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Preface

Mathematical models of petroleum reservoirs have been utilized since the late 1800s
(Darcy, 1856). A mathematical model consists of a set of differential equations that de-
scribe the flow of fluids in the petroleum reservoirs, together with an appropriate set of
boundary and/or initial conditions. The reliability of predictions from a reservoir model
depends on how well the model describes a field. To develop a model, in general simplify-
ing assumptions need be made because the field is too complicated to be described exactly.
The assumptions needed to solve a model analytically are very restrictive; many analyti-
cal solutions require that the reservoir be homogeneous and isotropic, for example. It is
usually necessary to solve a mathematical model approximately using numerical methods.
Since the 1950s, when digital computers became widely available, numerical models have
been used to predict, understand, and optimize complex physical fluid flow processes in
petroleum reservoirs. Moreover, the emergence of complex enhanced recovery techniques
in the field of oil production has emphasized the need for sophisticated mathematical and
computational tools, capable of modeling intricate physical phenomena and sharply chang-
ing fluid interfaces. The objective of this book is to provide researchers in the area of porous
media flow, especially in petroleum reservoirs, with an overview of various multiphase flow
and transport models and the current, state-of-the-art computational methods used in the
solution of these models.

This book offers a fundamental and practical introduction to the use of computational
methods, particularly finite element methods, in the simulation of fluid flow in petroleum
reservoirs. In the presentation, we have attempted to introduce every concept in the simplest
possible setting and to maintain a level of treatment that is as rigorous as possible without
being unnecessarily abstract. In developing numerical methods, a brief discussion of the
basic concepts has been given in the text as needed, and the reader is referred to appropriate
references for more details. We have not attempted to give any mathematical proofs, but
rather we review multiphase flow equations and computational methods to introduce the
basic terminologies and notation. We have attempted to present a thorough discussion of
practical aspects of these subjects in a consistent manner, and to focus on the mathematical
formulations of these equations and on applications of the computational methods to their
solution.

This book covers four major topics (flow and transport differential equations and
their numerical solutions, rock and fluid properties, numerical methods, and linear system
solvers), eight applications (single phase flow, two-phase flow, flow of black oil type, volatile
oil flow, compositional flow, nonisothermal flow, chemical compositional flow, and flows
in fractured porous media), and six special topics (welling modeling, upscaling, history
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matching, parallel computing, oil recovery optimization, and surface network systems).
Each chapter ends with bibliographical information and exercises.

In Chapter 2, after an introduction in Section 2.1, we review the basic governing
equations for single phase flow (Section 2.2), two-phase flow (Section 2.3), transport of
a component in a fluid phase (Section 2.4), transport of multicomponents in a fluid phase
(Section 2.5), flow of black oil type (Section 2.6), flow of volatile oil type (Section 2.7),
compositional flow (Section 2.8), nonisothermal flow (Section 2.9), chemical compositional
flow (Section 2.10), and flows in fractured porous media (Section 2.11). As an example,
deformable media, non-Darcy’s law, and other effects are discussed for single phase flow
in Section 2.2. Also, alternative differential equations are developed for two-phase flow
in Section 2.3; these alternative formulations can be extended to flows of other types.
Relationships among all these flows are mentioned in Section 2.12.

In Chapter 3, we consider rock and fluid properties. In particular, capillary pressures
and relative permeabilities are discussed for the rock properties in Section 3.1, and oil, gas,
and water properties and equations of state are studied for the fluid properties in Section
3.2. In Section 3.3, temperature-dependent rock and fluid properties are described.

In Chapter 4, numerical methods are developed; an emphasis is placed on the develop-
ment of finite element methods. After an introduction to the classical finite difference meth-
ods in Section 4.1, six major types of finite element methods are reviewed: standard (Section
4.2), control volume (Section 4.3), discontinuous (Section 4.4), mixed (Section 4.5), char-
acteristic (Section 4.6), and adaptive (Section 4.7). All these finite element methods have
been employed in petroleum reservoir simulation. For each method, a brief introduction,
the notation, basic terminology, and necessary concepts are given.

In Chapter 5, solution techniques for solving the linear systems arising in numerical
reservoir simulation are considered; both direct and iterative algorithms are introduced. In
Sections 5.1 and 5.2, we discuss Gaussian elimination or Cholesky’s method for tridiagonal
and general banded matrices, respectively. Because the structure of a matrix depends on the
ordering of nodes, Section 5.3 is devoted to this topic. Then Krylov subspace algorithms
are described: conjugate gradient (CG), generalized minimum residual (GMRES), orthog-
onal minimum residual (ORTHOMIN), and biconjugate gradient stabilized (BiCGSTAB)
iterative algorithms, respectively, in Sections 5.4–5.7. Preconditioned versions of these
algorithms and the choice of preconditioners are studied in Sections 5.8 and 5.9. Practical
considerations for the choice of preconditioners in reservoir simulation are given in Section
5.10. Finally, comparisons of direct and iterative algorithms are presented in Section 5.11.

In Chapters 6–12, numerical and computational methods for single phase flow, two-
phase flow, flow of black oil type, compositional flow, nonisothermal flow, chemical com-
positional flow, and flows in fractured porous media respectively, are studied. For single
and two-phase flows, numerical and analytic solutions are compared. For two-phase flow,
a comparison between different numerical methods is also presented. For the flow of black
oil type, different solution schemes (e.g., fully implicit, sequential, and IMPES—implicit in
pressure and explicit in saturation) are assessed. The numerical and experimental examples
given in Chapters 6–12 are based on the benchmark problems of the first nine compara-
tive solution projects organized by the society of petroleum engineers and real field data
analysis.

In Chapter 13, vertical and horizontal well modeling using finite difference and finite
element methods is discussed. Finally, in Chapter 14 special topics on upscaling, history
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matching, parallel computing, oil recovery optimization, and surface network systems are
briefly touched on.

This book can serve as a textbook for graduate (even advanced undergraduate) stu-
dents in geology, petroleum engineering, and applied mathematics. It can be also used as a
handbook for employees in the oil industry who need a basic grasp of modeling and com-
putational method concepts. It can also serve as a reference book for geologists, petroleum
engineers, applied mathematicians, and scientists in the area of petroleum reservoir simu-
lation. Calculus, basic physics, and some acquaintance with partial differential equations
and simple matrix algebra are necessary prerequisites.

Chapters 2 through 5 form the essential material for a course. Because each of
Chapters 6 through 13 is essentially self-contained and independent, different course paths
can be chosen. The exercise section in each chapter plays a role in the presentation, and the
reader should spend the time to solve the problems.

We take this opportunity to thank many people who have helped, in different ways, in
the preparation of this book. We have had incredible support from Professor Jim Douglas, Jr.,
and Professor Richard E. Ewing. We would like to thank Professor Ian Gladwell for reading
the whole manuscript and making invaluable suggestions. The book title was suggested
by Professor Roland Glowinski. Many students have made invaluable comments about the
early drafts of this book. In particular, we thank Dr. Baoyan Li and Dr. Wenjun Li for
carrying out some numerical experiments for us.

Zhangxin Chen, Guanren Huan, and Yuanle Ma

Dallas, Texas, USA

October 15, 2005
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Chapter 1

Introduction

1.1 Petroleum Reservoir Simulation
In mathematical terminology, a porous medium is the closure of a subset of the Euclidean
space R

d (d = 1, 2, or 3). A petroleum reservoir is a porous medium that contains hy-
drocarbons. The primary goal of reservoir simulation is to predict future performance of a
reservoir and find ways and means of optimizing the recovery of some of the hydrocarbons.

The two important characteristics of a petroleum reservoir are the natures of the rock
and of the fluids filling it. A reservoir is usually heterogeneous; its properties heavily depend
on the space location. A fractured reservoir is heterogeneous, for example. It consists of a
set of blocks of porous media (the matrix) and a net of fractures. The rock properties in such
a reservoir dramatically change; its permeability may vary from one millidarcy (md) in the
matrix to thousands md in the fractures. While the governing equations for the fractured
reservoir are similar to those for an ordinary reservoir, they have additional difficulties that
must be overcome. The mathematical models presented in this book take into account
the heterogeneity of a porous medium, and computational methods are presented for both
ordinary and fractured media.

The nature of the fluids filling a petroleum reservoir strongly depends on the stage of
oil recovery. In the very early stage, the reservoir essentially contains a single fluid such
as gas or oil (the presence of water can be usually neglected). Often the pressure at this
stage is so high that the gas or oil is produced by simple natural decompression without any
pumping effort at the wells. This stage is referred to as primary recovery, and it ends when
a pressure equilibrium between the oil field and the atmosphere occurs. Primary recovery
usually leaves 70%–85% of hydrocarbons in the reservoir.

To recover part of the remaining oil, a fluid (usually water) is injected into some wells
(injection wells) while oil is produced through other wells (production wells). This process
serves to maintain high reservoir pressure and flow rates. It also displaces some of the oil
and pushes it toward the production wells. This stage of oil recovery is called secondary
recovery (or water flooding).

In the secondary recovery, if the reservoir pressure is above the bubble point pressure
of the oil phase, there is two-phase immiscible flow, one phase being water and the other

1
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2 Chapter 1. Introduction

being oil, without mass transfer between the phases. If the reservoir pressure drops below
the bubble point pressure, then the oil (more precisely, the hydrocarbon phase) is split into
a liquid phase and a gaseous phase in thermodynamic equilibrium. In this case, the flow
is of black oil type; the water phase does not exchange mass with the other phases, but the
liquid and gaseous phases exchange mass.

Water flooding is not very effective, and after this stage 50% or more of hydrocarbons
often remain in the reservoir. Due to strong surface tension, a large amount of oil is trapped
in small pores and cannot be washed out using this technique. Also, when the oil is heavy
and viscous, the water is extremely mobile. If the flow rate is sufficiently high, instead of
producing oil, the production wells primarily produce water.

To recover more of the hydrocarbons, several enhanced recovery techniques have been
developed. These techniques involve complex chemical and thermal effects and are termed
tertiary recovery or enhanced recovery. Enhanced oil recovery is oil recovery by injecting
materials that are not normally present in a petroleum reservoir. There are many different
versions of enhanced recovery techniques, but one of the main objectives of these techniques
is to achieve miscibility and thus eliminate the residual oil saturation. The miscibility is
achieved by increasing temperature (e.g., in situ combustion) or by injecting other chemical
species like CO2. One typical flow in enhanced recovery is the compositional flow, where
only the number of chemical species is given a priori, and the number of phases and the
composition of each phase in terms of the given species depend on the thermodynamic
conditions and the overall concentration of each species. Flows of other types involve
thermal methods, particularly steam drive and soak, and chemical flooding, such as alkaline,
surfactant, polymer, and foam (ASP+foam) flooding. All flows of these types in petroleum
reservoir applications are considered in this book.

1.2 Numerical Methods
In general, the equations governing a mathematical model of a reservoir cannot be solved by
analytical methods. Instead, a numerical model can be produced in a form that is amenable
to solution by digital computers. Since the 1950s, when digital computers became widely
available, numerical models have been used to predict, understand, and optimize complex
physical fluid flow processes in petroleum reservoirs. Recent advances in computational
capabilities (particularly with the advent of new parallel architectures) have greatly expanded
the potential for solving larger problems and hence permitting the incorporation of more
physics into the differential equations. While several books are available on finite difference
methods as applied to the area of porous media flow (Peaceman, 1977B; Aziz and Settari,
1979), there does not appear to be available a book that examines the application of finite
element methods in this area. The purpose of this book is to attempt to provide researchers in
this area, especially in petroleum reservoirs, with the current, state-of-the-art finite element
methods.

Compared with finite difference methods, the introduction of finite element methods is
relatively recent. The advantages of the finite element methods over the finite differences are
that general boundary conditions, complex geometry, and variable material properties can
be relatively easily handled. Also, the clear structure and versatility of the finite elements
makes it possible to develop general purpose software for applications. Furthermore, there
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is a solid theoretical foundation that gives added confidence, and in many cases it is possible
to obtain concrete error estimates for the finite element solutions. Finite element methods
were first introduced by Courant (1943). From the 1950s to the 1970s, they were developed
by engineers and mathematicians into a general method for the numerical solution of partial
differential equations.

Driven by the needs for designing technologies for exploration, production, and re-
covery of oil and gas, the petroleum industry has developed and implemented a variety of
numerical reservoir simulators using finite element methods (e.g., see the biannual SPE
numerical simulation proceedings published by the society of petroleum engineers since
1968). In addition to the advantages mentioned above, finite element methods have some
peculiar features when applied to reservoir simulation, such as in the reduction of grid ori-
entation effects; in the treatment of local grid refinement, horizontal and slanted wells, and
corner point techniques; in the simulation of faults and fractures; in the design of stream-
lines, and in the requirement of high-order accuracy of numerical solutions. These topics
will be studied in detail.

The standard finite element methods and two closely related methods, control vol-
ume and discontinuous finite element methods, are covered here. Control volume finite
element methods possess a local mass conservation property on each control volume, while
discontinuous methods are closely related to the finite volume methods that have been uti-
lized in reservoir simulation. Two nonstandard methods, the mixed and characteristic finite
element methods, are also discussed. The reason for the development of mixed methods
is that in many applications a vector variable (e.g., a velocity field in petroleum reservoir
simulation) is the primary variable in which one is interested, and then the mixed methods
are designed to approximate both this variable and a scalar variable (e.g., pressure) simul-
taneously and give a high-order approximation for both variables. The characteristic finite
element methods are suitable for advection-dominated (or convection-dominated) problems.
They take reasonably large time steps, capture sharp solution fronts, and conserve mass.
Finally, adaptive finite element methods are described. These methods adjust themselves
to improve approximate solutions that have important local and transient features.

1.3 Linear System Solvers
For a petroleum reservoir simulator with a number of gridblocks of order 100,000, about
80%–90% of the total simulation time is spent on the solution of linear systems. Thus
the choice of a fast linear solver is crucial in reservoir simulation. In general, a system
matrix arising in numerical reservoir simulation is sparse, highly nonsymmetric, and ill-
conditioned. While sparse, its natural banded structure is usually spoiled by wells that
perforate into many gridblocks and/or by irregular gridblock structure. Furthermore, the
matrix dimension M often ranges from hundreds to millions. For the solution of such
systems, Krylov subspace algorithms are the sole option.

Over a dozen parameter-free Krylov subspace algorithms have been proposed for
solving nonsymmetric systems of linear equations. Three such leading iterative algorithms
are the CGN (the conjugate gradient iteration applied to the normal equations), GMRES
(residual minimization in a Krylov space), and BiCGSTAB (a biorthogonalization method
adapted from the biconjugate gradient iteration). These three algorithms differ fundamen-
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tally in their capabilities. Examples of matrices can be constructed to show that each type
of iteration can outperform the others by a factor on the order of

√
M or M (Nachtigal

et al., 1992). Moreover, these algorithms are often useless without preconditioning. The
Krylov subspace algorithms and their preconditioned versions are discussed. The discussion
of these algorithms and of their preconditioners is for algorithms of general applicability.
Some guidelines are also provided about the choice of a suitable algorithm for a given
problem.

1.4 Solution Schemes
Since the fluid flow models in porous media involve large, coupled systems of nonlin-
ear, time-dependent partial differential equations, an important problem in the numerical
simulation is to develop stable, efficient, robust, accurate, and self-adaptive time stepping
techniques. Explicit methods like forward Euler methods require that a Courant–Friedrichs–
Lewy (CFL) time step constraint be satisfied, while implicit methods such as backward Euler
and Crank–Nicolson methods are reasonably stable. On the other hand, the explicit methods
are computationally efficient, and the implicit methods require the solution of large systems
of nonlinear equations at each time step. Explicit methods, together with linearization by
some Newton-like iteration, have been frequently used in reservoir simulation. Due to the
CFL condition, enormously long computations are needed to simulate a long time period
(e.g., over ten years) problem in a field-scale model, and thus fully explicit methods cannot
be efficiently exploited, especially for problems with strong nonlinearities.

A variation to achieve better stability without suffering too much in computation is
the IMPES (implicit in pressure and explicit in saturation) scheme. This scheme works well
for problems of intermediate difficulty and nonlinearity (e.g., for two-phase incompressible
flow) and is still widely used in the petroleum industry. However, it is not efficient for
problems with strong nonlinearities, particularly for problems involving more than two
fluid phases.

Another basic scheme for solving multiphase flow equations is the simultaneous so-
lution (SS) method, which solves all of the coupled nonlinear equations simultaneously and
implicitly. This technique is stable and can take very large time steps while stability is main-
tained. For the black oil and thermal models (with a few components) considered in this
book, the SS scheme is a good choice. However, for complex problems that involve many
chemical components (e.g., the compositional and chemical compositional flow problems),
the size of system matrices to be solved is too large, even with today’s computing power.

A variety of sequential methods for solving equations in an implicit fashion without a
full coupling have been developed. They are less stable but more computationally efficient
than the SS scheme, and more stable but less efficient than the IMPES scheme. The se-
quential schemes are very suitable for the compositional and chemical compositional flow
problems that involve many chemical components.

Finally, an adaptive implicit scheme can be employed in reservoir simulation. The
principal idea of this technique is to seek an efficient middle ground between the IMPES
(or sequential) and SS schemes. That is, at a given time step, the expensive SS scheme is
confined to those gridblocks that require it, while on the remaining gridblocks the IMPES
scheme is implemented. The majority of research in the solution schemes has concentrated
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on the stability of time stepping methods, and the efficient linearization and iterative solution
of the resulting equations. The accuracy of these schemes must be also addressed. All the
solution schemes mentioned are covered and compared in this book.

1.5 Numerical Examples
Many numerical examples are presented to test and compare different numerical methods,
linear system solvers, and solution schemes. These examples are based on the bench-
mark problems of the first nine comparative solution projects organized by the Society of
Petroleum Engineers. Typically, about ten organizations participated in each project. The
numerical examples presented include three-dimensional black oil reservoir simulations, a
coning problem study, gas cycling analysis of retrograde condensate reservoirs, steam in-
jection simulations, dual porosity model simulations, gridding techniques, horizontal well
modeling, and large-scale reservoir simulations. A couple of numerical examples are based
on real field data analysis.

1.6 Ground Water Flow Modeling
There are many modeling and simulation processes that use technologies and techniques
similar to those in petroleum reservoir simulation; one example is ground water flow mod-
eling. Ground water is one of the most widely distributed and important resources on the
earth. Over half of the population in the USA depends on ground water for its water supply,
for example. Also, ground water is an important source of irrigation and industrial process
water. In a large part of the USA, available sources of ground water are a fundamental
constraint on development and economic activity. Ground water quality is endangered by
organic, inorganic, and radioactive contaminants introduced into the ground by improper
disposal or accidental spill. Protecting this quality is a problem of broad economic and
societal importance.

Water movement in the subsurface has been studied for many decades by soil scientists
and agricultural engineers. This research dates back to the classical work of Richards (1931).
The subsurface is a multiphase system. It consists of at least three phases: the solid phase of
the soil matrix, the water phase, and a gaseous phase. Other phases like a separate organic
liquid phase or an ice phase may exist. The traditional approach of studying a subsurface
system has concentrated exclusively on water. Over the past few decades, interest has
grown in problems where other phases can be important. These include the evaluation of
remediation technologies such as soil venting where the gas phase plays an important role.
Soil venting is a technology that attempts to remove contaminants from the soil before they
can seriously pollute ground water supplies. It works by pumping air through a part of the
subsurface contaminated by a volatile contaminant and inducing it to volatilize so that it
can be removed by the gas phase flow. Previous evaluation of this technology has indicated
that it is economical and efficient in contaminant cleanup. For such an application, coupled
nonlinear equations for an air-water system must be solved. While ground water modeling
has become increasingly important, it is beyond the scope of this book to study it. However,
we emphasize that technologies and techniques similar to those used in petroleum reservoirs
apply also to ground water flow (Chen and Ewing, 1997A; Helmig, 1997).
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1.7 Basin Modeling
Basin modeling is a term often used to describe three factors: the burial history of sediments,
the thermal history of these sediments, and the generation, migration, and preservation
of hydrocarbons. The burial history of sedimentary units is driven by sediment supply,
chemical and mechanical compaction, tectonic forces, erosional and intrusive events, and
sea-level changes. An understanding of this dynamical evolution of sediments is critical to
basin modeling since paleostructures, porosity, sedimentary thermal conductivity, solubility,
faulting, and fluid flow all depend on the sedimentary patterns of behavior. When the burial
history of the sediments is known, one needs to determine their thermal history. There are
two approaches to this. The first approach assumes a priori models for heat flux evolution,
and the determination is carried out by fiat. The second approach uses present-day data that
contain some cumulative measure of thermal history and attempts to utilize these data to
reconstruct the thermal history of the sediments. After determining the sedimentary thermal
history, one needs to determine the generation, migration, and preservation of hydrocarbons.
In this step, one needs to figure out the ways and means of providing thermokinetic models
of hydrocarbon generation from organic material and to assess their accuracy. All these
factors constitute crucial parts in attempts at basin modeling. Basin modeling is a very
important and complex process (Allen and Allen, 1990; Lerche, 1990; Chen et al., 2002B).
However, due to the scope of this book, this topic will not be discussed further.

1.8 Units
British units are used almost exclusively in reservoir engineering in the USA. However,
the use of metric systems, particularly the SI (Sisteme International) unit system, has been
increasing. Hence we state the SI base units and some common derived units adapted from
Campbell and Campbell (1985) and Lake (1989). The SI base quantities and units are given
in Table 1.1. When the mole is used, the elementary entities must be specified; they can be
atoms, molecules, ions, electrons, other particles, or specified groups of such particles in
petroleum engineering.

Some SI derived units are shown in Table 1.2, and a list of useful conversions are
stated in Table 1.3. Two troublesome conversions are between pressure (1 MPa ≈ 147 psia)
and temperature (1 K = 1.8 R, Rankine). Neither the Fahrenheit nor the Celsius scale is
absolute, so an additional conversion is required:

◦F = R − 459.67, ◦C = K − 273.16.

Table 1.1. SI base quantities and units.

Base quantity SI unit SI unit symbol SPE symbol
Time Second s t
Length Meter m L
Mass Kilogram kg M
Thermodynamic

temperature Kelvin K T
Amount of substance Mole mol
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Table 1.2. Some common SI derived units.

Quantity Unit SI unit symbol Formula

Pressure Pascal Pa N/m2

Velocity Meter per second m/s
Acceleration Meter per

second squared m/s2

Area Square meter m2

Volume Cubic meter m3

Density Kilogram per
cubic meter kg/m3

Energy (work) Joule J N·m
Force Newton N kg·m/s2

Viscosity (dynamic) Pascal second Pa·s
Viscosity Square meter
(kinematic) per second m2/s

Table 1.3. Selected conversion factors.

To convert from To Multiply by

Day (mean solar) Second (s) 8.640000E + 04
Darcy Meter2 (m2) 9.869232E − 13
Mile (U.S. survey) Meter (m) 1.609347E + 03
Acre (U.S. survey) Meter2 (m2) 4.046872E + 03
Acres Feet2 (ft2) 4.356000E + 04
Atmosphere (standard) Pascal (Pa) 1.013250E + 05
Bar Pascal (Pa) 1.000000E + 05
Barrel Feet3 (ft3) 5.615000E + 00
Barrel (petroleum 42 gal) Meter3 (m3) 1.589873E − 01
British thermal unit Joule (J) 1.055232E + 03
Dyne Newton (N) 1.000000E − 05
Gallon (U.S. liquid) Meter3 (m3) 3.785412E − 03
Hectare Meter2 (m2) 1.000000E + 04
Gram Kilogram (kg) 1.000000E − 03
Pound (lbm avoirdupois) Kilogram (kg) 4.535924E − 01
Ton (short, 2000 lbm) Kilogram (kg) 9.071847E + 02

The superscript ◦ is not used for the absolute temperature scales K and R. The volume
conversions are also troublesome due to the interchangeable use of mass and standard
volumes:

1 reservoir barrel (or bbl) = 0.159 m3,

1 standard barrel (or STB) = 0.159 SCM.

The symbol SCM (standard cubic meter) is not a standard SI unit; it indicates the amount
of mass contained in one cubic meter calculated at standard pressure and temperature.

The use of unit prefixes is sometimes convenient (cf. Table 1.4), but it does require
care. If a prefixed unit is exponentiated, the exponent applies to the prefix as well as the
unit. For example, 1 km2 = 1 (km)2 = 1 (103 m)2 = 1 × 106 m2.
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Table 1.4. SI unit prefixes.

Factor SI prefix Symbol Meaning (U.S.)

10−9 nano n One billionth of
10−6 micro µ One millionth of
10−3 milli m One thousandth of
10−2 centi c One hundredth of
10−1 deci d One tenth of
10 deka da Ten times
102 hecto h One hundred times
103 kilo k One thousand times
106 mega M One million times
109 giga G One billion times
1012 tera T One trillion times

There are several quantities that have the exact same or approximate numerical value
between the SI and practical units:

1 cp = 1 mPa·s, 1 dyne/cm = 1 mN/m,
1 Btu ≈ 1 kJ, 1 darcy ≈ 1µm2, 1 ppm ≈ 1 g/m3.

There are several more useful unit conversions:

1 atm = 14.7 psia, 1 day = 24 hrs, 1 ft = 30.48 cm,
1 bbl = 5.615 ft3, 1 darcy = 1,000 md, 1 hr = 3,600 sec.

More unit conversions will be stated in Chapter 16.
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Chapter 2

Flow and Transport
Equations

2.1 Introduction
Mathematical models of petroleum reservoirs have been utilized since the late 1800s. A
mathematical model consists of a set of equations that describe the flow of fluids in a
petroleum reservoir, together with an appropriate set of boundary and/or initial conditions.
This chapter is devoted to the development of such a model.

Fluid motion in a petroleum reservoir is governed by the conservation of mass, mo-
mentum, and energy. In the simulation of flow in the reservoir, the momentum equation
is given in the form of Darcy’s law (Darcy, 1856). Derived empirically, this law indicates
a linear relationship between the fluid velocity relative to the solid and the pressure head
gradient. Its theoretical basis was provided by, e.g., Whitaker (1966); also see the books
by Bear (1972) and Scheidegger (1974). The present chapter reviews some models that are
known to be of practical importance.

There are several books available on fluid flow in porous media. The books by Muskat
(1937; 1949) deal with the mechanics of fluid flow, the one by Collins (1961) is concerned
with the practical and theoretical bases of petroleum reservoir engineering, and the one by
Bear (1972) treats the dynamics and statics of fluids. The books by Peaceman (1977) and
Aziz and Settari (1979) (also see Mattax and Dalton, 1990) present the application of finite
difference methods to fluid flow in porous media. While the book by Chavent and Jaffré
(1986) discusses finite element methods, the discussion is very brief, and most of their
book is devoted to the mathematical formulation of models. The proceedings edited by
Ewing (1983), Wheeler (1995), and Chen et al. (2000A) contain papers on finite elements
for flow and transport problems. There are also books available on ground water hydrology;
see Polubarinova-Kochina (1962), Wang and Anderson (1982), and Helmig (1997), for
example.

The material presented in this chapter is very condensed. We do not attempt to derive
differential equations that govern the flow and transport of fluids in porous media, but rather
we review these equations to introduce the terminology and notation used throughout this
book. The chapter is organized as follows. We consider the single phase flow of a fluid
in a porous medium in Section 2.2. While this book concentrates on an ordinary porous

9
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10 Chapter 2. Flow and Transport Equations

medium, deformable and fractured porous media for single phase flow are also studied as
an example. Furthermore, flow equations that include non-Darcy effects are described, and
boundary and initial conditions are also presented. We develop the governing equations
for two-phase immiscible flow in a porous medium in Section 2.3; attention is paid to
the development of alternative differential equations for such a flow. Boundary and initial
conditions associated with these alternative equations are established. We consider flow
and transport of a component in a fluid phase and the problem of miscible displacement of
one fluid by another in Section 2.4; diffusion and dispersion effects are discussed. We deal
with transport of multicomponents in a fluid phase in Section 2.5; reactive flow problems
are presented. We present the black oil model for three-phase flow in Section 2.6. A
volatile oil model is defined in Section 2.7; this model includes the oil volatility effect. We
construct differential equations for multicomponent, multiphase compositional flow, which
involves mass transfer between phases in a general fashion, in Section 2.8. Although most
mathematical models presented deal with isothermal flow, we also present a section on
nonisothermal flow in Section 2.9. In Section 2.10, we consider chemical compositional
flooding, where ASP+foam (alkaline, surfactant, and polymer) flooding is described. In
Section 2.11, flows in fractured porous media are studied in more detail. Section 2.12 is
devoted to discussing the relationship among all the flow models presented in this chapter.
Finally, bibliographical information is given in Section 2.13. The mathematical models are
briefly described in this chapter; more details on the governing differential equations and
constitutive relations will be given in each of the subsequent chapters where a specific model
is treated.

The term phase stands for matter that has a homogeneous chemical composition and
physical state. Solid, liquid, and gaseous phases can be distinguished. Although there
may be several liquid phases present in a porous medium, only a gaseous phase can exist.
The phases are separate from each other. The term component is associated with a unique
chemical species, and components constitute the phases.

2.2 Single Phase Flow
In this section, we consider the transport of a Newtonian fluid that occupies the entire void
space in a porous medium under the isothermal condition.

2.2.1 Single phase flow in a porous medium

The governing equations for the single phase flow of a fluid (a single component or a
homogeneous mixture) in a porous medium are given by the conservation of mass, Darcy’s
law, and an equation of state. We make the assumptions that the mass fluxes due to dispersion
and diffusion are so small (relative to the advective mass flux) that they are negligible and
that the fluid-solid interface is a material surface with respect to the fluid mass so that no
mass of this fluid can cross it.

The spatial and temporal variables will be represented by x = (x1, x2, x3) and t , re-
spectively. Denote by φ the porosity of the porous medium (the fraction of a representative
elementary volume available for the fluid), by ρ the density of the fluid per unit volume, by
u = (u1, u2, u3) the superficial Darcy velocity, and by q the external sources and sinks. Con-
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Figure 2.1. A differential volume.

sider a rectangular cube such that its faces are parallel to the coordinate axes (cf. Figure
2.1). The centroid of this cube is denoted (x1, x2, x3), and its length in the xi-coordinate
direction is �xi , i = 1, 2, 3. The xi-component of the mass flux (mass flow per unit area
per unit time) of the fluid is ρui . Referring to Figure 2.1, the mass inflow across the surface
at x1 − �x1

2 per unit time is

(ρu1)x1−�x1
2 ,x2,x3

�x2�x3,

and the mass outflow at x1 + �x1
2 is

(ρu1)x1+�x1
2 ,x2,x3

�x2�x3.

Similarly, in the x2- and x3-coordinate directions, the mass inflows and outflows across the
surfaces are, respectively,

(ρu2)x1,x2−�x2
2 ,x3

�x1�x3, (ρu2)x1,x2+�x2
2 ,x3

�x1�x3

and

(ρu3)x1,x2,x3−�x3
2
�x1�x2, (ρu3)x1,x2,x3+�x3

2
�x1�x2.

With ∂/∂t being the time differentiation, mass accumulation due to compressibility per unit
time is

∂(φρ)

∂t
�x1�x2�x3,

and the removal of mass from the cube, i.e., the mass decrement (accumulation) due to a
sink of strength q (mass per unit volume per unit time) is

−q�x1�x2�x3.

The difference between the mass inflow and outflow equals the sum of mass accumulation
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12 Chapter 2. Flow and Transport Equations

within this cube: [
(ρu1)x1−�x1

2 ,x2,x3
− (ρu1)x1+�x1

2 ,x2,x3

]
�x2�x3

+
[
(ρu2)x1,x2−�x2

2 ,x3
− (ρu2)x1,x2+�x2

2 ,x3

]
�x1�x3

+
[
(ρu3)x1,x2,x3−�x3

2
− (ρu3)x1,x2,x3+�x3

2

]
�x1�x2

=
(
∂(φρ)

∂t
− q

)
�x1�x2�x3.

Divide this equation by �x1�x2�x3 to see that

−
(ρu1)x1+�x1

2 ,x2,x3
− (ρu1)x1−�x1

2 ,x2,x3

�x1

−
(ρu2)x1,x2+�x2

2 ,x3
− (ρu2)x1,x2−�x2

2 ,x3

�x2

−
(ρu3)x1,x2,x3+�x3

2
− (ρu3)x1,x2,x3−�x3

2

�x3
= ∂(φρ)

∂t
− q.

Letting �xi → 0, i = 1, 2, 3, we obtain the mass conservation equation

∂(φρ)

∂t
= −∇ · (ρu)+ q, (2.1)

where ∇· is the divergence operator:

∇ · u = ∂u1

∂x1
+ ∂u2

∂x2
+ ∂u3

∂x3
.

Note that q is negative for sinks and positive for sources.
Equation (2.1) is established for three space dimensions. It also applies to the one-

dimensional (in the x1-direction) or two-dimensional (in the x1x2-plane) flow if we introduce
the factor

ᾱ(x) = �x2(x)�x3(x) in one dimension,

ᾱ(x) = �x3(x) in two dimensions,

ᾱ(x) = 1 in three dimensions.

For these three cases, (2.1) becomes

ᾱ
∂(φρ)

∂t
= −∇ · (ᾱρu)+ ᾱq. (2.2)

The formation volume factor, B, is defined as the ratio of the volume of the fluid
measured at reservoir conditions to the volume of the same fluid measured at standard
conditions:

B(p, T ) = V (p, T )

Vs
,
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where s denotes the standard conditions and p and T are the fluid pressure and temperature
(at reservoir conditions), respectively. LetW be the weight of the fluid. Because V = W/ρ

and Vs = W/ρs , where ρs is the density at standard conditions, we see that

ρ = ρs

B
.

Substituting ρ into (2.2), we have

ᾱ
∂

∂t

(
φ

B

)
= −∇ ·

(
ᾱ

B
u
)

+ ᾱq

ρs
. (2.3)

While (2.1) and (2.3) are equivalent, the former will be utilized in this book except for the
black oil and volatile oil models.

In addition to (2.1), we state the momentum conservation in the form of Darcy’s law
(Darcy, 1856). This law indicates a linear relationship between the fluid velocity and the
pressure head gradient:

u = − 1

µ
k (∇p − ρ℘∇z), (2.4)

where k is the absolute permeability tensor of the porous medium, µ is the fluid viscosity,
℘ is the magnitude of the gravitational acceleration, z is the depth, and ∇ is the gradient
operator:

∇p =
(
∂p

∂x1
,
∂p

∂x2
,
∂p

∂x3

)
.

The x3-coordinate in (2.4) is in the vertical downward direction. The permeability is an
average medium property that measures the ability of the porous medium to transmit fluid.
In some cases, it is possible to assume that k is a diagonal tensor

k =
 k11

k22

k33

 = diag(k11, k22, k33).

If k11 = k22 = k33, the porous medium is called isotropic; otherwise, it is anisotropic.

2.2.2 General equations for single phase flow

Substituting (2.4) into (2.1) yields

∂(φρ)

∂t
= ∇ ·

(
ρ

µ
k (∇p − ρ℘∇z)

)
+ q. (2.5)

An equation of state is expressed in terms of the fluid compressibility cf :

cf = − 1

V

∂V

∂p

∣∣∣∣
T

= 1

ρ

∂ρ

∂p

∣∣∣∣
T

, (2.6)

at a fixed temperature T , where V stands for the volume occupied by the fluid at reservoir
conditions. Combining (2.5) and (2.6) gives a closed system for the main unknown p
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14 Chapter 2. Flow and Transport Equations

or ρ. Simplified expressions such as a linear relationship between p and ρ for a slightly
compressible fluid can be used; see the next subsection.

It is sometimes convenient in mathematical analysis to write (2.5) in a form without
the explicit appearance of gravity, by the introduction of a pseudopotential (Hubbert, 1956):


′ =
∫ p

po

1

ρ(ξ)℘
dξ − z, (2.7)

where po is a reference pressure. Using (2.7), equation (2.5) reduces to

∂(φρ)

∂t
= ∇ ·

(
ρ2℘

µ
k∇
′

)
+ q. (2.8)

In numerical computations, more often we use the usual potential (piezometric head)


 = p − ρ℘z,

which is related to 
′ (with, e.g., po = 0 and constant ρ) by


 = ρ℘
′.

If we neglect the term ℘z∇ρ, in terms of 
, (2.5) becomes

∂(φρ)

∂t
= ∇ ·

(
ρ

µ
k∇


)
+ q. (2.9)

In general, there is not a distributed mass source or sink in single phase flow in
a three-dimensional medium. However, as an approximation, we may consider the case
where sources and sinks of a fluid are located at isolated points x(i). Then these point
sources and sinks can be surrounded by small spheres that are excluded from the medium.
The surfaces of these spheres can be treated as part of the boundary of the medium, and
the mass flow rate per unit volume of each source or sink specifies the total flux through its
surface.

Another approach to handling point sources and sinks is to insert them in the mass
conservation equation. That is, for point sinks, we define q in (2.5) by

q = −
∑
i

ρq(i)δ(x − x(i)), (2.10)

where q(i) indicates the volume of the fluid produced per unit time at x(i) and δ is the Dirac
delta function. For point sources, q is given by

q =
∑
i

ρ(i)q(i)δ(x − x(i)), (2.11)

where q(i) and ρ(i) denote the volume of the fluid injected per unit time and its density
(which is known) at x(i), respectively. The treatment of sources and sinks will be discussed
in more detail in later chapters (cf. Chapter 13).
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2.2.3 Equations for slightly compressible flow and rock

It is sometimes possible to assume that the fluid compressibility cf is constant over a certain
range of pressures. Then, after integration (cf. Exercise 2.1), we write (2.6) as

ρ = ρoecf (p−po), (2.12)

where ρo is the density at the reference pressure po. Using a Taylor series expansion, we
see that

ρ = ρo
{

1 + cf (p − po)+ 1

2!c
2
f (p − po)2 + · · ·

}
,

so an approximation results:

ρ ≈ ρo
(
1 + cf (p − po)

)
. (2.13)

The rock compressibility is defined by

cR = 1

φ

dφ

dp
. (2.14)

After integration, it is given by
φ = φoecR(p−po), (2.15)

where φo is the porosity at po. Similarly, it is approximated by

φ ≈ φo
(
1 + cR(p − po)

)
. (2.16)

Then it follows that
dφ

dp
= φocR. (2.17)

After carrying out the time differentiation in the left-hand side of (2.5), the equation
becomes (

φ
∂ρ

∂p
+ ρ

dφ

dp

)
∂p

∂t
= ∇ ·

(
ρ

µ
k (∇p − ρ℘∇z)

)
+ q. (2.18)

Substituting (2.6) and (2.17) into (2.18) gives

ρ
(
φcf + φocR

) ∂p
∂t

= ∇ ·
(
ρ

µ
k (∇p − ρ℘∇z)

)
+ q.

Defining the total compressibility

ct = cf + φo

φ
cR, (2.19)

we see that

φρct
∂p

∂t
= ∇ ·

(
ρ

µ
k (∇p − ρ℘∇z)

)
+ q, (2.20)

which is a parabolic equation in p (cf. Section 2.3.2), with ρ given by (2.12).
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16 Chapter 2. Flow and Transport Equations

2.2.4 Equations for gas flow

For gas flow, the compressibility cg of gas is usually not assumed to be constant. In such a
case, the general equation (2.18) applies; i.e.,

c(p)
∂p

∂t
= ∇ ·

(
ρ

µ
k (∇p − ρ℘∇z)

)
+ q, (2.21)

where

c(p) = φ
∂ρ

∂p
+ ρ

dφ

dp
.

A different form of (2.21) can be derived if we use the gas law (the pressure-volume-
temperature (PVT) relation)

ρ = pW

ZRT
, (2.22)

whereW is the molecular weight, Z is the gas compressibility factor, and R is the universal
gas constant. If pressure, temperature, and density are in atm, K, and g/cm3, respectively,
the value of R is 82.057. For a pure gas reservoir, the gravitational constant is usually small
and neglected. We assume that the porous medium is isotropic; i.e., k = kI, where I is
the identity tensor. Furthermore, we assume that φ and µ are constants. Then, substituting
(2.22) into (2.5), we see that

φ

k

∂

∂t

(p
Z

)
= ∇ ·

(
p

µZ
∇p
)

+ RT

Wk
q. (2.23)

Note that 2p∇p = ∇p2, so (2.23) becomes

2φµZ

k

∂

∂t

(p
Z

)
= �p2 + 2pZ

d

dp

(
1

Z

)
|∇p|2 + 2µZRT

Wk
q, (2.24)

where � is the Laplacian operator:

�p = ∂2p

∂x2
1

+ ∂2p

∂x2
2

+ ∂2p

∂x3
2

.

Because

cg = 1

ρ

dρ

dp

∣∣∣∣
T

= 1

p
− 1

Z

dZ

dp
,

we have
∂

∂t

(p
Z

)
= pcg

Z

∂p

∂t
.

Inserting this equation into (2.24) and neglecting the term involving |∇p|2 (often smaller
than other terms in (2.24)), we obtain

φµcg

k

∂p2

∂t
= �p2 + 2ZRTµ

Wk
q, (2.25)

which is a parabolic equation in p2.
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There is another way to derive an equation similar to (2.25). Define a pseudopressure
by

ψ = 2
∫ p

po

p

Zµ
dp.

Note that

∇ψ = 2p

Zµ
∇p, ∂ψ

∂t
= 2p

Zµ

∂p

∂t
.

Equation (2.23) becomes
φµcg

k

∂ψ

∂t
= �ψ + 2RT

Wk
q. (2.26)

The derivation of (2.26) does not require us to neglect the second term in the right-hand side
of (2.24).

2.2.5 Single phase flow in a deformable medium

Consider a deformable porous medium whose solid skeleton has compressibility and shear-
ing rigidity. The medium is assumed to be composed of a linear elastic material, and its
deformation to be small.

Let ws and w be the displacements of the solid and fluid, respectively. For a deformable
medium, Darcy’s law in (2.4) is generalized as follows (Biot, 1955; Chen et al., 2004B):

ẇ − ẇs = − 1

µ
k (∇p − ρ℘∇z), (2.27)

where ẇ = ∂w/∂t . Note that u = ẇ, so (2.27) just introduces a new dependent variable
ws. Additional equations are needed for a closed system.

Let I be the identity matrix. The total stress tensor of the bulk material is

σ + σ I ≡
 σ11 + σ σ12 σ13

σ21 σ22 + σ σ23

σ31 σ32 σ33 + σ


with the symmetry property σij = σji . To understand the meaning of this tensor, consider
a cube of the bulk material with unit size. Then σ represents the total normal tension force
applied to the fluid part of the faces of the cube, while the remaining components σij are
the forces applied to the portion of the cube faces occupied by the solid. The stress tensor
satisfies the equilibrium relation

∇ · (σ + σ I
)+ ρt℘∇z = 0, (2.28)

where ρt = φρ + (1 − φ)ρs is the mass density of the bulk material and ρs is the solid
density. To relate σ to ws, we need a constitutive relationship between the stress and strain
tensors.

Denote the strain tensors of the solid and fluid by εs and ε, respectively, defined by

εs,ij = 1

2

(
∂ws,i

∂xj
+ ∂ws,j

∂xi

)
, εij = 1

2

(
∂wi

∂xj
+ ∂wj

∂xi

)
, i, j = 1, 2, 3.
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18 Chapter 2. Flow and Transport Equations

Matrix blocks Fractures

Figure 2.2. A fractured porous medium.

Also, define ε = ε11 + ε22 + ε33. The stress-strain relationship is

σ11

σ22

σ33

σ23

σ31

σ12

σ


=



c11 c12 c13 c14 c15 c16 c17

· c22 c23 c24 c25 c26 c27

· · c33 c34 c35 c36 c37

· · · c44 c45 c46 c47

· · · · c55 c56 c57

· · · · · c66 c67

· · · · · · c77





εs,11

εs,22

εs,33

εs,23

εs,31

εs,12

ε


,

where cij = cji (i.e., the coefficient matrix is symmetric). Now, substitute this relationship
into (2.28) to give three equations for the three unknowns ws,1, ws,2, and ws,3.

As an example of the stress-strain relationship, we consider the case where the solid
matrix is isotropic. In this case, with εs = εs,11 + εs,22 + εs,33, the relationship is given by

σii = 2G

(
εs,ii + νεs

1 − 2ν

)
−Hp, i = 1, 2, 3,

σij = 2Gεs,ij , i, j = 1, 2, 3, i �= j,

whereG and ν are theYoung modulus and the Poisson ratio for the solid skeleton, andH is a
physical constant whose value must be determined by experiments or by numerical methods
(Biot, 1955; Chen et al., 2004B).

2.2.6 Single phase flow in a fractured medium

A fractured porous medium is a medium that is intersected by a network of interconnected
fractures, or solution channels (cf. Figure 2.2). Such a medium could be modeled by
allowing the porosity and permeability to vary rapidly and discontinuously over the whole
domain. Both these quantities are much larger in the fractures than in the blocks of porous
rock (called matrix blocks). However, the data requirement and computational cost for
simulating such a single porosity model would be too great to approximate the flow in the
entire medium. Instead, it is more convenient to regard the fluid in the void space as made
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up of two parts, one part in the fractures and the other in the matrix, and to treat each part as
a continuum that occupies the entire domain. These two overlapping continua are allowed
to coexist and interact with each other. There are two distinct dual concepts: dual porosity
(and single permeability) and dual porosity/permeability. The former is considered in this
section, while the latter will be studied in Section 2.11.

Since fluid flows more rapidly in the fractures than in the matrix, we assume that it
does not flow directly from one block to another. Rather, it first flows into the fractures, and
then it flows into another block or remains in the fractures (Douglas and Arbogast, 1990).
Also, the equations that describe the flow in the fracture continuum contain a source term
that represents the flow of fluid from the matrix to the fractures; this term is assumed to be
distributed over the entire medium. Finally, we assume that the external sources and sinks
interact only with the fracture system, which is reasonable since flow is much faster in this
system than in the matrix blocks. Based on these assumptions, flow through each block in
a fractured porous medium is given by

∂(φρ)

∂t
= −∇ · (ρu). (2.29)

The flow in the fractures is described by

∂(φf ρf )

∂t
= −∇ · (ρf uf )+ qmf + qext , (2.30)

where the subscript f represents the fracture quantities, qmf denotes the flow from the matrix
to the fractures, and qext indicates the external sources and sinks. The velocities u and uf
are determined by Darcy’s law as in (2.4).

The matrix-fracture transfer term qmf can be defined by two different approaches:
one approach using matrix shape factors (Warren and Root, 1963; Kazemi, 1969) and the
other based on boundary conditions imposed explicitly on matrix blocks (Pirson, 1953;
Barenblatt et al., 1960). The latter approach is presented here; the former will be described
in Section 2.11 and Chapter 12. The total mass of fluid leaving the ith matrix block �i per
unit time is ∫

∂�i

ρu · νd�,

where ν is the outward unit normal to the surface ∂�i of �i and the dot product u · ν is
defined by

u · ν = u1ν1 + u2ν2 + u3ν3.

The divergence theorem and (2.29) imply∫
∂�i

ρu · νd� =
∫
�i

∇ · (ρu)dx = −
∫
�i

∂(φρ)

∂t
dx.

Now, define qmf by

qmf = −
∑
i

χi(x)
1

|�i |
∫
�i

∂(φρ)

∂t
dx, (2.31)

where |�i | denotes the volume of �i and χi(x) is its characteristic function, i.e.,

χi(x) =
{

1 if x ∈ �i,
0 otherwise.
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20 Chapter 2. Flow and Transport Equations

With the definition of qmf , we now establish a boundary condition on the surface of
each matrix block in a general fashion. Gravitational forces have a special effect on this
condition. Moreover, pressure gradient effects must be treated on the same footing as the
gravitational effects. To that end, followingArbogast (1993), we employ the pseudopotential

′ defined in (2.7) to impose a condition on the surface of each matrix block by


′ = 
′
f −
o on ∂�i, (2.32)

where, for a given
′
f ,
o is a pseudopotential reference value on each block�i determined

by
1

|�i |
∫
�i

(φρ)
(
ψ ′(
′

f −
o + x3)
)
dx = (φρ)(pf ), (2.33)

with the function ψ ′ equal to the inverse of the integral in (2.7) as a function of p. Mono-
tonicity ofφρ insures a unique solution to (2.33) unless the rock and fluid are incompressible.
In that case, set 
o = 0.

For the model described, the highly permeable fracture system rapidly comes into
equilibrium on the fracture spacing scale locally. This equilibrium is defined in terms of
the pseudopotential, and is reflected in the matrix equations through the boundary condition
(2.32).

2.2.7 Non-Darcy’s law

Strictly speaking, Darcy’s law holds only for a Newtonian fluid over a certain range of
flow rates. As the flow rate increases, a deviation from this law has been noticed (Dupuit,
1863; Forchheimer, 1901). It has been experimentally and mathematically observed that
this deviation is due to inertia, turbulence, and other high-velocity effects (Fancher and
Lewis, 1933; Hubbert, 1956; Mei and Auriault, 1991; Chen et al., 2000B). Hubbert (1956)
observed a deviation from the usual Darcy law at a Reynolds’ number of flow of about one
(based on the grain diameter of an unconsolidated medium), whereas turbulence was not
noticed until the Reynolds’ number approached 600 (Aziz and Settari, 1979).

A correction to Darcy’s law for high flow rates can be described by a quadratic term
(Forchheimer, 1901; Ward, 1964; Chen et al., 2000B):(

µI + βρ|u|k)u = −k (∇p − ρ℘∇z),
where β indicates the inertial or turbulence factor and

|u| =
√
u2

1 + u2
2 + u2

3.

This equation is generally called Forchheimer’s law and incorporates laminar, inertial, and
turbulence effects. It has been the subject of many experimental and theoretical investiga-
tions. These investigations have centered on the issue of providing a physical or theoretical
basis for the derivation of Forchheimer’s law. Many approaches have been developed and an-
alyzed for this purpose such as empiricism fortified with dimensional analysis (Ward, 1964),
experimental study (MacDonald et al., 1979), averaging methods (Chen et al., 2000B), and
variational principles (Knupp and Lage, 1995).
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q

Actual

∂p/∂x

Darcy’s

Figure 2.3. Threshold phenomenon.

2.2.8 Other effects

There exist several effects that introduce additional complexity in the basic flow equa-
tions. Some fluids (e.g., polymer solutions; cf. Section 2.10 and Chapter 11) exhibit non-
Newtonian phenomena, characterized by nonlinear dependence of shear stress on shear rate.
The study of non-Newtonian fluids is beyond the scope of this book, but can be found in
the literature on rheology. In practice, the resistance to flow in a porous medium can be
represented by Darcy’s law with viscosity µ depending on flow velocity; i.e.,

u = − 1

µ(u)
k (∇p − ρ℘∇z) .

Over a certain range of the velocity (the pseudoplastic region of flow), the viscosity can be
approximated by a power law (Bird et al., 1960):

µ(u) = µo|u|m−1,

where the constants µo and m are empirically determined.
Other effects are related to threshold and slip phenomena. It has been experimentally

observed that a certain nonzero pressure gradient is required to initiate flow. The threshold
phenomenon can be seen in the relationship between q and ∂p/∂x for low rates, as shown in
Figure 2.3. The slip (or Klinkenberg) phenomenon occurs in gas flow at low pressures and
results in an increase of effective permeability compared to that measured for liquids. These
two phenomena are relatively unimportant, and can be incorporated with a modification of
Darcy’s law (Bear, 1972).

2.2.9 Boundary conditions

The mathematical model described so far for single phase flow is not complete unless neces-
sary boundary and initial conditions are specified. Below we present boundary conditions
of three kinds that are relevant to (2.5). A similar discussion can be given for (2.28), which
defines the displacement of the solid. Also, similar boundary conditions can be described
for the dual porosity model. We denote by � the external boundary or a boundary segment
of the porous medium domain � under consideration.



“chenb
2006/2
page 22

�

�

�

�

�

�

�

�

22 Chapter 2. Flow and Transport Equations

Prescribed pressure

When the pressure is specified as a known function of position and time on �, the boundary
condition is

p = g1 on �.

In the theory of partial differential equations, such a condition is termed a boundary condition
of the first kind, or a Dirichlet boundary condition.

Prescribed mass flux

When the total mass flux is known on �, the boundary condition is

ρu · ν = g2 on �,

where ν indicates the outward unit normal to�. This condition is called a boundary condition
of the second kind, or a Neumann boundary condition. For an impervious boundary, g2 = 0.

Mixed boundary condition

A boundary condition of mixed kind (or third kind) takes the form

gpp + guρu · ν = g3 on �,

where gp, gu, and g3 are given functions. This condition is referred to as a Robin or Dank-
werts boundary condition. Such a condition occurs when � is a semipervious boundary.
Finally, the initial condition can be defined in terms of p:

p(x, 0) = p0(x), x ∈ �.

2.3 Two-Phase Immiscible Flow
In reservoir simulation, we are often interested in the simultaneous flow of two or more fluid
phases within a porous medium. We now develop basic equations for multiphase flow in a
porous medium. In this section, we consider two-phase flow where the fluids are immiscible
and there is no mass transfer between the phases. One phase (e.g., water) wets the porous
medium more than the other (e.g., oil), and is called the wetting phase and indicated by a
subscriptw. The other phase is termed the nonwetting phase and indicated by o. In general,
water is the wetting fluid relative to oil and gas, while oil is the wetting fluid relative to gas.

2.3.1 Basic equations

Several new quantities peculiar to multiphase flow, such as saturation, capillary pressure,
and relative permeability, must be introduced. The saturation of a fluid phase is defined as
the fraction of the void volume of a porous medium filled by this phase. The fact that the
two fluids jointly fill the voids implies the relation

Sw + So = 1, (2.34)



“chenb
2006/2
page 23

�

�

�

�

�

�

�

�

2.3. Two-Phase Immiscible Flow 23

where Sw and So are the saturations of the wetting and nonwetting phases, respectively.
Also, due to the curvature and surface tension of the interface between the two phases, the
pressure in the wetting fluid is less than that in the nonwetting fluid. The pressure difference
is given by the capillary pressure

pc = po − pw. (2.35)

Empirically, the capillary pressure is a function of saturation Sw.
Except for the accumulation term, the same derivation that led to (2.1) also applies to

the mass conservation equation for each fluid phase (cf. Exercise 2.2). Mass accumulation
in a differential volume per unit time is

∂(φραSα)

∂t
�x1�x2�x3.

Taking into account this and the assumption that there is no mass transfer between phases
in the immiscible flow, mass is conserved within each phase:

∂(φραSα)

∂t
= −∇ · (ραuα)+ qα, α = w, o, (2.36)

where each phase has its own density ρα , Darcy velocity uα , and mass flow rate qα . Darcy’s
law for single phase flow can be directly extended to multiphase flow:

uα = − 1

µα
kα (∇pα − ρα℘∇z) , α = w, o, (2.37)

where kα , pα , and µα are the effective permeability, pressure, and viscosity for phase α.
Since the simultaneous flow of two fluids causes each to interfere with the other, the effective
permeabilities are not greater than the absolute permeability k of the porous medium. The
relative permeabilities krα are widely used in reservoir simulation:

kα = krαk, α = w, o. (2.38)

The function krα indicates the tendency of phase α to wet the porous medium.
Typical functions of pc and krα will be described in the next chapter. When qw and

qo represent a finite number of point sources or sinks, they can be defined as in (2.10) or
(2.11). Also, the densities ρw and ρo are functions of their respective pressures. Thus, after
substituting (2.37) into (2.36) and using (2.34) and (2.35), we have a complete system of
two equations for two of the four main unknowns pα and Sα , α = w, o. Other mathematical
formulations will be discussed in this section. The development of single phase flow in
deformable and fractured porous media is applicable to two-phase flow. We do not pursue
this similar development.

2.3.2 Alternative differential equations

In this section, we derive several alternative formulations of the differential equations in
(2.34)–(2.37).
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Formulation in phase pressures

Assume that the capillary pressure pc has a unique inverse function:

Sw = p−1
c (po − pw).

We use pw and po as the main unknowns. Then it follows from (2.34)–(2.37) that

∇ ·
(
ρw

µw
kw (∇pw − ρw℘∇z)

)
= ∂(φρwp

−1
c )

∂t
− qw,

∇ ·
(
ρo

µo
ko (∇po − ρo℘∇z)

)
= ∂

(
φρo(1 − p−1

c )
)

∂t
− qo.

(2.39)

This system was employed in the simultaneous solution (SS) scheme in petroleum reservoirs
(Douglas et al., 1959). The equations in this system are strongly nonlinear and coupled.
More details will be given in Chapter 7.

Formulation in phase pressure and saturation

We use po and Sw as the main variables. Applying (2.34), (2.35), and (2.37), equation (2.36)
can be rewritten as

∇ ·
(
ρw

µw
kw

(
∇po − dpc

dSw
∇Sw − ρw℘∇z

))
= ∂(φρwSw)

∂t
− qw,

∇ ·
(
ρo

µo
ko (∇po − ρo℘∇z)

)
= ∂

(
φρo(1 − Sw)

)
∂t

− qo.

(2.40)

Carrying out the time differentiation in (2.40), dividing the first and second equations
by ρw and ρo, respectively, and adding the resulting equations, we obtain

1

ρw
∇ ·
(
ρw

µw
kw

(
∇po − dpc

dSw
∇Sw − ρw℘∇z

))
+ 1

ρo
∇ ·
(
ρo

µo
ko (∇po − ρo℘∇z)

)
= Sw

ρw

∂(φρw)

∂t
+ 1 − Sw

ρo

∂(φρo)

∂t
− qw

ρw
− qo

ρo
.

(2.41)

Note that if the saturation Sw in (2.41) is explicitly evaluated, we can use this equation to
solve for po. After computing this pressure, the second equation in (2.40) can be used to
calculate Sw. This is the implicit pressure-explicit saturation (IMPES) scheme and has been
widely exploited for two-phase flow in petroleum reservoirs (cf. Chapter 7).

Formulation in a global pressure

The equations in (2.39) and (2.40) are strongly coupled, as noted. To reduce the coupling, we
now write them in a different formulation, where a global pressure is used. For simplicity,



“chenb
2006/2
page 25

�

�

�

�

�

�

�

�

2.3. Two-Phase Immiscible Flow 25

we assume that the densities are constant; the formulation does extend to variable densities
(Chen et al., 1995; Chen et al., 1997A). Introduce the phase mobilities

λα = krα

µα
, α = w, o,

and the total mobility
λ = λw + λo.

Also, define the fractional flow functions

fα = λα

λ
, α = w, o.

With S = Sw, define the global pressure (Antoncev, 1972; Chavent and Jaffré, 1986)

p = po −
∫ pc(S)

fw
(
p−1
c (ξ)

)
dξ, (2.42)

and the total velocity
u = uw + uo. (2.43)

It follows from (2.35), (2.37), and (2.42) that the total velocity is

u = −kλ
(∇p − (ρwfw + ρofo)℘∇z). (2.44)

Also, carrying out the differentiation in (2.36), dividing by ρα , adding the resulting equations
with α = w and o, and applying (2.42), we obtain

∇ · u = −∂φ
∂t

+ qw

ρw
+ qo

ρo
. (2.45)

Substituting (2.44) into (2.45) gives a pressure equation for p:

−∇ · (kλ(∇p − (ρwfw + ρofo)℘∇z)) = −∂φ
∂t

+ qw

ρw
+ qo

ρo
. (2.46)

The phase velocities are related to the total velocity by (cf. Exercise 2.3)

uw = fwu + kλofw∇pc + kλofw(ρw − ρo)℘∇z,
uo = fou − kλwfo∇pc + kλwfo(ρo − ρw)℘∇z. (2.47)

From the first equation of (2.47) and (2.36) with α = w, we have a saturation equation for
S = Sw:

φ
∂S

∂t
+ ∇ ·

(
kλofw

(
dpc

dS
∇S − (ρo − ρw)℘∇z

)
+ fwu

)
= −S ∂φ

∂t
+ qw

ρw
.

(2.48)
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Classification of differential equations

There are basically three types of second-order partial differential equations: elliptic, para-
bolic, and hyperbolic. We must be able to distinguish among these types when numerical
methods for their solution are devised.

If two independent variables (either (x1, x2) or (x1, t)) are considered, then second-
order partial differential equations have the form, with x = x1,

a
∂2p

∂x2
+ b

∂2p

∂t2
= f

(
∂p

∂x
,
∂p

∂t
, p

)
.

This equation is (1) elliptic if ab > 0, (2) parabolic if ab = 0, or (3) hyperbolic if ab < 0.
The simplest elliptic equation is the Poisson equation

∂2p

∂x2
1

+ ∂2p

∂x2
2

= f (x1, x2).

A typical parabolic equation is the heat conduction equation

φ
∂p

∂t
= ∂2p

∂x2
1

+ ∂2p

∂x2
2

.

Finally, the prototype hyperbolic equation is the wave equation

1

v2

∂2p

∂t2
= ∂2p

∂x2
1

+ ∂2p

∂x2
2

.

In the one-dimensional case, this equation can be “factorized” into two first-order parts:(
1

v

∂

∂t
− ∂

∂x

)(
1

v

∂

∂t
+ ∂

∂x

)
p = 0.

The second part gives the first-order hyperbolic equation

∂p

∂t
+ v

∂p

∂x
= 0.

We now turn to the two-phase flow equations. While the phase mobilities λα can
be zero (cf. Chapter 3), the total mobility λ is always positive, so the pressure equation
(2.46) is elliptic. If one of the densities varies, this equation becomes parabolic. In general,
−kλofwdpc/dS is semipositive definite, so the saturation equation (2.48) is a parabolic
equation, which is degenerate in the sense that the diffusion can be zero. This equation
becomes hyperbolic if the capillary pressure is ignored. The total velocity is used in the
global pressure formulation. This velocity is smoother than the phase velocities. It can also
be used in the phase formulations (2.39) and (2.40) (Chen and Ewing, 1997B). We remark
that the coupling between (2.46) and (2.48) is much less strong than between the equations
in (2.39) and (2.40). Finally, with pc = 0, (2.48) becomes the known Buckley–Leverett
equation whose flux function fw is generally nonconvex over the range of saturation values
where this function is nonzero, as illustrated in Figure 2.4; see the next subsection for the
formulation in hyperbolic form.
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1

1

S

f

w

w

Figure 2.4. A flux function fw.

Formulation in hyperbolic form

Assume that pc = 0 and that rock compressibility is neglected. Then (2.48) becomes

φ
∂S

∂t
+ ∇ · (fwu − λofw(ρo − ρw)℘k∇z) = qw

ρw
. (2.49)

Using (2.45) and the fact that fw + fo = 1, this equation can be manipulated into

φ
∂S

∂t
+
(
dfw

dS
u − d(λofw)

dS
(ρo − ρw)℘k∇z

)
· ∇S = foqw

ρw
− fwqo

ρo
, (2.50)

which is a hyperbolic equation in S. Finally, if we neglect the gravitational term, we obtain

φ
∂S

∂t
+ dfw

dS
u · ∇S = foqw

ρw
− fwqo

ρo
, (2.51)

which is the familiar form of waterflooding equation, i.e., the Buckley–Leverett equation.
The source term in (2.51) is zero for production since

qw

ρw
= fw

(
qw

ρw
+ qo

ρo

)
,

by Darcy’s law. For injection, this term may not be zero since it equals (1 −fw)qw/ρw �= 0
in this case.

2.3.3 Boundary conditions

As for single phase flow, the mathematical model described so far for two-phase flow is not
complete unless necessary boundary and initial conditions are specified. Below we present
boundary conditions of three kinds that are relevant to systems (2.39), (2.40), (2.46), and
(2.48). We denote by � the external boundary or a boundary segment of the porous medium
domain � under consideration.
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Boundary conditions for system (2.39)

The symbol α, as a subscript, with α = w, o, is used to indicate a considered phase. When
a phase pressure is specified as a known function of position and time on �, the boundary
condition reads

pα = gα,1 on �. (2.52)

When the mass flux of phase α is known on �, the boundary condition is

ραuα · ν = gα,2 on �, (2.53)

where ν indicates the outward unit normal to� andgα,2 is given. For an impervious boundary
for the α-phase, gα,2 = 0.

When � is a semipervious boundary for the α-phase, a boundary condition of mixed
kind occurs:

gα,ppα + gα,uραuα · ν = gα,3 on �, (2.54)

where gα,p, gα,u, and gα,3 are given functions.
Initial conditions specify the values of the main unknowns pw and po over the entire

domain at some initial time, usually taken at t = 0:

pα(x, 0) = pα,0(x), α = w, o,

where pα,0(x) are known functions.

Boundary conditions for system (2.40)

Boundary conditions for system (2.40) can be imposed as for system (2.39); i.e., (2.52)–
(2.54) are applicable to system (2.40). The only difference between the boundary conditions
for these two systems is that a prescribed saturation is sometimes given on � for system
(2.40):

Sw = g4 on �.

In practice, this prescribed saturation boundary condition seldom occurs. However, a con-
dition g4 = 1 does occur when a medium is in contact with a body of this wetting phase.
The condition Sw = 1 can be exploited on the bottom of a water pond on the ground surface,
for example. An initial saturation is also specified:

Sw(x, 0) = Sw,0(x),

where Sw,0(x) is given.

Boundary conditions for (2.46) and (2.48)

Boundary conditions are usually specified in terms of phase quantities like those in (2.52)–
(2.54). These conditions can be transformed into those in terms of the global quantities
introduced in (2.42) and (2.43). For the prescribed pressure boundary condition in (2.52),
for example, the corresponding boundary condition is given by

p = g1 on �,



“chenb
2006/2
page 29

�

�

�

�

�

�

�

�

2.4. Transport of a Component in a Fluid Phase 29

where p is defined by (2.42) and g1 is determined by

g1 = go,1 −
∫ go,1−gw,1

fw
(
p−1
c (ξ)

)
dξ.

Also, when the total mass flux is known on �, it follows from (2.53) that

u · ν = g2 on �,

where
g2 = go,2

ρo
+ gw,2

ρw
.

For an impervious boundary for the total flow, g2 = 0.

2.4 Transport of a Component in a Fluid Phase
Now, we consider the transport of a component (e.g., a solute) in a fluid phase that occupies
the entire void space in a porous medium. We do not consider the effects of chemical
reactions between the components in the fluid phase, radioactive decay, biodegradation, or
growth due to bacterial activities that cause the quantity of this component to increase or
decrease. Conservation of mass of the component in the fluid phase is given by

∂(φcρ)

∂t
= −∇ · (cρu − ρD∇c)

−
∑
i

q
(i)
1 (x

(i), t)δ(x − x(i))(ρc)(x, t) (2.55)

+
∑
j

q
(j)

2 (x(j), t)δ(x − x(j))(ρ(j)c(j))(x, t),

where c is the concentration (volumetric fraction in the fluid phase) of the component, D
is the diffusion-dispersion tensor, q(i)1 and q(j)2 are the rates of production and injection (in
terms of volume per unit time) at points x(i) and x(j), respectively, and c(j) is the specified
concentration at source points.

Darcy’s law for the fluid is expressed as in (2.4); namely,

u = − 1

µ
k (∇p − ρ℘∇z) . (2.56)

The mass balance of the fluid is written as

∂(φρ)

∂t
+ ∇ · (ρu) = −

∑
i

ρq
(i)
1 (x

(i), t)δ(x − x(i))

+
∑
j

ρ(j)q
(j)

2 (x(j), t)δ(x − x(j)).
(2.57)

The diffusion-dispersion tensor D in (2.55) in three space dimensions is defined by

D(u) = φ
{
dmI + |u| (dlE(u)+ dtE⊥(u)

)}
, (2.58)
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where dm is the molecular diffusion coefficient; dl and dt are, respectively, the longitudinal
and transverse dispersion coefficients; |u| is the Euclidean norm of u = (u1, u2, u3), |u| =√
u2

1+u2
2+u2

3; E(u) is the orthogonal projection along the velocity,

E(u) = 1

|u|2

 u2
1 u1u2 u1u3

u2u1 u2
2 u2u3

u3u1 u3u2 u2
3

;

and E⊥(u) = I − E(u).
Physically, the tensor dispersion is more significant than the molecular diffusion; also,

dl is usually considerably larger than dt . The density and viscosity are known functions of
p and c:

ρ = ρ(p, c), µ = µ(p, c).

After the substitution of (2.56) into (2.55) and (2.57), we have a coupled system of two
equations in c and p. Boundary and initial conditions for this system can be developed as in
the earlier sections. Note that the equations described here apply to the problem of miscible
displacement of one fluid by another in a porous medium. Various simplifications discussed
in Section 2.2 apply to (2.56) and (2.57).

2.5 Transport of Multicomponents in a Fluid Phase
The equation used to model the transport of multicomponents in a fluid phase in a porous
medium is similar to (2.55); i.e.,

∂(φciρ)

∂t
= −∇ · (ciρu − ρDi∇ci)+ qi, i = 1, 2, . . . , Nc, (2.59)

where ci , qi , and Di are the (volumetric) concentration, the source/sink term, and the
diffusion-dispersion tensor of the ith component, respectively, and Nc is the number of
the components in the fluid. The constraint for the concentrations is

Nc∑
i=1

ci = 1.

Sources and sinks of a component can result from injection and production of this component
by external means. They can also stem from various processes within the fluid phase, such
as chemical reactions among components, radioactive decay, biodegradation, and growth
due to bacterial activities, that cause the quantity of this component to increase or decrease,
as noted earlier. In this section, we focus only on chemical reactions, i.e., a reactive flow
problem.

When a component participates in chemical reactions that cause its concentration to
increase or decrease, qi can be expressed as

qi = Qi − Lici, (2.60)

where Qi and Li represent the chemical production and loss rates, respectively, of the ith
component. To see their expressions in terms of concentrations, we consider unimolecular,
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bimolecular, and trimolecular reactions among the chemical components. These cases can
be generally written as

s1 � s2 + s3,

s1 + s2 � s3 + s4,

s1 + s2 + s3 � s4 + s5,

where the si’s denote generic chemical components. Corresponding to these reactions, Qi

and Li can be expressed as

Qi =
Nc∑
j=1

k
f

i,j cj +
Nc∑
j,l=1

k
f

i,j lcj cl +
Nc∑

j,l,m=1

k
f

i,j lmcj clcm,

Li = kri +
Nc∑
j=1

kri,j cj +
Nc∑
j,l=1

kri,j lcj cl,

where kf and kr are forward and reverse chemical rates, respectively. These rates are
functions of pressure and temperature (Oran and Boris, 2001).

Darcy’s law (2.56) and the overall mass balance equation (2.57) hold for the transport
of multicomponents. Again, after Darcy’s velocity is eliminated, we have a coupled system
of Nc + 1 equations for ci and p, i = 1, 2, . . . , Nc (cf. Exercise 2.4).

2.6 The Black Oil Model
We now develop basic equations for the simultaneous flow of three phases (e.g., water, oil,
and gas) through a porous medium. Previously, we assumed that mass does not transfer
between phases. The black oil model relaxes this assumption. It is now assumed that the
hydrocarbon components are divided into a gas component and an oil component in a stock
tank at standard pressure and temperature, and that no mass transfer occurs between the
water phase and the other two phases (oil and gas). The gas component mainly consists of
methane and ethane.

To reduce confusion, we carefully distinguish between phases and components. We
use lowercase and uppercase letter subscripts to denote the phases and components, re-
spectively. Note that the water phase is just the water component. The subscript s indicates
standard conditions. The mass conservation equations stated in (2.36) apply here. However,
because of mass interchange between the oil and gas phases, mass is not conserved within
each phase, but rather the total mass of each component must be conserved:

∂(φρwSw)

∂t
= −∇ · (ρwuw)+ qW (2.61)

for the water component,

∂(φρOoSo)

∂t
= −∇ · (ρOouo)+ qO (2.62)

for the oil component, and

∂

∂t

(
φ(ρGoSo + ρgSg)

) = −∇ · (ρGouo + ρgug)+ qG (2.63)
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for the gas component, where ρOo and ρGo indicate the partial densities of the oil and gas
components in the oil phase, respectively. Equation (2.63) implies that the gas component
may exist in both the oil and gas phases.

Darcy’s law for each phase is written in the usual form

uα = − 1

µα
kα (∇pα − ρα℘∇z) , α = w, o, g. (2.64)

The fact that the three phases jointly fill the void space is given by the equation

Sw + So + Sg = 1. (2.65)

Finally, the phase pressures are related by capillary pressures

pcow = po − pw, pcgo = pg − po. (2.66)

It is not necessary to define a third capillary pressure since it can be defined in terms of pcow
and pcgo.

The alternative differential equations developed for two phases can be adapted for
the three-phase black oil model in a similar fashion (Chen, 2000). That is, (2.61)–(2.66)
can be rewritten in the three-pressure formulation (cf. Exercise 2.5), in a pressure and
two-saturation formulation (cf. Exercise 2.6), or in a global pressure and two-saturation
formulation (cf. Exercise 2.7). In the global formulation, the pressure equation is elliptic or
parabolic depending on the effects of densities. The two saturation equations are parabolic
if the capillary pressure effects exist; otherwise, they are hyperbolic (Chen, 2000).

For the black oil model, it is often convenient to work with the conservation equations
on “standard volumes,” instead of the conservation equations on “mass” (2.61)–(2.63). The
mass fractions of the oil and gas components in the oil phase can be determined by gas
solubility, Rso (also called dissolved gas-oil ratio), which is the volume of gas (measured
at standard conditions) dissolved at a given pressure and reservoir temperature in a unit
volume of stock-tank oil:

Rso(p, T ) = VGs

VOs
. (2.67)

Note that

VOs = WO

ρOs
, VGs = WG

ρGs
, (2.68)

whereWO andWG are the weights of the oil and gas components, respectively. Then (2.67)
becomes

Rso = WGρOs

WOρGs
. (2.69)

The oil formation volume factorBo is the ratio of the volume Vo of the oil phase measured at
reservoir conditions to the volumeVOs of the oil component measured at standard conditions:

Bo(p, T ) = Vo(p, T )

VOs
, (2.70)

where

Vo = WO +WG

ρo
. (2.71)
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Consequently, combining (2.68), (2.70), and (2.71), we have

Bo = (WO +WG)ρOs

WOρo
. (2.72)

Now, using (2.69) and (2.72), the mass fractions of the oil and gas components in the oil
phase are, respectively,

COo = WO

WO +WG

= ρOs

Boρo
,

CGo = WG

WO +WG

= RsoρGs

Boρo
,

which, together with COo + CGo = 1, yield

ρo = RsoρGs + ρOs

Bo
. (2.73)

The gas formation volume factor Bg is the ratio of the volume of the gas phase
measured at reservoir conditions to the volume of the gas component measured at standard
conditions:

Bg(p, T ) = Vg(p, T )

VGs
.

Let Wg = WG be the weight of free gas. Because Vg = WG/ρg and VGs = WG/ρGs , we
see that

ρg = ρGs

Bg
. (2.74)

For completeness, the water formation volume factor, Bw, is defined by

ρw = ρWs

Bw
. (2.75)

Finally, substituting (2.73)–(2.75) into (2.61)–(2.63) yields the conservation equations on
standard volumes:

∂

∂t

(
φρWs

Bw
Sw

)
= −∇ ·

(
ρWs

Bw
uw

)
+ qW (2.76)

for the water component,

∂

∂t

(
φρOs

Bo
So

)
= −∇ ·

(
ρOs

Bo
uo

)
+ qO (2.77)

for the oil component, and

∂

∂t

[
φ

(
ρGs

Bg
Sg + RsoρGs

Bo
So

)]
= −∇ ·

(
ρGs

Bg
ug + RsoρGs

Bo
uo

)
+ qG

(2.78)
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for the gas component. Equations (2.76)–(2.78) represent balances on standard volumes.
The volumetric rates at standard conditions are

qW = qWsρWs

Bw
, qO = qOsρOs

Bo
,

qG = qGsρGs

Bg
+ qOsRsoρGs

Bo
.

(2.79)

Since ρWs , ρOs , and ρGs are constant, they can be eliminated after (2.79) is substituted into
(2.76)–(2.78).

The basic equations for the black oil model consist of (2.64)–(2.66) and (2.76)–(2.78).
The choice of main unknowns depends on the state of the reservoir, i.e., the saturated or
undersaturated state, which will be discussed in Chapter 8.

2.7 A Volatile Oil Model
The black oil model developed above is not suitable for handling a volatile oil reservoir. A
reservoir of volatile oil type is one that contains relatively large proportions of ethane through
decane at a reservoir temperature near or above 250◦ F with a high formation volume factor
and stock-tank oil gravity above 45◦ API (Jacoby and Berry, 1957). With a more elaborate
two-component hydrocarbon model, a volatile oil model, the effect of oil volatility can be
included. In this model, there are both oil and gas components, solubility of gas in both oil
and gas phases is permitted, and vaporization of oil into the gas phase is allowed. Therefore,
the two hydrocarbon components can exist in both oil and gas phases.

Oil volatility in the gas phase is

Rv = VOs

VGs
.

Using a similar approach as for the black oil model, the conservation equations on standard
volumes are

∂

∂t

(
φρWs

Bw
Sw

)
= −∇ ·

(
ρWs

Bw
uw

)
+ qW (2.80)

for the water component,

∂

∂t

[
φ

(
φρOs

Bo
So + RvρOs

Bg
Sg

)]
= −∇ ·

(
ρOs

Bo
uo + RvρOs

Bg
ug

)
+ qO

(2.81)

for the oil component, and

∂

∂t

[
φ

(
ρGs

Bg
Sg + RsoρGs

Bo
So

)]
= −∇ ·

(
ρGs

Bg
ug + RsoρGs

Bo
uo

)
+ qG

(2.82)

for the gas component. In general, the hydrocarbon components (i.e., oil and gas) can be
defined using pseudocomponents obtained from the compositional flow described in the
next section.
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2.8 Compositional Flow
In the black oil and volatile oil models, two hydrocarbon components are involved. Here
we consider compositional flow that involves many components and mass transfer between
phases in a general fashion. In a compositional model, a finite number of hydrocarbon
components are used to represent the composition of reservoir fluids. These components
associate as phases in a reservoir. We describe the model under the assumptions that the
flow process is isothermal (i.e., at constant temperature), the components form at most three
phases (e.g., vapor, liquid, and water), and there is no mass interchange between the water
phase and the hydrocarbon phases (i.e., the vapor and liquid phases). We could state a
general compositional model that involves any number of phases and components, each
of which may exist in any or all of these phases (cf. Section 2.10). While the governing
differential equations for this type of model are easy to set up, they are extremely complex
to solve. Therefore, we describe the compositional model that has been widely used in the
petroleum industry.

Instead of using the concentration, it is more convenient to employ the mole frac-
tion for each component in the compositional flow, since the phase equilibrium relations
are usually defined in terms of mole fractions (cf. (2.91)). Let ξio and ξig be the molar
densities of component i in the liquid (e.g., oil) and vapor (e.g., gas) phases, respectively,
i = 1, 2, . . . , Nc, where Nc is the number of components. Their physical dimensions
are moles per pore volume. If Wi is the molar mass of component i, with dimensions
mass of component i/mole of component i, then ξiα is related to the mass density ρiα by
ξiα = ρiα/Wi . The molar density of phase α is

ξα =
Nc∑
i=1

ξiα, α = o, g. (2.83)

The mole fraction of component i in phase α is then

xiα = ξiα

ξα
, i = 1, 2, . . . , Nc, α = o, g. (2.84)

Because of mass interchange between the phases, mass is not conserved within each phase;
the total mass is conserved for each component:

∂(φξwSw)

∂t
+ ∇ · (ξwuw) = qw,

∂(φ[xioξoSo + xigξgSg])
∂t

+ ∇ · (xioξouo + xigξgug)

+ ∇ · (dio + dig) = qi, i = 1, 2, . . . , Nc,

(2.85)

where ξw is the molar density of water, qw and qi are the molar flow rates of water and
the ith component, respectively, and diα denotes the diffusive flux of the ith component in
the α-phase, α = o, g. In (2.85), the volumetric velocity uα is given by Darcy’s law as in
(2.64):

uα = − 1

µα
kα(∇pα − ρα℘∇z), α = w, o, g. (2.86)
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In addition to the differential equations (2.85) and (2.86), there are also algebraic
constraints. The mole fraction balance implies that

Nc∑
i=1

xio = 1,
Nc∑
i=1

xig = 1. (2.87)

In the transport process, the porous medium is saturated with fluids:

Sw + So + Sg = 1. (2.88)

The phase pressures are related by capillary pressures:

pcow = po − pw, pcgo = pg − po. (2.89)

These capillary pressures are assumed to be known functions of the saturations. The rel-
ative permeabilities krα are also assumed to be known in terms of the saturations, and the
viscosities µα , molar densities ξα , and mass densities ρα are functions of their respective
phase pressure and compositions, α = w, o, g.

The least well understood term in (2.85) is that involving the diffusive fluxes diα . The
precise constitutive relations for these quantities still need to be derived; however, from a
practical point of view the following straightforward extension of the single phase Fick’s
law to multiphase flow is in widespread use:

diα = −ξαDiα∇xiα, i = 1, 2, . . . , Nc, α = o, g, (2.90)

where Diα is the diffusion coefficient of component i in phase α (cf. (2.58) or Section 2.10).
The diffusive fluxes must satisfy

Nc∑
i=1

diα = 0, α = o, g.

Note that there are more dependent variables than there are differential and algebraic
relations combined; there are formally 2Nc + 9 dependent variables: xio, xig , uα , pα , and
Sα , α = w, o, g, i = 1, 2, . . . , Nc. It is then necessary to have 2Nc + 9 independent
relations to determine a solution of the system. Equations (2.85)–(2.89) provide Nc + 9
independent relations, differential or algebraic; the additional Nc relations are provided by
the equilibrium relations that relate the numbers of moles.

Mass interchange between phases is characterized by the variation of mass distribution
of each component in the vapor and liquid phases. As usual, these two phases are assumed to
be in the phase equilibrium state. This is physically reasonable since the mass interchange
between phases occurs much faster than the flow of porous media fluids. Consequently, the
distribution of each hydrocarbon component into the two phases is subject to the condition
of stable thermodynamic equilibrium, which is given by minimizing the Gibbs free energy
of the compositional system (Bear, 1972; Chen et al., 2000C):

fio(po, x1o, x2o, . . . , xNco) = fig(pg, x1g, x2g, . . . , xNcg), (2.91)
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where fio and fig are the fugacity functions of the ith component in the liquid and vapor
phases, respectively, i = 1, 2, . . . , Nc. More details will be given on these fugacity functions
in Chapters 3 and 9.

We end with a remark on the calculation of mass fractions ciα of component i in phase
α from the mole fractions xiα (cf. Exercise 2.8)

ciα = Wixiα∑Nc
j=1

(
Wjxjα

) , i = 1, 2, . . . , Nc, α = o, g, (2.92)

and the calculation of mass densities ρα from the molar densities ξα

ρα = ξα

Nc∑
i=1

Wixiα. (2.93)

2.9 Nonisothermal Flow
The differential equations so far have been developed under the condition that flow is isother-
mal. This condition can be removed by adding a conservation of energy equation. This
equation introduces an additional dependent variable, temperature, to the system. Unlike
the case of mass transport, where the solid itself is assumed impervious to mass flux, the
solid matrix does conduct heat. The average temperature of the solid and fluids in a porous
medium may not be the same. Furthermore, heat may be exchanged between the phases.
For simplicity, we invoke the requirement of local thermal equilibrium that the temperature
be the same in all phases.

For multicomponent, multiphase flow in a porous medium, the mass balance and
other equations are presented as in (2.85)–(2.91). Under the nonisothermal condition,
some variables such as porosity, density, and viscosity may depend on temperature (cf.
Chapter 3). The conservation of energy equation can be derived as in Section 2.2 for the
mass conservation. A statement of the energy balance or first law of thermodynamics in a
differential volume V is

Net rate of energy transported into V

+ Rate of energy production in V

= Rate of energy accumulation in V.

Using this law, the overall energy balance equation is (Lake, 1989)

∂

∂t

(
ρtU + 1

2

g∑
α=w

ρα|uα|2
)

+ ∇ · E

+
g∑

α=w
(∇ · (pαuα)− ραuα · ℘∇z) = qH − qL,

(2.94)

where ρt is the overall density, ρtU is the total internal energy, the term
∑g

α=w ρα|uα|2/2
represents kinetic energy per unit bulk volume, E is the energy flux, the term

g∑
α=w

(∇ · (pαuα)− ραuα · ℘∇z)
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is the rate of work done against the pressure field and gravity, qH indicates the enthalpy
source term per bulk volume, and qL is heat loss.

The total internal energy is

ρtU = φ

g∑
α=w

ραSαUα + (1 − φ)ρsCsT , (2.95)

where Uα and Cs are the specific internal energy per unit mass of phase α and the specific
heat capacity of the solid, respectively, and ρs is the density of the solid. The overall density
ρt is determined by

ρt = φ

g∑
α=w

ραSα + (1 − φ)ρs.

The energy flux is made up of convective contributions from the flowing phases, conduction,
and radiation (with all other contributions being ignored):

E =
g∑

α=w
ραuα

(
Uα + 1

2
|uα|2

)
+ qc + qr , (2.96)

where qc and qr are the conduction and radiation fluxes, respectively. For multiphase flow,
the conductive heat flux is given by Fourier’s law:

qc = −kT∇T , (2.97)

where kT represents the total thermal conductivity. For brevity, we ignore radiation, though
it can be important in estimating heat losses from wellbores. Inserting (2.95)–(2.97) into
(2.94) and combining the first term in the right-hand side of (2.96) with the work done by
pressure, we see that

∂

∂t

(
φ

g∑
α=w

ραSαUα + (1 − φ)ρsCsT + 1

2

g∑
α=w

ρα|uα|2
)

+ ∇ ·
(

g∑
α=w

ραuα

(
Hα + 1

2
|uα|2

))

− ∇ · (kT∇T )+
g∑

α=w
ραuα · ℘∇z = qH − qL,

(2.98)

where Hα is the enthalpy of the α-phase (per unit mass) given by

Hα = Uα + pα

ρα
, α = w, o, g.

As usual (Lake, 1989), if we neglect the kinetic energy and the last term in the left-hand
side of (2.98), we obtain the energy equation for temperature T

∂

∂t

(
φ

g∑
α=w

ραSαUα + (1 − φ)ρsCsT

)

+ ∇ ·
g∑

α=w
ραuαHα − ∇ · (kT∇T ) = qH − qL.

(2.99)
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reservoir

underburden

overburden

Figure 2.5. Reservoir, overburden, and underburden.

If desired, diffusive fluxes can be added to the left-hand side of (2.99) as in (2.85). Namely,
using (2.90), the term

−
Nc∑
i=1

g∑
α=w

∇ · (ξαHiαWiDiα∇xiα)

can be inserted, where Wi is the molecular weight of component i and Hiα represents the
enthalpy of component i in phase α.

In thermal methods heat is lost to the adjacent strata of a reservoir or the overburden
and underburden, which is included in qL of (2.99). We assume that the overburden and
underburden extend to infinity along both the positive and negative x3-axis (the vertical
direction); see Figure 2.5. If the overburden and underburden are impermeable, heat is
transferred entirely through conduction. With all fluid velocities and convective fluxes
being zero, the energy conservation equation (2.99) reduces to

∂

∂t

(
ρobCp,obTob

) = ∇ · (kob∇Tob), (2.100)

where the subscript ob indicates that the variables are associated with the overburden and
Cp,ob is the heat capacity at constant pressure. The initial condition is the original temper-
ature Tob,0 of the overburden:

Tob(x, 0) = Tob,0(x).

The boundary condition at the top of the reservoir is

Tob(x, t) = T (x, t),

where we recall that T is the reservoir temperature. At infinity, Tob is fixed:

Tob(x1, x2,∞, t) = T∞.

On other boundaries, we can use the impervious boundary condition

kob∇Tob · ν = 0,

where ν represents the outward unit normal to these boundaries. Now, the rate of heat loss
to the overburden is calculated by kob∇Tob · ν, where ν is the unit normal to the interface
between the overburden and reservoir (pointing to the overburden). Similar differential
equations and initial and boundary conditions can be developed for the underburden.
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2.10 Chemical Compositional Flow
An important method in enhanced oil recovery is chemical flooding, such as alkaline, sur-
factant, polymer, and foam (ASP+foam) flooding. The injection of these chemical compo-
nents reduces fluid mobility to improve the sweep efficiency of a reservoir, i.e., increases
the volume of the permeable medium contacted at any given time. For a chemical flooding
compositional model, the governing differential equations consist of a mass conservation
equation for each component, an energy equation, Darcy’s law, and an overall mass con-
servation or continuity equation for pressure. These equations are developed under the
following assumptions: local thermodynamic equilibrium, immobile solid phase, Fickian
dispersion, ideal mixing, slightly compressible soil and fluids, and Darcy’s law.

For this model, it is more convenient to use the concentration for each component
in the mass conservation equation, as in Sections 2.4 and 2.5, since chemical reactions
are involved. The mass conservation for component i is expressed in terms of the overall
concentration of this component per unit pore volume:

∂

∂t
(φc̃iρi) = −∇ ·

 Np∑
α=1

ρi [ciαuα − Diα∇ciα]

+ qi, i = 1, 2, . . . , Nc, (2.101)

where the overall concentration c̃i is the sum over all phases, including the adsorbed phases,

c̃i =
1 −

Ncv∑
j=1

ĉj

 Np∑
α=1

Sαciα + ĉi , i = 1, 2, . . . , Nc; (2.102)

Ncv is the total number of volume-occupying components (such as water, oil, surfactant,
and air); Np is the number of phases; ĉi , ρi , and qi are the adsorbed concentration, mass
density, and source/sink term of component i; and ciα and Diα are the concentration and
diffusion-dispersion tensor, respectively, of component i in phase α. The term 1 −∑Ncv

j=1 ĉj
represents the reduction in pore volume due to adsorption.

The density ρi is related to pressure by (2.6). For slightly compressible fluids, it is
given by (2.12); i.e., at a reference phase pressure pr , it equals

ρi = ρoi
(
1 + Coi (pr − por )

)
, (2.103)

where Coi is the constant compressibility and ρoi is the density at the reference pressure por .
The diffusion-dispersion tensor Diα is an extension of (2.58) to multiphase flow:

Diα(uα) = φ
{
SαdiαI + |uα|

(
dlαE(uα)+ dtαE⊥(uα)

)}
, (2.104)

where diα is the molecular diffusion coefficient of component i in phase α; dlα and dtα
are, respectively, the longitudinal and transverse dispersion coefficients of phase α; |uα| is
the Euclidean norm of uα = (u1α, u2α, u3α), |uα| =√

u2
1α+u2

2α+u2
3α; E(uα) is the orthogonal

projection along the velocity,

E(uα) = 1

|uα|2

 u2
1α u1αu2α u1αu3α

u2αu1α u2
2α u2αu3α

u3αu1α u3αu2α u2
3α

;
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and E⊥(uα) = I − E(uα), i = 1, 2, . . . , Nc, α = 1, 2, . . . , Np. The source/sink term qi
combines all rates for component i and is expressed as

qi = φ

Np∑
α=1

Sαriα + (1 − φ)ris + q̃i , (2.105)

where riα and ris are the reaction rates of component i in the α fluid phase and rock phase,
respectively, and q̃i is the injection/production rate of the same component per bulk volume.
The volumetric velocity uα is given by Darcy’s law as in (2.86):

uα = − 1

µα
kα(∇pα − ρα℘∇z), α = 1, 2, . . . , Np. (2.106)

The energy conservation equation is given as in (2.99):

∂

∂t

φ Np∑
α=1

ραSαUα + (1 − φ)ρscsT


+ ∇ ·

Np∑
α=1

ραuαHα − ∇ · (kT∇T ) = qH − qL.

(2.107)

The heat loss to the overburden and underburden can be calculated as in Section 2.9.
In the simulation of chemical flooding, a pressure equation for the aqueous phase

(e.g., phase 1) is obtained by an overall mass balance on volume-occupying components.
Other phase pressures are evaluated using the capillary pressure functions, as in (2.89):

pcα1 = pα − p1, α = 1, 2, . . . , Np, (2.108)

where pc11 = 0 for convenience. Introduce the phase mobility

λα = krα

µα

Ncv∑
i=1

ρiciα, α = 1, 2, . . . , Np,

and the total mobility

λ =
Np∑
α=1

λα.

Note that

Ncv∑
i=1

ρiDiα∇ciα = 0,
Ncv∑
i=1

riα =
Ncv∑
i=1

ris = 0, α = 1, 2, . . . , Np.

Now, by adding (2.101) over i, i = 1, 2, . . . , Ncv , we obtain the pressure equation (cf.
Exercise 2.9)

φct
∂p1

∂t
− ∇ (λk∇p1)

= ∇ ·
Np∑
α=1

λαk (∇pcα1 − ρα℘∇z)+
Ncv∑
i=1

q̃i ,

(2.109)
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where the total compressibility ct is defined by

ct = 1

φ

∂

∂p1

Ncv∑
i=1

φc̃iρi .

Assume that the rock compressibility is given by (2.16); i.e., at the reference pressure
p0
r ,

φ = φo
(
1 + cR(pr − por )

)
. (2.110)

With pr = p1 and using (2.103) and (2.110), we have

φc̃iρi = φoc̃iρ
o
i

(
1 + (cR + C0

i )(p1 − po1)+ cRC0
i (p1 − po1)

2
)
.

Neglecting the higher-order term in this equation, it becomes

φc̃iρi ≈ φoc̃iρ
o
i

(
1 + (cR + C0

i )(p1 − po1)
)
. (2.111)

Applying (2.111), the total compressibility ct is simplified to

ct = φo

φ

Ncv∑
i=1

c̃iρ
o
i

(
cR + C0

i

)
. (2.112)

Note that there are more dependent variables than there are differential and algebraic
relations; there are formallyNc+Ncv+NcNp+3Np+1 dependent variables: ci , ĉj , ciα , T ,
uα , pα , and Sα , α = 1, 2, . . . , Np, i = 1, 2, . . . , Nc, j = 1, 2, . . . , Ncv . Equations (2.101)
and (2.106)–(2.109) provide Nc + 2Np independent relations, differential or algebraic; the
additional Ncv +NcNp +Np + 1 relations are given by the constraints

Np∑
α=1

Sα = 1 (a saturation constraint),

Ncv∑
i=1

ciα = 1 (Np phase concentration constraints),

ci =
Np∑
α=1

Sαciα (Nc component concentration constraints),

ĉj = ĉj (c1, c2, . . . , cNc ) (Ncv adsorption constraints),

fiα(pα, T , c1α, . . . , cNcα) = fiβ(pβ, T , c1β, . . . , cNcβ)

(Nc(Np − 1) phase equilibrium relations),

(2.113)

where fiα is the fugacity function of the ith component in the α-phase.

2.11 Flows in Fractured Porous Media
A dual porosity model has been developed for single phase flow in Section 2.2.6. This
concept can be generalized to flows of other types. As an example, we consider the compo-
sitional flow in fractured porous media. For brevity of presentation, we neglect the diffusive
effects.
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2.11.1 Dual porosity/permeability models

In the development of the dual porosity model for single phase flow in Section 2.2.6, the
fluid was assumed to flow only from the matrix into the fractures, not vice versa. Also, there
was no connection between matrix blocks. Now, we consider a more general case without
these two assumptions. In this general case, the mass balance equations in the matrix also
contain the matrix-fracture transfer terms, i = 1, 2, . . . , Nc:

∂(φξwSw)

∂t
+ ∇ · (ξwuw) = −qw,mf ,

∂(φ[xioξoSo + xigξgSg])
∂t

+ ∇ · (xioξouo + xigξgug) = −qi,mf ,
(2.114)

where it is assumed that the external source/sink terms do not interact with this system. In
the fracture system, the mass balance equations are

∂(φξwSw)f

∂t
+ ∇ · (ξwuw)f = qw,mf + qw,

∂(φ[xioξoSo + xigξgSg])f
∂t

+ ∇ · (xioξouo + xigξgug)f

= qi,mf + qi, i = 1, 2, . . . , Nc,

(2.115)

where the subscript f represents the fracture quantities. Equations (2.86)–(2.91) remain
valid for both the matrix and the fractures.

The matrix-fracture transfer terms for the dual porosity/permeability model, qw,mf and
qi,mf , are defined following Warren and Root (1963) and Kazemi (1969). The transfer term
for a particular component is directly related to the matrix shape factor σ , the fluid mobility,
and the potential difference between the fracture and matrix systems. The capillary pressure,
gravity, and viscous forces must be properly incorporated into this term. Furthermore, the
contribution from a pressure gradient across each matrix block (and the molecular diffusion
rate for each component) must be also included. For brevity of presentation, we neglect the
diffusion rate.

The treatment of a pressure gradient across a block is based on the following observa-
tion: for an oil matrix block surrounded with water in the fractures, the pressure differences
are

�pw = 0, �po = ℘(ρw − ρo).

Analogously, for an oil block surrounded with gas fractures and a gas block surrounded with
water fractures, respectively,

�pg = 0, �po = ℘(ρo − ρg)

and
�pw = 0, �pg = ℘(ρw − ρg).

We introduce the global fluid density in the fractures

ρf = Sw,f ρw + So,f ρo + Sg,f ρg,
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and define the pressure gradient effect

�pα = ℘
∣∣ρf − ρα

∣∣ , α = w, o, g.

Now, the transfer terms that include the contributions from the capillary pressure, gravity,
and viscous forces, and the pressure gradients across matrix blocks are

qw,mf = Tm
krwξw

µw

(

w −
w,f + Lc�pw

)
,

qi,mf = Tm

{
kroxioξo

µo

(

o −
o,f + Lc�po

)
+ krgxigξg

µg

(

g −
g,f + Lc�pg

)}
,

(2.116)

where 
α is the phase potential,


α = pα − ρα℘z, α = w, o, g,

Lc is the characteristic length for the matrix-fracture flow, and

Tm = kσ

(
1

l2x1

+ 1

l2x2

+ 1

l2x3

)
is the matrix-fracture transmissibility with σ the shape factor and lx1 , lx2 , and lx3 the matrix
block dimensions. When the matrix permeability k is a tensor and different in the three
coordinate directions, the matrix-fracture transmissibility is modified to

Tm = σ

(
k11

l2x1

+ k22

l2x2

+ k33

l2x3

)
, k = diag(k11, k22, k33).

2.11.2 Dual porosity models

For the development of a dual porosity model, the matrix blocks act as a source term to
the fracture system. In this case, there are two approaches for deriving this model: the
Warren–Root approach as in Section 2.11.1 and the approach based on boundary conditions
imposed explicitly on matrix blocks as in Section 2.2.6.

The Warren–Root approach

In this approach, the mass balance equations in the matrix become

∂(φξwSw)

∂t
= −qw,mf ,

∂(φ[xioξoSo + xigξgSg])
∂t

= −qi,mf , i = 1, 2, . . . , Nc,

(2.117)

where qw,mf and qi,mf are defined by (2.116). The balance equations (2.115) in the fractures
remain unchanged.
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The boundary conditions approach

For a dual porosity model of the compositional flow under consideration, the fluid flow in
the matrix system can be modeled in the same way as in (2.31) for single phase flow. Let the
matrix system be composed of disjoint blocks {�i}. On each block {�i} the mass balance
equations hold, i = 1, 2, . . . , Nc:

∂(φξwSw)

∂t
+ ∇ · (ξwuw) = 0,

∂(φ[xioξoSo + xigξgSg])
∂t

+ ∇ · (xioξouo + xigξgug) = 0.

(2.118)

The mass balance equations in the fractures are defined as in (2.115) with qw,mf and qi,mf
given by (cf. Exercise 2.10)

qw,mf = −
∑
j

χj (x)
1

|�j |
∫
�i

∂(φξwSw)

∂t
dx,

qi,mf = −
∑
j

χj (x)
1

|�j |
∫
�i

∂(φ[xioξoSo + xigξgSg])
∂t

dx
(2.119)

for i = 1, 2, . . . , Nc.
We impose boundary conditions for the matrix equations (2.118) as in Section 2.2.6.

For ξ1, ξ2, . . . , ξN fixed, we define the phase pseudopotential


′
α(pα, ξ1, ξ2, . . . , ξN) =

∫ pα

poα

1

ρα(ξ, ξ1, ξ2, . . . , ξN)℘
dξ − z, (2.120)

where p0
α is some reference pressure, α = o, g. The inverse of this integral is denoted

ψ ′
α(·, ξ1, ξ2, . . . , ξN), again for ξ1, . . . , ξN fixed.

Now, the boundary conditions for (2.118) on the surface ∂�i of each matrix block�i
are, for i = 1, 2, . . . , Nc, α = o, g,

xiα = xiα,f ,


′
α(pα, x1α, x2α, . . . , xNα) = 
′

α,f (pα,f , x1α,f , x2α,f , . . . , xNα,f )−
o
α,

(2.121)

where, for a given
′
α,f ,
o

α is a pseudopotential reference value on each block�i determined
by

1

|�i |
∫
�i

(φρα)

(
ψ ′
α

(

′
α,f −
o

α + x3, x1α,f , x2α,f , . . . , xNα,f
)
,

x1α,f , x2α,f , . . . , xNα,f

)
dx

= (φρα)(pα,f , x1α,f , x2α,f , . . . , xNα,f ).

(2.122)

If we assume that ∂ρα/∂pα ≥ 0 (for x1α, x2α, . . . , xNα fixed), (2.122) is solvable for 
o
α

(for incompressible α-phase fluid, set 
o
α = 0). The second equation in (2.121) applies to

the first equation in (2.118); for the water component, the pseudopotential depends only on
pressure.
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This model implies that the fracture system, being highly permeable, quickly comes
into chemical and mechanical equilibrium locally on the fracture spacing scale. This equilib-
rium is defined in terms of the mole fractions and the chemical equilibrium pseudopotentials,
and is reflected in the matrix equations through the boundary conditions in (2.121).

2.12 Concluding Remarks
In this chapter, the basic fluid flow and transport equations have been developed for a
hierarchy of models: single phase, two-phase, black oil, volatile oil, compositional, thermal,
and chemical. This hierarchy of models correspond to different oil production stages. Their
governing differential equations consist of the mass and energy conservation equations and
Darcy’s law. We have chosen to start with the simplest model for single phase flow and to
end with the most complex model for chemical flooding. This approach can be reversed;
that is, we can start with the chemical model, and in turn derive the thermal, compositional,
volatile oil, black oil, two-phase, and single phase models.

In the chemical model, we have considered the general case where there are Nc
chemical components, each of which may exist in any or all of the Np phases. The basic
equations consist of a mass conservation equation for each component (2.101), an energy
equation for temperature (2.107), Darcy’s law for the volumetric velocity of each fluid
phase (2.106), an overall mass conservation for a phase pressure (2.109), and algebraic
constraints (2.113) that describe physical and chemical phenomena peculiar to chemical
flooding. The flow equations allow for compressibility of soil and fluids, dispersion and
molecular diffusion, chemical reactions, and phase behavior. Even though the displacement
mechanisms are different in the thermal and chemical methods, there is not much difference
between the corresponding models, both of which include mass and energy conservation
and Darcy’s law. The mass equation is usually solved in terms of the mole fraction for each
component in the thermal case (cf. (2.85)), while it is solved in terms of the volumetric
concentration in the chemical case. In addition, the emphasis is placed on the solution of
compositions and temperature in the former case, while it is on the solution of compositions
and reactions for the components involved in the latter.

When flow is isothermal, the model equations in the chemical and thermal methods
become the basic equations for compositional flow. An energy equation is not required in
the compositional model, which now consists of a mass conservation equation in terms of
the mole fraction for each component (2.85), Darcy’s law for the phase volumetric velocity
(2.86), and phase equilibrium relations for the computation of compositions (2.91). In this
model, Nc components form at most three phases (e.g., vapor, liquid, and water), and mass
interchanges only between the hydrocarbon phases (i.e., the vapor and liquid phases).

Instead of three fluid phases, if only a single phase is present in an entire porous
medium, the mass conservation equation for each component in the compositional model
becomes the transport equation of multicomponents in the fluid phase (2.59). When at most
two components are involved, this equation reduces to the transport equation (2.55) for a
component.

The black oil and volatile oil models can be treated as simplified, two-component
compositional models. In these models, the hydrocarbon system is composed of the gas
(mainly methane and ethane) and oil components at stock-tank conditions. There is no mass
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transfer between the water phase and the oil and gas phases. In the black oil model, the gas
component can exist in the oil and gas phases. In the volatile oil model, both hydrocarbon
components can exist in these two phases. The black oil model is not suitable for handling a
volatile oil reservoir. The governing differential equations of these two models are generally
written in terms of volumetric rates at standard conditions; see (2.76)–(2.78) and (2.80)–
(2.82).

The model for two-phase immiscible flow is a special case of the black oil model;
when two phases are considered and there is no mass transfer between them, the two-phase
immiscible flow model results, which consists of a mass conservation equation (2.36) and
Darcy’s law for each phase (2.37). Finally, when only a single phase is present, the model
for two-phase flow reduces to that for single phase flow (cf. (2.1) and (2.4)).

The relationship among the models is presented for ordinary porous media. For a
fractured porous medium, the concept of dual porosity and dual porosity/permeability can
be incorporated. Examples for single phase and compositional flows in fractured media
have been discussed in Sections 2.2.6 and 2.11, respectively.

Limitations of the basic fluid flow equations for all the models presented in this chap-
ter have not been fully discussed. Non-Newtonian fluids are not considered in subsequent
chapters. Also, all considerations will be based on Darcy’s law in place of the momen-
tum balance equation. Non-Darcy’s law and non-Newtonian phenomena have been briefly
described in Sections 2.2.7 and 2.2.8 for single phase flow.

2.13 Bibliographical Information
The book by Aziz and Settari (1979) covered the single phase flow model through the black
oil model, while the models covered in Peaceman’s book (1977) included the compositional
flow model. The nonisothermal and chemical compositional flow models are presented in
a quite condensed fashion in this chapter. For more information on the physics of these two
models, the reader should refer to the book by Lake (1989) and to the technical documen-
tation by Delshad et al. (2000) (also see Chapters 10 and 11).

Exercises
2.1. Derive equation (2.12) from equation (2.6).

2.2. Derive the equation of mass conservation (2.36) for the simultaneous flow of two
fluids in a porous medium.

2.3. Derive system (2.47) in detail.

2.4. Consider the transport equation of multicomponents in a fluid phase in a porous
medium (cf. (2.59)),

φ
∂(ciρ)

∂t
= −∇ · (ciρu − ρD∇ci)+ ρqi, i = 1, 2, . . . , Nc, (2.123)

and Darcy’s law for the fluid

u = − 1

µ
k∇p. (2.124)
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Recall the equation of state (cf. (2.6))

dρ

ρ
= cf dp, (2.125)

where we assume that the compressibility factor cf is constant. Based on (2.123)–
(2.125) and the concentration constraint

Nc∑
i=1

ci = 1,

prove that the pressure equation

φcf
∂p

∂t
− ∇ ·

(
1

µ
k∇p

)
=

Nc∑
i=1

qi (2.126)

holds, provided that the “higher-order” quadratic term cf u·∇p is neglected. Equation
(2.126) can be utilized along with Nc − 1 equations of form (2.123) to describe the
transport of multicomponents in a fluid or the compressible miscible displacement
process.

2.5. Assume that the capillary pressures pcow and pcgo take the forms pcow = pcow(Sw)

and pcgo = pcgo(Sg) and have respective inverse functions p−1
cow and p−1

cgo. Express
equations (2.61)–(2.66) in a three-pressure (pw, po, pg) formulation.

2.6. Under the same assumptions as in Exercise 2.5, express equations (2.61)–(2.66) in a
pressure (po) and two-saturation (Sw, Sg) formulation.

2.7. Consider three-phase immiscible flow

∂(φραSα)

∂t
= −∇ · (ραuα)+ qα,

uα = −krα
µα

k (∇pα − ρα℘∇z) , α = w, o, g,

(2.127)

and the additional constraints

Sw + So + Sg = 1,

pcw(Sw, Sg) = pw − po, pcg(Sw, Sg) = pg − po,
(2.128)

where pcw = −pcow and pcg = pcgo. The phase and total mobilities and the
fractional flow functions are defined in the same manner as in Section 2.3:

λα = krα

µα
, λ =

g∑
α=w

λα, fα = λα

λ
, α = w, o, g,

where fα depends on the saturations Sw and Sg .
(i) Prove that there exists a function (Sw, Sg) −→ pc(Sw, Sg) such that

∇pc = fw∇pcw + fg∇pcg (2.129)
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if and only if the following equations are satisfied:

∂pc

∂Sw
= fw

∂pcw

∂Sw
+ fg

∂pcg

∂Sw
,

∂pc

∂Sg
= fw

∂pcw

∂Sg
+ fg

∂pcg

∂Sg
. (2.130)

(ii) Show that a necessary and sufficient condition for existence of a function pc
satisfying (2.130) is

∂fw

∂Sg

∂pcw

∂Sw
+ ∂fg

∂Sg

∂pcg

∂Sw
= ∂fw

∂Sw

∂pcw

∂Sg
+ ∂fg

∂Sw

∂pcg

∂Sg
. (2.131)

This condition is referred to as the total differential condition.
(iii) When condition (2.131) is satisfied, the function pc is

pc(Sw, Sg) =
∫ Sw

1

{
fw(ξ, 0)

∂pcw

∂Sw
(ξ, 0)+ fg(ξ, 0)

∂pcg

∂Sw
(ξ, 0)

}
dξ

+
∫ Sg

0

{
fw(Sw, ξ)

∂pcw

∂Sg
(Sw, ξ)+ fg(Sw, ξ)

∂pcg

∂Sg
(Sw, ξ)

}
dξ,

(2.132)

where we assume that the integrals are well defined. We introduce the global pressure
and the total velocity

p = po + pc, u = uw + uo + ug. (2.133)

Write equations (2.127) and (2.128) in terms of the main unknowns p, Sw, and Sg .

2.8. Let the mass and molar densities, ρiα and ξiα , of component i in phase α be related
by ξiα = ρiα/Wi , where Wi is the molar mass of component i, i = 1, 2, . . . , Nc,
α = o, g. Prove equations (2.92) and (2.93).

2.9. Derive the pressure equation (2.109) in detail.

2.10. Derive the matrix-fracture transfer terms qw,mf and qi,mf in equation (2.119) for the
dual porosity model of compositional flow.
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Chapter 3

Rock and Fluid Properties

The basic flow and transport equations presented in the preceding chapter and computa-
tional methods used to solve them depend on rock and fluid properties of porous media. In
this chapter, we discuss these properties. In particular, capillary pressures, relative perme-
abilities, formation volume factors, densities, solubility, viscosities, compressibilities, and
equations of state are described for the two-phase, black oil, volatile oil, and compositional
models. The equations of state deal with the distribution of hydrocarbon components into
phases. Temperature-dependent rock and fluid properties will be also studied for the ther-
mal model. In chemical flooding, very complex physical and chemical phenomena occur
between the reservoir rock and fluids, such as adsorption and cation exchange. For this rea-
son, the rock and fluid properties for the chemical compositional model will be discussed
in detail in Chapter 11.

This chapter is organized as follows. In Section 3.1, rock properties are given; capil-
lary pressure and relative permeability functions for two-phase and three-phase flows are re-
viewed. Then, in Section 3.2, fluid properties, such as PVT (pressure-volume-temperature)
data for water, oil, and gas, are stated. The equations of state for compositional flow are also
examined in this section. In Section 3.3, temperature-dependent rock and fluid properties
are considered. Finally, bibliographical information is given in Section 3.4.

3.1 Rock Properties
3.1.1 Capillary pressures

In two-phase flow, a discontinuity in fluid pressure occurs across an interface between any
two immiscible fluids (e.g., water and oil). This is a consequence of the interfacial tension
that exists at the interface. The discontinuity between the pressure in the nonwetting phase
(say, oil), po, and that in the wetting phase (say, water), pw, is referred to as the capillary
pressure, pc:

pc = po − pw, (3.1)

where the phase pressures at the interface are taken from their respective sides. A typical
curve of the capillary pressure is shown in Figure 3.1. The capillary pressure depends on the

51



“chenb
2006/2
page 52

�

�

�

�

�

�

�

�

52 Chapter 3. Rock and Fluid Properties
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Figure 3.1. Typical capillary pressure curve.

wetting phase saturation Sw and the direction of saturation change (drainage or imbibition).
The phenomenon of dependence of the curve on the history of saturation is called hysteresis.
While it is possible to develop a model that takes into account the hysteresis resulting from
the saturation history (Mualem, 1976; Bedrikovetsky et al., 1996), in most cases the direction
of flow can be predicted, and only a set of capillary pressures are needed. Various curves
describing a drainage or imbibition cycle can be found in Brooks and Corey (1964), van
Genuchten (1980), and Corey (1986).

The value pcb that is necessary to start displacement is termed a threshold pressure
(Bear, 1972). The saturation value at which the wetting phase can no longer be displaced by
applying a pressure gradient is referred to as irreducible saturation. The capillary pressure
curve has an asymptote at whose value the pressure gradient remains continuous in both
phases. This can be observed by considering vertical gravity equilibrium. When the value
of the irreducible saturation of the nonwetting phase is approached, an analogous situation
occurs at the other end of the curve during the imbibition process (Calhoun et al., 1949;
Morrow, 1970).

In the discussion so far, the capillary pressure has been assumed to depend only on the
saturation of the wetting phase and its history. In general, however, it also depends on the
surface tension σ , porosity φ, permeability k, and the contact angle θ with the rock surface
of the wetting phase, which, in turn, depend on the temperature and fluid compositions
(Poston et al., 1970; Bear-Bachmat, 1991):

J (Sw) = pc

σ cos θ

√
k

φ
,

which is the J -function. If the contact angle is ignored, this function becomes

J = pc

σ

√
k

φ
.

Using the J -function, typical curves forpc can be obtained from experiments. This function
is also the basis for some theoretical methods of measuring permeability k (Ashford, 1969).

For three-phase flow, two capillary pressures are needed:

pcow = po − pw, pcgo = pg − po. (3.2)
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Figure 3.2. Typical relative permeability curves.

Note that the third capillary pressure pcgw can be found using pcow and pcgo:

pcgw = pg − pw = pcow + pcgo.

The capillary pressures pcow and pcgo are usually assumed to take the forms (Leverett and
Lewis, 1941)

pcow = pcow(Sw), pcgo = pcgo(Sg), (3.3)

where Sw and Sg are the phase saturations of water and gas, respectively. These forms
remain in wide use (cf. Exercises 3.1 and 3.2), though revised forms have been proposed
(Shutler, 1969).

3.1.2 Relative permeabilities

Two-phase flow

Measurements on relative permeabilities have been made mostly for two-phase flow. Typical
curves suitable for an oil-water system with water displacing oil are presented in Figure 3.2.
The value of Sw at which water starts to flow is termed the critical saturation, Swc, and
the value Snc at which oil ceases to flow is called the residual saturation. Analogously,
during a drainage cycle Snc and Swc are referred to as the critical and residual saturations,
respectively.

The slopes of capillary pressure curves at irresidual saturations must be finite in
numerical simulation, so these curves themselves cannot be utilized to define the saturation
value at which the displaced phase becomes immobile. This saturation value is found using
the residual saturation at which the relative permeability of this phase is zero. Darcy’s law
implies that the phase stops flowing because the mobility becomes zero (not because the
external force becomes zero). As a result, it is not necessary to distinguish the critical and
residual saturations.

As for capillary pressures, relative permeabilities depend not only on the wetting phase
saturation Sw, but also on the direction of saturation change (drainage or imbibition). Fig-
ure 3.3 shows the phenomenon of dependence of a relative permeability for the nonwetting
phase on the history of saturation. Note that the curve of imbibition is always lower than
that of drainage. For the wetting phase, the relative permeability does not depend on the
history of saturation.
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Figure 3.3. Hysteresis in relative permeability curves.
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Figure 3.4. A three-phase ternary diagram.

Wettability of the rock also strongly influences relative permeabilities (Owens and
Archer, 1971). Because of this, reservoir fluids should be employed for experiments instead
of refined fluids.

Relative permeabilities must be determined empirically or experimentally for each
particular porous medium of interest. However, the literature is rich on analytical expres-
sions for the relationship between relative permeabilities and the saturation of the wetting
phase (Corey, 1986). These expressions were usually obtained from simplified porous me-
dia models (e.g., bundle of capillary tubes and capillary tube networks); see Exercises 3.3
and 3.4.

Three-phase flow

In contrast, the determination of relative permeabilities for three-phase flow is rather dif-
ficult. From experiments, a ternary diagram for the relationship between the relative per-
meabilities and saturations can be shown as in Figure 3.4. This diagram is based on the
level curve of the relative permeability being equal to 1% for each phase. From it we can
figure out where single, two-, or three-phase flow occurs under different combinations of
saturations. In the triangular region bounded by the three level curves, for example, three
fluids flow simultaneously.

Starting from Leverett and Lewis (1941), most of the measurements on three-phase
relative permeabilities have been experimental. These measurements have indicated that
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Figure 3.5. Relative permeability curves in a three-phase system.

the relative permeabilities for the wetting and nonwetting phases in a three-phase system
are functions of their respective saturations as they are in a two-phase system (Corey et al.,
1956; Snell, 1962):

krw = krw(Sw), krg = krg(Sg). (3.4)

The relative permeability for the intermediate wetting phase is a function of the two inde-
pendent saturations:

kro = kro(Sw, Sg). (3.5)

The functional form in (3.5) is rarely known. In practice, the estimation of three-phase
relative permeabilities is based on two sets of two-phase data: the relative permeability in
an intermediate and wetting system,

krow = krow(Sw), (3.6)

and that in an intermediate and nonwetting system,

krog = krog(Sg). (3.7)

The underlying concept is that for the wetting phase, both the intermediate and nonwet-
ting phases act like a single nonwetting phase, while for the nonwetting phase, both the
intermediate and wetting phases behave as a single wetting phase. Figure 3.5 illustrates
typical relative permeability curves for a water, oil, and gas system in an isotropic porous
medium. The point where krow = 0 indicates the maximum water saturation rather than
the critical oil saturation since the oil saturation can be further reduced by increasing the
gas saturation. It has been experimentally observed, however, that a nonzero residual (or
minimal) oil saturation Sor exists when oil is displaced simultaneously by water and gas.
The earlier remark on hysteresis of the relative permeability for the nonwetting phase also
applies to the three-phase system.

The simplest procedure to determine kro is

kro = krowkrog. (3.8)

Other models were suggested by Stone (1970; 1973), Corey (1986), and Delshad and Pope
(1989). As an example, we describe two of Stone’s models, model I and model II.
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Stone’s model I

The saturations are normalized as follows:

Sno = So − Sor

1 − Swc − Sor
, So ≥ Sor ,

Snw = Sw − Swc

1 − Swc − Sor
, Sw ≥ Swc,

Sng = Sg

1 − Swc − Sor
.

Note that
Sno + Snw + Sng = 1.

The relative permeability of oil is defined by

kro = Snoβwβg. (3.9)

To determine βw, we take Sg = Sng = 0; i.e., the three-phase system reduces to a water-oil
system. In this case, βg = 1 and kro = krow, which, together with (3.9), gives

βw = krow(Sw)

1 − Snw
. (3.10)

Similarly, to determine βg , we choose Sw = Swc so that βw = 1 and kro = krog . Then using
(3.9) yields

βg = krog(Sg)

1 − Sng
. (3.11)

Substituting (3.10) and (3.11) into (3.9) gives the expression of kro for Stone’s model I.
This model reduces exactly to two-phase data only if the following condition is satis-

fied:
krow(Swc) = krog(Sg = 0) = 1. (3.12)

Otherwise, the relative permeability kro(Sw, Sg) provides only an approximation to the two-
phase data. A model that does not have this limitation can be obtained if the oil-gas data
are measured in the presence of irreducible water. In this case, a water-oil system at Swc
and a gas-oil system at Sg = 0 are physically identical; i.e., both systems satisfy Sw = Swc
and So = 1 − Swc. Hence (3.12) is equivalent to the definition of the absolute permeability
being the effective permeability of oil in the presence of Swc.

Set
krow(Swc) = krog(Sg = 0) = krc.

Then Stone’s model I can be modified as follows:

kro = krcSnoβwβg, (3.13)

where

βw = krow(Sw)

(1 − Snw)krc
, βg = krog(1 − Sg)

(1 − Sng)krc
.
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Stone’s model II

In the definition of Stone’s model I, Sor must be specified. In fact, this value can be predicted
from an equation derived from channel-flow considerations:

kro = (krow + krw)(krog + krg)− (krw + krg), (3.14)

where kro ≥ 0 is required (i.e., negative values of kro mean immobile oil). As for Stone’s
model I, to satisfy (3.12), model II can be altered as follows:

kro = krc
{
(krow/krc + krw)(krog/krc + krg)− (krw + krg)

}
. (3.15)

3.1.3 Rock compressibility

The rock compressibility is defined by

cR = 1

φ

dφ

dp
. (3.16)

After integration, it becomes (cf. Exercise 3.5)

φ = φoecR(p−po), (3.17)

where φo is the porosity at a reference pressure po. Using a Taylor series expansion, we see
that

φ = φo
{

1 + cR(p − po)+ 1

2!c
2
R(p − po)2 + · · ·

}
,

so an approximation results:

φ ≈ φo
(
1 + cR(p − po)

)
.

3.2 Fluid Properties
An accurate analysis of fluid properties is required before a reservoir simulator is performed.
Examples of these properties include formation volume factors, densities, solubilities, vis-
cosities, and compressibilities of fluids. In general, a representative sample of reservoir
hydrocarbons is obtained and studied, and these fluid properties are then measured in the
laboratory. Then the information is used to predict the phase changes that will occur both
in the reservoir and in the surface separators. A separator is a pressure vessel (either hori-
zontal or vertical) utilized for the purpose of separating well fluids into gaseous and liquid
components.

When laboratory data are not available for the fluid properties, they can be calculated
from empirical formulas. In this section, we state these formulas. For more details on
fluid properties, the reader can refer to Carr et al. (1954), Chew and Connally (1959),
Dempsey (1965), Wichert and Aziz (1972), Dranchuk et al. (1974), Beggs and Robinson
(1975), Numbere et al. (1977), Standing (1977), Meehan (1980A; 1980B), Vasquez and
Beggs (1980), and Craft and Hawkins (1991).
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In three-phase flow (e.g., the flow of black oil type), when all gas dissolves into the
oil phase there is no gas phase present; i.e., Sg = 0. In this case, a reservoir is in the
undersaturated state. If all three phases coexist, the reservoir is in the saturated state. A
bubble point is defined as the state in which the flow system entirely consists of liquids
(water and oil), and the reservoir pressure at this point is the bubble point pressure. Any
slight reduction in pressure (or increase in volume) at fixed temperature produces gas.

3.2.1 Water PVT properties

The black oil and volatile oil models presented in the preceding chapter require four water
PVT properties for simulation:

• water density at standard conditions ρWs ,

• water formation volume factor Bw,

• water compressibility cw,

• water viscosity µw.

When laboratory data are not available, empirical formulas can be used to calculate them
from the following given data:

• pressure p and temperature T of a reservoir,

• salinity of water SALI ,

• solution gas/water ratio RSW .

Water density at standard conditions

We can use the following empirical correlation data in a linear interpolation for the water
density at standard conditions against the water salinity:

Salinity: 0, 100,000, 200,000, 280,000 (ppm),

ρWs : 1.0, 1.07300, 1.1370, 1.18600 (g/cm3).

Water formation volume factor

The water formation volume factor Bw (RB/STB; cf. Chapter 16) can be computed by the
empirical formula

Bw = (A+ Bp + Cp2)FSB, (3.18)

where the constants A, B, and C depend on the formation temperature (TF ) and the gas
saturation status, p (psia) is the formation pressure, and FSB is the salinity correction factor
for Bw:

FSB = {5.1 × 10−8p + (5.47 × 10−6 − 1.95 × 10−10p)(TF − 60)

− (3.23 × 10−8 − 8.5 × 10−13p)(TF − 60)2
}
SALI + 1,



“chenb
2006/2
page 59

�

�

�

�

�

�

�

�

3.2. Fluid Properties 59

with TF (◦F) being the formation temperature and SALI the salinity percentage (1% =
10,000 ppm). The constants A, B, and C in (3.18) can be determined from

A = A1 + A2TF + A3T
2
F ,

B = B1 + B2TF + B3T
2
F ,

C = C1 + C2TF + C3T
2
F ,

where in the saturated case (the gas phase exists)

A1 = 0.9911, A2 = 6.35 × 10−5, A3 = 8.5 × 10−7,

B1 = −1.093 × 10−6, B2 = −3.497 × 10−9, B3 = 4.57 × 10−12,

C1 = −5 × 10−11, C2 = 6.429 × 10−13, C3 = −1.43 × 10−15,

and in the undersaturated case (there exists no gas phase)

A1 = 0.9947, A2 = 5.8 × 10−6, A3 = 1.02 × 10−6,

B1 = −4.228 × 10−6, B2 = 1.8376 × 10−8, B3 = −6.77 × 10−11,

C1 = 1.3 × 10−10, C2 = −1.3855 × 10−12, C3 = 4.285 × 10−15.

The range of validity for Bw is

1,000 < p < 5,000 psi, 100 < T < 250◦ F, 0 ≤ SALI < 25.

Water isothermal compressibility

The water compressibility cw (1/psi) is calculated from salinity, temperature, and pressure
by the empirical formula

cw = (Â+ B̂ TF + Ĉ T 2
F )10−6(1 + 0.0089 RSW)FSC, (3.19)

where the constants Â, B̂, and Ĉ depend on the formation pressure:

Â = 3.8546 − 1.34 × 10−4p,

B̂ = −0.01052 + 4.77 × 10−7p,

Ĉ = 3.9267 × 10−5 − 8.8 × 10−10p.

The solution gas/water ratio RSW (SCF/STB) is zero in the undersaturated case, while in
the saturated case

RSW = (ARSW + BRSW p + CRSW p
2)

· {1 − (0.0753 − 1.73 × 10−4TF )SALI
}
,

where
ARSW = 2.12 + 3.45 × 10−3TF − 3.59 × 10−5T 2

F ,

BRSW = 0.0107 − 5.26 × 10−5TF + 1.48 × 10−7T 2
F ,

CRSW = −8.75 × 10−7 + 3.9 × 10−9TF − 1.02 × 10−11T 2
F .
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Finally, the salinity correction factor FSC for cw is defined by

FSC =
{
−0.52 + 2.7 × 10−4TF − 1.14 × 10−6T 2

F

+ 1.121 × 10−9T 3
F

}
S0.7
ALI + 1.

The range of validity for the cw estimate is

1,000 < p < 6,000 psi, 80 < T < 250◦ F, 0 ≤ SALI < 25.

Water viscosity

The water viscosity µw (cp) is computed from salinity, temperature, and pressure by

µw = 0.02414 × 10247.8/(TK−140)FSV FPV , (3.20)

where TK is the formation temperature in K; that is, TK = 273.15 + TC , with TC =
(TF − 32)/1.8◦ C. The salinity correction factor FSV for µw is

FSV = 1 − 1.87 × 10−3S
1/2
ALI + 2.18 × 10−4S2.5

ALI

+ (T 1/2
F − 0.0135 TF )(2.76 × 10−3SALI − 3.44 × 10−4S1.5

ALI ),

and the pressure correction factor FPV for µw is

FPV = 1 + 3.5 × 10−12p2(TF − 40).

The range of validity for µw is

32 < T < 572◦ F, 0 ≤ SALI < 25.

An example of finding the water PVT properties is given in Exercise 3.6.

3.2.2 Oil PVT properties

Five quantities for the oil PVT properties with respect to the bubble point pressure (pb) are
required for the black oil and volatile oil models described in the preceding chapter:

• dissolved gas-oil ratio Rso,

• oil formation volume factor Bo,

• oil compressibility co,

• oil viscosity µo,

• oil viscosity compressibility cµ.

Again, when laboratory data are not available for these quantities, empirical formulas can
be employed to compute them from the following given data:
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• pressure p and temperature T of a reservoir,

• produced gas-oil ratio measured at separator conditions GOR ,

• oil gravity API ,

• raw gas gravity (unity for air) YG,

• pressure psep and temperature Tsep at separator conditions.

Initial bubble point pressure

An initial bubble point pressure pbi (psia) can be obtained using the empirical formula

pbi =
(

GOR

A0 YGS exp (C0 API/TR)

)1/B0

, (3.21)

whereGOR (SCF/STB) is the observed gas-oil ratio,API (◦API) is the oil gravity defined by
API = 141.5/DOB − 131.5, DOB (g/cm3) is the surface oil density at standard conditions,
YGS is the corrected gas gravity (unity for air) defined by

YGS = YG

(
1 + 5.912 × 10−5API Tsep log

( psep
114.7

))
,

YG is the gas gravity (unity for air), psep (psia) and Tsep (◦F) are the pressure and temperature
of a separator, and TR (R) is the reservoir temperature (TR = TF + 460). The constants A0,
B0, and C0 needed in the computation of the bubble point pressure are

A0 = 0.0362, B0 = 1.0937, C0 = 25.724 if API ≤ 30,

A0 = 0.0178, B0 = 1.1870, C0 = 23.931 if API > 30.

The range of validity of the bubble point estimate is

30 < psep < 535 psi, 76 < Tsep < 150◦ F.

In addition,
0.511 < YG < 1.351 if 15.3 < API ≤ 30◦ API

and
0.53 < YG < 1.259 if 30.6 < API < 59.5◦ API.

Dissolved gas-oil ratio

An empirical formula for the dissolved gas-oil ratio Rso (SCF/STB) is

Rso = A0 YGS p
B0
b exp

(
C0 API

TR

)
. (3.22)

This formula is exploited to find the functional relationship between Rso and the bubble
point pressure pb.
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Oil formation volume factor

In the saturated case, the oil formation volume factor Bo (RB/STB) can be expressed as a
function of the dissolved gas-oil ratio:

Bo(pb) = 1 + Ã(TF − 60)
API

YGS
+
(
B̃ + C̃(TF − 60)

API

YGS

)
Rso, (3.23)

where the constants Ã, B̃, and C̃ are

Ã = 1.751 × 10−5, B̃ = 4.677 × 10−4, C̃ = −1.811 × 10−8

if API < 30,

Ã = 1.1 × 10−5, B̃ = 4.67 × 10−4, C̃ = 1.337 × 10−9

if API ≥ 30.

When the reservoir pressure p is larger than the bubble point pressure pb, i.e., in the
undersaturated state, the formation volume factor can be evaluated from Bo at pb, the oil
compressibility co (1/psi), and pressure:

Bo(p, pb) = Bo(pb) exp
(− c0(p − pb)

)
, (3.24)

or approximately from

Bo(p, pb) ≈ Bo(pb)
(
1 − c0(p − pb)

)
. (3.25)

The range of validity of the expressions for Bo is

30 < psep < 535 psi, 76 < Tsep < 150◦ F, 15.3 < API < 59.5◦ API.

In addition, above the bubble point it is required that

0.511 < YG < 1.351, 111 < p < 9, 485 psi;
below the bubble point,

0.511 < YG < 1.351, 14.7 < p < 4, 542 psi if API ≤ 30◦ API

and

0.53 < YG < 1.259, 14.7 < p < 6, 025 psi if 30.6 < API < 59.5◦ API.

Oil isothermal compressibility

The oil compressibility co (1/psi) can be calculated by the empirical formula

co = −1,433 + 5Rso + 17.2 TF − 1,180 YGS + 12.61API
100,000 pb

, (3.26)

where Rso, TF , YGS , API , and pb are defined as earlier.
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Oil viscosity

The oil viscosity µo (cp) is calculated using the Beggs–Robinson equation (Beggs and
Robinson, 1975). It is computed differently in the saturated case than in the undersaturated
case. In the former case, it is calculated through the “dead” oil viscosity by the formula

µo(pb) = Ā µB̄do, (3.27)

whereµdo (cp) is the “dead” oil viscosity, Ā = 10.715(Rso+100)−0.515, and B̄ = 5.44(Rso+
150)−0.338. The dead oil viscosity µdo can be found through the empirical formula

µdo = 10C̄ − 1,

where
C̄ = 10C

′
T −1.163
F , C ′ = 3.0324 − 0.02023 API .

The validity ranges for µo and µdo are, respectively,

30 < psep < 535 psi, 70 < Tsep < 150◦ F

and
70 < T < 295◦ F, 16 < API < 58◦ API.

In the latter case, µo is calculated by

µo(p, pb) = µo(pb)

(
p

pb

)A′

, (3.28)

where p (psia) is the reservoir pressure and

A′ = 2.6 p1.187 exp
(−8.98 × 10−5p − 11.513

)
.

The validity range is

15.3 < API < 59.5◦ API, 0.511 < YG < 1.351, 111 < p < 9, 485 psi.

Oil viscosity compressibility

In the black oil model, the oil viscosity compressibility cµ (1/psi) is often used to evaluate
the oil viscosity in the undersaturated case:

µo(p, pb) = µo(pb)
(
1 + cµ(p − pb)

)
, (3.29)

where
cµ = (1 + p−1

b

)B ′ − 1,

B ′ = 2.6(1 + pb)
1.187 exp

(−8.98 × 10−5(1 + pb)− 11.513
)
.

An example of calculating the oil PVT properties is given in Exercise 3.7.
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3.2.3 Gas PVT properties

The black oil and volatile oil models described in the preceding chapter require two func-
tional (parameter) relationships of gas PVT properties with respect to pressure:

• gas deviation factor Z or formation volume factor Bg ,

• gas viscosity µg .

When laboratory data are not available, empirical formulas can be used to compute them
from the following given data:

• pressure p and temperature T of a reservoir,

• raw gas gravity (unity for air) YG,

• content of CO2, H2S, and N2: YCO2 , YH2S , and YN2 .

Reduced pressure and temperature

Before the gas deviation factorZ is evaluated, it is necessary to compute the dimensionless,
reduced pressure pred and temperature Tred :

pred = p

ppc
, Tred = TR

Tpc
, (3.30)

where p (psia) is the formation pressure, TR (R) is the formation temperature (recall that
TR = TF +460), and ppc (psia) and Tpc (R) are the pseudocritical pressure and temperature
of gas, respectively. ppc and Tpc are estimated from the gas gravity for both condensate
and miscellaneous reservoir gas. The computed values are corrected for acid gas using
the Wichert–Aziz correction. Before the Wichert–Aziz corrections were introduced, the
following empirical formulas for ppc and Tpc had been employed:

ppc0 = Apc + Bpc YG + Cpc Y
2
G,

Tpc0 = Âpc + B̂pc YG + Ĉpc Y
2
G,

(3.31)

where YG is the raw gas density (unity for air). For the surface gas, the constants in (3.31)
are calculated by

Apc = 677, Bpc = 15, Cpc = −37.5,

Âpc = 168, B̂pc = 325, Ĉpc = −12.5,

while for the condensate gas, they are given by

Apc = 706, Bpc = −51.7, Cpc = −11.1,

Âpc = 187, B̂pc = 330, Ĉpc = −71.5.

The Wichert–Aziz corrections for ppc and Tpc have been used in recent years:

ppc = ppc0(Tpc0 −WA)

Tpc0 + YH2S (1 − YH2S)WA

, Tpc = Tpc0 −WA,
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where the Wichert–Aziz correction factor WA (◦F) is given by

WA = 120
(
(YCO2 + YH2S)

0.9 − (YCO2 + YH2S)
1.6
)

−15
(
Y 0.5
H2S

− Y 4
H2S

)
,

and YH2S and YCO2 (decimal) are the contents of H2S and CO2, respectively. The ranges of
validity of ppc and Tpc are 0.36 < YG < 1.3 for a condensate fluid and 0.56 < YG < 1.71
and YH2S + YCO2 < 0.8 for miscellaneous gas.

Gas deviation factor Z

The gas deviation factor Z is calculated using the method developed by Dranchuk et al.
(1974) who used the Benedict–Webb–Rubin equation of state fitted to the Standing–KatzZ-
factor correlation. The resulting nonlinear equation is then solved by the Newton–Raphson
iteration (cf. Chapter 8):

Z = 0.27 pred
ρgr Tred

, (3.32)

where ρgr is the reduced gas density and is evaluated using the Newton–Raphson iteration

ρi+1
gr = ρigr − F(ρigr )/F ′(ρigr ),

F(ρigr ) = Ar (ρ
i
gr )

6 + Br (ρ
i
gr )

3 + Cr (ρ
i
gr )

2 + Er ρ
i
gr

+Fr (ρigr )3
(
1 +Gr (ρ

i
gr )

2
)

exp
(−Gr (ρ

i
gr )

2
)−Hr,

F ′(ρigr ) = 6Ar (ρ
i
gr )

5 + 3Br (ρ
i
gr )

2 + 2Cr ρ
i
gr + Er

+Fr (ρigr )2
(
3 +Gr (ρ

i
gr )

2(3 − 2Gr (ρ
i
gr )

2)
)

exp
(−Gr (ρ

i
gr )

2
)
,

where

Ar = 0.06423, Br = 0.5353 Tred − 0.6123,

Cr = 0.3151 Tred − 1.0467 − 0.5783

T 2
red

, Er = Tred,

Fr = 0.6816

T 2
red

, Gr = 0.6845,

Hr = 0.27 pred, ρ0
gr = 0.27 pred

Tred
.

The iteration process converges rapidly (with fewer than five iterations) with a good initial
ρ0
gr . The range of validity of formula (3.32) for the Z-factor is

0 < pred < 30, 1.05 ≤ Tred < 3,

which covers the range of possible reservoir conditions including high pressure and tem-
perature reservoirs.
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Gas formation volume factor

The gas formation volume factor, Bg (RB/SCF), the ratio of the volume Vg of the gas
phase measured at reservoir conditions to the volume VGs of the gas component measured
at standard conditions, can be calculated using the gas deviation factor Z:

Bg = 0.00504 Z TR
p

, (3.33)

where p (psia) is the formation pressure.

Gas viscosity

The gas viscosity µg (cp) is evaluated based on an estimation of the gas density using the
real gas law (with a Z-factor correction). The pseudocritical pressure and temperature are
corrected for nonhydrocarbon components. µg is calculated by the Lee–Gonzalez correction
(Dempsey, 1965):

µg = exp(F ) µc
Tred

, (3.34)

where
F = Ǎ+ B̌ Tred + Č T 2

red + Ď T 3
red ,

Ǎ = Ǎ0 + Ǎ1 pred + Ǎ2 p
2
red + Ǎ3 p

3
red ,

B̌ = B̌0 + B̌1 pred + B̌2 p
2
red + B̌3 p

3
red ,

Č = Č0 + Č1 pred + Č2 p
2
red + Č3 p

3
red ,

Ď = Ď0 + Ď1 pred + Ď2 p
2
red + Ď3 p

3
red ,

with the constants given by

Ǎ0 = −2.4621182, Ǎ1 = 2.97054714,

Ǎ2 = −0.286264054, Ǎ3 = 8.05420522 × 10−3,

B̌0 = 2.80860949, B̌1 = −3.49803305,

B̌2 = 0.36037302, B̌3 = −1.04432413 × 10−2,

Č0 = −0.793385684, Č1 = 1.39643306,

Č2 = −0.149144925, Č3 = 4.41015512 × 10−3,

Ď0 = 0.0839387178, Ď1 = 0.186408848,

Ď2 = 0.0203367881, Ď3 = 6.09579263 × 10−4.

The corrected gas viscosity µc (cp) in formula (3.34) is defined by (Carr et al., 1954)

µc = (1.709 × 10−5 − 2.062 × 10−6 YG)TF

+ 8.188 × 10−3 − 6.15 × 10−3 log(YG)

+YN2

(
9.59 × 10−3 + 8.48 × 10−3 log(YG)

)
+YCO2

(
6.24 × 10−3 + 9.08 × 10−3 log(YG)

)
+YH2S

(
3.73 × 10−3 + 8.49 × 10−3 log(YG)

)
,
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where YN2 (decimal) is the content of N2. µc is the viscosity of a gas mixture at 14.7 psia
and reservoir temperature. An example of computing the gas PVT properties is given in
Exercise 3.8.

3.2.4 Total compressibility

For single phase flow in a porous medium, the total compressibility ct (1/psi) is

ct = cf + φo

φ
cR, (3.35)

where cf is the fluid compressibility. For multiphase flow (e.g., three-phase flow with water,
oil, and gas), the total compressibility ct is

ct = Swcw + Soco + Sgcg + φo

φ
cR. (3.36)

3.2.5 Equations of state

Several mathematical techniques to handle the hydrocarbon behavior (the distribution of
chemical components among phases) are available. The most common are based on (1)
the K-value approach, (2) equations of state, and (3) a variety of empirical tables from
experiments. In this section, we discuss the first two techniques.

Equilibrium K-values

Let xio and xig be the mole fractions of component i in the liquid (e.g., oil) and vapor (e.g.,
gas) phases, respectively, i = 1, 2, . . . , Nc (the number of components). The equilibrium
flash vaporization ratio for this component is defined by

Ki = xig

xio
, i = 1, 2, . . . , Nc, (3.37)

where the quantityKi is the equilibriumK-value of component i. At low pressure, theseK-
values are readily related to the mixture pressure and temperature (see an example in Section
3.3.2). In fact, they are easily estimated from the vapor pressure data of pure components.
At high pressure, the K-values are functions of overall compositions. The introduction
of the compositions into the K-value functions adds considerable complexity to the flash
computation.

Equations of state

While theK-value approach is easy to set up, it lacks generality and may result in inaccurate
reservoir simulation. In recent years, the equations of state (EOSs) have been more widely
employed because they produce more consistent compositions, densities, and molar vol-
umes. The most famous EOS is the van der Waals EOS (Reid et al., 1977). Here we discuss
three more accurate EOS: Peng–Robinson, Redlich–Kwong, and Redlich–Kwong–Soave.
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The Peng–Robinson equation of state

The mixing principle for the Peng–Robinson EOS is

aα =
Nc∑
i=1

Nc∑
j=1

xiαxjα(1 − κij )
√
aiaj ,

bα =
Nc∑
i=1

xiαbi, α = o, g,

where κij is a binary interaction parameter between components i and j , and ai and bi are
empirical factors for pure component i. The interaction parameters account for molecular
interactions between two unlike molecules. By definition, κij is zero when i and j represent
the same component, small when i and j represent components that do not differ much (e.g.,
when components i and j are both alkanes), and large when i and j represent components
that are substantially different. Ideally, κij depends on pressure and temperature and on the
identities of components i and j (Zudkevitch and Joffe, 1970; Whitson, 1982).

The factors ai and bi can be computed from

ai = �iaαi
R2T 2

ic

pic
, bi = �ib

R Tic

pic
,

where we recall that R is the universal gas constant, T is the temperature, Tic and pic are
the critical temperature and pressure, the EOS parameters �ia and �ib are given by

�ia = 0.45724, �ib = 0.077796,

αi = (1 − λi
[
1 − √

T/Tic
])2
,

λi = 0.37464 + 1.5423ωi − 0.26992ω2
i ,

and ωi is the acentric factor of component i. The acentric factors roughly express the
deviation of the shape of a molecule from a sphere (Reid et al., 1977). Define

Aα = aαpα

R2T 2
, Bα = bαpα

R T
, α = o, g,

where the pressurepα is given by the Peng–Robinson two-parameter equation of state (Peng
and Robinson, 1976)

pα = RT

Vα − bα
− aα(T )

Vα(Vα + bα)+ bα(Vα − bα)
(3.38)

with Vα being the molar volume of phase α. Introduce the compressibility factor

Zα = pαVα

R T
, α = o, g.

Equation (3.38) can be expressed as a cubic equation in Zα:

Z3
α − (1 − Bα)Z

2
α + (Aα − 2Bα − 3B2

α)Zα

− (AαBα − B2
α − B3

α) = 0.
(3.39)
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This equation has three roots. When only one root is real, it is selected. If there are three
real roots, the selection of the right one depends on the dominance of the liquid phase or
the vapor phase (cf. Chapter 9). Now, for i = 1, 2, . . . , Nc and α = o, g, the fugacity
coefficient of component i in a mixture can be obtained from

ln ϕiα = bi

bα
(Zα − 1)− ln(Zα − Bα)

− Aα

2
√

2Bα

 2

aα

Nc∑
j=1

xjα(1 − κij )
√
aiaj − bi

bα

 (3.40)

· ln

(
Zα + (1 + √

2)Bα
Zα − (1 − √

2)Bα

)
.

The fugacity of component i is

fiα = pαxiαϕiα, i = 1, 2, . . . , Nc, α = o, g.

Finally, the distribution of each hydrocarbon component into the liquid and vapor phases is
given by the thermodynamic equilibrium relation

fio(po, x1o, x2o, . . . , xNco) = fig(pg, x1g, x2g, . . . , xNcg) (3.41)

for i = 1, 2, . . . , Nc.

The Redlich–Kwong equation of state

The Redlich–Kwong two-parameter EOS is given by

pα = RT

Vα − bα
− aα

Vα(Vα + bα)
, α = o, g. (3.42)

With Zα = pαVα/(RT ), this equation can be written as the cubic equation

Z3
α − Z2

α + (Aα − Bα − B2
α)Zα − AαBα = 0, α = o, g. (3.43)

The correct choice of root can be made as in the Peng–Robinson two-parameter EOS. In
the present case, the EOS parameters �ia , �ib, and αi are

�ia = 0.42748, �ib = 0.08664,

αi = T/Tic.

All other quantities Aα , Bα , aα , bα , ai , and bi have the same definitions as in the Peng–
Robinson EOS, i = 1, 2, . . . , Nc, α = o, g. The fugacity coefficient of component i in a
mixture can be obtained from the equation

ln ϕiα = bi

bα
(Zα − 1)− ln(Zα − Bα)

− Aα

Bα

 2

aα

Nc∑
j=1

xjα(1 − κij )
√
aiaj − bi

bα

 ln

(
Zα + Bα

Zα

)
.

(3.44)
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The Redlich–Kwong–Soave equation of state

The Soave modification of the Redlich–Kwong EOS defines the EOS parameter αi as

αi =
(

1 + λi

[
1 −√T/Tic])2

, i = 1, 2, . . . , Nc,

where λi = 0.48 + 1.574ωi − 0.176ω2
i and ωi is the acentric factor for component i. The

definitions of all other quantities and of the fugacity coefficients are the same as in the
Redlich–Kwong EOS. The Peng–Robinson and Redlich–Kwong–Soave EOSs have been
extensively utilized in predicting enhanced oil recovery (EOR) phase behavior.

3.3 Temperature-Dependent Properties
3.3.1 Rock properties

The rock properties for nonisothermal flow are similar to those for the isothermal black oil
and compositional models, but now these properties depend on temperature. In particular,
the capillary pressures are of the form

pcow(Sw, T ) = po − pw, pcgo(Sg, T ) = pg − po. (3.45)

Analogously, the relative permeabilities for water, oil, and gas are

krw = krw(Sw, T ), krow = krow(Sw, T ),

krg = krg(Sg, T ), krog = krog(Sg, T ),

kro = kro(Sw, Sg, T ).

(3.46)

Stone’s models I and II defined in Section 3.1.2 can be adapted for the oil relative perme-
ability kro, for example.

As an example, the relative permeability functions krw and krow for a water-oil system
can be defined by

krw = krwro(T )

(
Sw − Swir (T )

1 − Sorw(T )− Swir (T )

)nw
,

krow = krocw(T )

(
1 − Sw − Sorw(T )

1 − Sorw(T )− Swc(T )

)now
,

(3.47)

and krg and krog for a gas-oil system by

krg = krgro(T )

(
Sg − Sgr

1 − Swc(T )− Soinit − Sgr

)ng
,

krog = krocw(T )

(
1 − Sg − Swc(T )− Sorg(T )

1 − Swc(T )− Sorg(T )

)nog
,

(3.48)

where nw, now, ng, and nog are nonnegative real numbers; Swc, Swir , Sorw, Sorg , and Sgr
are the connate water saturation, irreducible water saturation, residual oil saturation in the
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water-oil system, residual oil saturation in the gas-oil system, and residual gas saturation;
krwro, krocw, and krgro are the water relative permeability at the residual oil saturation for
the water-oil system, the oil relative permeability at the connate water saturation, and the
gas relative permeability at Sg = 1 − Swc(T ) − Soinit for the gas-oil system, respectively;
and Soinit is the initial oil saturation in the gas-oil system. Finally, for the rock properties,
one must consider the thermal conductivity and heat capacity of the reservoir, overburden,
and underburden.

3.3.2 Fluid properties

Water properties

Physical properties of water and steam, such as density, internal energy, enthalpy, and
viscosity, can be found from a water-steam table (Lake, 1989). Such a table is given in
terms of the independent variables: pressure and temperature. In the saturated state of a
reservoir, there is free gas; in this case, pressure and temperature are related, and only one
of them is employed as an independent variable.

Oil properties

While any number of hydrocarbon components can be treated in the differential system
describing the nonisothermal multiphase, multicomponent flow developed in the preceding
chapter, computational work and time significantly increase as the number of components
increases. It is often computationally convenient (or necessary) to group several similar
chemical components into one mathematical component. In this way, fewer components
(or pseudocomponents) need be simulated in practical applications.

The oil phase is a mixture of hydrocarbon components, and these components range
from the lightest component, methane (CH4), to the heaviest component, bitumen. A way to
reduce the number of components is to introduce pseudocomponents, as noted. According
to the composition of each pseudocomponent, one can deduce its physical properties, such as
its pseudomolecular weight (which may not be a constant), critical pressure and temperature,
compressibility, density, viscosity, thermal expansion coefficient, and specific heat. These
properties are functions of pressure and temperature.

The most important property is the oil and gas phase viscosity dependence on temper-
ature:

µio = exp
(
a1T

b1
)+ c1, µig = a2T

b2 ,

where T is in absolute degrees, a1, b1, c1, a2, and b2 are empirical parameters that can be
measured in the laboratory, and µio and µig are the viscosities of the ith component in the
oil and gas phases, respectively.

Equations of state

The EOSs defined in Section 3.2.5 can be also used to define the fugacity functions fiα for
nonisothermal flow, which now depend on temperature. Because of complexity of flow of
this type, however, the equilibrium K-value approach introduced in Section 3.2.5 is more
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often used to describe the equilibrium relations:

xiw = Kiw(p, T )xio, xig = Kig(p, T )xio, i = 1, 2, . . . , Nc. (3.49)

One example for evaluating the K-values Kiα uses the empirical formula

Kiα =
(
κ1
iα + κ2

iα

p
+ κ3

iα p

)
exp

(
− κ4

iα

T − κ5
iα

)
, (3.50)

where the constants κjiα are obtained in the laboratory, i = 1, 2, . . . , Nc, j = 1, 2, 3, 4, 5,
α = w, g.

3.4 Bibliographical Information
For more information on the water PVT properties, the reader should consult Numbere
et al. (1977), Meehan (1980A; 1980B), and Craft and Hawkins (1991). For the oil PVT
properties, the reader should refer to Chew and Connally (1959), Beggs and Robinson
(1975), Standing (1977), and Vasquez and Beggs (1980). For the gas PVT properties,
the reader should see Carr et al. (1954), Dempsey (1965), Wichert and Aziz (1972), and
Dranchuk et al. (1974). Finally, more details on the equations of state can be found in Peng
and Robinson (1976) and Coats (1980).

Exercises
3.1. A capillary pressure for an oil-water system is computed. Given the empirical formula

pcow(Sw) = pcowmin + B ln

(
Sw − Swc + ε

1 − Swc

)
,

where we recall that Swc is the connate water saturation, ε is a small positive number,
and

pcowmax = pcow(Swc), B = pcowmax − pcowmin

ln (ε/(1 − Swc))
,

and given the input data

ε = 0.01, Swc = 0.22, pcowmin = 0, pcowmax = 6.3 (psia),

find the corresponding values of pcow for these values of Sw: 0.22, 0.30, 0.40, 0.50,
0.60, 0.80, 0.90, and 1.00.

3.2. A capillary pressure for a gas-oil system is determined. Given the empirical formula

pcgo(Sg) = pcgomin + B ln

(
1 − Sg − Sor − Swc + ε

1 − Sor − Swc

)
,

where we recall that Sor is the residual oil saturation and

pcgomax = pcow(1 − Sor − Swc), B = pcgomax − pcgomin

ln (ε/(1 − Sor − Swc))
,
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and given the input data

ε = 0.01, Swc = 0.22, Sor = 0.18, pcgomin = 0, pcgomax = 3.9 (psia),

find the corresponding values of pcgo for these values of Sw: 0.00 0.04, 0.10, 0.20,
0.30, 0.40, 0.50, 0.60, 0.70, and 0.78.

3.3. A relative permeability for an oil-water system is calculated. Given the empirical
formulas

krw(Sw) = krwmax

(
Sw − Swc

1 − Sor − Swc

)nw
,

krow(Sw) =
(

1 − Sw − Sor

1 − Sor − Swc

)now
, Swc ≤ Sw ≤ Swmax,

where krwmax = krw(Swmax), Sor = 1−Swmax , andnw andnow are positive numbers,
and given the input data

Swc = 0.4, Sor = 0.2, krwmax = 0.2, nw = now = 2,

find the corresponding values of krw and krow for these values of Sw: 0.40, 0.42,
0.44, 0.50, 0.60, 0.70, 0.76, 0.78, 0.80, and 1.00.

3.4. A relative permeability for a gas-oil system is evaluated. Given the empirical formulas

krg(Sg) =
(

Sg − Sgr

1 − Sgr − Sor − Swc

)ng
,

krog(Sg) =
(

1 − Sg − Sor − Swc

1 − Sor − Swc

)nog
, Sgr ≤ Sg ≤ 1 − Sor − Swc,

where Sgr is the critical mobile gas saturation and ng and nog are positive numbers,
and given the input data

Swc = 0.4, Sor = 0.2, Sgr = 0.02, ng = 0.83, nog = 7.5,

find the corresponding values of krg and krog for these values of Sg: 0.020, 0.039,
0.058, 0.115, 0.172, 0.210, 0.286, 0.400, and 0.600.

3.5. Derive equation (3.17) from equation (3.16).

3.6. The water PVT properties for the black oil model are calculated. The given data are

Water salinity = 100,000 ppm (SALI = 100,000/10,000 = 10),

Gas saturation state: saturated,

Formation temperature TF = 250◦ F,

TC = (250 − 32)/1.8 = 121.11◦ C,

TK = 273.15 + TC = 349.26 K,

Formation pressure p = 5,000 psia.

Calculate (1) the water density at standard conditions ρWs in g/cm3 and lbm/SCF
(g/cm3 = 0.016018463 lbm/SCF); (2) the water formation volume factorBw (RB/STB);
(3) the water compressibility cw (1/psi); and (4) the water viscosity µw (cp).
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3.7. The oil PVT properties for the black oil model are computed. The given data are

Formation pressure p = 6,000, 5,004.2, 3,000, 2,000, 1,000 psia,

Formation temperature TF = 250◦ F,

TR = TF + 460 = 710 R,

Produced gas-oil ratio GOR = 1,000 SCF/STB,

Oil gravity API = 40◦ API,

Raw gas gravity YG = 0.6,

Pressure at separator conditions psep = 100 psia,

Temperature at separator conditions Tsep = 85◦ F.

(A) Compute the bubble point pressure.
(B) Evaluate the oil PVT properties: (1) the dissolved gas-oil ratio Rso (SCF/STB),
(2) the oil viscosityµo (cp), (3) the oil compressibility co (1/psi), (4) the oil viscosity
compressibility cµ (1/psi), and (5) the oil formation volume factor Bo (RB/STB) vs.
the given formation pressures.

3.8. The gas PVT properties for the black oil model are evaluated. The given data are

Formation pressure p = 7,500 psia,

Formation temperature TF = 250◦ F,

TR = TF + 460 = 710 R,

Raw gas gravity YG = 0.6,

Content of CO2, H2S, and N2 = 0.0,

Gas is a condensate.

Calculate (1) the reduced pressure pred and reduced temperature Tred , (2) the gas
deviation factor Z, (3) the gas formation volume factor Bg (RB/SCF), and (4) the
gas viscosity µg (cp).
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Numerical Methods

A numerical method for solving a differential equation problem involves discretizing this
problem, which has infinitely many degrees of freedom, to produce a discrete problem,
which has finitely many degrees of freedom and can be solved using a computer. Compared
with finite difference methods, the introduction of finite element methods is relatively recent.
The advantages of finite elements over finite differences are that general boundary condi-
tions, complex geometry, and variable material properties can be relatively easily handled.
Also, the clear structure and versatility of the finite element methods makes it possible to
develop general purpose software for applications. Furthermore, there is a solid theoretical
foundation that gives added confidence, and in many cases it is possible to obtain concrete
error estimates for the finite element solutions. Finite element methods were first intro-
duced by Courant in 1943. From the 1950s to the 1970s, they were developed by engineers
and mathematicians into a general method for the numerical solution of partial differential
equations.

When applied to petroleum reservoir simulation, finite element methods have some
peculiar features, such as in the reduction of grid orientation effects, in the treatment of
local grid refinement, horizontal and slanted wells, and corner point techniques, in the
simulation of faults and fractures, in the design of streamlines, and in the requirement
of high-order accuracy of numerical solutions. These topics will be studied in detail in
subsequent chapters.

Because we compare finite difference solutions with finite element solutions, we very
briefly review finite difference methods in Section 4.1. The books by Peaceman (1977A;
1977B) and Aziz and Settari (1979) gave detailed information on the use of these methods in
reservoir simulation. We concentrate on the finite element methods that have been employed
in reservoir simulation in the past two decades. Six major types of finite element methods
are covered: standard (Section 4.2), control volume (Section 4.3), discontinuous (Section
4.4), mixed (Section 4.5), characteristic (Section 4.6), and adaptive (Section 4.7). For each
method, a brief introduction, the notation, basic terminology, and necessary concepts are
given. Except for the control volume methods, these methods are taken from the book
by one of the authors (Chen, 2005); for a more detailed description of the methods and
their theoretical results, the reader should refer to that book. Some of more recent methods

75
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such as multiscale, particle, and mesh-free are not presented here. Many different gridding
techniques are presented in this chapter. The eighth comparative solution project (CSP)
organized by the society of petroleum engineers (SPE) is presented to compare some of
these gridding techniques in Section 4.7. Finally, bibliographical information is given in
Section 4.8.

4.1 Finite Difference Methods
4.1.1 First difference quotients

We describe first and second difference quotients for functions of two space variables, x1 and
x2, and of time, t . Reduction to functions of one space variable and extension to functions
of three space variables are straightforward.

Consider a function p(x1, x2, t) of x1, x2, and t . The first partial derivative of p with
respect to x1 can be defined in one of the following ways:

∂p

∂x1
(x1, x2, t) = lim

h1→0

p(x1 + h1, x2, t)− p(x1, x2, t)

h1
,

∂p

∂x1
(x1, x2, t) = lim

h1→0

p(x1, x2, t)− p(x1 − h1, x2, t)

h1
,

∂p

∂x1
(x1, x2, t) = lim

h1→0

p(x1 + h1, x2, t)− p(x1 − h1, x2, t)

2h1
.

We replace this derivative by a difference quotient. For this, we utilize the Taylor series
expansion

p(x1 + h1, x2, t) = p(x1, x2, t)+ ∂p

∂x1
(x1, x2, t)h1 + ∂2p

∂x2
1

(x�1, x2, t)
h2

1

2
,

where x1 ≤ x�1 ≤ x1 + h1 and h1 > 0 is a fixed number. The last term in this equation is a
remainder that involves a second partial derivative of p. Then ∂p/∂x1 can be obtained from

∂p

∂x1
(x1, x2, t) = p(x1 + h1, x2, t)− p(x1, x2, t)

h1
− ∂2p

∂x2
1

(x�1, x2, t)
h1

2
. (4.1)

The expression
p(x1 + h1, x2, t)− p(x1, x2, t)

h1

is referred to as a forward difference quotient, and it approximates the derivative ∂p/∂x1

with an error of the first order in h1.
Similarly, we have

∂p

∂x1
(x1, x2, t) = p(x1, x2, t)− p(x1 − h1, x2, t)

h1
− ∂2p

∂x2
1

(x��1 , x2, t)
h1

2
, (4.2)

where x1 − h1 ≤ x��1 ≤ x1, and the quantity

p(x1, x2, t)− p(x1 − h1, x2, t)

h1
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is called a backward difference quotient. This quantity also gives a first-order approximation
to ∂p/∂x1.

Next, we use the Taylor series expansions with remainders involving a third partial
derivative of p:

p(x1 + h1, x2, t) = p(x1, x2, t)+ ∂p

∂x1
(x1, x2, t)h1

+ ∂2p

∂x2
1

(x1, x2, t)
h2

1

2! + ∂3p

∂x3
1

(x�1, x2, t)
h3

1

3! ,

p(x1 − h1, x2, t) = p(x1, x2, t)− ∂p

∂x1
(x1, x2, t)h1

+ ∂2p

∂x2
1

(x1, x2, t)
h2

1

2! − ∂3p

∂x3
1

(x��1 , x2, t)
h3

1

3! ,

where x1 ≤ x�1 ≤ x1 + h1 and x1 − h1 ≤ x��1 ≤ x1. Subtracting these two equations and
solving for ∂p/∂x1 yields

∂p

∂x1
(x1, x2, t) = p(x1 + h1, x2, t)− p(x1 − h1, x2, t)

2h1 (4.3)

−
(
∂3p

∂x3
1

(x�1, x2, t)+ ∂3p

∂x3
1

(x��1 , x2, t)

)
h2

1

12
.

The quotient

p(x1 + h1, x2, t)− p(x1 − h1, x2, t)

2h1

is termed a centered difference quotient, and it approximates ∂p/∂x1 with a higher order,
i.e., second order in h1.

From (4.1), (4.2), and (4.3), it would appear preferable to employ the centered differ-
ence approximation to ∂p/∂x1. This is not always the case. Which quotient is used depends
on the particular problem (see Section 4.1.8).

It is sometimes necessary to use a difference quotient to approximate ∂p/∂x1 computed
halfway between x1 and x1 + h1. Analogously to (4.3), we can obtain

∂p

∂x1

(
x1 + h1

2
, x2, t

)
= p(x1 + h1, x2, t)− p(x1, x2, t)

h1 (4.4)

−
(
∂3p

∂x3
1

(x�1, x2, t)+ ∂3p

∂x3
1

(x��1 , x2, t)

)
h2

1

48
,

where x1 ≤ x�1, x
��
1 ≤ x1 +h1. In summary, we have defined three first difference quotients

in x1. The same quotients can be introduced in x2 and t .
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4.1.2 Second difference quotients

We exploit the Taylor series expansions with remainders involving a fourth partial derivative
of p:

p(x1 + h1, x2, t) = p(x1, x2, t)+ ∂p

∂x1
(x1, x2, t)h1

+ ∂2p

∂x2
1

(x1, x2, t)
h2

1

2! + ∂3p

∂x3
1

(x1, x2, t)
h3

1

3! + ∂4p

∂x4
1

(x�1, x2, t)
h4

1

4! ,

p(x1 − h1, x2, t) = p(x1, x2, t)− ∂p

∂x1
(x1, x2, t)h1

+ ∂2p

∂x2
1

(x1, x2, t)
h2

1

2! − ∂3p

∂x3
1

(x1, x2, t)
h3

1

3! + ∂4p

∂x4
1

(x��1 , x2, t)
h4

1

4! ,

where x1 ≤ x�1 ≤ x1 +h1 and x1 −h1 ≤ x��1 ≤ x1. Adding these two equations and solving
for ∂2p/∂x2

1 yields

∂2p

∂x2
1

(x1, x2, t) = p(x1 + h1, x2, t)− 2p(x1, x2, t)+ p(x1 − h1, x2, t)

h2
1 (4.5)

−
(
∂4p

∂x4
1

(x�1, x2, t)+ ∂4p

∂x4
1

(x��1 , x2, t)

)
h2

1

24
.

The expression

�2
x1
p(x1, x2, t) = p(x1 + h1, x2, t)− 2p(x1, x2, t)+ p(x1 − h1, x2, t)

h2
1

(4.6)

defines a centered second difference quotient, which approximates the partial derivative
∂2p/∂x2

1 with a second-order accuracy in h1.
Equation (4.5) is derived with the left and right intervals at x1 of equal length. We

now consider p on the intervals (x1 − h′
1, x1) and (x1, x1 + h′′

1), where h′
1 and h′′

1 are not
necessarily the same, and introduce a difference quotient for the second derivative

∂

∂x1

(
a(x1, x2, t)

∂p

∂x1

)
,

where a is a given function. Using Taylor series expansions as above, the following approx-
imations hold: (

a
∂p

∂x1

)(
x1 − h′

1

2
, x2, t

)
≈ a

(
x1 − h′

1

2
, x2, t

)
p(x1, x2, t)− p(x1 − h′

1, x2, t)

h′
1

,(
a
∂p

∂x1

)(
x1 + h′′

1

2
, x2, t

)
≈ a

(
x1 + h′′

1

2
, x2, t

)
p(x1 + h′′

1, x2, t)− p(x1, x2, t)

h′′
1

.

(4.7)
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Note that

∂

∂x1

(
a
∂p

∂x1

)
(x1, x2, t) ≈

{(
a
∂p

∂x1

)(
x1 + h′′

1

2
, x2, t

)

−
(
a
∂p

∂x1

)(
x1 − h′

1

2
, x2, t

)}
/((

x1 + h′′
1

2

)
−
(
x1 − h′

1

2

))
.

Consequently, using (4.7), we see that

∂

∂x1

(
a
∂p

∂x1

)
(x1, x2, t)

≈
{
a

(
x1 + h′′

1

2
, x2, t

)
p(x1 + h′′

1, x2, t)− p(x1, x2, t)

h′′
1

− a
(
x1 − h′

1

2
, x2, t

)
p(x1, x2, t)− p(x1 − h′

1, x2, t)

h′
1

}/
h′

1 + h′′

2
,

which we write as
�x1(a�x1p). (4.8)

This approximation to ∂
∂x1

(
a
∂p

∂x1

)
is of second order in h1, where h1 = max{h′

1, h
′′
1}. A

similar definition can be given for �x2(a�x2p).

4.1.3 Grid systems

There are two types of grid systems commonly employed in reservoir simulation, block-
centered and point-distributed grids. Let the integer i indicate the index in the x1-direction,
and the integer j denote the index in the x2-direction. Furthermore, let x1,i and x2,j represent
the ith and j th values of x1 and x2, respectively. Then we set

pij = p(x1,i , x2,j ).

Block-centered grid

A rectangular solution domain � is divided into rectangles, and the point (x1,i , x2,j ) is at
the center of the rectangle (i, j), as in Figure 4.1. The left side of the rectangle is at x1,i− 1

2
,

and the right side is at x1,i+ 1
2
. Similarly, x2,j− 1

2
and x2,j+ 1

2
are the bottom and top sides of

the rectangle (i, j). This type of grid is called a block-centered grid. It is specified by the
sequences 0 = x1, 1

2
< x1, 3

2
< · · · and 0 = x2, 1

2
< x2, 3

2
< · · · if � = (0, 1)2 is the unit

square, for example. Also, we see that

x1,i = 1

2

(
x1,i− 1

2
+ x1,i+ 1

2

)
,

h1,i = x1,i+ 1
2
− x1,i− 1

2
,

h1,i− 1
2

= x1,i − x1,i−1.

Similar notation can be given for the x2 variable.
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(x1,i,x2,j)

Figure 4.1. A block-centered grid.

(x1,i,x2,j)

Figure 4.2. A point-distributed grid.

Point-distributed grid

In the other type of grid, the point (x1,i , x2,j ) is now a vertex of a rectangle, as in Figure 4.2.
This grid is referred to as a point-distributed grid. In this case, the grid is specified by the
sequences 0 = x1,0 < x1,1 < · · · and 0 = x2,0 < x2,1 < · · · for � = (0, 1)2. Also, note
that

x1,i− 1
2

= 1

2

(
x1,i−1 + x1,i

)
,

h1,i = x1,i − x1,i−1.

4.1.4 Treatment of boundary conditions

As we will see, the difference equations written for the two grid systems are the same in
form. There are, however, significant differences between them. Specifically, when the
grids are not uniform, the locations of points and block boundaries do not coincide. Also,
the treatment of boundary conditions is different. Here we introduce difference equations
to approximate the boundary conditions described in Section 2.2.9.

Boundary conditions of the first kind

Suppose that we are given the following boundary condition at x1 = 0:

p(0, x2, t) = g(x2, t). (4.9)

This is a boundary condition of the first kind, i.e., the Dirichlet kind. In reservoir simulation,
Dirichlet boundary conditions arise when pressure on the reservoir boundary or at a well is
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(x ,x2,j)1,0

Figure 4.3. The Dirichlet boundary condition for a point-distributed grid.

(x ,x2,j)1,1

Figure 4.4. The Dirichlet boundary condition for a block-centered grid.

specified. For a point-distributed grid (cf. Figure 4.3), this boundary condition is given by

pn0j = gnj . (4.10)

Equation (4.10) is utilized whenever pn0j is required in a difference equation.
For a block-centered grid, the closet point to the boundary is (x1,1, x2,j ) (cf. Fig-

ure 4.4). The value of pn1j must be extrapolated to this point. The simplest approach is

pn1j = gnj , (4.11)

which is only of first-order accuracy in space. A second-order approximation uses

1

2

(
3pn1j − pn2j

) = gnj . (4.12)

Note that (4.12) must be included in the system of difference equations to be solved. For
this reason, the block-centered grid is sometimes modified by use of half blocks at Dirichlet
boundaries (cf. Figure 4.5).

Boundary conditions of the second kind

Consider the following boundary condition at x1 = 0:

∂p

∂x1
(0, x2, t) = g(x2, t). (4.13)

This is a boundary condition of the second kind, i.e., the Neumann kind, and can be used to
express a flow rate across a boundary or to specify an injection or production rate at a well.



“chenb
2006/2
page 82

�

�

�

�

�

�

�

�

82 Chapter 4. Numerical Methods

(x ,x2,j)1,1

Figure 4.5. The use of half blocks at the Dirichlet boundary.

(x1,0,x2,j)(x1,−1,x2,j)

Figure 4.6. A reflection point for a point-distributed grid.

For a point-distributed grid, (4.13) can be approximated by

pn1j − pn0j

h1,1
= gnj , (4.14)

which is a first-order approximation. A second-order accurate scheme uses a reflection
(ghost) point; for each j , we introduce an auxiliary point (x1,−1, x2,j ) (cf. Figure 4.6). The
boundary condition (4.13) is discretized using the centered difference at x1 = 0:

pn1j − pn−1j

2h1,1
= gnj . (4.15)

Equation (4.15) is exploited to eliminatepn−1j from the difference equation for the differential
equation at x1 = 0. The first- and second-order approximations for (4.13) can be also
defined for a block-centered grid, using a modification similar to that for (4.9).

Boundary conditions of the third kind

A boundary condition of the third kind has the form(
a
∂p

∂x1
+ bp

)
(0, x2, t) = g(x2, t), (4.16)

where the functions a and b are given. As noted in the preceding chapter, such a condition
occurs when part of the external boundary is semipervious. For a point-distributed grid, this
equation can be approximated by

an0j
pn1j − pn−1j

2h1,1
+ bn0jp

n
0j = gnj , (4.17)



“chenb
2006/2
page 83

�

�

�

�

�

�

�

�

4.1. Finite Difference Methods 83

where we recall that (x1,−1, x2,j ) is a reflection point. It is difficult to approximate (4.16)
for a block-centered grid.

4.1.5 Finite differences for stationary problems

We consider the stationary problem in two space dimensions on a rectangular domain �:

−∇ · (a∇p) = f (x1, x2), (x1, x2) ∈ �, (4.18)

where the functions a and f are given. Function a is assumed to be positive on �. A
pressure equation for incompressible flow is stationary, for example. As pointed out earlier,
there are two types of grids widely used in reservoir simulation; the difference equations are
the same in form for both grids. Equation (4.18) at grid point (i, j) can be approximated by

−
ai+ 1

2 ,j

pi+1,j − pi,j

h1,i+ 1
2

− ai− 1
2 ,j

pi,j − pi−1,j

h1,i− 1
2

h1,i

−
ai,j+ 1

2

pi,j+1 − pi,j

h2,j+ 1
2

− ai,j− 1
2

pi,j − pi,j−1

h2,j− 1
2

h2,j
= fij ,

(4.19)

where pij = p(x1,i , x2,j ) and ai+ 1
2 ,j

= a(x1,i+ 1
2
, x2,j ). If we define

a1,i+ 1
2 ,j

= ai+ 1
2 ,j
h2,j

h1,i+ 1
2

,

a2,i,j+ 1
2

= ai,j+ 1
2
h1,i

h2,j+ 1
2

,

(4.19) can be then written as

−a1,i+ 1
2 ,j
(pi+1,j − pi,j )+ a1,i− 1

2 ,j
(pi,j − pi−1,j )

− a2,i,j+ 1
2
(pi,j+1 − pi,j )+ a2,i,j− 1

2
(pi,j − pi,j−1) = Fij ,

(4.20)

where Fij = fijh1,ih2,j . Fij may be interpreted as the integral of f (x1, x2) over a rectangle
with area h1,ih2,j . The truncation error is the error incurred by replacing a differential
equation by a difference equation. From the discussion in Section 4.1.2, the truncation error
in the approximation of the difference scheme (4.20) to (4.18) is of second order in both h1

and h2. This scheme is the commonly used five-point stencil scheme for two-dimensional
problems (cf. Figure 4.7). For some points near or on the boundary of the solution domain,
it involves one or two fictitious points outside the domain. The values ofp at these points are
eliminated, depending on which type of grid and boundary condition is employed. Equation
(4.20) can be written in matrix form involving unknowns {pi,j }, and must be solved via a
direct or iterative algorithm; see the next chapter. An example is given in Exercise 4.1.
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i1,j ij i+1,j

i,j1

i,j+1

Figure 4.7. A five-point stencil scheme.

4.1.6 Finite differences for parabolic problems

We turn to the transient ( parabolic problem) in two dimensions on a rectangular domain�:

φ
∂p

∂t
− ∇ · (a∇p) = f (x1, x2, t), (x1, x2) ∈ �, t > 0, (4.21)

where a, f , and φ are given functions of x1, x2, and t . Functions a and φ are assumed
to be positive and nonnegative on �, respectively. From the preceding chapter, a pressure
equation for compressible flow is parabolic. For a parabolic problem, in addition to a
boundary condition, an initial condition is also needed:

p(x1, x2, 0) = p0(x1, x2).

Let {tn} be a sequence of real numbers such that

0 = t0 < t1 < · · · < tn < tn+1 < · · · .
For the transient problem, we proceed from the initial solution at t0 to a solution at t1; in
general, we obtain a solution at tn+1 from solutions at the previous time levels. Thus the
solution procedure advances through time. Set

�tn = tn+1 − tn, n = 1, 2, . . . ,

and
pnij = p(x1,i , x2,j , t

n).

Forward difference scheme

The simplest difference scheme for (4.21) is to replace the second partial derivatives in
space by a second difference at tn and ∂p/∂t by a forward difference. The resulting scheme
is a centered second difference in space and a forward difference in time, and is called the
forward difference scheme (or forward Euler scheme):

φnij

pn+1
i,j − pni,j

�tn
h1,ih2,j − an

1,i+ 1
2 ,j
(pni+1,j − pni,j )+ an

1,i− 1
2 ,j
(pni,j − pni−1,j )

− an
2,i,j+ 1

2
(pni,j+1 − pni,j )+ an

2,i,j− 1
2
(pni,j − pi,j−1) = Fnij

(4.22)

for n = 0, 1, 2, . . . . Note that this equation can be solved explicitly for pn+1
i,j . The use of an

explicit scheme brings about a stability problem. For a = φ = 1 and f = 0, for example,
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a stability analysis (cf. Section 4.1.7) shows that the time and space step sizes must satisfy
the condition

�t

(
1

h2
1

+ 1

h2
2

)
≤ 1

2
(4.23)

to obtain stability, where �t = max{�tn : n = 0, 1, . . .}. Hence the forward difference
scheme is conditionally stable.

Backward difference scheme

The stability condition (4.23) on the time steps is inherent in the forward difference scheme,
and can be removed by evaluating the second partial derivatives at tn+1:

φn+1
ij

pn+1
i,j − pni,j

�tn
h1,ih2,j

− an+1
1,i+ 1

2 ,j
(pn+1

i+1,j − pn+1
i,j )+ an+1

1,i− 1
2 ,j
(pn+1

i,j − pn+1
i−1,j )

− an+1
2,i,j+ 1

2
(pn+1

i,j+1 − pn+1
i,j )+ an+1

2,i,j− 1
2
(pn+1

i,j − pn+1
i,j−1) = Fn+1

ij .

(4.24)

As we go fromn ton+1, (4.24) definespn+1
i,j implicitly and is termed the backward difference

(or backward Euler) scheme. At each time level tn+1, a linear system of algebraic equations
must be solved. This system has the same form as that arising from the stationary problem.
A stability analysis indicates that scheme (4.24) is unconditionally stable; that is, there is
no restriction on the time step �t that can be used (cf. Section 4.1.7).

The truncation errors for both the forward and backward difference schemes are of
second order in h1 and h2 and of first order in �t . To improve accuracy in time, the
Crank–Nicholson difference scheme can be exploited, for example.

Crank–Nicholson difference scheme

Another implicit difference scheme for (4.21) is to replace the average(
∂p(tn+1)/∂t + ∂p(tn)/∂t

)
/2

by the difference quotient (pn+1 − pn)/�tn:

φn+1
ij

pn+1
i,j − pni,j

�tn
h1,ih2,j

− 1

2

{
an+1

1,i+ 1
2 ,j
(pn+1

i+1,j − pn+1
i,j )− an+1

1,i− 1
2 ,j
(pn+1

i,j − pn+1
i−1,j )

+ an+1
2,i,j+ 1

2
(pn+1

i,j+1 − pn+1
i,j )− an+1

2,i,j− 1
2
(pn+1

i,j − pn+1
i,j−1)

+ an
1,i+ 1

2 ,j
(pni+1,j − pni,j )− an

1,i− 1
2 ,j
(pni,j − pni−1,j )

+ an
2,i,j+ 1

2
(pni,j+1 − pni,j )− an

2,i,j− 1
2
(pni,j − pni,j−1)

}
= 1

2

(
Fn+1
ij + Fnij

)
.

(4.25)
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The truncation error for this scheme is of second order in h1, h2, and �t . This implicit
scheme is also unconditionally stable. Moreover, it gives rise to a system of simultaneous
equations that is of the same form as that arising from the backward difference scheme.

4.1.7 Consistency, stability, and convergence

We give the basic definitions of consistency, stability, and convergence of a finite difference
scheme. We concentrate on pure initial value problems. When boundary conditions are
included, the definitions must be extended to initial boundary value problems (Thomas,
1995). Furthermore, we focus on one-dimensional transient problems, and the solution
domain is the entire x1-axis; i.e., −∞ < x1 < ∞. Let x1,i = ih, i = 0,±1,±2, . . . , and
tn = n�t , n = 0, 1, 2, . . . .

Consistency

For two real numbers ε and h > 0, we write

ε = O(h)
if there is a positive constant C such that

|ε| ≤ Ch.

A finite difference scheme Lni P
n
i = Gn

i is (pointwise) consistent with the partial
differential equation Lp = F at point (x, t) if for any smooth function v = v(x, t),

Rni ≡ (Lv − F)|ni − {Lni v(ih, n�t)−Gn
i

})→ 0 (4.26)

as h, �t → 0 and (ih, n�t) → (x, t). Note that the truncation errors for the forward
difference scheme (4.22) and the backward difference scheme (4.24) take the form

Rni = O(h2)+ O(�t),
whereas the truncation error for the Crank–Nicholson scheme (4.25) has the form

Rni = O(h2)+ O((�t)2).
Hence these schemes are consistent with (4.21) (cf. Exercise 4.3).

Stability

A finite difference scheme is stable if the effect of an error (or perturbation) made in any
stage of computation is not propagated into larger errors in later stages of the computation,
i.e., if local errors are not magnified by further computation. A difference scheme can be
examined for stability by substituting into it perturbed values of the solution.

We consider the one-dimensional version of (4.21) (with x = x1):

∂p

∂t
= ∂2p

∂x2
. (4.27)
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LetPni be a solution of the corresponding forward difference scheme, and let its perturbation
Pni + εni satisfy the same scheme:

(P n+1
i + εn+1

i )− (P ni + εni )

�t

= (P ni+1 + εni+1)− 2(P ni + εni )+ (P ni−1 + εni−1)

h2
.

Because of the definition of Pni , we see that

εn+1
i − εni

�t
= εni+1 − 2εni + εni−1

h2
. (4.28)

We expand the error εni in a Fourier series of the form

εni =
∑
k

γ nk exp(īkxi),

where ī = √−1. The analysis can be simplified somewhat if we assume that a solution to
the error equation (4.28) has one term (dropping the subscript k in γ nk )

εni = γ n exp(īkxi). (4.29)

We substitute (4.29) into (4.28) and solve for the amplification factor

γ = γ n+1/γ n.

The von Neumann criterion for stability is that the modulus of this factor must not be greater
than one (Thomas, 1995). Using (4.28) and (4.29), we see that

γ n+1 − γ n

�t
= γ n exp(īkh)− 2γ n + γ n exp(−īkh)

h2
. (4.30)

Since
exp(īkh)− 2 + exp(−īkh) = 2 cos(kh)− 2 = −4 sin2(kh/2),

it follows from (4.30) that

γ n+1 =
(

1 − 4�t

h2
sin2

(
kh

2

))
γ n.

Dividing this equation by γ n, we obtain

γ = 1 − 4�t

h2
sin2

(
kh

2

)
.

Thus the von Neumann criterion for stability is satisfied if∣∣∣∣1 − 4�t

h2
sin2

(
kh

2

)∣∣∣∣ ≤ 1. (4.31)
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Inequality (4.31) is satisfied when the stability condition

�t

h2
≤ 1

2
(4.32)

holds. Therefore, the forward difference scheme for (4.27) is stable under condition (4.32);
i.e., this scheme is conditionally stable, as noted earlier.

We perform a similar von Neumann stability analysis for the backward difference
scheme (4.24) for equation (4.27). In this case, the error equation takes the form

εn+1
i − εni

�t
= εn+1

i+1 − 2εn+1
i + εn+1

i−1

h2
. (4.33)

Substituting (4.29) into (4.33) and performing simple algebraic calculations yields the equa-
tion for the amplification factor γ ,

γ = 1

1 + (4�t/h2) sin2(kh/2)
,

which is always less than or equal to one for any choice of k, �t , and h. Hence the
backward difference scheme is unconditionally stable. An analogous analysis shows that
the Crank–Nicholson scheme is also unconditionally stable (cf. Exercise 4.4).

Convergence

Finite difference schemes are used because their solutions approximate the solutions to
certain partial differential equations. What we really need is that the solutions of difference
schemes can be made to approximate the solutions of the differential equations to any desired
accuracy. Namely, we need convergence of the finite difference solutions to those of the
differential equations. Specifically, a finite difference scheme Lni P

n
i = Gn

i approximating
the partial differential equation Lp = F is (pointwise) convergent if for any (x, t), Pni
converges to p(x, t), as h, �t → 0 and (ih, n�t) → (x, t).

As an example, we consider the forward difference scheme (4.22) for equation (4.27):

Pn+1
i − Pni

�t
= Pni+1 − 2Pni + Pni−1

h2
. (4.34)

Using the analysis in Sections 4.1.1 and 4.1.2, it follows from (4.27) that

pn+1
i − pni

�t
= pni+1 − 2pni + pni−1

h2
+ O(h2)+ O(�t). (4.35)

Define the error
zni = Pni − pni ,

and subtract (4.35) from (4.34) to yield

zn+1
i = (1 − 2R)zni + R(zni+1 + zni−1)+ O(h2�t)+ O((�t)2),
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where R = �t/h2. If 0 < R ≤ 1/2, the coefficients on the right-hand side of this equation
are nonnegative. Thus we see that∣∣zn+1

i

∣∣ ≤ (1 − 2R) ∣∣zni ∣∣+ R (∣∣zni+1

∣∣+ ∣∣zni−1

∣∣)+ C�t
(
h2 +�t

)
(4.36)≤ Zn + C�t

(
h2 +�t

)
,

where Zn = supi{
∣∣zni ∣∣} and the constant C is a uniform constant used to bound the “big O”

terms. Taking the supremum over i on the left-hand side of (4.36), we obtain

Zn+1 ≤ Zn + C�t
(
h2 +�t

)
. (4.37)

Applying inequality (4.37) repeatedly implies

Zn+1 ≤ Z0 + C(n+ 1)�t
(
h2 +�t

)
.

Initially, let Z0 = 0. Then we have∣∣Pn+1
i − p(ih, (n+ 1)�t)

∣∣ ≤ Zn+1

≤ C(n+ 1)�t
(
h2 +�t

)
→ 0

as (n+ 1)�t → t and h, �t → 0. Therefore, we have proven convergence of the forward
difference scheme for (4.27) under condition (4.32). Convergence of the backward and
Crank–Nicholson difference schemes can be also shown (cf. Exercises 4.5 and 4.6).

There is a connection between stability and convergence. In fact, a consistent, two-
level difference scheme (i.e., it involves two time levels) for a well-posed linear initial
value problem is stable if and only if it is convergent. This is the Lax equivalence theorem
(Thomas, 1995).

4.1.8 Finite differences for hyperbolic problems

For the introduction of finite differences for hyperbolic problems, we consider the model
problem

∂p

∂t
+ b

∂p

∂x
= 0, (4.38)

where b is a constant and x = x1. This problem is a one-way wave problem. The one-
dimensional Buckley–Leverett equation is of this form (cf. Section 2.3.2). A boundary
condition for (4.38) depends on the sign of b. If this problem is imposed on a bounded
interval (l1, l2), for example, only an inflow boundary condition is needed. That is, p is
given at l1 if b > 0, and it is given at l2 if b < 0. For brevity of presentation, we consider
problem (4.38) over the entire real line R. Of course, in any case, an initial condition must
be given:

p(x, 0) = p0(x).
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x

t

(xi,t
n+1)

Figure 4.8. Characteristics for problem (4.38) when b < 0.

Explicit schemes

We consider an explicit scheme for problem (4.38):

pn+1
i − pni

�t
+ b

pni+1 − pni

h
= 0, (4.39)

which is consistent with (4.38) (cf. Exercise 4.7). The amplification factor γ (cf. Section
4.1.7 and Exercise 4.8) for (4.39) satisfies

γ = 1 + b�t

h
(1 − cos(kh))− ī

b�t

h
sin(kh).

In the case b > 0, |γ | > 1 (cf. Exercise 4.9). Thus, by the von Neumann criterion for
stability, the difference scheme (4.39) is always unstable. In the case b < 0, it can be
checked (cf. Exercise 4.10) that scheme (4.39) is stable, provided that

|b|�t
h

≤ 1. (4.40)

This is the Courant–Friedrichs–Lewy (CFL) condition. That is, scheme (4.39) is condition-
ally stable if b < 0.

It is not surprising that scheme (4.39) is a good choice for problem (4.38) when b < 0,
and a bad choice when b > 0. When b < 0, the characteristic for (4.39) through any point
runs down to the right towards the x-axis (cf. Figure 4.8). Scheme (4.39) must then follow
back in the same direction. For this reason, when b > 0, a good choice for (4.38) is

pn+1
i − pni

�t
+ b

pni − pni−1

h
= 0. (4.41)

In fact, when b > 0, it can be seen (cf. Exercise 4.11) that scheme (4.41) is stable under
condition (4.40). (It is always unstable for b < 0.)

The explicit difference schemes (4.39) and (4.41) are one-sided. Based on the stability
analysis above, only the upwind versions are conditionally stable.

There are other difference schemes for solving problem (4.38). The centered scheme
in space is

pn+1
i − pni

�t
+ b

pni+1 − pni−1

2h
= 0. (4.42)



“chenb
2006/2
page 91

�

�

�

�

�

�

�

�

4.1. Finite Difference Methods 91

This scheme yields the amplification factor γ (cf. Exercise 4.12)

γ = 1 − ī
b�t

h
sin(kh).

Since |γ |2 = 1 + b2(�t)2 sin2(kh)/h2 ≥ 1, we see that scheme (4.42) is always unstable.

Implicit schemes

A stability analysis analogous to that in the explicit case shows that one-sided stable fully
implicit difference schemes must be upwind. When b < 0, the upwind implicit scheme is

pn+1
i − pni

�t
+ b

pn+1
i+1 − pn+1

i

h
= 0, (4.43)

and when b > 0, it is
pn+1
i − pni

�t
+ b

pn+1
i − pn+1

i−1

h
= 0. (4.44)

Scheme (4.43) has the amplification factor γ (cf. Exercise 4.13)

γ =
(

1 − b�t

h
(1 − cos(kh))+ ī

b�t

h
sin(kh)

)−1

,

and thus

|γ |2 =
(

1 − 4
b�t

h
sin2

(
kh

2

)(
1 − b�t

h

))−1

≤ 1 if b < 0.

Hence scheme (4.43) is unconditionally stable when b < 0. A similar argument can be used
to prove that scheme (4.44) has the same stability property when b > 0.

Now, we consider a fully implicit analogue to scheme (4.42):

pn+1
i − pni

�t
+ b

pn+1
i+1 − pn+1

i−1

2h
= 0. (4.45)

The amplification factor γ of this scheme is (cf. Exercise 4.14)

γ =
(

1 + ī
b�t

h
sin(kh)

)−1

,

which satisfies |γ | ≤ 1. Therefore, scheme (4.45) is unconditionally stable, in contrast with
the always unstable scheme (4.42). A centered scheme in time (e.g., the Crank–Nicholson
scheme) can be also defined for the solution of problem (4.38) (cf. Exercises 4.15–4.17).

Numerical dispersion

The local truncation error associated with the upwind version of the difference scheme
(4.39) for problem (4.38) with b < 0 is (cf. Exercise 4.18)

Rni = −bh
2

∂2p

∂x2
(xi, t

n)− �t

2

∂2p

∂t2
(xi, t

n)+ O(h2)+ O((�t)2). (4.46)
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Differentiation of (4.38) with respect to t gives

∂2p

∂t2
= −b ∂

2p

∂x∂t
,

and differentiation with respect to x yields

∂2p

∂x∂t
= −b∂

2p

∂x2
.

Consequently,
∂2p

∂t2
= b2 ∂

2p

∂x2
,

which is substituted into (4.46) to give

Rni = −bh
2

(
1 + b�t

h

)
∂2p

∂x2
(xi, t

n)+ O(h2)+ O((�t)2). (4.47)

This is the local truncation error associated with scheme (4.39).
By definition (4.26) of the local truncation error, (4.47) can be written as

pn+1
i − pni

�t
+ b

pni+1 − pni

h
=
{
∂p

∂t
+ b

∂p

∂x
+ anum

∂2p

∂x2

}
(xi, t

n)

+ O(h2)+ O((�t)2), (4.48)

where

anum = bh

2

(
1 + b�t

h

)
. (4.49)

Therefore, we are, in fact, solving the difference equation (4.39) for the diffusion-convection
problem

∂p

∂t
+ b

∂p

∂x
+ anum

∂2p

∂x2
= 0,

rather than for the pure hyperbolic problem (4.38). That is, the truncation error of (4.39)
includes the numerical dispersion term anum.

If we consider the diffusion-convection problem

∂p

∂t
+ b

∂p

∂x
− a

∂2p

∂x2
= 0, a > 0,

and develop a difference scheme similar to (4.39), then the above truncation error analysis
indicates that the solution of the resulting difference equation will be associated with the
problem

∂p

∂t
+ b

∂p

∂x
− (a − anum)

∂2p

∂x2
= 0.

When the physical diffusion coefficient a is small, a serious problem arises. If numerical
dispersion is severe (it is frequently so), anum can easily dominate a. Consequently, the
numerical dispersion swamps the physical dispersion, leading to a sharp front being severely
smeared (cf. Exercise 4.20). The solution of hyperbolic problems using finite element
methods will be discussed in Sections 4.4 and 4.6. In particular, the characteristic finite
element methods introduced in Section 4.6 reduce numerical dispersion.
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Figure 4.9. A five-point finite difference example.

4.1.9 Grid orientation effects

Another drawback of finite difference methods is that the solution of a partial differential
problem using these methods heavily depends on spatial orientations of a computational
grid, known as grid orientation effects. In petroleum reservoir simulation, this means that
drastically different predictions from simulators can be obtained from different grid orien-
tations.

If an upwind technique is used as in (4.39) for a two-dimensional counterpart, the
resulting numerical dispersion is related to the quantity (cf. (4.49))

h1

2

∂2p

∂x2
1

+ h2

2

∂2p

∂x2
2

,

which is not rotationally invariant and is thus directionally dependent. When modeling
multiphase flow with a high mobility ratio (mainly due to a large viscosity ratio), once a
preferential flow pattern has been established, the greater mobility of the less viscous fluid
causes this flow path to dominate the flow pattern. With the five-point (in two space dimen-
sions) or seven-point (in three dimensions) finite difference stencil scheme, preferred flow
paths are established along the coordinate directions (cf. Figure 4.9, where a two-phase flow
example is shown; cf. Exercise 4.1 and Chapter 7). Then the use of an upwind stabilizing
technique greatly enhances flow in these preferred directions. This grid orientation effect is
dramatic in cases with very high mobility ratios. Therefore, different discretization methods
and gridding techniques must be introduced.
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4.2 Standard Finite Element Methods
4.2.1 Finite element methods for stationary problems

The exposition in this section has two purposes: to introduce the terminology and to sum-
marize the basic ingredients that are required for the development of finite element methods.

A one-dimensional model problem

As an introduction, we consider a stationary problem in one dimension

−d
2p

dx2
= f (x), 0 < x < 1,

p(0) = p(1) = 0,
(4.50)

where f is a given real-valued piecewise continuous bounded function. Note that (4.50) is
a two-point boundary value problem (e.g., a one-dimensional elliptic pressure equation).

As shown in the previous section, finite difference methods for (4.50) involve replacing
the second derivative by a difference quotient that involves the values of p at certain points.
The discretization of (4.50) using finite element methods is different. These methods start by
rewriting (4.50) in an equivalent variational formulation. For this, we introduce the scalar
product

(v,w) =
∫ 1

0
v(x)w(x) dx

for real-valued piecewise continuous bounded functions v and w, and we define the linear
space

V =
{
v : v is a continuous function on [0, 1], dv

dx
is piecewise

continuous and bounded on (0, 1), and v(0) = v(1) = 0

}
.

We also define the functional F : V → R

F(v) = 1

2

(
dv

dx
,
dv

dx

)
− (f, v), v ∈ V,

where R is the set of real numbers. At the end of this subsection it will be shown that finding
p for (4.50) is equivalent to the minimization problem

Find p ∈ V such that F(p) ≤ F(v) ∀v ∈ V. (4.51)

Problem (4.51) is a Ritz variational form of (4.50).
In terms of computation, (4.50) can be expressed in a more useful, direct formulation.

Multiplying the first equation of (4.50) by any v ∈ V , called a test function, and integrating
over (0, 1), we see that

−
(
d2p

dx2
, v

)
= (f, v).
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10
x

v

x xi−1 i

Figure 4.10. An illustration of a function v ∈ Vh.

Application of integration by parts to this equation yields(
dp

dx
,
dv

dx

)
= (f, v), (4.52)

where we use the fact that v(0) = v(1) = 0 from the definition of V . Equation (4.52) is
called a Galerkin variational or weak form of (4.50). If p is a solution to (4.50), then it also
satisfies (4.52). The converse also holds if d2p/dx2 exists and is piecewise continuous and
bounded in (0, 1), for example (cf. Exercise 4.21). It can be seen that (4.51) and (4.52) are
equivalent (see the end of this subsection).

We now construct finite element methods for solving (4.50). Toward that end, for a
positive integer M , let 0 = x0 < x1 < · · · < xM < xM+1 = 1 be a partition of (0, 1) into
a set of subintervals Ii = (xi−1, xi) with length hi = xi − xi−1, i = 1, 2, . . . ,M + 1. Set
h = max{hi : i = 1, 2, . . . ,M + 1}. The step size h measures how fine the partition is.
Define the finite element space

Vh = {v : v is a continuous function on [0, 1], v is linear

on each subinterval Ii, and v(0) = v(1) = 0}.
See Figure 4.10 for an illustration of a function v ∈ Vh. Note that Vh ⊂ V (i.e., Vh is a
subspace of V ).

The discrete version of (4.51) is

Find ph ∈ Vh such that F(ph) ≤ F(v) ∀v ∈ Vh. (4.53)

Method (4.53) is referred to as the Ritz finite element method. In the same manner as for
(4.52) (see the end of this subsection), (4.53) is equivalent to the problem

Find ph ∈ Vh such that

(
dph

dx
,
dv

dx

)
= (f, v) ∀v ∈ Vh. (4.54)

This is usually termed the Galerkin finite element method.
It is easy to see that (4.54) has a unique solution. In fact, let f = 0, and take v = ph

in (4.54) to give (
dph

dx
,
dph

dx

)
= 0,

so ph is a constant. It follows from the boundary condition in Vh that ph = 0.
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ϕ

x x xi−1 i+1i

i1

Figure 4.11. A basis function in one dimension.

We introduce the basis functions ϕi ∈ Vh, i = 1, 2, . . . ,M ,

ϕi(xj ) =
{

1 if i = j,

0 if i �= j.

That is, ϕi is a continuous piecewise linear function on [0, 1] such that its value is one at
node xi and zero at other nodes (cf. Figure 4.11). It is called a hat or chapeau function.
Any function v ∈ Vh has the unique representation

v(x) =
M∑
i=1

viϕi(x), 0 ≤ x ≤ 1,

where vi = v(xi). For each j , take v = ϕj in (4.54) to see that(
dph

dx
,
dϕj

dx

)
= (f, ϕj ) , j = 1, 2, . . . ,M. (4.55)

Set

ph(x) =
M∑
i=1

piϕi(x), pi = ph(xi),

and substitute it into (4.55) to give

M∑
i=1

(
dϕi

dx
,
dϕj

dx

)
pi = (f, ϕj ) , j = 1, 2, . . . ,M. (4.56)

This is a linear system ofM algebraic equations in theM unknowns p1, p2, . . . , pM . It can
be written in matrix form as

Ap = f, (4.57)

where the matrix A and vectors p and f are given by

A =


a11 a12 . . . a1M

a21 a22 . . . a2M

...
...

. . .
...

aM1 aM2 . . . aMM

 , p =


p1

p2

...

pM

 , f =


f1

f2

...

fM
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with

aij =
(
dϕi

dx
,
dϕj

dx

)
, fj = (f, ϕj ) , i, j = 1, 2, . . . ,M.

The matrix A is referred to as the stiffness matrix, and f is the source vector.
By the definition of the basis functions,(

dϕi

dx
,
dϕj

dx

)
= 0 if |i − j | ≥ 2,

so A is tridiagonal; i.e., only the entries on the main diagonal and the adjacent diagonals
may be nonzero. In fact, the entries aij can be calculated as follows:

aii = 1

hi
+ 1

hi+1
, ai−1,i = − 1

hi
, ai,i+1 = − 1

hi+1
.

Also, it can be seen that A is symmetric, aij = aji , and positive definite,

ηTAη =
M∑

i,j=1

ηiaij ηj > 0 for all nonzero η ∈ R
M,

where ηT denotes the transpose of η. Because a positive definite matrix is nonsingular, the
linear system (4.57) has a unique solution. Consequently, we have shown that (4.54) has a
unique solution ph ∈ Vh in a different way.

The symmetry of A can be seen from the definition of aij . The positive definiteness
can be checked as follows: with

η =
M∑
i=1

ηiϕi ∈ Vh, ηT = (η1, η2, . . . , ηM),

we see that

M∑
i,j=1

ηiaij ηj =
M∑

i,j=1

ηi

(
dϕi

dx
,
dϕj

dx

)
ηj

=
 M∑
i=1

ηi
dϕi

dx
,

M∑
j=1

ηj
dϕj

dx

 =
(
dη

dx
,
dη

dx

)
≥ 0.

As for (4.54), the equality holds only for η ≡ 0 since a constant function η must be zero
because of the boundary condition.

We remark that A is sparse; that is, only a few entries in each row of A are nonzero.
In the present one-dimensional case, it is tridiagonal. The sparsity of A depends upon the
fact that a basis function in Vh is different from zero only on a few intervals; that is, it
has compact support. Thus it interferes with only a few other basis functions. That basis
functions can be chosen in this manner is an important distinctive property of finite element
methods.
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In the case where the partition is uniform, i.e., h = hi , i = 1, 2, . . . ,M + 1, the
stiffness matrix A takes the form

A = 1

h



2 −1 0 . . . 0 0

−1 2 −1 . . . 0 0

0 −1 2 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 2 −1

0 0 0 . . . −1 2


.

With division by h in A, (4.54) can be thought of as a variant of the central difference scheme
where the right-hand side consists of mean values of f ϕj over the interval (xj−1, xj+1) (cf.
Section 4.1.5).

In general, the derivation of an error estimate for finite element methods is very
technical. Here we briefly indicate how to obtain an estimate in one dimension. Subtract
(4.54) from (4.52) to get (

dp

dx
− dph

dx
,
dv

dx

)
= 0 ∀v ∈ Vh. (4.58)

We introduce the notation

‖v‖ = (v, v)1/2 =
(∫ 1

0
v2 dx

)1/2

.

This is a norm associated with the scalar product (·, ·). We use the Cauchy inequality (cf.
Exercise 4.23)

|(v,w)| ≤ ‖v‖ ‖w‖. (4.59)

Note that, using (4.58), for any v ∈ Vh we see that∥∥∥∥dpdx − dph

dx

∥∥∥∥2

=
(
dp

dx
− dph

dx
,
dp

dx
− dph

dx

)
=
(
dp

dx
− dph

dx
,

[
dp

dx
− dv

dx

]
+
[
dv

dx
− dph

dx

])
=
(
dp

dx
− dph

dx
,
dp

dx
− dv

dx

)
,

and thus, by (4.59), ∥∥∥∥dpdx − dph

dx

∥∥∥∥ ≤
∥∥∥∥dpdx − dv

dx

∥∥∥∥ ∀v ∈ Vh. (4.60)

This equation implies that ph is the best possible approximation of p in Vh in terms of the
norm in (4.60).

To obtain an error bound, we take v in (4.60) to be the interpolant p̃h ∈ Vh of p; i.e.,
p̃h is defined by

p̃h(xi) = p(xi), i = 0, 1, . . . ,M + 1. (4.61)
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It is an easy exercise (cf. Exercise 4.24) to see that, for x ∈ [0, 1],

|(p − p̃h) (x)| ≤ h2

8
max
y∈[0,1]

∣∣∣∣d2p(y)

dx2

∣∣∣∣ ,∣∣∣∣(dpdx − dp̃h

dx

)
(x)

∣∣∣∣ ≤ h max
y∈[0,1]

∣∣∣∣d2p(y)

dx2

∣∣∣∣ .
(4.62)

With v = p̃h in (4.60) and the second equation of (4.62), we obtain∥∥∥∥dpdx − dph

dx

∥∥∥∥ ≤ h max
y∈[0,1]

∣∣∣∣d2p(y)

dx2

∣∣∣∣ . (4.63)

Using the fact that p(0)− ph(0) = 0, we have

p(x)− ph(x) =
∫ x

0

(
dp

dx
− dph

dx

)
(y) dy, x ∈ [0, 1],

which, together with (4.63), implies

|p(x)− ph(x)| ≤ h max
y∈[0,1]

∣∣∣∣d2p(y)

dx2

∣∣∣∣ , x ∈ [0, 1]. (4.64)

Note that (4.64) is less sharp in h than the first estimate in (4.62) for the interpolation error.
With a more delicate analysis, we can show that the first error estimate in (4.62) holds for
ph as well as p̃h. In fact, it can be shown that ph = p̃h (cf. Exercise 4.25), which is true
only for one dimension.

In summary, we have obtained the quantitative estimates in (4.63) and (4.64), which
show that the approximate solution of (4.54) approaches the exact solution of (4.50) as h
goes to zero. This implies convergence of the finite element method (4.54) (cf. Section
4.1.7).

Now, we consider the equivalence between (4.51) and (4.52). Let p be a solution of
(4.51). Then, for any v ∈ V and any ε ∈ R, we have

F(p) ≤ F(p + εv).

With the definition

G(ε) = F(p + εv)

= 1

2

(
dp

dx
,
dp

dx

)
+ ε

(
dp

dx
,
dv

dx

)
+ ε2

2

(
dv

dx
,
dv

dx

)
− ε(f, v)− (f, p),

we see that G has a minimum at ε = 0, so dG
dε
(0) = 0. Since

dG

dε
(0) =

(
dp

dx
,
dv

dx

)
− (f, v),
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p is a solution of (4.52). Conversely, suppose that p is a solution of (4.52). With any v ∈ V ,
set w = v − p ∈ V ; we find that

F(v) = F(p + w) = 1

2

(
d(p + w)

dx
,
d(p + w)

dx

)
− (f, p + w)

= 1

2

(
dp

dx
,
dp

dx

)
− (f, p)+

(
dp

dx
,
dw

dx

)
− (f,w)+ 1

2

(
dw

dx
,
dw

dx

)
= 1

2

(
dp

dx
,
dp

dx

)
− (f, p)+ 1

2

(
dw

dx
,
dw

dx

)
≥ F(p),

which implies that p is a solution of (4.51). Because of the equivalence between (4.50) and
(4.52), (4.51) is also equivalent to (4.50).

A two-dimensional model problem

In this subsection, we consider a stationary problem in two dimensions:

−�p = f in �,

p = 0 on �,
(4.65)

where � is a bounded domain in the plane with boundary �, f is a given real-valued
piecewise continuous bounded function in �, and the Laplacian operator � is defined by

�p = ∂2p

∂x2
1

+ ∂2p

∂x2
2

.

We introduce the linear space

V =
{
v : v is a continuous function on �,

∂v

∂x1
and

∂v

∂x2
are

piecewise continuous and bounded on �, and v = 0 on �

}
.

Let us recall Green’s formula. For a vector-valued function b = (b1, b2), the divergence
theorem reads ∫

�

∇ · b dx =
∫
�

b · ν d�, (4.66)

where the divergence operator is given by

∇ · b = ∂b1

∂x1
+ ∂b2

∂x2
,

ν is the outward unit normal to �, and the dot product b · ν is

b · ν = b1ν1 + b2ν2.

With v, w ∈ V , we take b = ( ∂v
∂x1
w, 0) and b = (0, ∂v

∂x2
w) in (4.66), respectively, to see

that ∫
�

∂2v

∂x2
i

w dx +
∫
�

∂v

∂xi

∂w

∂xi
dx =

∫
�

∂v

∂xi
wνi d�, i = 1, 2. (4.67)
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Using the definition of the gradient operator, i.e.,

∇v =
(
∂v

∂x1
,
∂v

∂x2

)
,

we sum over i = 1, 2 in (4.67) to obtain∫
�

�v w dx =
∫
�

∂v

∂ν
w d�−

∫
�

∇v · ∇w dx, (4.68)

where the normal derivative is

∂v

∂ν
= ∂v

∂x1
ν1 + ∂v

∂x2
ν2.

Relation (4.68) is Green’s formula, and it also holds in three dimensions (cf. Exercise 4.26).
Introduce the notation

a(p, v) =
∫
�

∇p · ∇v dx, (f, v) =
∫
�

f v dx.

The form a(·, ·) is a bilinear form on V × V ; that is,

a(u, αv + βw) = αa(u, v)+ βa(u,w),

a(αu+ βv,w) = αa(u,w)+ βa(v,w)

for α, β ∈ R and u, v,w ∈ V . Also, define the functional F : V → R by

F(v) = 1

2
a(v, v)− (f, v), v ∈ V.

As in one dimension, (4.65) can be formulated as the minimization problem

Find p ∈ V such that F(p) ≤ F(v) ∀v ∈ V.
This problem is also equivalent to the variational problem (4.69) below, using the same
proof as for (4.51) and (4.52).

Multiplying the first equation of (4.65) by v ∈ V and integrating over �, we see that

−
∫
�

�p v dx =
∫
�

f v dx.

Applying (4.68) to this equation and using the homogeneous boundary condition leads to∫
�

∇p · ∇v dx =
∫
�

f v dx ∀v ∈ V.

Thus we derive the variational form

Find p ∈ V such that a(p, v) = (f, v) ∀v ∈ V. (4.69)

We now construct finite element methods for (4.65). For simplicity, in this section, we
assume that� is a polygonal domain. A curved domain� will be handled in Section 4.2.2.
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K

Figure 4.12. A finite element partition in two dimensions.

Let Kh be a partition, called a triangulation, of � into nonoverlapping (open) triangles Ki
(cf. Figure 4.12):

�̄ = K̄1 ∪ K̄2 ∪ · · · ∪ K̄M̄ ,
such that no vertex of one triangle lies in the interior of an edge of another triangle, where
�̄ represents the closure of � (i.e., �̄ = � ∪ �) and a similar meaning holds for each Ki .

For (open) triangles K ∈ Kh, we define the mesh parameters

diam(K) = the longest edge of K̄ and h = max
K∈Kh

diam(K).

Now, we introduce the finite element space

Vh = {v : v is a continuous function on �, v is linear

on each triangle K ∈ Kh, and v = 0 on �}.
Note that Vh ⊂ V . The finite element method for (4.65) is formulated as

Find ph ∈ Vh such that a(ph, v) = (f, v) ∀v ∈ Vh. (4.70)

Existence and uniqueness of a solution to (4.70) can be checked as for (4.54). Also, in the
same fashion as in the proof of the equivalence between (4.51) and (4.52), one can check
that (4.70) is equivalent to a discrete minimization problem:

Find ph ∈ Vh such that F(ph) ≤ F(v) ∀v ∈ Vh.
Denote the vertices (nodes) of the triangles in Kh by x1, x2, . . . , xM̃ . The basis func-

tions ϕi in Vh, i = 1, 2, . . . , M̃ , are defined by

ϕi(xj ) =
{

1 if i = j,

0 if i �= j.

The support of ϕi , i.e., the set of x where ϕi(x) �= 0, consists of the triangles with the
common node xi (cf. Figure 4.13). The function ϕi is also called a hat or chapeau function.

Let M be the number of interior vertices in Kh; for convenience, let the first M
vertices be the interior ones. As in the previous subsection, any function v ∈ Vh has the
unique representation

v(x) =
M∑
i=1

viϕi(x), x ∈ �,
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xi

ϕi

Figure 4.13. A basis function in two dimensions.

1 2 3 4 5

6

Figure 4.14. An example of a triangulation.

where vi = v(xi ). Due to the Dirichlet boundary condition, we can exclude the vertices on
the boundary of �.

In the same way as for (4.54), equation (4.70) can be written in matrix form (cf.
Exercise 4.27)

Ap = f, (4.71)

where, as before, the matrix A and the vectors p and f are

A = (aij ) , p = (pj ) , f = (fj )
with

aij = a
(
ϕi, ϕj

)
, fj = (f, ϕj ) , i, j = 1, 2, . . . ,M.

As in one dimension, it can be checked that the stiffness matrix A is symmetric positive
definite. In particular, it is nonsingular. Consequently, (4.71) and thus (4.70) have a unique
solution.

As an example, we consider the case where the domain is the unit square � =
(0, 1) × (0, 1) and Kh is the uniform triangulation of � as illustrated in Figure 4.14 with
the indicated enumeration of nodes. In this case, the matrix A has the form (cf. Exercise
4.28)
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A =



4 −1 0 0 . . . 0 −1 0 . . . 0 0

−1 4 −1 0 . . . 0 0 −1 . . . 0 0

0 −1 4 −1 . . . 0 0 0 . . . −1 0

0 0 −1 4 . . . 0 0 0 . . . 0 −1
...

...
...

...
. . .

...
...

...
. . .

...
...

0 0 0 0 . . . 4 −1 0 . . . 0 0

−1 0 0 0 . . . −1 4 −1 . . . 0 0

0 −1 0 0 . . . 0 −1 4 . . . 0 0
...

...
...

...
. . .

...
...

...
. . .

...
...

0 0 −1 0 . . . 0 0 0 . . . 4 −1

0 0 0 −1 . . . 0 0 0 . . . −1 4



.

Associated with the four corner nodes (e.g., node 1), there are only three nonzeros
per row; an adjacent diagonal entry for such a node (e.g., node 5) may be zero. For other
nodes adjacent to the boundary (e.g., node 2), there are solely four nonzeros per row. From
this form of A, the left-hand side of the ith equation in (4.71) is a linear combination of the
values of ph at most at the five nodes illustrated in Figure 4.15. After division by h2, system
(4.71) can be treated as a linear system generated by a five-point difference stencil scheme
for (4.65) (cf. Section 4.1.5).

In practical computations (see the programming consideration below), the entries aij
in A are obtained by summing the contributions from different triangles K ∈ Kh:

aij = a
(
ϕi, ϕj

) =
∑
K∈Kh

aK
(
ϕi, ϕj

)
,

where

aKij ≡ aK
(
ϕi, ϕj

) =
∫
K

∇ϕi · ∇ϕj dx. (4.72)

Using the definition of the basis functions, we see that aK
(
ϕi, ϕj

) = 0 unless nodes xi and
xj are both vertices of K . Thus A is sparse.

4−1

−1

−1

−1

Figure 4.15. A five-point stencil scheme.



“chenb
2006/2
page 10

�

�

�

�

�

�

�

�

4.2. Standard Finite Element Methods 105

As noted earlier, the derivation of an estimate is very delicate. By the same argument
as for (4.60), we have

‖∇p − ∇ph‖ ≤ ‖∇p − ∇v‖ ∀v ∈ Vh,
where p and ph are the respective solutions of (4.69) and (4.70), and we recall that ‖ · ‖ is
the norm

‖∇p‖ =
(∫

�

((
∂p

∂x1

)2

+
(
∂p

∂x2

)2
)
dx

)1/2

.

This implies that ph is the best possible approximation of p in Vh in terms of the norm
deduced from the bilinear form a(·, ·). Applying an approximation theorem (Chen, 2005),
we have

‖p − ph‖ + h ‖∇p − ∇ph‖ ≤ Ch2, (4.73)

where the constant C depends on the second partial derivatives of p and the smallest angle
of the triangles K ∈ Kh, but does not depend on h (Ciarlet, 1978; Chen, 2005). Error
estimate (4.73) indicates that if the solution is sufficiently smooth, ph tends to p in the norm
‖ · ‖ as h approaches zero.

An extension to general boundary conditions

We now extend the finite element methods to the stationary problem with the boundary
condition of the third kind

−�p = f in �,

bp + ∂p

∂ν
= g on �,

(4.74)

where b and g are given functions and ∂p/∂ν is the outward normal derivative. When b = 0,
the boundary condition is the second kind or Neumann condition. When b is infinite, the
boundary condition reduces to the first kind or Dirichlet condition, which was considered
in the previous subsection. A fourth kind of boundary condition (i.e., a periodic boundary
condition) will be considered in Section 4.6. In this subsection, we consider the case where
b is bounded.

Note that if b = 0 on�, Green’s formula (4.68) with (4.74) implies (cf. Exercise 4.30)∫
�

f dx +
∫
�

g d� = 0. (4.75)

For (4.74) to have a solution, the compatibility condition (4.75) must be satisfied. In this
case, p is unique only up to an additive constant.

Introducing the linear space

V =
{
v : v is a continuous function on �, and

∂v

∂x1
and

∂v

∂x2

are piecewise continuous and bounded on �

}
,
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and the notation

a(v,w) =
∫
�

∇v · ∇w dx +
∫
�

bvw d�, v, w ∈ V,

(f, v) =
∫
�

f v dx, (g, v)� =
∫
�

gv d�, v ∈ V,

on the same lines as in the previous subsection, problem (4.74) can be written (cf. Exercise
4.31) as

Find p ∈ V such that a(p, v) = (f, v)+ (g, v)� ∀v ∈ V. (4.76)

Note that the boundary condition in (4.74) is not imposed in the definition of V .
It appears implicitly in (4.76). A boundary condition that need not be imposed is called
a natural condition. The pure Neumann boundary condition is natural. The Dirichlet
boundary condition has been imposed explicitly in V earlier, and is termed an essential
condition.

If b ≡ 0, the definition of V needs to be modified to take into account the up-to-a-
constant uniqueness of solution to (4.74). That is, the space V can be modified to, say,

V =
{
v : v is a continuous function on �,

∂v

∂x1
and

∂v

∂x2

are piecewise continuous and bounded on �, and
∫
�

v dx = 0

}
.

To construct finite element methods for (4.74), letKh be a triangulation of� as in the
previous subsection. The finite element space Vh is

Vh = {v : v is a continuous function on � and

is linear on each triangle K ∈ Kh}.
Note that the functions in Vh are not required to satisfy any boundary condition. Now, the
finite element solution satisfies

Find ph ∈ Vh such that a(ph, v) = (f, v)+ (g, v)� ∀v ∈ Vh. (4.77)

Again, for the pure Neumann boundary condition, Vh must be modified to

Vh =
{
v : v is a continuous function on � and is linear

on each triangle K ∈ Kh, and
∫
�

v dx = 0

}
.

As in the last two subsections, (4.77) can be formulated in matrix form, and an error
estimate can be similarly stated under an appropriate smoothness assumption on the solution
p that involves its second partial derivatives.

The Poisson equation has been considered in (4.65) and (4.74). More general partial
differential equations will be treated in subsequent sections and chapters.
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Figure 4.16. Uniform refinement.

Programming considerations

The essential features of a typical computer program implementing the finite element method
are the following:

• Input of data such as the domain�, the right-hand side function f , the boundary data
b and g (cf. (4.74)), and the coefficients that may appear in a differential problem.

• Construction of the triangulation Kh.

• Computation and assembly of the stiffness matrix A and the right-hand side vector f .

• Solution of the linear system of algebraic equations Ap = f .

• Output of the computational results.

The data input can be easily implemented in a small subroutine, and the result output depends
on the computer system and software used. Here we briefly discuss the other three parts.
As an illustration, we focus on two dimensions.

(i) Construction of the triangulation Kh

The triangulation Kh can be constructed from a successive refinement of an initial coarse
partition of�; fine triangles can be obtained by connecting the midpoints of edges of coarse
triangles, for example. A sequence of uniform refinements leads to quasi-uniform grids
where the triangles inKh essentially have the same size in all regions of� (cf. Figure 4.16).
If the boundary � of � is a curve, special care needs to be taken near � (cf. Section 4.2.2).

In practical applications, it is often necessary to use triangles in Kh that vary con-
siderably in size in different regions of �. For example, one utilizes smaller triangles in
regions where the exact solution has a fast variation or where its certain derivatives are large
(cf. Figure 4.17, where a local refinement strategy is carried out). In this strategy, proper
care is taken in the transition zone between regions with triangles of different sizes so that a
regular local refinement results (i.e, no vertex of one triangle lies in the interior of an edge
of another triangle; see Section 4.7). Methods that automatically refine grids where needed
are called adaptive methods, and will be studied in detail in Section 4.7.

Let a triangulation Kh have M nodes and M triangles. The triangulation can be
represented by two arrays Z(2,M) and Z(3,M), where Z(i, j) (i = 1, 2) indicates the
coordinates of the j th node, j = 1, 2, . . . ,M , and Z(i, k) (i = 1, 2, 3) enumerates the
nodes of the kth triangle, k = 1, 2, . . . ,M. An example is given in Figure 4.18, where
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Figure 4.17. Nonuniform refinement.

1
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3
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5
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9

10
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1

2

3

4

5

6

7

8

9

10

11

Figure 4.18. Node and triangle enumeration.

the triangle numbers are in circles. For this example, the array Z(3,M) has the form, where
M = M = 11,

Z =
 1 1 2 3 4 4 5 6 7 7 8

2 4 5 4 5 7 9 7 9 10 10

4 3 4 6 7 6 7 8 10 8 11

 .
If a direct method (Gaussian elimination) is employed to solve the linear system

Ap = f , the nodes should be enumerated in such a way that the bandwidth of each row in
A is as small as possible. This matter will be studied in the next chapter, in connection with
the discussion of solution algorithms for linear systems.

In general, when local refinement is involved in a triangulationKh, it is very difficult
to enumerate the nodes and triangles efficiently; some strategies will be given in Section
4.7. For a simple domain � (e.g., a convex polygonal �), it is rather easy to construct and
represent a triangulation that utilizes uniform refinement in the whole domain.

(ii) Assembly of the stiffness matrix

After the triangulation Kh is constructed, one computes the element stiffness matrices with
entries aKij given by (4.72). We recall that aKij = 0 unless nodes xi and xj are both vertices
of K ∈ Kh.

For a kth triangle Kk , Z(m, k) (m = 1, 2, 3) are the numbers of the vertices of Kk ,
and the element stiffness matrix A(k) = (akmn)3m,n=1 is calculated as

akmn =
∫
Kk

∇ϕm · ∇ϕn dx, m, n = 1, 2, 3,
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where the (linear) basis function ϕm over Kk satisfies

ϕm(xZ(n,k)) =
{

1 if m = n,

0 if m �= n.

The right-hand side f over Kk is computed by

f km =
∫
Kk

f ϕm dx, m = 1, 2, 3.

Note that m and n are the local numbers of the three vertices of Kk , while i and j used in
(4.72) are the global numbers of vertices in Kh.

To assemble the global matrix A = (aij ) and the right-hand-side vector f = (fj ), one
loops over all triangles Kk and successively adds the contributions from different Kk’s:

For k = 1, 2, . . . ,M, compute

aZ(m,k),Z(n,k) = aZ(m,k),Z(n,k) + akmn,

fZ(m,k) = fZ(m,k) + f km, m, n = 1, 2, 3.

The approach used is element-oriented; that is, we loop over elements (i.e., triangles).
Experience shows that this approach is more efficient than the node-oriented approach (i.e.,
looping over all nodes); the latter approach wastes much time in repeated computations of
A and f .

(iii) Solution of a linear system

The solution of the linear system Ap = f can be performed via a direct algorithm (Gaussian
elimination) or an iterative algorithm (e.g., the conjugate gradient algorithm), which will be
discussed in the next chapter. Here we just mention that in using these two algorithms, it is
not necessary to exploit an array A(M,M) to store the stiffness matrix A. Instead, since A
is sparse and usually a banded matrix, only the nonzero entries of A need to be stored, say,
in a one-dimensional array.

Finite element spaces

In the previous subsections, we have considered the finite element space of piecewise linear
functions. Here we describe more general finite element spaces.

(i) Triangles

We first treat the case where � ⊂ R
2 is a polygonal domain in the plane. Let Kh be a

triangulation of � into triangles K as earlier. We introduce the notation

Pr(K) = {v : v is a polynomial of degree at most r on K} ,
where r = 0, 1, 2, . . . . For r = 1, P1(K) is the space of linear functions, used previously,
of the form

v(x) = v00 + v10x1 + v01x2, x = (x1, x2) ∈ K, v ∈ P1(K),
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K

m

m

m
1 2

3

Figure 4.19. The element degrees of freedom for P1(K).

where vij ∈ R, i, j = 0, 1. Note that dim(P1(K)) = 3; i.e., its dimension is three.
For r = 2, P2(K) is the space of quadratic functions on K:

v(x) = v00 + v10x1 + v01x2 + v20x
2
1 + v11x1x2 + v02x

2
2 , v ∈ P2(K),

where vij ∈ R, i, j = 0, 1, 2. We see that dim(P2(K)) = 6.
In general, we have

Pr(K) =
v : v(x) =

∑
0≤i+j≤r

vij x
i
1x
j

2 , x ∈ K, vij ∈ R

 , r ≥ 0,

so

dim(Pr(K)) = (r + 1)(r + 2)

2
.

Example 4.1. Define

Vh = {v : v is continuous on � and v|K ∈ P1(K), K ∈ Kh} ,
where v|K represents the restriction of v toK . As parameters, or global degrees of freedom,
to describe the functions in Vh, we use the values at the vertices (nodes) of Kh. To see that
this is a legitimate choice, for each triangleK ∈ Kh, let its vertices be indicated by m1, m2,
and m3 (cf. Figure 4.19). Also, let the (local) basis functions of P1(K) be λi , i = 1, 2, 3,
which are defined by

λi(mj ) =
{

1 if i = j,

0 if i �= j,
i, j = 1, 2, 3.

These basis functions can be determined in the following approach: Let an equation of the
straight line through the vertices m2 and m3 be given by

c0 + c1x1 + c2x2 = 0,

and then define
λ1(x) = γ (c0 + c1x1 + c2x2), x = (x1, x2),

where the constant γ is chosen such that λ1(m1) = 1. The functions λ2 and λ3 can be
determined in the same approach. These functions λ1, λ2, and λ3 are sometimes called the
barycentric coordinates of a triangle. If K is the reference triangle with vertices (1, 0),
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Figure 4.20. The element degrees of freedom for P2(K).

(0, 1), and (0, 0), then λ1, λ2, and λ3 are, respectively, x1, x2, and 1 − x1 − x2. Now, any
function v ∈ P1(K) has the unique representation

v(x) =
3∑
i=1

v(mi )λi(x), x ∈ K.

Thus v ∈ P1(K) is uniquely determined by its values at the three vertices. Therefore, on
each triangle K ∈ Kh, the degrees of freedom, element degrees of freedom, can be these
(nodal) values. These degrees of freedom are the global degrees of freedom and were used
to construct the basis functions in Vh before.

For v such that v|K ∈ P1(K), K ∈ Kh, if it is continuous at internal vertices, then
v ∈ C0(�̄) (Chen, 2005), where C0(�̄) is the set of continuous functions on �̄.

Example 4.2. Let

Vh = {v : v is continuous on � and v|K ∈ P2(K), K ∈ Kh} .
Namely, Vh is the space of continuous piecewise quadratic functions. The global degrees of
freedom of a function v ∈ Vh are chosen by the values of v at the vertices and the midpoints
of edges in Kh. It can be shown that v is uniquely defined by these degrees of freedom
(Chen, 2005). For eachK ∈ Kh, the element degrees of freedom are shown in Figure 4.20,
where the midpoints of edges of K are denoted by mij , i < j , i, j = 1, 2, 3.

It can be seen (cf. Exercise 4.32) that a function v ∈ P2(K) has the representation

v(x) =
3∑
i=1

v(mi )λi(x)
(
2λi(x)− 1

)
+

3∑
i,j=1; i<j

4v(mij )λi(x)λj (x), x ∈ K.
(4.78)

Also, as in Example 4.1, one can prove that if v is continuous at the internal vertices and
midpoints of edges and v ∈ P2(K), K ∈ Kh, then v ∈ C0(�̄) (Chen, 2005).

Example 4.3. Set

Vh = {v : v is continuous on � and v|K ∈ P3(K), K ∈ Kh} .
That is, Vh is the space of continuous piecewise cubic functions. LetK ∈ Kh have vertices
mi , i = 1, 2, 3. Define, for i, j = 1, 2, 3, i �= j ,

m0 = 1

3
(m1 + m2 + m3) , mi,j = 1

3

(
2mi + mj

)
,
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Figure 4.21. The element degrees of freedom for P3(K).
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Figure 4.22. The second set of degrees of freedom for P3(K).

where m0 is the center of gravity of K (centroid); see Figure 4.21. It can be proven that a
function v ∈ P3(K) is uniquely determined by the values (Chen, 2005)

v (mi ), v (m0), v
(
mi,j

)
, i, j = 1, 2, 3, i �= j.

These values can be used as the degrees of freedom.
Example 4.4. The degrees of freedom for P3(K) (and thus for Vh) can be chosen in a

different way. A function v ∈ P3(K) is also uniquely defined by (cf. Figure 4.22)

v (mi ), v (m0),
∂v

∂xj
(mi ), i = 1, 2, 3, j = 1, 2.

The corresponding finite element space Vh ⊂ C0(�̄) is defined by

Vh =
{
v : v and

∂v

∂xi
(i = 1, 2) are continuous at

vertices of Kh; v|K ∈ P3(K), K ∈ Kh
}
.

We have considered the cases r ≤ 3. In general, for any r ≥ 1, we define

Vh = {v : v is continuous on � and v|K ∈ Pr(K), K ∈ Kh} .
A function v ∈ Pr(K) can be uniquely determined by its values at the three vertices, 3(r−1)
distinct points on the edges, and (r − 1)(r − 2)/2 interior points in K . The values at these
points can be employed as the degrees of freedom in Vh.
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Figure 4.23. The element degrees of freedom for Q1(K).

Figure 4.24. The element degrees of freedom for Q2(K).

(ii) Rectangles

We now consider the case where � is a rectangular domain and Kh is a partition of �
into nonoverlapping rectangles such that the horizontal and vertical edges of rectangles are
parallel to the x1- and x2-coordinate axes, respectively. We also require that no vertex of
any rectangle lie in the interior of an edge of another rectangle. We introduce the notation

Qr(K) =
v : v(x) =

r∑
i,j=0

vij x
i
1x
j

2 , x ∈ K, vij ∈ R

 , r ≥ 0.

Note that dim(Qr(K)) = (r + 1)2.
For r = 1, we define

Vh = {v : v is continuous on � and v|K ∈ Q1(K), K ∈ Kh} .

A function v ∈ Q1(K) is bilinear and of the form

v(x) = v00 + v10x1 + v01x2 + v11x1x2, x = (x1, x2) ∈ K, vij ∈ R.

As in the triangular case, it can be checked that v is uniquely determined by its values at the
four vertices ofK , which can be chosen as the degrees of freedom for Vh (cf. Figure 4.23).

For r = 2, define

Vh = {v : v is continuous on � and v|K ∈ Q2(K), K ∈ Kh} ,

where Q2(K) is the set of biquadratic functions on K . The degrees of freedom can be
chosen by the values of functions at the vertices, midpoints of edges, and center of each
rectangle (cf. Figure 4.24). Other cases r ≥ 3 can be analogously discussed.

The use of rectangles requires that the geometry of� be special. Thus it is of interest to
utilize more general quadrilaterals, which will be considered in Section 4.2.2, in connection
with isoparametric finite elements (cf. Exercise 4.33).
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Figure 4.25. The element degrees of freedom for P1(K) on a tetrahedron.

Figure 4.26. The element degrees of freedom for Q1(K) on a parallelepiped.

(iii) Three dimensions

Example 4.5. In three dimensions, for a polygonal domain� ⊂ R
3, letKh be a partition of

� into nonoverlapping tetrahedra such that no vertex of any tetrahedron lies in the interior
of an edge or face of another tetrahedron. For each K ∈ Kh and r ≥ 0, set

Pr(K) =
v : v(x) =

∑
0≤i+j+k≤r

vijkx
i
1x
j

2x
k
3 , x ∈ K, vijk ∈ R

 ,
where x = (x1, x2, x3) and

dim(Pr(K)) = (r + 1)(r + 2)(r + 3)

6
.

For r = 1, the function values of v ∈ P1(K) at the four vertices of K can be utilized as the
degrees of freedom (cf. Figure 4.25). Other cases r ≥ 2 can be also handled.

Example 4.6. Let � be a rectangular domain in R
3, and Kh be a partition of � into

nonoverlapping rectangular parallelepipeds such that the faces are parallel to the x1-, x2-,
and x3-coordinate axes, respectively. For each K ∈ Kh, the polynomials we use for Vh are
of the type

Qr(K) =
v : v(x) =

r∑
i,j,k=0

vijkx
i
1x
j

2x
k
3 , x ∈ K, vijk ∈ R

 , r ≥ 0.

Note that dim(Qr(K)) = (r + 1)3. For r = 1, the function values of v ∈ Q1(K) at the
eight vertices of K can be utilized as the degrees of freedom (cf. Figure 4.26).
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Figure 4.27. The element degrees of freedom for P1,1(K) on a prism.

Example 4.7. Let � ⊂ R
3 be a domain of the form � = G× [l1, l2], where G ⊂ R

2

and l1 and l2 are real numbers. LetKh be a partition of� into prisms such that their base is
a triangle in the (x1, x2)-plane with three vertical edges parallel to the x3-axis. Define Pl,r
to be the space of polynomials of degree l in the two variables x1 and x2 and of degree r in
the variable x3. That is, for each K ∈ Kh and l, r ≥ 0,

Pl,r (K) =
v : v(x) =

∑
0≤i+j≤l

r∑
k=0

vijkx
i
1x
j

2x
k
3 , x ∈ K, vijk ∈ R

 .
Note that dim(Pl,r (K)) = (l + 1)(l + 2)(r + 1)/2. For l = 1 and r = 1, the function
values of v ∈ P1,1(K) at the six vertices ofK can be utilized as the degrees of freedom (cf.
Figure 4.27).

In summary, a finite element is a triple (K, P (K),�K), whereK is a geometric object
(i.e., element), P(K) is a finite-dimensional linear space of functions on K , and �K is a
set of degrees of freedom such that a function v ∈ P(K) is uniquely defined by �K . For
instance, in Example 4.1,K is a triangle, P(K) = P1(K), and�K is the set of the values at
the vertices ofK . When�K includes the values of partial derivatives of functions, the finite
element is said to be of Hermite type, as in Examples 4.4. When all degrees of freedom are
given by function values, the finite element is called a Lagrange element.

Error estimates

For a bounded domain � in the plane, we define the space of square integrable functions
on �

L2(�) =
{
v : v is defined on � and

∫
�

v2 dx < ∞
}
.

This space is equipped with the scalar product

(v,w) =
∫
�

vw dx

and the corresponding norm (the L2(�)-norm)

‖v‖ ≡ ‖v‖L2(�) = (v, v)1/2.

To introduce other spaces used in this section, we define

Dαv = ∂ |α|v
∂x

α1
1 ∂x

α2
2

,
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where α = (α1, α2) is an index, with α1 and α2 nonnegative integers, and |α| = α1 + α2.
This notation indicates a partial derivative of v. For example, a second partial derivative can
be written as Dαv with α = (2, 0), α = (1, 1), or α = (0, 2). For r = 1, 2, . . . , we define

Hr(�) = {v ∈ L2(�) : Dαv ∈ L2(�) ∀|α| ≤ r
}

with the norm

‖v‖Hr(�) =
∑

|α|≤r

∫
�

|Dαv|2 dx

1/2

.

A seminorm is defined by

|v|Hr(�) =
∑

|α|=r

∫
�

|Dαv|2 dx

1/2

.

Namely, the functions inHr(�), together with their derivativesDαv of order |α| at most r ,
are square integrable. These are examples of Sobolev spaces (Adams, 1975). They can be
defined in three dimensions in the same fashion.

For h > 0, let Kh be a triangulation of � into triangles. For K ∈ Kh, as previously
we define the mesh parameters

hK = diam(K) = the longest edge of K̄, h = max
K∈Kh

diam(K).

We also need the quantity

ρK = the diameter of the circle inscribed in K.

We say that a triangulation is regular if there is a constant β1, independent of h, such that

hK

ρK
≤ β1 ∀K ∈ Kh. (4.79)

This condition says that the triangles inKh are not arbitrarily thin, or equivalently, the angles
of the triangles are not arbitrarily small. The constant β1 is a measure of the smallest angle
over all K ∈ Kh.

As an example of an error estimate, let us consider problem (4.65) and its discrete
version (4.70), where the finite element space Vh is

Vh = {v ∈ H 1(�) : v|K ∈ Pr(K), K ∈ Kh, and v
∣∣
�

= 0
}

for r ≥ 1. Then a typical error estimate is (Ciarlet, 1978; Chen, 2005)

‖p − ph‖H 1(�) ≤ Chr |p|Hr+1(�), (4.80)

where the constant C depends only on r and β1 in (4.79). To state an estimate in the L2(�)-
norm, we require that the polygonal domain � be convex; if � has a smooth boundary,
convexity is not required. In the convex case, we have

‖p − ph‖L2(�) ≤ Chr+1|p|Hr+1(�). (4.81)
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Γ

Figure 4.28. A polygonal line approximation of �.

K
K

m m

m

2

3

1

F

Figure 4.29. The mapping F.

These estimates are valid for other finite element spaces considered in this section, and are
optimal (i.e., the estimates with the largest power of h one can get between the exact solution
and its approximate solution). A proof of estimates (4.80) and (4.81) can be found in Chen
(2005).

4.2.2 General domains

In the construction of finite element spaces so far, we have assumed that the domain � is
polygonal. In this section, we consider the case where� is curved. For simplicity, we focus
on two space dimensions.

For a two-dimensional domain�, the simplest approximation�h for its curved bound-
ary � is a polygonal line (cf. Figure 4.28). The resulting error (the maximal distance from
� to �h) due to this approximation is of order O(h2), where h is the mesh size as usual
(cf. Exercise 4.34). To obtain a more accurate approximation, we can approximate � with
piecewise polynomials of degree r ≥ 2. The error in this approximation becomes O(hr+1).
In the partition of such an approximated domain, the elements closest to � then have at least
one curved edge.

As an example, let (K̂, P (K̂),�K̂) be a finite element, where K̂ is the reference tri-
angle with vertices m̂1 = (0, 0), m̂2 = (1, 0), and m̂3 = (0, 1) in the x̂-plane. Furthermore,
assume that this element is of the Lagrange type; that is, all degrees of freedom are defined
by the function values at certain points m̂i , i = 1, 2, . . . , l (cf. Section 4.2.1). Suppose that
F is a one-to-one mapping of K̂ onto a curved triangle K in the x-plane with inverse F−1;
i.e., K = F(K̂) (cf. Figure 4.29). Then we define

P(K) =
{
v : v(x) = v̂

(
F−1(x)

)
, x ∈ K, v̂ ∈ P(K̂)

}
,

�K consists of function values at mi = F(m̂i ), i = 1, 2, . . . , l.
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If F = (F1, F2) is of the same type as the functions in P(K), i.e., F1, F2 ∈ P(K),
then we say that the element (K, P (K),�K) is an isoparametric element. In general, F−1 is
not a polynomial, and thus the functions v ∈ P(K) for a curved element are not polynomials
either.

LetKh = {K} be a triangulation of� into “triangles,” where some of them may have
one or more curved edges, and let�h be the union of these triangles inKh. Note that�h is
an approximation of � with a piecewise smooth boundary. Now, the finite element space
Vh is

Vh = {v ∈ H 1(�h) : v|K ∈ P(K), K ∈ Kh
}
.

With this space, the finite element method can be defined as in (4.70) for the Poisson equation
(4.65), for example. Moreover, error estimates analogous to (4.80) and (4.81) hold.

We now consider the computation of a stiffness matrix. Let {ϕ̂i}li=1 be a basis of
P(K̂). We define

ϕi(x) = ϕ̂i
(
F−1(x)

)
, x ∈ K, i = 1, 2, . . . , l.

For (4.65), we need to compute (cf. Section 4.2.1)

aK(ϕi, ϕj ) =
∫
K

∇ϕi · ∇ϕj dx, i, j = 1, 2, . . . , l. (4.82)

It follows from the chain rule that

∂ϕi

∂xk
= ∂

∂xk

(
ϕ̂i
(
F−1(x)

)) = ∂ϕ̂i

∂x̂1

∂x̂1

∂xk
+ ∂ϕ̂i

∂x̂2

∂x̂2

∂xk

for k = 1, 2. Consequently, we see that

∇ϕi = G−T∇ϕ̂i ,
where G−T is the transpose of the Jacobian of F−1:

G−T =


∂x̂1

∂x1

∂x̂2

∂x1
∂x̂1

∂x2

∂x̂2

∂x2

 .
When we apply the change of variable F : K̂ → K to (4.82), we have

aK(ϕi, ϕj ) =
∫
K̂

(
G−T∇ϕ̂i

) · (G−T∇ϕ̂j
) |det G| dx̂ (4.83)

for i, j = 1, 2, . . . , l, where |det G| is the absolute value of the determinant of the Jacobian
G:

G =


∂x1

∂x̂1

∂x1

∂x̂2
∂x2

∂x̂1

∂x2

∂x̂2

 .
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Figure 4.30. An example of the mapping F.

Applying an algebraic computation, we see that

G−T = (G−1
)T = 1

det G
G′,

where

G′ =


∂x2

∂x̂2
−∂x2

∂x̂1

−∂x1

∂x̂2

∂x1

∂x̂1

 .
Hence (4.83) becomes

aK(ϕi, ϕj ) =
∫
K̂

(
G′∇ϕ̂i

) · (G′∇ϕ̂j
) 1

|det G| dx̂ (4.84)

for i, j = 1, 2, . . . , l. Therefore, the matrix entry aij onK can be calculated by either (4.83)
or (4.84). In general, it is difficult to evaluate these two integrals analytically. However, they
can be relatively easily evaluated using a numerical integration formula (or a quadrature
rule); see the next section for more details.

Now, we give an example of constructing the mapping F : K̂ → K . Let the reference
triangle K̂ have vertices m̂i , i = 1, 2, 3, and midpoints m̂i of the edges, i = 4, 5, 6.
Furthermore, let P(K̂) = P2(K̂) and let �K̂ be composed of the function values at m̂i ,
i = 1, 2, . . . , 6. Define the basis functions ϕ̂i ∈ P2(K̂) by

ϕ̂i(m̂j ) = δij , i, j = 1, 2, . . . , 6.

Also, let the points mi , i = 1, 2, . . . , 6, in the x-plane satisfy that m4 and m6 are the
midpoints of the line segments m1m2 and m1m3, respectively, and m5 is slightly displaced
from the line segment m2m3 (cf. Figure 4.30). We now define F by

F(x̂) =
6∑
i=1

mi ϕ̂i (x̂), x̂ ∈ K̂.

Clearly, mi = F(m̂i ), i = 1, 2, . . . , 6. Moreover, it can be shown that F is one-to-one for
sufficiently small hK (Johnson, 1994), i.e., for sufficiently fine triangulations near �.
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4.2.3 Quadrature rules

As mentioned previously, some integrals such as (4.83) and (4.84) can be evaluated only
approximately. We can use a quadrature rule of the type∫

K

g(x) dx ≈
m∑
i=1

wig(xi ), (4.85)

where wi > 0 are certain weights and the points xi are in the element K . If the quadrature
rule (4.85) is exact for polynomials of degree r ,∫

K

g(x) dx =
m∑
i=1

wig(xi ), g ∈ Pr(K), (4.86)

then the error in using (4.85) can be bounded by (Ciarlet and Raviart, 1972)∣∣∣∣∣
∫
K

g(x) dx −
m∑
i=1

wig(xi )

∣∣∣∣∣ ≤ Chr+1
K

∑
|α|=r+1

∫
K

|Dαg(x)| dx,

where r > 0; refer to Section 4.2.1 for the definition ofDαg. Several examples are presented
below, where r indicates the maximum degree of polynomials for which (4.86) holds.

Example 4.8. Let K be a triangle with vertices mi , midpoints mij , i, j = 1, 2, 3,
i < j , and the center of gravity m0. Also, let |K| indicate the area of K . Then we have∫

K

g(x) dx ≈ |K|g(m0), where r = 1,∫
K

g(x) dx ≈ |K|
3
(g(m12)+ g(m23)+ g(m13)) , where r = 2,

∫
K

g(x) dx ≈ |K|
{ 3∑
i=1

g(mi )

20
+ 9g(m0)

20

+ 2

15
(g(m12)+ g(m23)+ g(m13))

}
, where r = 3.

Example 4.9. Let K be a rectangle centered at the origin and with edges parallel to
the x1- and x2-coordinate axes of lengths 2h1 and 2h2, respectively. Then∫

K

g(x) dx ≈ |K|g(0), where r = 1,∫
K

g(x) dx ≈ |K|
4

{
g

(
h1√

3
,
h2√

3

)
+ g

(
h1√

3
,− h2√

3

)
+ g

(
− h1√

3
,
h2√

3

)
+ g

(
− h1√

3
,− h2√

3

)}
,

where r = 3.
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4.2.4 Finite element methods for transient problems

In this section, we briefly study the finite element method for a transient (parabolic) problem
in a bounded domain � ⊂ R

d , d ≥ 1:

φ
∂p

∂t
− ∇ · (a∇p) = f in �× J,

p = 0 on � × J,

p(·, 0) = p0 in �,

(4.87)

where J = (0, T ] (T > 0) is the time interval of interest and φ, f , a, and p0 are given
functions. The function φ is assumed to be nonnegative on �, and the tensor function a is
assumed to satisfy

0 < a∗ ≤ |η|2
d∑

i,j=1

aij (x)ηiηj ≤ a∗ < ∞, x ∈ �, η �= 0 ∈ R
d . (4.88)

We first present a semidiscrete approximation scheme where (4.87) is discretized only in
space using the finite element method. Then we consider fully discrete approximation
schemes where the time discretization is based on the backward Euler method, the forward
Euler method, and the Crank–Nicholson method, respectively. For more details on the finite
element method for transient problems, refer to Thomée (1984).

A one-dimensional model problem

To understand some of the major properties of the solution to problem (4.87), we consider
the one-dimensional version

∂p

∂t
− ∂2p

∂x2
= 0, 0 < x < π, t ∈ J,

p(0, t) = p(π, t) = 0, t ∈ J,
p(x, 0) = p0(x), 0 < x < π.

(4.89)

Application of separation of variables yields

p(x, t) =
∞∑
j=1

p
j

0e
−j 2t sin(jx), (4.90)

where the Fourier coefficients pj0 of the initial datum p0 are given by

p
j

0 =
√

2

π

∫ π

0
p0(x) sin(jx) dx, j = 1, 2, . . . .

Note that {√ 2
π

sin(jx)}∞
j=1 forms an orthonormal system in the sense that

2

π

∫ π

0
sin(jx) sin(kx) dx =

{
1 if j = k,

0 if j �= k.
(4.91)
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It follows from (4.90) that the solution p is a linear combination of sine waves sin(jx)
with amplitudes pj0e

−j 2t and frequencies j . Because e−j 2t is very small for j 2t moderately
large, each component sin(jx) lives on a time scale of order O(j−2). Consequently, high-
frequency components are quickly damped, and the solution p becomes smoother as t
increases. This property can be also understood from the following stability estimates:

‖p(t)‖L2(�) ≤ ‖p0‖L2(�), t ∈ J,∥∥∥∥∂p∂t (t)
∥∥∥∥
L2(�)

≤ C

t
‖p0‖L2(�), t ∈ J. (4.92)

We prove these two estimates formally (a proof that is not concerned with any of the
convergence questions). From (4.90) and (4.91) it follows that

‖p(t)‖2
L2(�) =

∫ π

0
(p(x, t))2 dx = π

2

∞∑
j=1

(
p
j

0

)2
e−2j 2t

≤ π

2

∞∑
j=1

(
p
j

0

)2 = ‖p0‖2
L2(�).

Also, note that
∂p

∂t
=

∞∑
j=1

p
j

0

(− j 2
)
e−j

2t sin(jx),

so that ∥∥∥∥∂p∂t (t)
∥∥∥∥2

L2(�)

= π

2

∞∑
j=1

(
p
j

0

)2 (− j 2
)2
e−2j 2t .

Using the fact that there is a constant C such that 0 ≤ γ 2e−γ ≤ C for any γ ≥ 0, we see
that ∥∥∥∥∂p∂t (t)

∥∥∥∥2

L2(�)

≤ C

t2
‖p0‖2

L2(�).

It follows from the second estimate in (4.92) that if ‖p0‖L2(�) < ∞, then∥∥∥∥∂p∂t (t)
∥∥∥∥
L2(�)

= O(t−1)

as t → 0. An initial phase (for t small) where certain derivatives of p are large is referred
to as an initial transient. In general, the solution p of a parabolic problem has an initial
transient. It will become smoother as t increases. This observation is very important when
the parabolic problem is numerically solved. It is desirable to vary the grid size (in space
and time) according to the smoothness of p. For a region where p is nonsmooth, a fine
grid is used; for a region where p becomes smoother, the grid size is increased. That is, an
adaptive finite element method should be employed; see Section 4.7. Transients may also
occur at times t > 0 if the boundary data or the source term f changes abruptly in time.
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A semidiscrete scheme in space

We now return to problem (4.87). For simplicity, we study a special case of this problem
where φ = 1. Set

V = H 1
0 (�) = {v ∈ H 1(�) : v∣∣

�
= 0
}
.

As in Section 4.2.1, we exploit the notation

a(p, v) =
∫
�

a∇p · ∇v dx, (f, v) =
∫
�

f v dx.

Then (4.87) is written in the variational form: Find p : J → V such that(
∂p

∂t
, v

)
+ a(p, v) = (f, v) ∀v ∈ V, t ∈ J,

p(x, 0) = p0(x) ∀x ∈ �.
(4.93)

Let Vh be a finite element subspace of V . Replacing V in (4.93) by Vh, we have the
finite element method: Find ph : J → Vh such that(

∂ph

∂t
, v

)
+ a(ph, v) = (f, v) ∀v ∈ Vh, t ∈ J,

(ph(·, 0), v) = (p0, v) ∀v ∈ Vh.
(4.94)

This system is discretized in space but continuous in time. For this reason, it is called a
semidiscrete scheme. Let the basis functions in Vh be denoted by ϕi , i = 1, 2, . . . ,M , and
express ph as

ph(x, t) =
M∑
i=1

pi(t)ϕi(x), (x, t) ∈ �× J. (4.95)

For j = 1, 2, . . . ,M , we take v = ϕj in (4.94) and utilize (4.95) to see that, for t ∈ J ,

M∑
i=1

(
ϕi, ϕj

) dpi
dt

+
M∑
i=1

a
(
ϕi, ϕj

)
pi = (f, ϕj ) , j = 1, 2, . . . ,M,

M∑
i=1

(
ϕi, ϕj

)
pi(0) = (p0, ϕj

)
, j = 1, 2, . . . ,M,

which, in matrix form, is

B
dp(t)
dt

+ Ap(t) = f(t), t ∈ J,
Bp(0) = p0,

(4.96)

where the M ×M matrices A and B and the vectors p, f , and p0 are

A = (aij ) , aij = a
(
ϕi, ϕj

)
,

B = (bij ) , bij = (ϕi, ϕj ) ,
p = (pj ) , f = (fj ) , fj = (f, ϕj ) ,
p0 = ((p0)j

)
, (p0)j = (p0, ϕj

)
.
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Both A and B are symmetric and positive definite, as was shown in the stationary case. Their
condition numbers are of the order O(h−2) and O(1) as h → 0 (Chen, 2005), respectively,
where we recall that for a symmetric matrix its condition number is defined as the ratio of
its largest eigenvalue to its smallest eigenvalue. For this reason, the matrices A and B are
referred to as the stiffness and mass matrices, respectively. Thus (4.96) is a stiff system of
ordinary differential equations (ODEs). To solve the ODE system we discretize the time
derivative. One approach is to exploit the numerical methods developed already for ODEs.
Because of the large number of simultaneous equations, however, simple numerical methods
for transient partial differential problems have been developed independent of the methods
for ODEs, as discussed in the next subsection.

We mention that the terms “stiffness” and “mass” really come by analogy to modeling
a mass-spring system. Matrix B would model the mass, while matrix A would model the
spring, which has a poor condition number when it is “stiff.”

We show a stability result for the semidiscrete scheme (4.94) with f = 0. We choose
v = ph(t) in the first equation of (4.94) to obtain(

∂ph

∂t
, ph

)
+ a(ph, ph) = 0,

which gives
1

2

d

dt
‖ph(t)‖2

L2(�) + a(ph, ph) = 0.

Also, take v = ph(0) in the second equation of (4.94) and use Cauchy’s inequality (4.59)
to see that

‖ph(0)‖L2(�) ≤ ‖p0‖L2(�).

Then it follows that

‖ph(t)‖2
L2(�) + 2

∫ t

0
a(ph(�), ph(�)) d� = ‖ph(0)‖2

L2(�) ≤ ‖p0‖2
L2(�).

Consequently, we obtain

‖ph(t)‖L2(�) ≤ ‖p0‖L2(�), t ∈ J. (4.97)

This inequality is similar to the first inequality in (4.92). In fact, the latter inequality can
be shown in the same manner. The derivation of an error estimate for (4.94) is much more
elaborate than that for a stationary problem. We just state an estimate for the case where Vh
is the space of piecewise linear functions on a quasi-uniform triangulation of� in the sense
that there is a positive constant β2, independent of h, such that

hK ≥ β2h ∀K ∈ Kh, (4.98)

where we recall that hK = diam(K), K ∈ Kh, and h = max{hK : K ∈ Kh}. Condition
(4.98) requires that all elements K ∈ Kh be of roughly the same size. The error estimate is
(Thomée, 1984; Johnson, 1994)

max
t∈J ‖(p − ph)(t)‖L2(�) ≤ C

(
1 +

∣∣∣∣ln Th2

∣∣∣∣)max
t∈J h

2‖p(t)‖H 2(�). (4.99)

Due to the presence of the factor ln h−2, this estimate is only almost optimal.
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Fully discrete schemes

We consider three fully discrete schemes: the backward and forward Euler methods and the
Crank–Nicholson method.

(i) The backward Euler method

Let 0 = t0 < t1 < · · · < tN = T be a partition of J into subintervals J n = (tn−1, tn) with
length �tn = tn − tn−1. For a generic function v of time, set vn = v(tn). The backward
Euler method for the semidiscrete version (4.94) is: Find pnh ∈ Vh, n = 1, 2, . . . , N , such
that (

pnh − pn−1
h

�tn
, v

)
+ a

(
pnh, v

) = (f n, v) ∀v ∈ Vh,(
p0
h, v
) = (p0, v) ∀v ∈ Vh.

(4.100)

Note that (4.100) comes from replacing the time derivative in (4.94) by the difference
quotient (pnh − pn−1

h )/�tn. This replacement results in a discretization error of order
O (�tn) (cf. Section 4.1.1). As in (4.96), equation (4.100) can be expressed in matrix
form as

(B + A�tn)pn = Bpn−1 + fn�tn,

Bp(0) = p0,
(4.101)

where

pnh =
M∑
i=1

pni ϕi, n = 0, 1, . . . , N,

and
pn = (pn1 , pn2 , . . . , pnM)T .

Clearly, (4.101) is an implicit scheme; that is, we need to solve a system of linear equations
at each time step.

Let us state a basic stability estimate for (4.100) in the case f = 0. Choosing v = pnh
in (4.100), we see that

‖pnh‖2 − (pn−1
h , pnh

)+ a
(
pnh, p

n
h

)
�tn = 0.

It follows from Cauchy’s inequality (4.59) that

(
pn−1
h , pnh

) ≤ ‖pn−1
h ‖ ‖pnh‖ ≤ 1

2
‖pn−1

h ‖2 + 1

2
‖pnh‖2.

Consequently, we get

1

2
‖pnh‖2 − 1

2
‖pn−1

h ‖2 + a
(
pnh, p

n
h

)
�tn ≤ 0.

We sum over n and use the second equation in (4.100) to give

‖pjh‖2 + 2
j∑
n=1

a
(
pnh, p

n
h

)
�tn ≤ ‖p0

h‖2 ≤ ‖p0‖2.
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Because a
(
pnh, p

n
h

) ≥ 0, we obtain the stability result

‖pjh‖ ≤ ‖p0‖, j = 0, 1, . . . , N. (4.102)

Note that (4.102) holds regardless of the size of the time steps �tj . In other words, the
backward Euler method (4.100) is unconditionally stable. This is a very desirable feature
of a time discretization scheme for a parabolic problem (cf. Section 4.1.6).

We remark that an estimate for the error p−ph can be derived. The error stems from
a combination of the space and time discretizations. When Vh is the finite element space of
piecewise linear functions, for example, the error pn −pnh (0 ≤ n ≤ N ) in the L2(�)-norm
is of order O (�t + h2

)
(Thomée, 1984) under appropriate smoothness assumptions on p,

where �t = max{�tj , 1 ≤ j ≤ N}.
(ii) The Crank–Nicholson method

The Crank–Nicholson method for (4.94) is defined as follows: Find pnh ∈ Vh, n =
1, 2, . . . , N , such that(

pnh − pn−1
h

�tn
, v

)
+ a

(
pnh + pn−1

h

2
, v

)
=
(
f n + f n−1

2
, v

)
∀v ∈ Vh,(

p0
h, v
) = (p0, v) ∀v ∈ Vh.

(4.103)

In the present case, the difference quotient (pnh − pn−1
h )/�tn now replaces the average(

∂p(tn)/∂t + ∂p(tn−1)/∂t
)
/2. The resulting discretization error is O ((�tn)2) (cf. Section

4.1.1). Similarly to (4.101), the linear system from (4.103) is(
B + �tn

2
A
)

pn =
(

B − �tn

2
A
)

pn−1 + fn + fn−1

2
�tn,

Bp(0) = p0

(4.104)

for n = 1, 2, . . . , N . Again, this is an implicit method. When f = 0, by taking v =
(pnh + pn−1

h )/2 in (4.103) one can show that the stability result (4.102) unconditionally
holds for the Crank–Nicholson method as well (cf. Exercise 4.35). For the piecewise linear
finite element space Vh, for each n the error pn − pnh in the L2(�)-norm is O ((�t)2 + h2

)
this time. Note that the Crank–Nicholson method is more accurate in time than the backward
Euler method and is slightly more expensive from the computational point of view.

(iii) The forward Euler method

We conclude with the forward Euler method. This method takes the form: Find pnh ∈ Vh,
n = 1, 2, . . . , N , such that(

pnh − pn−1
h

�tn
, v

)
+ a

(
pn−1
h , v

) = (f n−1, v
) ∀v ∈ Vh,(

p0
h, v
) = (p0, v) ∀v ∈ Vh,

(4.105)
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and the corresponding matrix form is

Bpn = (B − A�tn)pn−1 + fn−1�tn,

Bp(0) = p0.
(4.106)

Introducing the Cholesky decomposition B = DDT (see the next chapter) and using
the new variable q = DT p, where DT is the transpose of D, problem (4.106) is of the simpler
form

qn =
(

I − Ã�tn
)

qn−1 + D−1fn−1�tn,

q(0) = D−1p0,
(4.107)

where Ã = D−1AD−T . Clearly, (4.107) is an explicit scheme in q. A stability result similar
to (4.102) can be proven only under the stability condition

�tn ≤ Ch2, n = 1, 2, . . . , N, (4.108)

where C is a constant independent of �t and h. This can be seen as follows: with f = 0,
the first equation of (4.107) becomes

qn =
(

I − Ã�tn
)

qn−1. (4.109)

Define the matrix norm

‖Ã‖ = max
η∈RM,η �=0

‖Ãη‖
‖η‖ ,

where ‖η‖ is the Euclidean norm of η = (η1, η2, . . . , ηM): ‖η‖2 = η2
1 + η2

2 + · · · +
η2
M . Assume that the symmetric, positive definite matrix Ã has eigenvalues µi > 0, i =

1, 2, . . . ,M . Then we see that (Axelsson, 1994)

‖Ã‖ = max
i=1,2,...,M

µi.

Thus it follows that
‖I − Ã�tn‖ = max

i=1,2,...,M
|1 − µi�t

n|.
Let the maximum occur as i = M , for example. Then

‖I − Ã�tn‖ ≤ 1

only if µM�tn ≤ 2. Since µM = O(h−2) (Chen, 2005), �tn ≤ 2/µM = O(h2), which is
(4.108).

The stability condition (4.108) requires that the time step be sufficiently small (cf.
condition (4.23)). In other words, the forward Euler method (4.105) is conditionally stable.
This condition is very restrictive, particularly for long-time integration. In contrast, the
backward Euler and Crank–Nicholson methods are unconditionally stable but require more
work per time step. These two methods are more efficient for parabolic problems since the
extra cost involved at each step for an implicit method is more than compensated by the fact
that larger time steps can be utilized.
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vi

Figure 4.31. A control volume.

4.3 Control Volume Finite Element Methods
The finite difference methods presented in Section 4.1 are locally conservative but are not
flexible in the treatment of complex reservoirs. On the other hand, the standard finite element
methods described in Section 4.2 are more flexible but not conservative on local elements
(e.g., on triangles). They are globally conservative. In this section, we introduce a variation
of finite element methods so that they are locally conservative on each control volume.
Control volumes can be formed around grid nodes by joining the midpoints of the edges of
a triangle with a point inside the triangle, for example (cf. Figure 4.31). Different locations
of the point give rise to different forms of the flow term between grid nodes. When it is the
barycenter of the triangle, the resulting grid is of CVFE (control volume finite element) type,
and the resulting finite element methods are the CVFE methods. These methods were first
introduced by Lemonnier (1979) for reservoir simulation. The CVFE grids are different
from the PEBI (perpendicular bisection) grids (also called Voronoi grids (Heinrich, 1987))
in that the latter are locally orthogonal. The CVFE grids are more flexible.

4.3.1 The basic CVFE

To see the CVFE idea, we focus on linear triangular elements in two dimensions. A concep-
tual extension to three dimensions is straightforward. We consider the stationary problem

−∇ · (a∇p) = f (x1, x2) in �, (4.110)

where � is a bounded domain in the plane and p is pressure, for example.
Let Vi be a control volume. Replacing p by ph ∈ Vh (the space of continuous

piecewise linear functions on �̄; cf. Section 4.2.1) in (4.110) and integrating over Vi , we
see that

−
∫
Vi

∇ · (a∇ph) dx =
∫
Vi

f dx.

The divergence theorem implies

−
∫
∂Vi

a∇ph · ν d� =
∫
Vi

f dx. (4.111)

Note that ∇ph · ν is continuous across each segment of ∂Vi (that lies inside a triangle).
Thus, if a is continuous across that segment, so is the flux a∇ph · ν. Therefore, the flux is
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Figure 4.32. A base triangle.

continuous across the edges of the control volume Vi . Furthermore, (4.111) indicates that
the CVFE method is locally (i.e., on each control volume) conservative.

Given a triangle K with vertices mi , mj , and mk , edge midpoints ma , mb, and md ,
and center mc (cf. Figure 4.32), it follows from Example 4.1 that the approximation ph to
p on K is given by

ph = piλi + pjλj + pkλk, (4.112)

where we recall that the local basis functions λi are defined by

λi(mj ) =
{

1 if i = j,

0 if i �= j

with
λi + λj + λk = 1. (4.113)

These basis functions are the barycentric coordinates of the triangle K . Define

ai = mj,2 −mk,2, bi = −(mj,1 −mk,1),

ci = mj,1mk,2 −mj,2mk,1,

where mi = (mi,1,mi,2) and {i, j, k} is cyclically permuted. Then the local basis functions
λi , λj , and λk are given by (cf. Exercise 4.36) λi

λj

λk

 = 1

2|K|

 ci ai bi

cj aj bj

ck ak bk


 1

x1

x2

 , (4.114)

where |K| is the area of the triangle K . Consequently,

∂λl

∂x1
= al

2|K| ,
∂λl

∂x2
= bl

2|K| , l = i, j, k. (4.115)

We consider the computation of the left-hand side of (4.111) on mamcmd (cf.
Figure 4.32):

fi ≡ −
∫

mamc+mcmd

a∇ph · ν d�. (4.116)
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Figure 4.33. Two adjacent triangles.

On mamc,

ν = (mc,2 −ma,2,ma,1 −mc,1)

|mamc| ,

and, on mcmd ,

ν = (md,2 −mc,2,mc,1 −md,1)

|mcmd | ,

where |mamc| denotes the length of edge mamc. Consequently, if a is a constant tensor
on the triangle K , it follows from (4.112), (4.115), (4.116), the definition of ai and bi , and
simple algebraic calculations (cf. Exercise 4.37) that

fi = |K|
k∑
l=i

a∇λl · ∇λi pl, (4.117)

which shows that the CVFE and standard finite element methods using piecewise linear
functions produce the same stiffness matrix (cf. Section 4.2.1).

Using (4.113), equation (4.117) can be recast in the finite difference form

fi = −Tij (pj − pi)− Tik(pk − pi), (4.118)

where the transmissibility coefficients Tij and Tik are

Tij = −|K|a∇λj · ∇λi, Tik = −|K|a∇λk · ∇λi.
We now consider the assembly of the global transmissibility matrix. Each connection

between any two adjacent nodes mi and mj includes the contributions from two triangles
K1 and K2 that share the common edge with endpoints mi and mj (cf. Figure 4.33). The
transmissibility between mi and mj , where at least one of them is not on the external
boundary, is

Tij = −
2∑
l=1

(|K|a∇λj · ∇λi
) ∣∣∣∣
Kl

. (4.119)

Applying (4.111) and (4.118), we obtain the linear system on the control volume Vi in terms
of pressure values at the vertices of triangles

−
∑
j∈�i

Tij
(
pj − pi

) = Fi, (4.120)

where �i is the set of all neighboring nodes of mi and Fi = ∫
Vi
f dx.
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If ∂Vi contains part of the Neumann boundary, then the flux on that part is given; if it
contains part of the Dirichlet boundary, the pressure on the corresponding part is given. The
third boundary condition can be also incorporated as in Section 4.2.1. Since linear elements
are used, an error estimate as in (4.73) holds for the CVFE method considered. Finally, the
CVFE method can be extended to transient problems as in Section 4.2.4.

4.3.2 Positive transmissibilities

The transmissibility coefficient Tij defined in (4.119) must be positive. Positive transmissi-
bilities or positive flux linkages always yield a direction of the discrete flux in the physical
direction. Negative transmissibilities are not physically meaningful and generate unsatis-
factory solutions.

For simplicity, consider a homogeneous anisotropic medium (cf. Section 2.2.1): a =
diag (a11, a22) (i.e., a11 and a22 are positive constants). In this case, using (4.115) and
(4.119), Tij restricted to each triangle K (cf. Figure 4.33) is

Tij = −a11ajai + a22bjbi

4|K| .

Introduce a coordinate transform:

x ′
1 = x1√

a11
, x ′

2 = x2√
a22
.

Under this transform, the area of the transformed triangle K ′ is

|K ′| = |K|√
a11a22

.

Consequently, Tij becomes

Tij = √
a11a22

∣∣mk′mj ′
∣∣ |mk′mi ′ | cos θk′

4|K ′| = √
a11a22

cot θk′

2
,

where θk′ is the angle of the triangle at node mk′ in the transformed plane. Because each
global transmissibility consists of the contributions from two adjacent triangles, the global
Tij between nodes mi and mj (cf. Figure 4.33) is

Tij = √
a11a22

(
cot θk′

1
+ cot θk′

2

2

)
, (4.121)

where θk′
1

and θk′
2

are the opposite angles of the two triangles. Thus the requirement Tij > 0
is equivalent to

θk′
1
+ θk′

2
< π. (4.122)

For an edge on the external boundary, the requirement for the angle opposite this edge is

θk′ <
π

2
. (4.123)

Note that all these angles are measured in the (x ′
1, x

′
2)-coordinate plane.
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Figure 4.34. An edge swap.

4.3.3 The CVFE grid construction

It is interesting to note that condition (4.122) is related to a Delaunay triangulation. A
Delaunay triangulation satisfies the empty circle criterion: The circumcircle of each triangle
must not contain any other nodes in its interior. Given a shape-regular triangulationKh (cf.
Section 4.2.1) of a convex domain, Kh can be converted to a Delaunay triangulation in a
sequence of local edge swaps as follows (Joe, 1986; D’Azevedo and Simpson, 1989): Each
internal edge in Kh is examined. If it is a part of a convex quadrilateral (cf. Figure 4.33),
then the circumcircles of the two triangles are checked. If one of the circumcircles contains
the fourth vertex of the quadrilateral, then the diagonal of this quadrilateral is swapped
(cf. Figure 4.34). The resulting local triangulation then satisfies the empty circle criterion,
i.e., the local optimality condition (Joe, 1986; D’Azevedo and Simpson, 1989). A sequence
of local edge swaps eventually converges, so that every internal edge is locally optimal.
All internal edges of a triangulation are locally optimal if and only if it is a Delaunay
triangulation (Joe, 1986).

On the other hand, the local optimal condition is equivalent to condition (4.122)
(D’Azevedo and Simpson, 1989). Hence the edge swapping procedure can be given geo-
metrically: Given a regular triangulation Kh, if the sum of the two angles opposite edge
mimj (cf. Figure 4.33) is larger than π , then this edge is replaced by edge mk1 mk2 . This
edge swap can be carried out only if the quadrilateral is convex. If it is not, then condition
(4.122) must necessarily be true. For a convex domain, no addition or movement of nodes
is required to convert Kh to a Delaunay triangulation.

For problem (4.110), the edge swapping procedure can be generalized (Forsyth, 1991):
Each edge mimj is examined, and the transmissibility Tij is computed using (4.119). If
Tij is negative, then this edge is replaced by mk1 mk2 . If the solution domain is convex and
a is constant, this procedure is equivalent to establishing a Delaunay triangulation in the
(x ′

1, x
′
2)-plane where a′ is the identity tensor. The equivalence of positive transmissibilities

with a Delaunay triangulation is true only for internal edges in the transformed plane when
a is constant. In general, a Delaunay triangulation of the physical plane cannot ensure
positive transmissibilities, even for internal edges. However, because most domains that
arise in practical applications can be treated as unions of convex regions with a constant
permeability tensor a, the local edge swap procedure should tend to minimize the number
of internal edges having negative transmissibilities.

In general, edges on the external boundary of a domain can have negative transmis-
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m

m

m

i

j

k

New node

Figure 4.35. An addition of a new boundary node.

Figure 4.36. A hexagonal prism.

sibilities. This problem can be overcome by adding a boundary node, as in Figure 4.35.
Suppose that Tij < 0 on edge mimj ; i.e., in the (x ′

1, x
′
2)-plane, the angle opposite this edge

is larger than π/2. A new node is added at the intersection of mimj with the orthogonal line
segment to mimj drawn from mk . Note that there is no edge swap for a boundary edge.

In three dimensions, the Delaunay empty sphere criterion is not equivalent to positive
transmissibilities (Letniowski, 1992). Because a reservoir domain generally has a layer
structure, the grid in the x3-direction is often obtained by a vertical projection of two-
dimensional grids (cf. Figure 4.36).

4.3.4 The upstream weighted CVFE

The basic idea of upstream weighting is to choose the value of a property coefficient accord-
ing to the upstream direction of a flux. The same idea has been used in the upwind finite
difference methods (cf. Section 4.1.8). In this section, we consider two upstream weighting
strategies for (4.120): potential- and flux-based strategies.

The potential-based upstream weighting scheme

Suppose that (4.110) is of the form

−∇ · (λa∇p) = f (x1, x2) in �, (4.124)

where a and λ can be a permeability tensor and a mobility coefficient, respectively, for
example. For this problem, a CVFE method analogous to (4.120) can be derived. If a is
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a scalar a and is different on the two sides of an edge of Vi , across that edge it should be
approximated by the harmonic average

ahar(x) = 2a+(x)a−(x)
a+(x)+ a−(x)

,

where a+ and a− indicate the respective values from the two sides. The reason for using
a harmonic average is that for an inactive node (i.e., the node where a = 0), this average
gives the correct value (i.e., a = 0), in contrast with the arithmetic average. If a is a tensor,
this harmonic average is used for each component of a, and the result is denoted by ahar .
For the mobility coefficient λ, in practice, upstream weighting must be used to maintain
stability for the CVFE methods. As a result of these two observations, the transmissibility
between nodes mi and mj restricted to each triangle K becomes

Tij = −|K| λupij ahar∇λj · ∇λi, (4.125)

where the potential-based upstream weighting scheme is defined by

λ
up

ij =
{
λ(mi ) if pi > pj ,

λ(mj ) if pi < pj .
(4.126)

In fact, it is a pressure-based approach in the current context. The name potential-based
is due to the fact that potentials are usually used in place of p in reservoir simulation (cf.
Section 2.2.2).

This potential-based upstream weighting scheme is easy to implement. However, it
violates the important flux continuity property across the interfaces between control vol-
umes. To see this, consider the case a = diag (a11, a22), where a is a constant diagonal
tensor on the triangle K (cf. Figure 4.32). Applying (4.115) and (4.125), the flux on edge
mamc is

fi,mamc
= −λupij

(
a11(mc,2 −ma,2)

∂λj

∂x1
+ a22(ma,1 −mc,1)

∂λj

∂x2

)
(pj − pi)

− λupik
(
a11(mc,2 −ma,2)

∂λk

∂x1
+ a22(ma,1 −mc,1)

∂λk

∂x2

)
(pk − pi),

and on edge mcmd ,

fi,mcmd
= −λupij

(
a11(md,2 −mc,2)

∂λj

∂x1
+ a22(mc,1 −md,1)

∂λj

∂x2

)
(pj − pi)

− λupik
(
a11(md,2 −mc,2)

∂λk

∂x1
+ a22(mc,1 −md,1)

∂λk

∂x2

)
(pk − pi).

Similarly, the fluxes on edges mbmc and mcma at node mj are, respectively,

fj,mbmc
= −λupjk

(
a11(mc,2 −mb,2)

∂λk

∂x1
+ a22(mb,1 −mc,1)

∂λk

∂x2

)
(pk − pj )

− λupji
(
a11(mc,2 −mb,2)

∂λi

∂x1
+ a22(mb,1 −mc,1)

∂λi

∂x2

)
(pi − pj )
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and

fj,mcma
= −λupjk

(
a11(ma,2 −mc,2)

∂λk

∂x1
+ a22(mc,1 −ma,1)

∂λk

∂x2

)
(pk − pj )

− λupji
(
a11(ma,2 −mc,2)

∂λi

∂x1
+ a22(mc,1 −ma,1)

∂λi

∂x2

)
(pi − pj ),

and the fluxes on edges mdmc and mcmb at node mk are, respectively,

fk,mdmc
= −λupki

(
a11(mc,2 −md,2)

∂λi

∂x1
+ a22(md,1 −mc,1)

∂λi

∂x2

)
(pi − pk)

− λupkj
(
a11(mc,2 −md,2)

∂λj

∂x1
+ a22(md,1 −mc,1)

∂λj

∂x2

)
(pj − pk)

and

fk,mcmb
= −λupki

(
a11(mb,2 −mc,2)

∂λi

∂x1
+ a22(mc,1 −mb,1)

∂λi

∂x2

)
(pi − pk)

− λupkj
(
a11(mb,2 −mc,2)

∂λj

∂x1
+ a22(mc,1 −mb,1)

∂λj

∂x2

)
(pj − pk).

For the flux to be continuous across edge mamc, it is required that fi,mamc
+ fj,mcma

= 0;
i.e.,

− λupij
(
a11(mc,2 −ma,2)

∂λj

∂x1
+ a22(ma,1 −mc,1)

∂λj

∂x2

)
(pj − pi)

− λupik
(
a11(mc,2 −ma,2)

∂λk

∂x1
+ a22(ma,1 −mc,1)

∂λk

∂x2

)
(pk − pi)

− λupjk
(
a11(ma,2 −mc,2)

∂λk

∂x1
+ a22(mc,1 −ma,1)

∂λk

∂x2

)
(pk − pj )

− λupji
(
a11(ma,2 −mc,2)

∂λi

∂x1
+ a22(mc,1 −ma,1)

∂λi

∂x2

)
(pi − pj ) = 0.

Because it must be satisfied for all choices of a, this equation reduces to

a11(ma,2 −mc,2)

[
λ
up

ij

∂λj

∂x1
(pj − pi)+ λ

up

ji

∂λi

∂x1
(pj − pi)

+ λupik
∂λk

∂x1
(pk − pi)+ λ

up

jk

∂λk

∂x1
(pj − pk)

]
= 0

and

a22(mc,1 −ma,1)

[
λ
up

ij

∂λj

∂x2
(pj − pi)+ λ

up

ji

∂λi

∂x2
(pj − pi)

+ λupik
∂λk

∂x2
(pk − pi)+ λ

up

jk

∂λk

∂x2
(pj − pk)

]
= 0.

For these two equations to hold simultaneously for any type of triangle, the only possibility
is

pk ≥ pi = pj .
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In the same manner, we can prove

pi ≥ pj = pk and pj ≥ pi = pk.

Hence, for the flux to be continuous across the edges of control volumes, pi = pj = pk .
That is, the flux is continuous across the edges of all control volumes if and only if the
approximate solution ph has the same value at all vertices, which is generally not true.
Therefore, in general, the potential-based upstream weighted CVFE method generates a
discontinuous flux across the edges of control volumes. On the other hand, the above
argument leads to another upstream weighting strategy: flux-based.

The flux-based upstream weighting scheme

For the flux-based approach, the upstream direction is determined by the sign of a flux. It
follows from (4.116) and (4.125) that the flux on edge mamc at node mi (cf. Figure 4.32) is

fi,mamc
= −

k∑
l=i
λupahar∇λl ·

(
mc,2 −ma,2,ma,1 −mc,1

)
pl,

and, at node mj ,

fj,mcma
= −

k∑
l=i
λupahar∇λl ·

(
ma,2 −mc,2,mc,1 −ma,1

)
pl,

where the upstream weighting is now defined by

λup =
{
λ(mi ) if fi,mamc

> 0,

λ(mj ) if fi,mamc
< 0.

(4.127)

From this definition it follows that

fi,mamc
+ fj,mcma

= 0. (4.128)

The fluxes on other edges can be defined in the same fashion. It is evident from (4.128) that
the flux-based upstream weighted CVFE method has a continuous flux across the edges of
control volumes.

4.3.5 Control volume function approximation methods

The CVFE methods can be generalized in a variety of ways. The simplest generalization
is to finite elements of higher order as in Section 4.2.1, i.e., to piecewise polynomials of
higher degree. Here we consider their generalization to nonpolynomial functions, such as
spline functions. The resulting control volume methods are called control volume function
approximation (CVFA) methods (Li et al., 2003A). Compared with the CVFE, these methods
can be more easily applied to arbitrarily shaped control volumes. They are particularly
suitable for hybrid grid reservoir simulation.
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Figure 4.37. A partition of � into control volumes.

Assume that a partition Kh of � consists of a set of (open) control volumes Vi :

�̄ =
N⋃
i=1

V̄i , Vi ∩ Vj = ∅, i �= j,

whereN is the total number of control volumes. Different control volumes can have different
shapes (cf. Figure 4.37). They can be generated from basic triangular, quadrilateral, and/or
elliptic elements; they can also stand alone as the elements of the partition Kh of �. We
define the boundary of each Vi by

∂Vi =
Ni⋃
k=1

eik, (4.129)

where Ni is the number of edges eik on ∂Vi . For each Vi , the integral equation of problem
(4.110) is given as in (4.111). On eik ⊂ ∂Vi , an interpolant ph is used to approximate p:

ph(x) =
Rik∑
j=1

p
j

ikϕ
j

ik(x), x ∈ eik, i = 1, 2, . . . , N, (4.130)

where Rik is the number of interpolation nodes xjik for eik and these nodes can be located
on or surrounding Vi (cf. Figure 4.38). The basis functions ϕjik are assumed to satisfy

ϕ
j

ik(x) =
{

1 at node xjik
0 at other nodes,

and
Rik∑
j=1

ϕ
j

ik(x) = 1, x ∈ eik, k = 1, 2, . . . , Ni, i = 1, 2, . . . , N. (4.131)

As a result, we see that pjik represents the pressure at the j th interpolation node xjik for eik ,
and a constant pressure is also represented by (4.111). The latter property is important in
local mass conservation of the CVFA methods.
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Vi 

Figure 4.38. A control volume with interpolation nodes.

Application of (4.129) to (4.111) yields

−
Ni∑
k=1

∫
eik

a∇p · ν d� =
∫
Vi

f dx, i = 1, 2, . . . , N. (4.132)

Substituting (4.130) into (4.132) gives

−
Ni∑
k=1

Rik∑
j=1

∫
eik

a(x)pjik∇ϕjik(x) · ν d� =
∫
Vi

f dx, i = 1, 2, . . . , N. (4.133)

Set

T
j

ik = −
∫
eik

a(x)∇ϕjik(x) · ν d�

for j = 1, 2, . . . , Rik , k = 1, 2, . . . , Ni , and i = 1, 2, . . . , N . Then (4.133) becomes

Ni∑
k=1

Rik∑
j=1

T
j

ikp
j

ik = Fi, i = 1, 2, . . . , N. (4.134)

This is a linear system in terms of pjik . The upstream weighting versions of the CVFA
methods can be defined and analyzed as for the CVFE methods in Section 4.3.4.

It remains to construct the basis functions ϕjik . As an example, we describe spline
basis functions. These functions have very good smoothness properties (Schumaker, 1981).
Other nonpolynomial functions, such as distance weighted functions (Li et al., 2003A), can
be also applied.

First, we define

ω
j

ik(x) = a
j

ik + b
j

ikx1 + c
j

ikx2 +
Rik∑
l=1

f
j

ik,lh
l
ik(x), x = (x1, x2) ∈ eik,

where ajik , b
j

ik , c
j

ik , f
j

ik,l ∈ R, and

hlik(x) = 2(rlik)
2 ln rlik,

rlik(x1, x2) = ((x1 − xlik,1)
2 + (x2 − xlik,2)

2
)1/2

with xlik = (xlik,1, x
l
ik,2) the coordinates of nodes, j, l = 1, 2, . . . , Rik , k = 1, 2, . . . , Ni ,

i = 1, . . . , N . These spline functions are required to satisfy the following properties:
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Figure 4.39. The neighboring nodes of edge eik (the central vertical edge).

• nodal values:

ω
j

ik(x) =
{

1 at node xjik,

0 at other nodes,

• zero total force:
Rik∑
l=1

f
j

ik,l = 0,

• zero total force moment:
Rik∑
l=1

f
j

ik,lx
l
ik = 0.

It can be checked that these three constraints determine the coefficients ajik , b
j

ik , c
j

ik , and
f
j

ik,l with an appropriate choice of the interpolation nodes xjik . The simplest choice is to use
four neighboring centers of control volumes for each edge eik (cf. Figure 4.39).

Now, the basis functions ϕjik are defined by

ϕ
j

ik(x) = ω
j

ik(x)∑Rik
l=1 ω

l
ik(x)

, x ∈ eik. (4.135)

Since there is no requirement on the shape of control volumes, the CVFA methods are
particularly suitable for unstructured grid reservoir simulation.

We now report a couple of examples taken from Li et al. (2003A).
Example 4.10. To compare the CVFA with the CVFE, the control volumes used are

generated from triangles, as in Section 4.3.1. In (4.110), let � = (0, 1)× (0, 1) be the unit
square, a be the identity tensor, and

f (x) = 2π2 cos(πx1) cos(πx2).

The boundary condition is

∇p · ν = 0, x1 = 0 and x1 = 1, x2 ∈ (0, 1),

p = cos(πx1), x1 ∈ (0, 1), x2 = 0,

p = − cos(πx1), x1 ∈ (0, 1), x2 = 1.

Then the exact solution to (4.110) is p = cos(πx1) cos(πx2).
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Table 4.1. Numerical results for p in the CVFA.

1/h ‖p − ph‖L∞(�) Rate ‖p − ph‖L2(�) Rate
2 0.31147353 — 0.18388206 —
4 0.11490560 1.4387 4.8526985E-02 1.9219
8 3.2336764E-02 1.8292 1.2107453E-02 2.0029
16 8.3515844E-03 1.9531 3.0019570E-03 2.0199
32 2.1060989E-03 1.9875 7.4598770E-04 2.0087
64 5.2769621E-04 1.9968 1.8585293E-04 2.0050

Table 4.2. Numerical results for u in the CVFA.

1/h ‖u − uh‖L∞(�) Rate ‖u − uh‖L2(�) Rate
2 1.35576698 — 1.00055733 —
4 0.79144271 0.7766 0.40574242 1.3022
8 0.41524124 0.9305 0.15380230 1.3995
16 0.21064551 0.9791 6.3754123E-02 1.2705
32 0.10577494 0.9938 2.8906865E-02 1.1411
64 5.2954964E-02 0.9982 1.3795696E-02 1.0672

Table 4.3. Numerical results for p in the CVFE.

1/h ‖p − ph‖L∞(�) Rate ‖p − ph‖L2(�) Rate
2 0.35502877 — 0.18584850 —
4 0.11549486 1.6201 5.8970002E-02 1.6561
8 3.3079427E-02 1.8038 1.5744807E-02 1.9051
16 8.7789616E-03 1.9138 4.0029721E-03 1.9757
32 2.2525012E-03 1.9625 1.0049860E-03 1.9939
64 5.6991337E-04 1.9827 2.5151431E-04 1.9985

Two types of norms are used to check the convergence rates:

‖v‖L∞(�) = max
x∈� |v(x)|, ‖v‖L2(�) =

(∫
�

|v(x)|2 dx
)1/2

.

The interpolation nodes for the spline function approximation approach in the CVFA consist
of the centers of control volumes. Numerical errors and the corresponding convergence rates
for p and its gradient u = ∇p are shown in Tables 4.1–4.4 for the CVFA and CVFE, where
ph and uh are the approximate solutions of p and u, respectively, h is the space step size
in the x1- and x2-directions for the base triangulation, and the rate is the convergence rate
in the corresponding norm. From these computational results, we see that the convergence
rates for p and u are asymptotically of order O(h2) and O(h) for both the CVFA and CVFE.
However, from this and other numerical experiments (not reported here) we have observed
that the approximation errors in the CVFA are smaller than those in the CVFE.

Example 4.11. We now consider an example that the CVFE method cannot easily
handle:

−�p = δ(x − x0), x ∈ �,
p = 0, x ∈ �, (4.136)
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Table 4.4. Numerical results for u in the CVFE.

1/h ‖u − uh‖L∞(�) Rate ‖u − uh‖L2(�) Rate
2 1.8475225 — 1.2560773 —
4 1.3093706 0.4967 0.68846096 0.8675
8 0.70851284 0.8860 0.35305205 0.9635

16 0.36116394 0.9721 0.17767979 0.9906
32 0.18145106 0.9931 8.8985854E-02 0.9976
64 9.0834342E-02 0.9983 4.4511228E-02 0.9994

 

Figure 4.40. A circular grid.

where � = {x ∈ R
2 : |x| ≤ 1} is the unit circle and δ(x − x0) is the Dirac delta function

with center x0. The exact solution to (4.136) is Green’s function

p(x) = 1

2π
ln

( |x − x0|
|x0||x − x∗

0|
)
, (4.137)

where x∗
0 is the image of x0 with respect to �:

x∗
0 = 1

|x0|2 x0.

For this problem, circular grids (cf. Figure 4.40) are the most appropriate. The CVFE,
however, cannot easily and accurately handle this type of grid. The flexibility of the CVFA
on the shape of elements enables us to use the circular grids more easily and accurately. The
numerical errors ‖p− ph‖L2(�) and the corresponding convergence rates for the CVFA are
presented in Table 4.5, where uniform refinements in the radial and angular directions are
measured by hr = 1/Nr and hθ = 2π/Nθ , and x0 = 0.5eπī/6 (ī = √−1). This table shows
that the convergence rate in this norm is asymptotically of order O(h). The reduction in the
rate is due to the reduction in the regularity of the solution to (4.136) (cf. (4.137)). Because
of the lack of regularity of this solution, we are not able to use the ‖ · ‖L∞(�)-norm.

4.3.6 Reduction of grid orientation effects

Finite difference methods were indicated to have grid orientation effects in Section 4.1.9.
The example shown in Figure 4.9 is now calculated using the CVFE method and displayed in
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Table 4.5. Numerical results for the CVFA in Example 4.11.

(Nr ,Nθ ) ‖p − ph‖L2(�) Rate

(8, 12) 4.13287534E-03 —
(16, 24) 2.88767285E-03 0.5172
(32, 48) 1.49421476E-03 0.9595
(64, 96) 7.51098130E-04 0.9923

Figure 4.41. A CVFE example.

Figure 4.41, which indicates that the grid orientation effect disappears. The same example
was also evaluated using the CVFA, and identical numerical results were obtained as for
the CVFE.

4.4 Discontinuous Finite Element Methods
In the previous two sections, functions used in finite element spaces for the discretization of
second-order partial differential equations were continuous across interelement boundaries.
In this section, we consider the case where the functions in the finite element spaces are
discontinuous across these boundaries, i.e., discontinuous finite elements. Discontinuous
Galerkin (DG) finite element methods were originally introduced for a linear advection (hy-
perbolic) problem by Reed and Hill (1973). They have become established as an important
alternative for numerically solving advection (convection) problems for which continuous
finite element methods lack robustness. Important features of the DG methods are that they
conserve mass locally (on each element) and are of high-order accuracy.
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K

ν

b
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 ∂
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Figure 4.42. An illustration of ∂K− and ∂K+.

4.4.1 DG methods

We consider the advection problem:

b · ∇p + Rp = f, x ∈ �,
p = g, x ∈ �−,

(4.138)

where the functions b, R, f , and g are given, � ⊂ R
d (d ≤ 3) is a bounded domain with

boundary �, the inflow boundary �− is defined by

�− = {x ∈ � : (b · ν) (x) < 0},
and ν is the outward unit normal to �. The advection coefficient b is assumed to be smooth
in (x, t), and the reaction coefficient R is assumed to be bounded and nonnegative. A
one-dimensional version of this problem was studied in Section 4.1.8.

For h > 0, letKh be a finite element partition of� into elements {K}. Kh is assumed
to satisfy the minimum angle condition (4.79). For the DG methods, adjacent elements in
Kh are not required to match; a vertex of one element can lie in the interior of the edge or
face of another element, for example. Let Eoh denote the set of all interior boundaries e in
Kh, Ebh the set of the boundaries e on �, and Eh = Eoh ∪ Ebh . We tacitly assume that Eoh �= ∅.

Associated with Kh, we define the finite element space

Vh = {v : v is a bounded function on � and v|K ∈ Pr(K), K ∈ Kh},
where we recall that Pr(K) is the space of polynomials onK of degree at most r ≥ 0. Note
that no continuity across interelement boundaries is required on functions in this space.

To introduce DG methods, we need some notation. For each K ∈ Kh, we split its
boundary ∂K into the inflow and outflow parts by

∂K− = {x ∈ ∂K : (b · ν) (x) < 0},
∂K+ = {x ∈ ∂K : (b · ν) (x) ≥ 0},

where ν is the outward unit normal to ∂K . A triangleK with boundary made up of ∂K− and
∂K+ is shown is Figure 4.42. For e ∈ Eoh , the left- and right-hand limits on e of a function
v ∈ Vh are defined by

v−(x) = lim
ε→0−

v (x + εb) , v+(x) = lim
ε→0+

v (x + εb)
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Figure 4.43. An ordering of computation for the DG method.

for x ∈ e. The jump of v across e is given by

[|v|] = v+ − v−.

For e ∈ Ebh , we define (from inside �)

[|v|] = v.

Now, the DG method for (4.138) is defined: For K ∈ Kh, given ph,− on ∂K−, find
ph = ph|K ∈ Pr(K) such that

(b · ∇ph + Rph, v)K −
∫
∂K−

ph,+v+b · ν d�

= (f, v)K −
∫
∂K−

ph,−v+b · ν d� ∀v ∈ Pr(K),
(4.139)

where

(v,w)K =
∫
K

vw dx, ph,− = g on �−.

Note that (4.139) is the standard finite element method for (4.138) on the element K , with
the boundary condition being weakly imposed. When ph,− is given on ∂K−, existence
and uniqueness of a solution to (4.139) can be shown as in Section 4.2.1 (see the remarks
following (4.146)). Equation (4.139) also holds for the continuous problem (4.138) (Chen,
2005). For a typical triangulation (cf. Figure 4.43),ph can be determined first on the triangles
K adjacent to �−. Then this process is continued (working away from known information)
until ph is found in the whole domain �. Thus the computation of (4.139) is local.

If b is divergence-free (or solenoidal), i.e., ∇ · b = 0, we can use Green’s formula
(4.68) to see that (cf. Figure 4.42)

(b · ∇ph, 1)K =
∫
∂K−

ph,+b · ν d�+
∫
∂K+

ph,−b · ν d�.

We substitute this into (4.139) with v = 1 to give

(Rph, 1)K +
∫
∂K+

ph,−b · ν d� = (f, 1)K −
∫
∂K−

ph,−b · ν d�, (4.140)
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which expresses a local conservation property (i.e., the difference between inflow and out-
flow equals the sum of accumulation of mass).

To express (4.139) in the form used in Section 4.2, we define

aK(v,w) = (b · ∇v + Rv,w)K −
∫
∂K−

[|v|]w+b · ν d�, K ∈ Kh,

and
a(v,w) =

∑
K∈Kh

aK(v,w).

Then (4.139) is expressed as follows: Find ph ∈ Vh such that

a(ph, v) = (f, v) ∀v ∈ Vh, (4.141)

where ph,− = g on �−. We consider a couple of examples before stating stability and
convergence results for (4.141).

Example 4.12. A one-dimensional example of (4.138) is

dp

dx
+ p = f, x ∈ (0, 1),

p(0) = g.

(4.142)

Let 0 = x0 < x1 < · · · < xM = 1 be a partition of (0, 1) into a set of subintervals
Ii = (xi−1, xi), with length hi = xi −xi−1, i = 1, 2, . . . ,M . In this case, (4.139) becomes:
For i = 1, 2, . . . ,M , given (ph(xi−1))−, find ph = ph|Ii ∈ Pr(Ii) such that(

dph

dx
+ ph, v

)
Ii

+ [|ph(xi−1)|] (v(xi−1))+ = (f, v)Ii ∀v ∈ Pr(Ii),

where (ph(x0))− = g. In the case r = 0, Vh is the space of piecewise constants, and the
DG method reduces to: For i = 1, 2, . . . ,M , find pi = (ph(xi))− such that

pi − pi−1

hi
+ pi = 1

hi

∫
Ii

f dx,

p0 = g.

(4.143)

Note that (4.143) is nothing but a simple upwind finite difference method (cf. Section 4.1.8)
with an averaged right-hand side.

Example 4.13. Set R = f = 0 in the advection problem (4.138). Then (4.138)
simplifies to

b · ∇p = 0, x ∈ �,
p = g, x ∈ �−.

(4.144)

Also, let r = 0. Then (4.139) reads: For K ∈ Kh, given ph,− on ∂K−, find pK = ph|K
such that ∫

∂K−
pKb · ν d� =

∫
∂K−

ph,−b · ν d�;
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K K

K

b1

2

3

Figure 4.44. Adjoining rectangles.

that is,

pK =
∫
∂K− ph,−b · ν d�∫
∂K− b · ν d�

. (4.145)

Thus we see that for eachK ∈ Kh the value pK is determined by a weighted average of the
valuesph,− on adjoining elements with edges on ∂K−. As an example, let� be a rectangular
domain in R

2, Kh consist of rectangles, and b > 0. In this case, for a configuration shown
in Figure 4.44, we see that

p3 = b1

b1 + b2
p1 + b2

b1 + b2
p2,

where pi = ph|Ki , i = 1, 2, 3, and b = (b1, b2). Again, in this case, (4.145) corresponds
to the usual upwind finite difference method for (4.144).

To state stability and convergence properties of the DG method (4.141), we define the
norm

‖v‖b =
(

‖R1/2v‖2
L2(�)

+1

2

∑
K∈Kh

∫
∂K−

[|v|]2|b · ν| d�

+ 1

2

∫
�+
v2

−b · ν d�

)1/2

.

Then, if ∇ · b = 0, it can be shown (Chen, 2005) that

a(v, v) = ‖v‖2
b − 1

2

∫
�−
v2

−|b · ν| d�, v ∈ Vh. (4.146)

Using (4.146), existence and uniqueness of a solution to (4.141) can be proven in the usual
way (cf. Section 4.2.1). If we assume that R − ∇ · b/2 ≥ 0 (instead of ∇ · b = 0), the
term ‖R1/2v‖L2(�) is replaced with the quantity ‖(R − ∇ · b/2)1/2 v‖L2(�) in the definition
of ‖v‖b.

If R is strictly positive with respect to x ∈ � (i.e., R(x) ≥ R0 > 0), it can be seen
from (4.141) and (4.146) that

‖ph‖b ≤ C

(
‖f ‖2

L2(�) +
∫
�−
g2|b · ν| d�

)1/2

. (4.147)

This is a stability result for (4.141) in terms of data f and g. If the solution p to (4.138) is
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in Hr+1(K) for each K ∈ Kh, an error estimate for (4.141) is given by

‖p − ph‖2
L2(�)

+ h
∑
K∈Kh

‖b · ∇(p − ph)‖2
L2(K)

≤ Ch2r+1
∑
K∈Kh

‖p‖2
Hr+1(K)

(4.148)

for r ≥ 0. Note that the L2(�)-estimate is half a power of h from being optimal, while the
L2(�)-estimate of the derivative in the velocity (or streamline) direction is in fact optimal.
For general triangulations, this L2(�)-estimate is sharp in the sense that the exponent of h
cannot be increased (Johnson, 1994).

We end by remarking that a time-dependent advection problem can be written as a
system in the same form as (4.138). To see this, consider the problem

φ
∂p

∂t
+ b · ∇p + Rp = f, x ∈ �, t > 0,

and set t = x0 and b0 = φ. Then we see that

b̄ · ∇(t,x)p + Rp = f,

where b̄ = (b0,b) and ∇(t,x) = ( ∂
∂t
,∇x) (treating time as a space-like variable). Thus the

above development of the DG method for (4.138) applies.

4.4.2 Stabilized DG methods

We consider a stabilized DG (SDG) method, which modifies (4.139) as follows: ForK ∈ Kh,
given ph,− on ∂K−, find ph = ph|K ∈ Pr(K) such that

(b · ∇ph + Rph, v + θb · ∇v)K −
∫
∂K−

ph,+v+b · ν d�

= (f, v + θb · ∇v)K −
∫
∂K−

ph,−v+b · ν d� ∀v ∈ Pr(K),
(4.149)

where θ is a stabilization parameter. The difference between (4.139) and (4.149) is that a
stabilized term is added in the left- and right-hand sides of (4.149). This stabilized method
is also called the streamline diffusion method due to intuition that the added term

θ (b · ∇ph,b · ∇v)
corresponds to the diffusion in the direction of streamlines (or characteristics) (Johnson,
1994). The parameter θ is chosen so that θ = O(h), to generate the same convergence rate
as for the DG method. For r = 0, DG and SDG methods are the same.

Now, the bilinear forms aK(·, ·) and a(·, ·) are defined by

aK(v,w) = (b · ∇v + Rv,w + θb · ∇w)K
−
∫
∂K−

[|v|]w+b · ν d�, K ∈ Kh,
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and
a(v,w) =

∑
K∈Kh

aK(v,w).

Then (4.149) is expressed as follows: Find ph ∈ Vh such that

a(ph, v) =
∑
K∈Kh

(f, v + θb · ∇v)K ∀v ∈ Vh, (4.150)

where ph,− = g on �−.
If 1 − θR/2 ≥ 0, the norm ‖ · ‖b is modified to

‖v‖b =
(∥∥R1/2 (1 − θR/2)1/2 v

∥∥2

L2(�)
+ 1

2

∑
K∈Kh

∫
∂K−

[|v|]2|b · ν| d�

+ 1

2

∑
K∈Kh

‖θ1/2b · ∇v‖2
L2(K) +

1

2

∫
�+
v2

−b · ν d�

)1/2

.

Then, if b satisfies ∇ · b = 0, it can be seen (Chen, 2005) that

a(v, v) ≥ ‖v‖2
b − 1

2

∫
�−
v2

−|b · ν| d�, v ∈ Vh. (4.151)

Hence the stability and convergence results (4.147) and (4.148) hold also for (4.150) (Chen,
2005).

For an appropriate choice of the stabilization parameter θ , the SDG method is much
more stable than the DG. For a comparison, see Chen (2005). The DG and SDG methods
have been developed here only for the hyperbolic problem (4.138); they can be also used
for the solution of diffusion problems (Chen, 2005).

4.5 Mixed Finite Element Methods
In this section, we study mixed finite element methods, which generalize the finite element
methods discussed in Section 4.2. These methods were initially introduced by engineers in
the 1960s (Fraeijs de Veubeke, 1965; Hellan, 1967; Hermann, 1967) for solving problems
in solid continua. Since that time, they have been applied to many areas, particularly solid
and fluid mechanics. Here we discuss their applications to second-order partial differential
equation problems. The main reason for using mixed methods is that in some applications a
vector variable (e.g., a fluid velocity) is the primary variable in which one is interested. Then
the mixed methods are developed to approximate both this variable and a scalar variable
(e.g., pressure) simultaneously and to give a high-order approximation of both variables.
Instead of the single finite element space used in the standard finite element methods, mixed
finite element methods employ two different spaces. These two spaces must satisfy an inf-
sup condition for the mixed methods to be stable. Raviart and Thomas (1977) introduced
the first family of mixed finite element spaces for second-order elliptic problems in the
two-dimensional case. Somewhat later, Nédélec (1980) extended these spaces to three-
dimensional problems. Motivated by these two papers, there are now many mixed finite
element spaces available in the literature; see Brezzi et al. (1985; 1987A; 1987B) and Chen
and Douglas (1989).
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4.5.1 A one-dimensional model problem

As in Section 4.2, for the purpose of demonstration, we consider a stationary problem for p
in one dimension:

−d
2p

dx2
= f (x), 0 < x < 1,

p(0) = p(1) = 0,
(4.152)

where the function f ∈ L2(I ) is given, with I = (0, 1) and

L2(I ) =
{
v : v is defined on I and

∫
I

v2 dx < ∞
}
.

We recall the scalar product in L2(I ):

(v,w) =
∫ 1

0
v(x)w(x) dx

for real-valued functions v,w ∈ L2(I ) (cf. Section 4.2.1). We also use the linear space (cf.
Section 4.2.1)

H 1(I ) =
{
v ∈ L2(I ) : dv

dx
∈ L2(I )

}
.

Set
V = H 1(I ), W = L2(I ).

Observe that the functions in W are not required to be continuous on the interval I .
After introducing the variable

u = −dp
dx
, (4.153)

(4.152) can be recast in the form
du

dx
= f. (4.154)

Multiplying (4.153) by any function v ∈ V and integrating over I , we see that

(u, v) = −
(
dp

dx
, v

)
.

Application of integration by parts to the right-hand side of this equation leads to

(u, v) =
(
p,
dv

dx

)
,

where we use the boundary conditions p(0) = p(1) = 0 from (4.152). Also, we multiply
(4.154) by any function w ∈ W and integrate over � to give(

du

dx
,w

)
= (f,w).
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Therefore, we see that the pair of functions u and p satisfies the system

(u, v)−
(
dv

dx
, p

)
= 0, v ∈ V,(

du

dx
,w

)
= (f,w), w ∈ W.

(4.155)

This system is referred to as a mixed variational (or weak) form of (4.152). If the pair of
functions u and p is a solution to (4.153) and (4.154), then this pair also satisfies (4.155).
The converse also holds if p is sufficiently smooth (e.g., if p ∈ H 2(I )); see Exercise 4.40.

We introduce the functional F : V ×W → R by

F(v,w) = 1

2
(v, v)−

(
dv

dx
,w

)
+ (f,w), v ∈ V, w ∈ W.

It can be shown (Chen, 2005) that problem (4.155) is equivalent to the saddle point problem:
Find u ∈ V and p ∈ W such that

F(u,w) ≤ F(u, p) ≤ F(v, p) ∀v ∈ V, w ∈ W. (4.156)

For this reason, problem (4.155) is also referred to as a saddle point problem.
To construct mixed finite element methods for solving (4.152), for a positive integer

M let 0 = x1 < x2 < · · · < xM = 1 be a partition of I into a set of subintervals Ii−1 =
(xi−1, xi), with length hi = xi − xi−1, i = 2, 3, . . . ,M . Set h = max{hi, 2 ≤ i ≤ M}.
Define the mixed finite element spaces

Vh = {v : v is a continuous function on [0, 1]
and is linear on each subinterval Ii},

Wh = {w : w is constant on each subinterval Ii}.
Note that Vh ⊂ V andWh ⊂ W . Now, the mixed finite element method for (4.152) is defined
as

Find uh ∈ Vh and ph ∈ Wh such that

(uh, v)−
(
dv

dx
, ph

)
= 0, v ∈ Vh,(

duh

dx
,w

)
= (f,w), w ∈ Wh.

(4.157)

To show that (4.157) has a unique solution, let f = 0; take v = uh and w = ph in (4.157),
and add the resulting equations to give

(uh, uh) = 0,

so that uh = 0. Consequently, it follows from (4.157) that(
dv

dx
, ph

)
= 0, v ∈ Vh.
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Choose v ∈ Vh such that dv/dx = ph (thanks to the definition of Vh and Wh) in this
equation to see that ph = 0. Hence the solution of (4.157) is unique. Uniqueness also
yields existence since (4.157) is equivalent to a finite-dimensional linear system.

In the same fashion as for the equivalence between (4.155) and (4.156), problem
(4.157) is equivalent to the saddle point problem: Find uh ∈ Vh and ph ∈ Wh such that

F(uh,w) ≤ F(uh, ph) ≤ F(v, ph) ∀v ∈ Vh, w ∈ Wh. (4.158)

We introduce the basis functions ϕi ∈ Vh, i = 1, 2, . . . ,M (cf. Figure 4.11)

ϕi(xj ) =
{

1 if i = j,

0 if i �= j,

and the basis functions ψi ∈ Wh, i = 1, 2, . . . ,M − 1,

ψi(x) =
{

1 if x ∈ Ii,
0 otherwise.

The functions ψi are characteristic functions. Now, functions v ∈ Vh and w ∈ Wh have the
unique representations

v(x) =
M∑
i=1

viϕi(x), w(x) =
M−1∑
i=1

wiψi(x), 0 ≤ x ≤ 1,

where vi = v(xi) and wi = w|Ii . Take v and w in (4.157) to be these basis functions to see
that (

uh, ϕj
)−
(
dϕj

dx
, ph

)
= 0, j = 1, 2, . . . ,M,(

duh

dx
,ψj

)
= (f, ψj ), j = 1, 2, . . . ,M − 1.

(4.159)

Set

uh(x) =
M∑
i=1

uiϕi(x), ui = uh(xi),

and

ph(x) =
M−1∑
k=1

pkψk(x), pk = ph|Ik .

Substitute these expressions into (4.159) to give

M∑
i=1

(
ϕi, ϕj

)
ui −

M−1∑
k=1

(
dϕj

dx
, ψk

)
pk = 0, j = 1, . . . ,M,

M∑
i=1

(
dϕi

dx
, ψj

)
ui = (f, ψj ), j = 1, . . . ,M − 1.

(4.160)
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We introduce the matrices and vectors

A = (aij )i,j=1,2,...,M , B = (bjk)j=1,2,...,M, k=1,2,...,M−1 ,

U = (ui)i=1,2,...,M , p = (pk)k=1,2,...,M−1 , f = (fj )j=1,2,...,M−1 ,

where

aij = (ϕi, ϕj ) , bjk = −
(
dϕj

dx
, ψk

)
, fj = (f,ψj ) .

With this notation, system (4.160) can be written in matrix form as(
A B

BT 0

)(
U

p

)
=
(

0

−f

)
, (4.161)

where BT is the transpose of B. Note that (4.161) is symmetric but indefinite. It can be
shown that the matrix M defined by

M =
(

A B

BT 0

)

has both positive and negative eigenvalues (cf. Exercise 4.45).
The matrix A is symmetric and positive definite (cf. Section 4.2.1). It is also sparse.

In the one-dimensional case, it is tridiagonal. It follows from the definition of the basis
functions ϕi that

aij = (ϕi, ϕj ) = 0 if |i − j | ≥ 2,

so that

a11 = h2

3
, aMM = hM

3
,

and, for i = 2, 3, . . . ,M − 1,

ai−1,i = hi

6
, aii = hi

3
+ hi+1

3
, ai,i+1 = hi+1

6
.

It can be also seen that

bjj = 1, bj+1,j = −1, j = 1, 2, . . . ,M − 1;
all other entries of B are zero. That is, the M × (M − 1) matrix B is bidiagonal:

B =



1 0 0 . . . 0 0

−1 1 0 . . . 0 0

0 −1 1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 1 0

0 0 0 . . . −1 1

0 0 0 . . . 0 −1


.
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In the case where the partition is uniform, i.e., h = hi ,

A = h

6



2 1 0 . . . 0 0

1 4 1 . . . 0 0

0 1 4 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 4 1

0 0 0 . . . 1 2


.

Even for the one-dimensional problem, an error analysis for the mixed finite element
method (4.157) is delicate. We just point out that an error estimate of the following type
can be obtained for (4.157):

‖p − ph‖ + ‖u− uh‖ ≤ Ch, (4.162)

where u, p and uh, ph are the respective solutions of (4.155) and (4.157), C depends on the
size of the second derivative of p, and we recall the norm (cf. Section 4.2.1)

‖v‖ = ‖v‖L2(I ) =
(∫ 1

0
v2 dx

)1/2

.

When u is sufficiently smooth (e.g., u ∈ H 2(I )), we can show the error estimate (Brezzi
and Fortin, 1991; Chen, 2005)

‖u− uh‖ ≤ Ch2. (4.163)

Error bounds (4.162) and (4.163) are optimal for p and u.

4.5.2 A two-dimensional model problem

We extend the mixed finite element method in the previous section to a stationary problem
in two dimensions:

−�p = f in �,

p = 0 on �,
(4.164)

where � is a bounded domain in the plane with boundary � and f ∈ L2(�) is a given
function. Recall that

L2(�) =
{
v : v is defined on � and

∫
�

v2 dx < ∞
}

with the inner product

(v,w) =
∫
�

v(x)w(x) dx, v, w ∈ L2(�).

We also use the space

H(div, �) = {v = (v1, v2) ∈ (L2(�))2 : ∇ · v ∈ L2(�)
}
,
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where

∇ · v = ∂v1

∂x1
+ ∂v2

∂x2
.

It can be checked (cf. Exercise 4.46) that for any decomposition of� into subdomains such
that the interiors of these subdomains are pairwise disjoint, the space H(div, �) consists of
those functions whose normal components are continuous across the interior edges in this
decomposition. Define

V = H(div, �), W = L2(�).

Set
u = −∇p. (4.165)

The first equation in (4.164) becomes

∇ · u = f. (4.166)

Multiply (4.165) by v ∈ V and integrate over � to see that

(u, v) = −(v,∇p).
Applying Green’s formula (4.68) to the right-hand side of this equation, we have

(u, v) = (∇ · v, p),

where we use the boundary condition in (4.164). Also, multiplying (4.166) by any w ∈ W ,
we get

(∇ · u, w) = (f,w).

Thus we have the system for u and p

(u, v)− (∇ · v, p) = 0, v ∈ V,

(∇ · u, w) = (f,w), w ∈ W. (4.167)

This is the mixed variational form of (4.164). If u and p satisfy (4.165) and (4.166), they
also satisfy (4.167). The converse also holds ifp is sufficiently smooth (e.g., ifp ∈ H 2(�));
see Exercise 4.47. In a similar fashion as for (4.155) and (4.156), (4.167) can be written as
a saddle point problem.

For a polygonal domain �, let Kh be a partition of � into nonoverlapping (open)
triangles such that no vertex of one triangle lies in the interior of an edge of another triangle.
Define the mixed finite element spaces

Vh= {v ∈ V : v|K = (bKx1 + aK, bKx2 + cK),

aK, bK, cK ∈ R, K ∈ Kh},
Wh= {w : w is constant on each triangle in Kh}.

As noted, Vh can be also described as follows:

Vh = {v : v|K = (bKx1 + aK, bKx2 + cK), K ∈ Kh,
aK, bK, cK ∈ R, and the normal components of v

are continuous across the interior edges in Kh}.
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ν

Figure 4.45. An illustration of the unit normal ν.

Note that Vh ⊂ V andWh ⊂ W . The mixed finite element method for (4.164) is defined as

Find uh ∈ Vh and ph ∈ Wh such that

(uh, v)− (∇ · v, ph) = 0, v ∈ Vh,

(∇ · uh, w) = (f,w), w ∈ Wh.

(4.168)

As for (4.157), it can be proven that (4.168) has a unique solution.
Let {xi} be the set of the midpoints of edges inKh, i = 1, 2, . . . ,M . With each point

xi , we associate a unit normal vector νi . For xi ∈ �, νi is just the outward unit normal
to �; for xi ∈ e = K̄1 ∩ K̄2, K1,K2 ∈ Kh, let νi be any unit vector orthogonal to e (cf.
Figure 4.45). We now define the basis functions of Vh, i = 1, 2, . . . ,M , by

(
ϕi · νi

)
(xj ) =

{
1 if i = j,

0 if i �= j.

Any function v ∈ Vh has the unique representation

v(x) =
M∑
i=1

viϕi (x), x ∈ �,

where vi = (v · νi ) (xi ). Also, the basis functionsψi ∈ Wh, i = 1, 2, . . . , N , can be defined
as in the previous section; i.e.,

ψi(x) =
{

1 if x ∈ Ki,
0 otherwise,

where �̄ =⋃N
i=1 K̄i and N is the number of triangles inKh. Any function w ∈ Wh has the

representation

w(x) =
N∑
i=1

wiψi(x), x ∈ �, wi = w|Ki .

In the same manner as in the previous section, system (4.168) can be recast in matrix
form (cf. Exercise 4.48): (

A B

BT 0

)(
U

p

)
=
(

0

−f

)
, (4.169)
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where
A = (aij )i,j=1,2,...,M , B = (bjk)j=1,2,...,M, k=1,2,...,N ,

U = (ui)i=1,2,...,M , p = (pk)k=1,2,...,N , f = (fj )j=1,2,...,N ,

with
aij = (ϕi ,ϕj ) , bjk = − (∇ · ϕj , ψk

)
, fj = (f,ψj ) .

Again, the matrix M defined by

M =
(

A B

BT 0

)

has both positive and negative eigenvalues. The matrix A is symmetric, positive definite,
and sparse. In fact, it has at most five nonzero entries in each row in the present case (cf.
Exercise 4.48). The matrix B is also sparse, with two nonzero entries in each row.

Let u, p and uh, ph be the respective solutions of (4.167) and (4.168). Then the
following error estimate holds (Brezzi and Fortin, 1991; Chen, 2005):

‖p − ph‖ + ‖u − uh‖ ≤ Ch, (4.170)

where C depends on the size of the second partial derivatives of p. The estimate is optimal
for this pair of mixed finite element spaces.

4.5.3 Extension to boundary conditions of other kinds

A Neumann boundary condition

In the previous section, we considered the Dirichlet boundary condition in (4.164). We now
extend the mixed finite element method to the stationary problem with the homogeneous
Neumann boundary condition:

−�p = f in �,
∂p

∂ν
= 0 on �,

(4.171)

where ∂p/∂ν is the derivative of p normal to boundary �.
Application of Green’s formula (4.68) to (4.171) yields∫

�

f dx = 0.

This is a compatibility condition. In this case, p is unique up to an additive constant.
We define the spaces

V = {v = (v1, v2) ∈ H(div, �) : v · ν = 0 on �},
W=

{
w ∈ L2(�) :

∫
�

w dx = 0

}
.
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With the choice of these two spaces, the mixed variational form of (4.171) is

Find u ∈ V and p ∈ W such that

(u, v)− (∇ · v, p) = 0, v ∈ V,

(∇ · u, w) = (f,w), w ∈ W.
(4.172)

Note that the Neumann boundary condition becomes the essential condition that must be
incorporated into the definition of the space V. In contrast, the Dirichlet boundary condition
is the essential condition in finite element methods (cf. Section 4.2.1).

Let Kh be a partition of � into nonoverlapping triangles, as defined in the previous
section. We define the mixed finite element spaces

Vh= {v ∈ H(div, �) : v|K = (bKx1 + aK, bKx2 + cK),

aK, bK, cK ∈ R, K ∈ Kh, and v · ν = 0 on �},
Wh=

{
w : w|K is constant on each K ∈ Kh and

∫
�

w dx = 0

}
.

Again, Vh ⊂ V andWh ⊂ W . The mixed finite element method for (4.171) reads as follows:

Find uh ∈ Vh and ph ∈ Wh such that

(uh, v)− (∇ · v, ph) = 0, v ∈ Vh,

(∇ · uh, w) = (f,w), w ∈ Wh.

(4.173)

This system can be rewritten in matrix form as in (4.169), and the error estimate (4.170)
also holds.

A boundary condition of the third kind

We now consider a boundary condition of the third kind:

−�p = f in �,

bp + ∂p

∂ν
= g on �,

(4.174)

where b is a strictly positive function on � and g is a given function.
With the linear spaces V and W defined as in Section 4.5.2, the mixed variational

form of (4.174) is

Find u ∈ V and p ∈ W such that

(u, v)+
∫
�

b−1u · ν v · ν d�− (∇ · v, p)

= −
∫
�

b−1gv · ν d�, v ∈ V,

(∇ · u, w) = (f,w), w ∈ W.

(4.175)
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Similarly, with the mixed finite element spaces in Section 4.5.2, the mixed finite element
method for (4.174) is

Find uh ∈ Vh and ph ∈ Wh such that

(uh, v)+
∫
�

b−1uh · ν v · ν d�− (∇ · v, ph)

= −
∫
�

b−1gv · ν d�, v ∈ Vh,

(∇ · uh, w) = (f,w), w ∈ Wh.

(4.176)

The matrix form and error estimate of (4.176) can be obtained in the same fashion as in
Section 4.5.2 (cf. Exercise 4.51).

4.5.4 Mixed finite element spaces

We consider the model problem for p:

−∇ · (a∇p) = f in �,

p = g on �,
(4.177)

where� ⊂ R
d (d = 2 or 3) is a bounded two- or three-dimensional domain with boundary

�, the diffusion tensor a is assumed to satisfy condition (4.88), and f and g are given real-
valued piecewise continuous bounded functions in � and �, respectively. This problem
was considered in the previous sections. To write (4.177) in a mixed variational form, the
Sobolev spaces introduced in Section 4.5.2 are exploited. The norms of these two spaces
W = L2(�) and V = H(div, �) are, respectively, defined by

‖w‖ ≡ ‖w‖L2(�) =
(∫

�

w2 dx
)1/2

, w ∈ W,

and
‖v‖V ≡ ‖v‖H(div,�) = {‖v‖2 + ‖∇ · v‖2

}1/2
, v ∈ V.

The definition of H(div, �) for� ⊂ R
3 is similar to that in Section 4.5.2; in this case, recall

that

∇ · v = ∂v1

∂x1
+ ∂v2

∂x2
+ ∂v3

∂x3
, v = (v1, v2, v3).

Let
u = −a∇p. (4.178)

In the same way as in the derivation of (4.167), problem (4.177) is written in the mixed
variational form:

Find u ∈ V and p ∈ W such that

(a−1u, v)− (∇ · v, p) = −
∫
�

gv · ν d�, v ∈ V,

(∇ · u, w) = (f,w), w ∈ W.
(4.179)
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There is a constant C1 > 0 such that the inf-sup condition between the spaces V and W
holds (Chen, 2005):

sup
0 �=v∈V

|(∇ · v, w)|
‖v‖V

≥ C1‖w‖ ∀w ∈ W. (4.180)

Because of (4.88) and (4.180), problem (4.179) has a unique solution u ∈ V and p ∈ W

(Brezzi and Fortin, 1991), with u given by (4.178).
Let Vh ⊂ V and Wh ⊂ W be certain finite-dimensional subspaces. The discrete

version of (4.179) is

Find uh ∈ Vh and ph ∈ Wh such that

(a−1uh, v)− (∇ · v, ph) = −
∫
�

gv · ν d�, v ∈ Vh,

(∇ · uh, w) = (f,w), w ∈ Wh.

(4.181)

For this problem to have a unique solution, it is natural to impose a discrete inf-sup condition
between Vh and Wh similar to (4.180):

sup
0 �=v∈Vh

|(∇ · v, w)|
‖v‖V

≥ C2‖w‖ ∀w ∈ Wh, (4.182)

where C2 > 0 is a constant independent of h.
In the previous two sections, we considered the mixed finite element spaces Vh and

Wh over triangles. These spaces are the lowest-order triangular spaces introduced by Raviart
and Thomas (1977), and they satisfy condition (4.182). In this section, we describe other
mixed finite element spaces that satisfy this stability condition. These spaces are RTN
(Raviart and Thomas, 1977; Nédélec, 1980), BDM (Brezzi et al., 1985), BDDF (Brezzi
et al., 1987A), BDFM (Brezzi et al., 1987B), and CD (Chen and Douglas, 1989) spaces.

Condition (4.182) is also called the Babuška–Brezzi condition or sometimes the
Ladyshenskaja–Babuška–Brezzi condition.

For simplicity, let � be a polygonal domain in this section. For a curved domain,
the definition of the mixed finite element spaces under consideration is the same, but the
degrees of freedom for Vh need to be modified (Brezzi and Fortin, 1991).

Mixed finite element spaces on triangles

For� ⊂ R
2, letKh be a partition of� into triangles such that adjacent elements completely

share their common edge. For a triangle K ∈ Kh, let

Pr(K) = {v : v is a polynomial of degree at most r on K} ,
where r ≥ 0 is an integer. Mixed finite element spaces Vh×Wh are defined locally on each
element K ∈ Kh, so let Vh(K) = Vh|K (the restriction of Vh to K) and Wh(K) = Wh|K .

(i) The RT spaces on triangles

As noted, these spaces are the first mixed finite element spaces introduced by Raviart and
Thomas (1977). They are defined for each r ≥ 0 by

Vh(K) = (Pr(K))2 ⊕ ((x1, x2)Pr(K)
)
, Wh(K) = Pr(K),
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Figure 4.46. The triangular RT.

where the notation ⊕ indicates a direct sum and (x1, x2)Pr(K) = (x1Pr(K), x2Pr(K)).
The case r = 0 was used in the previous sections. In this case, we observe that Vh(K) has
the form

Vh(K) = {v : v = (aK + bKx1, cK + bKx2), aK, bK, cK ∈ R},
and its dimension is three. As discussed in Section 4.5.2, as parameters, or the degrees of
freedom, to describe the functions in Vh we use the values of normal components of the
functions at the midpoints of edges in Kh (cf. Figure 4.46). Also, in the case r = 0, the
degrees of freedom for Wh can be the averages of functions over K , as in Section 4.5.2.

In general, for r ≥ 0 the dimensions of Vh(K) and Wh(K) are

dim
(
Vh(K)

) = (r + 1)(r + 3), dim
(
Wh(K)

) = (r + 1)(r + 2)

2
.

The degrees of freedom for the space Vh(K), with r ≥ 0, are given by (Raviart and Thomas,
1977)

(v · ν, w)e ∀w ∈ Pr(e), e ∈ ∂K,
(v,w)K ∀w ∈ (Pr−1(K))

2 ,

where ν is the outward unit normal to e ∈ ∂K . This is a legitimate choice; i.e., a function
in Vh is uniquely determined by these degrees of freedom.

(ii) The BDM spaces on triangles

The BDM spaces on triangles (Brezzi et al., 1985) lie between corresponding RT spaces,
are of smaller dimension than the RT space of the same index, and provide asymptotic error
estimates for the vector variable of the same order as the corresponding RT space. They are
defined for each r ≥ 1 by

Vh(K) = (Pr(K))2, Wh(K) = Pr−1(K).

The simplest BDM spaces on triangles are those with r = 1. In this case, Vh(K) is

Vh(K) = {v : v = (a1
K + a2

Kx1 + a3
Kx2, a

4
K + a5

Kx1 + a6
Kx2),

aiK ∈ R, i = 1, 2, . . . , 6},
so its dimension is six. The degrees of freedom for Vh are the values of normal components
of functions at the two quadratic Gauss points on each edge in Kh (cf. Figure 4.47). The
space Wh(K) with r = 1 consists of constants.
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Figure 4.47. The triangular BDM.

In general, for r ≥ 1 the dimensions of Vh(K) and Wh(K) are

dim
(
Vh(K)

) = (r + 1)(r + 2), dim
(
Wh(K)

) = r(r + 1)

2
.

Set
Br+1(K) = {v ∈ Pr+1(K) : v|∂K = 0} = λ1λ2λ3Pr−2(K),

where λ1, λ2, and λ3 are the barycentric coordinates of the triangle K (cf. Section 4.2.1).
The degrees of freedom for Vh(K) are (Brezzi et al., 1985)

(v · ν, w)e ∀w ∈ Pr(e), e ∈ ∂K,
(v,∇w)K ∀w ∈ Pr−1(K),

(v, curl w)K ∀w ∈ Br+1(K),

where curlw = (−∂w/∂x2, ∂w/∂x1).

Mixed finite element spaces on rectangles

We now consider the case where � is a rectangular domain and Kh is a partition of � into
rectangles such that the horizontal and vertical edges of rectangles are parallel to the x1-
and x2-coordinate axes, respectively, and adjacent elements completely share their common
edge. Define

Ql,r (K) =
{
v : v(x) =

l∑
i=0

r∑
j=0

vij x
i
1x
j

2 , x = (x1, x2) ∈ K, vij ∈ R

}
;

i.e., Ql,r (K) is the space of polynomials of degree at most l in x1 and r in x2, l, r ≥ 0.

(i) The RT spaces on rectangles

These spaces are an extension of the RT spaces on triangles to rectangles (Raviart and
Thomas, 1977), and for each r ≥ 0 they are defined by

Vh(K) = Qr+1,r (K)×Qr,r+1(K), Wh(K) = Qr,r(K).

In the case r = 0, Vh(K) takes the form

Vh(K) = {v : v = (a1
K + a2

Kx1, a
3
K + a4

Kx2
)
, aiK ∈ R, i = 1, 2, 3, 4

}
,
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Figure 4.48. The rectangular RT.

and its dimension is four. The degrees of freedom for Vh are the values of normal components
of functions at the midpoint on each edge in Kh (cf. Figure 4.48). In this case, Q0,0(K) =
P0(K).

For a general r ≥ 0, the dimensions of Vh(K) and Wh(K) are

dim
(
Vh(K)

) = 2(r + 1)(r + 2), dim
(
Wh(K)

) = (r + 1)2.

The degrees of freedom for Vh(K) are

(v · ν, w)e ∀w ∈ Pr(e), e ∈ ∂K,
(v,w)K ∀w = (w1, w2), w1 ∈ Qr−1,r (K), w2 ∈ Qr,r−1(K).

(ii) The BDM spaces on rectangles

The BDM spaces (Brezzi et al., 1985) on rectangles differ considerably from the RT spaces
on rectangles in that the vector elements are based on augmenting the space of vector
polynomials of total degree r by exactly two additional vectors in place of augmenting the
space of vector tensor products of polynomials of degree r by 2r + 2 polynomials of higher
degree. A lower-dimensional space for the scalar variable is also used. These spaces, for
any r ≥ 1, are given by

Vh(K) = (Pr(K))2 ⊕ span
{
curl

(
xr+1

1 x2
)
, curl

(
x1x

r+1
2

)}
,

Wh(K) = Pr−1(K).

In the case r = 1, Vh(K) is

Vh(K) = {v : v = (a1
K + a2

Kx1 + a3
Kx2 − a4

Kx
2
1 − 2a5

Kx1x2,

a6
K + a7

Kx1 + a8
Kx2 + 2a4

Kx1x2 + a5
Kx

2
2

)
,

aiK ∈ R, i = 1, 2, . . . , 8
}
,

and its dimension is eight. The degrees of freedom for Vh are the values of normal compo-
nents of functions at the two quadratic Gauss points on each edge in Kh (cf. Figure 4.49).

For any r ≥ 1, the dimensions of Vh(K) and Wh(K) are

dim
(
Vh(K)

) = (r + 1)(r + 2)+ 2, dim
(
Wh(K)

) = r(r + 1)

2
.
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Figure 4.49. The rectangular BDM.

The degrees of freedom for Vh(K) are

(v · ν, w)e ∀w ∈ Pr(e), e ∈ ∂K,
(v,w)K ∀w ∈ (Pr−2(K))

2 .

(iii) The BDFM spaces on rectangles

These spaces (Brezzi et al., 1987B) are related to the BDM spaces on rectangles and are also
called reduced BDM spaces. They give the same rates of convergence as the corresponding
RT spaces with fewer parameters per rectangle except for the lowest degree space. For each
r ≥ 0, they are defined by

Vh(K) = {w ∈ Pr+1(K) : the coefficient of xr+1
2 vanishes}

×{w ∈ Pr+1(K) : the coefficient of xr+1
1 vanishes},

Wh(K) = Pr(K).

In the case r = 0, the BDFM spaces are just the RT spaces on rectangles. For a general
r ≥ 0, the dimensions of Vh(K) and Wh(K) are

dim
(
Vh(K)

) = (r + 2)(r + 3)− 2, dim
(
Wh(K)

) = (r + 1)(r + 2)

2
.

The degrees of freedom for Vh(K) are

(v · ν, w)e ∀w ∈ Pr(e), e ∈ ∂K,
(v,w)K ∀w ∈ (Pr−1(K))

2 .

While rectangular elements have been presented, an extension to general quadrilat-
erals can be made through change of variables from a reference rectangular element to
quadrilaterals (Wang and Mathew, 1994; Arnold et al., 2005); refer to Section 4.2.2.

Mixed finite element spaces on tetrahedra

Let Kh be a partition of � ⊂ R
3 into tetrahedra such that adjacent elements completely

share their common face. In three dimensions, Pr is now the space of polynomials of degree
r in three variables x1, x2, and x3.
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Figure 4.50. The RTN on a tetrahedron.

(i) The RTN spaces on tetrahedra

These spaces (Nédélec, 1980) are the three-dimensional analogues of the RT spaces on
triangles, and they are defined for each r ≥ 0 by

Vh(K) = (Pr(K))3 ⊕ ((x1, x2, x3)Pr(K)
)
, Wh(K) = Pr(K),

where (x1, x2, x3)Pr(K) = (x1Pr(K), x2Pr(K), x3Pr(K)). As in two dimensions, for
r = 0, Vh is

Vh(K) = {v : v = (aK + bKx1,cK + bKx2, dK + bKx3),

aK, bK, cK ∈ R},
and its dimension is four. The degrees of freedom are the values of normal components of
functions at the centroid of each face in K (cf. Figure 4.50).

In general, for r ≥ 0 the dimensions of Vh(K) and Wh(K) are

dim
(
Vh(K)

) = (r + 1)(r + 2)(r + 4)

2
,

dim
(
Wh(K)

) = (r + 1)(r + 2)(r + 3)

6
.

The degrees of freedom for Vh(K) are

(v · ν, w)e ∀w ∈ Pr(e), e ∈ ∂K,
(v,w)K ∀w ∈ (Pr−1(K))

3 .

(ii) The BDDF spaces on tetrahedra

The BDDF spaces (Brezzi et al., 1987A) are an extension of the BDM spaces on triangles
to tetrahedra, and they are given for each r ≥ 1 by

Vh(K) = (Pr(K))3, Wh(K) = Pr−1(K).

The dimensions of Vh(K) and Wh(K) are

dim
(
Vh(K)

) = (r + 1)(r + 2)(r + 3)

2
,

dim
(
Wh(K)

) = r(r + 1)(r + 2)

6
.



“chenb
2006/2
page 16

�

�

�

�

�

�

�

�

4.5. Mixed Finite Element Methods 165

Figure 4.51. The RTN on a rectangular parallelepiped.

The degrees of freedom for Vh(K) are

(v · ν, w)e ∀w ∈ Pr(e), e ∈ ∂K,
(v,∇w)K ∀w ∈ Pr−1(K),

(v,w)K ∀w ∈ {z ∈ (Pr(K))3 : z · ν = 0 on ∂K

and (z,∇w)K = 0, w ∈ Pr−1(K)}.

Mixed finite element spaces on parallelepipeds

Let � ⊂ R
3 be a rectangular domain and Kh be a partition of � into rectangular paral-

lelepipeds such that their faces are parallel to the coordinate axes and adjacent elements
completely share their common face. Define, with x = (x1, x2, x3),

Ql,m,r (K) =
{
v : v(x) =

l∑
i=0

m∑
j=0

r∑
k=0

vijkx
i
1x
j

2x
k
3 , x ∈ K, vijk ∈ R

}
;

i.e., Ql,m,r (K) is the space of polynomials of degree at most l in x1, m in x2, and r in x3 on
K , respectively, l, m, r ≥ 0.

(i) The RTN spaces on rectangular parallelepipeds

These spaces (Nédélec, 1980) are the three-dimensional analogues of the RT spaces on
rectangles, and for each r ≥ 0 they are defined by

Vh(K) = Qr+1,r,r (K)×Qr,r+1,r (K)×Qr,r,r+1(K),

Wh(K) = Qr,r,r (K).

For r = 0, Vh is

Vh(K) = {v : v = (a1
K + a2

Kx1, a
3
K + a4

Kx2, a
5
K + a6

Kx3
)
,

aiK ∈ R, i = 1, 2, . . . , 6
}
,

and its dimension is six. The degrees of freedom are the values of normal components of
functions at the centroid of each face in K (cf. Figure 4.51).

For r ≥ 0, the dimensions of Vh(K) and Wh(K) are

dim
(
Vh(K)

) = 3(r + 1)2(r + 2), dim
(
Wh(K)

) = (r + 1)3,
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and the degrees of freedom for Vh(K) are

(v · ν, w)e ∀w ∈ Qr,r(e), e ∈ ∂K,
(v,w)K ∀w = (w1, w2, w3), w1 ∈ Qr−1,r,r (K),

w2 ∈ Qr,r−1,r (K), w3 ∈ Qr,r,r−1(K).

(ii) The BDDF spaces on rectangular parallelepipeds

These spaces (Brezzi et al., 1987A) are the three-dimensional analogues of the BDM spaces
on rectangles. They are defined for r ≥ 1 by

Vh(K) = (Pr(K))3 ⊕ span
{

curl(0, 0, xr+1
1 x2), curl(0, x1x

r+1
3 , 0),

curl(xr+1
2 x3, 0, 0), curl(0, 0, x1x

i+1
2 xr−i3 ),

curl(0, xi+1
1 xr−i2 x3, 0), curl(xr−i1 x2x

i+1
3 , 0, 0)

}
,

Wh(K) = Pr−1(K),

where i = 1, 2, . . . , r and, with v = (v1, v2, v3),

curl v =
(
∂v3

∂x2
− ∂v2

∂x3
,
∂v1

∂x3
− ∂v3

∂x1
,
∂v2

∂x1
− ∂v1

∂x2

)
.

The dimensions of Vh(K) and Wh(K) are

dim
(
Vh(K)

) = (r + 1)(r + 2)(r + 3)

2
+ 3(r + 1),

dim
(
Wh(K)

) = r(r + 1)(r + 2)

6
.

The degrees of freedom for Vh(K) are

(v · ν, w)e ∀w ∈ Pr(e), e ∈ ∂K,
(v,w)K ∀w ∈ (Pr−2(K))

3 .

(iii) The BDFM spaces on rectangular parallelepipeds

These spaces (Brezzi et al., 1987B) are related to the BDDF spaces on rectangular paral-
lelepipeds and are also called the reduced BDDF spaces. They are defined for each r ≥ 0
as

Vh(K) =
{
w ∈ Pr+1(K) : the coefficient of

r+1∑
i=0

xr+1−i
2 xi3 vanishes

}

×
{
w ∈ Pr+1(K) : the coefficient of

r+1∑
i=0

xr+1−i
3 xi1 vanishes

}

×
{
w ∈ Pr+1(K) : the coefficient of

r+1∑
i=0

xr+1−i
1 xi2 vanishes

}
,

Wh(K) = Pr(K).
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Figure 4.52. The RTN on a prism.

The dimensions of Vh(K) and Wh(K) are

dim
(
Vh(K)

) = (r + 2)(r + 3)(r + 4)

2
− 3(r + 2),

dim
(
Wh(K)

) = (r + 1)(r + 2)(r + 3)

6
.

The degrees of freedom for Vh(K) are

(v · ν, w)e ∀w ∈ Pr(e), e ∈ ∂K,
(v,w)K ∀w ∈ (Pr−1(K))

3 .

Mixed finite element spaces on prisms

Let � ⊂ R
3 be a domain of the form � = G × (l1, l2), where G ⊂ R

2 and l1 and l2 are
real numbers. Let Kh be a partition of � into prisms such that their bases are triangles
in the (x1, x2)-plane with three vertical edges parallel to the x3-axis and adjacent prisms
completely share their common face. Pl,r denotes the space of polynomials of degree l in
the two variables x1 and x2 and of degree r in the variable x3.

(i) The RTN spaces on prisms

These spaces (Nédélec, 1986) are an extension of the RTN spaces on rectangular paral-
lelepipeds to prisms, and they are defined for each r ≥ 0 by

Vh(K) = {v = (v1, v2, v3) : v3 ∈ Pr,r+1(K)
}
, Wh(K) = Pr,r (K),

where (v1, v2) satisfies that, for x3 fixed,

(v1, v2) ∈ (Pr(K))2 ⊕ ((x1, x2)Pr(K)
)
,

and v1 and v2 are of degree r in x3. For r = 0, Vh has the form

Vh(K) = {v : v = (a1
K + a2

Kx1,a
3
K + a2

Kx2, a
4
K + a5

Kx3
)
,

aiK ∈ R, i = 1, 2, . . . , 5
}
,

and its dimension is five. The degrees of freedom are the values of normal components of
functions at the centroid of each face in K (cf. Figure 4.52).



“chenb
2006/2
page 16

�

�

�

�

�

�

�

�

168 Chapter 4. Numerical Methods

For r ≥ 0, the dimensions of Vh(K) and Wh(K) are

dim
(
Vh(K)

) = (r + 1)2(r + 3)+ (r + 1)(r + 2)2

2
,

dim
(
Wh(K)

) = (r + 1)2(r + 2)

2
.

The degrees of freedom for Vh(K) are

(v · ν, w)e ∀w ∈ Pr(e) for the two horizontal faces,

(v · ν, w)e ∀w ∈ Qr,r(e) for the three vertical faces,(
(v1, v2), (w1, w2)

)
K

∀(w1, w2) ∈ (Pr−1,r (K)
)2
,

(v3, w3)K ∀w3 ∈ Pr,r−1(K).

(ii) The first CD spaces on prisms

The first CD spaces (Chen and Douglas, 1989) are an analogue of the RTN spaces on
prisms, but different degrees of freedom are used, and the number of these degrees is less
than required by the RNT spaces. They are defined for each r ≥ 0 by

Vh(K) =
{

v = (v1, v2, v3) : (v1, v2) ∈ (Pr+1,r (K)
)2
,

v3 ∈ Pr,r+1(K)
}
,

Wh(K) = Pr,r (K),

where the dimensions of Vh(K) and Wh(K) are

dim
(
Vh(K)

) = (r + 1)(r + 2)(r + 3)+ (r + 1)(r + 2)2

2
,

dim
(
Wh(K)

) = (r + 1)2(r + 2)

2
.

Let

Br+2,r (K) = {v ∈ Pr+2,r (K) : v|e = 0 on the three vertical faces}.
The degrees of freedom for Vh(K) are

(v · ν, w)e ∀w ∈ Pr(e) for the two horizontal faces,

(v · ν, w)e ∀w ∈ Qr+1,r (e) for the three vertical faces,(
(v1, v2),∇(x1,x2)w

)
K

∀w ∈ Pr,r (K),(
(v1, v2), curl(x1,x2)w

)
K

∀w ∈ Br+2,r (K),

(v3, w3)K ∀w3 ∈ Pr,r−1(K),

where ∇(x1,x2) and curl(x1,x2) indicate the corresponding operators with respect to x1 and x2.
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(iii) The second CD spaces on prisms

The second CD spaces (Chen and Douglas, 1989) are based on the BDDF spaces on rectan-
gular parallelepipeds and use a much smaller number of degrees of freedom than the RTN
and first CD spaces on prisms. They are defined for each r ≥ 1 by

Vh(K) = (Pr(K))3 ⊕ span
{
curl(xr+1

2 x3, 0, 0),

curl(x2x
r+1
3 ,−x1x

r+1
3 , 0),

curl(0, xi+1
1 xr−i2 x3, 0), i = 1, 2, . . . , r

}
,

Wh(K) = Pr−1(K).

The dimensions of Vh(K) and Wh(K) are

dim
(
Vh(K)

) = (r + 1)(r + 2)(r + 3)

2
+ r + 2,

dim
(
Wh(K)

) = r(r + 1)(r + 2)

6
.

Let
Br+1(K) = {v ∈ Pr+1(K) : v|e = 0 on the three vertical faces of K}.

The degrees of freedom for Vh(K) are

(v · ν, w)e ∀w ∈ Pr(e), e ∈ ∂K,(
(v1, v2),∇(x1,x2)w

)
K

∀w ∈ Pr−1(K),(
(v1, v2), curl(x1,x2)w

)
K

∀w ∈ Br+1(K),

(v3, w3)K ∀w3 ∈ Pr−2(K).

(iv) The third CD spaces on prisms

The third CD spaces (Chen and Douglas, 1989) are based on the BDFM spaces on rectangular
parallelepipeds and also use a much smaller number of degrees of freedom than the RTN
and first CD spaces on prisms. They are defined for each r ≥ 0 by

Vh(K) = {w ∈ Pr+1(K) : the coefficient of xr+1
3 vanishes

}
×{w ∈ Pr+1(K) : the coefficient of xr+1

3 vanishes
}

×
{
w ∈ Pr+1(K) : the coefficient of

r+1∑
i=0

xr+1−i
1 xi2 vanishes

}
,

Wh(K) = Pr(K).

The dimensions of Vh(K) and Wh(K) are

dim
(
Vh(K)

) = (r + 2)(r + 3)(r + 4)

2
− r − 4,

dim
(
Wh(K)

) = (r + 1)(r + 2)(r + 3)

6
.
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The degrees of freedom for Vh(K) are

(v · ν, w)e ∀w ∈ Pr(e) for the two horizontal faces,

(v · ν, w)e ∀w ∈ Pr+1 \ {xr+1
3 }|e for the three vertical faces,(

(v1, v2),∇(x1,x2)w
)
K

∀w ∈ Pr−1(K),(
(v1, v2), curl(x1,x2)w

)
K

∀w ∈ Br+2(K),

(v3, w3)K ∀w3 ∈ Pr−1(K).

In summary, the mixed finite element spaces on various geometrical elements in both
two and three dimensions have been presented in this section. These spaces satisfy the inf-sup
condition (4.182) (Brezzi and Fortin, 1991; Chen, 2005) and lead to optimal approximation
properties (see the next section). We have considered only a polygonal domain �. For
a more general domain, the partition Th can have curved edges or faces on the boundary
�, and the mixed spaces are constructed in a similar fashion (Raviart and Thomas, 1977;
Nédélec, 1980; Brezzi et al., 1985; 1987A; 1987B; Chen and Douglas, 1989).

4.5.5 Approximation properties

The RTN, BDM, BDFM, BDDF, and CD mixed finite element spaces have the approximation
properties

inf
vh∈Vh

‖v − vh‖ ≤ Chl‖v‖Hl (�), 1 ≤ l ≤ r + 1,

inf
vh∈Vh

‖∇ · (v − vh)‖ ≤ Chl‖∇ · v‖Hl(�), 0 ≤ l ≤ r∗,

inf
wh∈Wh

‖w − wh‖ ≤ Chl‖w‖Hl(�), 0 ≤ l ≤ r∗,

(4.183)

where r∗ = r + 1 for the RTN, BDFM, and first and third CD spaces and r∗ = r for the
BDM, BDDF, and second CD spaces. Using (4.183), we can establish the corresponding
error estimates for the mixed finite element method (4.181) when Vh andWh are these mixed
spaces (Chen, 2005).

We have presented the mixed finite element methods only for stationary problems.
These methods can be extended to transient problems as in Section 4.2.4; i.e., the discretiza-
tion in time can be carried out using either the backward Euler method or the Crank–Nicolson
method and in space using the mixed methods. The linear systems of algebraic equations
arising from the mixed methods are of saddle type; i.e., the system matrices have both
positive and negative eigenvalues. Thus the solution of these systems needs special care.
For a collection of iterative algorithms suitable for saddle linear systems, the reader should
refer to Chen (2005). When Vh × Wh are the lowest-order RTN spaces over rectangular
parallelepipeds, the linear system arising from the mixed method can be written as a sys-
tem generated by a cell-centered (or block-centered) finite difference scheme using certain
quadrature rules (Russell and Wheeler, 1983).
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4.6 Characteristic Finite Element Methods
In this section, we consider an application of finite element methods to the reaction-diffusion-
advection problem:

∂(φp)

∂t
+ ∇ · (bp − a∇p)+ Rp = f (4.184)

for the unknown solution p, where φ, b (vector), a (tensor), R, and f are given functions.
Note that (4.184) involves advection (b), diffusion (a), and reaction (R). Many equations
arise in this form, e.g., saturation and concentration equations for multiphase, multicompo-
nent flows in porous media (cf. Chapter 2).

When diffusion dominates advection, the finite element methods developed in Section
4.2 perform well for (4.184). When advection dominates diffusion, however, they do not
perform well. In particular, they exhibit excessive nonphysical oscillations when the solution
to (4.184) is not smooth. Standard upstream weighting approaches have been applied to
the finite element methods with the purpose of eliminating the nonphysical oscillations (cf.
Section 4.3), but these approaches smear sharp fronts in the solution. Although extremely
fine mesh refinement is possible to overcome this difficulty, it is not feasible due to the
excessive computational effort involved.

Many numerical methods have been developed for solving (4.184) where advection
dominates, such as the optimal spatial method. This method employs an Eulerian approach
that is based on the minimization of the error in the approximation of spatial derivatives and
the use of optimal test functions satisfying a local adjoint problem (Brooks and Hughes,
1982; Barrett and Morton, 1984). It yields an upstream bias in the resulting approximation
and has the following features: (i) time truncation errors dominate the solution; (ii) the
solution has significant numerical diffusion and phase errors; (iii) the Courant number (i.e.,
|b|�t/(φh)) is generally restricted to being less than one (cf. (4.40) for the definition of
this number).

Other Eulerian methods, such as the Petrov–Galerkin finite element method, have been
developed to use nonzero spatial truncation errors to cancel temporal errors and thereby
reduce the overall truncation errors (Christie et al., 1976; Westerink and Shea, 1989). While
these methods improve accuracy in the approximation of the solution, they still suffer from
a strict Courant number limitation.

Another class of numerical methods for the solution of (4.184) is the Eulerian–
Lagrangian methods. Because of the Lagrangian nature of advection, these methods treat
the advection by a characteristic tracking approach. They have shown great potential. This
class is rich and bears a variety of names, the method of characteristics (Garder et al., 1964),
the modified method of characteristics (Douglas and Russell, 1982), the transport diffusion
method (Pironneau, 1982), the Eulerian–Lagrangian method (Neuman, 1981), the operator
splitting method (Espedal and Ewing, 1987), the Eulerian–Lagrangian localized adjoint
method (Celia et al., 1990; Russell, 1990), the characteristic mixed finite element method
(Yang, 1992; Arbogast and Wheeler, 1995), and the Eulerian–Lagrangian mixed discontin-
uous method (Chen, 2002B). The common features of this class are (i) the Courant number
restriction of the purely Eulerian methods is alleviated because of the Lagrangian nature
of the advection step; (ii) since the spatial and temporal dimensions are coupled through
the characteristic tracking, the effect of time truncation errors present in the optimal spatial
method is greatly reduced; (iii) they produce nonoscillatory solutions without numerical
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diffusion, using reasonably large time steps on grids no finer than necessary to resolve the
solution on the moving fronts. In this section, we describe the Eulerian–Lagrangian methods.

4.6.1 The modified method of characteristics

The modified method of characteristics (MMOC) was independently developed by Douglas
and Russell (1982) and Pironneau (1982) and is based on a nondivergence form of (4.184).
It was called the transport-diffusion method by Pironneau. In the engineering literature the
name Eulerian–Lagrangian method is often used (Neuman, 1981).

A one-dimensional model problem

For the purpose of introduction, we consider a one-dimensional model problem on the whole
real line:

φ(x)
∂p

∂t
+ b(x)

∂p

∂x
− ∂

∂x

(
a(x, t)

∂p

∂x

)
+ R(x, t)p = f (x, t),

x ∈ R, t > 0,

p(x, 0) = p0(x), x ∈ R.

(4.185)

Set
ψ(x) = (φ2(x)+ b2(x)

)1/2
.

Assume that
φ(x) > 0, x ∈ R,

so that ψ(x) > 0, x ∈ R. Let the characteristic direction associated with the hyperbolic
part of (4.185), φ∂p/∂t + b∂p/∂x, be denoted by τ(x), so that

∂

∂τ(x)
= φ(x)

ψ(x)

∂

∂t
+ b(x)

ψ(x)

∂

∂x
.

Then (4.185) can be rewritten as

ψ(x)
∂p

∂τ
− ∂

∂x

(
a(x, t)

∂p

∂x

)
+ R(x, t)p = f (x, t),

x ∈ R, t > 0,

p(x, 0) = p0(x), x ∈ R.

(4.186)

We assume that the coefficients a, b, R, and φ are bounded and satisfy∣∣∣∣ b(x)φ(x)

∣∣∣∣+ ∣∣∣∣ ddx
(
b(x)

φ(x)

)∣∣∣∣ ≤ C, x ∈ R,

where C is a positive constant. We introduce the linear space (cf. Section 4.2.1)

V = W 1,2(R).
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t

t

n

n1

x

xn

Figure 4.53. An illustration of the definition x̌n.

The reader can refer to Adams (1975) for the definition of the Sobolev space W 1,2(R)

(alternatively, as in Section 4.2.1, V can be taken to be the space of continuous functions
on R that have piecewise continuous and bounded first derivatives in R and approach zero
at ±∞). We recall the scalar product in L2(R)

(v,w) =
∫

R

v(x)w(x) dx.

Now, multiplying the first equation of (4.186) by any v ∈ V and applying integration by
parts in space, problem (4.186) can be written in the equivalent variational form(

ψ
∂p

∂τ
, v

)
+
(
a
∂p

∂x
,
dv

dx

)
+ (Rp, v) = (f, v), v ∈ V, t > 0,

p(x, 0) = p0(x), x ∈ R.

(4.187)

Let 0 = t0 < t1 < · · · < tn < · · · be a partition in time, with �tn = tn − tn−1. For
a generic function v of time, set vn = v(tn). The characteristic derivative is approximated
in the following way: let

x̌n = x − �tn

φ(x)
b(x), (4.188)

and note that, at t = tn,

ψ
∂p

∂τ
≈ ψ(x)

p(x, tn)− p(x̌n, t
n−1)(

(x − x̌n)2 + (�tn)2
)1/2

= φ(x)
p(x, tn)− p(x̌n, t

n−1)

�tn
.

(4.189)

That is, a backtracking algorithm is used to approximate the characteristic derivative; x̌n
is the foot (at level tn−1) of the characteristic corresponding to x at the head (at level tn)
(cf. Figure 4.53).

Let Vh be a finite element subspace of V ∩ W 1,∞(R) (cf. Section 4.2.1). Because
we are considering the whole line, Vh is necessarily infinite-dimensional. In practice, we
can assume that the support of p0 is compact, the portion of the line on which we need
to know p is bounded, and p is very small outside that set. Then Vh can be taken to be
finite-dimensional.
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The MMOC for (4.185) is defined: For n = 1, 2, . . . , find pnh ∈ Vh such that(
φ
pnh − p̌n−1

h

�tn
, v

)
+
(
an
dpnh

dx
,
dv

dx

)
+ (Rnpnh, v) = (f n, v) ∀v ∈ Vh,

(4.190)

where

p̌n−1
h = ph

(
x̌n, t

n−1
) = ph

(
x − �tn

φ(x)
b(x), tn−1

)
. (4.191)

The initial approximation p0
h can be defined as the interpolant of p0 in Vh, for example.

Note that (4.190) determines {pnh} uniquely in terms of the data p0 and f (at least,
for reasonable a and R such that a is uniformly positive with respect to x and t and R is
nonnegative). This can be seen as follows: Since (4.190) is a finite-dimensional system, it
suffices to show uniqueness of the solution. Let f = p0 = 0, and take v = pnh in (4.190)
to see that (

φ
pnh − p̌n−1

h

�tn
, pnh

)
+
(
an
dpnh

dx
,
dpnh

dx

)
+ (Rnpnh, p

n
h) = 0;

with an induction assumption that pn−1
h = 0, this equation implies pnh = 0.

It is obvious that the linear system arising from (4.190) is symmetric positive definite
(cf. Section 4.2.1), even in the presence of the advection term. This system has an improved
(over that arising from a direct application to (4.184) of the finite element method described
in Section 4.2.4) condition number of order (cf. Exercise 4.52)

O
(

1 + max
x∈R, t≥0

|a(x, t)|h−2�t

)
, �t = max

n=1,2,...
�tn.

Thus the system arising from (4.190) is well suited for the iterative linear solution algorithms
discussed in the next chapter.

We end with a remark on a convergence result for (4.190). Let Vh ⊂ V be a finite
element space (cf. Section 4.2.1) with the following approximation property:

inf
vh∈Vh

(‖v − vh‖L2(R) + h‖v − vh‖W 1,2(R)

) ≤ Chr+1|v|Wr+1,2(R), (4.192)

where the constant C > 0 is independent of h and r > 0 is an integer; refer to Section
4.2.1 for the definition of spaces and their norms. Then, under appropriate assumptions on
the smoothness of the solution p and a suitable choice of p0

h it can be shown (Douglas and
Russell 1982) that

max
1≤n≤N

(‖pn − pnh‖L2(R) + h‖pn − pnh‖W 1,2(R)

)
≤ C(p)

(
hr+1 +�t

)
,

(4.193)

whereN is an integer such that tN = T < ∞ and J = (0, T ] is the time interval of interest.
This result, by itself, is not different from what we have obtained with the standard

finite element methods in Section 4.2. However, the constant C is greatly improved when
the MMOC is applied to (4.185). In time, C depends on a norm of ∂2p

∂t2
with the standard
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methods, but on a norm of ∂2p

∂τ 2 with the MMOC (Chen, 2005). The latter norm is much
smaller, and thus long time steps with large Courant numbers are possible.

Some matters are raised by (4.190) and its analogues for more complicated differential
problems. The first concern is the backtracking scheme that determines x̌n and a numerical
quadrature rule that computes the associated integral. For the problem considered in this
subsection, this matter can be resolved; the required computations can be performed exactly.
For more complicated problems, there are discussions by Russell and Trujillo (1990). The
second matter is the treatment of boundary conditions. In this section, we work on the whole
line or on periodic boundary conditions (see the next subsection). For a bounded domain,
if a backtracked characteristic crosses a boundary of the domain, it is not obvious what the
meaning of x̌n or ofph(x̌n)will be. The last matter, and perhaps the greatest drawback of the
MMOC, is its failure to conserve mass. This issue will be discussed in detail in Section 4.6.1.

Periodic boundary conditions

In the previous subsection, (4.185) was considered on the whole line. For a bounded interval,
say (0, 1), the MMOC has a difficulty handling general boundary conditions. In this case,
it is normally developed for periodic boundary conditions (cf. Exercise 4.53):

p(0, t) = p(1, t),
∂p

∂x
(0, t) = ∂p

∂x
(1, t). (4.194)

These conditions are also called cyclic boundary conditions. In the periodic case, assume
that all functions in (4.185) are spatially (0, 1)-periodic. Accordingly, the linear space V is
modified to

V = {v ∈ H 1(I ) : v is I -periodic}, I = (0, 1).

With this modification, the developments in (4.187) and (4.190) remain unchanged.

Extension to multidimensional problems

We now extend the MMOC to (4.184) defined on a multidimensional domain. Let � ⊂ R
d

(d ≤ 3) be a rectangle (respectively, a rectangular parallelepiped), and assume that (4.184)
is �-periodic; i.e., all functions in (4.184) are spatially �-periodic. We write (4.184) in
nondivergence form:

φ(x)
∂p

∂t
+ b(x, t) · ∇p − ∇ · (a(x, t)∇p)
+R(x, t)p = f (x, t), x ∈ �, t > 0,

p(x, 0) = p0(x), x ∈ �.
(4.195)

Set
ψ(x, t) = (φ2(x)+ |b(x, t)|2)1/2 ,

where |b|2 = b2
1 + b2

2 + · · · + b2
d , with b = (b1, b2, . . . , bd). Assume that

φ(x) > 0, x ∈ �.
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Now, the characteristic direction corresponding to the hyperbolic part of (4.195), φ∂p/∂t +
b · ∇p, is τ , so

∂

∂τ
= φ(x)
ψ(x, t)

∂

∂t
+ 1

ψ(x, t)
b(x, t) · ∇.

With this definition, (4.195) becomes

ψ(x, t)
∂p

∂τ
− ∇ · (a(x, t)∇p)+ R(x, t)p = f (x, t),

x ∈ �, t > 0,

p(x, 0) = p0(x), x ∈ �.
(4.196)

We define the linear space

V = {v ∈ H 1(�) : v is �-periodic}.
Recall the notation

(v,w)S =
∫
S

v(x)w(x) dx.

If S = �, we omit it in this notation. Now, applying Green’s formula (4.68) in space and
the periodic boundary conditions, (4.196) can be written in the equivalent variational form(

ψ
∂p

∂τ
, v

)
+ (a∇p,∇v)+ (Rp, v) = (f, v), v ∈ V, t > 0,

p(x, 0) = p0(x), x ∈ �.
(4.197)

The characteristic is approximated by

x̌n = x − �tn

φ(x)
b(x, tn). (4.198)

Furthermore, we see that, at t = tn,

ψ
∂p

∂τ
≈ ψ(x, tn)

p(x, tn)− p(x̌n, tn−1)(|x − x̌n|2 + (�tn)2
)1/2

= φ(x)
p(x, tn)− p(x̌n, tn−1)

�tn
.

(4.199)

A backtracking algorithm similar to that employed in one dimension is used to approximate
the characteristic derivative (cf. Figure 4.54).

Let Vh ⊂ V be a finite element space associated with a regular partition Kh of � (cf.
Section 4.2.1). The MMOC for (4.195) is given: For n = 1, 2, . . . , find pnh ∈ Vh such that(

φ
pnh − p̌n−1

h

�tn
, v

)
+ (an∇pnh,∇v)

+ (Rnpnh, v) = (f n, v) ∀v ∈ Vh,
(4.200)
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t

tn

n1

x

x n

Figure 4.54. An illustration of the definition x̌n.

where

p̌n−1
h = ph

(
x̌n, tn−1

) = ph

(
x − �tn

φ(x)
b(x, tn), tn−1

)
. (4.201)

The remarks made at the end of Section 4.6.1 for (4.190) also apply to (4.200). In particular,
existence and uniqueness of a solution for reasonable choices of a andR can be shown in the
same way (cf. Exercise 4.54), and the error estimate (4.193) under appropriate assumptions
on p also holds for (4.200) (Chen, 2005):

max
1≤n≤N

(‖pn − pnh‖L2(�) + h‖pn − pnh‖H 1(�)

) ≤ C(p)
(
hr+1 +�t

)
,

provided that an approximation property similar to (4.192) holds for Vh in the multiple
dimensions.

Discussion of a conservation relation

We discuss the MMOC in the simple case where

R = f = 0, ∇ · b = 0 in �. (4.202)

That is, b is divergence-free (or solenoidal). Application of condition (4.202), the periodicity
assumption, and the divergence theorem (4.66) to (4.195) yields the conservation relation∫

�

φ(x)p(x, t) dx =
∫
�

φ(x)p0(x) dx, t > 0. (4.203)

In applications, it is desirable to conserve at least a discrete form of this relation in any
numerical approximation of (4.195). However, in general, the MMOC does not conserve
it. To see this, we take v = 1 in (4.200) and apply (4.202) to give∫

�

φ(x)p(x, tn) dx =
∫
�

φ(x)p(x̌n, tn−1) dx

�=
∫
�

φ(x)p(x, tn−1) dx.
(4.204)

For each n, define the transformation

G(x) ≡ G(x, tn) = x − �tn

φ(x)
b(x, tn). (4.205)
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We assume that b/φ has bounded first partial derivatives in space. Then, for d = 3, the
Jacobian of this transformation, J(G), is

1 − ∂

∂x1

(
bn1

φ

)
�tn − ∂

∂x2

(
bn1

φ

)
�tn − ∂

∂x3

(
bn1

φ

)
�tn

− ∂

∂x1

(
bn2

φ

)
�tn 1 − ∂

∂x2

(
bn2

φ

)
�tn − ∂

∂x3

(
bn2

φ

)
�tn

− ∂

∂x1

(
bn3

φ

)
�tn − ∂

∂x2

(
bn3

φ

)
�tn 1 − ∂

∂x1

(
bn3

φ

)
�tn


,

and its determinant equals (cf. Exercise 4.55)

|J(G)| = 1 − ∇ ·
(

bn

φ

)
�tn + O ((�tn)2) . (4.206)

Thus, even in the case where φ is constant, for the second equality of (4.204) to hold re-
quires that the Jacobian of the transformation (4.205) be identically one. While this is
true for constant φ and b, it cannot be expected to be true for variable coefficients. In
the case where φ is constant and ∇ · b = 0, it follows from (4.206) that the determinant
of this transformation is 1 + O((�tn)2), so a systematic error of size O((�tn)2) should
be expected. On the other hand, if ∇ · (b/φ) �= 0, the determinant is 1 + O (�tn), and
a systematic error of size O (�tn) can occur. In particular, in using the MMOC in the
solution of a two-phase immiscible flow problem (cf. Chapter 7), Douglas et al. (1997)
found that conservation of mass failed by as much as 10% in simulations with stochas-
tic rock properties and about half that much with uniform rock properties. Errors of this
magnitude obscure the relevance of numerical approximations to an unacceptable level and
motivated the search for a modification of the MMOC that both conserves (4.203) and
is at most very little more computationally expensive than the MMOC. Another method,
the modified method of characteristics with adjusted advection, was defined by Douglas
et al. (1997) and satisfies these criteria. This method is derived from the MMOC by perturb-
ing the foot of characteristics in an ad hoc fashion. We do not introduce this method in this
chapter. Instead, we describe the Eulerian–Lagrangian localized adjoint method (ELLAM)
(Celia et al., 1990; Russell, 1990).

4.6.2 The Eulerian–Lagrangian localized adjoint method

We consider the ELLAM for problem (4.184) in divergence form:

∂(φp)

∂t
+ ∇ · (bp − a∇p)+ Rp = f, x ∈ �, t > 0,

(bp − a∇p) · ν = g, x ∈ �, t > 0,

p(x, 0) = p0(x), x ∈ �,
(4.207)

where � ⊂ R
d (d ≤ 3) is a bounded domain and φ = φ(x, t) and b = b(x, t) are

now variable. We consider a flux boundary condition in (4.207); an extension to Dirichlet
conditions is possible (Chen, 2005).
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For any x ∈ � and two times 0 ≤ tn−1 < tn, the hyperbolic part of problem (4.207),
φ∂p/∂t + b · ∇p, defines the characteristic x̌n(x, t) along the interstitial velocity ϕ = b/φ
(cf. Figure 4.54):

∂

∂t
x̌n = ϕ(x̌n, t), t ∈ J n,

x̌n(x, tn) = x.
(4.208)

In general, the characteristics in (4.208) can be determined only approximately. There are
many methods to solve this first-order ODE for the approximate characteristics. We consider
only the Euler method.

The Euler method for solving (4.208) for the approximate characteristics is: For any
x ∈ �,

x̌n(x, t) = x − ϕ(x, tn)(tn − t), t ∈ [ť (x), tn], (4.209)

where ť (x) = tn−1 if x̌n(x, t) does not backtrack to the boundary � for t ∈ [tn−1, tn];
ť (x) ∈ J n = (tn−1, tn] is the time instant when x̌n(x, t) intersects �, i.e., x̌n(x, ť(x)) ∈ �,
otherwise. Let

�+ = {x ∈ � : (b · ν) (x) ≥ 0}.
For (x, t) ∈ �+ × J n, the approximate characteristic emanating backward from (x, t) is

x̌n(x, θ) = x − ϕ(x, t)(t − θ), θ ∈ [ť (x, t), t], (4.210)

where ť (x, t) = tn−1 if x̌n(x, θ) does not backtrack to the boundary � for θ ∈ [tn−1, t];
ť (x, t) ∈ (tn−1, t] is the time instant when x̌n(x, θ) intersects � otherwise.

If �tn is sufficiently small (depending upon the smoothness of ϕ), the approximate
characteristics do not cross each other, which is assumed. Then x̌n(·, t) is a one-to-one
mapping of R

d to R
d (d ≤ 3); we indicate its inverse by x̂n(·, t).

For any t ∈ J n, we define

ϕ̃(x, t) = ϕ(x̂n(x, t), tn), b̃ = ϕ̃φ. (4.211)

We assume that b̃ · ν ≥ 0 on �+.
Let Kh be a partition of � into elements {K}. For each K ∈ Kh, let Ǩ(t) represent

the trace back of K to time t , t ∈ J n,

Ǩ(t) = {x ∈ � : x = x̌n(y, t) for some y ∈ K},

and Kn be the space-time region that follows the characteristics (cf. Figure 4.55),

Kn = {(x, t) ∈ �× J : t ∈ J n and x ∈ Ǩ(t)}.

Also, define Bn = {(x, t) ∈ ∂Kn : x ∈ ∂�}.
We write the hyperbolic part of (4.207) as

∂(φp)

∂t
+ ∇ · (bp) = ∂(φp)

∂t
+ ∇ · (b̃p)+ ∇ · ([b − b̃]p). (4.212)
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K
t

t

n

n1

K(t)

Figure 4.55. An illustration of Kn.

With τ (x, t) = (b̃, φ) and a smooth test function v(x, t), application of Green’s formula in
space and time gives (cf. Exercise 4.56)∫

Kn

(
∂(φp)

∂t
+ ∇ · (b̃p)) v dx dt

=
∫
K

φnpnvn dx −
∫
Ǩ(tn−1)

φn−1pn−1vn−1,+ dx

+
∫

Bn

pb̃·νv d�−
∫

Kn

pτ ·
(

∇v, ∂v
∂t

)
dx dt,

(4.213)

where we used the fact that τ · νKn = 0 on the space-time edges (∂Kn ∩ (Ǩ × J n)) \ Bn
and vn−1,+ = v(x, tn−1,+) = limε→0+ v(x, tn−1 + ε) to account for the fact that v(x, t) can
be discontinuous at the time levels.

Similarly, the diffusion part of (4.207) gives∫
Kn

∇ · (a∇p)v dx dt

=
∫
J n

{∫
∂Ǩ(t)

a∇p·νǨ(t)v d�−
∫
Ǩ(t)

(a∇p) · ∇v dx
}
dt.

(4.214)

We assume that the test function v(x, t) is constant along the approximate characteristics.
Then combining (4.212)–(4.214) yields the space-time variational form of (4.207):

(φnpn, vn)− (φn−1pn−1, vn−1,+)
+
∫
J n

{(a∇p,∇v)+ (Rp, v)} dt =
∫
J n

{
(f, v)− (g, v)�

}
dt

+
∫
J n

{(
∇ ·
[
(b̃ − b)p

]
, v̂
)

−
(
p
[
b̃ − b

]
· ν, v

)
�

}
dt,

(4.215)

where the inner product notation in space is used. If we apply backward Euler time inte-
gration along characteristics to the diffusion, reaction, and source term in (4.215), we see
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that

(φnpn, vn)+ (�tnan∇pn,∇vn)+ (�tnRnpn, vn)

= (φn−1pn−1, vn−1,+)+ (�tnf n, vn)−
∫
J n
(g, v)� dt

+
∫
J n

{(
∇ ·
[
(b̃ − b)p

]
, v̂
)

−
(
p
[
b̃ − b

]
· ν, v

)
�

}
dt,

(4.216)

where�tn(x) = tn−ť (x). The x-dependent�tn seems quite appropriate, since the diffusion
at each point is weighted by the length of time over which it acts.

Let Vh ⊂ H 1(�) be a finite element space (cf. Section 4.2.1). For any w ∈ Vh, we
define a test function v(x, t) to be a constant extension of w(x) into the space-time region
�× J n along the approximate characteristics (cf. (4.209) and (4.210))

v(x̌n(x, t), t) = w(x), t ∈ [ť (x), tn], x ∈ �,
v(x̌n(x, θ), θ) = w(x), θ ∈ [ť (x, t), t], (x, t) ∈ �+ × J n.

(4.217)

Now, based on (4.216), an ELLAM procedure is defined: For n = 1, 2, . . . , find
pnh ∈ Vh such that

(
φnpnh, v

n
)+ (�tnan∇pnh,∇vn)+ (�tnRnpnh, vn)

= (φn−1pn−1
h , vn−1,+)+ (�tnf n, vn)−

∫
J n
(g, v)� dt.

(4.218)

Taking v = 1 in (4.218) yields the statement of global mass conservation. The
remarks made on accuracy and efficiency of the MMOC also apply to (4.218) (cf. Exercise
4.57). In particular, when Vh is the space of piecewise linear functions defined on a regular
triangulation Kh, the following convergence result holds (Wang, 2000).

Assume that � is a convex polygonal domain or has a smooth boundary �, and the
coefficients a, b, φ, f , and R satisfy

a ∈ (W 1,∞(�× J )
)d×d

, b ∈ (W 1,∞(�× J )
)d
,

φ, f ∈ W 1,∞(�× J ), R ∈ L∞(J ;W 1,∞(�)).

If the solution p to (4.207) satisfies p ∈ L∞(J ;W 2,∞(�)) and ∂p/∂t ∈ L2(J ;H 2(�)),
the initialization error satisfies

‖p0 − p0
h‖L2(�) ≤ Ch2‖p0‖H 2(�),

and �t is sufficiently small, then
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max
1≤n≤N ‖pn − pnh‖L2(�)

≤ C

{
�t

(∥∥∥∥dpdτ
∥∥∥∥
L2(J ;H 1(�))

+ ‖p‖L∞(J ;W 2,∞(�)) +
∥∥∥∥dfdτ

∥∥∥∥
L2(�×J )

+ ‖f ‖L2(�×J )
)

+h2

(
‖p‖L∞(J ;W 2,∞(�)) +

∥∥∥∥∂p∂t
∥∥∥∥
L2(J ;H 2(�))

+ ‖p0‖H 2(�)

)}
,

where ph is the solution of (4.218), and for real numbers q, r ≥ 0,

‖v‖L2(J ;Wq,r (�)) = ∥∥‖v(·, t)‖Wq,r (�)

∥∥
L2(J )

,

‖v‖L∞(J ;Wq,r (�)) = max
t∈J ‖v(·, t)‖Wq,r (�).

With advection on the right-hand side of (4.218) only, the linear system arising from
(4.218) is well suited for iterative linear solution algorithms in multiple space dimensions
(see the next chapter). The characteristic idea can be combined with other finite element
methods presented in Sections 4.3–4.5; see Yang (1992) and Arbogast and Wheeler (1995)
for characteristic mixed methods and Chen (2002B) for Eulerian–Lagrangian discontinuous
methods, for example.

4.7 Adaptive Finite Element Methods
In reservoir simulation, many important physical and chemical phenomena are sufficiently
localized and transient that adaptive numerical methods are necessary to resolve them.
Adaptive numerical methods have become increasingly important because researchers have
realized the great potential of the concepts underlying these methods. They are numerical
schemes that automatically adjust themselves to improve approximate solutions. These
methods are not exactly new in the computational area, even in the finite element literature.
The adaptive adjustment of time steps in the numerical solution of ODEs has been the subject
of research for many decades. Furthermore, the search for optimal finite element grids dates
back to the early 1970s (Oliveira, 1971). But modern interest in this subject began in the
late 1970s, mainly thanks to important contributions by Babuška and Rheinboldt (1978A;
1978B) and many others.

The overall accuracy of numerical approximations often deteriorates due to local
singularities like those arising from reentrant corners of domains, interior or boundary
layers, and sharp moving fronts. An obvious strategy is to refine the grids near these critical
regions, i.e., to insert more grid points near where the singularities occur. The question
is then how we identify those regions, refine them, and obtain a good balance between
the refined and unrefined regions such that the overall accuracy is optimal. To answer this
question, we need to utilize adaptivity. That is, we need somehow to restructure a numerical
scheme to improve the quality of its approximate solutions. This puts a great demand on
the choice of numerical methods. Restructuring a numerical scheme includes changing
the number of elements, refining local grids, increasing the local order of approximation,
moving nodal points, and modifying algorithm structures.

Another closely related question is how to obtain reliable estimates of the accuracy of
computed approximate solutions. A priori error estimates, as obtained in the previous five
sections, are often insufficient because they produce information only on the asymptotic
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behavior of errors and they require a solution regularity that is not satisfied in the presence
of the above-mentioned singularities. To answer this question, we need to assess the quality
of approximate solutions a posteriori, i.e., after an initial approximation is obtained. This
requires that we compute a posteriori error estimates. Of course, the computation of the
a posteriori estimates should be far less expensive than that of the approximate solutions.
Moreover, it must be possible to compute dynamically local error indicators that lead to
some estimate of the local quality of the solution.

The aim of this section is to present a brief introduction of some of basic topics
on the two components of the adaptive finite element methods: the adaptive strategy and
a posteriori error estimation. We focus on these two components for the standard finite
element methods considered in Section 4.2.

4.7.1 Local grid refinement in space

There are three basic types of adaptive strategies: (1) local refinement of a fixed grid, (2) ad-
dition of more degrees of freedom locally by utilizing higher-order basis functions in certain
elements, and (3) adaptively moving a computational grid to achieve better local resolution.

Local grid refinement of a fixed grid is called an h-scheme. In this scheme, the
mesh is automatically refined or unrefined depending upon a local error indicator. Such a
scheme leads to a very complex data management problem because it involves the dynamic
regeneration of a grid, renumbering of nodal points and elements, and element connectivity.
However, the h-scheme can be very effective in generating near-optimal grids for a given
error tolerance. Efficient h-schemes with fast data management procedures have been
developed for complex problems (Diaz et al., 1984; Ewing, 1986; Bank, 1990). Moreover,
the h-scheme can be also employed to unrefine a grid (or coarsen a grid) when a local error
indicator becomes smaller than a preassigned tolerance.

Addition of more degrees of freedom locally by utilizing higher-order basis functions
in certain elements is referred to as a p-scheme (Babuška et al., 1983; Szabo, 1986). As
discussed in Section 4.2, finite element methods for a given problem attempt to approximate a
solution by functions in a finite-dimensional space of polynomials. The p-scheme generally
utilizes a fixed grid and a fixed number of grid elements. If the error indicator in any
element exceeds a given tolerance, the local order of the polynomial degree is increased
to reduce the error. This scheme can be very effective in modeling thin boundary layers
around bodies moving in a flow field, where the use of very fine grids is impractical and
costly. However, the data management problem associated with the p-scheme, especially
for regions of complex geometry, can be very difficult.

Adaptively moving a computational grid to get better local resolution is usually termed
an r-scheme (Miller and Miller, 1981). It employs a fixed number of grid points and attempts
to move them dynamically to areas where the error indicator exceeds a preassigned tolerance.
The r-scheme can be easily implemented, and does not have the difficult data management
problem associated with the h- and p-schemes. On the other hand, it suffers from several
deficiencies. Without special care in its implementation, it can be unstable and result in
grid tangling and local degradation of approximate solutions. It can never reduce the error
below a fixed limit since it is not capable of handling the migration of regions where the
solution is singular. However, by an appropriate combination with other adaptive strategies,
the r-scheme can lead to a useful scheme for controlling solution errors.
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regular regular

irregular irregular

Figure 4.56. Examples of regular and irregular vertices.

Combinations of these three basic strategies such as the hr-, hp-, and hpr-schemes are
also possible (Babuška and Dorr, 1981; Oden et al., 1989). In this chapter, as an example,
we study the widely applied h-scheme.

Regular h-schemes

We focus on a two-dimensional domain. An extension of the concept in this section to three
dimensions is simple to visualize. However, the modification of the supporting algorithms
in the next section is not straightforward.

In the two-dimensional case, a grid can be triangular, quadrilateral, or of mixed type
(i.e., consisting of both triangles and quadrilaterals); see Section 4.2. A vertex is regular
if it is a vertex of each of its neighboring elements, and a grid is regular if its every vertex
is regular. All other vertices are said to be irregular (slave nodes or hanging nodes); see
Figure 4.56. The irregularity index of a grid is the maximum number of irregular vertices
belonging to the same edge of an element.

If all elements in a grid are subdivided into an equal number (usually four) of smaller
elements simultaneously, the refinement is referred to as global. For example, a refinement
is global by connecting the opposite midpoints of the edges of each triangle or quadrilateral
in the grid. Global refinement does not introduce irregular vertices. In the previous five
sections, all the refinements were global and regular. In contrast, in the case of a local
refinement where only some of the elements in a grid are subdivided into smaller elements,
irregular vertices may appear; refer to Figure 4.56.

In this subsection, we study a regular local refinement. The following refinement rule
can be used to convert irregular vertices to regular ones (Bank, 1990; Braess, 1997). This
rule is designed for a triangular grid and guarantees that each of the angles in the original
grid is bisected at most once. We may think of starting with a triangulation as in Figure 4.57.
It contains six irregular vertices, which need to be converted to regular vertices.

A refinement rule for a triangulation is defined as follows:

1. If an edge of a triangle contains two or more vertices of other triangles (not counting
its own vertices), then this triangle is subdivided into four equal smaller triangles.
This procedure is repeated until such triangles no longer exist.
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II
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I

V
IV

VII
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VIII

Figure 4.57. A coarse grid (solid lines) and a refinement (dotted lines).

2. If the midpoint of an edge of a triangle contains a vertex of another triangle, this
triangle is subdivided into two parts. The new edge is called a green edge.

3. If a further refinement is needed, the green edges are first eliminated before the next
iteration.

For the triangulation in Figure 4.57, we apply the first step to triangles I and VIII.
This requires the use of the refinement rule twice on triangle VII. Next, we construct green
edges on triangles II, V, and VI and on three subtriangles (cf. Exercise 4.58).

Despite its recursive nature, this procedure stops after a finite number of iterations.
Let k be the maximum number of levels in the underlying refinement, where the maximum
is taken over all elements (k = 2 in Figure 4.57). Then every element is subdivided at most k
times, which presents an upper bound on the number of times step 1 is used. We emphasize
that this procedure is purely two dimensional. A generalization to three dimensions is not
straightforward. For a triangulation of � into tetrahedra, see a technique due to Rivara
(1984A).

Irregular h-schemes

Irregular grids leave more freedom for local refinement. In the general case of arbitrary
irregular grids, an element may be refined locally without any interference with its neighbors.
As for regular local refinements, some desirable properties should be preserved for irregular
refinements.

First, in the process of consecutive refinements no distorted elements should be gen-
erated. That is, the minimal angle of every element should be bounded away from zero by
a common bound that probably depends only on the initial grid (cf. (4.79)).

Second, a new grid resulting from a local refinement should contain all the nodes
of the old grid. In particular, if continuous finite element spaces {Vhk } are exploited for a
second-order partial differential problem in all levels, consecutive refinements should lead
to a nested sequence of these spaces:

Vh1 ⊂ Vh2 ⊂ · · · ⊂ Vhk ⊂ Vhk+1 ⊂ · · · ,
where hk+1 < hk and hk is the mesh size at the kth grid level. In the case of irregular local
refinements, to preserve continuity of functions in these spaces the function values at the
irregular nodes of a new grid are obtained by polynomial interpolation of the values at the
old grid nodes.
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Figure 4.58. A local refinement and the corresponding tree structure.

Third, as defined before, the irregularity index of a grid is the maximum number
of irregular vertices belonging to an edge of an element. There are reasons to restrict
ourselves to 1-irregular grids. In practice, it seems to be very unlikely that grids with a
higher irregularity index can be useful for a local h-scheme. Also, in general, the stiffness
matrix arising from the finite element discretization of a problem should be sparse. It turns
out that the sparsity cannot be guaranteed for a general irregular grid (Bank et al., 1983). To
produce 1-irregular grids, we can employ the 1-irregular rule: Refine any unrefined element
for which any of the edges contains more than one irregular node.

Unrefinements

As noted, an h-scheme can be also employed to unrefine a grid. There are two factors that
decide if an element needs to be unrefined: (1) a local error indicator and (2) a structural
condition imposed on the grid resulting from the regularity or 1-irregularity requirement.
Both these factors must be examined before an element is unrefined.

When an element is refined, it produces a number of new smaller elements; the old
element is called a father and the smaller ones are termed its sons. A tree structure (or
family structure) consists of remembering for each element its father (if there is one) and its
sons. Figure 4.58 shows a typical tree structure, together with a corresponding current grid
generated by consecutive refinements of a single square. The root of the tree originates at
the initial element and the leaves are those elements being not refined.
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The tree structure provides for easy and fast unrefinements. When the tree information
is stored, a local unrefinement can be done by simply “cutting the corresponding branch” of
the tree, i.e., unrefining previously refined elements and restoring locally the previous grid.

4.7.2 Data structures

In the finite element methods developed in Section 4.2, all elements and nodes are usually
numbered in a consecutive fashion so that a minimal band in the stiffness matrix of a finite
element system can be produced. When a computational code identifies an element to
evaluate its contribution to this matrix, the minimal information required is the set of node
numbers corresponding to this element (cf. Section 4.2.1).

Adaptive local refinements and unrefinements require much more complex data struc-
tures than the classical global ones in Section 4.2. Because elements and nodes are added
and deleted adaptively, it is often impossible to number them in a consecutive fashion.
Hence we need to establish some kind of natural ordering of elements. In particular, all
elements must be placed in an order, and a code must recognize, for a given element, the next
element (or the previous element if necessary) in the sequence. Therefore, for an element,
the following information should be stored:

• nodes,

• neighbors,

• father,

• sons,

• level of refinement.

For a given node, its coordinates are also needed. The logic of a data structure corresponding
to a particular local refinement may need additional information. However, the above-listed
information seems to be the minimal requirement for all existing data structures. Several data
structures are available for adaptive local grid refinements and unrefinements (Rheinboldt
and Mesztenyi, 1980; Bank et al., 1983; Rivara, 1984B).

4.7.3 A posteriori error estimates

We now study the second component of the adaptive finite element method: a posteriori error
estimation. A posteriori error estimators and indicators can be utilized to give a specific
assessment of errors and to form a solid basis for local refinements and unrefinements.
A posteriori error estimators can be roughly classified as follows (Verfürth, 1996).

1. Residual estimators. These estimators bound the error of the computed approxi-
mate solution by a suitable norm of its residual with respect to the strong form of a
differential equation (Babuška and Rheinboldt, 1978A).

2. Local problem-based estimators. This approach solves locally discrete problems,
which are similar to, but simpler than, the original problem, and uses appropriate
norms of the local solutions for error estimation (Babuška and Rheinboldt, 1978B;
Bank and Weiser, 1985).
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3. Averaging-based estimators. This approach utilizes some local extrapolation or av-
eraging technique to define error estimation (Zienkiewicz and Zhu, 1987).

4. Hierarchical basis estimators. This approach calculates the residual of the computed
approximate solution with respect to another finite element space of higher-order
polynomials or with respect to a refined grid (Deuflhard et al., 1989).

As an example, we briefly study the residual estimators for the model problem in two
dimensions:

−�p = f in �,

p = 0 on �D,

∂p

∂ν
= g on �N,

(4.219)

where � is a bounded domain in the plane with boundary �̄ = �̄D ∪ �̄N , �D ∩ �N = ∅,
f ∈ L2(�) and g ∈ L2(�N) are given functions, and the Laplacian operator � is defined
as in Section 4.2.1. We only study this simple problem; for generalizations to more general
problems, refer to Section 4.2 or the references cited in this chapter.

Assume that �D is closed relative to � and has a positive length. Define (cf. Section
4.2.1)

V = {v ∈ H 1(�) : v = 0 on �D}.
Also, introduce the notation

a(p, v) =
∫
�

∇p · ∇v dx, L(v) =
∫
�

f v dx +
∫
�N

gv d�, v ∈ V.

As in (4.69), problem (4.219) can be recast in the variational form:

Find p ∈ V such that a(p, v) = L(v) ∀v ∈ V. (4.220)

Let � be a convex polygonal domain (or its boundary � is smooth), and let Kh be a
triangulation of� into trianglesK of diameterhK , as in Section 4.2.1. With the triangulation
Kh, associate a grid function h(x) such that, for some positive constant C1,

C1hK ≤ h(x) ≤ hK ∀x ∈ K, K ∈ Kh. (4.221)

Moreover, assume that there exists a positive constant C2 such that

C2h
2
K ≤ |K| ∀K ∈ Kh, (4.222)

where |K| is the area of K . Recall that (4.222) is the minimum angle condition stating that
the angles of triangles in Kh are bounded below by C2 (cf. (4.79)).

To keep the notation to a minimum, let Vh ⊂ V be defined by

Vh = {v ∈ V : v|K ∈ P1(K), K ∈ Kh}.
An extension to finite element spaces of higher-order polynomials will be noted at the end
of this subsection. The finite element method for (4.219) is formulated:

Find ph ∈ Vh such that a(ph, v) = L(v) ∀v ∈ Vh. (4.223)
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K1 K2

ν

Figure 4.59. An illustration of ν.

It follows from (4.220) and (4.223) that

a(p − ph, v) = L(v)− a(ph, v) ∀v ∈ V. (4.224)

The right-hand side of (4.224) implicitly defines the residual of ph as an element in the dual
space of V . Because �D has a positive length, Poincaré’s inequality (Chen, 2005) holds:

‖v‖L2(�) ≤ C(�) ‖∇v‖L2(�) ∀v ∈ V, (4.225)

whereC depends on� and the length of �D . Using (4.225) and Cauchy’s inequality (4.59),
we have

1

1 + C2(�)
‖v‖H 1(�)≤ sup{a(v,w) : w ∈ V, ‖w‖H 1(�) = 1}

≤ ‖v‖H 1(�).
(4.226)

Consequently, it follows from (4.224) and (4.226) that

sup
{
L(v)− a(ph, v) : v ∈ V, ‖v‖H 1(�) = 1

}
≤ ‖p − ph‖H 1(�)

≤ (1 + C2(�)
)

sup
{
L(v)− a(ph, v) : v ∈ V, ‖v‖H 1(�) = 1

}
.

(4.227)

Since the supremum term in (4.227) is equivalent to the norm of the residual in the dual
space of V , this inequality implies that the norm in V of the error is, up to multiplicative
constants, bounded from above and below by the norm of the residual in the dual space of
V . Most a posteriori error estimators attempt to bound this dual norm of the residual by
quantities that can be more easily evaluated from f , g, and ph.

Let Eoh denote the set of all interior edges e in Kh, Ebh the set of the edges e on �,
and Eh = Eoh ∪ Ebh . Furthermore, let EDh and ENh be the sets of edges e on �D and �N ,
respectively.

With each e ∈ Eh, associate a unit normal vector ν. For e ∈ Ebh , ν is just the outward
unit normal to �. For e ∈ Eoh , with e = K̄1 ∩ K̄2, K1,K2 ∈ Kh, the direction of ν is
associated with the definition of jumps across e; if the jump of function v across e is defined
by

[|v|] = (v|K2)|e − (v|K1)|e, (4.228)

then ν is defined as the unit normal exterior to K2 (cf. Figure 4.59).
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We recall the scalar product notation

(v,w)S =
∫

S
v(x)w(x) dx, v, w ∈ L2(S).

If S = �, we omit it in this notation. Note that, by Green’s formula (4.68), the definition
of L(·), and the fact that �ph = 0 on all K ∈ Kh,

L(v)− a(ph, v) = L(v)−
∑
K∈Kh

(∇ph,∇v)K

= L(v)−
∑
K∈Kh

[
(∇ph · νK, v)∂K − (�ph, v)K

]
= (f, v)+

∑
e∈ENh

(g − ∇ph · ν, v)e −
∑
e∈Eoh

([|∇ph · ν|], v)e .
(4.229)

Applying (4.227) and (4.229), one can show that (cf. Exercise 4.60)

‖p − ph‖H 1(�) ≤ C

{∑
K∈Kh

h2
K‖f ‖2

L2(K)

+
∑
e∈ENh

he‖g − ∇ph · ν‖2
L2(e) +

∑
e∈Eoh

he‖[|∇ph · ν|]‖2
L2(e)

}1/2

,

(4.230)
whereC depends onC2 in (4.220) andC(�) in (4.225), andhK andhe represent the diameter
and length, respectively, of K and e.

The right-hand side in (4.230) can be utilized as an a posteriori error estimator because
it involves only the known data f and g, the approximate solution ph, and the geometrical
data of the triangulation Kh. For general functions f and g, the exact computation of the
integrals in the first and second terms of the right-hand side of (4.230) is often impossible.
These integrals must be approximated by appropriate quadrature formulas (cf. Section 4.2.3).
On the other hand, it is also possible to approximate f and g by polynomials in suitable
finite element spaces. Both approaches, numerical quadrature and approximation by simpler
functions combined with exact integration of the latter functions, are often equivalent and
generate analogous a posteriori estimators. We restrict ourselves to the simpler function
approximation approach. In particular, let fh and gh be the L2-projections of f and g into
the spaces of piecewise constants with respect to Kh and ENh , respectively; i.e., on each
K ∈ Kh and e ∈ ENh , fK = fh|K and ge = gh|e are given by the local mean values

fK = 1

|K|
∫
K

f dx, ge = 1

he

∫
e

g d�. (4.231)

Then we define a residual a posteriori error estimator:

RK=
{
h2
K‖fK‖2

L2(K)
+

∑
e∈∂K∩ENh

he‖ge − ∇ph · ν‖2
L2(e)

+ 1

2

∑
e∈∂K∩Eoh

he‖[|∇ph · ν|]‖2
L2(e)

}1/2

.

(4.232)
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The first term in RK is related to the residual of ph with respect to the strong form
of the differential equation. The second and third terms reflect the facts that ph does not
exactly satisfy the Neumann boundary condition and that ph �∈ H 2(�). Since interior edges
are counted twice, combining (4.230), (4.232), and the triangle inequality, we obtain (cf.
Exercise 4.61)

‖p − ph‖H 1(�)≤ C

{∑
K∈Kh

(
R2
K + h2

K‖f − fK‖2
L2(K)

)
+
∑
e∈ENh

he‖g − ge‖2
L2(e)

}1/2

.

(4.233)

Based on (4.233), with a given tolerance ε > 0, the following adaptive algorithm can
be defined (below RHS denotes the right-hand side of (4.233)).

Algorithm I.

• Choose an initial grid Kh0 with grid size h0, and find a finite element solution ph0

using (4.223) with Vh = Vh0 ;

• Given a solution phk in Vhk with grid size hk , stop if the following stopping criterion
is satisfied:

RHS ≤ ε; (4.234)

• If (4.234) is violated, find a new grid Khk with grid size hk such that the following
equation is satisfied:

RHS = ε, (4.235)

and continue.

Inequality (4.234) is the stopping criterion, and (4.235) defines the adaptive strategy.
It follows from (4.233) that the estimate ‖p−ph‖H 1(�) is bounded by ε if (4.234) is reached
with ph = phk . Equation (4.235) determines a new grid size hk by maximality. Namely, we
seek a grid size hk as large as possible (to maintain efficiency) such that (4.235) is satisfied.
The maximality is generally determined by equidistribution of an error such that the error
contributions from the individual elements K are approximately equal. Let Mhk be the
number of elements in Khk ; equidistribution means that

(RHS|K)2 = ε2

Mhk

, K ∈ Khk .
Since the solution phk depends onKhk , this is a nonlinear problem. The nonlinearity can be
simplified by replacing Mhk by Mhk−1 (the number at the previous level), for example.

The following inequality implies, in a sense, that the converse of (4.233) also holds
(Verfürth, 1996; Chen, 2005): for K ∈ Kh,

RK ≤ C

{ ∑
K ′∈�K

(
‖p − ph‖2

H 1(K ′) + h2
K ′ ‖f − fK ′ ‖2

L2(K ′)

)

+
∑

e∈∂K∩ENh

he‖g − ge‖2
L2(e)

}1/2

,

(4.236)
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K

Figure 4.60. An illustration of �K .

Figure 4.61. Uniform (left) and adaptive (right) triangulations.

where (cf. Figure 4.60)

�K =
⋃{

K ′ ∈ Kh : ∂K ′ ∩ ∂K �= ∅} .
Estimate (4.236) indicates that Algorithm I is efficient in the sense that the computational
grid produced by this algorithm is not overly refined for a given accuracy, while (4.234)
implies that this algorithm is reliable in the sense that theH 1-error is guaranteed to be within
a given tolerance.

We end this section with three remarks. First, it is possible to control the error in
norms other than the H 1-norm; we can control the gradient error in the maximum norm
(theL∞(�)-norm; cf. Johnson, 1994), for example. Second, the results in this section carry
over to finite element spaces of polynomials of degree r ≥ 2. In this case, fh and gh are the
L2-projections of f and g into the spaces of piecewise polynomials of degree r − 1 with
respect toKh and ENh , respectively, and fK in the first term of RK is replaced by�ph|K+fK
(cf. Exercise 4.62). Finally, the adaptive finite element methods presented in this section
can be extended to transient problems (Chen, 2005).

Example 4.14. This example follows Verfürth (1996). Consider problem (4.219) on a
circular segment centered at the origin, with radius one and angle 3π/2 (cf. Figure 4.61). The
function f is zero, and the solutionp vanishes on the straight parts of the boundary� and has
a normal derivative 2

3 cos( 2
3θ) on the curved part of�. In terms of polar coordinates, the exact

solution p to (4.219) is p = r2/3 sin( 2
3θ). We calculate the finite element solution ph using

(4.223) with the space of piecewise linear functionsVh associated with the two triangulations
shown in Figure 4.61. The left triangulation is constructed by five uniform refinements of
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Table 4.6. A comparison of uniform and adaptive refinements.

Refinement NT NN er mq
Uniform 3072 1552 3.8% 0.7
Adaptive 298 143 2.8% 0.6

an initial triangulation Kh0 , which is composed of three right-angled isosceles triangles
with short edges of unit length. In each refinement step, every triangle is divided into four
smaller triangles by connecting the midpoints of its edges. The midpoint of an edge having
its two endpoints on � is projected onto �. The right triangulation in Figure 4.61 is obtained
from Kh0 by using Algorithm I based on the error estimator in (4.232). A triangle K ∈ Kh
is divided into four smaller triangles if RK ≥ 0.5 maxK ′∈Kh RK ′ . Again, the midpoint
of an edge having its two endpoints on � is projected onto �. For both triangulations,
Table 4.6 lists the number of triangles (NT), the number of unknowns (NN), the relative error
er = ‖p−ph‖H 1(�)/‖p‖H 1(�), and the measurementmq = (

∑
K∈Kh R2

K)
1/2/‖p−ph‖H 1(�)

of the quality of the error estimator. From this table we clearly see the advantage of the
adaptive method and the reliability of the error estimator.

4.7.4 The eighth SPE project: Gridding techniques

Spatial grids of many different types have been presented in this chapter: rectangles (rectan-
gular parallelepipeds), triangles (tetrahedra), CVFE grids, prisms, and their various flexible
variations. To see a grid number reduction that can be obtained using flexible grids in an
application, the eighth SPE comparative solution project (CSP) is used (Quandalle, 1993).
The objectives of this project are

• to compare numerical predictions using flexible grids vs. regular grids,

• to compare numerical predictions using different flexible grids,

• to evaluate the grid number reduction that can be obtained using flexible grids.

The problem is a three-dimensional simulation of oil production associated with gas
injection in a four-layer reservoir, as described in Figures 4.62 and 4.63 and Tables 4.7–4.11,
where Bo stands for the formation volume factor. Fluid and rock property data are those
of the first CSP (Odeh (1981)) except that there is no water in the present project. This
problem is run twice with the same simulator:

• a first time with the 10 × 10 × 4 regular discretization grid shown in Figure 4.62,

• a second time with a four-layer grid flexible in the horizontal direction. The aim of
the second run is to reduce the number of gridblocks as much as possible using the
grid flexibility while the following constraints on both producers are respected:

– the gas breakthrough time predicted with the flexible grid (fixed as the time
corresponding to a gas-oil ratio (GOR) of 2,000 SCF/STB) must match within
10% the breakthrough time of the 10 × 10 × 4 grid;

– at the time when the regular grid model reaches a GOR of 10,000 SCF/STB, the
flexible grid model must predict a GOR within 10% of the same GOR value.
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Gas injector Producer 1

Producer 2

500 ft

500 ft

Figure 4.62. Reservoir and grid system.

Injector Producer

8325ft H,ft

25

75

75

150

k,md

500

50

20

10

S Sg o

0

0

0

0

1

1

1

1

φ
.3
.2
.2
.1

Figure 4.63. Vertical cross section.

The well boundary conditions are defined in terms of an oil rate at surface conditions
for both producers and a gas rate at surface conditions for the gas injector. The producer
bottom hole pressure limit is set to be so low that the simulation time never reaches this
value.

A black oil simulator (cf. Section 2.6 and Chapter 8) is used for the present simulation
with two types of flexible grids for the second run: a local grid refinement based on rectangles
(cf. Figure 4.64) and a CVFE grid (cf. Figure 4.65, in fact, a hybrid grid). The number of
gridblocks in these two cases is 96 and 68, respectively, which correspond to the cases used
by INTERA Information Technologies in the eighth CSP (Quandalle, 1993). The five-point
finite difference stencil scheme is used for the rectangular grids, while the CVFE method
is applied for the CVFE grid. Tables 4.12 and 4.13 show the gas breakthrough time for
the basic 10 × 10 × 4 grid and two flexible grids, TGR (the time at which the basic grid
reaches a GOR of 10,000 SCF/STB), and the production GOR at TGR for both flexible
grids, respectively, for producers 1 and 2. Figures 4.66 and 4.67 indicate a comparison of
the production GOR values and flowing bottom hole pressures among the three grids for
producer 1. From Tables 4.12 and 4.13 and these figures, we see that while the number of



“chenb
2006/2
page 19

�

�

�

�

�

�

�

�

4.7. Adaptive Finite Element Methods 195

Table 4.7. Reservoir data and constraints.

Initial reservoir pressure at 8,400 ft: 4,800 psia

The gas injector perforated in the upper layer only, at a
distance of 250 ft in both x1 and x2 directions.

Producer 1 perforated in the upper layer only, at a
distance of 4,750 ft in the x1 direction and 250 ft in x2.

Producer 2 perforated in the upper layer only, at a
distance of 250 ft in the x1 direction and 4,750 ft in x2.

Gas injection rate: 12.5 MM SCF/D

Maximum oil production rate for each producer: 1,875 STB/D

Minimum oil production rate for each producer: 1,000 STB/D

Minimum bottom hole pressure for each producer: 1,000 psi

Rock compressibility: 3 × 10−6 1/psi

Porosity measured at 14.7 psi: 0.3

Wellbore radius: 0.25 ft

Capillary pressure: 0 psi

Reservoir temperature: 200◦ F

Gas specific gravity: 0.792

Runs terminated either at the end of 10 years or when
both producers have reached a GOR of 30,000 SCF/STB.

Table 4.8. Saturated oil PVT data.

Reservoir Bo µo ρo Solution GOR
pressure (psia) (RB/STB) (cp) (lbm/ft3) (SCF/STB)

14.7 1.062 1.040 46.244 1.0

264.7 1.150 0.975 43.544 90.5

514.7 1.207 0.910 42.287 180.0

1014.7 1.295 0.830 41.004 371.0

2014.7 1.435 0.695 38.995 636.0

2514.7 1.500 0.641 38.304 775.0

3014.7 1.565 0.594 37.781 930.0

4014.7 1.695 0.510 37.046 1270.0

5014.7 1.827 0.449 36.424 1618.0

9014.7 2.357 0.203 34.482 2984.0

Table 4.9. Undersaturated oil PVT data.

Pressure (psia) Bo (RB/STB) µo (cp) ρo (lbm/ft3)

4014.7 1.695 0.510 37.046

9014.7 1.579 0.740 39.768

gridblocks is reduced by a factor of four with the local rectangular grid refinement or six
with the CVFE grid, the production GOR values and pressures are close to those obtained
by the 10 × 10 × 4 grid. This result demonstrates the potential of using flexible grids in
reservoir simulation.
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Table 4.10. Gas PVT data.

Pressure (psia) Bg (RB/STB) µg (cp) ρg (lbm/ft3)

14.7 0.935829 0.0080 0.0647
264.7 0.067902 0.0096 0.8916
514.7 0.035228 0.0112 1.7185
1014.7 0.017951 0.0140 3.3727
2014.7 0.009063 0.0189 6.6806
2514.7 0.007266 0.0208 8.3326
3014.7 0.006064 0.0228 9.9837
4014.7 0.004554 0.0268 13.2952
5014.7 0.003644 0.0309 16.6139
9014.7 0.002167 0.0470 27.9483

Table 4.11. Relative permeability data.

Sg krg kro

0.0 0.0 1.0
0.001 0.0 1.0
0.02 0.0 0.997
0.05 0.005 0.980
0.12 0.025 0.700
0.2 0.075 0.350

0.25 0.125 0.200
0.30 0.190 0.090
0.40 0.410 0.021
0.45 0.60 0.010
0.50 0.72 0.001
0.60 0.87 0.0001
0.70 0.94 0.000
0.85 0.98 0.000
1.0 1.0 0.000

Figure 4.64. Local rectangular grid refinement.
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Figure 4.65. CVFE grid.

Table 4.12. Gas breakthrough time for producer 1.

Grid Breakthrough TGR GOR
time (days) (days) (SCF/STB)

10 × 10 × 4 807 2,256 10,000
Local refinement 774 10,403

CVFE grid 857 9,552

Table 4.13. Gas breakthrough time for producer 2.

Grid Breakthrough TGR GOR
time (days) (days) (SCF/STB)

10 × 10 × 4 760 2,196 10,000
Local refinement 726 10,055

CVFE grid 823 9,560

500 15001000 2000 2500
1000

3000

5000

7000

9000

11000

Time (days)

GOR
(SCF/STB)

(400)
(96)
(68)

Figure 4.66. Gas-oil ratio for producer 1.
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Figure 4.67. Bottom hole pressure for producer 1.

4.8 Bibliographical Remarks
The finite difference methods presented in Section 4.1 are locally conservative, but are
not flexible in the treatment of complex reservoirs. On the other hand, the standard finite
element methods described in Section 4.2 are more flexible, but not conservative on local
elements (e.g., on triangles). They are globally conservative. The CVFE methods developed
in Section 4.3 conserve mass locally on each control volume. The discontinuous finite
element methods given in Section 4.4 possess this local property. These discontinuous
methods are particularly suitable for numerical solution of advection problems and can be
easily used in the adaptive methods introduced in Section 4.7. The mixed finite element
methods discussed in Section 4.5 are designed to give a high-order approximation for a
velocity vector. Finally, the characteristic finite element methods studied in Section 4.6 are
suitable for advection-dominated flow and transport equation problems.

The literature on finite difference methods is rich (e.g., Richtmyer and Morton, 1967;
Thomas, 1995). For applications of these methods to reservoir simulation, the reader should
refer to Peaceman (1977) andAziz and Settari (1979). There are numerous books on finite el-
ement methods (e.g., Strang and Fix, 1973; Ciarlet, 1978; Thomée, 1984; Brezzi and Fortin,
1991; Brenner and Scott, 1994; Johnson, 1994; Braess, 1997; Quarteroni and Valli, 1997).
In Section 4.2.4, we briefly treated transient problems. The book by Thomée (1984) exclu-
sively treats time-dependent problems. The content of Sections 4.2 and 4.4–4.7 is taken from
Chen (2005). Finally, for more information on the eighth CSP, refer to Quandalle (1993).

Exercises
4.1. Consider problem (4.18) with a = 1 and � = (0, 1)× (0, 1) (the unit square):

−∂
2p

∂x2
1

− ∂2p

∂x2
2

= q(x1, x2), (x1, x2) ∈ �, (4.237)
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where q indicates an injector located at (0.1667, 0.1667) or a producer located at
(0.8333, 0.8333). A homogeneous Neumann boundary condition (no-flow boundary
condition) is

∂p

∂ν
= 0,

where ∂p/∂ν is the normal derivative and ν is the outward unit normal to � = ∂�

(the boundary of �). (i) Formulate a finite difference scheme for (4.237) similar to
scheme (4.20) using a block-centered grid with three equal subintervals in each of
the x1- and x2-directions. (ii) Discretize the Neumann boundary condition using a
first-order scheme analogous to (4.14) with g = 0. (iii) The well term q is evaluated:

qi,j = 2π

ln(re/rw)
(pbh − pi,j ) with (i, j) = (1, 1) or (3, 3),

where the wellbore radius rw equals 0.001, the drainage radius re of both wells is
given by re = 0.2hwith h the step size in the x1- and x2-directions, and the wellbore
pressure pbh equals 1.0 at the injector and −1.0 at the producer. Write the finite
difference scheme derived in (i) in matrix form Ap = q (with q denoting the well
vector) and find the matrix A and vector q.

4.2. Extend the definition of consistency given in Section 4.1.7 to the initial parabolic
problem (4.21) in two dimensions.

4.3. Using the definition in Exercise 4.2, show that the forward, backward, and Crank–
Nicholson difference schemes introduced in Section 4.1.6 are consistent with problem
(4.21).

4.4. For problem (4.27), show that the one-dimensional counterpart of the Crank–Nicholson
difference scheme defined in Section 4.1.6 is unconditionally stable.

4.5. Prove that the one-dimensional counterpart of the backward difference scheme de-
fined in Section 4.1.6 is convergent for problem (4.27).

4.6. Prove that the one-dimensional counterpart of the Crank–Nicholson difference scheme
defined in Section 4.1.6 is convergent for problem (4.27).

4.7. Show that the explicit scheme (4.39) is consistent with problem (4.38).

4.8. Show that the amplification factor γ for scheme (4.39) is

γ = 1 + b�t

h
(1 − cos(kh))− ī

b�t

h
sin(kh). (4.238)

4.9. Prove that in the case b > 0, the factor γ in equation (4.238) satisfies |γ | > 1.

4.10. Prove that in the case b < 0, the factor γ in equation (4.238) satisfies |γ | ≤ 1,
provided that the CFL condition (4.40) holds.

4.11. In the case b > 0, show that the explicit scheme (4.41) is stable under condition
(4.40).

4.12. Show that the amplification factor γ of scheme (4.42) is

γ = 1 − ī
b�t

h
sin(kh).
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4.13. Prove that the amplification factor γ of scheme (4.43) is

γ =
(

1 − b�t

h
(1 − cos(kh))+ ī

b�t

h
sin(kh)

)−1

.

4.14. Prove that scheme (4.45) has the amplification factor γ

γ =
(

1 + ī
b�t

h
sin(kh)

)−1

.

4.15. Define a Crank–Nicholson analog to scheme (4.39) for problem (4.38) with b < 0,
and study its stability.

4.16. Define a Crank–Nicholson analog to scheme (4.41) for problem (4.38) with b > 0,
and study its stability.

4.17. Define a Crank–Nicholson analog to scheme (4.42) for problem (4.38), and study its
stability in both cases b < 0 and b > 0.

4.18. Derive the local truncation error associated with the difference scheme (4.39) for
problem (4.38) with b < 0 (cf. (4.46)).

4.19. Express numerical dispersion anum for the Crank–Nicholson scheme defined in Ex-
ercise 4.16 in terms of b, h, and �t .

4.20. Consider the diffusion-convection problem

∂p

∂t
+ b

∂p

∂x
− a

∂2p

∂x2
= 0, 0 < x < ∞, t > 0,

p(x, 0) = 0, 0 < x < ∞,

p(0, t) = 1, p(∞, t) = 0, t > 0,

(4.239)

where a > 0 and b are constants. This problem has the exact solution

p = 1

2

{
erfc

(
x − bt

2(at)1/2

)
+ exp

(
bx

a

)
erfc

(
x + bt

2(at)1/2

)}
,

where the complementary error function erfc is

erfc(x) = 1 − 2

π1/2

∫ x

0
exp
(−�2

)
d�.

For problem (4.239), consider the difference scheme

pn+1
i − pni

�t
+ b

pni − pni−1

h
− a

pn+1
i+1 − 2pn+1

i + pn+1
i−1

h2
= 0 (4.240)

with the initial and boundary conditions

p0
i = 0, i ≥ 1,

pn0 = 1, pnI = 0, n ≥ 1,

where the last equation is an adequate representation of the boundary condition at
x = ∞ if I is large enough. In computations, we choose I = 5/h.
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The exact solution is undefined at x = 0 and t = 0. The difference scheme, however,
requires a value for p0

0. In the computations, an arbitrary choice p0
0 = 0.5 is made.

Further data are given by

h = 0.1, b = 1.0, a = 0.01.

Use (4.240) to find the numerical solutions of (4.239) in the two cases �t = 0.05
and �t = 0.1, and compare the corresponding numerical dispersions anum (refer to
(4.48)).

4.21. Show that if p ∈ V satisfies (4.52) and if p is twice continuously differentiable,
where the space V is defined in Section 4.2.1, then p satisfies (4.50).

4.22. Write a code to solve the one-dimensional problem (4.50) approximately using
the finite element method developed in Section 4.2.1. Use the function f (x) =
4π2 sin(2πx) and a uniform partition of (0, 1) with h = 0.1. Also, compute the
errors ∥∥∥∥dpdx − dph

dx

∥∥∥∥ =
(∫ 1

0

(
dp

dx
− dph

dx

)2

dx

)1/2

,

with h = 0.1, 0.01, and 0.001, and compare them. Here p and ph are the exact and
approximate solutions, respectively (cf. Section 4.2.1).

4.23. Show Cauchy’s inequality (4.59).

4.24. Prove the estimates (4.62).

4.25. Referring to Section 4.2.1, show that the interpolant p̃h ∈ Vh of p defined in (4.61)
equals the finite element solution ph obtained by (4.54).

4.26. Prove Green’s formula (4.68) in three space dimensions.

4.27. Carry out the derivation of system (4.71).

h

h

xi

Figure 4.68. The support of a basis function at node xi .

4.28. For the figure given in Figure 4.68, construct the linear basis function at node xi
according to the definition in Section 4.2.1. Then use this result to show that the
stiffness matrix A in (4.71) for the uniform partition of the unit square (0, 1)× (0, 1)
given in Figure 4.14 is determined as in Section 4.2.1.

4.29. Write a code to solve the Poisson equation (4.65) approximately using the finite ele-
ment method developed in Section 4.2.1. Use f (x1, x2) = 8π2 sin(2πx1) sin(2πx2)

and a uniform partition of� = (0, 1)×(0, 1), as given in Figure 4.14. Also, compute
the errors

‖∇p − ∇ph‖ =
(∫

�

|∇p − ∇ph|2 dx
)1/2

,
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with h = 0.1, 0.01, and 0.001, and compare them. Here p and ph are the exact
and approximate solutions, respectively, and h is the mesh size in the x1- and x2-
directions.

4.30. Prove equation (4.75) for equation (4.74).

4.31. Derive equation (4.76) from equation (4.74) in detail.

4.32. Prove equation (4.78).

4.33. Let K̂ = (0, 1)× (0, 1) be the unit square with vertices m̂i , i = 1, 2, 3, 4, P(K̂) =
Q1(K̂), and �K̂ be the degrees of freedom corresponding to the values at m̂i . If
K is a convex quadrilateral, define an appropriate mapping F : K̂ → K so that an
isoparametric finite element (K, P (K),�K) can be defined in the form

P(K) =
{
v : v(x) = v̂

(
F−1(x)

)
, x ∈ K, v̂ ∈ P(K̂)

}
,

�K consists of function values at mi = F(m̂i ), i = 1, 2, 3, 4.

4.34. Suppose that � is a circle with diameter L and that �h is a polygonal approximation
of � with vertices on � and maximal edge length equal to h. Show that the maximal
distance from � to �h is O(h2/4L) (cf. Section 4.2.2).

4.35. Show the stability result (4.102) for Crank–Nicholson’s method (4.103) with f = 0.
What can be shown if f �= 0?

4.36. Prove that the barycentric coordinates λi , λj , and λk of triangle K satisfy equations
(4.114).

4.37. Derive equation (4.117) in detail.

4.38. As pointed out in Section 4.3.2, positive transmissibilities (or positive flux linkages)
are very important in numerical reservoir simulation. This is particularly so when
dealing with gravity-dominated flows involving fluids having different densities.
Suppose that node mi is physically located above node mj in the vertical direction
(depth increases as one moves from mi to mj ); initially, both nodes have equal
(mobile) saturations of a dense fluid (called fluid A) and a light fluid (fluid B).
Physically, fluidA must sink, and fluid B must rise. Explain the meanings of a positive
discrete transmissibility between mi and mj and a negative discrete transmissibility
between these two nodes. Which one corresponds to the physically correct motion?

4.39. The concept of irreducible saturation Sir was introduced in Chapter 3. A fluid phase
is mobile only when its saturation value is larger than its Sir , which is reflected in its
mobility λ (i.e., its relative permeability):

λ(S)

{
> 0 if S > Sir ,

= 0 if S ≤ Sir .

Consider problem (4.124), where the permeability tensor a is identity and� is a single
triangle given in Figure 4.32. Suppose that the pressure values at the three vertices
satisfy pk > pi = pj and the saturation values satisfy Sk > Si = Sj = Sir . This
implies that the flux direction is in the negative x2-direction, and the flux flowing out
of the quadrilateral mimamcmd through edge mamc in the x2-direction is zero since
Sj = Sir . Find the flux on edge mamc in the x2-direction using the potential-based
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upstream weighting CVFE (cf. Section 4.3.4) and the same flux using the flux-based
upstream weighting CVFE (cf. Section 4.3.4). What do these two results tell us?

4.40. Show that if u ∈ V = H 1(I ) and p ∈ W = L2(I ) satisfy (4.155) and if p is twice
continuously differentiable, then p satisfies (4.152).

4.41. Write a code to solve problem (4.152) approximately using the mixed finite element
method introduced in Section 4.5.1. Use f (x) = 4π2 sin(2πx) and a uniform
partition of (0, 1) with h = 0.1. Also, compute the errors

‖p − ph‖ =
(∫ 1

0
(p − ph)

2 dx

)1/2

,

‖u− uh‖ =
(∫ 1

0
(u− uh)

2 dx

)1/2

,

with h = 0.1, 0.01, and 0.001, and compare them. Here p, u and ph, uh are the
solutions to (4.155) and (4.157), respectively (cf. Section 4.5.1). (If necessary, refer
to Chen (2005) for a linear solver.)

4.42. Consider the following problem with an inhomogeneous boundary condition:

−d
2p

dx2
= f (x), 0 < x < 1,

p(0) = pD0, p(1) = pD1,

where f is a given real-valued piecewise continuous bounded function in (0, 1), and
pD0 andpD1 are real numbers. Write this problem in a mixed variational formulation,
and construct a mixed finite element method using the finite element spaces described
in Section 4.5.1. Determine the corresponding linear system of algebraic equations
for a uniform partition.

4.43. Consider the following problem with a Neumann boundary condition at x = 1:

−d
2p

dx2
= f (x), 0 < x < 1,

p(0) = dp

dx
(1) = 0.

Express this problem in a mixed variational formulation, formulate a mixed finite
element method using the finite element spaces considered in Section 4.5.1, and
determine the corresponding linear system of algebraic equations for a uniform par-
tition.

4.44. Construct finite element subspaces Vh ×Wh of H 1(I )× L2(I ) that consist, respec-
tively, of piecewise quadratic and linear functions on a partition of I = (0, 1). How
can the parameters (degrees of freedom) be chosen to describe such functions in
Vh and Wh? Find the corresponding basis functions. Then define a mixed finite
element method for equation (4.152) using these spaces Vh × Wh and express the
corresponding linear system of algebraic equations for a uniform partition of I .

4.45. Show that the matrix M defined in Section 4.5.1 has both positive and negative
eigenvalues.
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4.46. Define the space

H(div, �) = {v = (v1, v2) ∈ (L2(�))2 : ∇ · v ∈ L2(�)
}
.

Show that for any decomposition of� ⊂ R
2 into subdomains such that the interiors

of these subdomains are pairwise disjoint, v ∈ H(div, �) if and only if its normal
components are continuous across the interior edges in this decomposition.

4.47. Prove that if u ∈ V = H(div, �) and p ∈ W = L2(�) satisfy (4.167) and if
p ∈ H 2(�), then p satisfies (4.164).

4.48. Let the basis functions {ϕi} and {ψi} of Vh and Wh be defined as in Section 4.5.2.
For a uniform partition of� = (0, 1)× (0, 1) given as in Figure 4.14, determine the
matrices A and B in system (4.169).

4.49. Consider problem (4.164) with an inhomogeneous boundary condition, i.e.,

−�p = f in �,

p = g on �,

where � is a bounded domain in the plane with boundary �, and f and g are given.
Express this problem in a mixed variational formulation, formulate a mixed finite
element method using the finite element spaces given in Section 4.5.2, and determine
the corresponding linear system of algebraic equations for a uniform partition of
� = (0, 1)× (0, 1) as displayed in Figure 4.14.

4.50. Consider the problem
−�p = f in �,

p = gD on �D,

∂p

∂ν
= gN on �N,

where� is a bounded domain in the plane with boundary�, �̄ = �̄D∪�̄N ,�D∩�N =
∅, andf , gD , andgN are given functions. Write down a mixed variational formulation
for this problem and formulate a mixed finite element method using the finite element
spaces given in Section 4.5.2.

4.51. Let {ϕi} and {ψi} be the basis functions of Vh andWh respectively, in system (4.176).
Write (4.176) in matrix form.

4.52. Show that after multiplying both sides of (4.190) by �tn, the condition number of
the stiffness matrix corresponding to the left-hand side of (4.190) is of order

O
(

1 + max
x∈R, t≥0

|a(x, t)|h−2�t

)
, �t = max

n=1,2,...
�tn.

4.53. Let v ∈ C1(R) (the set of continuously differentiable functions) be a (0, 1)-periodic
function. Show that the condition v(0) = v(1) implies

∂v(0)

∂x
= ∂v(1)

∂x
.

4.54. Let a be positive semidefinite, φ be uniformly positive with respect to x and t , and
R be nonnegative. Show that (4.200) has a unique solution pnh ∈ Vh for each n.
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4.55. Prove relation (4.206).

4.56. Derive equation (4.213) in detail.

4.57. Let a be positive semidefinite, φ be uniformly positive with respect to x and t , and
R be nonnegative. Show that (4.218) has a unique solution pnh ∈ Vh for each n.

4.58. For the example in Figure 4.57, use the refinement rule defined in Section 4.7.1 to
convert irregular vertices to regular vertices.

4.59. For the problem
−∇ · (a∇p) = f in �,

p = 0 on �D,

a∇p · ν = gN on �N,

derive an inequality similar to (4.230).

4.60. Show inequality (4.230) using (4.227) and (4.229).

4.61. Apply (4.231) and (4.232) to derive (4.233) from (4.230).

4.62. For the problem
−∇ · (a∇p) = f in �,

p = 0 on �D,

a∇p · ν = gN on �N,

define an error estimator similar to (4.232).
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Solution of Linear Systems

We have seen that an application of finite difference or finite element methods to a station-
ary problem or to an implicit scheme for a transient problem produces a linear system of
equations of the form

Ap = f, (5.1)

where A is an M ×M matrix. In general, the matrix A arising in numerical reservoir sim-
ulation is sparse, highly nonsymmetric, and ill-conditioned. Its dimension M often ranges
from hundreds to millions. For the solution of systems of the latter size, Krylov subspace
algorithms are the sole option. In this chapter, we consider these iterative algorithms for
solving (5.1) for various types of matrix A. For completeness, in the first two sections
(Sections 5.1 and 5.2), we discuss direct algorithms (Gaussian elimination or Cholesky’s
method). These algorithms are first studied for a tridiagonal matrix, and then extended to
a general sparse matrix. Because the form of matrix A depends on the ordering of nodes,
Section 5.3 briefly touches on this topic; several common ordering techniques used in reser-
voir simulation are reviewed. The CG (conjugate gradient), GMRES (generalized minimum
residual), ORTHOMIN (orthogonal minimum residual), and BiCGSTAB (biconjugate gra-
dient stabilized) iterative algorithms are discussed, respectively, in Sections 5.4–5.7. The
discussion of these algorithms is for algorithms of general applicability. Some guidelines
are also provided about the choice of a suitable algorithm for a given problem. The Krylov
subspace algorithms are often useless without preconditioning. Therefore, the precondi-
tioned versions of these algorithms and the choice of preconditioners are studied in Sections
5.8 and 5.9. Practical considerations for the choice of preconditioners in reservoir simula-
tion are given in Section 5.10. Finally, comparisons between direct and iterative algorithms
and bibliographical information are presented in Sections 5.11 and 5.12, respectively.

Generally speaking, uppercase letters of bold type will indicate matrices, while low-
ercase letters of bold type will represent vectors.

5.1 Tridiagonal Systems
In some cases, particularly for one-dimensional, single phase flow problems, the matrix A
is tridiagonal:

207
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A =



a1 b1 0 . . . 0 0

c2 a2 b2 . . . 0 0

0 c3 a3 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . aM−1 bM−1

0 0 0 . . . cM aM


.

System (5.1) with such a tridiagonal matrix can be solved either by a direct elimination
algorithm or by an iterative algorithm. For this type of system, no known iterative algorithm
can compete with direct elimination.

A positive definite matrix A has a unique LU factorization (Golub and van Loan,
1996)

A = LU, (5.2)

where L = (lij ) is a lower triangularM ×M matrix, i.e., lij = 0 if j > i, and U = (uij ) is
an upper triangularM×M matrix, i.e., uij = 0 if j < i. For the special tridiagonal matrix
under consideration, the matrices L and U are sought to have the forms

L =



l1 0 0 . . . 0 0

c2 l2 0 . . . 0 0

0 c3 l3 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . lM−1 0

0 0 0 . . . cM lM


and

U =



1 u1 0 . . . 0 0

0 1 u2 . . . 0 0

0 0 1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 1 uM−1

0 0 0 . . . 0 1


.

Note that the lower diagonal of L is the same as that of A, and the main diagonal of U is
all ones. The identity (5.2) gives 2M − 1 equations for the unknowns l1, l2, . . . , lM and
u1, u2, . . . , uM−1. The solution is

l1 = a1,

ui−1 = bi−1/li−1, i = 2, 3, . . . ,M,

li = ai − ciui−1, i = 2, 3, . . . ,M.

This algorithm is Thomas’ algorithm.
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With the factorization (5.2), system (5.1) can be easily solved using forward elimina-
tion and backward substitution:

Lv = f,

Up = v.
(5.3)

Namely, since L is lower triangular, the first equation in (5.3) can be solved by forward
elimination:

v1 = f1

l1
, vi = fi − civi−1

li
, i = 2, 3, . . . ,M.

Next, since U is upper triangular, the second equation in (5.3) can be solved by backward
substitution:

pM = vM, pi = vi − uipi+1, i = M − 1,M − 2, . . . , 1.

As discussed in the preceding chapter, for many practical problems, the matrix A is
symmetric:

A =



a1 b1 0 . . . 0 0

b1 a2 b2 . . . 0 0

0 b2 a3 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . aM−1 bM−1

0 0 0 . . . bM−1 aM


.

In the symmetric case, A can be factorized:

A = LLT ,

where LT is the transpose of L, and L now takes the form

L =



l1 0 0 . . . 0 0

u1 l2 0 . . . 0 0

0 u2 l3 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . lM−1 0

0 0 0 . . . uM−1 lM


.

With this factorization, the entries are computed as follows:

l1 = √
a1,

ui = bi/ li , i = 1, 2, . . . ,M − 1,

li+1 =
√
ai+1 − u2

i , i = 1, 2, . . . ,M − 1.

Now, system (5.1) can be solved similarly to (5.3) using forward elimination and backward
substitution.
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In using the LU factorization algorithm we must assure that

li �= 0, i = 1, 2, . . . ,M.

It can be shown that if A is symmetric positive definite, li > 0, i = 1, 2, . . . ,M (Axelsson,
1994; Golub and van Loan, 1996). The quantities li are referred to as the pivots.

Thomas’ algorithm can be extended to the solution of block tridiagonal systems (cf.
Exercise 5.1). These systems may arise from the discretization of one-dimensional, two- or
three-phase flow problems. For example, the simultaneous solution approach for two-phase
flow generates two unknowns per grid point (node) and for three-phase flow three unknowns
per grid point.

The most general block tridiagonal matrix for three-phase flow is

A =



a1 b1 0 . . . 0 0

c2 a2 b2 . . . 0 0

0 c3 a3 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . aM−1 bM−1

0 0 0 . . . cM aM


, (5.4)

where ai , bi , and ci are now 3 × 3 matrices. The unknown and right-hand side vectors p
and f are

p =


p1

p2

...

pM

 , f =


f1

f2

...

fM

 ,
where

pi =
 p1

i

p2
i

p3
i

 , fi =
 f 1

i

f 2
i

f 3
i

 , i = 1, 2, . . . ,M.

5.2 Gaussian Elimination
Gaussian elimination transforms a general linear system into an upper triangular system
through elementary row (or column) operations. To see the idea, we begin with the solution
of a 3 × 3 system:

a11p1 + a12p2 + a13p3 = f1,

a21p1 + a22p2 + a23p3 = f2,

a31p1 + a32p2 + a33p3 = f3.

(5.5)

Assume that a11 �= 0. The first step is to eliminate p1 in the last two equations of (5.5). For
this, set

m21 = a21

a11
, m31 = a31

a11
.
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Multiplying the first equation of (5.5) by m21 and subtracting the resulting equation from
the second equation of (5.5) yields

a
(2)
22 p2 + a

(2)
23 p3 = f

(2)
2 , (5.6)

where

a
(2)
22 = a22 −m21a12, a

(2)
23 = a23 −m21a13, f

(2)
2 = f2 −m21f1.

The same argument applied to the third equation of (5.5) implies

a
(2)
32 p2 + a

(2)
33 p3 = f

(2)
3 , (5.7)

where

a
(2)
32 = a32 −m31a12, a

(2)
33 = a33 −m31a13, f

(2)
3 = f3 −m31f1.

After the first step, system (5.5) becomes

a11p1+a12p2 + a13p3 = f1,

a
(2)
22 p2 + a

(2)
23 p3 = f

(2)
2 ,

a
(2)
32 p2 + a

(2)
33 p3 = f

(2)
3 .

(5.8)

The second step is to eliminate p2 in the third equation of (5.8). Assume that a(2)22 �= 0, and
set

m32 = a
(2)
32 /a

(2)
22 .

Multiplying the second equation of (5.8) bym32 and subtracting the resulting equation from
the third equation of (5.8) gives

a
(3)
33 p3 = f

(3)
3 , (5.9)

where

a
(3)
33 = a

(2)
33 −m32a

(2)
23 , f

(3)
3 = f

(2)
3 −m32f

(2)
2 .

As a result, forward elimination reduces system (5.5) to the upper triangular system

a11p1+a12p2 + a13p3 = f1,

a
(2)
22 p2 + a

(2)
23 p3 = f

(2)
2 ,

a
(3)
33 p3 = f

(3)
3 .

(5.10)

Now, backward substitution can easily solve for p3, p2, and p1. Gaussian elimination works
in the same way for a general M ×M system.

For a general system, Gaussian elimination can be described more easily in terms of
an LU factorization of matrix A as in the previous section. As noted, for a general positive
definite matrix A, it has the factorization (5.2), where L = (

lij
)

is a unit lower triangular
matrix, i.e., lii = 1 and lij = 0 if j > i, and U = (uij ) is an upper triangular, i.e., uij = 0
if j < i. We compute L and U = A(M), where the matrices A(k), k = 1, 2, . . . ,M , are
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successively calculated as follows:

Set A(1) = A;
Given A(k) of the form

A(k) =



a
(k)
11 a

(k)
12 . . . a

(k)
1k . . . a

(k)
1M

0 a
(k)
22 . . . a

(k)
2k . . . a

(k)
2M

...
...

. . .
...

. . .
...

0 0 . . . a
(k)
kk . . . a

(k)
kM

...
...

. . .
...

. . .
...

0 0 . . . a
(k)
Mk . . . a

(k)
MM


,

set lik = −a(k)ik /a(k)kk , i = k + 1, k + 2, . . . ,M,

calculate A(k+1) =
(
a
(k+1)
ij

)
by

a
(k+1)
ij = a

(k)
ij , i = 1, 2, . . . , k or j = 1, 2, . . . , k − 1,

a
(k+1)
ij = a

(k)
ij + lika

(k)
kj , i = k + 1, . . . ,M, j = k, . . . ,M.

Obviously, Gaussian elimination requires that each diagonal entry a(k)kk be nonzero. For
the symmetric positive definite matrix A, a(k)kk > 0, k = 1, 2, . . . ,M . To minimize
round-off errors, this entry should be chosen as large as possible. Partial pivoting means
that at every stage of elimination one searches for the largest entry in magnitude among
a
(k)
kk , a

(k)
k+1,k, . . . , a

(k)
Mk and then interchanges the row with the largest entry with the kth row

to maximize the diagonal entry. While pivoting may be required for ill-conditioned matri-
ces, it is usually not necessary for matrices arising in reservoir simulation. For a theory on
round-off errors of Gaussian elimination, the reader may refer to Higham (1996).

When A is symmetric, this matrix can be alternatively factorized as

A = LLT ; (5.11)

i.e.,
j∑
k=1

likljk = aij , j = 1, 2, . . . , i, i = 1, 2, . . . ,M.

In this case, the entries lij of L in (5.11) can be computed directly using Cholesky’s approach,
i = 1, 2, . . . ,M ,

lii =
√√√√aii − i−1∑

k=1

l2ik,

lij =
(
aij −

j−1∑
k=1

likljk

)
/ljj , j = 1, 2, . . . , i − 1.
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Note that in the above computation of L, M square root operations are required. To
avoid this, we can write L as

L = L̃D, (5.12)

where L̃ is a unit lower triangular matrix (i.e., l̃ii = 1, i = 1, 2, . . . ,M) and D is a diagonal
matrix:

D = diag
(√
d1,
√
d2, . . . ,

√
dM

)
.

In this factorization we see that

j∑
k=1

l̃ikdk l̃jk = aij , j = 1, 2, . . . , i, i = 1, 2, . . . ,M,

which implies, for i = 1, . . . ,M ,

di = aii −
i−1∑
k=1

l̃ 2
ikdk,

l̃ij =
(
aij −

j−1∑
k=1

l̃ikdk l̃jk

)
/dj , j = 1, 2, . . . , i − 1.

(5.13)

The number of arithmetic operations in (5.13) is asymptotically of order M3/6 (cf.
Exercise 5.2). If the matrix A is sparse, one can greatly reduce the number of operations by
exploiting the sparsity. This is the case when A is a banded matrix. In this case, for its ith
row, there is an integer mi such that

aij = 0 if j < mi, i = 1, 2, . . . ,M.

Note that mi is the column number of the first nonzero entry in the ith row. Then the
bandwidth Li of the ith row satisfies

Li = i −mi, i = 1, 2, . . . ,M.

We warn the reader that 2Li + 1 is sometimes called the bandwidth. It can be checked
from (5.13) that A and L̃ have the same value mi . Thus, in the banded case, (5.13) can be
modified to (i = 1, 2, . . . ,M)

di = aii −
i−1∑
k=mi

l̃ 2
ikdk,

l̃ij =
aij −

j−1∑
k=max(mi ,mj )

l̃ikdk l̃jk

/dj ,

j = mi,mi − 1, . . . , i − 1.

(5.14)

We remark that the number of arithmetic operations to factor a banded matrix is
asymptotically of the order ML2/2, where L = max1≤i≤M Li (cf. Exercise 5.3). This
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1

2

3

4

5

6

10

Figure 5.1. An example of enumeration.

number is much smaller than M3/6 if L is smaller than M . For the finite element methods
presented in Section 4.2, we have

aij = a(ϕi, ϕj ), i, j = 1, 2, . . . ,M,

where {ϕi}Mi=1 is a basis of Vh. Then we see that

L = max{|i − j | : ϕi and ϕj correspond to degrees of

freedom belonging to the same element}.
Consequently, the bandwidth depends on the enumeration of nodes. If direct elimination
is used, the nodes should be enumerated in such a way that the bandwidth is as small as
possible. For example, with a vertical enumeration of nodes in Figure 5.1, L is 5 (assuming
that one degree of freedom is associated with each node). With a horizontal enumeration,
L would be 10. The standard or natural ordering of unknowns is obtained if the unknowns
are ordered by lines (vertically or horizontally); see Figure 5.1. There are other ordering
methods that can save computational time and computer storage; see the next section.

Now, we return to (5.1) with the factorization (5.11) of A, where L is given by (5.12).
With this factorization, system (5.1) becomes

L̃D2v = f,

L̃T p = v.
(5.15)

We emphasize that these systems are triangular. The first system is

i∑
k=1

l̃ikdkvk = fi, i = 1, 2, . . . ,M.

Thus forward elimination implies

v1 = f1

d1
, vi = fi −∑i−1

k=1 l̃ikdkvk

di
, i = 2, 3, . . . ,M. (5.16)

Similarly, the second system is solved by backward substitution:

pM = vM, pi = vi −
M∑

k=i+1

l̃ki pk,

i = M − 1,M − 2, . . . , 1.

(5.17)
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If A is banded, we apply (5.14) to (5.16) to give

v1 = f1

d1
, vi = fi −∑i−1

k=mi l̃ikdkvk
di

, i = 2, 3, . . . ,M.

Also, it follows from (5.17) that

pM = vM,

pM−1 = vM−1 − l̃M,M−1 pM,

pM−2 = vM−2 − l̃M−1,M−2 pM−1 − l̃M,M−2 pM,

...

p1 = v1 − l̃2,1 p2 − l̃3,1 p3 − · · · − l̃M,1 pM.

Note that one subtracts l̃M,k pM from vk , k = M − 1,M − 2, . . . , 1. Due to the banded
structure of A, i.e.,

l̃M,k = 0 if k < mM,

l̃M,k pM is subtracted from vk only when k ≥ mM . As a result, one can first find vk
successively by

vk := vk − l̃ik pi, k = mi,mi + 1, . . . , i − 1, i = M,M − 1, . . . , 1,

and then
pi = vi, i = M,M − 1, . . . , 1.

5.3 Ordering of the Nodes
As noted in the previous section, the form of the stiffness matrix A depends on the ordering
of the nodes. Different orderings of nodes have been in use for a long time in connection
with finite differences. Classical orderings include lexicographical, rotated lexicographical,
red-black (chequerboard), zebra-line, and four-color orderings (Hackbusch, 1985). In this
section, we very briefly touch on a few common ordering techniques used in finite difference
reservoir simulation (Price and Coats, 1974). These techniques can be extended to the
finite element setting. For simplicity, we consider a triangulation of a reservoir domain
� into triangles, and assume that one degree of freedom is associated with each node (cf.
Figure 5.1).

For a two-dimensional problem the work requirement for standard Gaussian elimina-
tion can be written in terms of the total number of nodes in the x1-direction (I ) and the total
number of nodes in the x2-direction (J ). If J < I (cf. Figure 5.2), then the work W for
Gaussian elimination in the standard ordering (Price and Coats, 1974) is

W = O((IJ )J 2
)
,

and the corresponding storage requirement is

S = O((IJ )J ).
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(I)

(J)

Figure 5.2. A D2 ordering.
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Figure 5.3. A D4 ordering.

For the diagonal (called D2) ordering shown in Figure 5.2 and J < I , the work W
and storage S are (Price and Coats, 1974)

W = O
(
IJ 3 − J 4

2

)
, S = O

(
IJ 2 − J 3

3

)
.

In the case I = J , this ordering method roughly requires one-half the work and two-thirds
the storage of the standard ordering.

For the alternating diagonal (called D4) ordering shown in Figure 5.3 and J < I , the
estimates for W and S are (Price and Coats, 1974)

W = O
(
IJ 3

2
− J 4

4

)
, S = O

(
IJ 2

2
− J 3

6

)
.

Then we see that in the case I = J , the D4 ordering roughly needs one-quarter the work and
one-third storage of the standard ordering. Therefore, among the three ordering techniques,
D4 is the most superior in terms of computational time and computer storage.

Having observed the advantage of the D4 ordering, we now consider its implementa-
tion. The matrix A for this ordering is of the type shown in Figure 5.4, which can be written
in the block form

Ap =
(

A11 A12

A21 A22

)(
p1

p2

)
=
(

f1

f2

)
,

where A11 and A22 are diagonal matrices and A12 and A21 are sparse matrices. Because A11

is diagonal, performing forward elimination on the lower half of A gives

Ap =
(

A11 A12

0 Ā22

)(
p1

p2

)
=
(

f1

f̄2

)
, (5.18)
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Figure 5.4. Matrix A in the D4 ordering.

where Ā22 = A22 −A−1
11 A12 and f̄2 = f2 −A−1

11 f1. We now solve the equations for the lower
half

Ā22p2 = f̄2. (5.19)

After p2 is computed, p1 can be recovered by back substitution

p1 = A−1
11 (f1 − A12p2) . (5.20)

Compared with the original problem (5.1), the size of system (5.19) is reduced by
half. Hence the work for half the unknowns will be reduced by a factor of two for a constant
bandwidth matrix.

5.4 CG
We recall that the condition number of matrix A is defined by

cond(A) = ‖A‖ ‖A−1‖,
where ‖A‖ is the matrix norm of A induced by a norm ‖ · ‖ on R

M (e.g., the l2-norm ‖ · ‖2

on R
M : ‖v‖2 = (

∑M
i=1 |vi |2)1/2, v = (v1, v2, . . . , vM)). Here cond(A) is understood to be

infinite if A is singular. The matrix A in system (5.1) arising from the standard finite element
discretization of a second-order elliptic problem, for example, has a condition number
proportional to h−2 (Johnson, 1994; Chen, 2005) as h → 0, where h is the spatial mesh
size. For the application of the finite element method to a large-scale problem, it would be
very expensive to solve the resulting system of equations via Gaussian elimination discussed
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in the previous sections. The usual practice for obtaining the solution of a large-scale system
is to use an iterative algorithm.

It is beyond the scope of this book to provide even a brief introduction to all available
iterative algorithms for the solution of system (5.1). Some simple iterative algorithms such
as stationary point and block Jacobi, Gauss–Seidel, and successive over relaxation (SOR)
algorithms as applied to reservoir simulation were discussed by Peaceman (1977) and Aziz
and Settari (1979) in the finite difference setting. In this chapter, we study Krylov subspace
algorithms for linear systems. The two such algorithms we study in depth are the CG and
GMRES algorithms. Because the ORTHOMIN algorithm has been widely employed in
reservoir simulation, we also briefly discuss this algorithm.

CG was introduced by Hestenes and Stiefel in 1952 as a direct algorithm. It has been
in wide use as an iterative algorithm, and has generally superseded the Jacobi, Gauss–Seidel,
and SOR iterative algorithms.

Unlike the stationary iterative algorithms, the Krylov subspace algorithms do not have
an iteration matrix. They minimize, at the kth iteration, some measure of errors over the
affine space

p0 + Kk,

where p0 is an initial guess to (5.1) and the kth Krylov space Kk is defined by

Kk = span
(
r0,Ar0, . . . ,Ak−1r0

)
, k ≥ 1.

The residual rk for the kth iterate pk is

rk = f − Apk, k ≥ 0.

If A is symmetric positive definite, it deduces a scalar product 〈·, ·〉 on R
M :

〈v,w〉 = vTAw =
M∑

i,j=1

viaijwj , v, w ∈ R
M.

The norm ‖ · ‖A corresponding to 〈·, ·〉 is the energy norm

‖v‖A = 〈v, v〉1/2 , v ∈ R
M.

The kth iterate pk of CG minimizes the functional

F(p) = 1

2
〈p,p〉 − pT f

over p0 + Kk . Note that if F(p∗) is the minimal value in R
M , then

∇F(p∗) = Ap∗ − f = 0;
i.e., p∗ is the solution.

Given p0, CG seeks successive approximations pk of the form

pk = pk−1 + αk−1dk−1, k = 1, 2, . . . , (5.21)
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CG Algorithm

Given p0 ∈ R
M, set r0 = f − Ap0 and d0 = r0.

For k = 1, 2, . . . , determine pk and dk by

αk−1 = (rk−1)T rk−1〈
dk−1,dk−1

〉 ;
pk = pk−1 + αk−1dk−1;
rk = rk−1 − αk−1Adk−1;

βk−1 = (rk)T rk

(rk−1)T rk−1
;

dk = rk + βk−1dk−1.

Figure 5.5. The algorithm CG.

where dk−1 is a search direction and αk−1 is a step length. Once dk−1 is found, αk−1 is easy
to compute from the minimization property of the iteration:

dF(pk−1 + αdk−1)

dα

∣∣∣∣
α=αk−1

= 0.

The search directions dk−1 are supposed to satisfy the A-conjugacy condition(
dk1
)T

Adk2 = 0 if k1 �= k2.

The usual CG implementation reflects the minimization property and the A-conjugacy
condition. The input for the CG algorithm is the initial iterate p0, which can be overwritten
by the solution, the right-hand side f , and the coefficient matrix A (or a routine that computes
the action of A on a vector). Then this algorithm for the solution of (5.1) can be defined as
in Figure 5.5.

The matrix A itself need not be formed or stored; only a routine for matrix-vector
products is required. For this reason, the Krylov space algorithms are usually called the
matrix-free algorithms.

It can be shown that the CG algorithm gives, in the absence of round-off errors, the
exact solution after at most M steps; i.e.,

Apk = f for some k ≤ M.

In practice, the required number of iterations is sometimes smaller than M . In fact, for a
given tolerance ε > 0, to satisfy

‖p − pk‖A ≤ ε‖p − p0‖A
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it suffices to choose k such that (Axelsson, 1994)

k ≥ 1

2

√
cond(A) ln

2

ε
.

Hence the required number of iterations for the CG algorithm is proportional to
√

cond(A).
As shown above, in a typical finite element application to a second-order elliptic problem,
cond(A) = O(h−2), and so the required number of iterations is of order O(h−1).

5.5 GMRES
Systems of algebraic equations arising from the discretization of the governing equations
in reservoir simulation have special properties. The coefficient (stiffness) matrices of these
systems are sparse but nonsymmetric and indefinite. While sparse, their natural banded
structure is usually spoiled by wells that perforate into many gridblocks and/or by irregular
gridblock structure. For such systems, the CG algorithm can suffer severe deterioration in
performance.

Over a dozen parameter-free Krylov subspace algorithms have been proposed for
solving nonsymmetric systems of linear equations. Three leading iterative algorithms are
the CGN (the CG iteration applied to the normal equations (cf. Hestenes and Stiefel, 1952)),
GMRES (residual minimization in a Krylov space (cf. Kuznetsov, 1969; Saad and Schultz,
1986)), and BiCGSTAB (a biorthogonalization method adapted from the biconjugate gradi-
ent iteration (cf. van der Vorst, 1992)). These three algorithms differ fundamentally in their
capabilities. As shown by Nachtigal et al. (1992), examples of matrices can be constructed
to show that each type of iteration can outperform the others by a factor on the order of

√
M

or M (or even more). As examples, in this chapter we study GMRES and BiCGSTAB.
The GMRES algorithm is known to be a very efficient algorithm for solving general

sparse, nonsymmetric systems (Kuznetsov, 1969; Saad and Schultz, 1986). The kth iterate
of GMRES is the solution to the least squares problem

min
p∈p0+Kk

‖f − Ap‖2. (5.22)

Suppose that one has an orthogonal projector Vk onto Kk . Then any z ∈ Kk can be
represented:

z =
k∑
i=1

qivi

for some q = (q1, q2, . . . , qk)
T ∈ R

k , where vi is the ith column of Vk . Set

p − p0 = Vkq

for some q ∈ R
k . Since

f − Ap = f − Ap0 − AVkq = r0 − AVkq,

problem (5.22) can be converted to the least squares problem

min
q∈Rk

‖r0 − AVkq‖2. (5.23)
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Arnoldi’s Algorithm

Given p0, set r0 = f − Ap0 and v1 = r0/‖r0‖2.

For j = 1, 2, . . . , k, compute

hij = (vi )TAvj for i = 1, 2, . . . , j ;

wj = Avj −
j∑
i=1

hijvi;

hj+1,j = ‖wj‖2;
If hj+1,j = 0, then stop;
vj+1 = wj /hj+1,j .

Figure 5.6. The Arnoldi algorithm.

This is a standard least squares problem that can be solved by QR factorization, for example.
The problem with such a direct method is that the matrix vector product of A with Vk must
be performed at each iteration.

If the Gram–Schmidt orthogonalization technique is applied to (5.23), the resulting
least squares problem does not require any extra product of A with vectors. The technique
for constructing an orthonormal basis for Kk is referred to as the Arnoldi algorithm (Arnoldi,
1951); cf. Figure 5.6. The input data for this algorithm are p0, f , A, and a dimension k.

If the Arnoldi algorithm does not stop before the kth step, the vectors v1, v2, . . . , vk

form an orthonormal basis for Kk (cf. Exercise 5.4). Denote by Vk the M × k matrix with
these column vectors, and by Hk the (k + 1)× k upper Hessenberg matrix whose nonzero
entries hij are computed by the Arnoldi algorithm. This algorithm (unless it terminates
prematurely with a solution) generates the relation (cf. Exercise 5.5)

AVk = Vk+1Hk. (5.24)

Let e1 = (1, 0, . . . , 0)T ∈ R
k+1 and β = ‖r0‖2. For the kth iterate pk of GMRES,

define

pk = p0 + Vkqk (5.25)

for some qk ∈ R
k . Then it follows from (5.24) and (5.25) that

rk = f − Apk = r0 − A(pk − p0) = Vk+1
(
βe1 − Hkqk

)
.

Using the orthogonality of Vk+1,

‖rk‖2 = ∥∥Vk+1
(
βe1 − Hkqk

)∥∥
2 = ‖βe1 − Hkqk‖2.

That is, qk minimizes ‖βe1 − Hkqk‖2. The minimizer qk is inexpensive to obtain because
it requires the solution of a (k + 1)× k least squares problem when k is small.
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GMRES Algorithm

Given p0 ∈ R
M, set r0 = f − Ap0, β = ‖r0‖2, and v1 = r0/β.

For the (k + 1)× k matrix Hk = (hij ), set Hk = 0.

For j = 1, 2, . . . , k, compute

wj = Avj ;
hij = (vi )Twj for i = 1, 2, . . . , j ;

wj = wj −
j∑
i=1

hijvi;

hj+1,j = ‖wj‖2;
If hj+1,j = 0, set k = j and skip the next step;
vj+1 = wj /hj+1,j .

Determine the minimizer qk of ‖βe1 − Hkqk‖2.

Set pk = p0 + Vkqk.

Figure 5.7. The GMRES algorithm.

The input data for GMRES are p0, f , and A (or a routine that computes the action of
A on a vector); cf. Figure 5.7.

As for CG, if A is nonsingular, the GMRES algorithm will find, in the absence of
round-off errors, the solution within M iterations. To obtain more precise information
on convergence rates, we consider the case where A is diagonalizable. Recall that A is
diagonalizable if there is a nonsingular matrix E such that

A = E�E−1,

where � is a diagonal matrix with the eigenvalues of A on its diagonal. In this case, the kth
GMRES iterate pk satisfies (Saad, 2004)

‖rk‖2

‖r0‖2
≤ cond(E) inf

pk∈Pk,pk(0)=1

{
max
z∈σ(A)

|pk(z)|
}
, (5.26)

where cond(E) is the condition number of E, Pk is the set of polynomials of degree at most
k, and σ(A) is the set of eigenvalues of A (the spectrum of A). It is unclear how to estimate
cond(E). If A is normal, of course, cond(E) = 1.

In the GMRES algorithm, pk is evaluated only upon termination and is not required
within the iteration. It is important that the basis for the Krylov space must be stored as
the iteration progresses. This implies that to perform k GMRES iterations, k vectors of
length M must be stored and that GMRES becomes impractical when k is large because
of computer memory requirements. There are two remedies. The first is to “truncate” the
orthogonalization in the Arnoldi algorithm; i.e., an integer k is selected and fixed, and an
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GCR Algorithm

Given p0 ∈ R
M, set r0 = f − Ap0 and d0 = r0.

For k = 1, 2, . . . , compute pk and dk by

αk−1 = (rk−1)T
(
Adk−1

)(
Adk−1

)T (
Adk−1

) ;
pk = pk−1 + αk−1dk−1;
rk = rk−1 − αk−1Adk−1;

βi,k−1 = −
(
Ark
)T (

Adi
)(

Adi
)T (

Adi
) for i = 1, 2, . . . , k − 1;

dk = rk +
k−1∑
i=1

βi,k−1di .

Figure 5.8. The GCR algorithm.

“incomplete” orthogonalization is performed, which will be described in the next section,
in connection with ORTHOMIN. The second remedy is to restart the iteration after every
k steps for some integer k (e.g., 5, 10, or 20), with pk used as the initial guess in the next
iteration. This restarted version of the algorithm is termed GMRES(k) (Saad and Schultz,
1986). There is no general convergence theory for restarted GMRES; for a positive definite
matrix A, however, GMRES(k) converges for any k ≥ 1. Restarting will slow convergence;
when it works, however, it will significantly reduce storage.

5.6 ORTHOMIN
The ORTHOMIN algorithm (Vinsome, 1976) has been applied to reservoir simulation and
is still widely used in this area due to its ability to solve efficiently nonsymmetric, sparse
systems of algebraic equations. In this section, we briefly discuss this algorithm; comparison
with GMRES will be presented in Section 5.11. ORTHOMIN is a truncated version of the
GCR (generalized conjugate residual) algorithm. Hence, to introduce ORTHOMIN, we
first describe GCR.

The two algorithms, CG and GMRES, are based on the choice of a basis of the Krylov
subspace Kk . In CG, the search directions dk are A-orthogonal, i.e., conjugate. GMRES
utilizes an orthogonal basis of Kk . In fact, all Krylov subspace algorithms are strongly
related to the choice of a basis of this Krylov subspace. In GCR, for example, the dk’s are
sought to be ATA-orthogonal, and the algorithm can be defined as in Figure 5.8.

Compared with the CG algorithm in Section 5.4, the dk’s are now ATA-orthogonal,
as noted. Also, to compute the scalars βi,k−1 in GCR, the vector Ark and the previous Adi’s
are required. To limit the number of matrix-vector products per step to one, we can proceed
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ORTHOMIN (m) Algorithm

Given p0 ∈ R
M and m, set r0 = f − Ap0 and d0 = r0.

For k = 1, 2, . . . , compute pk and dk by

αk−1 = (rk−1)T
(
Adk−1

)(
Adk−1

)T (
Adk−1

) ;
pk = pk−1 + αk−1dk−1;
rk = rk−1 − αk−1Adk−1;

βi,k−1 = −
(
Ark
)T (

Adi
)(

Adi
)T (

Adi
) for i = k −m, 2, . . . , k − 1;

dk = rk +
k−1∑

i=k−m
βi,k−1di .

Figure 5.9. The algorithm ORTHOMIN(m).

as follows: Follow the computation of rk by a calculation of Ark and then calculate Adk

after the last line of the GCR algorithm from the equation

Adk = Ark +
k−1∑
i=1

βi,k−1Adi .

Both the set of the di’s and that of the Adi’s need to be stored. This doubles the storage
requirement compared with CG (and GMRES). The number of arithmetic operations per
iteration is also roughly 50% higher than for GMRES.

GCR suffers from the same practical limitations as GMRES. A restarted version
GCR(k) can be defined trivially in the same way as GMRES(k). A truncation of the or-
thogonalization of the Adi’s leads to the algorithm ORTHOMIN(m) for a given choice of
m (1 ≤ m < k); cf. Figure 5.9.

ORTHOMIN generally requires more arithmetic operations and computer storage
per iteration step than GMRES does. In Section 5.11, comparisons between these two
algorithms will be described for examples in numerical reservoir simulation.

5.7 BiCGSTAB
The previous three sections dealt with four Krylov subspace algorithms that rely on some
form of orthogonalization of the Krylov vectors to obtain an approximate solution. This sec-
tion considers a family of Krylov subspace algorithms that are instead defined by a biorthog-
onalization approach due to Lanczos (1952). These algorithms are projection methods that
are intrinsically nonorthogonal. They have some appealing properties but are more difficult
to analyze theoretically.
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BiCGSTAB Algorithm

Given p0 ∈ R
M, set r0 = f − Ap0 and d0 = r0; r̂0 arbitrary.

For k = 1, 2, . . . , compute pk and dk by

αk−1 = (rk−1)T r̂0(
Adk−1

)T
r̂0

;

pk−1
2 = rk−1 − αk−1Adk−1;

ωk−1 =
(
Apk−1

2

)T
pk−1

2(
Apk−1

2

)T (
Apk−1

2

) ;
pk = pk−1 + αk−1dk−1 + ωk−1pk−1

2 ;
rk = pk−1

2 − ωk−1Apk−1
2 ;

βk−1 = (rk)T r̂0

(rk−1)T r̂0

αk−1

ωk−1
;

dk = rk + βk−1
(
dk−1 − ωk−1Adk−1

)
.

Figure 5.10. The algorithm BiCGSTAB.

The earliest such method is the BCG (biconjugate gradient) algorithm (Lanczos,
1952). BCG does not enforce a minimization principle; instead, the kth residual must
satisfy the biorthogonality condition

(rk)T v = 0 ∀ v ∈ K̂k,

where the Krylov space K̂k of AT is defined by

K̂k = span
(

r0,AT r0, . . . ,
(
AT
)k−1

r0
)
.

A problem with BCG is that a transpose-vector product is needed, which at best will require
additional programming and, at worst, may not be feasible. A remedy for this problem
is the CGS (conjugate gradient squared) algorithm (Sonneveld, 1989). CGS replaces the
transpose-vector product with an additional matrix-vector product and is based on squaring
the residual polynomial. A problem with this approach is that substantial rounding errors
can build up. BiCGSTAB (van der Vorst, 1992) was developed to overcome this difficulty
and to smooth convergence of CGS; cf. Figure 5.10.

There is no convergence theory for BiCGSTAB. The iteration can break down in the
steps computing the coefficients αk−1 and βk−1. The cost in storage and in floating point
operations per iteration remains bounded in the entire iteration. A single iteration requires
four scalar products. In the case where many GMRES iterations are needed and a matrix-
vector product is fast, BiCGSTAB can have a much lower average cost per iteration than
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GMRES. The reason is that the cost of orthogonalization in the latter algorithm can be much
higher than that of the matrix-vector product in BiCGSTAB if the dimension of the Krylov
space is large.

5.8 Preconditioned Iterations
To reduce the condition number of matrix A, and thus to improve the performance of the
iterative algorithms developed in the previous four sections, one can replace system (5.1)
with another system that has the same solution. In practice, all the Krylov subspace algo-
rithms are often useless without preconditioning. This section discusses the preconditioned
versions of some of the iterative algorithms, particularly of the CG and GMRES algorithms,
but without being specific about the particular preconditioners used. The next section will
consider the choice of standard preconditioners, and practical preconditioners in numerical
reservoir simulation will be discussed in Section 5.10.

The term preconditioning was used for the first time by Turing (1948) to reduce the
effect of round-off errors on direct algorithms. Its first application to iterative algorithms
was presented by Evans (1968) on Chebyshev acceleration of SSOR.

5.8.1 Preconditioned CG

Assume that A is symmetric positive definite and that a preconditioner M is available. The
preconditioner M is a matrix that approximates A in some sense (e.g., M−1A is close to the
identity matrix). We assume that M is also symmetric positive definite. From a practical
point of view, the only requirement for M is that it is inexpensive to solve the linear system
Mp = f because preconditioned algorithms require the solution of a linear system with M
as the system matrix at each step. A preconditioned system is of the form

M−1Ap = M−1f . (5.27)

In general, M−1A is unlikely to be symmetric, and thus CG cannot be directly applied to
system (5.27).

When M possesses a Cholesky factorization:

M = LLT ,

a simple way to preserve symmetry is to split the preconditioner between left and right; i.e.,

L−1AL−T q = L−1f, p = L−T q, (5.28)

which generates a symmetric system. However, it is unnecessary to split M in this way to
preserve symmetry. Note that M−1A is self-adjoint in the M-inner product:

(x, y)M = yTMx,

because
(M−1Ax, y)M = (Ax, y) = (x,M(M−1A)y) = (x,M−1Ay)M.
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PCG Algorithm

Given p0 ∈ R
M, set r0 = f − Ap0, z0 = M−1r0, and d0 = r0.

For k = 1, 2, . . . , determine pk and dk by

αk−1 = (rk−1)T zk−1(
dk−1

)T
Adk−1

;
pk = pk−1 + αk−1dk−1;
rk = rk−1 − αk−1Adk−1;
zk = M−1rk;

βk−1 = (rk)T zk

(rk−1)T zk−1
;

dk = zk + βk−1dk−1.

Figure 5.11. The algorithm PCG.

Hence an alternative is to replace the usual Euclidean inner product (·, ·) in CG by the
M-inner product. In CG, rk = f − Apk denotes the original residual, and in the precondi-
tioned CG, zk = M−1rk indicates the residual for the preconditioned system. Also, since
(zk, zk)M = (rk)T zk and (M−1Adk,dk)M = (Adk,dk), the M-inner product does not have
to be calculated explicitly. With these observations, the preconditioned CG (PCG) can be
defined as in Figure 5.11.

When M possesses a Cholesky factorization, two options are available, the splitting
technique (5.28) and the above PCG. One naturally asks, which one is better? Surprisingly,
these two options produce the identical iterates (Saad, 2004).

5.8.2 Preconditioned GMRES

Preconditioning for GMRES and other iterative algorithms for nonsymmetric systems is
different from that for CG. There is no concern to preserve symmetry for the preconditioned
system. However, there are two different approaches to viewing preconditioning: left and
right preconditioning.

Left preconditioned GMRES

The straightforward application of GMRES to the left preconditioned system (5.27) gives
the preconditioned version of GMRES as in Figure 5.12.

Recall that Vk = (v1, v2, . . . , vk). The Arnoldi algorithm constructs an orthogonal
basis of the left preconditioned Krylov subspace

span
(
p0,M−1Ap0, . . . , (M−1A)k−1p0

)
.
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Left Preconditioned GMRES (k)

Given p0 ∈ R
M, set r0 = M−1

(
f − Ap0

)
, β = ‖r0‖2, v1 = r0/β.

For the (k + 1)× k matrix Hk = (hij ), set Hk = 0.

For j = 1, 2, . . . , k, compute

wj = M−1Avj ;
hij = (vi )Twj for i = 1, 2, . . . , j ;

wj = wj −
j∑
i=1

hijvi;

hj+1,j = ‖wj‖2;
If hj+1,j = 0, set k = j and skip the next step;
vj+1 = wj /hj+1,j .

Determine the minimizer qk of ‖βe1 − Hkqk‖2.

Set pk = p0 + Vkqk.

If satisfied, stop; else set p0 = pk and iterate.

Figure 5.12. The left preconditioned version of GMRES.

Right preconditioned GMRES

The right preconditioned GMRES solves a system of the form

AM−1q = f, q = Mp. (5.29)

The new variable q does not need to be invoked explicitly. In fact, once the initial residual
r0 = f − Ap0 = f − AM−1q0 is evaluated, all subsequent vectors of the Krylov subspace
can be found without any reference to the q-variables (Saad, 2004). Observe that q0 is not
required at all; the initial residual for the preconditioned system can be obtained from r0 =
f − Ap0, which is identical to f − AM−1q0. With this observation, the right preconditioned
version of GMRES can be defined as in Figure 5.13.

This time, the Arnoldi algorithm constructs an orthogonal basis of the right precon-
ditioned Krylov subspace

span
(
p0,AM−1p0, . . . , (AM−1)k−1p0

)
.

The residual norm is now relative to the initial system, f − Apk , because the algorithm
implicitly obtains the residual rk = f − Apk = f − AM−1qk . That is an essential difference
between the left and right preconditioned GMRES algorithms. The spectra of the two pre-
conditioned matrices M−1A and AM−1 are the same. Hence their convergence behaviors
are expected to be similar, though the eigenvalues do not always govern convergence. Right
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Right Preconditioned GMRES (k)

Given p0 ∈ R
M, set r0 = f − Ap0, β = ‖r0‖2, and v1 = r0/β.

For the (k + 1)× k matrix Hk = (hij ), set Hk = 0.

For j = 1, 2, . . . , k, compute

wj = AM−1vj ;
hij = (vi )Twj for i = 1, 2, . . . , j ;

wj = wj −
j∑
i=1

hijvi;

hj+1,j = ‖wj‖2;
If hj+1,j = 0, set k = j and skip the next step;
vj+1 = wj /hj+1,j .

Determine the minimizer qk of ‖βe1 − Hkqk‖2.

Set pk = p0 + M−1Vkqk.

If satisfied, stop; else set p0 = pk and iterate.

Figure 5.13. The right preconditioned version of GMRES.

preconditioning has been employed as a basis for an algorithm that changes the precondi-
tioner M as the iteration progresses, i.e., the FGMRES ( flexible GMRES ) algorithm (Saad,
2004), which will be discussed next.

Flexible GMRES

The preconditioner M has been so far assumed to be fixed; i.e, it does not vary from step
to step. In some cases, the matrix M may not be available; the operation M−1p is only the
result of some unspecified calculation. M may not be a constant matrix in such cases. The
left and right preconditioned GMRES algorithms will not converge if M is not fixed; they
must be modified to accommodate variations in the preconditioner. In this section, we state
a flexible variant of GMRES, FGMRES (Saad, 2004).

Suppose that the preconditioner Mj in the right preconditioned GMRES can change
at every step. Then, in the fourth line of the right preconditioned GMRES(k), the vector

zj = M−1
j vj

must be saved. It is now natural to find the solution pk in the form

pk = p0 + Zkqk,

where Zk = (z1, z2, . . . , zk) and qk is obtained as in the right preconditioned GMRES. With
this modification, FGMRES can be defined as in Figure 5.14.
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FGMRES (k)

Given p0 ∈ R
M, set r0 = f − Ap0, β = ‖r0‖2, and v1 = r0/β.

For the (k + 1)× k matrix Hk = (hij ), set Hk = 0.

For j = 1, 2, . . . , k, compute

zj = M−1
j vj ;

wj = Azj ;
hij = (vi )Twj for i = 1, 2, . . . , j ;

wj = wj −
j∑
i=1

hijvi;

hj+1,j = ‖wj‖2;
If hj+1,j = 0, set k = j and skip the next step;
vj+1 = wj /hj+1,j .

Determine the minimizer qk of ‖βe1 − Hkqk‖2.

Set pk = p0 + Zkqk.

If satisfied, stop; else set p0 = pk and iterate.

Figure 5.14. The flexible GMRES algorithm.

The major difference between the right preconditioned GMRES and FGMRES is that
the vectors zj (j = 1, 2, . . . , k) must be stored and the solution must be updated using
these vectors in the latter. If Mj = M for j = 1, 2, . . . , k, these two algorithms are
mathematically equivalent. Note that the zj ’s can be selected without reference to any
preconditioner. This added flexibility may cause FGMRES some problems. In fact, zj may
be so poorly chosen that a breakdown could occur, such as in the worst case where zj = 0.

An optimality property similar to that for GMRES (cf. (5.22) or (5.23)) can be shown
for FGMRES. Indeed, one can prove that the approximate solution pk computed at the kth
step of this algorithm minimizes the residual norm ‖f − Apk‖2 over p0 + span(Zk) (Saad,
2004).

5.9 Preconditioners
Roughly speaking, a preconditioner M is some form of approximation of the original matrix
A that makes the preconditioned system easier to solve using a given iterative algorithm. One
commonly used and easily computable preconditioner is based on Jacobi preconditioning
where M is the inverse of the diagonal part of A. One can also utilize other preconditioners
that are related to the simple stationary iterative algorithms such as Gauss–Seidel, SOR,
and SSOR. In most practical situations in reservoir simulation, these preconditioners may
be somewhat useful but should not be expected to have significant effects.
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General ILU Factorization

For i = 2, 3, . . . ,M,

For k = 1, 2, . . . , i − 1 and (i, k) �∈ Z,
aik := aik/akk

For j = k + 1, . . . ,M and (i, j) �∈ Z,
aij := aij − aikakj .

End

End

End

Figure 5.15. The general ILU factorization.

Another type of preconditioner is based on an incomplete Cholesky factorization of
the original matrix A (Buleev, 1959; Varga, 1960). Such a preconditioner stems from a
decomposition of the form A = LU−R, where L and U have the same nonzero structure as
the lower and upper parts of A, respectively, and R is the residual or error of the factorization.
This incomplete factorization, called ILU(0), is easy and inexpensive to implement. On the
other hand, it may generate an approximation that requires the underlying Krylov subspace
algorithm to converge in many iterations. To remedy this difficulty, a number of alternative
incomplete factorizations have been proposed by allowing some fill-in in L and U. In
general, the more accurate the ILU factorization, the faster the resulting preconditioned
Krylov subspace algorithm. The preprocessing cost to compute the more accurate L and
U, however, is higher. From the point of view of robustness (e.g., in terms of applicability
and reliability), these more accurate factorizations may be needed. In this section, we
concentrate on the construction of ILU(0) and its variants.

Consider any sparse matrix A = (aij ). A general ILU factorization algorithm gener-
ates a sparse lower triangular matrix L and a sparse upper triangular matrix U, and so the
residual matrix R = LU−A satisfies certain conditions such as having zero entries in some
locations. This general algorithm can be obtained by performing Gaussian elimination and
dropping certain entries in predetermined nondiagonal positions. The entries to drop at each
step can be predetermined statically, by choosing some zero pattern, for example. The sole
restriction on the zero pattern is that it should not include diagonal entries. Hence, for any
zero-pattern set Z, such as

Z ⊂ {(i, j) : i �= j, i, j = 1, 2, . . . ,M},

a general ILU factorization takes the form presented in Figure 5.15 (Saad, 2004).
It can be shown (Saad, 2004) that this algorithm produces matrices L and U such

that A = LU − R, where −R is the matrix of the entries that are dropped during the
incomplete elimination process. For (i, j) ∈ Z, an entry rij of R equals −aij computed at
the completion of the kth loop in the above algorithm. Otherwise, rij = 0.
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Figure 5.16. An illustration of ILU(0).

5.9.1 ILU(0)

The zero-pattern set Z depends on prescribed levels of fill-in or thresholds. If L and U have
the same sparsity pattern as A, i.e., the zero pattern Z is precisely the zero pattern of A, the
resulting ILU factorization is indicated by ILU(0). This technique allows no fill-in.

ILU(0) is best illustrated by Figure 5.16. Consider a matrix A of the form shown in
this figure, any lower triangular matrix L that has the same structure as that of the lower part
of A, and any upper triangular matrix U that has the same structure as that of the upper part
of A (cf. Figure 5.16). If the product LU was performed, the resulting matrix would have
the pattern displayed in this figure. In general, it is impossible to match the given matrix A
with this product for any L and U. This is due to the extra diagonals in the product. The
entries in these extra diagonals are termed fill-in. If these fill-in entries are dropped, then it
is possible to find L and U such that their product equals A in other diagonals. This defines
the ILU(0) factorization: the entries of A − LU are zero in the locations where aij �= 0,
i, j = 1, 2, . . . ,M . That is, with the patternZ being the zero pattern of A (i.e., Z = Z(A)),
ILU(0) is defined as in Figure 5.17.

5.9.2 ILU(l)

The ILU(0) factorization makes the Krylov subspace algorithms developed in the previous
sections very simple and efficient to implement. The accuracy of ILU(0) may be insufficient
to generate an adequate rate of convergence for certain realistic problems that arise in
numerical reservoir simulation. More accurate ILU factorizations are often needed. These
more accurate factorizations ILU(l) differ from ILU(0) by allowing some fill-in.
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ILU(0) Factorization

For i = 2, 3, . . . ,M,

For k = 1, 2, . . . , i − 1 and (i, k) �∈ Z(A),
aik := aik/akk

For j = k + 1, . . . ,M and (i, j) �∈ Z(A),
aij := aij − aikakj .

End

End

End

Figure 5.17. The ILU(0) factorization.
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Figure 5.18. An illustration of ILU(l).

The idea of ILU(1) is geometrically illustrated with the same example as for ILU(0)
in Figure 5.16 (Saad, 2004). That is, ILU(1) comes from taking Z to be the zero pattern
of the product LU of the factors L and U obtained from ILU(0); see Figure 5.18. Pretend
that the original matrix A has this “augmented” pattern. In other words, the fill-in locations
created in this product belong to the augmented pattern, but their actual values equal zero.
The factors L1 and U1 of ILU(1) are now obtained by performing an ILU(0) factorization
on this augmented pattern matrix. The new product L1U1 has two additional diagonals in
the lower and upper locations (cf. Figure 5.18).
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ILU(l) Factorization

For all nonzero entries aij , set levij = 0

For i = 2, 3, . . . ,M,

For k = 1, 2, . . . , i − 1 and levik ≤ l,

aik := aik/akk

ai := ai − aikai
Update the levels of fill of the nonzero aij ’s by (5.30)

End

Replace any entry in the ith row with levij > l by zero

End

Figure 5.19. The ILU(l) factorization.

A problem with this illustration is that it does not generalize to general sparse matrices.
To extend it, we introduce the notion of level of fill. A level of fill is attributed to each matrix
entry that occurs in the elimination process. Fill-ins are dropped based on the value of the
level of fill. Initially, suppose that a nonzero entry has a level of fill of zero and a zero entry
has a level of fill of ∞. Namely, the initial level of fill of an entry aij of A is (Saad, 2004)

levij =
{

0 if aij �= 0 or i = j,

∞ otherwise.

Each time this entry is modified according to the general ILU factorization (i.e., by the
formula aij := aij − aikakj ), its level of fill must be updated:

levij = min{levij , levik + levkj + 1}. (5.30)

Note that the level of fill of an entry will never increase during elimination. If aij �= 0
in the original matrix A, the entry in the (i, j)th location will have a level of fill of zero
throughout the elimination process. The introduction of this concept of level of fill yields
a natural strategy for dropping entries. In ILU(l), all fill-in entries whose level of fill does
not exceed l are kept. Hence the zero pattern for ILU(l) is the set

Zl = {(i, j) : levij > l},
where levij is the value of level of fill after all updates in (5.30) have been performed.
The case l = 0 coincides with the definition of the ILU(0) factorization. In the ILU(l)
factorization (cf. Figure 5.19), ai indicates the ith row of matrix A.

In the ILU factorization so far, the entries that are dropped during the elimination
process have been simply discarded. There are techniques that attempt to reduce the effect
of dropping by compensating for the discarded entries. A popular technique is to add up all
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ILUT Algorithm

For i = 1, 2, . . . ,M,

w = ai
For k = 1, 2, . . . , i − 1 and if wk �= 0,

wk := wk/akk

Applying a dropping rule to wk
If wk �= 0, then

w = w − wkui
EndIf

End

Applying a dropping rule to the row w
lij = wj for j = 1, 2, . . . , i − 1
uij = wj for j = 1, 2, . . . ,M
w = 0

End

Figure 5.20. The ILUT algorithm.

the entries that were dropped at the completion of k-loop of the general ILU factorization
algorithm. Then this sum is subtracted from the diagonal entry in U. This diagonal com-
pensation technique is referred to as the modified ILU (MILU ) factorization, which will not
be considered further.

The ILU(l) factorization algorithm also has a few drawbacks. First, the amounts of
fill-in and computational work for obtaining this factorization are not generally predictable
for l > 0. Second, updating the levels in this algorithm can be very expensive. Third,
the level of fill-in for indefinite matrices may not be a good indicator for the size of the
entries that are being discarded. In other words, the algorithm may discard large entries. To
overcome these drawbacks, a preconditioning technique, known as ILUT, is described next.

5.9.3 ILUT

As noted above, the entries that are dropped in the ILU factorization depend only on the
structure of matrix A. There are a few alternative algorithms available that are based on
dropping entries in the incomplete factorization process according to their magnitude rather
than their locations. In these algorithms, the zero-pattern set Z is determined dynamically.
One such algorithm is ILUT (ILU with threshold (Saad, 2004)).

An ILUT algorithm can be obtained from the general ILU factorization algorithm
by applying a set of rules for dropping small entries. Below, applying a dropping rule
for an entry will mean replacing this entry by zero if it satisfies a set of criteria. In the
next algorithm (cf. Figure 5.20), w = (w1, w2, . . . , wM) is a full-length working row that
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accumulates linear combinations of rows in the elimination, and ui represents the ith row
of U.

ILU(0) can be treated as a special case of ILUT. The dropping rule for ILU(0) is to
drop the entries that are not in locations of the original structure of matrix A. Similar to
ILU(l), one can also define the ILUT(l, ε) factorization, where ε is a dropping tolerance
used in a dropping criterion. In ILUT(l, ε), the following rules are applied:

• In the fifth line of ILUT, an entrywk is dropped (i.e., replaced by zero) if its magnitude
is below the relative tolerance εi obtained by multiplying ε by the norm (e.g., �2-norm)
of the ith row.

• In the tenth line of ILUT, a different dropping rule is used. First, drop again any entry
in the row with a magnitude less than εi . Then, in addition to keeping the diagonal
entry, keep only the l largest entries in the L part of the row and the l largest entries
in the U part of the row.

The second dropping step is to control the number of entries per row. Roughly
speaking, the parameter l is used to control memory usage, while ε is viewed to reduce
computational cost. In many cases, good results are obtained for values of ε in the range
10−4–10−2, but an optimal value is strongly problem dependent.

It is well known that ILU preconditioners are not easily parallelizable. The reason is
that Gaussian elimination, on which the ILU factorization is based, offers limited scope for
parallelization. Furthermore, the forward elimination and backward substitution that form
the preconditioning operations are highly sequential in their nature, and parallelization for
these operations is difficult.

Preconditioning techniques based on sparse approximate inverses have been recently
developed (Benson and Frederickson, 1982). The idea of these techniques is that a sparse
matrix M ≈ A−1 is explicitly computed and used as a preconditioner for the Krylov subspace
algorithms for the solution of (5.1). Their major advantage is that the preconditioning
operation can be easily implemented in parallel because it consists only of matrix-vector
products. However, like the ILU preconditioning approach, this approach lacks algorithmic
scalability (e.g., in terms of operation counts), which has led to the development of a number
of variants based on the multigrid method (Hackbusch, 1985; Bramble, 1993), the algebraic
multilevel method (Stüben, 1983), and the domain decomposition method (Smith et al.,
1996). This class of preconditioning techniques are optimal for linear systems arising from
certain partial differential problems (e.g., elliptic or parabolic problems) in the sense that
the required number of arithmetic operations is of order O(M).

5.10 Practical Considerations
Preconditioners can be derived from a knowledge of the original physical problems from
which the linear system arises. In the numerical simulation of multiphase flow in reservoirs,
for example, the governing partial differential equations involve many distinct variables such
as pressure, saturation, and concentration (cf. Chapter 2) and are coupled with injection and
production wells (source and sink terms). The system matrix A for such applications has
blocks with different natures. A feasible approach to the construction of a preconditioner is to
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precondition these blocks differently and separately, using their natures as fully as possible.
In this section, we discuss the construction of preconditioners based on this approach.

5.10.1 Decoupling preconditioners

Consider a block representation of system (5.1) in the form

Ap ≡
(

A11 A12

A21 A22

)(
p1

p2

)
=
(

f1

f2

)
, (5.31)

where p1 and p2 correspond to the degrees of freedom for two different variables such as
pressure and saturation (or concentration). While only two variables are considered, it is
straightforward to include more variables. We assume that the off-diagonal block entries
responsible for the interaction between these two variables are small compared to the re-
spective entries of the diagonal blocks.

In some situations, the accuracy required for a preconditioner is higher for one variable
(e.g., pressure) than for the other (e.g., saturation). This is the case where the coupled
system of pressure and saturation equations for two-phase flow (cf. Chapter 7) is solved
simultaneously, as the pressure equation causes the most difficulty in the iterative process.
If an accurate approximation p̄1 can be found and an easy-to-invert approximation Ā22 to
A22 is available, then Ā−1

22 (f2 − A21p̄1) is a meaningful approximation to p2. The choice
of Ā22 = A22 implies an exact solution for the second variable p2; if the stiffness of A22

is less than that of A11, A22 can be replaced by a simple approximation such as the ILU(0)
factorization introduced in the previous section.

Assume that an ILU factorization of A11 is given by

A11 = LDU − R,

where L, D, and U are unit lower triangular, diagonal, and unit upper triangular matrices,
respectively, and R is the residual matrix. Then an approximation of A is given by(

LDU A12

A21 A22

)

=
(

LDU 0

A21 I

)(
I (LDU)−1A12

0 A22 − A21(LDU)−1A12

)
,

(5.32)

where I is the identity matrix. If LDU is exact (i.e., Gaussian elimination is used), so is
this factorization. When LDU is an incomplete factorization, the right-hand side of (5.32)
can be viewed as an incomplete factorization of A. A problem with this factorization is that
(LDU)−1A12 is generally a full matrix (so is A22−A21(LDU)−1A12). Thus an approximation
to (LDU)−1A12 should be applied. The simplest remedy is the following modification of
(5.32): (

L 0

A21 I

)(
DU DA12

0 A22 − A21DA12

)
. (5.33)

This factorization weakens the coupling between the first and second variables. Many
preconditioners based on similar approaches have been constructed in reservoir simulation,
such as the constrained pressure residual preconditioner (Wallis et al., 1985).
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5.10.2 COMBINATIVE preconditioners

The assumption that one variable dominates the other is sometimes too restrictive. A pre-
conditioner that can provide a moderate feedback for the interaction between these two
variables should be used. An example of such a preconditioner is the two-stage COMBINA-
TIVE preconditioner (Behie and Vinsome, 1982). The idea of this approach is to decouple
the equation for the first variable and then to find an appropriate preconditioner that provides
the feedback:

(1) Solve the equation A11p1 = f1.
(2) Form the residual(

r1

r2

)
=
(

f1

f2

)
−
(

A11

A12

)
p1.

(3) Precondition the new residual and update the first variable:(
p1

p2

)
:= M−1

(
r1

r2

)
−
(

p1

0

)
,

where M is a preconditioner for A that provides the feedback mentioned. Experience with the
construction of COMBINATIVE preconditioners reveals that M can be chosen to be a rather
rough (or weak) preconditioner because its goal is to provide feedback. ILU(0) can serve
for this purpose, for example. The combination (that suggests the name COMBINATIVE)
of steps (1)–(3) yields a preconditioner for A:(

A−1
11 0

0 0

)
+ M−1

(
I −
(

A11

A12

)
A−1

11

)
. (5.34)

The matrix A−1
11 may be replaced by a preconditioner for A11 such as an accurate ILU

preconditioner.

5.10.3 Bordered systems

The system arising from fully coupled flow and well implicit reservoir simulation is of the
form (

A11 A12

A21 A22

)(
p

pw

)
=
(

f1

f2

)
, (5.35)

where pw corresponds to the degrees of freedom for the bottom-hole well pressure, A11 and
A22 are associated with the flow equations and the well constraint equations, respectively,
and A12 and A21 indicate their interaction. Since system (5.35) is identical to (5.31) in form,
the approximate factorizations in (5.32)–(5.34) developed for the latter apply to the former.

5.10.4 Choice of initial solutions

The residual matrix R in the equation A = LDU − R can be taken into account in an
approximate fashion. An approach by Gustafsson (1978) modifies D so that R has zero
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row sums. This diagonal modification approach can be used with any order incomplete
factorization method (e.g., MILU).

An alternative approach to accounting for the error matrix R is given by Appleyard
et al. (1981). This approach is based on the observation that in most reservoir simulations
the sum of entries in the right-hand-side vector f of (5.1) is equal to the net rate of mass
accumulation. If an initial solution p0 is selected by

LDUp0 = f, (5.36)

then the sum of the entries in the initial residual

r0 = f − Ap0 = Rp0

represents the material balance error. This sum equals zero and will remain zero for all
subsequent iterations if the column sums of R are zero. For a symmetric matrix A, these
two approaches produce the same factorizations. For a nonsymmetric A, they are different.
The latter approach is based on a physical observation.

The error accounting approach by Appleyard et al. (1981) can be applied to any ILU
factorization studied in the previous section. Suppose that an incomplete factorization of
A, LDU, is constructed. Instead of changing the factors L, D, and U via elimination across
a row of A, they are constructed via elimination down a column of A. Entries that are
to be ignored in the incomplete factorization process (i.e., the error entries) are subtracted
from the diagonal entry lying in the same column (instead of the same row). This approach
generates an error matrix with zero column sums. If the initial solution p0 is selected as in
(5.36), all subsequent residual sums will be zero.

5.11 Concluding Remarks and Comparisons
Direct and iterative algorithms have been presented in this chapter. The direct algorithms
are based on the factorization of the system matrix A into easily invertible matrices, and
are widely employed in many petroleum reservoir codes where reliability is the primary
concern. Indeed, direct solvers are very robust, and they tend to require a predictable
amount of resources in terms of storage and time. With a state-of-the-art sparse direct
solver, it is possible to solve efficiently linear systems of fairly large size in a reasonable
amount of time, particularly when the underlying problem is two-dimensional.

Unfortunately, direct algorithms scale poorly with problem size in terms of operation
counts and memory requirements, particularly for three-dimensional problems. Three-
dimensional multiphase flow simulations lead to linear systems of many millions of equa-
tions in as many unknowns. For such simulations, iterative algorithms are the only option
available. While the iterative algorithms require less storage and fewer operations than the
direct algorithms (particularly when an approximate solution of relatively low accuracy is
sought), they do not have the reliability of the latter algorithms. In some applications, they
even fail to converge in a reasonable amount of time. Thus preconditioning is necessary,
though not always sufficient.

As noted earlier, the linear systems arising in numerical reservoir simulation are sparse,
highly nonsymmetric, and indefinite. Three leading iterative algorithms for solving such
systems are the CGN, GMRES, and BiCGSTAB algorithms. These three algorithms differ
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Figure 5.21. Computational time (sec.) (left); memory (byte) (right).

fundamentally in their capabilities. As demonstrated by Nachtigal et al. (1992), examples of
system matrices can be constructed so that each type of iteration can outperform the others
by a factor on the order of

√
M orM (or even more). Hence, in general, it is very difficult to

compare these algorithms for practical reservoir problems. In this section, we just give some
indications on their performance for the solution of a linear system that arises from simulation
of multiphase flow problems; we present comparisons of Gaussian elimination (the direct
banded solver), GMRES (including ORTHOMIN and FGMRES), and BiCGSTAB in terms
of computational time and storage memory. This linear system stems from the discretiza-
tion of the pressure equation for a two-phase flow problem using a standard finite element
method, which will be described in detail in Chapter 7. Two cases where the numbers of
grid nodes are 3,600 and 10,000 are tested. The preconditioning techniques are based on
ILU(l) and ILUT(l). The restart numbers for the iterative algorithms are set to be 10, 15, and
20. The numerical experiments were performed on a Compaq Alpha ES40 workstation with
four CPUs, 883 MHZ CPU frequency, and 32 GB RAM (Chen et al., 2002D), and the nu-
merical results are displayed in Figures 5.21–5.28. The numbers 2–6 on the horizontal axes
in these figures indicate, respectively, GMRES, FGMRES, banded Gaussian elimination,
BiCGSTAB, and ORTHOMIN. From these figures we make the following observations:

• The GMRES, FGMRES, BiCGSTAB, and ORTHOMIN algorithms are much faster
than the direct banded Gaussian elimination algorithm, particularly when high-order
preconditioners (e.g., ILU(8) and ILUT(10)) are used, and they use much less memory
than the latter for large-scale problems such as the one with a grid number of 10,000
under consideration.
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Figure 5.26. Computational time (sec.) (left); memory (byte) (right).
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Figure 5.28. Computational time (sec.) (left); memory (byte) (right).

• With nearly the same memory requirement, GMRES and FGMRES are better than
ORTHOMIN in terms of computational time, when lower-order preconditioners (e.g.,
ILU(0), ILUT(1)) are employed.

• With nearly the same memory requirement, GMRES, FGMRES, and ORTHOMIN
have the same trend with respect to the restart and grid numbers when preconditioners
are fixed. Their computational time decreases and storage increases as the restart
number increases, for example.

• Of ORTHOMIN, GMRES, FGMRES, and BiCGSTAB with the same preconditioner
and nearly the same memory requirement, BiCGSTAB seems the fastest for the prob-
lem under consideration.

• With nearly the same memory requirement, ILUT is more efficient than ILU.

• For a fixed linear solver (e.g., GMRES) and a fixed restart number (e.g., 10) for the
case with a grid number of 10,000, the higher-order preconditioner ILUT(10) takes
as much as 11% of the total CPU time and uses 2.12 times as much memory as that
of the lower-order ILUT(1).

Comparisons for more complicated problems, such as for the black oil model (cf.
Chapter 8), have been also performed, and observations similar to those made here have
been made (Li et al. (2005)).
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5.12 Bibliographical Remarks
There are numerous books on Krylov subspace algorithms and their preconditioned versions
discussed in this chapter (e.g., Axelsson, 1994; Golub and van Loan, 1996; Saad, 2004).
The content of Sections 5.5–5.9 closely follows Saad (2004). The numerical results in
Section 5.11 are extracted from the paper by Chen et al. (2002D). Linear algebra routines
are available for algorithms of general applicability, such as LAPACK (Anderson et al.,
1999), LINPACK (Dongarra et al., 1979), Netlib (Moore et al., 2002), PETSc (Balay et al.,
2004), and SPARSKIT (Saad, 1990).

Exercises
5.1. Extend Thomas’ algorithm defined in Section 5.1 to a block tridiagonal system with

the system matrix A given in (5.4).

5.2. Show that the number of arithmetic operations in (5.13) for a symmetric matrix A is
asymptotically of order M3/6.

5.3. Prove that the number of operations to factor anM ×M matrix with bandwidth L is
ML2/2 (cf. (5.14)).

5.4. Show that if the Arnoldi algorithm does not stop before the kth step, then the vectors
v1, v2, . . . , vk generated by this algorithm form an orthonormal basis for Kk .

5.5. Verify equation (5.24).

5.6. Consider the problem on the unit square � = (0, 1)× (0, 1):

−∂
2p

∂x2
1

− ∂2p

∂x2
2

= q(x1, x2), (x1, x2) ∈ �, (5.37)

where q indicates an injector located at (0.1667, 0.1667) or a producer located at
(0.8333, 0.8333). A homogeneous Neumann boundary condition (no-flow boundary
condition) is

∂p

∂ν
= 0,

where ∂p/∂ν is the normal derivative and ν is the outward unit normal to � = ∂�

(the boundary of �). (I) Formulate a finite difference scheme for (5.37) similar to
scheme (4.20) using a block-centered grid with three equal subintervals in each of
the x1- and x2-directions. (II) Discretize the Neumann boundary condition using a
first-order scheme analogous to (4.14) with g = 0. (III) The well term q is evaluated:

qi,j = 2π

ln(re/rw)
(pbh − pi,j ) with (i, j) = (1, 1) or (3, 3),

where the wellbore radius rw equals 0.001, the drainage radius re of both wells is
given by re = 0.2hwith h the step size in the x1- and x2-directions, and the wellbore
pressure pbh equals 1.0 at the injector and −1.0 at the producer. Write the finite
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difference scheme derived in (I) in matrix form Ap = q and find matrix A and vector
q. (IV) Use Gaussian elimination as given in Section 5.1 (cf. (5.16) and (5.17)) to
solve this system. (V) Use the direct banded solver defined in Section 5.1 to solve
the same system. (VI) Use ORTHOMIN defined in Section 5.6 to solve the same
system, where the maximum orthogonal number can be 10–25, the iteration can be
restarted, and it stops when ‖rk‖/‖q‖ ≤ 0.00001. (VII) Use ILU(0) given in Section
5.9.1 as a preconditioner for ORTHOMIN to solve the same system. (VIII) Compare
the numerical solutions obtained in (IV)–(VII).
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Single Phase Flow

As noted in Chapter 1, in the very early stage, the reservoir usually contains a single fluid
such as oil or gas. Often the pressure at this stage is so high that oil or gas is produced
by simple natural decompression without any pumping effort at the wells. This stage is
referred to as primary recovery, and it ends when a pressure equilibrium between the oil
or gas field and the atmosphere occurs. The basic differential equations for the flow of a
slightly compressible fluid are described in Section 6.1. Then an analytic solution for a one-
dimensional radial flow is obtained, and is compared with numerical solutions in Section
6.2. In Section 6.3, finite element methods for general differential equations of single phase
flow are presented. Finally, bibliographical information is given in Section 6.4.

6.1 Basic Differential Equations
From Section 2.2.3, the basic differential equation describing the flow of a slightly com-
pressible fluid in a porous medium � ⊂ R

d (1 ≤ d ≤ 3) is (cf. (2.20))

φρct
∂p

∂t
= ∇ ·

(
ρ

µ
k (∇p − ρ℘∇z)

)
, (6.1)

where φ and k are the porosity and absolute permeability tensor of the porous medium;
ρ, p, and µ are the density, pressure, and viscosity of the fluid; ℘ is the magnitude of the
gravitational acceleration; z is the depth; and

ct = cf + φo

φ
cR (6.2)

is the total compressibility, with cf and cR the respective compressibility of the fluid and
rock and φo the porosity at a reference pressure p0. Equation (6.1) is a parabolic equation
in p. Existence, uniqueness, and regularity of a solution to this equation can be determined
(Chavent and Jaffré, 1986; Friedman, 1982). Its numerical solutions can be also readily
performed (cf. Section 6.3).

247
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H

Figure 6.1. One-dimensional radial flow.

6.2 One-Dimensional Radial Flow
6.2.1 An analytic solution

In this section, we obtain an analytic solution for (6.1) that can be used to check the approx-
imation accuracy for a numerical method for fluid flow in porous media. We assume that�
is an isotropic medium (cf. Section 2.2.1), and thus k = kI, where I is the identity tensor.
In cylindrical coordinates (r, θ, x3), (6.1) takes the form (cf. Exercise 6.1)

φρct
∂p

∂t
= 1

r

∂

∂r

[
rρk

µ

(
∂p

∂r
− ρ℘

∂z

∂r

)]
+ 1

r2

∂

∂θ

[
ρk

µ

(
∂p

∂θ
− ρ℘

∂z

∂θ

)]
+ ∂

∂x3

[
ρk

µ

(
∂p

∂x3
− ρ℘

∂z

∂x3

)]
.

(6.3)

We consider a reservoir � with an infinite extent in the horizontal direction. Assume that
there is an isolated production well (located at (0, 0, x3)) in this reservoir, all its properties
are symmetric with respect to the axis of this well, and the reservoir is homogeneous in the
vertical direction (cf. Figure 6.1). In addition, if the gravity effect and density change are
ignored, (6.3) reduces to

1

χ

∂p

∂t
= ∂2p

∂r2
+ 1

r

∂p

∂r
, (6.4)

where

χ = k

φµct
.

Thus pressure p is a function of r and t only. That is, the flow is one-dimensional in the
radial direction. We find an analytic solution to this one-dimensional equation. Initially, we
assume that

p(r, 0) = p0, 0 ≤ r < ∞, (6.5)

where p0 is constant. The boundary conditions are given by

p(r, t) = p0 as r → ∞, t ≥ 0,

r
∂p

∂r
= Qµ

2πkH
as r → 0, t > 0,

(6.6)
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where rw is the radius of the well, Q is a fixed production rate of the well, and H is the
thickness of the reservoir.

To solve (6.4), we introduce the Boltzmann change of variable

y = r2

4tχ
, t > 0.

Then we see that

∂p

∂r
= dp

dy

∂y

∂r
= dp

dy

r

2tχ
,

∂2p

∂r2
= ∂

∂r

(
dp

dy

r

2tχ

)
= d2p

dy2

(
r

2tχ

)2

+ dp

dy

1

2tχ
,

∂p

∂t
= dp

dy

∂y

∂t
= −dp

dy

r2

4t2χ
.

(6.7)

Substituting (6.7) into (6.4) yields

y
d2p

dy2
+ (1 + y)

dp

dy
= 0. (6.8)

Using the method of separation of variables, from (6.8) we obtain (cf. Exercise 6.2)

dp

dy
= C

y
e−y, (6.9)

where C is an arbitrary constant. Applying the boundary condition (6.6) to (6.9) gives

dp

dy
= Qµ

4πkH

e−y

y
. (6.10)

Note that
p = p0 when y = ∞, t = 0,

p = p(r, t) when y = r2

4tχ
, t > 0.

Integration of (6.10) from t = 0 to any t implies

p(r, t) = p0 − Qµ

4πkH

∫ ∞

r2/(4tχ)

e−y

y
dy. (6.11)

The function
∫∞
r2/(4tχ)

e−y
y
dy is the exponential integral function, and is usually written as∫ ∞

r2/(4tχ)

e−y

y
dy = −Ei

(
− r2

4tχ

)
= −Ei(−y).

Consequently, it follows from (6.11) that pressure at any r is

p(r, t) = p0 + Qµ

4πkH
Ei

(
− r2

4tχ

)
, t > 0. (6.12)
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2 4 6 8 10 y

–E(–y)

0.1

0.05

0.2

0.15

Figure 6.2. The graph of −Ei(−y).

The graph of −Ei(−y) in terms of y is displayed in Figure 6.2, which shows that as y
increases (r increases or t decreases), −Ei(−y) decreases, so p(r, t) increases and p0 − p

decreases. That is, the farther we are from the well, the larger the pressure but the smaller
the pressure drop. The same phenomenon can be observed as t decreases.

If the well starts to operate at t = t0 instead of t = 0, the pressure becomes

p(r, t) = p0 + Qµ

4πkH
Ei

(
− r2

4(t − t0)χ

)
, t > t0. (6.13)

Similarly, if the well is located at (x1,0, x2,0) instead of (0, 0), the pressure becomes

p(r, t) = p0 + Qµ

4πkH
Ei

(
− (x1 − x1,0)

2 + (x2 − x2,0)
2

4tχ

)
, t > 0. (6.14)

The exponential integral function can be expanded in the series (cf. Exercise 6.3)

Ei

(
− r2

4tχ

)
= − ln

(
4tχ

r2

)
+ 0.5772 − r2

4tχ
+ 1

4

(
r2

4tχ

)2

− · · · , t > 0.

When r2/(4tχ) < 0.01, this function can be approximated by

Ei

(
− r2

4tχ

)
≈ − ln

(
4tχ

r2

)
+ 0.5772 = − ln

(
2.25tχ

r2

)
,

and the resulting approximation error is less than 0.25%. The corresponding simplified
analytic solution from (6.12) is

p(r, t) ≈ p0 − Qµ

4πkH
ln

(
2.25tχ

r2

)
. (6.15)

At r = rw, r2/(4tχ) is small because rw is small. Then, in a few seconds r2/(4tχ) < 0.01.
Hence (6.15) can be used to find the pressure of the wellbore:

pw(t) = p0 − Qµ

4πkH
ln

(
2.25tχ

r2
w

)
. (6.16)
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Table 6.1. Parameters for a reservoir.

Item Description Unit Value

Qo Oil production rate STB/D 300

µ Oil viscosity cp 1.06

k Permeability md 300

H Thickness ft 100

co Oil compressibility (i.e., cf ) 1/psi 0.00001

cR Rock compressibility 1/psi 0.000004

φ Porosity fraction 0.2

p0 Initial pressure psia 3,600

pb Bubble point pressure psia 2,000

Bob Oil formation volume factor at pb fraction 1.063

rw Radius of wellbore ft 0.1875

x1max Length in the x1-direction ft 8,100

x2max Length in the x2-direction ft 8,100

h Length of triangles used in simulation ft 300

A Local refinement area near wellbore ft2 19,627.7

6.2.2 Numerical comparisons

The simplified analytic solution given in (6.15) can be used to check approximation accuracy
for a numerical method. For this, we consider a reservoir with its property parameters given
in Table 6.1.

In order to compare with the analytic solution obtained in the previous subsection, we
need to change units from the British system to the physics system:

1 ft = 30.48 cm,

1 day = 86,400 sec.

1 psi = 0.068046 atm,

1 md = 0.001 darcy,

1 bbl = 0.1589873 × 106 cm3.

Using these unit transfers, we obtain the following parameters for the analytic solution:

rw = 0.1875 ft = 5.715 cm,

re = 0.2
√
A = 0.2

√
19, 624.7 = 28.0176 ft = 853.98 cm,

k = 300 md = 0.3 darcy,

H = 100 ft = 3,048 cm,

µ = 1.06 cp,

ct = co + cR = 1.4 × 10−5 1/psi = 2.05743 × 10−4 1/atm,

χ = k

φµct
= 6, 877.97 cm2/sec.

Bo = Bob
(
1 − co(p0 − pb)

)
= 1.063

(
1 − 10−5(3, 600 − 2, 000)

) = 1.04599,
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Figure 6.3. Base triangles and control volumes.

Q= QoBo = 300 · 1.04599 = 313.7976 RB/D

= 313.7976 · 0.1589873 × 106/86, 400 = 577.4286 cm3/sec.

where re is the equivalent radius (cf. Chapter 13). We compare the numerical pressure with
the simplified analytic solution at r = rw, re:

p(r, t) = p0 − Qµ

4πkH
ln

(
2.25tχ

r2

)
when

r2

4tχ
< 0.01. (6.17)

The numerical method is based on the control volume finite element method with
piecewise linear functions presented in Section 4.3. Triangles are used to construct the
control volumes (cf. Figure 6.3). When this method is used to solve (6.4), we employ local
grid refinement near the well to maintain uniform accuracy. The comparisons between the
numerical pressure ph and the analytical pressure p at r = rw and r = re are shown in,
respectively, Tables 6.2 and 6.3. From these tables, we see that the numerical solution is
very close to the analytical solution. When the size of the triangles used in the numerical
experiments is reduced, convergence of the numerical to the analytical solution can be
observed.

We now increase the size of the reservoir in the horizontal direction; the length in
the x1- and x2-directions, x1max and x2max , is increased from 8,100 ft to 13,500 ft. The
corresponding numerical and analytical solutions at r = rw are given in Table 6.4. We see
that the difference between these two solutions is now less than 0.01. Thus the numerical
solution gets closer to the analytical solution as the size of the reservoir in the horizontal
direction becomes larger.

6.3 Finite Element Methods for Single Phase Flow
We now return to the three-dimensional single phase flow equation (6.1). For generality,
we write it in a more general form:
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Table 6.2. The pressure comparison at r = rw.

Time Time r2/(4tχ) ph p ph − p

days sec. ×10−8 psia psia psia
0.1 8,640 13.740 3,596.32 3,595.92 0.40
0.2 17,280 6.870 3,595.47 3,595.38 0.09
0.3 25,920 4.580 3,595.07 3,595.06 0.01
0.4 34,560 3.435 3,594.80 3,594.84 −0.04
0.5 43,200 2.748 3,594.60 3,594.66 −0.06
0.6 51,840 2.290 3,594.45 3,594.52 −0.07
0.7 60,480 1.963 3,594.31 3,594.40 −0.09
0.8 69,120 1.718 3,594.20 3,594.29 −0.09
0.9 77,760 1.527 3,594.10 3,594.20 −0.10
1.0 86,400 1.374 3,594.01 3,594.12 −0.11
1.5 129,600 0.916 3,593.69 3,593.80 −0.11
2.0 172,800 0.687 3,593.46 3,593.58 −0.12
2.5 216,000 0.550 3,593.28 3,593.40 −0.12
3.0 259,200 0.458 3,593.13 3,593.26 −0.13
4.0 345,600 0.344 3,592.90 3,593.03 −0.13

Table 6.3. The pressure comparison at r = re.

Time Time r2/(4tχ) ph p ph − p

days sec. ×10−4 psia psia psia
0.1 8,640 30.680 3,588.48 3,588.08 0.40
0.2 17,280 15.340 3,587.63 3,587.54 0.09
0.3 25,920 10.226 3,587.23 3,587.22 0.01
0.4 34,560 7.670 3,586.96 3,587.00 −0.04
0.5 43,200 6.136 3,586.76 3,586.82 −0.06
0.6 51,840 5.113 3,586.61 3,586.68 −0.07
0.7 60,480 4.383 3,586.47 3,586.56 −0.09
0.8 69,120 3.835 3,586.36 3,586.45 −0.09
0.9 77,760 3.409 3,586.26 3,586.36 −0.10
1.0 86,400 3.068 3,586.17 3,586.28 −0.11
1.5 129,600 2.045 3,585.85 3,585.96 −0.11
2.0 172,800 1.534 3,585.62 3,585.74 −0.12
2.5 216,000 1.227 3,585.44 3,585.56 −0.12
3.0 259,200 1.023 3,585.29 3,585.42 −0.13
4.0 345,600 0.767 3,585.06 3,585.19 −0.13

c(p)
∂p

∂t
− ∇ · (a(p)∇p) = f (p) in �× J,

a(p)∇p · ν = 0 on � × J,

p(·, 0) = p0 in �,

(6.18)

where c(p) = c(x, t, p), a(p) = a(x, t, p), and f (p) = f (x, t, p) depend on pressure p, ν
is the outward unit normal to the boundary � of�, the function p0 is given, and J = (0, T )
(T > 0) is the time interval of interest. Various numerical methods were given in Chapter 4
for the solution of a linear version of (6.18). Now is a good time to see how to extend these
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Table 6.4. The pressure comparison at r = rw for a larger reservoir.

Time Time r2/(4tχ) ph p ph − p

days sec. ×10−8 psia psia psia
0.1 8,640 13.740 3,596.32 3,596.32 0.00
0.2 17,280 6.870 3,595.47 3,595.46 0.01
0.3 25,920 4.580 3,595.07 3,595.06 0.01
0.4 34,560 3.435 3,594.80 3,594.80 0.00
0.5 43,200 2.748 3,594.60 3,594.60 0.00
0.6 51,840 2.290 3,594.45 3,594.44 0.01
0.7 60,480 1.963 3,594.31 3,594.31 0.00
0.8 69,120 1.718 3,594.20 3,594.19 0.01
0.9 77,760 1.527 3,594.10 3,594.09 0.01
1.0 86,400 1.374 3,594.01 3,594.01 0.00
1.5 129,600 0.916 3,593.69 3,593.68 0.01
2.0 172,800 0.687 3,593.46 3,593.45 0.01
2.5 216,000 0.550 3,593.28 3,593.27 0.01
3.0 259,200 0.458 3,593.13 3,593.12 0.01
4.0 345,600 0.344 3,592.90 3,593.90 0.00

methods to this nonlinear equation. As an example, we just consider the standard finite
element methods discussed in Section 4.2 for (6.18); similar considerations can be given
for other finite element methods (Chen, 2005; also cf. Exercise 6.4 and Section 7.5).

In (6.18), for notational convenience we drop the dependence of these coefficients
on x and t and assume that (6.18) admits a unique solution. Furthermore, we assume that
the coefficients c(p), a(p), and f (p) are globally Lipschitz continuous in p; i.e., for some
constants Cξ , they satisfy

|ξ(p1)− ξ(p2)| ≤ Cξ |p1 − p2|, p1, p2 ∈ R, ξ = c, a, or f. (6.19)

With V = H 1(�) (cf. Section 4.2), problem (6.18) can be written in the variational
form: Find p : J → V such that(

c(p)
∂p

∂t
, v

)
+ (a(p)∇p,∇v) = (f (p), v) ∀v ∈ V, t ∈ J,

p(x, 0) = p0(x) ∀x ∈ �.
(6.20)

Let Vh be a finite element subspace of V (cf. Section 4.2.1). The finite element version of
(6.20) is: Find ph : J → Vh such that(

c(ph)
∂ph

∂t
, v

)
+ (a(ph)∇ph,∇v) = (f (ph), v) ∀v ∈ Vh,

(ph(·, 0), v) = (p0, v) ∀v ∈ Vh.
(6.21)

As for (4.96), after the introduction of basis functions in Vh, (6.21) can be stated in matrix
form (cf. Exercise 6.5)

C(p)
dp
dt

+ A(p)p = f(p), t ∈ J,
Bp(0) = p0.

(6.22)
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Under the assumption that the coefficient c(p) is bounded below by a positive constant, this
nonlinear system of ODEs possesses a unique solution (at least locally). In fact, because of
assumption (6.19) on c, a, and f , the solution p(t) exists for all t . Several approaches for
solving (6.22) are discussed next.

6.3.1 Linearization approaches

Let 0 = t0 < t1 < t2 < · · · < tN be a partition of J , and set �tn = tn − tn−1, n =
1, 2, . . . , N . The nonlinear system (6.22) can be linearized by allowing the nonlinearities
to lag one time step behind. Thus the modified backward Euler method for (6.18) takes the
form: Find pnh ∈ Vh, n = 1, 2, . . . , N , such that

(
c
(
pn−1
h

) pnh − pn−1
h

�tn
, v

)
+ (a (pn−1

h

)∇pnh,∇v)
= (f (pn−1

h

)
, v
) ∀v ∈ Vh,(

p0
h, v
) = (p0, v) ∀v ∈ Vh.

(6.23)

In matrix form it is given by

C
(
pn−1

) pn − pn−1

�tn
+ A

(
pn−1

)
pn = f

(
pn−1

)
,

Bp(0) = p0.

(6.24)

Note that (6.24) is a system of linear equations in pn, which can be solved using iterative
algorithms discussed in the previous chapter, for example. When Vh is the finite element
space of piecewise linear functions, the error pn − pnh (0 ≤ n ≤ N ) in the L2(�)-norm is
asymptotically of order O(�t+h2) under appropriate smoothness assumptions onp and for
�t small enough (Thomée, 1984; Chen and Douglas, 1991), where �t = max1≤n≤N �tn.
We may use the Crank–Nicholson discretization method in (6.23). However, the lineariza-
tion decreases the order of the time discretization error to O(�t), giving O(�t + h2)

overall. This is true for any higher-order time discretization method with the present lin-
earization technique. This drawback can be overcome by using extrapolation techniques
in the linearization of the coefficients c, a, and f (cf. Section 7.5.3). Combined with an
appropriate extrapolation, the Crank–Nicholson method can be shown to produce an error
of order O((�t)2) in time (Douglas, 1961; Thomée, 1984). On the other hand, higher-order
extrapolations generally increase data storage.

6.3.2 Implicit time approximations

We now consider a fully implicit time approximation scheme for problem (6.18): Find
pnh ∈ Vh, n = 1, 2, . . . , N , such that
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c
(
pnh
) pnh − pn−1

h

�tn
, v

)
+ (a (pnh)∇pnh,∇v)

= (f (pnh) , v) ∀v ∈ Vh,(
p0
h, v
) = (p0, v) ∀v ∈ Vh.

(6.25)

Its matrix form is

C (pn)
pn − pn−1

�tn
+ A

(
pn
)
pn = f

(
pn
)
,

Bp(0) = p0.

(6.26)

Now, system (6.26) is a system of nonlinear equations in pn, which must be solved at each
time step via an iteration method. Let us consider Newton’s method (or the Newton–Raphson
method; cf. Chapter 8). Note that the first equation of (6.26) can be rewritten as(

A
(
pn
)+ 1

�tn
C
(
pn
))

pn − 1

�tn
C
(
pn
)

pn−1 − f
(
pn
) = 0.

We express this equation as
F
(
pn
) = 0. (6.27)

Newton’s method for (6.27) is

Set v0 = pn−1;
Iterate vk = vk−1 + dk, k = 1, 2, . . . ,

where dk satisfies the equation

G
(
vk−1

)
dk = −F

(
vk−1

)
with G the Jacobian matrix of the vector function F:

G =
(
∂Fi

∂pj

)
i,j=1,2,...,M

(recall thatM is the dimension of p). If the matrix G(pn) is nonsingular and the second partial
derivatives of F are bounded, Newton’s method converges quadratically in a neighborhood
of pn; i.e., there are constants ε > 0 and C such that if |vk−1 − pn| ≤ ε, then∣∣vk − pn

∣∣ ≤ C
∣∣vk−1 − pn

∣∣2.
The main difficulty with Newton’s method is to get a sufficiently good initial guess v0.
Once it is obtained, Newton’s method converges with very few iterations. This method is
a very powerful iteration method for strongly nonlinear problems. There are many variants
of Newton’s method available in the literature (Ostrowski, 1973; Rheinboldt, 1998). The
Crank–Nicholson discretization scheme in time can be also used in (6.25). In the present
implicit case, this scheme generates second-order accuracy in time. Numerical experience
has revealed that the Crank–Nicholson scheme may not be a good choice for nonlinear
parabolic equations because it can be unstable for such equations.
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6.3.3 Explicit time approximations

We conclude with a remark about the application of a forward, explicit time approximation
method to (6.18): Find pnh ∈ Vh, n = 1, 2, . . . , N , such that(

c
(
pnh
) pnh − pn−1

h

�tn
, v

)
+ (a (pn−1

h

)∇pn−1
h ,∇v)

= (f (pn−1
h

)
, v
) ∀v ∈ Vh,(

p0
h, v
) = (p0, v) ∀v ∈ Vh.

(6.28)

In matrix form it is written as

C (pn)
pn − pn−1

�tn
+ A

(
pn−1

)
pn−1 = f

(
pn−1

)
,

Bp(0) = p0.

(6.29)

Note that the only nonlinearity is in matrix C. With an appropriate mass lumping (a diago-
nalization technique; off-diagonal quantities are placed in the right-hand side of (6.29)) in
this matrix, the first equation in (6.29) represents M scalar nonlinear equations of the form

F(pni ) = 0, i = 1, 2, . . . ,M. (6.30)

Each single equation in (6.30) can be easily solved via any standard method (Ostrowski,
1973; Rheinboldt, 1998).

For the explicit method (6.28) to be stable in the sense defined in Section 4.2.4, a
stability condition of the following type must be satisfied:

�tn ≤ Ch2, n = 1, 2, . . . , N, (6.31)

where C now depends on c and a (cf. (4.108)). Unfortunately, this condition on the time
steps is very restrictive for long-time integration, as noted earlier.

In summary, we have developed linearization, implicit, and explicit time approxima-
tion approaches for numerically solving (6.18). In terms of computational effort, the explicit
approach is the simplest at each time step; however, it requires an impractical stability re-
striction. The linearization approach is more practical, but it reduces the order of accuracy
in time for high-order time discretization methods (unless extrapolations are exploited).
An efficient and accurate method is the fully implicit approach; the extra cost involved at
each time step for this implicit method is usually more than compensated for by the fact that
larger time steps may be taken, particularly when Newton’s method with a good initial guess
is employed. Modified implicit methods such as semi-implicit methods (Aziz and Settari,
1979) can be applied; for a given physical problem, the linearization approach should be
applied for weak nonlinearity (e.g., the dependence of viscosity µ on pressure p), while the
implicit one should be used for strong nonlinearity (e.g., the dependence of density ρ on
p); refer to Chen et al. (2000C).
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6.4 Bibliographical Remarks
The content of Section 6.3 closely follows Chen (2005). For numerical solutions of problem
(6.18) using the discontinuous, mixed, characteristic, and adaptive finite element methods
introduced in Chapter 4, the reader can refer to Chen (2005).

Exercises
6.1. Use the cylindrical coordinates (r, θ, x3) to show that equation (6.1) can be written

in the form of (6.3) (recall that x1 = r cos θ , x2 = r sin θ , and x3 = x3).

6.2. Prove that equation (6.8) can be reduced to (6.9) using the method of separation of
variables.

6.3. Define the Euler constant γ = ∫∞
0 e−x ln x dx ≈ −5772. Prove that if 0 < x < 0.1,

the exponential integral function Ei can be approximated:

Ei(−x) ≈ ln x + γ.

(Hint: first show that Ei(−x) = γ + ln x − x + 1
2·2!x

2 − 1
3·3!x

3 + · · · .)
6.4. After introducing appropriate spaces V and W (cf. Section 4.5.2), write problem

(6.18) in a mixed variational formulation.

6.5. After the introduction of basis functions inVh and of appropriate matrices and vectors,
show that system (6.21) can be written as (6.22).
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Two-Phase Flow

As mentioned in Chapter 1, to recover part of the remaining oil after the primary recovery,
a fluid (usually water) is injected into some wells (injection wells) while oil is produced
through other wells (production wells). This process serves to maintain high reservoir
pressure and flow rates. It also displaces some of the oil and pushes it toward the production
wells. This stage of oil recovery is called secondary recovery. In this recovery stage, if
the reservoir pressure is above the bubble point pressure of the oil phase, then there is two-
phase immiscible flow, one phase being water and the other being oil, without mass transfer
between the phases. As defined in Chapter 3, a bubble point is defined as the state in which
the flow system entirely consists of liquids (water and oil), and the pressure at this point is
the bubble point pressure.

The basic differential equations for two-phase immiscible flow are described in Section
7.1. A one-dimensional case where an analytic solution can be obtained is studied in
Section 7.2. In Section 7.3, we consider a solution approach, IMPES (implicit pressure-
explicit saturation) for solving the differential equations governing two-phase flow, and
compare it with a recently introduced approach, an improved IMPES.Alternative differential
formulations for these differential equations are discussed and compared in Section 7.4.
Various finite element methods developed in Chapter 4 are applied to these formulations
and compared in Section 7.5. Simulation of miscible displacement of one fluid by another
is described in Section 7.6. Finally, bibliographical information is given in Section 7.7.

7.1 Basic Differential Equations
We describe the basic differential equations for two-phase flow in a porous medium�. The
phase (e.g., water) that wets the porous medium more than the other (e.g., oil) is the wetting
phase and is indicated by a subscript w. The other phase is termed the nonwetting phase
and indicated by o. The basic equations can be found in Section 2.3.1; for completeness,
we review these equations.

Mass is conserved within each fluid phase:

∂(φραSα)

∂t
= −∇ · (ραuα)+ qα, α = w, o, (7.1)

259
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260 Chapter 7. Two-Phase Flow

where φ is the porosity of the porous medium and each phase has its own saturation Sα ,
density ρα , Darcy’s velocity uα , and mass flow rate qα . Darcy’s law for each phase reads:

uα = −krα
µα

k (∇pα − ρα℘∇z) , α = w, o, (7.2)

where k is the absolute permeability tensor of the porous medium; krα , pα , and µα are
the relative permeability, pressure, and viscosity for phase α; ℘ is the magnitude of the
gravitational acceleration; and z is the depth. The fact that the two fluids jointly fill the
voids implies the relation

Sw + So = 1, (7.3)

and the pressure difference between the two phases is given by the capillary pressure

pc(Sw) = po − pw. (7.4)

Typical functions ofpc and krα were given in Chapter 3. Equations (7.1)–(7.4) provide
six equations for the six unknowns pα , uα , and Sα , α = w, o. Alternative differential
equations were discussed in Section 2.3.2 and are further discussed in this chapter. The
existence, uniqueness, and regularity of a solution to the two-phase flow system were shown
under the assumption that the two fluids are incompressible (Chen, 2001; Chen, 2002A).

7.2 One-Dimensional Flow
7.2.1 An analytic solution

As in the treatment of single phase flow, an analytic solution for a simple two-phase flow
system is obtained.

Analytic solution before water breakthrough

The breakthrough time tB is an important event in the water-oil displacement; as t > tB , we
are producing some of the water being injected. Assume that� is a rigid, isotropic medium
and that it is homogeneous in the x2- and x3-directions (cf. Section 2.2.1). All its properties
depend only on x1. That is, we consider a one-dimensional flow in the x-direction (x = x1).
In addition, if the gravity and capillary effects are ignored, the mass conservation equations
(7.1) become

φ
∂Sw

∂t
+ ∂uw

∂x
= 0,

φ
∂So

∂t
+ ∂uo

∂x
= 0,

(7.5)

and Darcy’s law (7.2) simplifies to

uw = −k krw(Sw)
µw

∂p

∂x
,

uo = −k kro(So)
µo

∂p

∂x
.

(7.6)
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We introduce the phase mobilities

λα(Sα) = krα(Sα)

µα
, α = w, o,

and the total mobility
λ(Sw) = λw(Sw)+ λo(1 − Sw).

The fractional flow functions are

fw(Sw) = λw(Sw)

λ(Sw)
, fo(Sw) = λo(1 − Sw)

λ(Sw)
.

We also define the total velocity
u = uw + uo. (7.7)

Using (7.3) and (7.5), we see that

∂u

∂x
= 0, (7.8)

and thus u is independent of x. Because uw = fw(Sw)u, it follows that

∂uw

∂x
= fw

∂u

∂x
+ u

dfw(Sw)

dSw

∂Sw

∂x
= uFw(Sw)

∂Sw

∂x
, (7.9)

where the distribution function Fw of saturation is defined by

Fw(Sw) = dfw(Sw)

dSw
.

Now, we substitute (7.9) into the first equation of (7.5) to see that

φ
∂Sw

∂t
+ uFw(Sw)

∂Sw

∂x
= 0. (7.10)

This equation defines a characteristic x(t) along the interstitial velocity v by

dx

dt
= v(x, t) ≡ uFw(Sw)

φ
. (7.11)

Along this characteristic, it follows from (7.10) that Sw is constant; i.e.,

dSw(x(t), t)

dt
= ∂Sw

∂x

dx

dt
+ ∂Sw

∂t
= 0. (7.12)

Let A be the cross-sectional area (in the x2x3-plane) of �, and define the cumulative
liquid production

V (t) = A

∫ t

0
u dt. (7.13)

From (7.11), along the characteristic x(t) we see that∫ t

0
dx = Fw(Sw)

φ

∫ t

0
u dt,

so, by (7.13),

x(Sw, t) = Fw(Sw)

φA
V (t), (7.14)

from which we can find the saturation Sw before water breaks through.
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Analytic solution at the water front

Let Swf be the water saturation at the water front, and Swc be the critical saturation (cf.
Section 3.1.2). From the material balance equation

uw
∣∣
at water front = φ(Swf − Swc)

dx

dt
,

we have

φ(Swf − Swc)
dx

dt
= fwu, (7.15)

since uw = fw(Sw)u. Applying (7.11) to (7.15) gives

(Swf − Swc)Fw = fw;
i.e.,

dfw

dSw
(Swf ) = fw(Swf )

Swf − Swc
. (7.16)

Equation (7.16) indicates that the slope of the tangent to the curve of fw at Swf equals the
slope of the secant line through the points (Swf , fw(Swf )) and (Swc, fw(Swc)) (note that
fw(Swc) = 0; cf. Section 3.1.2). Thus a graphical method based on this feature can be used
to find the water saturation at the water front from (7.16).

Analytic solution after water breakthrough

Let L be the length of � in the x-direction and Swe be the value of the saturation at x = L.
At x = L, it follows from (7.14) that

V (t) = φAL

Fw(Swe)
. (7.17)

We define the nondimensional cumulative liquid production

V̄ (t) = V (t)

φAL
.

Then we see that

V̄ (t) = 1

Fw(Swe)
. (7.18)

Also, we introduce the cumulative water production

Vw(t) =
∫ t

tB

fw dV (t) = A

∫ t

tB

uw dt, (7.19)

where we recall that tB is the water breakthrough time (i.e., Sw equals the critical value Swc
at t = tB) and where we used the fact that fwdV = Auwdt by (7.13). The nondimensional
cumulative water production is

V̄w = Vw

φAL
.
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It follows from (7.19) and integration by parts that

V̄w = 1

φAL

∫ t

tB

fw dV (t) = 1

φAL

(
fwV −

∫ t

tB

V dfw

)
,

since fw(Swc) = 0. Consequently, by the fact that dfw = Fw dSw, we see that

V̄w = 1

φAL

(
fwV −

∫ t

tB

V Fw dSw

)
.

Finally, applying (7.17), we obtain

V̄w = fw(Swe)

Fw(Swe)
− (Swe − Swc), (7.20)

which defines the value of Swe.
We can also define the cumulative oil production

Vo(t) =
∫ t

tB

fo dV (t) = A

∫ t

tB

uo dt,

and the corresponding nondimensional value

V̄o = Vo

φAL
.

Then we derive (cf. Exercise 7.1)

V̄o = 1 − fw(Swe)

Fw(Swe)
+ (Swe − Swc) (7.21)

and
V̄ = V̄w + V̄o.

Either of (7.20) and (7.21) can be utilized to find Swe.

7.2.2 An example

We consider an example with µw = 0.42 cp, µo = 15.5 cp, and the water and oil relative
permeabilities given in Table 7.1.

Based on Table 7.1, we can construct the fractional flow function fw(Sw), which is
shown in Figure 7.1. From (7.16) with Swc = 0.4, we obtain the water saturation at the
water front using the graphical approach defined by (7.16):

Swf = 0.5364.

Also, by (7.14), we have

x(Sw, t) = Fw(Sw)

φA
V (t).
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Table 7.1. Relative permeabilities.

Sw krw kro Sw krw kro
0.40 0.0000 1.0000 0.62 0.0605 0.2025
0.42 0.0005 0.9025 0.64 0.0720 0.1600
0.44 0.0020 0.8100 0.66 0.0845 0.1225
0.46 0.0045 0.7225 0.68 0.0980 0.0900
0.48 0.0080 0.6400 0.70 0.1125 0.0625
0.50 0.0125 0.5625 0.72 0.1280 0.0400
0.52 0.0180 0.4900 0.74 0.1445 0.0225
0.54 0.0245 0.4225 0.76 0.1620 0.0100
0.56 0.0320 0.3600 0.78 0.1805 0.0025
0.58 0.0405 0.3025 0.80 0.0200 0.0000
0.60 0.0500 0.2500 0.82 0.4500 0.0000

Figure 7.1. Function fw(Sw) (left); Sw versus x̄ curve (right).

When water breaks through, Swe = Swf and thus

x

L
= Fw(Sw)

Fw(Swf )
.

Using this equation, the curve of Sw verses x̄ is plotted in Figure 7.1, where x̄ = x/L.
From (7.21) it follows that

V̄o = 1 − fw(Swe)

Fw(Swe)
+ (Swe − Swc).

Oil recovery is defined by

vo = V̄o

1 − Swc
.

The curves of vo verses the pore volume of water injected and the water cut verses vo are
displayed in Figure 7.2. The water cut is defined as qw/(qw + qo), where qw and qo are
the water and oil production, respectively. In the present example, the water cut equals
the fractional flow function fw since qw = fw(qw + qo). The curves of vo verses the pore
volume of water injected and the water cut verses vo indirectly determine Swe.
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Figure 7.2. Oil recovery v0 (left); water cut versus vo (right).

7.3 IMPES and Improved IMPES
Note that the differential equations (7.1)–(7.4) are nonlinear and coupled. There exist a
variety of approaches for solving these equations, such as the IMPES, SS (simultaneous
solution), sequential, and adaptive implicit methods, as mentioned in Chapter 1. In light
of the fact that the IMPES is still popular in the petroleum industry and a very powerful
method for solving two-phase flow (particularly for incompressible or slightly compressible
fluids), we discuss this solution approach only for this type of flow. Other approaches will
be discussed in the next chapter for the black oil model.

7.3.1 Classical IMPES

An IMPES method was originally developed by Sheldon et al. (1959) and Stone and Garder
(1961). The basic idea of this classical method for solving (7.1)–(7.4) is to separate the
computation of pressure from that of saturation. Namely, the coupled system is split into
a pressure equation and a saturation equation, and the pressure and saturation equations
are solved using implicit and explicit time approximation approaches, respectively. This
method is simple to set up and efficient to implement, and requires less computer memory
than other methods such as the SS method (Douglas et al., 1959). However, for it to
be stable, this classical method requires very small time steps for the saturation. This
requirement is expensive and prohibitive, particularly for long-time integration problems
and for small gridblock problems such as coning problems. In this section, we first review
the classical IMPES and then introduce an improved IMPES. We focus on incompressible
flow; compressible flow will be treated in the next chapter.

We use the oil pressure and water saturation as the primary variables:

p = po, S = Sw. (7.22)

Define the total velocity

u = uw + uo. (7.23)
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Under the assumption that the fluids are incompressible, we apply (7.3) and (7.23) to (7.1)
to see that

∇ · u = q̃(p, S) ≡ q̃w(p, S)+ q̃o(p, S), (7.24)

and (7.4) and (7.23) to (7.2) to obtain

u = −k
[
λ(S)∇p − λw(S)∇pc − (λwρw + λoρo

)
℘∇z] , (7.25)

where q̃w = qw/ρw and q̃o = qo/ρo. Substituting (7.25) into (7.24) yields the pressure
equation

−∇ · (kλ∇p) = q̃ − ∇ · (k(λw∇pc + (λwρw + λoρo)℘∇z)). (7.26)

The phase velocities uw and uo are related to the total velocity u by (cf. Exercise 2.3)

uw = fwu + kλofw∇pc + kλofw(ρw − ρo)℘∇z,
uo = fou − kλwfo∇pc + kλwfo(ρo − ρw)℘∇z.

Similarly, we apply (7.4), (7.23), and (7.25) to (7.1) and (7.2) with α = w to obtain the
saturation equation (cf. Exercise 7.2)

φ
∂S

∂t
+ ∇ ·

{
kfw(S)λo(S)

(
dpc

dS
∇S + (ρo − ρw)℘∇z

)
+ fw(S)u

}
= q̃w(p, S),

(7.27)

where, for notational convenience, we assume that φ = φ(x).
Let J = (0, T ] (T > 0) be a time interval of interest, and for a positive integer N ,

let 0 = t0 < t1 < · · · < tN = T be a partition of J . For the pressure computation in the
classical IMPES method, the saturation S in (7.26) is supposed to be known, and (7.26) is
solved implicitly for p. That is, for each n = 0, 1, . . . , pn satisfies

−∇ · (kλ(Sn)∇pn) = F(pn, Sn), (7.28)

where F(p, S) denotes the right-hand side of (7.26), and Sn is given. It follows from (7.27)
that

φ
∂S

∂t
= q̃w − ∇ ·

{
kfw(S)λo(S)

(
dpc

dS
∇S + (ρo − ρw)℘∇z

)
+ fw(S)u

}
.

(7.29)

In the IMPES, (7.29) is explicitly solved for S; i.e., for each n = 0, 1, 2, . . . , Sn+1 satisfies

φ
Sn+1 − Sn

�tn+1
≈ φ

∂S

∂t

∣∣∣∣
t=tn+1

= G(pn,un, Sn), (7.30)

where G(p,u, s) represents the right-hand side of (7.29).
The IMPES method goes as follows: After startup, for n = 0, 1, . . ., we use (7.28)

and Sn to evaluate pn and then (7.25) to evaluate un; next, we utilize Sn, pn, un, and (7.30)
to compute Sn+1. As noted, the time step �tn = tn − tn−1 must be sufficiently small for
this method to be stable (cf. (4.108)).
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7.3.2 The seventh SPE project: Horizontal well modeling

We present numerical experiments for the classical IMPES method to check its computa-
tional cost and stability. We define the source and sink terms by

q̃α =
∑
l,m

q(l,m)α δ(x − x(l,m)), α = w, o,

where q(l,m)α indicates the volume of phase α produced or injected per unit time at the lth well
and the mth perforated zone, x(l,m), and δ is the Dirac delta function. Following Peaceman
(1991), q(l,m)α can be defined by

q(l,m)α = 2πραk̄krα�L(l,m)

µα ln
(
r
(l)
e /r

(l)
w

) (p(l)bh − pα − ρα℘ (z
(l)
bh − z)

)
,

where �L(l,m) is the length (in the flow direction) of a gridblock (containing the lth well)
at themth perforated zone, p(l)bh is the bottom hole pressure at the datum level depth z(l)bh, r(l)e
is the equivalent well radius, and r(l)w is the radius of the lth well. The quantity k̄ is some
average of k at the wells (Peaceman, 1991). For a diagonal tensor k = diag(k11, k22, k33),
for example, k̄ = √

k11k22 for a vertical well. In this case, the equivalent radius is calculated
by

r(l)e = 0.14
(
(k22/k11)

1/2 h2
1 + (k11/k22)

1/2 h2
2

)1/2
0.5
(
(k22/k11)

1/4 + (k11/k22)
1/4
) ,

where h1 and h2 are the x1- and x2-grid sizes of the gridblock that contains the vertical well.
For a horizontal well (e.g., in the x1-direction), k̄ = √

k22k33 and

r(l)e = 0.14
(
(k33/k22)

1/2 h2
1 + (k22/k33)

1/2 h2
3

)1/2
0.5
(
(k33/k22)

1/4 + (k22/k33)
1/4
) ,

where h3 is the x3-grid size of the gridblock containing this horizontal well. The treatment
of wells will be discussed further in Chapter 13.

The physical data used are taken from the seventh SPE comparative solution project
(Nghiem et al., 1991). The reservoir dimensions are

Nx1∑
i=1

h1,i ,

Nx2∑
j=1

h2,j , and
Nx3∑
k=1

h3,k,

respectively, in the x1-, x2-, and x3-directions, where Nx1 = 9, Nx2 = 9, Nx3 = 6, and (in
feet)

h1,i = 300, i = 1, 2, . . . , 9,

h2,1 = h2,9 = 620, h2,2 = h2,8 = 400,

h2,3 = h2,7 = 200, h2,4 = h2,6 = 100, h2,5 = 60,

h3,k = 20, k = 1, 2, 3, 4,

h3,5 = 30, h3,6 = 50.
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Figure 7.3. A reservoir.

Table 7.2. The relative permeabilities and capillary pressure.

S 0.22 0.3 0.4 0.5 0.6 0.8 0.9 1
krw 0 0.07 0.15 0.24 0.33 0.65 0.83 1
kro 1 0.4 0.125 0.0649 0.0048 0 0 0
pc (psia) 6.3 3.6 2.7 2.25 1.8 0.9 0.45 0.0

A horizontal oil production well is located in the first layer (k = 1) and stretched in gridblocks
with i = 6, 7, 8 and j = 5, and a horizontal water injection well is located in the sixth layer
(k = 6) and stretched in gridblocks with i = 1, 2, . . . , 9 and j = 5. Thus there are two
horizontal wells in this experiment (cf. Figure 7.3). The radius of both wells is 2.25 inches.
The permeability tensor k is diagonal with k11 = k22 = 300 md and k33 = 30 md, and the
porosity φ is 0.2. The depth z of the centers of the six layers is, respectively, 3,600, 3,620,
3,640, 3,660, 3,685, and 3,725 ft, and the initial water saturation at each layer is 0.289,
0.348, 0.473, 0.649, 0.869, and 1.0. The densities and viscosities are ρo = 0.8975 g/cm3,
ρw = 0.9814 g/cm3, µo = 0.954 cp, and µw = 0.96 cp. The relative permeability and
capillary pressure data are shown in Table 7.2.

Finally, the pressure at the wells is fixed, the datum level depth zbh is 3,600 ft, and the
bottom hole pressures pbh for the injection and production wells are, respectively, 3,651.4
and 3,513.6 psia. The final time T is 1,500 days.

As noted, to control the variation of saturation, we need to find a suitable time step
�tn+1 before we solve (7.30) for Sn+1 for each n = 0, 1, . . . . The control strategy is
defined as follows: We calculate the maximum value of ∂Sn+1/∂t at all computational
nodes, denoted by (∂Sn+1/∂t)max , which is, by (7.30),(

∂Sn+1

∂t

)
max

=
(
G(pn,un, Sn)

φ

)
max

.
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Table 7.3. The CPU time vs. DSmax .

DSmax 0.05 0.02 0.01 0.005 0.002 0.001
N 70 91 86 122 226 432
Pressure-CPU 14.81 19.18 18.13 25.86 47.68 89.49
Saturation-CPU 0.14 0.20 0.19 0.35 0.46 0.88

Figure 7.4. DSmax = 0.05 (left); DSmax = 0.02 (right).

Then we apply the following formula to find �tn+1:

�tn+1 = DSmax(
∂Sn+1

∂t

)
max

,

where DSmax is the maximum variation of the saturation to be allowed. Now, we use this
time step in (7.30) to obtain Sn+1. This approach guarantees that the saturation variation
does not exceed DSmax . Note that DSmax can depend on the time level n.

The mixed finite element method with the Raviart–Thomas–Nédélec space of lowest
order over rectangular parallelepipeds in three dimensions is used (cf. Section 4.5.4; also cf.
Section 7.5). A no-flow boundary condition (homogeneous Neumann boundary condition)
is applied. To test stability, we study the curves of the water-oil production ratio (WOR)
at the production well verses time (days) in the cases of DSmax = 0.05, 0.02, 0.01, 0.005,
0.002, and 0.001. The results are displayed in Figures 7.4–7.6. From these figures we see
that the WOR does not oscillate only when DSmax is smaller than 0.002.

We now check the computational time for the present experiment at T = 1, 500 days
for the six choices of DSmax , which is shown in Table 7.3. In this table, the CPU time is in
seconds and N (the number of time steps) is such that tN = T . All the computations are
carried out on an SGI-O2 workstation. Table 7.3 shows that the computation of pressure
takes far more time than that of saturation.
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Figure 7.5. DSmax = 0.01 (left); DSmax = 0.005 (right).

Figure 7.6. DSmax = 0.002 (left); DSmax = 0.001 (right).

7.3.3 Improved IMPES

The improved method

Most of the computational time in the classical IMPES method is spent on the implicit
calculation of pressure. It follows from the mechanics of fluid flow in porous media that
pressure changes less rapidly in time than saturation. Furthermore, the constraint on time
steps is primarily used in the explicit calculation of saturation. For all these reasons, it is
appropriate to take a much larger time step for the pressure than for the saturation.

Again, for a positive integer N , let 0 = t0 < t1 < · · · < tN = T be a partition
of J into subintervals J n = (tn−1, tn], with length �tnp = tn − tn−1. This partition is
used for pressure. For saturation, each subinterval J n is divided into sub-subintervals
J n,m = (tn−1,m−1, tn−1,m]:

tn−1,m = tn−1 +m�tnp/M
n, m = 1, . . . ,Mn.

The length of J n,m is denoted by�tn,mS = tn−1,m− tn−1,m−1,m = 1, . . . ,Mn, n = 0, 1, . . . .
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Table 7.4. The CPU time for the improved IMPES.

DSmax M ≡ Mn N Pres-CPU Satur-CPU Total CPU
0.01 5 18 3.63 0.28 3.91
0.005 10 12 2.38 0.33 2.71
0.001 50 9 1.76 0.97 2.73

The number of steps, Mn, can depend on n. Below we simply write tn−1,0 = tn−1 and set
vn,m = v(·, tn,m).

We denote the right-hand side of (7.25) by H(p, S). Now, the improved IMPES
method is defined: For each n = 0, 1, . . . , find pn such that

−∇ · (kλ(Sn)∇pn) = F(pn, Sn) (7.31)

and un such that
un = H(pn, Sn). (7.32)

Next, for m = 1, . . . ,Mn, n = 0, 1, . . . , find Sn+1,m such that

φ
∂Sn+1,m

∂t
= G(pn,un, Sn+1,m−1). (7.33)

The time step �tn+1,m
S in (7.33) is chosen as follows: Set(

∂Sn+1,m

∂t

)
max

=
(
G(pn,un, Sn+1,m−1)

φ

)
max

, (7.34)

and then calculate

�t
n+1,m
S = DSmax(

∂Sn+1,m

∂t

)
max

, m = 1, . . . ,Mn, n = 0, 1, . . . . (7.35)

Numerical tests

We perform numerical experiments for the improved IMPES method for the same example
as in Section 7.3.2. The selection of pressure time steps is automatic, and the total variation
of saturation for one pressure time step is fixed at 0.05. We test three values of DSmax for
the choice of �tn+1,m

S , m = 1, . . . ,Mn, n = 0, 1, . . . . The numerical results are reported
in Table 7.4, and the WOR curves for these three values are shown in Figure 7.7, where the
final time is such that the calculated water cut is up to 98% at the production well.

From Figure 7.7, we see that the WOR curves slightly oscillate when DSmax = 0.01
and 0.005, and this curve is very smooth when DSmax = 0.001. From Table 7.4, the total
CPU time as DSmax = 0.001 is 2.73 sec. Also, the ratio of the pressure CPU time to the
saturation CPU time is around 1.8:1. This is in sharp contrast with the classical IMPES
method, where the total CPU time doubles as DSmax is halved and the pressure CPU time
is 100 times as great as the saturation CPU time. Furthermore, the total CPU time for the
improved IMPES is far less than that for the classical one. For example, atDSmax = 0.001,
the former is 2.73 sec. and the latter is 90.37 sec.
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Figure 7.7. × = 0.05, • = 0.01, ◦ = 0.001.

Figure 7.8. ◦ = IMPES, • = SS.

A comparison with SS

To see further the accuracy and efficiency of the improved IMPES method, we compare it
with the SS method for the same numerical example. Here the pressure time step is fixed at
100 days, DSmax = 0.001, and the final time is 1,500 days. The daily oil production rate
(verses time), the cumulative oil production, and the WOR curves using these two methods
are presented in Figures 7.8 and 7.9 (left). These curves match quite well for these two
methods. The total CPU time for the improved IMPES is 5.03 sec., while it is 31.58 sec.
for the SS. Thus, for this example, the improved IMPES is 6.3 times as fast as the SS.

Application to a coning problem

The classical IMPES method has not successfully been applied to the solution of a two-phase
coning problem. To check its robustness, we apply the improved IMPES method to solve a
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Figure 7.9. ◦ = IMPES, • = SS.

160ft

Producer

Injector

Figure 7.10. A coning problem.

problem of this type. Now, the reservoir is a cylindrical domain with its axis parallel to the
x3-axis and its radius equal to 1,343.43 ft. There are two vertical wells located at the center
of the reservoir: An oil production well sits vertically in the first layer and a water injection
well in the sixth layer (cf. Figure 7.10). Their radius is 0.25 ft. The radii of the innermost
to outermost cylinders are, respectively, 4, 8, 16, 32, 64, 128, 256, 512, and 1,343.43 ft. All
other data are the same as in the example in Section 7.3.2. The pressure and saturation time
steps are the same as in Section 7.3.3. For the present problem, the daily oil production
rate, the cumulative oil production, and the WOR curves using the improved IMPES and SS
methods are presented in Figures 7.9 (right) and 7.11. Again, the curves match quite well
for these two methods. The total CPU time for the former is 2.54 sec., and for the latter is
17.02 sec. Hence this improved IMPES is 6.7 times as fast as the SS for the present coning
problem. Also, we point out that the pressure CPU time is 0.39 sec., while the saturation
CPU time is 2.15 sec. From this experiment, we see that the improved IMPES method is
capable of solving two-phase coning problems.
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Figure 7.11. ◦ = IMPES, • = SS.

7.4 Alternative Differential Formulations
Several alternative formulations for the differential equations (7.1)–(7.4) were discussed
in Section 2.3.2. We now consider further these alternative formulations and numerically
compare their use.

7.4.1 Phase formulation

The phase formulation was used in the previous section. For comparison, we restate this
formulation. The oil pressure is employed as the pressure variable:

p = po. (7.36)

The pressure equation consists of the two equations

∇ · u = q̃ (7.37)

and
u = −k

(
λ(S)∇p − λw(S)∇pc − (λwρw + λoρo

)
℘∇z) . (7.38)

The saturation equation is

φ
∂S

∂t
+ ∇ ·

{
kfw(S)λo(S)

(
dpc

dS
∇S + (ρo − ρw)℘∇z

)
+fw(S)u

}
= q̃w(p, S).

(7.39)

7.4.2 Weighted formulation

We introduce a pressure that is smoother than the phase pressure:

p = Swpw + Sopo. (7.40)
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Even if a phase disappears (i.e., either Sw or So is zero), there is still a nonzero smooth
variablep. Applying the same algebraic manipulations as in deriving the phase formulation,
we obtain (cf. Exercise 7.3)

u = −k
{
λ(S)∇p + (Sλ(S)− λw(S)

)∇pc + λ(S)pc∇S
− (

λwρw + λoρo
)
℘∇z}. (7.41)

Equations (7.37) and (7.39) remain the same.

7.4.3 Global formulation

Note that pc appears in both (7.38) and (7.41). To remove it, we define a global pressure
(Antontsev, 1972; Chavent and Jaffré, 1986):

p = po −
∫ S
(
fw
dpc

dS

)
(ξ) dξ. (7.42)

Using this pressure, the total velocity becomes (cf. Exercise 7.4)

u = −k
(
λ(S)∇p − (λwρw + λoρo

)
℘∇z) . (7.43)

It follows from (7.4) and (7.42) that

λ∇p = λw∇pw + λo∇po,

which implies that the global pressure is the pressure that would produce flow of a fluid
(with mobility λ) equal to the sum of the flows of fluids w and o. Again, (7.37) and (7.39)
remain the same.

The coupling between the pressure and saturation equations in the global formulation
is less than that in the phase and weighted formulations, and the nonlinearity is weakened
as well. This formulation is most suitable for a mathematical analysis for two-phase flow
(Antontsev, 1972; Chavent and Jaffré, 1986; Chen, 2001; Chen, 2002A). When the capillary
effect is neglected, the three formulations are the same. In this case, the saturation equation
becomes the well-known Buckley–Leverett equation (cf. Section 2.3.2).

7.4.4 Numerical comparisons

We perform numerical experiments to compare the three formulations. Since the gravity
terms in all the formulations have the same form, we neglect the gravity effect. The reservoir
has dimensions 1,000 × 1,000 × 100 ft3, and the relative permeabilities are

krw = krwmax

(
Sw − Swc

1 − Sor − Swc

)2

, kro =
(

So − Sor

1 − Sor − Swc

)2

,
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Figure 7.12. Water (upper) and oil production (lower) (left); characterization
curve of displacement (right). • = phase formulation, # = weighted formulation, and ◦ =
global formulation.

where krwmax = 0.65, Swc = 0.22, and Sor = 0.2. The capillary pressure curve is

pc = pcmin − B̄ ln
S − Swc

1 − Swc
,

where the constant B̄ is the value such that pc = pcmax as S = Swc, pcmin = 0 psi, and
pcmax = 70 psi. Other physical data are chosen as follows:

φ = 0.2, k = 0.1 darcy, µw = 0.096 cp, µo = 1.14 cp,

where k = kI. This example is two-dimensional flow in a five spot pattern reservoir. An
injection well is located at a corner of the reservoir, and a production well is located at its
opposite corner. Water is injected, and oil and/or water is produced. The radius of the two
wells is 0.2291667 ft, and the initial saturation equals Swc. Finally, the bottom hole pressure
is 3,700 psi at injection and 3,500 psi at production.

In computations, we use the lowest-order Raviart–Thomas mixed finite elements on
triangles on a 10×10 grid (triangles are obtained by dividing each rectangle into two triangles
in a diagonal direction; cf. Section 4.5.4 or 7.5). The time discretization is based on the
backward Euler scheme. The improved IMPES discussed in Section 7.3.3 is employed. A
no-flow boundary condition is employed. The oil and water production verses time (in days),
the characterization curves of displacement, and the water cut are shown in Figures 7.12
and 7.13. A characterization curve is defined as the logarithm of the cumulative water
production verses the cumulative oil production. From these figures we see that the results
of the global and phase formulations are very close. These results are rather different from
those using the weighted formulation. We also checked the CPU times (in seconds) for the
three formulations at the final time, T = 8,000 days, and the results obtained on a DecAlpha
workstation are displayed in seconds in Table 7.5. There is not much difference between
the CPU times for this example.
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Figure 7.13. Water cut. • = phase formulation, # = weighted formulation, and
◦ = global formulation.

Table 7.5. CPU times for three formulations.

Global Phase Weighted
CPU times 33.4748 33.5266 33.6622

7.5 Numerical Methods for Two-Phase Flow
The various discretization methods developed in Chapter 4 are now applied to the solution of
the differential equations (7.1)–(7.4) governing two-phase flow in a porous medium� ⊂ R

d

(d = 2 or 3). The standard finite element methods were described for single phase flow in the
preceding chapter and can be extended to the present case. Here we discuss the application
of the mixed, control volume, and characteristic finite element methods to (7.1)–(7.4). The
first two methods are good choices for the pressure equation. Because physical transport
dominates diffusive effects in two-phase flow and because the capillary diffusion coefficient
in the saturation equation can be zero, it is appropriate to use the characteristic finite element
methods to solve this equation.

7.5.1 Mixed finite element methods

As an example, we present mixed finite element methods for the global formulation. Recall
that the pressure equation consists of (7.37) and (7.43) in this formulation. The model is
completed by specifying boundary and initial conditions. For simplicity, a no-flow boundary
condition is used for the pressure equation

u · ν = 0, x ∈ �, (7.44)

where ν is the outward unit normal to the boundary � of �. It follows from (7.37) and
(7.44) that compatibility to incompressibility of the fluids requires∫

�

q̃ dx = 0, t ≥ 0.
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Set (cf. Section 4.5.2)

V = {v ∈ H(div, �) : v · ν = 0 on �}, W = L2(�).

For simplicity, let � be a convex polygonal domain. For 0 < h < 1, let Kh be a regular
partition of � into elements, say, tetrahedra, rectangular parallelepipeds, or prisms, with
maximum mesh size h. Associated with the partition Kh, let Vh ×Wh ⊂ V ×W represent
the RT (or RTN), BDM, BDFM, BDDM, or CD mixed finite element spaces (cf. Section
4.5.4). Now, the mixed method for (7.37) and (7.43) is: For 0 ≤ n ≤ N , find unh ∈ Vh and
pnh ∈ Wh such that

(∇ · unh, w) = (q̃(pnh, Snh), w) , w ∈ Wh,((
kλ(Snh)

)−1
unh, v

)
− (pnh,∇ · v) = (γ (Snh), v

)
, v ∈ Vh,

(7.45)

where Snh is an approximation to Sn (cf. Section 7.5.3) and

γ (S) = (fw(S)ρw + fo(S)ρo
)
℘∇z.

Note that system (7.45) is nonlinear, and the various solution approaches (e.g., linearization,
implicit time approximation, and explicit time approximation) developed in the preceding
chapter for the standard finite element methods can be applied to it in the same fashion.

7.5.2 CVFE methods

Assume that a partition Kh of � consists of a set of (open) control volumes Vi :

�̄ =
⋃
i

V̄i , Vi ∩ Vj = ∅, i �= j.

(The reader should refer to Section 4.3 for the construction of these control volumes.) On
each Vi , integration of (7.37) over Vi and application of the divergence theorem gives∫

∂Vi

u · ν d� =
∫
Vi

q̃ dx. (7.46)

Substituting (7.43) into this equation yields

−
∫
∂Vi

λ(S)k∇p · ν d� =
∫
Vi

q̃ dx −
∫
∂Vi

(
λw(S)ρw + λo(S)ρo

)
℘k∇z · ν d�. (7.47)

Let Mh ⊂ H 1(�) be a finite element (or function approximation) space associated
with the CVFE partition Kh (cf. Section 4.3). Then the CVFE method for the pressure
equation reads: For 0 ≤ n ≤ N , find pnh ∈ Mh such that

−
∫
∂Vi

λ(Snh)k∇pnh · ν d� =
∫
Vi

q̃
(
pnh, S

n
h

)
dx

−
∫
∂Vi

(
λw(S

n
h)ρw + λo(S

n
h)ρo

)
℘k∇z · ν d�.

(7.48)

The upstream weighting techniques introduced in Section 4.3.4 can be applied to (7.48).
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7.5.3 Characteristic finite element methods

As an example, we present the MMOC described in Section 4.6 for the saturation. Introduce

q̃1(p, S) = q̃w(p, S)− q̃(p, S)fw(S)+ ∇ · (kfw(S)λo(S)(ρo − ρw)℘∇z) .

Using (7.37) and (7.39), the saturation equation becomes

φ
∂S

∂t
+ dfw

dS
u · ∇S + ∇ ·

{
kfw(S)λo(S)

dpc

dS
∇S
}

= q1(p, S). (7.49)

Let

b(x, t) = dfw

dS
u, ψ(x, t) = (φ2(x)+ |b(x, t)|2)1/2 ,

and let the characteristic direction associated with the operator φ ∂
∂t

+ b · ∇ be denoted by
τ (x, t), so that

∂

∂τ
= φ(x)
ψ(x, t)

∂

∂t
+ b(x, t)
ψ(x, t)

· ∇.

Then (7.49) reduces to

ψ
∂S

∂τ
+ ∇ ·

{
kfw(S)λo(S)

dpc

dS
∇S
}

= q1(p, S). (7.50)

Note that the characteristic direction τ depends on the velocity u. Because the sat-
uration step tn−1,m relates to pressure steps by tn−1 < tn−1,m ≤ tn, we need a velocity
approximation for (7.50) based on un−1

h and earlier values. For this, we utilize a linear ex-
trapolation approach: If n ≥ 2, take the linear extrapolation of un−2

h and un−1
h determined

by

Eun−1,m
h =

(
1 + tn−1,m − tn−1

tn−1 − tn−2

)
un−1
h − tn−1,m − tn−1

tn−1 − tn−2
un−2
h .

For n = 1, define

Eu0,m
h = u0

h.

Eun−1,m
h is first-order accurate in time in the first pressure step and second-order accurate

in the later steps.
The MMOC is defined with periodic boundary conditions (cf. Section 4.6). For this

reason, we assume that � is a rectangular domain, and all functions in (7.50) are spatially
�-periodic. LetMh ⊂ H 1(�) be any finite element space introduced in Section 4.2.1. Then
an MMOC procedure for (7.50) is: For each 0 ≤ n ≤ N and 1 ≤ m ≤ Mn, find Sn,mh ∈ Mh

such that (
φ
S
n,m
h − Š

n,m−1
h

tn,m − tn,m−1
, w

)
+
(

a
(
S
n,m−1
h

)
∇sn,mh ,∇w

)
=
(
q̃1
(
pnh, S

n,m−1
h

)
, w
)
, w ∈ Mh,

(7.51)
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Figure 7.14. Water cut (left); characterization curve of displacement (right).
• = finite difference, # = CVFE, and ◦ = mixed method.

where

a(S) = −kfw(S)λo(S)
dpc

dS
,

Š
n,m−1
h = S

n,m−1
h

(
x − dfw

dS

(
S
n,m−1
h

) Eun,mh
φ(x)

�tn,m, tn,m−1

)
with�tn,m = tn,m−tn,m−1. The initial approximate solution S0

h can be defined as any appro-
priate projection of S0 inMh (e.g., theL2-projection of S0 inMh). For the improved IMPES
approach, the term (a(Sn,m−1

h )∇sn,mh ,∇w) in (7.51) is replaced by (a(Sn,m−1
h )∇sn,m−1

h ,∇w).

7.5.4 Comparison between numerical methods

We compare numerically the finite difference, CVFE, and mixed finite element methods for
solving the two-phase flow problem described in Section 7.1. To minimize grid orientation
effects (cf. Sections 4.1.9 and 4.3.6), the nine-point finite difference method is used, where
the partitionKh of� is of rectangular type. The CVFE methods are based on linear triangular
elements (cf. Section 4.3). Finally, the mixed finite element methods use the lowest-order
Raviart–Thomas element on triangles (cf. Section 4.5.4). The grid size is 10 × 10 (triangles
are obtained by dividing each rectangle into two triangles in a diagonal direction). The
two-dimensional flow problem in Section 7.4 is employed, and all the physical data are the
same. The global formulation and the improved IMPES are utilized. The time discretization
is based on the backward Euler scheme.

The numerical results are displayed in Figure 7.14 for the three discretization methods:
finite difference, CVFE, and mixed finite element methods. For each of these methods, the
pressure and saturation equations are discretized by the same method. The water cut and
characterization curve of displacement verses time (in days) are shown in the figure. The
numerical results obtained using these three methods match quite well for the present simple
two-phase flow problem. Numerical comparisons among the discretization methods will be
further performed for more complicated problems in subsequent chapters, such as for the
black oil model in the next chapter.
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7.6 Miscible Displacement
Miscible displacement was considered in Sections 2.4 and 2.5. Its simulation can be per-
formed using the numerical techniques developed in this chapter for two-phase immiscible
flow. The basis for the miscible-immiscible analogy has been long recognized (Lantz, 1970;
Chen and Ewing, 1999). To see this analogy, as an example we consider the governing equa-
tions for the transport of a component in an incompressible fluid (cf. Section 2.4):

∇ · u = q,

u = − 1

µ
k (∇p − ρ℘∇z), (7.52)

and

∂(φc)

∂t
+ ∇ · (cu − D(u)∇c) = q̃(c), (7.53)

where c is the concentration of the component. In form, the pressure equation (7.52) and
the concentration equation (7.53) resemble the pressure and saturation equations for two-
phase immiscible, incompressible flow, respectively. The concentration equation depends
on pressure explicitly through velocity, so mixed finite element methods are a good choice
for the discretization of (7.52) (cf. Section 7.5.1). Furthermore, because physical transport
dominates diffusive effects in miscible displacement as in two-phase flow, characteristic
finite element methods are appropriate for numerical solution of (7.53) (cf. Section 7.5.3
and Exercise 7.7). For realistic numerical examples using miscible displacement, the reader
should see Todd and Longstaff (1972) and the fifth CSP organized by SPE (Killough and
Cossack, 1987). Numerical simulation of miscible displacement processes has been used
to show interface instabilities (fingering) due to viscosity and density differences (Homsy,
1987) and heterogeneity of porous media (Ewing et al., 1983).

7.7 Bibliographical Remarks
The content of Sections 7.3, 7.4, and 7.5 closely follows, respectively, Chen et al. (2004A),
Chen and Huan (2003), and Chen et al. (2002A). For more details about the data used in
the seventh SPE CSP, see Nghiem et al. (1991). For an error analysis of the approximation
procedure developed in Section 7.5, the reader can refer to Chen (2005). Finally, for an
error analysis of a finite element approximation procedure for the miscible displacement
problem addressed in Section 7.6, see Douglas et al. (1983).

Exercises
7.1. Derive equation (7.21).

7.2. Apply equations (7.4), (7.23), and (7.25) to (7.1) and (7.2) with α = w to derive the
saturation equation (7.27).
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7.3. Show that equation (7.41) defines the total velocity u in terms of the weighted pressure
p (cf. (7.40)).

7.4. Prove that equation (7.43) defines the total velocity u in terms of the global pressure
p (cf. (7.42)).

7.5. Use the boundary condition (7.44) and introduce appropriate function spaces to write
equations (7.37) and (7.38) in a mixed variational formulation.

7.6. Define a mixed finite element method for the phase formulation of equations (7.37)
and (7.38) similar to that for the global formulation developed in Section 7.5.1.

7.7. Develop a mixed finite element approximation procedure for equation (7.52) with
the no-flow boundary condition (7.44) as in Section 7.5.1, and a characteristic finite
element approximation procedure for equation (7.53) with the periodic boundary
condition as in Section 7.5.3.
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Chapter 8

The Black Oil Model

Recall that in the secondary recovery, if the reservoir pressure drops below the bubble point
pressure, then oil (more precisely, the hydrocarbon phase) is split into a liquid phase and a
gaseous phase at thermodynamical equilibrium. In this case, the flow is of the black oil type;
the water phase does not exchange mass with the other phases, and the liquid and gaseous
phases exchange mass between them. The gas component in this model mainly consists of
methane and ethane.

The basic differential equations for the black oil model are reviewed in Section 8.1.
The rock and fluid properties are also briefly described there. The Newton–Raphson iteration
and three solution techniques (simultaneous solution, sequential, and IMPES) for this model
are studied in Section 8.2. Comparisons between these solution techniques are discussed
in Section 8.3. An application to a three-phase coning problem is described in Section 8.4.
Finally, bibliographical information is given in Section 8.5.

8.1 Basic Differential Equations
8.1.1 The basic equations

The basic differential equations for the black oil model in a porous medium�were developed
in Section 2.6. For completeness, we review these equations.

We use lower- and uppercase letter subscripts to indicate the three phases—water, oil
(i.e., the liquid phase) and gas (i.e., the gaseous phase)—and the three components—water,
oil, and gas, respectively. The subscript s represents standard conditions.

Let φ and k denote the porosity and permeability of the porous medium � ⊂ R
3; Sα ,

µα , pα , uα , Bα , and krα be the saturation, viscosity, pressure, volumetric velocity, formation
volume factor, and relative permeability of the α-phase, α = w, o, g, respectively; Rso be
the gas solubility; and ρβs (at standard conditions) and qβ be the density and volumetric rate
of the β component, β = W,O,G. The mass conservation equations on standard volumes
are

∂

∂t

(
φρWs

Bw
Sw

)
= −∇ ·

(
ρWs

Bw
uw

)
+ qW (8.1)

283
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for the water component,

∂

∂t

(
φρOs

Bo
So

)
= −∇ ·

(
ρOs

Bo
uo

)
+ qO (8.2)

for the oil component, and

∂

∂t

[
φ

(
ρGs

Bg
Sg + RsoρGs

Bo
So

)]
= −∇ ·

(
ρGs

Bg
ug + RsoρGs

Bo
uo

)
+ qG (8.3)

for the gas component.
Darcy’s law for each phase is written in the usual form

uα = −krα
µα

k (∇pα − ρα℘∇z) , α = w, o, g, (8.4)

where ρα is the mass density of the α-phase, ℘ is the magnitude of the gravitational accel-
eration, and z is the depth. The saturation constraint is

Sw + So + Sg = 1. (8.5)

Finally, the phase pressures are related by capillary pressures

pcow = po − pw, pcgo = pg − po. (8.6)

The flow rates are defined by

qW = qWsρWs

Bw
, qO = qOsρOs

Bo
, qG = qGsρGs

Bg
+ qOsRsoρGs

Bo
, (8.7)

where qWs , qOs , and qGs are the rates at standard conditions. We introduce the potentials


α = pα − ρα℘z, α = w, o, g. (8.8)

Moreover, we define the transmissibility

Tα = krα

µαBα
k, α = w, o, g. (8.9)

Substituting (8.7)–(8.9) into (8.1)–(8.3), neglecting the variation of ρα in space, and dividing
the resulting equations by ρWs , ρOs , and ρGs , respectively, we obtain (cf. Exercise 8.1)

∂

∂t

(
φSw

Bw

)
= ∇ · (Tw∇
w)+ qWs

Bw
,

∂

∂t

(
φSo

Bo

)
= ∇ · (To∇
o)+ qOs

Bo
,

∂

∂t

[
φ

(
Sg

Bg
+ RsoSo

Bo

)]
= ∇ · (Tg∇
g + RsoTo∇
o

)+ qGs

Bg
+ qOsRso

Bo
.

(8.10)
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The volumetric flow rates at the wells (at standard conditions) are given by (Peaceman,
1991)

qWs =
Nw∑
j=1

Mwj∑
m=1

2π�L(j,m)

ln(r(j,m)e /r
(j)
w )

k̄krw

µw

[
p
(j)

bh − pw − ρw℘(z
(j)

bh − z)
]
δ(x − x(j,m)),

qOs =
Nw∑
j=1

Mwj∑
m=1

2π�L(j,m)

ln(r(j,m)e /r
(j)
w )

k̄kro

µo

[
p
(j)

bh − po − ρo℘ (z
(j)

bh − z)
]
δ(x − x(j,m)),

qGs =
Nw∑
j=1

Mwj∑
m=1

2π�L(j,m)

ln(r(j,m)e /r
(j)
w )

k̄krg

µg

[
p
(j)

bh − pg − ρg℘ (z
(j)

bh − z)
]
δ(x − x(j,m)),

where δ(x) is the Dirac delta function, Nw is the total number of wells, Mw,j is the total
number of perforated zones of the j th well, �L(j,m) and x(j,m) are the segment length and
central location of the mth perforated zone of the j th well, the quantity k̄ is an average of
k at the wells (cf. Section 7.3.2 and Chapter 13), r(j)w denotes the wellbore radius of the j th
well, r(j,m)e is the drainage radius of the j th well at the gridblock in which x(j,m) is located,
and p(j)bh is the bottom hole pressure of the j th well at the well datum z

(j)

bh . The treatment of
wells will be further discussed in Chapter 13. Introducing the well index

WI(j,m) = 2πk̄�L(j,m)

ln(r(j,m)e /r
(j)
w )

,

the volumetric flow rates at the wells can be written as

qWs =
Nw∑
j=1

Mwj∑
m=1

WI(j,m)
krw

µw

[
p
(j)

bh − pw − ρw℘(z
(j)

bh − z)
]
δ(x − x(j,m)),

qOs =
Nw∑
j=1

Mwj∑
m=1

WI(j,m)
kro

µo

[
p
(j)

bh − po − ρo℘ (z
(j)

bh − z)
]
δ(x − x(j,m)),

qGs =
Nw∑
j=1

Mwj∑
m=1

WI(j,m)
krg

µg

[
p
(j)

bh − pg − ρg℘ (z
(j)

bh − z)
]
δ(x − x(j,m)).

(8.11)

Typical expressions of pcow, pcgo, and krα as functions of Sw and Sg were introduced
in Chapter 3. Equations (8.5), (8.6), and (8.10) provide six equations for the six unknowns

α and Sα , α = w, o, g. If the bottom hole pressure p(j)bh is not given, the source/sink term
defining this pressure introduces one more unknown (i.e., p(j)bh ). With appropriate boundary
and initial conditions, this is a closed differential system for these unknowns. Alternative
differential equations can be developed as for two-phase flow in the preceding chapter;
they include the phase, weighted, and global pressure formulations (Chen, 2000; also cf.
Exercises 8.2–8.7). As an example in this chapter we use the phase formulation.
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8.1.2 Rock properties

The rock properties were considered in Chapter 3 for three-phase flow; for completeness,
we state them briefly. The oil pressure is one of the primary variables to be used:

p = po. (8.12)

While the capillary pressures are defined in (8.6), for the convenience of programming we
usually employ the following definitions:

pcw = pw − p, pcg = pg − p; (8.13)

i.e., pcw = −pcow and pcg = pcgo. Moreover, for notational convenience, let pco = 0. The
capillary pressures pcw and pcg are assumed to be functions of the saturations only (Leverett
and Lewis, 1941):

pcw = pcw(Sw), pcg = pcg(Sg). (8.14)

The relative permeabilities for water and gas are assumed to be of the form

krw = krw(Sw), krow = krow(Sw),

krg = krg(Sg), krog = krog(Sg).
(8.15)

As an example, Stone’s model II for the oil relative permeability is used (cf. Section 3.1.2)

kro(Sw, Sg) = krc

{[
krow(Sw)

krc
+ krw(Sw)

] [
krog(Sg)

krc
+ krg(Sg)

]
− krw(Sw)− krg(Sg)

}
,

(8.16)

where krc = krow(Swc) and Swc is the critical saturation (cf. Chapter 3). Finally, the porosity
φ is assumed to have the form

φ = φo
(
1 + cR(p − po)

)
, (8.17)

where φo is the porosity at a reference pressure po and cR is the rock compressibility.

8.1.3 Fluid properties

The fluid properties were stated in Chapter 3; we briefly review the definitions of densities
and viscosities. The water density ρWs at standard conditions is determined using water
salinities (cf. Section 3.2.1), while the water phase density ρw is determined by

ρw = ρWs

Bwi

(
1 + cw(p − po)

)
, (8.18)

where Bwi is the water formation volume factor at the initial formation pressure po, and cw
is the water compressibility. The water viscosity µw is taken to be constant.

The black oil model involves three phases and three components: water, oil, and gas.
The relationship between the phases and components is that the water component is all the
water phase with density ρw, the oil component exists solely in the oil phase with density



“chenb
2006/2
page 28

�

�

�

�

�

�

�

�

8.1. Basic Differential Equations 287

ρOo, and the gas component is divided into two parts: one part in the gas phase that is called
free gas with density ρg , and the other part in the oil phase that is termed the solution gas
with density ρGo. Thus the oil phase density ρo is given by

ρo = ρOo + ρGo. (8.19)

The oil component density ρOo is evaluated from

ρOo = ρOs

Bo
, (8.20)

where the oil formation volume factor Bo is

Bo = Bob(pb)
(
1 − co(p − pb)

)
, (8.21)

with Bob being the formation volume factor at the bubble point pressure pb and co the oil
compressibility. The solution gas density ρGo is computed by

ρGo = RsoρGs

Bo
. (8.22)

The free gas density ρg is defined by

ρg = ρGs

Bg
, (8.23)

where

ρGs = YGρair , Bg = ZT

p

ps

Ts
, (8.24)

with YG being the raw gas density (which is unity for air), ρair the air density, Z the gas
deviation factor, T the temperature, and ps and Ts the formation pressure and temperature
at standard conditions.

The oil viscosity µo is given by

µo = µob(pb)
(
1 + cµ(p − pb)

)
, (8.25)

where µob is the oil viscosity at pb and cµ is the oil viscosity compressibility. The gas
viscosity µg is a function of p:

µg = µg(p). (8.26)

8.1.4 Phase states

In the secondary recovery, if the reservoir pressure is above the bubble point pressure of the
oil phase, the flow is two-phase; if the pressure drops below the bubble point pressure, then
the flow is of black oil type. Because of the frequent change in injection and production
in a reservoir, the bubble point pressure varies. If all three phases coexist, the reservoir is
referred to as being in the saturated state. When all gas dissolves into the oil phase, there
is no gas phase present (no free gas); i.e., Sg = 0. In this case, the reservoir is said to be
in the undersaturated state. The critical pressure at which the saturated state becomes the
undersaturated state or vice versa is the bubble point pressure. In the saturated state, Sg �= 0
and pb = p; the densities and viscosities depend only on pressure p:
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ρOo(p) = ρOs

Bob(p)
, ρGo(p) = Rso(p)ρGs

Bob(p)
, ρg(p) = ρGs

Bg(p)
,

µo = µo(p), µg = µg(p).

(8.27)

In the undersaturated state, Sg = 0 and pb < p. The densities and viscosity in the oil
phase depend on both p and pb:

ρOo(p, pb) = ρOs

Bob(pb)

(
1 + co(p − pb)

)
,

ρGo(p, pb) = Rso(pb)ρGs

Bob(pb)

(
1 + co(p − pb)

)
, ρg(p) = ρGs

Bg(p)
,

µo(p, pb) = µob(pb)
(
1 + cµ(p − pb)

)
, µg = µg(p).

(8.28)

For numerical solutions of the black oil model, the choice of the primary unknowns depends
on the states. In the saturated state, p = po, Sw, and So are the primary unknowns; in the
undersaturated state, p = po, pb, and Sw are the primary unknowns. Consequently, the
initial conditions are either

p(x, 0) = p0(x), Sw(x, 0) = S0
w(x), So(x, 0) = S0

o (x), x ∈ �, (8.29)

or
p(x, 0) = p0(x), Sw(x, 0) = S0

w(x), pb(x, 0) = p0
b(x), x ∈ �, (8.30)

depending on the initial state of a reservoir.

8.2 Solution Techniques
The choice of a solution technique is crucial for a coupled system of differential equations. In
this section, we discuss several solution techniques that are currently used in the simulation of
multiphase flow. These techniques include simultaneous solution (SS), sequential, implicit
pressure-explicit saturation (IMPES) or iterative IMPES, adaptive implicit, and parallel
techniques. IMPES was studied for two-phase flow in the preceding chapter and is further
considered for the black oil model.

8.2.1 The Newton–Raphson method

Consider a general system of nonlinear differential equations:

£m
{
Fm
[
p(x)

] } = fm(x), m = 1, 2, . . . ,M, x ∈ �, (8.31)

where £m denotes a linear differential operator, Fm(·) is a nonlinear function, p =
(p1, p2, . . . , pM)

T is the vector of dependent variables, f = (f1, f2, . . . , fM)
T is a given

vector, and M is the total number of equations. The Newton–Raphson iteration for solving
(8.31) establishes an iterative equation system. Taylor’s series expansion for Fm(p + δp) is

Fm(p + δp) = Fm(p)+ ∇Fm(p) · δp + O(|δp|2), (8.32)
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where |δp| is the Euclidian norm of δp. If the higher-order term O(|δp|2) (relative to |δp|)
is truncated, Fm(p + δp) can be approximated as

Fm(p + δp) ≈ Fm(p)+ ∇Fm(p) · δp. (8.33)

If we substitute (8.33) into (8.31), we obtain the iterative equations

£m
[
Fm(pl)+ ∇Fm(pl) · δpl] = fm(x), m = 1, 2, . . . ,M, x ∈ �, (8.34)

where pl is the lth iterative solution of p and ∇Fm(pl) is ∇Fm(p) at p = pl , with an initial
solution p0. In the iterative equation system (8.34), the correction vector δpl is the unknown.
This system can be rewritten as

£m
[∇Fm(pl) · δpl] = gm(x), m = 1, 2, . . . ,M, x ∈ �, (8.35)

where gm(x) = fm(x)− £m
[
Fm(pl)

]
, and Fm(pl) and ∇Fm(pl) are treated as fixed. Now,

(8.35) is a linear system for δpl , and the various numerical methods developed in Chapter
4 can be applied.

A new solution vector pl+1 is obtained by adding the correction vector δpl to the
previous iterative solution vector pl ; i.e.,

pl+1 = pl + δpl .

This iteration proceeds until the Euclidian norm of δpl is smaller than a prescribed value.

8.2.2 The SS technique

The most natural solution technique for system (8.10) is to solve the three equations si-
multaneously, which suggests the SS technique. This technique was initially introduced by
Douglas et al. (1959) and is still widely used in reservoir simulation.

Let n > 0 (an integer) indicate a time step. For any function v of time, we use δ̄v to
denote the time increment at the nth step:

δ̄v = vn+1 − vn.

An implicit time approximation for system (8.10) can be defined as

1

�t
δ̄

(
φSw

Bw

)
= ∇ · (Tn+1

w ∇
n+1
w

)+ qn+1
Ws

Bn+1
w

,

1

�t
δ̄

(
φSo

Bo

)
= ∇ · (Tn+1

o ∇
n+1
o

)+ qn+1
Os

Bn+1
o

,

1

�t
δ̄

[
φ

(
Sg

Bg
+ RsoSo

Bo

)]
= ∇ · (Tn+1

g ∇
n+1
g + Rn+1

so Tn+1
o ∇
n+1

o

)+ qn+1
Gs

Bn+1
g

+ qn+1
Os R

n+1
so

Bn+1
o

,

(8.36)

where �t = tn+1 − tn. System (8.36) is nonlinear in the unknowns 
n+1
α and Sn+1

α ,
α = w, o, g, and can be linearized via the Newton–Raphson iteration. For this, we write


n+1,l+1
α = 
n+1,l

α + δ
α, Sn+1,l+1
α = Sn+1,l

α + δSα, α = w, o, g,
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where l denotes the iteration number of Newton–Raphson’s iterations and δ
α and δSα
represent the increments of the potential and saturation, respectively, in this iteration step
(we omit the superscript l in the increments for notational convenience). Note that for any
function v of time,

vn+1 ≈ vn+1,l+1 = vn+1,l + δv,

so that
δ̄v ≈ vn+1,l − vn + δv.

Using this approximation in system (8.36) yields

1

�t

[(
φSw

Bw

)n+1,l

−
(
φSw

Bw

)n
+ δ

(
φSw

Bw

)]

= ∇ · (Tn+1,l+1
w ∇
n+1,l+1

w

)+ q
n+1,l+1
Ws

B
n+1,l+1
w

,

1

�t

[(
φSo

Bo

)n+1,l

−
(
φSo

Bo

)n
+ δ

(
φSo

Bo

)]

= ∇ · (Tn+1,l+1
o ∇
n+1,l+1

o

)+ q
n+1,l+1
Os

B
n+1,l+1
o

,

1

�t

{[
φ

(
Sg

Bg
+ RsoSo

Bo

)]n+1,l

−
[
φ

(
Sg

Bg
+ RsoSo

Bo

)]n
+ δ
[
φ

(
Sg

Bg
+ RsoSo

Bo

)]}
= ∇ · (Tn+1,l+1

g ∇
n+1,l+1
g + Rn+1,l+1

so Tn+1,l+1
o ∇
n+1,l+1

o

)
+ q

n+1,l+1
Gs

B
n+1,l+1
g

+ q
n+1,l+1
Os Rn+1,l+1

so

B
n+1,l+1
o

.

(8.37)

In this system the increments δ
α and δSα are unknowns, α = w, o, g. When no ambiguity
occurs, we replace vn+1,l+1 and vn+1,l by vl+1 and vl , respectively (i.e., the superscript n+1
is omitted).

In the saturated state, the primary unknowns are

δp, δSw, δSo,

and in the undersaturated state, they are

δp, δSw, δpb.

In the former case, δSg = −δSw − δSo, and in the latter case, δSg = 0 and δSo = −δSw.
Accordingly, the left-hand side of system (8.37) can be expanded as follows. For the water
component,

δ

(
φSw

Bw

)
= cwpδp + cwSwδSw, (8.38)
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where

cwp = φocR

(
Sw

Bw

)l
+
(
φSw

dB−1
w

dp

)l
, cwSw =

(
φ

Bw

)l
.

For the oil component in the saturated state,

δ

(
φSo

Bo

)
= copδp + coSoδSo, (8.39)

where

cop = φocR

(
So

Bo

)l
+
(
φSo

dB−1
o

dp

)l
, coSo =

(
φ

Bo

)l
,

and in the undersaturated state,

δ

(
φSo

Bo

)
= copδp + coSwδSw + copbδpb, (8.40)

where

cop = φocR

(
So

Bo

)l
+
(
φSo

∂B−1
o

∂p

)l
, coSw = −

(
φ

Bo

)l
, copb =

(
φSo

∂B−1
o

∂pb

)l
.

For the gas component in the saturated state,

δ

[
φ

(
Sg

Bg
+ RsoSo

Bo

)]
= cgpδp + cgSwδSw + cgSoδSo, (8.41)

where

cgp = φocR

(
Sg

Bg
+ RsoSo

Bo

)l
+
[
φ

(
Sg
dB−1

g

dp
+ So

d

dp

(
Rso

Bo

))]l
,

cgSw = −
(
φ

Bg

)l
, cgSo = −

(
φ

Bg

)l
+
(
φRso

Bo

)l
,

and in the undersaturated state,

δ

[
φ

(
Sg

Bg
+ RsoSo

Bo

)]
= cgpδp + cgSwδSw + cgpbδpb, (8.42)

where

cgp = φocR

(
RsoSo

Bo

)l
+
(
φSo

∂

∂p

(
Rso

Bo

))l
,

cgSw = −
(
φRso

Bo

)l
, cgpb =

(
φSo

∂

∂pb

(
Rso

Bo

))l
.

The expansion of the right-hand side of system (8.37) in terms of the primary unknowns
depends on the solution technique.

In the SS method, the phase potentials are evaluated by


l+1
α = pl+1 + pl+1

cα − ρl+1
α ℘z, α = w, o, g. (8.43)
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Similarly, the transmissibilities are computed:

Tl+1
α = kl+1

rα

µl+1
α Bl+1

α

k, α = w, o, g, (8.44)

where µl+1
w = µw. The flow rates at wells are determined by

ql+1
Ws =

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
kl+1
rw

µw

[(
p
(j)

bh

)l+1 − pl+1 − pl+1
cw

− ρl+1
w ℘(z

(j)

bh − z)

]
δ(x − x(j,m)),

ql+1
Os =

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
kl+1
ro

µl+1
o

[(
p
(j)

bh

)l+1 − pl+1

− ρl+1
o ℘ (z

(j)

bh − z)

]
δ(x − x(j,m)),

ql+1
Gs =

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
kl+1
rg

µl+1
g

[(
p
(j)

bh

)l+1 − pl+1 − pl+1
cg

− ρl+1
g ℘ (z

(j)

bh − z)

]
δ(x − x(j,m)).

(8.45)

We now expand the potentials, transmissibilities, and flow rates at wells in terms of
the primary unknowns: δp, δSw, and δSo in the saturated state, and δp, δSw, and δpb in the
undersaturated state. For the water component,


l+1
w = 
l

w + dwpδp + dwSwδSw, (8.46)

where

dwp = 1 −
(
dρw

dp

)l
℘z, dwSw =

(
dpcw

dSw

)l
.

For the oil component in the saturated state,


l+1
o = 
l

o + dopδp, (8.47)

where

dop = 1 −
(
dρo

dp

)l
℘z,

and in the undersaturated state,


l+1
o = 
l

o + dopδp + dopbδpb, (8.48)

where

dop = 1 −
(
∂ρo

∂p

)l
℘z, dopb = −

(
∂ρo

∂pb

)l
℘z.

For the gas component in the saturated state,


l+1
g = 
l

g + dgpδp + dgS(δSw + δSo), (8.49)
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where

dgp = 1 −
(
dρg

dp

)l
℘z, dgS = −

(
dpcg

dSg

)l
.

The transmissibilities can be expanded in a similar fashion. For the water component,

Tl+1
w = Tlw + Ewpδp + EwSwδSw, (8.50)

where

Ewp =
(
krw

µw

dB−1
w

dp

)l
k, EwSw =

(
dkrw

dSw

1

µwBw

)l
k.

For the oil component in the saturated state,

Tl+1
o = Tlo + Eopδp + EoSwδSw + EoSoδSo, (8.51)

where

Eop =
(
kro

d

dp

(
1

µoBo

))l
k, EoSo = −

(
dkro

dSg

1

µoBo

)l
k,

EoSw =
((

dkro

dSw
− dkro

dSg

)
1

µoBo

)l
k,

and in the undersaturated state,

Tl+1
o = Tlo + Eopδp + EoSwδSw + Eopbδpb, (8.52)

where

Eop =
(
kro

∂

∂p

(
1

µoBo

))l
k, EoSw =

(
dkro

dSw

1

µoBo

)l
k,

Eopb =
(
kro

∂

∂pb

(
1

µoBo

))l
k.

For the gas component in the saturated state,

Tl+1
g = Tlg + Egpδp + EgS (δSw + δSo), (8.53)

where

Egp =
(
krg

d

dp

(
1

µgBg

))l
k, EgS = −

(
dkrg

dSg

1

µgBg

)l
k.

The flow rates at wells are expanded in a similar manner. For the water component,

ql+1
Ws = qlWs +

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
[
e
(j)
wpδp + e

(j)

wSw
δSw + ewpbhδp

(j)

bh

]
δ(x − x(j,m)), (8.54)

where

e
(j)
wp = − 1

µw

[
krw

(
1 + dρw

dp
℘(z

(j)

bh − z)

)]l
, ewpbh = klrw

µw
,

e
(j)

wSw
= 1

µw

[
dkrw

dSw

(
p
(j)

bh − p − pcw − ρw℘(z
(j)

bh − z)
)

− krw
dpcw

dSw

]l
.
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For the oil component in the saturated state,

ql+1
Os = qlOs +

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
[
e
(j)
op δp + e

(j)

oSw
δSw + e

(j)

oSo
δSo

+ eopbhδp(j)bh
]
δ(x − x(j,m)),

(8.55)

where

e
(j)
op =

{
kro

[
dµ−1

o

dp

(
p
(j)

bh − p − ρo℘ (z
(j)

bh − z)
)

− 1

µo

(
1 + dρo

dp
℘(z

(j)

bh − z)

)]}l
,

e
(j)

oSw
=
[

1

µo

(
dkro

dSw
− dkro

dSg

)(
p
(j)

bh − p − ρo℘ (z
(j)

bh − z)
)]l

,

e
(j)

oSo
= −

[
dkro

dSg

1

µo

(
p
(j)

bh − p − ρo℘ (z
(j)

bh − z)
)]l

, eopbh =
(
kro

µo

)l
,

and in the undersaturated state,

ql+1
Os = qlOs +

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
[
e
(j)
op δp + e

(j)

oSw
δSw + e

(j)
opbδpb

+ eopbhδp(j)bh
]
δ(x − x(j,m)),

(8.56)

where

e(j)op =
{
kro

[
∂µ−1

o

∂p

(
p
(j)

bh − p − ρo℘ (z
(j)

bh − z)
)

− 1

µo

(
1 + ∂ρo

∂p
℘(z

(j)

bh − z)

)]}l
,

e
(j)

oSw
=
[

1

µo

dkro

dSw

(
p
(j)

bh − p − ρo℘ (z
(j)

bh − z)
)]l

, eopbh =
(
kro

µo

)l
,

e(j)opb =
{
kro

[
∂µ−1

o

∂pb

(
p
(j)

bh − p − ρo℘ (z
(j)

bh − z)
)

− 1

µo

∂ρo

∂pb
℘ (z

(j)

bh − z)

]}l
.

For the gas component in the saturated state,

ql+1
Gs = qlGs +

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
[
e
(j)
gp δp + e

(j)

gS (δSw + δSo)

+ egpbhδp(j)bh
]
δ(x − x(j,m)),

(8.57)
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where

e(j)gp =
{
krg

[
dµ−1

g

dp

(
p
(j)

bh − p − pcg − ρg℘ (z
(j)

bh − z)
)

− 1

µg

(
1 + dρg

dp
℘(z

(j)

bh − z)

)]}l
, egpbh =

(
krg

µg

)l
,

e
(j)

gS = −
[

1

µg

(
dkrg

dSg

(
p
(j)

bh − p − pcg − ρg℘ (z
(j)

bh − z)
)

− krg
dpcg

dSg

)]l
.

Finally, we expand Rso and Bα in (8.37), α = w, o, g. In the saturated state,

Rl+1
so = Rlso + rspδp, Bl+1

α = Blα
(
1 − bαpδp

)
, α = w, o, g, (8.58)

where

rsp =
(
dRso

dp

)l
, bαp = −

(
1

Bα

dBα

dp

)l
, α = w, o, g,

and in the undersaturated state,

Rl+1
so = Rlso + rspδp + rspbδpb, Bl+1

o = Blo
(
1 − bopδp − bopbδpb

)
, (8.59)

where

rsp =
(
∂Rso

∂p

)l
, rspb =

(
∂Rso

∂pb

)l
,

bop = −
(

1

Bo

∂Bo

∂p

)l
, bopb = −

(
1

Bo

∂Bo

∂pb

)l
.

Saturated state

Substituting (8.38)–(8.59) into (8.37) leads to a linear system in terms of the primary un-
knowns. Because the choice of the unknowns depends on the state of a reservoir, we separate
the discussion of the saturated state from that of the undersaturated state. In the former case,
the primary unknowns are δp, δSw, and δSo. For the water component, substituting (8.38),
(8.46), (8.50), (8.54), and (8.58) into the first equation of (8.37) and ignoring the higher-order
terms in δp and δSw gives (cf. Exercise 8.8)

1

�t

[(
φSw

Bw

)l
−
(
φSw

Bw

)n
+ cwpδp + cwSwδSw

]
= ∇ · ((Tlw + Ewpδp + EwSwδSw

)∇
l
w

)
+ ∇ · (Tlw∇ (dwpδp))+ ∇ · (Tlw∇ (dwSwδSw))
+ 1

Blw

{
qlWs +

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
[
e(j)wpδp + e

(j)

wSw
δSw

+ e(j)wpbhδp(j)bh
]
δ(x − x(j,m))

}
+ bwpq

l
Ws

Blw
δp.

(8.60)
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For the oil component in the saturated state, substituting (8.39), (8.47), (8.51), (8.55), and
(8.58) into the second equation of (8.37) gives (cf. Exercise 8.9)

1

�t

[(
φSo

Bo

)l
−
(
φSo

Bo

)n
+ copδp + coSoδSo

]
= ∇ · ((Tlo + Eopδp + EoSwδSw + EoSoδSo

)∇
l
o

)
+ ∇ · (Tlo∇ (dopδp))
+ 1

Blo

{
qlOs +

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
[
e(j)op δp + e

(j)

oSw
δSw

+ e(j)oSoδSo + e
(j)
opbhδp

(j)

bh

]
δ(x − x(j,m))

}
+ bopq

l
Os

Blo
δp.

(8.61)

For the gas component in the saturated state, substituting (8.41), (8.49), (8.53), (8.57), and
(8.58) into the third equation of (8.37) yields (cf. Exercise 8.10)

1

�t

{[
φ

(
Sg

Bg
+ RsoSo

Bo

)]l
−
[
φ

(
Sg

Bg
+ RsoSo

Bo

)]n
+ cgpδp + cgSwδSw + cgSoδSo

}
= ∇ · ((Tlg + Egpδp + EgS (δSw + δSo)

)∇
l
g

)
+ ∇ · (Tlg∇ (dgpδp))+ ∇ · (Tlg∇ (dgS (δSw + δSo)

))
+ ∇ ·

[(
Rlso
(
Tlo + Eopδp + EoSwδSw + EoSoδSo

)
+ rspTloδp

)
∇
l

o

]
+ ∇ · (RlsoTlo∇ (dopδp))

+ 1

Blg

{
qlGs +

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
[
e(j)gp δp + e

(j)

gS (δSw + δSo)

+ e(j)gpbhδp(j)bh
]
δ(x − x(j,m))

}
+ bgpq

l
Gs

Blg
δp

+ Rlso

Blo

{
qlOs +

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
[
e(j)op δp + e

(j)

oSw
δSw + e

(j)

oSo
δSo

+ e(j)opbhδp(j)bh
]
δ(x − x(j,m))

}
+ qlOs

Blo

(
Rlsobop + rsp

)
δp.

(8.62)

At each grid node there are three differential equations (8.60)–(8.62) that must be
solved simultaneously in the SS technique. Note that δp(j)bh appears in these equations and
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may be unknown. When the well bottom hole pressure is given at the j th well, δp(j)bh = 0.
When a flow rate is given, δp(j)bh is an unknown, and an additional equation is required to
supplement (8.60)–(8.62). Thus, in the case of a given flow rate these three equations and
the well control equations must be solved simultaneously; see Section 8.2.5 for the well
treatment.

Undersaturated state

In the undersaturated state, analogous equations can be obtained for the primary unknowns
δp, δSw, and δpb. Equation (8.60) for the water component remains the same. For the oil
component in the undersaturated state, substituting (8.40), (8.48), (8.52), (8.56), and (8.59)
into the second equation of (8.37) produces (cf. Exercise 8.11)

1

�t

[(
φSo

Bo

)l
−
(
φSo

Bo

)n
+ copδp + coSwδSw + copbδpb

]
= ∇ · ((Tlo + Eopδp + EoSwδSw + Eopbδpb

)∇
l
o

)
+ ∇ · (Tlo∇ (dopδp))+ ∇ · (Tlo∇ (dopbδpb))
+ 1

Blo

{
qlOs +

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
[
e(j)op δp + e

(j)

oSw
δSw + e(j)opbδpb

+ e(j)opbhδp(j)bh
]
δ(x − x(j,m))

}
+ qlOs

Blo

(
bopδp + bopbδpb

)
.

(8.63)

For the gas component in the undersaturated state, substituting (8.42), (8.48), (8.52), (8.56),
and (8.59) into the third equation of (8.37) yields (cf. Exercise 8.12)

1

�t

{(
φRsoSo

Bo

)l
−
(
φRsoSo

Bo

)n
+ cgpδp + cgSwδSw + cgpbδpb

}
= ∇ ·

[(
Rlso
(
Tlo + Eopδp + EoSwδSw + Eopbδpb

)
+ Tlo

(
rspδp + rspbδpb

))∇
l
o

]
+ ∇ · (RlsoTlo∇ (dopδp + dopbδpb

))
+ Rlso

Blo

{
qlOs +

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
[
e(j)op δp + e

(j)

oSw
δSw

+ e(j)opbδpb + e
(j)
opbhδp

(j)

bh

]
δ(x − x(j,m))

}
+ qlOs

Blo

[(
Rlsobop + rsp

)
δp + (Rlsobopb + rspb

)
δpb
]
.

(8.64)

Again, three differential equations (8.60), (8.63), and (8.64) at each grid node, together
with the well control equations, must be solved simultaneously.
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Termination of the Newton–Raphson iteration

To terminate a Newton–Raphson iteration, some important factors should be considered.
First, the iteration number should be smaller than a given maximum number. Second, the
iteration values of the unknowns and the right-hand vectors of the linear equation systems
(LESs) to be solved are used as a part of the termination condition. The absolute iteration
values of the increments of pressure, water saturation, oil saturation (respectively, bubble
point pressure), and the bottom hole pressure of wells must be less than their respective
allowable maximum limits. Third, from our simulation experience the ratio of the infinite
norm of the right-hand side vector of a linear system of equations to the maximum absolute
value of the sum of the oil and gas component flow rates of perforated zones of wells must be
less than a certain given limit. Mass balance errors are not used as a part of the termination
condition of the Newton–Raphson iteration but are monitored during a simulation. Mass
balance means that the cumulative component mass production equals the initial component
mass in place minus the current component mass in place.

Treatment of bubble point problems

It is very important to deal properly with the bubble point problem to control convergence
of a Newton–Raphson iteration. The state of a reservoir can change from saturated to
undersaturated or vice versa. Determining a proper state during the state transition is
the bubble point problem. If the bubble point problem can be promptly recognized and
reasonable unknowns can be selected for different states of a reservoir, convergence of the
Newton–Raphson iteration can be better monitored and sped up.

To handle the bubble point problem properly, we must figure out the trigger that
causes the transition of states of a reservoir using the state machine (Booch et al., 1998)
shown in Figure 8.1. A location in the reservoir can stay in either the saturated state or
the undersaturated state. Furthermore, from the lth iteration to the (l + 1)th iteration in a
Newton–Raphson iteration at the (n+ 1)th time step, the location can stay in the same state
or transfer to another state. The constraint conditions and triggers are different in different
states. In the undersaturated state, the constraint conditions are

Sn+1,l
w + Sn+1,l

o = 1,

pn+1,l > p
n+1,l
b .

(8.65)

On the other hand, in the saturated state, the constraint conditions are

Sn+1,l
w + Sn+1,l

o + Sn+1,l
g = 1,

pn+1,l = p
n+1,l
b .

(8.66)

The trigger that causes the transition from the undersaturated state to the saturated state is

p
n+1,l
b + δpb > pn+1,l+1, (8.67)

and the trigger that causes the transition from the saturated state to the undersaturated state
is

Sn+1,l+1
g < 0. (8.68)
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Figure 8.1. A state machine.

To deal with the bubble point problem properly, we must check the triggers to deter-
mine whether a location in a reservoir stays in the old state or transfers to a new state. Then
we let the unknowns satisfy the constraint conditions of the corresponding state. When
the reservoir pressure at a location in a reservoir drops below the bubble point pressure,
then (pb)n+1,l + δpb > pn+1,l+1, the dissolved gas comes out from the oil phase, and the
oil saturation decreases. It triggers the state to transfer from the undersaturated state to the
saturated state at this location. In order to enter the new state, δSo is set with a small negative
value so that the gas saturation is greater than zero and the dissolved gas is released. When
the reservoir at this location is in the saturated state, the unknowns corresponding to the
grid point of the location are updated to satisfy the constraint conditions (8.66). Similarly,
if the reservoir pressure at a location increases to the point that all the gas dissolves into
the oil phase, then the state changes from the saturated state to the undersaturated state at
this location and Sn+1,l+1

g < 0, which triggers the state to transfer from the saturated state
to the undersaturated state. In order to guarantee that the oil phase pressure will be greater
than the bubble point pressure in the new state, δpb is set with a small negative value. After
the reservoir at the location enters this new state, the unknowns are updated to meet the
constraint conditions (8.65) in the undersaturated state.

8.2.3 The sequential technique

The sequential solution technique (MacDonald and Coats, 1970) is similar to the SS tech-
nique discussed in the previous subsection. The difference is that the three equations in
system (8.37) are now solved separately and sequentially.
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In the sequential technique, all the saturation functions krw, kro, krg , pcw, and pcg use
the previous Newton–Raphson iteration values of saturations; i.e., the phase potentials and
transmissibilities are


l+1
α = pl+1 + plcα − ρl+1

α ℘z,

Tl+1
α = klrα

µl+1
α Bl+1

α

k, α = w, o, g.
(8.69)

The flow rates at wells are given by

ql+1
Ws =

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
klrw

µw

[(
p
(j)

bh

)l+1 − pl+1 − plcw

− ρl+1
w ℘(z

(j)

bh − z)

]
δ(x − x(j,m)),

ql+1
Os =

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
klro

µl+1
o

[(
p
(j)

bh

)l+1 − pl+1

− ρl+1
o ℘ (z

(j)

bh − z)

]
δ(x − x(j,m)),

(8.70)

ql+1
Gs =

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
klrg

µl+1
g

[(
p
(j)

bh

)l+1 − pl+1 − plcg

− ρl+1
g ℘ (z

(j)

bh − z)

]
δ(x − x(j,m)).

Hence the potentials for all three components are expanded:


l+1
α = 
l

α + dαpδp, dαp = 1 −
(
dρα

dp

)l
℘z, α = w, o, g, (8.71)

and the transmissibilities are expanded analogously:

Tl+1
α = Tlα + Eαpδp, Eαp =

(
krα

d

dp

(
1

µαBα

))l
k (8.72)

for α = w, o, g. The flow rates at wells are expanded. For the water component,

ql+1
Ws = qlWs +

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
[
e(j)wpδp + ewpbhδp

(j)

bh

]
δ(x − x(j,m)), (8.73)

where

e(j)wp = − 1

µw

[
krw

(
1 + dρw

dp
℘(z

(j)

bh − z)

)]l
, ewpbh = klrw

µw
.
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For the oil component,

ql+1
Os = qlOs +

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
[
e(j)op δp + eopbhδp

(j)

bh

]
δ(x − x(j,m)), (8.74)

where

e
(j)
op =

{
kro

[
dµ−1

o

dp

(
p
(j)

bh − p − ρo℘ (z
(j)

bh − z)
)

− 1

µo

(
1 + dρo

dp
℘(z

(j)

bh − z)

)]}l
, eopbh =

(
kro

µo

)l
.

For the gas component,

ql+1
Gs = qlGs +

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
[
e(j)gp δp + egpbhδp

(j)

bh

]
δ(x − x(j,m)), (8.75)

where

e(j)gp =
{
krg

[
dµ−1

g

dp

(
p
(j)

bh − p − pcg − ρg℘ (z
(j)

bh − z)
)

− 1

µg

(
1 + dρg

dp
℘(z

(j)

bh − z)

)]}l
, egpbh =

(
krg

µg

)l
.

Equation (8.58) still holds for the sequential technique.

Saturated state

Substituting (8.38)–(8.42) and (8.71)–(8.75) into (8.37) leads to a linear system in terms of
the primary unknowns in the sequential technique. For the water component, substituting
(8.38), (8.71)–(8.73), and (8.58) into the first equation of (8.37) and ignoring the higher
order terms in δp gives (cf. Exercise 8.13)

1

�t

[(
φSw

Bw

)l
−
(
φSw

Bw

)n
+ cwpδp + cwSwδSw

]

= ∇ · ((Tlw + Ewpδp
)∇
l

w

)+ ∇ · (Tlw∇ (dwpδp))
+ 1

Blw

{
qlWs +

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
[
e(j)wpδp + e(j)wpbhδp

(j)

bh

]
· δ(x − x(j,m))

}
+ bwpq

l
Ws

Blw
δp.

(8.76)
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For the oil component, substituting (8.39), (8.71), (8.72), (8.74), and (8.58) into the second
equation of (8.37) gives (cf. Exercise 8.14)

1

�t

[(
φSo

Bo

)l
−
(
φSo

Bo

)n
+ copδp + coSoδSo

]
= ∇ · ((Tlo + Eopδp

)∇
l
o

)+ ∇ · (Tlo∇ (dopδp))
+ 1

Blo

{
qlOs +

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
[
e(j)op δp

+ e(j)opbhδp(j)bh
]
δ(x − x(j,m))

}
+ bopq

l
Os

Blo
δp.

(8.77)

For the gas component, substituting (8.41), (8.71), (8.72), (8.75), and (8.58) into the third
equation of (8.37) yields (cf. Exercise 8.15)

1

�t

{[
φ

(
Sg

Bg
+ RsoSo

Bo

)]l
−
[
φ

(
Sg

Bg
+ RsoSo

Bo

)]n
+ cgpδp + cgSwδSw + cgSoδSo

}
= ∇ · ((Tlg + Egpδp

)∇
l
g

)+ ∇ · (Tlg∇ (dgpδp))
+ ∇ ·

[(
Rlso
(
Tlo + Eopδp

)+ rspTloδp
)

∇
l
o

]
+ ∇ · (RlsoTlo∇ (dopδp))
+ 1

Blg

{
qlGs +

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
[
e(j)gp δp

+ e(j)gpbhδp(j)bh
]
δ(x − x(j,m))

}
+ bgpq

l
Gs

Blg
δp

+ Rlso

Blo

{
qlOs +

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
[
e(j)op δp

+ e(j)opbhδp(j)bh
]
δ(x − x(j,m))

}
+ qlOs

Blo

(
Rlsobop + rsp

)
δp.

(8.78)

Equations (8.76)–(8.78) can be also obtained from (8.60)–(8.62) by setting δSw = 0 and
δSo = 0 in the right-hand sides (cf. Exercise 8.16).

Multiply (8.76)–(8.78) by �t and write the resulting respective equations as

cwpδp + cwSwδSw = Fw(δp, δpbh),

copδp + coSoδSo = Fo(δp, δpbh),

cgpδp + cgSwδSw + cgSoδSo = Fg(δp, δpbh).

(8.79)
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From the first and second equations of (8.79), we see that

δSw = 1

cwSw

(
Fw(δp, δpbh)− cwpδp

)
,

δSo = 1

coSo

(
Fo(δp, δpbh)− copδp

)
.

(8.80)

Substituting these two equations into the third equation of (8.79) yields(
cgp − cgSwcwp

cwSw
− cgSocop

coSo

)
δp

= Fg(δp, δpbh)− cgSw

cwSw
Fw(δp, δpbh)− cgSo

coSo
Fo(δp, δpbh),

(8.81)

which is the pressure equation and is solved implicitly in the sequential technique. In the
case of a given flow rate at a well, this equation and the well control equations must be
solved simultaneously for δp and δpbh.

To compute δSw and δSo, we use the same equations as in the SS (cf. (8.60)):

1

�t

[(
φSw

Bw

)l
−
(
φSw

Bw

)n
+ cwpδp + cwSwδSw

]
= ∇ · ((Tlw + Ewpδp + EwSwδSw

)∇
l
w

)
+ ∇ · (Tlw∇ (dwpδp))+ ∇ · (Tlw∇ (dwSwδSw))
+ 1

Blw

{
qlWs +

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
[
e(j)wpδp + e

(j)

wSw
δSw

+ e(j)wpbhδp(j)bh
]
δ(x − x(j,m))

}
+ bwpq

l
Ws

Blw
δp

(8.82)

and (cf. (8.61))

1

�t

[(
φSo

Bo

)l
−
(
φSo

Bo

)n
+ copδp + coSoδSo

]
= ∇ · ((Tlo + Eopδp + EoSwδSw + EoSoδSo

)∇
l
o

)
+ ∇ · (Tlo∇ (dopδp))
+ 1

Blo

{
qlOs +

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
[
e(j)op δp + e

(j)

oSw
δSw

+ e(j)oSoδSo + e
(j)
opbhδp

(j)

bh

]
δ(x − x(j,m))

}
+ bopq

l
Os

Blo
δp.

(8.83)

Now, equations (8.81)–(8.83) at each grid node are solved sequentially; each equation is
solved implicitly.
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Undersaturated state

Setting δSw = 0 and δpb = 0 in the right-hand sides of (8.63) and (8.64), we obtain the
pressure and saturation equations for the sequential technique:

1

�t

[(
φSo

Bo

)l
−
(
φSo

Bo

)n
+ copδp + coSwδSw + copbδpb

]
= ∇ · ((Tlo + Eopδp

)∇
l
o

)+ ∇ · (Tlo∇ (dopδp))
+ 1

Blo

{
qlOs +

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
[
e(j)op δp

+ e(j)opbhδp(j)bh
]
δ(x − x(j,m))

}
+ bopq

l
Os

Blo
δp

(8.84)

and

1

�t

{(
φRsoSo

Bo

)l
−
(
φRsoSo

Bo

)n
+ cgpδp + cgSwδSw + cgpbδpb

}
= ∇ ·

[(
Rlso
(
Tlo + Eopδp

)+ rspTloδp
)

∇
l
o

]
+ ∇ · (RlsoTlo∇ (dopδp))
+ Rlso

Blo

{
qlOs +

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
[
e(j)op δp

+ e(j)opbhδp(j)bh
]
δ(x − x(j,m))

}
+ qlOs

Blo

(
Rlsobop + rsp

)
δp.

(8.85)

Equation (8.76) for the water component remains the same.
Multiply (8.76), (8.84), and (8.85) by�t and write the resulting respective equations

as

cwpδp + cwSwδSw = Fw(δp, δpbh),

copδp + coSwδSw + copbδpb = Fo(δp, δpbh),

cgpδp + cgSwδSw + cgpbδpb = Fg(δp, δpbh).

(8.86)

From the last two equations of (8.86) it follows that

coSwδSw + copbδpb = Fo(δp, δpbh)− copδp,

cgSwδSw + cgpbδpb = Fg(δp, δpbh)− cgpδp.
(8.87)
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Set

D =
∣∣∣∣∣ coSw copb

cgSw cgpb

∣∣∣∣∣ = coSwcgpb − cgSwcopb ,

DS =
∣∣∣∣∣ Fo(δp, δpbh)− copδp copb

Fg(δp, δpbh)− cgpδp cgpb

∣∣∣∣∣
= (Fo(δp, δpbh)− copδp)cgpb − (Fg(δp, δpbh)− cgpδp)copb ,

Dp =
∣∣∣∣∣ coSw Fo(δp, δpbh)− copδp

cgSw Fg(δp, δpbh)− cgpδp

∣∣∣∣∣
= coSw (Fg(δp, δpbh)− cgpδp)− cgSw (Fo(δp, δpbh)− copδp).

From (8.87) it follows that

δSw = DS

D
, δpb = Dp

D
,

which we substitute into the first equation of (8.86) to obtain the pressure equation in the
undersaturated state:

cwpδp + cwSw
DS

D
(δp, δpbh) = Fw(δp, δpbh). (8.88)

Equation (8.88) is solved implicitly for δp. Equation (8.82) is used to obtain δSw, and
equation (8.64) for the gas component is employed to compute δpb:

1

�t

{(
φRsoSo

Bo

)l
−
(
φRsoSo

Bo

)n
+ cgpδp + cgSwδSw + cgpbδpb

}
= ∇ ·

[(
Rlso
(
Tlo + Eopδp + EoSwδSw + Eopbδpb

)
+ Tlo

(
rspδp + rspbδpb

))∇
l
o

]
+ ∇ · (RlsoTlo∇ (dopδp + dopbδpb

))
+ Rlso

Blo

{
qlOs +

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
[
e(j)op δp + e

(j)

oSw
δSw

+ e(j)opbδpb + e
(j)
opbhδp

(j)

bh

]
δ(x − x(j,m))

}
+ qlOs

Blo

[(
Rlsobop + rsp

)
δp + (Rlsobopb + rspb

)
δpb
]
.

(8.89)

Again, there are three equations (8.88), (8.82), and (8.89) at each grid node that are solved
implicitly and sequentially.
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In summary, the sequential technique has the following features:

• The difference between the SS and sequential techniques is that the three differential
equations are solved simultaneously in the SS rather than sequentially at each grid
node.

• All the saturation functions krw, kro, krg , pcw, and pcg use the previous Newton–
Raphson iteration values of saturations.

• The left-hand sides of the water, oil, and gas component equations are treated in the
same fashion as in the SS.

• The equations used to solve for the second and third unknowns are the same for both
the SS and sequential techniques.

Selection of time steps

The bubble point problem in the sequential technique can be treated in the same way as in
Section 8.2.2 for the SS method. Compared with the SS, the implicitness of the sequential
technique is lower. Selecting reasonable time steps is key to controlling convergence of
a Newton–Raphson iteration and speeding up a simulation procedure. If the time steps
are too small, too much computational time will be consumed; if they are too large, a
Newton–Raphson iteration may diverge.

To select suitable time steps, from our experimental experience we have adopted the
following empirical rules:

• With a given maximum time step �tmax , the time step �t should satisfy that 0 <
�t ≤ �tmax .

• In the saturated state, �t is bounded by

�t ≤ �tn min

{
3,
(dp)max

(δp)nmax
,
(dSw)max

(δSw)nmax
,
(dSo)max

(δSo)nmax

}
, (8.90)

where �tn is the previous time step size; (dp)max , (dSw)max , and (dSo)max are the
allowable maximum values of the pressure, water saturation, and oil saturation in-
crements, respectively; and (δp)nmax , (δSw)nmax , (δSo)nmax are the maximum values of
these increments at the nth time step. In the undersaturated state, (8.90) becomes

�t ≤ �tn min

{
3,
(dp)max

(δp)nmax
,
(dSw)max

(δSw)nmax
,
(dpb)max

(δpb)nmax

}
, (8.91)

where (dpb)max is the allowable maximum value of the bubble point pressure incre-
ment.

• For a given time period, �t should guarantee that the simulation time reaches the
period time.
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With these rules, a time step�t can be automatically selected. Its choice must also take
into account the convergence of a Newton–Raphson iteration. If the number of iterations
is larger than a given maximum number when �t is selected according to these rules, then
the selected time step may be too large and must be reduced. First, we reduce �t by �t/3
because of the occurrence of 3 in (8.90) and (8.91). Then the oil phase and bubble point
pressures and water and oil saturations at the nth time step are taken as the first iteration
values of the Newton–Raphson iteration at the (n+ 1)th time step.

8.2.4 Iterative IMPES

The IMPES algorithm was discussed in the preceding chapter for two-phase flow and is a
very useful technique for flow of this type. Particularly, the improved IMPES introduced in
Section 7.3.3 is very powerful for solving two-phase flow. We now discuss IMPES for the
solution of the black oil model. When IMPES is used within a Newton–Raphson iteration,
it is called iterative IMPES. In iterative IMPES, only the pressure equation is computed
implicitly, and the other two (saturation and bubble point pressure) equations are evaluated
explicitly.

In iterative IMPES, all the saturation functions krw, kro, krg , pcw, andpcg are evaluated
at the saturation values of the previous time step in a Newton–Raphson iteration, and the
fluid formation volume factors and viscosities in the transmissibilities, phase potentials, and
well terms are computed using the previous Newton–Raphson iteration values. Thus the
phase potentials are


l+1
α = pl+1 + pncα − ρlα℘z, α = w, o, g, (8.92)

and the transmissibilities are

Tl+1
α = knrα

µlαB
l
α

k, α = w, o, g. (8.93)

Furthermore, the flow rates at the wells are

ql+1
Ws =

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
knrw

µw

[(
p
(j)

bh

)l+1 − pl+1 − pncw

− ρlw℘ (z(j)bh − z)

]
δ(x − x(j,m)),

ql+1
Os =

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
knro

µlo

[(
p
(j)

bh

)l+1 − pl+1

− ρlo℘ (z(j)bh − z)

]
δ(x − x(j,m)),

ql+1
Gs =

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
knrg

µlg

[(
p
(j)

bh

)l+1 − pl+1 − pncg

− ρlg℘ (z(j)bh − z)

]
δ(x − x(j,m)).

(8.94)
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Therefore, the potentials for all three components can be expanded,


l+1
α = 
l

α + δp, α = w, o, g, (8.95)

and the flow rates at wells are expanded:

ql+1
Ws = qlWs +

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
knrw

µw

[
δp

(j)

bh − δp
]
δ(x − x(j,m)),

ql+1
Os = qlOs +

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
knro

µlo

[
δp

(j)

bh − δp
]
δ(x − x(j,m)),

ql+1
Gs = qlGs +

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
knrg

µlg

[
δp

(j)

bh − δp
]
δ(x − x(j,m)).

(8.96)

Saturated state

Substituting (8.38)–(8.42), (8.95), and (8.96) into (8.37) leads to a linear system in terms
of the primary unknowns in iterative IMPES. For the water component, substituting (8.38),
(8.95), and (8.96) into the first equation of (8.37) and ignoring the higher-order terms in δp
gives (cf. Exercise 8.17)

1

�t

[(
φSw

Bw

)l
−
(
φSw

Bw

)n
+ cwpδp + cwSwδSw

]

= ∇ · (Tlw∇
l
w

)+ ∇ · (Tlw∇ (δp))
+ 1

Blw

{
qlWs +

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
knrw

µw

[
δp

(j)

bh − δp
]
δ(x − x(j,m))

}
.

(8.97)

For the oil component in the saturated state, substituting (8.39), (8.95), and (8.96) into the
second equation of (8.37) gives (cf. Exercise 8.18)

1

�t

[(
φSo

Bo

)l
−
(
φSo

Bo

)n
+ copδp + coSoδSo

]

= ∇ · (Tlo∇
l
o

)+ ∇ · (Tlo∇ (δp))
+ 1

Blo

{
qlOs +

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
knro

µlo

[
δp

(j)

bh − δp

]
δ(x − x(j,m))

}
.

(8.98)
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For the gas component in the saturated state, substituting (8.41), (8.95), and (8.96) into the
third equation of (8.37) yields (cf. Exercise 8.19)

1

�t

{[
φ

(
Sg

Bg
+ RsoSo

Bo

)]l
−
[
φ

(
Sg

Bg
+ RsoSo

Bo

)]n
+ cgpδp + cgSwδSw + cgSoδSo

}
= ∇ · (Tlg∇
l

g

)+ ∇ · (Tlg∇ (δp))
+ ∇ · (RlsoTlo∇
l

o

)+ ∇ · (RlsoTlo∇ (δp))
+ 1

Blg

{
qlGs +

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
knrg

µlg

[
δp

(j)

bh − δp

]
δ(x − x(j,m))

}

+ Rlso

Blo

{
qlOs +

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
knro

µlo

[
δp

(j)

bh − δp

]
δ(x − x(j,m))

}
.

(8.99)

Multiply (8.97)–(8.99) by �t and write the resulting respective equations as

cwpδp + cwSwδSw = Fw(δp, δpbh),

copδp + coSoδSo = Fo(δp, δpbh),

cgpδp + cgSwδSw + cgSoδSo = Fg(δp, δpbh).

(8.100)

From the first and second equations of (8.100), we see that

δSw = 1

cwSw

(
Fw(δp, δpbh)− cwpδp

)
,

δSo = 1

coSo

(
Fo(δp, δpbh)− copδp

)
.

(8.101)

Substituting these equations into the third equation of (8.100) yields

(
cgp − cgSwcwp

cwSw
− cgSocop

coSo

)
δp

= Fg(δp, δpbh)− cgSw

cwSw
Fw(δp, δpbh)− cgSo

coSo
Fo(δp, δpbh),

(8.102)

which is the pressure equation and is solved, together with the well control equations,
implicitly. After solving for δp and δpbh, they are substituted into (8.101) to compute δSw
and δSo.
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Undersaturated state

Substituting (8.40), (8.42), (8.95), and (8.96) into (8.37), the equations in the undersaturated
state can be similarly obtained (cf. Exercise 8.20):

1

�t

[(
φSo

Bo

)l
−
(
φSo

Bo

)n
+ copδp + coSwδSw + copbδpb

]
= ∇ · (Tlo∇
l

o

)+ ∇ · (Tlo∇ (δp))
+ 1

Blo

{
qlOs +

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
knro

µlo

[
δp

(j)

bh − δp

]
δ(x − x(j,m))

} (8.103)

and

1

�t

{(
φRsoSo

Bo

)l
−
(
φRsoSo

Bo

)n
+ cgpδp + cgSwδSw + cgpbδpb

}
= ∇ · (RlsoTlo∇
l

o

)+ ∇ · (RlsoTlo∇ (δp))
+ Rlso

Blo

{
qlOs +

Nw∑
j=1

Mwj∑
m=1

WI(j,m)
knro

µlo

[
δp

(j)

bh − δp
]
δ(x − x(j,m))

}
.

(8.104)

Equation (8.97) for the water component is unchanged.
Multiply (8.97), (8.103), and (8.104) by�t and write the resulting respective equations

as
cwpδp + cwSwδSw = Fw(δp, δpbh),

copδp + coSwδSw + copbδpb = Fo(δp, δpbh),

cgpδp + cgSwδSw + cgpbδpb = Fg(δp, δpbh).

(8.105)

From the last two equations of (8.105) it follows that

coSwδSw + copbδpb = Fo(δp, δpbh)− copδp,

cgSwδSw + cgpbδpb = Fg(δp, δpbh)− cgpδp.
(8.106)

Define the determinants

D =
∣∣∣∣∣ coSw copb

cgSw cgpb

∣∣∣∣∣ = coSwcgpb − cgSwcopb ,

DS =
∣∣∣∣∣ Fo(δp, δpbh)− copδp copb

Fg(δp, δpbh)− cgpδp cgpb

∣∣∣∣∣
= (Fo(δp, δpbh)− copδp)cgpb − (Fg(δp, δpbh)− cgpδp)copb ,

Dp =
∣∣∣∣∣ coSw Fo(δp, δpbh)− copδp

cgSw Fg(δp, δpbh)− cgpδp

∣∣∣∣∣
= coSw (Fg(δp, δpbh)− cgpδp)− cgSw (Fo(δp, δpbh)− copδp).
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It follows from (8.106) that

δSw = DS

D
, δpb = Dp

D
, (8.107)

which we substitute into the first equation of (8.105) to obtain the pressure equation in the
undersaturated state:

cwpδp + cwSw
DS

D
(δp, δpbh) = Fw(δp). (8.108)

Equation (8.108) and the well control equations are solved implicitly for δp and δpbh. After
their computation, they are substituted into (8.107) to obtain δSw and δpb.

In summary, iterative IMPES has the following features:

• The difference between iterative IMPES and classical IMPES is that the iterative
version is used within each Newton–Raphson iteration loop, while the classical one
is exploited before a Newton–Raphson iteration.

• All the saturation functions krw, kro, krg , pcw, and pcg use the previous time step
values of saturations in a Newton–Raphson iteration.

• The fluid formation volume factors and viscosities in the transmissibilities, phase
potentials, and well terms are computed using the previous Newton–Raphson iteration
values.

• The left-hand sides of the water, oil, and gas component equations are treated in the
same fashion as in the SS.

• The unknown pressure is obtained implicitly, and the other two unknowns are obtained
explicitly.

As in the sequential technique, the saturation functions krw, kro, krg , pcw, and pcg may
use the previous Newton–Raphson iteration values of saturations, instead of the previous
time step values of saturation. The bubble point problem in the iterative IMPES can be
treated in the same manner as in the SS, and the time steps can be controlled in a similar
way as in the sequential technique. The improved IMPES developed in the preceding chapter
for two-phase flow can be extended to iterative IMPES for the black oil model. In particular,
the time steps can be different for pressure than for saturations.

8.2.5 Well coupling

Various well constraints need to be taken into account. Two kinds of well constraints are
used for an injection well.

Either the well bottom hole pressure pbh is given, or a phase injection rate is fixed. In
the former case,

p
(j)

bh = P
(j)

bh , (8.109)

where j is the number of the well with this kind of well control and P (j)bh is the given bottom
hole pressure at this well. In this case,

δp
(j)

bh = 0. (8.110)
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In the latter case, it follows from (8.11) that the injection rate controls for water and gas
injection wells are, respectively,

Q
(j)

Ws =
Mwj∑
m=1

WI(j,m)
krwmax

µw

[
p
(j)

bh − pw − ρw℘(z
(j)

bh − z)
]
δ(x − x(j,m)) (8.111)

and

Q
(j)

Gs =
Mwj∑
m=1

WI(j,m)
krgmax

µg

[
p
(j)

bh − pg − ρg℘ (z
(j)

bh − z)
]
δ(x − x(j,m)), (8.112)

whereQ(j)

Ws andQ(j)

Gs are the given water and gas injection rates, respectively, at the j th well
and krαmax is the maximum relative permeability of the α-phase, α = w, g. A Newton–
Raphson iteration can be used to solve the well control equations (8.111) and (8.112). For
example, in the SS technique, it follows from (8.54) and (8.57) that the iteration applied to
(8.111) and (8.112) gives

Q
(j)

Ws = (q
(j)

Ws)
l +

Mwj∑
m=1

WI(j,m)
[
e
(j)
wpδp + e

(j)

wSw
δSw

+ ewpbhδp(j)bh
]
δ(x − x(j,m))

(8.113)

and

Q
(j)

Gs = (q
(j)

Gs )
l +

Mwj∑
m=1

WI(j,m)
[
e
(j)
gp δp + e

(j)

gS (δSw + δSo)

+ egpbhδp(j)bh
]
δ(x − x(j,m)),

(8.114)

where Q(j)

Ws = (q
(j)

Ws)
l+1, Q(j)

Gs = (q
(j)

Gs )
l+1, and the coefficients in these two equations are

determined as in (8.54) and (8.57). For the sequential and iterative IMPES techniques, the
flow rate terms can be expanded as in Sections 8.2.3 and 8.2.4.

For a production well, there are three kinds of well constraints: a constant bottom
hole pressure, a constant total liquid production rate, and a constant total flow rate. The
constant bottom hole pressure constraint has the form (8.109), and thus (8.110) holds. The
constant total liquid production rate control takes the form

Q
(j)

Ls =
Mwj∑
m=1

WI(j,m)
krw

µw

[
p
(j)

bh − pw − ρw℘(z
(j)

bh − z)
]
δ(x − x(j,m))

+
Mwj∑
m=1

WI(j,m)
kro

µo

[
p
(j)

bh − po − ρo℘ (z
(j)

bh − z)
]
δ(x − x(j,m)),

(8.115)

where Q(j)

Ls is the given total liquid production rate at the j th well. The water cut, defined
as the ratio of water production to the sum of water and oil production, at a perforated zone
of a well with this kind of well constraint must be less than a certain limit; over this limit,
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that perforated zone must be shut down. The constant total flow rate control can be defined
similarly; in this case, gas production is added.

In the SS technique, using (8.54) and (8.55) in the saturated state, a Newton–Raphson
iteration applied to (8.115) gives

Q
(j)

Ls = (q
(j)

Ls )
l +

Mwj∑
m=1

WI(j,m)
[
e(j)wpδp + e

(j)

wSw
δSw

+ ewpbhδp
(j)

bh

]
δ(x − x(j,m))

+
Mwj∑
m=1

WI(j,m)
[
e(j)op δp + e

(j)

oSw
δSw + e

(j)

oSo
δSo

+ eopbhδp
(j)

bh

]
δ(x − x(j,m)),

(8.116)

where Q(j)

Ls = (q
(j)

Ls )
l+1 is fixed and the coefficients in this equation can be determined as

in (8.54) and (8.55). In the SS in the undersaturated state, the sequential technique, and
iterative IMPES, Q(j)

Ls can be expanded as in Sections 8.2.2–8.2.4.

8.2.6 The adaptive implicit and other techniques

An adaptive implicit technique was introduced in reservoir simulation by Thomas and
Thurnau (1983). The principal idea of this technique is to seek an efficient middle ground
between the IMPES (or sequential) and SS techniques. That is, at a given time step, the ex-
pensive SS technique is confined to those gridblocks that require it, while on the remaining
gridblocks the IMPES technique is implemented. In this technique, pressure is computed
implicitly everywhere in a porous medium (as in the IMPES, sequential, and SS techniques),
but the computation of saturation is implicit in selected gridblocks and explicit elsewhere.
This division into implicit and explicit gridblocks may be different from one time step to
the next. The principal issue in implementation of this technique is a switching criterion
that determines whether the saturation equation should be considered implicit or explicit.

In the original work (Thomas and Thurnau, 1983), the switching criterion is based on
solution variable changes (as in local grid refinement; cf. Section 4.7). When a change at
an IMPES gridblock exceeds a specified threshold value, the gridblock switches to the SS
treatment. This criterion has the drawback that although instability leads to large solution
changes, small changes do not guarantee stability. This drawback has led to the development
of other criteria such as those based on eigenvalues (Fung et al., 1989) and hyperbolic
equation stability analysis (i.e., the well-known Courant–Friedrichs–Lewy (CFL) stability
analysis; cf. Section 4.1.8).

The adaptive implicit technique has been exclusively used in the finite difference
simulation of reservoirs. Its application to the finite element method is not promulgated in
the literature. The finite difference method is defined locally on grid points, and thus the
CFL switching criterion can be easily analyzed in terms of local grid step sizes. However,
the finite element method is defined globally on a whole domain, and hence how a switching
criterion can be defined is not so clear. Thus we do not discuss this solution technique in
this book.
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Research on parallel computation in reservoir simulation was extensively carried out
in the late 1980s, particularly due to the introduction of shared and distributed memory
computers. For example, Scott et al. (1987) presented a multiple instruction multiple data
(MIMD) approach to reservoir simulation, and Chien et al. (1987) described parallel pro-
cessing on distributed memory machines. Several methods are available in the literature for
parallelization of reservoir codes. Most of them are based on message passing techniques
such as PVM (parallel virtual machine) and MPI (message passing interface) and domain
decomposition methods. In most parallel approaches, a reservoir is split into a number of
subdomains, and a processor is assigned to each subdomain problem (Killough and Wheeler,
1987); the Schur complement method can be used to solve interface problems (Smith et al.,
1996). Parallel computing will be further discussed in Chapter 14.

Parallel algorithms have been used in the SS (Mayer, 1989), IMPES (Rutledge et al.,
1991), and adaptive implicit (Verdière et al., 1999) solution techniques for various multi-
phase flows. That is, in each of these solution techniques, both the pressure and saturation
equations are solved in a parallel fashion. Benchmark computations have indicated that
linear (or nearly linear) speedup in CPU time can be obtained with an increasing number of
processors. The parallel idea can be also used as a solution technique for multiphase flow. In
the IMPES, sequential, and SS techniques, the pressure and saturation equations are solved
either separately or simultaneously on the same processor. However, these two equations
can be solved in parallel; i.e., their solution can be assigned to different processors at the
same time point. This idea seems very useful for multicomponent, multiphase flow where
the equations for different components (or phases) can be assigned to different processors.
This research direction is yet to be investigated.

8.3 Comparisons between Solution Techniques
This section presents comparative results of the SS, sequential, and iterative IMPES solution
techniques for the black oil model for both saturated and undersaturated reservoirs. For an
undersaturated reservoir, the nonlinearity of the model’s governing equations caused by the
high compressibility and low viscosity of the gas component is relatively weaker than that
for a saturated reservoir. In addition, there is no bubble point problem for undersaturated
reservoirs. Since the sequential and iterative IMPES techniques have lower implicitness,
they may be applicable to an undersaturated reservoir, but not to a saturated reservoir. We
test the three solution techniques for both types of reservoirs.

8.3.1 An undersaturated reservoir

The simulation model comes from a development scheme design for water flooding of an oil
field. The dimensions of the oil field are 6,890 ft×6,726 ft×4,227 ft. It has four geological
layers with an irregularly shaped boundary, top, and base, and has reservoir temperature
165.2◦ F. The absolute permeability and compressibility of rock and the thickness of the
layers vary in space. The water, oil, and oil viscosity compressibilities are 3.1×10−6, 3.1×
10−6, and 0 psi−1, respectively. The stock-tank densities for oil and water are, respectively,
60.68 and 62.43 lbm/ft3. The gas specific gravity at standard conditions (expressed as the
ratio of the molecular weight of the gas to the molecular weight of air) is 0.5615. The
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Table 8.1. PVT property data.

p Bo µo Rso Bw µw Z µg
(psia) (RB/STB) (cp) (SCF/STB) (RB/STB) (cp) (cp)
87.02 1.0057 52.8 6.74 1.022 0.42 0.993 0.0151
435.11 1.0208 37.6 39.19 1.022 0.42 0.966 0.0141
870.23 1.0415 26.3 83.66 1.022 0.42 0.936 0.0132
1305.34 1.0632 19.7 130.25 1.022 0.42 0.913 0.0141
1624.42 1.0795 15.5 165.63 1.022 0.42 0.898 0.0151

Table 8.2. Saturation function data for a water-oil system.

Sw krw krow pcow (psi)
0.2400 0.000 1.000 2.4656
0.3050 0.001 0.809 1.1603
0.3266 0.002 0.707 0.8702
0.3483 0.004 0.606 0.5802
0.3699 0.007 0.513 0.3916
0.3915 0.010 0.421 0.2321
0.4131 0.014 0.349 0.1450
0.5000 0.037 0.260 0.0725
0.6000 0.087 0.200 0.0435
0.7000 0.155 0.150 0.0232
0.8000 0.230 0.100 0.0000
0.9000 0.400 0.000 0.0000
1.0000 1.000 0.000 0.0000

Table 8.3. Saturation function data for a gas-oil system.

Sg krg krog pcgo (psi)
0.00 0.000 1.0000 0.0
0.04 0.000 0.4910 0.0
0.10 0.001 0.2990 0.0
0.20 0.003 0.1200 0.0
0.22 0.007 0.1030 0.0
0.29 0.015 0.0400 0.0
0.33 0.030 0.0210 0.0
0.37 0.065 0.0087 0.0
0.40 0.131 0.0021 0.0
0.46 0.250 0.0000 0.0
0.76 1.000 0.0000 0.0

depths to the gas/oil contact (GOC) and water/oil contact (WOC) are 3,666 ft and 4,593
ft, respectively. The reservoir is initially at capillary/gravity equilibrium with a pressure
of 1,624 psia at depth 3,684 ft. The capillary pressures at the GOC and WOC are zero.
Other PVT and rock data are given in Tables 8.1–8.3, where Z is the gas deviation factor
(cf. Chapter 3 or Section 8.1.3).

There are 50 oil production wells and 20 water injection wells. They perforate all the
layers (above the WOC). The wellbore radius of each well is 0.25 ft. The well controls can
be the bottom hole pressure, water injection rate, oil production rate, and liquid production
rate controls with a water cut limit of 0.95.



“chenb
2006/2
page 31

�

�

�

�

�

�

�

�

316 Chapter 8. The Black Oil Model

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

500

1000

1500

2000

2500

3000

time (day)

Q
o

 (
S

T
B

/D
)

sequen
fully

Figure 8.2. Oil production rate of an undersaturated reservoir.
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Figure 8.3. Oil production rate of an undersaturated reservoir.

Due to the layer structure in the vertical direction of this reservoir, we divide its domain
into hexagonal prisms, i.e., hexagons in the x1x2-plane and rectangles in the x3-coordinate
direction, as shown in Figure 4.36. The number of control volumes is 2,088 × 4 (4 is the
number of layers). The CVFE method with linear elements is used for the discretization of
the governing equations (cf. Section 4.3). We run the simulator with (dp)max = 300 psia,
(dSw)max = 0.05, and (dpb)max = 300 psia (cf. Section 8.2.3) and stop running at 4,740
days for all three solution techniques. The ORTHOMIN algorithm with incomplete LU
factorization preconditioners (cf. Chapter 5) is used to solve the LESs. The plots of the oil
production rate, water cut, and oil recovery for this reservoir are shown in Figures 8.2–8.7,
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Figure 8.4. Water cut of an undersaturated reservoir.
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Figure 8.5. Water cut of an undersaturated reservoir.

where the SS is indicated by “fully.” The comparative results of memory space and compu-
tational cost for the solution techniques are shown in Table 8.4. The results obtained from
the sequential technique match those from the SS very well, but there are oscillations in
the results from the IMPES, as seen in Figures 8.3 and 8.5. These oscillations can be made
to disappear by reducing time steps to such an extent that the simulation process advances
slowly. The memory used by the sequential and IMPES techniques to solve the LESs is as
little as 20.01% of that of the SS, as a result of the size reduction of the LESs. The CPU
time used by the sequential technique to solve the LESs is just 12.06% of that by the SS,
and the total CPU time by the sequential technique is only 23.89% of that by the SS.
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Figure 8.6. Oil recovery of an undersaturated reservoir.
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Figure 8.7. Oil recovery of an undersaturated reservoir.

From Table 8.4, we see that 83.55% of the computational cost is spent on solving
the LESs, and other calculations just take 549.39 seconds in the SS. But in the sequential
technique, only 42.17% of the total CPU time is spent on solving the LESs, and the CPU time
taken by other calculations is only 87.89 seconds less than that used by the SS. Therefore, the
primary reason that the sequential technique is faster than the SS is that using the sequential
technique can greatly reduce the computational cost for the solution of the LESs. Also,
note that the sequential technique requires less memory. These remarks also apply to the
iterative IMPES technique.
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Table 8.4. Comparison among the SS, sequential, and iterative IMPES techniques
for an undersaturated reservoir.

Solution technique SS Sequential IMPES
Memory for LES solver (MB) 18.099264 3.621892 3.621892
Total memory (MB) 26.326132 11.84876 11.84876
CPU time for LES (sec.) 2790.80 336.55 543.17
Total CPU time (sec.) 3340.19 798.05 1518.15
Number of time steps 30 30 30
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Figure 8.8. Oil production rate for water flooding of a saturated reservoir.

8.3.2 A saturated reservoir

Because the IMPES technique is clearly not a good choice even for undersaturated reservoirs,
we do not test this technique for saturated reservoirs. Two cases are designed to compare
the SS and sequential techniques for simulation of a saturated reservoir. In the first case, we
simply raise the initial bubble point pressure of the oil field described in the above example
to 1,642 psia so that we initially have a saturated reservoir. For the second case, we change
a production well, which is located at an upper part of this field and is shut down at 510
days, into a gas injection well to improve oil recovery with an upper limit of GOR (gas-oil
ratio) 0.2 MSCF/RB after 600 days. Its injection rate is 500 MSCF/day.

For these two cases, we run the simulator with the same control parameters as those in
the above example, using both the SS and sequential techniques. The computational results
are shown in Figures 8.8–8.16. The memory and computational cost for both techniques are
given for cases 1 and 2 in Tables 8.5 and 8.6, respectively. From Figures 8.8–8.11, we see that
the oil production rate, GOR, water cut, and oil recovery obtained from these two techniques
match very well for the first case. In this case, the total CPU time taken by the sequential
technique increases to 34.60% of that for the SS. However, for the second case, although
the oil production rate, water cut, and oil recovery from the sequential technique still match
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Figure 8.9. GOR for water flooding of a saturated reservoir.
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Figure 8.10. Water cut for water flooding of a saturated reservoir.

those from the SS, there is a deviation between the GORs for these two techniques after
3,700 days (cf. Figure 8.14). Also, in this case, the CPU time for the sequential technique to
solve the LESs is 18.22% of that for the SS, and the total computational time for the former
becomes 40.78% of that for the latter. The number of Newton–Raphson’s iterations taken
by the sequential technique is 10 more than that for the SS.

The nonlinearity caused by the free gas and the bubble point problem is the main
reason for these phenomena. The free gas has a large compressibility, compared with water
and oil. It makes a great contribution to the flow term in the governing equation of the
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Figure 8.11. Oil recovery for water flooding of a saturated reservoir.
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Figure 8.12. Oil production rate for gas injection of a saturated reservoir.

gas component for a grid point of a reservoir in the saturated state. If the contribution is
ignored by the sequential technique to obtain a pressure equation, it will introduce a large
approximation error into the resulting pressure equation. Particularly, this may lead to
divergence of the Newton–Raphson iteration at a bubble point. For a saturated reservoir,
the state at a location may transfer from the saturated state to the undersaturated state. At a
bubble point, if the pressure is not correct, inappropriate PVT data of oil will be used and the
Newton–Raphson iteration will approach an incorrect value. In the first case, the free gas
comes from the dissolved gas in the reservoir, and the GOR is just 0.15, which is rather low.
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Figure 8.13. Average reservoir pressure for gas injection of a saturated reservoir.
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Figure 8.14. GOR for gas injection of a saturated reservoir.

The nonlinearity caused by the free gas is weak. The approximation error for the pressure
equation introduced by the sequential technique is small. Therefore, its convergence rate is
high. However, in the second case, a great amount of free gas is injected into the reservoir.
The nonlinearity caused by the free gas is strong. After 3,700 days, the oil production rate
drops quickly, the pressure obtained from the sequential technique is higher than the real
value because it ignores the nonlinearity caused by the free gas and water (cf. Figure 8.13),
and at this pressure more free gas dissolves into oil and leads to deviation of the GOR from
its correct value.
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Figure 8.15. Water cut for gas injection of a saturated reservoir.
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Figure 8.16. Oil recovery for gas injection of a saturated reservoir.

Table 8.5. Comparison between the SS and sequential techniques for water flood-
ing of a saturated reservoir in case 1.

Solution technique SS Sequential
Memory for LES solver (MB) 18.099264 3.621892
Total memory (MB) 26.326132 11.84876
CPU time for LES (sec.) 2485.88 518.58
Total CPU time (sec.) 3067.10 1061.09
Number of time steps 30 30
Number of Newton iterations 104 146
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Table 8.6. Comparison between the SS and sequential techniques for gas injection
of a saturated reservoir in case 2.

Solution technique SS Sequential
Memory for LES solver (MB) 18.099264 3.621892
Total memory (MB) 26.326132 11.84876
CPU time for LES (sec.) 5008.60 912.93
Total CPU time (sec.) 5869.08 2393.66
Number of time steps 30 30
Number of Newton iterations 137 147

Figure 8.17. The reservoir of the ninth CSP problem.

8.3.3 The ninth SPE project: Black oil simulation

The benchmark problem of the ninth comparative solution project (CSP) (Killough, 1995) is
challenging because, first, the permeability of the reservoir is generated from geostatistical
modeling, which can lead to a strong heterogeneity; second, the water-oil capillary pressure
has a discontinuity at a water saturation of 0.35, which may cause divergence of a Newton–
Raphson iteration; third, the capillary pressure has a tail that does not extend to the water
saturation 1.0 (cf. Figure 8.19 later).

A grid of rectangular parallelepipeds for the reservoir under consideration is given in
Figure 8.17. Its dimensions are 7,200 × 7,500 × 359 ft3. The depth to cell (1,1,1) of this
rectangular grid is 9,000 ft. It has a dip in the x1-direction of 10 degrees. The GOC and
WOC are located at, respectively, 8,800 ft and 9,950 ft. The reservoir has 15 layers.

The values of porosity and thickness for each layer and of oil and gas PVT property
data are based on the second CSP (Weinstein et al., 1986; also see Section 8.4), and are
given in Tables 8.7 and 8.8. The gas specific gravity equals 0.92. The gas-oil saturation
functions given in Table 8.9 are also taken from the second CSP. The relative permeabilities
and capillary pressure for a water-oil system are shown in Figures 8.18 and 8.19.
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Table 8.7. Reservoir description.

Layer Thickness (ft) Porosity
1 20 0.087
2 15 0.097
3 26 0.111
4 15 0.160
5 16 0.130
6 14 0.170
7 8 0.170
8 8 0.080
9 18 0.140
10 12 0.130
11 19 0.120
12 18 0.105
13 20 0.120
14 50 0.116
15 100 0.157

Table 8.8. PVT property data.

p Bo µo Rso Z µg
(psia) (RB/STB) (cp) (SCF/STB) (cp)
14.7 1.000 1.20 0 0.9999 0.0125
400 1.0120 1.17 165 0.8369 0.0130
800 1.0255 1.14 335 0.8370 0.0135

1200 1.0380 1.11 500 0.8341 0.0140
1600 1.0150 1.08 665 0.8341 0.0145
2000 1.0630 1.06 828 0.8370 0.0150
2400 1.0750 1.03 985 0.8341 0.0155
2800 1.0870 1.00 1130 0.8341 0.0160
3200 1.0985 0.98 1270 0.8398 0.0165
3600 1.1100 0.95 1390 0.8299 0.0170
4000 1.1200 0.94 1500 0.8300 0.0175

Table 8.9. Saturation function data for a gas-oil system.

Sg krg krog pcgo (psi)
0.0 0.0 1.0 0.0
0.04 0.0 0.60 0.2
0.10 0.0220 0.33 0.5
0.20 0.1000 0.10 1.0
0.30 0.2400 0.02 1.5
0.40 0.3400 0.0 2.0
0.50 0.4200 0.0 2.5
0.60 0.5000 0.0 3.0
0.70 0.8125 0.0 3.5
0.88 1.0 0.0 3.9
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Figure 8.18. Water-oil relative permeabilities.
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Figure 8.19. Water-oil capillary presure.

In the initial state, the reservoir reaches equilibrium with an initial reservoir pressure
of 3,600 psia at 9,035 ft and with a reservoir temperature of 100◦ F. The bubble point
pressure of oil is 3,600 psia. At 1,000 psi above the bubble point pressure pb, Bo is 0.999
times the value of Bo at pb. The density of the stock-tank oil is 0.7296 gm/cc. The oil
pressure gradient is approximately 0.3902 psi/ft at 3,600 psia. The stock-tank density of
water is 1.0095 gm/cc, with a water formation volume factor Bw at 3,600 psia of 1.0034
RB/STB yielding a water gradient of approximately 0.436 psi/ft. The rock compressibility
is 1.0 × 10−6 1/psi. The Stone II model is used for calculating the relative permeability of
the oil phase when three phases coexist (cf. Chapter 3).

There are one water injector and 25 producers, whose wellbore radii are 0.50 ft.
Their locations are shown in Figure 8.17. The injector is perforated at layers 11–15, and
the producers are perforated at layers 2–4. The water injection rate is 5,000 STB/D with
a maximum bottom hole pressure of 4,000 psia. Initially, the oil production rate of the
producers is set to 1,500 STB/D. They are reduced to 100 STB/D at 300 days. Then they
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Figure 8.20. Gas saturation at 50 days.

are raised to 1,500 STB/D until the end of the simulation at 900 days. The reference depths
of all wells are 9,110 ft.

For this problem, the CVFA method presented in Section 4.3.5 is used for the space
discretization. To check the accuracy, stability, and convergence of this method, we compare
its results in the sequential and SS techniques with those generated by the 9-point finite differ-
ence (FD) method in the SS and by VIP-EXECUTIVE, which is a three-dimensional, three-
phase finite difference reservoir simulator developed originally by the firm J. S. Nolen and
Associates (now part of Western ATLAS Software). For the CVFA method, we use hexag-
onal prisms (hexagons in the x1x2-plane and rectangles in the x3-coordinate direction, cf.
Figure 4.36) as base gridblocks since the reservoir considered has a layer structure. In order
for the wells to be located at the destination positions, the base gridblocks are adjusted with
the techniques of corner point correction and local grid refinement (cf. Section 13.4.4). The
total number of gridblocks is 765×15, where 15 is the number of layers. The ORTHOMIN
iterative algorithm is used to solve the LESs, and incomplete LU(0) factorizations are used as
preconditioners (cf. Chapter 5). The maximum saturation and pressure changes during the
computational processes are set to 0.05 and 150 psi, respectively, for the SS, while the max-
imum saturation change for the sequential technique is set to 0.02 to control convergence.

Figure 8.20 shows the gas saturation distribution of the first layer at 50 days, where
Sg is in one of the intervals [0, .02], (.02, .04], (.04, .06], and (.06, .08] represented by dark
to light colors. The gas saturation distribution is quite unusual. It is caused by the strong
heterogeneity of the reservoir, whose permeability has a lognormal distribution. Figures
8.21–8.27 are the comparative results. The results from the CVFA in the sequential technique
are closer to those from the FD method in the SS than to those from VIP-EXECUTIVE. The
reason may be that there are minor differences between our simulator andVIP-EXECUTIVE
in the treatment of the well models, linearization of conservation equations, time step control,
iteration control, or type of grids used. From these plots, we see that the reservoir pressures
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Figure 8.21. Comparison of oil production rates.
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Figure 8.22. Comparison of GORs versus time. 
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Figure 8.23. Comparison of field gas rates.
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Figure 8.24. Comparison of field water rates.
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Figure 8.25. Comparison of injected water rates.
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Figure 8.26. Comparison of average reservoir pressures.
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Figure 8.27. Comparison of oil rates for well 21.

Table 8.10. Comparison of computational cost between the SS and sequential
techniques for the ninth CSP problem.

Solution technique SS Sequential
CPU time for LESs (sec.) 4141.92 1174.48
Total CPU time (sec.) 5172.76 2819.80
Number of time steps 119 179

match perfectly between the CVFA and FD methods, as shown in Figure 8.26; there exist
slight differences for other quantities. Since this benchmark problem has a very strong
heterogeneity generated by geostatistical modeling, the unstructured grids used in the CVFA
can more accurately describe the heterogeneity of the reservoir, which is reflected in the
production rates. Table 8.10 shows that the sequential technique just takes 28% of the CPU
time of the SS to solve the linear equations. The total CPU time is smaller by 45.5%.

8.3.4 Remarks on numerical experiments

We have applied the SS, sequential, and iterative IMPES solution techniques to black oil
reservoir simulation. The FD, CVFE, and CVFA methods have been employed for the
discretization of the governing equations of the black oil model. Field-scale simulation
models of an oil reservoir have been used to test these solution schemes for both the saturated
and undersaturated states of this reservoir.

From the numerical experiment results, we can draw the following conclusions for
black oil reservoir simulation:

• The iterative IMPES technique is not a good choice for this type of simulation.

• The SS technique is the most stable and robust, but it has the highest memory and
computational costs.

• The sequential technique is convergent and stable for an undersaturated reservoir, and
it can significantly reduce memory and computational cost compared with the SS.
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For a saturated reservoir the accuracy of the sequential scheme depends on whether
free gas is injected. For no gas injection, this scheme is convergent and accurate
and can reduce computational cost. But, for gas injection, the pressures and GORs
obtained from this technique differ from those from the SS, even though it seems
convergent.

• For the ninth SPE CSP benchmark problem, the results from the SS and sequential
techniques match very well. 

 

 

Block (1,7) 
Block (1,8) 

Production well 

2050 ft 

Depth 
9000ft 

GOC: 9035ft 

WOC: 9209ft rw = 0.25ft 

Height 
359ft 

Figure 8.28. Cross-sectional view of the second SPE CSP reservoir.

8.4 The Second SPE Project: Coning Problems
This section deals with a three-phase coning problem. The coning problem is caused by a
large gradient of a phase potential in the axial direction of a well (Fanchi, 2001). In the
initial stage of a recovery process of a reservoir, the equal-potential surface has the shape
of a semisphere with an infinite radius, and the gradient of the potential on the surface is
zero everywhere. After a producer is perforated, this gradient is no longer zero. In the
axial direction of the well, it reaches a highest value because of production. This results
in a change of shape of the equal-potential surface. It changes gradually into a cone, with
the top of the cone toward the perforated zones of the producer. Therefore, the water
and/or gas fronts gradually reach the perforated zones of the producer. Near the wellbore,
the saturations and pressure change very rapidly during the formation of water and/or gas
coning, which may cause unstability of a reservoir simulator.

The second SPE CSP (Weinstein et al., 1986) was used to test the stability of reservoir
simulators to deal with a coning problem. A cross-sectional view of the reservoir is seen
in Figure 8.28. The reservoir dimensions, permeabilities, and porosities are presented in
Table 8.11, where kh (= k11 = k22) and kv (= k33) denote the horizontal and vertical
permeabilities, respectively. The radial extent of the reservoir is 2,050 ft. In the radial
direction, 10 blocks are used. Their boundaries are at 2.00, 4.32, 9.33, 20.17, 43.56, 94.11,
203.32, 439.24, 948.92, and 2,050 ft, respectively. There are 15 vertical layers. The depth
to the top of formation is 9,000 ft. The pore, water, oil, and oil viscosity compressibilities
are 4 × 10−6, 4 × 10−6, 3 × 10−6, and 0 psi−1, respectively. The stock-tank densities for
oil and water are 45.0 and 63.02 lbm/ft3. The gas density at standard conditions is 0.0702
lbm/ft3. The depths to the GOC, which is the interface between the gas zone and the oil
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Table 8.11. Reservoir description.

Layer Thickness (ft) kh (md) kv (md) Porosity
1 20 35.000 3.500 0.087
2 15 47.500 4.750 0.097
3 26 148.000 14.800 0.111
4 15 202.000 20.200 0.160
5 16 90.000 9.000 0.130
6 14 418.500 41.850 0.170
7 8 775.000 77.500 0.170
8 8 60.000 6.000 0.080
9 18 682.000 68.200 0.140

10 12 472.000 47.200 0.130
11 19 125.000 12.500 0.120
12 18 300.000 30.000 0.105
13 20 137.000 13.750 0.120
14 50 191.000 19.100 0.116
15 100 350.000 35.000 0.157

Table 8.12. Saturation function data for a water-oil system.

Sw krw krow pcow (psi)
0.22 0.0 1.0 7.0
0.30 0.07 0.4000 4.0
0.40 0.15 0.1250 3.0
0.50 0.24 0.0649 2.5
0.60 0.33 0.0048 2.0
0.80 0.65 0.0 1.0
0.90 0.83 0.0 0.5
1.00 1.0 0.0 0.0

zone, and WOC, which is the interface between the water zone and the oil zone, are 9,035
and 9,209 ft, respectively. The reservoir is initially at capillary/gravity equilibrium with a
pressure of 3,600 psia at the GOC. The capillary pressures at the GOC and WOC are zero.
The single well at the center of the radial system is completely perforated at the 7th and 8th
layers, has the wellbore radius 0.25 ft, and has a minimum bottom hole pressure of 3,000
psia. The saturation function data and PVT property data are presented in Tables 8.9, 8.12,
and 8.13, and the well production schedule is shown in Table 8.14.

To model the radial flow pattern of this single well, we use a hybrid grid to present
the reservoir (cf. Figure 8.29) and apply the CVFA method to discretize the governing
equations (cf. Section 4.3.5). The center blocks are cylinders, and other blocks are obtained
by uniformly partitioning in the angular direction. The total number of gridblocks is (18 ×
9+1)×15, where 15 is the number of layers. The radial sizes of gridblocks are the same as
those given in the problem statement. The drainage radius of the center gridblocks, which
are cylindrical gridblocks, is

re = √
rwr1,

where r1 indicates the radius of the center block and rw is the wellbore radius. To choose
appropriate time steps, the maximum saturation change per step is set to 0.05.
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Table 8.13. PVT property data.

p Bo µo Rso Bw µw Bg µg
(psia) (RB/STB) (cp) (SCF/STB) (RB/STB) (cp) (RB/STB) (cp)
400 1.0120 1.17 165 1.01303 0.96 5.90 0.0130
800 1.0255 1.14 335 1.01182 0.96 2.95 0.0135
1200 1.0380 1.11 500 1.01061 0.96 1.96 0.0140
1600 1.0150 1.08 665 1.00940 0.96 1.47 0.0145
2000 1.0630 1.06 828 1.00820 0.96 1.18 0.0150
2400 1.0750 1.03 985 1.00700 0.96 0.98 0.0155
2800 1.0870 1.00 1130 1.00580 0.96 0.84 0.0160
3200 1.0985 0.98 1270 1.00460 0.96 0.74 0.0165
3600 1.1100 0.95 1390 1.00341 0.96 0.65 0.0170
4000 1.1200 0.94 1500 1.00222 0.96 0.59 0.0175
4400 1.1300 0.92 1600 1.00103 0.96 0.54 0.0180
4800 1.1400 0.91 1676 0.99985 0.96 0.49 0.0185
5200 1.1480 0.90 1750 0.99866 0.96 0.45 0.0190
5600 1.1550 0.89 1810 0.99749 0.96 0.42 0.0195

Table 8.14. Production schedule.

Period Period time Oil production rate
number (day) (STB/D)

1 1–10 1,000
2 10–50 100
3 50–720 1,000
4 720–900 100

 

 

Figure 8.29. Cross-sectional view of the grid system.

We compare the CVFA and FD methods for this three-phase coning problem; the
CVFE uses grids based on triangles or tetrahedra that cannot accurately model the cylindrical
boundary. The FD method in an (r, z)-coordinate system is adopted. The total number of
gridblocks is 10 × 15.
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Figure 8.30. Initial saturation distribution.

Table 8.15. Initial fluids in place and time on decline.

Method Oil Water Gas Time on
(106STB) (106STB) (106STB) decline (day)

FD 28.87 73.98 47.13 230
CVFA 28.89 73.96 47.08 220

Figure 8.30 shows the plot of initial saturations versus depth. The gas saturation drops
to zero if the depth is greater than 9,035 ft, which is consistent with the positions of the given
GOC and WOC. Also, the initial saturations satisfy the constraint (8.5). Table 8.15 shows
the initial fluids in place. Figures 8.31–8.35 give plots of the oil production rate, water cut,
GOR, bottom hole pressure, and pressure drawdown (p(1,7)-bhp, a decline in well pressure
with time due to production), all versus time for the CVFA and FD methods, where (1,7)
is the first radial gridblock and the 7th layer. There are slight differences between the two
methods for the quantities shown in these figures.

To check the stability of the CVFA methods for stronger coning, we design three cases
A, B, and C by changing the ratio of the vertical permeability to the horizontal permeability
kv/kh from 0.1 to 0.5 for case A, changing Qo,max (the maximum oil production rate) from
1,000 STB/D to 2,000 STB/D for case B, and changingQo,max from 1,000 STB/D to 3,000
STB/D for case C based on the original data. Figures 8.36–8.40 are the oil production rate,
water cut, GOR, bottom hole pressure, and pressure drawdown at block (1,7) all versus time
for these cases. We can see that water and gas coning becomes more serious if kv/kh changes
to 0.5; the transients become significant if the maximum oil production rate is doubled or
tripled. However, no oscillations occur.
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Figure 8.31. Oil production rate versus time.
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Figure 8.32. Water cut versus time.
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Figure 8.33. GOR versus time.
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Figure 8.34. Bottom hole pressure versus time.
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Figure 8.35. Pressure drawdown (1,7) versus time.
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Figure 8.36. Oil production rate for different parameters.
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Figure 8.37. Water cut for different parameters.
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Figure 8.38. GOR for different parameters.
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Figure 8.39. Bottom hole pressure for different parameters.
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Figure 8.40. Pressure overdrawn (1,7) for different parameters.
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8.5 Bibliographical Remarks
The numerical results reported in Sections 8.3 and 8.4 are taken from Li et al. (2003A;
2004A; 2004B). For more numerical results, the reader should refer to these papers. For
more information about the data used in the second and ninth SPE CSPs, see Weinstein et
al. (1986) and Killough (1995), respectively.

Exercises
8.1. Derive equation (8.10). (Hint: Substitute (8.7)–(8.9) into (8.1)–(8.3) and neglect the

variation of ρα with respect to space.)

8.2. The phase, weighted, and global pressure formulations were developed for two-phase
flow in Chapter 7 and can be extended to the black oil model under consideration.
This and the next five exercises are devoted to the development of these formulations.
If necessary, the reader can refer to Chen (2000) for their derivation. Recall the mass
conservation equations on standard volumes

φ
∂

∂t

(
Sw

Bw

)
= −∇ ·

(
1

Bw
uw

)
+ q̃W ,

φ
∂

∂t

(
So

Bo

)
= −∇ ·

(
1

Bo
uo

)
+ q̃O,

φ
∂

∂t

(
Sg

Bg
+ RsoSo

Bo

)
= −∇ ·

(
1

Bg
ug + Rso

Bo
uo

)
+ q̃G,

(8.117)

Darcy’s law

uα = −krα
µα

k (∇pα − ρα℘∇z) , α = w, o, g, (8.118)

and the saturation and pressure constraints

Sw + So + Sg = 1,

pcα = pα − po, α = w, o, g,
(8.119)

where q̃β = qβ/ρβs , β = W,O,G. Recall the phase mobility functions

λα = krα/µα, α = w, o, g,

the total mobility

λ =
g∑

α=w
λα,

and the fractional flow functions

fα = λα/λ, α = w, o, g.

We use the oil phase pressure as the pressure variable in this exercise

p = po, (8.120)
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and the total velocity

u =
g∑

β=w
uβ. (8.121)

Show that equations (8.117)–(8.119) can be written as

u = −kλ
(

∇p −Gλ +
∑
β

fβ∇pcβ
)
,

∇ · u =
∑
β

Bβ

(
q̃β − φSβ

∂

∂t

(
1

Bβ

)
− uβ · ∇

(
1

Bβ

))
−Bg

(
Rsoq̃o + φSo

Bo

∂Rso

∂t
+ 1

Bo
uo · ∇Rso

)
,

and

φ
∂Sα

∂t
+ ∇ · uα = Bα

(
q̃α − φSα

∂

∂t

(
1

Bα

)
− uα · ∇

(
1

Bα

))
,

uα = fαu + kfα
∑
β

λβ
(∇(pcβ − pcα)− (ρβ − ρα)℘∇z)

for α = w, o, where

∑
β

=
g∑

β=w
, Gλ = ℘∇z

∑
β

fβρβ.

8.3. Note that in the above phase formulation the quadratic terms in the velocities uα
appear. To remove them, we modify the definition of the total velocity. Toward that
end, set

λw = krw

Bwµw
, λo = 1 + Rso

Boµo
kro, λg = krg

Bgµg
, λ =

∑
β

λβ,

and
fα = λα/λ, α = w, o, g.

The pressure variable is defined as in (8.120), but the total velocity is modified to

u =
∑
β

1

Bβ
uβ + Rso

Bo
uo. (8.122)

Prove that the pressure and saturation equations now become

u = −kλ

∇p −Gλ +
∑
β

fβ∇pcβ
 ,

φ
∂

∂t

∑
β

Sβ

Bβ
+ SoRso

Bo

+ ∇ · u =
∑
β

q̃β,
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and

φ
∂

∂t

(
Sα

Bα

)
+ ∇ ·

(
1

Bα
uα

)
= q̃α, α = w, o,

where

uo = Bo

1 + Rso

{
fou + kfo

∑
β

λβ
(∇pcβ − (ρβ − ρo)℘∇z)},

uw = Bw

{
fwu + kfw

∑
β

λβ
(∇(pcβ − pcw)− (ρβ − ρw)℘∇z)}.

8.4. We now define a smoother pressure than the phase pressure, i.e., the weighted fluid
pressure

p =
∑
α

Sαpα.

The phase pressures are

pα = p + pcα −
∑
β

Sβpcβ, α = w, o, g.

With λα , λ, fα , and the modified total velocity defined as in Exercise 8.3, show that
the pressure equation is

u = −kλ
(

∇p −Gλ +
∑
β

fβ∇pcβ −
∑
β

∇(Sβpcβ)
)
,

φ
∂

∂t

(∑
β

Sβ

Bβ
+ SoRso

Bo

)
+ ∇ · u =

∑
β

q̃β,

and the saturation equations are the same as in Exercise 8.3.

8.5. To define a global pressure, we assume that the fractional flow functions fα depend
solely on the saturations Sw and Sg (for pressure-dependent functions fα , see the
next exercise) and there exists a function (Sw, Sg) −→ pc(Sw, Sg) such that

∇pc = fw∇pcw + fg∇pcg.

This is true if and only if the following equations are satisfied (cf. Exercise 2.7):

∂pc

∂Sw
= fw

∂pcw

∂Sw
+ fg

∂pcg

∂Sw
,

∂pc

∂Sg
= fw

∂pcw

∂Sg
+ fg

∂pcg

∂Sg
. (8.123)

A necessary and sufficient condition for existence of a function pc satisfying (8.123)
is (cf. Exercise 2.7)

∂fw

∂Sg

∂pcw

∂Sw
+ ∂fg

∂Sg

∂pcg

∂Sw
= ∂fw

∂Sw

∂pcw

∂Sg
+ ∂fg

∂Sw

∂pcg

∂Sg
. (8.124)
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When the condition (8.124) is satisfied,

pc(Sw, Sg) =
∫ Sw

1

{
fw(ξ, 0)

∂pcw

∂Sw
(ξ, 0)+ fg(ξ, 0)

∂pcg

∂Sw
(ξ, 0)

}
dξ

+
∫ Sg

0

{
fw(Sw, ξ)

∂pcw

∂Sg
(Sw, ξ)+ fg(Sw, ξ)

∂pcg

∂Sg
(Sw, ξ)

}
dξ,

where we assume that the integrals are well defined. Define the global pressure and
the total velocity

p = po + pc, u =
∑
β

uβ.

Show that equations (8.117)–(8.119) can be written as

u = −kλ(∇p −Gλ),

∇ · u =
∑
β

Bβ

(
q̃β − φSβ

∂

∂t

(
1

Bβ

)
− uβ · ∇

(
1

Bβ

))
−Bg

(
Rsoq̃o + φSo

Bo

∂Rso

∂t
+ 1

Bo
uo · ∇Rso

)
,

and

φ
∂Sα

∂t
+ ∇ · uα = Bα

(
q̃α − φSα

∂

∂t

(
1

Bα

)
− uα · ∇

(
1

Bα

))
,

uα = fαu + kλα
(∇(pc − pcα)− δα

)
for α = w, o, where

δα = (fβ(ρβ − ρα)+ fγ (ργ − ρα)
)
℘∇z,

α, β, γ = w, o, g, α �= β, β �= γ, γ �= α.

8.6. To combine the modified total velocity and global pressure concepts, we assume that
the solubility factorRso, the formation factors Bα , and the viscosity functionsµα de-
pend only on their respective phase pressure. Furthermore, to derive the global pres-
sure p, we assume that these functions essentially depend on p. The second assump-
tion ignores the error caused by calculating them for the α-phase at p instead of pα .
The third assumption is that there exists a function (Sw, Sg, p) −→ pc(Sw, Sg, p)

satisfying

∇pc = fw∇pcw + fg∇pcg + ∂pc

∂p
∇p,

where fα is defined as in Exercise 8.3. A necessary and sufficient condition for
existence of a function pc satisfying such a condition is (8.124), where p is treated
as a parameter. Under this condition,

pc(Sw, Sg, p) =
∫ Sw

1

{
fw(ξ, 0, p)

∂pcw

∂Sw
(ξ, 0)+ fg(ξ, 0, p)

∂pcg

∂Sw
(ξ, 0)

}
dξ

+
∫ Sg

0

{
fw(Sw, ξ, p)

∂pcw

∂Sg
(Sw, ξ)+ fg(Sw, ξ, p)

∂pcg

∂Sg
(Sw, ξ)

}
dξ.
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With this definition, p = po + pc, and λα , λ, fα , and the modified total velocity
defined as in Exercise 8.3 prove that equations (8.117)–(8.119) can be written as

u = −kλ(ω∇p −Gλ),

φ
∂

∂t

∑
β

Sβ

Bβ
+ SoRso

Bo

+ ∇ · u =
∑
β

q̃β,

and

φ
∂

∂t

(
Sα

Bα

)
+ ∇ ·

(
1

Bα
uα

)
= q̃α, α = w, o,

where

uo = Bo

1 + Rso

{
ω−1fou + kλo

(∇pc − δo
)− ω−1 ∂pc

∂p
Gλ

}
,

uw = Bw

{
ω−1fwu + kλw

(∇(pc − pcw)− δw
)− ω−1 ∂pc

∂p
Gλ

}
,

and

ω(sw, sg, p) = 1 − ∂pc

∂p
.

8.7. The global pressure formulation in Exercises 8.5 and 8.6 requires the total differential
condition (8.124) on the shape of three-phase relative permeability and capillary
pressure functions. We now introduce a pseudoglobal pressure formulation, which
does not require such a condition. As an example, consider this formulation with the
total velocity defined in Exercise 8.2. Assume that the capillary pressures satisfy the
condition

pcw = pcw(Sw), pcg = pcg(Sg). (8.125)

Then introduce the mean values

f̂w(Sw) = 1

1 − Sw

∫ 1−Sw

0
fw(Sw, ζ ) dζ,

f̂g(Sg) = 1

1 − Sg

∫ 1−Sg

0
fg(ζ, Sg) dζ,

and the pseudoglobal pressure

p = po +
∫ Sw

Swc

f̂w(ζ )
dpcw(ζ )

dSw
dζ +

∫ Sg

Sgc

f̂g(ζ )
dpcg(ζ )

dSg
dζ,

where Swc and Sgc are such that pcw(Swc) = 0 and pcg(Sgc) = 0. With this pressure
and the total velocity defined as in (8.121), show that the pressure equation is
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u = −kλ

{
∇p −Gλ +

∑
α

(
fα − f̂α

) dpcα
dSα

∇Sα
}
,

∇ · u =
∑
β

Bβ

(
q̃β − φSβ

∂

∂t

(
1

Bβ

)
− uβ · ∇

(
1

Bβ

))
−Bg

(
Rsoq̃o + φSo

Bo

∂Rso

∂t
+ 1

Bo
uo · ∇Rso

)
,

and the saturation equations are as in Exercise 8.2.

8.8. Derive equation (8.60) by substituting (8.38), (8.46), (8.50), (8.54), and (8.58) into
the first equation of (8.37) and ignoring the higher-order terms in δp and δSw.

8.9. Show equation (8.61) by substituting (8.39), (8.47), (8.51), (8.55), and (8.58) into
the second equation of (8.37) and ignoring the higher-order terms in δp, δSw, and
δSo.

8.10. Prove equation (8.62) by substituting (8.41), (8.49), (8.53), (8.57), and (8.58) into
the third equation of (8.37) and ignoring the higher-order terms in δp, δSw, and δSo.

8.11. Derive equation (8.63) by substituting (8.40), (8.48), (8.52), (8.56), and (8.59) into
the second equation of (8.37) and ignoring the higher-order terms in δp, δSw, and
δpb.

8.12. Show equation (8.64) by substituting (8.42), (8.48), (8.52), (8.56), and (8.59) into
the third equation of (8.37) and ignoring the higher-order terms in δp, δSw, and δpb.

8.13. Prove equation (8.76) by substituting (8.38), (8.71)–(8.73), and (8.58) into the first
equation of (8.37) and ignoring the higher-order terms in δp.

8.14. Derive equation (8.77) by substituting (8.39), (8.71), (8.72), (8.74), and (8.58) into
the second equation of (8.37) and ignoring the higher-order terms in δp.

8.15. Show equation (8.78) by substituting (8.41), (8.71), (8.72), (8.75), and (8.58) into
the third equation of (8.37) and ignoring the higher-order terms in δp.

8.16. Prove that equations (8.76)–(8.78) can be obtained from equations (8.60)–(8.62) by
setting δSw = 0 and δSo = 0 in the right-hand sides of the latter equations.

8.17. Derive equation (8.97) by substituting (8.38), (8.95), and (8.96) into the first equation
of (8.37) and ignoring the higher-order terms in δp.

8.18. Show equation (8.98) by substituting (8.39), (8.95), and (8.96) into the second equa-
tion of (8.37) and ignoring the higher-order terms in δp.

8.19. Prove equation (8.99) by substituting (8.41), (8.95), and (8.96) into the third equation
of (8.37) and ignoring the higher-order terms in δp.

8.20. Derive equation (8.103) by substituting (8.40), (8.42), (8.95), and (8.96) into (8.37)
and ignoring the higher-order terms in δp.
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The Compositional Model

Recall that to recover some of the hydrocarbons after water flooding, several enhanced
recovery techniques are used. These involve complex chemical and thermal effects and
are termed tertiary recovery or enhanced recovery. There are many different variations
of enhanced recovery techniques. One of the main objectives of these techniques is to
achieve miscibility and thus eliminate residual oil saturation. Miscibility can be achieved
by increasing temperature (e.g., in situ combustion) or by injecting other chemical species
such as CO2. A typical flow in enhanced recovery is the compositional flow, where only the
number of chemical species is a priori given, and the number of phases and the composition
of each phase in terms of the given species depend on the thermodynamic conditions and
the overall concentration of each species.

The governing equations for the compositional model are stated in Section 9.1. The
Peng–Robinson equation of state is also briefly reviewed there. The iterative IMPES so-
lution technique developed for the black oil model in Chapter 8 is further studied for the
compositional model in Section 9.2. In Section 9.3, the solution of equilibrium relations
that describe the mass distribution of chemical species among the fluid phases is discussed
in detail. Numerical results based on the third CSP organized by the SPE are reported in
Section 9.4. Finally, bibliographical information is given in Section 9.5.

9.1 Basic Differential Equations
9.1.1 The basic equations

The basic equations for the compositional model in a porous medium � were described in
Section 2.8. For completeness, we review these equations. We describe a compositional
model under the assumptions that the flow process is isothermal (i.e., constant temperature),
the components form at most three phases (e.g., water, oil, and gas), there is no mass
interchange between the water phase and the hydrocarbon phases (i.e., the oil and gas
phases), and diffusive effects are neglected.

Let φ and k denote the porosity and permeability of the porous medium � ⊂ R
3,

and let Sα , µα , pα , uα , and krα be the saturation, viscosity, pressure, volumetric velocity,

347
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348 Chapter 9. The Compositional Model

and relative permeability, respectively, of the α-phase, α = w, o, g. Also, let ξio and ξig
represent the molar densities of component i in the oil (liquid) and gas (vapor) phases,
respectively, i = 1, 2, . . . , Nc, where Nc is the number of components. The molar density
of phase α is given by

ξα =
Nc∑
i=1

ξiα, α = o, g. (9.1)

The mole fraction of component i in phase α is then

xiα = ξiα/ξα, i = 1, 2, . . . , Nc, α = o, g. (9.2)

The total mass is conserved for each component:

∂(φξwSw)

∂t
+ ∇ · (ξwuw) = qw,

∂(φ[xioξoSo + xigξgSg])
∂t

+ ∇ · (xioξouo + xigξgug)

= xioqo + xigqg, i = 1, 2, . . . , Nc,

(9.3)

where ξw is the molar density of water (that is the water mass density ρw for the present
model) and qα stands for the flow rate of phase α at wells. In (9.3), the volumetric velocity
uα is given by Darcy’s law:

uα = −krα
µα

k (∇pα − ρα℘∇z) , α = w, o, g, (9.4)

where ρα is the mass density of the α-phase, ℘ is the magnitude of the gravitational ac-
celeration, and z is the depth. The mass density ρα is related to the molar density ξw by
(2.93). The fluid viscosity µα(pα, T , x1α, x2α, . . . , xNcα) can be calculated from pressure,
temperature, and compositions (Lohrenz et al., 1964).

In addition to the differential equations (9.3) and (9.4), there are also algebraic con-
straints. The mole fraction balance implies that

Nc∑
i=1

xio = 1,
Nc∑
i=1

xig = 1. (9.5)

In the transport process, the saturation constraint reads

Sw + So + Sg = 1. (9.6)

Finally, the phase pressures are related by capillary pressures:

pcow = po − pw, pcgo = pg − po. (9.7)
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Mass interchange between phases is characterized by the variation of mass distribution
of each component in the oil and gas phases. As usual, these two phases are assumed to
be in the phase equilibrium state at every moment. This is physically reasonable since
mass interchange between phases occurs much faster than the flow of porous media fluids.
Consequently, the distribution of each hydrocarbon component into the two phases is subject
to the condition of stable thermodynamic equilibrium, which is given by minimizing the
Gibbs free energy of the compositional system (Bear, 1972; Chen et al., 2000):

fio(po, x1o, x2o, . . . , xNco) = fig(pg, x1g, x2g, . . . , xNcg), (9.8)

where fio and fig are the fugacity functions of the ith component in the oil and gas phases,
respectively, i = 1, 2, . . . , Nc.

Equations (9.3)–(9.8) provide 2Nc+9 independent relations, differential or algebraic,
for the 2Nc+9 dependent variables: xio, xig , uα , pα , and Sα , α = w, o, g, i = 1, 2, . . . , Nc.
With appropriate boundary and initial conditions, this is a closed differential system for these
unknowns.

9.1.2 Equations of state

The rock properties reviewed in Section 8.1.2 for the black oil model also apply to the
compositional model. In particular, for convenience of programming, we define

pcw = pw − po, pcg = pg − po; (9.9)

i.e., pcw = −pcow and pcg = pcgo. Moreover, for notational convenience, let pco = 0.
Several equations of state (EOSs) were introduced in Section 3.2.5 for the definition of

the fugacity functions fio and fig , including the Redlich–Kwong, Redlich–Kwong–Soave,
and Peng–Robinson EOSs. Here we briefly review the most frequently used Peng–Robinson
EOS (Peng and Robinson, 1976; Coats, 1980).

The mixing principle for the Peng–Robinson equation of state is

aα =
Nc∑
i=1

Nc∑
j=1

xiαxjα(1 − κij )
√
aiaj ,

bα =
Nc∑
i=1

xiαbi, α = o, g,

where κij is a binary interaction parameter between components i and j , and ai and bi
are empirical factors for the pure component i. The interaction parameters account for
molecular interactions between two unlike molecules. By definition, κij is zero when i
and j represent the same component, small when i and j represent components that do
not differ much (e.g., when components i and j are both alkanes), and large when i and j
represent components that are substantially different. Ideally, κij depends on pressure and
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temperature and only on the identities of components i and j (Zudkevitch and Joffe, 1970;
Whitson, 1982).

The factors ai and bi can be computed from

ai = �iaαi
R2T 2

ic

pic
, bi = �ib

R Tic

pic
,

where R is the universal gas constant, T is the temperature, Tic and pic are the critical
temperature and pressure, the EOS parameters �ia and �ib are given by

�ia = 0.45724, �ib = 0.077796,

αi = (1 − λi
[
1 − √

T/Tic
])2
,

λi = 0.37464 + 1.5423ωi − 0.26992ω2
i ,

and ωi is the acentric factor for components i. The acentric factors roughly express the
deviation of the shape of a molecule from a sphere (Reid et al., 1977). Define

Aα = aαpα

R2T 2
, Bα = bαpα

R T
, α = o, g, (9.10)

where the pressure pα is given by the Peng–Robinson two-parameter EOS

pα = RT

Vα − bα
− aα(T )

Vα(Vα + bα)+ bα(Vα − bα)
(9.11)

with Vα being the molar volume of phase α. Introduce the compressibility factor

Zα = pαVα

R T
, α = o, g. (9.12)

Equation (9.11) can be expressed as a cubic equation in Zα:

Z3
α − (1 − Bα)Z

2
α + (Aα − 2Bα − 3B2

α)Zα

− (AαBα − B2
α − B3

α) = 0.
(9.13)

The correct choice of the root of (9.13) will be discussed in Section 9.3.4. Now, for i =
1, 2, . . . , Nc and α = o, g, the fugacity coefficient ϕiα of component i in the mixture can
be obtained from

ln ϕiα = bi

bα
(Zα − 1)− ln(Zα − Bα)

− Aα

2
√

2Bα

 2

aα

Nc∑
j=1

xjα(1 − κij )
√
aiaj − bi

bα

 (9.14)

· ln

(
Zα + (1 + √

2)Bα
Zα − (1 − √

2)Bα

)
.
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Finally, the fugacity of component i is

fiα = pαxiαϕiα, i = 1, 2, . . . , Nc, α = o, g. (9.15)

The mass distribution of each hydrocarbon component into the fluid (oil) and vapor (gas)
phases is given by the thermodynamic equilibrium relation (9.8).

9.2 Solution Techniques
The choice of a solution technique is crucial for a coupled system of partial differential
equations. In the preceding chapter, we discussed several solution techniques that are
currently used in the numerical solution of the black oil model. These techniques include
the iterative IMPES, sequential, SS, and adaptive implicit techniques. They can be also
employed for the numerical simulation of the compositional model. However, a typical
compositional simulator includes about a dozen chemical components; the SS would be a
very expensive technique for this type of flow, even with today’s computing power. The
iterative IMPES and sequential techniques are widely used and are thus studied here. As an
example, we develop iterative IMPES for the compositional model. An extension from this
technique to the sequential technique can be carried out as in the preceding chapter for the
black oil model.

9.2.1 Choice of primary variables

Equations (9.3)–(9.8) form a strongly coupled system of time-dependent, nonlinear differ-
ential equations and algebraic constraints. While there are 2Nc + 9 equations for the same
number of dependent variables, this system can be written in terms of 2Nc + 2 primary
variables, and other variables can be expressed as functions of them. These primary vari-
ables must be carefully chosen so that the main physical properties inherent in the governing
equations and constraints are preserved, the nonlinearity and coupling between the equa-
tions is weakened, and efficient numerical methods for the solution of the resulting system
can be devised.

To simplify the expressions in (9.3), we introduce the potentials


α = pα − ρα℘z, α = w, o, g. (9.16)

Also, we use the total mass variable F of the hydrocarbon system (Nolen, 1973; Young and
Stephenson, 1983)

F = ξoSo + ξgSg, (9.17)

and the mass fractions of oil and gas in this system,

L = ξoSo

F
, V = ξgSg

F
. (9.18)

Note that

L+ V = 1.
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Next, instead of exploiting the individual mole fractions, we use the total mole fraction of
the components in the hydrocarbon system

zi = Lxio + (1 − L)xig, i = 1, 2, . . . , Nc. (9.19)

Then we see, using (9.5), (9.17), and (9.18), that

Nc∑
i=1

zi = 1 (9.20)

and

xioξoSo + xigξgSg = Fzi, i = 1, 2, . . . , Nc. (9.21)

Consequently, applying (9.4) and (9.16), the second equation in (9.3) becomes (cf. Exercise
9.1)

∂(φFzi)

∂t
− ∇ ·

(
k
[
xioξokro

µo
∇
o + xigξgkrg

µg
∇
g

])
= xioqo + xigqg, i = 1, 2, . . . , Nc.

(9.22)

Adding equations (9.22) over i and exploiting (9.5) and (9.20) gives

∂(φF)

∂t
− ∇ ·

(
k
[
ξokro

µo
∇
o + ξgkrg

µg
∇
g

])
= qo + qg. (9.23)

Equation (9.22) is the individual flow equation for the ith component (say, i = 1, 2, . . . ,
Nc − 1) and (9.23) is the global hydrocarbon flow equation.

To simplify the differential equations further, we define the transmissibilities

Tα = ξαkrα

µα
k, α = w, o, g,

Tiα = xiαξαkrα

µα
k, α = o, g, i = 1, 2, . . . , Nc.

(9.24)

We now summarize the equations needed in iterative IMPES. The equilibrium relation (9.8)
is recast as

fio(po, x1o, x2o, . . . , xNco) = fig(po + pcg, x1g, x2g, . . . , xNcg),

i = 1, 2, . . . , Nc.
(9.25)

Using (9.24), equation (9.22) becomes

∂(φFzi)

∂t
= ∇ · (Tio∇
o + Tig∇
g)+ xioqo + xigqg,

i = 1, 2, . . . , Nc − 1.
(9.26)

Similarly, it follows from (9.23) that

∂(φF)

∂t
= ∇ · (To∇
o + Tg∇
g)+ qo + qg. (9.27)
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Next, applying the first equation of (9.3) and (9.24) yields

∂(φξwSw)

∂t
= ∇ · (Tw∇
w)+ qw. (9.28)

Finally, using (9.17) and (9.18), the saturation state equation (9.6) becomes

F

(
L

ξo
+ 1 − L

ξg

)
+ S = 1. (9.29)

The differential system consists of the 2Nc + 2 equations (9.25)–(9.29) for the 2Nc + 2
primary unknowns: xio (or xig), L (or V ), zi , F , S = Sw, and p = po, i = 1, 2, . . . , Nc−1.

9.2.2 Iterative IMPES

Let n > 0 (an integer) indicate a time step. For any function v of time, we use δ̄v to denote
the time increment at the nth step:

δ̄v = vn+1 − vn.

A time approximation at the (n+ 1)th level for the system of equations (9.25)–(9.29) is

fio(p
n+1
o , xn+1

1o , xn+1
2o , . . . , xn+1

Nco
)

= fig(p
n+1
g , xn+1

1g , xn+1
2g , . . . , xn+1

Ncg
), i = 1, 2, . . . , Nc,

1

�t
δ̄(φFzi) = ∇ · (Tnio∇
n+1

o + Tnig∇
n+1
g )

+ xn+1
io qno + xn+1

ig qng , i = 1, 2, . . . , Nc − 1,

1

�t
δ̄(φF ) = ∇ · (Tno∇
n+1

o + Tng∇
n+1
g )+ qno + qng ,

1

�t
δ̄(φξwS) = ∇ · (Tnw∇
n+1

w )+ qnw,[
F

(
L

ξo
+ 1 − L

ξg

)
+ S

]n+1

= 1,

(9.30)

where�t = tn+1 − tn. Note that the transmissibilities and well terms in (9.30) are evaluated
at the previous time level.

System (9.30) is nonlinear in the primary unknowns, and can be linearized via the
Newton–Raphson iteration introduced in Section 8.2.1. For a generic function v of time,
we use the iteration

vn+1,l+1 = vn+1,l + δv,

where l refers to the iteration number of Newton–Raphson’s iterations and δv represents the
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increment in this iteration step. When no ambiguity occurs, we will replace vn+1,l+1 and
vn+1,l by vl+1 and vl , respectively (i.e., the superscript n+ 1 is omitted). Observe that

vn+1 ≈ vl+1 = vl + δv,

so

δ̄v ≈ vl − vn + δv.

Using this approximation in system (9.30) gives

fio(p
l+1
o , xl+1

1o , x
l+1
2o , . . . , x

l+1
Nco
)

= fig(p
l+1
g , xl+1

1g , x
l+1
2g , . . . , x

l+1
Ncg
), i = 1, 2, . . . , Nc,

1

�t

[
(φFzi)

l − (φFzi)
n + δ(φFzi)

]
= ∇ · (Tnio∇
l+1

o + Tnig∇
l+1
g )+ xl+1

io q
n
o + xl+1

ig q
n
g ,

i = 1, 2, . . . , Nc − 1,

1

�t

[
(φF )l − (φF )n + δ(φF)

]
= ∇ · (Tno∇
l+1

o + Tng∇
l+1
g )+ qno + qng ,

1

�t

[
(φξwS)

l − (φξwS)
n + δ(φξwS)

] = ∇ · (Tnw∇
l+1
w )+ qnw,[

F

(
L

ξo
+ 1 − L

ξg

)
+ S

]l+1

= 1.

(9.31)

We expand the potentials and transmissibilities in terms of the primary unknowns.
Toward that end, we must identify these unknowns. If the gas phase dominates in the
hydrocarbon system (e.g., L < 0.5), the primary unknowns will be xio, L, zi , F , S, and p,
i = 1, 2, . . . , Nc − 1, which is the L−X iteration type in compositional modeling. If the
oil phase dominates (e.g., L ≥ 0.5), the primary unknowns will be xig , V , zi , F , S, and
p, i = 1, 2, . . . , Nc − 1, which corresponds to the V − Y iteration type. As an example,
we illustrate how to expand the potentials and transmissibilities in terms of δxio, δL, δzi ,
δF , δS, and δp, i = 1, 2, . . . , Nc − 1; a similar expansion can be performed for the V − Y

iteration type.
For the ith component flow equation,

δ(φFzi) = cipδp + ciF δF + cizδzi, i = 1, 2, . . . , Nc − 1, (9.32)

where

cip = φocR (Fzi)
l , ciF = (φzi)

l , ciz = (φF )l ,
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with φo being the porosity at a reference pressure po and cR the rock compressibility. For
the global hydrocarbon flow equation,

δ(φF) = cpδp + cF δF, (9.33)

where
cp = φocRF

l, cF = φl.

For the water flow equation,

δ(φξwS) = cwpδp + cwSδS, (9.34)

where

cwp = φocR (ξwS)
l +
(
φ
dξw

dp
S

)l
, cwS = (φξw)

l .

In iterative IMPES, all the saturation functions (krw, kro, krg , pcw, and pcg), densities,
and viscosities are evaluated at the saturation values of the previous time step in the Newton–
Raphson iteration. The phase potentials are calculated by


l+1
α = pl+1 + pncα − ρnα℘z, α = w, o, g, (9.35)

and the transmissibilities by

Tnα = ξnα k
n
rα

µnα
k, α = w, o, g,

Tniα = xniαξ
n
α k

n
rα

µnα
k, α = o, g, i = 1, 2, . . . , Nc.

(9.36)

It follows from (9.35) that


l+1
α = 
l

α + δp, α = w, o, g. (9.37)

We now expand each of the equations in system (9.31). For this, we replace the
derivatives in xig by those in the primary variables, i = 1, 2, . . . , Nc. Applying relation
(9.19), we see that

∂xig

∂xio
= L

L− 1
,

∂xig

∂zi
= 1

1 − L
,

∂xig

∂L
= xio − xig

L− 1
, i = 1, 2, . . . , Nc.

Consequently, the chain rule implies

∂

∂xio
= ∂xig

∂xio

∂

∂xig
= L

L− 1

∂

∂xig
,

∂

∂zi
= ∂xig

∂zi

∂

∂xig
= 1

1 − L

∂

∂xig
,

∂

∂L
= ∂xig

∂L

∂

∂xig
= xio − xig

L− 1

∂

∂xig
.
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Thus, after using (9.5) and (9.20) to eliminate xNco and zNc , the first equation in (9.31) can
be expanded:

Nc−1∑
j=1

{(
∂fio

∂xjo

)l
−
(
∂fio

∂xNco

)l
+ Ll

1 − Ll

[(
∂fig

∂xjg

)l
−
(
∂fig

∂xNcg

)l]}
δxjo

+ 1

1 − Ll

Nc∑
j=1

(
∂fig

∂xjg

(
xjo − xjg

))l
δL

= f lig − f lio +
[(

∂fig

∂p

)l
−
(
∂fio

∂p

)l]
δp

+ 1

1 − Ll

Nc−1∑
j=1

[(
∂fig

∂xjg

)l
−
(
∂fig

∂xNcg

)l]
δzj ,

(9.38)

where, for i = 1, 2, . . . , Nc,

f lio = fio(p
l
o, x

l
1o, x

l
2o, . . . , x

l
Nco
), f lig = fig(p

l
g, x

l
1g, x

l
2g, . . . , x

l
Ncg
).

The linear equation (9.38) is used to solve for (δx1o, δx2o, . . . , δx(Nc−1)o, δL) in terms of
(δz1, δz2, . . . , δzNc−1, δp).

Next, applying (9.32) and (9.37), from the second equation in (9.31) it follows that,
for i = 1, 2, . . . , Nc − 1,

1

�t

[
(φFzi)

l − (φFzi)
n + cipδp + ciF δF + cizδzi

]
= ∇ · (Tnio∇
l

o + Tnig∇
l
g)+ ∇ ·

(
(Tnio + Tnig)∇(δp)

)
+ (xlio + δxio

)
qo(δp)+

(
xlig + δxig

)
qg(δp).

(9.39)

Equation (9.39) is solved for (δz1, δz2, . . . , δzNc−1) in terms of (δF, δp). Similarly, from
the third equation in (9.31) we see that

1

�t

[
(φF )l − (φF )n + cpδp + cF δF

]
= ∇ · (Tno∇
l

o + Tng∇
l
g)+ ∇ · ((Tno + Tng)∇(δp)

)
+ qo(δp)+ qg(δp),

(9.40)

which gives δF in terms of δp. From the fourth equation in (9.31), (9.34), and (9.37), we
have
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1

�t

[
(φξwS)

l − (φξwS)
n + cwpδp + cwSδS

]
= ∇ · (Tnw∇
l

w)+ ∇ · (Tnw∇(δp))+ qw(δp).
(9.41)

Equation (9.41) gives δS in terms of δp.
It follows from (9.12) that

1

ξα
= Zα(pα, x1α, x2α, . . . , xNcα)R T

pα
, α = o, g.

Applying (9.5) and (9.20), it follows from the last equation in (9.31) that

(
FLRT

p

)l Nc−1∑
j=1

{(
∂Zo

∂xjo

)l
−
(
∂Zo

∂xNco

)l

−
[(

∂Zg

∂xjg

)l
−
(
∂Zg

∂xNcg

)l]}
δxjo

+
(
FRT

p

)l Zo − Zg −
Nc∑
j=1

(
∂Zg

∂xjg

(
xjo − xjg

))l δL
+
(
FRT

p

)l Nc−1∑
j=1

{(
∂Zg

∂xjg

)l
−
(
∂Zg

∂xNcg

)l}
δzj

+
(
RT

p

(
LZo + (1 − L)Zg

))l
δF + δS

+
(
FRT

p

[
L
∂Zo

∂p
− LZo

p
+ (1 − L)

∂Zg

∂p
− (1 − L)Zg

p

])l
δp

= 1 −
(
F

[
L

ξo
+ 1 − L

ξg

]
+ S

)l
.

(9.42)

After substituting δxjo, δL, δzj , δF , and δS, j = 1, 2, . . . , Nc − 1, into (9.42) using
(9.38)–(9.41), the resulting equation becomes the pressure equation, which, together with
the well control equations (cf. Chapter 8), is implicitly solved for δp. After δp is obtained,
(9.41), (9.40), (9.39), and (9.38) are solved explicitly for δS, δF , (δz1, δz2, . . . , δzNc−1), and
(δx1o, δx2o, . . . , δx(Nc−1)o, δL), respectively. The numerical methods introduced in Chapter
4 can be applied to the discretization of (9.38)–(9.42) in space.

In summary, the iterative IMPES for the compositional model has following features:

• The difference between iterative IMPES and classical IMPES is that the iterative one
is used within each Newton–Raphson iteration loop, while the classical one is utilized
outside the Newton–Raphson iteration.
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• The saturation constraint equation is used to solve implicitly for pressure p.

• The equilibrium relation is solved for (x1o, x2o, . . . , x(Nc−1)o, L).

• The hydrocarbon component flow equations are used to obtain (z1, z2, . . . , zNc−1)

explicitly.

• The global hydrocarbon flow equation is exploited to solve explicitly for F .

• The water flow equation is explicitly solved for S.

• Relation (9.19) generates (x1g, x2g, . . . , xNcg).

As in the sequential technique for the black oil model, the saturation functions krw,
kro, krg , pcw, and pcg can use the previous Newton–Raphson iteration values of saturations,
instead of the previous time step values of saturations.

9.3 Solution of Equilibrium Relations
We discuss the solution of the thermodynamic equilibrium relation (9.25), which describes
the mass distribution of each component in the oil and gas phases. As an example, we
concentrate on the Peng–Robinson equation of state.

9.3.1 Successive substitution method

The successive substitution method is often employed to find an initial guess for the com-
putation of the thermodynamic equilibrium relation (9.38) in the Newton–Raphson flash
calculation discussed in the next subsection. The equilibrium flash vaporization ratio for
component i is defined by

Ki = xig

xio
, i = 1, 2, . . . , Nc, (9.43)

where the quantityKi is theK-value of component i. If the iterative IMPES in the previous
section is used (i.e., the capillary pressure pcg is evaluated at the previous time step value
of saturations in the Newton–Raphson iteration), it follows from (9.15) that

fiα = pxiαϕiα, i = 1, 2, . . . , Nc, α = o, g. (9.44)

Then, using (9.8), we see that

xioϕio = xigϕig, i = 1, 2, . . . , Nc.

Thus, by (9.43), we have

Ki = ϕio

ϕig
, i = 1, 2, . . . , Nc, (9.45)

where the fugacity coefficients ϕio and ϕig are defined in (9.14).
A flash calculation is an instant phase equilibrium:

Given p, T , and zi;
Find L (or V ), xio, and xig, i = 1, 2, . . . , Nc.
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It follows from (9.19) and (9.43) that

xio = zi

L+ (1 − L)Ki
, i = 1, 2, . . . , Nc,

Nc∑
i=1

zi(1 −Ki)

L+ (1 − L)Ki
= 0.

(9.46)

Based on (9.46), we introduce the following successive substitution method for the flash
calculation:

Initially,Ki is evaluated by the empirical formula

Ki = 1

pir
exp

(
5.3727(1 + ωi)

[
1 − 1

Tir

])
, pir = p

pic
, Tir = T

Tic
;

(F1) Given Ki and zi, find L by

Nc∑
i=1

zi(1 −Ki)

L+ (1 − L)Ki
= 0;

(F2) Find xio and xig by

xio = zi

L+ (1 − L)Ki
, xig = Kixio, i = 1, 2, . . . , Nc;

(F3) Calculate Ki and zi by

Ki = ϕio

ϕig
, zi = Lxio + (1 − L)xig, i = 1, 2, . . . , Nc;

Return to (F1) and iterate until the convergence of the values Ki .

In general, convergence of this successive substitution method is very slow. However,
it can be used as an initialization for the Newton–Raphson flash iteration discussed below.

9.3.2 Newton–Raphson’s flash calculation

Introduce the notation

Gij =
(
∂fio

∂xjo

)l
−
(
∂fio

∂xNco

)l
+ Ll

1 − Ll

[(
∂fig

∂xjg

)l
−
(
∂fig

∂xNcg

)l]
,

GiNc = 1

1 − Ll

Nc∑
j=1

(
∂fig

∂xjg

(
xjo − xjg

))l
,

Hi(δp, δz1, δz2, . . . , δzNc−1) = f lig − f lio +
[(

∂fig

∂p

)l
−
(
∂fio

∂p

)l]
δp

+ 1

1 − Ll

Nc−1∑
j=1

[(
∂fig

∂xjg

)l
−
(
∂fig

∂xNcg

)l]
δzj
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for i = 1, 2, . . . , Nc, j = 1, 2, . . . , Nc − 1. Then (9.38) can be written in matrix form

G11 G12 · · · G1,Nc−1 G1,Nc

G21 G22 · · · G2,Nc−1 G2,Nc

...
...

...
...

...

GNc−1,1 GNc−1,2 · · · GNc−1,Nc−1 GNc−1,Nc

GNc,1 GNc,2 · · · GNc,Nc−1 GNc,Nc





δx1o

δx2o

...

δx(Nc−1)o

δL



=



H1

H2

...

HNc−1

HNc


.

(9.47)

This system gives (δx1o, δx2o, . . . , δx(Nc−1)o, δL) in terms of δzi , i = 1, 2, . . . , Nc − 1, and
δp.

We point out the difference between the successive substitution method and the
Newton–Raphson iteration in the flash calculation.

• The former method is easier to implement and is more reliable, even near a critical
point. However, its convergence is usually slower; it may take over 1,000 iterations
near the critical point.

• The latter method is faster. But it needs a good initial guess for xio and L, i =
1, 2, . . . , Nc; moreover, this method may not converge near a critical point.

• These two methods can be combined. For example, the former is used to find a good
initial guess for the latter. Also, in places where the latter is difficult to converge, the
former can be utilized instead.

9.3.3 Derivatives of fugacity coefficients

We calculate the partial derivatives involved in the Jacobian coefficient matrix of (9.47).
First, by (9.44), for i, j = 1, 2, . . . , Nc, α = o, g,

∂fiα

∂p
= xiαϕiα + pxiα

∂ϕiα

∂p
,

∂fiα

∂xjα
= p

∂xiα

∂xjα
ϕiα + pxiα

∂ϕiα

∂xjα
,

where
∂xiα

∂xjα
=
{

1 if i = j,

0 if i �= j.

So it suffices to find the derivatives of ϕiα , which is defined by (9.14), i = 1, 2, . . . , Nc,
α = o, g.

It follows from (9.10) that

∂Aα

∂p
= aα

R2T 2
,

∂Bα

∂p
= bα

R T
, α = o, g. (9.48)
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Differentiating both sides of (9.14) gives

1

ϕiα

∂ϕiα

∂p
= bi

bα

∂Zα

∂p
− 1

Zα − Bα

(
∂Zα

∂p
− Bα

p

)

− Aα

2
√

2Bα

 2

aα

Nc∑
j=1

xjα(1 − κij )
√
aiaj − bi

bα

 (9.49)

· 2Bα

(
Zα

p
− ∂Zα

∂p

)/(
Z2
α + 2

√
2ZαBα + B2

α

)
.

Similarly, we can obtain ∂ϕiα/∂xjα using the expressions (cf. Exercise 9.2)

∂Aα

∂xjα
= p

R2T 2

∂aα

∂xjα
,

∂Bα

∂xjα
= p

R T

∂bα

∂xjα
,

∂aα

∂xjα
= 2

Nc∑
i=1

xiα(1 − κij )
√
aiaj ,

∂bα

∂xjα
= bj

(9.50)

for i, j = 1, 2, . . . , Nc, α = o, g.
The Z-factors, Zα (α = o, g), are determined by (9.13), which can be differentiated

to find their derivatives. Implicit differentiation on (9.13) yields

∂Zα

∂p
= −

{
∂Bα

∂p
Z2
α +

(
∂Aα

∂p
− 2 [1 + 3Bα]

∂Bα

∂p

)
Zα

−
(
∂Aα

∂p
Bα + [Aα − 2Bα − 3B2

α

] ∂Bα
∂p

)}
(9.51)/(

2Z2
α − 2(1 − Bα)Zα + (Aα − 2Bα − 3B2

α)
)
.

Consequently, substituting (9.48) into (9.51) gives ∂Zα/∂p. A similar argument, together
with (9.50), gives the derivatives ∂Zα/∂xjα (cf. Exercise 9.3), j = 1, 2, . . . , Nc.

9.3.4 Solution of Peng–Robinson’s cubic equation

The Peng–Robinson cubic equation (9.13) has the form

Z3 + BZ2 + CZ +D = 0 (9.52)

with given inputs B, C, andD. Before discussing the solution of this equation, we consider
a simpler cubic equation:

X3 + PX +Q = 0. (9.53)
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With

� =
(
Q

2

)2

+
(
P

3

)3

,

equation (9.53) has three roots (cf. Exercise 9.4)

X1 = 3

√
−Q

2
+ √

�+ 3

√
−Q

2
− √

�,

X2 = ω
3

√
−Q

2
+ √

�+ ω2 3

√
−Q

2
− √

�,

X3 = ω2 3

√
−Q

2
+ √

�+ ω
3

√
−Q

2
− √

�,

where

ω = −1 + i
√

3

2
, ω2 = −1 − i

√
3

2
, i2 = −1.

Note that (cf. Exercise 9.5)

X1 +X2 +X3 = 0,
1

X1
+ 1

X2
+ 1

X3
= −P

Q
, X1X2X3 = −Q. (9.54)

If � > 0, (9.53) has only one real root X1. If P = Q = 0, there is solely the trivial
solution X1 = X2 = X3 = 0. When � ≤ 0, there are three real roots given by

X1 = 2 3
√R cos θ, X2 = 2 3

√R cos

(
2π

3
+ θ

)
,

X3 = 2 3
√R cos

(
4π

3
+ θ

)
,

(9.55)

where

R =
√

−
(
P

3

)3

, θ = 1

3
arccos

(
− Q

2R
)
.

To solve (9.52), set Z = X− B
3 . Then (9.52) is converted into (9.53) with (cf. Exercise

9.6)

P = −B
2

3
+ C, Q = 2B3

27
− BC

3
+D.

Thus the roots of (9.52) are

Z1 = X1 − B

3
, Z2 = X2 − B

3
, Z3 = X3 − B

3
. (9.56)

If Z1 is the sole real root, it is selected. In the case where there are three real roots, say,

Z1 > Z2 > Z3,

we select Z1 if the vapor (gas) phase dominates. If the liquid (oil) phase dominates, we
select Z1 when Z2 ≤ 0; select Z2 when Z2 > 0 and Z3 ≤ 0; select Z3 when Z3 > 0.
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9.3.5 Practical considerations

We point out a few practical issues in programming the solution of equilibrium relations.

Iteration switch

As noted, depending on the size of L, different variables, either xio and L or xig and V ,
should be used in the flash calculation, i = 1, 2, . . . , Nc. If the gas phase dominates in the
hydrocarbon system (e.g., L < 0.5), the primary unknowns will be xio and L. If the oil
phase dominates (e.g., L ≥ 0.5), the primary unknowns will be xig and V . This choice can
improve solution accuracy and convergence speed. For example, as L gets close to one, the
flash calculation may not converge. In this case, the primary unknown needs to be switched
to V . In programming, the switch of iterations should be done automatically.

Determination of bubble points

The following system of Nc + 1 equations are solved simultaneously for finding the bub-
ble point pressure p and the compositions xig by an Newton–Raphson iteration (i =
1, 2, . . . , Nc):

ziϕio(p, x1o, x2o, . . . , xNco) = xigϕig(p, x1g, x2g, . . . , xNcg),

Nc∑
i=1

xig = 1.
(9.57)

In the late steps of the iteration (e.g., after ten iterations), the second equation in (9.57) can
be replaced by

Nc∑
i=1

ϕio

ϕig
zi = 1 (9.58)

to speedup convergence. In the Newton–Raphson iteration, if the successive values of
pressure change less than a certain value (e.g., 0.01 psi), then this iteration is considered to
have converged. We consider that it fails to converge if more than 30 iterations are required
or if |zi − xig| < 0.001|zi |. In the latter case, the successive substitution method can be
used to obtain p and xig , i = 1, 2, . . . , Nc. A trivial solution occurs when xig = zi for any
value of p, indicating that a dew point occurs.

Determination of dew points

The dew point pressure p and the compositions xio satisfy the system of Nc + 1 equations
(i = 1, 2, . . . , Nc):

xioϕio(p, x1o, x2o, . . . , xNco) = ziϕig(p, x1g, x2g, . . . , xNcg),

Nc∑
i=1

xio = 1.
(9.59)

Again, after about ten Newton–Raphson’s iterations, the second equation in (9.59) is replaced
by

Nc∑
i=1

ϕig

ϕio
zi = 1. (9.60)
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Table 9.1. Reservoir grid data.

Nx1 = Nx2 = 9, Nx3 = 4; h1 = h2 = 293.3 ft

h3 = 30, 30, 50, 50 ft; Datum=7,500 ft. (subsurface)

Porosity: 0.13 (at initial reservoir pressure)

Gas-water contact: 7,500 ft; Sw at contact: 1.0

pcgw at contact: 0.0 psi; initial pressure at contact: 3,550 psia

Water density at contact: 63.0 lb/ft3; cw=3.0E-6 psi−1

Formation water viscosity: 0.78 cp; Rock comp.: 4.0E-6 psi−1

Table 9.2. Reservoir model description.

Layer Thickness (ft) kh (md) kv (md) Depth to center (ft)
1 30 130 13 7,330
2 30 40 4 7,360
3 50 20 2 7,400
4 50 150 15 7,450

Using the same guidelines as in the treatment of bubble points, if the successive values of
pressure in the iteration process change less than 0.01 psi, this iteration is considered to have
converged. We consider that the convergence fails if more than 30 iterations are required or
if |zi − xio| < 0.001|zi |. In the latter case, the successive substitution method can be used
to obtain p and xio, i = 1, 2, . . . , Nc. A trivial solution occurs when xio = zi for any value
of p, indicating that a bubble point occurs.

9.4 The Third SPE Project: Compositional Flow
The simulation problem is chosen from the benchmark problem of the third CSP (Kenyon and
Behie, 1987). Nine companies participated in this comparative project. It is a study of gas
cycling in a rich retrograte condensate reservoir. Two prediction cases are considered. The
first case is gas cycling with constant sales gas removal, and the second case is cycling with
some gas sales deferral to enhance pressure maintenance in the early life of the reservoir. The
specification of the reservoir model is presented in Tables 9.1–9.5, where kh (= k11 = k22)
and kv (= k33) denote the horizontal and vertical permeabilities, respectively. A reservoir
grid with 9 × 9 × 4 is shown in Figure 9.1, and it is diagonally symmetrical, indicating
that it would be possible to simulate half of this reservoir. We chose to model the full
reservoir. Also, the reservoir layers are homogeneous and have a constant porosity, but
there are permeability and thickness variations between layers, a factor leading to unequal
sweepout. The two-well pattern is arbitrary and is employed to allow for some retrograde
condensation without significant revaporization by recycling gas to simulate what occurs in
sweep-inaccessable parts of a real reservoir.

The CVFE method with linear elements introduced in Section 4.3 is used for the
discretization of the governing equations for the compositional model. Due to the layer
structure in the vertical direction of the reservoir under consideration, we divide its domain
into hexagonal prisms, i.e., hexagons in the horizontal plane and rectangles in the vertical
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Table 9.3. Production, injection, and sales data.

Production Location: i = j = 7; perforations: k = 3, 4; radius = 1 ft;
rate: 6,200 MSCF/D (gas rate); min pbh, 500 psi

Injection Location: i = j = 1; perforations: k = 1, 2; radius = 1 ft;
rate: separator rate-sales rate; max pbh: 4,000 psi

Sales rate Constant sales rate to blowdown: 0 < t < 10 yr,
for case 1 1,500 MSCF/D; t > 10 yr, all produced gas to sales
Sales rate Deferred sales: 0 < t < 5 yr, 500 MSCF/D; 5 < t < 10
for case 2 yr, 2,500 MSCF/D; t > 10 yr, all produced gas to sales

Table 9.4. Saturation function data.

Phase saturation krg kro krw pcgw (psi) pcgo (psi)

0.00 0.00 0.00 0.00 > 50 0
0.04 0.005 0.00 0.00 > 50 0
0.08 0.013 0.00 0.00 > 50 0
0.12 0.026 0.00 0.00 > 50 0
0.16 0.040 0.00 0.00 50 0
0.20 0.058 0.00 0.002 32 0
0.24 0.078 0.00 0.010 21 0
0.28 0.100 0.005 0.020 15.5 0
0.32 0.126 0.012 0.033 12.0 0
0.36 0.156 0.024 0.049 9.2 0
0.40 0.187 0.040 0.066 7.0 0
0.44 0.222 0.060 0.090 5.3 0
0.48 0.260 0.082 0.119 4.2 0
0.52 0.300 0.112 0.150 3.4 0
0.56 0.348 0.150 0.186 2.7 0
0.60 0.400 0.196 0.227 2.1 0
0.64 0.450 0.250 0.277 1.7 0
0.68 0.505 0.315 0.330 1.3 0
0.72 0.562 0.400 0.390 1.0 0
0.76 0.620 0.513 0.462 0.7 0
0.80 0.680 0.650 0.540 0.5 0
0.84 0.740 0.800 0.620 0.4 0
0.88 — — 0.710 0.3 0
0.92 — — 0.800 0.2 0
0.96 — — 0.900 0.1 0
1.00 — — 1.000 0.0 0

Table 9.5. Separator pressures and temperatures.

Separator Pressure (psia) Temperature (◦F)
Primary∗ 815 80
Primary 315 80

Second stage 65 80
Stock tank 14.7 60

∗Primary separation at 815 psia until reservoir pressure (at datum)
falls below 2,500 psia; then switch to primary separation at 315 psia.
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130md,30ft

40md,30ft

20md,50ft

150md,50ft

7330ft
7360ft

7400ft

7450ft

datum=7500ft (subsurface)

293.3ft

293.3ft

1
2

3

4

injection production completion

Figure 9.1. A reservoir domain.

Figure 9.2. A planar view of the grid.

direction, as seen in Figure 4.36; also see Figure 9.2 for a planar view of the grid. The initial
conditions, the location of the gas-water contact, and the capillary pressure data produce a
water-gas transition zone extending to the pay zones. However, the very small compress-
ibility and water volume make water quite insignificant for the present problem. Relative
permeability data are used under the assumption that the phase relative permeability function
depends only on its own phase saturation. Oil is immobile to 24% saturation, and krg is re-
duced from 0.74 to 0.4 as condensate builds to this saturation with irreducible water present.

Production is separator gas rate controlled. Liquid production through multistage
separation is to be predicted. The separator train is given, and the primary separator pressure
depends on reservoir pressure as shown in Table 9.5. Sales gas is removed from the bulked
separator gas, and the remaining gas is recycled. Volumetrically, the two cases under
consideration provide for exactly the same amount of recycling gas to be reinjected over
the cycling period (10 years), but more gas is recycled in the critical early years in the
second case. Blowdown (all gas to sales) starts at the end of the tenth year of cycling, and
simulations are run up to 15 years or 1,000 psi average reservoir pressure, whichever occurs
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Table 9.6. Mole fractions of the reservoir fluids.

Component Mol percent
Carbon dioxide (CO2) 1.21

Nitrogen (N2) 1.94
Methane (C1) 65.99
Ethane (C2) 8.69
Propane (C3) 5.91

Iso-butane (IC4) 2.39
N-butane (NC4) 2.78

Iso-pentane (IC5) 1.57
N-pentane (NC5) 1.12

Hexanes (C6) 1.81
Heptanes plus (C7+)∗ 6.59

∗Properties of heptanes plus: specific gravity at 60◦F = 0.774;
API gravity at 60◦F = 51.4; molecular weight=140.

Computed separator gas gravity (air=1.0)=0.736.
Computed gross heating value for separator gas=1,216 Btu

per cubic foot of dry gas at 14.65 psia and 60◦F.
Primary separator gas/separator liquid ratio

=4,812 SCF/bbl at 72◦F and 2,000 psig.

Table 9.7. Pressure volume relations of reservoir fluid at 200◦ F.

Pressure (psig) Relative volume Deviation factor Z
6,000 0.8045 1.129
5,500 0.8268 1.063
5,000 0.8530 0.998
4,500 0.8856 0.933
4,000 0.9284 0.869
3,600 0.9745 0.822
3,428 (dew point) 1.0000 0.803∗
3,400 1.0043
3,350 1.0142
3,200 1.0468
3,000 1.0997
2,800 1.1644
2,400 1.3412
2,000 1.6113
1,600 2.0412
1,300 2.5542
1,030 3.2925
836 4.1393

∗Gas expansion factor=1.295 MSCF/bbl.

first. The simulations are initialized at pressure about 100 psi above the dew point pressure
3,443 psia.

The entire compositional simulation study is divided into two steps:

• A PVT phase behavior study to obtain accurate EOS parameters and prediction results.

• A reservoir simulation study of the compositional flow using the CVFE.
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Table 9.8. Hydrocarbon analysis of lean gas sample.

Component∗ Mol percent GPM
Hydrogen sulfids Nil

Carbon dioxide (CO2) Nil
Nitrogen (N2) Nil
Methane (C1) 94.69
Ethane (C2) 5.27 1.401
Propane (C3) 0.05 0.014

Butanes plus (C4+) Nil
Total 100.00 1.415

∗Computed gas gravity (air=1.0)=0.58.
Computed gross heating value =1,216 Btu

per cubic foot of dry gas at 14.65 psia and 60◦F.

Table 9.9. Pressure volume relations of mixture No. 1 at 200◦ F.

Pressure (psig) Relative volume∗ Liquid volume (percent
of saturated volume)

6,000 0.9115
5,502 0.9387
5,000 0.9719
4,500 1.0135
4,000 1.0687
3,800 1.0965
3,700 1.1116
3,650 1.1203
3,635 (dew point) 1.1224 0.0
3,600 1.1298 0.3
3,500 1.1508 1.7
3,300 1.1969 6.8
3,000 1.2918 12.8

∗Relative volumes and liquid volume percents are all based on
original hydrocarbon pore volume at 3,428 psig and 200◦F.

Table 9.10. Pressure volume relations of mixture No. 2 at 200◦ F.

Pressure (psig) Relative volume Liquid volume (percent
of saturated volume)

6,000 1.1294
5,500 1.1686
5,000 1.2162
4,500 1.2767
4,300 1.3064
4,100 1.3385
4,050 1.3479
4,015 (dew point) 1.3542 0.0
3,950 1.3667 0.1
3,800 1.3992 0.5
3,400 1.5115 4.5
3,000 1.6709 9.4
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Table 9.11. Pressure volume relations of mixture No. 3 at 200◦ F.

Pressure (psig) Relative volume Liquid volume (percent
of saturated volume)

6,000 1.6865
5,600 1.7413
5,300 1.7884
5,100 1.8233
5,000 1.8422
4,950 1.8519
4,900 1.8620
4,800 1.8827
4,700 1.9043
4,610 (dew point) 1.9248
4,500 1.9512 0.1
4,200 2.0360 0.3
3,900 2.1378 0.6
3,500 2.3193 2.1
3,000 2.6348 6.0

Table 9.12. Pressure volume relations of mixture No. 4 at 200◦ F.

Pressure (psig) Relative volume Liquid volume (percent
of saturated volume)

6,000 2.2435
5,500 2.3454
5,000 2.4704
4,880 (dew point) 2.5043 0.0
4,800 2.5288 Trace
4,600 2.5946 0.1
4,400 2.6709 0.3
4,000 2.8478 0.7
3,500 3.1570 1.4
3,000 3.5976 3.6

9.4.1 PVT phase behavior study

PVT data

The measured PVT data are shown in Tables 9.6–9.16. These data include hydrocarbon
sample analysis, constant composition expansion data, constant volume depletion data,
and swelling data of four mixtures of reservoir gas with lean gas. Table 9.6 gives the mole
fractions of the reservoir fluids. Table 9.7 describes the constant composition expansion data,
and the computedZ-factors at and above the dew point pressure. Tables 9.8–9.12 show data
for the swelling tests of reservoir gas with lean gas. Table 9.8 gives the lean gas composition.
Note that it is virtually free of C3+ fractions. This contrasts with the separator gas recycled
in the reservoir problem, which has about 10% of C3+. Hence matching the swelling data
is more significant for recycling with gas plant residue gas than for typical separator gas
compositions. Tables 9.9–9.12 indicate the pressure-volume data for expansions at 200◦ F
for four mixtures (with the respective mole fractions: 0.1271, 0.3046, 0.5384, and 0.6538)
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Table 9.13. Retrograde condensation during gas depletion at 200◦ F.

Pressure (psig) Retrograde liquid volume
(percent of hydrocarbon pore space)

3,428 (dew point) 0.0
3,400 0.9
3,350 2.7
3,200 8.1
3,000 (first depletion level) 15.0
2,400 19.9
1,800 19.2
1,200 17.1
700 15.2
0 10.2

Table 9.14. Computed cumulative recovery during depletion.

Reservoir pressure (psig)
Cumulative recovery per Initial
MMSCF of original fluid in place 3,428 3,000 2,400 1,800 1,200 700

Well stream (MSCF) 1,000 0 90.95 247.02 420.26 596.87 740.19
Normal temp. separation∗

Stock tank liquid (B) 131.00 0 7.35 14.83 20.43 25.14 29.25
Primary separator gas (MSCF) 750.46 0 74.75 211.89 369.22 530.64 666.19

Second stage gas (MSCF) 107.05 0 7.25 16.07 23.76 31.45 32.92
Stock tank gas (MSCF) 27.25 0 2.02 4.70 7.15 9.69 11.67
Total “plant products” in

primary separator sas (Gallons)
Propane (C3) 801 0 85 249 443 654 876

Butanes (total C4) 492 0 54 613 295 440 617
Pentanes plus (C5+) 206 0 22 67 120 176 255

Total “plant products” in
2nd stage gas (gallons)

Propane (C3) 496 0 35 80 119 161 168
Butanes (total C4) 394 0 30 69 106 146 153

Pentanes plus (C5+) 164 0 12 29 45 62 65
Total plant products in
well stream (gallons)

Propane (C3) 1,617 0 141 374 629 900 1,146
Butanes (total C4) 1,648 0 137 352 580 821 1,049

Pentanes plus (C5+) 5,464 0 321 678 973 1,240 1,488

∗Primary separator at 800 psig and 80◦ F reduced to 300 psig and 80◦ F for reservoir
pressure below 1,200 psig; second stage at 50 psig and 80◦ F; stock tonk at 0 psig and 60◦ F.

of lean gas with reservoir gas. Liquid dropout data are shown for each of the expansions.
Table 9.13 gives retrograde condensation during gas depletion (constant volume depletion)
of the original reservoir fluids. Table 9.14 indicates the computed yields of separator and
gas plant products, and Table 9.15 shows compositions of equilibrium gas during constant
volume depletion. We use these data to match the surface volumes generated by reservoir
gas processed in the multistage separators. Table 9.16 gives the results of the swelling
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Table 9.15. Hydrocarbon analysis of produced well stream-Mol percent: Deple-
tion study at 200◦ F.

Reservoir pressure (psig)
Component 3,428 3,000 2,400 1,800 1,200 700 700∗

Carbon dioxide (CO2) 1.21 1.24 1.27 1.31 1.33 1.32 0.44
Nitrogen (N2) 1.94 2.13 2.24 2.27 2.20 2.03 0.14
Methane (C1) 65.99 69.78 72.72 73.98 73.68 71.36 12.80
Ethane (C2) 8.69 8.66 8.63 8.79 9.12 9.66 5.27
Propane (C3) 5.91 5.67 5.46 5.38 5.61 6.27 7.12

Iso-butane (IC4) 2.39 2.20 2.01 1.93 2.01 2.40 4.44
N-butane (NC4) 2.78 2.54 2.31 2.18 2.27 2.60 5.96

Iso-pentane (IC5) 1.57 1.39 1.20 1.09 1.09 1.23 4.76
N-pentane (NC5) 1.12 0.96 0.82 0.73 0.72 0.84 3.74

Hexanes (C6) 1.81 1.43 1.08 0.88 0.83 1.02 8.46
Heptanes (C7) 1.44 1.06 0.73 0.55 0.49 0.60 8.09
Octanes (C8) 1.50 1.06 0.66 0.44 0.34 0.40 9.72
Nonanes (C9) 1.05 0.69 0.40 0.25 0.18 0.16 7.46
Decanes (C10) 0.73 0.43 0.22 0.12 0.08 0.07 5.58

Undecanes (C11) 0.49 0.26 0.12 0.06 0.03 0.02 3.96
Dodecanes plus (C12+) 1.38 0.50 0.13 0.04 0.02 0.02 12.06

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Molecular weight of
heptanes plus (C7+) 140 127 118 111 106 105 148
Specific gravity of

heptanes plus (C7+) 0.774 0.761 0.752 0.745 0.740 0.739 0.781
Deviation Z-factor

Equilibrium gas 0.803 0.798 0.802 0.830 0.877 0.924
Two phase 0.803 0.774 0.748 0.730 0.703 0.642

Well stream produced-
Cumulative percent of initial 0.00 9.095 24.702 42.026 59.687 74.019

GPM from smooth compositions
Propane plus (C3+) 8.729 6.598 5.159 4.485 4.407 5.043
Butanes plus (C4+) 7.112 5.046 3.665 3.013 2.872 3.328
Pentanes plus (C5+) 5.464 3.535 2.287 1.702 1.507 1.732

∗Equilibrium liquid phase, representing 10.762% of original well stream.

Table 9.16. Solubility and swelling test at 200◦ F (injection gas-lean gas).

Mixture Cumul. gas injected Cumul. gas injected Swollen Dew point
number (SCF/bbl)(1) (Mol fraction)(2) volume(3) pressure (psig)

0∗ 0.0 0.0000 1.0000 3,428
1 190 0.1271 1.1224 3,635
2 572 0.3046 1.3542 4,015
3 1,523 0.5384 1.9248 4,610
4 2,467 0.6538 2.5043 4,880

∗Original reservoir fluid.
(1) SCF/bbl is the cumulative cubic feet of injection gas at 14.65 psia and

60◦ F per barrel of original reservoir fluid at 3,428 psig and 200◦ F.
(2) Mol fraction is cumulative mols of injection gas per total mols of indicated mixture.

(3) Swollen volume is barrels of indicated mixture at its dew point pressure
and 200◦ F per barrel of original reservoir fluid at 3,428 psig and 200◦ F.
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Table 9.17. HC1, HC2, and HC3.

Component Mole fraction Molecular weights Specific gravity
HC1 0.05011 118.44 0.74985
HC2 0.01340 193.95 0.81023
HC3 0.00238 295.30 0.86651

Table 9.18. Pseudogrouping of components.

Pseudocomponent P1 P2 P3 P4 P5 P6 P7

Natural component C1, N2 C2, CO2 C3, C4 C5, C6 HC1 HC2 HC3

Mole fraction 0.6793 0.0990 0.1108 0.0450 0.05011 0.0134 0.00238
Molecular weights 16.38 31.77 50.64 77.78 118.44 193.95 295.30

experiments of reservoir gas with lean gas for the four samples. Note that the dew point
pressure increases by approximately 50% for lean gas additions of 2,467 SCF/bbl for a total
gas content of about 8,000–9,000 SCF/STB.

PVT study for matching the PVT data

The PVT study includes:

• splitting C7+,

• pseudogrouping,

• constant composition expansion and constant volume depletion,

• swelling tests,

• critical parameters at the formation and separator conditions for compositional mod-
eling.

The heavy C7+ component is split into three components, HC1, HC2, and HC3, to
enhance the accuracy of PVT data matching. The mole fractions, molecular weights, and
specific gravity of these components are stated in Table 9.17.

We use a pseudogrouping approach to group components. The purpose of pseu-
dogrouping is to reduce the number of components involved in compositional modeling.
These pseudocomponents are described in Table 9.18.

Detailed matches of the PVT data are displayed in Figures 9.3–9.6. Figure 9.3 shows
pressure-volume data in constant composition expansion of the reservoir gas at 200◦ F.
Figure 9.4 indicates retrograde condensate during constant volume depletion. Liquid yield
by multistage surface separation in reservoir gas produced by constant volume depletion is
displayed in Figure 9.5. The results of swelling of reservoir gas with increasing the dew
point pressure of injected lean gas are given in Figure 9.6. There is a very good agreement
between the laboratory and computed PVT data.

Finally, Tables 9.19–9.22 give a summary for the characterization data and binary
interaction coefficients of the components at the formation and separator conditions.
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Figure 9.3. Pressure-volume relation of reservoir fluid at 200◦ F: Constant com-
position expansion (cf. Table 9.7); laboratory data (dotted) and computed data (solid).

Figure 9.4. Retrograde condensate during constant volume gas depletion at 200◦ F
(cf. Table 9.13); laboratory data (dotted) and computed data (solid).

Figure 9.5. Three-stage separator yield during constant volume gas depletion at
200◦ F (cf. Table 9.14); laboratory data (dotted) and computed data (solid).
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Figure 9.6. Dew point pressure versus cumulative gas injected during swelling
with lean gas at 200◦ F (cf. Table 9.16); laboratory data (dotted) and computed data (solid).

Table 9.19. Characterization data of components at the formation conditions.

Pseudo- Zc Pc Tc Molecular Acentric �a �b
components (psia) (◦F) weight ω

P1 0.28968 667.96 −119.11 16.38 0.00891 0.34477208 0.06328161
P2 0.28385 753.82 90.01 31.77 0.11352 0.52197368 0.09982480
P3 0.27532 586.26 252.71 50.64 0.17113 0.51497212 0.10747888
P4 0.26699 469.59 413.50 77.78 0.26910 0.41916871 0.09345540
P5 0.27164 410.14 605.99 118.44 0.34196 0.48594317 0.07486045
P6 0.23907 260.33 795.11 193.95 0.51730 0.57058309 0.10120595
P7 0.22216 183.92 988.26 295.30 0.72755 0.45723552 0.07779607

Table 9.20. Binary interaction coefficients at the formation conditions.

Components P1 P2 P3 P4 P5 P6 P7

P1 0.0
P2 0.000622 0.0
P3 −0.002471 −0.001540 0.0
P4 0.011418 0.010046 0.002246 0.0
P5 −0.028367 0.010046 0.002246 0.0 0.0
P6 −0.100000 0.010046 0.002246 0.0 0.0 0.0
P7 0.206868 0.010046 0.002246 0.0 0.0 0.0 0.0

Table 9.21. Characterization data of components at the separator conditions.

Pseudo- Zc Pc Tc Molecular Acentric �a �b
components (psia) (◦F) weight ω

P1 0.28968 667.96 −119.11 16.38 0.00891 0.50202385 0.09960379
P2 0.28385 753.82 90.01 31.77 0.11352 0.45532152 0.08975547
P3 0.27532 586.26 252.71 50.64 0.17113 0.46923415 0.08221724
P4 0.26699 469.59 413.50 77.78 0.26910 0.58758251 0.08178213
P5 0.27164 410.14 605.99 118.44 0.34196 0.55567652 0.06715680
P6 0.23907 260.33 795.11 193.95 0.51730 0.49997263 0.07695341
P7 0.22216 183.92 988.26 295.30 0.72755 0.45723552 0.07779607
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Table 9.22. Binary interaction coefficients at the separator conditions.

Components P1 P2 P3 P4 P5 P6 P7

P1 0.0
P2 0.000622 0.0
P3 −0.002471 −0.001540 0.0
P4 0.011418 0.010046 0.002246 0.0
P5 0.117508 0.010046 0.002246 0.0 0.0
P6 0.149871 0.010046 0.002246 0.0 0.0 0.0
P7 0.112452 0.010046 0.002246 0.0 0.0 0.0 0.0

Table 9.23. The initial fluids in-place.

Wet gas (BSCF) Dry gas (BSCF) Stock tank oil (MMSTB)
25.774 23.246 3.450

9.4.2 Reservoir simulation study

The initial fluids in-place using multistage separation are given in Table 9.23. Simulation
results for the compositional model considered are given in Figures 9.7–9.13. The time step
size used in iterative IMPES is about 30 days (in the first few time steps, it is smaller). The
compositional simulator uses the ORTHOMIN Krylov subspace algorithm, with incomplete
LU factorization preconditioners (cf. Chapter 5), as the linear solver.

As noted earlier, the first case is gas cycling with constant sales gas removal, while
the second case is cycling with some gas sales deferral to enhance pressure maintenance in
the early life of the reservoir. The total sales gas removal is the same for the two cases; the
difference lies in the way sales gas is removed in the first ten years (cf. Table 9.3). For a gas
condensate reservoir, decreasing the occurrence of retrograde condensate phenomena leads
to less loss of heavy hydrocarbon components and more production of oil.

Stock-tank oil rates for the first and second cases and the corresponding cumulative
liquid production for these cases at the final simulation time of 15 years are shown in
Figures 9.7–9.10. Incremental stock-tank oil produced by gas-sales deferral (the second
case minus the first), and oil saturations are given in Figures 9.11–9.13. Primary separator
switchout occurs late in the cycling phase (10 years). The predicted surface oil rate is closely
correlated with the liquid yield predictions shown in Figure 9.5.

Figure 9.11 gives the incremental stock-tank oil produced by gas-sales deferral. At
the peak of this curve (at the eighth year), the cumulative stock-tank oil produced by the
second case is 182 MSTB more than that from the first case (i.e, 9.76% increase). At the
final production time (the 15th year), the increase is down to 159 MSTB (6.65%). This
phenomenon can be understood from the observation that after injection of recycle gas
stops, liquid production is due to depletion only, and the heavy end fractions vaporize into
the vapor phase and are produced.

Figures 9.12 and 9.13 give the oil saturation at the gridblock (7,7,4) for these two
cases, respectively. From these two figures, we see that the oil saturation in the second case
is smaller than that in the first case. This shows that the retrograde condensate phenomenon
in the second case occurs less than that in the first.
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Figure 9.7. Stock-tank oil production rate in case 1.

Figure 9.8. Stock-tank oil production rate in case 2.

Figure 9.9. Cumulative stock-tank oil production in case 1.
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Figure 9.10. Cumulative stock-tank oil production in case 2.

Figure 9.11. Incremental stock-tank oil produced by gas-sales deferral (case 2
minus case 1).

Figure 9.12. Oil saturation in grid block (7,7,4) in case 1.



“chenb
2006/2
page 37

�

�

�

�

�

�

�

�

378 Chapter 9. The Compositional Model

Figure 9.13. Oil saturation in grid block (7,7,4) in case 2.

Compared with those prepared by the nine companies (Kenyon and Behie, 1987),
the numerical results in Figures 9.7–9.13 show that the numerical scheme here performs
very well. The stock-tank oil rate and corresponding cumulative production are close to
the respective averaged values of those provided by nine companies (Kenyon and Behie,
1987). In the numerical scheme for the compositional simulation here, the treatment of
crossing “bubble points” and “dew points” in a Newton–Raphson iteration is very accurate,
which leads to a very accurate computation of Jacobian matrices when the flow changes
from three-phase to two-phase or vice versa. The scheme here also utilizes an accurate
postprocessing technique for checking consistency of the solution variables (F, L)with the
natural variables (So, Sg) after the Newton–Raphson iteration.

9.4.3 Computational remarks

We have applied an iterative IMPES solution technique to the numerical simulation of three-
dimensional, three-phase, multicomponent compositional flow in porous media. The CVFE
method with linear elements was employed for discretizing the governing equations of this
compositional model. Numerical experiments were presented for the benchmark problem
of the third CSP and showed that the iterative IMPES technique performs very well for this
problem of a moderate size. To simulate accurately the process of recycle gas injection in
a gas condensate reservoir using a compositional model, from our experience the following
factors are very important:

• Through a PVT data match of the retrograde condensate curve during constant volume
depletion, one can predict accurately the change of the reservoir oil saturation during
a pressure decrease.

• Through a PVT data match of swelling tests, one sees that the increase of the dew point
pressure after injection of recycle gas can lead to the transfer of heavy hydrocarbon
components in the thermodynamic equilibrium from the liquid phase to the vapor
phase and to the production of these components at production wells, thus increasing
production.
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• In compositional simulations, it is necessary to input two sets of critical PVT data;
one for high pressure used for simulation of a reservoir flow process, and the other for
lower pressure used for simulation of a separator process. The efficiency of enhanced
oil recovery depends on the accuracy of the separator simulation.

The simulations in this section were performed on an SGI Power Indigo with 1 GB
RAM, and the CPU time for the present compositional problem at the final time of 15 years
is about 39 seconds.

9.5 Bibliographical Remarks
The choice of primary variables made in Section 9.2.1 follows Nolen (1973) andYoung and
Stephenson (1983). The numerical results reported in Section 9.4 are taken from Chen et
al. (2005A), which contains additional numerical results. More information about the data
used in the third SPE CSP can be found in Kenyon and Behie (1987).

Exercises
9.1. Derive equation (9.22) using the second equation in (9.3) and equations (9.4), (9.16),

and (9.21) and neglecting the variation of ρα with respect to space.

9.2. For the Newton–Raphson flash calculation introduced in Section 9.3.2, evaluate
∂ϕiα/∂xjα , i, j = 1, 2, . . . , Nc, α = o, g.

9.3. For the Newton–Raphson flash calculation introduced in Section 9.3.2, compute
∂Zα/∂xjα , j = 1, 2, . . . , Nc, α = o, g.

9.4. Given the cubic equation

X3 + PX +Q = 0,

show that its three roots are

X1 = 3

√√√√−Q
2
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9.5. LetX1,X2, andX3 be the three roots in Exercise 9.4. Prove that they satisfy equations
(9.54).



“chenb
2006/2
page 38

�

�

�

�

�

�

�

�

380 Chapter 9. The Compositional Model

9.6. Defining Z = X − B
3 , show that equation (9.52) can be transformed into equation

(9.53) with

P = −B
2

3
+ C, Q = 2B3

27
− BC

3
+D.

9.7. Prove that the three roots Z1, Z2, and Z3 of equation (9.52) satisfy

Z1 + Z2 + Z3 = −B, 1

Z1
+ 1

Z2
+ 1

Z3
= −C

D
, Z1Z2Z3 = −D.
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Chapter 10

Nonisothermal Flow

Isothermal flows were considered in Chapters 6–9; we now discuss numerical simulation
of nonisothermal flow in a petroleum reservoir. Thermal methods, particularly steam drive
and soak, make up a very large share of the enhanced oil recovery (EOR) projects in the
petroleum industry and have experienced rapid growth since the early 1970s. Steam methods
recently accounted for nearly 80% of the EOR oil in USA (Lake, 1989). Thermal flooding
has been commercially successful for the past 40 years.

Thermal methods rely on several displacement mechanisms to recover oil, such as vis-
cosity reduction, distillation, miscible displacement, thermal expansion, wettability changes,
cracking, and lowered oil-water interfacial tension. For many applications, most important
is the reduction of crude viscosity with increasing temperature. Four basic approaches to
achieve this mechanism are hot water flooding, steam soak, steam drive, and in situ com-
bustion. In a steam soak (stimulation or huff’n puff), for example, steam is introduced into
a well, and then the well is returned to production after a brief shut-in period.

The basic differential equations for nonisothermal flow are reviewed in Section 10.1.
The rock and fluid properties are also briefly stated there. The SS technique developed for
the black oil model in Chapter 8 is extended to the nonisothermal flow in Section 10.2.
Numerical results based on the fourth CSP organized by the SPE are reported in Section
10.3. Finally, bibliographical information is given in Section 10.4.

10.1 Basic Differential Equations
The governing equations for nonisothermal flow in a porous medium � were described in
Section 2.9. The mass conservation equations and Darcy’s laws are the same as for the
compositional model discussed in Chapter 9; an additional energy conservation equation is
required. For the convenience of the reader, we review these equations.

The governing equations are based on the displacement mechanisms of thermal meth-
ods: (a) reduction of crude viscosity with increasing temperature, (b) change of relative
permeabilities for greater oil displacement, (c) vaporization of connate water and of a por-
tion of crudes for miscible displacement of light components, and (d) high temperatures of

381
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382 Chapter 10. Nonisothermal Flow

fluids and rock to maintain high reservoir pressure. They can model the following important
physical factors and processes:

• viscosity, gravity, and capillary forces,

• heat conduction and convection processes,

• heat losses to overburden and underburden of a reservoir,

• mass transfer between phases,

• effects of temperature on the physical property parameters of oil, gas, and water,

• rock compression and expansion.

10.1.1 The basic equations

We assume that the chemical components form at most three phases (e.g., water, oil, and gas),
Nc chemical components may exist in all three phases, and diffusive effects are neglected.

Let φ and k denote the porosity and permeability of a porous medium � ⊂ R
3, and

let Sα , µα , pα , uα , and krα be the saturation, viscosity, pressure, volumetric velocity, and
relative permeability, respectively, of the α-phase, α = w, o, g. Also, let ξiα represent the
molar density of component i in the α-phase, i = 1, 2, . . . , Nc, α = w, o, g. The molar
density of phase α is given by

ξα =
Nc∑
i=1

ξiα, α = w, o, g. (10.1)

The mole fraction of component i in phase α is then defined by

xiα = ξiα/ξα, i = 1, 2, . . . , Nc, α = w, o, g. (10.2)

The total mass is conserved for each component:

∂

∂t

g∑
α=w

xiαξαSα + ∇ ·
g∑

α=w
xiαξαuα

=
g∑

α=w
xiαqα, i = 1, . . . , Nc,

(10.3)

where qα stands for the flow rate of phase α at the wells. In (10.3), the volumetric velocity
uα is given by Darcy’s law:

uα = −krα
µα

k (∇pα − ρα℘∇z) , α = w, o, g, (10.4)

where ρα is the mass density of the α-phase, ℘ is the magnitude of the gravitational accel-
eration, and z is the depth. The energy conservation equation takes the form

∂

∂t

(
φ

g∑
α=w

ραSαUα + (1 − φ)ρsCsT

)

+ ∇ ·
g∑

α=w
ραuαHα − ∇ · (kT∇T ) = qc − qL,

(10.5)
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reservoir

underburden

overburden

Figure 10.1. Reservoir, overburden, and underburden.

where T is the temperature, Uα and Hα are the specific internal energy and enthalpy of
the α-phase (per unit mass), ρs and Cs are the density and the specific heat capacity of the
solid, kT represents the total thermal conductivity, qc denotes the heat source item, and qL
indicates the heat loss to overburden and underburden. In (10.5), the specific internal energy
Uα and enthalpy Hα of phase α can be computed from

Uα = CVαT , Hα = CpαT ,

whereCVα andCpα represent the heat capacities of phase α at constant volume and constant
pressure, respectively.

In addition to the differential equations (10.3)–(10.5), there are also algebraic con-
straints. The mole fraction balance implies

Nc∑
i=1

xiα = 1, α = w, o, g. (10.6)

In the transport process, the saturation constraint reads

Sw + So + Sg = 1. (10.7)

Finally, the phase pressures are related by capillary pressures

pcow = po − pw, pcgo = pg − po. (10.8)

The equilibrium relations describing the mass distribution of hydrocarbon components into
the phases are given by

fiw(pw, T , x1w, x2w, . . . , xNcw) = fio(po, T , x1o, x2o, . . . , xNco),

fio(po, T , x1o, x2o, . . . , xNco) = fig(pg, T , x1g, x2g, . . . , xNcg),
(10.9)

where fiα is the fugacity function of the ith component in the α-phase (cf. Section 3.2.5),
i = 1, 2, . . . , Nc, α = w, o, g.

In thermal methods, heat is lost to the adjacent strata of a reservoir or the overburden
and underburden, which is included in the term qL of (10.5). We assume that the overburden
and underburden extend to infinity along both the positive and negative x3-axis (the vertical
direction); see Figure 10.1. If the overburden and underburden are impermeable, heat is
transferred entirely through conduction. With all fluid velocities and convective fluxes being
zero, the energy conservation equation (10.5) reduces to

∂

∂t

(
ρobCp,obTob

) = ∇ · (kob∇Tob), (10.10)
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where the subscript ob indicates that the variables are associated with the overburden and
Cp,ob is the heat capacity at constant pressure. The initial condition is the original temper-
ature Tob,0 of the overburden:

Tob(x, 0) = Tob,0(x).

The boundary condition at the top of the reservoir is

Tob(x1, x2, x3, t) = T (x1, x2, x3, t).

At x3 = ∞, Tob is fixed:

Tob(x1, x2,∞, t) = T∞.

On other boundaries, we use the impervious boundary condition

kob∇Tob · ν = 0,

where ν represents the outward unit normal to these boundaries. Now, the rate of heat loss
to the overburden can be calculated by kob∇Tob ·ν, where ν is the unit normal to the interface
between the overburden and reservoir (pointing to the overburden). For the underburden,
the heat conduction equation is

∂

∂t

(
ρubCp,ubTub

) = ∇ · (kub∇Tub), (10.11)

and similar initial and boundary conditions can be developed as for the overburden.
Equations (10.3)–(10.9) provide 3Nc + 10 independent relations, differential or al-

gebraic, for the 3Nc + 10 dependent variables: xiα , uα , pα , T , and Sα , α = w, o, g,
i = 1, 2, . . . , Nc. If (10.10) and (10.11) are included, two more unknowns Tob and Tub are
added. With proper initial and boundary conditions, this is a closed differential system for
these unknowns.

10.1.2 Rock properties

The rock properties for nonisothermal flow are similar to those for the isothermal black
oil and compositional models, but now these properties depend on temperature (cf. Section
3.3). In particular, the capillary pressures are of the form

pcw(Sw, T ) = pw − po, pcg(Sg, T ) = pg − po, (10.12)

wherepcw = −pcow andpcg = pcgo. For notational convenience, we setpco = 0. Similarly,
the relative permeabilities for water, oil, and gas are

krw = krw(Sw, T ), krow = krow(Sw, T ),

krg = krg(Sg, T ), krog = krog(Sg, T ),

kro = kro(Sw, Sg, T ).

(10.13)
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Stone’s models (cf. Section 3.1.2) can be adapted for the oil relative permeability kro, for
example.

As an example, the relative permeability functions krw and krow for a water-oil system
can be defined by

krw = krwro(T )

(
Sw − Swir (T )

1 − Sorw(T )− Swir (T )

)nw
,

krow = krocw(T )

(
1 − Sw − Sorw(T )

1 − Sorw(T )− Swc(T )

)now
,

(10.14)

and for a gas-oil system, krg and krog by

krg = krgro(T )

(
Sg − S∗

gr

1 − Swc(T )− Soinit − S∗
gr

)ng
,

krog = krocw(T )

(
1 − Sg − Swc(T )− Sorg(T )

1 − Swc(T )− Sorg(T )

)nog
,

(10.15)

where nw, now, ng, and nog are nonnegative real numbers measured in the laboratory;
Swc, Swir , Sorw, Sorg , and S∗

gr are the connate water saturation, irreducible water saturation,
residual oil saturation in the water-oil system, residual oil saturation in the gas-oil system,
and residual gas saturation; krwro, krocw, and krgro are the water relative permeability at the
residual oil saturation for the water-oil system, the oil relative permeability at the connate
water saturation, and the gas relative permeability at the residual oil saturation for the gas-oil
system, respectively; and Soinit is the initial oil saturation in the gas-oil system. Finally,
for the rock properties, one must consider the thermal conductivity and heat capacity of the
reservoir, overburden, and underburden.

10.1.3 Fluid properties

The equations of state discussed in Section 3.2.5 can be used to define the fugacity functions
fiα in (10.9). Because of complexity of nonisothermal flow, however, an equilibrium K-
value approach is often used to describe the equilibrium relations (cf. Section 3.2.5):

xiw = Kiw(p, T )xio, xig = Kig(p, T )xio, i = 1, 2, . . . , Nc. (10.16)

One example of evaluating the K-values Kiα uses the empirical formula

Kiα =
(
κ1
iα + κ2

iα

p
+ κ3

iα p

)
exp

(
− κ4

iα

T − κ5
iα

)
, (10.17)

where the constants κjiα are obtained in the laboratory, i = 1, 2, . . . , Nc, j = 1, 2, 3, 4, 5,
α = w, g, and p and T are pressure and temperature. For notational convenience, we use
Kio = 1, i = 1, 2, . . . , Nc.
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Water properties

Physical properties of water and steam, such as density, internal energy, enthalpy, and
viscosity, can be found from a water-steam table (Lake, 1989). Such a table is given in
terms of the independent variables: pressure and temperature. In the case where all three
phases coexist, a reservoir is in the saturated state. In this case, there is free gas; pressure
and temperature are related, and only one of them is employed as an independent variable.

Oil properties

While any number of hydrocarbon components can be treated in the differential system
describing the nonisothermal multiphase multicomponent flow considered in this chapter,
computational work and time significantly increase as the number of components increases.
It is often computationally convenient (or necessary) to group several similar chemical
components into one mathematical component (cf. Section 9.4.1). In this way, only a few
components (or pseudocomponents) are simulated in practical applications.

The oil phase is a mixture of hydrocarbon components, and these components range
from the lightest component, methane (CH4), to the heaviest component, bitumen. One way
to reduce the number of components is to introduce pseudocomponents, as noted. According
to the compositions of each pseudocomponent, one can deduce its physical properties,
such as its pseudomolecular weight (which may not be a constant), critical pressure and
temperature, compressibility, density, viscosity, thermal expansion coefficient, and specific
heat. These properties are functions of pressure and temperature.

The most important property is the oil and gas phase viscosity dependence on tem-
perature:

µio = exp
(
a1T

b1
)+ c1, µig = a2T

b2 ,

where T is in absolute degrees, a1, b1, c1, a2, and b2 are empirical parameters that can be
measured in the laboratory, and µio and µig are the viscosities of the ith component in the
oil and gas phases, respectively.

10.2 Solution Techniques
In simulation of nonisothermal flow, three parts must be treated: the oil reservoir, over-
burden, and underburden. Because of the weak coupling between the reservoir and the
overburden and underburden, the equations in these three parts can be decoupled; that is,
they are solved in a sequential manner. In the reservoir domain, the IMPES, sequential,
and SS techniques introduced for the black oil model in Chapter 8 can be applied. For the
nonisothermal flow, because there exist strong nonlinearity and coupling in the governing
equations, pressure and temperature vary greatly, and mass and energy transfer frequently
between the oil and gas phases, the SS technique should be used for the reservoir system.
The heat conduction equations for overburden and underburden are simple enough that a
fully implicit scheme in time can be employed for their solution.
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10.2.1 Choice of primary variables

As discussed earlier, (10.3)–(10.9) form a strongly coupled system of time-dependent non-
linear differential equations and algebraic constraints for 3Nc + 10 unknowns. Although
there are the same number of equations for these dependent variables, the entire system can
be rewritten in terms of certain primary variables, with other variables being obtained from
these variables.

Undersaturated state

As discussed in Section 8.1.4, if all three phases coexist, a reservoir is in the saturated state.
When all the gas dissolves into the oil phase (i.e., there is no free gas; Sg = 0), the reservoir
is in the undersaturated state. The choice of primary unknowns depends on the state of a
reservoir.

We introduce the potentials


α = pα − ρα℘z, α = w, o, g. (10.18)

Also, we define the transmissibilities

Tα = ραkrα

µα
k,

Tiα = xiαξαkrα

µα
k, i = 1, 2, . . . , Nc, α = w, o, g.

(10.19)

Moreover, we use the total mole fraction

xi =
g∑

α=w
xiα, i = 1, 2, . . . , Nc. (10.20)

Using (10.16), equation (10.20) becomes

xio = 1

Kiwog(p, T )
xi, i = 1, 2, . . . , Nc, (10.21)

where Kiwog(p, T ) = Kiw + 1 +Kig . As a result, we see that

xiw = Kiw

Kiwog
xi, xig = Kig

Kiwog
xi, i = 1, 2, . . . , Nc. (10.22)

Thus xi should be used as a primary unknown, i = 1, 2, . . . , Nc. Due to equation (10.6),
only Nc − 2 unknowns are independent. Consequently, in the undersaturated state,
(p, S, x1, x2, . . . , xNc−2, T ) are chosen as the primary unknowns, where p = po and
S = Sw. The differential system for these unknowns consists of the Nc component mass
conservation equations (cf. Exercise 10.1)

∂(φFixi)

∂t
=

g∑
α=w

∇ · (Tiα∇
α)+
g∑

α=w
xiαqα, i = 1, 2, . . . , Nc, (10.23)
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and the energy conservation equation

∂

∂t

(
φ

g∑
α=w

ραSαCVαT + (1 − φ)ρsCsT

)

− ∇ ·
g∑

α=w
CpαTTα∇
α − ∇ · (kT∇T ) = qc − qL,

(10.24)

where

Fi =
g∑

α=w

Kiα

Kiwog
ξαSα.

Saturated state

In the saturated state, there is free gas. Pressure p and temperature T are related; their
relationship may be given through a saturated steam table. Thus only one can be used as a pri-
mary unknown. In this case, we choose the primary unknowns (p, Sw, So, x1, x2, . . . , xNc−2),
where p = po. The system of differential equations is composed of theNc component mass
conservation equations (10.23) and the energy conservation equation (10.24).

10.2.2 The SS technique

Let n > 0 (an integer) indicate a time step. For any function v of time, we use δ̄v to denote
the forward time increment: δ̄v = vn+1 − vn. A time approximation for the system of
equations (10.23) and (10.24) can be defined (i = 1, 2, . . . , Nc) as

1

�t
δ̄ (φFixi) =

g∑
α=w

∇ · (Tn+1
iα ∇
n+1

α

)+
g∑

α=w
xn+1
iα qn+1

α ,

1

�t
δ̄

(
φ

g∑
α=w

ραSαCVαT + (1 − φ)ρsCsT

)

− ∇ ·
g∑

α=w
T̃n+1
α ∇
n+1

α − ∇ · (kn+1
T ∇T n+1)

= qn+1
c − qn+1

L ,

(10.25)

where �t = tn+1 − tn and T̃n+1
α = Cn+1

pα T
n+1Tn+1

α .
Since system (10.25) is nonlinear in the primary unknowns, it can be linearized via

the Newton–Raphson iteration introduced in Section 8.2.1. For a generic function v of time,
set

vn+1,l+1 = vn+1,l + δv,

where l refers to the Newton–Raphson iteration number and δv represents the increment in
this iteration step. When no ambiguity occurs, we replace vn+1,l+1 and vn+1,l by vl+1 and
vl , respectively (i.e., the superscript n + 1 is omitted). Note that vn+1 ≈ vl+1 = vl + δv,
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so δ̄v ≈ vl − vn + δv. Applying this approximation to system (10.25) yields, for i =
1, 2, . . . , Nc,

1

�t

[
(φFixi)

l − (φFixi)
n + δ (φFixi)

]
=

g∑
α=w

∇ · (Tl+1
iα ∇
l+1

α

)+
g∑

α=w
xl+1
iα q

l+1
α ,

1

�t

(φ g∑
α=w

ραSαCVαT + (1 − φ)ρsCsT

)l

−
(
φ

g∑
α=w

ραSαCVαT + (1 − φ)ρsCsT

)n

+ δ
(
φ

g∑
α=w

ραSαCVαT + (1 − φ)ρsCsT

)
− ∇ ·

g∑
α=w

T̃l+1
α ∇
l+1

α − ∇ · (kl+1
T ∇T l+1) = ql+1

c − ql+1
L .

(10.26)

Undersaturated state

We expand the left- and right-hand sides of the equations in system (10.26) in terms of the
primary variables. Recall that the capillary pressures pcα and relative permeabilities krα are
known functions of saturation and temperature, and the viscosities µα , molar densities ξα ,
and mass densities ρα are functions of their respective phase pressure, compositions, and
temperature, α = w, o, g.

For the ith component flow equation,

δ(φFixi)= cipδp + ciSδS +
Nc−2∑
j=1

cixj δxj + ciT δT ,

i = 1, 2, . . . , Nc,

(10.27)

where

ciξ =
(
∂ (φFixi)

∂ξ

)l
, ξ = p, S, xj , T .

For the energy conservation equation,

δ

(
φ

o∑
α=w

ραSαCVαT + (1 − φ)ρsCsT

)

= cEpδp + cESδS +
Nc−2∑
j=1

cExj δxj + cET δT ,

(10.28)

where

cEξ =
(
∂

∂ξ

(
φ

o∑
α=w

ραSαCVαT + (1 − φ)ρsCsT

))l
, ξ = p, S, xj , T .

In the undersaturated state, δSo = −δS and δSg = 0.
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In the SS technique, the potentials and transmissibilities are evaluated by


l+1
α = pl+1 + pl+1

cα − ρl+1
α ℘z, α = w, o, g,

and

Tl+1
α = ρl+1

α kl+1
rα

µl+1
α

k,

Tl+1
iα = xl+1

iα ξ
l+1
α kl+1

rα

µl+1
α

k, i = 1, 2, . . . , Nc, α = w, o, g.

Consequently, we see that


l+1
α = 
l

α + dαpδp + dαSδS +
Nc−2∑
j=1

dαxj δxj + dαT δT , (10.29)

where

dαξ =
(
∂
α

∂ξ

)l
, ξ = p, S, xj , T , α = w, o, g.

Similarly, the transmissibilities are expanded:

T̃l+1
α = T̃lα + Ẽαpδp + ẼαSδS +

Nc−2∑
j=1

Ẽαxj δxj + ẼαT δT ,

Tl+1
iα = Tliα + Eiαpδp + EiαSδS +

Nc−2∑
j=1

Eiαxj δxj + EiαT δT ,

(10.30)

where, for i = 1, 2, . . . , Nc, α = w, o, g,

Ẽαξ =
(
∂T̃α
∂ξ

)l
, Eiαξ =

(
∂Tiα
∂ξ

)l
, ξ = p, S, xj , T .

The source/sink terms ql+1
α can be expanded as for the black oil model in Chapter 8:

g∑
α=w

xl+1
iα q

l+1
α

=
g∑

α=w

(
xliαq

l
α + qα(δp, δpbh, δS, δx1, δx2, . . . , δxNc−2, δT )

)
,

(10.31)

where pbh is the well bottom hole pressure. If this pressure is given, then δpbh = 0.
Substituting (10.27)–(10.31) into (10.26) and neglecting higher-order terms of the

increments yield the differential system in the increments of the primary unknowns at the
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(l+ 1)th Newton–Raphson iteration of the (n+ 1) time level in the undersaturated case (cf.
Exercise 10.2), i = 1, 2, . . . , Nc,

1

�t

(φFixi)l − (φFixi)
n + cipδp + ciSδS +

Nc−2∑
j=1

cixj δxj + ciT δT


=

g∑
α=w

∇ ·
Tliα∇


l
α + dαpδp + dαSδS +

Nc−2∑
j=1

dαxj δxj + dαT δT


+
Eiαpδp + EiαSδS +

Nc−2∑
j=1

Eiαxj δxj + EiαT δT

∇
l
α


+

g∑
α=w

(
xliαq

l
α + qα(δp, δpbh, δS, δx1, δx2, . . . , δxNc−2, δT )

)
,

1

�t

(φ g∑
α=w

ραSαCVαT + (1 − φ)ρsCsT

)l

−
(
φ

g∑
α=w

ραSαCVαT + (1 − φ)ρsCsT

)n

+ cEpδp + cESδS +
Nc−2∑
j=1

cExj δxj + cET δT


− ∇ ·

g∑
α=w

T̃lα∇

l

α + dαpδp + dαSδS +
Nc−2∑
j=1

dαxj δxj + dαT δT


+
Ẽαpδp + ẼαSδS +

Nc−2∑
j=1

Ẽαxj δxj + ẼαT δT

∇
l
α


− ∇ · (kl+1

T ∇(T l + δT )) = ql+1
c − ql+1

L .

(10.32)

This system is linear in the increments of the primary variables. The Newton–Raphson
iterations are constrained by maximum changes in these variables over the iterations, and
an automatic time step size is determined by the maximum changes over the time step (cf.
Section 8.2.2).

Saturated state

In the saturated state, the primary unknowns are p, Sw, So, and xi , i = 1, 2, . . . , Nc − 2.
Thus, in this case, for the ith component flow equation (i = 1, 2, . . . , Nc),

δ(φFixi) = cipδp + ciSwδSw + ciSoδSo +
Nc−2∑
j=1

cixj δxj , (10.33)

where

ciξ =
(
∂ (φFixi)

∂ξ

)l
, ξ = p, Sw, So, xj .



“chenb
2006/2
page 39

�

�

�

�

�

�

�

�

392 Chapter 10. Nonisothermal Flow

Analogously, for the energy conservation equation,

δ

(
φ

g∑
α=w

ραSαCVαT + (1 − φ)ρsCsT

)

= cEpδp + cESwδSw + cESoδSo +
Nc−2∑
j=1

cExj δxj ,

(10.34)

where, for ξ = p, Sw, So, xj ,

cEξ =
(
∂

∂ξ

(
φ

g∑
α=w

ραSαCVαT + (1 − φ)ρsCsT

))l
.

In the saturated state, δSg = −δSw − δSo. The potentials are expanded:


l+1
α = 
l

α + dαpδp + dαSwδSw + dαSoδSo +
Nc−2∑
j=1

dαxj δxj , (10.35)

where

dαξ =
(
∂
α

∂ξ

)l
, ξ = p, Sw, So, xj , α = w, o, g.

The transmissibilities are evaluated by

T̃l+1
α = T̃lα + Ẽαpδp + ẼαSwδSw + ẼαSoδSo +

Nc−2∑
j=1

Ẽαxj δxj ,

Tl+1
iα = Tliα + Eiαpδp + EiαSwδSw + EiαSoδSo +

Nc−2∑
j=1

Eiαxj δxj ,

(10.36)

where, for i = 1, 2, . . . , Nc, α = w, o, g,

Ẽαξ =
(
∂T̃α
∂ξ

)l
, Eiαξ =

(
∂Tiα
∂ξ

)l
, ξ = p, Sw, So, xj .

Finally, the source/sink terms ql+1
α have the form

g∑
α=w

xl+1
iα q

l+1
α

=
g∑

α=w

(
xliαq

l
α + qα(δp, δpbh, δSw, δSo, δx1, δx2, . . . , δxNc−2)

)
.

(10.37)

Substituting (10.33)–(10.37) into (10.26) gives the differential system in the incre-
ments of the primary unknowns at the (l + 1)th Newton–Raphson iteration of the (n + 1)
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time level in the saturated state (cf. Exercise 10.3):

1

�t

(φFixi)l − (φFixi)
n + cipδp + ciSwδSw + ciSoδSo +

Nc−2∑
j=1

cixj δxj


=

g∑
α=w

∇ ·
Tliα∇


l
α + dαpδp + dαSwδSw + dαSoδSo +

Nc−2∑
j=1

dαxj δxj


+
Eiαpδp + EiαSwδSw + EiαSoδSo +

Nc−2∑
j=1

Eiαxj δxj

∇
l
α


+

g∑
α=w

(
xliαq

l
α + qα(δp, δpbh, δSw, δSo, δx1, δx2, . . . , δxNc−2)

)
,

(10.38)

for i = 1, 2, . . . , Nc, and

1

�t

(φ g∑
α=w

ραSαCVαT + (1 − φ)ρsCsT

)l

−
(
φ

g∑
α=w

ραSαCVαT + (1 − φ)ρsCsT

)n

+ cEpδp + cESwδSw + cESoδSo +
Nc−2∑
j=1

cExj δxj


− ∇ ·

g∑
α=w

T̃lα∇

l

α + dαpδp + dαSwδSw + dαSoδSo +
Nc−2∑
j=1

dαxj δxj


+
Ẽαpδp + ẼαSwδSw + ẼαSoδSo +

Nc−2∑
j=1

Ẽαxj δxj

∇
l
α


− ∇ · (kl+1

T ∇(T l + cTpδp)) = ql+1
c − ql+1

L ,

(10.39)

where cTp = (dT /dp)l . Again, these equations are linear in the increments of the primary
variables.

10.3 The Fourth SPE Project: Steam Injection
The experimental problems are chosen from the benchmark problems of the fourth CSP
(Aziz et al., 1985). Six companies participated in the comparative project. Two related steam
injection problems were numerically studied. The first deals with cyclic steam injection in
a nondistillable petroleum reservoir with two-dimensional radial cross-sectional grids, and
the second with nondistillable oil displacement by steam in an inverted nine-spot pattern by
considering one-eighth of the full pattern (see Figure 10.2). Standard conditions for these
problems are 14.7 psia and 60◦ F. The problems were chosen to exercise features of the
models that are important in practical applications, though they may not represent a real
field analysis.
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Injector
330ft

14.585ft

29.17ft

Near producer

Far producer

Figure 10.2. Element of symmetry in an inverted nine-spot.

Table 10.1. Rock properties.

kh starting with the top layer: 2,000, 500, 1,000, and 2,000 md

kv : 50% of kh
Porosity: 0.3 for all layers

Thermal conductivity: 24 Btu/(ft.-day-◦F)

Heat capacity: 35 Btu/(ft3 of rock-◦F)

Effective rock compressibility: 5.0E − 4 psi−1

Table 10.2. Oil properties.

Density at standard conditions: 60.68 lb/ft3

Compressibility: 5.0E − 6 psi−1

Molecular weight: 600

Thermal expansion coefficient: 3.8E − 4 1/R

Specific heat: 0.5 Btu/(lb.-R)

10.3.1 The first problem

The aim is to simulate cyclic steam injection in a two-dimensional reservoir (closed system)
with four layers. The rock properties are stated in Table 10.1, where kh (= k11 = k22) and
kv (= k33) denote the horizontal and vertical permeabilities, respectively, and the thermal
conductivity and heat capacity are given for the reservoir, overburden, and underburden.
Water is assumed to be pure water with standard properties. Oil properties are listed in
Table 10.2, and the viscosity dependence on temperature is given in Table 10.3. The capillary
pressures are zero. The relative permeability functions are defined by (10.14) and (10.15)
with the data nw = 2.5, now = nog = 2, ng = 1.5, Swc = Swir = 0.45, Sorw = 0.15,
Sorg = 0.1, S∗

gr = 0.06, krwro = 0.1, krocw = 0.4, and krgro = 0.2. The initial conditions
are presented in Table 10.4, where pressure is distributed according to the gravity head.

The computational grid is cylindrical with 13 grid points in the radial direction. The
well radius is 0.3 ft, and the exterior radius is 263.0 ft. The block boundaries in the radial
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Table 10.3. Oil viscosity dependence on temperature.

Temp (◦F) 75 100 150 200 250 300 350 500

Viscosity (cp) 5,780 1,389 187 47 17.4 8.5 5.2 2.5

Table 10.4. Initial conditions.

Oil saturation: 0.55
Water saturation: 0.45
Reservoir temperature: 125◦ F
Pressure at the center of the top layer: 75 psia

direction are at 0.30, 3.0, 13.0, 23.0, 33.0, 43.0, 53.0, 63.0, 73.0, 83.0, 93.0, 103.0, 143.0,
and 263.0 ft, and the block boundaries in the vertical direction are at 0.0 (top of pay), 10.0,
30.0, 55.0, and 80.0 ft. The depth to the top of pay is 1,500 ft subsea.

The spatial discretization scheme of the simulation is based on the Raviart–Thomas
mixed finite element method on rectangles (cf. Section 4.5.4). Upstream-weighted in-
terblock flow and injection and production terms are included. The linear system of al-
gebraic equations is solved by the ORTHOMIN (orthogonal minimum residual) iterative
algorithm, with incomplete LU factorization preconditioners (cf. Chapter 5).

Finally, the operating conditions are summarized. All layers are open to flow during
injection and production (a zero skin factor; cf. Chapter 13). The energy content of the
injected steam is based on 0.7 quality and 450◦ F. Steam quality at bottom hole conditions
is fixed at 0.7. Three cycles are simulated: each cycle is 365 days with injection for 10 days
followed by a 7-day soak period, and the cycle is completed with 348 days of production.
Steam is injected at capacity subject to the following conditions: the maximum bottom hole
pressure is 1,000 psia at the center of the top layer, and the maximum injection rate is 1,000
STB/day. The production capacity is subject to the following constraints: the minimum
bottom hole pressure is 17 psia at the center of the top layer, and the maximum production
rate is 1,000 STB/day of liquids.

Figures 10.3 and 10.4 show the cumulative oil production and oil production rates,
respectively. Compared with the results presented by Aziz et al. (1985), the two quantities
in Figures 10.3 and 10.4 are closer to the respective averaged values of those provided by
the six companies.

10.3.2 The second problem

The objective is to simulate one-eighth of an inverted nine-spot pattern via symmetry. The
total pattern area is 2.5 acres. The rock and fluid properties, relative permeability data, and
initial conditions are the same as for the first problem. The grid dimensions are 9 × 5 × 4
(uniform in the horizontal direction). The radius of all wells is 0.3 ft.

The operating conditions are as follows: injection occurs only in the bottom layer,
and production occurs from all four layers. Steam conditions are the same as in the first
problem. Steam is injected at capacity subject to the following conditions: the maximum
bottom hole pressure is 1,000 psia at the center of the bottom layer, and the maximum
injection rate is 1,000 STB/day on a full-well basis. The production capacity is subject to
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Figure 10.3. Cumulative oil production (MSTB) versus time (days).

Figure 10.4. Oil production rate (STB/day).

Figure 10.5. Cumulative oil production for the full pattern (MSTB versus days).

the constraints: the minimum bottom hole pressure is 17 psia at the center of the top layer,
the maximum production rate is 1,000 STB/day of liquids, and the maximum steam rate is
10 STB/day. The simulation time is 10 years of injection and production.

Figures 10.5–10.7 indicate the cumulative oil production for the full pattern, the oil
production rate for the far producer, and the oil production rate for the near producer,
respectively. All well data presented are on a full-well basis, and the pattern results are for
the full pattern consisting of four quarter (far) producers and four half (near) producers.
Again, compared with the results presented by Aziz et al. (1985), the three quantities are
closer to the respective mean values of those provided by the six companies.
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Figure 10.6. Oil production rate for the far producer (STB/day).

Figure 10.7. Oil production rate for the near producer (STB/day).

10.4 Bibliographical Remarks
Most of the content in this chapter is taken from Chen and Ma (2004). More details about
the data used in the fourth SPE CSP can be found in Aziz et al. (1985).

Exercises
10.1. Derive equation (10.23) using equations (10.3), (10.4), and (10.18)–(10.22) and

ignoring the variation of the mass densities ρα in space, α = w, o, g.

10.2. Derive system (10.32) by substituting (10.27)–(10.31) into (10.26) and neglect-
ing the higher-order terms of the increments of the primary unknowns (δp, δS,
δx1, δx2, . . . , δxNc−2, δT ).

10.3. Derive equations (10.38) and (10.39) by substituting (10.33)–(10.37) into (10.26)
and neglecting the higher-order terms of the increments of the primary unknowns
(δp, δSw, δSo, δx1, δx2, . . . , δxNc−2).

10.4. As an example, the SS technique was developed for the solution of the nonisothermal
flow governing equations in Section 10.2. Develop a sequential solution technique
for these equations in a manner similar to that given in Section 8.2.3.
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Chemical Flooding

Enhanced oil recovery (EOR) is achieved by injecting materials that are not normally present
in a petroleum reservoir. An important approach in EOR is chemical flooding: for exam-
ple, alkaline, surfactant, polymer, and foam (ASP+foam) flooding. The injection of these
chemical species reduces fluid mobility to improve the sweep efficiency of the reservoir,
i.e., increases the volume of the permeable medium contacted at any given time. While
chemical flooding in the petroleum industry has a larger scale of oil recovery efficiency than
water flooding, it is far more technical, costly, and risky. The displacement mechanisms in
this type of flooding involve interfacial tension lowering, capillary desaturation, chemical
synergetic effects, and mobility control, and the flow and transport model describes such
physicochemical phenomena as dispersion, diffusion, adsorption, chemical reaction, and in
situ generation of surfactant from acidic crude oil.

We develop and study a multicomponent multiphase model for ASP+foam flooding.
This model describes synergetic effects in the form of an interfacial tension function, the
foam flow resistance in the function of surfactant and oil concentrations, capillary pres-
sure, permeability, gas-liquid ratio, and gas velocity, and the phase behavior in terms of
equations of state (EOSs). The balance equations are the mass balance equation for each
chemical species, the aqueous phase pressure equation, and the energy balance equation.
The major physical variables modeled are density, viscosity, velocity-dependent dispersion,
molecular diffusion, adsorption, interfacial tension, relative permeability, capillary pressure,
capillary trapping, cation exchange, and polymer and gel properties such as permeability re-
duction, inaccessible pore volume, and non-Newtonian rheology (Pope and Nelson, 1978).
Phase mobilization is described through entrapped phase saturation and relative permeabil-
ity dependence on the trapping number. Chemical reactions include aqueous electrolyte
chemistry, precipitation/dissolution of minerals, ion-exchange reactions with the matrix (the
geochemical option), reactions of acidic components of oil with the bases in the aqueous
solution, and polymer reactions with cross-linking agents to form gel (Bhuyan et al., 1991).

The basic differential equations governing chemical flooding were described in Sec-
tion 2.10 and are reviewed in Section 11.1. Then, in Sections 11.2–11.5, respectively, we
describe the mathematical formulations for alkaline, polymer, surfactant, and foam displace-
ment mechanisms. The rock and fluid properties are stated in Section 11.6. A numerical

399
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solution scheme is briefly presented in Section 11.7. Numerical results are reported in
Sections 11.8 and 11.9. Finally, bibliographical information is given in Section 11.10.

11.1 Basic Differential Equations
The basic equations for a chemical flooding compositional model in a porous medium
� were developed in Section 2.10. The governing differential equations for the chemical
compositional model consist of a mass conservation equation for each chemical component,
an energy equation, Darcy’s law, and an overall mass conservation or continuity equation
for pressure. These equations are developed under the following assumptions: local ther-
modynamic equilibrium, immobile solid phase, Fickian dispersion, ideal mixing, slightly
compressible soil and fluids, and Darcy’s law.

We consider the general case where Nc chemical components form Np phases. Let
φ and k denote the porosity and permeability of a porous medium � ⊂ R

3, and let ρα , Sα ,
µα , pα , uα , and krα be the density, saturation, viscosity, pressure, volumetric velocity, and
relative permeability, respectively, of theα-phase,α = 1, 2, . . . , Np. The mass conservation
for component i is expressed in terms of the overall concentration of this component per
unit pore volume:

∂

∂t
(φc̃iρi) = −∇ ·

 Np∑
α=1

ρi [ciαuα − Diα∇ciα]

+ qi, (11.1)

for i = 1, 2, . . . , Nc, where the overall concentration c̃i is the sum over all phases, including
the adsorbed phases:

c̃i =
1 −

Ncv∑
j=1

ĉj

 Np∑
α=1

Sαciα + ĉi , i = 1, 2, . . . , Nc, (11.2)

Ncv is the total number of volume-occupying components (such as water, oil, surfactant,
and air); ĉi , ρi , and qi are the adsorbed concentration, mass density, and source/sink term
of component i; and ciα and Diα are the concentration and diffusion-dispersion tensor,
respectively, of component i in phase α.

The density ρi is related to a reference phase pressure pr by

Ci = 1

ρi

∂ρi

∂pr

∣∣∣∣
T

at a fixed temperature T , where Ci is the compressibility of component i. For a slightly
compressible fluid, ρi is (cf. (2.13))

ρi = ρoi
(
1 + Coi (pr − por )

)
, (11.3)

where Coi and ρoi are the constant compressibility and the density at the reference pressure
por , respectively.

The diffusion-dispersion tensor Diα for multiphase flow is (cf. Section 2.4)

Diα(uα) = φ
{
SαdiαI + |uα|

(
dlαE(uα)+ dtαE⊥(uα)

)}
, (11.4)
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where diα is the molecular diffusion coefficient of component i in phase α; dlα and dtα
are, respectively, the longitudinal and transverse dispersion coefficients of phase α; |uα| is
the Euclidean norm of uα = (u1α, u2α, u3α), |uα| =√

u2
1α+u2

2α+u2
3α; E(uα) is the orthogonal

projection along the velocity,

E(uα) = 1

|uα|2

 u2
1α u1αu2α u1αu3α

u2αu1α u2
2α u2αu3α

u3αu1α u3αu2α u2
3α

 ;

E⊥(uα) = I − E(uα); and I is the identity matrix, i = 1, 2, . . . , Nc, α = 1, 2, . . . , Np. The
source/sink term qi combines all rates for component i and is expressed as

qi = φ

Np∑
α=1

Sαriα + (1 − φ)ris + q̃i , (11.5)

where riα and ris are the reaction rates of component i in the α fluid phase and rock phase,
respectively, and q̃i is the injection/production rate of the same component per bulk volume.
The volumetric velocity uα is given by Darcy’s law

uα = − 1

µα
kkrα(∇pα − ρα℘∇z), α = 1, 2, . . . , Np, (11.6)

where ℘ is the magnitude of the gravitational acceleration and z is the depth.
The energy conservation equation reads

∂

∂t

φ Np∑
α=1

ραSαUα + (1 − φ)ρsCsT


+ ∇ ·

Np∑
α=1

ραuαHα − ∇ · (kT∇T ) = qc − qL,

(11.7)

where T is the temperature, Uα and Hα are the specific internal energy and the enthalpy
of the α-phase (per unit mass), ρs and Cs are the density and the specific heat capacity of
the solid, kT represents the total thermal conductivity, qc denotes the heat source item, and
qL indicates the heat loss to overburden and underburden (cf. Chapter 10). In (11.7), the
specific internal energy Uα and the enthalpy Hα of phase α can be computed from

Uα = CVαT , Hα = CpαT ,

whereCVα andCpα respectively represent the heat capacities of phase α at constant volume
and constant pressure.

In the numerical simulation of chemical flooding, a pressure equation for the aqueous
phase (e.g., phase 1) is obtained by an overall mass balance on the volume-occupying
components. Other phase pressures are evaluated using the capillary pressure functions:

pcα1 = pα − p1, α = 1, 2, . . . , Np, (11.8)
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where pc11 = 0 for convenience. Introduce the phase mobility

λα = krα

µα

Ncv∑
i=1

ρiciα, α = 1, 2, . . . , Np,

and the total mobility

λ =
Np∑
α=1

λα.

Note that

Ncv∑
i=1

ρiDiα∇ciα = 0,
Ncv∑
i=1

riα =
Ncv∑
i=1

ris = 0, α = 1, 2, . . . , Np.

Now, by adding (11.1) over i, i = 1, 2, . . . , Ncv , we obtain the pressure equation (cf.
Exercise 11.1)

φct
∂p1

∂t
− ∇ (λk∇p1) = ∇ ·

Np∑
α=1

λαk (∇pcα1 − ρα℘∇z)+
Ncv∑
i=1

q̃i , (11.9)

where the total compressibility ct is

ct = 1

φ

∂

∂p1

Ncv∑
i=1

φc̃iρi .

Assume that the rock compressibility cR at the reference pressure p0
r is (cf. (2.16))

φ = φo
(
1 + cR(pr − por )

)
, (11.10)

where φo is the porosity at por . With pr = p1, using (11.3) and (11.10), we have

φc̃iρi = φoc̃iρ
o
i

(
1 + (cR + C0

i )(p1 − po1)+ cRC0
i (p1 − po1)

2
)
.

Neglecting the higher-order term (due to the slight compressibility of rock and fluid phases),
this equation becomes

φc̃iρi ≈ φoc̃iρ
o
i

(
1 + (cR + C0

i )(p1 − po1)
)
. (11.11)

Applying (11.11), the total compressibility ct simplifies to

ct = φo

φ

Ncv∑
i=1

c̃iρ
o
i

(
cR + C0

i

)
. (11.12)

There are more dependent variables than there are differential and algebraic relations;
there are formally Nc + Ncv + NcNp + 3Np + 1 dependent variables: ci , ĉj , ciα , T , uα ,
pα , and Sα , α = 1, 2, . . . , Np, i = 1, 2, . . . , Nc, j = 1, 2, . . . , Ncv . Equations (11.1)
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and (11.6)–(11.9) provide Nc + 2Np independent relations, differential or algebraic; the
additional Ncv +NcNp +Np + 1 relations are given by the following constraints:

Np∑
α=1

Sα = 1 (a saturation constraint),

Ncv∑
i=1

ciα = 1 (Np phase concentration constraints),

ci =
Np∑
α=1

Sαciα (Nc component concentration constraints),

ĉj = ĉj (c1, c2, . . . , cNc ) (Ncv adsorption constraints),

fiα(pα, T , c1α, . . . , cNcα) = fiβ(pβ, T , c1β, . . . , cNcβ)

(Nc(Np − 1) phase equilibrium relations),

(11.13)

where fiα is the fugacity function of the ith component in the α-phase. For a general
compositional flow, several equations of state were developed to define the fugacity functions
fiα , such as the Redlich–Kwong, Redlich–Kwong–Soave, and Peng–Robinson equations of
state (cf. Section 3.2.5). For each individual chemical flooding considered in this chapter,
the phase behavior model will be described in one of the following four sections.

As an example, the phases are numbered in the order water (aqueous), oil (oleic),
microemulsion, and gas (air), and the components in the order water, oil, surfactant, polymer,
chloride, calcium, alcohol, and gas (air).

11.2 Surfactant Flooding
Due to strong surface tension, a large amount of oil is trapped in small pores and cannot be
washed out by water flooding. Surfactants can be injected to create low interfacial tension
to reduce capillary forces and thus mobilize trapped oil. Surfactants have a greater role in
EOR than lowering interfacial tension. They can be employed to alter wettability, stabilize
dispersions, lower bulk-phase viscosity, and promote emulsification and entrainment.

The surfactant phase behavior in the water, oil, and surfactant system involves up
to five volumetric components (water, oil, surfactant, and two alcohols) that form three
pseudocomponents in solution. For simplicity, only three components (water, oil, and
surfactant) are considered. Salinity and divalent cation concentrations strongly affect phase
behavior. At low salinity, an excess oil phase that is essentially pure oil and a microemulsion
phase that contains water plus electrolytes, some solubilized oil, and surfactant coexist. The
tie lines (distribution curves) at low salinity have negative slope (cf. Figure 11.1 (left)). This
kind of phase environment is referred to as type II(-) orWinsor type I (Winsor, 1954). At high
salinity, an excess water phase and a microemulsion phase that contains some solubilized
water and most of the oil and surfactant coexist. This kind of phase environment is termed
type II(+) (cf. Figure 11.1 (right)). At intermediate salinity, excess water and oil phases
and a microemulsion phase whose composition is represented by an invariant point coexist.
Such a three-phase environment is called type III or Winsor type III (cf. Figure 11.2). The
water, oil, and surfactant phase behavior model can be represented as a function of effective
salinity once the binodal curve and tie lines (distribution curves) are given.
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single phase

two phase

water oil
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water oil
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Figure 11.1. Schematic plot of type II(-) (left); schematic plot of type II(+) (right).

water oil

surfactant

pp rl

single phase

three phase

invariant point

Figure 11.2. Schematic plot of type III.

11.2.1 Effective salinity

The effective salinity increases with the divalent cations bound to micelles (an aggregate
(or cluster) of surface molecules; see Glover et al., 1979; Hirasaki, 1982), decreases as
temperature increases for anionic surfactants, and increases as temperature increases for
nonionic surfactants:

cSE = c51(1 − β6f
s
6 )

−1
[
1 + βT (T − T o)

]−1
, (11.14)

where c51 is the aqueous phase anion concentration, β6 is an effective salinity positive
constant for calcium, f s6 = cs6/c

m
3 is the fraction of the total divalent cations bound to

surfactant micelles, βT is a temperature coefficient, and T o is a reference temperature. The
effective salinities at which the three equilibrium phases form or disappear are called the
lower and upper limits of effective salinity, cSEL and cSEU .

11.2.2 Binodal curves

The formulation of the binodal curve using Hand’s rule is the same in all phase environments.
This rule is based on the empirical observation that equilibrium phase concentration ratios
are straight lines on a log-log scale. The ternary diagram for a type II(-) environment with
the equilibrium phases numbered 2 and 3 and the corresponding Hand plot is shown in
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Figure 11.3. Correspondence between ternary diagram and Hand plot.

Figure 11.3. Hand’s rule (Hand, 1939) to formulate the binodal curve reads

c3α

c2α
= A

(
c3α

c1α

)B
for α = 1, 2, or 3, (11.15)

where the parameters A and B are empirical. B = −1 for the symmetric binodal curve.
In this case, all phase concentrations are computed explicitly in terms of oil concentrations
c2α:

c3α = 1

2

(
−Ac2α +

√
(Ac2α)2 + 4Ac2α(1 − c2α)

)
,

c1α = 1 − c2α − c3α for α = 1, 2, or 3.
(11.16)

The parameter A is related to the height of the binodal curve:

Am =
(

2c3max,m

1 − c3max,m

)2

, m = 0, 1, 2, (11.17)

where m = 0, 1, and 2 are associated with low, optimal, and high salinities, and the height
c3max,m is determined by a linear function of temperature:

c3max,m = HBNC,m +HBNT,m(T − T o), m = 0, 1, 2,

with the input parameters HBNC,m and HBNT,m. Then A is linearly interpolated as

A = (A0 − A1)

(
1 − cSE

cSEOP

)
+ A1 if cSE ≤ cSEOP ,

A = (A2 − A1)

(
cSE

cSEOP
− 1

)
+ A1 if cSE > cSEOP ,

where cSEOP denotes the optimum effective salinity.

11.2.3 Tie lines for two phases

For both types II(-) and II(+), the phase behavior involves only two phases below the binodal
curve. Tie lines are the lines joining the compositions of the equilibrium phases:

c3α

c2α
= E

(
c33

c13

)F
, (11.18)
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where α = 1 for type II(+) and α = 2 for type II(-). If the data for tie lines are not available,
we set F = −1/B. For the symmetric binodal curve (B = −1), F = 1. Because the plait
point is on both the binodal curve and tie line, it follows that

E = c1P

c2P
= 1 − c2P − c3P

c2P
,

which, together with an application of the binodal curve to the plait point, gives

E = 1

c2P

(
1 − c2P − 1

2

[
−Ac2P +

√
(Ac2P )2 + 4Ac2P (1 − c2P )

])
, (11.19)

where c2P is the oil concentration at the plait point and is an input parameter for both
types II(-) and II(+). Note that c1P and c3P are the water and surfactant concentrations,
respectively, at the plait point.

11.2.4 Tie lines for three phases

The computation of phase compositions for the three-phase region of type III is performed
under the assumption that the excess oleic and aqueous phases are pure. The microemul-
sion phase composition is defined by the coordinates of an invariant point (M), which are
evaluated as a function of effective salinity:

c2M = cSE − cSEL

cSEU − cSEL
. (11.20)

The concentrations c1M and c3M are calculated by substituting c2M into (11.16).

11.2.5 Phase saturations

In the presence of surfactant, the phase saturations in the saturated zone are computed using
the phase concentrations and overall component concentrations:

3∑
α=1

Sα = 1, ci =
3∑
α=1

Sαciα, i = 1, 2, 3. (11.21)

11.2.6 Interfacial tension

The water/oil (σow) and water/air interfacial tensions (σaw) are assumed to be constants. The
models for computing microemulsion/oil (σ23) and microemulsion/water (σ13) interfacial
tensions are based on Healy and Reed’s model (Healy and Reed, 1974):

log10 σα3 = log10 Fα +Gα2 + Gα1

1 +Gα3Rα3
if Rα3 ≥ 1,

log10 σα3 = log10 Fα + (1 − Rα3) log10 σow

+Rα3

(
Gα2 + Gα1

1 +Gα3

)
if Rα3 < 1,

(11.22)
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where the Gαi’s are input parameters (i = 1, 2), Rα3 = cα3/c33 is the solubilization ratio,
and the correction factor Fα guarantees that the interfacial tension at the plait point is zero
(Hirasaki, 1981):

Fα = 1 − e−
√
conα

1 − e−
√

2
, conα =

3∑
i=1

(ciα − ci3)
2, α = 1, 2.

Other models such as Huh’s model (Huh, 1979) can be also used to calculate σ13 and σ23.
In the absence of surfactant or if the surfactant concentration is below the critical micelle
concentration, these interfacial tensions are equal to σow, which will be discussed below.

11.2.7 Interfacial tension without mass transfer

While injection of surfactants with high concentration greatly improves oil recovery, it can
be very expensive. In most applications, the concentration of surfactants used is below the
critical micelle concentration. In this case, the system of water, oil, and surfactant does
not involve mass transfer between phases. As a result, the entire system is composed of
only an aqueous phase containing all the surfactant, electrolytes, and dissolved oil at the
water solubility limit and a pure excess oil phase. Such a system is called a sparse system
without mass interchange. An ASP+foam displacement mechanism for this type of system
is accomplished through the synergetic effect of water, oil, surfactant, and alkaline. This
effect is described by the interfacial tension function

σow = σow(cS, cA),

where σow is the interfacial tension between the aqueous and oil phases and cS and cA are
the concentrations of surfactant and alkaline, respectively. This function is obtained via
experiment.

11.2.8 Trapping numbers

A displacement mechanism in EOR is the mobilization of a trapped organic phase due to
reduced interfacial tension resulting from the injection of surfactants (Brown et al., 1994).
Buoyancy forces also affect the mobilization of the trapped phase and can be defined by
the bond number (Morrow and Songkran, 1982). The bond and capillary numbers are two
dimensionless numbers; the former represents gravity/capillary forces, and the latter repre-
sents viscous/capillary forces. Traditionally, the capillary number (Lake, 1989) is defined by

Ncα =
∣∣k · ∇
β

∣∣
σαβ

, α, β = 1, 2, . . . , Np, (11.23)

where α and β are the displaced and displacing fluids and the potentials 
β are


β = pβ − ρβ℘z, β = 1, 2, . . . , Np. (11.24)

The bond number is

NBα = k℘ (ρα − ρβ)

σαβ
, α, β = 1, 2, . . . , Np, (11.25)

where k is such that k = kI.
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11.2.9 Relative permeabilities

Residual saturations are related to the trapping numbers by

Sαr = min

{
Sα, S

H
αr + SLαr − SHαr

1 + CαNcα

}
, α = 1, 2, . . . , Np,

where Cα is a positive input parameter based on the experimental observation of the re-
lation between the residual saturations and the trapping number, and SLαr and SHαr are the
input residual saturations for phase α at low and high trapping numbers, respectively. This
correlation was obtained based on experimental data for n-decane (Delshad et al., 2000).

The relative permeability curves change as the residual saturations change at high
trapping numbers due to detrapping, which can be accounted for by the expressions

krα = k0
rα(Snα)

nα , α = 1, 2, . . . , Np,

where Snα is the normalized saturation of phase α

Snα = (Sα − Sαr)

/1 −
Np∑
α=1

Sαr

 , α = 1, 2, . . . , Np.

The endpoints and exponents in the relative permeability functions are evaluated as a
linear interpolation between the given input values at low and high trapping numbers(
kLrα, k

H
rα, n

L
α , n

H
α

)
:

k0
rα = kLrα + SLβr − Sβr

SLβr − SHβr

(
kHrα − kLrα

)
,

nα = nLα + SLβr − Sβr

SLβr − SHβr

(
nHα − nLα

)
, α, β = 1, 2, . . . , Np.

11.3 Alkaline Flooding
Oil recovery mechanisms in alkaline or high-pH flooding have been attributed to many
mechanisms (de Zabala et al., 1982), such as interfacial tension lowering, emulsion forma-
tion, and wettability. In surfactant flooding, the surfactant is injected, whereas in high-pH
flooding, it is generated in situ. Alkaline and acidic hydrocarbon species in crude oil react
to generate the surfactant. Also, interactions of alkaline chemicals and permeable media
minerals can cause excessive retardation in the propagation of these chemicals through the
media. The physicochemical phenomena in high-pH flooding are described through a chem-
ical reaction equilibrium model (Bhuyan et al., 1991). The reaction chemistry in this model
includes aqueous electrolyte chemistry, precipitation/dissolution of minerals, ion-exchange
reactions with the matrix (the geochemical option), and reactions of acidic components
of oil with the bases in the aqueous solution. This model can be utilized to compute the
chemical composition of the reservoir rock and fluids in the presence of chemical reactions
among the injected chemical species and the reservoir rock and fluids.
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11.3.1 Basic assumptions

The reaction equilibrium model is established under the following assumptions (Delshad
et al., 2000):

• All reactions attain local thermodynamic equilibrium.

• No redox reaction exists.

• Temperature, pressure, and volume changes resulting from chemical reactions are
negligibly small. In particular, the reservoir is isothermal.

• Activity coefficients of all reactive species are unity so that molar concentrations
replace activities in reaction equilibrium computations.

• Water present in any phase always has the same chemical composition and is in
equilibrium with matrix minerals.

• Supersaturation of aqueous species is not allowed.

• The active acid species in the crude oil can be represented collectively by a single
pseudoacid component. This pseudocomponent is highly soluble in oil, and it parti-
tions between water and oil with a constant partition coefficient.

11.3.2 Mathematical formulations of reaction equilibria

Assume that the reactive system is composed of NF fluid species, NS solid species, NI
matrix-adsorbed cations, and NM micelle-associated cations all made up of N independent
elements. Then there exist NF + NS + NI + NM unknown equilibria concentrations for
which the same number of independent equations are needed.

Mass balance equations

The N elemental mass balance equations are

ctr =
NF∑
j=1

hrj cj +
NS∑
k=1

grkĉk +
NI∑
i=1

fri c̄i +
NM∑
m=1

ermčm, (11.26)

for r = 1, 2, . . . , N , where ctr is the total concentration of element r; cj , ĉk , c̄i , and čm are
the concentrations of the j th fluid species, the kth solid species, the ith matrix-adsorbed
cation, and the mth micelle-associated cation, respectively; and hrj , grk , fri , and erm are
the reaction coefficients of the rth element in the respective species and cations. Electrical
neutrality in the bulk fluid phase gives an additional equation

NF∑
j=1

Zjcj +
NM∑
m=1

Žmčm = 0, (11.27)

where Zj and Žm are the electroneutrality coefficients of the j th fluid species and the mth
micelle-associated cation, respectively. Equation (11.27) is a linear combination of the mass
balance equations given in (11.26). Thus this equation is not independent but can be used
to replace any of the elemental mass balance equations.



“chenb
2006/2
page 41

�

�

�

�

�

�

�

�

410 Chapter 11. Chemical Flooding

Aqueous reaction equilibrium relations

From the NF fluid chemical species, N independent elements can be arbitrarily selected so
that the concentrations of the remaining NF −N fluid species are expressed in terms of the
concentrations of the independent ones via equilibrium relations of the form

cr = keqr

N∏
j=1

c
wrj
j , r = N + 1, N + 2, . . . , NF , (11.28)

where keqr and wrj are the reaction equilibrium constants and exponents, respectively.

Solubility product constraints

For each solid species, there is a solubility product constraint

k
sp

k ≥
N∏
j=1

c
wkj
j , k = 1, 2, . . . , NS, (11.29)

where the solubility product constants kspk are defined in terms of the concentrations of the
independent chemical species only. If a solid is not present, the corresponding solubility
product constraint is the inequality in (11.29); if the solid is present, it is an equality.

Ion exchange equilibria on matrix substrate

For each substrate allowing exchange among NI cations, there exists an electroneutrality
condition

Qv =
NI∑
i=1

Z̄i c̄i , (11.30)

where Qv is the cation exchange capacity on matrix surface and Z̄i is the electroneutrality
coefficient of the ith matrix-adsorbed cation.

In addition, for these NI adsorbed cations, there are NI − 1 independent exchange
equilibria relations of the form

kexs =
N∏
j=1

c
ysj
j

NI∏
i=1

c̄
xsi
i , s = 1, 2, . . . , NI − 1, (11.31)

where kexs is the exchange equilibrium constant on matrix surface, and xsi and ysj are
equilibrium exponents.

Ion exchange equilibrium with micelles

For NM cations associated with surfactant micelles, there are NM − 1 cation exchange (on
micelle) equilibria relations:

kexmq =
N∏
j=1

c
yqj
j

NM∏
j=1

č
xqm
m , q = 1, 2, . . . , NM − 1, (11.32)

where kexmq is the exchange equilibrium constant on micelle surfaces.
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It has been observed that an electrostatic association model, where the mass action
equilibrium “constants” are really functions of the total anionic surfactant concentration,
adequately describes these ion exchange equilibrium relations (Hirasaki, 1982). These
equilibrium “constants” are modified to

kexmq = βexmq (cA− + cS−) , q = 1, 2, . . . , NM − 1,

where cA− and cS− are the concentrations of the surfactants generated in situ and injected,
respectively. They are determined by the electroneutrality condition for the micelles as a
whole:

cA− + cS− =
NM∑
m=1

Žmčm. (11.33)

In summary, there are N mass balance equations (11.26), NF − N aqueous reac-
tion equilibrium relations (11.28), NS solubility product constraints (11.29), 1 matrix sur-
face electroneutrality condition (11.30), NI − 1 cation exchange (on the matrix surface)
equilibrium relations (11.31), NM − 1 cation exchange (on micelle) equilibrium relations
(11.32), and 1 electroneutrality condition for the micelles (11.33), giving a total number
NF +NS+NI +NM of independent equations to compute the equilibrium concentrations of
NF fluid species,NS solid species,NI matrix-adsorbed cations, andNM cations adsorbed on
the micelle surfaces. An iterative method such as the Newton–Raphson iteration (cf. Section
8.2.1) can be used to solve this set of nonlinear equations.

11.4 Polymer Flooding
In general, polymer flooding is economic only if the water flooding mobility ratio is high,
the reservoir is highly heterogeneous, or both. In a polymer flooding procedure, polymer is
added to water to decrease its mobility. The resulting increase in viscosity, together with a
decrease in the aqueous phase permeability, leads to a lower mobility ratio, which increases
the efficiency of water flooding through larger volumetric sweep efficiency and a lower
swept zone oil saturation.

11.4.1 Viscosity

At a certain shear rate the polymer solution viscosity is a function of salinity and polymer
concentration (Flory, 1953):

µ0
P = µw

(
1 + [aP1c4α + aP2c

2
4α + aP3c

3
4α

]
c
bP
SEP

)
, α = 1 or 3, (11.34)

where c4α is the polymer concentration in water or microemulsion,µw is the water viscosity,
cSEP is the effective salinity for polymer, and aP1, aP2, aP3, and bP are input parameters.
The constant bP determines how the polymer viscosity depends on salinity.

The reduction in the polymer solution viscosity as a function of shear rateγ ′ is modeled
by Meter’s relation (Meter and Bird, 1964)

µP = µw + µ0
P − µw

1 + (γ ′/γ ′
1/2)

nM−1
, (11.35)
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where nM is an empirical coefficient and γ ′
1/2 is the shear rate at which µP = (µ0

P +µw)/2.
When (11.35) is applied to flow in porous media, µP is often called the apparent viscosity,
and the shear rate is an equivalent shear rate γ ′

eq . The in situ shear rate for phase α is
calculated using the modified Blake–Kozeny capillary bundle equation for multiphase flow
(Sorbie, 1991):

γ ′
eq,α = γ ′

c |uα|√
k̄krαφSα

, (11.36)

where γ ′
c = 3.97C sec.−1, C is the shear rate coefficient used to account for nonideal effects

such as slip at pore walls (Wreath et al., 1990), and k̄ is the average permeability

k̄ =
(

1

k11

(
u1α

|uα|
)2

+ 1

k22

(
u2α

|uα|
)2

+ 1

k33

(
u3α

|uα|
)2
)−1

with uα = (u1α, u2α, u3α) and k = diag(k11, k22, k33).

11.4.2 Permeability reduction

Polymer reduces both the effective permeability of porous media and the mobility of dis-
placing fluids. The permeability reduction is described by a reduction factor Rk:

Rk = kw

kP
, (11.37)

where kw and kP are the effective permeabilities of water and polymer. The mobility change
due to the combined effect of increased viscosity and reduced permeability is the resistance
factor Rr :

Rr = RkµP

µw
. (11.38)

The effect of permeability reduction persists even after the polymer solution has gone through
the porous media. This effect is described by the residual resistance factor Rrr :

Rrr = λP

λ̃P
, (11.39)

where λP and λ̃P are the mobilities before and after polymer solution, respectively.

11.4.3 Inaccessible pore volume

The reduction in porosity due to inaccessible or excluded pores because of the great size
of polymer molecules is termed the inaccessible pore volume. The result is that polymer
moves more quickly than water. This effect can be incorporated by multiplying the porosity
in the polymer conservation by the input parameter of effective porous volume.
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11.5 Foam Flooding
Foam flooding uses surfactants to reduce gas-phase mobility through formation of stable
gas-liquid foams. Interfacial tension lowering is not a significant mechanism. Gas-liquid
foams offer an alternative to polymers for providing mobility control in micellar flooding.
In contrast to individual foam flooding, ASP+foam flooding generates foams of smaller
sizes. For an initially oil-wet porous medium, these foams can enter the small pores that are
not reached with water flooding, thus mobilizing the residual oil there. In addition, because
of a low interfacial tension between oil and the ASP+foam system, this type of flooding can
effectively displace the residual oil trapped on the rock surface after water flooding.

Foams flowing in porous media can drastically reduce the mobility of a gas phase.
This is illustrated in the following relation:

kfrg = krg

RsRu
, (11.40)

where krg and kfrg are the gas relative permeabilities before and after the formation of
foams, and Rs and Ru are independent gas mobility reduction factors. Rs depends on the
oil phase saturation, surfactant, permeability, and capillary force, while Ru is related to the
gas velocity and gas-liquid ratio. They can be determined using (11.41)–(11.43) below.

11.5.1 Critical oil saturation

The presence of crude oil is not favorable to formation of foams, mainly due to the fact
that the oil-water surface tension is lower than the gas-water surface tension. When these
two surfaces coexist in a reservoir, the surface energy changes in the decreasing direction
of surface tension so that foaming agents move from the gas-water surface to the oil-water
surface. Then foams will lose the protection of a surfactant film and quickly break. Con-
sequently, in ASP+foam flooding, there is a critical oil saturation Soc. When So is greater
than Soc, foams do not form; otherwise, foams can form.

11.5.2 Critical surfactant concentration

Foams are dispersions of gas bubbles in liquids. Such dispersions are normally quite unstable
and break up in less than a second. However, if surfactants are added to the liquids, stability
is greatly improved so that some foams can persist. If the concentration of the surfactants
used as foaming agents is too low, foams do not form. Only when the concentration is
higher than a critical concentration ccs are foams present.

11.5.3 Critical capillary force

The capillary force in the reservoir rock plays an important role in formation of foams. Only
when this capillary force is small enough do foams form. When bubbles move through small
pore throats, capillary pressure decreases as the bubble sizes increase, and then the pressure
gradient in the liquids causes the liquids to enter these throats from the surrounding areas.
If the capillary pressure is small enough, the liquids will fully fill the throats, which will
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cause large bubbles to split up into smaller bubbles. Hence the formation of foams in
this type of mechanism requires the application of a sufficiently small capillary force. In
general, for a reservoir there is a critical capillary force p∗

c such that the property of foams
changes dramatically in a small neighborhood (p∗

c − ε, p∗
c + ε) of p∗

c , where ε is a positive
constant. When the capillary pressure pc satisfies pc > p∗

c + ε, foams do not form; when
pc < p∗

c − ε, the strength of the foams formed is very strong. If pc is a function of the
water phase saturation Sw,

pc = pc(Sw),

a corresponding critical Swc can be obtained from this function.

11.5.4 Oil relative permeability effects

In core flow experiments, as ASP+foam species are injected, liquid production decreases
in high-permeability zones of the core; it increases in its low-permeability zones. This
indicates that foams have a preference for the blocking of the high-permeability zones.

According to the discussions given so far in this section, a function of the mobility
reduction factor Rs can be defined as follows:

Rs = 1 if So > Soc or cs < ccs , (11.41)

and if both So ≤ Soc and cs ≥ ccs ,

Rs =



1, Sw ≤ Swc − ε,(
1 + (Rmax − 1)

(
Sw − Swc + ε

2ε

))(
1 + k

k̄

)2

,

Swc − ε < Sw < Swc + ε,

Rmax

(
1 + k

k̄

)2

, Sw ≥ Swc + ε,

(11.42)

where Rmax is an experimentally determined constant and k̄ is the weighted average of the
permeability k with the effective thickness of each layer as a weight.

11.5.5 Gas-liquid ratio effects

In ASP+foam flooding, there is an optimum gas-liquid ratio R∗
gl under which the strength

of foams is the greatest and oil recovery is the most efficient. If the gas-liquid ratio Rgl
is higher or lower than R∗

gl , the strength of foams will weaken and so will oil recovery
efficiency.

11.5.6 Gas velocity effects

The strength of foams also depends on the gas velocity ug . The lower the gas velocity, the
stronger the foam strength. The effect of Rgl and ug on the mobility reduction factor Ru
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can be modeled by the function

Ru =

(
ug/u

o
g

)σ−1
if Rgl ≤ R∗

gl,(
ug/u

o
g

)σ−1
R−ω
gl if Rgl > R∗

gl,
(11.43)

where uog is a reference gas velocity and σ and ω are experimentally determined constants.

11.6 Rock and Fluid Properties
In ASP+foam flooding, very complex physical and chemical phenomena can occur between
the reservoir rock and fluids, such as adsorption, cation exchange, and the change of phase
specific weights and viscosities with compositions.

11.6.1 Adsorption

Surfactant

Surfactant adsorption has been the subject of extensive study for many decades and is now
quite well understood. In general, the surfactant adsorption isotherm is very complicated
(Somasundaran and Hanna, 1977; Scamehorn et al., 1982). This is particularly true when
the surfactant is not isomerically pure and the substrate is not a pure mineral. However,
it has been believed that a Langmuir-type isotherm can be used to capture the essential
features of the surfactant adsorption in simulating oil recovery (Camilleri et al., 1987). This
type of isotherm describes the adsorption level of surfactant that takes into account salinity,
surfactant concentration, and rock permeability. The adsorbed concentration of surfactant
is described by

ĉi = min

{
c̃i ,

ai(c̃i − ĉi )

1 + bi(c̃i − ĉi )

}
, (11.44)

where i = 3 (for surfactant) and bi is a constant. The minimum is taken to ensure that ad-
sorption is not greater than the total surfactant concentration. Adsorption increases linearly
with effective salinity and decreases as permeability increases:

ai = (ai1 + ai2cSE)

√
ko

k
,

where cSE is the effective salinity, ai1 and ai2 are constants, k is the permeability, and ko

is a reference permeability. The reference permeability is the permeability at which the
input adsorption parameters are specified. The ratio ai/bi represents the maximum level of
adsorbed surfactant, and bi controls the curvature of the isotherm.

From our experience with petroleum applications, in many situations the Langmuir-
type isotherm is not valid; the adsorbed surfactant concentration curve must be remeasured in
the laboratory. According to our laboratory experiments (Chen et al., 2005B), the adsorbed
concentration ĉoi at a reference value pHr of pH may be calculated by its relation to the
surfactant concentration ci :

ĉoi = ĉoi (ci).
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The adsorbed concentration ĉi varies with pH:

ĉi =
(

1 − ai(pH − pHr )

pHmax − pHr

)
ĉoi ,

where pHmax is the maximum value of pH and ai is an experimental constant.

Polymer

The retention of polymer in a porous medium is due both to adsorption onto the solid surface
and to trapping within small pores. Polymer retention is analogous to that of surfactant,
slows down the polymer velocity, and depletes the polymer slug. Polymer adsorption is
given by (11.44) with the parameter ai specified by

ai = (ai1 + ai2cSEP )

√
ko

k
,

where i = 4 (for polymer) and cSEP is the effective salinity for polymer:

cSEP = c51 + (βP − 1)c61

c11

with c51, c61, and c11 being the anion, calcium, and water concentrations in the aqueous
phase and βP an input parameter measured in the laboratory.

11.6.2 Phase-specific weights

Phase-specific weights (γα = ρα℘) are functions of pressure and composition:

γα = c1αγ1α + c2αγ2α + c3αγ3α + 0.02533c5α

− 0.001299c6α + c8αγ8α, α = 1, 2, . . . , Np,
(11.45)

where γiα = γ oi [1+Coi (pα−por )] and γ oi is the specific weight of component i at a reference
pressure por .

11.6.3 Phase viscosities

The liquid phase viscosities are expressed in terms of pure component viscosities and the
phase concentrations of the organic, water, and surfactant:

µα = c1αµwe
β1(c2α+c3α) + c2αµoe

β2(c1α+c3α)

+ c3αβ3e
β4c1α+β5c2α for α = 1, 2, or 3,

(11.46)

where the parameters βi are determined by matching laboratory microemulsion viscosities
at several compositions. In the absence of surfactant and polymer, the water and oil phase
viscosities reduce to pure water and oil viscosities µw and µo. When polymer is present,
µw is replaced by the polymer viscosity µP defined by (11.35).
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The following exponential expressions can be used to calculate viscosities as functions
of temperature:

µi = µoi exp

(
bi

[
1

T
− 1

T o

])
, i = water, oil, or gas, (11.47)

where µoi is the viscosity at a reference temperature T o and bi is an input parameter. The
viscosity of air is a linear function of pressure:

µa = µoa + µsa(pr − por ), (11.48)

where µoa is the air viscosity at a reference pressure por and µsa is the slope (rate of change)
of the air viscosity vs. pressure.

11.6.4 Cation exchange

An incompatibility in the electrolyte composition of the initial and injected fluids saturating
a porous medium leads to cation exchange. Cation exchange affects the transport of ions
in solution and thus can influence the optimum salinity, surfactant phase behavior, and
surfactant adsorption (Pope et al., 1978; Fountain, 1992). The type and concentration of
cations involved in exchanges also have an effect on the permeability (Fetter, 1993). Cations
exist in the form of free ions, adsorbed on clay surfaces, and associated with either surfactant
micelles or adsorbed surfactant. Hirasaki’s model (Hirasaki, 1982) can be used to describe
the cation exchange: The mass action equations for the exchange of calcium (i = 6) and
sodium (i = 12) on clay and surfactant are(

cs12

)2
cs6

= βscm3

(
c
f

12

)2
c
f

6

,

(
ca12

)2
ca6

= βaQv

(
c
f

12

)2
c
f

6

, (11.49)

where the superscripts f , a, and s indicate free cations, adsorbed cations on clay, and
adsorbed cations on micelles, respectively; βs and βa are the ion exchange constants for
clay and surfactant; cm3 is the concentration of surfactant in meq/ml; and Qv is the cation
exchange capacity of the mineral. Electrical neutrality and mass conservation are required
to close the system of ion exchange equations:

c5 = c
f

12 + c
f

6 ,

c6 = c
f

6 + cs6 + ca6 ,

c3 = cs6 + cs12,

Qv = ca6 + ca12,

c5 − c6 = c
f

12 + cs12 + ca12.

(11.50)

All concentrations in these equations are given in meq/ml of water. The molar volume
concentration of surfactant is evaluated from

cm3 = 1,000c3

c1M3
, (11.51)

where M3 is the equivalent weight of surfactant. The cation exchange equations (11.49)–
(11.51) are solved for the six unknowns ca6 , ca12, cf6 , cf12, cs6, and cs12 using the Newton–
Raphson iteration (cf. Section 8.2.1).
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11.7 Numerical Methods
The various numerical methods developed in Chapter 4 and the solution techniques described
in Chapter 8 can be applied for the numerical solution of the governing equations for chemical
flooding. For the numerical results presented in the next section, the temporal discretization
is based on the backward Euler scheme, while the spatial discretization is based on the
Raviart–Thomas mixed finite element method on rectangular parallelepipeds (cf. Section
4.5.4). The solution technique used is sequential and is evolved from the IMPEC (i.e.,
implicit in pressure and explicit in composition; cf. Section 8.2.4) technique developed
by Delshad et al. (2000) for a compositional simulator of chemical flooding. Because of
the explicitness for the solution of compositions, the size of time steps must be restricted
to stabilize the overall procedure. In contrast, the sequential technique (cf. Section 8.2.3)
solves both the pressure and compositions implicitly, and relaxes the time step restriction.
The Newton–Raphson iterations for each of the pressure and composition equations are
constrained by maximum changes in these variables over the iteration (cf. Section 8.2.3),
and an automatic choice of time step sizes is determined by these maximum changes over the
time step. Upstream-weighted interblock flow (e.g., for mobilities) and injection/production
terms are included. The linear system of algebraic equations is solved by the ORTHOMIN
iterative algorithm, with incomplete LU factorization preconditioners (cf. Chapter 5).

Both an implicit scheme in time for each of the pressure and composition equations
and an implicit bottom hole pressure treatment add stability and preserve user-specified
rates and constraints. In fact, for the numerical tests carried out in the next section, we have
observed that the sequential technique is approximately four times faster than the IMPEC.

The sequential solution technique proceeds in the following order:

1. Solve the pressure equation implicitly.

2. Solve the transport system implicitly for the overall concentration of each component.

3. Use the chemical reaction equilibrium model to obtain the effective salinities.

4. Utilize a flash calculation to obtain the phase saturations and the concentrations of
components in each phase.

5. Compute the interfacial tensions, trapping numbers, residual phase saturations, rela-
tive permeabilities, phase densities, viscosities, mobility reduction factors, etc.

6. Go back to step 1 to repeat this procedure until a final state is reached.

11.8 Numerical Results
The chemical compositional model developed in Sections 11.1–11.6 is applied to three
experiments: a chemical flow without mass transfer between phases, a laboratory sandstone
core, and an ASP+foam displacement problem with mass transfer. The purpose of the first
experiment is to show that this chemical model is reliable and practical. Because there is no
analytical solution available for the chemical compositional problem under consideration,
the second experiment is used to compare numerical and laboratory results. The third
experimental problem is more realistic than the first, and is exploited to study oil recovery
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Injection

Production

Figure 11.4. A five-spot pattern.

efficiency using different development methods, the oil displacement mechanisms, and the
effects of different factors onASP+foam flooding. Numerical simulation can be employed to
conduct mechanism study, feasibility evaluation, pilot plan optimization, and performance
prediction for chemical flooding to improve oil recovery efficiency and reduce operational
costs.

11.8.1 Example 1

This is a typical five-spot pattern problem with four injection wells and one production
well (cf. Figure 11.4). The distance between the injection and production wells is 250 m.
The number of horizontal grids is 9 × 9 with a spatial grid size of 44.19 m. The temporal
step size is of the order of several days. There are two layers in the vertical direction; the
effective thickness of each layer is 3 m. The permeabilities in the first and second layers
are 800 and 1,500 md, respectively, and the porosity is 0.26. The initial water saturation is
0.45, and an injection rate of 0.19 PV/D is used. Water cut (WC) is defined as the ratio of
water production to the sum of water and oil production.

There are three types of injections: water, polymer, and ASP flooding. The injection
modes are the following:

• Water flooding: Water is injected until WC = 98%.

• Polymer flooding: 0.05 PV water is injected, followed by polymer (1,000 ppm in
solution) injection until the total injection reaches 0.38 PV, and then water is injected
again until WC = 98%.

• ASP flooding: 0.05 PV water is injected, followed by ASP injection with 0.3%
surfactant, polymer with 1,000 ppm in solution, and 2.0wt% NaOH until the total
injection reaches 0.38 PV, and then water is injected again until WC = 98%.

The active function table of interfacial tension used in this simulation is given in
Table 11.1. The recovery rates of the second (polymer flooding) and third (ASP flooding)
types of injections are 23% and 32% OIP (oil in place), respectively. The WC curves for
different injection methods are presented in Figure 11.5. Figure 11.6 displays the residual
oil saturation for the first layer using the polymer and ASP flooding, respectively, when
WC equals 98%. Figure 11.5 shows that WC decreases to 79.85% and 66.56% from the
highest value 92.34% for the second and third types, respectively, and that the third type
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Table 11.1. The active function table of interfacial tension.

Surfactant
������� 0 0.001 0.002 0.003 0.004 0.005

Alkaline
0 20 0.9 0.2 0.12 0.07 0.04

0.5% 0.758 0.017 0.004 0.00019 0.00015 0.00010
1.0% 0.173 0.011 0.001 0.00009 0.00004 0.00003
1.5% 0.073 0.006 0.0007 0.00005 0.00003 0.00002
2.0% 0.03 0.002 0.0003 0.00002 0.00002 0.00001
3.0% 0.06 0.008 0.0007 0.00012 0.00010 0.00005

Figure 11.5. Water cut versus injected PV (water: top, polymer: middle, and ASP:
bottom).

Figure 11.6. Polymer flooding (left); ASP flooding (right).

reduces the residual oil saturation much more dramatically than does the second type. These
observations are in good agreement with physical intuition, and indicate that the chemical
simulator is practical. While quite a coarse grid is utilized, an observation similar to that in
Figure 11.5 has been made for refined grids.
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Figure 11.7. Oil recovery versus injected PV (numerical: solid and laboratory: dotted).

11.8.2 Example 2

To test the accuracy of the chemical compositional simulator, we compare numerical and
laboratory results for a core flow experiment. It is a sandstone core, inhomogeneous in the
horizontal direction. The dimensions of this core are 30×4.5×4.5 cm3; it has three layers,
each having a thickness of 1.5 cm. The average permeability of each layer is 1,000 md,
with a variation of 0.72. The porosity is 0.26, and water flooding has reached the stage of
WC = 98%.

There are primary and secondary injections. In the primary, ASP consists of ORS41
with a concentration of 0.3%, 1.0wt% NaOH solution, and polymer 1275A with 2,000 ppm
in solution; in the secondary injection, ASP is composed of ORS41 with a concentration
of 0.05%, 1.0wt% NaOH solution, and polymer 1275A with 1,800 ppm in solution. These
injections are alternating equal-sized injections of (natural) gas and liquids, with 0.05 PV
injected in each cycle. In the primary injection, the gas and liquids are injected 0.3 PV
each; in the secondary, they are injected 0.1 PV each. After these two injections, there is
a protection period. In this period, 0.05 PV polymer 1275A with 800 ppm in solution is
first injected, then 0.15 PV polymer 1275A with 500 ppm in solution is injected, and water
is finally injected. The oil recovery rates (relative to the current OIP) obtained using the
numerical simulation and laboratory experiment for this problem are shown in Figure 11.7,
and the corresponding WCs are presented in Figure 11.8. These two figures show that the
numerical and laboratory results match.

We remark that while the differential equations in Section 11.1 were derived for
slightly compressible fluids, they apply to the gas injection experiments in this section. Gas
injection is studied in the context of ASP+foam flooding. In this type of flooding, on one
hand, the polymer viscosity is quite large, and, on the other hand, due to the presence of
surfactants and foams, the emulsive phenomenon is significant. As a result, the viscosity
of formed emulsions is large and their mobility is low. Therefore, in the entire ASP+foam
flooding process, the oil reservoir considered is at a very high pressure. Under such a high
pressure, most of the gas flow is in the form of foam, and its volume does not change much.
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Figure 11.8. Water cut versus injected PV (numerical: solid and laboratory: dotted).

Injection

Production

Figure 11.9. Another five-spot pattern.

11.8.3 Example 3

This example is more realistic than the first. We use the chemical compositional model
to study oil recovery efficiency using different development methods, the oil displacement
mechanisms, and the effects of different factors on ASP+foam flooding.

The model

This is another five-spot pattern problem with one injection well and four production wells,
and the distance between the injection and production wells is 250 m (cf. Figure 11.9).
There are three vertical layers, each having a thickness of 2 m. The average permeability of
the first, second, and third layers is 154, 560, and 2,421 md, respectively, with a variation
of 0.72 on each layer. The porosity is 0.26, and the initial water saturation is 0.26. The
number of grids used is 9 × 9 × 3, and the horizontal grid size is 44.1942 m. The injection
rate is 0.19 PV/D.

Oil recovery study

The chemical compositional simulator is applied to four different injection methods: water,
polymer, ASP, and ASP+foam flooding. These four injection procedures are the following:

• Water flooding: Water is injected until WC = 98%.
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Figure 11.10. Oil recovery versus injected PV (from bottom to top: water, polymer,
ASP, and ASP + foam).

• Polymer flooding: Water is injected until Sw = 0.915, followed by polymer (1,000
ppm in solution) injection until the total injection reaches 0.57 PV, and then water is
injected again until WC = 98%.

• ASP flooding: Water is injected until Sw = 0.915, followed by 0.015 PV polymer
(1,000 ppm in solution) injection in a protection period, then ASP with 0.3% surfac-
tant, 1.0wt% NaOH, and polymer with 1,000 ppm in solution is injected until the total
injection reaches 0.57 PV, and finally water is injected again until WC = 98%.

• ASP+foam flooding: Water is injected until Sw = 0.915, followed by 0.015 PV
polymer (1,000 ppm in solution) injection in the protection period, then ASP+foam is
injected with a simultaneous injection of gas and liquids, where the gas-liquid ratio is
1 : 1 and ASP+foam consists of 0.3% surfactant, 1.0wt% NaOH, and polymer with
1,000 ppm in solution, until the total injection reaches 0.57 PV, and finally water is
injected again until WC = 98%.

The oil recovery rates using these four injection methods are shown in Figure 11.10.
It seems from this figure that ASP+foam flooding is the most efficient.

Displacement mechanism study

As discussed in Section 11.5, in ASP+foam flooding for an initially oil-wet porous medium,
because of a change of foam mobility resistance, ASP+foams enter small pores that are not
reached by water flooding and displace a large amount of residual oil there. Hence this
type of flooding increases the efficiency of water flooding through larger volumetric sweep
efficiency and a lower swept zone oil saturation.

Improving larger volumetric sweep efficiency is the ultimate goal of ASP+foam flood-
ing in order to increase oil recovery from water, gas, or steam flooding in a petroleum reser-
voir. The improvement of this sweep efficiency heavily depends on the blocking capacity
of foams in a porous medium. Numerical simulation is a useful approach in studying the
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Figure 11.11. Liquid production (m3) versus injected PV (water: bottom, and
ASP+foam: top).

mobility of ASP+foams in different permeability zones of the medium to determine the
blocking role of foams.

In water flooding for a highly heterogeneous porous medium, most liquid is pro-
duced from high-permeability zones, while a small amount of liquid is produced from
low-permeability zones. When foams are injected, they first enter the high-permeability
zones. As they are continually injected, they soon play a blocking role in these zones so that
the mobility resistance there increases, and then they gradually move to the low-permeability
zones. That is why a larger volume can be swept by this type of flooding.

We simulate water and ASP+foam flooding for the present problem. These two flood-
ings and their injection slugs are the following:

• Water flooding: Water is injected until WC = 98%.

• ASP+foam flooding: Water is injected until Sw = 0.915, followed by 0.015 PV
polymer (1,000 ppm in solution) injection in a protection period, then ASP+foam is
injected with a simultaneous injection of gas and liquids, where the gas-liquid ratio is
1 : 1 and ASP+foam consists of 0.3% surfactant, 1.0wt% NaOH, and polymer with
1,000 ppm in solution, until the total injection reaches 0.57 PV, and finally water is
injected again until WC = 98%.

The oil recovery rates of water and ASP+foam flooding are, respectively, 29.86% and
62.06% for the model problem considered. Obviously, the second form of flooding is far
more efficient. Figures 11.11–11.13 give the liquid production in three different layers (high,
intermediate, and low permeability layers) for these two floodings. It is clear from these
figures that most liquid is produced from the high-permeability layer, and less is produced
from other two layers in water flooding. In ASP+foam flooding, foams can effectively block
the high-permeability layer so that liquid production decreases in this layer and increases
in the intermediate- and low-permeability layers. In addition, liquid production increases
more in the intermediate-permeability layer than at low permeability. These observations
agree with the displacement mechanism theory that a larger volume is swept by ASP+foam
flooding.
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Figure 11.12. Liquid production (m3) versus injected PV (water: bottom, and
ASP+foam: top).

Figure 11.13. Liquid production (m3) versus injected PV (water: top, and
ASP+foam: bottom).

Effects of different factors

Many factors affect oil recovery of ASP+foam flooding. Here we numerically study two:
the gas-liquid ratio and different injection methods.

(i) Gas-liquid ratio effect

In ASP+foam flooding, the gas-liquid ratios are now set to 1 : 1, 3 : 1, and 5 : 1. The oil
recovery rates are given in Figure 11.14 for these three cases. It follows from this figure that
the ratio 3 : 1 appears better. This ratio generates good quality foams, which can effectively
enter and block the high-permeability layer so that more displacing fluids can reach the
intermediate- and low-permeability layers, and thus larger volumetric sweep efficiency can
be obtained.
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Figure 11.14. Oil recovery versus different gas-liquid ratios.

(ii) Gas and liquid injection effect

The gas and liquid injections can be alternating or simultaneous. In addition, in alternating
injection, the injection frequency (or cycles) can be different. Different injection methods
have different effects on oil recovery.

The gas-liquid ratio is fixed at 3 : 1. We study three injection methods: alternating
injection with a low frequency, alternating injection with a high frequency, and simultaneous
injection.

• Alternating with a low frequency: 0.095 PV ASP is injected, followed by 0.032 PV
gas injection, then they are alternatingly injected until a cumulative ASP reaches 0.57
PV, and finally water is injected again until WC = 98%.

• Alternating with a high frequency: 0.0475 PV ASP is injected, followed by 0.0158
PV gas injection, then they are alternatingly injected until a cumulative ASP reaches
0.57 PV, and finally water is injected again until WC = 98%.

• Simultaneous injection: Gas and liquids are simultaneously injected until a cumula-
tive ASP reaches 0.57 PV, and then water is injected again until WC = 98%.

The recovery rates for these three injection methods are displayed in Figure 11.15. The
numerical simulation shows that simultaneous injection is more efficient than the alternating
method. For the alternating method, high frequency produces more than does low frequency.

11.9 Application to a Real Oilfield
In this section, the chemical compositional model is used for the numerical study and
development prediction of a real oilfield. This oilfield is located in Asia and has been
operating since 1963.

11.9.1 Background

This oilfield is large, but the area under study is 0.39 km2, and the depth to its center is 935 m.
Its porous volume is 64.05×104 m3, and the initial OIP is 35.92×104 t. The initial pressure
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Figure 11.15. Oil recovery versus injected PV (alternating with low frequency:
bottom, alternating with high frequency: middle, and simultaneous: top).

Injection Production

Figure 11.16. The experimental area.

of the reservoir is 10.5 Mpa. There are 16 wells; 6 are injection wells, and 10 are production
wells. The average distance between the injection wells is 250 m, and the average distance
between the injection and production wells is 176 m (cf. Figure 11.16). The two central
production wells are the major producers, while other production wells are observatory. The
control area, average effective thickness, porous volume, and initial OIP of the two major
producers are 0.125 km2, 6.8 m, 22.44 × 104 m3, and 12.58 × 104 t, respectively. From
March 1989 to September 1993, there were 36 periods of alternating water-gas injections.
The cumulative gas injection is 4,938 × 104 m3 (in standard conditions), i.e., 0.24 PV; the
cumulative water injection is 66.92 × 104 m3, i.e., 0.48 PV.

11.9.2 The numerical model

To simulate this model problem, the injection and production wells are rearranged as in
Figure 11.16. A no-flow boundary condition is used. The reservoir has six layers, and
the grid dimensions are 25 × 17 × 6. The x1- and x2-spatial grid sizes are 31.304 m and
30.829 m, respectively.
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Table 11.2. The reservoir data.

Effective thickness Permeability Porosity Depth
(m) (µ2m) (%) (m)

1st layer 0–2.8 0.04–0.378 0.235–0.257 912–950
2nd layer 0–1.4 0.039–0.417 0.235–0.257 914–952
3rd layer 0–2.8 0.04–0.596 0.235–0.257 920–953
4th layer 0.2–2.6 0.039–0.493 0.235–0.257 922–956
5th layer 0.5–2.2 0.039–0.543 0.235–0.257 924–958
6th layer 0–4.1 0.039–0.543 0.235–0.257 926–960

The effective thickness, permeability, porosity, and depth of the grid points where
the wells are located were obtained from measurements and are given in Table 11.2. The
data for other grid points are interpolated using the well grid points’ data. The water
saturation before ASP+foam flooding is not known. This saturation at well grid points can
be measured using injection, liquid production, and WC data provided by the wells. A WAG
(water-alternating-gas) test was used to show that 13.88 × 104 m3 of the injected gas is
present in the reservoir before ASP+foam flooding. Since the gas injection region has a pore
volume of 139.2 × 104 m3, the ratio of these two numbers is 9.97%, which can be treated
as a reference saturation of the remaining gas.

The physicochemical properties of chemical agents and foams used in this example
are obtained from laboratory measurements combined with core flow experiments as in the
second example of the previous section. The major properties of foams are that the critical
water saturation equals 0.37, the critical concentration of surfactant is 0.0015, the critical oil
saturation is 0.25, and the optimal gas-liquid ratio is 3 : 1. The active function of interfacial
tension is given in Table 11.1.

11.9.3 Numerical history matching

The numerical experiment involves the water flooding period of January 1–February 24,
1997, the pre-ASP flooding period of February 25–March 26, 1997, the major gas-liquid
injection period of March 27, 1997–August 5, 1999, the secondary foam injection period
of August 6, 1999–November 16, 2000, and the polymer (800 mg/L in solution) injection
period of November 17, 2000–June 30, 2001. The gas and liquids are injected alternatingly.
The injection modes are the following:

• Pre-ASP flooding: 0.02 PV ASP is first injected: 0.3% ORS41, 1.2wt% NaOH, and
15,000 (in thousand molecular weights) polymer with 1,200 mg/L in solution.

• Major ASP flooding: 0.55 PV ASP is injected, with 0.3% ORS41, 1.2wt% NaOH,
and 15,000 (in thousand molecular weights) polymer with 1,200 mg/L in solution.

• Secondary ASP flooding: 0.3 PV ASP is injected: 0.1% ORS41, 1.2wt % NaOH, and
15,000 (in thousand molecular weights) polymer and natural gas with 1,200 mg/L in
polymer solution.

• Protection period: 0.1 PV polymer with 800 mg/L in solution is injected.
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Figure 11.17. Cumulative oil production versus injected PV (numerical: solid
and actual: dotted).

Figure 11.18. Oil recovery versus injected PV (numerical: solid and actual: dotted).

The two central production wells are the major producers, so we do history matching
(cf. Section 14.2) for only these two producers. The history matching covers the period
of January 1, 1997–June 30, 2001 from water flooding to the protection period of polymer
injection. The matched variables include the daily oil and water production and WC. History
matching is performed through an adjustment of relative permeabilities and other physical
data. The matches between actual and numerical results for the matched variables are
shown in Figures 11.17–11.22 for the injected PV in the range 0–0.97 PV. The cumulative
oil production for the same period is given in Table 11.3.

The relative error for WC match is 4.48%. From Figures 11.17–11.22 and Table 11.3,
we can see that other variables (daily oil and water productions, cumulative oil production,
and recovery rate) also match.
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Figure 11.19. Water cut versus injected PV (numerical: solid and actual: dotted).

Figure 11.20. Water cut versus injected PV (numerical: solid and actual: dotted).

Figure 11.21. Water cut versus injected PV (numerical: solid and actual: dotted).
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Figure 11.22. Instantaneous oil production versus injected PV (numerical: solid
and actual: dotted).

Table 11.3. The history matching of cumulative oil production.

Cumulative production (t) Recovery rates (%)
Actual 23,435 18.63

Numerical 23,647 18.80

11.9.4 Predictions

We can employ the history matching–based adjusted model to predict the development
and production of the experimental region using ASP+foam flooding. The prediction is
made until WC reaches 98%. The prediction for the two central producers is 28,603 t for
the cumulative oil production, 22.74% for the recovery rate for the predicted time period,
67.36% for the recovery rate for the entire simulation time, and 1.27 PV for the injected PV
(in the whole experimental oilfield). The predicted results are displayed in Figures 11.17–
11.22, where the injected PV is in the range 0.97–1.27 PV.

11.9.5 Assessment of different development methods

An advantage of numerical reservoir simulation is its ability to assess different develop-
ment methods for a petroleum reservoir in order to choose a robust and reliable method,
increase oil and/or gas recovery, and achieve greater economic efficiency. For the present
experiment, we compare three different development methods: water flooding, ASP+foam
flooding with a protection period of polymer injection, and ASP+foam flooding without this
protection period (i.e., water is further injected after the secondary ASP+foam flooding).
The cumulative oil production and oil recovery rate for the predicted time period (January
1, 1997–June 30, 2001) are given in Table 11.4 for the two central producers. It is clear that
it is very difficult to recover the remaining oil using water flooding alone. ASP+foam flood-
ing recovers much more. Furthermore, the ASP+foam flooding with a protection period
recovers even more. This implies that the second development project is the most efficient
among the three projects.
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Table 11.4. The assessment of different development methods.

Cumulative Recovery
production (t) rates (%)

Water flooding 4,029 3.20
ASP+foam with protection 28,603 22.74

ASP+foam without protection 27,022 21.48

11.10 Bibliographical Remarks
Most of the content in this chapter is taken from Chen et al. (2005B). The presentation in
Sections 11.2–11.4 follows Delshad et al. (2000).

Exercises
11.1. Derive equation (11.9) by adding equations (11.1) over i, i = 1, 2, . . . , Ncv , and

using equations (11.6) and (11.8).
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Flows in Fractured Porous
Media

A fractured porous medium has throughout its extent a system of interconnected fractures
dividing the medium into a series of essentially disjoint blocks of porous rock, called the
matrix blocks (cf. Figure 2.2). It has two main length scales of interest: the microscopic
scale of the fracture thickness (about 10−4 m) and the macroscopic scale of the average
distance between fracture planes, i.e., the size of the matrix blocks (about 0.1–1 m). Since
the entire porous medium is about 103–104 m across, flow can be mathematically simulated
only in some averaged sense. The concept of dual porosity (and dual porosity/permeability)
has been utilized to model the flow of fluids on its various scales (Pirson, 1953; Barenblatt
et al., 1960; Warren and Root, 1963; Kazemi, 1969). In this concept, the fracture system
is treated as a porous structure distinct from the usual porous structure of the matrix itself.
The fracture system is highly permeable, but can store very little fluid, while the matrix has
the opposite characteristics. When developing a dual porosity model, it is critical to treat
the flow transfer terms between the fracture and matrix systems.

There are two approaches to treating a matrix-fracture flow transfer term. In the
first approach (known as the Warren–Root approach; cf. Section 2.11.2), this term for a
particular fluid phase is directly related to a shape factor, the fluid mobility, and the potential
difference between these two systems, and the capillary pressure, gravity, and viscous forces
are properly incorporated into this term. Here this approach will be reviewed. Moreover,
the inclusion of a pressure gradient across a matrix block in this term in a general fashion
is also studied. The other approach is to treat the flow transfer term explicitly through
boundary conditions on the matrix blocks. This approach avoids the introduction of the ad
hoc parameters (e.g., the shape factor and a characteristic length) in the first approach, and
is more general. However, the second approach appears to apply only to a dual porosity
model, not to a dual porosity/permeability model.

The formulation of the mass balance equation for each fluid phase in a fractured
porous medium follows that for an ordinary medium with an additional matrix-fracture
transfer term. The two overlapping continua, fractures and matrix blocks, are allowed to
coexist and interact with each other. Furthermore, there are matrix-matrix connections. In
this case, a dual porosity/permeability model is required for the fractured porous medium.

433
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If the matrix blocks act only as a source term to the fracture system and there is no matrix-
matrix connection, a dual porosity (and single permeability) model is applied.

The governing equations that describe fluid flow in a fractured porous medium are
developed in Section 12.1. The matrix-fracture transfer terms for the dual porosity and dual
porosity/permeability models are also introduced in this section. Numerical results based
on the sixth CSP organized by the SPE are reported in Section 12.2. Finally, bibliographical
information is given in Section 12.3.

12.1 Flow Equations
Dual porosity/permeability models were developed for single phase and compositional flows
in fractured porous media in Sections 2.2.6 and 2.11, respectively. To be specific to the appli-
cation presented here, the fluid flow equations considered are based on a three-component,
three-phase black oil model (cf. Section 2.6 or Chapter 8).

To reduce confusion, we distinguish carefully between phases and components. We
use lower- and uppercase letter subscripts to denote the phases and components, respectively.
Furthermore, a subscript f is used to denote fracture variables.

12.1.1 Dual porosity/permeability models

Let φ and k denote the porosity and permeability of a matrix system, and let Sα , µα , pα , uα ,
ρα , and krα be the saturation, viscosity, pressure, volumetric velocity, density, and relative
permeability of the α-phase, α = w, o, g, respectively. Because of mass interchange
between the oil and gas phases, mass is not conserved within each phase, but rather the total
mass of each component must be conserved. Thus, for the matrix system, the mass balance
equations are

∂(φρwSw)

∂t
= −∇ · (ρwuw)− qWm (12.1)

for the water component,

∂(φρOoSo)

∂t
= −∇ · (ρOouo)− qOom (12.2)

for the oil component, and

∂

∂t

(
φ(ρGoSo + ρgSg)

) = −∇ · (ρGouo + ρgug)− (qGom + qGm) (12.3)

for the gas component, where ρOo and ρGo indicate the partial densities of the oil and gas
components in the oil phase, respectively, and qWm, qOom, qGom, and qGm represent the
matrix-fracture transfer terms. Equation (12.3) implies that the gas component may exist in
both the oil and gas phases.

Darcy’s law for each phase is written in the usual form

uα = −krα
µα

k (∇pα − ρα℘∇z) , α = w, o, g, (12.4)
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where℘ is the magnitude of the gravitational acceleration and z is the depth. The saturation
constraint reads

Sw + So + Sg = 1. (12.5)

Finally, the phase pressures are related by capillary pressures

pcow = po − pw, pcgo = pg − po. (12.6)

For the fracture system, the mass balance equations are

∂(φρwSw)f

∂t
= −∇ · (ρwuw)f + qWm + qW ,

∂(φρOoSo)f

∂t
= −∇ · (ρOouo)f + qOom + qOo,

∂

∂t

(
φ(ρGoSo + ρgSg)

)
f

= −∇ · (ρGouo + ρgug)f

+ (qGom + qGm)+ (qGo + qG),

(12.7)

where qW , qOo, qGo, and qG denote the external sources and sinks. We have assumed that
these external terms interact only with the fracture system. This is reasonable since the flow
is much faster in this system than in the matrix blocks. Equations (12.4)–(12.6) remain
valid for the fracture quantities.

The matrix-fracture transfer terms for the dual porosity/permeability model can be
defined using the concept of Warren and Root (1963) and Kazemi (1969). The transfer term
for a particular component is directly related to a shape factor σ , the fluid mobility, and
the potential difference between the fracture and matrix systems. The capillary pressure,
gravity, and viscous forces must be properly incorporated into this term. Furthermore, the
contributions from a pressure gradient across each matrix block and the molecular diffusion
rate for each component must be also included. For the brevity of presentation, we neglect
the diffusion rate, and discuss the contribution from the pressure gradient.

The treatment of a pressure gradient across a block is based on the following obser-
vation: for an oil matrix block surrounded with water in the fractures, we see that

�pw = 0, �po = ℘(ρw − ρo).

Analogously, for an oil block surrounded with gas fractures and a gas block surrounded with
water fractures, we see, respectively, that

�pg = 0, �po = ℘(ρo − ρg),

and
�pw = 0, �pg = ℘(ρw − ρg).

In general, we introduce the global fluid density in the fractures

ρf = Sw,f ρw + So,f ρo + Sg,f ρg,

and define the pressure gradients

�pα = ℘
∣∣ρf − ρα

∣∣ , α = w, o, g.
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Now, the transfer terms that include the contributions from the capillary pressure, gravity,
and viscous forces, and the pressure gradients across matrix blocks are defined by

qWm = Tm
krwρw

µw

(

w −
w,f + Lc�pw

)
,

qOom = Tm
kroρOo

µo

(

o −
o,f + Lc�po

)
,

qGom = Tm
kroρGo

µo

(

o −
o,f + Lc�po

)
,

qGm = Tm
krgρg

µg

(

g −
g,f + Lc�pg

)
,

(12.8)

where 
α is the phase potential


α = pα − ρα℘z, α = w, o, g,

Lc is the characteristic length for the matrix-fracture flow, and Tm is the matrix-fracture
transmissibility

Tm = kσ

(
1

l2x1

+ 1

l2x2

+ 1

l2x3

)
with σ the shape factor and lx1 , lx2 , and lx3 the matrix block dimensions (Kazemi, 1969;
Coats, 1989). When the matrix permeability k is a tensor and different in the three coordinate
directions, the matrix-fracture transmissibility is modified to

Tm = σ

(
k11

l2x1

+ k22

l2x2

+ k33

l2x3

)
, k = diag(k11, k22, k33).

12.1.2 Dual porosity models

For the derivation of a dual porosity model, we assume that fluids do not flow directly from
one matrix block to another. Rather, they first flow into the fractures, and then they flow into
another block or remain in the fractures. This is reasonable since fluids flow more rapidly
in the fractures than in the matrix. Therefore, the matrix blocks act as source terms to the
fracture system, and there is no matrix-matrix connection for the dual porosity model. In
this case, there are two approaches for deriving this model: the first is as in Section 12.1.1,
and the second is to be defined in Section 12.1.2 (ii) below.

(i) The Warren–Root approach

In this approach, the mass balance equations in the matrix become

∂(φρwSw)

∂t
= −qWm,

∂(φρOoSo)

∂t
= −qOom,

∂

∂t

(
φ(ρGoSo + ρgSg)

) = − (qGom + qgm
)
,

(12.9)
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where qWm, qOom, qGom, and qgm are given by (12.8). The fracture equations are the same
as in Section 12.1.1.

(ii) The boundary conditions approach

For a dual porosity model, the matrix-fracture transfer terms can be modeled explicitly
through boundary conditions on the matrix blocks, following Pirson (1953) and Barenblatt
et al. (1960). Let the matrix system be composed of disjoint blocks {�i}. On each block
{�i}, the following mass balance equations hold:

∂(φρwSw)

∂t
= −∇ · (ρwuw),

∂(φρOoSo)

∂t
= −∇ · (ρOouo),

∂

∂t

(
φ(ρGoSo + ρgSg)

) = −∇ · (ρGouo + ρgug).

(12.10)

The total mass of water leaving the ith matrix block �i per unit time is∫
∂�i

ρwuw · νd�,

where ν is the outward unit normal to the surface ∂�i of �i . The divergence theorem and
the first equation of (12.10) imply∫

∂�i

ρwuw · νd� =
∫
�i

∇ · (ρwuw)dx = −
∫
�i

∂(φρwSw)

∂t
dx. (12.11)

Now, we define qWm by

qWm = −
∑
i

χi(x)
1

|�i |
∫
�i

∂(φρwSw)

∂t
dx, (12.12)

where |�i | denotes the volume of �i and χi(x) is its characteristic function, i.e.,

χi(x) =
{

1 if x ∈ �i,
0 otherwise.

Similarly, qOom and qGom + qGm are (cf. Exercise 12.1)

qOom = −
∑
i

χi(x)
1

|�i |
∫
�i

∂(φρOoSo)

∂t
dx (12.13)

and

qGom + qGm = −
∑
i

χi(x)
1

|�i |
∫
�i

∂
(
φ(ρGoSo + ρgSg)

)
∂t

dx. (12.14)

This approach for defining the transfer terms avoids the introduction of the ad hoc parameters
(e.g., the shape factor and characteristic length).
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With the definition of qWm, qOom, and qGom + qGm, boundary conditions on the
surface of each matrix block can be imposed in a general fashion, and gravitational forces
and pressure gradient effects across the block can be incorporated into these conditions
(cf. Sections 2.2.6 and 2.11). We define the phase pseudopotential as


′
α(pα) =

∫ pα

poα

1

ρα(ξ)℘
dξ − z, (12.15)

where poα is some reference pressure, α = w, o, g. The inverse of this integral is denoted
ψ ′
α(·). Now, the boundary conditions for (12.10) on the surface ∂�i of each matrix block
�i are


′
α(pα) = 
′

α,f (pα,f )−
o
α on ∂�i, α = w, o, g, (12.16)

where, for a given
′
α,f ,
o

α is a pseudopotential reference value on each block�i determined
by

1

|�i |
∫
�i

(φρα)
(
ψ ′
α

(

′
α,f −
o

α + x3
))
dx = (φρα)(pα,f ). (12.17)

If we assume that ∂ρα/∂pα ≥ 0, (12.17) is solvable for 
o
α . (For incompressible α-phase

fluid, we set 
o
α = 0.)

This model implies that the fracture system, being highly permeable, quickly comes
into phase equilibrium locally on the fracture spacing scale. This equilibrium is defined
in terms of the phase pseudopotentials and is reflected in the matrix equations through the
boundary conditions (12.16).

12.2 The Sixth SPE Project: Dual Porosity Simulation
The experimental problems are chosen from the benchmark problems of the sixth CSP
(Thomas et al., 1983; Firoozabadi-Thomas, 1990). Ten organizations participated in the
comparative project. In these problems, various aspects of the physics of multiphase flow in
fractured petroleum reservoirs are examined. The question of a fracture capillary pressure
and its influence on reservoir performance is addressed by including zero and nonzero gas-
oil capillary pressures in the fractures. The nonzero capillary pressure is not based on actual
measurements, but is intended as a parameter for sensitivity studies. The variation of gas-
oil interfacial tension with pressure is also incorporated. The gas-oil capillary pressure is
directly related to the interfacial tension, and thus this pressure should be adjusted according
to the ratio of the interfacial tensions at pressure and at the pressure at which the capillary
pressures are specified.

The example under consideration is cross sectional, and is designed to simulate deple-
tion, gas injection, and water injection in fractured petroleum reservoirs. Table 12.1 states
the basic physical and fluid property data, Table 12.2 shows the reservoir layer description,
Table 12.3 gives the matrix block shape factors, Tables 12.4 and 12.5 indicate the fracture
and rock data (relative permeabilities and capillary pressures), and Tables 12.6 and 12.7
represent the oil and gas PVT data, where Bo and Bg are the oil and gas formation volume
factors, Rso is the gas solubility factor, and cµ is the oil viscosity compressibility. In all the
experiments, the injector is located at i = 1, and the producer is located at i = 10. The
input data for each experiment are given below.
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Table 12.1. Basic physical and fluid data.

k = 1 (md), φ = 0.29, φf = 0.01

Nx1 = 10, Nx2 = 1, Nx3 = 5

h1 = 200, h2 = 1000, h3 = 50 (ft)

z-direction transmissibility: multiply computed values by 0.1

Initial pressure: 6014.7 (psia), saturation pressure: 5559.7 (psia)

Water viscosity: 0.35 (cp), water compressibility: 3.5 × 10−6 (psi−1)

Water formation volume factor: 1.07 (psig)

Rock and oil compressibility: 3.5 × 10−6, 1.2 × 10−5 (psi−1)

Temperature: 200◦ F, datum: 13400 (ft), depth to the top: 13400 (ft)

Densities of stock tank oil and water: 0.81918 and 1.0412 (gm/cc)

Gas specific gravity at standard conditions: 0.7595

Rate = krP I
Bµ

, �p in psi, µ in cp, B in RB/STB, and rate in STB/D

Table 12.2. Reservoir layer description.

Layer kf (md) Block height (ft) PI
(RB cp
D psi

)
1 10 25 1
2 10 25 1
3 90 5 9
4 20 10 2
5 20 10 2

Table 12.3. Matrix block shape factors.

Block size (ft) Water-oil (ft−2) Gas-oil (ft−2)
5 1.00 0.08
10 0.25 0.02
25 0.04 0.0032

Table 12.4. Fracture rock data.

Sw krw krow pcow

0.0 0.0 1.0 0.0
1.0 1.0 0.0 0.0

Sg krg krog pcgo

0.0 0.0 1.0 0.0375
0.1 0.1 0.9 0.0425
0.2 0.2 0.8 0.0475
0.3 0.3 0.7 0.0575
0.4 0.4 0.6 0.0725
0.5 0.5 0.5 0.0880
0.7 0.7 0.3 0.1260
1.0 1.0 0.0 0.1930
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Table 12.5. Matrix rock data.

Sw krw krow pcow

0.2 0.0 1.0 1.0
0.25 0.005 0.860 0.5
0.30 0.010 0.723 0.3
0.35 0.020 0.600 0.15
0.40 0.030 0.492 0.0
0.45 0.045 0.392 −0.2
0.50 0.060 0.304 −1.2
0.60 0.110 0.154 −4.0
0.70 0.180 0.042 −10.0
0.75 0.230 0.000 −40.0
1.0 1.0 0.0 −100.0

Sg krg krog pcgo

0.0 0.0 1.0 0.075
0.1 0.015 0.70 0.085
0.2 0.050 0.45 0.095
0.3 0.103 0.25 0.115
0.4 0.190 0.11 0.145
0.5 0.310 0.028 0.255
0.55 0.420 0.0 0.386
0.6 0.553 0.0 1.0
0.8 1.0 0.0 100.0

Table 12.6. Oil PVT data.

pb Rso µo cµ Bo
(psia) (SCF/STB) (cp) (psi−1) (RB/STB)

1688.7 367 0.529 0.0000325 1.3001
2045.7 447 0.487 0.0000353 1.3359
2544.7 564 0.436 0.0000394 1.3891
3005.7 679 0.397 0.0000433 1.4425
3567.7 832 0.351 0.0000490 1.5141
4124.7 1000 0.310 0.0000550 1.5938
4558.7 1143 0.278 0.0000619 1.6630
4949.7 1285 0.248 0.0000694 1.7315
5269.7 1413 0.229 0.0000751 1.7953
5559.7 1530 0.210 0.0000819 1.8540
7014.7 2259 0.109 0.0001578 2.1978

Depletion. Depletion runs are performed to a maximum of ten years or whenever
production is less than 1 STB/D. The producer has a maximum rate of 500 STB/D, and it is
constrained by a maximum drawdown of 100 psi. This well is perforated only in the bottom
layer. Two cases are studied: zero and nonzero fracture capillary pressures. The nonzero
capillary data are reported in Table 12.4. These data are given at the bubble point pressure
pb of 5,545 psig and have been adjusted for the effect of pressure on interfacial tension.

Gas injection. In this experiment 90% of the gas produced from the previous time
step is reinjected. The injector is perforated in layers 1–3. The producer is perforated in
layers 4 and 5, and is constrained by a maximum drawdown of 100 psi. A maximum rate
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Table 12.7. Gas PVT data.

pg (psia) µg (cp) Bg (RB/STB) σ1 (dyne/cm)*
1688.7 0.0162 1.98 6.0
2045.7 0.0171 1.62 4.7
2544.7 0.0184 1.30 3.3
3005.7 0.0197 1.11 2.2
3567.7 0.0213 0.959 1.28
4124.7 0.0230 0.855 0.72
4558.7 0.0244 0.795 0.444
4949.7 0.0255 0.751 0.255
5269.7 0.0265 0.720 0.155
5559.7 0.0274 0.696 0.090
7014.7 0.0330 0.600 0.050

*σ1 = IFT (p)/IFT (pref ), pcgo(Sg) = pcgo,ref (Sg)σ1.

Figure 12.1. Qo (depletion, pcgo = 0) (left); GOR (depletion, pcgo = 0) (right).

of 1,000 STB/D is applied, and the minimum cutoff rate is 100 STB/D. Again, the zero and
nonzero fracture capillary pressures are studied, with the latter data given in Table 12.4.

Water injection. In this experiment water is injected initially at a maximum rate of
1,750 STB/D and constrained by a maximum injection pressure of 6,100 psig. The produc-
tion rate is set at 1,000 STB/D of the total fluid (water and oil). The injector is perforated in
layers 1– 4, and the producer is perforated in layers 1–3. The final time of runs is 20 years.

For the numerical results presented here, the temporal discretization is based on the
backward Euler scheme, and the spatial discretization is based on the Raviart–Thomas–
Nédélec mixed finite element method on rectangular parallelepipeds (cf. Section 4.5.4). We
use the simultaneous fully implicit solution technique (cf. Section 8.2.2). The Warren–Root
approach is used to model the matrix-fracture flow transfer terms.

Numerical results are reported for the oil production rate (Qo in STB/D) and gas-
oil ratio (GOR in SCF/STB) versus time (years) in the first two studies (depletion and gas
injection), and for the oil production rate and water cut (percent) in the water injection study.
The results are shown in Figures 12.1–12.5, where the zero and nonzero fracture capillary
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Figure 12.2. Qo (depletion, pcgo �= 0) (left); GOR (depletion, pcgo �= 0) (right).

Figure 12.3. Qo (gas recycling, pcgo = 0) (left); GOR (gas recycling, pcgo = 0) (right).

Figure 12.4. Qo (gas recycling, pcgo �= 0) (left); GOR (gas recycling, pcgo �= 0) (right).
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Figure 12.5. Qo (water flooding) (left); water cut (water flooding) (right).

pressure cases are illustrated. A comparison of these two cases indicates that capillary
continuity has a major influence on the numerical results. The reason is that in the depletion
study, for example, when the capillary pressure force is stronger than the gravity drainage
force, the oil flow from the matrix blocks decreases since interfacial tension increases with
a decrease in pressure. Note that there is a stable water cut curve after the 10th year. This
occurs because the entire fracture system contains water after the 10th year; the major flow
exchange mechanism between the matrix and fractures depends on imbibition (minus the
value of pcow) with a small flow rate for a long time.

12.3 Bibliographical Remarks
The content in this chapter is taken from Huan et al. (2005). For more information about
the data used in the sixth SPE CSP, see Firoozabadi and Thomas (1990).

Exercises
12.1. Derive the matrix-fracture transfer terms qOom and qGom + qGm in equations (12.13)

and (12.14) for the dual porosity model of the black oil model.

12.2. Develop a dual porosity/permeability model for the volatile model (cf. Section 2.7)
using an approach similar to that for the black oil model in Section 12.1.1.

12.3. Develop a dual porosity model for the volatile model (cf. Section 2.7) using an
approach similar to that for the black oil model in Section 12.1.2 (i).

12.4. Develop a dual porosity model for the volatile model (cf. Section 2.7) using an
approach similar to that for the black oil model in Section 12.1.2 (ii).
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Welling Modeling

Numerical simulation of fluid flows in petroleum reservoirs must account for the presence
of wells. The pressure at a gridblock that contains a well is different from the average
pressure in that block and different from the flowing bottom hole pressure for the well
(Peaceman, 1977A). The difficulty in modeling wells in a field-scale numerical simulation
is that the region where pressure gradients are the largest is closest to a well and is far
smaller than the spatial size of gridblocks. Using local grid refinement around the well
can alleviate this problem but can lead to an impratical restriction on time step sizes in
the numerical simulation (cf. Section 4.2.4). The fundamental task in modeling wells is to
model flows into the wellbore accurately and to develop accurate well equations that allow
the computation of the bottom hole pressure when a production or injection rate is given,
or the computation of the rate when this pressure is known. In this chapter, we develop
well flow equations for numerical simulation of fluid flows in petroleum reservoirs using
finite difference methods (Section 13.2), standard finite element methods (Section 13.3),
control volume finite element methods (Section 13.4), and mixed finite element methods
(Section 13.5). The development of these well equations requires the use of analytical
formulas (Section 13.1). Various well controls and constraints are discussed in Section
13.6. Numerical results based on the seventh CSP organized by the SPE are presented in
Section 13.7. Bibliographical information is given in Section 13.8.

13.1 Analytical Formulas
The derivation of well flow equations is based on a basic assumption that the flow is radial
in a neighborhood of the well (cf. Section 6.2.1), and requires the use of analytical formulas
for radial flow. These formulas are known only in simplified flow situations. Thus we
consider single phase incompressible flow in isotropic reservoirs. Furthermore, we focus
on steady-state flow; an unsteady-state single phase flow was described in Section 6.2. In
the steady state case, the mass conservation equation is (cf. (2.1) and (2.10))

∇ · (ρu) = qδ, (13.1)

445
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where ρ and u are the density and volumetric velocity, respectively, of the fluid; δ is the
Dirac delta function representing a well placed at the origin, for example; and q is the mass
production/injection at this well. Darcy’s law without the gravity term is (cf. (2.4))

u = − 1

µ
k∇p, (13.2)

where k is the absolute permeability tensor of the reservoir andp andµ are the fluid pressure
and viscosity, respectively.

To obtain an analytical solution for (13.1) and (13.2), we assume the following:

• The flow is two-dimensional in the x1- and x2-directions (i.e., it is homogeneous in
the x3-direction, and gravity is neglected).

• The reservoir is homogeneous and isotropic; i.e., k = kI and k is a constant (cf. Section
2.2.1).

• The viscosity µ and density ρ are constant.

• The flow is radial in a small neighborhood of the well.

With the last assumption, near the well the velocity u has the form

u(r, θ) = u(r)(cos θ, sin θ),

where (r, θ) is the polar coordinate system. Since the well is placed at the origin, substitution
of this velocity into (13.1) gives (cf. Exercise 13.1)

du

dr
+ 1

r
u = 0, r > 0, (13.3)

whose solution is u = C/r (cf. Exercise 13.2). The constant C is proportional to q. Note
that q represents the mass production/injection. Hence, when the well is an injector, for
example, for any small neighborhood B of the origin (a small circle) q is the mass flux

q = h3

∫
B

ρu · ν da(x) = 2πρh3C; i.e., C = q

2πρh3
,

where ν is the outward unit normal to B and h3 is the reservoir thickness (or the height of
the gridblock containing the well). Consequently, we obtain

u = q

2πρh3r
(cos θ, sin θ). (13.4)

Substituting (13.4) into (13.2), taking a dot product of the resulting equation with ν = (1, 0),
and integrating from (ro, 0) to (r, 0), we obtain (cf. Exercise 13.3)

p(r) = p(ro)− µq

2πρkh3
ln
( r
ro

)
, (13.5)

where (ro, 0) is a reference point (e.g., ro is the well radius rw). Equation (13.5) is the
analytical flow model near the well, on which the development of well equations for various
numerical methods is based in the next four sections.
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01

2

3

4

Figure 13.1. A cell-centered finite difference on a square grid.

13.2 Finite Difference Methods
The first comprehensive study of well equations was by Peaceman (1977A) for cell-centered
finite difference methods on square grids for single phase flow. Peaceman’s study gave a
proper interpretation of a well-block pressure, and indicated how it relates to the flowing
bottom hole pressure. The importance of his study is that the computed block pressure
is associated with the steady-state pressure for the actual well at an equivalent radius re.
For a square grid with a grid size h, Peaceman derived a formula for re by three different
approaches: (1) analytically by assuming that the pressure in the blocks adjacent to the well
block is computed exactly by the radial flow model, obtaining re = 0.208h, (2) numerically
by solving the pressure equation on a sequence of grids, deriving re = 0.2h, and (3) by
solving exactly the system of difference equations and using the equation for the pressure
drop between the injector and producer in a repeated five-spot pattern problem, finding
re = 0.1987h. From these approaches, he concluded that re ≈ 0.2h. In this chapter, the
first approach is adapted not only for finite difference methods but also for finite element
methods.

13.2.1 Square grids

For a square gridKh, we solve (13.1) and (13.2) in the case where the well is located in the
center of a grid cell. The adjacent cells are enumerated as in Figure 13.1. Application of a
five-point stencil scheme (cf. Section 4.1) to (13.1) and (13.2) gives

ρkh3

µ
(4p0 − p1 − p2 − p3 − p4) = q. (13.6)

Using the symmetry of the solution p, i.e., p1 = p2 = p3 = p4, we see that

ρkh3

µ
(p0 − p1) = q

4
. (13.7)

We assume that the pressure at the adjacent cells is computed accurately. In particular, this
means that the analytical well model derived in the previous section can be an accurate
approximation in cell 1. Thus, if a bottom hole pressure pbh is given, then it follows from
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h3
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Figure 13.2. Radial flow.

(13.5) that

p1 = pbh − µq

2πρkh3
ln

(
r1

rw

)
, (13.8)

where we recall that rw is the well radius and r1 = h. Inserting (13.8) into (13.7) yields

p0= pbh − µq

2πρkh3
ln

(
h

rw

)
+ qµ

4ρk

= pbh + µq

2πρkh3

(
ln
( rw
h

)
+ π

2

)
= pbh + µq

2πρkh3
ln

(
rw

α1h

)
,

where α1 = e−π/2 = 0.20788 . . . . This is exactly Peaceman’s well model:

q = 2πρkh3

µ ln(re/rw)
(pbh − p), (13.9)

where the equivalent radius equals re = α1h = 0.20788h andp = p0 (cf. Figure 13.2). The
equivalent radius is the radius at which the steady-state flowing pressure for the actual well
equals the numerically computed pressure for the well cell. When the well is a producer,
q is

q = 2πρkh3

µ ln(re/rw)
(p − pbh). (13.10)

13.2.2 Extensions

(i) Extension to anisotropic media

The above well model needs be extended in various directions, including to rectangular
grids and incorporating gravity force effects, anisotropic reservoirs, skin effects, horizontal
wells, and multiphase flows. Here we consider an extension of the model in (13.9) to the
first four effects. The gravitational effects must be treated on the same footing as pressure
gradient effects. The skin factor sk is a dimensionless number and accounts for the effect
resulting from formation damage caused by drilling. With these effects for single phase
flow for an anisotropic permeability k = diag(k11, k22, k33), the well model is extended to

q = 2πρh3
√
k11k22

µ (ln(re/rw)+ sk)
(pbh − p − ρ℘(zbh − z)) , (13.11)
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where ℘ is the magnitude of the gravitational acceleration, z is the depth, and zbh is the
well datum level depth. The factor

√
k11k22 comes from the coordinate transformation:

x ′
1 = x1/

√
k11 and x ′

2 = x2/
√
k22 (cf. Section 4.3.2).

In the nonsquare grid and anisotropic medium case, the equivalent radius re is (see
Peaceman, 1983)

re = 0.14
(
(k22/k11)

1/2 h2
1 + (k11/k22)

1/2 h2
2

)1/2
0.5
(
(k22/k11)

1/4 + (k11/k22)
1/4
) , (13.12)

where h1 and h2 are the x1- and x2-grid sizes of the gridblock that contains the vertical well.
The well index is defined by

WI = 2πh3
√
k11k22

ln(re/rw)+ sk
. (13.13)

(ii) Extension to horizontal wells

Horizontal wells in either the x1- or the x2-coordinate direction use the same well model
equations as vertical ones. Only the parameters related to the direction of the wellbore need
be modified. The well index for a horizontal well parallel to the x1-direction is calculated
as follows:

WI = 2πh1
√
k22k33

ln(re/rw)+ sk
; (13.14)

if the well is parallel to the x2-direction, it is

WI = 2πh2
√
k11k33

ln(re/rw)+ sk
. (13.15)

Accordingly, in the x1-direction the equivalent radius re is

re = 0.14
(
(k33/k22)

1/2 h2
2 + (k22/k33)

1/2 h2
3

)1/2
0.5
(
(k33/k22)

1/4 + (k22/k33)
1/4
) , (13.16)

and in the x2-direction,

re = 0.14
(
(k33/k11)

1/2 h2
1 + (k11/k33)

1/2 h2
3

)1/2
0.5
(
(k33/k11)

1/4 + (k11/k33)
1/4
) . (13.17)

A well in an arbitrary direction (i.e., a slanted well) cannot be easily modeled via finite
difference methods. It will be discussed in Section 13.4.

(iii) Extension to multiphase flow

The vertical well equations derived for single phase flow can be extended to multiphase
flow, e.g., to a flow system of water, oil, and gas:

qα = 2πh3
√
k11k22

ln(re/rw)+ sk

ραkrα

µα
(pbh − pα − ρα℘ (zbh − z)) , (13.18)



“chenb
2006/2
page 45

�

�

�

�

�

�

�

�

450 Chapter 13. Welling Modeling

0

i

ri

Figure 13.3. Support �0 of ϕ0.

where ρα , krα , and pα are the density, relative permeability, and pressure of phase α,
respectively, α = w, o, g. Note that the definitions of the well index WI and equivalent
radius re remain the same. A similar extension to horizontal wells for multiphase flow is
possible (cf. Exercise 13.4).

13.3 Standard Finite Element Methods
The well equations derived in the context of finite differences can be extended to finite
elements. For finite difference methods, the pressure at the well cell is numerically com-
puted, and the pressure at the adjacent cells is computed using the analytical formula (13.5).
This approach is also employed in the context of finite elements. Again, we concentrate on
two-dimensional flow.

13.3.1 Triangular finite elements

For simplicity, consider the case where the finite element space Vh is the space of piece-
wise linear polynomials associated with a triangulation Kh (cf. Section 4.2). Let ϕ0 ∈ Vh
be the basis function at node x0 where the well is located, and �0 be the support of ϕ0

(cf. Figure 13.3). Then, using (13.1) and (13.2), we see that

kρh3

µ

∑
K⊂�0

∫
K

∇p · ∇ϕ0 dx = q. (13.19)

Since p =∑i ϕipi on �0, it follows from (13.19) that

kρh3

µ

∑
K⊂�0

∑
i

(∫
K

∇ϕi · ∇ϕ0 dx
)
pi = q. (13.20)

Using the same argument as in Section 4.3, this equation becomes

−kρh3

µ

∑
i

T0i (pi − p0) = q, (13.21)
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0

i

K K1 2θ θ1 2

Figure 13.4. Two adjacent triangles.

where the transmissibility coefficient T0i is (cf. Figure 13.4 and Exercise 13.5)

T0i = −
2∑
l=1

(|K|∇ϕi · ∇ϕ0)

∣∣∣∣
Kl

=
2∑
l=1

cot θl
2

. (13.22)

System (13.21) is the linear system of algebraic equations arising from the finite element
discretization of (13.1) and (13.2) at node x0.

At an adjacent node xi , the analytic model in (13.5) is used to find the pressure

pi = pbh − µq

2πρkh3
ln

(
ri

rw

)
, (13.23)

where ri is the distance between xi and x0. Substituting (13.23) into (13.21) gives the well
model equation (cf. Exercise 13.6)

q = 2πρkh3

µ ln(re/rw)
(pbh − p), (13.24)

where p = p0 and the equivalent radius re equals

re = exp

([∑
i

T0i ln ri − 2π

]/∑
i

T0i

)
. (13.25)

We consider an example where the support of ϕ0 is as shown in Figure 13.5. In this
case (cf. Exercise 13.7),

T01 = T02 = T04 = T05 = 1, T03 = T06 = 0, (13.26)

and
re = he−π/2 = 0.20788 . . . . (13.27)

The radius is exactly the same as that in the finite difference method. This is not surprising
because the finite element method is a five-point stencil scheme for the case in Figure 13.5
(cf. Section 4.2.1).
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Figure 13.5. An example of a triangulation near the well.
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678

0

Figure 13.6. Support �0 for the bilinear finite element.

13.3.2 Rectangular finite elements

Again, for brevity of presentation, we consider the simplest rectangular finite element, the
bilinear finite element (cf. Section 4.2.1). As an example, let the support of ϕ0 be given as
in Figure 13.6. In this case, (13.19) remains valid. Because of the symmetry assumption of
radial flow, p1 = p3 = p5 = p7 and p2 = p4 = p6 = p8. Consequently, it follows from
(13.19), with �0 as in Figure 13.6, that (cf. Exercise 13.8)

4

3

kρh3

µ
(2p0 − p1 − p2) = q. (13.28)

Using the analytic model (13.5), we see that

p1 = pbh − µq

2πρkh3
ln

(
h

rw

)
,

p2 = pbh − µq

2πρkh3
ln

(√
2h

rw

)
.

(13.29)

Combining (13.28) and (13.29) yields the well model (13.24) with equivalent radius

re = 21/4e−3π/4h. (13.30)
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0

i

V0

Figure 13.7. A control volume V0 for the linear finite element.

13.4 Control Volume Finite Element Methods
13.4.1 Well model equations

For the control volume finite element (CVFE) method based on the triangular linear elements
(cf. Section 4.3), the well model equation (13.24) and the equivalent radius re defined in
(13.25) remain the same since the linear system arising from this method is the same as that
from the standard finite element method using piecewise linear functions (cf. (4.120)). For
the CVFE, node x0 is now the center of a control volume; i.e., the well is now located at a
center (cf. Figure 13.7), instead of at a vertex as in the standard finite element method. In
practice, the equivalent radius re for the CVFE can be computed using a simpler formula
(Chen et al., 2002C)

re =
√ |V0|
π
, (13.31)

where |V0| is the area of the control volume V0 that contains the well (cf. Figure 13.7). The
derivation of (13.31) is based on the following principle: |V0| is approximately the area
of a circle with radius re that contains the well, and the mean value of pressure on V0 is
approximately the pressure on this circle (Chen et al., 2002C).

13.4.2 Horizontal wells

The well model derived for a vertical well using finite elements can be generalized to include
the following effects: gravity forces, anisotropic reservoirs, skin factors, horizontal wells,
and multiphase flows. These generalizations can be performed in the same fashion as in the
finite difference case; here we focus on the modeling of horizontal wells.

Because of the intrinsic flexibility of finite element grids, the flow pattern near a
horizontal well in an arbitrary direction can be modeled accurately, particularly when local
grid refinement is used. If the horizontal well passes through a triangle, this triangle needs
to be refined: (1) if it passes through two edges of the triangle, we can make the intersections
to be the vertices of smaller triangles (or centers of control volumes) by properly adjusting
the midpoints of the two edges (cf. Figure 13.8); (2) if it passes through a vertex of the
triangle, the local refinement can be done as in Figure 13.9 by connecting the well-edge
intersection with the two midpoints of the other edges. The feature of this approach is
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Horizontal well

Figure 13.8. A horizontal well passes through two edges.

Horizontal well

Figure 13.9. A horizontal well passes through a vertex.

that the horizontal well contains only triangle vertices (cf. Figure 13.10) or control volume
centers (cf. Figure 13.11).

For the CVFE, the well model equation for a horizontal well in an arbitrary direction
is derived in an analogous fashion to (13.24):

q = 2πρk�L

µ ln(re/rw)
(pbh − p), (13.32)

where�L is the diameter of the control volume (that contains the well) in the well direction
and the equivalent radius re can be defined as in (13.25). For the latter, using a similar
principle as for (13.31), a simpler definition is (Chen et al., 2002C)

re =
√ |V0|h3

π�L
, (13.33)

where h3 is the x3-spatial grid size of the block that contains the well. An extension of
(13.32) to multiphase flow was given in (8.11).

13.4.3 Treatment of faults

Faults in a petroleum reservoir can be treated in a manner similar to horizontal wells by
adjusting the midpoints of edges and the barycenters of triangles in order for them to be on
the faults (cf. Figure 13.12). In the present case, only the form and areas of control volumes



“chenb
2006/2
page 45

�

�

�

�

�

�

�

�

13.4. Control Volume Finite Element Methods 455

Figure 13.10. A horizontal well for the triangular case.

Figure 13.11. A horizontal well for the CVFE case.

Faults

Figure 13.12. Treatment of faults.
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Figure 13.13. An example of flow around faults.

dx
dx

1

2

Figure 13.14. Corner point technique.

need be changed; nothing else is altered. The transmissibility between two points across a
fault in a control volume is set to zero. This approach is easy to implement and practical.
A numerical example is shown in Figure 13.13.

13.4.4 Corner point techniques

A corner point technique can be used for the finite difference method discussed in Section
13.2 to adjust the locations of gridblocks (Collins et al., 1991). When a vertical well is
not located in the center of a rectangle, the vertices of the rectangle must be adjusted (as
well as the vertices of other rectangles to preserve the grid orthogonality). This corner
point technique can be also applied to the CVFE. We locate the centers of the control
volumes that contain vertical wells, find the discrepancies in the x1- and x2-directions
between these centers and the centers of the wells (cf. Figure 13.14), and use the values
of these discrepancies to adjust the location of all control volumes except those that are
adjacent to the boundary of a reservoir or contain horizontal wells or faults. Note that grid
orthogonality is not required for the CVFE grids.
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13.5 Mixed Finite Element Methods
Mixed finite element methods use two approximation spaces, Vh for velocity and Wh for
pressure (cf. Section 4.5). In the case of a no-flow boundary condition on the external
boundary � of � ⊂ R

2, for example, the mixed weak formulation of (13.1) and (13.2) is∫
�

u · v dx − k

µ

∫
�

∇ · vp dx = 0 ∀v ∈ Vh,

ρh3

∫
�

∇ · uw dx = qw(x0) ∀w ∈ Wh,

(13.34)

where x0 is the well location and Vh ⊂ V, with V given by (cf. Section 4.5.2)

V = {v = (v1, v2) ∈ H(div, �) : v · ν = 0 on �}.
In this section, we consider the lowest-order Raviart–Thomas mixed spaces on rectangles
and triangles (cf. Section 4.5.4).

13.5.1 Rectangular mixed spaces

LetKh be a partition of a rectangular domain� into rectangles such that the horizontal and
vertical edges of rectangles are parallel to the x1- and x2-coordinate axes, respectively, and
adjacent elements completely share their common edge. The spaces Vh and Wh are

Vh= {v ∈ V : v|K = (bKx1 + aK, dKx2 + cK),

aK, bK, cK, dK ∈ R, K ∈ Kh},
Wh= {w : w is constant on each rectangle in Kh}.

As an example, we consider the case where x0 is located in the center of a rectangle (cf. Fig-
ure 13.1). In this case, the mixed method (13.34) reduces to a five-point stencil scheme as in
(13.6) (Russell and Wheeler, 1983), and the well model equation (13.9) and its extensions
derived in Section 13.2 remain exactly the same.

13.5.2 Triangular mixed spaces

LetKh be a triangulation of a polygonal domain� into triangles such that no vertex of one
triangle lies in the interior of an edge of another triangle. In the triangular case, the spaces
Vh and Wh are

Vh= {v ∈ V : v|K = (bKx1 + aK, bKx2 + cK),

aK, bK, cK ∈ R, K ∈ Kh},
Wh= {w : w is constant on each triangle in Kh}.

As an example, we consider the quarter plane symmetry case, where the well is located at
the corner x0 of a square that is subdivided into two triangles by connecting the vertices
adjacent to the well vertex (cf. Figure 13.15). The pressure and velocity nodes are indicated
in Figure 13.15.
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Well

1

2

3

4

5
K

K

0

1

Figure 13.15. Well location for a triangular mixed element.

As in Section 4.5.2, let ϕi be the velocity basis functions corresponding to the nodes
xi (i = 1, 2, 3, 4, 5). Set

u =
5∑
i=1

uiϕi ,

where ui denotes the normal component of u at xi . Via symmetry, the correct boundary
condition is no-flow on the x1 and x2 boundary edges, which implies that u1 = u2 = 0.

It can be seen that (cf. Exercise 13.9)

ϕ3 =


√

2

h
(x1, x2), (x1, x2) ∈ K0,

√
2

h
(h− x1, h− x2), (x1, x2) ∈ K1,

(13.35)

where h is the grid size in the x1- and x2-directions. It can be also checked that (cf. Exercise
13.10) ∫

�

ϕ3 · ϕ4 dx =
∫
�

ϕ3 · ϕ5 dx = 0. (13.36)

Taking v = ϕ3 in the first equation of (13.34) and using (13.36) gives

u3

∫
K0∪K1

ϕ3 · ϕ3 dx − k

µ

∫
K0∪K1

∇ · ϕ3p dx = 0,

and thus

u3
2h2

3
− k

µ
(p0 − p1)

√
2h = 0, (13.37)

where p0 and p1 are the pressure values on K0 and K1, respectively.
Next, by quarter plane symmetry and using (13.35), choosingw = 1 onK0 andw = 0

elsewhere in the second equation of (13.34) yields

4
√

2ρh3u3h = q. (13.38)

Combining (13.37) and (13.38) implies

p0 − p1 = qµ

12ρkh3
. (13.39)
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For the value p1, we use the well equation (13.5):

p1 = pbh − µq

2πρkh3
ln

(
r1

rw

)
, (13.40)

where r1 = 2
√

2h/3 is the distance from the well to the barycenter of the triangle K1.
Substituting (13.40) into (13.39) generates the well model equation (13.9) with equivalent
radius

re = 2
√

2h

3
e−π/6. (13.41)

13.6 Well Constraints
Well constraints must be taken into account for numerical simulation of petroleum reservoirs
(cf. Section 8.2.5). We restrict the discussion to vertical wells for a multiphase flow system
that consists of water, oil, and gas. For an injection well, there are two types of well
constraints: either the well bottom hole pressure pbh is given, or a phase injection rate is
fixed. In the former case,

pbh = Pbh, (13.42)

where Pbh is the given bottom hole pressure at the well, and the phase injection rate is
calculated according to formula (13.18). In the latter case, the injection rate control for a
water injection well is

2πh3
√
k11k22

ln(re/rw)+ sk

ρwkrwmax

µw
(pbh − pw − ρw℘(zbh − z)) = Qw, (13.43)

where Qw is a given water injection rate and krwmax represents the maximum relative
permeability of the water phase. In this case, pbh is an unknown and is obtained from
(13.43), which is coupled to the flow equations (cf. Section 8.2.5). An analogous control
equation holds when a gas injection rate at the well is prescribed.

For a production well, there are three types of well constraints: a fixed bottom hole
pressure, a given total liquid production rate, and a given total flow rate. The bottom hole
pressure constraint has the form (13.42). The total liquid production rate control is

2πh3
√
k11k22

ln(re/rw)+ sk

{
ρwkrw

µw
(pbh − pw − ρw℘(zbh − z))

+ ρokro

µo
(pbh − po − ρo℘ (zbh − z))

}
= QL,

(13.44)

where QL denotes the given total liquid production rate at the well. The water cut, defined
as the ratio of water production to the sum of water and oil production, at a perforated zone
of the well with this type of well constraint must be less than a certain limit; over this limit,
the perforated zone must be shut down in practice. The constant total flow rate control can
be defined similarly; in this case, gas production is added.
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13.7 The Seventh SPE Project: Horizontal Well Modeling
This benchmark problem deals with production from a horizontal well in a thin reservoir
where coning tendencies are strong. It was used for comparing different approaches for
modeling horizontal wells in reservoir simulation and studying the effect of well lengths
and production rates of horizontal wells on oil recovery (Nghiem et al., 1991).

The dimensions of the reservoir are 2,700 × 2,700 × 160 ft3, as seen in Figure 13.16.
The reservoir and initial data are shown in Tables 13.1 and 13.2, where kh (= k11 = k22)
and kv (= k33) represent the horizontal and vertical permeabilities, respectively. The initial
bubble point pressure is the same as the initial oil pressure. The fluid property data are
given in Table 13.3, and the relative permeability and capillary pressure data are listed in
Tables 13.4 and 13.5.

The reservoir has six layers, whose dimensions are given in Table 13.1. The producer
is a horizontal well drilled on the top layer. Its entire length is open to flow. Two lengths of
the producer are considered: 900 ft and 2,100 ft, as seen in Figure 13.16. Its well constranit

 

 

 

300ft 900

2100ft 

620ft 

400ft 

200ft 
100ft 
60ft 

100ft 

200ft 

400ft 

620ft 

Figure 13.16. Reservoir of the seventh SPE project.

Table 13.1. Reservoir data.

Layer Thickness Depth to center kh kv
(ft) of layer (ft) (md) (md)

1 20 3600 300 30
2 20 3620 300 30
3 20 3640 300 30
4 20 3660 300 30
5 30 3685 300 30
6 50 3725 300 30

Table 13.2. Reservoir initial data.

Layer po (psia) So Sw
1 3600 0.711 0.289
2 3608 0.652 0.348
3 3616 0.527 0.473
4 3623 0.351 0.649
5 3633 0.131 0.869

6 (bottom) 3650 0.000 1.000
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Table 13.3. Fluid property data.

p Rso Bo Bg µo µg
(psia) (SCF/STB) (RB/STB) (RB/SCF) (cp) (cp)
400 165 1.0120 0.00590 1.17 0.0130
800 335 1.0255 0.00295 1.14 0.0135
1200 500 1.0380 0.00196 1.11 0.0140
1600 665 1.0510 0.00147 1.08 0.0145
2000 828 1.0630 0.00118 1.06 0.0150
2400 985 1.0750 0.00098 1.03 0.0155
2800 1130 1.0870 0.00084 1.00 0.0160
3200 1270 1.0985 0.00074 0.98 0.0165
3600 1390 1.1100 0.00065 0.95 0.0170
4000 1500 1.1200 0.00059 0.94 0.0175
4400 1600 1.1300 0.00054 0.92 0.0180
4800 1676 1.1400 0.00049 0.91 0.0185
5200 1750 1.1480 0.00045 0.90 0.0190
5600 1810 1.1550 0.00042 0.89 0.0195

Table 13.4. Saturation function data for water/oil.

Sw krw krow pcow
0.22 0.0 1.0 6.30
0.30 0.07 0.4000 3.60
0.40 0.15 0.1250 2.70
0.50 0.24 0.0649 2.25
0.60 0.33 0.0048 1.80
0.80 0.65 0.0 0.90
0.90 0.83 0.0 0.45
1.00 1.0 0.0 0.00

Table 13.5. Saturation function data for gas/oil.

Sg krg krog pcgo
0.00 0.0000 1.0 0.0
0.04 0.0000 0.60 0.2
0.10 0.0220 0.33 0.5
0.20 0.1000 0.10 1.0
0.30 0.2400 0.02 1.5
0.40 0.3400 0.0 2.0
0.50 0.4200 0.0 2.5
0.60 0.5000 0.0 3.0
0.70 0.8125 0.0 3.5
0.78 1.0 0.0 3.9

is the constant liquid rate. This horizontal well has an internal diameter of 0.1875 ft. The
injector is also a horizontal well located in the bottom layer. Its whole length is 2,700 ft. The
producer and injector are on the same plane. Three kinds of well directions are considered:
0◦, 45◦, and 60◦ (cf. Figure 13.16). Two well controls are assumed for the injector: constant
bottom hole pressure and constant water injection rate. Twelve well schemes are designed
for runs of this reservoir simulator, as shown in Table 13.6. The last four schemes are newly
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Table 13.6. Producer/injector schemes.

Case Direction Producer Liquid production Water injection
of well (C) length (ft) rate (STB/D) scheme

1a 0 900 3000 p = 3700 psia
1b 0 2100 3000 p = 3700 psia
2a 0 900 6000 p = 3700 psia
2b 0 2100 6000 p = 3700 psia
3a 0 900 9000 p = 3700 psia
3b 0 2100 9000 p = 3700 psia
4a 0 900 9000 Qw = 6000 STB/D
4b 0 2100 9000 Qw = 6000 STB/D
5a 45 900 9000 Qw = 6000 STB/D
5b 45 2100 9000 Qw = 6000STB/D
6a 30 900 9000 Qw = 6000 STB/D
6b 30 2100 9000 Qw = 6000 STB/D

designed. The simulation time is 1,500 days. We report the oil production rate, cumulative
oil production, water-oil ratio (WOR), water production rate, cumulative water production,
gas-oil ratio (GOR), cumulative gas production, and bottom hole pressure. The last six cases
are different from the first six in the reservoir permeability, well constraint of the injector,
and well directions. The reservoir permeability in the last six cases is 10 times that in the
first six. The well constraints of the injector for the first six cases are constant bottom hole
pressure, and for the last six are a constant water injection rate. The well direction of the
last four cases has a positive angle.

For the spatial discretization, we use the CVFE and finite difference (FD) methods
and compare the computational results for the first eight cases. We use only the CVFE
for the last four cases because the FD cannot easily model the horizontal wells for these
cases. In the simulation models using the CVFE, hexagonal prisms are used to represent the
reservoir (cf. Figure 4.36). The distance between two neighboring grid points of the base
grid in the x1x2-plane is 300 ft. For the models using the FD, rectangular parallelepiped
gridblocks are used to represent the reservoir. The dimensions of gridblocks are shown in
Figure 13.16 and Table 13.1.

The convergence control parameters used for the first six cases are (δt)max = 50 days,
(δp)max = 200 psia, (δSw)max = 0.05, and (δSg)max = 0.05 (cf. Section 8.2.3). Since
the injector has a fixed bottom hole pressure of 3,700 psia for these cases, very little free
gas is released. The iterative computational processes are stable for the chosen parameters.
Figures 13.17–13.28 give the computational results in these cases. Tables 13.7 and 13.8
compare the cumulative oil production and bottom hole pressure of the producer at 1,500
days. It can be seen that the computational results obtained using the CVFE and FD methods
approach the average values of those of the organizations involved in the seventh CSP. From
Figures 13.17–13.28, we see that increasing lengths of horizontal wells can reduce coning
tendencies. As a result, the oil production rates increase, WORs decrease, and the water
production rates decrease. The numerical results obtained from the CVFE match those from
the FD.

Cases 4a and 4b use the well constraint of constant water injection rate. The bottom
hole pressure of the injector can dramatically drop, and then a large volume of free gas
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Figure 13.17. Oil production rates of cases 1a and 1b.
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Figure 13.18. Oil production rates of cases 2a and 2b.
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Figure 13.19. Oil production rates of cases 3a and 3b.
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Figure 13.20. Cumulative oil production of cases 1a and 1b.
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Figure 13.21. Cumulative oil production of cases 2a and 2b.
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Figure 13.22. Cumulative oil production of cases 3a and 3b.
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Figure 13.23. WORs of cases 1a and 1b.
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Figure 13.24. WORs of cases 2a and 2b.
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Figure 13.25. WORs of cases 3a and 3b.
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Figure 13.26. Cumulative water production of cases 1a and 1b.
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Figure 13.27. Cumulative water production of cases 2a and 2b.
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Figure 13.28. Cumulative water production of cases 3a and 3b.
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Table 13.7. Cumulative oil production in MSTB at 1,500 days.

Participants 1a 1b 2a 2b 3a 3b 4a 4b
ARTEP 747.2 951.7 976.4 1221.0 1096.4 1318.5 740.8 902.8
Chevron 741.0 929.4 958.1 1181.6 1066.0 1274.8 665.3 797.7

CMG 753.6 960.1 983.6 1230.3 1106.1 1330.2 709.0 850.6
ECL 757.2 951.0 1034.2 1251.0 1229.1 1444.8 696.7 827.4
ERC 683.5 870.2 900.3 1106.1 1031.4 1222.3 672.0 788.4
HOT 765.0 961.9 1045.9 1263.7 1247.0 1466.8 714.0 877.6

INTECH 723.3 957.5 949.6 1241.5 1103.2 1414.7 754.4 890.4
JNOC 717.4 951.3 931.6 1245.9 1084.4 1412.7 660.6 843.9

Marathon 722.9 964.3 941.5 1257.1 1096.0 1436.7 781.7 895.8
Philips 750.9 956.8 980.5 1227.1 1103.5 1325.0 712.0 959.7
RSRC 678.7 916.7 877.9 1177.8 1017.1 1333.2 620.5 801.5
Shell 749.0 954.8 978.4 1224.6 1100.0 1322.4 733.5 884.1

Stanford 742.0 943.9 968.7 1211.8 1043.7 1305.6 331.0 457.6
TDC 766.2 989.4 989.4 1210.0 1105.0 1279.2 854.4 933.6

Mean 735.6 946.4 965.4 1217.8 1101.1 1349.1 688.4 829.4
Stand. devia. 27.4 26.7 45.2 41.0 64.7 73.5 117.0 115.4

SMU (CVFE) 731.8 954.9 961.6 1211.6 1077.7 1364.7 657.4 792.3
SMU (FD) 713.1 932.9 936.5 1213.9 1082.5 1377.7 645.0 779.3

Table 13.8. Bottom hole pressure in psia at 1,500 days.

Participants 1a 1b 2a 2b 3a 3b
ARTEP 3466.76 3575.78 3236.68 3470.49 3002.20 3364.74
Chevron 3464.77 3576.10 3239.19 3464.42 3012.13 3356.08

CMG 3446.32 3558.33 3210.46 3454.76 2970.39 3345.85
ECL 3485.03 3569.71 3326.22 3490.41 3170.46 3412.53
ERC 3439.96 3562.14 3199.89 3453.11 2949.06 3343.41
HOT 3511.65 3582.92 3382.08 3250.19 3256.18 3459.89

INTECH 3530.00 3601.00 3382.00 3541.00 3221.00 3479.00
JNOC 3471.72 3589.29 3251.86 3491.07 3020.84 3405.28

Marathon 3493.24 3593.85 3295.26 3509.80 3085.07 3433.56
Philips 3449.40 3572.40 3203.40 3460.20 2953.20 3351.90
RSRC 3567.80 3610.90 3444.10 3575.30 3318.90 3530.30
Shell 3448.75 3571.38 3201.16 3456.91 2948.98 3345.16

Stanford 3454.64 3572.29 3216.69 3464.30 2977.69 3359.93
TDC 3438.21 3544.40 3203.95 3452.69 2959.80 3343.16

Mean 3476.30 3577.18 3270.92 3486.04 3060.42 3395.06
Stand. devia. 37.96 17.45 81.54 37.87 127.79 60.28

SMU (CVFE) 3482.48 3587.02 3269.03 3496.32 3043.11 3391.13
SMU (FD) 3434.74 3579.45 3171.97 3458.44 2903.07 3353.75

appears. Consequently, if the relatively large convergence control parameters chosen for
cases 1–3 are used, the iterative processes of simulation may not be stable for cases 4a
and 4b (cf. Section 8.3.2). Hence we run the simulator with stricter convergence control
parameters for these two cases (cf. Tables 13.9 and 13.10).
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Table 13.9. Convergence control parameters of cases 4a and 4b.

Case Method (δt)max (day) (δp)max (psia) (δSw)max (δSg)max
4a CVFE 20 150 0.01 0.01
4a FD 20 100 0.01 0.01
4b CVFE 50 150 0.02 0.02
4b FD 50 200 0.05 0.05
5a CVFE 20 150 0.005 0.005
5b CVFE 20 100 0.01 0.01
6a CVFE 20 100 0.005 0.005
6b CVFE 20 100 0.01 0.01
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Figure 13.29. Oil production rates of cases 4a and 4b.

As in cases 1a–3b, increasing the horizontal well lengths in cases 4a and 4b also
reduces coning tendencies. Figures 13.29 and 13.30 show the oil production rate and the
cumulative oil production, respectively, for these two cases. Figures 13.31 and 13.32 give
the water production rate and the cumulative water production. A comparison between
cases 4a and 4b indicates that the oil production rate and the cumulative oil production
increase, and the water production rate and the cumulative water production decrease, for
case 4b. The water production in case 4b drops to its minimum value at about 690 days.
But the drop of this production in case 4a has a delay; it drops to the minimum value at
about 800 days because of a stronger coning tendency in this case. Figure 13.35 shows the
bottom hole pressure of the producer. Accordingly, the bottom hole pressures drop to the
minimum value 1,500 psia at 800 and 690 days for cases 4a and 4b, respectively. The drop
in water production is caused by the reservoir pressure drop. Since the well constraint of
the injector is not the constant bottom hole pressure, the reservoir pressure cannot continue
to hold above the bubble point pressure. When it drops below the bubble point pressure,
free gas appears. If the reservoir pressure drops to the minimum bottom hole pressure at a
perforated zone of the producer, no liquid will be produced at that zone. Therefore, the water
production rate decreases. After a certain time, the reservoir pressure goes up; increasing
the pressure difference between the reservoir and wellbore increases the water production
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Figure 13.30. Cumulative oil production of cases 4a and 4b.
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Figure 13.31. Water production rates of cases 4a and 4b.

rate. The GOR and cumulative gas production are given in Figures 13.33 and 13.34. They
show that a large volume of free gas is produced.

Cases 5 and 6 are designed to test the modeling of horizontal wells in arbitrary direc-
tions. From Table 13.6, we see that these two cases are different from case 4 only in the
direction of wells. Figures 13.36 and 13.37 are the oil production rate and the cumulative
oil production. The oil production in cases 4a, 5a, and 6a is quite close to equivalent, and
the same is true for cases 4b, 5b, and 6b (cf. Table 13.11). The cumulative oil production in
cases 5a and 6a is comparable but is different from that in case 4a. This observation for the
cumulative oil production can be also seen for cases 4b, 5b, and 6b. Figures 13.38–13.43
show the water production rate, cumulative water production, WOR, GOR, cumulative gas
production, and bottom hole pressure. Figure 13.44 shows water saturation distribution in
case 4a. All these figures show that the results in cases 5 and 6 are close to each other and are
slightly different from those in case 4. This phenomenon is due to the different directions
of the wells in these cases. Although cases 4, 5, and 6 have the same well lengths, injection
rates, and production rates, the well locations in cases 5 and 6 are closer.
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Figure 13.32. Cumulative water production of cases 4a and 4b.
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Figure 13.33. Bottom hole pressures of the producer for cases 4a–4b.
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Figure 13.34. GORs of cases 4a and 4b.
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Figure 13.35. Cumulative gas production of cases 4a and 4b.
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Figure 13.36. Oil production rates of cases 4a–6b.
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Figure 13.37. Cumulative oil production of cases 4a–6b.
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Figure 13.38. Water production rates of cases 4a–6b.
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Figure 13.39. Cumulative water production of cases 4a–6b.

0 200 400 600 800 1000 1200 1400 1600
0

10

20

30

40

50

60

70

80

90

100

time (Day)

W
O

R
 (

S
T

B
/S

T
B

)

case4a
case5a
case6a
case4b
case5b
case6b

Figure 13.40. WORs of cases 4a–6b.
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Figure 13.41. GORs of cases 4a–6b.
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Figure 13.42. Cumulative gas production of cases 4a–6b.
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Figure 13.43. Bottom hole pressure of cases 4a–6b.
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Figure 13.44. Water saturation of case 4a.

Table 13.10. Time steps and Newton’s iterations.

Participants 1a 1b 2a 2b 3a 3b 4a 4b
ARTEP 39 39 45 39 47 42 50 49

104 94 120 100 124 107 186 171
Chevron 36 21 36 23 37 24 66 45

84 63 96 78 120 92 247 246
CMG 24 23 25 25 25 25 31 33

58 61 62 76 61 66 135 154
ECL 23 21 23 23 23 22 35 34

55 51 64 56 65 57 102 103
ERC 26 25 24 27 24 25 149 343

39 38 42 43 51 45 459 943
HOT 17 17 17 17 17 17 102 96

23 23 24 24 27 26 256 182
INTECH 31 31 33 31 34 33 82 72

92 106 105 104 105 114 392 356
JNOC 22 21 23 22 24 22 48 47

53 48 57 53 57 53 130 134
Marathon 155 155 161 157 165 157 288 252

221 192 291 233 346 253 898 961
Philips 47 46 47 47 47 47 47 50

57 50 66 56 70 60 104 101
RSRC 58 36 158 44 182 71 1732 1264

58 36 161 45 197 72 1733 1264
Shell 42 42 45 43 42 43 55 47

114 109 123 121 120 125 180 155
Stanford 20 19 22 20 22 21 49 43

55 44 55 50 60 57 265 116
TDC 318 96 632 272 951 421 901 541

2093 189 4441 1796 6986 2882 7326 3366
SMU (CVFE) 38 48 37 36 37 49 128 125

121 149 121 114 119 158 431 397
SMU (FD) 49 48 35 49 50 49 49 118

153 150 114 155 159 167 197 387
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Table 13.11. Simulation results of cases 4a–6b at 1,500 days.

Case Oil prod. Gas prod. Water prod. Oil recovery Water
rate (STB/D) rate (MCF/D) rate (STB/D) (%) cut (%)

4a 121.55 227.0 5606.73 5.765 97.88
4b 92.41 117.0 5808.17 6.948 98.43
5a 115.35 218.0 5627.49 5.987 97.99
5b 92.77 108.0 5825.35 7.511 98.43
6a 119.68 210.0 5642.36 6.043 97.92
6b 91.94 103.0 5832.61 7.427 98.45

13.8 Bibliographical Remarks
The well model equations for vertical and horizontal wells in the context of finite differences
were derived by Peaceman (1977A; 1991). These equations for the CVFE were developed
by Chen et al. (2002C). The presentation of the well equation for the triangular mixed
method in Section 13.5.2 follows Ewing et al. (1999). For more information on the data
used in the seventh SPE CSP, refer to Nghiem et al. (1991). The content of Section 13.7 is
taken from Li et al. (2003B).

Exercises
13.1. Derive equation (13.3).

13.2. Find the solution of equation (13.3).

13.3. Derive equation (13.5).

13.4. Extend the horizontal well models developed for single phase flow in Section 13.2.2
(ii) to the multiphase flow considered in Section 13.2.2 (iii).

13.5. Derive equation (13.21) from equation (13.20), with the transmissibility coefficient
T0i given in (13.22).

13.6. Derive the well equation (13.24) by substituting equation (13.23) into (13.21).

13.7. For Figure 13.5, check equations (13.26) and (13.27).

13.8. For the bilinear finite element (cf. Section 4.2.1), derive equation (13.28) from
(13.19), with �0 given as in Figure 13.6.

13.9. Verify the definition of ϕ3 in equation (13.35).

13.10. Derive expressions for the basis functions ϕ4 and ϕ5 in the triangle K1 of Figure
13.15, and then prove the orthogonality relation (13.36).
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Special Topics

We briefly discusse some practical issues that must be addressed at certain stages in a
petroleum reservoir simulation. These issues include upscaling, history matching, parallel
computing, oil recovery optimization, and surface network systems. The presentation is
brief and is intended to give the reader an idea of the steps involved and decisions that
must be made. A detailed treatment of each topic is beyond the scope of this book. An
overview of upscaling is given in Section 14.1. In Section 14.2, history matching is de-
scribed. The major ingredients in reservoir parallel computing are discussed in Section
14.3. Recovery optimization and surface network systems are presented in Sections 14.4
and 14.5, respectively. Finally, bibliographical information is given in Section 14.6.

14.1 Upscaling
In recent years upscaling has become increasingly important for converting highly detailed
geological models to computational grids. These geological models usually require fine-
scale descriptions of reservoir porosity and permeability on grids of tens of millions of cells
to honor the known and inferred statistics of these reservoir properties. The geological grids
of this order are far too fine to be used as simulation grids. Even with today’s computing
power, most of the full-field reservoir models are of the order of 100,000 cells, a factor
of 100 less than the geological grids. Upscaling has been developed to bridge the gap
between these two scales. Given a fine reservoir description scale and a simulation grid,
an upscaling algorithm is designed to obtain suitable values for the porosity, permeability,
and other property data for use in the coarse grid simulation. Many upscaling methods have
been developed, such as pressure-solver (Begg et al., 1989), renormalization (King, 1989),
effective medium (King, 1989), power law averaging (Deutsch, 1989), harmonic/arithmetic
mean, local averaging (Whitaker, 1986), and homogenization (Amaziane et al., 1991); see
the reviews of upscaling and pseudoization techniques by Christie (1996) and Barker and
Thibeau (1997), for example. Here we briefly mention a few of these methods.

14.1.1 Single phase flow

For single phase flow, the aim of upscaling is to preserve the gross features of flow on
the simulation grid. An algorithm is needed to compute an effective permeability, which

477
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will result in the same total flow of the fluid through the coarse homogeneous grid as that
obtained from the fine heterogeneous grid.

In the pressure-solver method (Begg et al., 1989), for example, we set up a single phase
flow computation with specific boundary conditions and then ask what value of effective
permeability generates the same flow rate as the fine-scale computation. The results obtained
depend on the assumptions made, particularly with regard to the boundary conditions.
If no-flow boundary conditions are used, a diagonal effective permeability tensor can be
derived and entered directly into a reservoir simulator. Alternatively, if periodic boundary
conditions are employed, a full effective permeability tensor can be obtained (White and
Horne, 1987).

The renormalization method (King, 1989) offers a faster but less accurate method
for computing an effective permeability. It yields effective permeabilities close to a direct
solution of the pressure equation and allows a rapid computation of these permeabilities
from very large systems. This method works by breaking a large problem down into a
hierarchy of manageable problems.

14.1.2 Two-phase flow

For two-phase flow, it is generally believed that upscaling of the absolute permeability
alone is not enough to capture the effects of heterogeneity on two-phase fluid simulation
(Muggeridge, 1991; Durlofsky et al., 1994), particularly when the correlation length of the
heterogeneity not represented on the flow simulation grid is significant compared with the
well spacing. A multiphase upscaling technique must be used. The most obvious technique
is the use of pseudorelative permeabilities, i.e., pseudos (Lake et al., 1990). The role of
pseudorelative permeabilities is to determine the flow rate of each fluid phase out of a
gridblock. They relate the flow rate to the pressure gradients between the gridblock and its
neighbors, given the average saturation in each gridblock. Both the flow rate and the pressure
gradient depend on the details of the saturation distribution within the gridblock. Hence,
to obtain a pseudorelative permeability curve, it is necessary to determine the saturation
distribution within the block for any given average saturation (Barker and Thibeau, 1997);
see the review papers by Christie (1996) and Barker and Thibeau (1997) for the generation
of pseudorelative permeabilities.

14.1.3 Limitations in upscaling

A major limitation in upscaling is that it usually gives an answer without any indication
of whether the assumptions made in obtaining the answer hold. No rigorous theory exists
behind the upscaling process. Furthermore, some factors give rise to a concern about whether
the upscaled values are good approximations; these include large-aspect-ratio gridblocks,
significant transport at an angle to the grid lines, and upscaled gridblocks close in size to
a correlation length of a heterogeneous reservoir. Compared with single phase upscaling,
multiphase upscaling is far less developed and understood. The tenth SPE CSP was presented
to compare different upscaling methods for two problems (Christie and Blunt, 2001); nine
participants took part.
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14.2 History Matching
A fundamental task of the reservoir engineer is to predict future production rates for a given
reservoir or a specific well. Over the years, reservoir engineers have developed various
techniques to accomplish this task. The techniques range from a simple decline curve
analysis to the sophisticated multidimensional, multiphase reservoir simulators that we have
developed in this book. Whether a simple or sophisticated technique is employed, the basic
idea in predicting production rates is first to compute the rates for a time period for which the
engineer already has production information. If the computed rates match the actual rates,
the computation is assumed to be correct and can be then used to make future predictions. If
the computed rates do not match the actual production data, some of the model parameters
(e.g., porosity, permeability, etc.) must be modified and the computation must be repeated.
Sometimes, this trial-and-error process must be repeated in a number of iterations to obtain
a set of usable model parameters. The process of modifying these parameters to match the
computed rates with the actual observed rates is called history matching.

For a given production schedule, the matching data usually are (1) observed gas-
oil ratios (GORs) and water-oil ratios (WORs); (2) observed average pressures (shut-in
pressures) or pressures at observation wells; (3) observed flowing well pressures; and (4)
observed oil production rates.

The process of history matching is time consuming and extremely difficult. It often
represents a large portion of the cost of a petroleum reservoir study. History matching
can be done manually or automatically by adjusting model parameters through the above-
mentioned trial-and-error procedure. The general approach in manual history matching is
to modify the parameters that have the largest uncertainty and also the largest effect on the
solution. The sensitivity of the solution to some of the parameters is often established during
the history matching process itself. To the best of our knowledge, general guidelines for
manual history matching do not exist. However, the following hints may be useful (Aziz
and Settari, 1979; Mattax and Dalton, 1990):

• The match of average pressures is influenced by fluid volumes in-place, the size of
the aquifer, and the degree of communication between the reservoir and the aquifer.
Moreover, a poor match of GORs and WORs can also cause a bad match for the
average pressures.

• Pressure drawdown primarily depends on horizontal permeabilities and skin factors.

• GORs and WORs are mainly affected by pressure drawdown, but also by the position
of fluid contacts and the thickness of the transition zone (which depends on capillary
forces). The shape of GOR and WOR curves after breakthough depends on the relative
permeability curves; the breakthough time primarily depends on the endpoints of the
latter curves, i.e., the effective permeabilities with only one of the phases flowing.

• Breakthough time is less frequently matched. In fact, matching breakthough times is
one of the toughest tasks.

Manual history matching requires a great deal of experience and depends heavily on
personal judgment. In recent years, considerable research efforts have been devoted to the
development of automatic history matching techniques. While the need for incorporating
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professional experience is not eliminated with the latter matching, it does have the potential
to save significant amounts of time and manpower and to provide more accurate estimates
on the model parameters. It generally uses inverse simulation that involves output least
squares algorithms. These algorithms are based on minimizing an objective functional
(cost function), i.e., a quadratic function of the differences between observed and predicted
measurements. Gradient-based algorithms are then used to speed up the process of parameter
estimation. Constraints and a priori information (via Bayesian estimation) are added to
restrict the dimension of the parameter spaces. Finally, sophisticated search algorithms
involving trust region methods are employed for the constrained optimization problem. Thus
the automatic history matching process becomes a mathematical minimization problem.
Reservoir history matching problems are generally characterized by a very large number of
unknown parameters. Consequently, the efficiency of numerical minimization algorithms
is a primary concern. In addition, these problems are typically ill-conditioned; many quite
different sets of parameter estimates may yield nearly identical matches to the data (Ewing
et al., 1994). Because of these concerns, much research is yet to be done, and at the current
stage of development automatic history matching is of limited use for practical problems.

14.3 Parallel Computing
The rapid development of parallel computers can overcome the limitations of problem size
and space resolution for reservoir simulation associated with single-processor machines. In
the past decade, the total number of gridblocks employed in a typical reservoir simulator
has increased from thousands to millions. This is particularly due to the advent of the most
prevalent type of parallel computers, distributed-memory machines, which have hundreds
to thousands of processors. Research on parallel computation in reservoir simulation was
extensively carried out in the late 1980s. There exist parallel black oil, compositional, and
thermal reservoir simulators (Briens at al., 1997; Killough at al., 1997; Ma and Chen, 2004).
Parallel commercial reservoir simulators are also available, such as Parallel-VIP (Landmark
Graphics Corporation) and Eclipse Parallel (Schlumberger Software).

Because 70–90% of the computational time is spent on the assembly and solution of
linear systems of algebraic equations, a prevailing strategy in reservoir simulation is to par-
allelize only this part, i.e., the linear solver part. However, this strategy may not be effective.
First, the model scale is limited by the size of accessible memory of the CPU. This difficulty
becomes prominent in a parallel environment with a PC or workstation cluster. Also, most
preconditioners for linear solvers used in reservoir simulation are based on incomplete LU
factorization (cf. Chapter 5), which is by its nature a sequential process. While various
techniques, such as the use of parallel approximate inverses, have been introduced to par-
allelize these preconditioners, additional computations are needed. Thus, to really improve
the efficiency of a simulation code, a global parallel scheme must be employed. In a global
parallel computation, the use of domain decomposition methods, data communication, load
balancing, and time step size control must be addressed.

14.3.1 Domain decomposition

The domain decomposition method is a technique for solving a partial differential problem
based on a decomposition of the spatial domain of the problem into a number of smaller
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domains (Chan and Mathew, 1994). In general, this method can be classified as either an
overlapping method or a nonoverlapping method. The overlapping method is generally
easier to describe and to implement. It is also easier to achieve an optimal convergence rate
using this method, and it is often more robust. But, in comparison to the nonoverlapping
method, additional work is needed in the overlapped regions. Furthermore, if the coefficients
of a differential problem are discontinuous across interboundaries, the extended subdomains
have discontinuous coefficients, which makes their solution problematic. On the other hand,
the nonoverlapping method requires a solution of interface problems at all interfaces of the
subdomains.

14.3.2 Load balancing

In parallel computing, one should try to distribute the work load equally on all processors.
In practice, it is difficult to achieve a load balance close to the optimum. Fortunately, in
reservoir simulation, there are several guidelines for distributing the work load. First, the
gridblocks should be evenly distributed among the processors with not only approximately
the same number of internal blocks, but also roughly the same number of external blocks
per processor. Second, if natural faults exist in a reservoir, these faults should be used as
the interboundaries between subdomains. Some of the PVT and rock property data are
discontinuous across the faults, and there should be no data communication across them.
Third, all the subdomains should contain the same number of wells. The well operating
schemes must be also taken into account for load balancing. A well can be an injector or
producer. In the thermal modeling (cf. Chapter 10), for example, a well can be both, and
the injection, production, and shut-in periods must be considered in distributing the work
load. Among these three guidelines, the last should be respected the most.

14.3.3 Data communication

There exist standard procedures for message passing that allow data communication be-
tween different processors such as MPI (message passing interface) and PVM (parallel
virtual machine). Message passing between processors is an essential component of par-
allel computing. It can take two forms: blocking (synchronous) and nonblocking (asyn-
chronous). Which form is to be used depends on the characteristics of data to be transferred.
In reservoir simulation, according to their time-variant characteristics, the communication
data are divided into three basic types, static data, slow transient data, and fast transient
data. The data describing the geometric model of a reservoir and rock property parameters
are the static data. Essentially, these data do not change in the simulation. At a time step
in the iteration process, the values of pressure, temperature, and saturation are the slow
transient data. These data need to be recorded at certain times to restart a computation. All
others are fast transient data. In particular, those that are frequently transferred over the
overlapping regions are of this type. In practice, a blocking communication mode is used
to transfer the static and slow transient data, and a nonblocking communication mode is
adopted to transfer the fast transient data to reduce communication overhead and improve
communication efficiency.



“chenb
2006/2
page 48

�

�

�

�

�

�

�

�

482 Chapter 14. Special Topics

14.3.4 Time step size and communication time control

In parallel computation, the time step sizes on different subdomains can be different. To
ensure that the well data of all production periods can be safely loaded and that a simulation
process is stable and accurate on each processor, the step size�tni on the ith subdomain�i
can be chosen using an adaptive control strategy developed in Section 7.3.2, for example, that
possesses the desired properties, i = 1, 2, . . . , N , whereN is the number of the subdomains.

To synchronize the computational processes on different processors and to pass mes-
sages efficiently between processors at certain times, the nth communication time is con-
trolled as follows:

1. predict the communication time tni for the ith subdomain, i = 1, 2, . . . , N ;

2. determine the nth synchronic communication time tn by

tn = min{tn1 , tn2 , . . . , tnN };

3. find the nth communication time tni for the ith subdomain: tni = tn.

While the minimum time level approach is recommended here, we point out that the maxi-
mum and weighted time level approaches can be also utilized. From our experience, when
a domain decomposition approximately achieves a load balance, these three approaches do
not differ much. The approach adopted here generates the most accurate solution.

14.4 Oil Recovery Optimization
Enhanced oil recovery techniques have received considerable attention in recent years. The
techniques involve the injection of large amounts of rather expensive fluids into oil-bearing
reservoir formations (cf. Chapter 1). Commercial application of any enhanced oil recovery
process relies on economic projections that show a decent return on the investment. Because
of high chemical costs, it is extremely important to optimize enhanced oil recovery processes
to generate the greatest recovery at the lowest chemical injection cost. Optimal control
histories or operating strategies are needed to maximize the economic value of enhanced
oil recovery techniques. The determination of these strategies is one of the key elements in
the successful usage of these oil recovery techniques.

A proper treatment of the economic aspects of the enhanced oil recovery process
is crucial because it is the major factor that controls applicability. Most oilfields can use
this type of technique to significantly improve recovery efficiencies. However, expenses
mainly with in-field drilling and injected chemical costs severely limit its applicability.
First, candidate reservoirs must be selected from a preliminary screening, and then precise
economic evaluations are obtained using accurate technical predictions such as history
matching (cf. Section 14.2). Finally, injection policies must be evaluated to maximize the
profitability of the project.

Optimization objectives can be expressed as a performance index to be extremized.
If a profit index is employed, a maximum is desired. The controls associated with enhanced
oil recovery processes are the physical state histories of the injected fluids. Thus the opti-
mization problem in enhanced oil recovery is to determine the injection policies that lead
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to a maximum in the profitability index, subject to the differential equality constraints that
describe the system dynamics. For more information on this subject, the reader may consult
Ramirez (1987) for application of optimal control theory to the determination of optimal
operating strategies in the petroleum industry.

14.5 Surface Network Systems
Well production rates and bottom hole pressures must be determined simultaneously from
a reservoir, production wells, and a surface network system. Any change in a gathering
network affects individual rates of production wells. A gathering network consists of pipes,
valves, and fittings to connect wellheads to a separation section. The production rate of
any well can be accurately computed only from the intersection of the inflow performance
curve (determined by a reservoir model) and the outflow performance curve (defined by
well tubing/casing and surface pipeline network models).

Models of multiphase flow in well tubing and surface network devices (e.g., pipelines
and valves) must be added to a reservoir model for an integrated full field simulation. Thus
the simultaneous simulation of multiphase flow in the reservoir, well tubing, and surface
pipeline network system consists of the following models:

• a wellbore model that describes the fluid flow from the reservoir to the wellbores of
production wells,

• a well tubing model that governs the flow from the wellbores to the wellheads,

• a surface facility model that determines the flow in the surface pipeline network
system.

The reservoir and wellbore models define the inflow performance curve, and the well tubing
and surface facility models define the outflow performance curve for each production well.
The production rate and bottom hole pressure of the well are computed from the interaction
of these two curves.

The reservoir and wellbore models have already been described in detail. Here we
briefly touch on the well tubing and surface facility models that utilize models of flow
devices, links, and nodes.

14.5.1 Hydraulic models of flow devices

Hydraulic models of multiphase flow in surface network devices (tubing strings, pipelines,
valves, etc.) are basic elements of the surface pipeline network system. They are the building
blocks for the surface network system. Each flow device has an inlet and an outlet (cf. Fig-
ure 14.1). In steady-state flow, a hydraulic model of the device determines the inlet pressure
of this device as a function of the outlet pressure and flow rates of hydrocarbon components
involved. There are two basic approaches for determining this function: analytical steady-
state modeling (Beggs, 1991) and hydraulic look-up tables (VIP-Executive, 1994). The
former approach is widely used in the petroleum industry for the simulation of multiphase
flow in well tubing, pipelines, and valves. The latter approach tabulates the inlet pressure of
a flow device in terms of the outlet pressure and flow rates. The tabular approach requires
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Inlet Outlet

Figure 14.1. A flow device model.
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table
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Figure 14.2. A link example.
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Link5
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Figure 14.3. A surface pipeline network system.

significantly less CPU time than the analytical approach, but it has obvious disadvantages:
a preprocessor package is required to establish the tables, and significant computer memory
is needed to store a large number of hydraulic tables for each of the sophisticated reservoir
models discussed in Chapters 9–12.

14.5.2 Models of links and nodes

A link simulates multiphase flow in well tubing, connections between wellheads and nodes
of the surface pipeline network system, and the connections between nodes. Each link has
only an inlet and an outlet (cf. Figure 14.2). The link shown in Figure 14.2 is composed of
four flow devices: tubing, valve, pipe, and hydraulic table.

A node is a junction of several links. Each node can have any number of input links but
only one output link. Production wells can be connected to any node. Figure 14.3 shows
an example of a surface pipeline network with seven production wells. Five nodes are
presented, and links are employed for flow simulation in well tubing and node connections.

Pressure equations are formulated for each link. They determine the inlet pressure
of the link in terms of the outlet pressure and mass rates of hydrocarbon components in
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this link. Mass conservation equations for the hydrocarbon components are formulated for
each node in the surface network system. These equations state that the mass rate of each
component at the outlet of a node equals the sum of mass rates of the component at the
outlets of all nodes connected to this node (Litvak and Darlow, 1995).

In summary, the simultaneous simulation of multiphase flow in a reservoir, well tubing,
and surface pipeline network system consists of a solution of a reservoir model in gridblocks,
a solution of a wellbore model in production wells, and a solution of a well tubing and surface
facility model in links and nodes. The solution of these three subsystems can be performed
either simultaneously (in a fully coupled fashion) or sequentially (in a decoupled fashion)
(Litvak and Darlow, 1995).

14.6 Bibliographical Remarks
In this chapter, five special topics in reservoir simulation have been briefly studied: upscal-
ing, history matching, parallel computing, oil recovery optimization, and surface network
systems. Upscaling remains a hot research topic, with much research to be done. For recent
work on this topic, the reader can consult the review papers by Christie (1996) and Barker
and Thibeau (1997) and the tenth SPE CSP (Christie and Blunt, 2001). The process of his-
tory matching is sometimes frustrating. There has been considerable research effort devoted
to automating this process (see the recent biannual SPE numerical simulation proceedings).
Due to the advent of powerful parallel computers, parallel computing technologies have
been massively applied to reservoir simulation, particularly since the 1990s. Ideally, the
speedup of CPU times in terms of the numbers of processors can be superlinear (Briens
at al., 1997; Killough at al., 1997; Ma and Chen, 2004). Compared with the devotion of
time and manpower to numerical reservoir simulation, less research effort has been devoted
to oil recovery optimization. The book by Ramirez (1987) is a good starting point in this
area. Finally, research on the simultaneous simulation of multiphase flow in a reservoir,
well tubing, and surface pipeline network system needs more attention. The approach in
Section 14.5 to this topic follows Litvak and Darlow (1995).
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Chapter 15

Nomenclature

15.1 English Abbreviations
ASP Alkaline, surfactant and polymer
BCG Biconjugate gradient
BDDF Brezzi–Douglas–Durán–Fortin
BDFM Brezzi–Douglas–Fortin–Marini
BDM Brezzi–Douglas–Marini
BiCGSTAB Biconjugate gradient stabilized
CD Chen–Douglas
CG Conjugate gradient
CGN CG applied to normal equations
CGS Conjugate gradient squared
CSP Comparative solution project
CVFA Control volume function approximation
CVFE Control volume finite element
DG Discontinuous Galerkin
ELLAM Eulerian–Lagrangian localized adjoint method
EOR Enhanced oil recovery
EOS Equation of state
erfc Complementary error function
FD Finite difference
FGMRES Flexible generalized minimum residual
GMRES Generalized minimum residual
GOC Gas/oil contact
GOR Gas-oil ratio
ILU Incomplete LU factorization
ILUT Incomplete LU factorization with threshold
IMPES Implicit pressure-explicit saturation
LES Linear equation system
MMOC Modified method of characteristics

487
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OIP Oil in place
ORTHOMIN Orthogonal minimum residual
PCG Preconditioned conjugate gradient
PI Production index
RT Raviart–Thomas
RTN Raviart–Thomas–Nédélec
SDG Stabilized discontinuous Galerkin
SOR Successive overrelaxation
SPE Society of Petroleum Engineers
SS Simultaneous solution
SSOR Symmetric successive overrelaxation
WAG Water-alternating-gas
WC Water cut
WOC Water/oil contact
WOR Water-oil production ratio

15.2 Subscripts
f Fluid phase or fracture quantity
g Gas phase
i Component or coordinate index
o Oil phase
s Standard conditions or solid phase
t Total quantity
w Water phase
α Phase index

15.3 Base Quantities
Symbol Base quantities Unit

L Length m
M Mass kg
T Temperature K
t Time s (or sec.)

15.4 English Symbols
Symbol Quantity Unit

A Area L2

API Oil gravity ◦API
a Acceleration L/t2

B Formation volume factor
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Bα Formation volume factor of phase α
Ci Compressibility of component i Lt2/M
Cs Specific heat capacity L2/(Tt2)
CVα Heat capacity of phase α at constant volume L2/(Tt2)
Cpα Heat capacity of phase α at constant pressure L2/(Tt2)
Cp,ob Overburn heat capacity at constant pressure L2/(Tt2)
c Mass concentration
cf Fluid compressibility Lt2/M
cg Gas compressibility Lt2/M
co Oil compressibility Lt2/M
cw Water compressibility Lt2/M
ci Concentration of component i
ciα Concentration of component i in phase α
cR Rock compressibility Lt2/M
cSE Effective salinity
cSEL Lower limit of effective salinity
cSEU Upper limit of effective salinity
cSEOP Optimum effective salinity
ccs Critical surfactant concentration
ct Total compressibility Lt2/M
cµ Oil viscosity compressibility Lt2/M
c̃i Overall concentration of component i
ĉi Adsorbed concentration of component i
ĉoi Reference adsorbed concentration
D Diffusion/dispersion tensor L2/t
Diα Diffusion/dispersion of component i in phase α L2/t
Dxi Grid size in xi-direction L
diα Diffusive flux of component i in phase α M/(L2t)
dm Molecular diffusion L2/t
dl Longitudinal dispersion L
dt Transverse dispersion L
d� Line or surface integral sign L (or L2)
dx Area or volume integral sign L2 (or L3)
E Energy flux M/t3

E Energy L2M/t2

Ei(·) Exponential integral function
E(u) Orthogonal projection along u
E⊥(u) Complement of E(u) I − E(u)
F Force LM/t2

F Total mass variable M/L3

Fα(·) Distribution function of phase α
fiα Fugacity function of component i in phase α M/(Lt2)
fα Fractional flow function of phase α
G Young modulus
Hα Enthalpy of α-phase L2/t2

H Reservoir thickness L
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h3 Reservoir thickness L
h3 Height of the gridblock containing a well L
hi Grid size in xi-direction L
I Identity tensor
I An interval in space L
J = (0, T ] Time interval of interest t
J n Subinterval in time (tn−1, tn] t
|K| Area or volume of set K L2 (L3)
Ki Equilibrium K-value of component i
k Permeability tensor L2

kii Permeability in xi-direction L2

k̄ Certain average of k L2

kh Horizontal permeability L2

kv Vertical permeability L2

kα Effective permeability of phase α L2

krα Relative permeability of phase α
krow Relative permeability of oil-water system
krog Relative permeability of oil-gas system
krc Value of krow at Swc krow(Swc)

k
f

ij Forward chemical rate M/(L3t)
krij Reverse chemical rate M/(L3t)
kT Thermal conductivity ML/(Tt3)
kob Thermal conductivity of overburden ML/(Tt3)
L Mass fraction of oil
Lc Characteristic length L
Li Chemical loss rate of component i M/(L3t)
lxi Matrix block dimension in xi-direction L
NBα Bond number
Nc Number of components
Ncα Capillary number
Np Number of phases
Ncv Total number of volume-occupying components
Nw Number of wells
Nxi Number of gridblocks in xi-direction
p Pressure M/(Lt2)
pb Bubble point pressure M/(Lt2)
pα Pressure of phase α M/(Lt2)
ppc Pseudocritical pressure M/(Lt2)
pc Capillary pressure M/(Lt2)
p∗
c Critical capillary pressure
pic Critical pressure of component i M/(Lt2)
pcα1 Capillary pressure M/(Lt2)
pcow Capillary pressure po − pw M/(Lt2)
pcgo Capillary pressure pg − po M/(Lt2)
pcw Capillary pressure = −pcow M/(Lt2)
pcg Capillary pressure = pcgo M/(Lt2)
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pcb Threshold pressure M/(Lt2)
pbh Bottom hole pressure M/(Lt2)
Pbh Given bottom hole pressure M/(Lt2)
po Reference pressure M/(Lt2)
pr Reference phase pressure M/(Lt2)
Q Production rate L3/t
Qα Production rate of phase α L3/t
Qi Chemical reaction rate of component i M/(L3t)
qc Heat conduction flux M/t3

qr Heat radiation flux M/t3

q Source/sink M/(L3t)
qext External source/sink M/(L3t)
qGm Matrix-fracture transfer term for gas M/(L3t)
qGom Matrix-fracture transfer term for gas in oil M/(L3t)
qOom Matrix-fracture transfer term for oil in oil M/(L3t)
qWm Matrix-fracture transfer term for water M/(L3t)
qmf Matrix-fracture transfer term M/(L3t)
qα Source/sink of phase α M/(L3t)
q(i) Production/injection rate at well i L3/t
qH Enthalpy source term M/(Lt3)
qL Heat loss M/(Lt3)
R Universal gas constant R ≈ 0.8205
Rgl Gas-liquid ratio
Rk Permeability reduction factor
Rr Resistance factor
Rrr Residual resistance factor
Rs (Ru) Gas mobility reduction factor
Rso Dissolved gas-oil ratio
Rv Oil volatility in gas
re Equivalent radius L
rw Wellbore radius L
riα Reaction rate of component i in phase α M/(L3t)
ris Reaction rate of component i in solid M/(L3t)
Sα Saturation of phase α
Snα Normalized saturation of phase α
Soc Critical oil saturation
Swc Critical water saturation
Snc Residual saturation
Sor Residual oil saturation
Sαr Residual saturation of phase α
Swf Water saturation at water front
sk Skin factor
Tα Transmissibility of phase α L3t/M
T Temperature T
Tc Critical temperature T
Tm Matrix-fracture transmissibility
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Tob Temperature of overburden T
Tpc Pseudocritical temperature T
tB Water breakthrough time t
U Specific internal energy L2/t2

Uα Specific internal energy of phase α L2/t2

u Darcy’ velocity (u1, u2, u3) L/t
|u| Euclidean norm of u L/t
uα Velocity of phase α L/t
V Volume L3

|V0| Area or volume of set V0 L2 (L3)
V Mass fraction of gas
W Molecular weight M/mole
Wi Molecular weight of component i M/mole
WI Well index L3

w Displacement of fluid L
ws Displacement of solid L
x Spatial variable (x1, x2, x3) L
x(i) Well location L
xiα Mole fraction of component i in phase α
YG Raw gas gravity
Z Gas compressibility or deviation factor
Zα Compressibility factor of phase α
z Depth L
zi Total mole fraction
zbh Datum level depth L

15.5 Greek Symbols
Symbol Quantity Unit

ᾱ Dimension factor
β Inertial or turbulence factor
κij Binary interaction parameter
� Solution domain L3

�i ith matrix block L3

�0 Support of ϕ0 L3

∂� Boundary of � L2

∂/∂t Time derivative t−1

∂/∂xi Spatial derivative L−1

∇ Gradient operator L−1

∇· Divergence operator L−1

� Laplacian operator L−2

�L Well length in a gridblock L
�pα Pressure gradient across a matrix block M/(L2t2)

 Potential M/(Lt2)

α Potential of phase α M/(Lt2)
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o Reference potential M/(Lt2)

′ Pseudopotential L
φ Porosity
φo Reference porosity
ϕiα Fugacity coefficient of component i in phase α
ψ Pseudopressure M/(Lt3)
ψ ′ Inverse function of (2.7) L
µ Viscosity M/(Lt)
µα Viscosity of phase α M/(Lt)
µP Polymer viscosity M/(Lt)
ρ Density M/L3

ρf Fluid density M/L3

ρf Global fluid density in fractures M/L3

ρα Density of phase α M/L3

ρo Reference density M/L3

ρt Total mass density M/L3

ρGo Partial density of gas component in oil M/L3

ρOo Partial density of oil component in oil M/L3

ρob Density of overburden M/L3

℘ Gravitational acceleration L/t2

δ Dirac delta function 1/L3

δvl Increment of v at lth Newton–Raphson
δ̄vn Time increment of v at nth step
σ Matrix shape factor 1/L2

σ Surface tension M/t2

σaw Water/air interfacial tension M/t2

σow Water/oil interfacial tension M/t2

σ23 Microemulsion/oil interfacial tension M/t2

σ13 Microemulsion/water interfacial tension M/t2

σ Stress tensor M/(Lt2)
εs Strain tensor M/(Lt2)
ν Poisson ratio
ν Outward unit normal
χi(·) Characteristic function
λα Mobility of phase α L3t/M
λ Total mobility L3t/M
ξiα Molar density of component i in phase α mole/L3

ξα Molar density of phase α mole/L3

θ Contact angle
ωi Acentric factor of components i
γα Phase specific weight M/(L2t2)
γiα Specific weight of component i in phase α M/(L2t2)
γ oi Reference specific weight of component i M/(L2t2)
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15.6 Generic Symbols Used in Chapters 4 and 5
Symbol Definition

A Coefficient matrix of a system (stiffness matrix)
a Diffusion coefficient
ahar Harmonic average of a
a Diffusion coefficient
a(·, ·) Bilinear form
ah(·, ·) Mesh-dependent bilinear form
aK(·, ·) Restriction of a(·, ·) on K
aij Entries of A
aKij Restriction of aij on K (element)
ahar Harmonic average of a
anum Numerical dispersion
B Mass matrix
B1 Matrix in an affine mapping
Br+1 Equals λ1λ2λ3Pr−2

Br+2,r Refer to Section 4.5.4
b(·, ·) Bilinear form
b Convection or advection coefficient vector
b Convection or advection coefficient
c Reaction coefficient
C Coefficient matrix associated with time
d Dimension number (d = 1, 2, or 3)
eik kth edge on ∂Vi
EDh Set of edges on �D
ENh Set of edges on �N
Eoh Set of internal edges in Kh
Ebh Set of edges on �
Eh Set of edges of the partition Kh
F Functional or total potential energy
Fi Equals

∫
Vi
f (x) dx

F Mapping
f Right-hand function or load
f Right-hand vector of a system
fK Local mean value on K
fi ith entry of f
fα Fractional flow function
G Jacobian matrix or a mapping
g Boundary datum
ge Local mean value on e
Hk (k + 1)× k upper Hessenberg matrix
h Mesh or grid size
he Length of edge e
hi Grid size in xi-direction
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h′
i Grid size in xi-direction
h′′
i Grid size in xi-direction
hk Mesh size at the kth level
hK Diameter of K (element)
I Interval in R

Ii Subintervals
I Identity matrix or operator
Ǐi (t) Trace back of Ii to time t
Ini Space-time region following characteristics
ī Equals

√−1
J Time interval of interest (J = (0, T ])
J n nth subinterval of time (tn−1, tn)
K Element (triangle, rectangle, etc.)
|K| Area or volume of K
K̂ Reference element
Kh Triangulation (partition)
Ǩ(t) Trace back of K to time t
Kn Space-time region following characteristics
Kk kth Krylov space of A
K̂k kth Krylov space of AT

L(·) Linear functional
L−(·) Linear functional for symmetric DG
L+(·) Linear functional for nonsymmetric DG
Lh Space of Lagrange multipliers
Li Bandwidth of ith row of a matrix
L Bandwidth of a matrix
L Lower triangular matrix
L Linear operator
lij Elements of L
M Number of grid points (nodes)
M Coefficient matrix arising from mixed methods
mc Centroid of an element
mi Vertices of elements
mij Midpoint of an edge
m0 Centroid of an element
Nh Set of vertices in Kh
p Primary unknown
p Unknown vector of a system
ph Approximate solution of p
p0 Initial datum
p̌n−1
h Value of ph at

(
x̌n, t

n−1
)
: ph

(
x̌n, t

n−1
)

p̃h Interpolant of ph
pk kth iterate
pnij Value of p at (x1,i , x2,j , t

n)

Pr Set of polynomials of total degree ≤ r

Pl,r Set of polynomials defined on prisms
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pα Pressure of α-phase
Qr Set of polynomials of degree ≤ r in each variable
Ql,r Set of polynomials of degree l in x1 and r in x2

Q Upper triangular matrix
R Reaction coefficient
R
d Euclidean space, d = 1, 2, 3

Rni Truncation error
rk kth residual vector
RK Residual a posteriori estimator
S Computer storage
t Time variable
ť See Section 4.6.2
tn nth time step
T Final time
Tij Transmissibility between nodes i and j
u Equals −a∇p or −∇p
U Unknown vector for u or u
uij Elements of U
v− Left-hand limit notation
v+ Right-hand limit notation
V Linear vector space
V ′ Dual space to V
Vh Finite element space
V Vector space in a pair of mixed spaces
Vh Vector space in a pair of mixed finite element spaces
Vh(K) Restriction of Vh on K
Vi Control volume
Vk Orthogonal projector
wi Integration weight
W Computer work
W Scalar space in a pair of mixed spaces
Wh Scalar space in a pair of mixed finite element spaces
Wh(K) Restriction of Wh on K
x Independent variable in R

x Independent variable in R
d : x = (x1, x2, . . . , xd)

x̌n Foot of a characteristic corresponding to x at tn

Z(2,M) Coordinate matrix of nodes
Z(3,M) Matrix of node numbers
Zn Maximum error supi{|zni |}
zni Error Pni − pni
cond(A) Condition number of matrix A
R Set of real numbers
� Open set in R

d (d = 2 or 3)
�̄ Closure of �
�e Union of elements with common edge e
�K Union of elements adjacent to K
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�i Set of neighboring nodes of mi

�m Union of elements with common vertex m
� Boundary of � (∂�)
�− Inflow boundary of �
�+ Outflow boundary of �
�D Dirichlet boundary of �
�N Neumann boundary of �
∂K Boundary of K
∂K− Inflow part of ∂K
∂K+ Outflow part of ∂K
∇ Gradient operator
∇· Divergence operator (div)
� Laplacian operator
�2 Biharmonic operator (��)
�t Time step size
�tn Time step size at the nth step
∂
∂xi

Partial derivative with respect to xi
∂
∂t

Partial derivative with respect to t (time)

∂
∂ν Normal derivative

∂
∂t Tangential derivative

∂
∂τ Directional derivative along characteristics

D
Dt

Material derivative

Dα Partial derivative notation
C∞(�) Space of functions infinitely differentiable
D(�) Subset of C∞(�) having compact support in �
C∞

0 (�) Same as D(�)
diam(K) Diameter of K
L1
loc(�) Integrable functions on any compact set inside �
Lq(�) Lebesgue space
Wr,q(�) Sobolev spaces
W

r,q

0 (�) Completion of D(�) with respect to ‖ · ‖Wr,q (�)

‖ · ‖ Norm
‖ · ‖h Norm on a nonconforming space
‖ · ‖Lq(�) Norm of Lq(�)
‖ · ‖Wr,q (�) Norm of Wr,q(�)

| · |Wr,q (�) Seminorm of Wr,q(�)

|u| Euclidean norm
√
u2

1+u2
2+···+u2

d

(·, ·) Inner product
Hr(�) Same as Wr,2(�)

Hr
0 (�) Same as Wr,2

0 (�)

H l(Kh) Piecewise smooth space
H(div, �) Divergence space
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β Convection or advection coefficient
α multi-index (a d-tuple): α = (α1, α2, . . . , αd)

β1 Measure of smallest angle over K ∈ Kh
β2 Quasi-uniform triangulation constant
εni Perturbation error
�K Set of degrees of freedom
γ Amplification factor
γ nk Magnitude (expansion coefficient) of εni
πh Interpolation operator
πK Restriction of πh on element K
�h Projection operator
δ(x − x(l)) Dirac delta function at x(l)

ρK Diameter of largest circle inscribed in K
ν Outward unit normal
φ Time differentiation term coefficient
ϕ, ϕ Interstitial velocity
ϕi Basis function of Vh
ϕ
j

ik Basis function in CVFA
ψi Basis function of Wh

ϕi Basis function of Vh

λd Lagrange multipliers
λi Barycentric coordinates (i = 1, 2, 3)
λ
up

ij Upstream weighted coefficient
τ , τ Characteristic direction
[| · |] Jump operator notation
{| · |} Averaging operator notation
det(·) Determinant of a matrix
σ(A) Spectrum of A



“chenb
2006/2
page 49

�

�

�

�

�

�

�

�

Chapter 16

Units

16.1 Unit Abbreviations
API American Petroleum Institute
atm Atmosphere
bbl Reservoir barrel
Btu British thermal unit
◦C Degrees Celsius
cc Cubic centimeter or cubic content
cm Centimeter
cp Centipoise
D Day
dyn Dyne
◦F Degrees Fahrenheit
ft Foot
g Gram
gm Gram
hr Hour
J Joule
K Kelvin
kg Kilogram
lb Pound
lbm Pound-mole
m Meter
md Millidarcy
mg/L Milligram/liter
mol Mole
N Newton
Pa Pascal
ppm Parts per million
psi Pounds per square inch
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500 Chapter 16. Units

psia Pounds per square inch absolute
psig Pounds per square inch gauge
PV Pore volume
R Rankine
RB Reservoir barrel
s (or sec.) Second
SCF Standard cubic feet
SCM Standard cubic meter
STB Standard barrel
t Ton
yr Year

16.2 Unit Conversions
Length

1 m = 100 cm = 1,000 mm = 3.28084 ft = 39.3701 in
1 ft = 0.30480 m = 30.4800 cm = 3,048 mm = 12 in
1 km = 0.621388 mile

Area
1 m2 = 10,000 cm2 = 1,000,000 mm2 = 10.7639 ft2 = 1,550.0 in2

1 ha = 10,000 m2 = 2.47105 acres
1 mile2 (section) = 2.58985 km2 = 258.985 ha = 639.965 acres
1 acre = 43,560 ft2 = 0.404686 ha = 4,046.86 m2

Volume (capacity)
1 m3 = 1,000 L = 1,000 dm3 = 35.3147 ft3 = 6.28981 bbl
1 L = 1 dm3 = 0.001 m3 = 1,000 cm3 = 0.0353147 ft3 = 61.0237 in3

1 ft3 = 0.0283168 m3 = 28.3168 L
1 bbl (API) = 0.158987 m3 = 158.987 L = 5.61458 ft3

Mass
1 kg = 2.20460 lbm = 1,000 g
1 lbm = 0.453597 kg = 453.597 g
1 t = 1,000 kg = 2,204.60 lbm

Density
1 kg/m3 = 0.001 g/cm3 = 0.001 t/m3 = 0.0624273 lbm/ft3

1 lbm/ft3 = 16.0186 kg/m3 = 0.0160186 g/cm3

1 g/cm3 = 1,000 kg/m3 = 1 t/m3 = 1 kg/L = 62.4273 lbm/ft3

Force
1 N = 105 dyn = 0.102 kgf = 0.225 lbf
1 kgf = 9.81 N = 9.81 × 105 dyn = 2.205 lbf
1 lbf = 4.45 N = 0.454 kgf

Pressure
1 MPa = 106 Pa = 9.86923 atm = 10.1972 at = 145.038 psi
1 atm = 0.101325 MPa = 1.03323 at = 14.6959 psi
1 psi = 0.00689476 MPa = 6.89476 kPa = 0.0680460 atm = 0.0703072 at
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Temperature
◦C = (◦F-32)/1.8
K = ◦C + 273.16
◦F = 1.8(◦C)+ 32
R = ◦F + 459.67
K = R/1.8

Viscosity
1 mPa·s = 1 cp (dynamic) = 10−3 Pa·s
1 mm2/s = 1 cSt = 1.08 × 10−5 ft2/s (kinematic)

Permeability
1 µm2 = 10−12 m2 = 1.01325 darcy = 1.01325 × 103 md
1 md = 10−3 darcy = 9.86923 × 10−16 m2 = 9.86923 × 10−4 µm2

1 µm2 ≈ 1 darcy = 1,000 md
Surface tension

1 mN/m = 1 dyn/cm
Work, energy, power

1 J = 9.47813 × 10−4 Btu
1 Btu = 1,055.06 J

Heat transfer coefficient
1 kJ/(m·day·K) = 1.60996 Btu/(ft·day·◦F)
1 Btu/(ft·day·◦F) = 6.23067 kJ/(m·day·K)

Specific heat
1 J/(kg·K) = 2.38846 × 10−4 Btu/(lb·◦F)
1 Btu/(lb·◦F)= 4.1868 × 103 J/(kg·K)

Some special units
γo (oil specific gravity) = 141.5/(131.5 +◦ API)
1 SCF/STB (gas-oil ratio) = 0.17811 m3/m3 (standard)
1 m3/m3 = 5.6146 SCF/STB
1 psi/ft (pressure gradient) = 0.223248 atm/m = 0.0226206 Mpa/m
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16.3 SI and Other Metric Systems

Quantity Symbol SI units SI Mixed units Mixed Mixed
Base Practical Base Practical British

Oil production qo m3/s m3/D cm3/s m3/D bbl/D

Water injection qw m3/s m3/D cm3/s m3/D bbl/D

Critical production qc m3/s m3/D cm3/s m3/D bbl/D

Cross section A m2 m2 cm2 m2 ft2

Permeability k m2 µm2 darcy md md

Effective depth h m m cm m ft

Perforated depth �L m m cm m ft

Reservoir length L m m cm m ft

Capillary radius rc m µm cm µm µin

Wellbore radius rw m m cm m ft

Drainage radius re m m cm m ft

Oil volume factor Bo

Oil viscosity µo Pa·s MPa·s cp cp cp

Pressure difference �p Pa MPa atm atm psi

Initial difference p0 Pa MPa atm atm psi

Wellbore pressure pbh Pa MPa atm atm psi

Capillary pressure pc Pa MPa dyne/cm2 atm psi

Oil density ρo kg/m3 g/cm3 g/cm3 g/cm3 lbm/ft3

Water density ρw kg/m3 g/cm3 g/cm3 g/cm3 lbm/ft3

Production time t s h s h h

Saturation S % % % % %

Skin factor sk

Oil compressibility co Pa−1 MPa−1 atm−1 atm−1 psi−1

Rock compressibility cR Pa−1 MPa−1 atm−1 atm−1 psi−1

Well controlled reserve N m3 m3 cm3 m3 bbl

Turbulence factor β m−1 m−1 cm−1 m−1 ft−1

Porosity φ % % % % %

Surface tension σ N/m mN/m dyne/cm dyne/cm dyne/cm

Contact angle θ ◦ ◦ ◦ ◦ ◦

Energy E J J J J Btu

Heat transfer coeff. kT
W

m·K kJ
m·D·K W

m·K kJ
m·D·K Btu

ft·D·◦F

Specific heat U J
kg·K J

kg·K J
kg·K J

kg·K Btu
lb·◦F
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