate systems having same
origin but different orientations. Here Euler rotation is used to transform from local
to global coordinate system and vice versa. The transforming process is carried out
in terms of direction cosine matrix (Burger 1995).

Here two right-handed Cartesian and spherical coordinate systems with a
common origin is considered, in which the observation point is defined in space as
(x, y, z) and (r, θ, ϕ). For a regular 3-D non-planar surface such as cylindrical,
conical, etc. only two rotations are sufficient for transformation. The third rotation is
in general used for irregular and composite non-planar surfaces.

When microstrip antenna or a dipole is placed over non-planar surface such as
cylindrical surface, the element pattern needs to be transformed. The location of
each array element on the curved surface is defined in local coordinate system.
Since the element pattern is defined in the global coordinates only, a spatial rotation
transformation such as Euler rotation is used. The first step in Euler rotation is the
formation of Euler transformation matrix. This matrix is obtained by rotating the
coordinate axes.

In this book, three successive rotations are carried out for z, y, and z axes. As
shown in Fig. 1, first rotation is made about z-axis. The x- and y-axes are rotated by
an angle α, such that [x, y, z]⇒[x′, y′, z′] or [r, θ, ϕ]⇒[ r′, θ′, ϕ′]. Then x′ and z′ axes
are rotated by an angle β keeping y′-axis fixed, resulting in [x′, y′, z′]⇒[x″, y″, z″] or
[r, θ, ϕ]⇒[ r″, θ″, ϕ″]. In third rotation, the axes are rotated by angle γ w.r.t. z″ axis.
Thus one gets [x″, y″, z″]⇒[x′′′, y′′′, z′′′] or [r, θ, ϕ]⇒[ r′′′, θ′′′, ϕ′′′]. Here, α, β, γ are
the Euler angles of rotation.
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The unit vector before rotation is expressed as

P x; y; zð Þ ¼ x 1; 0; 0ð Þþ y 0; 1; 0ð Þþ z 0; 0; 1ð Þ ð4Þ

After first rotation by an angle of α about z-axis, the transformation matrix is
obtained as

~Pðx0; y0; z0Þ ¼ xðcos a; sin a; 0Þþ yð� sin a; cos a; 0Þþ zð0; 0; 1Þ ð5Þ

In matrix form, it can be expressed as

x0

y0

z0

2
4

3
5 ¼

cos a sin a 0
� sin a cos a 0

0 0 1

2
4

3
5
T

:
x
y
z

2
4

3
5 ð6Þ

where rotation matrix corresponding to angle α about z-axis is referred to as Euler
transformation rotation matrix (ETRM), and is given by (Milligan 1999)

RðaÞ ¼
cos a sin a 0
� sin a cos a 0

0 0 1

2
4

3
5 ð7Þ

Similarly, the Euler transformation rotation matrices corresponding to angle β
about y-axis and angle γ about z-axis are expressed as

RðbÞ ¼
cos b 0 � sin b
0 1 0

sin b 0 cos b

2
4

3
5 ð8Þ

RðcÞ ¼
cos c sin c 0
� sin c cos c 0

0 0 1

2
4

3
5 ð9Þ

X'

X''

Z'

β

β
Y'=Y''

Z''

O

Z=Z'  

X'

X

Y'
Y

α

O

α

γ

Z''=Z''' 

X''

Y'''

γ
X'''

O

Y''

Fig. 1 Three successive Euler rotations with angles α, β, γ
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The overall transformation matrix is obtained using (7), (8), (9),

R a; b; cð Þ ¼ RðcÞRðbÞRðaÞ

¼
cos c sin c 0

� sin c cos c 0

0 0 1

2
64

3
75 �

cos b 0 � sin b

0 1 0

sin b 0 cos b

2
64

3
75 �

cos a sin a 0

� sin a cos a 0

0 0 1

2
64

3
75

¼
R11 R12 R13

R21 R22 R23

R31 R32 R33

2
64

3
75

ð10Þ

where

R11 ¼ cos a cos b cos c� sin a sin c ð10aÞ

R12 ¼ sin a cos b cos cþ cos a sin c ð10bÞ

R13 ¼ � sin b cos c ð10cÞ

R21 ¼ � cos a cos b sin c� sin a cos c ð10dÞ

R22 ¼ cos a cos c� sin a cos b sin c ð10eÞ

R23 ¼ sinb sin c ð10fÞ

R31 ¼ sin b cos a ð10gÞ

R32 ¼ sin a sinb ð10hÞ

R33 ¼ cos b ð10iÞ

The unit vector pointing in the direction of (θ,ϕ) in global coordinates is
expressed as

½ x y z � ¼ ½ sin h cos/ sin h sin/ cos h � ð11Þ

Next, transformation from global coordinate (θ, ϕ) to local coordinate ð~h; ~/Þ is
given by

~x ~y ~z½ �T¼R a; b; cð Þ x y z½ �T
¼R a; b; cð Þ sin h cos/ sin h sin/ cos h½ �T ð12Þ

2 Steering Vector of Conformal Phased Array 5



The corresponding elevation and azimuth angles associated with the antenna
elements in local coordinates ð~h; ~/Þ are extracted as

~h ¼ a cosð~zÞ; ~/ ¼ a tan
~y
~x

� �
ð13Þ

2.2 Element Pattern Transformation

In case of conformal phased array, the extracted elevation and azimuth angles,
expressed in (13) are substituted in the expression for the radiation pattern of
antenna element.

Thus, the pattern of nth array element in spherical local coordinate system may
be expressed as

anð~h; ~/Þ ¼ an~hð~h; ~/Þu~hð~h; ~/Þ þ an~/ð~h; ~/Þu~/ð~h; ~/Þ ð14Þ

where u~hð~h; ~/Þ and u~/ð~h; ~/Þ are unit vectors in ~h and ~/ directions respectively,
given by

u~hð~h; ~/Þ ¼ cos ~h cos ~/ � u~x þ cos ~h sin ~/ � u~y � sin ~h � u~z ð15Þ

u~/ð~h; ~/Þ ¼ � sin ~/ � u~x þ cos ~/ � u~y ð16Þ

Substituting the value of u~hð~h; ~/Þ and u~/ð~h; ~/Þ in (14) the element pattern

anð~h; ~/Þ can be expressed in Cartesian local coordinate system as

anð~h; ~/Þ ¼ an~x u~x þ an~y u~y þ an~z u~z ð17Þ

where in u~x, u~y and u~z are unit vectors in the ~x; ~y; ~z directions of local Cartesian
coordinate system respectively, and

an~x ¼ an~hð~h; ~/Þ cos ~hn cos ~/n � an~/ð~h; ~/Þ sin ~/n ð18Þ

an~y ¼ an~hð~h; ~/Þ cos ~hn sin ~/n þ an~/ð~h; ~/Þ cos ~/n ð19Þ

an~z ¼ �an~hð~h; ~/Þ sin ~hn ð20Þ

Next the transformation of element pattern from local Cartesian coordinates to
global Cartesian coordinate is done using inverse Euler matrix, i.e.
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anx any anz½ �T¼ Rða; b; cÞ�1 an~x an~y an~z½ �T ð21Þ

The overall element pattern in global Cartesian coordinates is expressed as

anðh; /Þ ¼ anxux þ anyuy þ anzuz ð22Þ

in which ux, uy and uz are unit vectors in x, y and z directions respectively. Likewise
the element pattern in the array global spherical coordinate systems is given by

anðh;/Þ ¼ anhðh; /Þuhðh;/Þ þ an/ðh;/Þu/ðh;/Þ ð23Þ

where

uhðh; /Þ ¼ cos h cos/ � ux þ cos h sin/ � uy � sin h � uz ð24Þ

u/ðh;/Þ ¼ � sin/ � ux þ cos/ � uy ð25Þ

Thus (23) can be rewritten as

anðh;/Þ ¼fanh cos h cos/ � an/ sin/g ux
þ fanh cos h sin/ þ an/ cos/ guy þf�anh sin hguz

ð26Þ

Comparison of (23) and (26), the element pattern components are extracted as

anhðh; /Þ ¼ �anz
sin h

¼ anx cos/þ any sin/
cos h

ð27Þ

an/ðh; /Þ ¼ �anX sin/þ anY cos/ ð28Þ

Thus the steps involved in transformation of element pattern can be summarized
as follows:
Step 1 Calculate the Euler anglesα, β and γ
Step 2 Determine the Euler rotation matrix
Step 3 Extract the local coordinate angles from Euler rotation matrix
Step 4 Estimate the local element pattern using local coordinate angles
Step 5 Calculate the global element pattern using local element pattern and

inverse Euler rotation matrix
Step 6 Extract the components of element pattern
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3 Optimal Antenna Excitations and Adapted Pattern

The performance of adaptive algorithm depends upon the ability to steer beam
towards desired source, with acceptable sidelobe level (SLL) and to minimize
power transmitted towards the probing sources. This capability depends on the
efficiency of the adaptive algorithm employed for obtaining optimal antenna
excitations and hence the adapted pattern for a given signal scenario.

3.1 Modified Improved LMS Algorithm

A signal scenario consisting of multiple desired and probing signals, along with
additive white Gaussian noise (AWGN) is considered. In Fig. 2, an arbitrary array
with Cartesian (x, y, z) and spherical coordinate (r, θ, ϕ) systems is illustrated.

The far-field array pattern in (θ, ϕ) direction is expressed as

Fðh;/Þ ¼
XN
n¼1

wH
n xnðh;/Þ ð29Þ

where n = 1, 2, …, N and N is the number of antenna elements, xn(θ, ϕ) is the
received signal of the nth antenna element, consisting of desired signal (sd), probing
signal (ip), thermal noise (e), and wn is the complex antenna weight.

The far-field array pattern may be resolved into components

Fðh;/Þ ¼ Fhðh;/Þ uh þF/ðh;/Þu/ ð30Þ

where {Fθ (θ, ϕ); uθ}, {Fϕ (θ, ϕ); uϕ} are θ-component, and ϕ-component of the
far-field pattern and unit vector respectively.

The Cartesian coordinates of the nth element in a circular cylinder (Fig. 3) are
given by

Z

X

Y

v
θ

Radiator

Fig. 2 The coordinate
system of array with arbitrary
geometry
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xn ¼ R cos ½ðn� 1Þn� U�
yn ¼ R sin ½ðn� 1Þn� U�
zn ¼ 0

ð31Þ

where ξ denotes the angle between any two adjacent elements and is equal to
2Ф/N-1, where Ф is the angle measured between the x axis and the last element.

The corresponding Euler angles are given by

an ¼ p � Uþðn� 1Þn
bn ¼ � p

2
cn ¼ 0

ð32Þ

Figure 3 illustrates the conformal array on a right circular cylinder with radius
a. A uniform inter-element spacing d is considered. The array elements are placed
along a circular arc.

The total received signal is expressed as

xnðh;/Þ ¼
X
m

Soðh;/Þ sdkðnÞþ
X
j

Spðh;/Þ ipjðnÞþ eðnÞ ð33Þ

Here So(θ, ϕ) is the steering vector for desired signals, and Sp(θ, ϕ) is the steering
vector for probing signals, m is the number of desired signal, j is the number of
probing signals and e(n) is the thermal noise.

The optimal complex excitations to the antenna elements placed over a right
circular cylinder are determined using modified improved LMS algorithm. In this
algorithm the Toeplitz structure of the signal covariance matrix is used for obtaining
distinct eigenvalues and eigenvectors for a given signal scenario. This facilitates

Fig. 3 a Dipole antennas printed over a circular cylinder. b Top view of dipole array over the
circular cylinder
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obtaining the optimal complex antenna weights, and hence the converged output
signal-to-interference ratio and adapted pattern. The antenna weights are iteratively
determined as

wðkþ 1Þ ¼ P½wðkÞ � ls rðkÞ� þ So1
SHo1So1

þ So2
SHo2So2

þ � � � þ Soq
SHoqSoq

ð34Þ

where μs the step-size, k is the snapshot and the projection operator, P is given by

P ¼ I � So1S
H
o1

SHo1So1
� So2S

H
o2

SHo2So2
; . . .; �

SomS
H
oq

SHomSoq
ð35Þ

where in, So1 , So2 , …, Soq represent the steering vectors towards q desired signals
impinging the array at different angles, I is the identity matrix, r represents the
gradient vector obtained from the signal covariance matrix and the antenna weights,
i.e.

rðkÞ ¼ 2~Rðkþ 1ÞwðkÞ ð36Þ

The correlation matrix ~RðkÞ is expressed as

~RðkÞ ¼ xðh; /ÞHxðh; /Þ
N

ð37Þ

This correlation matrix is updated with snapshots, expressed as (Godara 2004)

~Rðkþ 1Þ ¼ 1
kþ 1

k ~RðkÞþ R̂ðkþ 1Þ� � ð38Þ

with

R̂ðkÞ ¼

r̂oðkÞ r̂1ðkÞ . . . r̂M�1ðkÞ

r̂�1ðkÞ . . . . . .

:

:

:

:

:

:

. . . . . . r̂1ðkÞ

r̂�N�1ðkÞ . . . r̂�1ðkÞ r̂oðkÞ

2
6666666666664

3
7777777777775

ð39Þ

r̂N�1ðkÞ ¼ 1
N � 1

XN�1

i¼1

xiðkÞ x�iþ 1ðkÞ ð40Þ
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The adapted beam pattern is obtained from the product of optimal weights and
the array manifold, i.e.

Pattern ¼ wH :Sðh;/Þ ð41Þ

Flow chart for weight adaptation The steps involved in weight adaptation
using modified Improved LMS adaptive algorithm are shown as a flowchart
(Fig. 4). The input parameters required for the algorithm include the operating
frequency, array size, inter-element spacing, and number of impinging signals, their
power levels and angle of arrivals.

3.2 Mutual Coupling Effect

In this section, analytical formulation for mutual coupling between the antenna
elements mounted on cylindrical surface is discussed. If the antenna elements are
placed close to each other, the mutual coupling effect arises. The antenna impe-
dance consists of self- and mutual impedance components depending on the geo-
metric configuration of the array.

The impedance matrix of N-element antenna array is given by

Z ¼
Z11 Z12 � � � Z1N
Z21 Z22 � � � Z2N
..
. ..

. . .
. ..

.

ZN1 ZN2 � � � ZNN

2
6664

3
7775 ð42Þ

where Zmn is the self-impedance of the mth element and Zmn is the mutual impe-
dance between mth and nth antenna elements. In the absence of mutual coupling,
the matrix in (42) becomes a diagonal matrix.

For an array of centre-fed dipole antennas with inter-element spacing of d, and
dipole length l, the self- and mutual impedances are calculated in terms of cosine
and sine integrals. The expressions vary with the geometrical arrangement of dipole
antenna elements.

In particular, for side-by-side configuration, the self and mutual impedances are
expressed as
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Start

Compute weights 

f, λ, N, d, number of sources, DOAs,
power levels of sources

Calculate steering vector for each DOAs

Calculate projection matrix

Initialize weight vector

Calculate Toeplitz structure
correlation matrix

Calculate received signal vector

Calculate gradient vector

Convergence 
achieved?i = i + 1

Stop

Calculate Far-field Pattern

No

Yes

Define the surface and antenna element

Calculate element pattern

Calculate Euler angles and Euler matrix

Fig. 4 Flowchart of modified improved LMS adaptive algorithm for cylindrical array towards
active cancellation of probing sources
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Rself ¼ g
2p

Cþ ln
2p l
k

� �
� Ci

2p l
k

� �
þ 1

2
sin

2p l
k

� �
Si

4p l
k

� �
� 2Si

2p l
k

� �� ��

þ 1
2
cos

2p l
k

� �
Cþ ln

p l
k

� �
þCi

4p l
k

� �
� 2Ci

2p l
k

� �� �	
ð43Þ

Xself ¼ g
4p

2Si
2pl
k

� �
þ cos

2pl
k

� �
2Si

2pl
k

� �
� Si

4pl
k

� �� ��

� sin
2pl
k

� �
2Ci

2pl
k

� �
� Ci

4pl
k

� �
� Ci

4pa2

kl

� �� �	 ð44Þ

Rmutual ¼ g
4p

2Ci
2pd
k

� �
� Ci

2p
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ l2

p
þ l

� �� �

�Ci
2p
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ l2

p
� l

� �� �
2
6664

3
7775 ð45Þ

Xmutual ¼ � g
4p

2Si
2pd
k

� �
� Si

2p
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ l2

p
þ l

� �� �

�Si
2p
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ l2

p
� l

� �� �
2
6664

3
7775 ð46Þ

where Ci(x) and Si(x) are cosine and sine integrals expressed as

Si xð Þ ¼
X1
k¼0

�1ð Þkx2kþ 1

2kþ 1ð Þ 2kþ 1ð Þ! ð47Þ

Ci xð Þ ¼ Cþ ln xð Þþ
X1
k¼1

�1ð Þk x2k

2k 2kð Þ! ð48Þ

3.3 Platform Effect

As mentioned before, when an antenna or antenna array is mounted on the platform,
both the radiation and scattering characteristics of the antenna get altered signifi-
cantly. This is due to the induced currents over the antenna array due to the platform
in the vicinity of the array system. The effect of platform on the impedance
matching of a coil antenna in near-field radio frequency identification (RFID)
systems at low/high frequency is different from those antennas in far-field systems
at ultra-high frequency and microwave frequency (Qing et al. 2008). This is due to
different electromagnetic behaviour of the two systems. When an antenna is placed
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over a metal plate, the antenna inductance gradually reduces on bringing the
antenna close to the metallic surface. The antenna impedance is adversely affected
due to the presence of metallic or lossy materials (Hirvonen et al. 2006).

Moreover, the thickness of the platform and the location of antenna element on
platform play a significant role in the radiation pattern of the antenna. The radiation
behaviour of thin and tall platforms is similar to a dipole antenna (Richie and Koch
2005). It is reported that with increase in the thickness of platform, the radiation of a
loop antenna becomes omnidirectional provided the antenna-mounted sides of the
platform are made not too broad. It is not incorrect to consider the antenna not only
as a radiator but also as a coupler to the platform. The adverse effect of the platform
on the antenna radiation can be avoided by optimal choice of its location on the
platform. Similarly for cube-shaped platform, average antenna gain reduces with
height of platform. As the cross section of the platform becomes rectangular, the
omnidirectional radiation may be achieved if the antenna is mounted towards the
sides of thin platform.

The presence of metallic platform near a radiating dipole antenna results in
significant reduction in radiation resistance. The real and imaginary parts of the
antenna impedance drop when the antenna is in close vicinity to the platform (Qing
et al. 2008). If the platform is dielectric cylinder, scattering of dipole field by the
cylinder introduces a backscattering lobe in the pattern at the expense of the
amplitude of forward scattering. This effect is more prominent when the dipole
antenna is placed close to the cylinder (Tsandoulas 1968). When the radius of
dielectric cylinder is comparable to the wavelength, the dipole element placed close
to it can be used as a means of directing the field in the back lobe of the radiation
pattern. Similar observations have been reported for a dipole antenna placed within
the dielectric cylinder (Jeffrey 1971).

The finite element-boundary integral (FE-BI) method has been employed to
model the scattering and radiation of cavity-backed patch antennas (Burkholder
et al. 2006). The metallic cylinder as a platform is reported to have improved gain
as compared to dielectric cylinder. Another approach is to include directivity factors
in continuous current distribution of dipole array placed over a conducting cylinder
(Walsh 1951).

The ray theoretic methods such as geometrical theory of diffraction (GTD) and
uniform theory of diffraction (UTD) have been employed to analyze radiation
characteristics of slot and dipole antennas over convex conducting surfaces (Pathak
and Kouyoumjian 1974). The hybrid methods are preferred choice for antenna
analysis. The field components on the closed surface enclosing the antenna are
computed by numerical technique-based methods such as method of moments
(MoM) and the scattered fields from the platform in far-field region are determined
using high-frequency techniques such as UTD (He et al. 2009). The reciprocity
theorem in conjunction with MoM is also applied to evaluate radiated fields from
the microstrip patch antenna on cylindrical platforms (Jin et al. 1997).

A dipole antenna placed on a surface, whether conducting or non-conducting
radiates differently, as compared to its free-space radiation pattern. In this book, the
radiation characteristics of a dipole antenna/array in the vicinity of cylindrical
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surface are presented. The radiation patterns are computed for different distance
between the cylinder and the dipole antenna.

3.3.1 Conducting Surface

In this subsection, the surface of cylinder over which dipole antenna is placed is
taken as conducting. The radiation pattern of a single dipole in the presence of
conducting cylinder is computed. This is followed by the radiation pattern of an
array of two dipoles placed diametrically opposite around the cylinder. As a next
case, two more dipoles are added to the configuration so as to form a square, outside
the cylinder. The computed results are validated against those reported in open
domain.

When a vertical dipole is placed over a conducting cylinder, the radiated field is
given by (Carter 1943)

Et
h ¼ V0 sin hþ 2 sin h

X1
n¼1

jnVn cosðn/Þ ð49Þ

where Et
h is the electric field in θ direction, ϕ is the azimuth angle,

Vn ¼ Jn
2pb sin/

k

� �
� Jn

2pa sin h
k

� �
Un

2pa sin h
k

� �� ��1
( )

Un
2pb sin/

k

� �

ð50Þ

Un is nth order Hankel function of second kind, Jn is nth order Bessel function of
first kind, b is the radius of the dipole’s radiation circle, and a is the radius of the
cylinder.

For an array of dipoles placed over a conducting cylinder, the radiated field is
expressed as (Carter 1943)

Two dipoles:

Et
h ¼ 2 sin h ½V0 cosð0Þþ 2V2 cosð2/Þþ 2V4 cosð4/Þþ . . .:� ð51aÞ

Four dipoles:

Et
h ¼ 4 sin h ½V0 cosð0Þþ 2V4 cosð4/Þþ 2V8 cosð8/Þþ . . .:� ð51bÞ

Six dipoles:

Et
h ¼ 6 sin h ½V0 cosð0Þþ 2V6 cosð6/Þþ 2V12 cosð12/Þþ . . .:� ð51cÞ
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Eight dipoles:

Et
h ¼ 8 sin h ½V0 cosð0Þþ 2V8 cosð8/Þþ 2V16 cosð16/Þþ . . .:� ð51dÞ

Likewise, for an array of N dipoles placed on a conducting cylinder,

Et
h ¼ N sin h V0 þ 2

X1
n¼1

VNn cosðNn/Þ
" #

ð51eÞ

The radiation pattern of a dipole antenna over conducting cylinder is computed
using the expression given above. The results are validated against the reported
ones in (Carter 1943). Figure 5 shows the radiation pattern of a single vertical
dipole placed at a distance of 0.24 λ from the cylinder. The radius of conducting
cylinder is taken as 0.16 λ. It may be observed that the pattern shows depression in
ϕ = π direction, in the shadow area.

In next case, one more dipole is added in diametrically opposite position to the
previous dipole over a cylinder. The two dipoles are assumed to be in phase. Here,
the radius of the cylinder is taken as 0.383 λ. The distance of dipole from the axis of
the cylinder is 0.878 λ. Figure 6 shows the radiation pattern of the configuration.
The results are validated against those in (Carter 1943). In Fig. 7, the radiation
pattern of four dipoles placed around the cylinder is shown. The parameters are kept
same as in Fig. 6. Figure 8 presents the radiation pattern of six dipoles placed
around the conducting cylinder. It can be observed that when the number of dipoles
is more, the significance of conducting platform is lost. The radiation pattern of
dipole array remains same with and without the cylindrical platform. This may not
be the case for non-conducting surface.

3.3.2 Dielectric Surface

When the surface over which dipole antenna is mounted is non-conducting, its
effect on radiation pattern of antenna is different.

For a dielectric cylinder, the radiated field of dipole antenna in far zone is
expressed as (Tsandoulas 1968)

Et
h ¼

�Icdz
8p

þ xl cos h
eikR

B
�
X1
m¼0

ð2� d0mÞ cosm/ e�iððmþ 1Þ=2pÞ

�
X1
m¼1

Jmðkob cos hÞþ Hð1Þ
m ðkob cos hÞNmðko; hÞ
JmðkoasÞDmðko; hÞ

ð52Þ

where δ0m is the Kronecker delta, Icdz is the current element along dipole antenna,
x ¼ 2 p f , μ is the permeability of the cylindrical surface (*μo), and
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s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w� sin2ðhÞ

q
w ¼ ðer þ jr=xereoÞ

ð53Þ

εr is the relative permittivity of the cylindrical surface, εo is the permittivity of free
space, σ is the conductivity of the cylinder of radius a, b is the distance of dipole
antenna from the cylinder axis, B is the distance between the centre of cylinder

(origin) and the observation point, Hð1Þ
m is mth order Hankel function of first kind,

Jm is mth order Bessel function, with

Nmðko; hÞ ¼ k2o cos
2 hðw� sin2 hÞ3=2JmðkoasÞJ 0

mðkoasÞ
� wJmðkoa cos hÞHð1Þ0
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0
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� k2o cos
4 hðw� sin2 hÞ J

0
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h i2
Jmðkoa cos hÞHð1Þ0
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ð54Þ

Dm ðko; hÞ ¼JmðkoasÞ½k2o cos4 hðw� sin2 hÞ½Hð1Þ0
m ðkoa cos hÞ�2

� m2 sin2 h
a2

ðw� 1Þ2½Hð1Þ
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ð55Þ

(b) Reference result [1](a) Computed result  

Fig. 5 Electric field pattern of a vertical dipole placed over a conducting cylinder; a = 0.16 λ,
b = 0.24 λ. a Computed result. b Reference result (Carter 1943)
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In this subsection the radiation characteristics of dipole antenna placed close to
dielectric cylinder. The computed results are validated against those reported in
(Tsandoulas 1968). Figure 9 shows the far-field pattern of dipole antenna placed
near the cylinder (koa = 0.7, kob = 1.4, σ = 0.3 S/m, εr = 9). In Fig. 10, the dipole
is moved closer (koa = 0.7, kob = 1, σ = 0.9 S/m, εr = 9) to the cylinder. It is
apparent that the lobe in forward direction reduces, while back lobe increases in
size. Next, the dipole is placed just over the cylinder (Fig. 11). It may be seen that
as dipole is moved close to the cylinder, the amplitude of the lobe in backward
direction (ϕ = π) increases at the expense of lobe amplitude in forward direction
(ϕ = 0).

It may be inferred that the dielectric cylinders near dipole antennas can be used
as means of controlling the radiation from the antenna in forward and backward
directions.

4 Probe Suppression in Spatially Arranged Phased Array

The analysis of non-planar antenna arrays is not straightforward as in planar arrays.
Since the surface normal at each antenna element is different owing to the curvature
effect, it requires transformation of antenna pattern from local coordinate system to
global coordinate system. This is done using Euler’s transformation and hence the
elevation and azimuth angles corresponding to each antenna element are extracted.
The modified improved LMS algorithm (Singh and Jha 2015) is used for weight

(b) Reference result [1](a) Computed result
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Fig. 6 Electric field pattern of two vertical dipoles placed over a conducting cylinder; a = 0.383
λ, b = 0.878 λ. a Computed result. b Reference result (Carter 1943)
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Fig. 7 Electric field pattern
of four vertical dipoles placed
over a conducting cylinder;
a = 0.383 λ, b = 0.878 λ.
a Computed result.
b Reference result (Carter
1943)
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adaptation so as to determine the array pattern for a signal environment consisting
of multiple narrowband desired and probing radar sources. The mutual coupling
between antenna elements is taken into account.

The simulation results of adapted pattern for different signal environments are
presented in this section. Results are discussed for both microstrip patch and dipole
array. The ability to steer the beam towards the desired direction source, with
acceptable sidelobe (SLL) and minimal power transmitted in the probing direction
is demonstrated. Here an array of 16 antenna elements spatially arranged in a
cylindrical form. The operating frequency is 10 GHz. The antenna elements are
placed within 120° sector with uniform half-wavelength inter-element spacing. The
radius of the cylindrical array is taken as 5 λ (Fig. 3). The adapted pattern is
compared with the quiescent pattern for a given signal scenario. The green arrow
indicates the desired source and the red arrow represents the probing source.

4.1 Dipole Array

Figure 12 shows the adapted pattern of 16-element cylindrical dipole array, for one
desired signal and one probing source impinging array at (0°; 1) and (45°; 1400),
respectively. It can be seen that the array maintains the maximum gain towards the
desired direction. The probing source is suppressed by placing deep null towards it.

In Fig. 13, another signal environment consisting of one probing source (−15°;
1400) and one desired signal (0°; 1) is considered. It may be observed that in
adapted pattern, a deep null is placed in the probing direction and a mainlobe points
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Fig. 8 Electric field patterns of six vertical dipoles. a a = 0.383 λ (with cylinder), b = 0.878 λ.
b No cylinder
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in the desired signal direction. As a next case, signal scenario of two probing
sources (30°, 45°; 1000, 1000) and one desired signal (0°; 1) is considered. It is
apparent from Fig. 14 that deep nulls are placed at 30° and 45° with a distortionless
mainlobe towards the desired source.

Next the direction of probing is changed. Figure 15 presents the adapted and
quiescent patterns for two probing signals (−15°, −30°; 1000, 1000) and one de-
sired signal (0°; 1) impinging the array. It may be observed that the modified
improved LMS algorithm is efficient in catering the signal environment.

Fig. 9 Electric field pattern of a vertical dipole placed over a dielectric cylinder koa = 0.7,
koρo = 1.4, σ = 0.3 S/m, εr = 9. a Computed result. b Reference result (Tsandoulas 1968)
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Figure 16 presents the signal scenario of one desired signal (−10°; 1) and one
probing signal (−40°; 1400). In this case, the desired direction is steered to −10°. It
is apparent that the array efficiently maintains mainlobe towards the steered desired
signal direction with accurate null towards the probing source. Figure 17 shows

Fig. 10 Electric field pattern of a vertical dipole placed over a dielectric cylinder; koa = 0.7,
koρo = 1, σ = 0.9 S/m, εr = 9. a Computed result. b Reference result (Tsandoulas 1968)
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Fig. 11 Electric field pattern of a vertical dipole placed over a dielectric cylinder; koa = 0.7,
koρo = 0.7, σ = 1.7 S/m, εr = 9. a Computed result. b Reference result (Tsandoulas 1968)
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another case of one desired (−20°; 1) and two probing sources (30°, 45°; 1000,
1000). Sharp nulls are placed at both probing directions (30° and 45°) and a distinct
mainlobe at −20°.

4.2 Microstrip Patch Array

The element pattern for a microstrip patch antenna corresponding to two 90° phase
shifted feed points is given by (James et al. 1981)

anhðh; /Þ ¼ J2
p d
k

sin h
� �

� Jo
p d
k

sin h
� �� 	

cos/� j sin/ð Þ ð56Þ

an/ðh; /Þ ¼ J2
p d
k

sin h
� �

þ Jo
p d
k

sin h
� �� 	

cos h sin/� j cos/ð Þ ð57Þ

where J0(•) and J2(•) are zeroth and second-order Bessel functions of the first kind,
respectively. The radiation pattern of an individual element in a conformal array is
dissimilar to that of isolated element pattern. The element pattern differs for dif-
ferent conformal carriers, element position and polarization of the array element. As
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Fig. 12 Adapted beam pattern of 16-element spatially arranged cylindrical dipole array. One
desired signal (0°; 1) and one probing source (45°; 1400)
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Fig. 13 Adapted pattern of 16-element cylindrical dipole array; one desired signal (0°; 1) and one
probing source (−15°; 1400)
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Fig. 14 Adapted pattern of 16-element cylindrical dipole array; one desired signal (0°; 1) and two
probing sources (30°, 45°; 1000, 1000)
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Fig. 15 Adapted pattern of 16-element cylindrical dipole array; one desired signal (0°; 1) and two
probing sources (−15°, −30°; 1000, 1000)
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Fig. 16 Adapted pattern of 16-element cylindrical dipole array; one desired signal (−10°; 1) and
one probing source (−40°; 1400)
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Fig. 17 Adapted pattern of 16-element cylindrical dipole array; one desired signal (−20°; 1) and
two probing sources (30°, 45°; 1000, 1000)

Snapshots

0 200 400 600 800 1000 1200 1400 1600 1800 2000

O
ut

pu
t S

IN
R

 (d
B

)

-50

-40

-30

-20

-10

0

10

20

30

40

50

Modified Improved LMS
Standard LMS

Fig. 18 Output SINR of a 16-element cylindrical microstrip patch array; one desired signal (0°; 1)
and one probing source (10°, 1000)
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mentioned above, the normal to each antenna element on a conformal surface points
in different directions. In order to achieve the same direction for all element’s
normal, transformation of the coordinates is needed. The location of each array
element on the curved surface is defined in local coordinate system. Since the
element pattern is defined in the global coordinates only, a spatial rotation trans-
formation such as Euler rotation is used.

Figure 18 compares the performance of modified improved LMS algorithm with
that of standard LMS algorithm. The signal environment considered consists of one
desired (0°; 1) and one probing source (10°; 100). It may be observed that output
signal-to-interference-noise ratio (SINR) is higher in case of modified improved
LMS algorithm. Moreover the capability of the algorithm lies in multi-lobe
beamforming and probe suppression is far better than any form of LMS algorithm.
The antenna array along with this efficient adaptive algorithm caters efficiently to
any signal environment. The suppression capability of antenna array is demon-
strated by varying the direction of arrivals of the desired and probing sources.

In Fig. 19, the desired signal is assumed to arrive at (0°; 1) and one hostile
source probes at 10° with a power level of 1000. The adapted pattern shows the
efficient probe suppression by a 16-element spatially arranged cylindrical microstrip
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Fig. 19 Adapted pattern of 16-element cylindrical microstrip patch array; one desired signal (0°;
1) and one probing source (10°; 1000)
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patch array. Figure 20 shows the adapted pattern of 16-element cylindrical
microstrip patch array for one desired (0°; 1) and two probing sources (10°, 17°;
1000, 1000). Deep nulls (−29 dB; −56 dB) are placed towards the probing direc-
tions. The mainlobe remains undisturbed.

There are situations when multiple desired sources impinge the antenna array. In
such cases, array is expected to maintain mainlobes towards each of the desired
sources, with efficient probe suppression.

Figure 21 presents the case of two desired sources and one probing source. The
desired signals are incident at −20° and 20° with power level 1 and the probing
source at 0° with power level of 100. The generated adapted pattern shows the two
distortionless mainlobes towards each of the desired sources with a deep null
(−40 dB) towards the probing source.

Figures 22 and 23 present two different cases with two desired signals and one
probing signal. In Fig. 22, the desired signals impinge array at (20°, 40°; 1 each)
with one probing source (30°; 1000). In Fig. 23, the direction of arrival of probing
source is different (−20°; 1000). In both the figures, the array is capable to cater the
signal scenario by generating adapted pattern according to the impinging signals.
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Fig. 20 Adapted pattern of 16-element cylindrical microstrip array; one desired signal (0°; 1) and
two probing sources (10°, 17°; 1000, 1000)
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Fig. 21 Adapted pattern of 16-element cylindrical microstrip array; two desired signals (−20°,
20°; 1 each) and one probing source (0°; 100)
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Fig. 22 Adapted pattern of 16-element cylindrical microstrip array; two desired signals (20°, 40°;
1 each) and one probing source (30°; 1000)

30 Probe Suppression in Conformal Phased Array



Angle (Deg)
-80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80

Pa
tte

rn
 (d

B
)

-70

-60

-50

-40

-30

-20

-10

0
Adapted
Quiesent

Fig. 23 Adapted pattern of 16-element cylindrical microstrip array; two desired signals (20°, 40°;
1 each) and one probing source (−20°; 1000)
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Fig. 24 Adapted pattern of 16-element cylindrical microstrip array; two desired signal (0°, −30°;
1 each) and three probing sources (15°, 22°, 30°; 100, 900, 1200)
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As a next case the number of probing sources is taken as three. Two desired
signals (0°, −30°; 1 each) with three probing signals (15°, 22°, 30°; 100, 900, 1200)
are assumed to impinge the array. The adapted pattern (Fig. 24) shows the main-
lobes towards both the desired signals with deep nulls towards each of the probing
sources.

Figure 25 shows the adapted pattern of 16-element cylindrical microstrip patch
array for three desired signals (0°, 20°, 40°; 1 each) and one probing source (−24°;
500). The algorithm sufficiently maintains the mainlobes towards each desired
directions with deep null (−32 dB) placed towards probing source.

Next keeping three desired signals (0°, 20°, 40°; 1 each), the number of probing
sources is increased to two (−10°, −17°; 500, 200). Figure 26 shows the adapted
and the quiescent patterns of the scenario considered. It may be seen that the
adapted pattern maintains the mainlobes towards each of the desired directions and
simultaneously place accurate and deep null towards the probing directions.
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Fig. 25 Adapted pattern of 16-element cylindrical microstrip array; three desired signals (0°, 20°,
40°; 1 each) and one probing source (−24°; 500)
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5 Probe Suppression in Dipole Phased Array Mounted
on a Right Circular Cylinder

In this section, the simulation results of adapted pattern for different signal envi-
ronments are presented. Results are discussed for both conducting and dielectric
platform. The ability of dipole array to steer the beam towards the desired sources,
with acceptable sidelobe level (SLL) and minimal power transmitted in the probing
direction is demonstrated. Here, a linear array of 16 dipole antenna elements placed
over a right circular cylinder is considered. The operating frequency is 10 GHz. The
antenna elements are placed within 120° sector with uniform half-wavelength
inter-element spacing. The radius of the cylindrical array is taken as 5 λ. The mutual
coupling is taken into account. The adapted pattern is compared with the quiescent
pattern for a given signal scenario. The green arrow indicates the desired source and
the red arrow represents the probing source in the pattern.
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Fig. 26 Adapted pattern of 16-element cylindrical microstrip array; three desired signals (0°, 20°,
40°; 1 each) and two probing sources (−10°, −17°; 500, 200)
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Fig. 27 Adapted pattern of 16-element cylindrical dipole array; one desired signal (10°; 1) and
one probing source (46°; 1000)
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Fig. 28 Adapted pattern of 16-element cylindrical dipole array; one desired signal (0°; 1) and one
probing source (37°; 1000)
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5.1 Conducting Surface

As a first case, signal scenario of one desired and one probing source is considered
to impinge a 16-element dipole array placed over a conducting cylinder. In Fig. 27,
the adapted pattern is shown with and without mutual coupling effect. It is apparent
that the array is able to suppress efficiently the probing source even in the presence
of mutual coupling effect. In fact the suppression is more in the presence of mutual
coupling effect. This establishes the efficiency of modified improved LMS algo-
rithm. The mainlobe is maintained towards the steered direction (10°).

Figure 28 presents the adapted and quiescent patterns for one desired (0°; 1) and
one probing source (37°; 1000). It may be seen that adapted pattern maintains
distortion less mainlobe and accurate null towards the probing source. In Fig. 29,
two probing sources are assumed at −28° and 28° each with a power level of 1000.
The desired source is at 0° with a power level of 1. It may be observed from adapted
pattern that deep nulls are placed towards each probing direction and mainlobe is
maintained towards the desired direction.

As a next case, two desired signals (−40°, 50°; 1 each) and one probing source
(20°; 1000) is considered. In adapted pattern mainlobes are maintained towards

Fig. 29 Adapted pattern of 16-element cylindrical dipole array; one desired signal (0°; 1) and two
probing sources (−28°, 28°; 1000 each)
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Fig. 31 Adapted pattern of 16-element cylindrical dipole array; two desired signals (0°, 40°; 1
each) and two probing sources (−30°, −20°; 1000 each)
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Fig. 30 Adapted pattern of 16-element cylindrical dipole array; two desired signals (−40°, 50°; 1
each) and one probing source (20°; 1000)
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each of the desired source and probing source is actively suppressed (Fig. 30).
Next, the number of probing sources is increased.

Figure 31 shows the adapted pattern of 16-element cylindrical dipole array for
two desired sources (0°, 40°; 1 each) and two probing sources (−30°, −20°; 1000
each). The dipole array maintains its steering capability with distortionless main-
lobes towards each of the desired sources with nulls accurately placed towards the
probing directions.

This demonstrates the capability of modified improved LMS algorithm in
catering an arbitrary signal scenario even when platform and mutual coupling effect
is taken into account.

5.2 Dielectric Surface

If the surface over which antenna array is placed is non-conducting, then the
radiation characteristics of antenna array gets affected depending on the distance of
antenna from the surface and material properties of the platform. This is due to the
constructive or destructive interference between the waves travelling from antenna

Fig. 32 Adapted pattern of 16-element cylindrical dipole array; one desired signal (10°; 1) and
one probing source (40°; 1000)
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to the platform surface and vice versa. This results in the modification of forward
and backward lobes in the radiation pattern of the antenna mounted on a
non-conducting surface.

In this section, the simulation results of adapted and quiescent patterns of dipole
array placed over a dielectric right circular cylinder (εr = 1.2) are presented. The
mutual coupling is included in the calculations. The probe suppression capability of
dipole array is demonstrated for multiple signal environments. It is assumed that the
direction of arrival of impinging signals is known a priori.

Figure 32 shows the adapted pattern of a 16-element cylindrical dipole array, for
one desired signal and one probing source impinging array at (10°; 1) and (40°;
1000), respectively. It may be seen that the array maintains maximum gain towards
the desired direction and the probing source is suppressed by placing deep null
towards it.

Next, a signal environment consisting of one desired (0°; 1) and one probing
source (30°; 1000) is considered. Figure 33 shows the adapted pattern, with
mainlobe pointing in the desired direction. The probing source is suppressed effi-
ciently (−13 dB).

In Fig. 34 another signal scenario with one desired source (10°; 1) and two
probing sources (−30°, −50°; 1000 each) is shown. It is apparent that deep nulls are
placed at the probing direction without affecting the mainlobes.

Fig. 33 Adapted pattern of 16-element cylindrical dipole array; one desired signal (0°; 1) and one
probing source (30°; 1000)
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Fig. 34 Adapted pattern of a 16-element cylindrical dipole array; one desired signal (10°; 1) and
two probing sources (−30°, −50°, 1000 each)

Fig. 35 Adapted pattern of a 16-element cylindrical dipole array; two desired signals (−40°, 50°;
1 each) and one probing source (20°, 1000)
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Next the number of desired signals is increased to two. A signal environment of
two desired signals (−40°, 50°, 1 each) and one probing source (20°, 1000) is
considered. The adapted pattern in Fig. 35 shows deep null in the probing direction.
The mainlobes point in the desired signal directions without any distortion.

Figure 36 represents the signal scenario of two desired signals (0°, 40°; 1 each)
and two probing sources (−20°, −30°; 1000 each). It may be observed that the array
maintains mainlobes towards both the desired signal directions and deep nulls are
placed towards the probing directions.

One can infer that the adaptive nulling performance is well maintained by an
array for an arbitrary signal environment, even in the presence of non-conducting
platform and mutual coupling effect. This proves the efficacy of modified improved
LMS algorithm in the probe suppression in conformal dipole array in the presence
of mutual coupling and platform effect.

6 Conclusion

There is a mark difference in the radiation pattern of antenna array placed on a
planar and non-planar surface. The effect of platform and mutual coupling on the
radiation characteristics of dipole array placed over a right circular cylinder is taken
into account. A modified improved LMS algorithm is used to demonstrate the probe
suppression in conformal dipole array. The results for conducting and dielectric
cylinder are presented. The antenna elements are taken as Microstrip patch antenna

Fig. 36 Adapted pattern of a 16-element cylindrical dipole array; two desired signals (0°, 40°; 1
each) and two probing sources (−20°, −30°; 1000 each)
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and half-wavelength dipole antenna. The Euler transformation is used to calculate
the steering vector of the cylindrical array. The elevation and azimuth angles are
extracted from Euler’s rotation as per the location of antenna elements over the
cylindrical surface. These angles are used to calculate the radiation pattern of
antenna array. The quiescent and adapted patterns of cylindrical dipole array are
shown for different signal scenarios consisting of multiple desired and probing
sources. For each signal scenario, the adapted pattern maintains mainlobe towards
each of the desired sources with accurate and sufficiently deep nulls in the probing
directions. It is shown that the algorithm works for any arbitrary signal environment
even when platform effect and mutual coupling between the dipole antenna ele-
ments is taken into account.
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