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FOREWORD

The goal of this book is to present a discussion of the ideas arising from
the European Special Event (ESE) on the Integration of Phonetic Knowl-
edge in Speech Technology at Eurospeech 2001 in Aalborg. Where there
is discussion, there must be unresolved questions, doubts must exist, inte-
gration is not a fait accompliff . The different questions asked, methods
applied and goals pursued are often invoked to explain why two sciences
concerned with the same phenomenon – namely spoken language – do
not generate more collaborative actions. Shared terminology can also
divide rather than unite if meanings diverge. Yet for those who have ven-
tured to look into both camps, either by becoming scientifically Janus-
headed, or by practising cross-border communication, it is clear that each
community can gain a lot from knowledge of the other.

The issue of whether Speech and Language Technology can profiff t
from Linguistics is an old one, and there are a number of anecdotes from
the 1980s, particularly in connection with automatic speech recognition
which express decided opinions against involving Linguistics. The area
of Linguistics we address is Phonetics=Phonology – the sound structures
of spoken language. Whether or not formal models of sound structure
can be incorporated in Speech Technology, it is clear from the contribu-
tions to this volume that phonetic knowledge already permeates many
parts of it, though the extent to which this is the case may not be clear
to many who work in the field.

Since there are indications that Speech Technology is about to change
direction – some even speak of a change of paradigm – a renewal of interest
in the possible contributions of Phonetics to Speech Technology is in the air.

One could, of course, attribute the apparent shift in interest simply to
the Congress plan devised by the organisers – Paul Dalsgaard’s interest in
scientific integration is well documented. But one person’s interest still
needs communal acceptance. There was also Louis Pols’ choice of topic
for his keynote paper – not to mention the reception his address was
given – a fiff tting sequel to his keynote paper at International Congress
of Phonetic Sciences in San Francisco in 1999 and a clear symbolic bridge
between the Speech Technology and Phonetics communities, a bridge
which he also represents in persona, of course. Finally, there was the
response to the ESE itself. Even more encouraging than the lively reac-
tion to the call foff r contributions was the amount of interest that was
apparent in the numbers that participated in the symposium.



This volume contains the reworked and extended versions of the six
papers presented at the ESE (by Anton Batliner and Bernd Mobius –
jointly, Frédéric Bimbot, Julie Carson-Berndsen, Heidi Christensen,
Steven Greenberg (also discussant), and by Moisés Pastor) plus reflective
discussions of the issue from three of the invited discussants on the
symposium panel (Bill Ainsworth, Helmer Strik and Jan van Santen).
A chapter by the editors expresses their own thoughts on the matter,
brings together and comments on the other nine.

A sad loss to the Speech Community overshadows the otherwise
happy event and its published sequel. Just four months after Eurospeech
2001, Bill Ainsworth died, a terrible blow to his family and a great loss to
all his friends. It is to the memory of Bill that this book is dedicated.

Saarbrucken and Trondheim

vi Forewordii



WILLIAM J. BARRY�, WIM A. VAN DOMMELENy and
JACQUES KOREMAN

z,1

PHONETIC KNOWLEDGE IN SPEECH TECHNOLOGY
– AND PHONETIC KNOWLEDGE FROM SPEECH

TECHNOLOGY?

ABSTRACT. The contributions to this volume are considered within the frame-
work of the question: ‘‘What sort of phonetic knowledge is relevant to speech
technology?’’ This discussion throws light on the existing and the potential relation-
ship between speech technology and the phonetic sciences, the possibilities for
mutual gain and the need, ultimately, for researchers to emerge who combine the
interest and expertise needed in both areas.

KEYWORDS. Phonetic knowledge, speech synthesis, speech recognition

1. INTRODUCTION

Although speech recognition and speech synthesis started out as much
the territory of phoneticians and other linguists as of engineers, the
linguistic approach soon lost terrain, in recognition applications at least,
to (nonlinguistically orientated) engineers who were less concerned with
formal linguistic insights, treating the signal as a pattern just like any
other, and this with outstanding success. But the successes of engineering
approaches are seen to have limits, most clearly in the challenges of spon-
taneous speech recognition and expressive speech synthesis, and once
more the question arises whether the inclusion of additional linguistic,
and more specifically phonetic knowledge is warranted. Of course, it is
the degree of success so far which raises our sights to higher targets
and exposes the limitations of techniques which were devised for the tasks
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yDepartment of Language and Communication Studies, NTNU, Trondheim, Norway and
z
Institut fur Phonetik, Universitat des Saarlandes, Germany
1Although not an official organizer of the ESE nor an editor of this volume, Jacques Koreman
has been WJB’s discussion partner in matters that concern the symposium theme, and has, as
such, contributed directly to the discussion presented here.
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already (more or less) accomplished. With continuous (read or rehearsed)
speech recognition systems commercially available, the drastic drop in
performance found with spontaneous sps eech suggests that a ceiling may
have been reached with the current processing methods. Similarly, with
the intelligibility of speech synthesis systems no longer causing basic pro-
blems, the interest in and the calls for increased naturalness and expres-
sivity in speech synthesis have become stronger. Here too there exists
the realisation that the most successful approach to commercial synthesis,
namely (fiff xed or variable) speech unit concatenation, while impressively
natural within restricted domains, cannot provide the flexill bilityt ofo
expx ression together with the naturalness that is ultimately required. It
is therefore practically limited. Finally, from the research point of view,
i.e., in terms of learning how the production and perception of speech
works, it is not theoretically satisfyiff ng.

The call for the inclusion of phonetic knowledge, however, presup-
poses both that the required knowledge is available, and that it exists
in a form which is exploitable by the speech technology application.
The question whether it is correct to make that assumption can be
answered for both aspects with ‘‘partly’’, and the degree to which it is
correct varies with the application being considered. In other words, there
is certainly a lot of phonetic knowledge available which is not being used
and which is relevant to speech recognition or synthesis (Pols 1999), but
much of it does not exist in a form in which it can be used immediately.
But of course there is also a great deal about the phonetic structuring of
speech which is not understood, which could be of help to those speech
technologies, and which has come to the notice of phoneticians as a result
of contact to the fiff eld of speech technology. Thus, a simple answer to the
question in our sub-title is ‘‘yes’’.

Before expanding on this issue we consider the individual contribu-
tions to this volume in terms of the way they include phonetic knowledge
in the application they are presenting or considering. Alternatively, in the
case of the discussion papers we consider their stance with regard to the
potential integration of phonetic knowledge.

2. PHONETIC KNOWLEDGE IN THIS VOLUME

The six papers presented at the symposium comprise five which were
selected from among the abstracts submitted because they appeared to
promise studies that represent different approaches to the theme of inte-
grating phonetic knowledge in speech recognition or speech synthesis.
The sixth paper, by panel member Steve Greenberg, brings together
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empirical results and general discussion. The fiff nal form of the papers
does in fact reveal a diverse understanding of that theme. Four of them
are reports of experimental applications. But Batliner & Mobius present
a discussion of principle rather than details of a practical application
(though they point to an example instantiation reported elsewhere),
and Greenberg presents both a discussion of principle and concrete
analysis examples from his own work. Among the discussants too, there
was a healthy spread of opinion on the issue. The reworking and expan-
sion of the papers and the post-hoc formulation by the panel members of
the opinions developed during the ESE discussion session and presented
in this volume underline the different perspectives. The following review
of the chapters does not strictly separate the papers presented at the sym-
posium from the panel members’ discussions, but rather progresses from
the purely empirical analyses to the theoretical discussions, removing the
line between speakers and discussants.

Two of the empirically orientated papers were concerned with deco-
ding the linguistic structure from the acoustic signal (Carson-Berndsen
& Walsh; Christensen et al.) and two addressed the question of
relating the decoded structure to representations in the lexicon, namely
the problem of multiple pronunciations (Gravier et al.; Pastor &
Casacuberta).

In their ‘‘Phonetic Time Maps’’, Julie Carson-Berndsen & Michael
Walsh indicate how ASR can be made more robust by implementing
phonetic and phonological constraints in a computational linguistic
speech recognition model. The constraints can be used to guide the
interpretation of multilinear event representations and to provide top-
down predictions. The Time Mapa Model contains representations of
the phonotactic constraints in a language. A special feature of the TimeTT
Mapa Model is that the phonotactic automata are defiff ned with respect
to the syllall ble domain. Phonetic Time Maps model phonetic details like
the realisation of plosives (e.g., with=without release) or neutral vowels
(e.g., elision before a nasal). The knowledge invoked in this approach
is, in the first instance, of the type derived from traditionally established
observations about allophonic variants and post-lexical modifications to
the phonetic string that are captured in context-sensitive statements on
assimilation and elision processes. What is particularly interesting about
their processing framework is that it can operate both at the level of
categorical, constraint-based representations of this knowledge and with
a quantitative, probabilistic input to determine the ranking of such
constraints.

Phonetic Knowledge – Speech Technology 3



Heidi Christensen, Børge Lindberg & Ove Andersen describe an ASR
system for which the central issue is the exploration of multi-source
recognition, which they term ‘‘heterogeneous processing’’. That is, the
extraction of complementary phonetic information in different proces-
sing streams to provide more robust decoding. So-called ‘‘Expert MLPs’’
supplement the core (fullband; multiband) MLP systems; these are a
‘‘voicinii g expert’’ and a ‘‘broad class expert’’. The phonetic insight behind
this approach is similar to that which motivates Carson-Berndsen &
Walsh, namely the contextually determined change in the segmental
identity of an underlying phonetic string. It also rests on the fact that a
coarser definition of a segment can be more helpful for lexicon access
than an incorrect decision at the phonemic level. In addition it appeals
explicitly to parallels with human processing, which has recourse to dif-
ferent temporal and frequency granularities in order to cope with signal
degradation.

There is no top-down component in the system other than the choice
of ‘‘expert’’; the whole process is data-driven. A number of other experts
could have been chosen, but the two ‘‘experts’’ that were defined are
plausible candidates in that the phonological voiced-voiceless opposition
is extremely varied in its phonetic realisation, and changes to the phonetic
properties of phonemic categories often result in shifts within the same
broad class. It is presumably in this sense that the experts are seen as
complementary to the stem system. In common with all stochastically
orientated models, of course, the broad-class decisions and the voiced-
voiceless decisions are as dependent on global probabilities as the pho-
neme decisions made by the stem system. It has no means of specifyff ing
the different contextual factors that are known to influence the changes,
though it might be argued that this is catered for in the 7-frame
( � 100ms) time base used for training.

Guillaume Gravier, François Yvon, Bruno Jacob & Frecc ´déric Bimbot
model contextual constraints on the phonetic forms of words at the
search level to limit the search space to permissible pronunciation
sequences. Using existing French lexicon resources containing pronunci-
ation variants, they derive morpho-syntactically and phonologically
context-sensitive rules to predict liaison, mute-e deletion and liquid
consonant truncation.

A slight improvement in performance is found, a success in the light of
the reduced search space that the approach offers. More interesting than
this modest applicational success within the frame of this volume is, how-
ever, the concluding discussion of possible reasons why the results were
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not more convincing. It highlights the interactions between phonetic fac-
tors (production task and speaking style), phonetic modelling complexity,
the lexicon resource and the constraint defiff nition.

Moisés Pastor & Francisco Casacuberta derive word-pronunciation
variants using stochastic finite state automata to relate the phoneme out-
put of a recognizer to the canonical pronunciation. Pronunciation alter-
natives are chosen on the basis of three diffeff rent criteria: number of
pronunciations, cumulative percentage, and threshold percentage. The
results support the viability of the threshold-percentage criterion. Rather
than theoretically discussing the possible use of phonetic knowledge in
speech recognition, the authors experimentally show that pronunciation
modeling should take into account articulatory reality. Whereas canoni-
cal models fail to do justice to the strong pronunciation variation due to
deletions, assimilations and reductions, etc., modeling of frequently
occurring pronunciation variants can (as also found by others) lead to
improved recognition rates. In terms of the added value from this result,
either for or from phonetic knowledge, the study confiff rms that multiple
use of the same word will result in a variety of forms, and that the more a
word is used, the more likely it will be to deviate from the canonical form.

The four contributions discussed so far all take ‘‘phonetic knowledge’’
at the general level of contextually based phonetic variation into con-
sideration, but they vary considerably in the degree to which differen-
tiated phonetic observations are or can be included. Also, they are all
primarily and explicitly involved with the automatic recognition process,
although contextually differentiated word forms may be one of the cru-
cial aspects, so far neglected, for achieving more natural speech synthesis.

Coming now to the two more discussion-orientated and reflective of
the six papers, Anton Batliner & Bernd Mobius address the question of
knowledge integration in both recognition and synthesis. They are
specifically concerned with the different demands placed on prosodidd c
knowledge in automatic speech understandd dindd g (ASU) and text-to-speech
synthesis (TTS). They introduce the distinction between phonetic-
phonological knowledge and phonetic-phonological models and argue
for the use of prosodic knowledge rather than prosodic models within
ASU. Their standpoint is that models are an abstraction from phonetic
reality and therefore introduce a quantisation error into the relationship
between the phonetic form and the syntactic or semantic function.
Rather than using subtle theoretical concepts, clear and stable prosodic
markers need to be identififf ed in order to defiff ne phrase boundaries and
intonationally (and thus also informationally) important elements.

Phonetic Knowledge – Speech Technology 5



For synthesis, phonetically detailed prosodic events need to be gener-
ated (such as timing of tonal peaks in accented words dependent on con-
sonant features, number of syllables, etc.), but though these events are
clearly functional in demarcative, sentence-modal and information-
structural terms, there seems to be no way of circumventing the inter-
mediate phonological representation. Different ideologies behind these
representations are also seen as a problem, as is the relationship between
text and information- or discourse-structure which determines the pros-
odic form. With regard to a unififf ed solution for intonation modeling in
ASU and TTS, which is seen as ultimately desirable, the authors conclude
that a common basis is not yet in sight. However, they do go on to discuss
the sort of activities that are necessary in the phonetics and speech-
technology community to move towards this goal.

In a more generally orientated discussion paper, Steve Greenberg dis-
cusses the fundamental importance of the two-way relationship between
speech science and technology, i.e., of melding phonetic insight with
speech technology to improve both the applications and the basic science.
He sees the study of the large, naturally produced speech databases used
in speech technology as a way to correct the largely unrealistic picture of
speech and language projected by traditional phonetic and linguistic
research, which is based largely on small-scale, carefully controlled and
read material. In other words, speech and language science can and will
improve. But he also sees that the successes in speech technology
applications rest, in part, on imperfect scientififf c foundations, and that
increasing demands, driven by the successes so far, are uncovering the
limitations.

Greenberg illustrates this conviction with analyses of the Switchboard
spontaneous speech database which uncover systematic relations between
the prosodic-phonological category of stress accent and acoustic phonetic
properties like duration and amplitude. The analysis results are presented
both as a relationship of quantitative-phonetic properties to phonological
categories, i.e., in terms of enhanced scientififf c insights, and as technolo-
gically exploitable facts. He presents the dramatic effect of stress-accent
differences on the recognition performance (in terms of deleted words)
of eight different recognition systems. Other relationships which are
shown are those between word error rate and syllable structure on the
one hand, and between stress accent and vowel identity on the other,
which can also be of applicational importance. Importantly, within the
framework of this volume, Greenberg illustrates both the gains in
phonetic knowledge that come from asking phonetic questions of large
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databases – the relationships he uncovers are by no means predictable
from current phonetic or phonological theory – and the vital role that
the careful phonetic labelling of such databases plays in that process.

Two of the panel members (Jan van Santen and Helmer Strik) take the
fundamentally separate worlds of Speech Technology and Phonetics as
their point of departure, van Santen concentrating on the implications
for speech synthesis, while Strik’s discussion is implicitly directed towards
speech recognition.

Van Santen presents a relatively optimistic picture of the potential for
integrating phonetic knowledge in speech synthesis, particularly with
respect to making text-to-speech domain independent, even though there
is little evidence of real cross-fertilization to date. On the contrary, devel-
opments in speech synthesis technology over the decades indicate a
steady divergence from the level of phonetic theory: rule based methods
gave way to fixed inventory concatenative techniques, and these appear
to be in the process of being superceded by large-corpus based, vari-
able-unit TTS; i.e., with apparently less emphasis on phonetic knowledge.
However, linguistics may provide the type of knowledge that is needed to
handle unseen unit types, which are still a problem in concatenative sys-
tems. This is illustrated by van Santen with reference to the different parts
of the Bell Labs text-to-speech system that have been informed by pho-
netic knowledge: text analysis (computing phonemes; prosodic tags); dur-
ation modelling; intonation modelling; signal processing (special
coarticulatory facts; segment lengthening details, etc.). He identififf es the
types of phonetic knowledge as: speech production=perception studies;
architectural design; language dependent details (phonotactics, coarticu-
lation, etc.); parameterized mathematical models.

One area in which van Santen particularly sees the need for phonetic
support is in the perceptual evaluation of concatenation and signal
manipulation techniques, e.g., thresholds for spectral and F0 discontinu-
ities; subsegmental timing; vowel reduction; JND’s for pitch contours.
But there is also a clear knowledge defiff cit in the multidimensional mod-
elling of prosodic features, particularly in relation to the definition of the
properties covarying in emotional speech. Like others, he sees the poten-
tial for a phonetic contribution in a modififf ed paradigm for phonetic
research, in the development of a bridging field for research between pho-
netics and speech technology which he terms compm utational phonetics.

Helmer Strik has a rather less optimistic expectation for bringing the
two different worlds of Speech Technology and Phonetics together. As
negative examples of potentially useful, but in practice unusable phonetic
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knowledge, he takes segment duration and lexical stress to show the dif-
ference between quantitatively supported insights and computationally
usable analytic data. More positively, he shows the possibility of a
phonetically oriented point of departure in pronunciation variation mod-
elling: Rule knowledge is used, but the essential probabilities have to be
derived from the data. This underlines his view that the existing phonetic
knowledge is not complete and, above all, that it needs to be presented in
probabilistic terms. As further illustration of the incompleteness of pho-
netic, and more generally linguistic knowledge he points out that pros-
odic models are rarely used in speech recognition, among other things
because of the almost exclusive focus on F0, and that language models
are based on written rather than spoken language. His conclusion is that
using phonetic=linguistic knowledge in Speech Technology can be usefuff l
– improvement at the signal-processing level, for example, has
been achieved due to knowledge about human auditory perception – but
he clearly sees its use restricted to achieving a last few percent
improvement.

Bill Ainsworth’s discussion takes a long-term view of the Speech Tech-
nology scene, registering the divergence over the decades of speech tech-
nology methodology from the phonetic foundation, which focused on the
facts of production and perception. To underline this he points out that
hidden Markov models, the dominant approach in ASR, are very unrea-
listic models of speech production. Despite the positive point made by
Strik (see above), a neglected aspect of speech science knowledge in terms
of speech technology exploitation is the human auditory system, though
it is partly modeled in modern ASR (multi-layer perceptrons; multi-band
processing). Fundamental research into the physiology and neuro-anat-
omy of hearing has progressed greatly in recent years without its poten-
tial for speech signal processing having been exploited. To integrate
phonetic knowledge in Speech Technology we need to base recognition
and synthesis on realistic models of audition and speech production.
Alone among the contributors he stresses the need to develop new math-
ematical models – though he does not claim to know what form they are
likely to take – to cope, e.g. with the crucial fact that the underlyl ing con-
trol gestures in speech production overlap.

3. QUO VADIS PHONETIC KNOWLEDGE

The contributions to this volume can be viewed both as a reflection of
existing limits to the integration of phonetic knowledge in speech
technology applications and as pointers towards ways in which more
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knowledge can be of use in the future. We would like to bring those poin-
ters together to a more general statement, and to give the reader a back-
drop against which to consider the message of the individual
contributions.

In his San Francisco ICPhS XIV keynote address, Louis Pols (1999)
also addressed the question of Phonetics being of use to Speech Tech-
nology and vice versa. He took the difference between human and
machine decoding as a point of departure, not because machine recog-
nition should orientate itself in terms of processing principles on human
recognition, but merely because it highlighted the potential for improve-
ment. Imitation of human functionality, not duplication of human pro-
cessing should be the aim. Understanding the limitations of the
machine system and what makes it less ‘‘flexible, robust and efficient’’
(p. 9) than humans might contribute to improvement of the system.
Within the present volume, Ainsworth is most explicit in taking this line
of argument and pointing the finger at the Hidden Markov approach as
an example of very powerful modelling which diverges fundamentally
from the functionality of human speech production (and, one should
add, of speech perception). None of the authors points the fiff nger at con-
catenative synthesis as being perhaps even furtff her removed from tff hat
functionality, lacking, as it does, the basic independence of the source
from the fiff lter characteristics of the system. Without that independence,
naturally expressive synthesis is practically impossible. Thus, the message
would appear to be that the courage to backtrack and reassess is neces-
sary in both the main areas of speech technology. Pursuing established
and hitherto very successful approaches might just be leading into a
cul-de-sac.

Understanding what makes human speech decoding flexible, robust
and effiff cient is, in broadest terms, psycholinguistic knowledge, part of
which is more strictly phonetic knowledge. But that knowledge is cer-
tainly not normally couched in terms that can be directly integrated into
automatic speech recognition, as many people in the past, including sev-
eral in this volume, have pointed out. For speech technology and pho-
netics to have direct mutual benefit from each other, comparable data
and comparable data representation are necessary. Viewing this from
the speech technology vantage, Roger Moore (1995) used the term ‘‘com-
putational phonetics’’ (cf. also van Santen in this volume), but a common
data representation is perhaps an illusory aim. For one thing, even within
speech technology, many different forms of data representation are
required, depending on the task at hand. As Pols (1999, p.9) points
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out, average formant values for vowels are of no use for vowel recog-
nition in different contexts though they may be suffiff cient for formant
synthesis. One might add that for building a diphone synthesis system
not even vowel formant values are necessary, merely the knowledge that
the quality of a vowel changes systematically along its time course as a
product of local context, making the diphone a sensible building block.

This differentiation should highlight the difference between knowl-
edge in the form of an insighii t into a phenomenon, the quantitative sps eci-
ficationff of that phenomenon (which may have led to the insight), and the
formaff t (e.g., average values, probability density functions or CART-
trees) in which the quantitative data can be used for a particular appli-
cation.

What is presumably meant by mutual benefit to the two different dis-
ciplines is (re)presentation in terms of the other discipline’s problems,
questions and aims. A phonetician always looks at data in terms of trying
to develop an explanatory model for a human’s ability to produce or per-
ceive speech. However, she=he cannot be expected to deliver analysis
results in the form required e.g. for a particular recognition algorithm
or a particular synthesis system. This would be equivalent to expecting
a speech technology engineer to ask phonetic questions of a database
to gain his=her own insights. In fact, if the results are a new insight which
could be important for speech technology, there is possibly no ready form
of representation available; its exploitation might well require a new algo-
rithmic approach. What can be expected, however, is that the analysis is
carried out on data that is relevanll t for a particular application, and that
the observation is at a level of delicacyll that is relevant foff r the task. Find-
ing an effect e.g. of a particular contextual factor, when the speech
material has been carefully controlled and all possible confounding fac-
tors excluded, will not generalize to any realistic ASR task. Finding a
robust effect in a large continuous-speech database is something else,
however, and there should then also be an interest to communicate
the implications of the observation in a manner which members of both
communities can understand.

Communicating, on the one hand, what phenomena are clearly func-
tionally important, and, on the other hand, saying how they should be
dealt with in a speech technology application are two very different
things. While the linguist is implicated in the former task, we suggest that
it is the task of the speech technology scientist to undertake the latter. An
example of the former is the well established simultaneous global and
local importance of duration (cf. Pols 1999, p. 12). Within any given
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tempo (varying locally within a global frame) there are globally calcu-
lable durational differences between phonemically long and short seg-
ments. In many languages, there are locally determined allophonically
longer and shorter variants and local durational increases related to
accentuation (which in turn is related to information structure). Finally,
there is the local phrasal function of fiff nal lengthening. With regard to
dealing with such functionally important variation within ASR, these
insights present a strong challenge because they certainly cannot be
exploited within present-day stochastical methods, dependent as they
are on global probabilities. However, their functional and communicative
importance has to be understood and accepted otherwise the challenge
will not be recognized.

What emerges very clearly from this and other discussions is the need to
understand both sides of the problem. Viewed within the present
structures of science, the need for interdisciplinary interest and cross-disci-
plinary activities is undeniable. The greater access phonetically trained
researchershave to thedatabases and tools used inmainline technologyappli-
cations, the more likely it is that quantitative answers to phonetic questions
can be presented in a way which can be useful for speech technology applica-
tions. Conversely, speech technology engineers will be increasingly prepared
to look for innovative processing solutions, the more contact they have with
quantitatively supported statements about the complex relationships
between the relatively simple signal parameters (duration, intensity, fre-
quency and spectral energy distribution, and their derivatives) and the com-
municative functions they are trying to decode (ASR) or encode (synthesis).
What is certainly not to be expected as a rule at present is the phoneticianwho
can develop new processing algorithms or the speech technology engineer
who can ask new phonetic questions of a speech database.

However, a certain indication of the developing contact in the two
areas of science can be gained from looking at the change in phonetically
orientated contributions to Eurospeech conferences during the twelve
years from Eurospeech I in Paris, 1989 to Eurospeech Scandinavia in
Aalborg 2001. Although weaker than the growth in purely technology-
orientated papers, the papers dealing with phonetic questions or integrat-
ing phonetics in technological applications grew by a very substantial
45% from 93 to 135. Ultimately, as a product of this increasing contact
between the two disciplines more exemplars of the currently rare hybrid
scientist should appear: the ‘‘linguist speech-technology engineer’’ and
the ‘‘speech-technology linguist’’, or to borrow Roger Moore’s and Jan
van Santen’s term, the computational phonetician.
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Ultimately, progress towards and in interdisciplinary research, like
other human interactions, is the product of the individuals involved.
They must be interested and committed. But we echo van Santen’s
comment (this volume) that changes are sociologically determined, and
a framework for contact and interaction is needed. A symposium and a
published discussion are a fiff rst step in the right direction, inter-
departmental courses and inter-disciplinary degrees are a further goal.
However, any change of socio-scientific climate must also be triggered
and established by individuals.
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CAN PHONETIC KNOWLEDGE BE USED TO
IMPROVE THE PERFORMANCE OF SPEECH

RECOGNISERS AND SYNTHESISERS?

ABSTRACT. A chronological survey of the development of machine recognition
of speech is contrasted with the beginnings of speech synthesis, and the
advantages and disadvantages of the different systems and approaches as well as
their changing degrees of dependency on phonetic knowledge are sketched. The
unsolved fundamental problem of concatenation quality in present-day synthesis
is discussed and a knowledge based solution mooted which can be projo ected onto
recognition: A mathematical model of the relationship between temporally
overlapping underlying articulatory gestures and the resulting surface acoustic
signal.

KEYWORDS. speech synthesis, speech recognition, concatenation, articulatory
gestures

1. INTRODUCTION

Phonetic knowledge can be defiff ned as knowledge derived from studying
speech production and perception and the analysis of speech signals.
Early speech recognition devices attempted to exploit such phonetic
knowledge as was available at the time. Davis et al. (1952) built a device
to discriminate between spoken digits which filtered the speech signal into
the fiff rst and higher formant frequency bands then counted the zero-cross-
ings in each band; Olson and Belar (1956) used a bank of filters to pro-
duce a crude spectrogram, similar to the ‘visible speech’ analyses of
Potter et al. (1947); and Wiren and Stubbs (1956) attempted to detect
acoustic correlates of the distinctive features of Jakobson et al. (1952).
Unfortunately none of these devices produced acceptable results.

Speech synthesis based on phonetic knowledge was more successful. A
series of perception experiments at the Haskins Laboratories (Liberman
et al., 1952; 1954; 1956; 1958) established the basic relationships between
the acoustic structure of speech sounds and their perception (Liberman
et al., 1967). The results of these, and other, experiments led Holmes
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et al. (1964) to develop a rule-based phoneme-to-speech synthesis system,
which produced intelligible, if not completely natural sounding, speech.
Context-dependent pronunciation rules (orthographic text to phonetic
symbols) were later added to produce the fiff rst text-to-speech systems
(e.g. Ainsworth, 1973). Refinements to this basic structure led to the
MITalk (Allen et al., 1987) and commercial systems such as DECtalk.

2. AUTOMATIC SPEECH RECOGNITION

The subsequent history of automatic speech recognition up to the mid
1980s has been reviewed by Ainsworth (1988). First pattern recognition
techniques were investigated (Forgie and Forgie, 1959; Denes and Math-
ews, 1960) employing normalisation to reduce the inherent variability of
speech signals. Artificial neural networks which attempted to simulate the
pattern recognition abilities of humans (Nelson et al., 1967) were also
applied to speech signals during this period.

A concentrated effort to employ not only phonetic but also linguistic
knowledge was made in the 1970s (see Klatt, 1977 for a review). One of
the most successful projects which developed a technique for integrating
different sources of knowledge was the Dragon system of Baker (1975).

In parallel with this investigation of large vocabulary systems, isolated
word recognisers based on dynamic programming (Velichko and Zagor-
uyko, 1970; Sakoe and Chiba, 1978) were developed. This non-linear time
normalisation plus pattern recognition, dynamic time warping (DTW),
gave good results without the use of phonetic knowledge. DTW recogni-
sers were shown to be usefuff l for smaff ll vocabulary, speaker dependent,
isolated word recognition but could not be generalised to large vocabu-
lary, speaker independent, continuous speech recognition.

3. STATISTICAL SPEECH RECOGNITION

The use of algorithms based on stochastic models, using speech databases
but not explicit phonetic knowledge, was investigated by Jelinek (1976) and
these gave encouraging results. A system based on hidden Markov models
(HMMs) was developed by Levinson et al. (1983) which confiff rmed this. In
many ways HMM recognisers are complementary to DTW recognisers,
giving them advantages which have led to their adoption in most current
systems. Whereas DTW recognisers are computationally expensive during
recognition, HMM recognisers are computationally expensive to train,
which is acceptable, but effiff cient for recognition. They can also be used
for speaker independent, large vocabulary recognition.
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The theoretical disadvantage of HMM recognisers is that they are
unrealistic models of speech production. They model speech as a
sequence of static acoustic elements whereas speech is produced by a
set of overlapping dynamic gestures. The next gesture begins before
the previous one has ended. This is incorporated into HMM recognisers
by employing context-dependent sub-word units (usually triphones).
As most phones can occur in many contexts a great number of units
are required. In order for these to be trained large speech databases
are required. It is in fact likely that it is the collection of these databases
which has led to the enhanced performance of HMM recognisers.

This enhanced performance, however, is only obtained in conditions
which approximate the conditions in which the databases were recorded,
usually read speech in a quiet environment. Recognition of spontaneous
speech (e.g. the Switchboard corpus, Godfrey et al., 1992) and speech in
noisy conditions can produce high error rates. One way of coping with varia-
bility of pronunciation is by employing dictionaries which include these
alternatives (Pastor and Casacuberta, 2001) but a more realistic model of
speech production may be able to deal better with these different conditions.
What is required is a mathematical model, statistical or otherwise, which
captures more nearly the underlying phonetics of speech production.

4. AUDITORY MODELLING

As mentioned earlier phonetics has traditionally been concerned with
speech production, analysis and perception. The missing factor in the
speech chain is speech processing in the human auditory system. During
the last few decades physiological and neuroanatomical knowledge con-
cerning the human auditory system has increased to a point where
realistic computational models of the peripheral auditory system (the
outer, middle and inner ear and the cochlear nerve) can be made and
some of the processing from the cochlear nucleus to the auditory cortex
is understood. Little of this knowledge has been incorporated into speech
recognisers, and whether this will ever be advantageous is still an open
question.

Almost the only auditory knowledge which is accepted as useful is the
relationship between critical bands and frequency. This has been incor-
porated into many recognisers by employing MFCCs (mel frequency
cepstral coefficients) as features.

The structure and function of the regions of the central nervous sys-
tem concerned with audition, from the cochlear nucleus to the auditory
cortex, are gradually being elucidated. General models of these regions
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have been incorporated in speech recognisers in the form of neural net-
works such as multi-layer perceptrons (e.g. Christensen et al., 2001) but
specialised models which reflect the specififf c structures of auditory regions
have rarely been explored.

A new departure in speech recognition in recent years is multi-band
processing (Hagen et al., 2000). This is based on Fletcher’s ideas of pro-
cessing in separate frequency channels (Fletcher, 1953; Allen, 1994). Such
systems can tolerate noise interference in some frequency bands because
the overall error rate is determined by the product of the individual error
rates in each band. These systems are robust with regard to narrow band
noise noises, but not for wide band interference. Perceptual studies with
narrow bands (Greenberg et al., 1998; Crouzet and Ainsworth, 2001)
should help to produce a solid scientific basis from which recognisers
can be designed.

Other noise robust recognisers based on processing in the auditory
system have been proposed. For example, amplitude modulation maps
(Kollmeier et al., 1994; Berthommier and Meyer, 1995) which have been
used for separating voiced speech from noise may perform similar proces-
sing to that in the inferior colliculus where units sensitive to amplitude
modulations of certain frequencies have been found. Amplitude modu-
lation maps are formed by passing the speech signal through a bank of
band-pass fiff lters then performing a Fourier analysis on each channel.
The resulting two-dimensional map contains high energy ridges at fre-
quencies corresponding to the harmonics of the pitch of the voice. Wide
band noise is distributed in the valleys between the ridges. By sampling
the ridges the speech can be separated from the noise (Meyer et al., 2000).

5. CONCATATIVE SPEECH SYNTHESIS

Just as bigger databases and more powerful computers have enabled more
realistic units (triphones, etc.) to be employed in speech recognition, the
same resources have enabled more and larger units to be employed in
speech synthesis (see van Santen et al., 1997). This has allowed more natu-
ral sounding speech to be synthesised but the problem of joining the units
together has remained. Sometimes two segments appear to be joined
together smoothly, at least acoustically, but a perceptual discontinuity is
heard between them (van Santen et al., 1993). This remains a current
problem.

The basic model of concatative speech synthesis is a string of discrete
units. A more realistic model of speech production is a sequence of over-
lapping speech gestures. It is, however, not the waveforms produced by
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the gestures which must be overlapped, but the underlying control sig-
nals. If these are then applied to control a dynamic vocal tract model,
a seamless flow of speech should be generated. Feasibility studies have
been undertaken by Carré et al. (2001). The phasing of the control signals
required to generate vowel sequences can be varied over quite wide limits
and the same vowel sequences are perceived. Outside these limits
additional, intrusive vowels are heard.

If this technique can be used to synthesise longer, seamless speech utter-
ances the question will arise as to whether a similar approach should be
incorporated into speech recognition systems. The principle would be to
invert the speech signal to determine the vocal tract gestures, then estimate
the control signals which would have generated these vocal tract gestures.
However, this may be impossible in practice because several different
sequences of control signals may give rise to the same acoustic signals.

6. CONCLUSIONS

We have argued that the way to integrate phonetic knowledge into speech
technology is not by deriving the detailed acoustic structure of phones
from sets of phonetic rules, but by basing both speech recognition and
speech synthesis on more realistic models of speech production. The
details are probably best derived from speech databases as at present.
What is required is a mathematical framework which treats speech sig-
nals as the result of overlapping gestures, rather than as a sequence of
overlapping discrete units.

In speech synthesis this can be derived by means of sequences of con-
trol signals applied to a dynamic vocal tract model with realistic con-
straints over the allowed shapes. Concatative speech synthesis generates
high quality synthetic speech except at some joins. It is, therefore,
unnecessary to employ the vocal tract model to generate all of the utter-
ance. The speech signals from the database could be used to estimate the
vocal parameters near to the ‘j‘ oin’, then a transition representing an
allowable gesture could be synthesised to cover the join.

In speech recognition a new model is required which reflects the
underlying speech gestures. Some more realistic method of modelling
the transitions between the phones is needed.
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PROSODIC MODELS, AUTOMATIC SPEECH
UNDERSTANDING, AND SPEECH SYNTHESIS:

TOWARDS THE COMMON GROUND?

ABSTRACT. Automatic speech understanding and speech synthesis, two maja or
speech processing applications, impose strikingly different constraints and require-
ments on prosodic models. The prevalent models of prosody and intonation fail to
offer a unified solution to these conflicting constraints. As a consequence, prosodic
models have been applied only occasionally in end-to-end automatic speech under-
standing systems; in contrast, they have been applied extensively in speech synthesis
systems. In this chapter we aim to make explicit the reasons for this state of affairs by
reviewing the role of prosodic modelling in these two fiff elds of speech technology.
Subsequently, possible strategies to overcome the shortcomings of the use of pros-
odic modelling in automatic speech processing are discussed. In particular, the ques-
tion is raised whether or not there is a common framework for prosodic modelling in
automatic speech understanding and speech synthesis systems, and if so, whether any
particular model or theory of prosody can serve as a common ground. Finally, a
catalogue of tasks in prosody research is proposed that ought to be relevant to both
automatic speech understanding and speech synthesis and that might stimulate joint
research activities.

KEYWORDS. prosody, intonation model, automatic speech understanding,
speech synthesis

0. INTRODUCTION

The application of prosodic models in automatic speech understanding
(ASU)1 and speech synthesis (TTS)2 is strikingly different. In the latter,
such models have been extensively applied, but there is still no generally
agreed upon approach to prosodic modelling. In the former, they have
been applied only occasionally, rather in basic research, but almost never
within an existing end-to-end system. In this chapter, we discuss the
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reasons for this state of affairs and possible strategies to overcome
the shortcomings of the use of prosodic modelling in automatic speech
processing.

This chapter consists of three parts: the fiff rst part deals with the role of
prosodic modelling in ASU, the second part concerns the role of prosodic
modelling in TTS. These two parts are written from an inside perspective
and focus on different aspects–simply because the use of models is con-
siderably different in the two branches of speech technology discussed
here. In the section on ASU, the argumentation is thus more general,
dealing mainly with models as incarnations of theories, whereas in the
section on speech synthesis, more details are given, dealing mainly with
models as more or less concrete algorithmic formulations of theories.
In the third part we present different possibilities for a closer co-oper-
ation of ASU and TTS; eventually this might lead to new types of pros-
odic models that are more adequate for automatic processing than the
present ones.

In the title of this chapter, we speak of three different things: models,
ASU, and TTS, and of one type of relationship: the common ground.
Thus, fiff rst we have to know what prosodic =intonation models look like.
For obvious reasons, we cannot give a detailed survey of the models that
were developed during the last three decades. Instead we sketch common
traits and principles that constitute models as such. One important
characteristic is that a model is a considerable, sometimes even extreme,
reduction of parametric values and, thereby, a mapping of these values
onto a small number of units that can be compared with the classic dis-
tinctive features on the phone or phoneme level–all other properties may
differ. The foundations of the model and, therefore, the philosophy
behind it, can be physiological (Fujisaki:1988), or perceptual (’t Hart
et al., 1990), or linguistic (Silverman et al., 1992, ‘‘ToBI’’), just to mention
a few weff ll-known models. ToBI (Tones andTT Break IndicesII ) is by far the
most well-known model. There are at least two reasons for this fact: first,
it was the fiff rst model by way of which researchers from different disci-
plines attempted to find a common standard and common evaluation
procedures; and second, it was developed for (American) English, a fact
which in itself enhances wide dissemination. The ToBI transcription sys-
tem is a formalisation of the tone sequence theory of intonation (Pierre-
humbert, 1980). It may be characterised as a broad phonemic system,
consisting of Highi (H) and Low (L) tones and some few, additional
diacritics. The phonetic details of fundamental frequency (F0F0FF00F ) contours
in a given language have to be established in a second step. ToBI labels,
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in conjn unction with F0FF00F generation rules, are also frequently used in the
intonation components of TTS systems.

Out of the theoretically possible relationships between models, ASU,
and TTS, we can imagine four different types:

& Type 1: ASU  model ! TTS
& Type 2: ASU  model 1 j model 2 ! TTS
& Type 3: ASU $ TTS
& Type 4: ASU j TTS
Type 1 meets the ideas of generality put forward in most intonation

theories that there is only one model that accounts for all possible appli-
cations. Type 2 is a weaker formulation that there have to be models
especially tuned for different applications. With Type 3, a direct relation-
ship between ASU and TTS, not mediated by any model, is imagined,
and Type 4 (no relationship at all) might not be desirable but mirrors,
in fact, the present situation quite closely.

There is a striking difference between ASU (many-to-one) and TTS
(one-to-many): in ASU, many speakers=featuresff =feature vaff lues have to
be mapped onto few units (from parameters to categories), whereas in
TTS, it is the other way round: one speaker=category has to be mapped
onto many features=feature values (from categories to parameters). It has
not been settled yet whether this is a one-way-trip or a round-trip–and by
that, whether there is any common ground for these two fields at all, as
far as prosody is concerned.

0.1. Caveat and Further Reading

This chapter is not intended to be an introduction into any of these three
topics: models, ASU, and TTS. We hope, however, that it will be useful
for experts in one of these fiff elds who wonder why the state of affairs is the
way it is. At the same time, we want to provide the readers with a suf-
fiff cient degree of ‘meta-knowledge’ without presenting them all the basics.
This chapter is thus not written as an in-depth treatise but rather as a set
of postulateso intended to provoke discussion.

To our knowledge, there is no up-to-date standard introductory text-
book on intonation models. A comprehensive review of current inton-
ation models is presented in Ladd (1996), albeit from the perspective of
a proponent of the tone sequence approach. The language-specific use
of some of these models is described in Hirst and Di Cristo’s survey of
intonation systems (Hirst and Di Cristo, 1998a). The computational
analysis and modelling of prosody for the automatic processing of speech
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is the topic of Sagisaka et al. (1997). A state-of-the-art account of pros-
ody in ASU is given in Batliner et al. (2001c), whereas the intonational
concepts used in several models, and synthesis approaches based on these
models, are dealt with in Botinis et al. (2001).

1. AUTOMATIC SPEECH UNDERSTANDING

For contemporary prosodic theory, subtle changes in meaning that are
potentially triggered by prosody are interesting. These are, however,
not good candidates to start with in ASU: they will be classififf ed rather
poorly because of the many intervening factors, because of sparse data,
and because they can only be observed in the laboratory. Therefore, we
should start with a clear prosodic marking; the marking of boundaries
is probably the most important function of prosody and thus most useful
for ASU.

Information retrieval dialogues have been the standard application
within ASU for many years. Recently, less restricted dialogues, for
instance in the context of the Verbmobil system3, had to be processed
where turns are, on the average, three times longer than in an information
retrieval application (Noth et al., 2000). Segmentation is thus more
important in the relatively new fiff eld of automatic processing of rather
free dialogues–a chance to prove the impact of prosody! The contribution
of prosody is not equally evident in other applications.

In the last two decades, a growing body of work on intonation and
prosody research in general and on intonational modelling in particular
has been conducted. (Note that we use prosody for allff phenomena above
the segmental level, whereas intonation only deals with pitch=F0F0FF0F .)
Researchers on these topics agree that ASU would benefit from the inte-
gration of this work. However, only in the last few years has prosody
really begun to fiff nd its way into ASU, most of the time within offline,
i.e., in vitrii o, research. The only existing end-to-end system that really uses
prosody is, to our knowledge, the Verbmobil system (Batliner et al.,
2000).

This state of affairs might be traced back to the general diffiff culty of
carrying over theoretical work into practice as well as the well-known dif-
ferences between the two cultures: on the one hand, humanities, on the
other hand, engineering. In this section, we want to have a closer look
at some of the most important factors that are responsible for this state
of affairs, and with that, we want to make this general statement more
concrete. First we discuss the shortcomings of current intonation models,
as seen from an ASU perspective (Section 1.1). Then, we will show what
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can be done to overcome these shortcomings by sketching our own funcff -
tional prosodic model (Section 1.2), and we will outline the common
ground of prosodic models on the one hand and ASU on the other hand
(Section 1.3).

1.1. The Reasons Why (Occam’s Razor Still Matters)

If one speaks of suprasegmental models that meet the standards of a
theory, one very often speaff ks only of intonation models, which are almost
always production modd dedd lsll . (Transcription, labelling, and annotation are
more down to earth and their topic is thus broader.) Production models
might be good for synthesis but not for recognition. Too much emphasis
is put on intonation in particular, i.e., too much emphasis on pitch in
comparison to other prosodic features, and too much emff phasis on pros-
odyd in comparison to other linguistic features. This is, of course, con-
ditioned by the general approach to constructing intonation models as
stand-dd alone models, and by the unfortunate notion of pitch accent, which
prevents a more realistic view where all relevant features–be they intona-
tional, other prosodic or other linguistic features–are considered in the
analysis on the same level.

There is too much emphasis on theoretical concepe ts and on the dis-
cussion of which one is better suited for the description of a special lan-
guage or of languages in general. Consider the old debate pertaining to
whether levels or movements, local events or global trends, are the ‘cor-
rect’ units of description: a speech recognizer does not care whether it is
trained with levels (F0FF0F maximum, F0FF0F minimum) or with movements (F0FF0F
range, F0FF0F slope) as long as the training database is large enough and
the labels are annotated correctly. After all, what goes up must come
down: it does not matter whether there is an H tone at 200Hz and a fol-
lowing L tone at 100Hz or whether there is a movement between 200Hz
and 100Hz (Batliner et al., 2001a).

Very often it is stressed that one cannot do prosody research or apply
prosody within ASU without a ‘real’ phonological level of description
and modelling, and that speech technologists should pay attention to
the work of phonologists (Ladd, 1997). We fully agree with the view that
phonological and prosodic knowledgedd should be used within ASU, but we
fully disagree if it is about the direct use of intonation models in ASU. All
these models introduce a phonological level of description that is inter-
mediate between (abstract) function and (concrete) phonetic form: tone
sequences, holistic contours, etc. It is our experience that one always gets
better results if one can do without such an intermediate level, i.e., if one
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can establish a direct link between (syntactic=semantic) function and
phonetic form. (Here, we speak ’simply’ of classififf cation performance,
not of theoretical interest or adequacy.)

After all, if such a mapping can be done automatically, we can map
levell l A (p(( honetic formff ) onto levell l C (linguistic functionff ) without an inter-
mediate (phonological) level B; with such a level, we have to map A onto
B, and B onto C. If this can be done automatically, we do not need B any
longer. Sometimes it will do no harm to provide level B, but often results
will get worse. Phonological systems like the ToBI approach (Silverman
et al., 1992) only introduce a quantisatii ion error: the whole variety of F0FF0F
values available in acoustics is reduced to a mere binary opposition L
vs. H, and to some few additional, diacritic distinctions. This fact alone
prevents tone levels (or any other phonologicall l prosodicdd concepts such as,
e.g., the one developed within the IPO approach) from being a meaning-
ful step that automatic processing should be based on; it seems better to
leave it up to a large feature vector and to statistical classifiers to find the
form to the function. To our knowledge, no approach exists that actually
uses such phonological units for the recognition of prosodic events. Of
course, there are many studies that describe offlineff classifications of such
phonological prosodic concepts; this has to be distinguished from the
successfuff l integratii ion in an existing end-to-end-system, as we have shown
within the Verbmobil project (Batliner et al., 2000; Noth et al., 2000).

Studies which compare the performance of intonational models for
the automatic classification of prosodic events are rare; Siepmann
(2001) assesses several models on the task of the classififf cation of contras-
tive accents in German. He finds that classification performance is
roughly a function of the number of predictor variables. It increases with
the number of these predictor variables made available by a model. These
findings fit nicely with our notion of quantisation described above. Evi-
dently, a theoretically and phonologically ’adequate’ description–in terms
of a minimal inventory of units–on the one hand, and classififf cation
performance on the other hand, are simply two conflicting goals.

The difference between phonetic=prosodic knowledge and phonologi-
cal concepts can be demonstrated with the following example: the pros-
odic ’default’ feature that indicates questions in many languages is a
fiff nal rise (or ’high boundary tone’), even though, at least in English and
German, an accent pronounced in a non-final position can disambiguate
sentence mood as well (Studdert-Kennedy and Hadding 1973; Batliner,
1989b). The same holds for Italian, where ‘‘[the] primary cue to interrog-
ation in the Southern varieties is the pitch accent: LþH� in Bari Italian
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and L� þH in Palermo and Neapolitan, after which there is usually a
fiff nal fall’’ (Grice et al., 2004). This is a very interesting fact in itself,
but it is of course not a special tone that is the primary cue but something
that can be described add s a special tone within a special intonational
model. This is actually not a nicety but crucial for our argumentation.
Thus we want to distinguish between basic knowledge about the facts
one observes, and knowledge that is transformed into and mediated by
a specific model. The units of such a model might provide a convenient
way to make oneself understood. The problem is that, by using such ter-
minology, one tends to disregard those aspects that are not modelled by
this concept; for instance, by using the terminology of a tone level model
one disregards movements, and vice versa, and might end up with a mere
reifi icatioff n of this concept.4

The classic phonological concept of the Prague school has been aban-
doned in contemporary intonation models, namely that phonemes–be
they segmental or suprasegmental–should only be assumed if these units
make a difference in meaning. This functional point of view has given
way to more formal criteria such as economy of description. Thus, the
decision on the descriptive units is not based on differences in meaning
but on formal criteria, and only afterwards are functional differences
sought that can be described with these formal units. In Hirschberg
and Pierrehumbert (1986) for instance, the meaning of a tune, which is
defiff ned as a structure consisting of accents and tones, can be interpreted
compositionally from the meanings of the individual accents and tones
that the tune contains. It has been supposed that if phonological concepts
could be motivated from theoretical reasons, then ASU should
use them5–irrespective of whether they really make sense as units of
ASU or not: this can only be determined empirically, not by theoretical
considerations.

In conclusion, Occam’s razor (i.e., the law of economy) should thus be
followed here as well: non sunt multipi licanda entia praeter necessitatem
(entities are not to be multiplied beye ond necessity)t ; for ‘entities’ read:
levels of description or processing.

1.2. A Functional Prosodic Model

In this section, we sketch an alternative model that puts emphasis on
functionff , not on phonological forff m–actually, all other working
approaches towards using prosodic information in ASU we know of
are along these lines (cf. Shriberg et al., 1998; Noth et al., 2000 and
the references given in these papers). The prosodic functions that are
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generally considered to be the most important ones on the linguistic level
are the marking of boundaries, accents, and sentence mood; boundaries
can delimit syntactic, semantic, or dialogue units. For these phenomena,
the fiff rst step is the annotation of a large database. Annotation should be
as detailed as possible, but more detailed classes can–if necessary–be
mapped onto higher classes. We still do not know how many classes
are most appropriate for the pertinent linguistic phenomena; it is,
however, our experience that quite often, the higher linguistic modules
can work fairly well with only two binary classes: present vs. not present.6

The phonetic form is modelled directly with a large feature vector which
uses all available information on (appropriately normalized) F0FF0F , energy,
and duration; other linguistic information pertaining to, for instance,
part of speech classes is used as well. It is not a theoretical question
but one of practical reasoning, availability, implementation, and
recognition performance whether all this information is processed
sequentially or in an integrated procedure. The model, classification
results, and the use of prosodic knowledge in higher linguistic modules
are described in Batliner et al. (2000), Noth et al. (2000), and Batliner
et al. (2001c).

1.3. Which Common Ground for ASU and Prosodic Models?

Mainstream ASU nowadays means statistical processing. For this
approach, large databases and a standardization of different annotation
concepts are needed. ToBI has been a step in the right direction but is
still based too much on (one specific) phonology; it is not an across
modelsll but a within model approach; cf. the standardization efforts
for dialogue act annotations described in Klein (1999). Only if they
are based on a successful standardization, can the labels of different
(intonation) models be used together in order to overcome the sparse
data problem. The primacyc ofo phonologll ygg has to give way to more prac-
tical considerations; models should take into account the requirements–
and limitations–of speech processing modules. For instance, even if
word recognition computes phone segment boundaries, these are often
not available afterwards: the output is a word hypotheses graph with
word boundaries only. An additional computation of phone segment
boundaries would mean a considerable overhead.7 Thus, intonation
models that require an exact alignment with phones cannot be used.
Therefore, we only used word boundaries in the final version of our
prosody module in Verbmobil (Batliner et al., 2000)–without a decrease
in performance!
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The two cultures, viz. the humanities and engineering approaches, are
still rather remote from each other. As in politics, one should begin with
small steps, and with steps that pay off immediately. This means that
subtle theoretical concepts are not well suited, but prosodic markers
are, which are visible and stable enough to be classified reliably even in
a realistic, real life setting. Thus it can be guaranteed that prosody really
fiff nds its way into ASU, because speech engineers can be convinced more
easily that the integration of prosody indeed pays off. Later, it will be
simply a matter of conquering or not: if more subtle differences can be
modelled with prosodic means and classification performance is good
enough, it will be no problem to incorporate them into ASU.

2. SPEECH SYNTHESIS

Prosodic models have been extensively applied in speech synthesis, simply
because there is an obvious need for every TTS system to generate pros-
odic properties of speech if the synthesis output is to sound even remotely
like human speech. However, the necessityt of synthesizing prosody has as
yet not resulted in a generallyl agreed upon approach to prosodic model-
ling. This statement holds for the assignment of segmental durations
as well as for the generation of F0FF0F curves, the acoustic correlate of
intonation contours.8

Intonation research is extremely diverse in terms of theories and mod-
els. On the phonological side, there is little consensus on what the basic
elements are: tones, tunes, uni-directional motions, multi-directional
gestures, etc. Modelling the phonetics of intonation is equally diverse,
including interpolation between tonal targets (Pierrehumbert, 1981),
superposition of underlying phrase and accent curves (Fujisaki, 1988),
and concatenation of line segments (’t Hart et al., 1990).

Modelling speech timing for synthesis is less diverse. The important
role of the syllable as a central processing unit in speech production
and perception is widely accepted, but there is an ongoing controversy
about how to best implement the pertinent effects in a model of speech
timing; cf. the syllabic timing models proposed by Campbell (Campbell
and Isard, 1991; Campbell, 1992), on the one hand, and the sums-of-
products model of segmental duration proposed by van Santen (1993;
1994), on the other hand.

In natural speech, tonal and temporal prosodic properties are copro-
duced, and there is an increasing body of evidence that tonal and tem-
poral as well as spectral properties of speech are jointly planned by the
speaker in a way that prosodic events can be optimally perceived by
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the listener (House, 1990, House, 1996, Dogil and Mobius, 2001). The
conventional solution in speech synthesis systems, in contrast, embodies
a unidirectional flow of information instead of synergy: fiff rst, the duration
of speech sounds and syllables is assigned and then the F0F0FF00F contour of the
utterance is computed.

One pivot in our discussion of prosodic models in automatic speech
processing is the relevance of a phonological level of description.9 This
aspect is rather indistinct with respect to models of speech timing. The
remainder of this section therefore concentrates on the use and usability
of intonation models in speech synthesis.

2.1. Intonation Synthesis: A Two-Stage Process

Intonation synthesis can be viewed as a two-stage process, the fiff rst aimed
at representing grammatical structures and referential relations on a sys m-
bolic level and the second at rendering acoustic signals that convey the
structural and intentional properties of the message. Intonation models
differ in terms of the interface that they provide between the higher
linguistic components and the acoustic prosodic modules.

In many TTS systems sophisticated methods, such as syntactic parsing
and part-of-speech tagging, are applied in the service of providing suf-
fiff cient information to drive the acoustic prosodic components of the sys-
tem, in particular, the intonation model. The intonationally relevant
information comprises sentence mood as well as the location and strength
of phrase boundaries and the location and type of accents.

Establishing the relation between syntactic structure and intonational
features is among the most challenging subtasks of TTS conversion, and
its imperfection contributes to the perceived lack of naturalness of
synthesized speech. This shortcoming is unavoidable because TTS sys-
tems have to rely on the computation of linguistic structures from ortho-
graphic text, a level of representation that is notoriously poor at coding
prosodic information in many languages.

The task of the acoustic-phonetic component of an intonation model
in TTS is to compute continuous acoustic parameters (F0FF0F =time pairs)
from the symbolic representation of intonation. A large variety of models
have been applied in TTS systems to perform this task, including imple-
mentations of the major frameworks of intonation theory: phonological
models that represent the prosody of an utterance as a sequence of
abstract units (e.g., tones), viz. tone sequence models; and acoustic-pho-
netic models that interpret F0FF0F contours as complex patterns resulting
from the superposition of several components, viz. superposition models.
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Besides these prevalent models, several other approaches have been
taken, in particular perception-based, functionaff l, and acoustic stylt ization
models. For instance, the INTSINT system (Hirst and Di Cristo,
1998b) performs an automatic analysis and generation of F0FF00F curves by
deriving a sequence of target points, specififf ed in time and frequency, that
represents a stylization of the F0F0FF00F curve.

All of these approaches rely on a combination of data-driven and rule-
based methods: they all systematically explore natural speech databases,
but vary in terms of what is derived from the analysis to drive intonation
synthesis. For instance, there are two different approaches to acoustic
stylization modeling. In one approach, continuous acoustic parameters
are interpreted as directly representing intonation events (Taylor,
2000); in the other approach, intonation events are related to
phonological entities such as tones or register via prototype building
(Mohler, 1998). The abstract tonal representation provided by phono-
logical intonation models is converted into F0F0FF0F contours by means of pho-
netic realization rules. The phonetic rules determine the F0F0FF0F values of the
(H and L) targets, based on the metric prominence of syllables they are
associated with, and on the F0FF0F values of the preceding tones. The pho-
netic rules also compute the temporal alignment of tones with accented
syllables. Fujiu saki’s classic superpositional model computes the F0FF0F con-
tour by additively superimposing phrase and accent curves and a
speaker-specififf c F0FF0F00F reference value. Phrase and accent curves are gener-
ated from discrete commands, the parameter values of which are usually
derived by generalization of values statistically estimated from a speech
database. While this model can be characterized as primarily acoustically
oriented (and physiologically motivated), it is possible to fiff nd phonologi-
cal interpretations of its commands and parameters (Mobius, 1995).

2.2. Intonation Synthesis and Phonetic Detail

F0F0FF0F contours as acoustic realizations ofo accents vary signififf cantly depend-
ing on the structure (i.e., the segments and their durations) of the sylla-
bles they are associated with. For example, F0FF0F peak location is
systematically later in syllables with sonorant codas than in those with
obstruent codas ( pin vs. pit), and also later in syllables with voiced
obstruent onsets than with sonorant onsets (bet vs. yet). Moreover, the
F0FF0F peak occurs significantly later in polysyllabic accent groups than in
monosyllabic ones (van Santen and Mobius, 2000).

Intonation models need to generate as much of this phonetic detail as
possible. The quantitative model of F0FF0F alignment proposed by van Santen
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and Mobius (2000), for instance, explains the diversity of surface shapes
of F0F0FF0F contours by positing that accents belonging to the same phonologi-
cal (and perceptual) class can be generated from a common tempm late by
applying a common set of alignment parameters. The templates are repre-
sentatives of phonological intonation events of the type predicted by
intonation theories, i.e. accents and boundaries.

Acoustic stylization models (Mohler, 1998; Taylor, 2000) also synthe-
size F0FF0F contours from a smaff ll number of prototyt picayy l patterns. They learn
and predict phonetic details of F0FFF movements from a set of features
comprising segmental, prosodic and positional information. While the
F0FF0F prototypes are defined as being phonetically distinct, they are also
intended to be related to phonologically motivated intonation events.

2.3. What is the Common Ground for TTS and Prosodic Models?

In Section 1 we have argued that the most appropriate type of intonation
model for ASU would be one that provides a functionaff l representation of
the positions of accents and phrase boundaries; any intermediate phono-
logical level only introduces a quantisation error. In the ToBI notation
(Silverman et al., 1992) such a functional representation would consist
only of the location of accents (the stars) and phrase boundaries (the per-
cents). In the following we discuss to what extent, or whether at all, the
conclusions drawn for the ASU domain are valid for the TTS domain
too; in doing so we consider both the state of the art in intonation
synthesis and the feasibility of alternative designs.

In state-of-the-art TTS systems, such as Festival (Black et al., 1999),
Bell Labs (Sproat, 1998), AT&T (Syrdal et al., 2000), and others, the only
symbolic prosodic information used–apart from sentence mood–is the
location of accents and boundaries. This design can be characterized as
the bare-bones minimum of prosodic modelling, because phrase structure
and accentual structure are surface reflections of the underlying semantic
and syntactic structure of the sentence, and at least a coarse represen-
tation of phrasing and accenting needs to be achieved by any self-
respecting TTS system.

However, it has been demonstrated that models which use more
detailed and more precise input information, for instance ToBI accent
typet labels in addition to accent location alone, can generate F0F0FF00F contours
that are perceptually more acceptable than models which use accent
location alone (Syrdal et al., 1998). The problem is that computing from
text such detailed intonational features as accent type is diffiff cult and
unreliable. It should therefore come as no surprise that even the very
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same research group that so convincingly demonstrated the importance of
detailed input information, came up with the solution (the ‘ToBI Lite’
approach) of collapsing ToBI accent labels onto merely two categories
and of mapping only edge tones marking maja or phrases onto just one cate-
gory (Syrdal et al., 2000). Note, however, that strictly speaking, these results
are an indication that a greater variation of accent types will result in a
higher degree of acceptability; they are no proof that a ToBI-like accent
representation is the best or the only possibility of modelling variation.

The degree of potential improvement to synthesized prosody can also be
illustrated by manually marking up the text or by providing access to sem-
antic and discourse representations (Prevost and Steedman, 1994). In prac-
tice and in existing end-to-end systems, however, the situation in intonation
synthesis appears to be similar to the one described for the ASU domain.
But it is still worth noting that relying for the most part only on accent
and boundary location is not a jujj diciousdd designdd decisiodd nmade by speech syn-
thesis researchers but one made by system developers bowing to necessityt . It
is evident that much more information than just the stars and the percents
is needed to achieve the kind and degree of improvement to intonation
synthesis that has been demonstrated in fragmentary research systems.

Can we do without a phonological representation of intonation in
speech synthesis? Certain synthesis strategies beyond the classic TTS
scenario offer more immediate interfaces between symbolic and acoustic
representations of intonation. Concepe t-to-sps eech systems, in particular,
provide a direct link between language generation and acoustic-prosodic
components. A concept-to-speech system has access to the complete
linguistic structure of the sentence that is being generated; the system
knows what to say, and how to render it. Such a system may potentially
incorporate semantic and discourse representations like those used in the
experiment by Prevost and Steedman (1994).

Yet, even in concept-to-speech systems, it is still necessary to specify
the mapping from semantic to symbolic features and from symbolic to
acoustic features. The issue of how much, and what kind of, information
the language generation component should deliver to optimize the two
mapping steps (i.e., the definition of a semantics=syntax-prosody inter-
face) is a hot research topic. Once the two mapping steps are optimized,
we may be able to advance one step further and get rid of the
intermediate level (i.e., a phonological prosodic representation) just as
hypothesized for ASU (see Section 1.1).

The most drastic redesign of intonation synthesis would be to avoid
synthesizing intonation in the fiff rst place. Consider the early unit selectionll
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synthesis approach implemented in the CHATR TTS system (Black and
Taylor, 1994). Unit selection generates speech by concatenating speech
segments of varying length (as short as half-phones and as long as entire
utterances) that are extracted at runtime from a large speech database.
CHATR follows the strategy of simply resequencingii speech segments with-
out performing any modifications by signal processing. The underlying
assumption is that the listener will tolerate occasional spectral or
prosodic mismatches in an utterance if the quality of the output speech
in general approaches that of natural speech.

The unit selection algorithm attempts to minimize two types of cost,
one for unit distortion and one for continuityt distortion. The former is a
measure of the distance of the candidate unit from the desired target,
whereas the latter is a measure of the distance between two adjacent units
at the concatenation point. Each target is specified by a feature vector that
comprises positional, spectral, and prosodic features, and the values of
these features for a given target are specified on the basis of some kind
of model. In the case of prosodic features, the desired F0FF0F contour is usually
predicted by an intonation model. Thus, even in the most extreme version
of corpus-based synthesis, the mapping from a target specification to
acoustic-phonetic details of candidate units is mediated by a model that
relies on a symbolic representation of intonation, which customarily
amounts to a phonologically based or motivated intonation model.

A phonological approach is even advocated explicitly in an interesting
recent approach to unit selection termed phonologicall l structure matching
(Taylor and Black, 1999), where phonological information, such as canoni-
cal pronunciation, positional factors and accentuation, is used for unit
selection, instead of narrow phonetic transcriptions and absolute duration
and F0FF0F0F values. The key idea in this approach is that most of the variability
in the speech signal is predictable and that units selected from the appro-
priate context are likely to have the right specifications, including prosodic
ones. This means that intonation contours generated bymodels may not be
necessary anymore. But what will still be relevant is the knowledge about
the factors and their respective quantitative effects on observed contours;
this knowledge can be used to develop powerful unit selection criteria.

3. WHICH COMMON GROUND FOR ASU AND TTS–WITH
OR WITHOUT PROSODIC MODELS?

We have illustrated that the basic problems connected with the use of
prosodic models in speech processing are similar for ASU and TTS.
One of these problems is the lack of an appropriate annotation concept.
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We have argued that ToBI–while representing a step in the right direc-
tion–is based too much on one specififf c intonational phonology and does
not generalize across models. We have further argued that in the ASU
context, ToBI provides a special layer of representation that is both
too abstract (i.e., too far from the signal to be useful as input to classi-
fiff ers) and at the same time not abstract enough, with some of its nota-
tional units lacking a linguistic counterpart. A mirror image of this
situation is evident in the context of TTS, where ToBI lacks the required
granularity.

3.1. Shared Models for ASU and TTS?

In our view, the most appropriate type of intonation model for ASU
would be one that provides a functional representation of the positions
of accents and phrase boundaries without any intermediate prosodic-
phonological level. At present, such a type of model is widely used
in intonation synthesis, albeit with some intermediate prosodic-
phonological representation. This apparent similarity between ASU
and TTS requirements is brought about by very different motivations.
In ASU a finer-grained level of description has not yet been shown to
model reliably the linguistic function that it presumably corresponds
to. In TTS, in contrast, more detailed input information is required to
generate F0FF0F contours that are perceptually more acceptable than those
based on accent and phrase boundary locations alone. While computing
such features is extremely hard in a TTS framework, it may be accessible
in different speech synthesis strategies such as concept-to-speech.

Recent advances in TTS can be partly attributed to the use of statisti-
cal methods for detecting relevant features in large databases, learning
them, and modelling them. A standardized annotation concept would
be an additional advantage. However, the prevalent annotation conven-
tion, viz. ToBI, misses the required granularity: it is confined too much
within one type of intonation model; it is too elaborate and specific in
terms of its descriptive inventory to lend itself as a generic interface to
higher-level linguistic-prosodic analysis; at the same time it is far too
abstract to facilitate a computation of the rich phonetic detail and precise
alignment that F0FF0F contours require in order to sound natural. Data-dri-
ven intonation models, on the other hand, can learn to synthesize these
details. For the integration in a TTS system, a complete intonation model
needs to provide a mapping from categorical phonological elements to
continuous acoustic parameters. Quantitative models such as those
presented recently (Mohler, 1998; Taylor, 2000; van Santen and Mobius,
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2000) offer feasible solutions to the F0F0FF00F generation task. However, it
is not clear yet whether these two approaches can be integrated into
existing TTS systems without any additional phonological
representation.

We believe that no intonation model equally appropriate for both
tasks, ASU and TTS, is currently available. The requirements are, for
the time being and for some time to come, too different. They might
converge in the future, giving rise to a unified solution to prosodic
modelling, but we simply do not know when and whether this will be
the case.

3.2. Multilinguality

One aspect that we have not discussed in this chapter yet is multilingual-
ityt . Both ASU and TTS have gone multilingual:

In the Verbmobil system (Batliner et al., 2000), prosodic information
is computed for ASU for three languages, viz. German, English, and
Japanese. The multilingual prosody module facilitates the sharinff g of pros-
odic feature extraction and classififf cation procedures, which are con-
sidered to be language independent. Note, however, that it is not clear
yet whether or not the same set of features is appropriate for typologi-
cally different languages, for instance tone and non-tone languages.
Language specific data, such as duration normalization tables, are kept
in separate structures and are loaded as needed. Similarly, separate classi-
fication parameters, such as different n-gram sizes, can be specified by
means of configff uration fiff les (Batliner et al., 2000).

In remarkably the same spirit, the multilingual intonation component
in the Bell Labs TTS system (Sproat, 1998) is used for a number of into-
nationally quite diverse languages, including American English, French,
German, Italian, Japanese, Mexican Spanish, and Russian; this compo-
nent implements the quantitative model by van Santen and Mobius
(2000). One of the key assumptions of this model is that phonological
accent classes can be mapped onto a corresponding number of distinct
F0FF0F00F templates by means of alignment parameter matrices (see Section
2.2). Language specific adjustment pertains to transformations of these
parameter matrices, which can be handled offline and stored in configur-
ation files. Again similar to the ASU prosody design presented above,
one of the most intriguing research questions is to what extent the inven-
tory of templates can be shared across languages: notice that Mandarin
Chinese is not currently handled by this multilingual intonation approach
(van Santen et al., 1998).
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3.3. No Panacea: the Database Argument

Sufficiently large and discourse-rich, (prosodically) annotated databases
are of course a desideratum (Botinis et al., 2001). They are necessary
for a good and robust classififf cation of prosodic events in ASU, and they
are necessary for modelling variability in TTS. They are, however, defi-ff
nitely no panacea; in particular, they cannot make up for the lack of rel-
evance of intonation models like ToBI for ASU: First, an elaborate
prosodic annotation is very time-consuming (Batliner et al., 1998) and
therefore simply too expensive. This might not be a ‘scientific’ argument
but is nonetheless a decisive obstacle. Second, it is too complicated and
thus prone to low inter-ll lall beller corresponll dencdd e, cf. ToBI vs. ‘ToBI Lite’
(Syrdal et al., 2000). Third, it is doubtful whether ‘real-life’ spontaneous
speech is always prosodically rich to the extent that special and=or rare
functions are indicated by prosodic means; an extrapolation of con-
structed examples to spontaneous speech might turn out to be mere wish-
ful thinking. Fourth, it is said that more datadd is always better than less
data; but on the other hand, with ‘only’ 90 minutes of annotated speech
material for German, and less than half the amount of data for English,
we obtained the following overall classififf cation rates (two-class
problems): German boundaries, 87%; German accents, 81%; English
boundaries, 92%, English accents, 79% (Batliner et al., 2000). Given
the fact that inter-labeller reliability has not been proven to be very high
for such tasks, it might not be possible to improve on these results to any
considerable extent, even with a much larger training database. The
benefit of larger training databases might thus not be the possibility to
obtain much better classififf cation rates but the possibility to model
variability much better. That means, in turn, that performance will not
fall drastically if one has to deal with new tasks, new scenarios, or new
applications. (Regarding the portability of speech recognizers to new
tasks, cf. Lamel et al., 2001.) Finally, and most importantly, more
labels cannot be a remedy for the missing link to clear functions, cf.
Section 1.1.

3.4. A Catalogue of Shared Tasks

A straightforward way for ASU and TTS to co-operate would be to
exchange knowledge, concepts, rules, algorithms and special databases
between colleagues and research sites. Such a sharing of methods and
resources is already a reality in several subdomains of speech processing,
cf. efficient search algorithms (Viterbi search), signal representations
(e.g., HMM), or the use of linguistic or phonetic information (language
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models, duration models). This kind of exchange and sharing, as well as
joint future work, would be a Type 3 approach (cf. the Introduction), a
direct link between ASU and TTS, not mediated by traditional phono-
logical models.

It might be argued that the tasks for ASU and TTS differ because TTS
normally focuses on a formal speaking style, whereas ASU has to deal
with a more casual, informal style. In our opinion, this is not a categ-
orical but only a gradual difference which might diminish in the future:
with more elaborate synthesis, some computer speech will surely be more
casual in order to approximate human-human communication. On the
other hand, if large-scale content extraction has to be performed auto-
matically from, e.g., radio news, ASU will have to deal with formal
speech as well.

In the context of prosody, we would propose the following catalogue
of shared tasks:

& Inventory of relevant linguistic prosodic functions: marking of
accents, phrases, discourse structure, etc. This can be illustrated
by the rules for accent assignment that have been developed inde-
pendently within ASU (Batliner et al., 1999) and TTS (Hirschberg,
1993; Widera et al., 1997), to mention just a few.

& Inventory of relevant paralinguistic prosodic functions: emo-
tions=user states, individual speaker traits, etc. (Batliner et al.,
2001c).

& Inventory of structured prosodic features: these features pertain to
linguistically relevant units of speech, for instance phonemes, sylla-
bles, words, phrases, etc. Structured prosodic features are derived
from basic acoustic-prosodic features, such as F0F0FF00F , energy values,
etc. This typology of prosodic features is described in Kießling
(1997) and Noth et al. (2000).

& Inventory of lexical prosodic features: word accent position, part-
of-speech information, etc.

& Inventory of syntactic=semantic prosodic features: sentence mood,
syntactic structure and boundaries, positional and counting
factorsff , centres of information.

& Annotation system, oriented towards function (not form), moti-
vated by practical (not phonological) considerations.

& Procedures for detecting, learning, and modelling of prosodic
features from speech databases. In state-of-the-art TTS, prosodff ic
features are learned from single-speaker databases. It might beff
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feasible to train models on multi-speaker corpora to obtain proto-
types via clustering or averaging (Batliner and Noth, 1989); the
prototypes might each represent one possible (virtual) and plaus-
ible speaker, but they do not have to represent any particular
speaker in the corpus.

& Integration of all prosodic parameters and features, not just F0F0FF00F , in
TTS, following the ASU approach and acknowledging the fact of
co-production of prosodic features in natural speech by co-model-
ling them.

A common task for ASU and TTS is to learn the mapping from
acoustics to categories. In ASU the direct mapping of acoustic features
onto functions without any intermediate phonological level is standard.
In TTS, such a direct mapping might be feasible as well, for both offline
training and runtime synthesis; hopefully, this will be a research avenue
for the near future.

4. CONCLUDING REMARKS

Coming back to the title of this book, ‘Integration of Phonetic Knowl-
edge in Speech Technology’, we would like to refer to the distinction
made in Section 1.1 between basic knowledge on the one hand and trans-
foff rmed=mediated knowledge on the other hand. This is, of course, a
gross distinction; there is, in reality, a continuum from pure basic, acous-
tic, knowledge (e.g., about concrete F0F0FF00F values) to transformeff d, very
abstract knowledge. Phonetic knowledge is thus never purely basic but
always transformed to a certain degree. The decisive step is, however,
when it comes to a considerable reduction of information in order to
achieve a level of ‘phonological adequacy’, cf. the quantisation error
mentioned in Section 1.1. In our opinion, phonetic=prosodic knowledge
that has not yet crossed this rubicon is of course necessary for speech
technology. Actually, it has always been used even if speech engineers
might not have been aware of this fact. As for transformed=mediated
phonological knowledge, we are not that sure and opt rather for those
kinds of co-operation between ASU and TTS that are described in the
catalogue of shared tasks in Section 3.4.

By successively working through this catalogue, we might eventually
end up with something that might be called a new type of prosodic
model, capable of explaining and predicting variability, and which can
connect phenomena and their processing by automatic means more
directly than current intonation models do.
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NOTES
1 In our understanding, automatic speech recognition (ASR) comprises ‘only’ word rec-
ognition, which is a necessary prerequisite for automatic speech understanding (ASU).
Thus, if we have to choose one of these two terms, we prefer ASU because it covers
the whole story and not only some part of it. Moreover, ‘understanding’ is more directly
connected with higher linguistic levels such as syntax, semantics, and pragmatics. If we
consider the work on automatic processing of prosody conducted so far, it might be
the case that the impact of prosody is much stronger for these higher levels, compared
to the impact on word recognition.
2 Strictly speaking, TTS is the customary acronym for text-to-speech, but in the context of
this chapter we have opted to use it for any kind of speech synthesis, disregarding the
exact type of input representation (e.g., text, concept, or structured document), unless
explicitly indicated otherwise.
3 The Verbmobil system was developed in a large-scale German research projo ect focusing
on automatic speech-to-speech translation in appointment scheduling dialogues (Wahl-
ster, 2000).
4 In Batliner (1989a) we have discussed the problem of reification from a slightly different
point of view. An evident analogy on the segmental level is the famous rabid =rapa id dis-
tinction (Lisker, 1978): it might be possible for a strictly phonological approach to work
with only one distinctive feature, whereas for automatic speech processing, this would be
a rather suboptimal approach.
5 ‘‘Probably, it will be very difficult to detect [automatically] a boundary marker that
takes the foff rm of a declination reset. . . . [If its identififf cation] in the acoustic signal cannot
take place until a close-copy stylization has fiff rst been made, and that is the present situ-
ation, one can imagine that its automatic detection will only become a possibility once the
technique of automatic stylization has been sufficiently mastered’’ (’t Hart et al., 1990,
page 182). That simply means to beg the question–there is ample evidence nowadays, that
boundaries can be detected without the help of such phonological concepts as declination
(Batliner et al., 1998; Noth et al., 2000).
6 Of course, linguists would like to get information from prosody for more subtle distinc-
tions; maybe such distinctions can be provided and used successfully in the future, but not
with the present state of the art and, especially, of the databases available (sparse data
problem).
7 It would of course be no problem in principle for a word recognition module to store
computed segment boundaries. In distributed systems, however, if prosody has to use
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the output of some existing word recognition module, this would mean rewriting the
module accordingly–which could not be done in the Verbmobil system due to projo ect-
internal constraints. Instead, in the first phase of the project, phone segments were
re-computed in the prosody module, which caused a significant overhead. Thus, in the
second phase, we computed only word based prosodic features–without any reduction
of recognition performance (Batliner et al., 2000).
8 Notice that TTS systems do not usually provide a prosodic model for the amplitude
profiff le of the synthetic utterance.
9 We do not argue against any phonological level as such. If we consider the well-estab-
lished phonological level for word recognition, then there is a clear relationship between
distinctive form and function; such a clear relationship, however, has not yet been proven
for the prosodic level. Note thatff a prosodic phonological level might still be relevant for
language typology, second language learning, etc., even if it might be irrelevant for the
automatic processing of speech.

REFERENCES

Batliner, A. Eine Frage ist eine Frage ist keine Frage. Perzeptionsexperimente zum
Fragemodus im Deutschen. In: Altmann, H., Batliner, A., and Oppenrieder, W.,
(eds.), Zur Intonation von Modus und Fokus im Deutschen, Niemeyer, Tubingen,
1989a: 87–109.

Batliner, A. Wieviel Halbtone braucht die Frage? Merkmale, Dimensionen, Kategorien.
In: Altmann, H., Batliner, A., and Oppenrieder, W., (eds.), Zur Intonation vonII ModusMM
und Fokus im Deutschen, Niemeyer, Tubingen, 1989b: 111–162.

Batliner, A., Buckow, A., Niemann, H., Noth, E., and Warnke, V. The prosody module.
In: (Wahlster, 2000), 2000: 106–121.

Batliner, A., Buckow, J., Huber, R., Warnke, V., Noth, E., and Niemann, H. Boiling
down prosody for the classification of boundaries and accents in German and
English. In: Proceedings odd fo the European Confn erence on Speecff h Communication and
TecTT hnologll y (gg Aalborg, Denmark), 4, 2001a: 2781–2784.

Batliner, A., Kompe, R., Kießling, A., Mast, M.,Niemann, H., and Noth, E.
M ¼ SyntaxþProsody: A syntactic-prosodic labelling scheme for large spontaneous
speech databases. Speech CommunicatioS n, 25(4) (1998): 193–222.

Batliner, A., Mobius, B., Mohler, G., Schweitzer, A., and Noth, E. Prosodic models,
automatic speech understanding, and speech synthesis: towards the common ground.
In: Proceedings odd fo the European Confn erence on Speecff h Communication and Technologll ygg
(Aalborg, Denmark), 4 (2001b): 2285–2288.

Batliner, A. and Noth, E. The prediction of focus. In: Proceedings of the European
ConCC fn erence on Speecff h Communication and Technologll y (gg Paris), 1989: 210–213.

Batliner, A., Noth, E., Buckow, J., Huber, R., Warnke,V., and Niemann, H. Whence and
whither prosody in automatic speech understanding: A case study. In: Bacchiani, M.,
Hirschberg, J., Litman, D., and Ostendorf, M., (eds.), Proceedings of the Workshop on
Prosody and Speech Recognition 2001 (Red Bank, NJ)J , 2001c: 3–12.

Batliner, A., Nutt, M., Warnke, V., Noth, E., Buckow,J., Huber, R., and Niemann, H.
Automatic annotation and classififf cation of phrase accents in spontaneous speech.
In: Proceedings odd fo the European Confn erence on Speecff h Communication and Technologll ygg
(Budadd pa est), 1, 1999: 519–522.

Prosodic Models, Automatic Speech Understanding 41



Black, A.W. and Taylor, P. CHATR: a generic speech synthesis system. In: Proceedings odd fo
the International Confn erence on Computationaff l Linguistics (KyKK oto, Japan), 2, 1994:
983–986.

Black, A.W., Taylor, P., and Caley, R. The Festival speech synthesis system–SysteTT m
documentation. CSTR Edinburgh. Edition 1.4, for Festival version 1.4.0.[http:=
=www.cstr.ed.ac.uk=projo ects=festival=manualfestiff val= toc.html], 1999.

Botinis, A., Granstrom, B., and Mobius, B. Developments and paradigms in intonation
research. Speech Communication, 33(4) (2001): 263–296.

Campbell, W.N. Syllable-based segmental duration. In: Bailly, G., Benoı̂t, C., and
Sawallis, T.R., (eds.), Talking Machines: Theories, Models, and Designs, Elsevier,
Amsterdam, 1992: 211–224.

Campbell, W.N. and Isard, S.D. Segment durations in a syllable frame. Journal ofo
Phonetics, 19 (1991): 37–47.

Dogil, G. and Mobius, B. Towards a model of target oriented production of prosody. In:
Proceedings odd fo the European Confn erence on Speecff h Communication and Technologll ygg
(Aalborg, Denmark), 1 (2001): 665–668.

Fujisaki, H. A note on the physiological and physical basis for the phrase and accent
components in the voice fundamental frequency contour. In: Fujimura, O., editor,
Vocal Physiologll ygg : Voice Production, Mecdd hanisms and Functions, Raven, New York,
1988: 347–355.

Grice, M., D’Imperio, M., Savino, M., and Avesani, C. Strategies for intonation labelling
across varieties of Italian. In: Jun, S. A., editor, Prosodic Typology: The Phonology ofo
Intonation anII d Phrasing. Oxford University Press, Oxford, UK, 2004.

Hirschberg, J. Pitch accent in context: Predicting intonational prominence from text.
Artifi iciaff l Intelligence, 63(1–2) (1993): 305–340.

Hirschberg, J. and Pierrehumbert, J. The intonational structuring of discourse. In:
Proceedings of the 24th Annual Meeting of the ACL (New York), 1986: 136–144.

Hirst, D. and Di Cristo, A., (eds.), Intonation Systems–A Survey of Twenty LanguageII s.
Cambridge University Press, Cambridge, UK, 1998a.

Hirst, D. and Di Cristo, A. A survey of intonation systems. In: (Hirst and Di
Cristo:1998a), 1998b: 1–44.

House, D. Tonal Perception in Speech. Lund University Press, Lund, 1990.
House, D. Differential perception of tonal contours through the syllable. In: Proceedings

of the International Conference on Spoken Language Processing (Philadelphia, PA),
1 (1996): 2048–2051.

Kießling, A. Extraktion und KlKK assill fi iff kii ation prosodiscdd her Merkmakk le inll der automatiscdd hen
SprachverarbeitunS g. Berichte aus der Informatik. Shaker, Aachen, 1997.

Klein, M. Standardization efforts on the level of dialogue act in the MATE project.
In: Proceedings of the ACL Workshop ‘‘Towards Standards and Tools for Discourse
Tagging’’ (Universityt ofo Marylr anll d), 1999: 35–41.

Ladd, D.R. IntonationaII l Phonologll ygg . Cambridge University Press, Cambridge, UK, 1996.
Ladd, D.R. Introduction to part I. Naturalness and spontaneous speech. In: (Sagisaka

et al., 1997), 1997: 3–6.
Lamel, L., Lefevre, F., Gauvain, J.-L., and Adda, G. Portability issues for speech recog-

nition technologies. In: Proceedings of the Human Language Technology Conference
HLT-2001HH (San Diego, CA), 2001: 9–16.

42 A. Batliner and B. Möbius
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JULIE CARSON-BERNDSEN and MICHAEL WALSH

PHONETIC TIME MAPS
Defe ining Constraintsff for Muff ltilinear Speech Processing

ABSTRACT. This paper presents a constraint-based model for the interpretation
of multilinear representations of speech utterances which can provide important
fiff ne-grained information for speech recognition applications. The model uses explicit
structural constraints specifyff ing time maii pa s–overlap and precedence relations
between features in both the phonological and the phonetic domains–in order
to recognise well-formed syllable structures. In the phonological domain, these
constraints together form a complete phonotactic description of the language, while
in the phonetic domain, the constraints define the internal structure of phonological
features based on phonetic realisations. The constraints are enhanced by a constraint
relaxation procedure to cater for underspecififf ed input and allow output repre-
sentations to be extrapolated based on the phonetic and phonological information
contained in the constraints and the rankings which have been assigned to them. This
approach thus describes the integration of explicit phonetic knowledge into a
computational linguistic model to improve robustness in speech recognition.

KEYWORDS. phonotactic models, phonetic time maps, fiff nite state transducers,
multilinear representations

1. INTRODUCTION

This paper presents a computational linguistic model which has been
developed for the explicit purpose of providing fiff ne-grained structural
information for speech technology applications. The model has been
described in detail elsewhere (Carson-Berndsen, 1998, 2000) but we
review the model below with explicit reference to the types of constraints
it assumes and discuss how these have been enhanced to address the
notion of robustness in speech recognition. Our primary concern in this
paper is to highlight areas in which we believe explicit phonetic and
phonological knowledge constraints can contribute to speaker- and
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corpus-independent speech recognition and reduce the need for training
data.

Pols (1999) highlights a number of areas in which insights of computa-
tional phonetics should be able to contribute to a more robust speech
technology improving system performance. For example, humans have
the ability both to compensate for noisy or underspecififf ed information
in speech utterances and to predict what will come next. Speech recogni-
sers must be flexible and adaptable and should model more explicitly the
functionality of human behaviour, although not necessarily attempt to
replicate it exactly. There are varying systematic types of phonetic
knowledge which could be incorporated more explicitly into speech rec-
ognition systems. Such consistent (predictable) characteristics of speech
include durational variability, coarticulation and communicative expec-
tation, to name but a few (cf. Pols, 1999 for a more comprehensive list
and explanation). Experimental phonetics has concerned itself for many
years now with such characteristics but, as yet, only very few results of
these studies have been integrated into speech recognisers explicitly.
The motivation for the research presented in this paper has grown out
of a desire to more explicitly model phonetic and phonological knowl-
edge for use in the speech recognition process. Our approach proposes
modelling such knowledge in terms of constraints on the well-formedness
of phonological and phonetic representations, modelling the ability of the
native speaker to decipher legal from illegal structures in a language,
to predict what fully specififf ed set of structures corresponds to some
underspecififf ed (or noisy) representation, and to interpret the overlapping
gestures found in coarticulation.

In what follows, we discuss how phonological and phonetic con-
straints can be modelled and used by a computational linguistic model
for speech recognition. This is very much in line with parallel research
by Deng (1997, 1998) who proposed an autosegmental feature-ff based
approach to generating word pronunciation models represented as finite
state automata which were then interfacedff with a trended HMM. While
our motivation is very similar, the constraint-based model is based on a
complete phonotactic description of a language which is used to provide
top-down constraints on such multilinear (autosegmental) feature repre-
sentations. The fine grained information developed in connection with
this model may also be used for fiff ne tuning of alternative stochastic
approaches (cf., for exampff le, Jusek et al., 1994).

The next section discusses the motivations foff r the constraint-based
model, in particular the multilinear representation of speech utterances
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which serves as input to the model. Section 3 briefly reviews the model in
the context of speech recognition and section 4 discusses the application
of phonotactic constraints in the phonological domain. Section 5 demon-
strates how this technique is being extended to the phonetic domain to
allow for a representation which is more closely related to the speech
signal. Section 6 describes how the constraints in each domain can be
relaxed in order to extrapolate the output representations given noisy
input data. Section 7 concludes with some discussion of future work.

2. TIERS, FEATURES AND CONSTRAINTS

The original motivation for the design of the constraint-based computa-
tional linguistic model was to address specififf c problems in the area of
speech recognition below the level of the word. In particular, the problem
of out-of-vocabulary items, also termed the ‘‘new word’’ problem, is
addressed explicitly in the model. This is done by including completell pho-
notactic descriptions of a language which describe not only those forms
which are described in some corpus lexicon, but also all potential forms
which adhere to the constraints imposed by the language. We discuss this
issue in more detail in section 4. Another specififf c problem addressed by
this approach is the modelling of coarticulation phenomena. This is done
by assuming a non-segmental approach to the description and interpret-
ation of speech utterances which avoids having to segment an utterance
into non-overlapping units at any level of representation.

Speech utterances are defiff ned in the model in terms of a multilinear
representation of tiers of features which are associated with signal time.
The notion of tiers of features is not new in the area of phonology (cf.,
for example, Goldsmith, 1976, 1990; Browman and Goldstein, 1989)
and indeed the non-segmental approach underlies the YorkTalk speech
synthesis system (cf., for example, Coleman and Local, 1992); however,
it is only more recently that researchers in speech recognition are begin-
ning to consider this type of representation more explicitly. Our research
has focussed on optimising the constraint-based model for interpreting
multilinear representations of speech utterances and we have, therefore,
placed little emphasis on developing the front-end feature extractors
assumed by our model, working instead with bootstrapped labelled data
for test purposes. However, recently there has been a significant upsurge
in phonetic feature extraction and classififf cation, and automatic transcrip-
tion using the type of features proposed in our model (e.g. Salomon and
Espy-Wilson, 1999; Koreman, Andreeva, and Strik, 1999). Ali et al.
(1999) discuss a method for automatic segmentation and categorisation
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into phoneme groupings, in particular the obstruent grouping. For
example, both stops and fricatives are detected as part of a two-stage pro-
cess, voicing detection followed by place of articulation detection. Each
of these stages contributes specififf c information to the overall detection
of each of these manner classes. Voicing detection in turn relies on several
specififf c features which are characteristic to the particular manner class as
does the place of articulation detection.

Chang, Greenberg, and Wester (2001) propose an elitist approach to
articulatory-acoustic feature extraction, based on multilayer perceptron
(MLP) classifiers, known as ARTIFEX. This approach restricts frame
selection to those for which the MLP classifiers are highly confident.
They demonstrate that by training articulatory-place classification in a
manner-specific way, place-feature extraction can be improved signifi-
cantly. Their primary motivation for ARTIFEX has been to devise an
efficient method for automatic phonetic annotation of large data sets
which does not rely on a classification into phonetic segments thus mak-
ing such annotated material more easily accessible to researchers in pho-
netics and speech technology. It is exactly this type of feature extraction
which is assumed by the model presented in the next section.

Results of an articulatory-acoustic feature classification can be repre-
sented in terms of a multilinear event representation, a tiered structure of
such phonological features analogous to an autosegmental score (Gold-
smith, 1990) and not unlike that used in the synthesis model of articula-
tory phonology (Browman and Goldstein, 1989). Shawn Chang has
kindly provided us with articulatory-acoustic feature data from the
TIMIT corpus for evaluation purposes which is extracted using the tech-
niques described in Chang, Greenberg, and Wester (2001) and the feature
set defined in Chang, Shastri, and Greenberg (2000); this data was the
input to the example in Figure 1. We have selected a subsection of a
longer utterance here for purposes of illustration. The details of the com-
plete utterance would not be legible in a figure of this size. The utterance
subsection depicted in Figure 1 is the word pace; the spectrogram rep-
resentation is shown for comparison purposes. The feature set is based
loosely on the International Phonetic Alphabet classification of features
with the addition of a tier associated with a static versus dynamic
spectrum.

As can be seen from the figff ure, each feature in a multilinear event rep-
resentation is associated with a specific tier (on the vertical axis) and with
a specififf c time interval in terms of milliseconds (on the horizontal axis).
The features do not all start and end simultaneously. An overlap of
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properties exists in any time interval; for example, in Figure 1 below the
featurff e rd- begins before thed-d voc feature indicating that the lips have been
spread during the plosive (stp) anticipating the following nonround
vowel. The multilinear event representation captures coarticulation
phenomena and these are then interpreted by the computational linguis-
tic model as described in Sections 3 and 4.

As will be explained in further detail in the next section, the computa-
tional linguistic model assumes that these features are autonomous (i.e.
independent of each other), although the feature extraction process
clearly does assume dependencies (see Chang, Greenberg, and Wester,
2001). Feature detection is not an autonomous process; the realisation
of particular features may be dependent on the presence or absence of
other features in the signal. From the point of view of the model
described in the next section, however, we are only concerned with these
dependencies to a certain extent. The model treats the features thus
extracted as autonomous events (i.e. feature-interval pairs). Furthermore,
the computational linguistic model also ignores both undefiff ned (und) andd))d)d

Figure 1. Multilinear event representation of pace.
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nil information (i.e. a feature which is not relevant for a particular sound
such as vowel height for consonants) and treats both these features as
gaps on that tier in the representation. The resulting multilinear event
representation (without the spectrogram) which serves as input to the
computational linguistic model is that given in Figure 2.

Amultilinear event representation of a speech utterance is in fact highly
constrained. It is not the case, that any combination of features can occur
in any order. The allowable combinations of features are dictated partly by
the phonological structure of the language, as defiff ned by the phonotactics,
and partly by predictable phonetic variation, which often results from
limitations associated with human speech production (e.g. maximal com-
munication with minimal effort; cf. Boersma, 1998) leading to apparent
deletions, insertions and substitutions in the speech stream.
Indeed allophonic information has been shown to be very valuable for
speech segmentation (Church, 1987) but systematic modelling of this type
of constraint has been consistently avoided in current speech technology.
Furthermore, both the phonological and many of the phonetic constraints
referred to here are restricted to the domain of a syllable (cf. Carson-
Berndsen, 1990; Greenberg, 1999 and a wealth of literature on what have
been traditionally termed phonological processes). Although speech tech-
nology has proposed very effiff cient models within the triphone domain, this
domain does not provide enough context to fully avail of these
constraints. That is not to say that the only relevant unit for speech recog-
nition is the syllable, but rather that units of varying granularity can be
constrained within the syllable domain and can therefore provide impor-
tant information for segmenting speech signals. The constraints which
are applied in the syllable domain are discussed in Sections 4 and 5 below.

Figure 2FF . Multilinear event representation of pace with gaps for nil and und.
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Once phonetic and phonological constraints are modelled explicitly in
a speech recognition system, they can be used to not only guide the
interpretation of multilinear event representations but also to provide
top-down predictions both for missing information and for expectations
of what has yet to come. In Section 6 of this paper, we will illustrate how
an underspecififf ed multilinear representation (i.e. a representation with
missing information), can be interpreted by a computational linguistic
model known as the Time Mapa model and how the output represen-
tation can be extrapolated using phonetic and phonological constraints
to attain a representation which is more fully specified. We first sketch
the model briefly in Section 3. A more comprehensive description can
be found in Carson-Berndsen (1998, 2000).

3. THE TIME MAP MODEL

The Time Mapa model was proposed as a computational linguistic model
for speech recognition by Carson-Berndsen (1998) and has been tested
within a speech recognition architecture for German. The model has
recently been extended to English and has been provided with an inter-
face which allows users to defiff ne and evaluate phonotactic descriptions
for other languages and sublanguages. This generic development environ-
ment is known as the Language IndependentInnI Phonotactic SystemSSyS
(Carson-Berndsen and Walsh, 2000a, b). LIPS aims to provide a diag-
nostic evaluation of the phonotactic descriptions in the context of speech
recognition. That is to say, rather than just providing recognition results,
partial analyses can be output indicating which constraints have or have
not been satisfiff ed and where the parsing breaks down.

The TimeTT MaMM pa model uses a fiff nite-state network representation of the
phonotactic constraints in a language, known as a phonotactic automa-
ton (cf. Section 4 below), together with axioms of event logic to interpret
multilinear representations of speech utterances. These axioms are
defiff ned in detail in Carson-Berndsen (1998) building on Bird and Klein
(1990); they are used to infer temporal relations (overlap, precedence,
immediate precedence and temporal inclusion) between features in a
multilinear representation. For example, a precedence relation ( > )
between two features is defined with respect to the temporal endpoint
of the first feature and the temporal start point of the second feature;
since the relation is transitive if feature a precedes featureff b and featurff e
b precedes featurff e c then featurff e a also precedes featurff e c
(ea > eb^ eb > ec) ea > ec). In order to provide speech utterances with
a phonological interpretation, this approach encompasses both an
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absolute time level, in which speech signals are related to speech events by
temporal annotations (in terms of millisecond values), and a relative
time level, in which speech events are related to each other in terms of
overlap and precedence relations. The architecture of the model in the
context of speech recognition is depicted in Figure 3.

Input to the model is a multilinear representation of a speech utter-
ance in terms of absolute time events, i.e. features with start and end
points which are extracted from the speech signal. Phonological parsing
in the Time Mapa model is guided by the phonotactic automaton which
provides top-down constraints on the interpretation of the multilinear
representation, specifyff ing which overlap and precedence relations are
expected by the phonotactics. If the constraints are satisfied, the parser
moves on to the next state in the automaton. Each time a final state of
the automaton is reached, a well-formed syllable has been found which
is passed then to a corpus lexicon which distinguishes between actual
and potential syllables. The corpus lexicon is compiled from the generic
lexicon described in Carson-Berndsen (1999).

Figure 3FF . Time map architecture.
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4. PHONOTACTIC CONSTRAINTS

The primary knowledge component of the model is a complete set of pho-
notactic constraints for a language which is represented in terms of a
fiff nite state automaton. A subsection of a phonotactic automaton for
CC-combinations in English syllable onsets can be seen in Figure 4.
The arcs in the phonotactic automaton define a set of constraints on
overlap relations which hold between features in a particular
phonotactic context (i.e. the structural position within the syllable
domain).1 The phonological features used in this figure are the features
of Chang, Greenberg, and Wester (2001) which are defiff ned with respect
to a tier model where the tiers define phonation, manner of articulation,
place of articulation, vowel height, rounding, tenseness and static=
dynamic spectrum. In the phonotactic automaton of Figure 4, the
constraint C1CC1: stp �voi-, for exampff le, states that the featureff stpt (a
plosive) on the manner tier should overlap the feature voi- (voiceless)
on the phonation tier. The millisecond values refer to the average
durations for the sounds in this particular phonotactic context.

The phonotactic automata of the TimeTT MapMM model are defiff ned with
respect to the syllable domain. While traditional speech recognition sys-
tems do model a restricted phoneme or phone context, it is not with respect
to the syllable domain, but in terms of a statistical dependence on immedi-
ate neighbouring units. However, this misses a significant amount of con-
textual information which is used by native speakers to distinguish illegal
from well-formed structures of their language. The phonotactic automaton

FiFF gi ure 4. English CC-onsets.
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is based on the fact that the number of syllables in a language is fiff nite and
therefore a complete description of relevant constraints can be provided.
However, a phonotactic automaton can also be extended to include other
levels of granularity such as phonological words specifyiff ng ‘‘syllable-tac-
tics’’ (see below) and other information types such as graphemes, allo-
phones etc. This new construct is termed a multilingual time mapa , a
multilevel fiff nite state transducer which facilitates portability of the Time
Map model to other languages (see Carson-Berndsen, 2002).

Since it is a multilinear input representation which is constrained by
this phonotactic automaton, there is no strict segmentation of the input
at the level of the phone or phoneme and the constraints apply not to
the actual temporal annotations of the input but to the temporal relations
which exist between them. Therefore, when applying this automaton to
the example multilinear event representation of Figure 2, it is not neces-
sary that the start and end points of the features stpt and voi- be the same.
Also, the fact that the rd- feature also overlaps with thed-d stpt and voi-
features (modellff ing coarticulation) does not prevent this arc in the
automaton being chosen. This is illustrated in Figure 5 using a subsection

FigureFF 5. Application of constraints to the multilinear event representation.
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of the complete phonotactic automaton showing only the relevant
arcs.

As defiff ned in Ashby, Carson-Berndsen, and Joue (2001), a phonotac-
tic automaton can be constructed for whatever language is to be recog-
nised by the system on the basis of whatever feature set has been
chosen to classifyff the speech signal. Thus the model has been equipped
with multilingual functionality. Furthermore, since a phonotactic
automaton models all possible combinations of sounds in the syllable
domain of a language, at each position in the automaton, it is possible
for the model to predict what will come next. The constraints, therefore,
provide top-down information for the interpretation of multilinear event
representations of speech utterances. The advantage of the phonotactic
constraints is that they restrict all outputs of the model to structures
which are well-formed in the language and are, therefore, a means of
treating out-of-vocabulary items and modelling the predictive power of
a native speaker of a language. Partial analyses may also be output for
diagnostic purposes and extrapolation. While this addresses the notion
of robustness in speech recognition to a certain extent, the main criticism
we would have of our original model, is that it did not take any statistical
knowledge into account and thus provided no means of ranking the out-
put hypotheses. For this reason, we have extended the phonotactic
automaton and the parsing procedure to incorporate a number of
additional constraints.

Firstly, each feature participating in a constraint is now augmented by
an average duration parameter with respect to the particular phonotactic
context in which it appears. These average durations are calculated on the
basis of a large body of data, but are not intended to be corpus- or
speaker-specific and may need to be tuned to reflect speech rate. The dur-
ation parameter is used to defiff ne the prediction space for the next arc in
the phonotactic automaton during processing and thus merely serves as a
rough temporal guideline for parsing. Clearly, higher-level constraints,
such as syllable position in the phonological word or position in the
phrase, will affect how this duration parameter will be interpreted.

Secondly, phonotactic automata are defined with respect to different
syllable types (e.g. stressed vs. unstressed) and a ‘‘syllable-tactics’’2 con-
strains how these types are realised in phonological words stipulating
how stressed and unstressed syllables can be combined in larger domains.
Lexical stress, acoustic realisations of accent and other types of prosodic
information are assumed to form additional tiers in the multilinear rep-
resentation and thus are treated as events which temporally overlap with
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the phonological features defiff ned above. While the model does provide
explicitly for the integration of other higher-level information, this has
not been the main emphasis of the work thus far; it represents the next
logical step in the development of the model, however.

Thirdly, we have integrated a constraint ranking methodology into
the model by allowing constraints on the arcs to be ranked and an overall
threshold to be defiff ned which provides the basis for constraint relaxation.
The aim of constraint relaxation is to cater for imperfect and noisy input
by allowing constraints to be relaxed and output representations to be
extrapolated based on structural information defined in the phonotactics.
This will be discussed in more detail in Section 6.

Despite the completeness of the phonotactic constraints and the fact
that they are not dependent on segmentation of the input into non-
overlapping phonemic units, the model has in the past been viewed as a
primarily phonological approach based on features which are not
apparent in the signal. We now address this issue in Section 5.

5. TOWARDS PHONETIC CONSTRAINTS

The LIPS generic development environment for the TimeTT MaMM pa model is
independent of any particular feature set and allows users to define the
phonotactic automaton with respect to any feature set. However, as dis-
cussed above, the features in the input representation are treated auton-
omously. In this context, we distinguish between two different types of
event within a knowledge domain: simplex events and complex events.
A simplex event is atomic i.e. has no internal structure with respect to
a knowledge domain. For example, the phonotactic automaton in
Section 4 assumed that the plosive feature stpt is a simplex feature in
the phonological domain. It becomes a simplex event when coupled with
a temporal annotation. A syllable is a complex event in the phonological
domain, however, as it has an internal structure based on the compo-
sition of the simplex events defiff ned in the phonotactic automaton.

This notion can be extended to the phonetic domain (cf. Carson-
Berndsen, 1998). We assume that, at the phonetic level, a feature such
as plosive is indeed complex consisting of combinations of articulatory
movements or acoustic manifestations. A complex plosivll e feature maff y
consist of simplex events such as closure, release, fricatioff n, each of which
will be realised differently depending on the context in which it occurs. In
English, a voiceless plosive in syllable initial position before a vowel will
realise all three of these features. However, in syllable fiff nal position, the
release may not be apparent at all. This information may provide a useful
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cue in parsing (Church, 1987) but is usually neglected in speech recog-
nition. Furthermore, information on the transition phase from plosivll e
to vowel should also be included as this provides useful indications: an
increase in F1 freff quency during the transition to the vowel is character-
istic of all plosive-vowel transitions and a cue to manner of production
(Kent and Read, 1992; Stevens, 1998).

In order to cope with this type of predictable variation in the model,
we extend the phonotactic automaton by a transduction relation which
maps between phonological feature automata, known as phonetic time
maps and a set of constraints on their overlap relations.3 A phonetic time
mapa defines the internal structure of a complex event in the phonetic
domain. The transduction relation defiff nes the many-to-one mapping
between the phonetic time maps and the phonological feature itself. An
example of a possible phonetic time map for a plosive in initial syllable
position before a vowel is depicted in Figure 6.

The phonetic time map for plosive in this position consists of two
alternative paths. One path models the internal structure of the complex
event stp as a closure (clo) event, foff llowed by a release (rel) event, fol-l))l))l
lowed by a frication (frc(f( ) event followed by a increase in F1 (F1FF1F inc) event.
The second path allows for the fact that if the events rel and frcff are
detected independently, then they may not be temporally distinct. The
TimeTT MaMM pa model also defines a transduction relation between the

Figure 6. An example phonetic time map for plosive (stp).
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phonetic time map and the complex event stp as it is defiff ned in this
position in the phonotactic position.

Similarly, the place of articulation feature, for the plosive in this pho-
notactic context before a vowel, will be heavily influenced by the formant
transitions of the following vowel. Thus, a phonetic time map for the
place feature of the plosive would expect to use a constraint on the F2

and possibly F3 transitions which seem to be sensitive to the place of
articulation. In particular, the starting frequency (or locus) of F2 may
be used.

Other types of predictable phonetic variation which can also be cap-
tured within phonetic time maps are what are traditionally termed
phonological processes. For example, the neutral vowel in an unstressed
syllable is elided in spontaneous speech before a nasal causing the latter
to become syllabic. This is traditionally defined in terms of two phono-
logical processes: elision of the neutral vowel, and nasal becoming syl-
labic at the end of a word when preceded by an obstruent. This is
modelled by a phonetic time map for the neutral vowel in the phonotactic
context of a nasal is depicted in Figure 7. The phonetic time map caters
for both the neutral vowel followed by the nasal and the syllabic nasal in
the phonetic domain, allowing presence or absence of the neutral vowel
in this context. The context for application of this transduction is simi-
larly defiff ned by the phonotactic automaton which models the syllable
domain. The feature neut_V occurs in the phonological domain primarily
in an unstressed syllable.

FiFF gi ure 7. An example phonetic time map for neutral vowel.
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The phonetic time maps aim to integrate fiff ner phonetic detail into the
model by defiff ning constraints which go beyond the discrete phonological
features to allow a degree of gradualization to be included. Each phono-
logical feature in a particular phonotactic context is represented in terms
of a phonetic time map which maps the different degrees of a feature onto
a generalisation of that feature. For example, a range of degrees of voic-
ing in particular syllable contexts can be modelled in a phonetic time map
by allowing voicing to be scaled rather than assuming the binary distinc-
tion of voi- and voiþ seen at the phonological level. Since, during pars-
ing, the phonetic time maps are used to guide the interpretation of the
multilinear representation, all that is necessary in this case is to model
a precedence relation between one degree of voicing and another (a
decrease or an increase); the actual point of change (boundary between
one degree and another) becomes irrelevant. Of course, this is
dependent on being able to distinguish between various degrees of voic-
ing during feature extraction.

Experiments with various phonetic time maps modelling predictable
variation show that the set of phonetic time maps must be constructed
with respect to phonetic or acoustic features which can be detected in
the signal. In some cases, the feature sets already being used are sufficient
for this task. However, as was seen above, in other cases, it is necessary to
include a fiff ner level of granularity such as the closure and release phases
of stops. Since it has now been demonstrated that an extensive feature set
can be classififf ed very accurately from the signal using the elitist approach
(Chang, Greenberg, and Wester, 2001) referred to in Section 2, a more
fine-grained representation should now also prove possible. Since the
TimeTT MaMM pa model is not restricted to any one technique, it is open to com-
bining feature input from multiple sources. LIPS serves as an experimen-
tation environment for testing and diagnostically evaluating constraints
which can be modelled in the syllable domain.

Clearly the phonetic time maps and the phonotactic automata define
sets of top-down constraints which may not always be fulfiff lled for every
multilinear event representation input to the system. The input may be
underspecified or noisy, which may lead to some features not being
recognised or to the wrong features being recognised during feature
extraction. Rather than propagate the same degree of underspecification
further up the recognition process, the TimeTT MaMM pa model attempts to
resolve as much of the underspecification as possible by applying con-
straint relaxation and output extrapolation procedures in both the pho-
netic and the phonological domains. This is described in the next section.
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6. CONSTRAINT RELAXATION

Constraint relaxation should be performed in the model if only some of
the constraints specified by either the phonotactic automaton or pho-
netic time maps can be satisfiff ed. As it stands, this is a very arbitrary
statement. However, when coupled with a constraint ranking, it
becomes a method for dealing with variability and underspecification
in the input representation. Constraint ranking is a data-oriented order-
ing of constraints in particular phonotactic contexts. For example, con-
straints may be ranked with respect to frequency, average duration and
percentage overlap of features in specific structural contexts. This infor-
mation can either be specific to a single corpus or may be based on data
from several different corpora. Based on this ranking, constraint relax-
ation can be applied, for example, when an infrequent feature is
encountered or a duration is outside a given standard deviation. Fur-
thermore, it is possible to combine this type of ranking with cognitive
factors in order to go beyond a corpus-dependent ordering (Carson-
Berndsen and Joue, 2000). Constraint relaxation can then be regarded
as a means by which particular constraints on an input representation
can be ignored. We illustrate constraint relaxation simply using the fol-
lowing three constraints on overlap relations on a particular arc of a
phonotactic automaton:

C1 : stp
� voi- with ranking 0:6

C2CC2C : voi-� labll with ranking 0:4

C3CC3C : stp� lall b with ranking 0:3

Assuming the arc has a threshold in this phonotactic context of 0.7,
then at least two of these constraints must be satisfiff ed (i.e. the sum of
the rankings must reach the threshold) in order for this arc to be taken.
A multilinear event representation such as that given in Figure 8 would
satisfyff the constraints C1 and C3 in the interval being examined and
exceed the threshold and therefore, this arc in the phonotactic automaton
can be taken.

Output extrapolation, on the other hand, is performed to further
specify the output representation if the constraints specify expectations
that do not conflict with information found in the input. Here again, a
ranking of the constraints, which can participate in output extrapolation,
is required. We use same constraints C1, C2CC2C , C3CC3, for illustration but this
time but choose a threshold value of 0.6. Given an input representation
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which is underspecififf ed with respect to place of articulation as depicted
on the left of Figure 9, then constraint relaxation will allow the arc to
be taken with only C1 satisfiff ed. Output extrapolation can then be per-
formed using C2CC2C and C3CC3 if there is no information in the input represen-
tation which explicitly conflicts with these constraints such as another
place of articulation, for example. So although the input representation
was underspecified with respect to place of articulation, the extrapolated
output representation on the right side of Figure 9 will contain this
information as it was augmented using the structural knowledge and tem-
poral information contained in the phonotactic automaton.

The application of output extrapolation does not guarantee that the
output syllable structures are fully specified, however, only that they
are well-formed. Should the output representation still be underspecifed,
the corpus lexicon will be able to further resolve some of the underspeci-
fication by ranking those multilinear representations which can be sub-
sumed by a fully specififf ed entry in the lexicon higher than those which
do not. Figure 10 shows a later interval in the processing of the multilin-
ear event representation where output extrapolation has been unable to
augment the underspecified representation any further. The voicing speci-
fication for the fricative is missing from the input but both voiced and
voiceless coronal fricatives are possible in this phonotactic position.
The extrapolated output subsumes two forms, [peIs] anff d [peIz]. However,
the corpus lexicon only contains one of these forms and therefore, the
representation can be augmented with the voi- feature and this corpus

Figure 8. Illustration of constraint relaxation in a particular interval.
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Figure 10. Illustration of output after lexicon consultation.

Figure 9. Illustration of output extrapolation in a particular interval.

62 Julie Carson-Berndsen and Michael Walsh



form ranked higher than its well-formed counterpart which is not
included in the corpus.

Although output extrapolation can also be applied at the fiff nest level
of granularity of the TimeTT MaMM pa model, using the constraints defiff ned in
phonetic time maps, it is currently unclear whether extrapolating predict-
able phonetic information will be of real value in speech recognition. The
reason for this is that if predictable phonetic information is to be used to
segment the multilinear event representation, and this information is
missing in the input representation, then it may be incorrect to
augment the representation to include it. The phonotactic automaton
already provides top-down constraints which will provide a coarser seg-
mentation if the predicted phonetic information is not found in the sig-
nal. More experimentation remains to be done on this topic whenever
a more comprehensive set of phonetic time maps and their relevant
constraint rankings have been developed.

In LIPS, a distinction is made between online processing where speech
utterances are interpreted using the constraints and constraint rankings,
and offline processing, which is concerned with finding the optimal para-
meters and constraint rankings for the system (see Figure 11). While the
constraint rankings refer to individually ranked constraints on temporal
overlap relations between phonological or phonetic features, taken col-
lectively these rankings also provide the basis for weighting in the phono-
tactic automaton and the phonetic time maps respectively, through the

FiFF gi ure 11. Offline vs. Online Processing in LIPS.
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use of arc thresholds. A more detailed discussion of the role of constraint
rankings, arc weightings and constraint relaxation can be found in
Carson-Berndsen, Joue, and Walsh (2001).

7. CONCLUSION

This paper has presented a constraint model for interpreting multilinear
representations of speech utterances which can provide important fiff ne-
grained information for speech recognition applications. It was demon-
strated that the model integrates phonotactic and phonetic information
in a non-segmental fashion. Currently, we are working on developing a
wider range of phonetic time maps and investigating how they contribute
to robustness in the model through the use of the constraint relaxation
and output extrapolation techniques which were described above. While
our ongoing research is directed towards optimising this model through
the use of statistical information and cognitive constraint rankings, the
model also provides useful constraints for fine-tuning more stochastic
approaches for robust speech applications. Future directions for this
work are to investigate the application of the computational model in
the context of speech synthesis whereby multilinear phonetic representa-
tions are generated rather than interpreted by the model and serve as
parameters to a synthesis module. We believe that the use of the same
model for both recognition and synthesis will provide insights into the
different levels of granularity of information required for truly robust
speech applications and lead to approaches which combine linguistic
and statistical knowledge more explicitly. Furthermore, the integration
of phonotactic descriptions of other languages adds a dimension of multi-
linguality to our model which will support the incorporation of phonetic
features which are common among languages.

NOTES
1 The monadic symbols written on the arcs in Figure 5 are purely mnemonic for the
feature overlap constraints they represent; thff e � symbol represents the overlap relation.
2 The syllable-tactics is also defined in terms of a finite state automaton.
3 This is not unrelated to the allophonic parser described in Carson (1988) except that the
parser defiff ned there assumed a segmentation of the input into a string of allophones.
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INTRODUCING PHONETICALLY MOTIVATED,
HETEROGENEOUS INFORMATION INTO
AUTOMATIC SPEECH RECOGNITION

ABSTRACT. This chapter investigates a way to introduce more heterogeneous
information into an existing ASR system. A phonetic expx ert is implemented which
is specififf cally targeted at correcting the errors made by an existing ASR system. This
gives a heterogeneous system, where the individual items are designed to be comp-
lementary. To avoid the curse of dimensionality problem, the expert information
is introduced at the level of the acoustic model. Two types of expx ert configurations
are used, each providing discriminative information regarding groups of phonetically
related phonemes. The phonetic expx ert is implemented using an MLP. Experiments
show that, when using the expx ert in conjn unction with both a fullband and a multi-
band system speech recognition performance is increased and noise robustness
improved for a range of noise levels.

KEYWORDS. data-driven information extraction, heterogeneous processing,
multiple classifiers, noise robustness, phonetics, speech technology

1. INTRODUCTION

Within the area of speech recognition the paramount cause of the discre-
pancies between the performance of humans and machines is the lack of
immunity of Automatic Speech Recognition (ASR) systems to variation
in the acoustic signal not affecting the linguistic message; for example,
variation stemming from a change of speaker or speaking style, environ-
mental noise, or channel distortions (Lippmann, 1997; Pols, 1997).

Conventional ASR systems rely on a single source of information, i.e.
extracts a single type of spectral feature1 from the speech signal. This is in
sharp contrast to what we know about the way humans process speech.
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Both physiological and psycho-acoustic studies have shown that human
speech recognition is based on the extraction of parallel information from
the speech signal. In particular Greenberg (1997) described how different
types of speech segments (e.g. by their intensity) determine the type of
spectral processing they are given in the human ear. Work done by
Fletcher (reviewed in Allen, 1994) led to a suggestion of a model of
speech intelligibility in band limited speech. The model says that in
human recognition, phoneme identification errors in a given frequency
band are independent of the errors in another band. Further improve-
ments to this model were suggested by Steeneken (1992), who found that
in restricted transmission conditions, human subjb ects require different
optimal frequency ranges for the correct recognition of independent pho-
nemes. Investigating human perception, Ghitza’s (1997) experiments led
him to conclude that different phonetic features are transmitted in differ-
ent frequency regions. These experiments all indicate that incorporating
more heterogeneous processing into ASR systems might be a way to
escape from the limitation of the local performance maxima of current
ASR systems.

The term ‘heterogeneous’ means consisting of dissimilar or diverse
ingredients or constituentsdd . In speech recognition systems there are numer-
ous ways to obtain heterogeneity, ranging from combining multiple
competing, self-contained, high-performance systems, based on different
architectures and methodologies, to combining complementary types of
features. The incentives for employing heterogeneous processing in
ASR are various:

Theoretical motivation can be derived from research in classic pattern
recognition. By fusing different information streams it is possible to
exploit the strengths and weaknesses of the different features. Obviously,
the nature of the added information is crucial; adding more information
to a system is only beneficial to the degree that it is not redundant with
respect to the information already contained in the system. Two systems
exhibiting exactly the same response behaviour to a given input signal
pattern will not benefit from being combined. Theoretically, if systems
are mutually independent, and each of the systems is more right than
wrong, then combining the systems can decrease the overall error rate
(Turner, 1996; Bishop, 1995). However, in practice even less distinct
architectures, methodologies and features can be successfully combined.

Heterogeneous speech processing draws further empirical motivation
from the results of numerous physiological and psycho-acoustic studies.
It has been repeatedly demonstrated that the human brain is highly
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dependent on heterogeneous processing. Specififf cally, human speech rec-
ognition is based on heterogeneous processing of the acoustic signal
received by the ear. Gold and Morgan (2000) argue:

Although we don’t know exactly what signal processing occurs in the auditory
system, we do know that processing occurs with a range of time constants and
bandwidths. Given the robustness of human listening to many signal degrada-
tions, each of which would severely degrade an individual representation, it is
likely that many maps of the input signal are available to the brain.

In evolutionary terms, the speech production system is newer than the
auditory perception system, and it is therefore generally believed that the
different speech segments have developed their distinguishable spectral
characteristics to increase the chances of discrimination within a wide
range of natural auditory environments. For example sonorants and
non-sonorants have very different levels of intensity and this acoustic dis-
tinction triggers different processing in the auditory system (Greenberg,
1997). Studies that suggest the use of specififf c processing in different fre-
quency bands are also widely reported (Fletcher, 1953; Allen, 1994).
Experiments on the intelligibility of word pairs have shown that different
phonetic features are transmitted in different temporal-frequency slots
(Ghitza, 1994). A related conclusion is drawn by Steeneken (1992) who
showed that the optimal frequency range for recognising a phoneme in
restricted transmission conditions is very dependent on the type of pho-
neme. So although it is highly debatable whether speech recognisers
should mimic the human brain (Hermansky, 1997), some principles might
still be worth adopting for the speech recognition researcher.

Relying on multiple sources of information for pattern recognition
tasks can increase accuracy and efficiency of the application by taking
advantage of inherent weaknesses and strengths of the individual classi-
fiff ers (Ho, 1992; Kittler et al., 1998). The concept of combining classififf ers
has been analysed recently (Turner, 1996; Hansen, 1990), and within
speech applications there have been several studies on the use of sets of
classififf ers to increase acoustic modelling in speech recognition tasks ran-
ging from large vocabulary speech recognition to classififf cation of sylla-
bles, phonemes or groups of phonemes. The multi-stream framework is
one particular type of multiple classifier system that, in recent years,
has proved useful for experimenting with the use of heterogeneous
features and information sources (Bourlard, 1996). In a multi-stream
based system, parallel streams are processed independently before being
combined at a later stage.
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In the area of multiple classififf er systems, the crucial question to
address is of course: What type of extra information to add? Christensen
et al. (2000a) showed that combining several standard features in both
multi-stream and multi-band2 type systems could signififf cantly improve
performance. We further showed (Christensen et al., 2000b; Christensen
et al., 2000c) that designing the feature types so as to be particularly
tuned towards a particular phonetic group (such as voiced phones or
consonants) also helped improve performance. These experiments have
confiff rmed our hypothesis that introducing in particular phonetically
motivated information into ASR can help increase performance, and
have encouraged this further work in that direction.

One of the main questions arising in the multi-stream approach con-
cerns the nature of the feature streams to combine. Nearly all previous
multi-stream research has employed features designed primarily for con-
ventional, single-stream systems. Typically, the features that have been
chosen are those that have highest performance in isolation, under the
assumption that this will lead to the highest performance when the
features are combined. However, this assumption is not necessarily
valid and many multi-stream approaches, although often demonstrating
good performances, may appear ratff her ad hoc.

This chapter explores the clean speech performance and noise robust-
ness of an approach aimed at adding more complementary information,
specifically targeted at discriminating between larger groups of
phonemes. Central to the approach has been the extraction of the
phonetically motivated information in a data-drivendd fashion.

As a starting point the investigation will focus on a particular con-
figff uration of a heterogeneous system: A single feature type ASR system
(a stem system) which is combined with an expert system. Such a hetero-
geneous system is sketched in Figure 1. As the name indicates, the knowl-
edge extracted by the expert is rather specific, and a key issue is that the
expert is guided towards being complementary to what is modelled by the
stem system. In other words, the overall design idea is to target the expx ert
towards a particular type of errors occurring in the stem system.

Two fundamentally different stem systems are investigated: a fullband
and a multi-band system. Initially the chosen stem systems is informally
analysed with respect to any patterns arising from the type of confusion
errors that are prominent. The overall error rates for the stem systems
conceal a large variation in the individual errors from one phoneme to
another (Christensen, 2001). Examining the confusion matrices3 shows
that a significant number of confusions occur between larger groups of
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phonemes possessing largely phonetic similarities. This is in accordance
with Halberstadt (1998).

Two different ways of examining the confusion matrices are
employed, each collapsing the phonemes into different groups: either
by dividing the phonemes into broad classes {vowel, consonant, nasal,
liquid,dd,d silence}, or by using a voicing criteria and dividing the phonemes
into {voiced,dd,d unvoiced,dd,d silence}. It is of interest to see that confusions
occur between the different broad groups of phonemes.

The analysis of the confusion matrices points towards the inclusion of
more phonetic information into ASR systems. The approach adopted
here is aimed at adding more phonetically motivated information, specififf -
cally targeted at resolving the observed types of confusions, and derived
from the speech signal in a data-driven fashion. What is required is access
to a phonetic expert that can provide additional, heterogeneous infor-
mation to an already available, trained stem system like the current
fullband and multi-band systems.

An important question is how to introduce the expert information
into the speech recogniser. One approach, when adding information to
a statistical pattern recognition system is to simply augment the feature
vector with any additional features available. However, when training
statistical models, increasing the dimensionality of the feature space
increases the amount of data needed for securing a sufficient estimation
of the parameters. The phenomenon is often referred to as the curse of
dimensionality (Bishop, 1995). With a limited amount of training data
available, other ways of introducing the extra information are of interest.
Further, changing the composition of the feature vector requires a

FiFF gi ure 1. Schematic representation of a heterogeneous system comprising a stem system
(e.g. a single feature conventional fullband or a homogeneous multi-band system) and an
expert system.
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retraining of the whole system, which is a cumbersome task and not
always feasible. The experiments reported here avoid the curse of do imen-dd
sionalityt by introducing the additional, heterogeneous information at the
level of the acoustic models.

The following section briefly presents the theory and Sections 3 and 4
present details about the implementation of the expx erts employed.
Sections 5 and 6 present the results from the experiments combining
the expx ert system with a fullband and a multi-band stem system, respect-
ively. Finally, Section 7 summarises and concludes.

2. THEORY

Assume one has access to infoff rmation from an expx ert providing infor-
mation on the presence of certain phonetic features in the observed data.
Conventional ASR systems are defined within a statistical framework,
and so, if the presence of phonetic evidence can be expressed in a statisti-
cal manner, i.e. with posteriors, the statistical formulation of the
speech recognition problem can easily be modififf ed to accommodate such
knowledge.

In ASR the decoding task is aimed at finding the hypothesis or model
sequence that is the most likely given the data, X:XXX

M� ¼ argmax
M2M

PðMjXÞ ð1Þ

where M is the model sequence (typically word models) and M is the set
of possible model sequences given the vocabulary used.

The term to maximise when incorporating the expert information into
this expression, is then the joint posterior probability of the model
sequence M, the system parametersM,M k and the expx ert sequence E:

Pðk;M;E jXÞ ¼ Pðk;M jXÞ � PðE;M jXÞ ð2Þ
as k and E are independent. The fiff rst term, the posterior probability of
the model sequence, is obtained from the conventional acoustical model
(an MLP classififf er in the current work) in the system. The second term is
modelled by a separate MLP in the following work.

Figures 2 and 3 show an overview of how the posterior probabilities
are combined in the implemented systems using the above equations.
The expert MLP classifiers contribute the posterior probabilities and
are then multiplied with the per-phoneme posteriors obtained from the
fullband or multi-band system according to Equation (2)ff .
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FiFF gi ure 2. Overview of the combination of a fullband baseline system with a voicing
expert system.

Figure 3FF . Overview of the combination of a multi-band baseline system with a voicing
expx ert system.
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3. EXPERIMENTAL SETUP AND DATA

Two series of experiments are carried out. The fiff rst series investigates the
effect of adding expert information to a conventional connectionist
HMM=MLP system; in this case, a conventional fullband system. The
second series of experiments focusses on a multi-band system. Each series
of experiments is conducted with two types of expert: based on voiced-
ness criteria or classifying broad phonetic classes.

The data for training and testing the systems is taken from the Oregon
Graduate Institute Numbers95 database of recordings of American Eng-
lish speakers uttering continuous digit and number sequences over the
fixed telephone network (Numbers95, 1995). 112 minutes of speech
(13873 words in 3590 utterances) are used for training (of which a 10%
are used for cross-validation), and 38 minutes of speech (4670 words in
1206 utterances) from non-overlapping sets of speakers are used for
development testing purposes. The vocabulary size is 32 words. For test-
ing the noise robustness of the systems, noise samples from the NOISEX
database (Varga et al., 1992) are added per utterance at SNR levels of 0,
6, 12 or 18 dB. The car noise and factorff yr noise are chosen for their differ-
ent spectral characteristics.

Three different feature processing methods are used for extracting
basic features plus the energy: Mel frequency cepstral coefficients (mfcc)
(Davis and Mermelstein, 1980), Perceptual linear prediction coeffiff cients
(plpc) (Hermansky, 1990) and J-rasta filtered plpc’s (j-rasta-plpc)
(Hermansky, 1994). A feature vector is extracted on 25ms Hamming
windowed frames, each overlapping 50%. Delta and delta-delta coeffi-
cients (regressing over windows of 5 and 7 frames respectively) are added.

A fullband and a multi-band system, each based on connectionist
MLP=HMM entities, are used both individually to provide baseline results
and in conjn unction with the phonetic expx ert systems described above.
All MLPs are trained on featuff re vectors derived from 9 frames centered
around the current frame and each MLP has 33 outputs representing
32 phonemes and a silence label.

The FullbandBaseline system uses 12 basic features yielding a 39
dimensional feature vector. The MLP has 351 (9� 39) input units and
1500 hidden units. The MultibandBaseline system comprises four bands
with frequency ranges [216–778Hz], [707–1632Hz], [1506–2709Hz] and
[2122–3769Hz]4. 5, 5, 3 and 3 basic features are derived respectively yield-
ing corresponding vector dimensions of 18, 18, 12 and 12. The MLPs
have 162 (9� 18), 162, 108 (9� 12) and 108 input units and 1000,
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1000, 660 and 660 hidden units per band respectively. The two baseline
systems have a comparable number of parameters.

All experiments are evaluated in terms of Word Error Rates (WERs).

4. MODELLING OF PHONETIC INFORMATION

An expx ert MLP is employed to model the phonetic information to be
supplemented to the stem system, and thus provide an estimate for the
term P (E,Mjx) in Equation (2). The expert MLP is trained to distinguish
between a set of expert labels, i.e. phonetic classes. In the experiments
reported here, two different sets of expert labels are tried out: one classi-
fying speech segments into voiced,dd,d unvoiced and silence and another divid-
ing the phoneme set into fiff ve broad phoneme classes: vowel, consonant,
liquid (comprising traditional liquids and the approximant [w]), nasal
and silence. The mappings used to generate the appropriate target values
are given in Tables 1 and 2. Please note that only phonemes represented
in the data labelling of the number strings are included.

It was decided to train the expx ert MLPs with the same training data,
employing the same feature processing methods as the other MLPs used
in the experiments. The expx ert MLPs also have the same number of hid-
den units as the MLP used for the fullband classififf er, i.e. 1500. The labels
are obtained by mapping the training labels to the target value of the
appropriate phonetic group. Figure 4 illustrates this training process.

Table 1. Defiff nition of mapping from phoneme classes to voiced and unvoiced phoneme
classes.

Voiced=unvoiced Numbers 95 phone labels

Voiced iy, ih, eh, ey, er, ay, ah, ao, ow, uw, d, dcl, z, v, n, l, r, w
Unvoiced t, k, tcl, kcl, s, f,ff th, hh
Silence h#

Table 2. Defiff nition of mapping from phoneme classes to broad phoneme classes.

Broad class Numbers 95 phone labels

Vowel iy, ih, eh, ey, ay, ah, ao, ow, uw
Consonant d, t, k, dcl, tcl, kcl, s, z, f,ff th, v, hh
Nasal n
Liquid w, r, l, er
Silence h#
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So, do the expert MLPs succeed in classifying their designated
phoneme sub-sets? Figure 5 illustrates the accuracy of the trained broad
phoneme class MLP expert classififf er. The output posterior probabilities of
two utterances from the Numbers95 database are shown with the
correct labels superimposed. The darker the colour, the higher the
posterior probability is for that particular broad phoneme class and frame.
The top utterance is taken from the training and cross-validation part of the
database and the lower utterance is taken from the development test set of
the database. In both cases the classifier does, in general, succeed in produc-
ing high posteriors for correct classes. As expected, the utterance from the
development test set has a few more discrepancies between the labelling
(marked with the superimposed line) and the distribution of the output pos-
teriors. The Frame Error Rates (FERs) for the training+cross-validation
and development test set utterances are 6% and 16% respectively.

In Table 3 the frame error rates are shown for the training, cross-vali-
dation and development test set of the Numbers95 database. For all three
feature types tff he frame error ratesff for tff he experts are lower than for tff he
corresponding fullband systems. That is, the expx erts do contribute added
discriminant power to the fullband system for both types of phoneme
division and for all three types of feature.

5. ADDING PHONETIC INFORMATION TO
A FULLBAND ASR SYSTEM

This section describes experiments conducted with a fullband stem system
in combination with an expert system, which has been trained to provide

Figure 4.FF Overview of the training of a phonetic expert MLP. The target values are
obtained from the annotations of the database by a direct mapping of the labels, keeping
the alignments.
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Table 3.TT Frame error rates for the train, cross and development test part of the
Numbers95 database for the expx ert MLPs.

Feature
type Type of system

Training
(%)

Cross-validation
(%)

Development test
(%)

Broad expert 7.53 10.02 14.13
j-rasta-plpc Voicing expert 5.84 7.79 9.93

Fullband 8.32 12.74 23.32

Broad expx ert 8.68 11.92 14.77
plpc Voicing expx ert 7.90 10.39 15.07

Fullband 9.77 14.16 16.85

Broad expert 8.14 12.54 15.95
mfcc Voicing expert 9.23 10.37 12.44

Fullband 10.32 15.05 19.12

FiFF gi ure 5. Posterior probabilities for two utterances from the training and development
test part of the Numbers95 development test set respectively. The correct labels are super-
imposed. FER ¼ Frame Error Rate.
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complementary discriminant power to help resolve particular classi-
fiff cation confusions between phoneme sub-sets.

The different configff urations of fullband stem systems combined with
an expx ert system is described below. The performance of the systems will
be compared to a baseline system, which is a conventional single-stream
fullband system.

– The FullbandBaseline system is a full frequency range ASR system.
– The FullbandþVoicingExpert system is a stem fuff llband system com-

bined with an expx ert system providing posteriors from its voiced=d==
unvoiced classifier. The mapping from phoneme labels to voiced=
unvoiced=silence expert labels was given in Table 1.

– The FullbandþBroadExpert system combines an expert system trained
at classifying broad phoneme classes (mapping given in Table 2) with a
fuff llband stem
system.

5.1. Clean Speech Results

Table 4 lists the results obtained from testing all fullband based systems
on clean speech. In general, it is clear that the systems where phonetic
information is added perform better than the corresponding FullbandBa-
seline systems for the various feature types. This is true except for the
j-rasta-plpc FullbandþBroadExpert system, which performs a little worse
than the corresponding FullbandBaseline system.

Comparing the three features types, the j-rasta-plpc is the only feature
type where the FullbandBaseline system outperforms one of the systems with
phonetic experts. At the same time, it is also the feature type that exhibits the
best relative improvement: with the FullbandþVoicingExpert system.

5.2. Noisy Speech Results

Figures 6 and 7 show plots depicting the word error rates obtained from
testing the two systems and the corresponding baseline system in car and

TaTT ble 4ll . Results from combining baseline fullbands with fullband expx ert systems.

System j-rasta-plpc (%) plpc (%) mfccff (%)

FullbandBaseline 7.26 7.39 8.22
FullbandþVoicingExpert 6.77 7.22 7.75
FullbandþBroadExpert 7.54 6.81 7.73
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factory noise. The figff ures show the results from each of the three feature
processing methods.

Comparing the different systems when tested in the two types of noisy
environment, it is interesting to see that the relative performances of the

FiFF gi ure 6. Word error rates plotted against SNR for the FullbandBaseline, the Fullbandþ
VoicingExp and the FullbandþBroadExp systems forff j-rasta-plpc features. Tff he left anff d
right panels are the results from testing in car and factory noise, respectively.

Figure 7.FF Word error rates plotted against SNR for the FullbandBaseline, the Fullbandþ
VoicingExp and the FullbandþBroadExp systems for plpc features. The left and right
panels are the results from testing in car and factory noise, respectively.
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systems seem to be dependent on the noise type. When testing with
speech to which car noise samples are added, the FullbandBaseline per-
forms better for both plpc and mfcc features as the noise level increases.
For the noise robust j-rasta-plpc features, the FullbandþVoicingExp
systems seems to be slightly better in both clean and car noise affected
conditions. In the factory noise condition, all the feature types exhibit
the same relative performances, and the FullbandþBroadExp can be seen
to be consistently better than the other systems.

In the above described experiments the behaviour of the phonetic
expx ert is crucial for the performance, since it is the complementariness
of the errors of the expx ert which cause any observed increase in clean
speech performance and noise robustness. The experiments here have
been designed to demonstrate that adding phonetic information to a
high-performance ASR system is beneficial. It was chosen to model the
phonetic expert knowledge using a powerful MLP configff uration. How-
ever, only limited effort was spent trying to further optimise the experts.
Nevertheless, an improvement in performance was observed when
phonetic information was added.

However, one must take into consideration that the phonetically aug-
mented systems described above all use approximately twice as many para-
meters as their corresponding baseline systems. In (Christensen
et al., 2000a) we showed that even when making fairer comparisons

FiFF gi ure 8. Word error rates plotted against SNR for the FullbandBaseline, the Fullbandþ
VoicingExp and the FullbandþBroadExp systems for mfccff features. The left aff nd
right panels are the results from testing in car and factory noise, respectively.
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(parameter-wise) between systems, it is possible to signififf cantly increase per-
formance when using heterogeneous signal processing in an ASR system.

6. ADDING PHONETIC INFORMATION TO MULTI-BAND
SYSTEMS

This section concerns the inclusion of knowledge from expert systems to
multi-band systems.

The different configff urations of multi-band stem systems combined
with an expx ert system is described below. The performance of the systems
will be compared to a baseline system, which is a conventional
multi-band system.

– The MultibandBaseline system is a multi-band system, where the same
feature is used in all sub-bands.

– The MultibandþVoicingExpert system combines a multi-band stem
system with an expert providing voiced=d==unvoiced classification
information.

– The MultibandþBroadExpert system is a multi-band stem system
is combined with an expert system providing estimates for broad
phoneme posterior probabilities.

– The MultibandþPhonemeExpert system combines a multi-band stem
system with an expert system which is in principle an individual
fullband system on its own. That is, it provides individual posterior
probabilities for each of the phoneme classes.

6.1. Clean Speech Results

Table 5 lists the clean speech results from testing the multi-band based
systems augmented with phonetic experts for aff ll three feature types. Itff
is clear that considerable improvements are obtained over the baseline
system results presented in the fiff rst row.

Table 5.TT Results (word error rates) from adding information from expert system to the
multi-band stem system.

System j-rasta-plpc (%) plpc (%) mfccff (%)

MultibandBaseline 13.19 13.32 15.07
MultibandþVoicingExpert 11.07 11.22 12.70
MultibandþBroadExpert 10.06 10.32 11.26
MultibandþPhonemeExpert 7.49 7.62 8.33
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Not unexpectedly, the fiff ner and more discriminative the phonetic
information is modelled (moving downwards in the table), the greater
the advantage of adding the expx ert system. In the most extreme case,
where foff r the MultibandþPhonemeExpert basically a fullband is added
to a conventional multi-band system, the relative improvement is over
40% for each of the feature tff ypes. Such a large advantage of combining
a multi-band system with a fullband system is in accordance with results
reported by Mirghafori and Morgan(1998) for plpc features.

Comparing the different feature types, the j-rasta-plpc based systems
outperform the plpc based systems, and the mfcc based systems exhibit
the highest word error rates. The j-rasta-plpc based system are signifi-
cantly5 better than the mfcc based systems (for all conditions).

It is informative to compare the results for the Multibandþ
PhonemeExp system to the FullbandBaseline system, see Table 4. For all
feature types, adding the multi-band system does not help improve clean
speech performance,ff despite the fact that the MultibandþPhonemeExp
systems have twice as many parameters as the FullbandBaseline systems.

6.2. Noisy Speech Results

When looking at the results from testing on noisy speech, plotted for the
different feature types in Figures 9–11, we find roughly the same pattern
as was observed when testing the systems on clean speech. The effects of

FigureFF 9. Plot of results (WER’s) when testing the phonetic experts together with the
multi-band systems, all based on j-rasta-plpc features. The systems are tested in car noise
(left-hand side) and in factory noise (right-hand side).
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the different expx ert systems can be ranked as: PhonemeExpert >
BroadExpert > VoicingExpert > Multiband with no expert. For very
low SNR’s there is a small decrease in how much better the Multibandþ
PhonemeExpert performs.

FiFF gi ure 10. Plot of results (WER’s) when testing the phonetic expx erts together with
the multi-band systems, all based on plpc features. The systems are tested in car noisff e
(left-hand side) and in factory noise (right-hand side).

FiFF gi ure 11. Plot of results (WER’s) when testing the phonetic expx erts together with the
multi-band systems, all based on mfcff c features. The sff ystems are tested in car noise
(left-hand side) and in factory noise (right-hand side).
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Comparing the performance of the multi-band based systems on the
two different types of noise, it is evident that the system performance
degradation is far less drastic when operating in car noise. The car noise
sample from the NOISEX-92 database is low-frequency, and to a large
degree a band limited noise type.

7. DISCUSSION AND CONCLUSIONS

It is interesting to compare the fullband and multi-band based systems
with each other. Table 6 shows the clean speech results from the best
multi-band based system (the MultibandþPhonemeExp), the best
fullband based system (the FullbandþBroadExpert), as well as the two
baseline systems. The WER’s for the FullbandBaseline and the Multi-
bandþPhonemeExpert are not signififf cantly different.

Comparing the results from testing on noisy data, a similar pattern is
found, although for the plpc and mfcc features in particular the Full-
bandþBroadExpert clearly shows the best noise robustness, in particular
at higher noise levels for the factory noise.

This chapter investigated a way to introduce more heterogeneous
information into an existing ASR system. An inspective analysis of the
confusion matrices for the ASR stem systems led to the design of a pho-
netic expx ert system. The expx ert was specififf cally targeted at supplementing
the errors committed by the stem system, giving a heterogeneous system,
where the individual items were designed to be complementary.

To avoid the curse of dimensionality problem, the expert information
is introduced at the level of the acoustic model. Two types of expert con-
figurations are used, each providing discriminative information regarding
groups of phonetically related phonemes. The phonetic expert is imple-
mented using an MLP. Experiments show that when using the expx ert
in conjn unction with both a fullband and a multi-band system speech rec-
ognition performance is increased, and, in many cases, noise robustness
improves for a range of noise levels.

Table 6TT . WER’s for fullband- and multi-band based systems.

System j-rasta-plpc (%) plpc (%) mfcc (%) Parameters

FullbandBaseline 7.26 7.39 8.22 576,000
FullbandþBroadExpert 7.54 6.81 7.73 1,108,500
MultibandBaseline 13.19 13.32 15.07 576,120
MultibandþPhonemeExpert 7.49 7.62 8.33 1,152,120
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NOTES
1 In this chapter, the term featurff e will be used to mean a given representation of the
acoustic infoff rmation in data.
2 A multi-band is a particular configff uration of a multi-stream system, where adjd acent
freff quency bands comprise the individual streams.
3 A confusion matrix presents details of recognition results. It contains a set of counters,
ciji where i, j2{1, . . . ,K} each representing the number of times phoneme j was recei-
ved=hypothesised when it was phoneme i that was transmitted=presented to the recog-
niser. Thus counts in the diagonal represent correctly recognised units, and off-diagonal
counts are errors.
4 The frequency bands are chosen so as to roughly capture the formant regions.
5 In this chapter, when comparing experimental results, the term ‘signififf cant’ is used to
indicate that two WERs are different when considering a 0.05% significance level
interval.
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ABSTRACT. This paper presents an approach to the integration of contextual
phonological rules in the beam-search algorithm of a large vocabulary speech recog-
nition system. The main interest of contextual transcription rules is that they
implement well-formedness constraints on pronunciation of word sequences. These
constraints complement the language model probabilities on word sequences.
As such, they should decrease the average acoustic confusability between words
and thereby reduce the recognition search space. This approach is evaluated on a
dictation task in French for several different sets of contextual phonological rules.
Our results show that, in the current setting, the introduction of contextual rules does
not harm the overall performance, while effectively reducing the search space.
We detail the algorithmic aspects of the introduction of contextual rules in the
decoder, present our empirical results and discuss possible extensions of this work.

KEYWORDS. large vocabulary speech recognition, pronunciation variants,
contextual transcription rules

1. INTRODUCTION

Modern large vocabulary continuous speech recognition (LVCSR) sys-
tems view the process of decoding the input speech signal as a search
for the most likely word sequence, i.e. for the seff quence which best
matches the acoustic input, while being at the same time syntactically
plausible (Jelinek, 1998). Given a closed vocabulary V , the search algor-
ithm considers all the possible sequences of words from V , measuring
the syntactic plausibility of each sequence based on stochastic language
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models (LM). The acoustic match, on the other hand, results from com-
puting the likelihood of the input signal in a probabilistic model of
word acoustics. As the typical size of V makes it impossible to model
each word individually, acoustic models are built by plugging ‘‘generic’’
models of acoustic units into a broad phonetic representation of the
word pronunciation(s). The acoustic units are usually modeled by
hidden Markov models (HMMs). Three levels of description
are thus involved in the search: acoustic units, pronunciations and
words.

As the focus shifts from dictation systems to recognition of more
spontaneous speech, accurately modeling word pronunciations becomes
increasingly important. Dealing with different speech styles and accents
however requires an appropriate description of pronunciation variation
(Strik and Cucchiarini, 1999). Although some variation can be captured
using refined statistical models, the modeling of pronunciation variants is
usually performed by enriching the pronunciation lexicon with new var-
iants. Many approaches have been proposed to derive these pronunci-
ation variants (see e.g. Strik et al., 1998), from the use of hand-crafted
generative phonological rules (Wester et al., 1998; Pérennou and Calmès,
2000) to the automatic inference of variants from speech corpora
(Ramabhadran et al., 1998; Amdal et al., 2000; Yang and Matens,
2000), sometimes abstracted as variation rules (Ravishankar and
Eskenazi, 1997; Riley et al., 1999). Both the knowledge-based and the
data-driven approaches result in an extended list of pronunciations.
Whenever possible, the probability of each variant is estimated from
the data and included in the lexicon.

However, adding more variants expands the search space and
increases the average acoustic confusability among words. As a conse-
quence, the results from recognition experiments using these larger
lexicons have been inconclusive. As suggested for instance in Jurafsky
et al. (2001), some of these problems might be alleviated by introducing
more contextual dependencies in the way variants are considered.
Though short range phonetic dependencies are already modeled in many
systems under the form of so-called ‘‘cross-word triphones’’, this is
usually not the case for the higher order constraints also involved in
speech production. At the sentence level, for instance, the selection of a
specififf c elocution strategy which determines the speech style, is bound
to respect strong internal consistency constraints: speakers do not freely
switch between different rates or accents, but rather tend to maintain
some sort of intra-utterance consistency. However, there is no model of
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such high-level linguistic constraints. Therefore, this paper rather focuses
on the introduction of phonological and lexical constraints.

Short-distance constraints are common and are traditionally modeled
by post-lexical phonological rules. For instance, in English, the degemi-
nation rule provokes the simplification of consonantic clusters at word
juncture, as in last timell where the two =t =s are often merged into one,
in informal speech. In French, the phenomenon of liaison, i.e. the
optional realization of a word-final latent consonant in specific contexts
(see Section 2.2) offers another example of contextual variation. Intro-
ducing contextual constraints into an ASR system has an impact on
the search algorithm, as it is no longer true that any sequence of pronun-
ciations is valid. For instance, if liaison is handled properly, a variant
where a latent consonant is pronounced cannot be followed by a conson-
ant initial word. An illustration of this situation is given in the following
figures. In Figure 1, all the pronunciation sequences are permitted, thus
giving a total of 18 different possible paths; when contextual constraints
apply, as illustrated in Figure 2, the number of possible sequences is
reduced to two.

How can a search algorithm be modififf ed in order to effiff ciently exploit
such constraints? A simple solution could be to consider all the variants
as non-contextual, leaving it to the acoustic match to select the appropri-
ate variant. However, this results in the exploration of unlikely state
sequences during the search, thus wasting the decoder’s resources on
invalid paths.

Figure 1FF . Unconstrained sequence of pronunciations.

FigureFF 2. Constrained sequence of pronunciations.
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Another solution could be to introduce contextual constraints through
multi-word units (MWU). This approach consists of modeling MWU as
words, listing all the possible pronunciations of a MWU directly in the
lexicon (Riley et al., 1999; Kessens et al., 1999). As a consequence, the con-
text of each sub-unit is easily taken into account. This approach is effec-
tive for frequent sequences involving short functional words whose
pronunciations can be drastically affected through coarticulation. How-
ever, it cannot be applied to systematic patterns such as liaison, which
apply to every instance of a plural determiner followed by a vowel initial
noun. A more generic approach consists of building the stochastic lan-
guage model over the pronunciation variants (rather than words) and in
incorporating the contextual dependencies directly into the bigram prob-
abilities (Cremelie and Martens, 1995; Schiel et al., 1998). This approach,
however, requires large corpora annotated with pronunciation variants
from which to estimate the LM probabilities.

In this paper, we present an initial attempt to incorporate contextual
transcription rules directly at the search level, thus limiting the search
space to permissible pronunciation sequences. The basic principle of
our approach is to defiff ne lexical classes, i.e. subsets of (orthographic)
words sharing common characteristics at various levels (syntactic, mor-
phological, phonological, etc). Lexical classes are subsequently used by
the speech-decoding algorithm, which checks the compatibility between
adjd acent pronunciations, based on constraints expressed in terms of these
word classes. The main motivation for modeling contextual interactions
directly at the search level is the intuition that the subsequent reduction
of the search space should help reduce (acoustic) confusions and improve
the overall recognition rate.

The paper is organized as follows: we first describe the basics of the
tree-based search algorithm with a bigram LM (Ortmanns and Ney,
1997; Deshmukh et al., 1999). We then introduce contextual transcription
rules and show how they can be used during the search. This method-
ology is used and evaluated on a dictation task for French. In the light
of these results, we finally discuss our algorithm, pointing out its current
limitations and possible extensions.

2. DECODING WITH CONTEXTUAL CONSTRAINTS

2.1. The Standard Search Algorithm

The Sirocco speech decoder1 is based on a time-synchronous beam-search
decoding strategy. We recall here some basic aspects of this algorithm, in
particular those related to the processing of word ends. The reader is
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refered to Ortmanns and Ney (1997) for a detailed description. In this
approach, the search space is organised so as to factor out, in a tree,
identical word-initial sequences of HMM states. This organisation is
meant to reduce the number of hypotheses corresponding to word-initial
states. However, it delays the identification of the word w currently being
decoded until a leaf of the tree is reached. Consequently, it also delays the
application of the bigram LM probability PðwjvÞ and forces the algor-
ithm to keep track of the history v until w is identified. A solution to this
is to keep a separate tree copy for each distinct history (the preceding
word in the case of a bigram LM), as illustrated in Figure 3 for a 3 word
vocabulary.

Within a tree copy, acoustic hypotheses are propagated according to
the classic dynamic-programming (DP) equation. At the end of a word,
i.e. when a leaf of the tree is reached, the bigram score is added to the
score of the current path and the DP maximization is performed over
all the previous words. This is illustrated in Figure 3: upon starting the

FiFF gi ure 3. Principle of the search strategy for tree-based lexicons. Thin lines correspond
to the LM score; thick lines correspond to the acoustic score.
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right tree-copy for A, the maximization is performed over the 3 possible
states ending A at time t as indicated by the thin lines. Formally, let us
assume that an acoustic hypothesis reaches the leaf Sw of a tree copy
at time t, thus hypothesizing the end of word w. Let us denote hwðtÞ
the log-likelihood of the best word sequence ending with word w at t.
The word level DP maximization is given by

hwðtÞ ¼ max
v2V

qvðt;SwÞ þ b lnP½wjv�; ð1Þ

where qvðt;SwÞ denotes the log-likelihood of the best path ending at t in
the node Sw of the tree copy corresponding to the preceding word v;
P½wjv� is the bigram score and b the LM scale factoff r. The maximization
(1) is performed over the set V of all possible words. Finally, the word
end hypothesis ðw; tÞ is recorded with a back-refeff rence to the word
hypothesis ðv; t0Þ which maximizes (1): ðv; t0Þ is the back-p- ointer infoff r-
mation propagated with the acoustic hypothesis. A new tree copy for w
is then started, giving rise to new hypotheses having w as their preceding
word and a back-pointer equal to ðw; tÞ.

2.2. Classes and Contextual Transcription Rules

As with any LVCSR system, Sirocco requires a set of lexical resources,
consisting of a list of orthographic word2 forms and a pronunciation dic-
tionary. Two additional refiff nements to the lexical description are possible
in Sirocco:

& word classes can be defiff ned, for instance based on morpho-
syntactical and phonological features.

& pronunciations can be restricted to specififf c contexts, where a
context is defined as logical combinations of word classes, hence
the term ‘‘contextual transcription rules’’ refers to the entries in
the pronunciation dictionary.

Let us illustrate these concepts using the phenomenon of liaison in
French (Lerond, 1980). Liaison is primarily dependent on the phonologi-
cal environment; a latent consonant can only be pronounced in the con-
text of a following vowel or a glide. We will refer to this context as
vocalic. However, even when the phonological context allows it, the latent
consonant is not necessarily pronouced. First, some vocalic contexts
nonetheless prohibit liaison: these idiosyncratic contexts correspond to
a closed list of words, notably including words starting with a mute ‘h’
(h aspiré). In this case, the constraint is purely lexical. Second, a liaison
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can either be mandatory (as between a plural determiner and the follow-
ing noun or adjd ective), or optional. In the latter, the liaison is realized
depending on a complex constellation of contextual factors, including
the syntactic environment as well as additional lexical, prosodic and sty-
listic factors. In some contexts, liaison does not occur, such as between
a plural nominal subjb ect and the following verb.

To give an example: the plural determiner lesll (‘the’), is either pro-
nounced =lez=3 if a liaison occurs, or =le= otherwise. The rules governing
the choice of one or the other pronunciation are, in this case, quite simple:
if the following word starts with a vowel, and is a plural adjd ective or noun
determined by les, the liaison variant is preferred. Otherwise, the tran-
scription =le= must be used. The corresponding contextual transcription
rules are given in Table 1, where VinitVV is the class of words whose pronun-
ciations start with a vocalic sound, Plural is the class of plural nouns and
adjd ectives, and � denotes the universal class (which contains the entire
vocabulary). In fact, tff he actual rules forff lesll are somewhat more complex,
due to the fact that this word form corresponds both to a determiner and a
clitic pronoun. If the pronunciation of the former essentially follows the
rule discussed above, the latter will select the liaison variant when it occurs
as the preposed direct objb ect of a vowel-initial verb.

In the experiments reported in Section 4, we have mostly used classes
and transcription rules to express linguistically motivated constraints.
However, word classes can be used for different purposes. For instance,
we also use them to automatically align the speech signal given an ortho-
graphic transcription. This is achieved by assigning each word i in the
transcription to a class, CiCCi, whose only element is i. Transcription rules
are then defiff ned in such a way that the pronunciation of i can only occur
if preceded by a word in class CiCCi�1 and followed by a word in class CiCCiþ1,
thus making the reference word sequence the unique valid path with
respect to the contextual transcription rules.

2.3. Using Rules During the Search

Using rules to constrain the search mainly affects the processing of
end-of-word hypotheses. Indeed, our approach requires one to verify

Table 1. Example of contextual phonological rules for the word les. The operator ‘!’
denotes the boolean negation.

(�) lell s (Vinit & Plural) ! =lez =
(�) lell s (!(Vinit & Plural)) ! =le=
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the left and right contexts of each pronunciation to check its validity. As
our algorithm proceeds from left to right, the left context of any word w
is known and can be easily checked. This is not true for the right context,
which will not be known until the next word is decoded. Until then, the
pronunciation of w will have to be stored and propagated.

This modififf cation is performed as follows: the list of valid contexts for
a pronunciation p is attached to the corresponding tree leaf, along with
the corresponding word(s) identifier. In the previous example (see Table
1), the leaf corresponding to the pronunciation p ¼=lez = would point to
the word les and to the corresponding left and right contexts, i.e. (�) and
(Vinit) respectively. Hypotheses reaching a tree leaf node have slightly
different semantics than before: they now indicate that we have decoded
a specififf c variant of a given word w, and not just any variant of w. End-
of-word hypotheses are therefore characterized by the word, the word
end time and the pronunciation rule.

Let us denote the end-of-word hypothesis associated with state Sw by
ðw; a; tÞ, where a denotes a specific pronunciation rule. We also assume
that the back-pointer associated with the acoustic hypothesis which gen-
erated the word end hypothesis ðw; a; tÞ carries information concerning
the previous word transcription rule a0. When a word end is reached in
the tree copy corresponding to the preceding word v, one has to decide
whether the transition ðv; a0; t0Þ ! ðw; a; tÞ is valid with respect to the
contexts of a and a0. This will be the case if and only if:

i. the classes of w match the right context for the transcription rule a0

of v, and
ii. the classes of v match the left context for the transcription rule a

of w.

In a more formal manner an end-of-word hypothesis ðw; a; tÞ is valid if
the classes of wmatch the right context of the previous word transcription
rule taken along the best path (condition (i)) and if the classes of v match
the left context of the current word end hypothesis (condition (ii)). These
new constraints modifyff the word level maximization (1), which should
now be performed only over valid end-of-word hypotheses. Given this
modification, (1) can now be viewed as a two-stage process where the
maximization is fiff rst carried out for each end-of-word hypothesis
ðw; a; tÞ, over the set of possible predecessors ðv; a0Þ, according to:

hwðt; aÞ ¼ max
ðv;a0Þ2Vðw;aÞ

qvðt;SwÞ þ b lnPðv;wÞ þ lnPðw; aÞ ð2Þ
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where Vðw; aÞ is the set of all the valid word-rule pairs that can occur
before ðw; aÞ. If a end-of-word hypothesis is not valid with respect to its left
context, it is simply discarded alongwith the corresponding path. The second
stage of the maximization aims at fiff nding the best word ðw; tÞ and is carried
out over the set of rules that hypothesized the endofwordw at t, according to:

hwðtÞ ¼ max
a

hwðt; aÞ ð3Þ

New acoustic hypotheses are then generated with a back reference to
ðw; âa; tÞ, where âa is the rule which maximizes (3).

During the search, the validation of the right context of a rule is per-
formed with a delay of one word. This is a consequence of the tree-based
organization of the pronunciations, which postpones the identififf cation of
decoded words until a leaf is reached, thus delaying the application
of contextual pronunciation constraints and of the bigram LM.

3. TYPOLOGY OF CONTEXTUAL RULES

In this section, we introduce the MHATLex lexicon (Pérennou and
Calmès, 2000), which has been our primary lexical resource for the
experiment reported in Section 4. We first describe the resource in general
terms (Section 3.1), mainly focusing on the phonological representations
contained in the lexicon. We then focus on three cross-word phenomena,
namely liaison, mute-e elision and liquid truncation. These are discussed
in Section 3.2.

3.1. MHATLex

In MHATLex, two levels of description are considered for word pronun-
ciations: the phonologicall l representation expresses the association
between lexical items and pronunciation variants in a specific linguistic
context. Context-free rewrite rules provide the capacity to generate the
corresponding set of phonetic representations. Each phonetic variant
inherits the contextual constraints associated with the corresponding
phonological representation. For instance, the verb prendredd (‘to take’)
is represented at the phonological level by two entries =pRa � dR=, valid
if followed by a vowel-initial word, and =pRa � (dR@)=, which requires a
consonant-initial successor. The latter encodes several variants, which are
derived by rewriting the variable group =(dR@)= into any of the follow-
ing: =d =, =n = or =dR@ =. The corresponding pronunciations =pRa � d =,
=pRa � n =, and =pRa � dR@ = all require the same context as =pRa �

(dR@)=, i.e. a consonant initial successor.
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MHATLex also includes morpho-syntactic information, such as the
main syntactic category and citation form of each entry. From these, a
total of 20 lexical classes were built and used to defiff ne contexts: half of
the classes encode morpho-syntactic information, while the remaining
ones encode phonological information. A list of all those classes is given
in Table 2. Word-to-class mappings were defiff ned accordingly. Note how-
ever that, while MHATLex distinguishes among homographs on the
basis of their morpho-syntactic properties, our system only handles
orthographic strings. This leads to ambiguous class assignments for
forms like tombe, which can be either a noun (‘(a) grave’) or a verb
(‘(I) fall’).

3.2. Three Contextual Phonological Rules

In order to introduce contextual rules in a progressive and controlled
manner, the variant generation rules used in Mhatlex were manually
tagged according to the phonological phenomenon they account for.
Three main contextual phenomena were considered: liaison, mute-e
deletion and liquid consonant truncation (Dell, 1985). In this section,
we present these phenomena and explain how the rules were tagged.

3.2.1. Liaisons

A description of liaison has already been given (see Section 2.2) and we
focus here on the rule-tagging process. For each lexical item having a liai-
son variant, two entries occur in the phonological lexicon: the fiff rst one
corresponds to the non-liaison case and requires a consonant-initial

Table 2. List of the lexical classes derived from
MHATLex.

Morpho-syntactic classes Phonological classes

conjn unction initial vowel
determiner initial glide
adjd ective initial aspirated h þ vowel
noun initial aspirated h þ -vowel
interjection initial non-nasal consonant
preposition initial nasal consonant
pronoun word-fiff nal consonant
verb word-fiff nal vowel
acronym phonological group boundary
proper noun
adverb
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successor; the second one represents the liaison case and requires a vowel-
initial successor. To account for optional liaisons the second
representation, in fact, encodes two variants, corresponding to the
pronunciation or non-realization of the latent phoneme. In this second
representation, the rewrite rule generating the first variant is tagged ‘L’
(a latent phoneme is pronounced), while the rewrite rule generating the
second variant is tagged ‘l’.

Since there is no easy direct way to link the rewrite rule for the first
phonological description to the fact that it corresponds to a non-liaison,
this rule is not tagged as corresponding to a liaison phenomenon.

3.2.2. Mute-e rules

As far as mute-e is concerned, three main cases were covered: fiff nal mute-e
deletion, mute-e deletion in a word-initial syllable and epenthetic mute-e.

In standard French, the deletion of a word-fiff nal mute-e is considered
mandatory when the following word starts with a vowel. When the word
starts with a consonant, the situation is more complex, and a mute-e may
or may not be realized, depending on a complex set of variables in which
the structure of consonant cluster resulting from the deletion plays a
maja or role.

For a restricted set of words, a mute-e in the first syllable may option-
ally be dropped if the preceding word ends with a vowel. In any other
context, the =@ = must be pronounced. For instance, the initial =@ =
can be dropped in: les chemins (‘the paths’) then pronounced =leSme � =
= instead of =leS@me � =, but not in quatre chemins (‘four patff hs’). Note
that the precise rule is in fact a bit more complex and the mute-e deletion
might be possible after a consonant-final word.

It is possible to insert an epenthetic mute-e at the juncture between
two words when the concatenation of the word-final and -initial conson-
ant clusters is too complex, as for instance in the sequence un ours tristeii
(‘a sad bear’) which may be pronounced with an epenthetic =@=:
=9 � nuRs@tRist =.

The rewrite rules corresponding to these three phenomena were
tagged ‘E’ or ‘e’, depending on whether the =@= is pronounced or not.

3.2.3. Liquid truncation

Liquid truncation refers to the optional deletion of a word-fiff nal liquid
when preceded and followed by a consonant. This often occurs in con-
junction with a fiff nal mute-e deletion in informal speech. For example,
liquid truncation is involved in the pronunciations =pRa � d= and
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=pRa � n= derived foff r the word prendre (‘to take’). The corresponding
rewrite rules were tagged ‘R’ and ‘r’, respectively.

3.2.4. Illustration

An example of our tagging scheme is given by the verb montrent (‘(they)
show’). For this word, two contexts are considered:

& when the following word starts with a vowel, a liaison can option-
ally take place: if it does, though, the fiff nal mute-e will be realized,
yielding a fiff rst variant: =mo � tR@t =, tagged ‘LE’ (liaison, mute-e
maintained); if it does not, the mute-e has to be dropped, yielding a
new variant =mo � tR=, tagged ‘le’.

& when the following word starts with a consonant, no liaison can
occur, but the final mute-e and the preceding =R= can optionally
be deleted, yielding the pronunciations =mo � tR@= (tagged
‘RE’) and =mo � t = (tagged ‘re’). Note that we could not mark
these variants with ‘l’, as it should be, for there is no explicit way
in MHATLex to relate this entry to the previous one.

Finally, note that due to the mismatch between the MHATLex notion
of a word and ours, we had to assign all the (contextual) pronunciations
of a set of homographs to the same word, sometimes resulting in a pro-
liferation of (redundant or conflicting) pronunciation rules. Rule compm ac-
tion has been applied whenever possible to factor out rules having similar
left or right context, and to limit the number of rules for a given word.
Each pronunciation may optionally end with an inter-word short-pause
model.

4. EXPERIMENTAL RESULTS

Experiments using various sets of the contextual phonological rules
described above were carried out on a dictation task in French using
the BREF corpus (Lamel et al., 1991; Dolmazon et al., 1997).

4.1. The BREF Corpus

The BREF corpus is composed of read sentences extracted from the
newspaper Le Monde. A set of 41,000 sentences uttered by 80 speakers
was used to estimate the parameters of 40 monophone HMMs with 3
states and 32 Gaussians per state. A separate set of 300 sentences uttered
by 20 speakers was used for testing, using the protocol defiff ned in Dolma-
zon et al. (1997). The test set has a total of approximately 9,000 words.
The vocabulary contains the 20,000 most frequent words occurring
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in two consecutive years of Le Monde and this corpus was also used to
estimate bigram and trigram LMs.

4.2. Lexical Resources

Several lexical resources were derived from MHATLex by varying the
number of contextual rules. First, an unconstrained lexicon was gener-
ated, using all the pronunciation variants of MHATLex without any con-
textual restriction. Second, a lexicon for each of the three contextual
phonological phenomena described in Section 3.2 was generated. In each
of these, contextual constraints only apply to a specififf c subset of rules.
These three lexical resources will be referred to as E, L and R, forff
mute-e, liaison and liquid-truncation rules respectively. To study the
combination of those three phenomena, we generated a lexicon including
all possible constraints for these rules; this lexicon will be referred to
as ELR. Finally, a lexicon, M, corresponding to all the MHATLexM,M
contextual rules was generated.

Let us illustrate some of the differences between these resources by
re-examining the word prendre, already discussed in Section 3.1. As
mentioned earlier, prendrdd e has two phonological representations. The
fiff rst yields the pronunciation =pRa � dR= in the context of a following
word beginning with a vowel. The second representation yields the pro-
nunciations =pRa � d =, =pRa � n = and =pRa � dR@ = in the context of
a following consonant-initial word. According to our tagging scheme,
the fiff rst two pronunciations of the second phonological description cor-
respond to a mute-e deletion (tag ‘e’), while the last one corresponds to
the realization of the =@= (tag ‘E’). However, it is impossible to tag ‘e’
the rule used to generate the pronunciation =pRa � dR=. Therefore, the
right context for that rule will be omitted in the lexicon E, whereas it is
kept in the lexicon M.

The lexicons described above were generated using two slightly differ-
ent strategies. In the first, (A), all the MHATLex rules were used to gen-
erate the pronunciation variants. In the second, (B), some very infrequent
rules were omitted, thus generating lexicons with slightly fewer pronunci-
ation variants.

For both resources, Table 3 gives the number of entries for each lexi-
con. In the absence of contextual rules, the number of rules is equal to the
number of pronunciation variants. This table also gives the branching
factor of each lexicon, computed as the average ratio between the number
of pronunciation variants that may follow a given variant, divided by the
total number of variants. A value of 1 therefore corresponds to an uncon-
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strained lexicon. This factor gives an indication of the reduction of the
search space obtained by using more constrained pronunciation rules.

As an alternative to the MHATLex rules, contextual constraints were
introduced using the following heuristic:

Words whose orthographic form ends with the letters ‘r’, ‘s’, ‘t’, ‘x’, ‘d’ or ‘n’
(plus exceptions such as beaucoup or franff c) are pronounced with a liaison if
and only if followed by a word starting with a vocalic sound; otherwise, only
the non-liaison variant can be used.

This heuristic is quite restrictive and does not pretend to be exact or
entirely accurate. It is mentioned here mainly to allow the results pre-
sented in this study to be related to those reported in Gravier et al. (2001).

Let us illustrate the diffeff rence between this heuristic and the L
resource using the word très (‘very’). This word has two phonological
descriptions: the first one yields the variant =tRe= in the context of a fol-
lowing consonant; the second one yields two variants, =tRe= and =tRez =,
in the context of a following vocalic sound. The rewrite rules which
generated the last two pronunciations are tagged as (l) and (L) respec-
tively. In the L resource, =tRe= is possible if the following word begins
with a consonant or with a vowel, which amounts to having an uncon-
strained transcription. However, with the heuristic, the pronunciation
=tRe= is only possible in the context of a following consonant, which is
a stronger and probably too restrictive constraint.

4.3. Results

Results are reported for the lexical resources A and B in Table 4. Results
were obtained with a single-pass bigram based decoder and with a two-
pass trigram based decoder in the case of lexicon B. For the two pass
decoder, word graphs are generated using contextual rules with a bigram
LM. Those word graphs are then rescored with a trigram LM using the
acoustic scores generated during the fiff rst pass. In both cases, the fiff rst pass

TaTT ble 3ll . Number of contextual transcription rules for each set of rules and branching
factor as a measure of the decodff ing complexity.

* E L R ELR M

lex A, # rules 83,983 85,363 84,819 83,985 84,867 84,037
lex A, factor 1.0 0.86 0.84 0.81 0.75 0.7ff 4

lex B, # rules 82,223 83,593 83,059 82,225 83,097 82,275
lex B, factor 1.0 0.84 0.81 0.98 0.75 0.7ff 4
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decoding is performed with a narrow beam width allowing a maximum of
10,000 acoustic hypotheses. At each time frame, a maximum of 100
end-of-word hypotheses are considered for insertion into the word graph.
Results are given in terms of accuracy, accuracy being defined as the per-
centage of correct words minus the insertion rate. Given that the inser-
tion rate was almost constant across all the experiments, comparing
accuracies is equivalent here to comparing recognition rates.

As can be seen, non-signififf cant marginal improvements were obtained
by adding contextual phonological rules in the bigram decoder. In parti-
cular, the liaison contextual rule gave the best results over the mute-e and
liquid-truncation rules. However, the best result was observed when the
three types of contextual rules (‘ELR’) are simultaneously used in the
lexicon, yielding a 58.6% accuracy over 58.1% foff r context free rules.
The slight advantage of contextual phonological rules in the single pass
bigram decoder does not remain after trigram rescoring of the word
graph. It therefore seems tff hat the context-dependent rules help the beam
search focus on tff he best path. However, alternate paths are also
considered and stored in the word graph, which explains why no
improvement is observed after trigram rescoring.

Using the whole set of MHATLex phonological rules as contextual
rules degrades the results signififf cantly. This may be a consequence of
our too coarse definition of a word, which merges homographic MHA-
TLex entries, thus degrading the accuracy of the original rules.

Our previous work uses the heuristic described in 4.2 to approximate
contextual constraints for liaison. Table 5 compares results obtained
using the heuristic (H) with the MHATLex-derived rules for the liaisons
(L). The word-error rate for the heuristic is significantly higher than for
both the context-independent rule and the MHATLex-derived liaison
rules. This is because our heuristic is too severe and prohibits certain
sequences of pronunciations that are nevertheless possible. This heuristic,
for instance, enforces the realisation of a liaison =p= in the word sequence

TaTT ble 4ll . Recognition accuracy for various sets of contextual phonological rules for a
bigram decoding on the lexical resources A and B, and for a linguistic trigram rescoring
on the lexical resources B.

* E L R ELR M

lex A, bigram 57.9 58.1 58.2 57.8 58.4 46.2
lex B, bigram 58.1 58.2 58.3 58.0 58.6 46.1

lex B, trigram 63.3 62.8 63.4 63.2 62.9 48.8
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beaucoup a, the alternative pronunciation being entirely ruled out.
Allthough a liaison is certainly possible in this context, it is probably
not the most common realization. Such irrealistic constraints do not
appear in the L lexicon.

5. DISCUSSION

Our extension of the classical beam-search decoding algorithm to accom-
modate contextual transcription rules resulted in a potential reduction
of the search space without degradation of the (fiff rst pass) recognition
accuracy. Yet, in many aspects, these preliminary experiments have
proven unsatisfactory for reasons which relate to the task we have con-
sidered, the resources we have used, and the internal properties of our
pronunciation model and search algorithm.

First, dictation is clearly not the ideal task for evaluating the benefits
of improved pronunciation models, and this might well be one reason
why we could not really improve on the baseline performance. We hope
to be able to demonstrate more clearly the benefiff ts of contextual rules on
more spontaneous speech material in the future.

A second weakness of our experiments concern the resources used: the
word-based language model released for the evaluation campaign
reported in Dolmazon et al. (1997), and the relatively coarse monophone
acoustic models. Though improving the language model is quite a separ-
ate issue, it is likely that the use of more elaborate, contextual acoustic
models would have significantly improved performance.

In fact, the contextual constraints considered in this study have mostly
been defined based on the phonological environement of a word-final
phone, and could have been modeled directly using cross-word contex-
tual acoustic models. On the other hand, we have not yet been able to
use word classes as a way to introduce lexical and syntactic constraints,
such as, for instance, enforcing a noun after the ‘liaison’ variant of adjd ec-
tives such as moyen (‘middle’) or léger (‘light’). A proper description of
such constraints requires (i) the differentiation of homographs based

TaTT ble 5.ll Recognition accuracy with no context and with the MHATLex (L) and
heuristic (H) contextual liaison rules.

* H L

lex B, bigram 58.1 53.6 58.3
lex B, trigram 63.3 59.9 63.4
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on their main syntactic category and (ii) a LM based on syntactically
tagged words. Subjb ect to the availability of tagged corpora for French,
we expect to be able to implement these constraints in our future work.

Another area where the lack of corpora for French has proven detri-
mental is the pronunciation model itself. The pronunciation variants of a
given word are not equally likely, and introducing non-uniform variant
probabilities has been reported as an effective way to improve recog-
nition accuracy (Wester et al., 1998). However, due to lack of resources
from which to estimate those probabilities, we applied a uniform prob-
abilistic model during the search. Again, the picture is slowly changing
and we wish to consider more realistic probability distributions in the
future.ff

Finally, these experiments have revealed some inadequacies of our
pronunciation model and search algorithm. Regarding pronunciations,
a major weakness concerns the definition of contexts based on the pre-
vious and following words, when they should be defined in terms of
the previous and following pronunciations. To make this obvious, con-
sider the case of a word such as retour (‘come back’), whose variant
=RtuR= requires on its left a word ending with a vowel. However, for
many words, we are unable to tell if they match this context, as both liai-
sons and mute-e elisions are likely to change the nature of word-fiff nal
phoneme. Defiff ning contexts based on classes of pronunciations is, in such
cases, clearly required.

At the search level, the introduction of contextual constraints was
done by introducing a heuristic in the search criterion which no longer
guarantees that the best word or pronunciation sequence is found.
Therefore, the algorithm needs to be revised in order to improve the deci-
sions it makes at word boundaries. To see why this is necessary, let us
recall that at each time t, for any given word w, at most one single
end-of-word hypothesis for w is retained through the DP maximization
process expressed in (3). As a result, only hypotheses corresponding to
the most promising transcription rule a for w will be further developed.
Such a decision is however premature, as the right-hand constraints on
the pronunciations of w still remain to be applied, and will, in some
cases, invalidate this decision. Consider, for instance, the following con-
figuration, where the pronunciation, p, of a word, w, is licensed by two
rules a1 and a2. During the search, upon reaching the leaf node for p,
we have to decide ‘‘blindly’’ which of a1 or a2 (assuming that both
are possible) will be developed, as both yield the same acoustic score.
Suppose, for instance, that a1 is selected: at the end of the next word,
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upon matching the right-hand context of w, we might realize that a1
(but not a2) violates the constraint, causing a (valid) path to be
discarded.

These errors thus directly result from an inconsistency in our search
algorithm, which tries to search for the best word sequence instead of
searching for the best joint (word, pronunciation) sequence, which is
what the proper application of contextual constraints requires. As far
as we can see, optimizing this new criterion would have two main conse-
quences. First, it would signififf cantly increase the search space, as a sep-
arate tree copy for each transcription rule, rather than for each word,
would be needed. In our case, this would be equivalent to multiplying
the size of the decoding lexicon by four. Second, it would require us to
either reevaluate our pruning strategy or modify our scoring function:
using the current resources and scoring functions, it is expected that
hypotheses indexed by variants of the same word would have very similar
scores, making pruning inefficient.

This is simply because our algorithm acts on pairs ðv; aÞ ! ðw; bÞ and
defines the probability of such a sequence as:

P½w; ajv; a0� ¼ P½wjv� dððv; a0Þ ! ðw; aÞÞ ð4Þ
where dððv; a0Þ ! ðw; aÞÞ is a binary function taking the value 1 if the
sequence ða; a0Þ is valid, and 0 otherwise: all the valid possible pairs
are given exactly the same score. While we consider this model an
improvement over unconstrained models, which simply express the
probability of a transition between two pairs (word, pronunciation
variant) as:

P½w; ajv; a0� ¼ P½wjv� P½ajw�; ð5Þ
we think that our approximation, given in (4), is also too simplistic,
and cannot be used to discriminate effiff ciently between hypotheses in
a first pass decoding. Future work will consequently go toward the
definition of more complex modeling of this probability, as for
instance in

P½w; ajv; a0� ¼ P½wjv� P½ajw; v; a0� ð6Þ
where P½ajw; v; a0� is a pronunciation pair model still to be specififf ed.

Another line of work will be to implement the full search for the best
joint (word, transcription) sequence in a restricted search space, using for
instance contextual constraints to reevaluate a word lattice.
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6. CONCLUSIONS

In this chapter, we have presented a method for, and discussed the
implications of incorporating contextual-transcription rules into a
large-vocabulary speech recognition system. This approach has been
tested on a dictation task in French, yielding a potential significant
reduction in the search space with no increase of the word error rate.
Overall, our initial results are somewhat inconclusive and suggest that
this approach could probably be more beneficial if applied to different
data, using improved linguistic and acoustic models. These experi-
ments have nonetheless allowed us to identify various improvements
to our model, which should eventually result in the integration of
more complex and flexible constraints on pronunciation sequences
in the search algorithm and thus in a more effective use of pronunci-
ation variants.
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3 Transcriptions are presented using the SAMPA phonetic alphabet (see
http:==www.phon.ucl.ac.uk= home=sampa=home.htm).
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STEVEN GREENBERG

FROM HERE TO UTILITY

Melding Phonetic Insight with Speech Technology

ABSTRACT. Technology and science are often perceived as polar extremes with
respect to spoken language. Speech applications rarely incorporate scientififf c insight
and conversely, basic research is often viewed as oblivious to practical concerns of
the real world. Melding phonetic insight with speech technology can, however, yield
extremely productive results for both applications and basic science if performed
within the appropriate theoretical framework. Such an approach is illustrated with
respect to the relation between prosodic (stress accent) and phonetic properties of
conversational telephone dialogues (American English) using the Switchboard cor-
pus. Phonetic properties, such as vocalic identity and duration, are shown to reflect
prosodic phenomena, and thus could be used to enhance the quality of automatic
speech recognition performance, as well as provide detailed insight into the nature
of spoken language.

KEYWORDS. Speech technology, automatic speech recognition, prosody,
phonetics, spontaneous speech, syllable structure

1. INTRODUCTION

It is twelfth-century Japan, and a nobleman has been killed. A magistrate
is charged with establishing the identity of the killer and delineating the
sequence of events leading up to the murder. Several witnesses are called
to testify – the victim’s wife, the accused (a notorious bandit), a woods-
man as well as the victim himself (through a spirit medium). Each witness
provides a singular account of the man’s death. They agree on but a sin-
gle fact – that the nobleman is dead. How he died, and by whose hand,
are very much in dispute.

The story of Rashomon (Ritchie, 1987) is cited often in philosophical
discussions of ‘‘truth.’’ As nothing is known (or knowable) with cer-
tainty, all knowledge is relative (and hence ephemeral). The concept of
truth is a chimera and therefore unworthy of pursuit.
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Yet, there is an alternative interpretation, one that questions not the
concept of truth itself, but rather the capacity of its assimilation through
a single vantage point. Perhaps the ‘‘true’’ message of Rashomon is that
deep and ever-lasting knowledge can only be gained through exposure
to a variety of perspectives, no single source providing sufficient depth
and clarity to comprehend a situation as complex (and as tragic) as the
murder of a man.

As in fiction, potentially in science . . .
In Rashomon the testimony of each witness acquires new signififf cance

in light of alternative accounts (Figure 1). Can an intellectual domain as
complex as sps oken language be fully understood through a single perspec-
tive? Or must orthogonal forms of evidence be sought with which to
reconstruct the ‘‘truth’’?

Knowledge gained in the pursuit of ‘‘pure’’ research is often viewed as
the pinnacle of scientific endeavor, unsullied by practical concerns of
technological application and customer satisfaction. Science unfettered
by pragmatic constraints is (from this perspective) the most noble of

Figure 1.FF A woodcutter, a priest and a peasant ponder the unfathomable nature of
‘‘truth’’ in their attempt to reconstruct the events leading up to a nobleman’s death in
twelfth-century Japan. From the fiff lm Rashomon, directed by Akira Kurosawa (reprinted
from Rff itchie, 1987).
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objb ectives and should therefore serve as the principal deity in the temple
of knowledge.

As in myth, potentially in science. . .
How does true insight proceed from ‘‘objb ective’’ study of spoken

language? Is it possible to fully comprehend the multivocal nature of a
scientififf c domain from the exclusive vantage point of a laboratory? Or
does the spirit of Rashomon compel us to seek testimony from a wider
variety of sources in the pursuit of objb ective knowledge?

2. THE STRUCTURE OF SCIENTIFIC EVOLUTION

The course of a discipline’s intellectual evolution is often tortuous and of
a curvilinear nature. Where does the domain of speech research lie with
respect to its ‘‘great chain of being’’? Is this community still engaged in
determining the number of phonemes on a word? Or has the collective
unconscious progressed to a higher plane of existence? What will the
speech scientists of the twenty-second century write concerning the science
of the twentyt -f- irstff ?

Scientific maturity is often marked by its close relation to technology.
The great monuments of any age (whether they be pyramids, cathedrals
or casinos) are often based on the most advanced science and technology
of the age. And in turn, such monuments usually spur further progress in
the domains upon whose foundations they are formed. The synergy
between science and technology is simple to discern, for successful pro-
ducts are diffiff cult to build on anything other than a strong and secure
scientific foundation. And technology, in turn, provides a rigorous prov-
ing ground for the empirical and theoretical precepts of any discipline.
Technology may thus serve as a ‘‘forcing function,’’ driving a fiff eld
beyond the bounds of traditional scientific inquiry, posing challenges
to surmount by dint of technical (and often commercial) imperative. In
tandem with technology comes a focus on empiricism. It is difficult to
divine how well a product is likely to work purely on the basis of theory.
For theory needs to be tempered with data representative of the environ-
ment in which the technology is deployed. In such fashion a field can
mature quite quickly; and thus it may ultimately come to pass with
respect to speech technology.

3. THE GALAPAGOS OF SPOKEN LANGUAGE

The voyage of the Beaglell (Darwin, 1839) provided an effective forcing
function for Darwin’s thoughts on the origin of species (Darwin, 1859),
particularly his trip to the Galapagos Islands, west of Ecuador. Among
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the fauna of those islands are many varieties of fiff nch, who by virtue of
variation in color, size and shape (particularly of the beak) came to pro-
vide crucial clues as to the mechanism of natural selection (Weiner, 1994).

Speech, as a fiff eld, is still in search of its Galapagos. Somewhere, off
the coast of the intellectual mainstream, lie the finches of language – if
only we knew their form and function. Should we wait patiently for their
emergence? Or should we embark on our own voyage of discovery,
aggressively seeking the critical evidence required to solve the mystery
of spoken language?

4. UNOBTRUSIVE MEASURES

Every academic discipline has a favored means of collecting data. Astron-
omers gaze into the heavens, high-energy physicists smash atoms, ethol-
ogists play peeping toms, and linguists either introspect or elicit citation
foff rms from ‘‘infoff rmants.’’

Long ago, marketing researchers discovered some of the pitfalls asso-
ciated with elicited data. A shopper, upon entering the supermarket, is
asked to enumerate the items intended to be purchased in the store. At
checkout a video camera enables a comparison of the shopper’s original
list with what has actually been bought – intention and deed turn out to
bear scant relation to each other; for there is scarcely a product in the
shopper’s cart mentioned in the interview only a few minutes before (Ries
and Ries, 1998).

Because most spoken-language data are derived from either introspec-
tion or elicitation the empirical foundations of linguistics are potentially
forged on the scientififf c equivalent of quicksand. From a distance the
foundation appears secure, only to collapse in a nebulous undertow upon
closer inspection.

5. THE LINCHPIN OF FUTURE TECHNOLOGY

What is an ambitious fiff eld to do? Can a discipline reinvent itself with suf-
fiff cient zeal and celerity as to accommodate the technological and societal
transformations of the twenty-fiff rst century?

In this circumstance our Beagle (and hence salvation), is likely to
emerge in the guise of scientififf c imperatives driven by the frenetic pace
of technology. For speech is destined to serve as a technological linchpin
of the twenty-first-century economy by virtue of its ability to facilitate
and automate communication between humans and machines (cf. Green-
berg, 2001). A unique opportunity potentially arises for a synergistic
relationship between the science and technology of spoken language.
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A solid empirical and theoretical foundation is generally required to
develop reliable technology; speech communication is unlikely to be
granted an exemption in this regard. Thus, the science of spoken lan-
guage is likely to evolve quite rapidly over the coming decades as the
demand for speech technology accelerates with the emergence of the
‘‘communication age.’’

Sophisticated technology depends on ‘‘getting the details right’’ to a
degree that far exceeds what passes for knowledge and insight within
the domain of ‘‘pure’’ science (which is why applied technology research
is so much more costly than basic research). With respect to speech the
contrast between ‘‘pure’’ and ‘‘applied’’ research is stark indeed. Lin-
guists and phoneticians often view spoken language through a ‘‘glass
menagerie’’ of abstract forms, which often bear but the faintest
resemblance to language spoken in the ‘‘real’’ world. Current speech tech-
nology (whether it be in the form of automatic speech recognition or text-
to-speech synthesis) relies heavily on training materials representative
of the task domain for this very reason (cf. Figure 2). Such a training-
intensive approach offers many advantages over a more abstract, rule-
governed framework, particularly with respect to performance. But an
emphasis on machine-learning algorithms and training regimes often
comes at the expense of genuine insight into the nature of spoken
language and not infrequently violates the precepts of the hypothetico-
deductive method (cf. Greenberg, 1998; Popper, 1959).

Speech technology can proudly point to its apparent success with
speech recognition and concatenative synthesis in defense of its
machine-learning-centric approach. And indeed, imperfect science is cap-
able of providing an effective foundation for technology – as long as the
demands of the market place are not exceedingly stringent or profound.
However, as commercial expectations rise, immature science is unlikely to
suffice as the empirical and theoretical foundation of future-generation
technology (Greenberg, 2001).

6. THE SCIENCES OF THE SUPERFICIAL

The academic perspective on language differs markedly from that of the
technologist. The linguist is primarily concerned with abstraction and
structure of what is normally hidden from view, while the technologist
focuses on the more superficial aspects of language (such as the acoustic
signal) most amenable to computation (Figure 2); each perspective has its
pros and cons.
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The linguist can use extensive knowledge to make great leaps of
intuition that can, on occasion, derive signififf cant insight into spoken lan-
guage (e.g., Jakobson et al., 1961). But typically such insight is of limited
utility to the technologist, saddled with the gory details of daily chatter.
Under such circumstances it is unsurprising that speech technology relies
mainly on methods designed to automatically divine structure through
statistical analysis of surface forms. Does there somewhere lie a path,
between the surface and the deep, that provides a plane of mediation
between linguistics and technology?

FiFF gi ure 2. Corpus-centric perspective on spoken language. Manually annotated material
forms the basff is for statistical characterization of speech, as well as for training systems to
perform automatic labeling for speech recognition. Currently, most manual annotation
focuses on the lexical level and seeks to derive labels and segmentation for the lower tierff s
(particularly segments) via automatic methods using some form of Viterbi decoding. The
quality of such automatically generated labels and segmentation boundaries is poor when
applied to spontaneous corpora such as Switchboard (cf. Greenberg and Chang, 2000).
There is precious little manually annotated material associated with non-lexical tiers
for any languageff .
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7. INTO THE WILDS (OF SPONTANEOUS SPEECH)

Scholars of medieval Europe sought, in vain, to determine the number of
angels residing on the head of a pin (Loveje oy, 1939), their efforts stymied
through want of empirical data.

In the realm of spoken language we are more fortunate,ff for tff he world
literally reeks of material with which to quantifyff virtually any (super-
ficial) aspect of human discourse; it is merely a matter of recording an
appropriate mix of speakers talking in ways representative of the ‘‘real’’
world and then taking the time to annotate the material for statistical
characterization (cf. Figure 3).

Two corpora of spoken language are particularly germane to the
present discussion. ‘‘Switchboard’’ (Godfrey et al., 1992) has served as
a development corpus for evaluation of automatic speech recognition
systems for more than a decade. The corpus contains hundreds of brief

FiFF gi ure 3. The relation between stress-accent level and word error in the Switchboard
corpus for eight separate speech recognition systems (the data have been pooled, given
the common pattern exhibited across sites). Word-deletion errors are highly correlated
with stress accent level. In contrast, word-substitution errors appear unaffected by
stress-accent level. Over 80% of the words are monosyllabic. Three quarters of the
remainder consist of just two syllables. In polysyllabic words the maximum stress-accent
level pertains to the syllable with the highest degree of accent, irrespective of the stress
pattern associated with the other syllables in the word. From Greenberg and Chang
(2000).
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(5–10 minute) telephone dialodd gues representative of casual conversation,
and is thus of great use in characterizing properties of spontaneous
(American English) speech. A subset (ca. fiff ve hours) of this material
has been phonetically annotated by linguistically knowledgeable transcri-
bers at the International Computer Science Institute (Greenberg, 1999)
and is electronically accessible over the web (http:==www.icsi.berkeley.
edu=real=stp).

A one-hour subset of Switchboard has also been manually labeled
with respect to stress-accent by two individuals not involved in the pho-
netic annotation. The remaining four hours has been automatically
labeled using an algorithm trained on hand-labeled material (cf.
Greenberg et al., 2001).

These same two individuals also labeled two and a half hours of stress-
accent material from a separate (phonetically annotated) corpus, ‘‘OGI
Stories’’ (Cole et al., 1994), containing hundreds of telephone monololl gues
(of ca. 60-seconds each). These two annotated corpora provide (but) one
means with which to characterize spoken language (and thereby serve to
bridge the gap between linguistics and technology).

8. THE ACOUSTIC BASIS OF STRESS ACCENT

Prosodic accent is an integral component of speech, particularly for lan-
guages, such as English, that so heavily depend on it for lexical, syntactic
and semantic disambiguation (thereby providing important information
concerning the focus of a speaker’s attention). Languages mark accent
in a variety of ways, utilizing such acoustic properties as duration, ampli-
tude and fundamental frequency (foffofof ). Some languages, such as Japanese,
tend to mark accent primarily in terms of fundamental frequency vari-
ation (‘‘pitch‘p accent’’ systems), while others, such as English and
German, accentuate using a constellationll of features (i.e., stress) including
vocalic duration and identity, as well as fundamental frequency and other
acoustic properties associated with the patterning of syllables within an
utterance (Beckman, 1986; Clark and Yallop, 1990).

Traditionally, foffof (and its perceptual correlate, pitch) has been thought
to serve as a primary cue for stress accent in English (Fry, 1955; Fudge,
1984; Gimson, 1980; Lehiste, 1970):

‘‘Pitch is widely regarded, at least in English, as the most salient determinant of
prominence. . . when a syllable or word is perceived as ‘stressed,’ . . . it is pitch
height or a change in pitch, more than length or loudness that is likely to be
mainly responsible. . .’’
(Clark and Yallop, 1990; p. 280)
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However, it is unclear whether such statements truly apply to language
spoken in the ‘‘real’’ world, free from constraints imposed by scripted
or non-meaningful material recorded in the laboratory.

In an effort to resolve this thorny issue the acoustic basis of stress
accent was examined as part of a project to incorporate such information
into automatic speech recognition systems focused on spontaneous
material from the OGI Stories corpus (Silipo and Greenberg, 1999; Silipo
and Greenberg, 2000). These studies suggest that duration and amplitude
appear to play a far more important role than foffof in accounting for the
stress-accent patterns observed in this corpus. Several different automatic
methods (based on neural networks, fuzzy logic, and signal-detection
theory melded with a threshold model) were developed for simulating
the stress-accent patterns labeled in the manual transcription of the pros-
odic patterns. Each computational method weighted duration and ampli-
tude far more heavily than fofff in order to provide a faithful simulation of
the stress-accent annotation (Silipo and Greenberg, 2000), consistent
with recent studies examining this issue from the perspective of (Ameri-
can English) telephone voicemail (Koumpis and Renals, 2001) and Dutch
spontaneous phone material (van Kuijk and Boves, 1999). Together, such
studies suggest that pitch variation plays a much smaller role in the stress-
accent pattern of spontaneous speech than has been generally believed
(cf. Figure 11 and Table I, as well as Section 12, for additional material
germane to this issue); thus caution is warranted in extending the conclu-
sions of laboratory studies on stress-accent to the real world, particularly
if technology is viewed as the ultimate arbiter of ‘‘truth.’’

9. STRESS ACCENT AND AUTOMATIC SPEECH
RECOGNITION PERFORMANCE

Stress accent is likely to prove of critical importance for future-gener-
ation speech recognition systems. Not only does it provide a potential
means of identifying key words in an utterance, but such material may
also help to enhance recognition performance overall. In a diagnostic
study of the linguistic and acoustic factors associated with recognition
performance in ASR systems using the Switchboard corpus (telephone
dialogues – cf. Godfrey et al., 1992) it was determined that the stress-
accent pattern is highly correlated with a specififf c form of recognition
error, namely word deletion (Greenberg and Chang, 2000). If a word
contains a primary accent it is far less likely to sustain a deletion error
in recognition than if it contains only unaccented syllables (Figure 3).
This pattern, observed across all eight recognition systems examined,
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TaTT ble Ill .II Features used in developing the automatic stress-accent labeling (AutoSAL) sys-
tem. Delta features refer to the firsff t temporal derivative of the spectrum, while double-delta
features are associated with the second temporal derivative of the same representation.
Vocalic energy is normalized in terms of standard-deviation (Z) units relative to the mean.
Features listed pertain to those associated with labeling performance shown in Figure 11.

Feature legend

1. Vocalic place (front-central-back) [Voc-Place]
2. Nucleus=Syllable Duration Ratio [N S-Dur-Ratio]
3. Speaker gender [Gender]
4. Minimum-maximum (dynamic range) of vocalic f0ff0f [f0ff0f -Range]
5. Mean vocalic f0ff0f [f0ff0f -Mean]
6. Static=Dynamic Property of Nucleus (Diphthong=Monophthong) [Voc-Dyn]
7. Vocalic height (high-mid-low) [Voc-Height]
8. Average vocalic-segment spectrum [Voc-Spec]
9. Vocalic identity [Voc-ID]
10. Vocalic-segment duration [Voc-Dur]
11. Voc-Specþ delta features [Voc-Spec D]
12. Normalized energy (of the nucleus relative to the entire utterance) [Z-Energy]
13. Voc-Specþ delta and double-delta featuresff [Voc-Spec D DD]
14. f0ff0f -Meanþ f0ff0f -Range
15. Voc-HeightþVoc-Place
16. Voc-IDþ f0ff00f -Range
17. Voc-Durþ f0ff0f -Range
18. Z-Energyþ f0ff0f -Range
19. Voc-DurþVoc-ID
20. Voc-DurþN S-Dur-Ratio
21. Voc-Spec D DDþ f0ff0f -Range
22. Voc-IDþZ-Energy
23. Voc-IDþVoc-Spec D DD
24. Voc-Spec D DDþZ-Energy
25. Voc-DurþZ-Energy
26. Voc-DurþVoc-Spec D DD
27. Voc-HeightþVoc-PlaceþVoc-Dyn
28. Voc-HeightþVoc-PlaceþVoc-ID
29. Voc-HeightþVoc-PlaceþVoc-Dur
30. Voc-HeightþVoc-PlaceþZ-Energy
31. Voc-HeightþVoc-PlaceþVoc-Spec D DD
32. Voc-DurþN S-Dur-Ratioþ f0ff0f -Range
33. Voc-DurþZ-Energyþ f0ff0f -Range
34. Voc-DurþVoc-IDþZ-Energy
35. Voc-DurþZ-EnergyþVoc-Spec D DD
36. Voc-DurþZ-EnergyþVoc-HeightþVoc-Place
37. Voc-DurþZ-EnergyþVoc-Spec D DDþ f0ff0f -Range
38. Voc-DurþZ-EnergyþVoc-Spec D DDþGender
39. Voc-DurþZ-EnergyþVoc-Spec D DDþVoc-ID
40. Voc-DurþZ-EnergyþVoc-Spec D DDþN S-Dur-Ratio

(Continued)
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suggests that stress-accent information could be used to improve recog-
nition performance (particularly for large-vocabulary task domains,
which generally contain a signififf cant proportion of unaccented words)
by utilizing such knowledge to interpret the acoustic signal with respect
to phonetic classification and lexical segmentation.

Currently, stress accent is not commonly incorporated into ASR sys-
tem design. Moreover, there is no general consensus as to the specific
form and nature of the prosodic parameter, especially its acoustic corre-
lates. Perhaps there is another property of the speech signal that garners a
higher degree of agreement as to its linguistic manifestation and which
bears a close affiff nity to stress accent?

10. SYLLABLE STRUCTURE AND AUTOMATIC SPEECH
RECOGNITION PERFORMANCE

Words may be classified in terms of their constituent syllable structure.
Most words in English are monosyllabic and their structure is likely to
be one of several forms – consonanff tþ vowelþ consonant (CVC), conso-
nantþ vowel (CV), vowelþ consonant (VC) and vowel (V). Together,
these syllable types account for ca. 8ff 5% of the structural formsff founff d
in spontaneous (American) English (cf. Figure 4 and Greenberg, 1999).
Consonant clusters occasionally occur at either the syllable onset (e.g.,
CCVC) or coda (e.g., CVCC), but such forms accountff for onff ly ca.
15% of the syllable types in spontaneous English (Greenberg, 1999).
And a relatively small proportion of words (ca. 19% in the Switchboard
corpus) contain more than a single syllable (of this number, approxi-
mately three quarters are disyllabic in form).

Of interest, in the current context, is the relation between syllable
structure and word-deletion errors for the Switchboard speech recog-
nition systems. Monosyllabic words beginning with a vowel (i.e., V,
VC and VCC forms) are far more likely to be mis-recognized in terms

TaTT ble Ill .II (Continued)

Feature legend

41. Voc-DurþZ-EnergyþVoc-Spec D DDþVoc-IDþGender
42. Voc-DurþZ-EnergyþVoc-IDþN S-Dur-Ratioþ f0ff0f -Range
43. Voc-DurþZ-EnergyþVoc-IDþN S-Dur-RatioþGender
44. Voc-DurþZ-EnergyþVoc-Sp D DDþVoc-IDþN=S-DurþGenþ f0f0ff0f -Meanþ

f0ff0f -Range
45. Voc-DurþZ-EnergyþVoc-Spec D DDþVoc-IDþN S-Dur-RatioþGender
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of word deletions than other syllable forms. The governing parameter
does not appear to be vocalic-initial lexical forms per se, as VCVC words
(such as ‘‘about’’) are rarely associated with word-deletion errors
(Figure 4). Rather, the word-deletion rate appears linked to the stress-
accent pattern associated with each syllabic form. Di-syllabic words
usually carry a heavily accented syllable, typically the second when the
initial syllable begins with a vowel. Words with consonantal onsets also
tend to carry some measure of accent. Thus, syllable structure and accent
pattern are in some sense inextricably linked – two sides of the same
linguistic coin. Perhaps the philosophy of Rashomon is also relevant to
understanding spoken language; the phenomena under study are multifa-
ceted and far too complex to yield their secrets viewed from just a single
perspective. And there may be other perspectives (such as vocalic
identity) that are equally germane.

FiFF gi ure 4. Relationship between word-error rate and syllable structure for Switchboard
speech recognition systems. Monosyllabic words beginning with a vowel are far more
likely to be mis- recognized in terms of word deletions than words beginning with a con-
sonant or containing two or more syllables. From Greenberg and Chang (2000).
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11. STRESS-ACCENT AND VOCALIC IDENTITY

In principle, stress accent is independent of vowel quality (with each vocalic
segment capable of assuming any degree of stress), and therefore the distri-
bution of accent should be relatively uniform across the vocalic inventory.
From this perspective, stress accent is largely a lexical phenomenon, where
each word has its distinctive accent pattern (as defined in a pronouncing dic-
tionary) that is only marginally influenced by embedding within the context
of spoken discourse. And as there is an arbitrary relation between sound (in
this instance, vowels) and symbol (i.e., words) there should be little evidence
of a systematic relationship between stress-accent and lexical form.

However, a rather different pattern emerges from analysis of the
Switchboard corpus (cf. Figure 5). High vowels (e.g., [ih], [uh]) are far

FiFF gi ure 5. The proportion (in percent) of tokens for each vocalic class labeled as either
completely accented (level-1 accent, top panels) or entirely unaccented (level-0 accent,
bottom panels), partitioned into two broad classes, diphthongs and monophthongs (for
clarity of illustration). Note reversal of scale for the ordinates associated with the top
and bottom panels. This scale reversal is required to maintain the spatial relationship
between vowel height and proportion of heavily accented (or unaccented) syllables.
Adapted from Hitchcock and Greenberg (2001).
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more likely to be unstressed than low vowels (e.g., [ae], [aa], [ao]); this
relation between vowel height and stress accent extends to diphthongs
as well. Thus, [iy] and [uw] are much less frequently accented than [aw]
and [ay]. Moreover, the relation between vowel height and stress accent
is graded. Mid-height vowels, such as [eh], [ey], [ah] and [ow] exhibit a
stress-accent pattern intermediate between their low and high vocalic
counterparts (Hitchcock and Greenberg, 2001; Greenberg et al., 2001).

The relation between vocalic identity and stress accent appears to go
far deeper than a mere statistical association between parameters. Vocalic
duration, for example, is highly correlated with stress accent. Stressed
nuclei are ofteff n 50% to 100% longer in duration than their unstressed
counterparts (cf. Figure 6). In consequence, duration and stress accent
are highly correlated in spontaneous discourse (cf. Figure 6). Moreover,
there is a close association between duration and vowel height (Figure 7;
Hitchcock and Greenberg, 2001; Peterson and Lehiste, 1960) that is likely
to be linked to stress accent as well. Duration may hence serve as a

FiFF gi ure 6. The relationship between segment duration and vocalic identity. Stressed
nuclei are consistently longer in duration than their unstressed counterparts. The differ-
ence in duration is particularly marked for diphthongs and low monophthongs, and is
smallest for the high monophthongs (which are rarely heavily accented). Only segments
consistently labeled as fully stressed or entirely unstressed are included in the analysis.
Fully stressed [ix] segments were too few to include in the analysis. From Greenberg
et al. (2001).

120 Steven Greenberg



FigureFF 7. Spatial patterning of the duration, amplitude and integrated energy of vocalic
nuclei as a function of stress level (heavy or none), as well as for occurrences averaged
across all levels of accent. The data are partitioned into two classes, diphthongs and
monophthongs, in order to highlight the patterns. The data points represent averages
for each vocalff ic class. The standard deviations were relatively uniform and are therefore
omitted (but are provided in a more extended account – Hitchcock, 2001). The vocalic
labels are derived from the Arpabet orthography (cf. Greenberg, 1997 for a description
of the phonetic inventory). Horizontal tongue position is schematic in nature and is
not intended to denote articulatory measurement (but is roughly correlated with the fre-
quency of the second formant). From Hitchcock and Greenberg (2001).
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secondary (and under certain circumstances, even as a primary) cue to
vowel height.

Vocalic amplitude is also correlated with vowel height (Figure 7),
though not at first glance to the degree exhibited by duration. Vowel
height is directly correlated with the frequency of the first formant;
‘‘high’’ vowels are associated with a low-frequency F1 (225–350 Hz) while
‘‘low’’ vowels have a F1 (700–800 Hz). The audibility function for human
hearing changes markedly over this range, so that a component at 800 Hz
is likely to be as much as 20 dB louder than one at 250 Hz. Thus, the
seemingly small disparity in amplitude between high and low vowels
may actually be considerably larger when perceptually relevant factors
are taken into account.

In some very real sense stress-accent and vowel height may not be
entirely distinguishable. Vocalic distinctiveness is, in principle, based on
a pattern associated with formants one, two and three (Ladefoged,
1993); yet duration (bound with stress-accent) appears to play an impor-
tant role as well (cf. Figures 6 and 7), reflected, perhaps, in the pattern of
vocalic reduction observed in spontaneous speech (cf. Lindblom, 1990).

The consequence of such patterns is a systematic relation between
vowel height and stress-accent pattern. Tongue height associated with
vocalic forms in unaccented syllables is faff r more likely to be high than
mid or low, for both canonical and non-canonical realizations of syllables
and words (Figure 8). The distribution of vowels with respect to tongue
height is of a far more even nature for syllables with some degree of stress
accent (either light or heavy) relative to those without.

As a consequence of this relation between stress accent and vowel
height the overall distribution of unaccented vocalic forms differs dra-
matically from those associated with heavily accented syllables
(Figure 9). The overwhelming majority of vocalic forms in unaccented
syllables are in the high-front and high-central regions of the vowel space.
The number of low and mid vowels associated with such syllables is
rather small. Many (but not all) of the words incorporating such unac-
cented syllables are ‘‘function’’ words (such as conjn unctions, articles, pro-
nouns and demonstratives) which occur with great frequency in
conversational speech. Thus, a listener may be ‘‘primed’’ to interpret
unaccented syllables as function words under many circumstances
(barring evidence to the contrary).

There is a relatively even distribution of vocalic forms associated with
fully accented syllables (particularly among the front and low=mid-cen-
tral vowels). Certain vowels, such as [ao], [oy], [aa] [ae] and [aw], rarely
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occur in unaccented syllables and are typically associated with ‘‘content’’
words (such as nouns and their adjectival complements), particularly
those that are relatively uncommon (and hence highly ‘‘informative’’
from a mathematical perspective).

The phonetic realization of vocalic forms is shaped to a certain degree
by the (negative) entropy (or ‘‘information’’) associated with the syllables
and words in which they are contained. The stress accent pattern can thus
be thought of as the surface manifestation of local variation in infor-
mation associated with the sequence of words and syllables within an
utterance.

The intimate relationship between stress accent and vocalic identity
in spontaneous discourse suggests that the two may also not be readily dis-
tinguishable at some (relatively high) level of linguistic abstraction. Accent
may be as integral a component of vocalic identity as tongue height and
horizontal tongue position (if not more so). Diphthongs are rarely found
in unaccented syllables, regardless of the underlying canonical form, nor
are low or back vowels frequentff ly encountered in such contexts. In this
sense the absence of accent is accompanied by a constriction of the articu-
latory space to mostly high-front and high-central vowels. Such a
constriction is probably associated with the reduction in duration associa-
ted with unaccented syllables and is likely to reflect the ‘‘undershoot’’
phenomenon described by Lindblom (1963) and others (e.g., Öhman, 1966).

FiFF gi ure 8. The impact of stress accent on the number of vocalic segments associated with
high, mid and low articulatory height (cf. Figure 10 for the relation between segmental
identitdd yt and vowel height), partitioned into canonical (left panel) and non-canonical
forms (right panel). Note the difference in scale between the two panels. There is a proff -
nounced skew towards the high vowels for both the canonical and non-canonical forms
associated with unaccented syllables. From Greenberg et al. (2002).
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FiFF gi ure 9. The impact of stress accent (‘‘Heavily Accented’’ versus ‘‘Unaccented’’) on the
number of instances of each vocalic segment type in the corpus. The vowels are parti-
tioned into their articulatory configuration in terms of horizontal tongue position
(‘‘Front,’’ ‘‘Central’’ and ‘‘Back’’) as well as tongue height (‘‘High,’’ ‘‘Mid’’ and
‘‘Low’’). Note the concentration of vocalic instances among the ‘‘Front’’ vowels associa-
ted with ‘‘Heavy’’ accent and the association of high-front and high-central vowels with
unaccented syllables. The data shown pertain solely to canonical forms realized as such in
the corpus. The skew in the distributions would be even greater if non-canonical forms
were included (cf. Figure 9 for additional data pertaining to this issue). From Greenberg
et al. (2002).
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The phonetic forms associated with consonantal segments in both
onset and coda constituents of the syllable exhibit a comparable (though
quite different) dependence on stress accent (Greenberg et al., 2002). The
durational properties of onset (but not coda) consonants are highly sensi-
tive to stress accent – the onsets of heavily accented syllables tend to be
50–60% longer than their unaccented counterparts. And coda constitu-
ents are far more likely to be ‘‘deleted’’ (or at least phonetically unrea-
lized) in unaccented syllables than in syllables with some degree of
stress accent (relative to their ‘‘canonical’’ pronunciation), particularly
for alveolar and liquid segments. Such patterns of pronunciation vari-
ation provide yet additional evidence that prosodic factors are extremely
important in understanding the phonetic properties of spoken language.

12. THE UTILITY OF PHONETIC INSIGHT

Knowledge of the relation between pronunciation and stress accent may
be of utility for automatic speech recognition, particularly under con-
ditions of acoustic interference where the low-frequency portion of the
spectrum is degraded. For such knowledge to be of utility in technology
applications automatic methods are required to computationally embed
the kernel of insight within the confiff nes of a functioning system.

Such an automatic stress accent labeling (AutoSAL) system has been
developed for the Switchboard corpus. Multilayer perceptron (MLP)
neural networks were trained on 45 minutes of manually labeled material
and then applied to an additional four hours of data from the same cor-
pus. The training material contains fiff ve distinct levels of stress accent
(from entirely unaccented at one end of the spectrum to heavily accented
at the other). The degree of machine-human concordance depends on the
granularity of the accent labeling. For a very strict metric of concordance
(an exact match between human and machine labels) there is precise
agreement for 67.5% of the syllables. When the concordance metric is
relaxed to a single level of accent disparity the concordance rises to
78%. And when the concordance criterion is further relaxed to 2 accent
levels of disparity the agreement between human and machine is nearly
98%. Because the human transcribers were using a three-level system
to mark accent (i.e., fully accented – 1, completely unaccented – 0, an
accent in between the extremes – 0.5), the most realistic concordance met-
ric to assess the reliability of AutoSAL provides for two levels of accent
disparity. In this sense, the machine labels are as reliable (and as consist-
ent) as those generated by highly trained human transcribers (Figure 10).
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It is of interest to ascertain the specififf c acoustic, phonetic and linguis-
tic features required to simulate stress-accent assignment performed by
the human transcribers in order to understand the nature of the cues
potentially used by human listeners when decoding spoken language.
Forty-five distinct feature combinations were used as input to the Auto-
SAL system in an effort to determine the features mostly closely associa-
ted with human-like, stress-accent labeling performance (Figure 11
and Table I). These feature sets were derived from a variety of acoustic,
phonetic and linguistic parameters thought to be of relevance to the
perception of stress accent (e.g., Fry, 1955; Lehiste, 1970; Lehiste,1996;
Silipo and Greenberg, 1999) – duration and amplitude of the syllabic
nucleus, the funff damental frequency contour across syff llables, as well as
parameters believed to be germane to the task through statistical analysis

Figure 10FF . Classification accuracy of the automatic (MLP-based) stress-accent labeling
(AutoSAL) system for the Switchboard corpus using two degrees of accent-level tolerance
– quarter-step and half-step. The reference accent level is derived from the (average of the)
material manually labeled by two transcribers. A syllable is scored as correctly labeled if
the ASAL system output is within the designated tolerance limit. Such a metric is required
to compensate for the inherent ‘‘fuzziness’’ of stress accent in spontaneous material, parti-
cularly for syllables with some measure of accent. For accented syllables there appears to
be a gradation in stress; in contrast, unaccented syllables behave as a relatively homo-
geneous class. From Greenberg et al. (2001).
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of the Switchboard corpus (Hitchcock and Greenberg, 2001), such as the
height and forward position of the tongue during vocalic articulation,
vocalic identity and the dynamic properties of the nucleus (i.e., whether
the segment is a diphthong or monophthong).

The traditional perspective on stress accent ascribes a prominent role
to pitch (i.e., fundamental frequency) variation across syllables in a
phrase (e.g., Fry, 1955; Fudge, 1984; Gimson, 1980); yet the AutoSAL
system does not require such f0ff0f -based features to achieve performance
on par with an experienced human transcriber. Of the 45 feature-combi-
nation sets tested (Table I), parameters associated with vocalic identity

FiFF gi ure 11. Features used in developing the automatic stress-accent labeling (AutoSAL)
system. The fiff nal version is based on the features associated with set #45, hereafteff r
defined as the baseline (100 percent performance), achieving performance equivalent to
that of a human transcriber. The most poorly performing feature sets are those whose
labeling accuracy is close to chance (40%; hereafter 0% of the dynamic range), equivalent
to the prior probability of the most common stress-accent label (level-0). The magnitude
associated with each feature set is the label accuracy transformed into dynamic-range-
normalized units. The best performing feature combination (#45) achieves an accuracy
of 67.5% with respect to five distinct levels of stress accent, comparable to the overall con-
cordance between the two human transcribers. These results are based on a analysis using
a tolerance step of 0 (i.e., an exact match between human and machine accent labels was
required for a ‘‘hit’’ to be scored) and a fiff ve-accent-level system. The concordance
between machine and human labels is 78% for the five-level system, and is 97.ff 5% for
a three-level version of the same system. The feature set is detailed in Table I. Revised
version of a figure from Greenberg et al. (2001), in which additional details about the
AutoSAL system are described.
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and the attendant spectrum (in terms of the spectral contour over the
duration of the segment) are consistently among the most effective cues,
along with the duration and normalized energy associated with the
syllabic nucleus. Thus, statistical analysis of a spoken-language corpus
has proven to be a far better guide for developing classification algo-
rithms of stress accent than perceptual studies using (rather) artififf cial
stimuli. In this fashion speech technology can provide the sort of insight
into the nature of spoken language that complements and extends knowl-
edge gained from more traditional sources of scientififf c experimentation
(cf. Figure 12).

13. THE ONCE AND FUTURE KINGDOM OF SPOKEN
LANGUAGE RESEARCH

Many aspects of spoken language can be likened to the unicorns of
yore – mythical in nature, with their sanctity especially esteemed. These
mythical (and languid) creatures are often ‘‘sighted,’’ yet ever fail to
materialize, the ephemeral pot of gold at the edge of the linguistic

FiFF gi ure 12. The ‘‘eternal pentangle’’ illustrates the essential tension between science and
technology. Although the two poles are often considered exclusive domains, they are in
fact complements of each other, providing synergistic relations that further the goals off f
both. Great technology generally depends on first-rate science and conversely, cutting-
edge science often requires superb engineering. Moreover, insights garnered from activity
in one pole often help to elucidate problems in the other.
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rainbow. Thus, spoken language, as seen through the ‘‘eyes’’ of phonetics
and technology, may appear as a chimera, its form and substance in per-
petual mutation, and its reififf cation dependent on circumstance rather
than on principle.

Scientific insight often stems from necessity, and in such circum-
stance technological imperatives are likely to serve as an effective cata-
lyst in transforming phonetics (and the rest of linguistics) into a
mature field of scientific endeavor. An essential tension exists between
science and technology with respect to spoken language. Over the
coming decades this tension is likely to dissolve into a collaborative
relationship melding linguistic knowledge with machine-learning and
statistical methods as a means of developing mature science and tech-
nology pertaining to human-machine communication. In the process
many mysteries surrounding the form and substance of spoken
language are likely to be resolved through the concerted efforts of
scientists and engineers focused on the creation of ‘‘flawless’’ speech
technology.
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MOISÉS PASTOR and FRANCISCO CASACUBERTA

PRONUNCIATION MODELING

Automatic Learning of Finite-state Automata

ABSTRACT. The great variabilityofwordpronunciation in spontaneous speech is one
of the reasons for the lowperformanceof thepresent speech recognition systems.Thegen-
erationofdictionarieswhich take this variability into accountmay increase the robustness
of such systems. A word pronunciation is a possible phoneme-like sequence that can
appear in a real utterance, and represents a possible acoustic production of the word.

In this paper, word pronunciations are modeled using stochastic fiff nite-state auto-
mata. The use of such models allows the application of grammatical inference meth-
ods and an easy integration with the other knowledge sources. The training samples
are obtained from the alignment between the phoneme-like decoding of each training
utterance and the corresponding canonical transcription.

The models proposed in this work were applied in a translation-oriented speech
task. The improvements achieved by these new models ranged from 2.7 to 0.6 points
depending on the language model used.

KEYWORDS. Automatic learning, pronunciation, spontaneous speech, canonical
model, labeling, finite-state automata.

INTRODUCTION

In a speech recognition system, the mapping between the vocabulary
words and phoneme-like models are known as pronunciation models.
Usual pronunciation models are sequences of phoneme-like units that
correspond to the standard pronunciation that can be found in a com-
mon dictionary (canonical pronunciation). The speech recognition sys-
tems based on such pronunciation models achieve a good performance
in a laboratory environment. However, the performance of such systems
decreases dramatically in spontaneous environments. This fact seems
contradictory to the assumption that a spoken word should not present
so large a difference in pronunciation from its canonical representation
as to be misunderstood by human listeners. However, the human brain
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uses syntax, semantic and pragmatic knowledge to recover from partial
information which is present in an utterance. For that reason, words with
no semantic information and a high n-gram probability (usually short func-
tion words) do not need to have an accurate pronunciation to be understood
by listeners with a good syntactic knowledge (Fosler-Lussier, 1999).

Canonical models would be a good model for some words with
enough acoustic information (long words). A small variation of a pho-
neme pronunciation does not represent an important part of the acoustic
score of the word. On the other hand, short words (pronouns, articles,
etc.) are the most problematic ones. A small deviation from the canonical
pronunciation can represent an important variation with respect to the
canonical representation. These words are common in human language
and usually do not carry important semantic information. They also have
a high n-gram probability of occurrence.

There are several approaches to automatic pronunciation modeling. In
our opinion, one of the most interesting approaches is the phoneme-based
rule-learning technique (Fosler-Lussier et al., 1996; Fosler-Lussier, 1999;
JHU Workshop 96 Pronunciation Group). On the one hand, the main
problem that arises with these techniques is the over-generalization. On
the other hand, one of their greatest advantages is their easy extension to
infrequent or unobserved words. However, if a word is infrequent, the effect
on the global performance of the system is small. For these words, we use
only the canonical pronunciation as a model, as used for long words.
Another alternative is using fiff nite-state automata as pronunciation models
(DeMori et al., 1995). The transitions of such automata are labeled by pho-
neme-like units. A path from the initial state to the final state represents a
possible pronunciation of the word being modeled. One of the advantages
of this type of model is the existence of a number of grammatical inference
techniques to learn such models automatically from training pronunciation
with different degrees of generalization (Garcia and Vidal, 1990; Oncina
and Carrasco, 1994). Another advantage of the models is their easy
integration with other knowledge levels and other levels of processing.

1. AUTOMATIC LEARNING OF WORD PRONUNCIATIONS

1.1. Pronunciation Model

In speech recognition we want to obtain the sequence of words, bww, that
maximize the probability ofbww ¼ argmax

w
PrðwjxÞ ð1Þ
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x being the acoustic representation of an input sentence. Using Bayes
rule, we can decompose this probability PrðwjxÞ as,

PrðwjxÞ ¼ PrðwÞPrðxjwÞ
PrðxÞ ð2Þ

where PrðwÞ is the probability of the word sequence, PrðxjwÞ is the prob-
ability for this sequence to produce the acoustic observation and PrðxÞ is
the acoustic probability. As the factor PrðxÞ does not affect the fiff nal
result, we can modify the Equation (2) as:

PrðwjxÞ ¼ PrðwÞPrðxjwÞ ð3Þ
Usually, the second factor is decomposed into two new factors. In this
way, we can decompose Equation (3) as:

PrðwjxÞ ¼ PrðwÞPrðsjwÞPrðxjsÞ ð4Þ
Here, PrðwÞ is the probability of the sequence of words, PrðsjwÞ the prob-

ability for this sequence of words to generate the pronunciation, and PrðxjsÞ
the probability that this pronunciation produces the acoustic observation.

In practice, PrðxjsÞ is modeled by acoustic models (HMMs) and PrðwÞ
by an n-gram model. We can see that the pronunciation model, PrðsjwÞ,
acts as a mapping between words and subwords units.

The pronunciation model is efficiently specified using stochastic finite-
state models.

A stochastic finite-state model (see Figure 1) is a finite-state network
whose transitions are labeled by two items: an input symbol (a word of
the vocabulary. In the fiff gure: a, b or c) and a transition probability
(between brackets in the figff ure). In the case of pronunciation models,
the arcs are labeled with the transition probability and a sub-word unit.
Each path through this automaton represents each possible modeled
pronunciation. The probability of each variant is the result of the multi-
plication of probabilities of the path that generates the pronunciation.

Stochastic finite-state automata have been intensively studied over the
years and we have a number of techniques at our disposal for automati-
cally learning them (Jelinek, 1998; Rossmanith and Zeugmann, 2001;
Casacuberta, 1990; Oncina and Carrasco, 1994).

1.2. Generation of the Training Pronunciations

The manual transcription of words is a diffiff cult and expensive task.
For this reason, it seems interesting to obtain the transcriptions in an
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automatic way. Training samples are obtained from the alignment
between the phoneme decoding of each training utterance and the corre-
sponding canonical transcription. The alignment between two sequences
of phoneme-like units is a subproduct of the computation of the editing
distance between both sequences (Hanna et al., 1999). There can be
equivalent (same distance) alignments. Our editing distance algorithm
gives a better score to those paths which include substitutions and
deletions because, from observation, there are more substitutions and
deletions than insertions.

For each word of the vocabulary, w 2 R, let PronðwÞ be a set of pairs
ðPi

w; n
i
wÞ; 14 i 4mðwÞ where Pi

w is the i-th sequence of phoneme-like rep-
resentation of an acoustic production of word w;mðwÞ the number of
different pronunciations for the word w, and niw the number of times that
Pi
w is obtained from the alignments.
Firstly, it is necessary to select the words that will be modeled by their

canonical pronunciations and those that will be modeled by grammatical
inference. Currently, the criterion for choosing these words is their fre-
quency in the corpus. In this work, we used a more restrictive criterion:
we chose those words, w, that have one or more pronunciations, Pi

w

which appear(s) at least a given number of times r:

HrðRÞ ¼ fwj9ðPi
w; n

i
wÞ 2 PronðwÞ; niw > rg ð5Þ

Figure 1FF . Example of stochastic finite-state automata.
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Note that the set defined by HrðRÞ is contained in the corresponding
set defiff ned by the word frequency. In practice, long words do not appear
in HrðRÞ:

Some examples of alternative pronunciations for some words are
presented in Table 1.

The main problem that arises when obtaining pronunciations auto-
matically from acoustic utterances is its low reliability due to the poor
accuracy of phoneme decoders. Some pronunciations are not suitable
to be used for training. Pronunciations that are far from the most rep-
resentative and systematic pronunciations must be discarded. The next
step, then, is to choose the pronunciations that are representative for a
word. To do that we test with three diffeff rent criteria:

Number of pronunciations
This is the simplest criterion. We choose a fixed number of the most
representative pronunciations for each word:

CðwÞ ¼fðPi
w; n

i
wÞ 2 PronðwÞ;

n1w 5 n j
w5 n jþ1

w jw 2 HðRÞ ^ 14 i4 dg ð6Þ

Accumulative percentage
We have a set of pronunciations of a given word. This set is ordered from
the highest to the lowest probability. We collect the productions until we
reach a definite threshold:

CðwÞ ¼
(
ðPi

w; n
i
wÞ 2 PronðwÞ;

n1w5 niw5 niþ1w ; 14 i4mjw 2 HðRÞ ^
Xm
i¼1

niwP
j

PP
jj n

jnjnw
¼ d

) ð7Þ

TaTT ble 1ll . Examples of alternative pronunciations for several Spanish words.

el ¼ {(el,44), (e,18), (1,17), (o1,11), (al,6), (en,5), (r,3), (on,3), (er,2), (ei,2)}
de ¼ {(de,399), (d,41), (do,25), (da,24), (be,21), (e,15), (di,15), (o,5), (le,5), (@,5)}
favorff ¼ {(fabor,217), (fabo@,33), (fobor,12), (fbor,12), (fabur,12), (fabo,8), (fabr,6),

(faff boa,5)}
por ¼ {(por,220), (po,110), (pr,19), (pol,10), (or,7), (pu,3), (pur,2)}
una ¼ {(na,116), (ona,83), (una,56), (ma,15), (rna,13), (ana,13), (@na,11), (gna,8),

(lna,6), (bna,6), (ono,4)}
las ¼ {(las,68), (los,20), (nas,11), (das,10), (uas,7), (nos,6), (dos,6), (bos,5)}
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Threshold percentage
For a given word, w 2 HrðRÞ, we take into account those pronunciations
which appear at least a percentage d of the total occurrences foff r word w:

CðwÞ ¼
j

( )
ðPi

w; n
i
wÞ 2 PronðwÞjw 2 HðRÞ ^ niwP

j

PP
j n

j
w

5 d ð8Þ

1.3. Building Lexical Models

As mentioned above, each w =2===HrðRÞ is represented by its canonical
pronunciation. These words either present a low frequency of occurrence
or do not have even one systematic pronunciation.

For each w 2 HrðRÞ, an automaton is built (stochastic k-testable
fiff nite-state automaton; Garcia and Vidal, 1990). These models are a par-
ticular case of finite-state automata, and their integration into a finite-
state language model (as n-gram) is straightforward. The production of
lexical acoustic word models is also straightforward, requiring just a sub-
stitution of each phoneme transition by the corresponding acoustic
model.

Three examples of the models inferred by the method proposed here
are presented in Figure 2. In Figure 3, a canonical model for the Spanish
word vale is also presented. The fiff rst three models presented here show a
richer structure than the fourth one.

2. EXPERIMENTAL EVALUATION

2.1. The TRAVELER Task Corpus

The general aim was to cover common sentences usually needed by a tra-
veler visiting a foreign country, whose language he=she cannot speak.
This framework includes a great variety of different translation scenarios
and, thus, it becomes appropriate for progressive experimentation with
increasing complexity. In a first phase, the scenario was limited to some
human-to-human communication situations at a reception desk of a
hotel: asking for rooms, wake-up calls, keys, the bill, moving the luggage,
asking for information about rooms (availability, features, price),
confiff rming a previous reservation, signing the registration form, asking
and complaining about the bill; notifying about the departure details
and other common expressions. For this purpose, a corpus was acquired
during the fiff rst phase of the EuTrans projo ect.

A small seed corpus was created from several guide books with sen-
tences considered useful for tourists. This corpus was used to help the
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design of the Traveler TaskTT corpus, which was automatically built by
using a set of Stochastic Syntax-Directed Schemata (Gonzalez and
Thomason, 1978) with the help of a data generation tool specially
developed for the EuTrans-I projo ect. This software allows the use of several
syntactic extensions to these schemata in order to express optional rules,
permutations of phrases, concordance (of gender, number and case), etc.
The use of automatic corpus generation was convenient due to cost-effec-
tiveness and time constraints in the fiff rst phase of the EuTrans-I projo ect.
Moreover, this procedure allows control of the level of task complexity.

Figure 2FF . Three stochastic finite-state networks inferred for modeling the allowed pro-
nunciations for the Spanish words ‘‘el’’, ‘‘por’’ and ‘‘favor’’, respectively. The initial state
is represented by the darkened circle and the fiff nal states are marked by a double circle.

FiFF gi ure 3. Stochastic fiff nite-state network allowing only the canonical pronunciation for
the Spanish word ‘‘vale’’.
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Some example pairs of the Traveler Task corpus are shown in Table 2.
The acoustic training subset corpus consisted of 1264 sentences uttered
by 16 speakers and the test data comprised 336 sentences produced by
4 speakers. The different language models were trained with the tran-
scriptions of the acoustic training subset. The utterances and the speakers
used to train the system were different from the ones used for testing. The
vocabulary size of the Traveler task was 680 words. Test and training
were gender-balanced.

2.2. System Overview

The experiments were performed using the EuTrans telephone speech
input translation prototype. This is an engine capable of translating tele-
phone calls from oneff language to another (Amengual et al., 2000; Pastor,
Sanchis, Casacuberta, and Vidal, 2001). This recognition system is based

TaTT ble 2ll . Examples of usual sentences from Traveff ler Corpus.

Reservé una habitaci�oon individual hasta el dı���� ´a seis a nombre del se~nnor
y la sennora Arnau.~
(I booked a single room until the sixth for Mr and Mrs Arnau.)

Cunto cuesta por dı́a una habitaci�oon doble incluyendo desayuno?���
(How much does add doudd ble room incll lull dingdd breakfast cost perff dadd ya ?)

Hay caja fuerte en las habitaciones, por favor?
(Is there a safa e in tff he rooms, please?ll )

Tengo que fiff rmar alguna hojo a de registro?
(ShSS ould I sign a registration form?ff )

Harı́a el faff vor de cambiarme a otra habitaci’on con menos ruido?
(Would you mind moving me to a quieter room?)

Le importarı́a despertarme a las nueve en punto, por favorff ?
(Would you mind waking me up at nine o’clock, please?WW )

Me puede dar las Ilaves de la habitaci�oon dos veinticinco, por favor?����
(Can you give me the keys to room number two two five, please?)

Lleve las bolsas al taxi.
(Send the bags to the taxi.)

Nos tenemos que ir el dı́a ocho a las seis y media de la tarde.
(We should leave on tll he eighth at half past six in the afa ternoon.ff )

Por favor,ff prep�aarenos nuestra cuenta de la habitaci���� �oon cero quince.���
(Could you prepare our bill for room numff ber oh one fiveff for us, pff lease?ll )

Me podrı́a repasar la factura de la habitaci�oon nueve nueve cinco?����
(Could you check the bill for room number nine nine five for me, please?)

Me podrı́a pedir un taxi para la habitaci�oon cuatro seis siete, por favor?����
(Could you ask for a taxi for room number four six seven for me, please?)
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on ATROS (Automatically Trainable Recognizer Of Speech) engine
(Llorens et al., 1999a; Llorens et al., 1999b; S�aanchez et al., 1999). ATROS����
is a continuous speech recognition system which uses stochastic fiff nite-
state models at all its levels: acoustic-phonetic, lexical and syntactic.
All these models can be obtained in an automatic way (Llorens et al.,
1999a). This makes the system easily adaptable to different recognition
tasks.

The acoustic front-end operates on 25ms frames with an interframe
distance of 10ms. A fiff lter bank of 21 trapezoidal fiff lters with increasing
widths according to the mel-frequency scale is applied to the 512-point
FFT, producing 21 spectrally weighted mean values. A discrete cosine
transform is applied to these coefficients producing 10 mel-frequency
cepstral coefficients. Energy is also added. First and second derivatives
of cepstrum coeffiff cients and energy complete the 33-component frame.

The acoustic models of phoneme-like units were 24 left-to-right con-
tinuous-density context-independent HMMs. They were trained with
the HTK Toolkit (HTK Book; Young et al.). The probability density
functions of HMM states were modeled by Gaussian mixture densities
with diagonal covariance matrices, and were estimated with the standard
Baum-Welch algorithm. Bigrams and trigrams used in these experiments
were trained using the k-testable training algorithm (Garcia and Vidal,
1990; Bordel et al., 1997).

For decoding, the acoustic and pronunciation models are dynamically
integrated in the syntactic model: the transitions in the syntactic model
automaton are substituted by the corresponding pronunciation model,
and each transition on the pronunciation model is substituted by the
corresponding acoustic model (see Figure 4). The decoding process is per-
formed using the beam-search Viterbi algorithm (Ney, 1984) through the
integrated network.

2.3. Results

All experiments were done using a Pentium II 233MHz with 64Mb of
memory, running Linux operating system. First of all, we determined
the optimal values for r and d (see Equations 6, 7 and 8). For this,
bigrams, trigrams and the training corpus were used (see Figures from
5 to 10). The best result was obtained using the ThTT reshold percentage
method forff r ¼ 20 and d ¼ 0:8. This method deals with those pronuncia-
tions which appear at least a given percentage of the total occurrences for
a word.
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Figi ure 4. Integrated model.

FiFF gi ure 5. Relationship between the word selection criteria and the selection of represen-
tative pronunciations (reje ection of noisy pronunciations). Criterion used: Number of Pro-
nunciations. Language model: bigram.
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The Number of pronunciations criterion (Figures 5 and 6) uses a fiff xed
number, namely the most representative number of pronunciations (see
Section 1.2) from the set of pronunciations proposed by the phoneme-like
decoder. This obtains interesting results given that this is a very simple
and not expensive method. The main drdd awback for this criterion is that
it takes productions blindly, and does not evaluate the systematic nature
of the pronunciations, and, possibly, leads nowhere.

The Accumulative percentage criterion (see Section 1.2) does not reje ect
noisy pronunciations satisfactorily because it does not take into account
whether each contribution to the total percentage is systematic enough.
This method is intended as a refiff nement foff r the Number of pronunciations
criterion. However, it obtains the worst results (see Figures 7 and 8). It
has the same problems as the Number ofo pronunciations criterion and, in
the case of unsystematic, noisy pronunciations it accepts more pronun-
ciations.

The Threshold percentage criterion could be similar to the principle
used to select words for modeling. As we can see in Figures 9 and 10,
the second criterion is more restrictive. A marker is the fact that every

FiFF gi ure 6. Relationship between the word selection criteria and the selection of represen-
tative pronunciations (rejection of noisy pronunciations). Criterion used: Number of Pro-
nunciations. Language model: trigram.
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Figure 7FF . Relationship between the word selection criteria and the selection of represen-
tative pronunciations (reje ection of noisy pronunciations). Criterion used: Accumulative
Percentage. Language model: bigram.

Figi ure 8. Relationship between the word selection criteria and the selection of represen-
tative pronunciations (rejection of noisy pronunciations). Criterion used: Accumulative
Percentage. Language model: trigram.
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FiFF gi ure 9. Relationship between the word selection criteria and the selection of represen-
tative pronunciations (rejection of noisy pronunciations). Criterion used: Threshold
Percentage. Language model: bigram.

FiFF gi ure 10. Relationship between the word selection criteria and the selection of represen-
tative pronunciations (rejection of noisy pronunciations). Criterion used: Threshold Per-
centage. Language model: trigram.
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curve converges to the best d value. If there is not a pronunciation
remaining after the application of the Threshold percentage criterion,
the canonical pronunciation would be taken. This criterion can be seen
as a refiff nement of the word selection process.

We tested the system for different language models and the test cor-
pus. The pronunciation model obtained from the training corpus using
the Threshold percentage criterion with the best values foff r r and d calcu-
lated during the tuning phase. Better results were obtained when the new
lexical models were used. The best performance improvement was
obtained using bigrams with a 29.7% word error rate reduction (see
Table 3). The increment of the real time factor was not relevant due to
the small size of increment (see Table 4).

3. CONCLUSIONS

A method for automatically learning pronunciation models from speech
data has been tested. This method allows an acoustic-phonetic decoder to
propose pronunciations. This defines the training corpus. A more restric-
tive criterion than frequency of appearance in the corpus was applied.
Then, three criteria for rejecting noisy pronunciations were tested. The
only one which has proved to be satisfactory is the ThTT reshold percentage.
At the end, for each word, a stochastic fiff nite-state automaton is auto-
matically trained in order to model every allowed pronunciation.

Table 3TT . Word error rate for different language models and different pronunciation
models.

LangMod LexLin LexAlt Impr

zerogr 43.25 40.8 5.7
bigram 9.16 6.43 29.7
trigram 3.11 2.55 18.1

TableTT 4. Real Factor Time for different language models and different pronunciation
models.

LangMod LexLin LexAlt

zerogr 5.3 5.5
bigram 7.8 9.5
trigram 1.7 1.9
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The method proposed here enabled us to achieve better performances
than with conventional canonical models. The greatest improvement in
performance was obtained using bigrams.
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JAN P. H. van SANTEN

PHONETIC KNOWLEDGE IN TEXT-TO-SPEECH
SYNTHESIS

ABSTRACT. This chapter focuses on the value of phonetics for speech technology,
specififf cally text-to-speech synthesis (TTS). After some general remarks about the two
fiff elds of research, we describe the linguistic, including phonetic, knowledge incorpor-
ated in certain TTS systems, with the goal of showing the diversity of such knowl-
edge. Next, we argue that linguistic knowledge may play an important role in
making TTS systems domain-independent. For this, close collaboration between
linguists and speech technologists in several types of research is needed. Finally,
we give some examples of phonetics research problems whose resolution could be
of direct benefiff t for speech technology.

KEYWORDS. phonetics, speech technology

INTRODUCTION

Phonetics and speech technology focus on the same topic, spoken lan-
guage. Yet, these fields remain quite separate and little cross-fertilization
takes place. Why is that? Does this hurt either fiff eld and, if so, what can be
done about it? The answers to these questions are fairly obvious. These
two scientific communities have developed largely on separate paths as
a result of the usual sociological and educational factors that create scien-
tific communities in the first place. As a result of this separation, the pho-
netics community has not focused on questions most relevant for speech
technology while the speech technology community has not developed
algorithms and data structures that are optimally receptive for the incor-
poration of phonetic knowledge. Yet, as will be argued in this chapter,
both fields have much to gain from working together more closely.

This chapter focuses on the value of phonetics for speech technology.
After some general remarks about the two fiff elds of research, we describe
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the linguistic, including phonetic, knowledge incorporated in certain text-
to-speech synthesis (TTS) systems, with the goal of showing the diversitdd yt
of such knowledge. Next, we argue that linguistic knowledge may play an
important role in making TTS systems domain-indedd pe endent. Finally, we
give some examples of phonetics research problems whose resolution
could be of direct benefiff t for TTS. Although this chapter is solely con-
cerned with TTS, it is hoped that our remarks are also relevant for other
speech technologies.

1. PHONETIC AND SPEECH TECHNOLOGY COMMUNITIES

Phonetics is a science concerned with fiff nding acoustic, articulatory, and
perceptual regularities in human speech. Phonetics has a broad reach,
ranging from concrete phenomenological descriptions of the sound sys-
tems of various languages to abstract theoretical accounts. The key pro-
ducts of phonetics consist of knowledge dissemination and applications
for speech and hearing diagnosis and remediation, second language
teaching, and several other important contributions; but phoneticians
typically do not construct software systems. The science of phonetics
does not exist to serve the needs of speech technology, but obviously
speech technology has to some degree made use of phonetic knowledge.
Phoneticians’ use of speech technology, on the other hand, has been
largely limited to software tools for speech analysis.

It is important to distinguish between phonetics as currently practiced
and phonetics-in-principle; the same distinctions can be made for speech
technology. By necessity, of the near-infinitely many questions that
would fall within the realm of phonetics, only a subset has been
addressed. Given the separation between the two communities, it would
be more or less a coincidence if this subset were to be precisely the subset
of most relevance for speech technology.

Speech technology is a branch of engineering concerned with creating
algorithms for processing or generating speech. Its key products are the
dissemination of algorithm descriptions, mathematical results concerning
these algorithms, and (typically software) implementations. Speech tech-
nology is not necessarily applied science, because its questions have
opened up entirely new areas of basic science in statistics and algorithm
research. But these areas, if anything, are rather remote from phonetics.

Although both areas are concerned with speech, based on anecdotal
evidence we conclude that the communities associated with them are lar-
gely separate in terms of education, journals, and conferences. Even if a
conference explicitly caters to both communities, usually sessions are
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defiff ned that largely attract people from only one community. Vocabul-
aries differ, with the maja ority of speech technologists not knowing what
a coronal consonant is and the maja ority of phoneticians not knowing
what beam search is. As a historical note, it is of interest to realize that
before the advent of digital methods speech technology was based on
analog electrical circuits, which were explicitly linked to models of the
human speech production system (Fant, 1960; Flanagan, 1972). This
was naturally accompanied by a closer association between speech tech-
nology and phonetics. Once digitization set in, these links became less
central in speech technology, and currently one can read speech tech-
nology papers that only tangentially refer to the fact that the input signal
consists of speech.

In summary, phonetics and speech technology are fields of research
that ask different questions about speech, use different vocabularies, pur-
sue different goals, and are conducted by two largely separate scientific
communities. However, the reasons for this situation have probably more
to do with the very sociological factors that are critical for the creation
and cohesion of scientific communities (Kuhn, 1996) than with any fun-
damental logical or scientififf c obstacles. Whether either fiff eld is ready for
the type of ‘‘scientific revolution’’ as described by Kuhn remains to be
seen, because, like the communities themselves, scientififf c revolutions
are more a socio<!?show –[?tjt l=20mm]$9#[?tjt l]>logical than a purely
intellectual phenomenon. Yet, some such revolution may be necessary
for closer collaboration to take place.

2. TEXT-TO-SPEECH SYNTHESIS

2.1. Brief Description

We briefly describe TTS (Allen et al., 1987b; Keller et al., 2001; Sproat,
1997). Most TTS systems involve three stages. In the first (text analysis),
symbolic representations are computed from text. These representations
usually involve phoneme labels, prosodic tags (e.g., for word stress,
sentence accent, or phrase breaks), and optionally also part-of-speech
tags and parse trees. Target prosody components compute from these
representations timing information (typically in the form of phoneme
durations) and intonational information (typically in the form of a fun-
damental frequency curve). Finally, signal processing components search
a speech corpus for appropriate fragments of recorded speech (acoustic
units), concatenate these units, and optionally modifyff them so that the
output speech exhibits the pre-computed target prosody.
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Several variants on this basic architecture exist. For example, some
systems (MITalk, DecTalk, Eloquent) do not use a speech corpus, but
instead create speech from scratch by computing acoustic parameter tra-
jectories via rules. These systems are often called rule based (which is
unfortunate, because systems discussed below also use rules, be it for
different TTS components).

In standard concatenative systems (e.g., the systems from Lucent, Elan
Informatique, SVOX), the acoustic units consist of a set of di- and tri-
phones that have been excised from a larger speech corpus and stored
in a small corpus usually in the form of a single data table. These
n-phones are unique in the sense that only one token exists of each.

In other systems (usually called ‘‘corpus based sys stems’’) the larger
corpus is itself searched at run time, thus providing the system with mul-
tiple tokens to select from. In such systems, the target prosody may be
used as a selection criterion instead of as a specification of how the acous-
tic units must be modifi ieff d by the signal processing algorithms. It is also
possible to build systems where a speech corpus is searched not on the
basis of symbolic labels computed by text analysis, but on the basis of
the textual input itself; in this type of system, prosody computation is
skipped altogether. Recorded voice announcement systems are an
extreme version of this type. However, whether a system has unique
tokens or not – and hence must perform some type of search – is orthog-
onal to whether it performs signal modification.

We can put these systems in a larger perspective by observing some
trends or dimensions. A fiff rst trend is that, as we move from rule based sys-
tems to traditional concatenative systems to corpus based systems, we see
less emphasis on ‘‘knowledge’’ and more emphasis on data and intensive
computation. Second, while the rule based systems and traditional conca-
tenative systems were unabashedly intended to be fully general-purpose
and able to handle any input text, corpus based systems are often opti-
mized for a specific subdomain – even though that is not always admitted.

Underlying these trends are two facts. The fiff rst fact is very basic, and
is simply that the hardware constraints that systems developed in the 80’s
and before had to contend with were quite forbidding. Hard disks were
quite small (< 100Mbytes for mid-sized computers in the mid-80’s)
and expensive. Corpus driven systems often require one GByte or more
for the speech corpus alone, not including pronunciation dictionaries
and other data files. Also, the search algorithms used by some corpus
driven systems are quite compute-intensive, and would not have worked
on these earlier computers.
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2.2. Combinatorics, Generalization from Seen to Unseen Types, and
Domain Independence

The second fact goes much deeper, and has to do with the fundamental
challenges caused by the combinatorics of lo anguage.ll One of the central
points made in this chapter is that a key reason for why speech tech-
nology should be eager to incorporate linguistic knowledge is that
linguistics can play a key role in meeting these challenges.

It is well-known (van Santen, 1997; Moebius, 2001; Baaijen, 2000)
that a relatively open textual domain (i.e., a domain that does not have
severe restrictions on its vocabulary or grammar) contains an extremely
large number of combinations of phone sequences and prosodic contexts.
This is so, even if one restricts phone sequences to relatively short lengths
(e.g., triphones) and uses a coarse characterization of prosodic context.
Not surprisingly, the frequency distribution of these combinations is
quite uneven, with some combinations occurring quite often and the
overwhelming maja ority occurring rarely. However, the total probability
mass of rare combinations is large enough that even in a small body of
text (say, a sentence) something rare is bound to happen: ‘‘Rare things
happen frequently.’’ To make things more complicated, frequency distri-
butions of these combinations vary across different types of text. This
situation appears to be a general property of distributions of almost
any linguistic ‘‘unit’’, such as, in addition to these combinations, words,
trigrams, and sentence structures.

These combinatorial properties of language materials have direct
implications for system design and test. If the number of unit tyt pesyy is lim-
ited, the training materials could in principle cover all these types and all
a system would have to do is to handle new unit tokens of already seen
types. Even if the training materials do not quite cover all types, as long
as training and test materials are sufficiently similar (as is invariably the
case in speech recognition), the generalization task is not terribly
challenging. However, if the training materials cannot cover all types
and the system must work in materials quite different from the training
materials, then the system has to face the much more daunting task of
facing unseen unit types.

A central claim of this chapter is that linguistics maya provide precisedd ly
the type of domain-independent knowledge that is needed to handle unseen
types.yy

To illustrate this point, consider two approaches to predicting pho-
neme duration from linguistic control factors such as phonemic identity,
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word stress, sentence accent, and position in the syllable, word, and
phrase. One of these uses simple equations (‘‘sum-of-products models’’;
van Santen, 1992; van Santen, 1994). For N factorsff , the formalism is

DURðfÞ ¼
X
i2T

Y
j2IiIIiI

Si; jð fjffjf Þ: ð1Þ

Here, fjffjf is a value on the jth factor, and f ¼ f1ff11f � � � ; fnffnf ; Si;j;j; is a parameter
for the ith product term for theff jth factor; T and IiIIiI are sets of integers
(van Santen, 1993); and DUR(f) iff s the predicted duration for factorial
combination f. To illustrate, for the multiplicative model: T ¼ f1g and
I1II1I ¼ f1; . . . ; ng (a single multiplicative term that involves all factors);
foff r the additive model: T ¼ f1; . . . ; ng and IiIIiI ¼ fig (N terms, each
containing exactly one factor).

These equations reflect broad generalities, such as

& Holding all else constant:

– The vowel [i:] is longer than the vowel [e].
– The same vowel is longer in stressed syllables than in unstressed

syllables.
– The same syllable is longer in phrase-final position than in

phrase-medial position.

& Phonemes belonging to the same phonemic class (e.g., vowels,
voiceless fricatives) are affected in roughly the same way by these
contextual factoff rs.

These sum-of-products models contain few parameters that can be
estimated reliably from a relative small training corpus. Even if the train-
ing data do not contain an unstressed [ae] in a word-medial syllable in an
unaccented word at the end of maja or phrase, these equations produce a
credible predicted duration because the data may contain a [schwa] in
precisely this context and the data may contain [ae] and [schwa] in some
other shared context allowing the system to estimate the ratio or
difference (depending on the equation) of their durations. In other words,
based on simple and plausible assumptions, the equations can produce
reasonable predictions for unseen types by extrapolation from seen tff ypes.

Consider, on the other hand, a system that uses Classififf cation and
Regression Trees (Riley, 1990; Breiman et al., 1984). The essence of
CART is that predictions for unseen cases are not obtained via extrapol-
ation from seen types but by pooling them with seen types. Thus, it is
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possible that the [ae] may be pooled with the [schwa] in the relevant
branch of the tree. This is a problem, because the [ae] is an intrinsically
much longer sound than the [schwa]. The equation-based approach han-
dles this by extrapolation: it may predict that if on average in matched
contexts the [ae] is 70% longer than the [schwa], than the same will hold
in the context where no data were available for the [ae]; thus, if the dur-
ation of the [schwa] in that context was 85ms, then the predicted dur-
ation for the [ae] would be 145ms–probably much more accurate than
the 85ms predicted by CART. This contrast was exactly what was found
by Maghbouleh (1996) in a comparison of the two methods.

The key difference between the two approaches here is that CART
generalizes via similarity and the equations based method via extrapol-
ation. Of course, there are numerous generalization situations where
similarity is an appropriate principle, but extrapolation is clearly the
principle that is appropriate for segmental duration prediction.

3. THE DIVERSITY OF PHONETIC KNOWLEDGE
AVAILABLE TO SPEECH TECHNOLOGY

3.1. The Bell Labs TTS System

The contribution phonetics makes or could make to speech technology
comes in many flavors. Before discussing this in more general terms, we have
a look at the situation in TTS.More narrowly even, we analyze the Bell Labs
TTS system (Sproat, 1997). The point made in this section is not whether
incorporation of such knowledge is helpful, but to investigate what it means
for a system to incorporate knowledge by surveying what types of infor-
mation are incorporated in the Bell Labs system. In this section, we broaden
the discussion from phonetic knowledge to linguistic knowledge.

The Bell Labs TTS system is a standard concatenative system as far as
its signal processing is concerned. However, its other components are a
virtual repository of more than 20 years of research on text analysis and
prosody by several dozen scientists. In fact, prior to its complete rewrite
as a prelude to commercialization in the mid-90’s, its primary goal was
more that of being a test bed for research than a commercial TTS engine.
This makes the system quite unusual, but also quite useful for our explo-
ration of the diversityt of knowledge that can be used by speech technology.

3:1:1: Text Analysis
Its Text Analysis component computes phonemes and prosodic tags
using a mixture of knowledge based algorithms, including dictionary
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lookup, parts-of-speech tagging, syllabififf cation rules that are based on
the sonority hierarchy, morphological analysis based on general linguistic
theories about morphology, heuristic pronunciation rules, statistically
trained algorithms for word segmentation (Chinese), homograph disam-
biguation, accent assignment, and phrase break assignment. In addition,
of course, a key role is played by the very symbol sets [phonemes and
tags] that are used. One should not underestimate the diffiff culty of speci-
fyff ing these sets, in particular for lesser studied languages. In addition,
quite a bit of knowledge also enters the choice of data features used
for the statistically trained methods. For example, Wang and Hirschberg
(1992) used in their statistical method a clever mixture of features, includ-
ing parts of speech, distance from and to punctuation, and lexical items.
Selection of these features was based on psycholinguistic research.

Finally, knowledge also enters on a general, ‘‘architectural’’, level.
The current version of the system is based on weighted finite state trans-
ducers (WFST’s). Sproat et al. (1997) have created compilers that gener-
ate WFST’s from language-specififf c information having a variety of forms
such as rewrite rules, dictionaries, and even CART trees. However, the
runtime engine is completely language independent and uses powerful
general-purpose algorithms developed for WFST’s. This system was cre-
ated as a direct result of work on a great variety of languages, including
Chinese, Japanese, and Russian, that each posed particular problems that
were not readily solvable in standard architectures. For example, Chinese
text does not have word boundaries, Japanese text uses more than one
symbol set, and in Russian ‘‘text normalization’’ (e.g., for pronouncing
the ‘‘%’’ sign) requires non-trivial linguistic analysis and hence cannot
be handled via a pre-processor, as is commonly done. The point is that
the use of WFST’s and the compilation tools are based on an
understanding of the profound differences that exist between languages,
and can be said to reflect linguistic knowledge.

Whether or not one considers this knowledge as belonging to the
domain of phonetics or to other areas of linguistics, the examples make
the general point that knowledge is used in many ways, some explicit
and other–as in the WFST case–implicit.

3:1:2: Duration
Of the prosodic components, the component for duration based on sum-
of- products models was discussed in Section 2.2. Suffiff ce it to say that
these models incorporate knowledge by their very structure (i.e., the fact
that these equations naturally reflect regularities such as the invariable
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lengthening effect of word stress), by the defiff nition of phoneme=context
classes (e.g., separate models are constructed for such classes as unvoiced
fricatives in codas, or intervocalic voiced stops), by the predictive factors
used or not used (e.g., the factor of location within a foot is not used),
and by the ways these factors are defined (e.g., position in a phrase is sim-
ply coded as initial, medial, fiff nal, instead of in terms of the precise num-
ber of words or syllables between the target segment and the phrase
boundaries). The decisions about which specific model to use, how to
defiff ne phoneme=context classes, and how to construct the features are
based on phonetic research on segmental duration. In this research, the
goal is not that of estimating parameters on a specific training data
set, but that of answering general, presumably domain-independent,
questions such as: Do these two factors interact (Most don’t)? Does it
matter what consonant a vowel is preceded by (Not much)? Do word-
penultimate syllables behave differently from other word-medial
syllables (Italian: Yes; Most other languages: No)? The answers to these
questions form yet another type of linguistic knowledge. This knowledge
is based on focused speech production studies whose goal it is to answer
precisely these questions. It is assumed that these answers are domain-
and speaker-independent, and hence can be incorporated in the system.
We contrast this with the precise values of parameters, or which exact
sum-of-products model fiff ts the best. That information may be highly
speaker- or domain-dependent.

As with the use of WFST’s in text analysis, the duration system has
the key architectural feature of being general enough to have a
language-independent run time engine that uses external data tables
representing language specififf c information.

The approach to duration modeling makes a clear distinction between
what is based on knowledge (e.g., using sum-of-products models, which fac-
tors matter) and what is based on data (parameter estimates, exact structure
of sum-of-products model). Knowledge is expected to be domain- and
speaker-independent. The function of this knowledge is to defiff ne a class of
models and specify constraints on these models. As we have seen in Section
2.2, this is critical for the ability of a system to handle unseen cases.

3:1:3: Intonation
The intonation component is based on the superpositional model accord-
ing to which a pitch curve can be written as the sum of simpler compo-
nent curves: a phrase curve associated with phrases (at times, multiple
levels of phrasing are used, each with its own phrase curve), accent curves
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associated with pitch accents, and segmental perturbation curves associa-
ted with individual phonetic segments. Admittedly, the superpositional
concept is controversial (Ladd, 1996), but that is not the point. The point
is that this concept is based on knowledge, including hypotheses about
quasi-independent processes in the vocal chords (Fujisaki, 1988) and
analyses of production data (van Santen and Hirschberg, 1994; van
Santen and Mobius, 2000). Further choices in the implementation, such
as on which factors parameters depend, are also based on knowledge in
the form of special-purpose studies. For example, we found that accent
peak location depends on the phoneme class of the coda consonants,
not on the individual consonant identities (e.g., [p] vs. [k]) but also
not merely on the voicing feature. Finally, also the intonation system
has a language independent run time engine, with external data tables
representing language specififf c information.

3:1:4: Sigi nal Processing
Finally, although the signal processing component is concatenative and
hence is not based on the detailed level of articulatory or acoustic model-
ing of, for example, MITalk (Allen et al., 1987a), it nevertheless can be
said to use knowledge (Olive and Liberman, 1985; Olive, 1990). First,
there are language-dependent facts (e.g., one needs some triphones
because of strong coarticulatory effects: in American English conson-
ant-vowel-[r]–but not in UK English; in Italian trilled [r] (Shih, 1996);
aspirated voiced stops in Hindi; vowel-devoicing in Japanese). Second,
there are several details in the signal processing operations that reflect
knowledge. For example, the temporal compression=stretching operation
stretches out primarily the central portion of vowels instead of the initial
and fiff nal portions. This is based on studies on vowel lengthening by, e.g.,
Gay (1968). Third, further details are based on perceptual studies showing
that certain distinctions need or do not need to be made (e.g., one cannot
hear the difference between [s-t]þ [t-o] and [s-p]þ [t-o]; in other words, the
[s] does not depend on the place of articulation of the subsequent stop.)

3.2. Types of Knowledge Represented in the Bell Labs System

The Bell Labs System incorporates many different types of knowledge:

& Results from phonetics speech production and perception studies
that addressed general, domain-independent issues:

– Which factors are good predictors for pitch accent assignment or
phrasing?
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– What are the general properties of the joint effects of contextual
factoff rs on duration?

– How are sounds lengthened?

& Architectural design decisions that are based on an understanding
of what languages have in common and along which dimensions
they differ:

– What data structures are needed to handle text analysis for Eng-
lish, Chinese, Japanese, and Russian?

– Which class of equations can capture directional invariance,
assuming that this is a universal feature of spoken language?

– Which class of equations can handle pitch movement at multiple
time scales?

& Language dependent details:

– Phone list.
– Phonotactics.
– Coarticulatory patterns.
– Lengthening of word-penultimate syllables in Italian.
– Pronunciation dictionaries.

& Parameterized mathematical models based on domain-independent
regularities:

– Sum-of-product models.

& Parameterized mathematical models based on physiological studies
of speech production:

– Intonation model.

It should be emphasized, however, that almost all components of this
system are at least partially data driven. In this sense, it is fundamentally
different from the earlier MITalk system (Allen et al., 1987a) in which
every component consisted of manually constructed rules and manually
adjd usted parameter values.

4. VALUE OF INCORPORATING LINGUISTIC KNOWLEDGE

The previous section showed that many different types of knowledge can
be incorporated in TTS systems. However, this does not prove that this
knowledge provides any value. Does it?
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Speech recognition has for years been the envy of TTS researchers,
not only because of better funding but also because it seems that the pro-
cess of creating a speech recognition system for a new language or appli-
cation seems easier and more sophisticated than the process of creating
a new TTS system. Essentially, this effort is perceived to consist of the
following steps:

1. Decide on phoneme set.
2. Obtain pronunciation dictionary.
3. Collect and optionally tag textual data for language modeling.
4. Collect and optionally transcribe speech data for acoustic model training.
5. Train language and acoustic models.

Is something similar conceivable for TTS? Consider a minimal knowl-
edgedd TTS sys stem, which would be a system that contains just two
subcomponents: Text analysis, mapping text onto a symbolic rep-
resentation using some inductive learning engine, and a speech generation
component that searches a tagged speech corpus. TTS construction
would consist of similar steps:

1. Decide on internal symbolic representations, including phoneme label
set and prosodic tags.

2. Obtain pronunciation dictionary.
3. Collect, transcribe, and tag textual data for training the text analysis

subsystem.
4. Collect, label, and optionally tag speech data to form the acoustic

inventory.
5. Train inductive learning system on the tagged text.

At least for open-domains, the odds seem to be against this scenario as
a realistic goal. First, currently no minimal knowledge system exists
whose open-domain performance is better than that of the best commer-
cial systems. For example, even using the most sophisticated learning
engines (Sproat, 2000), error rates in text- to-phone conversion are in
excess of 10% (19.7% word error rate for Sproat), which is well above
the 5% or better WER of the commercial systems.

Second, the amount of training data needed to learn how to pro-
nounce the ‘‘%’’ sign in Russian may be prohibitive, even if it is in
principle possible to learn this automatically.

Third, for commercial-grade TTS systems, the issue is how to most effec-
tively reach 100% of Acceptable Performance Levels (APL, presumably well
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below perfection). If one uses an inductive learning method to quickly reach
80%APL but then still needs months of manual labor to attain 100%APL,
little is gained compared to a process that is completely manual but requires
only 1 month to reach 100% APL. This puts a user interface constraint on
inductive learning methods: They must be amenable to manual intervention
if they cannot reach 100%APL. Current inductive learning engines generate
data structures that are not suitable for manual fiff ne tuning.

We propose that the most realistic goal is one that takes optimal
advantage both of domain-independent information that can be provided
by linguistics and of continued progress in inductive learning methods,
data collection, and automated data annotation methods. To make this
possible, we need TTS architectures constructed of components that
can absorb and represent linguistic knowledge, and at the same time
are maximally trainable. The Bell Labs system provides several examples
of such components. Yet, it is also clear that still too many components
of the Bell Labs system contain manually provided information, includ-
ing some of the rules tables used by text analysis.

What research is required to reach this goal? First, analysis is needed on
what the necessary sub-functions are of text-to-speech conversion, either in
general or for a certain domain class. For example, do we really need part-
of-speech tagging, parsing, or target pitch contour generation? This analysis
has both a performance aspect (i.e., what do these sub-functions contribute
to overall system performance?) and a more theoretical, linguistic aspect
(what facts about spoken language necessitate this or that analysis?).

Second, for those sub-functions that are deemed necessary, we need to
analyze how they can be designed to optimally incorporate linguistic
knowledge and be trainable at the same time.

Third, where relevant, we need to design user interfaces for tools that
allow linguistic experts to interactively enter or optimize data tables, e.g.,
for language- specific details.

Fourth, and perhaps most important, we need to specify for each
sub-function what facts about spoken language we need to know (the
next section will discuss some of these in detail).

It is critical to realize that each of these four types of research involves
close collaboration between linguists and speech technologists.

5. SOME PHONETIC QUESTIONS THAT SPEECH
TECHNOLOGY NEEDS TO BE ANSWERED

As one builds a speech technology system or creates tools used for its
construction, it often happens that a decision has to be made that is
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not backed up by known facts. For example, methods for automatic
selection of acoustic units typically use a distance measure applied to
cepstral parameters. There are no studies showing that this is a good idea.
Many design decisions are of this nature, and more will become visible as
linguists and speech technologists collaborate on the four research areas
listed in the previous section.

Here is a brief list of research questions that need an answer–an
answer that requires phonetic research:

Perception of spectral discontinuities of the type that occur in concate-
native synthesis. Automatic unit selection methods, whether at run time
or off-line, need a measure that successfully predicts speech quality result-
ing from concatenating specific units. Several attempts have been made
to predict quality using spectral distance measures between the start
and end frames of to-be-concatenated units, but with remarkably little
success (Klabbers and Veldhuis, 1998; Wouters and Macon, 1998). Spec-
tral discontinuities form an acoustic signal whose perception is poorly
understood. It may involve complex auditory frequency/time interac-
tions that are not properly reflected by these simple measures.

Perception of discontinuities in intonation contours. Natural F0F0FF00F con-
tours are far from continuous: They are interrupted by voiceless sounds,
creaks, and many other effects. Yet, we are able to detect discontinuities
rather well when they are generated by TTS. What makes these disconti-
nuities detectable? What signal processing modififf cations can render them
non-detectable?

Understanding sub-segmental timing in speech production. TTS meth-
ods that modifyff the temporal structure of acoustic units usually stress
or compress these units uniformly (an exception being the signal proces-
sing used by the Bell Labs system). Is this audibly sub-optimal? If so,
what non-unifoff rm methods should be used?

Mimicking vowel reduction. Concatenative TTS systems, when faced
with the need to generate reduced vowels, have usually two options:
Shorten a non-reduced vowel, or substituting a [schwa]. However, it
seems plausible that a reduction continuum exists, in which case one need
run-time modififf cation algorithms (Wouters and Macon, 2002a; Wouters
and Macon, 2002b).

Understanding variability in speech production–both inter- and intra-
speaker variability. When a speaker is instructed to repeat a sentence
without any changes, some variation occurs nevertheless. Mimicking
such variation may be important to reduce perceived monotony of syn-
thetic speech. Is this variation locally random, e.g. can it be mimicked
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by randomly perturbing the F0FF00F contour and individual phoneme dura-
tions, or does this variation involve pitch and duration changes with a
longer time scale? If so, how can we mathematically describe this?

Acoustic invariances of perceptually equivalent pitch contours. Listeners
are sensitive to certain pitch modifications, but not to others that, by any
simple physical measure, are larger (d’Imperio and House, 1997; Kohler,
1990). A better understanding of what constitutes a just noticeablell
difference forff pitch contours is critical for pitch contour generation.

Multidimensional modeling of all acoustic prosodic features – F0, local
acceleration, spectral balance, loudness, etc. Prosodic cues tend to co-
occur. For example, phrase boundaries may involve the simultaneous
lowering of F0FF0F , deceleration of spectral movement (e.g., formant move-
ment), and various correlates of decreasing sub-glottal pressure (e.g.,
spectral balance and loudness.) In addition, speakers differ in terms of
which cue they most prominently use. Capturing these phenomena
requires a multi-dimensional approach in terms of both measurement,
modeling, and prosody generation.

How to measure the impact of emotional speech on listeners. The ability
to generate emotional speech is important. However, an important short-
coming of much research on emotional speech is the way the perception is
measured. Typically, we ask the listener which of several emotions was
portrayed. While high levels of correct recognition are certainly a neces-
sary condition for the speech having an emotional impactii on the listener,
they are not sufficient. After all, when we synthesize in two modes, one
with completely flat F0FF0F and the other with randomly agitated F0FF0F , high
depressed vs. angry recognition scores will be obtained, but this does
not mean that the listener experienced the voice as truly having these
emotions. We need more clever approaches, either indirect methods or
physiological measures.

Phonology of intonation.Currently, the ToBI system is almost universally
used to describe intonation at the phonological level. Over the years, many
papers critical of this approach have been written, yet no general alternative
has been proposed. Is ToBI ready forff replacement? If so, with what?

6. CONCLUSIONS

Speech technology uses more linguistic knowledge and concepts, and a
greater diversity, than is generally realized. We believe that speech tech-
nology could benefiff t substantially by incorporating even more knowledge.
Some of this knowledge is already available, but there is a large list of
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phonetics research questions that are currently not addressed by the pho-
netics community. At the same time, the incorporation of linguistic
knowledge and concepts requires speech technology systems to have
receptive architectures. Neither this research nor these architectures will
materialize unless organizational and educational bridges are built
between these two fieff lds of research.

The recommendation is obvious and has been made by others (e.g.,
Moore 1995): we need to enhance growth of a ‘‘bridge field’’ in the form
of mathematical or compm utational phonetics. In practice, this means (i)
infusing phonetics education with more mathematics and computer
science, and speech technology education with more phonetics; (ii) offer-
ing either special sub-tracks in these fields or even joint degrees in pho-
netics, electrical engineering, and computer science; (iii) organizing
conferences with truly joint sessions instead of, as is currently the rule
in both Eurospeech and the International Conference on Spoken
Language Processing, joint conferences with separate sessions.
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HELMER STRIK

IS PHONETIC KNOWLEDGE OF ANY USE FOR
SPEECH TECHNOLOGY?

ABSTRACT. Although it has often been advocated that more phonetic knowledge
should be incorporated in speech technology, the amount of phonetic knowledge
used in speech technology has decreased over the years. In order to get a better
understanding of why this is the case, some examples of attempts to transfer phonetic
knowledge to speech technology are presented. These examples make clear that there
are several reasons why this transfer is problematic: different approaches are used in
the fiff elds of phonetics and speech technology, phonetic knowledge is based on small
amounts of ‘lab speech’ and therefore does not generalize to ‘real speech’, the knowl-
edge is not complete, and the knowledge is not quantififf ed in the right format.

KEYWORDS. Phonetic knowledge, speech technology, ASR, TTS

1. INTRODUCTION

‘‘Is phonetic knowledge any use?’’ was the title of the panel discussion
that took place at Eurospeech 2001 on Friday September 7, 2001 in Aal-
borg. This panel discussion was the second part of the Eurospeech special
event entitled ‘‘Integration of Phonetic Knowledge in Speech Tech-
nology’’. In this paper we will take a look at the integration of phonetic
knowledge in speech technology. We start with some notes on the two
terms: ‘phonetic knowledge’ and ‘speech technology’.

Speech technology is a term that covers many fiff elds, like speech cod-
ing, speech-to-speech translation, text-to-speech (TTS), concept-to-
speech, speaker identification, speaker verification, speaker tracking,
automatic speech recognition (ASR), speech understanding, etc. Of all
these fields, only ASR and TTS are addressed in the current paper, while
the main focus is on ASR.

Giving a short and clear defiff nition of phonetic knowledge is not
straightforward. In fact, what exactly constitutes phonetic knowledge

Address for Correspondence:
A2 RT, Dept. of Language and Speech, University of Nijmegen, The Netherlands

W. J. Barry and W. A. van Dommelen, The Integration of Phonetic Knowledge in Speech Technology, 167–180.
Printed in the Netherlands.# 2005 Springer.



has been the topic of many discussions. In the context of the current arti-
cle, we will not attempt to establish what the exact nature of phonetic
knowledge is (e.g. to specifyff what exactly is phonetic and what is phono-
logical knowledge). We believe that more important questions concern
the role of phonetic=linguistic knowledge in speech technology: to what
extent is it used, should this increase or diminish, etc. Consequently, in
the current paper, the focus is on phonetic knowledge in a broad sense,
which sometimes may even mean more general linguistic knowledge.

It has often been advocated that more phonetic knowledge should be
used in ASR and TTS (Stevens, 1960; Zue, 1983; Zue, 1991; Pols, 1999).
However, in many ASR and TTS systems it is not straightforward how
phonetic knowledge should be integrated into these systems. One way
of doing this is by using articulatory(-based) features, which has been
tried in various research projo ects. In general, the goal of integrating pho-
netic knowledge into ASR and TTS systems was to increase the
performance of these systems. However, ASR and TTS have also been
regarded as means to test existing phonetic knowledge, to fiff nd out
whether gaps and=or errors in the existing phonetic knowledge were
present, and where. Furthermore, it has been suggested that ASR and
TTS should be (partly) integrated, because human speech production
and perception are not independent (Stevens, 1960).

Although many seem to be in favor of integrating (more) phonetic
knowledge in speech technology, in the last decades we have witnessed
a decrease in the amount of phonetic knowledge used in ASR and TTS
(e.g. Zue, 1983; Zue, 1991). However, it is certainly not the case that
the use of phonetic=linguistic knowledge has been abandoned in current
systems. For instance, ASR and TTS systems make use of the knowledge
that speech consists of words, that these words do not occur in a random
order, that these words are made up of syllables and phonemes, that these
phonemes do not occur in a random order, and much more knowledge on
speech production, acoustics, and perception. More specifically, when we
develop ASR and TTS systems, we often maff ke use of e.g. the phoneme
inventory of a language, a lexicon, grapheme-to-phoneme conversion,
phonetic transcriptions, segmentations, and phonetic features, which
are often derived using knowledge about speech perception.

In Section 2 we will argue that phonetics and speech technology are
essentially two different worlds, which hinders the transfer of phonetic
knowledge to speech technology. Some examples of (not) using phonetic
knowledge in speech technology are given in Section 3. First, a description
is given of three examples of attempts to use phonetic knowledge in ASR
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which were pursued in research carried out at our department. They are
presented in chronological order. Two other examples are discussed at
the end of Section 3. Finally, the discussion is presented in Section 4.

2. PHONETICS AND SPEECH TECHNOLOGY:
TWO DIFFERENT WORLDS

Why has the amount of phonetic knowledge used in speech technology
decreased over the years? An obvious answer would be: Because systems
in which less phonetic knowledge is used perform better. For many
people (researchers, developers, retailers and users) this is indeed the
most important aspect of a system: it should perform well. Therefore,
if a system that uses less phonetic knowledge performs better than one
using more phonetic knowledge, the former is preferred. However, this
answer does not provide any insight into why the transfer of phonetic
knowledge to speech technology is so difficult.

Part of the answer is certainly related to the fact that phonetics and
speech technology are essentially two different worlds. This should not
be underestimated. At the universities of most countries, research and
education in phonetics and speech technology are conducted by different
people in different faculties, i.e. those of linguistics and engineering.
Consequently, many differences exist between these two groups of
researchers: they study different theories, acquire different practical
skills, and use different jargons. To a large extent they even have different
frames of reference, carry out experiments differently, etc.

These differences between the two worlds are certainly a problem, and
hinder the transfer of knowledge to some extent. Interestingly, the situ-
ation in The Netherlands is quite different from that of most other coun-
tries. In some Dutch universities, research and education in phonetics and
speech technology take place in the same faculty, i.e. the faculty of Arts.
However, although the gap between the two worlds should thus be smal-
ler in The Netherlands, the role of phonetic knowledge in speech tech-
nology is not noticeably larger than in other countries. So there must
be other reasons that hinder the transfer of knowledge.

These reasons might be found in the different approaches used in pho-
netics and speech technology. Let us take a closer look at those differ-
ences. In order to make the differences clearer, a somewhat caricatured
overview is presented of a classic phonetic versus a speech technology
approach (see Table 1). Although in most cases the differences will not
be so extreme, this comparison is useful to get an idea of the what
hampers transfer of phonetic knowledge to speech technology.
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Table 1 is based on a table from a presentation I gave in Nijmegen in
1996 at a meeting of the ‘Dutch Organization of Phonetic Sciences’ (see
http:==fonsg3.ff let.uva.nl =FonetischeVereniging=). The presentation was
entitled ‘Two methods of speech research: The classic phonetic and the
speech technological approach’ (the original Dutch title was: ‘‘Twee meth-
odes van spraakonderzoek: klassiek fonetische & spraak-technologische’’).

Some clarififf cation is in order here. In a prototypical classic phonetic
experiment, a factorial design is used to make proper statistical analysis
possible. Preferably, all cells in the factorial design are fiff lled with the
same number of observations. Care is taken to control other (known) fac-
tors, to reduce their (disturbing) effect as much as possible. Therefore,
high quality sound is often used in a controlled setting (a studio), instead
of e.g. spontaneous speech in a train station. For instance, in investigat-
ing lexical stress, subjb ects are asked to carefully pronounce contrastive
pairs like ‘‘SUBject’’ and ‘‘subJECT’’ in a very controlled way (see also
Section 3.2).

With such (classic) phonetic experiments a great deal of phonetic
knowledge has been acquired over the years. The question is whether this
phonetic knowledge can be used in speech technology, and of course how.

3. USING PHONETIC KNOWLEDGE IN SPEECH
TECHNOLOGY: SOME EXAMPLES

3.1. Duration Model

Within the European ESPRIT project POLYGLOT, an isolated word
recognition (IWR) system that had been originally developed for Italian

TaTT ble 1ll . The classic phonetic vs. a speech technology approach.

Approach Classic phonetic Speech technology

condition controlled less controlled
setting studio, lab many places
sound quality high varied: noise, etc.
speech style formal informal, spontaneous
articulation careful varied: hypo- to hyperart.
database small, balanced large, less balanced
subjects few many
processing manual automatic
analysis deterministic statistical
featuresff formants, LPC, etc. ceff pstra, (rasta-)PLP, etc.
approach linguistic information-theoretical
goal knowledge, theory applications
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(Billi et al., 1989), had to be localized to a number of other European
languages, including Dutch. This system made use of some phonetic
knowledge, among others a duration model. This duration model con-
tained statistics on the duration of phonetic units, which essentially were
classes of phones with similar properties (Strik and Konst, 1992). What
was needed for the IWR system were the conditional probabilities of a
certain duration given the class of phones: P(duration j class of phones).

In order to obtain this duration model for Dutch, we first had a look
at the literature. We found that research on this topic had indeed been
carried out (e.g. Nooteboom, 1972; Nooteboom and Slis, 1972;
Koopmans van Beinum, 1980). Although part of the phonetic knowledge
in these publications was quantitative, it was not sufficient to derive the
duration model needed, mainly for the following two reasons. [1] The
phonetic knowledge was not complete: data on vowels were present,
but not on consonants. [2] The knowledge was not in the correct format:
It was specified in terms of means (and, sometimes, standard deviations),
while for the duration model a probability density function was needed.
Since the required duration model could not be derived from existing
phonetic knowledge, we decided to use a data-driven method to obtain
it (Strik and Konst, 1992). Isolated words were recorded, labeled, seg-
mented and on the basis of these data a duration model was calculated.

In Table 2 mean and standard deviation values of the durations of
some short vowels are given. These values are compared to the measure-
ments of Koopmans van Beinum (1980): mean and standard deviation
values of fiff ve measurements of the duration of vowels in isolated mono-
syllabic words spoken by an untrained male speaker. Of the various
conditions for which vowel durations were measured by Koopmans

TaTT ble 2ll . Duration of short vowels (SAMPA notation is used in this article).

Strik and Konst Koopmans van Beinum

Phone Mean SD Mean SD

I 91 24 124 24
U 98 29 108 22
O 99 25 108 23
A 103 23 120 19
i 105 37 140 12
E 107 25 124 15
u 111 25 150 17
y 140 55 136 23
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van Beinum (1980), this was the condition that most closely matched the
isolated word condition of this ASR system. The average values founff d by
Koopmans van Beinum (1980) are larger (except for =y=), which is not
surprising since she only used monosyllabic words and the database in Strik
and Konst (1992) contains both monosyllabic and polysyllabic words.

These fiff ndings make clear that, besides the two reasons already men-
tioned above in this section, there is another reason why it is problematic
to transfer existing knowledge to a speech technology application: The
existing phonetic knowledge is based on data that is not representative
of the speech that will be used in the application. In this case: only mono-
syllabic words (in the phonetic experiment) versus monosyllabic and
polysyllabic words (for the ASR). Furthermore, it is questionable
whether the five measurements of a single male subject are representative
of the whole population.

Although duration has been studied a great deal, and thus substantial
knowledge about duration should be present, duration is hardly used in
current ASR systems. However, it is often used in TTS systems, in which
case also data-driven methods are used to derive the duration models
(see e.g. Lopez and Hernandez, 1995; van Santen, Sproat, Olive, and
Hirschberg, 1996).

3.2. Lexical Stress

Phonetic research has shown that there are systematic acoustic differ-
ences between (the vowels in) syllables with and without lexical stress
(see e.g. van Bergem, 1993; Sluijter and van Heuven, 1996). It has been
observed that stressed syllables have a longer duration, higher energy,
less spectral tilt, and a different vowel quality (i.e. more like a full vowel
than like a reduced vowel). Given these systematic differences, one would
expect that this knowledge could be used to improve the performance of
ASR systems. A couple of years ago, this issue was investigated at our
department. The procedure that was followed is described below.

irst, differentmodels for vowels in stressed andunstressed syllableswere
trained (Kuijk, Heuvel and Boves, 1996). The recognition results on inde-
pendent test-sets showed no clear improvements in the performance of the
ASR system. Nevertheless, the resulting models for the vowels in stressed
and unstressed condition were different, since swapping the models (i.e.
using models trained on stressed vowels to recognize unstressed ones,
and vice versa) led to higher error rates (Kuijk, Heuvel and Boves, 1996).

Other attempts at making use of lexical stress in ASR have led to
varying results. Adda-Decker and Adda (1992) found improvements
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for a French corpus, but not for the American English DARPA-RM cor-
pus. Hieronymus et al. (1992) reported a 65% reduction in word error
rate and a 45% reduction in sentence error rate. More recently, Wang
and Seneff (2001) obtained a small but signififf cant relative improvement
of 5.5% in word error rate.

In order to get a better understanding of why knowledge on lexical
stress cannot easily be applied to obtain substantial improvements in
the performance of ASR systems, a more detailed study was carried
out (Kuijk and Boves, 1999). Measurements of various phonetic features
were made for 5000 phonetically rich sentences from the Dutch POLY-
PHONE corpus. A comparison was made of the phonetic feature values
in stressed and unstressed condition. For instance, the distributions of the
durations of the vowels =9y= and =a:= are shown in Figure 1. These dis-
tributions clearly illustrate the two extremes that were observed in com-
paring the distributions of the phonetic features: from almost no
difference to large differences. Significant differences were found in the
maja ority of cases, reflecting that systematic acoustic differences are
present. Such differences might be useful to classify vowels as either
stressed or unstressed. This possibility was verififf ed in a number of tests,
using both raw and normalized phonetic features. The results for correct
classificatioff n of stress varied from 57.16% to 76.05%, for the various
vowels. In conclusion, although there are systematic and signififf cant dif-
ferences between vowels in stressed and unstressed sff yllables, the resulting
classififf cation scores are not very high.

In trying to understand these results one should keep in mind that
even if the differences are significant the overlap can be considerable.
This is the case for almost all distributions of the phonetic features in this
experiment. Other (classic) phonetic experiments have generally yielded

FigureFF 1. Distributions of the durations (in ms) of the vowels =9y= and =a:= (solid line:
stressed condition, dotted line: unstressed condition).
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smaller overlaps, because in these experiments the effects of other factors
were reduced as much as possible by using a controlled setting: e.g. stress-
minimal pairs (like ‘‘SUBjB ect’’ versus ‘‘subJECT’’) were carefully pro-
nounced in identical phonetic contexts. However, in real life the effects
of other factors are present anff d cannot be ruled out. The consequences
are that effects of lexical stress which are present in ‘lab speech’ are
blurred by the effects of other factors in ‘real speech’.

In this case the main reason why phonetic knowledge fails to improve
ASR performance is that this knowledge is based on carefully controlled
speech that is not representative of the speech encountered in everyday
life. In addition, one should realize that knowledge about lexical stress
is rather qualitative in nature: although in many publications on this
topic measurement data are presented, it is obvious that there is no
ready-made ‘lexical stress model’ that can be plugged directly into an
ASR system.

3.3. Pronunciation Variation Modeling for ASR

A well-known problem in ASR is pronunciation variation. Various meth-
ods to model pronunciation variation at the lexical level have been inves-
tigated, in order to enhance the performance of ASR systems (for an
overview see Strik and Cucchiarini, 1999; and Strik, 2001).

Since knowledge about pronunciation variation is available in the
literature, it seems logical to employ this knowledge in ASR systems.
In general, knowledge on pronunciation variation is qualitative and is
often expressed in the form of rewrite rules. With these rewrite rules, pro-
nunciation variants can be generated and subsequently added to the lexi-
con. In this way the performance of an ASR system can be improved
(Kessens, Wester and Strik, 1999). This can, for instance, be observed
in Figure 2 (taken from Kessens, 2002; and Kessens, Cucchiarini and
Strik, 2003). The upper curve (labeled ‘Lexicon’) shows the word error
rates (WERs) when pronunciation variants are added to the lexicon.
When going from 1 to about 1.5 variants, the WER becomes lower. How-
ever, when more variants are added the WER goes up again and even
reaches levels that are much higher than that of the baseline system.
Probably this is because the confusability in the lexicon becomes too
large if too many variants are added to the lexicon.

Somewhat better results can be obtained if the acoustic models are
retrained (see curve ‘HMMs’ in Figure 2). The best results are obtained
if the probabilities of the variants are taken into account in the language
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model (LM) of the ASR (see curve ‘LM’ in Figure 2), but these probabil-
ities are not readily available in the literature. A possibility then is to use
a knowledge-based approach: start with the known rules, and calculate
the probabilities of these rules, or the pronunciation variants generated
with these rules, on the basis of a speech corpus. Such a knowledge-based
approach has often been resorted to (see references in Strik and Cucchiar-
ini, 1999; Strik, 2001). Although in this approach knowledge is used (i.e.
rules), it is important to notice that the probabilities (which are essential)
have to be derived from data, preferably substantial amounts of represen-
tative data.

Another possibility is to use a data-driven approach in which both the
rules and their probabilities are derived from data (see references in Strik
and Cucchiarini, 1999; Strik, 2001). The data-driven method generally
comes up with known rules, which provide a description of the connected
speech processes that are present in the speech corpus under investi-
gation, plus many new rules which were not yet known (Wester, Kessens
and Strik, 1998; Kessens, Wester and Strik, 2000; Kessens, Strik and
Cucchiarini, 2000). Consequently, error rates obtained with data-
driven approaches are usually lower (Kessens, Strik and Cucchiarini,
2000; Wester and Fosler-Lussier, 2000; Wester, 2002).

Figure 2. WERs for the different testing conditions.
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To sum up, linguistic knowledge can be used to model pronunciation
variation for ASR. Simply using the knowledge as is (i.e. in the form
of rewrite rules) can enhance the performance of an ASR system.
However, even lower error rates can be obtained if probabilities of the
rules (or variants) are derived from recorded and labeled data. And, if
the data are available, one can probably best resort to data-driven meth-
ods, since they generally yield the best results (and in this way new rules
can be learned). In this case the main obstacle to using existing knowl-
edge is that the knowledge is not complete, and that it is not quantitative
in nature.

3.4. Prosodic Models and Language Models

Besides the three examples taken from our own research, which were
presented above, many more examples can be found in the literature,
of which two are mentioned here.

The first example concerns prosodic models. Despite the enormous
amount of phonetic=linguistic research on prosody that has been carried
out, prosodic models are rarely used in ASR systems. Some reasons why
this is the case are presented in Batliner et al. (2001). An important
reason is that in most prosodic models too much emphasis is put on
intonation (pitch, F0), and thus these models are not complete since pro-
sody does not manifest itself in terms of F0 alone. In fact, F0 cannot even
be varied in isolation without affecting other acoustic properties of the
speech signal like spectral tilt and intensity (Strik, 1994).

The last example we want to mention is that of language models used
in ASR. Generally, N-grams are used, which are simple stochastic models
that can easily be integrated into ASR systems. Although syntax has been
studied extensively, and many grammars have been proposed and
developed over the years, so far (classic) linguistics has not provided a
viable alternative to the N-grams (see e.g. Rosenberg, 2000). To a large
extent this is due to the fact that this branch of linguistics has mainly been
engaged with written language and not with spoken language. When we
speak we often produce utterances that are not grammatically correct.
And, to make things even more diffiff cult, we also produce many disfluen-
cies. Some studies have focused explicitly on spoken language, and tried
to incorporate linguistically motivated language models in ASR systems
(see the many references in Brill, Florian, Henderson, and Mangu, 1998).
However, none of them succeeded in achieving substantial improvements
over the N-gram.
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4. DISCUSSION

What impedes the transfer of phonetic knowledge to speech technology?
First of all, it is clear that in order to be used in speech technology, pho-
netic knowledge has to be incorporated into the computational frame-
work of a speech technology system. There are several factors tff hat
make this incorporation problematic for much of the existing phonetic
knowledge, which mainly has been obtained through controlled (classic)
phonetic experiments. Some of these problems were illustrated in the
examples in the previous section. To summarize, the main problems that
emerged from the examples in the previous section are that the knowl-
edge is based on small amounts of ‘lab speech’ and therefore does not
generalize to ‘more realistic speech’, that the knowledge is not complete,
and finally that it is not quantified at all or not quantified in the right for-
mat. In other words, phonetics does not provide ready-made quantitative
models that can be plugged directly into a system.

These quantitative models can be derived on the basis of the large
speech corpora that are available nowadays, with knowledge-based or
data-driven methods, or combinations of these two types of methods.
If the existing knowledge is not complete, as is often the case, then it is
probably best to use data-driven approaches. Initial ideas about phonetic
phenomena could come from (controlled) phonetic experiments. Subse-
quently, these ideas should be tested and quantififf ed using large speech
corpora. In this way knowledge can be acquired which can more easily
be integrated in speech technology.

Of course, one could wonder whether more phonetic knowledge
should be used in speech technology at all. A reason for doing so, which
is often mentioned in this context, is that humans perform better than
machines on many tasks. However, should an ASR system have ears
and a basilar membrane, or should a TTS system have a larynx and a
tongue (see also Hermansky, 1998)? No! We do not need to make replicas
of (parts of) humans. Another extreme is not using phonetic knowledge
at all. In this case, e.g., a speech corpus is seen as just a bunch of CDs,
files or signals for which the word error rate or another error criterion
should be minimized. It is obvious that to improve speech technology sys-
tems using phonetic=linguistic knowledge can be useful. A good example
to illustrate this is knowledge about human auditory perception, which
was applied to improve ASR performance (Hermansky, 1998). Now-
adays, perception-based features (such as Mel, Bark or PLP) are used
in most ASR systems.
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Another reason why phonetic=linguistic knowledge could be useful is
the following. Progress with current ASR and TTS techniques has been
steady but slow. This could indicate that the ceiling of the performance
for current techniques has almost been reached. Therefore, the best way
to proceed is probably not to put only a lot of extra effort into fine-tuning
the existing techniques, but instead to study some innovative approaches
too. And although the complete solution cannot be found in current pho-
netic=linguistic knowledge, this knowledge should certainly be taken into
consideration while searching for new techniques for better systems.

Speech production is a process that is constrained at various levels:
acoustic, phonetic, phonological, lexical, syntactic, and semantic. Knowl-
edge about these constraints could be of benefit to speech technology. To
this end, these constraints have to be identified, described (in a certain
formalism), and quantififf ed in such a way that they can be incorporated
in a complete computational framework. The best results in ASR so
far have been obtained with a stochastic computational framework, so
it is likely that the description and the quantififf cation of the constraints
should be of a stochastic nature. These constraints can be described at
different levels (multiple tiers). Information missing on one level can
then be derived from, or complemented with, information from other
levels.

So far, the emphasis in ASR and TTS has been on word recognition and
synthesis. Since speech is mainly used for communication, the focus of
research should shiftff more towards understanding and expressing messages,
i.e. speech-to-concept and concept-to-speech (see also Zue, 1991, and Furui,
2000). This does not only require phonetic knowledge, it also requires
knowledge from many other disciplines. Between these worlds even more
gaps will exist. For instance, psycholinguistic models often use the correct
phone(me) sequences as input, and many natural language processing mod-
els take the correct word sequences as input. In ASR the correct phone(me)
and word sequences are not readily available. Therefore, these models can-
not be directly integrated with ASR systems. In order to integrate models
from different disciplines, a lot of gaps still have to be bridged.
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