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Preface

With the development of information and intelligence sciences and technologies as
well as the rise in social requirements, imprecise-information processing about
flexible linguistic values is becoming more and more important and urgent, and it
will play an indispensable role in intelligent systems, especially in the anthropo-
morphic intelligent systems.

Imprecision, which is different from uncertainty, is another independent attribute
of information, and the now so-called fuzziness is actually a kind of imprecision.
Therefore, the author proposed explicitly the concepts of imprecise information and
imprecise-information processing, and the book, just as the title shows, is a
monograph on imprecise-information processing.

Actually, on imprecise-information processing, many scholars have been doing
research with some results, among which the fuzzy set theory introduced by
American Professor Loft Zadeh is the most famous. In fact, since Zadeh proposed
the concept of fuzzy sets in 1965, the fuzzy-information processing technology
based on fuzzy set theory has developed rapidly and made some achievements.
However, so far, some important theoretical and technical problems in
fuzzy-information processing have not been solved very well. For this reason, not a
few scholars worked to improve and develop fuzzy set theory, and presented many
new ideas, theories, and methods, which all have their respective angles of view and
characteristics. But on the whole, people have not yet reached a common view, and
the existed problems are neither solved really. Making a general survey of the
decades of imprecise-information processing, although people presented many
theories and methods, a theoretical and technological system has not yet been
formed, that is, widely approved and has solid foundation of mathematics and logic
like that for uncertain-information processing. In particular, some scholars still put
imprecision of information into the category of uncertainty of information or mix
the two together to do research. Therefore, imprecise-information processing is still
a significant subject necessitating careful research.

After years of concentrated study, the author discovers that the imprecision of
information originates from the phenomenon of “continuous distribution or change”
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of magnitudes of a feature of things (or in other words, “uniform chain similarity”
of things) and the treating way of “flexible clustering” of human brain. Thus, based
on this and combined with the ways of human brain dealing with imprecise
information in daily language, I have examined and explored the principles and
methods of imprecise-information processing in an all-round way. As a result, a
series of new theories and methods different from fuzzy technology were obtained,
which forms a new theoretical and technological system of imprecise-information
processing. This book is just a summation of these research results. Of course,
viewed from the relationship between flexible sets and fuzzy sets, this book can also
be viewed as an “amendment” to fuzzy-information processing technology; how-
ever, it does not follow traditional thinking to make modifications and supple-
mentations in the existing framework of fuzzy set theory. Rather, tracing to the
source and opening a new path, this book researches and explores the
imprecise-information processing with new perspectives and ideas.

As early in the start of the 1990s, while building expert systems, from the doubt
of Zadeh’s CRI (compositional rule of inference) fuzzy reasoning, the author began
to think about the problem of “fuzzy.” In the period, I analyzed the objective cause
that brings about the “fuzziness” of information and proposed some terminologies,
concepts and methods such as “flexible linguistic values,” “flexible concepts,”
“degreed logic,”and “reasoning with degrees”. In 2000, a book Degree theory was
published in which I summed up the research results at that time. After that, I
continued to explore in this direction, further examined the formation principles and
mathematical models of flexible concepts, and realized that fuzzy set is somewhat
too general in describing a “fuzzy concept.” Accordingly, I introduced the termi-
nology and concept of “flexible sets,” further examined the flexible linguistic
values, and then founded the corresponding theories of mathematics and logic and
meanwhile also found the geometric models and practical models of flexible con-
cepts, the logical semantics of propositions, and the mathematical essence of
flexible linguistic rules. The series of new discoveries and new progress made me
more confident and determined to continue the cultivation in this field. During
further researches, I realized gradually that the more essential characteristic of those
so-called fuzzy (vague) concepts modeled by using fuzzy sets should be “flexible”
rather than “fuzzy or vague,” and the information containing flexible linguistic
values is actually a kind of imprecise information. Therefore, I took specifically
“imprecise-information processing” as a direction and objective and carried out an
all-round research. In September 2009, the results obtained were gathered as a book
and formally published with the name of Principles of Imprecise- Information
Processing (Chinese version).

After this book was published, I also had some further understanding and
thinking. For instance, we can also research approximate reasoning and computing
at the level of linguistic functions and can extend flexible linguistic value to more
general quantifiable linguistic value. Meantime, some problems and deficiencies in
this book are also found such as the exposition about “uniform chain similarity
relation” of things, the wording of “real number space,” the discrimination between
flexible concept and vague (fuzzy) concept, the analyses of inference in
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truth-degreed logic, and the logical semantics of propositions, which all need
improvement, and there are some redundancies in Chap. 12. In particular, the
comparison is not made in this book between the principles and methods of
approximate reasoning and computation we present and those in fuzzy set theory. In
addition, some contents in this book are not so closely related to the theme of this
book. Thus, I continued again the work nonstop. I did research further and at the
same time also made revisions, corrections, and extensions to the original work:
deleted or reduced some contents, extended some contents, changed some formu-
lations and especially added many new contents (such as “flexible linguistic
functions” and “quantifiable linguistic values” as well as the logical and mathe-
matical principles of approximate reasoning). Thus, some original chapters and
sections were deleted, but some new chapters and sections were added, and most of
original chapters and sections were rewritten or adapted; correspondingly, the
structure of text was also made a large modification—changed from the original 8
parts and 21 chapters to 9 parts and 26 chapters. Thus, a new work about
“Principles of Imprecise-Information Processing,” that is, the second edition of
original book, has been formed. At the beginning of 2015, the manuscript of the
new work had been basically completed, and then, some polishing was done. The
new work has two versions: one in Chinese and one in English, the latter being this
book.

Compared with the original edition, the new edition made much new progress
both in depth and in extent—not only the quantity is increased but also the quality
is raised, and the whole theoretical and technological system is more compact and
coherent. This book has nine parts. The first part gives an outline of
imprecise-information processing; the second part reveals the formation principle of
imprecise information and establishes its mathematical models; the third part is the
mathematical theory on imprecise information; the fourth part is the logic theory on
imprecise information; the fifth part expatiates on the principles and methods of
reasoning and computation with imprecise information and knowledge; the sixth
part is the application and acquiring techniques of imprecise knowledge; the sev-
enth part is the extension of imprecise information; the eighth part expatiates on and
deals with the overlap of and the correlation between imprecision and uncertainty;
and finally, the ninth part is further work. In terms of structure, Part I is the
introduction, Part II the origin, Parts III and IV the basis, Part V the main body,
Part VI the application (interface), Part VII the extension, Part VIII the cross, and
Part IX the frontier. Their logical relationships and the hierarchy of this book are
shown in the following diagram.

This book researches imprecise-information processing by using mathematical
and logical methods, but meanwhile, it also develops the corresponding theories of
mathematics and logic. The whole book presents over 100 important concepts,
derives over 40 theorems and more than 100 formulas, functions, and rules, and
gives over 70 specific methods and algorithms. Besides, there are also brief com-
mentaries of some existing viewpoints and methods (which are mainly of fuzzy set
theory) in this book.
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This book also has a feature; that is, there are many symmetrical, antithetical, or
corresponding concepts and terminologies such as “flexible linguistic value” and
“flexible set,” “membership function” and “consistency function,” “geometric
model,” and “algebraic model,” “combined linguistic value” and “synthetic lin-
guistic value,” “form of possession” and “form of membership,” “logical compo-
sition” and “algebraical composition,” “conjunction-type rule” and
“disjunction-type rule,” “complementary flexible partition” and “exclusive flexible
partition,” “flexible linguistic value” and “rigid linguistic value,” “medium value”
and “neutral value,” “L-N function” and “N-L function,” “certain rule” and
“uncertain rule,” “natural logical semantics” and “extended logical semantics,”
“reasoning with truth-degrees” and “reasoning with believability-degrees,”
“degree-true inference” and “near-true inference,” “numerical ××” and “linguistic
××,” “conceptual ××” and “practical ××,” “×× of single conclusion” and “×× of
multiple conclusions,” “×× on the same space” and “×× from distinct spaces,”
“one-dimensional ××” and “multi-dimensional ××,” and “typical ××” and
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“non-typical ××,” thus forming many pairs of parallel or complementary theories
and methods—they are arranged in a crisscross pattern and together constitute a
multidimensional system of theories and technologies.

This book makes an all-round and systematic research of imprecise-information
processing, but the focus is on clarifying concepts, straightening out relationships,
revealing principles, and presenting methods to lay a theoretical foundation and
build a technological platform for further research and application. In fact, on the
basis of this book, we can directly develop related applications and also carry out
further researches.

Imprecise-information processing is a big subject; in addition, the vision and the
level of the author are limited, so the deficiencies and defects in both content and
expression in this book are unavoidable although great effort was made. Therefore,
the author sincerely invites experts and scholars to grant instructions and the readers
to comment and make suggestions!

Xi’an, China Shiyou Lian
January 2016
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Part I
Introduction



Chapter 1
Overview of Imprecise-Information
Processing

Abstract This chapter introduces firstly what is imprecise information and then
examines the origin of imprecise information, thus revealing the formation principle
of imprecise information, and then, it discusses the distinction and correlation
between imprecision and uncertainty of information, the research issues of
imprecise-information processing, and significance of studying imprecise-
information processing and the related disciplines and fields; finally, it outlines
the work of the book. Besides, a survey of researches on imprecise-information
processing is given in the chapter.

Keywords Imprecise information � Flexible linguistic values � Uncertain infor-
mation � Artificial intelligence

1.1 What Is Imprecise Information?

Imprecise information here refers mainly to the information that is expressed by
words with imprecise meanings. For example, “tall” is a word with imprecise
meaning in that there is no strict and rigid standard for a certain height to be
considered “tall.” Therefore, the word “tall” expresses imprecise information [1].

Words with imprecise meanings can be found everywhere in our daily commu-
nication and written materials. Here are some examples: “morning” and “evening”
characterizing time, “nearby” characterizing location, “far” and “near” characteriz-
ing distance, “much” and “little” characterizing quantity, “big” and “small” char-
acterizing volume or space, and “slight,” “a little,” “very,” and “extremely”
characterizing strength. Other words such as “fast,” “slow,” “hot,” “cold,” “good,”
“bad,” “diligent,” “hardworking,” “serious,” “friendly,” “beautiful,” “kindhearted,”
“brave,” “ardently love,” and “very likely” are all words with imprecise meanings.
Thus, it is clear that there is imprecision almost everywhere in our communication
(Look, this statement itself contains imprecision: What is “almost”?).

Imprecise information also includes the information expressed by words with
precise meanings but which can be replaced by numerical values, because,
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compared to numerical values, words appear to be less precise. For example, school
records can be represented by “word grades,” such as “good” or “excellent,” but
also can be represented by corresponding numerical scores, such as 85 and 98.
Here, the former is not as precise as the latter. Additionally, the occurrence of a
random event can be described by the word “likely,” but can also be described by a
numerical probability; similarly, the former is also not as precise as the latter.
Therefore, the information expressed by such words as “good,” “excellent,” and
“likely,” is also imprecise.

Note: In addition to the above-mentioned causes, imprecision can also be caused
by inappropriate words or inappropriate measuring units (the imprecision caused by
measuring units is usually called inexactness). For example, when describing a
person’s place of residence, the name of country is not as precise as that of the
province or city. Also, “ton” is not as precise as “kilogram” and “kilogram” is not
as precise as “gram” in describing weights. This book will not cover the study of
these two kinds of imprecision.

1.2 Origin of Imprecise Information

As stated above, imprecise information is caused by words with imprecise meanings.
Then, why are the meanings of these words not precise? We know that words are
actually the linguistic symbolic representations of corresponding concepts in human
brain. The reason these words’ meanings are imprecise is that the concepts repre-
sented by these words have no strict definitions. That is, these concepts’ connota-
tions have no rigid standards or conditions and their denotations have no rigid
boundaries. In other words, their connotative conditions and denotative boundaries
have a certain softness or flexibleness. For example, for the word “tall,” heights over
1.75 m are all “tall” to a certain degree, and for “young,” ages under 40 years are all
“young” to a certain degree. For another example, the boundary between “hot” and
“cold” weather is actually a “flexible boundary.” That is, “hot” gradually transitions
to “cold,” and in turn, “cold” also gradually transitions to “hot.” Therefore, the
concepts expressed by words with imprecise meanings are actually “flexible con-
cepts.” That is to say, imprecise information turns out to be caused by flexible
concepts in our brain. Then, how are these flexible concepts formed?

We know that everything has some attributes or states, and there are some
relationships between things. To facilitate the narration, we call the attributes,
states, and relations of things collectively to be the features of things.

Observing and examining the boundless universe we live in, it can be found that
for one and the same feature, each relevant object has its specific magnitude and
these magnitudes are not exactly the same, but assume continuous distribution or
continuous change, thus forming a continuous range. Examples:

• Human heights continuously distribute or change from about 0.3 to 2.5 m,
forming a range of [0.3, 2.5], which is a continuous real interval.
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• Air temperatures continuously change from about −45 to 45 °C, forming a
range of [−45, 45], which is also a continuous real interval.

• Ages of humans continuously distribute or change from about 1 to 120, forming
the range of {1, 2, …, 120}, and this is a continuous set of integers.

Note that the “continuous” here includes the “continuous” of real numbers, the
“continuous” of rational numbers (i.e., “dense”), and the “consecutive” of integers
(i.e., order) and to be the same later.

It can be seen from the above examples that after a certain measure being
introduced, the magnitudes of a feature of things are explicitly shown as concrete
numbers.

We call the numbers representing magnitudes of a certain feature of things to be
the numerical feature values, or simply, the numerical values, of things. Thus,
we will treat the magnitudes and numerical feature values, i.e., numerical values, of
the things as synonym later.

It is not hard to see that the continuity of magnitudes of a feature of things makes
corresponding things show as the uniform chain similarity relation. Then, facing
with one and another things being uniformly chained similar, how should the
human brain save and deal with relevant information? Of course, numerical feature
values can directly describe things precisely, but if they are used all the time and
everywhere, then the human brain would be unable to bear the enormous amount of
data and humans would be unable to tolerate the trouble.

It can be seen that in the continuous numerical feature values, the relation
between adjacent numbers is the approximation relation. Thus, we can cluster these
numerical values according to approximation relation and then express the numbers
in one and the same class by using one and the same word. This kind of word
summarizing a batch of numerical values is a big-granule value—linguistic value.
The linguistic values are also a kind of values representing magnitudes of features
of things, namely linguistic feature values. Clearly, the number of linguistic values
of one feature is very finite. Thus, by clustering and summarizing numerical values,
we can use finite number of linguistic values to represent an infinite number of
numerical values. Thus, the amount of information can be greatly reduced and the
complexity lowered.

Actually, according to the law of “quantitative change to qualitative change,”
there is an obvious difference between things’ properties represented by numerical
values far apart in range. So, speaking from this point, numerical feature values of
things must be clustered and partitioned. Another benefit of clustering and parti-
tioning numerical values and then expressing them in linguistic values is that we
can understand and grasp things at a higher level.

However, unfortunately, it is difficult to do the usual natural and objective
clustering and partitioning of these continuous numerical values (for detailed anal-
ysis, see Sect. 2.1). For this reason, the human brain adopts the clever strategy of
flexible clustering and flexible partitioning to obtain corresponding “flexible classes”
(for concrete principle and method, see Chaps. 2, 3) and afterward summarize the
thing’s properties stood for by flexible classes, thus obtaining “flexible concepts”
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Fig. 1.1 An example of flexible clustering and flexible classes in a range of heights of adults
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Fig. 1.2 The diagram of the origin of imprecise information

and “flexible linguistic values” representing flexible concepts. For example, as
shown in Fig. 1.1, through flexible partitioning of the range [1.4, 2.5] of heights of
adults by flexible clustering, we obtain the corresponding flexible classes, flexible
concepts, and flexible linguistic values: “short,” “average,” and “tall.”

From stated above, we see that it is just the phenomenon of “continuous distri-
bution or change” of magnitudes of a feature of things (or in other words, “uniform
chain similarity” of things) in the objective world and the treating way of “flexible
clustering” of the human brain that result in the flexible concepts in human brain, and
then, there occur flexible linguistic values and corresponding imprecise information.
Thus, the origin of imprecise information can be diagramed as follows (see Fig. 1.2).

Now, there exists yet another question: When does the human brain flexible
treating with respect to the continuous magnitudes of features? In other words, are
those flexible concepts in human brain obtained independently by each individual’s
own flexible clustering of corresponding feature’s magnitudes? We will discuss the
problem in Sect. 19.1.

There might be readers who think, “Aren’t the flexible concepts talked about
here same as ‘fuzzy concepts’ in some other literatures”? Right, the flexible con-
cepts we talk about here are just the fuzzy concepts called in some literatures. Then,
why do we call them flexible concepts but not fuzzy concepts? Section 19.3 will
give the answer.

1.3 Distinction and Correlation Between Imprecision
and Uncertainty of Information

Besides imprecise information, there also exists uncertain information in usual
information processing and communication. For example:
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It might rain tomorrow.

This sentence carries a piece of uncertain information—it rain tomorrow.
Note that the uncertainty we talk about here refers only to the uncertainty (of

information) that is caused from randomness of things or people’s lack of knowl-
edge of things. It is not that kind of uncertainty, said in the literature [2], including
fuzziness (i.e., imprecision), vagueness, unknownness, non-specificity, strife, dis-
cord, conflict, and ignorance. Of course, the uncertainty we talk about here also
does not include fallibility, instability, inaccuracy, incompletion, and ambiguity.

1. Distinction between imprecision and uncertainty

Imprecise information is the information that describes the features and relations of
things not specifically, strictly, or exactly enough. Uncertain information is the
information of which the authenticity cannot be determined, that is, the event, or the
properties, relationships, or behaviors of things expressed by which is not certain or
not sure.

From the last section, imprecise information originates from the continuous
distribution or change of numerical feature values of relevant things (or the uniform
chain similarity of things) and the flexible treating mechanism of human brain.
Uncertain information originates then from the feature of “partial share” of relevant
sets and the relations of “partial correspondence” or “partial inclusion” between
relevant sets (see Sect. 25.3).

Although the imprecise information has an objective basis, it is a “man-made”
product, so it has a certain subjectivity. The uncertain information is the objective
expression of properties or behaviors of things that people can’t be sure, but in the
description of the degree of uncertainty, there may be subjective factors.

Imprecise information is directly expressed by the relevant statements (of which
the uncertainty is shown in the linguistic value(s) of the relevant statements).
Uncertainty information, in general, cannot be expressed directly, but it is expressed
indirectly by the aid of a main-clause-structured compound sentence (we call it the
possibly type modal proposition, see Sect. 25.1). For example, the above uncertain
information “It rain tomorrow” is expressed by “It might rain tomorrow,” that is,
“‘It rain tomorrow’ is possible.”

From the above, we can see that uncertainty and imprecision are two mutually
independent attributes of information. Uncertain-information processing solves the
possibility problem of the truth or falsity of information, while imprecise-
information processing solves the strength problem of the truth or falsity of
information.

2. Correlation between imprecision and uncertainty

Now that uncertainty and imprecision are two mutually independent attributes of
information, the correlation between them would be not the relation of subordi-
nation. But, we find that there are some links between the two of them.
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(1) Since different people may define the core and flexible boundary of a flexible
concept somewhat differently, uncertainty can be involved when determining
the common model (such as the core and support set, or the membership
function) of a flexible concept (see Sect. 4.1).

(2) When conjecturing the corresponding numerical value from a flexible lin-
guistic value possessed by an object (i.e., converting a flexible linguistic value
into a numerical value), uncertainty will also be encountered (see Sect. 7.3.1).

(3) From some of imprecise information, uncertain information can be drawn, or
some uncertain information originates from imprecise information, and
imprecise information (processing) and uncertain information (processing) can
be translated to each other in some conditions (see Sects. 24.6 and 25.3).

(4) Uncertainty and imprecision of information sometimes occur simultaneously.
That is to say, there are both imprecision and uncertainty in one and the same
statement. In fact, because the “possible,” “probably,” and so on themselves
are not precise (they are quantifiable rigid linguistic values), (the information
expressed by) the main clause of a possibly type modal proposition is
imprecise, but the clause of it is uncertain. For example, the main clause of “‘It
rain tomorrow’ is possible” is imprecise, but the clause “It rain tomorrow” of it
is uncertain. There is such uncertainty information, it is also imprecise, or
there is such imprecise information, and it is also uncertain. For instance, the
“It rain heavily tomorrow” in “‘It rain heavily tomorrow’ is quite possible” is
uncertain as well as imprecise, or that it is imprecise as well as uncertain.

Above, we expounded the distinction and correlation between imprecision and
uncertainty of information. Actually, imprecise-information processing and
uncertain-information processing are both indispensable and important components
of artificial intelligence technology. On uncertain-information processing, people
have conducted quite deep research and acquired abundant achievements. As a
matter of fact, uncertain-information processing already has a solid mathematical
basis and a relatively perfect theoretical system. For example, probability theory
and mathematical statistics are just special mathematical branches concerned with
the processing of uncertain information. By contrast, imprecise-information pro-
cessing still lacks a solid theoretical basis and the technology is not mature enough.
These are the problems that the book is going to solve.

1.4 Research Issues of Imprecise-Information Processing

As a subject, the research issues of imprecise-information processing include basic
principles of imprecise information, the theories, technologies, and applications of
imprecise-information processing, and the human brain’s thinking mechanism
concerned with imprecise-information processing.
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1. Basic principles of imprecise information
Basic principles of imprecise information involve the following:

• Objective basis, formation principle, and mathematical models of flexible
concepts,

• Properties, types, relations, operations, and measures of flexible sets,
• Properties, types, relations, and operations of flexible linguistic values,
• Properties, types, relations, operations, and measures of propositions con-

taining flexible linguistic values and the corresponding logic and inference,
• Related theories of quantifiable rigid linguistic values.

2. Basic technologies of imprecise-information processing
Basic technologies of imprecise-information processing include the following:

• Techniques of imprecise-knowledge acquisition It includes artificial
acquisition and machine automated acquisition. Artificial acquisition is
generally done through such approaches as investigation and statistics to
acquire usual commonsense imprecise knowledge. Imprecise knowledge of a
professional field should be acquired from domain experts. Machine auto-
mated acquisition is to make computers directly induce, discover, and extract
imprecise knowledge from relevant data or facts by using means of machine
learning.

• Techniques of representation, storage, conversion, transformation,
and translation of imprecise information and knowledge Of which,
representation and storage include the mathematical models of flexible lin-
guistic values and the representation and storage of propositions, predicate
language, rules, functions, frame, and semantic nets, containing flexible
linguistic values; conversion includes the interconversion between imprecise
information and precise information and the transformation and translation
between imprecise information and between the granule sizes of information/
knowledge.

• Application techniques of imprecise information and knowledge Which
mainly refer to the inference and computation with imprecise information
and knowledge, and the approximate reasoning and computation utilizing
imprecise-information processing; And they, specifically speaking, include
relevant principles and methods, such as inference rules, computation
models and algorithms, and so forth.

• Machine perception and communication techniques on imprecise infor-
mation It includes interconversion between linguistic valued information and
numerical valued information, imprecise-information-oriented man–machine
interface, machine understanding, and generation of imprecise information.
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3. Applications of imprecise-information processing

Application of imprecise-information processing involves the application fields and
projects, application ways and methods, and relevant software technologies.

The application of imprecise-information processing is very extensive. The fields
and projects that involve obviously imprecise information, such as imprecise-
problem solving, classifying, recognition, judging, decision making, natural lan-
guage processing (including natural language generation and understanding), man–
machine interfaces, intelligent robots, expert (knowledge) systems, anthropomor-
phic intelligent systems, and approximate reasoning, can rightfully use imprecise-
information processing technology, and some precise problems (e.g., control) can
also be indirectly solved by using imprecise-information processing technology.
Therefore, in addition that we research how to utilize imprecise-information pro-
cessing technology to solve the imprecise practical problems and engineering
problems, we also need to consider how to introduce the techniques and methods of
imprecise-information processing into the precise problem solving, to open up new
application areas and projects.

In software technology, what needs studying are data structure, knowledge rep-
resentation, data/knowledge base structures, relevant algorithms, system architecture,
interfaces, and man–machine interfaces, etc., which are suitable for imprecise-
information processing. Besides, the combination of imprecise-information pro-
cessing technology and other existing technologies is also involved.

4. Further research topics
Imprecision exists widely in our daily language, but the human brain can easily
grasp it and use it very flexibly. Therefore, in order to further research and apply
imprecise-information processing, we should examine thoroughly the human
brain’s processingmechanismwith imprecise information, sowe canbeenlightened
and also borrow ideas from it. This will at least involve the following problems:

• Brain models of flexible concepts;
• Interconversion mechanisms between numerical information and linguistic

information in human brain;
• Qualitative thinking mechanism of human brain, that is, taking flexible

concepts as an entry point to explore the psychological and physiological
models of human brain’s clustering and summarizing and qualitative
thinking and the relationship between the two;

• Relationships between imprecise-information processing and linguistics,
logic, and cognitive science; this subject is also an interface between brain
science, psychological science, cognitive science, and intelligence science;

• Principles of imprecise-information processing based on quantum informa-
tion technology.
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1.5 Significance of Studying Imprecise-Information
Processing and the Related Disciplines and Fields

As the preface of this book points out, the direct motivation of studying imprecise-
information processing is from the intelligentization, especially the anthropomor-
phic intelligentization, of human society after informatization. From the last section,
we can see that the research of imprecise-information processing involves many
disciplines and fields, and the imprecise-information processing technology can be
applied to many disciplines and fields.

1. Imprecise-information processing and intelligence science and technology
Imprecision exists not only widely in our daily language, but also in our knowl-
edge, especially our experiential knowledge. Therefore, to realize artificial intel-
ligence and develop intelligence science and technology, imprecise-information
processing is unavoidable. In fact, at present, imprecise-information processing
technology is very important to many fields of artificial intelligence, such as
intelligent robots, intelligent Internet/Web, expert (knowledge) systems, pattern
recognition, natural language processing, machine learning, knowledge discovery
and data mining, machine translation, intelligent control, judging and decision,
and intelligent human–computer interface. In the long run, to further develop
artificial intelligence, the problem of computer processing human language must
be well solved. That is, machines must be capable of perceiving, thinking, and
communicating at the level of natural language just like humans. Otherwise,
artificial intelligence will always remain at the level of implementation and real-
ization of human intelligence on amachine. That is to say, machinesmust have the
anthropomorphic ability of imprecise-information processing to realize anthro-
pomorphic intelligent systems. Besides, speaking from exploring the mystery
of human intelligence, imprecise-information processing is also an important
problem. Therefore, the development of intelligence science and technology is
bound to face imprecise-information processing, so we must study the imprecise-
information processing. Moreover, with the more-and-more thorough research,
and wider-and-wider application of intelligence science and technology,
imprecise-information processing will appear even more important and more
pressing. Therefore, imprecise-information processing is an indispensable and
important component of intelligence science and technology.

2. Imprecise-information processing and information science and technology
Just as the name suggests, imprecise-information processing is certainly closely
related to information science and technology and should belong to the category of
information science and technology. To be more specific, imprecise-information
processing should belong to the category of what is now called “intelligence
information processing.” To be even more accurate, it should be within the
research field of “content-based information processing.” We know that infor-
mation science and technology is a big subject and that traditional information
processing is mainly processing about the information form, such as information
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representation, storage, processing, transformation, transmission, and retrieving.
In this respect, a lot of related theories have been established and many techniques
developed. However, the research on content-based information processing is still
relatively weak. But content-based information processing is an inexorable
development trend of information science and technology. Imprecision is con-
cerned with the content of information. Therefore, imprecise-information pro-
cessing is a very important research subject in content-based information
processing and a very important research field and development field of infor-
mation science and technology both at present and in the future.

3. Imprecise-information processing and computing science and technology
The objects processed by conventional computing science and technology are
numerical values, while the objects processed by imprecise-information pro-
cessing are the (flexible) linguistic values. The latter is a summarization of the
former, and the former is an instance of the latter. Therefore, imprecise-
information processing is related to computing science and technology. In fact,
by utilizing the reasoning and computing with flexible linguistic values, some
numerical computation problems can be solved. For example, translating some
complex nonlinear numerical functions or correlations into simple linguistic
functions, we then realize the approximate evaluation of the former by the exact
or approximate evaluation of the latter, thus increasing new ideas and approa-
ches, and opening up new approximate computation techniques for conventional
numerical computation. Additionally, we can also develop the computer lan-
guages and related hardware based on the flexible linguistic values to extend the
processing capabilities of existing computers.

4. Imprecise-information processing and logic
Logic studies the form and laws of human thinking, of which the basic objects
are concepts and judgments (propositions) and the main issue is inference.
Traditional logic deals with rigid concepts and rigid propositions, or treats
flexible concepts and propositions as rigid ones, which is a kind of coarse-
granule logic at the linguistic level. Imprecise-information processing is a kind
of information processing originated from, and based on flexible concepts, so it
needs a kind of logic based on the flexible concepts as a support. Thus, the logic
based on flexible concepts has a natural link and close relationship with
imprecise-information processing. This raises a new issue and opens up a new
area for logic. Actually, with flexible concepts, there also occur flexible
propositions. Thus, it is possible and necessary to found a new logic system.
Examining flexible concepts, flexible propositions, and corresponding inference
from the angle of logic, we will find a logic basis for imprecise-information
processing; thus, we can use logic to guide the research and development of
imprecise-information processing. Conversely, introducing flexible concepts
into logic will promote the development of logic. Since flexible concepts have
mathematical models, logic and inference based on flexible concepts would
certainly be related to numerical values and numerical computation. This, in
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turn, would add the color of numerical computation to operations and inference
of traditional symbolic logic and provide new theoretical and technological
support for the deepening and extension of logic.

5. Imprecise-information processing and linguistics
The linguistic representations of flexible concepts, namely flexible linguistic
values, are the usual adjectives and adverbs. In linguistics, people generally use
qualitative method to study these vocabularies, while in imprecise-information
processing, since they have mathematical models, the quantitative method can
be used. Thus, introducing ideas and methods from imprecise-information
processing into linguistics research will help linguistics step up to a new level
and further push its development. Conversely, relevant research results from
linguistics can also provide bases and instances for imprecise-information
processing. In fact, speaking from the angle of linguistics, the above-mentioned
content-based information processing is the semantic representation and pro-
cessing of natural language. It is now still difficult to establish semantic models
of natural language in natural language processing and computational linguis-
tics. Imprecise-information processing raises new research issues for linguistics
especially computational linguistics; meanwhile, it also provides new ways of
thinking and new approaches. Therefore, the combination of the two will have
mutual benefits.

6. Imprecise-information processing and brain and cognitive science
Flexible-ening (which is similar to softening) information perceived and pro-
cessing it freely is an intrinsic mechanism of human brain (see Sect. 19.1),
which is also a characteristic and advantage of human brain. Then, to further
research the imprecise-information processing mechanism of human brain, brain
and cognitive science should certainly be involved. The neural mechanism of
imprecise-information processing itself is a very important research subject of
brain and cognitive science, and the research on imprecise-information pro-
cessing will open up a new entry point for brain and cognitive science.

7. Imprecise-information processing and life science
The imprecise-information processing mechanism and function of human brain
should be innate. That is, the mechanism exits already in DNA. Then, in what
manner does it exist? Where is the location? What is the coding? These are all
research topics of life science. Thus, imprecise-information processing is closely
associated with life science. Imprecise-information processing presents new
research problems for life science and at the same time introduces a new entry
point for the research of life science.

8. Imprecise-information processing and mathematical science
Imprecise-information processing, in the final analysis, is to quantitatively pro-
cess the usual qualitative information with mathematical sciences as a tool.
Specifically, it is the establishment of the mathematical models of imprecise
information and development of the mathematical methods for corresponding
information processing. In fact, the research on imprecise-information processing
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involves a lot of mathematical fields and knowledge, such as sets, geometry,
algebra, logic, function, and probability, and it extends, deepens, and even
amends the relevant concepts, methods, and knowledge systems of these math-
ematical branches. It should also be mentioned that in recent years, the research
on quantum information theory and technology has become more and more
active. In information representation and processing, quantum information
technology has incomparable characteristics and advantages in comparison with
traditional technologies. Then, can quantum information technology be used to
represent and process imprecise information? This is obviously an issue worth
our attention and thought. The author’s intuition is that quantum information
technology will very likely be a more suitable and effective new technology for
imprecise-information processing. In a word, imprecise-information processing
is inseparable from mathematical science.

9. Imprecise-information processing and system science
System science researches the characters and states of systems. The characters
and states of some complex systems such as social systems, economic systems,
ecosystems, and information systems on the Internet are usually difficult to
describe exactly using traditional mathematical models, but they can be
described using the models with flexible linguistic values (such as flexible rules
or flexible linguistic functions). Although flexible linguistic values are of big
granule and not precise enough, the system models with flexible linguistic
values are a kind of higher-level general expression of characters and states of
systems, which are conducive to us to understand and grasp a complex or large
system. Therefore, the description of the characters and states of a system using
flexible linguistic values is significant and even necessary. Thus, imprecise-
information processing is also related to system science. In fact, the flexible rule
and flexible linguistic function discovery techniques in imprecise-information
processing can come in handy in Web mining, which is a research hot spot of
data mining.

1.6 A Survey of Research on Imprecise-Information
Processing

People have long been aware of imprecision in daily language and have put some
thought and study into it. As a matter of fact, as early in the 1930s, Polish logician
and philosopher Jan Lukasiewiczj studied the mathematical representations of
flexible concepts such as “tall,” “old,” and “hot.” He extended the range of logical
truth values to all numbers between 0 and 1. But he used numbers in interval [0, 1]
to represent the possibility of statements being true [3]. Thereafter, in 1937,
philosopher Max Black published a paper titled “Vagueness: an exercise in logical
analysis.” The paper analyzed the gradual change phenomenon of things and
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proposed the idea of using numbers to represent degrees. However, he believed that
vagueness is a probability problem. The paper (the appendix) defined the first
simple fuzzy set and outlined the basic ideas of fuzzy set operations [3].

In 1965, American professor Lotfi Zadeh extended the definition of traditional
sets and proposed the concepts of fuzzy set [4], membership grade, membership
function, etc., and took fuzzy sets as the mathematical models of flexible concepts.
Soon afterward, Professor Zadeh and some other scholars together presented and
developed a series of theories, techniques, and methods based on fuzzy sets, such as
fuzzy logic and fuzzy reasoning, thus forming the now called fuzzy set theory or
fuzzy technology.

In 1975, Ebrahim Mamdani, professor at London University, was the first to
apply fuzzy reasoning to the control of a steam engine and boiler combination,
putting fuzzy set theory into engineering application [3]. After that, fuzzy control
grew vigorously. Particularly in the early 1990s, Japanese engineers applied fuzzy
techniques to control electrical home appliances and had great success, thus
drawing a huge response and much attention from around the world. After this,
Europe and America all entered into this field competitively.

Soon after, there also appeared the techniques of fuzzy pattern recognition, fuzzy
judging, fuzzy decision making, etc., and the concepts of fuzzy measure, fuzzy
probability, fuzzy integral, fuzzy entropy, etc., also appeared. In 1978, Zadeh
proposed the possibility theory.

Although fuzzy technology got some results in practice, some important theo-
retical and technological problems still have not been well solved thus far, such as
the shape of the membership function of a fuzzy set, the objective basis and the
logic theoretical basis of the definitions of fuzzy logic operators, and the logical
foundation of fuzzy reasoning. These problems directly influence the effects and
efficiency of fuzzy technology.

Fuzzy reasoning is a kind of approximate reasoning; it is a key technique in
fuzzy technology and also a basic issue of imprecise-information processing.
A basic method of fuzzy reasoning is the CRI (compositional rule of inference)
proposed by Zadeh. This method can be divided roughly into the following steps:
design and select membership functions, convert fuzzy rule (e.g., A ! B) into fuzzy
relation (e.g., R) and composition of relations, and converge multiple inference
outcomes (if occurring). In addition, for fuzzy control, there are two steps of
fuzzification and defuzzification. For each step, people again presented various
specific methods. Of them, for converting a fuzzy rule into a fuzzy relation, more
than ten “implication operators” were presented, such as the Zadeh operator,
Mamdani operator, Goguen operator, and T norm operator. Each of these methods
of fuzzy reasoning has its distinguishing feature and shows the unique intelligence
and talent of its creators. However, the problems of the general principle and logic
basis of fuzzy reasoning still have not been truly or completely solved so far. In fact,
the mathematical and logic theories based on fuzzy sets, that is, fuzzy mathematics
and fuzzy logic, do not provide much theoretical support for fuzzy reasoning. In
addition, we see that nearly all the good applications of fuzzy reasoning in engi-
neering benefited from the introduction of machine learning mechanisms or other
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mathematical principles. But the result of doing so is that except for the name of
“membership function,” the so-called fuzzy logic system has almost nothing to do
with fuzzy logic in the real sense. Just as the book Neuro-Fuzzy and Soft Computing
(foreword by Zadeh, authors are his students) said, neural–fuzzy systems encoun-
tered “the dilemma between interpretability and precision” [5]. It is no wonder that
C. Elkan gave a report “the paradoxical success of fuzzy logic” [6, 7] in the 11th
American Association for AI National Conference. Although more than 10 experts
rebutted Elkan’s opinion later, it is an indisputable fact that logical and mathe-
matical basis of fuzzy reasoning has not yet been really solved up to now.

In imprecise-information processing, in addition to using the fuzzy set, people
also proposed the flou set, vague set, and many other sets that extend fuzzy set, such
as 2-type fuzzy set, interval-valued fuzzy set, L-fuzzy set, and intuition fuzzy set.
There are many scholars devoting themselves to the improvement and development
of fuzzy set theory, and many new ideas, theories, and methods have been pre-
sented; for example, Chinese scholars presented “cloud model” [8], “interpolation
mechanism of fuzzy control” [9], “3I inference algorithm” [10], “universal logics”
[11], “weighted fuzzy logic” [12], and “new fuzzy set theory” [13]. In 1996, Zadeh
proposed the research direction of computing with words (CW) [2, 14] on the basis
of fuzzy set theory. He expresses approximately the relation between computing
with words and fuzzy logic as follows: fuzzy logic = computing with words. These
new and improved theories and methods all have their own strong points, viewing
angles, and features, but on the whole, people have not yet reached a common view,
the mathematical and logical basic problems in imprecise-information processing
have not be solved, and the scientificity and validity of relevant techniques and
methods lack theoretical support. In practice, it is still “a hundred flowers blos-
soming and a hundred schools of thought contending.” In particular, so far some
scholars still put imprecision of information into uncertainty of information or mix
the two together to do research.

Here, we also need to mention that after the appearance of fuzzy sets, some
mathematicians then began to devote themselves to the study of mathematical
theories based on fuzzy sets, which were quite hot for a time. But it seems that these
researches and achievements have no relation to imprecise-information processing.
Besides, people also combine fuzzy set theory with other intelligence technologies.
For example, there appear new techniques of fuzzy–neural networks and neural–
fuzzy systems on combining fuzzy sets with artificial neural networks. There also
appears fuzzy support vector machine on combining fuzzy sets with support vector
machine. And Zadeh further combined fuzzy logic, neural computing, probabilistic
reasoning, genetic algorithm, chaotic system, and so on and collectively called them
to be “soft computing” [5].

In the early 1990s, the author began to think about the problem of “fuzzy” from
the doubt of the CRI fuzzy reasoning of Zadeh. However, the author did not make
modifications and supplementations in the existing framework of fuzzy set theory by
following traditional thinking. Rather, with a new perspective and ideas, the author
traces the origin and researches imprecise-information processing in all around, from
the formation of imprecise information to modeling of it, from the representations of
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imprecise information to the conversion and transformation of it, from related
mathematical theories to logical theories, from (approximate) reasoning with
imprecise information and knowledge to (approximate) computation with imprecise
information and knowledge, from imprecise-problem solving to imprecise-
knowledge discovery, from flexible linguistic values to quantifiable rigid linguis-
tic values, from pure imprecise-information processing to the overlapping of
imprecision and uncertainty, from the principles of imprecise-information process-
ing to the applications and methods of it, etc. After years of unremitting exploring, a
series of new theories and methods different from fuzzy technology were obtained;
they form a new theoretical and technological system of imprecise-information
processing. The book is just a summation of these research results.

1.7 Work of the Book

Starting from its objective basis, the book explores and reveals the cause and
principle of forming imprecise information. Then, on the basis of which the book
establishes the related mathematical models, it further discusses and reveals the
principles and methods of imprecise-information processing in an all-around way,
thus establishing a new theoretical and technological system of imprecise-
information processing. Specifically, the book mainly does the following:

(1) Examines the characteristics of imprecise information, distinguishes the
imprecision of information from the uncertainty of information, treats
explicitly imprecise-information processing as an independent research field,
discriminates between vagueness (fuzziness) and flexibleness of concepts,
proposes the terminologies of “flexible concepts” and “flexible linguistic
values,” and rectifies the so-called vague (fuzzy) concepts as flexible
concepts.

(2) Examines the objective basis of flexible concepts and the cause of flexible
concepts, reveals the formation principles of flexible concepts and flexible
linguistic values, and presents their general mathematical models and mod-
eling methods.

(3) Proposes the concepts of flexible sets and flexible relations and founds rel-
evant theories and methods.

(4) Examines flexible linguistic values and relevant topics in an all-around way,
obtains some important results, and founds relevant theories and methods.

(5) Proposes the concepts of flexible linguistic function and correlation and the
concepts of flexible number and flexible function, discusses relevant topics,
and founds corresponding theories and methods.

(6) Introduces truth-degrees, founds the basic theory of truth-degreed logic, and
finds and presents the principles and methods of corresponding inference.
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(7) Introduces flexible linguistic truth values, founds the basic theory of flexible
linguistic truth-valued logic, and presents the principles and methods of the
corresponding inference.

(8) Finds and proposes the terminology and principle of logical semantics of
propositions and establishes the computation models of truth values of basic
compound propositions in two-valued logic and truth-degreed logic on the
basis. And finds and proposes the concepts of relatively negative-type logic
and relatively opposite-type logic.

(9) Examines flexible rules and relevant topics in an all-around way, obtaining a
series of important results.

(10) Introduces the adjoint functions of a flexible rule and gives some acquiring
methods and reference models.

(11) Studies the reasoning and computation with flexible rules, clarifies their
logical and mathematical principles, and gives a series of reasoning and
computation approaches.

(12) Studies the approximate evaluation of flexible linguistic functions, reveals its
basic principles, and presents some approaches and ideas.

(13) Summarizes and rounds up the practical problems involving imprecise-
information processing and presents the corresponding solving techniques
and methods.

(14) Explores imprecise-knowledge discovery and presents some methods and
ideas.

(15) Introduces several measures to sets and flexible sets and founds relevant
theories.

(16) Discusses relevant theories of quantifiable rigid linguistic values.
(17) Talks briefly about the methodology of imprecise-information processing

and discusses several application topics.
(18) Founds the probability theory of random flexible events.
(19) Founds the believability-degree theory of flexible propositions and presents

the corresponding principle and method of reasoning with believability-
degrees.

(20) Analyzes the origin of the uncertain information with a mathematical view
and then reveals the correlation between uncertain information (processing)
and imprecise information (processing).

The above (1) and (2) are the basic principles of imprecise information; (3), (4),
and (5) are the mathematical basic theory on imprecise information; (6), (7), and
(8) are the logic basic theory on imprecise information; (9), (10), (11), and (12) are
principles and techniques of inference and computation with imprecise information;
(13) is the application techniques of imprecise-information processing; (14) is the
acquiring techniques of imprecise knowledge; (15), (16), and (17) extend the extent
of imprecise-information processing and expatiate the basic methods and tech-
niques of imprecise-information processing; (18), (19), and (20) are the overlapping
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theories and techniques of imprecise-information processing and uncertain-
information processing and also reveals and clears up the connections and rela-
tions between the two. Additionally, the book also presents further research
directions and topics, and briefly expatiate the issues, approaches, and ideas.
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Chapter 2
Flexible Concepts and Flexible Linguistic
Values and Their Mathematical Models

Abstract This chapter takes real interval [a, b] as a general range of numerical
feature values and uses flexible clustering to obtain the corresponding flexible
classes and flexible concepts (flexible linguistic values), thus simulating and
revealing the objective basis, formation principle, and cause of flexible concepts,
and then establishing the mathematical models of flexible concepts, and deriving
their general expressions. Besides, it distinguishes between the flexible attributive
concept and the flexible entity concept and discusses pseudo-flexible linguistic
values.

Keywords Flexible concepts � Membership function � Consistency function

In the last chapter, we introduced and preliminarily discussed flexible concepts and
flexible linguistic values. In this chapter, we further analyze concretely the clus-
tering and partitioning of a range of numerical feature values of things, thus
revealing the objective basis, formation principle and mathematical essence of
flexible concepts and flexible linguistic values, and then establishing the mathe-
matical models of them.

2.1 Flexible Clustering in Range of Numerical Values
and Corresponding Flexible Concepts and Flexible
Linguistic Values

Let U be a range of numerical values of a feature of certain class of things. As stated
in Sect. 1.2, in order to reduce the amount of information, lower complicatedness,
and understand and grasp things at a higher level, the numbers in U must be
clustered and partitioned. In the following, we consider the corresponding method
of clustering.

As we know, the usual methods of clustering can generally be separated into two
types: dividing by a threshold and clustering with centers. The basic technique of
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the former is the following: dividing a set awaiting partition according to a set
threshold and based on the similarity measurements between every two points to
realize the partition of the set; and the basic technique of the latter is the following:
according to the similarity measurements of every class center to all other points to
search the optimum partition of a set awaiting partition by employing certain
algorithm under the constraint of clustering criterion.

We also know, the continuum of real numbers means there is no interval
between numbers and their number is infinite. Therefore, for the range of numerical
values, U, consisted of real numbers, the approximation relations between every
two numbers cannot be examined; thus, the dividing by a threshold method cannot
be used to do corresponding clustering. And the continuity of integers is a kind of
succession, which is actually a kind of equidistant distribution. Between integers
distributed equidistantly is really a kind of uniform chain approximation relation;
that is, the degree of approximation between any two adjacent integers is the same
everywhere (as shown in Fig. 2.1). Thus, for the range of numerical values, U,
consisted of integers, doing corresponding clustering by employing dividing by a
threshold would only have two results: One number is a class or all numbers are a
class. Obviously, such clusters are pointless. The following relational matrix is just
a simple example:

15

14

13

12

11

54321

abcd

aabc

baab

cbaa

dcba

where set {1, 2, 3, 4, 5} of integers is a range of numerical feature values of a class
of things and a, b, c, and d (0� d\c\b\a\1) are respectively the degrees of
approximation between corresponding two adjacent numbers. To be sure, for a
finite U, the transitive closure t(R) of approximation relation R can also be used to
realize the partition of the set, but since the process of finding a transitive closure is
non-identical transformation, the partition thus obtained whether or not in line with
the actual cannot be guaranteed theoretically.

For the continuous numerical feature values, clustering with centers method may
be used. But also because of continuousness, clustering with centers would make

n1 n2 n3 n4   … nk-2 nk-1 nk x

a a a       … a a

Fig. 2.1 An illustration of equidistant distribution and uniform chain approximation of integers
Here n1, n2, …, nk are a row of consecutive integers, and a is the distance or approximation-degree
between two adjacent integers
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the two numbers which are originally very close or even adjacent be put into
different classes. This is also obviously not reasonable.

Now, on the one hand, it is necessary to do clustering and partition of the
continuous numerical feature values; on the other hand, it is difficult to do the usual
objective and natural clustering and partition. What should we do?

Analyzing the usual methods of clustering, it can be seen that the characteristics
of them are all rigid dividing; that is, an object either belongs completely to a class
or does not belong completely to the class. But the degree of approximation
between numbers is decreasing progressively with the progressive increase of the
distance between two numbers. Therefore, a compromise is that we still use the idea
of clustering with centers, but do not draw a line clearly and rigidly between two
adjacent classes; rather, we set a gradual change transition region as a “boundary”
between them.

Let U = [a, b] (a, b 2 R (real number field)) be a range of numerical values. We
mark out some sub-regions C1, C2,…, Cn (as shown in Fig. 2.2) with appropriate
widths and appropriate intervals. Since there is some interval, the properties rep-
resented by various sub-regions (i.e., the summarization of properties represented
respectively by numbers in each sub-region) would have obvious differences. Thus,
C1, C2,…, Cn can be separately treated as the center (region) of classes A1, A2,…,
An, and the properties represented by them are respectively treated as the properties
stood for by the corresponding classes. Then, the numbers forming the center of a
class all have completely the property of the corresponding class, so they are core
members of the corresponding class. Since the properties represented by mutually
approximate numbers should also be approximate, the numbers outside the center
of a class also have the property of the class to some degree. And since the
approximation relation is transmitted decreasingly, these degrees will decrease
progressively with the progressive increase of the distance between a number and
the center of a class. Thus, the numbers in interval Bi ði ¼ 1; 2; . . .; n� 1Þ also have
the property of Ai, but the farther they are from center Ci, the lower will be their
degrees of having the property of Ai. Similarly, the numbers in interval Bi have also
the property of Ai+1, and the farther they are from center Ci+1, the lower will be their
degrees of having the property of Ai+1. And for one and the same number x 2 Bi, if
its degree of having the property of Ai is high, then its degree of having the property
of Ai+1 is low, and vice versa. Thus, the numbers in interval Bi can be treated
respectively as the peripheral members of the classes Ai and Ai+1. Then, core
members and peripheral members together can form a class about the property
represented by center Ci and gathered according to approximation relation, in which
the core members form the center of the class and the peripheral members form the
boundary of the class. Thus, sub-regions C1, C2,…, Cn and B1, B2,…, Bn−1 form
classes A1, A2,…, An (as shown in Fig. 2.2), where A1 ¼ C1 þB1;
A2 ¼ B1 þC2 þB2;A3 ¼ B2 þC3 þB3; . . .;An ¼ Bn�1 þCn.

It can be seen that interval Bi is the boundary of classes Ai and Ai+1 separately,
and at the same time, it is also the demarcation between the two classes. In the latter
case, the interval Bi seems to be the intersection of Ai and Ai+1, but not the inter-
section in the usual sense. In fact, every number in Bi neither entirely belongs to
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class Ai nor entirely belongs to class Ai+1, but belongs to Ai to a certain degree and
also belongs to Ai+1 to a certain degree, and for one and the same x 2 Bi, if the
degree of it belonging to Ai is high, then the degree of it belonging to Ai+1 is low,
and vice versa. That is to say, the numerical objects in region Bi have double
identity of “being this and also being that,” so the demarcation is also an inter-
mediary transition region between the two classes, and the line of demarcation of
two adjacent classes embodies implicitly on the pairs of complementary degrees of
membership of members in the region.

Viewed singly, a prototype of the classes stated above is shown in Fig. 2.3. As
you can see, the characteristic of this kind of class is that core members completely
have the property of the class while peripheral members have the property of the
class in some degree (accurately speaking, these degrees decrease progressively
from inside to outside). Observed from membership relation, core members com-
pletely belong to the class while peripheral members belong to the class to some
degree (these degrees also decrease progressively from inside to outside). Thus, the
boundary formed by peripheral members is a smooth transition region from the
members of the class that completely have the property of the class to those
members that do not completely have the property of the class (or in other words,
from the members of the class that completely belong to the class to those members
that do not completely belong to the class).

To sum up, the boundaries of classes obtained above are not like the usual rigid
boundaries, but have a kind of “flexibleness”; that is, they are “flexible boundaries.”
Thus, this kind of class is also a “flexible class.”

Since flexible classes A1, A2,…, An have covered the whole interval [a, b], there
are no usual intersections between them. Therefore, the group of the flexible classes
constitutes an unusual partition of [a, b]. Considering A1, A2,…, An are flexible
classes, this kind of partition is a “flexible partition.”

Thus, we have solved the problem of the clustering and partition of range
[a, b] of numerical feature values. It can be seen that we realize the clustering and

A1 A2 A3        … An

a C1 B1 C2 B2 C3 B3 …  Bn-1 Cn b      x

Fig. 2.2 An illustration of clustering and partitioning of continuously distributed numerical
feature values, where the parts shown by the thickest line segments are separately the centers of
each class and the parts shown by the comparatively thick line segments are the boundaries
between these classes

a Bi-1 C i Bi b    x

AiFig. 2.3 An example of
single class
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partition by actually adopting a technique of “flexible dividing” according to the
continuousness of numerical feature values. In view of the characteristic of this
clustering method, we call it the “flexible clustering.”

Using flexible clustering, for example, to do partition of the range [−15, 40] of
temperature, we can obtain following flexible classes (as shown in Fig. 2.4).

It can be seen that the flexible clustering is not like the usual rigid clustering to
assign an object entirely to a class; rather, it assigns an object “in a certain degree,”
or in other words “partly,” to a class, and meanwhile “partly” to another class. In
other words, flexible clustering is not like rigid clustering the boundary being at the
outside of points, that is, between points; rather, the boundary is at the inside of
points.

In the above, we introduce flexible clustering by taking continuous range
[a, b] of real numerical values as an example. It can be seen that the kind of
clustering method is also applicable to range {n1, n2, …, nn} of consecutive inte-
gers. Besides, the central points of center regions of all classes were not considered
in the flexible clustering above. Then, if needed, we can first set the central points
and then according to the central points set center regions and boundary regions.

Now, range U of numerical feature values is flexibly partitioned by flexible
clustering into flexible classes: A1, A2,…, An. Then, taking these flexible classes as
denotations separately, one and another corresponding concepts are obtained. From
the above-stated, a flexible class from flexible clustering stands for on the whole a
corresponding property of things, so the flexible classes A1, A2,…, An stand for
properties A1′, A2′,…, An′ with obvious difference (e.g., “cold,” “warm,” and “hot”
in Fig. 2.4). Thus, the concepts stood for by flexible classes A1, A2,…, An are the
attributive concepts. Since the denotations are flexible classes, these attributive
concepts are flexible concepts. Thus, the word that denotes a flexible concept, that
is, the label of corresponding flexible class, is just a flexible linguistic value.

Of course, considering from angle of feature value, summarizing separately the
numerical values in flexible classes A1, A2,…, An, the corresponding one and
another flexible linguistic values can also be resulted.

Thus, starting from the continuous numerical feature values of things, we have
obtained logically the corresponding flexible concepts and flexible linguistic values
through flexible clustering. Examining such concepts as “tall,” “big,” “many,” and
“quick” in our brain, obviously they also have the same characteristic as that of the
flexible concepts obtained in the above. Therefore, we believe that this type of
flexible concept in human brain is also thus formed at the numerical level, or in
other words in the mathematical sense.

15 100 18 23 30 40

cold warm hot

Fig. 2.4 Examples of flexible classes in temperature range [−15, 40]
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It has been seen that it is just the continuity of numerical feature values of things
and the flexible clustering of which by human brain that result in flexible concepts
in human brain, and then, there occur flexible linguistic values and imprecise
information. In other words, the continuous distribution or continuous change
phenomenon of numerical feature values of things is the objective basis of the
flexible concepts, flexible linguistic values, and imprecise information, and the
flexible clustering of continuous numerical feature values by human brain is
the formation principle of them, and that the rigid clustering cannot be objectively
done is the cause resulting in them.

2.2 Denotative Model of a Flexible Concept

The formation principle of flexible concepts shows that a flexible class just is the
mathematical essence of the corresponding flexible concept. Yet how should we
represent a flexible class?

2.2.1 Core and Support Set

We have already known that one flexible class C contains two types of members:
core members and peripheral members. We call the set consisting of core members
the core of a flexible class, and denote it as core(C); and we call the set consisting of
core members and peripheral members together to be the support set of a flexible
class, and denote it as supp(C). Thus, the boundary of flexible class C can also be
represented by difference supp(C) − core(C), which can be denoted by boun(C) [1].

Obviously, a flexible class C is completely determined by its core and support
set. Therefore, core core(C) and support set supp(C) just form a rough denotative
mathematical model of a flexible concept. That is to say, flexible class C can be
represented simply as core(C) and supp(C).

2.2.2 Membership Function

First, we introduce the measures of “difference-degree,” “sameness-degree,” etc.
We know that distance is a measure of the difference between two points in a

space. Two points with a distance of 0 are one and the same point, and they would
not be the same point if the distance is not 0. However, with the distance
decreasing, the difference between two points becomes smaller and smaller; that is,
they become closer and closer to be the same. Thus, two points with a nonzero
distance can be treated as the same with a degree. Intuitively, the same with a
degree is the partial same, while the usual same refers to the complete same.

28 2 Flexible Concepts and Flexible Linguistic Values …



Although distance can be used to describe the extent of difference between
objects, using it to describe the extent of identity degree of objects is difficult. And
what the distance reflects is the absolute quantity of difference between objects,
which is related to the dimension and measuring unit used, so the comparability
between distances is poor. For this reason, we introduce a kind of relative quantity
of difference—difference-degree. Since “difference” means “not the same,” the
degree of difference and degree of sameness should be complementary; that is, the
sum of the two is 1. Thus, from difference-degree, another measure—
sameness-degree—can be derived.

Definition 2.1 Let U = [a, b] be a range of numerical feature values. For 8x; y 2 U,
set

dðx; yÞ ¼ x� yj j ð2:1Þ

to be called the distance between x and y; take

r ¼ b� a ð2:2Þ

as the reference distance; set

Dðx; yÞ ¼ dðx; yÞ
r

ð2:3Þ

to be called the degree of difference, simply written as difference-degree, between
x and y; set

sðx; yÞ ¼ 1� Dðx; yÞ ¼ 1� dðx; yÞ
r

ð2:4Þ

to be called the degree of sameness, simply written as sameness-degree, between
x and y.

From the definition, it can be seen that the sameness-degree is completely
determined by the distance, and its range of values is [0, 1].

With the sameness-degree, the relation between objects can be more precisely
described. As a matter of fact, the higher the sameness-degree between two two objects
is, the closer they are to be completely the same, while similarity is just sameness to
some degree, and the higher the sameness-degree is, the higher is the degree of simi-
larity. Therefore, the sameness-degree can be used to portray the similarity relation
between objects; or not strictly, the sameness-degree can be treated as the degree of
similarity or approximation (for strict definitions of “similarity,” see Sect. 3.8.2).

Since peripheral members only belong to flexible class C partly or to some
degree, portraying a flexible class by core(C) and supp(C) would appear somewhat
rough. Observe that core members belong to class C completely while peripheral
members belong to class C partly and that “completely belong to” can be viewed as
a particular case of “partly belong to.” So we can use a certain kind of measure to
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describe the degree of point x belonging to flexible class C. We call this measure
the degree of point x belonging to flexible class C, simply written as
membership-degree of x to C, and denote it as mC(x). We use mC(x) = 1 to
indicate point x belongs to C completely and use mC(x) = 0 to indicate point x does
not belong to C completely; generally, mcðxÞ ¼ s ðs 2 ½0; 1�Þ indicates point x be-
long to C with membership-degree s.

It can be seen that according to the membership relationship, the membership-
degrees of the core members of flexible class C should all be 1, and the
membership-degrees of boundary members should be greater than 0 and less than 1,
while the membership-degrees of other points in [a, b] to flexible class C are all 0.
Thus, a flexible class C can just be represented by a set fðx;mcðxÞÞ x 2 ½a; b�j g of
members attached with membership-degrees. It can be seen that this set also
describes a function f ðxÞ ¼ mcðxÞ on [a, b]. Thus, a flexible class C in [a, b] also
determines a function mC(x) on [a, b]. Conversely, function mC(x) also completely
determines flexible class C. We also follow Zadeh to call this function mC(x) the
membership function of flexible class C. Thus, membership function mC(x) is just
another kind of mathematical representation of flexible class C.

From the relation between flexible class and flexible concept, a membership
function is also a kind of mathematical model of a flexible concept. However, if the
mathematical model of a flexible concept only stays on the abstract conception of
membership function, it would be not enough for the modeling of a flexible con-
cept. In other words, for a flexible concept, we should study further the concrete
form of its membership function.

Definition 2.2 Let C be a flexible class in range [a, b]. Set fx x 2 U;mcðxÞ ¼ 1j g is
called the core of C and denoted by core(C); its infimum inf(core(C)) and supre-
mum sup(core(C)) are called separately the negative core-boundary point and the
positive core-boundary point of flexible class C and denoted by c�C and cþC ; set
fx x 2 U; 0:5\mcðxÞ� 1j g is called the extended core of flexible class C and
denoted by core(C)+; set fx x 2 U;mcðxÞ[ 0j g is called the support set of flexible
class C and denoted by supp(C); its infimum inf(supp(C)) and supremum sup(supp
(C)) are called separately the negative critical point and positive critical point of
C and denoted by s�C and sþC ; and set fx x 2 U; 0\mcðxÞ\1j g is called the
boundary of flexible class C and denoted by boun(C), and the middle points of

boundary boun(C), namely s�C þ c�C
2 and sþC þ cþC

2 , are called separately the negative
median point and positive median point of flexible class C and denoted by m�

C

and mþ
C .

Although Definition 2.2 defines the negative and positive critical points of a
flexible class, it can be seen from Fig. 2.2 that only flexible classes located inside
space [a, b] have double flexible boundaries, while those located at the boundary of
[a, b] have only one flexible boundary.

Since the membership-degrees of the core members of a flexible class are 1 and
those of the peripheral members are between 0 and 1, the middle of the graph of
membership function mC(x) must be flat. And it is also known from the relation
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between the degree of similarity and the distance that the closer the peripheral
members are to core-boundary points c�C or cþC , the closer their membership-
degrees will be to 1, and the farther the boundary members are from core-boundary
points c�C or cþC , the closer their membership-degrees will be to 0. Therefore, the
part of membership function mC(x), which located at the boundary of flexible class
C, should be monotonic.

Based on the above analysis, let C be a flexible class in range [a, b],
coreðCÞ ¼ c�C ; c

þ
C

� � � ½a; b�, and suppðCÞ ¼ ðs�C ; sþC Þ � ½a; b�, because when point
x changes from s�C to c�C or from sþC to cþC , the membership-degree mC(x) increases
from 0 to 1, so we take

r� ¼ c�C � s�C ; rþ ¼ sþC � cþC

as two reference distances. Thus, sameness-degrees

sðx; c�C Þ ¼ 1� dðx; c�c Þ
r�

¼ 1� x� c�C
c�C � s�C

¼ x� s�C
c�C � s�C

ðx� c�C Þ

sðx; cþC Þ ¼ 1� dðx; cþc Þ
rþ

¼ 1� cþC � x
sþC � cþC

¼ sþC � x
sþC � cþC

ðx� cþC Þ

With sameness-degree sðx; c�C Þ, then for 8 x 2 ðs�C ; c�C Þ, its membership-degree
mC(x) should be the product of membership-degree mCðc�C Þ of c�C and
sameness-degree sðx; c�C Þ, and while mCðc�C Þ ¼ 1, then

mCðxÞ ¼ mCðc�C Þ � sðx; c�C Þ ¼ 1 � sðx; c�C Þ ¼ sðx; c�C Þ ¼
x� s�C
c�C � s�C

Similarly, for 8 x 2 ðcþC ; sþC Þ, we have

mCðxÞ ¼ mCðsþC Þ � sðx; sþC Þ ¼ 1 � sðx; cþC Þ ¼ sðx; cþC Þ ¼ sþC � x
sþC � cþC

In consideration of 8 x 2 ½c�C ; cþC �, mCðxÞ ¼ 1, and 8x 2 ½a; s�C � and 8x 2 ½sþC ; b�,
mCðxÞ ¼ 0, thus we have

mCðxÞ ¼

0; a� x� s�C
x�s�C
c�C�s�C

; s�C\x\c�C
1; c�C � x� cþC
sþC �x
sþC �cþC

; cþC \x\sþC
0; xr � x� b

8>>>>>>><
>>>>>>>:

ð2:5Þ

It can be seen that this is a trapezoidal function (its graph is shown in Fig. 2.5).
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The kind of trapezoidal functions is the membership function of flexible class
C with two flexible boundaries. Then, the membership function of the flexible class
C with only one flexible boundary (e.g., the flexible classes at the left and right ends
in Fig. 2.5 only have one flexible boundary) is a semi-trapezoidal function. It can be
seen that the membership function of the flexible class whose flexible boundary is at
the positive direction of coordinate axis is

mCðxÞ ¼
1; a� x� cþC
sþC �x
sþC �cþC

; cþC � x� sþC
0; sþC \x� b

8><
>: ð2:6Þ

and that the flexible class whose flexible boundary is at the negative direction of
coordinate axis is

mCðxÞ ¼
0; a� x\s�C
x�s�C
c�C�s�C

; s�C � x� c�C
1; c�C � x� b

8<
: ð2:7Þ

Thus, from the generality of C, the above Eqs. (2.5), (2.6), and (2.7) are just the
general expressions of the membership function of flexible classes in [a, b]. It can
be seen that the range of values of these membership functions is [0, 1], which
means that the degree of a point x belonging to class C can only be 0 or 1 or a
number between 0 and 1.

So far, we have derived the general expression, namely trapezoidal function
(including semi-trapezoidal function), of the membership functions based on the
formation principle of the flexible concepts and the sameness-degree.

For the trapezoidal functions, a kind of piecewise linear function, some readers
may have doubt: Could the mathematical model of the flexible concept be so
simple? Here, we want to remind our readers: This trapezoidal membership func-
tion of a flexible concept is derived on the basis of the continuous distribution of
numerical feature values of things, while though the continuous distribution of
numerical feature values is a reflection of the gradual change of things, it is not the
dynamic process of things gradually changing, but rather a static outcome. That is
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Fig. 2.5 An illustration of the membership functions of flexible concepts
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to say, range [a, b] is really the range of values formed by the gradual change of
things, rather than the “domain of definition” describing gradual change of things. If
it was the latter, then membership functions are certainly not all linear. Because the
process of the gradual change of things is not always uniform and linear, rather,
they are more usually nonlinear. For example, suppose on a certain day, the tem-
perature changes from −10 to 10 °C. This change process is generally non-uniform
and nonlinear, but the temperature range [−10, 10] formed by this change process is
continuous. And the membership functions of the flexible concepts about temper-
ature (e.g., cold and warm) are just defined on such kind of continuous range.

It also needs to be noted that such piecewise membership function is just for
flexible concepts on the one-dimensional range of numerical feature values. And in
the next chapter, we will see that the membership functions of some flexible
concepts on multidimensional measurement space are nonlinear. Further, in Chap. 4
we will see that the extended membership functions of many flexible concepts are
also nonlinear.

Actually, this kind of trapezoidal functions is consistent with the understanding
and application of human brain for corresponding flexible concepts. In fact, human
brain, in general, gives equal treatment to all core members of a flexible concept,
but for peripheral members, it then uses degree adverbs such as “comparatively”
and “somewhat” to modify. For example, in the sense of “young,” people between
ages 18 and 25 are generally not discriminated. The reason is human brain treats
people in this age group as core members of the flexible concept “young.” Of
course, in human brain there is no recognized and rigid agreement for the core
members and peripheral members of a flexible concept, but every person has his or
her own default mental scale.

From the above-stated, we see that the above-given membership functions have
objective basis, coincide with human brain’s mental reality, and have mathematical
basis. Now that a flexible class can be determined by its membership function, and
the membership function of a flexible class is a trapezoidal function, then we can
give a precise definition for a flexible class.

Definition 2.3 Let f(x) be a trapezoidal function with range [0, 1] on range [a, b] of
numerical feature values; then, function f(x) determines a flexible class C in [a, b],
and function f(x) is called the membership function of flexible class C and denoted
by mC(x), for 8x 2 U; mCðxÞ is the membership-degree of x to C.

From Definition 2.3 and Eqs. (2.5), (2.6), and (2.7), for any flexible concept on
[a, b], as long as the core-boundary points c�C and cþC and critical points s�C and sþC
of its denotative flexible class are given, then its core and support set can be
determined, and expression of its membership function can be written out.
Therefore, a membership function can be written as the following parameter form:

mCðx; s�C ; c�C ; cþC ; sþC Þ ð2:8Þ
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Clearly, the above general expression of the membership functions on range [a,
b] of real numerical values is also applicable to flexible concepts on range
fn1; n2; . . .; nng of consecutive integers.

It can be seen that a membership function actually portrays the relationship
between the points in a space and the denotation of a flexible concept on the space,
so a membership function is actually the denotative mathematical model of a
flexible concept, or denotative model for short.

2.3 Connotative Model of a Flexible Concept—
Consistency Function

We have known that a flexible linguistic value is a general designation of all
numerical values in the corresponding flexible class. The purpose of linguistic
values is to enlarge the granularity of information and reduce the amount of
information. However, those number objects in the denotation of a flexible concept
are objectively not the same but only approximate, so the strengths of objects’
features characterized by these numerical values are not the same. So the contri-
butions of these numerical values to the corresponding flexible linguistic value are
not the same. Therefore, a kind of measure is needed so as to portray the degree of a
numerical value consisting with a corresponding flexible linguistic value, or in other
words, the degree of it according with or supporting to the corresponding flexible
linguistic value. We call this measure to be the degree of a numerical value con-
sisting with a flexible linguistic value, simply written as consistency-degree of
x with A.

Definition 2.4 Let A be a flexible concept on range U = [a, b]; if the membership
function of corresponding flexible class is a semi-trapezoidal increasing function,
then the flexible linguistic value A is called an increasing linguistic value; if the
membership function is a semi-trapezoidal decreasing function, then the A is called
a decreasing linguistic value; and if the membership function is a trapezoidal
function, then A is called a convex linguistic value.

In the following, we first analyze the consistency-degree of numerical value
x with increasing linguistic value A.

Let A be an increasing linguistic value on range U ¼ ½a; b�. Observe that the
membership-degree of the critical point s�C of corresponding flexible class C to C is
0, which shows that s�C contributes nothing to the property represented by A, so the
consistency-degree of it with A should be 0; and from s�C to right, with the increase
of distance from s�C , the consistency-degree of x with the property represented by
A becomes higher and higher, and the support becomes stronger and stronger; and
from s�C to the left, with the increase of distance from s�C , the difference between
x and the property represented by A is larger and larger. Therefore, critical point s�C
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is tantamount to the origin of coordinates of linguistic value A. Thus, the difference
of point x in U and critical point s�C

x� s�C ¼ x0 ð2:9Þ

is also a kind of magnitude of x relative to linguistic value A. In fact, Eq. (2.9) is
just a translation transformation of coordinate, which transforms measurement x of
objects about the original attribute to measurement x′ of the objects about its
sub-attribute (i.e., is, linguistic value A). Therefore, x′ indeed represents the quantity
of point x having linguistic value A. But this quantity is only a kind of absolute
quantity with poor comparability. Now we consider the core-boundary point c�C ;
obviously, it is a standard object of A and the membership-degree of it to A is 1, so
the consistency-degree of it with A should also be 1. Thus, we take the difference
between core-boundary point c�C and critical point s�C (i.e., the measurement of
point c�C relative to A)

x1 ¼ c�C � s�C ð2:10Þ

as an unit quantity of x′, now, set

gðxÞ ¼ x0

x1
¼ x� s�C

c�C � s�C
ð2:11Þ

It can be seen that what g(x) represents is a relative quantity of number x with
linguistic value A. Obviously, gðs�C Þ ¼ 0 and gðc�C Þ ¼ 1. And it can be verified that
g(x) also satisfies the following properties:

For 8x and y 2 U,

(1) When x 6¼ y, then gðxÞ 6¼ gðyÞ;
(2) When x\y, then gðxÞ\gðyÞ;
(3) When x\s�C ; gðxÞ\0; when x[ c�C ; gðxÞ[ 1.

This shows that g(x) not only reflects the interrelation between all the numbers in
range U and linguistic value A, but it also maintains the original order relation
among all the numbers. Property (3), in particular, reflects the objectivity of g(x).
Therefore, g(x) can be taken as a measure of numbers x with linguistic value A—
consistency-degree.

Thus, the consistency-degrees of all points in U with flexible linguistic value
A form a function g(x) ðx 2 ½a; b�Þ on range U. We call such a function the con-
sistency function of flexible linguistic value (or flexible concept) A, and denote it
cA(x).

On the basis of the above analysis, we give the following definition.

Definition 2.5 Let A be an increasing linguistic value on range U ¼ ½a; b�; s�C be
the critical point of corresponding flexible class C, and c�C be the core-boundary
point of C, then
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cAðxÞ ¼ x� s�C
c�C � s�C

ðx 2 UÞ ð2:12Þ

is called the consistency function of this linguistic value A. For 8x 2 U; cAðxÞ is the
consistency-degree of x with A.

Similar analyzing of decreasing linguistic value can also be done. Yet from the
symmetric relation between it and increasing linguistic value, we directly give the
definition.

Definition 2.6 Let A be a decreasing linguistic value on range U ¼ ½a; b�; sþC be
the critical point of corresponding flexible class C, and cþC be the core-boundary
point of C, then

cAðxÞ ¼ sþC � x
sþC þ cþC

ðx 2 UÞ ð2:13Þ

is called the consistency function of this linguistic value A. For 8x 2 U; cAðxÞ is the
consistency-degree of x with A.

Since convex linguistic value has characteristics of both increasing linguistic
value and decreasing linguistic value, the expression of its consistency function
should be the combination of the above two consistency functions. But, the
intersection point of these two function curves needs to be determined.

Let the intersection point of these two function curves be ðx�; y�Þ, it is easy to
obtain that

x� ¼ sþC c�C � s�Cc
þ
C

ðsþC � s�C Þ � ðcþC � c�C Þ
; y� ¼ sþC � s�C

ðsþC � s�C Þ � ðcþC � c�C Þ

Thus, we have the definition.

Definition 2.7 Let A be a convex linguistic value on range U ¼ ½a; b�; s�C and sþC
be critical points of corresponding flexible class C, and c�C and cþC be the
core-boundary points of C, then

cAðxÞ ¼
x�s�C
c�C�s�C

; a� x� x�

sþC �x
sþC �cþC

; x� � x� b

8<
: ð2:14Þ

is called the consistency function of this linguistic value A. For 8x 2 U; cAðxÞ is the
consistency-degree of x with A.

Actually, a convex linguistic value can also be viewed as the conjunction of an
increasing linguistic value and a decreasing linguistic value. So its consistency
function can also be expressed as
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cAðxÞ ¼ min
x� s�C
c�C � s�C

;
sþC � x
sþC � cþC

� �
ðx 2 UÞ ð2:15Þ

It can be seen from the above-stated three functional expressions that the con-
sistency function of a convex linguistic value is a triangular function and that the
consistency functions of an increasing linguistic value and a decreasing linguistic
value are linear functions. We may as well call the latter two the semi-triangular
functions. The graphs of these three functions are shown in Fig. 2.6. It can also be
seen that the range of a consistency function is interval ½a; b� ða� 0; 1� bÞ.

From the graphs of the functions, it can be visually seen that a consistency
function indeed expresses the correlation between the thing’s property represented
by numerical values and that represented by the corresponding linguistic value, and
reflects the distribution of the essential attribute of a flexible concept on the mea-
surement space. Or in other words, the essential attribute of a flexible concept is just
fully reflected and completely expressed by the consistency-degree that every
number in the range of numerical values is with the corresponding linguistic value.
Therefore, speaking in this sense, the consistency function of a flexible linguistic
value can also be viewed as a kind of connotative mathematical model of the
corresponding flexible concept, or connotative model for short.

From the general expression of consistency functions above, for any flexible
concept, only its critical points s�C and sþC , its core-boundary points c�C and cþC , and
peak value point ξC are needed to be given, and the specific expression of con-
sistency function can be written. Thus, a consistency function can be written as the
following parametric form:

cAðx; s�C ; c�C ; nC; cþC ; sþC Þ ð2:16Þ

Clearly, the above general expression of consistency functions on range [a, b] of
real numerical values is also applicable to the flexible linguistic values on range
fn1; n2; . . .; nng of consecutive integer values.
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Fig. 2.6 An illustration of the consistency functions of flexible linguistic values
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2.4 Connection and Distinction Between Membership
Function and Consistency Function

In this section, we further analyze the characteristics of membership functions and
consistency functions as well as the connection and distinction between the two.

Comparing the expressions and graphs of the two kinds of functions, it can be
seen that the expressions of them are both based on the critical points s�C and sþC
and core-boundary points c�C and cþC of a flexible concept and that the two func-
tions are completely the same for critical points, core-boundary points, and points in
the boundary of corresponding flexible class. Therefore, if only one of mC(x) or
cA(x) is known, the other can be obtained. Such is just the connection between
membership functions and consistency functions.

However, the two also have the following important distinctions:

(1) Functional differences
As viewed from functions, a membership function describes the denotation of
a flexible concept and reflects the clustering and summarization of the prop-
erties of objects, whereas a consistency function describes the connotation of a
flexible concept and reflects the distribution and detailing of the properties of
objects.
The biggest characteristic of the membership function is the following:
mapping all the objects inside the core of a flexible concept into 1 and
mapping all the objects outside the support set into 0, which play the role of
classification and summarization, meanwhile, which is also a bridge of the
conversion of information granularity from fine to coarse and the conversion
of information description from quantitative to qualitative.
In fact, the denotations of flexible concepts are a kind of flexible class.
Therefore, just like usual rigid classes, human brain sets up these flexible
classes also in order to enlarge granularity of information, reduce amount of
information, and simplify representation and processing of information.
Therefore, the number of elements in the core of a flexible class should
generally be greater than 1 and the membership-degrees of the elements in the
core should all equal to 1; that is, elements in the core are not discriminated
anymore; meantime, the boundary must be non-empty and the
membership-degrees of elements in it should be between 0 and 1. Besides, the
membership-degrees of elements outside the support set should all be equal to
0; that is, these elements are also not discriminated anymore. Only thus the
effect of classification and summarization could be achieved. And only thus
would it coincide with the original intention of human brain to set flexible
concepts. The membership function is just a mathematical realization of this
kind of functions of clustering and summarization.
The characteristics of consistency functions are distinguishing between vari-
ous number objects (including the number objects in the core of a flexible
concept and those outside the support set) according to their original
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approximation relation; that is, the consistency-degrees of different numbers
are not the same. Thus, the degree of a number object x having property A can
not only be numbers 0, 1, and numbers between 0 and 1, but it also can be
greater than 1 or less than 0. Therefore, the consistency function is also the
degree distribution function of the connotation of a flexible concept.
Just because of the above differences, a membership function is a trapezoidal
function and can only be a trapezoidal function, and a consistency function is a
triangular function and can only be a triangular function. The range of a
membership function is [0, 1] and must be [0, 1], while the range of a con-
sistency function is ½a; b� ða� 0; 1� bÞ and must be ½a; b�:

(2) Differences in the natures
Viewed from the nature, membership functions show a kind of subjective
classification by human (brain) of continuously distributed numerical feature
values of things, while consistency functions reflect the objective relations
between the numerical values that characterize feature of things and the cor-
responding linguistic values.

(3) Differences in application
Viewed from the angle of application, membership functions place emphasis
on classification and summarization, which solve the problems of “what is,” so
which can be used to solve such problems as classification, recognition,
diagnosis, and prediction; and consistency functions facilitate detailing and
accuracy, which solve the problem of “how,” and so can be used to solve such
problems as judgment, decision, control, and planning.
In a word, the membership function and the consistency function both have
characteristics of their own and the two have both connection and distinction,
and they complement each other and form a complete representation of a
flexible concept, which supplement each other in application and are both
indispensable.

2.5 Flexible Entity Concepts and Their Mathematical
Models

Strictly speaking, the flexible concepts stated above are all flexible attributive
concepts. Besides, there are flexible entity concepts in our brains. For example,
“good student” is a flexible entity concept. Then, what are the formation principle
and the mathematical models of flexible entity concepts? It can be seen that the
flexible entity concepts are closely linked with flexible attributive concepts. In fact,
in macro, a flexible entity concept is an entity concept modified by flexible
attributive concept, or in other words, it is a compound flexible concept combined
by a flexible attributive concept and an entity concept. In micro, the numbers in the
numerical valued range that a flexible attributive concept is on and the subsets
(equivalence classes) consisting of entity objects which take these numbers as
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respective numerical feature value in corresponding entity objected set are
one-to-one correspondence. Thus, in the sense of corresponding feature, the former
represents the latter. Thus, with a flexible attributive concept on numerical valued
range U being formed, corresponding flexible entity concept is also formed on
corresponding entity objected set S, and the mathematical model of the flexible
entity concept depends on or is reduced to those of corresponding flexible
attributive concept. Thus, the former can be obtained from the latter. For example,
for students, let “good” be a flexible attributive concept on the range [0, 100] of
scores of their synthetic evaluation. Suppose the support set and core of “good” are
supp(good) = (80, 100] and core(good) = [90, 100]; then, the corresponding
membership function is

mgoodðxÞ ¼
0; 0� x� 80
x�80
10 ; 80\x\90
1; 90� x� 100

x is a score of synthetic evaluationð Þ
8<
:

and the consistency function is

cgoodðxÞ ¼ x� 80
10

; 0� x� 100

Thus, the membership function of “good student” is

mgood studentðsxÞ ¼ mgoodðxÞ

and the consistency function can be

cgood studentðsxÞ ¼ cgoodðxÞ

And the corresponding flexible class of “good student,” the flexible entity
concept, is a flexible class in universe {all students}, its support set, and core are

supp good studentð Þ ¼ sxjsx 2 fall studentsg; 0\mgood studentðsxÞ� 1
� �

core good studentð Þ ¼ sxjsx 2 fall studentsg;mgoodstudentðsxÞ ¼ 1
� �

Generally, let AE be a flexible entity concept combined by flexible attributive
concept A and entity concept E; then, its mathematical model is as follows:

supp(AEÞ ¼ ej e 2 E; 0\mES eð Þ � 1f g ð2:17Þ

core(AEÞ ¼ ej e 2 E;mAEðeÞ ¼ 1f g ð2:18Þ

mAEðexÞ ¼ mAðxÞ ð2:19Þ
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cAEðexÞ ¼ cAðxÞ ð2:20Þ

where x is numerical feature value of an entity object and ex is the entity objects
whose numerical feature values is x.

2.6 About Pseudo-Flexible Linguistic Values

In the above, we reveal the formation principle of flexible linguistic values and
present their mathematical models; however, in daily language and information
exchange, people employ also flexible linguistic values to describe two, three or a
handful of discrete numerical values. For example, for 3 and 5, the two numbers,
speaking relatively, people would say that 3 (is) “little” while 5 (is) “much” (if the
two numbers characterize the quantities of objects), or say that 3 (is) “small” while
5 (is) “big” (if the two numbers characterize the volumes of objects); and then, if
there is also a 6 here, people would say then that 6 (is) “more” or “bigger.” It can be
seen that people usually use two opposite flexible linguistic values to describe the
comparison between two numerical values, whereas use the flexible linguistic
values having progressive relationship to describe the comparison between more
than two numerical values. However, note that the flexible linguistic values used in
this situation are not formed by clustering and summarization, merely relative. In
fact, they are a judgment of corresponding discrete numerical values. Of course, this
can also be regarded as a partition of the set of corresponding numerical values, but
which is flexible partition not rigid partition, and each flexible linguistic value
describes or represents only one numerical value. In a word, these relative flexible
linguistic values are not real flexible linguistic values we discussed previously,
which is really a kind of pseudo flexible linguistic value.

Pseudo-flexible linguistic values frequently occur in our daily language and
information exchange, and the most used are those opposite flexible linguistic
values. Besides the examples above, such as “high,” “low,” “fast,” “slow,” “hot,”
“cold,” “good,” “bad,” “young,” and “old” are all frequently used pseudo-flexible
linguistic values. They will occur when we describe relative feelings. For instance,
in severe cold, people would feel “warm” when the temperature rises a little; here,
“warm” is just a pseudo-flexible linguistic value that describes the corresponding
temperature relative to (that temperature) severe cold. Similarly, in intense heat,
people would feel “cool” when the temperature drops slightly; here, “cool” is just a
pseudo-flexible linguistic value that describes the corresponding temperature rela-
tive to (that temperature) intense heat.

Pseudo-flexible linguistic values are literally no different from real flexible lin-
guistic values. In natural language processing, whether a flexible linguistic value is
real or pseudo can be discriminated according to the context. Real flexible linguistic
values, as stated in previous sections, result from flexible clustering and flexible
partition, which represent one and another relatively fixed continuous sets of
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numerical values, and which are the flexible linguistic values on the corresponding
ranges of numerical values and also the flexible linguistic values often existing in
human brains; but pseudo-flexible linguistic values are provisionally generated,
which have only relative significance but have no connotation and denotation, and
one and the same pseudo-flexible linguistic value can represent different quantities
in different contexts. For example, we can still use “little” and “much” or “small”
and “large” to describe 30 and 50.

Although pseudo-flexible linguistic values occur frequently in our information
exchange, since they are not real flexible linguistic values summarizing a batch of
numerical values, in imprecise-information processing the kind of flexible linguistic
value is not involved actually. In view of this, we will do not discuss the kind of
pseudo-flexible linguistic value in this book.

2.7 Summary

In this chapter, we took real interval [a, b] as a general range of numerical feature
values and used flexible clustering to obtain the corresponding flexible classes and
flexible concepts (flexible linguistic values), thus simulating and revealing the
objective basis, formation principle, and cause of flexible concepts, and then we
established the mathematical models of flexible concepts and derived their general
expressions. Besides, we distinguished between the flexible attributive concept and
the flexible entity concept and discussed pseudo-flexible linguistic values.

The main points of the chapter are as follows:

• The phenomenon of “continuous distribution or change” of magnitudes of a
feature, i.e., numerical feature values, of things and the treating way of “flexible
clustering” of human brain result in flexible concepts (flexible linguistic values)
in human brain. In other words, the continuous distribution or change of
magnitudes of a feature of things is the objective basis of flexible concepts, and
the flexible clustering of continuous magnitudes of a feature by human brain is
the formation principle of flexible concepts, and that rigid clustering can not be
done objectively is the cause resulting in flexible concepts.

• A flexible concept can have two kinds of mathematical models: denotative
model and connotative model, the former being core + support set and mem-
bership function, and the latter consistency function; they constitute the com-
plete representation of a flexible concept.

• The membership functions of flexible concepts on numerical ranges are trape-
zoidal or semi-trapezoidal functions, and the consistency functions are triangular
or semi-triangular functions.

• The flexible concepts can be classified into flexible attributive concepts and
flexible entity concepts, but the former is the abstract of the latter and the latter
can be reduced to or is dependent on the former.
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Chapter 3
Multidimensional Flexible Concepts
and Flexible Linguistic Values and Their
Mathematical Models

Abstract This chapter further considers the flexible clustering and flexible classes
in measurement spaces and reveals the formation principles of multidimensional
flexible concepts and flexible linguistic values and establishes their mathematical
models, especially presenting the universal mathematical models of flexible prop-
erties (concepts) and flexible relations (concepts).

Keywords Multidimensional flexible concepts and flexible linguistic values �
Flexible attributive concepts � Flexible properties (concepts) � Flexible relations
(concepts)

In the last chapter, we did flexible clustering of numbers in a range of numerical
feature values of things and obtained the corresponding flexible concepts and
flexible linguistic values. However, the range of numerical feature values is
one-dimensional, so the flexible concepts on it are only the flexible concepts about
single feature of things. We call the flexible concepts to be “one-dimensional”
flexible concepts. Besides this kind of one-dimensional flexible concepts, there are
also the flexible concepts about multiple features of things in our brains. These
flexible concepts are on multidimensional ranges of numerical values, which can be
called the “multidimensional” flexible concepts. For example, “nearby circle O” is
just a two-dimensional flexible concept on a two-dimensional range of numerical
values. In addition, those flexible concepts about certain relations between things
can also be seen as multidimensional. Therefore, in this chapter, we will examine
further multidimensional flexible concepts and flexible linguistic values and their
mathematical models.
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3.1 Measurement Space and Corresponding Flexible
Clustering

A multidimensional region formed by the numerical values of multiple features of
things is just the Cartesian product of the corresponding multiple ranges of
numerical feature values. Therefore, this kind of multidimensional region is a kind
of “space.” Also, considering that the components of vectors wherein, namely
numerical feature values, are the values of corresponding measures, so we call this
kind of space the “measurement space.”

Definition 3.1 Let F1;F2; . . .;Fn be n features of a certain type of things, and let
U1, U2,…, Un be successively their ranges of numerical values. We call the
Cartesian product U1 × U2 × ��� × Un = U to be the measurement space of the
type of things.

Example 3.1 Suppose the range of human’s heights is [0.5, 2.5] and the range of
human’s weights is [1, 120], then [0.5, 2.5] × [1, 120] is a measurement space of
human being.

From the definition and example, we can see that the points in a measurement
space are also continuous.

Now, speaking in terms of measurement space, a range of numerical feature
values is just a one-dimensional measurement space.

Note: The “space” here only refers to a kind of region but not involving the
operations on it, so the measurement space is not an n-dimensional vector space in
the strict sense, even though it consists of n-dimensional vectors.

Let U = U1 × U2 × ��� × Un (Ui = [ai, bi], i = 1, 2, …, n; n > 1) be a mea-
surement space.

Like the case of range [a, b] of numerical feature values, in order to reduce the
amount of information, lower complicatedness and understand and grasp things at a
higher level, clustering and partitioning of points in space U also need to be done,
and on the other hand, the points in U are also continuous. Therefore, the clustering
and partitioning of the points in space U also have to use the flexible clustering and
flexible partitioning.

Since points in measurement space U have multiple coordinates, they can be
continuous in multiple directions of coordinates and the multiple coordinates can be
combined to more or even infinite number of directions. Taking the
two-dimensional space U1 × U2 as an instance, it can be seen that points in mul-
tidimensional space U actually can be continuous in infinite directions, which
means that for multidimensional measurement space U, there can be multiple
methods of flexible clustering, such as bar flexible clustering, square flexible
clustering, circle flexible clustering, and even irregular flexible clustering, so there
can be multiple kinds of shapes of flexible classes (of course, we only need to
discuss those meaningful flexible clustering and flexible classes). However, we can
imagine visually that only bar flexible clustering and square flexible clustering, as
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well as the flexible clustering based on straight lines and planes, can realize the
flexible partition of the measurement space U.

Next, we give some related concepts of a flexible class in the n-dimensional
measurement space.

Definition 3.2 Let C be a flexible class in an n-dimensional measurement space
U. Set {x| x 2 U, mC(x) = 1} is called the core of C, denoted core(C); set {x |
x 2 U, 0.5 < mC (x) ≤ 1} is called the extended core of flexible class C, denoted
core(C)+; set {x| x 2 U, mC(x) > 0} is called the support set of flexible class C,
denoted supp(C); set {x| x 2 U, 0 < mC(x) < 1} is called the boundary of flexible
class C, denoted boun(C). The boundary point, boundary line, or boundary plane of
the support set are called the critical point, critical line, and critical plane of flexible
class C, separately; the boundary point, boundary line, or boundary plane of the
core are called the core–boundary point, core–boundary line, and core–boundary
plane of flexible class C, separately; the middle point, middle line, or middle plane
of the boundary (region) are called the median point, median line, and median plane
of flexible class C, separately.

Definition 3.3 Let U � Rn be an n-dimensional measurement space (n ≥ 1). For 8
x = (x1, x2, …, xn) and y = (y1, y2, …, yn) 2 U; set

dðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðxi � yiÞ2
s

ð3:1Þ

is called the distance between x and y; take

r ¼ max
x;y2U

dðx; yÞ ð3:2Þ

as the reference distance; set

Dðx; yÞ ¼ dðx; yÞ
r

ð3:3Þ

is called the degree of difference, simply written as difference-degree, between
x and y; set

sðx; yÞ ¼ 1� Dðx; yÞ ¼ 1� dðx; yÞ
r

ð3:4Þ

is called the degree of sameness, simply written as sameness-degree, between
x and y.
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3.2 Flexible Clustering with Respect to Partial Coordinate
Components

Firstly, let us consider flexible clustering with respect to one coordinate component
in two-dimensional and three-dimensional measurement spaces.

Let U = U × V � R2 be a two-dimensional measurement space, where U = [a,
b] and V = [c, d], and then, U is a rectangle region on a two-dimensional plane. As
shown in Fig. 3.1, in U × V, a flexible class A is resulted by flexible clustering
merely with respect to the x coordinate of points, and a flexible class B is resulted
by flexible clustering merely with respect to the y coordinate of points. The dark
gray part in the figure is the core of the corresponding flexible class, and the light
gray part is the flexible boundary [1].

It can be seen that the boundaries of the core and support set of a flexible class in
a two-dimensional space are no longer points but lines, that is, core–boundary line
and critical line. Just like a one-dimensional flexible class, these two
two-dimensional flexible classes stand for two flexible concepts on a
two-dimensional measurement space U. Since flexible class A is resulted by clus-
tering according to the approximation relation between the x coordinates, for any (x,
y) 2 U × V, the membership-degree mA(x, y) is only related to x. Thus, we have

mAðx; yÞ ¼ mAðxÞ ðx 2 U; y 2 VÞ ð3:5Þ

Similarly, we have

mBðx; yÞ ¼ mBðyÞ ðx 2 U; y 2 VÞ ð3:6Þ

whose graphs are shown in Fig. 3.2. They are truncated ridged surface.
Correspondingly, the consistency functions of flexible linguistic values A and

B are

cAðx; yÞ ¼ cAðxÞ ðx 2 U; y 2 VÞ ð3:7Þ

x   x

y A y

B

(a) (b)

Fig. 3.1 Examples of two-dimensional flexible classes with respect to one coordinate component
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cBðx; yÞ ¼ cBðyÞ ðx 2 U; y 2 VÞ ð3:8Þ

whose graphs are shown in Fig. 3.3. They are ridged surface.
What Fig. 3.4 shows is an example of flexible classes with respect to one

coordinate component in a three-dimensional measurement space. Flexible class
A stands for a flexible concept on the corresponding three-dimensional measure-
ment space. Because flexible class A is obtained from flexible clustering only with
respect to the approximation relation between coordinate components xs, its
membership function and consistency function are

mAðx; y; zÞ ¼ mAðxÞ ðx 2 U; y 2 V ; z 2 WÞ ð3:9Þ

cAðx; y; zÞ ¼ cAðxÞ ðx 2 U; y 2 V ; z 2 WÞ ð3:10Þ

It can be seen that this kind of flexible clustering in two-dimensional and
three-dimensional measurement spaces and their flexible classes can be completely
generalized to n-dimensional measurement space. In fact, the above
two-dimensional flexible classes A and B are tantamount to the extension of

y

m

1

0 x

x

mB(x, y) 
mA(x, y) m

1

0
y 

(a) (b)

Fig. 3.2 Examples of the graphs of membership functions of flexible classes in a two-dimensional
space
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1

0

c

1

0
x

x

cB(x, y)cA(x, y) 

yy

(a) (b)

Fig. 3.3 Examples of the graphs of consistency functions of flexible linguistic values on a
two-dimensional space
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one-dimensional flexible classes A and B on a two-dimensional space. Conversely,
the original one-dimensional flexible classes A and B are then tantamount to the
projections of two-dimensional flexible classes A and B on one-dimensional space.

Generally, for n-dimensional measurement space U = U1 × U2 × ��� × Un � Rn,
the membership function and consistency function of the flexible class A obtained
by doing flexible cluster in U with respect to coordinate component xk, which stands
for flexible concept A on U, separately are

mAðx1; x2; . . .; xnÞ ¼ mAðxkÞ; xj 2 Uj; j ¼ 1; 2; . . .; n ð3:11Þ

cAðx1; x2; . . .; xnÞ ¼ cAðxkÞ; xj 2 Uj; j ¼ 1; 2; . . .; n ð3:12Þ

In a three-dimensional space, we could also do flexible clustering with respect to
two coordinate components simultaneously. For example, Fig. 3.5 just shows an
example of a flexible class obtained by flexible clustering with respect to two
coordinate components x and y simultaneously in a three-dimensional measurement
space, where (a) is a clustering without a center and (b) is a clustering with a center.
It can be seen that flexible class A here is only related to two coordinates x and y of
a point but not related to coordinate z, so whose membership function and the
consistency function of the corresponding flexible linguistic value should be

mAðx; y; zÞ ¼ mAðx; yÞ ðx 2 U; y 2 V ; z 2 WÞ ð3:13Þ

y

x

z

A

Fig. 3.4 An example of
three-dimensional flexible
classes with respect to one
coordinated component

z z

yy

A 

x x

A 

(a) (b)

Fig. 3.5 Examples of flexible classes with respect to two coordinates x and y in a
three-dimensional space
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cAðx; y; zÞ ¼ cAðx; yÞ ðx 2 U; y 2 V ; z 2 WÞ ð3:14Þ

From this, it is not hard for us to derive the membership function of an n-
dimensional flexible class obtained by clustering with respect to k (1 < k < n)
coordinate components and the consistency function of the corresponding linguistic
value.

Note that although the above n-dimensional flexible classes (n > 1) and the
flexible concepts and flexible linguistic values stood for by them are obtained with
respect to one or multiple coordinate components of points, in appellation, we still
say that n-dimensional point (x1, x2, …, xn) has flexible linguistic value A.

3.3 Square Flexible Clustering and Circular Flexible
Clustering

In the following, we do flexible clustering of points in a space with respect to all
coordinate components of a point, that is, with respect to a whole point, and then
get corresponding flexible classes and flexible concepts. This section discusses
square flexible clustering and circular flexible clustering.

3.3.1 Square Flexible Clustering and Flexible Squares

Square flexible clustering is the flexible clustering taking a square (including also
cubical and hypercubical) region as center.

Let U = U × V � R2 be a two-dimensional measurement space, where U = [a,
b] and V = [c, d]. As shown in Fig. 3.6, draw two square regions with proper size in
U, of them one contains another and each side of them parallel to the corresponding
side of space U, and then take smaller square region (the part of dark gray in the
figure) as core and bigger square region as support set, forming then a square
flexible class C in space U. Unlike one-dimensional flexible classes, the

U 

x

y 

CV 

Fig. 3.6 Examples of square
flexible clustering and flexible
square in a two-dimensional
space
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two-dimensional flexible class C has 4 critical lines and 4 core–boundary lines.
Viewed from shape, this kind of flexible classes is just a flexible square. The
flexible square C stands for a flexible concept and flexible linguistic value on a
two-dimensional space U.

Obviously, the square flexible clustering in a two-dimensional measurement
space can also be generalized to general n-dimensional measurement space
U = U1 × U2 × ��� × Un (Ui = [ai, bi], i = 1, 2, …, n) and to obtain an n-dimen-
sional flexible square.

Actually, the flexible squares in multidimensional spaces are also a kind of
generalizations of the flexible intervals in one-dimensional spaces, but a flexible
square can also be viewed as the intersection of mutually orthogonal flexible classes
in a multidimensional space. For instance, the two-dimensional flexible square C in
Fig. 3.6 can also be viewed as the intersection of two orthogonal bar flexible classes
whose shapes are similar to A and B in Fig. 3.1.

Next, we consider then the membership function of a flexible square and cor-
responding consistency function. It can be seen that for point (x, y) in core of
flexible square C, the membership-degree mC(x, y) should certainly be 1, and for
points (x, y) on or outside critical line of the support set, the membership-degrees
mC(x, y) should be 0. In the following, we consider the membership-degrees of
points in the flexible boundary around the core for flexible square C. Let point
p = (x*, y*) be a point to the left of the core in the support set. It can be seen that
the distance from point p to the left core–boundary line of flexible square C is

dðp; p0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0 � x�Þ2 þðy� � y�Þ2

q
¼ x0 � x�

Here, p0 ¼ ðx0 � y�Þ is the foot of perpendicular of point p to left core–boundary
line. Since in the direction of x, points change from ðx0; yÞ to ðx00; yÞ (the latter is the
corresponding points on the left critical line), their membership-degrees change
from 0 to 1, for Definition 3.3, we take r ¼ c�Cx

� s�Cx
(c�Cx

and s�Cx
are separately the

negative core–boundary point and negative critical point of flexible square C in the
direction of x) as the reference distance. Therefore, we have

sðP;P0Þ ¼ 1� dðP;P0Þ
r

¼ 1� x0 � x�

c�Cx
� s�Cx

¼ x� � x0

c�Cx
� s�Cx

Thus,

mC x�; y�ð Þ ¼ mCðp0Þ � sðp; p0Þ ¼ 1 � sðp; p0Þ ¼ x� � x0

c�Cx
� s�Cx

It can be seen that the membership-degree of point p should be between 0 and 1;
with the increase of the distance between it and the core, the membership-degree of
points to the left of the core should monotonically decreasing from 1 to 0. And by
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x0 ¼ c�Cx
and the point (x*, y*) is arbitrary, so for points at the left of the core of C,

we have

mCðx; yÞ ¼
x� c�Cx

c�Cx
� s�Cx

It can be seen from this equation that in the direction of x, for point (x, y) in the
negative- or positive-side boundary of core, the membership-degree mC(x, y) is
merely related to x. Similarly, in the direction of y, for point (x, y) in the negative- or
positive-side boundary of core, the membership-degree mC(x, y) is merely related to
y. Thus, viewed from x direction and y direction, the shape of membership function
mC(x, y) should all be trapezoidal. So it can be imagined that the shape of the
membership function of flexible square C should be a prismoid (also called trun-
cated square cone) surface as shown in Fig. 3.7a (of course, this prismoid is the
geometry of the membership function of flexible classes on the non-edge part of
space U. For those flexible classes at the edge of space U, the graphs of their
membership functions are then not of standard prismoid but “semi-prismoid”).

Overlooking the prismoid in Fig. 3.7a, we obtain Fig. 3.7b. It can be seen that
the support set of flexible square C is actually divided into 5 small regions by the
projections of 8 edges of the prismoid. Numbering these small regions, then region
a1 is the core of flexible class C, and the others are all the boundaries of C.

From the above analysis and Figs. 3.7a, b, it is not hard to see that for

8 (x, y) 2 a1, mC(x, y) = 1; for 8 (x, y) 2 a3, mCðx; yÞ ¼ x�s�Cx
c�Cx�s�Cx

; for 8 (x, y) 2 a2,

mCðx; yÞ ¼
sþCy�y

sþCy�cþCy
; for 8 (x, y) (x, y) 2 a4, mCðx; yÞ ¼ sþCx�x

sþCx�cþCx
; for 8 (x, y) 2 a5,

mCðx; yÞ ¼
y�s�Cy
c�Cy�s�Cy

. Therefore, to sum up, we have

x

y

(a)
m

x

y
(b) 

a2

a3 a4

a5

a1

Fig. 3.7 An example of a two-dimensional flexible square and the graph of its membership
function
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mCðx; yÞ ¼

x� s�Cx

c�Cx
� s�Cx

; ðx; yÞ 2 a3

sþCx
� x

sþCx
� cþCx

; ðx; yÞ 2 a4

1; ðx; yÞ 2 a1

y� s�Cy

c�Cy
� s�Cy

; ðx; yÞ 2 a5

sþCy
� y

sþCy
� cþCy

; ðx; yÞ 2 a2

0; ðx; yÞ 62 a1 [ a2 [ a3 [ a4 [ a5

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

ð3:15Þ

where s�Cx
and sþCx

are the negative and positive critical points of flexible square
C about x, and c�Cx

and cþCx
are the negative and positive core–boundary points of

C about x; s�Cy
and sþCy

are the negative and positive critical points of C about y, and

c�Cy
and cþCy

are the negative and positive core–boundary points of C about y.

Equation (3.15) is the general expression of the membership functions of flexible
squares based on square flexible clustering on a two-dimensional measurement
space U. The geometry of this function is prismoid surface (also called truncated
square cone). Of course, Eq. (3.15) is the membership function of flexible squares
at the non-edge part of space U. For those flexible squares at the edge of space U,
since the graph of their membership functions is not a standard prismoid but a
semi-prismoid, the expressions of their membership functions should be somewhat
different from the expression in Eq. (3.15).

From the membership functions of two-dimensional flexible squares, it is not
hard to derive that the membership functions of the multidimensional flexible
squares of over 3 dimensions should have the same characteristics, that is, they are
all trapezoidal functions viewed from every coordinate direction. Thus, the mem-
bership functions of these multidimensional flexible squares are similar to
Eq. (3.15), whose graphs are hyperprismoid surface (also called truncated hyper-
square cone). But the membership functions of the multidimensional flexible
squares of over 3 dimensions would be too complicated if written as in the above
form. Luckily, there are simple functional expressions in Sect. 5.5.2 which can
solve this problem.

By the membership functional expression (3.15), we immediately have the
corresponding consistency functional expression as follows:
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cCðx; yÞ ¼

x� s�Cx

c�Cx
� s�Cx

; ðx; yÞ 2 a3

sþCx
� x

sþCx
� cþCx

; ðx; yÞ 2 a4

y� s�Cy

c�Cy
� s�Cy

; ðx; yÞ 2 a5

sþCy
� y

sþCy
� cþCy

; ðx; yÞ 2 a2

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð3:16Þ

Here, regions a2, a3, a4, and a5 are shown in Fig. 3.8b, and the graph of the function
is shown in Fig. 3.8a, whose geometry is a wedge surface. Similarly, the kind of
consistency functions has also a simple general expression (reader can see the
Eq. (6.10) in Sect. 6.4.1).

3.3.2 Circular Flexible Clustering and Flexible Circles

Circular flexible clustering is the flexible clustering taking a circular (including also
spherical and hyperspherical) region as center. We still take a two-dimensional
space U = U × V as an instance. As shown in Fig. 3.9, drawing two concentric
circular regions of proper radius in U, then taking smaller circular region (the part
of dark gray in the figure) as core, bigger circular region as support set, thus forms a
circular flexible class C in space U. Viewed from shape, this kind of flexible class is
just a flexible circle. The flexible circle C stands for a flexible concept and flexible
linguistic value on a two-dimensional space U.

Similarly, the circular flexible clustering in a two-dimensional measurement
space can also be generalized to general n-dimensional measurement space
U = U1 × U2 × ��� × Un (Ui = [ai, bi], i = 1, 2, …, n) and to obtain an n-dimen-
sional flexible circle—including flexible circle, flexible sphere, and flexible
hypersphere, especially also including flexible interval.

x

y

(a)
c y

x

(b) 
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a3 a4

a5

Fig. 3.8 An example of the graph of the corresponding consistency function of a two-dimensional
flexible square
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Next, we consider then the membership function of a flexible circle and corre-
sponding consistency function.

It is shown in Fig. 3.9 that for any point P 2 U, if P 2 core(C), then mC(P) = 1;
if P 62 supp(C), the mC(P) = 0. Next, let us consider how to compute the
membership-degree of point P 2 boun(C).

As shown in Fig. 3.10, draw a straight line through the circle’s center P0 and
point P, which intersects separately at Pc and Ps with the core–boundary line and
critical line of flexible circle C, and then, intersection points Pc and Ps are the core–
boundary point and critical point of flexible circle C that correspond to
P. Therefore, denote Pc and Ps separately as cC and sC, and take d(sC, cC) as the
reference distance; then,

sðP; cCÞ ¼ 1� DðP; cCÞ

¼ 1� dðP; cCÞ
dðsC; cCÞ ¼

dðP; sCÞ
dðsC; cCÞ

x

y 

x0

cC Py0

P0

sC

C

Fig. 3.10 An illustration of
the principle of deriving
membership function mC(P)
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x

y
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V 

Fig. 3.9 An example of
circular flexible clustering and
flexible circles in a
two-dimensional space
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Thus, the membership-degree of point P for flexible circle C

mCðPÞ ¼ mCðcCÞ � sðP; cCÞ
¼ 1 � sðP; cCÞ ¼ sðP; cCÞ

¼ dðP; sCÞ
dðsC; cCÞ

Namely,

mCðPÞ ¼ dðP; sCÞ
dðsC; cCÞ

Thus, to sum up the above analysis, we have

mCðPÞ ¼
1; P 2 coreðCÞ
dðP; sCÞ
dðsC; cCÞ ; P 2 bounðCÞ
0; P 62 suppðCÞ

8><
>: ð3:17Þ

From the point P being arbitrary, so what Eq. (3.17) shows is the membership
function of flexible circle C. But this functional expression is an expression about
(whole) point P, and we may as well call it the point-level membership function
of flexible circle C.

Let P = (x, y), cC = (xc, yc), and sC = (xs, ys), and then

dðP; sCÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xsÞ2 þðy� ysÞ2

q

dðsC; cCÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxc � xsÞ2 þðyc � ysÞ2

q

Thus,

mCðx; yÞ ¼
1; ðx; yÞ 2 coreðCÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx�xsÞ2 þðy�ysÞ2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxc�xsÞ2 þðyc�ysÞ2

p ðx; yÞ 2 bounðCÞ
0; ðx; yÞ 62 suppðCÞ

8><
>: ð3:18Þ

This functional expression is an expression about the coordinates of point P, and
we may as well call it the coordinate-level membership function of flexible
circle C.

From the above functional expression, it can be seen that for any point P 2 U, as
long as the corresponding core–boundary point cC and critical point sC are known,
the membership-degree of it for flexible circle C can be found. However, when
finding a membership-degree, every time we have to find the corresponding core–
boundary point cC and critical point sC firstly, which is apparently rather
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cumbersome. Considering that the center point of a flexible circle and its core radius
and support set radius are fixed and known, and we find that the center and the two
radii are related to two distances in the functional expression, so these relations can
be utilized to transform the above membership functional expression.

Let rc and rs be separately radius of the core (i.e., inner circle) and support set
(i.e., the excircle) of C, and it is not hard to see that rs − rc = d(sC, cC) and rs− d(P,
P0) = d(P, sC). Consequently, the above Eqs. (3.16) and (3.17) are transformed to

mCðPÞ ¼
1; P 2 coreðCÞ
rs�dðP;P0Þ

rs�rc
; P 2 bounðCÞ

0; P 62 suppðCÞ

8<
: ð3:19Þ

and

mCðx; yÞ ¼
1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þðy� y0Þ2

q
� rc

rs�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�x0Þ2 þðy�y0Þ2

p
rs�rc

; rc\
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þðy� y0Þ2

q
\rs

0; rs �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þðy� y0Þ2

q

8>>><
>>>:

ð3:20Þ

Here, r1 and r2, and x0 and y0 are all known constants, and the evaluation of a
function is much simplified. Therefore, these two membership functional expres-
sions are more practical.

In the following, we then consider the consistency function. Since cC and sC are
separately the core–boundary point and critical point of flexible class C that corre-
spond to P, we set consistency-degree cC(sC) = 0 and cC(cC) = 1. Thus, distance d
(sC, cC) can be treated as a unit quantity, further to determine the consistency-degree
of any vector in space U with flexible linguistic value C. From Fig. 3.10, it can be

seen that for any vector P 2 U, if P 2 supp(C), then cCðPÞ ¼ dðP;sCÞ
dðsC ;cCÞ; if P(x, y) 62

supp(C), then cCðPÞ ¼ � dðP;sCÞ
dðsC ;cCÞ. Thus, to sum up, we have

cCðPÞ ¼
dðP;sCÞ
dðsC ;cCÞ ; P 2 suppðCÞ
� dðP;sCÞ

dðsC ;cCÞ ; P 62 suppðCÞ

(
ð3:21Þ

From the vector P being arbitrary, so Eq. (3.21) is the consistency function of
flexible linguistic value C. We may as well call this kind of consistency function
about vector P to be the vector-level consistency function of flexible linguistic
value C.
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From this function, we can further have

cCðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�xsÞ2 þðy�ysÞ2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxc�xsÞ2 þðyc�ysÞ2

p ; ðx; yÞ 2 suppðCÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�xsÞ2 þðy�ysÞ2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxc�xsÞ2 þðyc�ysÞ2

p ; ðx; yÞ 62 suppðCÞ

8><
>: ð3:22Þ

This is the component-level consistency function of flexible linguistic value C.
Likewise, the computation is somewhat cumbersome in application of two

functions, so we also transform them into the expressions about the center of circle
and the radius of core and radius of support set:

cCðPÞ ¼ rs � dðP;P0Þ
rs � rc

; P 2 U � V ð3:23Þ

cCðx; yÞ ¼
rs �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þðy� y0Þ2

q
rs � rc

; ðx; yÞ 2 U � V ð3:24Þ

The graph of function mC(x, y) is shown in Fig. 3.11a, whose geometry is a
round platform (also called truncated circular cone) surface. The graph of cC(x, y) is
shown in Fig. 3.11b, whose geometry is a circular cone surface.

It is conceivable that generalizing the above flexible circle on a two-dimensional
space to a three-dimensional measurement space and multidimensional measurement
spaces of over three dimensions, their geometries would be a flexible sphere and a
flexible hypersphere, and their membership function of coordinate level is then

x

c 

1

0

m

1

0
yy x

 (a) (b)

Fig. 3.11 Examples of the graphs of membership function of flexible circle and corresponding
consistency function
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mCðx1; x2; . . .; xnÞ ¼

1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðxi � xi0Þ2
s

� r1

r2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðxi�xi0 Þ2

p
r2�r1

; r1\

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðxi � xi0Þ2
s

\r2

0; r2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðxi � xi0Þ2
s

8>>>>>>>>>><
>>>>>>>>>>:

ð3:25Þ

where xi 2 Ui (i = 1, 2, …, n), r1 is the radius of core, and r2 is the radius of
support set. The graph of function mC(x1, x2, …, xn) is an hyper-round platform
(also called hypertruncated circular cone) surface.

Correspondingly, the component-level consistency function of flexible linguistic
value C on n(n > 2)-dimensional measurement space is

cCðx1; x2; . . .; xnÞ ¼
r2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðxi � xi0Þ2

q
r2 � r1

; ðx1; x2; . . .; xnÞ 2 U ð3:26Þ

whose graph is a hypercircular cone surface.

3.4 Datum-Based Flexible Clustering,
“About ××” and “Near ××”

The flexible clustering above are all by determining directly core and support set to
obtain a corresponding flexible class. However, some classes are about some
special points or point sets in space. For example, the two flexible classes that stand
for “about point P” and “near point P” are just for the specific point P. It can be seen
that to obtain the classes about specific point or point set, we need to determine the
point or point set focused firstly and then to determine corresponding core and
support set when doing clustering. Thus, the points or point sets focused are a kind
of datum of corresponding flexible clustering. Thus, in order to distinguish, we call
the flexible clustering with a datum to be the datum-based flexible clustering.

In the following, we introduce separately the datum-based flexible clustering that
takes, respectively, “point,” “line,” and “plane” as a datum.

3.4.1 Point-Based Flexible Clustering and Flexible Points

Point-based flexible clustering is the square flexible clustering or circular flexible
clustering that takes a point in a space as the center point.
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Point-based square flexible clustering is as follows: Take firstly a point P0(x0, y0)
in space U (we still take the two-dimensional space U = U × V as instance) as the
center point, draw two concentric squares with appropriate size, and then take
smaller square region as core and bigger square region as support set, forming a
square flexible class C (as shown in Fig. 3.12a), that is, a flexible square in the
space. Of course, it stands also for a flexible concept and flexible linguistic value on
the space. Because the flexible square is determined actually by two coordinates x0
and y0 of its center point P0, its geometric interpretation is “about x0 and about y0.”
But if the center point P0 is not included, then the geometric interpretation of the
flexible square—strictly speaking, should be a hollow flexible square (as shown in
Fig. 3.12b)— is “close to x0 and close to y0” or “near x0 and near y0.” As for the
membership function of the flexible class C and the corresponding consistency
function, do not hard to see, are actually the same as the previous Eqs. (3.15) and
(3.16).

Generally, the point-based square flexible clustering in an n-dimensional mea-
surement space is also analogous, that is, the corresponding flexible class is a solid
or hollow flexible “square.”

Point-based circular flexible clustering is as follows: Take firstly a point P0(x0,
y0) in space U as the center point, draw two concentric circles with appropriate
radius, and then take smaller circle region as core and bigger circle region as
support set, forming a circular flexible class C (as shown in Fig. 3.13a), that is, a
flexible circle in the space. Of course, it stands also for a flexible concept and
flexible linguistic value on the space. Because the flexible circle is determined by its
center point P0, we call the kind of flexible class obtained by point-based flexible
clustering a flexible point, and its geometric interpretation is “about P0.” Similarly,
if the center point P0 is not included, then the geometric interpretation of the
flexible circle—strictly speaking, should be a hollow flexible circle (as shown in
Fig. 3.13b)— is “close to P0” or “near P0.” As for the membership function of the
flexible class C and the corresponding consistency function, do not hard to see, are
actually the same as the previous Eqs. (3.17)–(3.24).

y

U 
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x

CV 
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(b)
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Fig. 3.12 An example of point-based square flexible clustering in a two-dimensional measure-
ment space
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Generally, the point-based circular flexible clustering in an n-dimensional
measurement space is also analogous, that is, the corresponding flexible class is a
solid or hollow flexible sphere.

From the flexible classes in the above Figs. 3.12b and 3.13b and their geometric
interpretations, we see “near x0 and near y0” refers to a hollow flexible square with
point (x0, y0) as center point, while “near (x0, y0)” refers to a hollow flexible circle
with point (x0, y0) as center point. That is to say, the meanings of “near (x0, y0)” and
“near x0 and near y0” are not same actually. Given extended application, the
meanings of “near (x1, x2, …, xn)” and “near x1 and near x2 and…and near xn” are
also not the same.

Similarly, the geometric interpretations of the flexible classes in Figs. 3.12a and
3.13a above show that the meanings of “about (x0, y0)”and “about x0 and about y0”
are also not the same. In the same way, the meanings of “about (x1, x2, …, xn)” and
“about x1 and about x2 and…and about xn” are also not the same.

Actually, extending point P0 into a square region Rs, then the analogous
square-based flexible clustering can also be doing and obtaining a corresponding
flexible class. Further, if the flexible class contains the square region Rs as datum (as
shown in Fig. 3.14a), then the geometric interpretation of the corresponding flexible
class is “about Rs”; otherwise, the corresponding flexible class is a semi-flexible
square frame (as shown in Fig. 3.14b), and its geometric interpretation is then “near
Rs.”

Similarly, extending point P0 into a circular region Rc, then the analogous
circle-based flexible clustering can also be doing and obtaining a corresponding
flexible class. Further, if the flexible class contains the circular region Rc as datum
(as shown in Fig. 3.15a), then the geometric interpretation of the corresponding
flexible class is “about Rc”; otherwise, the corresponding flexible class is a
semi-flexible circular ring (as shown in Fig. 3.15b), and its geometric interpretation
is then “close to Rc” or “near Rc.”

From Figs. 3.14a and 3.15a, we can see that the core of “about Rs” contains the
square region Rs as datum, and the core of “about Rc” contains the circular region Rc
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Fig. 3.13 An example of point-based circular flexible clustering in a two-dimensional measure-
ment space
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as datum. Then, speaking conversely, a flexible square B in measurement space can
also be viewed as the flexible class of a certain “about Rs” and Rs � core(B);
similarly, a flexible circle C in measurement space can also be viewed as the
flexible class of a certain “about Rc” and Rc � core(C). For the one-dimensional
measurement space, it is that a flexible interval can be viewed as a flexible class
whose core contains a certain interval [a, b], that is, the flexible interval can be
called “about [a, b]”; conversely, “about [a, b]” is also a flexible interval whose
core contains [a, b].

3.4.2 Line-Based Flexible Clustering and Flexible Lines

Line-based flexible clustering is a kind of datum-based flexible clustering taking a
curve in a space as the center line. For example, doing line-based flexible clustering
with curve y = f(x) in a two-dimensional space as the center line, we get a flexible
class as shown in Fig. 3.16. The gray part in the figure is the core of the flexible
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Fig. 3.14 An example of square-based flexible clustering in a two-dimensional measurement
space
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Fig. 3.15 An example of circle-based flexible clustering in a two-dimensional measurement space
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class, and the white parts up and down are flexible boundaries. We call the kind of
flexible class obtained from line-based flexible clustering a flexible line. Viewed
from the characteristics of the shape, this two-dimensional flexible line is also a
flexible band of equal widths in the space. So the geometric interpretation of a
flexible line is “about curve y = f(x)”; while when the center line y = f(x) is not
contained, it is “near curve y = f(x).”

Comparing the flexible circle above and the flexible band here, it can be seen
that the above idea and approach to obtain the membership function and consis-
tency function of a flexible circle is also applicable to the flexible band here, further,
the point-level and coordinate-level membership functions (3.17) and (3.19) of a
flexible circle, and the vector-level and component-level consistency functions
(3.18) and (3.20) are also applicable to flexible band C here. However, the problem
is for a point P(x, y) 2 U, and how are the corresponding core–boundary point cC
and critical point sC to be determined? Or can the functional expressions about the
radius of core and the radius of support set be derived like those of a flexible circle?

In the following, we consider the membership function and consistency function
of flexible band C.

Since for arbitrary point P(x, y) 2 U, if P(x, y) 2 core(C), then mC(x, y) = 1; if P
(x, y) 62 supp(C), then mC(x, y) = 0. Therefore, we only need to consider the
membership-degree of points in the flexible boundaries of flexible band C. As
shown in Fig. 3.16, let the radius of core and radius of support set of flexible band
C be separately r1 and r2, and point Pi(xi, yi) be a arbitrary point in the boundary of
flexible band C.

Obviously, the distance from point Pi(xi, yi) to core–boundary line lc should be
the shortest of the distances from point Pi(xi, yi) to points on curve lc, that is, d(Pi,
lc) = min

Pj2lc
d(Pi, Pj). Then, how is the point on curve lc closest to point Pi(xi, yi) to be

determined? Suppose there is also a curve y = f1(x) through point Pi(xi, yi) that is
parallel to center line y = f(x) (as shown by the broken line in the figure). And the
slope of tangent of this curve at point Pi(xi, yi) is f′(xi), and thus, tangent l of curve
y = f1(x) through point Pi(xi, yi) is y − yi = f′(xi) (x − xi) (as shown in Fig. 3.16).

From this, the straight line l′ through point Pi(xi, yi) and perpendicular to tangent
line l is y� yi ¼ tgðarctgðf 0ðxiÞÞþ p

2) (x − xi). With this straight line l0, we can then

Fig. 3.16 Illustration of
flexible line and its
membership function deriving
process
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find separately the intersection points of it and the core–boundary line and critical
line. From the “parallelism” of the three of the center line, core–boundary line, and
critical line, it is known that the intersection points of straight line l0 and the core–
boundary line and critical line are separately the core–boundary points cC and
critical point sC of flexible band C that is correlative with point Pi(xi, yi). Thus, from
the point Pi(xi, yi) being arbitrary, we can obtain the point-level and
coordinate-level membership functions and vector-level and component-level
consistency functions of flexible band C [the expressions are the same as shown in
Eqs. (3.17), (3.18), (3.21), and (3.22)].

However, the precondition of this method is that the equations of the core–
boundary line and critical line must be known and that cumbersome computation
would be met when finding function value. Next, we consider whether the radius of
core and radius of support set of flexible band C can be used to derive the simpler
expressions of membership function and consistency function.

Solving equations set

y ¼ f ðxÞ
y� yi ¼ tgðarctg f 0ðxiÞð Þþ p

2Þ ðx� xiÞ
�

the intersection point P0(x0, y0) of straight line l0 and center line y = f(x) can be
obtained. Then, the distance from Pi(xi, yi) to center line y = f(x) is

dðPi;P0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � x0Þ2 þðyi � y0Þ2

q

Thus, the distance between Pi(xi, yi) and negative core–boundary line lc is

dðPi; lcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � x0Þ2 þðyi � y0Þ2

q
� r1

whereas rs − rc = d(sC, cC) is just the reference distance, so the closeness of Pi(xi,
yi) to core–boundary line lc is

sðPi; lcÞ ¼ 1� dðPi; l�c Þ
r

¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � x0Þ2 þðyi � y0Þ2

q
� r1

r2 � r1

¼
r2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � x0Þ2 þðyi � y0Þ2

q
r2 � r1

Further, we have
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mCðxi; yiÞ ¼ 1 � sðPi; l
�
c Þ ¼

rs �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � x0Þ2 þðyi � y0Þ2

q
rs � rc

Thus, from the point Pi(xi, yi) being arbitrary, we have

mCðx; yÞ ¼
1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þðy� y0Þ2

q
� rc

rs�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�x0Þ2 þðy�y0Þ2

p
rs�rc

; rc\
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þðy� y0Þ2

q
\rs

0; rs �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þðy� y0Þ2

q

8>>><
>>>:

ð3:27Þ

where rc and rs are separately the radius of core and radius of support set of flexible
band C, and x0 and y0 are the coordinates of a point that correspond to point P(x,
y) on center line y = f(x). Actually, point (x0, y0) is tantamount to the “circle’s
center” that point (x, y) corresponds to.

This is the coordinate-level membership function of flexible band C based on the
radius of core and radius of support set. Here, rc and rs are known, but point (x0, y0)
needs to be found with point (x, y) for the occasion. It is not hard to imagine that the
graph of the membership function of this kind of flexible band is truncated
ridge-shaped.

In the same way, we can obtain the component-level consistency function of the
flexible linguistic value C that corresponds to flexible band C as follows:

cCðx; yÞ ¼
rs �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þðy� y0Þ2

q
rs � rc

; ðx; yÞ 2 U � V ð3:28Þ

Its graph is ridge-shaped.
It should be noted that viewed from the form, here expressions in Eqs. (3.27) and

(3.28) seem to be no different from the previous expressions in Eqs. (3.20) and (3.24).
But there (x0, y0) is the center of a flexible circle, so it is unique and changeless, that is,
a constant, while here (x0, y0) is a point on the center line y = f(x) of a flexible band.
From the above equations’ set, it can be seen that the solutions x0 and y0 are actually
also functions of xi and yi, respectively, while xi and yi are just x and y in Eqs. (3.27)
and (3.28), so for the specific center line y = f(x), there would not appear x0 and y0 in
Eqs. (3.27) and (3.28), but the corresponding functions gx0(x, y) and gy0(x, y).

In the above, we studied line-based flexible clustering and its flexible classes in a
two-dimensional space, and the line-based flexible clustering of over three
dimensions should be analogous. It can be imaged that a three-dimensional flexible
line would be a “flexible rope” with a center line as the axis. The flexible rope in a
three-dimensional space can also be viewed as the trace formed by the flexible
sphere that moves along the center line of the flexible rope with a point on the
center line as the center. On the basis of that, the membership function and con-
sistency function of a flexible rope can be constructed.
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Let the equation of curve l in a three-dimensional space be

x ¼ xðtÞ
y ¼ yðtÞ
z ¼ zðtÞ

8<
:

where t is the parameter. Thus, the coordinate-level membership function and
component-level consistency function of flexible line C with curve l as the center
line are

mCðx; y; zÞ ¼
1; d� r1
r2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�xðt0ÞÞ2 þðy�yðt0ÞÞ2 þðz�zðt0ÞÞ2

p
r2�r1

; r1\d\r2
0; r2 � d

8<
: ð3:29Þ

cCðx; y; zÞ ¼
r2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xðt0ÞÞ2 þðy� yðt0ÞÞ2 þðz� zðt0ÞÞ2

q
r2 � r1

; ðx; y; zÞ 2 U

ð3:30Þ

where x(t0), y(t0), and z(t0) are coordinates of “sphere’s center” point that corre-
sponds to point P(x, y, z) on center line l, and r1 and r2 are separately the radius of
core and radius of support set of flexible line C, and

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xðt0ÞÞ2 þðy� yðt0ÞÞ2 þðz� zðt0ÞÞ2

q
:

Generalizing the three-dimensional flexible line, we have the following
coordinate-level membership function and component-level consistency function of
flexible line C in an n-dimensional space:

mCðx1; x2; . . .; xnÞ ¼

1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðxi � xlðt0ÞÞ2
s

� r1

r2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðxi�xlðt0ÞÞ2

p
r2�r1

; r1\

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðxi � xlðt0ÞÞ2
s

\r2

0; r2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðxi � xlðt0ÞÞ2
s

8>>>>>>>>>><
>>>>>>>>>>:

ð3:31Þ

cCðx1; x2; . . .; xnÞ ¼
rs �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðxi � xlðt0ÞÞ2

q
rs � rc

; ðx1; x2; . . .; xnÞ 2 U ð3:32Þ

Here, xi(t0) (i = 1, 2, …, n) is the coordinate of “sphere’s center” point that cor-
responds to point P(x1, x2, …, xn) on center line l, and r1 and r2 are separately the
radius of core and radius of support set of flexible line C.
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3.4.3 Plane-Based Flexible Clustering and Flexible Planes

Analogous to line-based flexible clustering, we can also take a curved surface as the
center plane to do datum-based flexible clustering for points in a space, and this is
what we call plane-based flexible clustering. For example, taking curved surface
z = f(x, y) in a three-dimensional space as the center plane to do plane-based
flexible clustering, we obtain a flexible class as shown in Fig. 3.17. The gray part in
the figure is the core of the flexible class, and the white parts up and down are the
flexible boundaries. We call this kind of flexible class obtained from plane-based
clustering a flexible plane. Viewed from the characteristics of the shape, a
three-dimensional flexible plane is also a flexible plate in the space. Therefore, the
geometric interpretation of a flexible plane is “about curved surface P”; while when
the center curved surface z = f(x, y) is not contained, it is “near curved surface P.”

For the kind of flexible class of flexible plate, we can use the above idea and
methods obtaining the membership function and consistency function of a flexible
circle and a flexible band to obtain its membership function and consistency
function. And it is not hard to see that the expressions of the point-level and
coordinate-level membership functions and vector-level and component-level
consistency functions of a flexible plate are still the previous expressions in
Eqs. (3.17) and (3.18) and Eqs. (3.21) and (3.22). In the following, we consider
whether a flexible plate has a membership function and consistency function based
on the radius of core and radius of support set.

It can be seen that the projections of a flexible plate in a three-dimensional space
on plane x–z or plane y–z are also flexible bands. Therefore, from the above mem-
bership function and consistency function of a flexible band, we can immediately get
the membership function and consistency function of flexible plate C as follows:

mCðx; y; zÞ ¼
1; d� r1
r2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�x0Þ2 þðy�y0Þ2 þðz�z0Þ2

p
r2�r1

; r1\d\r2
0; r2 � d

8<
: ð3:33Þ

Fig. 3.17 An example of
plane-based flexible
clustering and flexible planes

68 3 Multidimensional Flexible Concepts and Flexible Linguistic …



cCðx; y; zÞ ¼
r2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þðy� y0Þ2 þðz� z0Þ2

q
r2 � r1

; ðx; y; zÞ 2 U ð3:34Þ

Here, r1 and r2 are separately the radius of core and radius of support set of a
flexible plate, x0, y0, and z0 are the coordinates of the “sphere’s center” point that
corresponds to point P(x, y, z) in center plane z = f(x, y), and

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xðt0ÞÞ2 þðy� yðt0ÞÞ2 þðz� zðt0ÞÞ2

q
:

More generally, the membership function and consistency function of flexible
hyperplane C on an n(n > 3)-dimensional space are

mCðx1; x2; . . .; xnÞ ¼

1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðxi � xi0ÞÞ2
s

� rc

rs�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðxi�xi0 Þ2

p
rs�rc

; rc\

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðxi � xi0ÞÞ2
s

\rs

0; rs �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðxi � xi0ÞÞ2
s

8>>>>>>>>>><
>>>>>>>>>>:

ð3:35Þ

cCðx1; x2; . . .; xnÞ ¼
rs �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðxi � xi0Þ2

q
rs � rc

; ðx1; x2; . . .; xnÞ 2 U ð3:36Þ

Here, rc and rs are separately the radius of core and radius of support set of a
flexible hyperplane, and x10 ; x20 ; . . .; xn0 are the coordinates of the “center of sphere”
point that corresponds to point P(x1, x2, …, xn) in center plane F(x1, x2, …, xn) = 0.

3.5 Universal Mathematical Models of Flexible Properties
(Concepts)

A flexible class in a multidimensional measurement space which is formed by
flexible clustering with respect to points (or their partial coordinate components)
stands for a corresponding attributive concept. In consideration of its denotation
being flexible classes in a multidimensional space, so we call this kind of flexible
concepts to be the multidimensional flexible attributive concept. But, up to now, the
flexible attributive concepts we talk refer actually to “flexible properties” things
have.

Examining the various flexible classes and their membership functions and
consistency functions in the above sections, it is not hard to see that the mathe-
matical models of multidimensional flexible properties (concepts) can be unified.
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In fact, previous point-level membership function (3.17), coordinate-level
membership function (3.18), vector-level consistency function (3.21), and
component-level consistency function (3.22) are also applicable to any flexible
property (concept) on multidimensional spaces.

Further, it can be seen that the mathematical models of multidimensional flexible
properties (concepts) and those of one-dimensional flexible properties (concepts) in
the last chapter can also be unified. In fact, the idea and method obtaining the
membership function and consistency function of a multidimensional flexible
property (concept) are the generalization of those of one-dimensional flexible
properties (concepts); conversely, applying the point-level membership function
and vector-level consistency function of a multidimensional flexible property
(concept) here to a one-dimensional flexible property (concept), the membership
function and consistency function obtained are just the general expressions (2.5)
and (2.14) given in Chap. 2. Only, since a one-dimensional space only has two
directions, for any point P 2 [a, b] in the same direction, its corresponding core–
boundary point cC and critical point sC are both changeless. Therefore, there cC and
sC are constants. And since a point in a one-dimensional space and its coordinates
are the same number, expression (2.5) is both a point-level membership function
and a coordinate-level membership function, and expression (2.14) is both a
vector-level consistency function and a component-level consistency function.

Thus, the following functions

mCðPÞ ¼
1; P 2 coreðCÞ
dðP;sCÞ
dðsC ;cCÞ ; P 2 bounðCÞ
0; P 62 suppðCÞ

8<
: ð3:37Þ

cCðPÞ ¼
dðP;sCÞ
dðsC ;cCÞ ; P 2 suppðCÞ
� dðP;sCÞ

dðsC ;cCÞ ; P 62 suppðCÞ

(
ð3:38Þ

are separately the general expressions of point-level membership functions and
vector-level consistency functions of flexible properties (concepts) in an n(n ≥ 1)-
dimensional measurement space, where P is a point variable, and cC and sC are
separately the core–boundary point and critical point for point P in the corre-
sponding flexible class C. Functions

mCðx1; x2; . . .; xnÞ ¼
1; ðx1; x2; . . .; xnÞ 2 coreðCÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðxi�xis Þ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðxic�xis Þ2

p ; ðx1; x2; . . .; xnÞ 2 bounðCÞ
0; ðx1; x2; . . .; xnÞ 62 suppðCÞ

8>><
>>:

ð3:39Þ
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cCðx1; x2; . . .; xnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðxi�xis Þ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðxic�xis Þ2

p ; ðx1; x2; . . .; xnÞ 2 suppðCÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðxi�xis Þ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðxic�xis Þ2

p ; ðx1; x2; . . .; xnÞ 62 suppðCÞ

8>>><
>>>:

ð3:40Þ

are separately the general expressions of coordinate-level membership functions
and component-level consistency functions of flexible properties (concepts) in an n
(n ≥ 1)-dimensional measurement space, where xi is a point coordinate variable,
and xic and xis (i = 1, 2, …, n) are separately the coordinates of cC and sC.

For a flexible class with center point, the general expressions of the point-level
membership function and vector-level consistency function can also be

mCðPÞ ¼
1; P 2 coreðCÞ
rs�dðP;P0Þ

rs�rc
; P 2 bounðCÞ

0; P 62 suppðCÞ

8<
: ð3:41Þ

cCðPÞ ¼ rs � dðP;P0Þ
rs � rc

; P 2 U ð3:42Þ

The general expressions of the coordinate-level membership function and
component-level consistency function can also be

mCðx1; x2; . . .; xnÞ ¼

1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðxi � xi0Þ2
s

� rc

rs�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðxi�xi0 Þ2

p
rs�rc

; rc\

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðxi � xi0Þ2
s

\rs

0; rs �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðxi � xi0Þ2
s

8>>>>>>>>>><
>>>>>>>>>>:

ð3:43Þ

cCðx1; x2; . . .; xnÞ ¼
rs �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðxi � xi0Þ2

q
rs � rc

; ðx1; x2; . . .; xnÞ 2 U ð3:44Þ

Here, P0 is the center point of flexible class C that corresponds to point variable
P, xi0 (i = 1, 2, …, n) is its coordinate, and rc and rs are separately the radius of core
and radius of support set of flexible class C.
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3.6 Flexible Relations (Concepts) and Their Mathematical
Models

Besides flexible properties, there are also “flexible relations” in flexible attributive
concepts (or, in human brain), that is, the flexible concepts on relations between
things, such as “similar,” “analogous,” “approximate,” “approximately equal to,”
“far greater than,” and “good friend” that are all flexible relations (concepts). In this
section, we will discuss the formation principle and mathematical models of flexible
relations (concepts).

3.6.1 Flexible Clustering in a Product Space

A flexible relation (concept) can be formed by using the method of flexible clus-
tering in measurement space U of objects, but in the space U, it is difficult or even
impossible to directly realize flexible clustering based on the relation of objects.
However, we know that a subset of Cartesian product S1 × S2 × ��� × Sn stands for
an n-ary relation. Then, analogously, a flexible subset of product space Un can stand
for an n-ary flexible relation. That is to say, doing flexible clustering in product
space Un, we can just obtain the flexible classes standing for the flexible relations
between points in U. Then, generally, to do flexible clustering in product space
U1 × U2 × ��� × Un (Ui is a ki (ki ≥ 1)-dimensional measurement space, i = 1, 2,
…, n), we can obtain more general flexible classes representing flexible relations.

Next, we consider the problem of flexible clustering in a product space.
It can be seen that when U is a one-dimensional space, it is very easy to do

flexible clustering in product space Un. As a matter of fact, here n-dimensional point
(x1, x2, …, xn) 2 Un is also a group of n-ary one-dimensional points, and x1, x2, …,
xn are not coordinates but points in one-dimensional space U. Thus, any flexible
class in product space Un can be seen as a flexible class representing a certain
flexible relation. As, thus, any multidimensional flexible class representing a flex-
ible property can also be viewed as a flexible class representing a certain flexible
relation (of course, for one and the same multidimensional flexible class, the
flexible property and the flexible relation represented by which are two different
flexible concepts, and the names of the two are not the same either). That means to
do flexible clustering arbitrarily in an n(n > 1)-dimensional product space Un, and
the flexible classes obtained are all seen as a flexible class representing a certain
flexible relation (of course, which can also be seen as a flexible class representing a
certain flexible property).

However, when U is a multidimensional space, it is difficult to do flexible
clustering in product space Un. For example, when U is a two-dimensional space,
how is flexible clustering to be conducted in U × U? Even the shapes of the flexible
classes therein are all hard to image. As to further doing flexible clustering in more
general product space U1 × U2 × ��� × Un, it is even more difficult.
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Since the flexible clustering based on relation focuses on a certain relation
between points but not the property of points, it is not as direct and visual as flexible
clustering based on property. Therefore, though theoretically speaking, to do
flexible clustering in a product space, we can obtain corresponding flexible relations
(concepts), and how it is to be done is hard to formulate.

There is another problem, that is, although in an n(n > 1)-dimensional product
space Un, flexible clustering can be done arbitrarily; what flexible relations (con-
cepts) do flexible classes thus obtained stand for? Obviously, most are hard to
formulate. And for those flexible classes with practical meanings, how the mem-
bership functions are to be obtained is also a problem.

Actually, just as a flexible property (concept) is the result of human brain
clustering and summarizing related properties that are continuously distributed, a
flexible relation (concept) is the result of human brain clustering and summarizing
related relations that are continuously distributed. For this reason, we need to look
for a kind of space that can directly characterize the continuous distribution of the
relation between objects.

3.6.2 Space Transformation and the Formation
of a Flexible Relation (Concept)

In the following, we take “similar” relation as an example to further analyze and
discuss the formation principle and mathematical models of a flexible relation
(concept).

Analyzing carefully the semantics of “similar,” it can be seen that “similar” is
actually reaching or exceeding “same” to a certain degree. Therefore, we can take
sameness-degree as a measure of the strengths of sameness between objects. Thus,
“similar” is a flexible concept on the range of sameness-degrees. From Sect. 2.1.2,
it is known that the range of sameness-degrees is [0, 1], so on which flexible
clustering can be done, and further, a flexible class standing for “similar” can be
obtained and so can its membership function and consistency function.

Let s 2 [0, 1] be a sameness-degree and w0, w1 2 [0, 1] be separately the critical
point and core–boundary point of “similar,” and then,

msimilarðsÞ ¼
1; w1 � s� 1
s�w0
w1�w0

; w0\s\w1

0; 0� s�w0

8<
: ð3:45Þ

csimilarðsÞ ¼ s� w0

w1 � w0
; s 2 ½0; 1� ð3:46Þ

are separately the membership function and consistency function of “similar” on the
range [0, 1] of sameness-degrees (whose graphs are shown in Fig. 3.18).
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Thus, we obtain the flexible relation (concept) of “similar” by flexible clustering
in one-dimensional measurement space [0, 1] and establish its mathematical
models. However, that is only a conceptual mathematical model, and we still need
to further derive the mathematical models of “similar” in the practical measurement
space.

Let U be an n-dimensional measurement space, x = (x1, x2, …, xn), and y = (y1,
y2, …, yn) 2 U, and by the definition and computation formula of sameness-degree
given in Sect. 2.1.2, we have

sðx; yÞ ¼ 1� dðx; yÞ
r

where r is a reference distance, generally taking the maximum value of the dis-
tances between points within a certain scope, here taking r ¼ max

x;y2U
dðx; yÞ, whereas

distance d x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðxi � yiÞ2
q

is the Euclidean distance. Thus, substituting

s = s(x, y) into expression s�w0
w1�w0

, we have

sðx; yÞ � w0

w1 � w0
¼

1� dðx;yÞ
r

� �
� w0

w1 � w0

Thus,

msimilarðx; yÞ ¼
1; w1 � 1� dðx;yÞ

r � 1
1�dðx;yÞ

rð Þ�w0

w1�w0
; w0\1� dðx;yÞ

r \w1

0; 0� 1� dðx;yÞ
r �w0

8>><
>>:

ð3:47Þ

csimilarðx; yÞ ¼
1� dðx;yÞ

r

� �
� w0

w1 � w0
; 1� dðx; yÞ

r
2 ½0; 1� ð3:48Þ

They are the point-level membership function and vector-level consistency
function of “similar” on product space U × U.

m, c

1

0
0 w0 w1     1 s

Fig. 3.18 An illustration of
the membership function and
consistency function of
flexible relation (concept)
“similar”
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Further, substituting x = (x1, x2, …, xn) and y = (y1, y2, …, yn) into the above
expressions, we have

msimilarðx1; x2; . . .; xn; y1; y2; . . .; ynÞ

¼

1; w1 � 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðxi�yiÞ2

p
r � 1

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðxi�yiÞ2

p
r

� �
�w0

w1�w0
; w0\1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðxi�yiÞ2

p
r \w1

0; 0� 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðxi�yiÞ2

p
r �w0

8>>>>>>><
>>>>>>>:

ð3:49Þ

csimilar x1; x2; . . .; xn; y1; y2; . . .; ynð Þ

¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðxi�yiÞ2

p
r

� �
� w0

w1 � w0
; 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðxi � yiÞ2

q
r

2 ½0; 1�
ð3:50Þ

They are the coordinate-level membership function and component-level con-
sistency function of “similar” on product space U × U.

In particular, when U = [a, b], the r = b − a and the dðx; yÞ ¼ x� yj j, and thus,

msimilarðx; yÞ ¼
1; w1 � 1� x�yj j

b�a � 1
1� x�yj j

b�að Þ�w0

w1�w0
; w0\1� x�yj j

b�a \w1

0; 0� 1� x�yj j
b�a �w0

8>><
>>:

ð3:51Þ

csimilarðx; yÞ ¼
1� x�yj j

b�a

� �
� w0

w1 � w0
; 1� x� yj j

b� a
2 ½0; 1� ð3:52Þ

These two functions are separately a point-level membership function and a
vector-level consistency function and also a coordinate-level membership function
and component-level consistency function separately.

We notice that msimilar(x1, x2,…, xn, y1, y2,…, yn) and csimilar(x1, x2,…, xn, y1, y2,
…, yn) are functions on a multidimensional space. So the variable substitutions
above makes the above flexible linguistic value “similar” on one-dimensional space
[0, 1] extended to multidimensional space U × U, thus, the flexible relation (con-
cept) of “similar” also becomes a flexible concept on multidimensional space;
moreover, the flexible class that “similar” denotes is a flexible subset R of product
space U × U.

Now, we see that relation “similar” is originally between two objects, but which
is hard to be obtained directly by flexible clustering in measurement space U of
objects or product space U × U. However, we transform every ordered pair (x, y) 2
U × U to a real number s = s(x, y) through the measure of sameness-degree, thus
obtaining one-dimensional space [0, 1] from product space U × U; then, we obtain
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flexible concept “similar” on [0, 1] by flexible clustering and establish its mathe-
matical models; next, we extend the mathematical models of “similar” on
one-dimensional space [0, 1] to product space U × U through sameness-degree
(function) s = s(x, y), which is tantamount to transforming back “similar” from
one-dimensional space [0, 1] to product space U × U, making it into a flexible
concept on the latter.

It can be seen that in the formation process of the flexible concept “similar,”
sameness-degree s = s(x, y) plays a key role of a “bridge.” Actually,
sameness-degree s = s(x, y) is also a mapping or transformation. It is just this
mapping that transforms product space U × U into one-dimensional space [0, 1]
that makes this flexible concept of “similar” to be formed and then also makes it
returned to product space U × U and original space U.

Actually, to put it another way, “similar” is also “slightly different.” Thus,
“similar” can also be defined on difference-degree range [0, 1], or even defined
directly on distance range [0, b]. That is to say, we can use multiple kinds of
measures and transformations to establish the mathematical models of one and the
same flexible relation (concept). Of course, these expression forms of mathematical
models in different measures and transformations are not the same.

From the formation process of the flexible concept of “similar,” we see that the
formation of a flexible relation (concept) is tantamount to a process of going to a
one-dimensional measurement space from a product space and then returning back
to the product space from the one-dimensional measurement space. Therefore, the
formation principles of a flexible relation (concept) can be shown in Fig. 3.19. In
the figure, Ui is a ki (ki ≥ 1)-dimensional measurement space, Pi 2 Ui (i = 1, 2, …,
n), and v = φ (P1, P2, …, Pn) are a certain measure about points P1, P2, …, Pn, that
is, a certain kind of transformation from product space U1 × U2 × ��� × Un to
one-dimensional space [a, b]; R is the corresponding flexible relation (concept).

3.6.3 Universal Mathematical Models of Flexible Relations
(Concepts)

From the formation principle of flexible relations (concepts), we obtain the uni-
versal mathematical models of them.

v=ϕ (P1, P2,…, Pn)

Flexible clustering(P1, P2,…, Pn) RU1×U2 ×…×Un [a, b] 
v=ϕ

Fig. 3.19 Diagram of the formation principle of a flexible relation (concept)
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1. General expressions of the membership function and consistency function
of binary flexible relations

mRðP1; P2Þ ¼

0; a�uðP1; P2Þ� s�R
uðP1;P2Þ�s�R

c�R�s�R
; s�R\uðP1;P2Þ\c�R

1; c�R �uðP1; P2Þ� cþR
sþR �uðP1;P2Þ

sþR �cþR
; cþR \uðP1;P2Þ\sþR

0; sþR �uðP1;P2Þ� b

8>>>>>><
>>>>>>:

ð3:53Þ

mRðx; yÞ ¼

0; a�uðx; yÞ� s�R
uðx;yÞ�s�R
c�R�s�R

; s�R\uðx; yÞ� c�R
1; c�R �uðx; yÞ� cþR
sþR �uðx;yÞ
sþR �cþR

; cþR \uðx; yÞ� sþR
0; sþR �uðx; yÞ� b

8>>>>>><
>>>>>>:

ð3:54Þ

cRðP1; P2Þ ¼ min
uðP1;P2Þ � s�R

c�R � s�R
;
sþR � uðP1;P2Þ

sþR � cþR

� �
; uðP1; P2Þ 2 ½a; b�

ð3:55Þ

cRðx; yÞ ¼ min
uðx; yÞ � s�R
c�R � s�R

;
sþR � uðx; yÞ
sþR � cþR

� �
; uðx; yÞ 2 ½a; b� ð3:56Þ

where P1 2 U1, P2 2 U2, (P1, P2) 2 U1 × U2, and φ(P1, P2) is a measure about
point variables P1 and P2; c�R , c

þ
R and s�R , s

þ
R are separately the core–boundary

points and critical points of flexible relation R on range [a, b] of measures, and
x and y are separately the coordinate variables of P1 and P2.

2. General expressions of the membership function and consistency function
of n-ary flexible relations

mRðP1; . . .;PnÞ ¼

0; a�uðP1; . . .;PnÞ� s�R
uðP1;...;PnÞ�s�R

c�R�s�R
; s�R\uðP1; . . .;PnÞ\c�R

1; c�R �uðP1; . . .;PnÞ� cþR
sþR �uðP1;...;PnÞ

sþR �cþR
; cþR \uðP1; . . .;PnÞ\sþR

0; sþR �uðP1; . . .;PnÞ� b

8>>>>>><
>>>>>>:

ð3:57Þ
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mRðx1; . . .; xnÞ ¼

0; a�uðx1; . . .; xnÞ� s�R
uðx1;...;xnÞ�s�R

c�R�s�R
; s�R\uðx1; . . .; xnÞ� c�R

1; c�R �uðx1; . . .; xnÞ� cþR
sþR �uðx1;...;xnÞ

sþR �cþR
cþR \uðx1; . . .; xnÞ� sþR

0; sþR �uðx1; . . .; xnÞ� b

8>>>>>><
>>>>>>:

ð3:58Þ

cRðP1; . . .;PnÞ ¼ min
uðP1; . . .;PnÞ � s�R

c�R � s�R
;
sþR � uðP1; . . .;PnÞ

sþR � cþR

� �
;

u P1; . . .;Pnð Þ 2 ½a; b�
ð3:59Þ

cRðx1; . . .; xnÞ ¼ min
uðx1; . . .; xnÞ � s�R

c�R � s�R
;
sþR � uðx1; . . .; xnÞ

sþR � cþR

� �
;

uðx1; . . .; xnÞ 2 ½a; b�
ð3:60Þ

where Pi 2 Ui (i = 1, 2, …, n), (P1, …, Pn) 2 U1 × U2 × ���×Un, and φ(P1, …,
Pn) is a measure about point variables P1, …, Pn; c�R , c

þ
R and s�R , s

þ
R are

separately the core–boundary points and critical points of flexible relation R on
range [a, b] of measures, and x1,…, xn are separately the coordinate variables of
P1, …, Pn.

3.7 Summary

In this chapter, we further considered the flexible clustering and flexible classes in
measurement spaces and revealed the formation principles of multidimensional
flexible concepts and flexible linguistic values and established their mathematical
models. In particular, we presented the universal mathematical models of flexible
properties (concepts) and flexible relations (concepts).

The main points and results of the chapter are as follows:

• There are various ways of flexible clustering in a measurement space, such as
flexible clustering with respect to the partial coordinate components of a point
and flexible clustering with respect to whole point, and the latter can be further
classified as square flexible clustering, circular flexible clustering, point-based
flexible clustering, line-based flexible clustering, plane-based flexible clustering,
etc. The flexible classes obtained are flexible squares, flexible circles, flexible
points, flexible lines, flexible planes, etc., whose geometrical shapes are sepa-
rately flexible squares, flexible circles, flexible spheres, flexible bands, flexible
ropes, flexible plates, etc. These flexible classes stand for various kinds of
multidimensional flexible concepts. Since these flexible geometric bodies as
flexible classes are all formed by the overlapping of a pair of corresponding core
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and support set, the core and support set together can be viewed as the geometric
model of a flexible concept (correspondingly, the membership function and
consistency function can be said to be the algebraic model of a flexible concept).

• Flexible attributive concepts obtained by flexible clustering with respect to
points are generally flexible properties (concepts). The flexible properties
(concepts) on an n(n ≥ 1)-dimensional space have universal mathematical
models.

• Except for special cases, a flexible relation (concept) is hard to be directly
obtained from flexible clustering in the corresponding product measurement
space, so we need to employ the method of space transformation to indirectly
obtain its mathematical model. The flexible relations (concepts) have also uni-
versal mathematical models.
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Chapter 4
Modeling of Flexible Concepts

Abstract This chapter discusses the methods of the determination and acquisition
of the membership functions and consistency functions of known flexible concepts
and discusses the dynamics and polymorphism of mathematical models of a flexible
concept.

Keywords Flexible concepts � Mathematical models � Membership function �
Consistency function

In Chaps. 2 and 3 we revealed the formation principle of flexible concepts and
presented their general mathematical models. In this chapter, we further discuss the
modeling methods of flexible concepts, that is, how the core and support set as well
as the membership function and consistency function of a given or known flexible
concept can be determined and acquired. For convenience of stating, we shorten the
membership function and consistency function as membership-consistency func-
tions in what follows.

4.1 Determination of Measurement Space and Directly
Modeling

We know that the determination of the core and support set as well as the
membership-consistency functions of a flexible concept actually also is reduced to
the determination of its core–boundary points (lines and planes) and critical points
(lines and planes). While to determine these parameters, we need to determine the
measurement space of corresponding feature firstly.

Any feature of objects has either numerical values or linguistic values, or both.
The numerical values are a certain kind of measurement, and non-symbolic lin-
guistic values are then the summarization of a batch of numerical values. If a feature
of objects has already a measure, then the range of values of the measure is the
range of numerical values of this feature. If a feature has not a measure (for
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instance, the feature of “attitude toward learning” can have linguistic values:
“conscientious,” “not conscientious,” etc., but generally it has no a measure), then
we can define its measure by the characteristics of the feature or the semantics of
corresponding linguistic value. For instance, those of the previous sameness-degree
and difference-degree are just done in this way. Of course, there exist some features
whose objective measure may be difficult to find. For these features, we can use the
method of marking subjectively to acquire their numerical values. Given a measure,
the measurement space of corresponding feature also be got, and then, we can
define corresponding flexible linguistic values on it.

As to how to determine the core–boundary points (lines and planes) and critical
points (lines and planes) of a flexible concept, we give some methods in the
following for Ref. [1].

1. “Personal preference” method
The so-called personal preference is to give the core–boundary points (lines and
planes) and critical points (lines and planes) of a corresponding flexible concept
according to one’s personal subjective understanding. Of course, for the flexible
concept with a center point (lines and planes), if the center of core, the radius of
core and the radius of support set can be given, then the corresponding core–
boundary points (lines and planes) and critical points (lines and planes) can also
be derived. Personal preference method is suitable for the modeling of the
related flexible concepts in the specified fields. The parameters of the core–
boundary points (lines and planes) and critical points (lines and planes) can be
directly given by domain experts from their knowledge and experience.

2. “Statistics from a group” method
The so-called statistics from a group is to collect a certain amount of “public
opinion” data by consulting in a certain number and part of the population, then
using mathematical statistical method to determine the parameters of core–
boundary points (lines and planes) and critical points (lines and planes). For
example, the values that mostly frequently occur or the mathematical expecta-
tion of the parameter variable, that is, the mean value, can be used as the value
of the corresponding parameter. The method of statistics from a group is suitable
for the modeling of the ordinary flexible concepts in daily language. Therefore,
this method can be used in natural language processing to determine those cores
and support sets as well as membership-consistency functions of the related
flexible concepts.

3. “Derivation with instances” method
This method is to derive the membership-consistency functions of a flexible
concept from several instances of this flexible concept, for example, according
to the heights of a class of students and the corresponding membership-degrees
to “tall” to derive the membership function of “tall.” In this method, we can use
function fitting or piecewise function fitting, and solving the corresponding
simultaneous equation to obtain core–boundary points and critical points.
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4. “Generation by translating” method
The so-called generation by translating is using the related parameters of the
known linguistic values and the relation between the known linguistic values
and the targeted linguistic values to derive the related parameters of the targeted
linguistic values through translation transformation and then obtain the corre-
sponding membership-consistency functions, or directly doing translation
transformation of the original linguistic values to derive the
membership-consistency functions of the targeted linguistic values. This method
is generally fit for the modeling of superposed linguistic values (which is to do
so in Sect. 7.1), but it can also be conversely used, that is, from the
membership-consistency functions of a superposed linguistic value to derive the
membership-consistency functions of the original linguistic value through
translation transformation.

Finally, it should be noted that although speaking for single flexible concept, its
core–boundary points (lines and planes) and critical points (lines and planes) need
to determined, for a group of flexible concepts A1, A2, …, An of the corresponding
partition of a space, only the core–boundary points (lines and planes) of all flexible
concepts need to be determined. Because in this case, the negative core–boundary
point c�Ai

of flexible concept Ai is just the positive critical point sþAi�1
of flexible

concept Ai−1, and the positive core–boundary point cþAi
of flexible concept Ai is just

the negative critical point s�Aiþ 1
of flexible concept Ai+1.

4.2 Space-Transforming Method

4.2.1 Space-Transforming Method for the Modeling
of a Flexible Relation (Concept)

Actually, the formation principle of flexible relations (concepts) in Sect. 3.6 also
gave a general method for acquiring mathematical models of flexible relations
(concepts), that is, first utilize the expression of definition of corresponding measure
to transform a flexible relation on a multidimensional product space into a flexible
concept on a one-dimensional measurement space (i.e., a range of numerical feature
values) and modeling for it, then transform conversely the mathematical models
obtained back to the original multidimensional space. In consideration of the
characteristic, we call this method of modeling of flexible relations (concepts) to be
the space-transforming method, the concrete steps of which are as follows:

① Select or define an appropriate measure v = φ(P1, P2, …, Pn) according
to the semantics of relation R (Pi ∊ Ui is a point variable, Ui is a ki
(ki ≥ 1)-dimensional space, i = 1, 2, …, n), take v = φ(P1, P2, …, Pn) as
a function on product space U1 × U2 × ��� × Un, determine its range
U and treat U as the measurement space that R belongs to.
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② Define flexible concept R on U by flexible clustering and obtain the
corresponding membership-consistency function mR(v) and cR(v).

③ Substitute v = φ(x1, x2, …, xn) (xi is the coordinate variable of Pi, i =
1, 2, …, n) into mR(v) and cR(v) as well as the corresponding core–
boundary points and critical points, then obtaining immediately the
membership-consistency function mR(x1, x2, …, xn) and cR(x1, x2, …,
xn) as well as the corresponding core and support set of R on product
space U1 × U2 × ��� × Un.

Example 4.1 “Approximately equal” is a flexible relation (concept) between real
numbers. Try to find its membership-consistency function by using
space-transforming method.

Solution “Approximately equal” is reaching or exceeding “equal” to a certain
degree. Then, how is the degree of equality between two numbers portrayed? We
know that if two numbers having same sign are approximately equal then their ratio

is close to 1, and vice versa. Thus, z ¼ n1
n2

(n1 and n2 have same sign and n1j j\ n2j j)
can be treated as a measure that portrays the degree of the equality between two
numbers and we may as well call it as equality-degree. Obviously, the range of this
equality-degree is interval (0, 1], which can be called the equality-degree range.
Then, from the semantics, “approximately equal” can be a flexible concept on range
(0, 1] of equality-degrees. Let the membership function of “approximately equal”
on (0, 1] be as follows

mapproximately equalðzÞ ¼
0; 0\z\z1

z� z1
z2 � z1

; z1\z\z2

1; z2\z\1

8><
>: ð4:1Þ

where z1 and z2 are separately the critical point and core–boundary point of “ap-
proximately equal,” the graph of function is shown in Fig. 4.1.

The corresponding consistency function is

capproximately equalðzÞ ¼ z� z1
z2 � z1

; 0\z\1 ð4:2Þ

mapproximately equal(z) 
m

1

0
0 z1 z2 1            z

Fig. 4.1 An example of the
membership function of
“approximately equal” on
range of equality-degrees

84 4 Modeling of Flexible Concepts



Now, for arbitrary x, y 2 (−∞, 0) or (0, +∞), when xj j\ yj j, substitute z ¼ x
y

into the expression at right side of Eq. (4.1); then, it follows that

mapproximately equalðx; yÞ ¼
0; 0\ x

y � z1
x
y � z1
z2 � z1

; z1\ x
y\z2

1; z2 � x
y\1

8>><
>>:

ð4:3Þ

when xj j[ yj j, substitute z ¼ y
x into the expression at right side of Eq. (4.1), then it

follows that

mapproximately equalðx; yÞ ¼
0; 0\ y

x � z1
y
x � z1
z2 � z1

; z1\ y
x\z2

1; z2 � y
x\1

8>><
>>:

ð4:30Þ

These two functional expressions joined together are just the membership function
of “approximately equal” on product space (−∞, +∞) × (−∞, +∞) (a part of its
graph is shown in Fig. 4.2).

And the corresponding consistency function is

capproximately equalðx; yÞ ¼

x
y � z1
z2 � z1

; 0\ x
y\1

y
x � z1
z2 � z1

; 0\ y
x\1

8>><
>>:

ð4:4Þ

Fig. 4.2 An example of the membership function of “approximately equal” on product space
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Similarly, by transformations z ¼ x
y and z ¼ y

x as well as the original critical point
z1 and core–boundary point z2 of “approximately equal,” we can obtain the critical
line and core–boundary line of “approximately equal” in two-dimensional space
(−∞, +∞) × (−∞, +∞) separately as

y ¼ 1
z1
x; y ¼ z1x

and

y ¼ 1
z2
x; y ¼ z2x

The core and support set enclosed by them are shown in Fig. 4.3.
Of course, we can also put it another way—“approximately equal” is “difference

being very small.” Thus, the “approximately equal” can also be defined on range
[0, 1] of difference-degrees, or even directly be defined on range [0, b] of distances.

Example 4.2 Try to give the membership-consistency function of the “far greater
than” relation between two numbers on interval [a, b].

Solution “Far greater than” should be reaching or exceeding “greater than” to a
certain degree, so we define measure z ¼ x�y

b�a (x, y ∊ [a, b], x ≥ y) as greater than
degree. It is not hard to see that the corresponding range of measurements, that is,
the range of greater than degree, is [0, 1], while “far greater than” is a flexible
concept on the range [0, 1] of greater than degrees. Let its membership function be

Fig. 4.3 Core and support
set of “approximately equal”
in two-dimensional space
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mfar greater thanðzÞ ¼
0; 0� z� z1

z� z1
z2 � z1

; z1 � z� z2

1; z2 � z� 1

8><
>: ð4:5Þ

and the consistency function be

cfar greater thanðzÞ ¼ z� z1
z2 � z1

; z 2 ½0; 1� ð4:6Þ

where z1 and z2 are separately the critical point and core–boundary point of “far
greater than.”

Substitute z ¼ x�y
b�a into the above two expressions, we have

mfar greater thanðx; yÞ ¼
0; 0� x�y

b�a � z1
x�y
b�a � z1
z2 � z1

; z1\ x�y
b�a\z2

1; z2 � x�y
b�a � 1

8>><
>>:

ð4:7Þ

cfar greater thanðx; yÞ ¼
x� y
b� a

� z1

z2 � z1
;

x� y
b� a

2 0; 1½ � ð4:8Þ

They are the membership function and consistency function of “far greater than” on
product space [a, b] × [a, b] (of course, we can also find the core and support set of
“far greater than” in two-dimensional space [a, b] × [a, b]). Using them, we can
compute the degree of x far greater than y in interval [a, b].

In the above, we introduced space-transforming method for the modeling of a
flexible relation (concept). However, there exist such flexible relations, which
cannot be represented into the flexible relations between numerical feature values or
feature vectors of related entity objects. For example, “friend relation” is just such a
flexible relation. Obviously, we cannot use a certain measurement to stand for a
person to define the fried relation between people. Then, how do we establish
models for this kind of flexible relations? For this kind of flexible relations, we can
use the method similar to space transforming to modeling.

In fact, we can use directly numbers to represent the relation between entity
objects, that is, defining a measure of corresponding relations between objects (for
example, we can give a mark to the friend relation between two people), then define
the flexible relation on the measurement range obtained, and then through “inverse
transforming” to obtain the mathematical models of the flexible relation about
corresponding entity objects.

Concretely speaking, let R be an n-ary flexible relation between entity objects
which cannot be represented by numbers. Then, we define measure v = φ(o1,
o2, …, on) (oi ∊ Ei is entity object, Ei is a set of entity objects, i = 1, 2, …, n), then
define flexible relation R on range [a, b] of measure function v = φ(o1, o2, …, on),
and obtain the corresponding membership-consistency functions mR(v) and cR(v);
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from again measure function v = φ(o1, o2, …, on), we obtain membership-

consistency of flexible relation R on Cartesian product �n
i¼1

Ei:

mR o1; o2; . . .; onð Þv
� � ¼ mRðvÞ ð4:9Þ

cR o1; o2; . . .; onð Þv
� � ¼ cRðvÞ ð4:10Þ

the corresponding support set and core are

supp Rð Þ ¼ ojo 2 �n
i¼1

Ei; 0\mR oð Þ� 1
� �

ð4:11Þ

core Rð Þ ¼ ojo 2 �n
i¼1

Ei;mR oð Þ¼ 1
� �

ð4:12Þ

where o = (o1, o2, …, on).
Of course, if viewed object group (o1, o2, …, on) as one object, then relation R is

a property of (o1, o2, …, on). At that time, we can use measurement v in place of
(o1, o2, …, on) and take directly mR(v) and cR(v) as membership-consistency
functions of R.

4.2.2 Space-Transforming Method for the Modeling
of a Multidimensional Flexible Property (Concept)

In Chap. 3, we have discussed the formation principle and mathematical models of
multidimensional flexible properties (concepts), and given the general expressions
of the membership-consistency functions of flexible properties (concepts).
However, we see that if according to the formation principle we modeled for a
multidimensional flexible property (concept) using flexible clustering in multidi-
mensional space, then the computation would be tedious and which would be hard
to realize with the increase of the dimensions of the space. Even if directly using the
general expressions of the membership-consistency functions of multidimensional
flexible properties (concepts), there still exist difficult. Because the precondition of
using these general expressions is that the corresponding flexible class already is
known, but the flexible classes of those usually known flexible properties are often
unknown. Then, are there other methods for the modeling of the multidimensional
flexible properties (concepts)?

Actually, we find that the above-stated method of space transforming for the
modeling of flexible relations (concepts) can also be applied to the modeling of the
multidimensional flexible properties (concepts). Next, we take flexible property
(concept) “near the point P0” on multidimensional space U as an example to
illustrate the approach in detail.
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It can be seen that whether in one-dimensional space or multidimensional space,
“near” is always a kind of flexible linguistic value that characterizes distance.
Therefore, range D = (0, b] of distances (based on a certain unit of length) is the
direct measurement space of flexible concept “near.” Thus, we can define the
membership-consistency functions of “near” on range D of distances.

Let

mnearðzÞ ¼
1; 0\z� z1

z2�z
z2�z1

; z1\z\z2
0; z2 � z

8<
: ð4:13Þ

cnearðzÞ ¼ z2 � z
z2 � z1

; z 2 D ð4:14Þ

here, z ∊ D is distance, z1 and z2 are separately the core–boundary point and critical
point of “near.” The graph of the membership function is shown in Fig. 4.4.

We know that in multidimensional space U, for any point P(x) ∊ U, distance

dðP;P0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 xi � x0ð Þ2
q

. Thus, set

z ¼ d P;P0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

xi � x0ð Þ2
s

ð4:15Þ

Then, substitute this expression into the above expressions (4.9) and (4.10), and
then we have

mnear x1; x2; . . .; xnð Þ ¼

1; 0\

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðxi � x0Þ2
s

� z1

z2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðxi�x0Þ2

p
z2�z1

; z1\

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðxi � x0Þ2
s

\z2

0; z2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðxi � x0Þ2
s

8>>>>>>>>>><
>>>>>>>>>>:

ð4:16Þ

m

1

0
0 z1 z2 b x

mnear(z) 

Fig. 4.4 Membership
function of flexible linguistic
value “near” on range of
distances
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cnear x1; x2; . . .; xnð Þ ¼
z2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 xi � x0ð Þ2

q
z2 � z1

; x1; x2; . . .; xnð Þ 2 U ð4:17Þ

They are the membership-consistency functions of flexible concept “near the point
P0” on multidimensional space U. Besides, we can also consider the core and
support set of “near the point P0” in multidimensional space U.

If the radius of core and radius of support set of “near” are already known, then
the membership-consistency functions of “near the point P0” can also be rewritten
as

mnear x1; x2; . . .; xnð Þ ¼

1; 0\

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

xi � x0ð Þ2
s

� r1

r2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
xi�x0ð Þ2

p
r2�r1

; r1\

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

xi � x0ð Þ2
s

\r2

0; r2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðxi � x0Þ2
s

8>>>>>>>>>><
>>>>>>>>>>:

ð4:18Þ

cnear x1; x2; . . .; xnð Þ ¼
r2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðxi � x0Þ2

q
r2 � r1

; x1; x2; . . .; xnð Þ 2 U ð4:19Þ

It can be seen that these two functions are the same as the
membership-consistency functions of “near the point P0” in Sect. 3.4.

The above two functional expressions are actually also the common expressions
of the membership-consistency functions of “near the point P0.” Core–boundary
point and critical point z1 and z2, and radius of core and radius of support set r1 and
r2 in the expressions are all adjustable parameters, and for different practical
problems, values of different meanings and sizes should be given to characterize the
concept of “near” of different scales. For example, for “near the sun,” radii r1 and r2
are several tens of thousands of kilometers, for “near the Milky Way Galaxy,” r1
and r2 are several light years, for “near city A,” r1 and r2 are several kilometers, and
for “near the nucleus,” r1 and r2 are just several nanometers.

It can be seen that the key of the above-stated modeling method is the equation

z ¼ d P;P0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðxi � x0Þ2
s

It actually is a transformation from multidimensional space U to one-dimensional
distance space D = [0, b]. It is just this transformation that transforms multidi-
mensional space U to one-dimensional space [0, b], thus changing “near” on
multidimensional space U into “near” on one-dimensional space [0, b]; then, it also
transforms inversely the membership-consistency functions of the latter into those
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of the former. Therefore, the modeling method of multidimensional flexible
attributive concept “near the point P0” is also space-transforming method.

From this example, it can be seen that the space-transforming method can also be
used in the modeling of multidimensional flexible properties (concepts). The
specific steps are similar with minor differences to the space-transforming method
in the modeling of flexible relations (concepts).

Let A be a known multidimensional flexible property (concept), we can obtain its
membership-consistency functions by the following steps and method:

① Select or define appropriate measure u ¼ wðPÞ by the semantics of A (P ∊ U is
a point variable, U is an n(n > 1)-dimensional space), treat u ¼ wðPÞ as a
function on multidimensional space U, and determine the range V of it, and
then treat V as the measurement space that A belongs to.

② Define flexible concept A on V by flexible clustering, obtaining the corre-
sponding membership-consistency functions mA(u) and cA(u).

③ Substitute u ¼ w(x1, x2, …, xn) (x1, x2, …, xn are the coordinate variables of
point P) into mA(u) and cA(u) as well as the corresponding core–boundary
point and critical point, then obtaining immediately membership-consistency
functions mA(x1, x2, …, xn) and cA(x1, x2, …, xn) as well as the corresponding
core and support set of A on multidimensional space U.

Thus, the space-transforming method is also a common method for the modeling
of multidimensional flexible concepts.

For the space-transforming method, we need also to make some explanation
here.

We know that a one-dimensional point and its coordinate are the same real
number, so a flexible concept on one-dimensional measurement space U is also the
summarization of a set of numerical values on U. For example, “hot” is the sum-
marization of a set of temperatures, “tall” is the summarization of a set of heights,
and “old” is the summarization of a set of ages, etc. Therefore, the
membership-consistency functions of flexible concepts on one-dimensional mea-
surement spaces are all the direct functions of corresponding measures. However, a
point on a multidimensional space is no more single real number but a vectors (x1,
x2, …, xm) consisting of multiple real numbers, so a flexible property (concept) on
multidimensional space U is the summarization of properties stood for by a batch of
vectors on U rather than the direct summarization of vector’s components or point’s
coordinates x1, x2, …, xm, while a flexible relation (concept) is even more the
summarization of the relation stood for by a batch of “tuple of vector” on product
space U1 × U2 × ��� × Un rather than the direct summarization of members v1,
v2, …, vn of vector tuples. Therefore, nor are the membership-consistency functions
of flexible concepts on multidimensional spaces the direct functions of corre-
sponding measures. For instance, flexible concept “near the point P” on a
two-dimensional space can be stood for by a two-dimensional flexible class (a
flexible circle), but this “near” is for the whole of two-dimensional point (x,
y) rather than directly for point coordinates x and y. Therefore, the
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membership-consistency functions of “near the point P” are not the direct functions
of x and y, either. For another instance, the flexible relation (concept) of “ap-
proximately equal” can be stood for by a two-dimensional flexible class (a flexible
band), but this “approximately equal” is for the relation between x and y in
two-dimensional point (x, y) rather than directly for point coordinates x and
y. Therefore, the membership-consistency functions of “approximately equal” are
not the direct functions of x and y. For this reason, we need to use the
space-transforming method to indirectly obtain the membership-consistency func-
tions of flexible concepts on a multidimensional space.

4.3 Variable Substitution and Extended
Membership-Consistency Functions

Definition 4.1 Let mA(u) and cA(u) be the membership-consistency functions of
flexible concept A, and u be the function of variables x1, x2, …, xn, namely u = f(x1,
x2, …, xn). Then, functions

mA f x1; x2; . . .; xnð Þð Þ ¼ mA x1; x2; . . .; xnð Þ
cA f x1; x2; . . .; xnð Þð Þ ¼ cA x1; x2; . . .; xnð Þ

are called the extended membership-consistency functions of flexible concept A.

Example 4.3 Suppose “excellent” is a flexible linguistic value on the range [0, 100]
of learning achievements, and whose membership function is mexcellent(u). Also, it is
known that the learning achievement u is the average of exam scores x, y, and z of
three courses A, B, and C, namely

u ¼ xþ yþ z
3

Then, substitute that expression into mexcellent uð Þ, we have

mexcellent uð Þ ¼ mexcellent
xþ yþ z

3

� �
¼ mexcellent x; y; zð Þ

The function is a function about scores x, y, and z, which is just the extended
membership function of “excellence.”

Extended membership-consistency functions are needed in some practical
problems yet. From the mathematical point of view, the extended
membership-consistency function of a flexible concept is obtained by variable
substitution u = f(x1, x2, …, xn) from its original membership-consistency
functions.

92 4 Modeling of Flexible Concepts



Example 4.4 Find the membership-consistency functions and extended
membership-consistency functions of an “approximate right triangle.”

Solution We know that the right-angle in a right triangle is certainly a maximum
angle. Therefore, an approximate right triangle is the triangle whose max angle is
approximate to 90°. So this problem is also to obtain the membership-consistency
functions of “a triangle whose max angle is approximate to 90°.” Thus, we firstly
find the membership-consistency functions of the flexible concept of “approximate
to 90°” (simply ap90). It is not hard to see that the measurement range corre-
sponding to ap90 is interval [0, 180], and ap90 is a flexible class on space [0, 180].
Since the max angle of a triangle is certainly not smaller than 60°, so we take 60°
and 120°as the critical points and 80°and 100°as the core–boundary points. Thus,
the membership-consistency functions of ap90 are

map90ðhÞ ¼

0; 0� h� 60
h�60
20 ; 60\h\80
1; 80� h� 100

120�h
20 ; 100\h\120
0; 120� h� 180

8>>>><
>>>>:

ð4:20Þ

cap90ðhÞ ¼
h�60
20 ; h� 90

120�h
20 ; 90� h

�
ð4:21Þ

From the above analysis, these two functions are the membership-consistency
functions of “approximate right triangle,” where h ¼ maxfx; y; zg; and x, y, and
z are separately the degrees of three internal angles of a triangle. Then, substitute
these expressions into the above expressions (4.16) and (4.17), we have

map90 x; y; zð Þ ¼

0; max x; y; zf g� 60
max x;y;zf g�60

20 ; 60\max x; y; zf g\80
1 80�max x; y; zf g� 100

120�max x;y;zf g
20 ; 100\max x; y; zf g\120
0 120�max x; y; zf g

8>>>><
>>>>:

ð4:22Þ

cap90 x; y; zð Þ ¼
maxfx; y; zg � 60

20
; max x; y; zf g� 90

120�maxfx; y; zg
20

; 90�max x; y; zf g

8><
>: ð4:23Þ

The two functions are the extended membership-consistency functions of “ap-
proximate right triangle.”

Example 4.5 Find the membership-consistency functions and extended
membership-consistency functions of an “approximate isosceles triangle.”
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Solution An approximate isosceles triangle is a triangle in which the lengths of two
sides are approximate, that is, the two internal angles are approximate. “Two
internal angles are approximate” also means their difference is approximate to 0°.
Therefore, we firstly find the membership-consistency functions of “approximate to
0°” (simply ap0). According to the problem, we take [0, 180] as the corresponding
measure range. Then, ap0 is a flexible class on space [0, 180]. Suppose its radius of
core and radius of support set separately is 2.5° and 5°, then the
membership-consistency functions of ap0 are

map0ðhÞ ¼
1; 0� h� 2:5

5� h
2:5

; 2:5\h\5

0; 5� h� 180

8><
>: ð4:24Þ

cap0ðhÞ ¼ 5� h
2:5

; 0� h� 180 ð4:25Þ

These are the membership-consistency functions of “approximate isosceles tri-
angle,” where θ = min{|x − y|, |y − z|, |z − x|}, and x, y, and z are separately the
degrees of three internal angles of a triangle. Then, substitute these expressions into
the above expressions (4.24) and (4.25), we have immediately

ms0 x; y; zð Þ ¼
1; 0� h� 2:5

5�min x� yj j; y� zj j; z� xj jf g
2:5

; 2:5\h\5

0; 5� h� 180

8><
>: ð4:26Þ

cs0 x; y; zð Þ ¼ 5�min x� yj j; y� zj j; z� xj jf g
2:5

; 0� h� 180 ð4:27Þ

These are the extended membership-consistency functions of “approximate
isosceles triangle.”

Note that the domain of an extended membership-consistency function cannot
certainly be treated as the measurement space that the corresponding flexible
concept corresponds to.

4.4 Dynamic and Polymorphism of Mathematical Models
of Flexible Concepts

As stated in Sect. 2.2, the cores and support sets of some flexible concepts in
human brain can expand or contract dynamically, and the measurement spaces that
some flexible concepts belong to can also expand or contract dynamically, while
expanding or contracting of a measurement space will also lead to adjusting of the
corresponding cores and support sets or redefining of the corresponding flexible
linguistic values. On the other head, we also find that with different problems one
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and the same flexible concept (i.e., one and the same flexible linguistic value) will
belong to different range of numerical values, or in other words, different mea-
surement spaces. For example, the “tall” of people, the “tall” of trees, and the “tall”
of mountains are all “tall,” but the measurement spaces that such three “tall” belong
to are not same obviously. For another example, the “quick” of people, the “quick”
of cars, and the “quick” of aircrafts are all “quick,” but the measurement spaces that
such three “quick” belong to are not same, either. There is another situation that
some flexible concepts have special denotations except basic denotation. For
example, the “old” of ordinary people and the “old” of sportsman, and the “young”
of ordinary people and the “young” of scientists are in such situations. That one and
the same flexible linguistic value has multiple belonging measurement spaces
means that which has multiple cores and support sets and multiple
membership-consistency functions. We call the characteristic to be the polymor-
phism of a flexible concept, i.e., a flexible linguistic value.

Thus, dynamics and polymorphism are problems encountered in the modeling of
flexible concepts. Dynamics of a flexible concept is reflected in the mathematical
models so that the belonging measurement space of a flexible linguistic value can
change, the core and support set; that is, the domains of membership-consistency
functions can also change; specifically speaking, it is that the values of related
parameters (as s�A ; c

�
A ; c

þ
A and sþA ) can change, that is, these parameters become

variables. If parameters s�A ; c
�
A ; c

þ
A and sþA are also variables, then the corre-

sponding expressions of membership-consistency functions represent separately a
cluster of functions. Polymorphism of a flexible concept is reflected in the math-
ematical models so that one and the same flexible linguistic value corresponds to
multiple measurement spaces, multiple cores and support sets, and multiple
membership-consistency functions. As for the parameters and domains suitable for
dynamic and polymorphism of membership-consistency functions, they need then
to be set and determined according to specific problems, where related domain
knowledge and common sense will be involved.

4.5 Summary

In this chapter, we discussed the methods of the determination and acquisition of
the membership functions and consistency functions of known flexible concepts
and discussed the dynamics and polymorphism of mathematical models of a flex-
ible concept. The main points and results of the chapter are as follows:

• The basic method of the modeling of a flexible concept: first, determine the
corresponding measure and measurement space according to the feature of
things that a target flexible concept belongs to, then, determine the core–
boundary points (lines and planes) and critical points (lines and planes) of the
corresponding flexible concept, and then give the corresponding core and
support set as well as membership-consistency functions.
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• According to corresponding practical problem, we can select one of the methods
of personal preference, statistics from a group, derivation with instances, and
generation by translating to determine core–boundary points (lines and planes)
and critical points (lines and planes) of a flexible concept.

• For flexible relations (concepts) and multidimensional flexible properties
(concepts), we can also adopt space-transforming method to modeling. That is,
first, transform a multidimensional space to a one-dimensional space through a
certain measure, then establish mathematical models for the corresponding
flexible concept on the one-dimensional space, after then transform it back to the
original space. The basic idea of the space-transforming method is “translating
problem,” which, generally speaking, is necessary for flexible relations (con-
cepts), while for multidimensional flexible properties (concepts) it is then a kind
of modeling technique.

• For some flexible concepts, we can firstly find the membership-consistency
functions on the corresponding measurement space, then derive the more
practical extended membership-consistency functional expressions by using the
method of variable substitution.
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Chapter 5
Flexible Sets and Operations
on Flexible Sets

Abstract This chapter founds the fundamental theory of flexible sets. Firstly, it
gives the types and definitions of flexible sets and analyzes and expounds the
relationships and similarities and differences between flexible set and ordinary
(rigid) set, flexible set and fuzzy set, and flexible set and rough set, respectively;
then, it defines the operations on flexible sets and the relationships between flexible
sets. In addition, the concept of flexible relations is also presented.

Keywords Flexible sets � Fuzzy sets � Rough sets � Flexible relations

In Chaps. 2 and 3, we focused on the formation principles of flexible linguistic
values and obtained various flexible classes by flexible clustering in measurement
spaces. In fact, the flexible classes are also a kind of subset of measurement space,
but they are not usual subsets. In this chapter, we will further examine this special
subset from the angle of set theory.

5.1 Types and Definitions of Flexible Sets

We know that a flexible class is the denotative model of a flexible concept. Since
flexible concepts can be classified into flexible attribute concept and flexible entity
concept, flexible classes can also be classified into two types: One type is the
flexible classes corresponding to flexible attribute concepts, each of which consists
of numerical feature values or feature vectors, and we call them the flexible class of
numerical values; the other type is the flexible classes corresponding to flexible
entity concepts, each of which consists of entity objects, and we call them the
flexible classes of entities. Examining the two types of flexible classes (see Chaps. 2
and 3), it can be seen that the common characteristics of flexible classes are as
follows:
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① A flexible class is completely determined by its core and support set;
② The core and boundary of a flexible class are both non-empty;
③ Every element in the core of a flexible class belongs to the flexible class

completely, and every element in the boundary belongs to the flexible class
partially, or in other words, to a certain degree.

And the flexible classes of numerical values have also the following
characteristics:

① The base set that a flexible class of numerical values belongs to is a continuous
measurement space, and the flexible class itself is also continuous (here
“continuous” includes both the “continuous” of real numbers and the “con-
secutive” of integers, and for multidimensional measurement space, it is the
succession and the equidistant distribution of points; the same hereinafter);

② The membership-degree of a point in the core of a flexible class of numerical
values to the flexible class is 1, and the membership-degree of a point in the
boundary to the flexible class is equal numerically to the degree of this point
closing to the corresponding core-boundary point, that is, the degree of
approximation or similarity (strictly, the sameness-degree) between the two.

Besides, a flexible class of entities is always dependent on the corresponding
flexible class of numerical values.

On the basis of the types and characteristics of flexible classes, we introduce the
terminology and concept of flexible sets.

Definition 5.1 Let U be an n-dimensional measurement space as a universe of
discourse, and let S1 and S2 be two non-empty subsets of U. If S1 and S2 are both
continuous and S1 � S2, then S1 and S2 determine a flexible subset A of U; we call
it the flexible set of numerical values, where S1 is called the core of A, denoted core
(A), each member of which belongs to A completely; S2 is called the support set of
A, denoted supp(A); and S2 − S1 is called the flexible boundary of A, denoted boun
(A), each member of which belongs to A to a certain degree that numerically equals
the degree of approximation between the member and the corresponding boundary
point of S1. And set {xjx 2 U; 0:5\mAðxÞ� 1;mAðxÞ is the membership-degree of
x to A} is called the extended core of flexible set A, denoted core(A)+.

It can be seen that the membership-degrees of the objects in core(A) to A should
be all 1, and by the definition (Definition 2.2) of sameness-degree, the
membership-degrees of the objects in boun(A) to A should be between 0 and 1.
Besides, the objects in U − S2 completely do not belong to A, so their
membership-degree to A can only be 0. Thus, flexible set A actually defines a
mapping u from measurement space U to interval [0, 1]. Conversely, if there exists
a mapping u: U ! ½0; 1� satisfying conditions in the above definition, then this
mapping also determines a flexible subset A of U. Thus, we have another definition
of the flexible set.

Definition 5.1′ Let U be an n-dimensional measurement space as a universe of
discourse, u : U ! ½0; 1� be a mapping from U to interval [0, 1], S1 ¼ fxjx 2
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U;uðxÞ ¼ 1g and S2 ¼ fxjx 2 U; 0\uðxÞ� 1g. If the following conditions are
satisfied:

(1) S1 and S2 are both non-empty and continuous;
(2) For 8 x 2 S2 � S1, always 0\uðxÞ\1, and uðxÞ is numerically equal to the

degree of approximation between x and the corresponding boundary point of
S1;

(3) For 8 x 2 U � S2, always uðxÞ ¼ 0;

then set

ðx;uðxÞÞjx 2 U;uðxÞ 2 ½0; 1�f g ¼ A

is called a flexible subset of U, where uðxÞðx 2 UÞ is called the membership
function of A, denoted mA(x). For any x 2 U;mAðxÞ 2 ½0; 1� is called the degree of
x belonging to flexible set A, or simply, the membership-degree of x [1]. Sets
S1 and S2 are separately called the core and support set of flexible set A, denoted
separately core(A) and supp(A), difference S2 − S1 is called the boundary of flex-
ible set A, denoted boun(A). And set fxjx 2 U; 0:5\mAðxÞ� 1g is called the
extended core of flexible set A, denoted core(A)+.

It can be verified that if we take the sameness-degree in Definition 2.1 as the
degree of approximation between two points, then by Definition 5.1′, it can still be
derived that the membership function of flexible set A in one-dimensional mea-
surement space [a, b] is a trapezoidal function, namely

mAðxÞ ¼

0; a� x� s�A
x�s�A
c�A�s�A

; s�A\x\c�A
1; c�A � x� cþA

sþA �x
sþA �cþA

; cþA \x\sþA
0; sþA � x� b

8>>>>><
>>>>>:

ð5:1Þ

Definition 5.2 Let E be a set of entities, and E1 and E2 be two non-empty subsets of
E;E1 � E2, and let v(o) be the feature vector of object o in E, and U be a continuous
measurement space consisting of all v(o). If S1 ¼ fvðoÞjo 2 E1g and S2 ¼
fvðoÞjo 2 E2g can determine a flexible set A in U, then E1 and E2 determine a
flexible set O in E. We call the flexible set O to be the flexible set of entities, where
E1 is called the core of O, denoted core(O), each member of which belongs to
O completely; E2 is called the support set of O, denoted supp(O); and E2 − E1 is
called the flexible boundary of O, denoted boun(O), each member of which belongs
to O to a certain degree that equals the membership-degree of feature vector of the
object to flexible set A of numerical values; that is, mOðoÞ ¼ mAðvðoÞÞ ðo 2
E2 � E1;mOðoÞ is the membership-degree of o to O). And set fojo 2
E; 0:5\mOðoÞ� 1g is called the extended core of flexible set O, denoted core(O)+.

Definition 5.2′ Let E be a set of entities, and v(o) be the feature vector of object
o in E, and let U be a continuous measurement space consisting of all v(o), and S1
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and S2 be two non-empty subsets of U, and S1 � S2. If S1 and S2 can determine a
flexible set A in U, then E1 ¼ fojvðoÞ 2 S1g and E2 ¼ fojvðoÞ 2 S2g determine a
flexible set O in E. We call the flexible set O to be the flexible set of entities, where
E1 is the core of O, and E2 is the support set of O.

Actually, feature vector v(o) also denotes a correspondence relation from set E of
entities to measurement space U (generally speaking, it is a many-to-one corre-
spondence). Thus, the Definitions 5.2 and 5.2′ above can also be simply stated as
the Definition 5.2″ below.

Definition 5.2″ If A = v(O) is a flexible set of numerical values in U, then
O = v−1(A) is a flexible set of entities in corresponding set E of entities (here
v−1(A) denotes the inverse correspondence of v(O)).

It can be seen that like the relation between flexible entity concepts and flexible
attribute concepts, flexible sets of entities are established on the base of flexible sets
of numerical values, or in other words, flexible sets of entities are dependent on the
flexible sets of numerical values. This is to say, to establish a flexible set of entities,
we need to establish the corresponding flexible set of numerical values firstly.

Example 5.1 Let U = [1, 200] be a universe of discourse. We take subsets
½15; 40� and ½18; 25� � U as the support set and core, respectively, then a flexible
set of numerical values of U, A, is obtained, whose membership function is

mAðxÞ ¼

0; x� 15
x�15
3 ; 15\x\18

1; 18� x� 25
40�x
15 ; 25\x\40

0; 40� x

8>>>>>><
>>>>>>:

It can be seen that if U is interpreted as the range of ages of mankind, then this
flexible set of numerical values, A, can be treated as the denotative model of flexible
attribution concept “young”. With the flexible set of numerical values, A, the
denotative model of flexible entity concept “young people” is just the flexible set,
denoted AP, of entities based on A, whose support set and core are

supp(APÞ ¼ fpxjpx 2 P; 0\mAPðpxÞ� 1g
core(APÞ ¼ fpxjpx 2 P;mAPðpxÞ ¼ 1g

and the membership function is

mAPðpxÞ ¼ mAðxÞ; x 2 U

here, px denotes a person aged x, and P is the mankind set.
As an extreme case, there may be only one element in the core of a flexible set.

We call the flexible set whose core contains only one element to be the single-
point-core flexible set. Since there is only one element in the core, this element is
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not only the center of the core, but also the core-boundary point, core-boundary
line, or core-boundary plane of this flexible set. The membership function of a
single-point-core flexible set in one-dimensional measurement space is a triangle or
semi-triangle function. The common expression of the membership function of a
single-point-core flexible set with center of core number n is as follows:

mnðxÞ ¼

0; a� x� s�n
x�s�n
c�n �s�n

; s�n \x\n
1; x ¼ n

sþn �x
sþn �cþn

; n\x\sþn
0; sþn � x� b

8>>>><
>>>>:

ð5:10Þ

From the definition of a flexible set, it is not hard to see that a flexible set can be
viewed as the extension of an ordinary (rigid) set, while an ordinary (rigid) set can
then be viewed as the contraction of a flexible set. The relationship between the two
is analogous to that between one-dimensional geometric space and two-dimensional
geometric space.

With this terminology of flexible set, the denotative representation of a flexible
concept can be said to be a flexible set.

5.2 Flexible Sets Versus Fuzzy Sets

We know that the fuzzy set [2] can be defined as follows.

Definition 5.3 Let X be a set as a universe of discourse, and let μ: X → [0, 1] be a
mapping from X to interval [0, 1]. Then set

A ¼ ðx; lðxÞÞjx 2 X; lðxÞ 2 ½0; 1�f g

to be called a fuzzy subset of X, where μ(x) (x 2 X) is called the membership
function (MF) of A. And sets S1 ¼ fxjx 2 X; lðxÞ ¼ 1g and S2 ¼ fxjx 2
X; 0\lðxÞ� 1g are separately called the core and support (set) of fuzzy set A.

Comparing this Definition 5.3 with the above Definition 5.1′, it can be seen that
if removing conditions (1)–(3) in Definition 5.1′ and changing measurement space
U into an ordinary set X, then the definition of flexible set becomes the definition of
fuzzy sets. That is to say, the flexible set of numerical values is actually a kind of
special fuzzy set. And from Definition 5.2′, the flexible set of entities is based on the
flexible set of numerical values, and the membership function of a flexible set of
numerical values is also tantamount to the membership function of corresponding
flexible set of entities. So, a flexible set of entities can also be regarded as being
determined by the mapping, that is, membership function, from corresponding
universe to interval [0, 1]. Thus, flexible sets of entities are also a kind of special
fuzzy sets. Thus, conceptually speaking, flexible sets of numerical values and
flexible sets of entities are all special fuzzy sets.
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However, our flexible sets discriminate explicitly an entity object from its
measurement, and discriminate explicitly between flexible sets of numerical values
and flexible sets of entities, and take the former as the basis of the latter, which just
coincides with the denotations of flexible attribution concept and flexible entity
concept and the relationship between the two; but fuzzy sets do not discriminate
explicitly an entity object from its measurement, do not discriminate explicitly
between fuzzy sets of numerical values and fuzzy sets of entities either, but only
give generally a concept of fuzzy set.

Also, viewed from the connotation, ① the base set of a flexible set of numerical
values must be a continuous measurement space, ② the core and support set of a
flexible set must be non-empty, ③ the membership function of a one-dimensional
flexible set is trapezoidal function, but fuzzy sets have no these requirements, and
only a general and not specific membership function (mapping: X → [0, 1]) being
given as the definition of a fuzzy set. As to the shape of the membership functions,
due to lack of objective basis, it can merely be decided subjectively.

We now examine, respectively, the relationship between flexible sets and flex-
ible concepts and that between fuzzy set and flexible concept. We know that for any
flexible concept, its denotation can be represented as a flexible set; conversely, for
any flexible set, we can obtain a flexible concept by taking the flexible set as the
denotation. However, the relationship between fuzzy sets and flexible concepts is
not such. For instance, although the fuzzy subset in a non-continuous universe can
also be treated as the denotation of a certain concept, the concept is not a flexible
concept. For another example, a fuzzy set without a core does not stand for any
flexible concept.

In fact, when the support set of a discrete fuzzy set is a non-continuous subset in
a measurement space, this fuzzy set is only a subset of instances of the corre-
sponding flexible concept. For instance, the fuzzy set “tall men” consisting of
students in a class is a subset of instances of flexible concept “tall men.”

The reason it is called a subset of instances here is because this kind of fuzzy set
is not the denotation of the corresponding flexible concept but only some instances
in the denotation. A subset of instances is not a flexible set, but that some subsets of
instances may be represented in the form of flexible set, such as
fðx1;mðx1Þ; ðx2;mðx2Þ; . . .; ðxn;mðxnÞgorfðx;mðxÞÞj x 2 U1 2 Ug, and they may
also be represented in the form of membership function, such as mAðxÞ; x 2 U1 (U1

is not continuous).
Now we are clear that many discrete fuzzy sets actually are only subsets of

instances of the corresponding flexible concepts. In this sense, the flexible sets are
also the background sets of this type of fuzzy set.

Having made clear the relationship and difference between flexible sets and
fuzzy sets, we see more clearly the problem in using fuzzy sets for the modeling of
flexible concepts. Meanwhile, we also see the reasons why the form of the mem-
bership function of a fuzzy set is chosen arbitrarily: Besides people’s unclear
understanding of the objective basis and formation principle of flexible concepts,
the definition of the fuzzy set also appears vague and general and not appropriate
enough for the expression of the denotation of a flexible concept.
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We use flexible sets of numerical values to model flexible attribution concepts
and use flexible sets of entities to model flexible entity concepts. However, fuzzy
set theory does not discriminate the two and all use fuzzy sets for modeling. By
comparison, the maladies of using fuzzy sets to model flexible concepts appear
obviously.

5.3 Flexible Sets Versus Rough Sets

In 1982, Polish mathematician Pawlak proposed the theory of rough sets [3]. Rough
set is considered an important tool to solve uncertainty problems. Next we will
make a comparison between the flexible set and the rough set.

A rough set can be defined as follows:

Definition 5.4 Let U be a set as a universe of discourse, and let R be an equivalence
relation on U. X�U cannot be exactly represented by a union of some equivalence
classes [x]R (x 2 U) in quotient set U/R, but can be roughly represented by two such
unions approximating to X. Then, X is called a rough subset of U, or simply, a
rough set. These two sets that jointly describe X are separately called the upper
approximation and lower approximation of rough set X, and denoted separately
R¯(X) and R_(X), namely

R�ðXÞ ¼
[
i

YijYi 2 U =R; Yi \X 6¼ Uf g

R ðXÞ ¼
[
j

YjjYj 2 U =R; Yj�X
� �

difference

BNRðXÞ ¼ R�ðXÞ � R ðXÞ

is called the boundary of X.
Note: In rough set theory, what plays the role of equivalence relation R in

Definition 5.4 is the so-called indiscernibility relation. But the indiscernibility
relation is also an equivalence relation on U. Therefore, here we directly use the
equivalence relation to define a rough set.

It can be seen that upper approximation R¯(X) is the smallest set that contains
X in U formed by certain equivalence classes [x]R, and the lower approximation
R_(X) is the biggest set that is contained in X in U formed by certain equivalence
classes [x]R. Thus, for 8x 2 U: if x 2 R_(X), then x 2 X, that is, x is certainly a
member of X; if x 62 R�ðXÞ, then x 62 X; that is, x is certainly not a member of X; if
x 2 BNR(X), then probably x 2 X; that is, x may be a member of X.

Comparing the flexible set with the rough set, we can see that:
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① The flexible set and the rough set are both determined by two subsets in
corresponding universe.

② If an element in a flexible set of numerical values was viewed as an equiva-
lence class, and the elements in a flexible set of entities were incorporated into
one and another equivalence classes according to equivalence relation “mea-
surement identical,” then the core of flexible set is corresponding to the lower
approximation R_(X) of rough set, the support set of flexible set is corre-
sponding to the upper approximation R¯(X) of rough set, and the boundary of
flexible set is corresponding to BNR(X) of rough set.
For example, let A be a flexible set of numerical values (which represents a
flexible attribute concept), O be a set of entities, and AO be a flexible set of
entities, and let R be equivalence relation “measurement identical.” Then, the
support set and core of flexible set of entities, AO, can be rewritten as

supp(AOÞ ¼ fsxjsx 2 O=R; 0\mAOðsxÞ� 1g
core(AOÞ ¼ fsxjsx 2 O=R;mAOðsxÞ ¼ 1g
mAOðsxÞ ¼ mAðxÞ

here x is the measurement of an entity object, sx is equivalence class [ox]R,
and ox is an object whose measurement is x. Thus, the cores of flexible sets
A and AO, core(A) and core(AO), are corresponding to the lower approxima-
tion R_(X) of rough set, the support sets of flexible sets A and AO, supp(A) and
supp(AO), are corresponding to the upper approximation R¯(X) of rough set,
and the boundaries of flexible sets A and AO, boun(A) and boun(AO), are
corresponding to BNR(X) of rough set.

③ For the membership of objects inside the core and outside the support set, the
flexible set and the rough set are completely the same.

For instance, let A be a flexible set in universe U. Then 8x 2 U; if x 2 core(A),
then mA(x) = 1; thus, x is certainly a member of A; if x 62 supp(AÞ, then mA(x) = 0;
thus, x is certainly not a member of A.

These are the similarities between flexible sets and rough sets. However, there
are yet essential differences between the two.

First, flexible sets have the distinction of flexible sets of numerical values and
flexible sets of entities, but rough sets have no such classification.

Second, the universe of discourse that a flexible set of numerical values belongs
to must be a measurement space, while rough set has no such restriction.

Third, the rough set (method) uses some special subsets—equivalence classes—
of a universe to portray and describe another subset (X) of the universe. But though
the flexible set (method) can also be looked as using equivalence classes to describe
the subset of a universe, more obviously it is using directly the elements of the
universe and membership-degrees to portray and describe subsets of the universe.
And the core and support sets of a flexible set are determined by human brain’s
flexible clustering for continuous quantities, while the lower approximation and
upper approximation of a rough set are constructed by people using mathematical
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methods. The former has very strong subjectivity, while the latter is completely
objective.

Finally, the key distinction is that in the treatment of the membership of objects
in boundaries, flexible sets and rough sets are utterly different. As a matter of fact,
for the flexible set, if x 2 boun(A), then x 2 A to a certain degree, but for the rough
set, if x 2 BNR(X), then x 2 X possibly. That is, an object in the boundary of a
flexible set belongs to the flexible set with a membership-degree, while an object in
the boundary of a rough set belongs to the rough set with a probability. In other
words, the objects in the boundary of a flexible set certainly have the property
possessed by members in the core and only the degree is large or small (greater than
0 and less than 1), while the objects in the boundary of a rough set do not certainly
have the property possessed by members in the lower approximation, but once they
have, then they have the property completely; that is, the degree is 1. In terms of
logic, the former is somewhat true, the latter is possibly true. Further, the degree of
an object in the boundary of a flexible set belonging to the flexible set is negatively
related to the distance from the object to the core of the flexible set, but there is not
any relationship between the probability of an object in the boundary of a rough set
belonging to the rough set and the distance from the object to the lower approxi-
mation of the rough set.

By the above comparison, we see that flexible sets and rough sets have not only
important similarities but also essential differences. Flexible sets are oriented at
imprecise information while rough sets are oriented at uncertain information.

5.4 Basic Relations Between Flexible Sets

Like ordinary sets, there are also various relationships between flexible sets, such as
intersection and inclusion. On the basis of containment, there is also the concept of
subflexible sets. Since a flexible set of entities depends on the corresponding
flexible set of numerical values, in the following we only discuss the relationships
of flexible sets of numerical values.

Definition 5.5 Let U be an n-dimensional measurement space, and let A and B be
two flexible subsets in U.

(1) If supp(A) \ supp(B) = ∅, then we say flexible sets A and B are disjoint.
(2) If supp(A) \ supp(B) ≠ ∅, then we say the flexible sets A and B are

intersectant.
(3) If supp(A) � supp(B), then we say flexible set A is contained in flexible set B,

or that flexible set B contains flexible set A; especially, if also core(A) � core
(B), then we say flexible set A is normally contained in flexible set B, or that
flexible set B normally contains flexible set A, denote A�B.

Unless otherwise specified later, the inclusion relation between flexible sets
would always refer to normal containment. The Venn diagram representations for
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the disjointing, intersection, and containment of two-dimensional flexible sets are
shown in Fig. 5.1 (here flexible sets are all flexible circles).

Theorem 5.1 Let U be an n-dimensional measurement space, and let A and B be
two flexible subsets of U. The sufficient and necessary condition for A�B is that for
any x 2 U, mA(x) ≤ mB(x) holds always.

Proof Sufficiency: Assume that for any x 2 U, always mA(x) ≤ mB(x). Suppose in
such case, A 6� B. By Definition 5.5, it follows that supp(A) 6� supp(B) or core
(A) 6� core(B). If supp(A) 6� supp(B), then there at least exists a x′ 2 supp(A) such
that mA(x′) > 0 while mB(x′) = 0, but which is in contradiction with mA(x) ≤ mB(x).
Likewise, if core(A) 6� core(B), there at least exists a x′ 2 core(A) such that
mA(x′) = 1 while mB(x′) < 1, which is still in contradiction with mA(x) ≤ mB(x).

Necessity: Assume A�B, that is, supp(A) � supp(B) and core(A) � core(B).
Then, for any x 2 U:

If x 2 core(A), then mA(x) = 1, additionally core(A) � core(B), so certainly x
core(B); thus, mB(x) = 1, and it follows that mA(x) = mB(x);

If x 62 supp(A), then mA(x) = 0, but from supp(A) � supp(B), then mB(x) ≥ 0,
and it follows that mA(x) ≤ mB(x);

If x 2 supp(A) − core(A), then 0 < mA(x) < 1, additionally supp(A) � supp(B),
so certainly x 2 supp(B); in this case, suppose that mA(x) > mB(x), then since
mA(x) and mB(x) are both linear functions, so there at least exists a x′ 2 supp
(A) such that mA(x′) = 1, while mB(x′) < 1, which is obviously contradictory to core
(A) � core(B). ■

Theorem 5.1 also means that mA(x) ≤ mB(x) is in fact equivalent to supp
(A) � supp(B) and core(A) � core(B). Thus, we can also replace the latter by the
former to define the inclusion relation of flexible sets.

Definition 5.6 Let U be an n-dimensional measurement space, and let A and B be
two flexible subsets of U. If for any x 2 U, always mA(x) ≤ mB(x), then we say
flexible set A is contained in flexible set B or flexible set B contains flexible set A,
denote A � B.

With inclusion relation �, we can further define the subflexible set.

U U U

A
A A

B B B

(a) (b) (c)

Fig. 5.1 Venn diagram representation for relationships between two-dimensional flexible sets.
a Disjointing b intersection c containment
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Definition 5.7 Let U be an n-dimensional measurement space, and let A and B be
two flexible subsets of U. If A � B, then A is called a subflexible set of B.

Definition 5.8 Let U be an n-dimensional measurement space, and let A and B be
two flexible subsets of U. If for any x 2 U, always mA(x) = mB(x), then we say that
flexible set A equals flexible set B, write A = B.

Theorem 5.2 Let U be an n-dimensional measurement space, and let A and B be
two flexible subsets of U. The sufficient and necessary condition for A = B is supp
(A) = supp(B) and core(A) = core(B).

Theorem 5.3 Let U be an n-dimensional measurement space, and let A and B be
two flexible subsets of U. The sufficient and necessary condition for A = B is A � B
and B � A.

The proofs of these two theorems are similar to that of Theorem 5.1, so here are
omitted.

5.5 Basic Operations on Flexible Sets

Just like ordinary sets, flexible sets also have intersection, union, complement, etc.
We still use symbols \ , [ , and c to denote the intersection, union, and comple-
ment of flexible sets. Similarly, we only discuss the operations on flexible sets of
numerical values.

5.5.1 Intersection, Union, Complement, and Difference
of General Flexible Subsets

A flexible set is completely determined by its support set and core. Therefore, for
flexible subsets in one and the same measurement space, the corresponding inter-
section, union, complement, and difference should also be determined by their
support sets and cores.

1. Intersection of flexible sets

Definition 5.9 Let U be an n-dimensional measurement space, and let A and B be
two flexible subsets of U. A \ B is called the intersection of A and B, whose
support set and core are:

suppðA\BÞ ¼ supp(AÞ \ supp(BÞ ð5:2Þ

coreðA\BÞ ¼ core(A)\ core(B) ð5:3Þ
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From the definition, it can be explicitly seen that intersection A\B � U. Next
we consider the membership function of A \ B. Take arbitrary x 2 supp(A \ B),
then from Eq.(5.2), it follows that x 2 supp(A) and x 2 supp(B). Thus, the fol-
lowing two statements are equivalent.

① x belongs to A \ B with degree d.
② x belongs to A and to B both with degree d.

On the basis of this, we consider the relation between the membership function
mA\B(x) of A \ B and membership functions mA(x) and mB(x) of A and B.
Let d = min{mA(x), mB(x)}, it can be seen that for any d′ 2 (d, 1]; the
statement

③ x belongs to A and to B both with degree d′
is not correct; and for any d′ 2 (0, d), though statement ③ cannot be con-
sidered wrong, it does not express sufficiently the degree of both x belonging
to A and x belonging to B, while only when we take d′ = d, statement ③
expresses just right and accurately the degree of both x belonging to A and
x belonging to B. As a matter of fact, d = min{mA(x), mB(x)} = inf{d′ | d
′ 2 (d, 1]} = sup{d′ | d′ 2 (0, d)}. In addition, from the equivalence between
statements ① and ②, x also belongs to A \ B with degree d.

The analysis above shows that mA\B(x) should be defined as min{mA(x),
mB(x)}; that is,

mA\BðxÞ ¼ min mAðxÞ;mBðxÞf g ð5:4Þ

Note that the above analysis does not involve the relation between flexible sets
A and B. However, in fact, there are relationships of disjointing, intersection, and
containment between flexible sets. Then, has the relation between A and B any
influence on membership function mA\B(x) or not? In other words, is Eq. (5.4) also
true for flexible sets A and B with relations of disjointing, intersection, or con-
tainment? In the following, we analyze this problem specifically by using a
two-dimensional measurement space as an example and Fig. 5.1 for reference.

(1) Suppose A and B intersect, or supp(A) \ supp(B) ≠ ∅. Then for 8ðx; yÞ 2 U,
there are the following cases:

(i) If (x, y) 2 supp(A) \ supp(B), then (x, y) 2 supp(A) and (x, y) 2 supp
(B). So in this case, 0 < mA(x, y) ≤ 1 and 0 < mB(x, y) ≤ 1. We may as
well suppose mA(x, y) ≤ mB(x, y). Then just as the reason previously
analyzed, now it would be most appropriate to only take mA\B(x,
y) = min{mA(x, y), mB(x, y)}.

(ii) If (x, y) 62 supp(A) \ supp(B), but (x, y) 2 supp(A), then in this case,
mA\B(x, y) = 0, 0 < mA(x, y) ≤ 1 and mB(x, y) = 0. Thus, min{mA(x, y),
mB(x, y)} = 0. Therefore, mA\B(x, y) = min{mA(x, y), mB(x, y)} too.
Similarly, if (x, y) 62 supp(A) \ supp(B), but (x, y) 2 supp(B), then
also mA\B(x, y) = min{mA(x, y), mB(x, y)}.
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(iii) If (x, y) 62 supp(A) and (x, y) 62 supp(B), then (x, y) 62 supp(A) \ supp
(B). In this case, mA(x, y) = 0, mB(x, y) = 0 and mA\B(x, y) = 0. Thus, it
also follows that mA\B(x, y) = min{mA(x, y), mB(x, y)}.

In summary, when A and B intersect, mA\B(x, y) = min{mA(x, y), mB(x, y)}
holds always.

(2) Suppose A is contained in B, that is, supp(A) \ supp(B) = supp(A). Then for
8ðx; yÞ 2 U, there are the following cases:

(i) If (x, y) 2 supp(A), then (x, y) 2 supp(B). In this case, 0 < mA(x, y) ≤ 1
and 0 < mB(x, y) ≤ 1. We may as well suppose mA(x, y) ≤ mB(x, y).
Then, just as the reason previously analyzed, now it would be most
appropriate to only take mA\B(x, y) = min{mA(x, y), mB(x, y)}.

(ii) If (x, y) 62 supp(A), but (x, y) 2 supp(B), then (x, y) 62 supp(A) \ supp
(B). In this case, mA(x, y) = 0, 0 < mB(x, y) ≤ 1 and mA\B(x, y) = 0.
Obviously also mA\B(x, y) = min{mA(x, y), mB(x, y)}.

(iii) If (x, y) 62 supp(B), then certainly (x, y) 62 supp(A). Thus
(x, y) 62 supp(A) \ supp(B). In this case, mB(x, y) = 0, mA(x, y) = 0
and mA\B(x, y) = 0. Thus, we have also mA\B(x, y) = min{mA(x, y),
mB(x, y)}.

In summary, when A is contained in B, mA\B(x, y) = min{mA(x, y), mB(x, y)}
holds always.

(3) Suppose A and B are disjoint, or supp(A) \ supp(B) = ∅. Then for
8ðx; yÞ 2 U, there are the following cases:

(i) If (x, y) 2 supp(A), then (x, y) 62 supp(B). In this case, 0 < mA(x, y) ≤ 1
and mB(x, y) = 0. Thus, min{mA(x, y), mB(x, y)} = 0. And by supp
(A) \ supp(B) = ∅, it follows that mA\B(x, y) = 0. Therefore,
mA\B(x, y) = min{mA(x, y), mB(x, y)}.

(ii) If (x, y) 2 supp(B), then also mA\B(x, y) = min{mA(x, y), mB(x, y)}.
(iii) If (x, y) 62 supp(A) and (x, y) 62 supp(B), then (x, y) 62 supp(A) \ supp

(B). In this case, mA(x, y) = 0, mB(x, y) = 0 and mA\B(x, y) = 0. Thus,
we have also mA\B(x, y) = min{mA(x, y), mB(x, y)}.

In summary, when A and B are disjoint, mA\B(x, y) = min{mA(x, y), mB(x, y)}
holds always.

The above analysis shows that Eq. (5.4) is not related to the relations between
flexible sets A and B. That is to say, no matter whether flexible sets A and B are
disjoint, intersectant, or containment, it follows always that mA\B(x) = min{mA(x),
mB(x)}. Thus, from the relation between a flexible set and its membership function,
we then give the following definition.

Definition 5.9′ Let U be an n-dimensional measurement space, and let A and B be
two flexible subsets of U. A \ B is called the intersection of A and B, whose
membership function is
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mA\BðxÞ ¼ min mAðxÞ;mBðxÞf g ð5:5Þ

When U is one-dimensional measurement space [a, b] and A and B intersect, the
graph of membership function mA\B(x) is shown in Fig. 5.2.

2. Union of flexible sets

Definition 5.10 Let U be an n-dimensional measurement space, and let A and B be
two flexible subsets of U. A [ B is called the union of A and B, whose support set
and core are:

suppðA[BÞ ¼ supp(AÞ [ supp(BÞ ð5:6Þ

coreðA[BÞ ¼ core(AÞ [ core(BÞ ð5:7Þ

By the definition, it can be explicitly seen that the union A [ B � U. Making
an analysis similar to that of intersection A \ B and its membership function, we
can also have another definition of A [ B.

Definition 5.10′ Let U be an n-dimensional measurement space, and let A and B be
two flexible subsets of U. A [ B is called the union of A and B, whose membership
function is

mA[BðxÞ ¼ max mAðxÞ;mBðxÞf g ð5:8Þ

When U is one-dimensional measurement space [a, b] and A and B intersect, the
graph of membership function mA[B(x) is shown in Fig. 5.3.

From Figs. 5.2 and 5.3, it can be observed that intersection A \ B and union
A [ B therein do not fully meet the definition of a flexible set, so they are actually

mA(x)

m

1

0

mB(x)

mA B(x)

x

Fig. 5.2 An example of the
membership function of
intersection A \ B

m
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0

mA(x) mB(x)
mA B(x)

x

Fig. 5.3 An example of the
membership function of union
A [ B
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not real or standard flexible sets. That is to say, the set of flexible subsets of space
U is not closed under intersection (\ ) and union ([ ) of flexible sets. Therefore,
strictly speaking, intersection (\ ) and union ([ ) are not operations on flexible sets.
But for habit’s sake, we still call them the operations on flexible sets.

3. Complement of a flexible set

Similar to ordinary sets, when the whole universe U is partitioned into only two
flexible subsets, one of them is just the complement of the other. According to the
methods of flexible clustering and flexible partitioning in Sect. 2.1, we give the
following definition.

Definition 5.11 Let U be an n-dimensional measurement space, and let A be a
flexible subset of U. Ac is called the complement of A, whose support set and core
are:

supp(AcÞ ¼ core(AÞð Þc ð5:9Þ

core(AcÞ ¼ supp(AÞð Þc ð5:10Þ

In the following, we take flexible class A of one-dimensional measurement space
U = [a, b] as an example to analyze the membership function of complement Ac.
Let the core-boundary points and critical points of A be s�A ; c

�
A ; c

þ
A and sþA , and let

the core-boundary points and critical points of Ac be s�Ac ; c�Ac ; cþAc and sþAc . By
Definition 5.11, it can be observed that these two groups of parameters should have
the following relations:

cþAc ¼ s�A ; s
þ
Ac ¼ c�A ; s

�
Ac ¼ cþA ; c�Ac ¼ sþA

Thus, for any x 2 ðs�
A0 ; c�A0 Þ, we have

mAcðxÞ ¼ x� s�Ac

c�Ac � s�Ac

¼ x� cþA
sþA � cþA

mAðxÞ ¼ sþA � x
sþA � cþA

add the above two equations, we have

mAcðxÞþmAðxÞ ¼ x� cþA
sþA � cþA

þ sþA � x
sþA � cþA

¼ 1

Likewise, for any x 2 ðcþAc ; sþAc Þ, it also follows that

mAcðxÞþmAðxÞ ¼ 1
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And for any x 2 core(Ac), mAcðxÞ ¼ 1 holds; on the other hand, since core
(Ac) = (supp (A)) c = U − supp(A), mA(x) = 0. Therefore, also

mAcðxÞþmAðxÞ ¼ 1

And for any x 2 core(A), mA(x) = 1 holds; on the other hand, since core
(A) = U − supp(Ac), mAcðxÞ ¼ 0. Thus, also

mAcðxÞþmAðxÞ ¼ 1

The above analysis shows that for any x 2 U, always

mAcðxÞþmAðxÞ ¼ 1

Generalizing this equation, then it is as follows:
For any n-dimensional vector x 2 U, always

mAcðxÞþmAðxÞ ¼ 1 ð5:11Þ

That is, the sum of the membership-degrees of one and the same object for a pair
of relatively complemented flexible sets is always 1. Thus, we also have a definition
of Ac.

Definition 5.11′ Let U be an n-dimensional measurement space, and let A be a
flexible subset of U. Ac is called the complement of A, whose membership function
is

mAcðxÞ ¼ 1� mAðxÞ ð5:12Þ

When U is one-dimensional measurement space [a, b], the graph of membership
function mAcðxÞ is shown in Fig. 5.4.

Actually, viewed from the angle of sets, that the sum of the membership-degrees
of an object for relatively complemented flexible sets is 1 also means that there is a
kind of complementation relation between membership-degrees of relatively
complemented flexible sets. Therefore, we call Eqs. (5.11) and (5.12) to be the
complement law of membership-degrees.

In the above, we gave, respectively, two definitions for each of the intersection,
union, and complement operations of flexible sets. However, it can be proved that

)(xm cA

m

1

0

mA(x)

x

Fig. 5.4 An example of the
graph of the membership
function of one-dimensional
complement Ac

114 5 Flexible Sets and Operations on Flexible Sets



the two definitions are in fact equivalent. From this, we have immediately the
following theorem.

Theorem 5.4 Let U be an n-dimensional measurement space, and let A and B be
two flexible subsets of U, then

supp(A \ B) = supp(A) \ supp(B) and core(A \ B) = core(A) \ core(B) ⇔

mA\BðxÞ ¼ min mAðxÞ;mBðxÞf g ð5:13Þ

supp(A [ B) = supp(A) [ supp(B) and core(A [ B) = core(A) [ core(B) ⇔

mA[BðxÞ ¼ max mAðxÞ;mBðxÞf g ð5:14Þ

supp(AcÞ ¼ core(AÞð Þc \ core(AcÞ ¼ supp(AÞð Þc, mAcðxÞ ¼ 1� mAðxÞ ð5:15Þ

Since the intersection and union of flexible sets are defined by the intersection
and union of their support sets and cores, the support sets and cores are ordinary
sets whose operations satisfy associative laws, so the intersection and union of
flexible sets in one-dimensional measurement space also satisfy associative laws.
Therefore, these two operations can be generalized to the case of n flexible sets.

Definition 5.12 Let A1, A2,…, An be n flexible sets in n-dimensional measurement
space U. A1 \ A2 \ … \ An and A1 [ A2 [ … [ An are separately the
intersection and union of these n flexible sets, whose supports and cores are:

suppðA1 \A2 \ . . .\AnÞ ¼ supp(A1Þ \ supp(A2Þ \ . . .\ supp(AnÞ ð5:16Þ

coreðA1 \A2 \ . . .\AnÞ ¼ core(A1Þ \ core(A2Þ \ . . .\ core(AnÞ ð5:17Þ

suppðA1 [A2 [ . . .[AnÞ ¼ supp(A1Þ [ supp(A2Þ [ . . .[ supp(AnÞ ð5:18Þ

coreðA1 [A2 [ . . .[AnÞ ¼ core(A1Þ [ core(A2Þ [ . . .[ core(AnÞ ð5:19Þ
Definition 5.12′ Let A1, A2,…, An be n flexible sets in n-dimensional measurement
space U. A1 \ A2 \ … \ An and A1 [ A2 [ … [ An are separately the
intersection and union of these n flexible sets, whose membership functions are:

mA1 \A2 \ ...\AnðxÞ ¼ min mA1ðxÞ;mA2ðxÞ; . . .;mAnðxÞf g ð5:20Þ

mA1 [A2 [ ...[AnðxÞ ¼ max mA1ðxÞ;mA2ðxÞ; . . .;mAnðxÞf g ð5:21Þ

4. Difference of flexible sets

Definition 5.13 Let U be an n-dimensional measurement space, and let A and B be
two flexible subsets of U. A − B is called the difference of A minus B, whose
support set and core are:
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suppðA� BÞ ¼ supp(AÞ � supp(BÞ ð5:22Þ

coreðA� BÞ ¼ core(AÞ � core(BÞ ð5:23Þ

5.5.2 Intersection and Union of Orthogonal Flexible
Subsets

Let U = [a, b] and V = [c, d]. Firstly, we consider the compound sets A \ B and
A [ B of orthogonal flexible sets A and B in two-dimensional product measure-
ment space U � V .

Let flexible sets A and B be shown in Fig. 5.5. According to the above definition
of intersection of flexible sets, only keeping the intersection of the support sets and
the intersection of the cores of flexible sets A and B in the figure, we obtain a
rectangular region as shown in Fig. 5.6, which is the intersection A \ B of
orthogonal flexible sets A and B. Visually, the geometry of the intersection
A \ B is a flexible block in space U � V .

Similarly, according to the definition of union of flexible sets, keeping the
support sets and cores of A and B in Fig. 5.5, we obtain the crisscross region as
shown in Fig. 5.7, which is the union A [ B of orthogonal flexible sets A and B.

It can be observed that the compound sets A \ B and A [ B of orthogonal
flexible sets A and B are still flexible sets in U � V . Next, we analyze the mem-
bership functions of the two flexible sets.

(1) Membership function of flexible intersection A \ B

We enlarge separately the flexible intersection A \ B in Fig. 5.6 to that as shown
in Fig. 5.8. It can be observed that the flexible boundary of A \ B (that is, the white
part around the rectangular region) can be viewed as jointed together by the flexible
boundary sections of A and those of B. And viewed from the direction of x-axis, the
core of A \ B is also a part of the core of the original A; viewed from the direction of
y-axis, the core ofA \ B is also a part of the core of the originalB. Thus, in the support

y

x

V

U 

B

AFig. 5.5 Orthogonal flexible
sets A and B
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set ofA \ B, for points in the left and right boundaries (i.e., in x direction) of the core,
their original membership-degrees for flexible set A is also their membership-degrees
now for flexible set A \ B; conversely, their membership-degrees for flexible set
A \ B only be themembership-degrees to flexible set A. Similarly, in the support set,
for points located at the upper and lower boundaries (i.e., in y direction) of the core, the
membership-degrees to flexible set B are also the membership-degrees to flexible set
A \ B; conversely, the membership-degrees to flexible set A \ B only be those to
flexible set B. That is equivalent to saying that for any point (x, y) in the support set, its
membership-degree to flexible set A \ B can only be computed by the
membership-degrees of its components x to A or y to B, but cannot be computed by
(x, y) as a whole. Thus, the boundary of flexible set A \ B is divided into 4 parts (as
shown in Fig. 5.8). Then, for 8ðx; yÞ 2 coreðA\BÞ; mA\Bðx; yÞ ¼ 1; for 8ðx; yÞ 2
a1;mA\Bðx; yÞ ¼ mAðxÞ ¼ x�s�A

c�A�s�A
; for 8ðx; yÞ 2 a2;mA\Bðx; yÞ ¼ mAðxÞ ¼ sþA �x

sþA �cþA
;

for 8ðx; yÞ 2 b1;mA\Bðx; yÞ ¼ mBðyÞ ¼ y�s�B
c�B�s�B

; and for 8ðx; yÞ 2 b2;mA\Bðx; yÞ ¼
mBðyÞ ¼ sþB �y

sþB �cþB
:

To sum up the above analysis, we have

y

V

U 

x

A

B

Fig. 5.6 Geometry of
intersection A \ B

y

x
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Fig. 5.7 Geometry of union
A [ B
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mA\Bðx; yÞ ¼

x�s�A
c�A�s�A

; ðx; yÞ 2 a1
sþA �x
sþA �cþA

; ðx; yÞ 2 a2
1; ðx; yÞ 2 coreðA\BÞ

y�s�B
c�B�s�B

; ðx; yÞ 2 b1
sþB �y
sþB �cþB

; ðx; yÞ 2 b2
0; ðx; yÞ 62 coreðA\BÞ [ a1 [ a2 [ b1 [ b2

8>>>>>>>>><
>>>>>>>>>:

ð5:24Þ

where s�A and sþA are separately the negative and positive critical points of flexible
set A \ B about x, and c�A and cþA are the negative and positive core-boundary
points of A \ B about x; s�B and sþB are the negative and positive critical points of
A \ B about y, and c�B and cþB are the negative and positive core-boundary points
of A \ B about y.

Equation (5.24) is the common expression of the membership functions of
flexible set A \ B on two-dimensional measurement space U. The graph of the
function is shown in Fig. 5.9, whose shape is an edged (also called truncated square
pyramidal) surface. Of course, Eq. (5.24) is the membership function of those
flexible sets located at the non-edge part of space U. For those flexible sets located
at the edge of space U, the shape of their membership functions is not standard
terraces but semi-terraces, so these membership functional expressions should not
be totally the same as Eq. (5.24), and here, we had rather not go to details.

It can be seen that the membership function of A \ B is also combined by the
membership functions of flexible sets A and B. In fact, viewed from the graph, the
membership function of A \ B is obtained from membership functions of A and
B by cutting each other, while for the overlapping part of the two functions, in effect
which just is tantamount to taking the smaller values of the functions from
mA(x) and mB(y) as the value of function mA\B(x, y). And then, we see that such
“taking the smaller” is actually also applicable to all points in the whole space.
Thus, the membership function of A \ B can also be expressed by the following
expression:

mA\Bðx; yÞ ¼ min mAðxÞ;mBðyÞf g; x 2 U; y 2 V ð5:25Þ

x

y

b2

a1  a2

b1

A

B

Fig. 5.8 The flexible
boundary of intersection
A \ B
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(2) Membership function of flexible union A [ B

From Fig. 5.7, it can be seen that for any point (x, y) 2 U × V, if (x, y) 2 supp
(A) and (x, y) 62 supp(B), then mA[B(x, y) = mA(x, y); if (x, y) 2 supp(B) and
(x, y) 62 supp(A), then mA[B(x, y) = mB(x, y); if (x, y) 2 supp(A) \ supp(B), then
using the above analysis method of the membership function of flexible intersection
A \ B, we have mA[B(x, y) = max{mA(x), mB(y)} (which is tantamount to only
keeping the above curved surface of the overlapping part of the two function
graphs); and for point (x, y) 62 supp(A) [ supp(B), obviously, mA[B(x, y) = 0.
Thus, in summary, the membership function of flexible set A [ B is

mA[Bðx; yÞ ¼ max mAðxÞ;mBðyÞf g; x 2 U; y 2 V ð5:26Þ

whose graph is shown in Fig. 5.10, with shape an orthogonal truncated ridged
surface.

To sum up, we give the following definition.

Definition 5.14 Let A and B be two orthogonal flexible sets in two-dimensional
measurement space U × V. A \ B and A [ B are separately the intersection and
union of A and B, and their membership functions are as follows:

mA\Bðx; yÞ ¼ min mAðxÞ;mBðyÞf g; x 2 U; y 2 V ð5:27Þ
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Fig. 5.9 Graph of
membership function
mA\B(x, y)
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membership function
mA[B (x, y)
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mA[Bðx; yÞ ¼ max mAðxÞ;mBðyÞf g; x 2 U; y 2 V ð5:28Þ

It is not hard to see that the membership functions of the intersection and union
of the orthogonal flexible sets in the two-dimensional space can also be generalized
to n-dimensional space.

Definition 5.15 Let A1, A2,…, An be pairwise orthogonal flexible subsets in
n-dimensional product measurement space U = U1 × U2 × … × Un, and let
A1 \ A2 \ … \ An and A1 [ A2 [ … [ An be separately the intersection and
union of the n flexible sets. The membership functions of the two compound
flexible sets separately are:

mA1 \A2 \ ...\Anðx1; x2; . . .; xnÞ ¼ min mA1ðx1Þ;mA2ðx2Þ; . . .;mAnðxnÞf g ð5:29Þ

mA1 [A2 [ ...[Anðx1; x2; . . .; xnÞ ¼ max mA1ðx1Þ;mA2ðx2Þ; . . .;mAnðxnÞf g ð5:30Þ

5.6 Cartesian Product of Flexible Sets

In this section, we discuss the Cartesian product of flexible sets.

Definition 5.16 Let A and B be separately flexible sets in one-dimensional mea-
surement spaces U = [a, b] and V = [c, d]. A × B is called the Cartesian product of
flexible sets A and B, whose core and support set are given as follows:

coreðA� BÞ ¼ core(AÞ � core(BÞ ð5:31Þ

suppðA� BÞ ¼ supp(AÞ � supp(BÞ ð5:32Þ

From the definition, the support set and core of Cartesian product A × B are
shown in Fig. 5.11. From the figure, it can be explicitly seen that the Cartesian
product of flexible sets A and B, A� B � U � V , and which is still a flexible set. In
the following, we consider the membership function of A × B.

x

y
A

B

Fig. 5.11 The support set
and core of cartesian product
A × B
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Now that A × B is the product of A and B, then for 8ðx; yÞ 2 U � V ;mA�Bðx; yÞ
should be a certain operation or function of mA(x) and mB(y). What kind of a
function is it exactly?

Viewed from the shape, the core and support set of this product seem to be
completely like those of the above intersection. But we notice that the two coor-
dinate components x and y of point (x, y) in support set and core here are both
related and contributive to the membership-degree of point (x, y) for the product
A × B, not like the point (x, y) in intersection, where only one coordinate com-
ponent plays the role really. Therefore, the membership function of this product
cannot be min{mA(x), mB(y)} like that of intersection. And in consideration of the
constraint of the membership function itself, that is, for 8ðx; yÞ 2 U � V ; always
0�mA�Bðx; yÞ� 1, it seems that mA�Bðx; yÞ being taken as the weighted sum of
mA(x) and mB(y) may be an appropriate choice. Thus, we tentatively suppose

mA�Bðx; yÞ ¼ w1mAðxÞþw2mBðyÞ; mAðxÞ 6¼ 0 ^ mBðyÞ 6¼ 0
0; mAðxÞ ¼ 0 _ mBðyÞ ¼ 0

�
ð	Þ

where x 2 U; y 2 V ;w1;w2 2 ð0; 1Þ and w1 + w2 = 1.
Thus, for any ðx; yÞ 2 U � V , there are then the following situations:

(i) If (x, y) 2 core(A × B), then it follows by Definition 5.16 that (x, y) 2 core
(A) × core(B). Thus, x 2 core(A) and y 2 core(B). Thus, by equation (*) we
have

mA�Bðx; yÞ ¼ w1mAðxÞþw2mBðyÞ ¼ w1 � 1þw2 � 1 ¼ w1 þw2 ¼ 1

(ii) If (x, y) 2 supp(A × B), then it follows by Definition 5.16 that (x, y) 2 supp
(A) × supp(B). Thus, x 2 supp(A) and y 2 supp(B), and then 0 < mA(x) ≤ 1
and 0 < mB(y) ≤ 1. Therefore, by equation (*) we have

0\mA�Bðx; yÞ ¼ w1mAðxÞþw2mBðyÞ� 1

(iii) If (x, y) 62 supp(A × B), then it follows by Definition 5.16 that (x, y) 62 supp
(A) × supp(B). Thus, x 62 supp(A) or y 62 supp(B), that is, mA(x) = 0 or
mB(y) = 0. Thus, by equation (*) we have

mA�Bðx; yÞ ¼ 0

The analysis above shows that the function given above can serve as the
membership function of product A × B. Since in the argument above Eqs. (5.31)
and (5.32) are used, this membership function can be said to have been derived
from the two equations. Then, conversely, we consider whether Eqs. (5.31) and
(5.32) of Definition 5.16 can be derived from this membership function.
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Suppose there exists w1, w2 2 (0, 1) and w1 + w2 = 1, such that
mA×B(x, y) = w1mA(x) + w2mB(y), x 2 U, y 2 V, then, for any (x, y) 2 U × V, there
are then the following situations:

(i) If (x, y) 2 core(A × B), then mA×B(x, y) = 1; then, it would follow by mA×B(x,
y) = w1mA(x) + w2mB(y) that w1mA(x) + w2mB(y) = 1; from which it must
follow that mA(x) = 1 and mB(y) = 1; thus, x 2 core(A) and y 2 core(B); thus,
we have (x, y) 2 core(A) × core(B). Conversely, let (x, y) 2 core(A) × core
(B), this shows that x 2 core(A) and y 2 core(B), so it follows that mA(x) = 1
and mB(y) = 1, and then it follows that mA×B(x, y) = w1mA(x) + w2mB(y) =
w1•1 + w2•1 = w1 + w2 = 1; thus, we have (x, y) 2 core(A × B). That just
proves that core(A × B) = core(A) × core(B), namely Eq. (5.31).

(ii) When (x, y) 2 supp(A × B), then 0 < mA×B(x, y) ≤ 1; also since mA×B(x,
y) = w1mA(x) + w2mB(y), while mA(x) ≠ 0 ∧ mB(y) ≠ 0, it follows that
0 < w1mA(x) + w2mB(y) ≤ 1, and 0 < mA(x) ≤ 1 and 0 < mB(y) ≤ 1; hence,
x 2 supp(A) and y 2 supp(B); thus, we have (x, y) 2 supp(A) × supp(B).
Conversely, let (x, y) 2 supp(A) × supp(B), then it shows that x 2 supp
(A) and y 2 supp(B); thus, it follows that 0 < mA(x) ≤ 1 and 0 < mB(y) ≤ 1,
and then it follows that 0 < w1mA(x) + w2mB(y) ≤ 1; thus, we have (x, y) 2
supp(A × B). That just proves that supp(A × B) = supp(A) × supp(B), namely
Eq. (5.32).

To sum up the above analysis, we have also a definition below.

Definition 5.15′ Let A and B be separately flexible sets in one-dimensional mea-
surement spaces U = [a, b] and V = [c, d]. Flexible set A × B is the Cartesian
product of A and B, whose membership function is:

mA�Bðx; yÞ ¼ w1mAðxÞþw2mBðyÞ; mAðxÞ 6¼ 0 ^ mBðyÞ 6¼ 0
0; mAðxÞ ¼ 0 _ mBðyÞ ¼ 0

�
ð5:33Þ

where x 2 U, y 2 V, w1, w2 2 (0,1) and w1 + w2 = 1.
By the above two definitions, we can also derive the following facts.

Corollary 5.1

(1) When mA(x) > 0.5 and mB(y) > 0.5, for any w1, w2 2 (0,1) (w1 + w2 = 1),
always mA×B(x, y) = w1mA(x) + w2mB(y) > 0.5.

(2) Extended core core(A × B)+ of flexible product A × B cannot be expressed by
an operational expression of core(A)+ and core(B)+ of extended cores of
flexible sets A and B; we can only analyze it specifically according to specific
weights. But there are always more points in core(A × B)+ than in core
(A)+ × core(B)+.

(3) A × B ≠ A × V \ U × B. That is tantamount to saying that the intersection
of two orthogonal flexible sets A × V and U × B in U × V is not equal to the
product of the original sets A and B.
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In fact, for (x, y) that satisfies mA(x) > 0.5 and mB(y) > 0.5, let mA(x) = 0.5 + ε1
and mB(y) = 0.5 + ε2, then

w1mA xð Þ þ w2mB yð Þ ¼ w10:5 þ e1 þ w20:5 þ e2
¼ w10:5 þ w20:5 þ e1 þ e2
¼ 0:5 þ e1 þ e2 [ 0:5

Thus, (1) has been proved.
Since 8(x, y) 2 core(A)+ × core(B)+ satisfies mA(x) > 0.5 and mB(y) > 0.5, so

mA×B(x, y) > 0.5. Consequently, (x, y) 2 core(A × B)+. This shows core
(A)+ × core(B)+ � core(A × B)+ and also shows that points (x, y) within the
median line of support set supp(A × B) all satisfy mA×B(x, y) > 0.5. However, it is
not hard to see that between the median line and the boundary line of supp(A × B),
there may still be points (x, y) which satisfy mA×B(x, y) > 0.5. For instance, take
point (x*, y*) 2 supp(A × B), suppose mA(x

*) = 1 and mB(y
*) = 0.3, so the point is

located between the median line and the boundary line of supp(A × B). Then, when
taking w1 = 0.8 and w2 = 0.2, we have

mA�Bðx; yÞ ¼ w1mAðx	Þþw2mBðy	Þ ¼ 0:8� 1þ 0:2� 0:3 ¼ 0:86[ 0:5

That shows that point (x*, y*) 2 core(A × B)+. Therefore, the points in core
(A × B)+ are more than those in core(A)+ × core(B)+. But, which points between
the median line and the boundary line of supp(A × B) satisfy mA×B(x, y) > 0.5 need
yet to be determined by specific weights w1 and w2. Clearly, for different weights
w1 and w2, the points that satisfy mA×B(x, y) > 0.5 are different. That is to say,
extended core core(A × B)+ cannot be expressed by a common expression but can
only be analyzed specifically according to specific weights.

By (2), we can immediately have fact (3), which is an important distinction
between flexible sets and rigid sets.

Like usual Cartesian products, the Cartesian product of flexible sets can also be
generalized to the cases of multiple flexible sets.

Definition 5.17 Let Ui = [ai, bi], and let Ai be a flexible set in Ui, i = 1, 2,…, n,

then flexible set A ¼ �n
i¼1

Ai is the Cartesian product of A1, A2,…, An, whose core and

support set are:

core(AÞ ¼ �n
i¼1

coreðAiÞ ð5:34Þ

supp(AÞ ¼ �n
i¼1

suppðAiÞ ð5:35Þ

Definition 5.17′ Let Ui = [ai, bi], and let Ai be a flexible set in Ui, i = 1, 2,…, n.

Then, flexible set A ¼ �n
i¼1

Ai is the Cartesian product of A1, A2,…, An, whose

membership function is:
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mAðxÞ ¼
Pn
i¼1

wimAiðxiÞ; mAiðxiÞ 6¼ 0

0; for others

8<
: ð5:36Þ

where x = (x1, x2,…, xn), xi 2 Ui, wi 2 (0,1) and
Pn
i¼1

wi ¼ 1:

By Definitions 5.17 and 5.17′, we have the following theorem.

Theorem 5.6 Let Ui = [ai, bi], and let Ai be a flexible set in Ui, i = 1, 2,…, n, then,

core(A) ¼ �n
i¼1

coreðAiÞ and supp(AÞ ¼ �n
i¼1

suppðAiÞ ,

mAðxÞ ¼
Pn
i¼1

wimAiðxiÞ; mAiðxiÞ 6¼ 0

0; for others

8<
: ð5:37Þ

where x = (x1, x2,…, xn), xi 2 Ui, wi 2 (0,1) and
Pn
i¼1

wi ¼ 1:

Now the problem remained is that the coefficient, i.e., weight wi (i = 1, 2,…, n),
in this membership function is not determined. But the assignment of weights
should be determined by flexible linguistic values that flexible sets A1, A2,…, An

and �n
i¼1

Ai correspond to. In fact, product �n
i¼1

Ai is just corresponding to the synthetic

linguistic value A1 ⊕ A2 ⊕ … ⊕ An synthesized by the corresponding flexible
linguistic values A1, A2,…, An (see Sect. 6.4.2 for details).

5.7 Flexible Relations

There are many kinds of relationships between things, of which some are rigid, that
is, rigid relationship, but some are flexible, that is, flexible relationship. For
instance, “equation,” “parallel,” and “father and son” are rigid relationship, while
“similar,” “analogous,” “approximate,” “approximately equal to,” “far greater
than,” and “good friend” are all flexible relations. Like that a usual (rigid) relation
can be stood for by a (rigid) set, a flexible relation can also be stood for by a flexible
set.

We call the flexible relation stood for by a flexible set of numerical values to be
the flexible relation of numerical values, and call the flexible relation stood for by a
flexible set of entities to be the flexible relation of entities. For example, pure
“similar” relation is a kind of flexible relation of numerical values, while the
“similar” relation between persons is then of flexible relation of entities. Besides,
the flexible relation between entity objects which cannot be represented by
numerical values (e.g., the “friend” relation between persons) can also be classified
as flexible relation of entities. Since a flexible set of entities depends on the
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corresponding flexible set of numerical values, a flexible relation of entities depends
on the corresponding flexible relation of numerical values. Therefore, in this chapter
we only discuss the flexible relations of numerical values.

Definition 5.18

(i) Let U and V be one-dimensional measurement spaces. Flexible subset R in
product space U × V is called a flexible relation from U to V, which also
called a binary flexible relation on U × V.

(ii) Let Ui (i = 1, 2,…, n) be a ki (ki ≥ 1)-dimensional measurement space.
Flexible subset R in product space U1 × U 2 × … × Un = U is called a
flexible relation between U1, U2,…, Un, which also called an n-ary flexible
relation on U.

Example 5.2 The two flexible sets that Figs. 5.12 and 5.13 show can separately
stand for two binary flexible relations of “approximately equal to” and “far greater
than” between a range of positive numbers.

Since flexible relations are also a kind of flexible sets, they can also be repre-
sented by the method representing flexible sets. For example, binary flexible
relation R can be represented as

ðx; yÞ;mRðx; yÞð Þjx 2 U; y 2 Vf g

And a flexible relation between finite measurement spaces can also be repre-
sented as a matrix of the form

mRðx1; y1Þ mRðx1; y2Þ � � � mRðx1; ynÞ
mRðx2; y1Þ mRðx2; y2Þ � � � mRðx2; ynÞ

� � � � � � � � � � � �
mRðxm; y1Þ mRðxm; y2Þ � � � mRðxm; ynÞ

2
664

3
775

or an arrow diagram or a directed graph. For example, Fig. 5.14 is an arrow
diagram of binary flexible relation R from space U = {x1, x2, …, xm} to space

y

0

0 x

y=x
Fig. 5.12 An example of the
flexible set standing for
“approximately equal to”

5.7 Flexible Relations 125



V = {y1, y2,…, yn}. Here, the numbers in the matrix and the numbers on the arrows
are the membership-degrees of corresponding ordered pair (xi, yj) for relation R.

5.8 Summary

In this chapter, we founded the fundamental theory of flexible sets. Firstly, we gave
the types and definitions of flexible sets and analyzed and expounded the rela-
tionships and similarities and differences between flexible set and ordinary (rigid)
set, flexible set and fuzzy set, and flexible set and rough set, respectively, and then
defined the operations on flexible sets and the relationships between flexible sets. In
addition, the concept of flexible relations is also presented.

The main points and results of the chapter are as follows:

• Flexible sets are a kind of subsets in the universe of discourse that have flexible
boundaries, which can be classified as flexible sets of numerical values and
flexible sets of entities, yet the latter depends on the former. We defined the

y 

0
0 x

Fig. 5.13 An example of the
flexible set standing for “far
greater than”

mR(xm, yn)

R(x1, y1)
y1

…

yn

x1

…

x

…

…

U V

m

Fig. 5.14 An arrow diagram
of a flexible relation
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flexible set by using “core and support set” and membership function separately.
Flexible sets are the extension of ordinary sets, which are a kind of special fuzzy
sets, which have some important similarities with rough sets but also have
essential differences.

• Flexible sets are a kind of mathematical models of flexible linguistic values
(flexible concepts), the two are mutually correspondent, while some discrete
fuzzy sets are only the subsets of instances of corresponding flexible linguistic
values (flexible concepts).

• There are also relationships of disjointing, intersection, containment, and
equality between flexible sets.

• Flexible sets also have the operations of intersection, union, complement, dif-
ference, and Cartesian product, which can be defined by the operations of cores
and support sets of corresponding component sets, also can be defined by the
operations of membership functions of component sets, and the two kinds of
definitions can be deduced from each other.

• The sum of the membership-degrees of one and the same object to a pair of
relatively complemented flexible sets is 1. We call this quantitative relation the
complement law of membership-degrees.
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Chapter 6
Flexible Linguistic Values and Operations
on Flexible Linguistic Values

Abstract This chapter founds the fundamental theory of flexible linguistic values.
First, this chapter introduces the types of flexible linguistic values, then analyzes
and defines the operations on flexible linguistic values, and in particular proposes
the concepts and methods of algebraic composition and decomposition of flexible
linguistic values. Meanwhile, this chapter also analyzes the properties and relations
of relatively negative linguistic values and then proposes the complementary par-
tition of a measurement space and the complementary relation of flexible linguistic
values. Besides, this chapter also considers other relations between flexible lin-
guistic values, especially analyzes and defines the approximation relation between
flexible linguistic values, and presents the corresponding measuring method.

Keywords Flexible linguistic values �Consistency functions � Imprecise information

Flexible sets are the mathematical essence of flexible concepts, but which are only
the denotations of flexible concepts, so using only the flexible sets, it is hard to
reflect many semantic features and relations of flexible concepts. Flexible linguistic
values are the semantic symbols of flexible concepts, and we also gave consistency
functions the mathematical models for flexible linguistic values. Thus, in this
chapter, we will focus on the flexible linguistic values, to discuss the operations on
them and the types, relations, and properties of them, so as to set up relevant
theoretical and technological bases.

6.1 Types of Flexible Linguistic Values

6.1.1 Atomic Linguistic Values, Basic Linguistic Values,
and Composite Linguistic Values

The flexible linguistic value resulted from flexible clustering of a measurement space
is an atomic linguistic value. The atomic flexible linguistic value corresponding to a
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group of flexible sets which form a flexible partition of a measurement space is a
group of basic flexible linguistic values on the measurement space. A basic flexible
linguistic value is certainly an atomic linguistic value, but the converse is not nec-
essarily true. A composite flexible linguistic value is made of several flexible lin-
guistic values (on the same space or distinct spaces) by logic operation of
conjunction (∧) or disjunction (∨), or algebraic operation of synthesis (⊕).

6.1.2 One-Dimensional Linguistic Values and
Multidimensional Linguistic Values

Viewed from the dimensions of space, flexible linguistic values can be separated
into one-dimensional linguistic values and multidimensional linguistic values. That
is, a linguistic value on the one-dimensional measurement space is called a
one-dimensional linguistic value, and a linguistic value on the multidimensional
measurement space is called a multidimensional linguistic value [1].

6.1.3 Full-Peak Linguistic Values and Semi-Peak Linguistic
Values

According to the shapes of consistency functions, flexible linguistic values can be sep-
arated into full-peak linguistic values and semi-peak linguistic values. Specifically
speaking, for a one-dimensional flexible linguistic value, if its consistency function is a
full-triangle function, then it is called a full-peak linguistic value; if its consistency
function is a semi-triangle function, then this flexible linguistic value is called a
semi-peak linguistic value. In particular, a linguistic value A with a decreasing
semi-triangle consistency function is called a positive semi-peak linguistic value, or a
positive semi-peakvalue for short, denotedA+; anda linguistic valueAwith an increasing
semi-triangle consistency function is called a negative semi-peak linguistic value, or a
negative semi-peak for short, denoted A−. For a multidimensional flexible linguistic
value, if the shape of its consistency function is a full wedge, full conical surface, or full
conical hypersurface, then it is called a full-peak linguistic value; if the shape of its
consistency function is a semi-wedge and semi-conical surface or semi-conical hyper-
surface, then this flexible linguistic value is called a semi-peak linguistic value.

6.1.4 Property-Type Linguistic Values and Relation-Type
Linguistic Values

Property-type flexible linguistic values are a kind of flexible linguistic values that
describes properties (also including states) of things, which is also the linguistic
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values characterizing flexible properties (concepts) of things. Relation-type flexible
linguistic values are a kind of flexible linguistic values that describes relationships
between things, which is also the linguistic values characterizing flexible rela-
tionships (concepts) between things.

6.2 Flexible Partition of a Space and Basic Flexible
Linguistic Values

6.2.1 Flexible Partition of a One-Dimensional Space
and Basic Flexible Linguistic Values

In Chap. 2, we have already done flexible partitioning of the one-dimensional
measurement space. Now, we give its formal definition.

Definition 6.1 Let U be a one-dimensional measurement space, π = {C1, C2, …,
Cm} is a non-empty group of flexible classes of U, if for 8x 2 U, there are the
following facts:

(1) There exists at least one Ck 2 p such that mCkðxÞ 6¼ 0;

(2)
Pm
i¼1

mCiðxÞ ¼ 1;

where π is called a flexible partition of U and flexible classes C1, C2, …, Cm are
called the basic flexible classes of U, and they collectively form a group of basic
flexible classes of U.

Next, we give the general method for flexible partitioning of one-dimensional
measurement space [a, b]:

(1) Determine the number of the flexible classes and the core of every flexible
class (note that the negative core–boundary point c�C1

of the core of the first
flexible class should be the infimum a of the space, and the positive core–
boundary point cþCn

of the core of the last flexible class should be supremum
b of the space);

(2) From the left to the right, overlap one by one the positive critical point sþCi
of

the previous flexible class with the negative core–boundary point c�Ciþ 1
of the

following flexible class and overlap the negative critical point s�Ciþ 1
of the

following flexible class with the positive core–boundary point cþCi
of the

previous flexible class.

It can be proved that the group of flexible classes obtained by this way just forms
a flexible partition of [a, b].

In fact, let π = {C1, C2, …, Cn} be a group of flexible classes in [a, b] obtained
by the above-stated method. It is easy to see that π already forms a cover of [a, b].
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This is to say, condition (6.1) in the definition is already satisfied. From condition
(6.2), we only need to prove:

For 8x 2 Ci \ Ciþ 1 ¼ ðcþi ; sþi Þ ¼ ðs�iþ 1; c
�
iþ 1Þ (i = 1, 2, …, n), then

mciðxÞþmciþ 1ðxÞ ¼ 1.

Let x 2 Ci \ Ciþ 1, then from Eq. (6.2–6.5), mciðxÞ ¼ sþi �x
sþi �cþi

and

mciþ 1ðxÞ ¼ x�s�iþ 1
c�iþ 1�s�iþ 1

, since cþi ¼ s�iþ 1 and sþi ¼ c�iþ 1, thus

mciðxÞþmciþ 1ðxÞ ¼
sþi � x
sþi � cþi

þ x� s�iþ 1

c�iþ 1 � s�iþ 1
¼ sþi � x

sþi � s�iþ 1
þ x� s�iþ 1

sþi � s�iþ 1
¼ 1

Therefore, π forms a flexible partition of [a, b].

Definition 6.2 Let U be an n-dimensional measurement space, A1, A2, …, Am be a
group of basicflexible sets ofU. Correspondingly,flexible linguistic valuesA1,A2,…,
Am is just a group of basic flexible linguistic values onU, which is also a group of basic
flexible linguistic values of the corresponding feature of objects.

Example 6.1 Figure 6.1 is a flexible partition of range [0, 150] of human ages; the
infancy, juvenile, young, middle-aged, and old ages are all basic flexible linguistic
values on universe of discourse [0, 150], and they together form a group of basic
flexible linguistic values on range [0, 150] of human ages.

6.2.2 Flexible Partition of a Multidimensional Space
and Basic Flexible Linguistic Values

Previously, we gave the definition of the flexible partition of a one-dimensional
measurement space, but which is hard to be generalized to multidimensional
measurement space. In the following, we give a more general definition of the
flexible partition.

infancy juvenile young middle-aged old

c 

1 

0 
0 10 20 30 40 50 60 70 80 90 100 (year)

Fig. 6.1 A flexible partition of human age range
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Definition 6.3 Let U be an n-dimensional measurement space and π = {A1, A2, …,
Am} is a non-empty group of flexible subsets of U. If

ð1Þ
[m
i¼1

sup pðAiÞ ¼ U

ð2Þ
\m
i¼1

coreðAiÞ ¼ £

then π is called a flexible partition of U, and flexible sets A1, A2,…, Am are called
the basic flexible sets of U, and they together form a group of basic flexible sets of
U. Correspondingly, flexible linguistic values A1, A2, …, Am are the basic flexible
linguistic values on U, and they together form a group of basic flexible linguistic
values on U.

Obviously, this definition of flexible partition also applies to one-dimensional
measurement space, and it also covers the previous Definition 6.1.

It is known from Chap. 3 that as far as shape is concerned, flexible classes on
multidimensional measurement spaces are more plentiful than those on
one-dimensional spaces. However, the flexible partitioning of a multidimensional
space, generally speaking, can merely be bar flexible partitioning and square
flexible partitioning. In the following, we take two-dimensional space as an
example to make a brief description.

1. Bar flexible partitioning
Suppose that space U is flexibly divided into m flexible classes A1, A2, …, Am

along the direction of x-axis (as shown in Fig. 6.2a, here take m = 4), and
U flexibly divided as n flexible classes B1, B2, …, Bn along the direction of y-
axis (as shown in Fig. 6.2b, here take n = 3). The grey rectangle areas in the
figure are, respectively, the cores of the flexible classes, and the white rectangle
areas by their sides are the boundaries of the corresponding flexible classes.

x x

y A1 A2 A3 A4 y

B1

B2

B3

(a) (b)

Fig. 6.2 Examples of bar flexible partitioning of two-dimensional measurement space
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It can be easily seen that both πA = {A1, A2, …, Am} and πB = {B1, B2, …, Bn}
are flexible partitions of space U. Therefore, A1, A2, …, Am and B1, B2, …, Bn

can be two groups of orthogonal basic flexible linguistic values on space U.
2. Square flexible partitioning

Let U = U × V be a two-dimensional measurement space, where U = [a, b] and
V = [c, d]. As shown in Fig. 6.3, we simultaneously divide flexibly U in two
directions of x and y into 4 × 3 = 12 square flexible classes. The black squares
in the figure are the cores of the flexible classes; the white areas between black
squares are the public flexible boundaries of adjacent flexible classes; and the
rectangles encircled by broken lines around every black square are the support
set of the corresponding flexible classes. These 12 flexible classes stand for the
12 basic flexible linguistic values on U.

6.2.3 Extension and Reduction of Basic Flexible Linguistic
Values

How many basic linguistic values should be defined on a measurement space is not
definite and unchangeable. Sometimes, more are needed while other times only a
few. As a matter of fact, the basic linguistic values on a universe of discourse can be
extended or reduced totally by requirement. The extension and reduction of basic
linguistic values can be realized by redefining, and also by inserting and deleting.
With respect to a one-dimensional measurement space, there should be at least two
basic linguistic values, which are mutually negative, and between which more basic
linguistic values can be inserted if required to form a sequence of basic linguistic
values. Conversely, for a sequence of basic linguistic values that forms a flexible
partition of a space, those in the middle can unceasingly be deleted until only the
first and the last two basic linguistic values left. Certainly, when adding or deleting
basic linguistic values, the support sets and cores of the original one and the one
remained should all be modified appropriately such that the current basic linguistic
values can form a flexible partition of the universe of discourse.

y

x 

Fig. 6.3 An example of
square flexible partitioning of
two-dimensional
measurement space
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6.3 Logical Operations on Flexible Linguistic Values
on the Same Space

Logical operations on linguistic values on one and the same measurement space
have conjunction, disjunction, and negation.

6.3.1 Conjunction and Disjunction

The mathematical essence of flexible linguistic values is flexible sets in corre-
sponding measurement space. Therefore, the operations on flexible linguistic values
are reduced to the operations on the corresponding flexible sets. The basic opera-
tions on flexible linguistic values are conjunction (∧) and disjunction (∨), and
according to the semantics, the operations on the corresponding flexible sets are
intersection (\ ) and union ([ ). Then, from the membership functions of com-
pound flexible sets A\B and A[B in Sect. 5.5, the consistency functions of the
corresponding A ∧ B and A ∨ B can be directly obtained.

Definition 6.4 Let A and B be two flexible linguistic values of featureF of objects,
which is defined on n-dimensional measurement space U and whose consistency
functions be cA(x) and cB(x). The A ∧ B and A ∨ B connected by logical connectors
∧ (conjunction) and ∨(disjunction) are separately called the conjunction and dis-
junction of A and B, whose consistency functions are as follows:

CA^BðxÞ ¼ minfCAðxÞ;CBðxÞg x 2 U ð6:1Þ

CA_BðxÞ ¼ maxfCAðxÞ;CBðxÞg x 2 U ð6:2Þ

On one-dimensional measurement space U = [a, b], the graphs of the consis-
tency functions of A ∧ B and A ∨ B can be shown in Figs 6.4 and 6.5.

From the graphs, it can be seen that:

1. Conjunctive value A ∧ B can have at most one region of support set, in which
there may not be a region of core.

2. Disjunctive value A ∨ B may have two regions of support set and of core.

cA∧B(x) 

x

cB(x)cA(x)
c 

1

0

Fig. 6.4 An example of the
graph of consistency function
of A∧B
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That shows that a set of flexible linguistic values on the same space is not close
to the operations ∧ and ∨ defined above. Therefore, strictly speaking, ∧ and ∨
cannot be called the operations on flexible linguistic values on the same space. As a
matter of fact, we seldom speak in this way in our daily communications.

The concepts of conjunctive values and disjunctive values on the same spaces
can also be generalized to the case of n component linguistic values.

Definition 6.5 Let A1, A2, …, An be n flexible linguistic values of feature F of
objects, which be defined on n-dimensional measurement space U, and whose
consistency functions be cA1ðxÞ; cA2ðxÞ; . . .; cA2ðxÞðx 2 UÞ. A1 ∧ A2 ∧ ��� ∧ An and
A1 ∨ A2∨ ��� ∨ An are separately the conjunction and disjunction of these n flexible
linguistic values, whose consistency functions are as follows:

cA1^A2^...^AnðxÞ ¼ minfcA1ðxÞ; cA2ðxÞ; . . .; cAnðxÞg ð6:3Þ

cA1_A2_..._AnðxÞ ¼ maxfcA1ðxÞ; cA2ðxÞ; . . .; cAnðxÞg ð6:4Þ

6.3.2 Negation

Likewise, according to the semantics of negative connective ¬, the flexible set to
which ¬A corresponds should be the complement Ac of flexible set A to which
linguistic value A corresponds. Then, from the membership function of complement
Ac in Sect. 5.5, the consistency function of ¬A can be directly obtained.

Definition 6.6 Let A be a flexible linguistic value on n-dimensional measurement
space U, whose consistency function be cA(x). ¬A connected by logical connective
¬ (negation) is called the negation of A, whose consistency function is as follows:

c:AðxÞ ¼ 1� cAðxÞ; x 2 U ð6:5Þ

x

c 

1

0

cA(x) cB(x)cA∨B(x) 
Fig. 6.5 An example of the
graph of consistency function
of A∨B
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On one-dimensional measurement space U = [a, b], the graph of the consistency
function of the negation ¬A of full-peak value A is shown in Fig. 6.6. The con-
sistency function of negative value ¬A on two-dimensional space U × V is as
follows:

c:Aðx; yÞ ¼ 1� cAðx; yÞ ¼ 1� cAðxÞ ðx; yÞ 2 U

namely

c:Aðx; yÞ ¼ 1� cAðxÞ ¼ ðx; yÞ 2 U ð6:6Þ

The graph is shown in Fig. 6.7.
From Eq. (6.5), we have

cAðxÞþ c:AðxÞ ¼ 1; x 2 U ð6:7Þ

That is, the sum of the consistency-degrees of an object having two relatively
negative flexible linguistic values is 1. This shows that there is also complementation
relation between consistency-degrees of relatively negative flexible linguistic values.
We call Eqs. (6.6) and (6.7) to be the complement law of consistency-degrees.

c A(x) 

cA(x) 

c 

1

0
x

¬

Fig. 6.6 An example of the
graph of consistency function
of one-dimensional negative
value ¬A

c A(x, y) 

c 

1

0

y x

Fig. 6.7 An example of the
graph of consistency function
of two-dimensional negative
value ¬A
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Further, we call the complement law of consistency-degrees and the complement law
of membership-degrees in Sect. 5.5 to be the complement law of degrees.

Actually, the complement relation of degrees is also consistent with our intu-
ition. We know that an object always has a flexible linguistic value A in a certain
degree, which means that it also has flexible linguistic value ¬A in another degree at
the same time. That is to say, an object always has a pair of relatively negative
flexible values simultaneously. Moreover, there is such a relation between the
degrees of two relatively negative flexible linguistic values of one object: If the one
is increasing, then the other is decreasing and vice versa.

6.4 Compositions and Decompositions of Flexible
Linguistic Values on Distinct Spaces

6.4.1 Logical Composition and Decomposition, Combined
Linguistic Values

The flexible linguistic values on distinct spaces can also perform operations to form
a composite flexible linguistic value. For instance, “tall and big,” “healthy and
beautiful,” and “knowledgeable or experienced” are just the flexible linguistic
values composed by flexible linguistic values on distinct spaces.

6.4.1.1 Logical Composition of Flexible Linguistic Values

Let A and B be separately flexible linguistic values on measurement spaces U and
V. Then, what shapes are the flexible sets that conjunctive flexible linguistic value
A ∧ B and disjunctive flexible linguistic value A ∨ B correspond to?

Obviously, A ∧ B is not a flexible linguistic value on measurement spaces U or
V, but should be a flexible linguistic value on product space U × V. However, the
flexible sets A and B that flexible linguistic values A and B correspond to (here the
same symbol is used for a flexible linguistic value and its flexible set) are the
subsets in distinct spaces. For this reason, A and B must be extended into the
flexible sets in product space U × V. That is, A and B be extended into A × V and
U × B, respectively. We use still A and B to denote A × V and U × B. Obviously,
A and B are orthogonal in product space U × V. Thus, the orthogonal intersection
A\B in U × V is the flexible set that conjunctive flexible linguistic value
A ∧ B corresponds to.

Similarly, the flexible set that disjunctive flexible linguistic value
A ∨ B corresponds to is the orthogonal union A[B in product space U × V.

And it is known from Sect. 5.5.2 that
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mA\Bðx; yÞ ¼ minfmAðxÞ;mBðyÞg; x 2 U; y 2 V

mA[Bðx; yÞ ¼ maxfmAðxÞ;mBðyÞg; x 2 U; y 2 V

Thus, the consistency functions of A ∧ B and A ∨ B are as follows:

cA^Bðx; yÞ ¼ minfcAðxÞ; cBðyÞg; x 2 U; y 2 V ð6:8Þ

cA_Bðx; yÞ ¼ maxfcAðxÞ; cBðyÞg; x 2 U; y 2 V ð6:9Þ

Their graphs are shown in Fig. 6.8a, b, and the shape of the former is a
square-tapered surface and the latter an orthogonal ridged surface.

Generally, we give the following definition.

Definition 6.7 Let A1, A2, …, An be separately flexible linguistic values of features
F1;F2; . . .;Fn of objects, which be separately defined on measurement spaces
U1, U2, …, Un. Conjunctive value A1 ∧ A2 ∧ … ∧ An = Ca and disjunctive value
A1 ∨ A2 ∨ … ∨ An = Co connected by logical connectives “and” (∧) and “or” (∨),
respectively, are the flexible linguistic values on product space
U = U1 × U2 × ��� × Un. We refer to Ca and Co as the combined linguistic value of
A1, A2, …, An or, simply, combined value, whose consistency functions are as
follows:

cCaðxÞ ¼ minfcA1ðx1Þ; cA2ðx2Þ; . . .; cAnðxnÞg ð6:10Þ

cCoðxÞ ¼ maxfcA1ðx1Þ; cA2ðx2Þ; . . .; cAnðxnÞg ð6:11Þ

where x = (x1, x2, …, xn), xi 2 Ui (i = 1, 2, …, n), and A1, A2, …, An are called the
component values of their combined value.

A combined value can be renamed, or not be renamed, but be said “A1 and A2

and … and An” and “A1 or A2 or …or An” separately. As a matter of fact, some
combined linguistic values have already been renamed. For instance, people call the
stature of “tall and big” to be “robust” and call “thin and small” to be “slim.”

Now, we see that a combined linguistic value is formed by several flexible lin-
guistic values on distinct spaces through logical operations conjunctive or disjunc-
tive. We call this phenomenon the logical composition of flexible linguistic values.

(a) (b)

Fig. 6.8 Graphs of the consistency functions of A∧B and A∨B
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6.4.1.2 Logical Decomposition of a Flexible Linguistic Value

Viewed backward the logical composition of flexible linguistic values, then, it is
that a flexible linguistic value is decomposed into the conjunction or disjunction of
several other flexible linguistic values. In fact, some flexible linguistic values
themselves just can be decomposed or unfolded into the conjunction or disjunction
of multiple flexible linguistic values. For instance, suppose that there are two sports
events A and B. If it is thought that a sportsman is excellent only when the results of
events A and B are both good, which is tantamount to “excellence” being logically
decomposed into the conjunction of “A good” and “B good,” namely
excellence = A good ∧ B good, the consistency function is cexcellent(u) = min
{cA(x), cB(y)}(x 2 U, y 2 V). But if it is thought that a sportsman is excellent when
the result of one at least of events A and B is good, which is tantamount to
“excellence” being logically decomposed into the disjunction of “A good” and
“B good,” namely excellence = A good ∨ B good, the consistency function is
cexcellent(u) = max{cA(x), cB(y)}(x 2 U, y 2 V).

Definition 6.8 Let C be a flexible linguistic value of feature F of objects, which
can be defined on measurement space V. If there exists flexible linguistic value
Ai � Ui (i = 1, 2, …, n) such that C = A1 ∧ A2 ∧ ��� ∧ An, or
C = A1 ∨ A2 ∨ ��� ∨ An, namely

cCðxÞ ¼ minfcA1ðx1Þ; cA2ðx2Þ; . . .; cAnðxnÞg; x ¼ ðx1; x2; . . .; xnÞ; xi 2 Ui ð6:12Þ

or

cCðxÞ ¼ maxfcA1ðx1Þ; cA2ðx2Þ; . . .; cAnðxnÞg; x ¼ ðx1; x2; . . .; xnÞ; xi 2 Ui ð6:13Þ

then we say that C can be logically decomposed into the conjunction or disjunction
of flexible linguistic values A1, A2, …, An on measurement spaces U1, U2, …, Un.

6.4.2 Algebraical Composition and Decomposition,
Synthetic Linguistic Value

6.4.2.1 Algebraical Composition of Flexible Linguistic Values

For the “excellent sportsman” in example above, suppose the judging criterion is
not “one scope good” or “various scopes all good,” but is “synthesizing scope
good,” which is the weighted sum of various scopes. Then, the relation between
“A good” and “B good” and “excellent” is not logical “and” or “or” at this time, but
should be a kind of numerical “plus.” Considering that the synthesizing scope is the
weighted sum of various scopes, “excellent” also should be the weighted sum of
“A good” and “B good,” which is represented by using consistency functions is as

140 6 Flexible Linguistic Values and Operations …



follows: cexcellent(u) = w1cA(x) + w2cB(y) (x 2 U, y 2 V, w1, w2 2 [0, 1], w1 +
w2 = 1). Thus, “plus” is also a kind of operation of flexible linguistic values.

Definition 6.9 Let A1, A2, …, An be separately flexible linguistic values of features
F1;F2; . . .;Fn of objects, which is defined on measurement spaces U1, U2, …,
Un, respectively. A1 plus A2 plus … plus An, denote A1 ⊕ A2 ⊕ ��� ⊕An, is a
flexible linguistic value, denoted S, on product space U1 × U2 × ��� × Un = U,
which is called synthesis of A1, A2, …, An, and its consistency function is as
follows:

cSðxÞ ¼
Pn
i¼1

wicAiðxiÞ; when cAiðxiÞ[ 0

0; else

8<
: ð6:14Þ

where x = (x1, x2, …, xn), xi 2 Ui, wi 2 (0,1),
Pn
i¼1

wi ¼ 1

At this time, A1, A2, …, An are called the ingredients of synthetic value S.
Now, in the judging criterion of “synthesizing scope good,”

A good ⊕ B good = excellence.
Thus, multiple flexible linguistic values from distinct spaces can form a synthetic

linguistic value by operation of “plus.” Considering that this “plus,” i.e., weighted
sum, is a kind of algebraic operation; therefore, we call this composition the
algebraical composition of flexible linguistic values. The algebraical composition of
linguistic values means objects can be described more roughly by more general
languages.

It is necessary to note that, as we know, black color and white color can be
mixed into gray color, and three primary colors of red, green, and blue can be mixed
into various colors. Besides, sour taste and sweet taste can be mixed to a kind of
flavor which is both sour and sweet. Viewed from the angle of linguistic value, the
mixes of these colors and flavors can also be viewed as a kind of composition of
linguistic values; however, this kind of composite linguistic values is really a kind
of mixed linguistic values (but no synthetic linguistic values). Of course, we can yet
regard logically (non-physically) them as synthetic linguistic values.

From Eq. (6.14) above, the corresponding expression of membership function is
as follows:

mSðxÞ ¼
Xn
i¼1

wimAiðxiÞ; mAiðxiÞ 6¼ 0; xi 2 Ui;Wi 2 ð0; 1Þ;
Xn
i¼1

wi ¼ 1

It can be seen that the expression just is the membership function of flexible
product set A1 × A2 × ��� × An. This shows that flexible product
A1 × A2 × ��� × An is the denotative mathematical model of synthetic linguistic
value A1 ⊕ A2 ⊕ … ⊕ An.
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6.4.2.2 Algebraical Decomposition of a Flexible Linguistic Value

Viewed backward the algebraical composition of flexible linguistic values, then it is
that a flexible linguistic value is decomposed into the weighted sum of several other
flexible linguistic values. For instance, viewing backward equation,
A good ⊕ B good = excellence, then that is “excellence” be decomposed into the
“sum” of “A good” and “B good.” In fact, some flexible linguistic values them-
selves are just synthetic-type linguistic value, so they can be decomposed into the
“sum” of several ingredient values.

In practical problems, in order to describe objects more carefully and accurately,
a relatively abstract linguistic value sometimes needs to be specifically decomposed
into multiple sublinguistic values. For example, the flexible linguistic value of
“high” (of teaching level) can just be decomposed into three flexible linguistic
values of “master” (to content of the course), “appropriate” (of teaching methods),
and “good” (of effect of teaching). For another example, the flexible linguistic value
of “beautiful” (of looks) can be just decomposed into three flexible linguistic values
of “regular” (of facial features), “proper” (of facial structure), and “bright and clean”
(of skin color).

It can be seen that this kind of decomposition of linguistic value is not the
above-mentioned logical decomposition. Because the linguistic values obtained
from decomposition are the ingredient values of the original linguistic value, and
the relation between ingredient values is synthesis, i.e., weighted sum rather than
simple logical conjunction or disjunction. For instance, although the three flexible
linguistic values of “mastered,” “appropriate,” and “good” collectively form “high,”
their importance to “high” (of teaching level) is not the same, so there should be
different weights. Likewise, though the three ingredient values of “regular,”
“proper,” and “bright and clean” collectively form “beautiful,” their contributions to
“beautiful” are different, so each has its own weighted coefficient.

Definition 6.10 Let S be a flexible linguistic value of feature F of objects, which
can be defined on measurement space V. If there exits flexible linguistic value
Ai � Ui, such that S = A1 ⊕ A2 ⊕ … ⊕ An, namely

cSðxÞ ¼
Xn
i¼1

wicAiðxiÞ; cAiðxiÞ[ 0 ð6:15Þ

where x = (x1, x2, …, xn), xi 2 Ui, wi 2 (0,1), and
Pn
i¼1

wi ¼ 1, then S is a synthetic

linguistic value, we say that which can be algebraically decomposed into the
weighted sum of flexible linguistic values A1, A2, …, An.

Example 6.2 Suppose that “beautiful” (of looks) can be algebraically decomposed
into “regular” (of facial features), “proper” (of facial structure), and “bright and
clean” (of skin color). Suppose the weights of the three ingredient values to their
synthesis “beautiful” be separately: 0.4, 0.35, and 0.25, and the consistency
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functions of “regular,” “proper,” and “bright and clean” are separately cregular(x),
cproper(y), and cbright and clean(z). Then, from Eq. (6.15), the consistency function of
“beautiful” is as follows:

cbeautifulðx; y; zÞ ¼ 0:4 cregularðxÞþ 0:35 cproperðyÞþ 0:25 cbright and cleanðzÞ

Thus, a flexible linguistic value can also be algebraically decomposed into the
weighted sum of multiple flexible linguistic values on distinct spaces. The alge-
braical decomposition of a flexible linguistic value means that objects can be
described more detail by more accurate flexible linguistic values.

Note that in daily language, people sometimes also use connective “and” but
strictly use “plus” to describe a synthetic linguistic value. For example, original “A
plus B” is said as “A and B.” In addition, the understanding and convention above
about the synthesis of linguistic values are supposing there must exist all ingredient
values for a synthetic value, that is, the consistency-degrees of all ingredient values
that participate in the synthesis should all be greater than 0. But if we suppose or
agree that it can be regarded as a synthetic value if there is only one ingredient
value, that is, at least one of the consistency-degrees of all ingredient values that
participate in a synthesis is greater than 0, then the consistency function of the
synthetic value is as follows:

cSðxÞ ¼
Xn
i¼1

wicAiðxiÞ; x ¼ ðx1; x2; . . .; xnÞ; xi 2 Ui; wi 2 ð0; 1Þ;
Xn
i¼1

wi ¼ 1

ð6:16Þ

But note that the flexible set that this consistency function corresponds to,

strictly speaking, is already not product �n
i¼1

Ai.

6.5 Relatively Negative Flexible Linguistic Values
and Medium Point

From the definition of a negative value, it can be seen that the negation of the
linguistic value is just the linguistic value itself. That is to say, the negation is in fact
mutual. Therefore, mutual negation is also a kind of relation between linguistic
values. As a matter of fact, any linguistic value has its negation.

Further examining relatively negative flexible linguistic values, we find that on
one-dimensional space [a, b], there are the following three kinds of relatively
negative flexible linguistic values.

1. Two relatively negative flexible linguistic values on a universe. As shown in
Fig. 6.9, let A be a semi-peak flexible linguistic value on space [a, b], supp
(A) = [a, b]. Then, from the above-mentioned consistency functional expression
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(6.5) of a negative value, negation ¬A of A should be linguistic value B in
Fig. 6.9, that is, ¬A = B. Conversely, the negation of B is just A, that is,
¬B = A. Thus, between A and B is just relatively negative relation. These two
relatively negative flexible linguistic values are both semi-peak values, and they
form a flexible partition of the universe.

2. Full-peak value and its negation. As shown in Fig. 6.10, let A be a full-peak
flexible linguistic value on space [a, b]. Then, from the consistency functional
expression (6.5) of a negative value, negation ¬A of A should be as shown in
Fig. 6.10. It is shown that the negation of a full-peak value is divided into two
parts, and they are actually two values on space [a, b]. However, the flexible
linguistic values having the relatively negative relation are not necessarily all
basic flexible linguistic values.

3. Relatively negative relation between adjacent semi-peak values among basic
flexible linguistic values.

Let π = {A1, A2,…, An} be a flexible partition of space U = [a, b]. Basic flexible
linguistic values A1, A2, …, An are adjacent one by one. Let the consistency
functions of semi-peak values Ai

+ and Ai+1
− of Ai and Ai+1 be separately as follows:

cAiðxÞ ¼
sþAi

� x

sþAi
� cþAi

; . . .nAi � x� nAiþ 1

cAiþ 1ðxÞ ¼
x� s�Aiþ 1

c�AIþ 1
� s�Aiþ 1

; nAi � x� nAiþ 1

x
a b

 A B

c 

1

0.5 

0

Fig. 6.9 Relatively negative
relation between two values
on universe

x

a b

¬A A ¬A
c 

1

0.5

0

Fig. 6.10 Relatively
negative relation between a
full-peak value and its
negation
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Their graphs are shown in Fig. 6.11.
From the figure, it can be seen that points cþAi

and s�Aiþ 1
should be coincident, and

sþAi
and c�Aiþ 1

should be coincident, so sþAi
� cþAi

¼ c�Aiþ 1
� s�Aiþ 1

. Thus, for arbitrary
x2[ξAi, ξAi+1],

cAiðxÞþ cAiþ 1ðxÞ ¼
sþAi

� x

sþAi
� cþAi

þ x� s�Aiþ 1

c�Aiþ 1
� s�Aiþ 1

¼ sþAi
� x

sþAi
� cþAi

þ x� cþAi

sþAi
� cþAi

¼ sþAi
� cþAi

sþAi
� cþAi

¼ 1

This shows that two adjacent basic flexible linguistic values Ai and Ai+1 on space
U, the positive semi-peak Ai

+ of the former Ai, and negative semi-peak Ai+1
− of the

latter Ai+1 are relatively negative on interval [ξAi, ξAi+1].
The complement relation of consistency-degrees of relatively negative flexible

linguistic values makes a pair of relatively negative flexible linguistic values be able
to transform mutually. Thus, we can also unify or reduce a pair of relatively
negative flexible linguistic values as one flexible linguistic value.

The complement relation of consistency-degrees has also another characteristic;
that is, the consistency-degrees of an object with relatively negative flexible lin-
guistic values are always symmetrical about 0.5. For two relatively negative lin-
guistic values, this is just that the union of the range of values of the consistency
functions of a pair of relatively negative flexible linguistic values is symmetrical
about 0.5. We can visually see that from the above Figs. 6.9, 6.10, and 6.11.
Whereas the numerical value that 0.5 corresponds to is just median points mA, that
also is, m¬A, of the common boundary of two relatively negative flexible linguistic
values. That is to say, a median point has both two relatively negative flexible
linguistic values with the same consistency-degree of 0.5. Thus, we call a median
point the medium point between relatively negative flexible linguistic values,

x

iAξ
iAm (

1+iAm )
1+iAξ

Ai
+ Ai+1

c 

1

0.5

0

Fig. 6.11 Relatively negative relation between adjacent semi-peak values of basic flexible
linguistic values
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which stands for “half A and half ¬A,” such as half tall and half short, half hot and
half cold, and half true and half false etc.

If we take the intersection of the support sets of two relatively negative flexible
linguistic values, e.g., supp(A)\ supp(¬A), as the support set of a flexible linguistic
value, then this linguistic value is “some A and some ¬A.” It is the medium
linguistic value lying between A and ¬A, and 0.5 is just the core center of this
medium linguistic value.

Summarizing the mutual negation relation between flexible linguistic values,
there are the following judgments and properties about mutual negation:

• If there exists a medium point between two flexible linguistic values, then
between the two flexible linguistic values is mutual negation relation;

• The support sets of relatively negative flexible linguistic values intersect surely;
the intersection part is the common boundary of the two flexible linguistic
values; and the center point of this common boundary region is the medium
point between the two relatively negative flexible linguistic values.

• Two flexible classes are relatively negative if and only if there is a transition
zone which is this and also is that between their cores.

6.6 Complementary Flexible Partition of a Space
and Complementary Flexible Linguistic Values

6.6.1 Complementary Flexible Partition of a Space,
Complementary Flexible Classes and Complementary
Flexible Linguistic Values

From Definitions 6.1 and 6.3, it can be seen that flexible partition is actually a kind
of complementary partition of a space, so between the flexible classes obtained is
complementation relation, and between the corresponding flexible linguistic values
also is complementation relation.

Definition 6.11 Let U be an n-dimensional measurement space, and let A1, A2, …,
Am be non-empty flexible subsets of U. If π = {A1, A2,…, Am} is a flexible partition
of U, then π is called a complementary flexible partition of space U, flexible classes
A1, A2, …, Am are called to be complementary, or say the corresponding flexible
linguistic values A1, A2, …, Am are complementary.

More simply, complementary flexible partition is that between the cores of two
adjacent flexible sets there is a median point (line or plane) formed by medium
points that are also this and also that. For instance, the two partitions in Fig. 6.12
are both complementary flexible partitions (the white broken line in the figures is
the median line of adjacent flexible classes), and between the corresponding flexible
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classes and between the corresponding flexible linguistic values, all are comple-
mentation relation, respectively.

Comparing Definition 6.11 and Definition 6.3, it can be seen that the flexible
linguistic values A1, A2, …, Am on space U are of complementation relation if and
only if A1, A2, …, Am forms a group of basic flexible linguistic values on U.

Example 6.3 Suppose “small,” “medium,” and “large” be a group of basic flexible
linguistic values on one-dimensional space [0, 100], then they are of complemen-
tation relation. If only to define two basic flexible linguistic values of “small” and
“large” on space [0, 100], then “small” and “large” are also of complementation
relation (of course, meantime, they are also of mutual negation relation).

6.6.2 Relationship Between Mutual Complementation
and Mutual Negation

From the definition and examples of the complementation relation, it can be seen
that the complementation relation and mutual negation relation between flexible
linguistic values have a certain connection. As a mater of fact, the two have both
something in common and difference.

What they are in common is there is a medium point (line or plane) between two
relatively negative flexible linguistic values, while there is a medium point (line or
plane) between complementary flexible linguistic values pairwise.

The difference between them is as follows: Mutual negation is only for two
linguistic values and it is a relation between two linguistic values, while mutual
complementation can be for more than two linguistic values, which is a relation
among multiple linguistic values.

Thus, generally speaking, mutual complementation is not mutual negation.
However, if there are only two basic flexible linguistic values which are mutually
complementary on a universe, then the two are also of relatively negative.
Conversely, if there are two relatively negative basic flexible linguistic values on a

(a) (b)

Fig. 6.12 Examples of complementary flexible partition, complementary flexible classes, and
complementary flexible linguistic values. a Square space, b Circular space
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universe, then the two are also of mutually complementary. This is to say, in the
special case of only two basic flexible linguistic values” The mutual complemen-
tation is certainly the mutual negation, and the mutual negation is certainly the
mutual complementation. Besides, since any linguistic value has a negation, and
two relatively negative flexible linguistic values can also form a flexible partition of
a universe, in this sense, the mutual negation is certainly the mutual complemen-
tation. In a word, the mutual negation can be viewed as a special kind of mutual
complementation.

6.7 Relations Between Flexible Linguistic Values

Mutual negation and mutual complementation are two relations among flexible
linguistic values; besides, there are also some other relations among flexible lin-
guistic values.

6.7.1 Order and Position

We use the order relation between peak value points of flexible linguistic values to
make definite the order relation between corresponding flexible linguistic values.

Definition 6.12 Let A and B be two flexible linguistic values on one and the same
numerical range [a, b], and ξA and ξB be separately peak value points of A and
B. Then, A < B (A > B) if and only if ξA < ξB (ξA > ξB). Where A < B indicates that
A is prior to B, or A is less than B, A > B indicates that A is behind B, or A is greater
than B.

Example 6.4 As shown in Fig. 6.13, “low,” “medium,” and “high” are three
adjacent flexible linguistic values on range [0.5, 2.5] of human’s heights, and from
Definition 6.12, their order is “low” < “medium” < “high.”

Similarly, we use the position of peak value point of a flexible linguistic value to
make definite the position of corresponding flexible linguistic value.

0.5     2.5

low    medium high
c 

1

0.5

0
(m)

Fig. 6.13 An example of
order of relation between
flexible linguistic values
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Definition 6.13 Let A be a flexible linguistic value on n-dimensional measurement
space U, and ξA be peak value points of A, of which the coordinate is (a1, a2, …,
an). Then, the coordinate (a1, a2, …, an) is also the position of the flexible linguistic
value A in space U.

6.7.2 Composition–Decomposition Relation
and Category–Subordination Relation

Speaking from the constitution of a linguistic value, we call relation between a
combined value and its component values and that between a synthetic value and its
ingredient values collectively to be the composition–decomposition relation.

Conceptually speaking, between flexible linguistic values there is a category–
subordination relation. That is, relatively speaking, some flexible linguistic values
are category concepts or higher level concepts, while some are subordinate concepts
or lower level concepts. A subordinate concept is derived from corresponding
category concept, and the category concept is a father concept or basic concept,
while the subordinate concept is a son concept or a more special concept. For
instance, flexible triangle is a category concept of flexible right-angled triangle;
conversely, flexible right-angled triangle is a subordinate concept of flexible tri-
angle. Similarly, flexible right-angled triangle and flexible right isosceles triangle
are also of the category–subordination relation. Category–subordination relation is
also called the derivative relation or the generalization relation.

6.7.3 Inclusion Relation and Same-Level Relation

Definition 6.14 Let A and B be flexible linguistic values on the same measurement
space U. If the corresponding flexible set A is contained in flexible set B, then
flexible linguistic value A is called to be contained in flexible linguistic value B, or
B contains A.

Definition 6.15 Let A and B be flexible linguistic values on the same measurement
space U. If A does not contain B and B does not contain A either, then we say
flexible linguistic values A and B are same-level.

Example 6.5 What Fig. 6.14 shows is several flexible linguistic values having
inclusion relation or same-level relation. From the figure, it can be visually seen that
A1 contains A2, B1 contains B2, C1 contains C2 and C3, and C2 contains C3, while
A1, B1, and C1 are of same-level.

From this example, it can be seen that the curves of consistency functions of the
linguistic values having inclusion relation are not necessarily parallel.
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6.8 Similarity and Approximation About Flexible
Linguistic Values

6.8.1 Similarity and Approximation Relations Between
Atom Flexible Linguistic Values
and the Corresponding Measures

(1) Definition of the similarity and approximation relations between atom
flexible linguistic values

Definition 6.16 Let A and B be atom flexible linguistic values on one and the same
measurement space. A and B are similar, if and only if the width of each boundary
of A and the width of corresponding boundary of B are equal.

It can be verified that the similarity relation between flexible linguistic values is
an equivalence relation.

From the graph of consistency function, it is not hard to see that the similarity of
one-dimensional flexible linguistic values A and B means the slopes of curves of
consistency functions cA(x) and cB(x) are the same correspondingly.

Definition 6.17 Let A and B be atom flexible linguistic values on one-dimensional
space U = [a, b]. A is approximate to B, if and only if

(i) A and B is similar;
(ii) widt(supp(A)) = widt(supp(B)), widt(core(A)) = widt(core(B));
(iii) ξA2core(B)+, that is, cB(ξA) > 0.5.

Example 6.6 Flexible linguistic value A shown in Fig. 6.15(a) is approximate to
flexible linguistic value B, but flexible linguistic value A shown in Fig. 6.15(b) is
not approximate to flexible linguistic value B.

It is not hard to see that the approximation relation between linguistic values
does not satisfy symmetry.

x

A1

A2

B2

c 

1

0

C2

C3

B1 C1

Fig. 6.14 Examples of same-level relation and inclusion relation between flexible linguistic
values
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(2) Measure of the approximation of atom flexible linguistic values

For the convenience of narrating, in the following we use d(*,*) to denote
distance, where * can be a point in a measurement space, or it can be a flexible
linguistic value or its core, extended core or support set.

Definition 6.18 Let A and B be atom flexible linguistic values on one-dimensional
space U = [a, b], and set

dðA;BÞ ¼ dðnA; nBÞ

to be called the distance between A and B, or the distance between their cores,
between their extended cores or that between their support sets.

By this definition, for one-dimensional atom flexible linguistic values A and B, it
follows that

dðA;BÞ ¼ dðcoreðAÞ; coreðBÞÞ ¼ dðcoreðAÞþ ; coreðBÞþ Þ ¼ dðsupp(AÞ; ðsupp(BÞÞ

By Definitions 6.18 and 6.17, we have the following theorem.

Theorem 6.1 For one-dimensional atom flexible linguistic values A and B, if A is
approximate to B, then distance d(ξA,ξB) = d(c�A; c

�
B) = d(s�A; s

�
B).

Generalizing Definition 6.18, we have the following definition.

Definition 6.18′ Let A and B be atom flexible linguistic values on n-dimensional
measurement space U, and set

dðA;BÞ ¼ dðnA; nBÞ

to be called the distance between flexible linguistic values A and B, or the distance
between their cores, between their extended cores, or that between their support sets.

Since inclusion is not necessarily similar, inclusion is not necessarily approxi-
mate either.

c 

1

0

BA

−
Bs −

Bm Aξ x

c 

1

0

BA

−
Bs Aξ −

Bm x

(a) (b)

Fig. 6.15 Examples of the approximation relation between flexible linguistic values. a A is
approximate to B, b A is not approximate to B
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Definition 6.19 LetW andW′ be atom flexible linguistic values on one-dimensional
space U = [a, b], ξW and ξW’ be, respectively, the peak value points ofW andW′, and
m�

W and mþ
W be respectively the negative and positive median points of W. Set

r�W ¼ nW � m�
W ; r

þ
W ¼ mþ

W � nW ð6:17Þ

to be separately called the negative approximate radius and the positive approxi-
mate radius of W;

DWW 0 ¼ dWW 0

r�W
¼ nW � nW 0

nW � m�
W
;DWW 0 ¼ dWW 0

rþW
¼ nW 0 � nW

mþ
W � nW

ð6:18Þ

to be called the difference-degree of linguistic values W′ and W. If W′ is approxi-
mate to W, then we say that

sWW 0 ¼ 1� DWW 0 ð6:19Þ

is the approximation-degree of linguistic values W′ and W.
It can be seen that what the difference-degree represents is the relative difference

between peak value points ξW′ and ξW, while approximate radii r�W and rþW of
linguistic values W are just two unit distances of this relative difference. The reason
why we take they as the unit distances is that, on the one hand, the two distances
are, respectively, the maximum distance from all points at the two side of peak
value point ξW in the extended core of flexible linguistic value W to the peak value
point; on the other hand, from the previous definition of the approximation of
flexible linguistic values, when linguistic valueW′ is approximate to linguistic value
W, peak value point ξW’ of W’ should fall within the extended core of W. Thus, the
distance between two approximate flexible linguistic values will never exceed that
maximum distance, so to take them as the unit distances is appropriate.

Relative difference reflects the degree of a difference, which can be independent
of universes of discourse. Therefore, the relative differences between flexible lin-
guistic values in different universes of discourse are completely comparable. From
the meaning of the relative difference, we refer to relative difference between
flexible linguistic values as the difference-degree of flexible linguistic values. While
according to the definition of the distance between linguistic values, the distance
between two approximate linguistic values will never exceed the approximate
radius of each of the two linguistic values. Thus, the difference-degree of two
approximate linguistic values should be between 0 and 1. Further, the
approximation-degree should also be between 0 and 1.

Generalizing Definition 6.19 to n-dimensional atom flexible linguistic values, it
is the following definition.
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Definition 6.19′ Let W and W′ be atom flexible linguistic values on n-dimensional
measurement space U, ξW and ξW′ be, respectively, the peak value points of W and
W′. Take

rW ¼ min
x2cW

dðnW ; xÞ ðcW is themedian plane ofWÞ

as the approximate radius of W, and set

DWW 0 ¼ dWW 0

rw
ð6:20Þ

to be called the difference-degree of flexible linguistic values W′ and W. If W′ is
approximate to W, then we say

sWW 0 ¼ 1� DWW 0 ð6:21Þ

is the approximation-degree of flexible linguistic values W′ and W.

(3) Reduction and orientation of approximation

① Reduction from full-peak-valued approximation to semi-peak-valued
approximation

Let A and A′ be two full-peak flexible linguistic values on one-dimensional
measurement space U, suppose A′ is approximate to A from the negative side. Now,
we divide A into two semi-peak values A− and A+. By the definition of approxi-
mation of flexible linguistic values, it should follow that nA0 2 XA ¼ X�

A [X þ
A ; so

8x 2 X þ
A0 ; always x 2 X�

A [X þ
A ; and therefore, X þ

A0 � X�
A [X þ

A . Thus, for the
positive semi-peak value A+’ of A′, there would not exist the problem of two
semi-peak A− and A+ being approximate to A. On the other hand, since A’ is
approximate to A from the negative side, so ξA′ < ξA, this shows that
X�
A0 6� X�

A [X þ
A . Therefore, the negative semi-peak value A−’ of A’ is just

approximate to the negative semi-peak value A− of A. The analysis above shows
that full-peak value A′ which is approximate to full-peak value A from the negative
side actually is tantamount to its semi-peak value A−’ to be approximate to the
negative semi-peak value A− of A from the negative side. Similarly, that full-peak
value A′ which is approximate to full-peak value A from the positive side is actually
tantamount to its semi-peak value A+′ to be approximate to the positive semi-peak
value A+ of A from the positive side. We say this fact to be the reduction from
full-peak-valued approximation to semi-peak valued approximation, whose process
is shown in Fig. 6.16.

② The orientation of approximating to a semi-peak value
From the definition of approximation relation of flexible linguistic values, it is

not hard to see that to approximate to a positive semi-peak linguistic value can only
be done from one side of the positive direction, while to approximate to a negative
semi-peak linguistic value can only be done from one side of negative direction (as
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shown in Fig. 6.17(a) and (b)). In fact, for negative semi-peak value A−, if there is a
semi-peak value A− being located at positive side of A−, as shown in Fig. 6.17(c),
then its peak value point is nA�0 62core(A−)+ surely, but this does not accord with
Definition 6.5. Actually, if semi-peak value A− is a boundary value, then it is
obvious that at its one side of the positive direction, there would not exist a
linguistic value which is same-level with A−; if A−is the negative semi-peak value
of full-peak value A, then according to the reduction of approximation of a full-peak
value in the above, at the side of the positive direction of A−, the linguistic value
close to A− should be the approximate value A+’ of positive semi-peak value A+.
The above situation is also analogues to positive semi-peak value A+.

6.8.2 Similarity and Approximation Relations Between
Composite Flexible Linguistic Values
and the Corresponding Measures

(1) Definition of the similarity and approximation relations between com-
posite flexible linguistic values

Definition 6.20 Let A and B be composite flexible linguistic values on one and the
same space. A and B are similar, if and only if

c 

1

0
x

(a) 
A’ A’

A

x

(c) c 

1

0

A ’ A +’

A A +

c 

1

0
x

(b)
A’ A’

A

Fig. 6.16 Illustration of reduction from full-peak-valued approximation to semi-peak-valued
approximation. (It is from a to b to c)

A+ A+’ x

c 

1

0

A+’

(a) A+

A-’ A- x

c 

1

0

A ’

(b) A

A- A-’
x

c 

1

0

(c) A ’

A

Fig. 6.17 Examples of the orientation of approximating to a semi-peak value where (a) and
(b) are correct, while (c) is wrong
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(i) The structures of A and B are same;
(ii) The corresponding component values or ingredient values of A and B are

similar, respectively.

widtðsuppðA0
iÞÞ ¼ widtðsuppðAiÞÞ;widtðcoreðA0

iÞÞ ¼ widtðcoreðAiÞÞ;

(iii) min
i2f1;2;...;ng

cAiðnA0
i
Þ[ 0:5, that is, for 8i 2 {1, 2, …, n}, always nA0

i
2 core

(Ai)
+.

Definition 6.21 Let A and A’ be conjunctive flexible linguistic values on
n-dimensional product space U = U1 × U2 × ��� × Un. A′ is approximate to A, if
and only if

(i) A′ and A are similar;
(ii) The corresponding component values Ai′ and Ai (i = 1, 2, …, n) of A′ and

A satisfy

widtðsuppðA0
iÞÞ ¼ widtðsuppðAiÞÞ;widtðcoreðA0

iÞÞ ¼ widtðcoreðAiÞÞ;

(iii) min
i2f1;2;...;ng

cAiðnA0
i
Þ[ 0:5, that is, for 8i 2 {1, 2, …, n}, always nA0

i
2 core

(Ai)
+.

Definition 6.22 Let A and A′ be disjunctive flexible linguistic values on
n-dimensional product space U = U1 × U2 × ���× Un. A′ is approximate to A, if
and only if

(i) A′ and A are similar;
(ii) The corresponding component values Ai′ and Ai (i = 1, 2, …, n) of A′ and

A satisfy

widtðsuppðA0
iÞÞ ¼ widtðsuppðAiÞÞ;widtðcoreðA0

iÞÞ ¼ widtðcoreðAiÞÞ;

(iii) max
i2f1;2;...;ng

cAiðnA0
i
Þ[ 0:5, that is, 9i 2 {1, 2, …, n}, such that nA0

i
2 core(Ai)

+.

Definition 6.23 Let A and A′ be synthetic flexible linguistic values on
n-dimensional product space U = U1 × U2 × ��� × Un. A′ is approximate to A, if
and only if

(i) A′ and A are similar;
(ii) The corresponding ingredient values Ai’ and Ai (i = 1, 2, …, n) of A′ and

A satisfy
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widtðsuppðA0
iÞÞ ¼ widtðsuppðAiÞÞ;widtðcoreðA0

iÞÞ ¼ widtðcoreðAiÞÞ;

(iii)
Pn
i¼1

wicAiðnA0
i
Þ[ 0:5:

(2) Measure of approximation of composite flexible linguistic values

Since a composite linguistic value is not like an atom linguistic value obtained
directly by flexible clustering on measurement space, but is composed by flexible
linguistic values from different measurement spaces through logical operation or
algebraic operation, so we cannot directly define the distance between composite
linguistic values on the corresponding product space, and then using the distance to
define difference-degree and approximate-degree. However, just because a com-
posite linguistic value is composed by flexible linguistic values from different
measurement spaces through logical operation or algebraic operation, the
approximation-degree of the composite flexible linguistic value should be the result
of logical operation or algebraic operation of the approximation-degrees of their
component values or ingredient values. According to this understanding, we give
the definition of the approximation-degree of composite flexible linguistic values
and then derive backward the computation formulas of their difference-degree and
distance.

Definition 6.24 Let A and A′ be conjunctive flexible linguistic values on
n-dimensional product space U = U1 × U2 × ��� × Un, and A′ be approximate to
A. Set

sA0A ¼ minfsA0
1A1

; sA0
2A2

; . . .; sA0
nAn

g ð6:22Þ

to be called the approximation-degree of conjunctive flexible linguistic values A’
and A.

Since

sA0
i Ai

¼ 1� DA0
i Ai

ði ¼ 1; 2; . . .; nÞ;

therefore, sA0
i Ai

¼ minfsA0
1A1

; sA0
2A2

; . . .; sA0
nAn

gsA0
i Ai

is equivalent to

DA0
kAk

¼ maxfDA0
1A1

;DA0
2A2

; . . .;DA0
nAn

g. Thus, the difference-degree DA’A of A′ and

A is just

DA0A ¼ maxfDA0
1A1

;DA0
2A2

; . . .;DA0
nAn

g ð6:23Þ

Thus, when finding sA′A, we can firstly find difference-degree DA′A, then from
1- DA′A, obtaining sA′A, that is,
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sA0A ¼ 1� DA0A ¼ 1�maxfDA0
1A1

;DA0
2A2

; . . .;DA0
nAn

g ð6:24Þ

and from

DA0
i Ai

¼
dA0

i Ai

rAi

ði ¼ 1; 2; . . .; nÞ

so dA0
kAk

in max f
d
A
0
1
A1

rA1
;
d
A
0
2
A2

rA2
; . . .;

d
A
0
nAn

rAn
g ¼

d
A
0
k
Ak

rAk
is just distance dA’A between A’ and A.

Definition 6.25 Let A and A′ be disjunctive flexible linguistic values on
n-dimensional product space U = U1 × U2 × ��� × Un, and A′ be approximate to
A. Set

sA0A ¼ maxfsA0
1A1

; sA0
2A2

; . . .; sA0
nAn

g ð6:25Þ

to be called the approximation-degree of disjunctive flexible linguistic values A′
and A.

Similarly, the difference-degree of disjunctive flexible linguistic values A′ and
A is as follows:

DA0A ¼ minfDA0
1A1

;DA0
2A2

; . . .;DA0
nAn

g ð6:26Þ

Thus, approximation-degree is as follows

sA0A ¼ 1� DA0A ¼ 1�minfDA0
1A1

;DA0
2A2

; . . .;DA0
2A2

g ð6:27Þ

While dA0
kAk

in min fDA0
1A1

;DA0
2A2

; . . .;DA0
nAn

g ¼ minf
d
A
0
1
A1

rA1
;
d
A
0
2
A2

rA2
; . . .;

d
A
0
nAn

rAn
g ¼

d
A
0
k
Ak

rAk
is just distance dA′A.

Definition 6.26 Let A and A’ be synthetic flexible linguistic values on
n-dimensional product space U = U1 × U2 × ��� × Un, and A′ be approximate to
A. Set

sA0A ¼ w1sA0
1A1

þw2sA0
2A2

þ . . .þwns
A
0
nAn

;
Xn
i¼1

wi ¼ 1 ð6:28Þ

to be called the approximation-degree of synthetic flexible linguistic values A’
and A.

From this definition, it is not hard to derive that the difference-degree of syn-
thetic flexible linguistic values A′ and A is as follows:
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DA0A ¼ w1DA0
1A1

þw2D
A
0
2
A2
þ . . .þwnDA0

nAn
ð6:29Þ

Thus, approximation-degree is as follows:

sA0A ¼ 1� DA0A ¼ 1�
Xn
i¼1

wiDA0
IAI

ð6:30Þ

However, distance dA’A cannot be obtained.

6.9 Summary

In this chapter, we found the fundamental theory of flexible linguistic values. First,
we introduced the types of flexible linguistic values, then analyzed and defined the
operations on flexible linguistic values, and, in particular, proposed the concepts
and methods of algebraic composition and decomposition of flexible linguistic
values. Meanwhile, we also analyzed the properties and relations of relatively
negative linguistic values, and then proposed the complementary partition of a
measurement space and the complementary relation of flexible linguistic values.
Besides, we also considered other relations between flexible linguistic values,
especially analyzed and defined the approximation relation between flexible lin-
guistic values, and presented the corresponding measuring method.

The main points and the results of the chapter are as follows:

• There are many types of flexible linguistic values, among which the most fre-
quently mentioned are atomic flexible linguistic values and composition flexible
linguistic values.

• Operations on flexible linguistic values can be classified as the operation on
flexible linguistic values on the same space (i.e., of the same feature) and the
operation on flexible linguistic values on distinct spaces (i.e., of distinct fea-
tures). The former has “conjunction,” “disjunction,” and “negation,” and the
corresponding set operations are intersection, union, and complement, while the
latter has logical composition and algebraic composition. The logical compo-
sition includes “conjunction” and “disjunction”; the corresponding flexible set
operations are orthogonal intersection and orthogonal union; and the composi-
tion values obtained are called the combined value. Algebraic composition is the
weighted sum (which is called synthesis); the corresponding flexible set oper-
ation is Cartesian product; and the composition value obtained is called the
synthetic value. This means that the synthetic value of flexible linguistic values
corresponds to the Cartesian product of flexible sets, and the latter is the
denotative mathematical model of the former.

• Any flexible linguistic value has its negation, and the sum of the
consistency-degrees of an object having a pair of relatively negative flexible
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linguistic values is 1. This relation is called the complement law of
consistency-degrees. There is one and only one medium point (line or plane) of
“half-this and half-that” between the flexible sets to which a pair of relatively
negative flexible linguistic values corresponds. Such two flexible sets form a
relatively negative partition of the corresponding measurement space. The
generalization of relatively negative partition is complementary partition; that is,
there is one and only one medium point (line or plane) of “half-this and
half-that” between all two adjacent flexible sets in a space. A usual flexible
partition is actually the complementary partition, and the relation between the
corresponding flexible linguistic values is complementation relation, which form
a group of complementary basic flexible linguistic values on the measurement
space.

• Flexible linguistic values also have the relations of composition–decomposition,
category–subordination, same-level, inclusion, similarity, approximation, and
order.

• To approximate to a full-peak value can be reduced to approximate to a
semi-peak value, and to approximate to a semi-peak value can only be done
from one side of the direction of the peak value. The approximation-degree
between two atomic flexible linguistic values is computed by directly using
formula with distance, while the approximation-degree between two composite
flexible linguistic values is a certain operation of the approximation-degrees
between the corresponding component or ingredient linguistic values.

Reference

1. Lian S (2009) Principles of Imprecise-Information Processing. Science Press, Beijing

6.9 Summary 159



Chapter 7
Superposition, Quantification, Conversion,
and Generalization of Flexible Linguistic
Values

Abstract This chapter is the continuation of the basic theory of flexible linguistic
values. First, the concepts of degree linguistic values and superposed linguistic
values are proposed, and the types, levels, and mathematical models of superposed
linguistic values are discussed. Next, the quantification of flexible linguistic values
is considered, and the flexible linguistic value with degree and its notation is
presented. And then, the relations between pure linguistic values, flexible linguistic
values with degrees and numerical values are expounded, and the corresponding
conversion principles and methods are presented. Lastly, one-dimensional flexible
linguistic values are generalized to vector flexible linguistic values and flexible
linguistic-valued vectors.

Keywords Flexible linguistic values � Consistency functions � Data conversion

7.1 Degree Linguistic Values and Superposed Linguistic
Values

1. Degree linguistic values
We call the usual adverbs portraying degrees such as comparatively, very, and
extremely to be degree linguistic values. It can be seen that degree linguistic
values should be the flexible linguistic values defined on the range [1 − β, β] or
[−β, β] (β ≥ 1) of consistency-degrees. Figure 7.1 illustrates several common
degree linguistic values. Of course, it still needs to be discussed how to most
appropriately take the relevant parameters of (the consistency functions of) these
degree linguistic values, and what here given only are reference models [1].

2. Superposed flexible linguistic values
The so-called superposed flexible linguistic value is the flexible linguistic value
that is formed by superposing a degree linguistic value and a flexible linguistic
value, which is common occurrence in natural language. For instance, “very
hot” is just a superposed flexible linguistic value formed by superposing degree
linguistic value “very” and flexible linguistic value “hot.” In a superposed
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flexible linguistic value, the degree linguistic value in front has an effect of
modifying and restricting upon flexible linguistic value behind, this can also be
viewed as a kind of operation on the latter (can be said original language value),
and the superposed flexible linguistic value obtained by the operation is also a
flexible linguistic value, therefore, the degree linguistic values can be viewed as
a kind of operator of flexible linguistic values. Then, viewed from the point of
operation, a superposed flexible linguistic value can be considered to be
obtained by the superposition operation from an original linguistic value.

Definition 7.1 Let A be a flexible linguistic value, and let c be a degree linguistic
value, we call cA a superposed flexible linguistic value based on A, or a superposed
value for short; and we call A the original linguistic value, or the original value for
short; and call degree linguistic value c the degree operator.

For instance, “very tall” is a superposed value based on “tall,” while “very” is a
degree operator.

It can be seen that the function and effects of a degree operator are to weaken or
strengthen the semantics of the original linguistic value, so degree operators can be
separated into two classes: one is weakening operators, such as “slight,” “a little,”
“comparatively,” and “basically”; the other is strengthening operators, such as
“very,” “extremely,” and “quite”. We call superposed linguistic value cA formed by
a weakening operator as a weakening superposed linguistic value, and denote it
c−A, and call superposed linguistic value cA formed by a strengthening operator as a
strengthening superposed linguistic value and denote it c+A.

If a superposed flexible linguistic value is again modified by a degree linguistic
value, then a double superposed value is formed. For instance, “very very cold” is a
double superposed value. A double superposed value can be denoted by
c1c2A. Further, there can be n-fold superposed value c1…cnA.

3. Relation between a superposed flexible linguistic value and the original
value

Here, we only discuss the relation between a one-dimensional onefold super-
posed linguistic value and the original value.

Examining and analyzing the relation between a superposed linguistic value and
the original value, we find the following:

very comparatively
slight a little

0 0.5 0.6 0.8 1 x

c

1 

0 

extremely
Fig. 7.1 Flexible linguistic
values on range of
consistency-degrees
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Firstly, a superposed linguistic value and the original value based on a full-peak
value are the same-level relation, while a superposed linguistic value and the
original value based on a semi-peak value can be the same-level relation as well as
the inclusion relation.
Secondly, since a superposed value is a new linguistic value that modifies or
restricts the original value somewhat, and one-dimensional measurement space is
the linearly ordered set, so speaking from orientation, a weakening superposed
value is certainly located at the negative side of the original value, while a
strengthening superposed value is certainly located at the positive side of the
original value.
Thirdly, a superposed value and its original value may be approximate relation or
also may not be approximate relation.

Example 7.1 As shown in Fig. 7.2, flexible linguistic values on the range of human
ages: infancy, juvenile, young, middle-aged, comparatively old, and old have the
same-level relation, and old includes very old and extremely old. Here, “old” is an
original value, while comparatively old, very old, extremely old, etc. are all
superposed values based on “old.” Among them, “comparatively old” is a weak-
ening superposed value, which is located at the negative side of “old,” “very old,”
and “extremely old”, etc. are all strengthening superposed values, which are located
at the positive side of “old.”

Note that here the inclusion relation is theoretical or conceptual, while in
engineering practice (such as approximate reasoning), sometimes the flexible lin-
guistic values having inclusion relation needing to be designed as same-level
relation. For instance, designing linguistic values having inclusion relation as
shown in Fig. 7.2 into the same-level relation is shown in Fig. 7.3.

Generally speaking, there are only two basic linguistic values located at the
boundary of a one-dimensional measurement space, for instance, small and large,
short and tall, and cold and hot are all such linguistic values. However, in Fig. 7.3,

infancy juvenile young middle-aged old 

comparatively 
old

c 

1 

0 
0 10 20 30 40 50 60 70 80 90 100 (year)

very old 

extremely
old 

super old 

Fig. 7.2 Example 1 of the relation between superposed values and the original value
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the original value “old” located at boundary is actually decomposed into multiple
linguistic values, and also adding a “comparatively old” in front of “old,” thus
forming a sequence of approximate values.

4. Indirect method to obtain the consistency function of a superposed flexible
linguistic value

A superposed value is also an independent linguistic value, so its consistency
function can be written out according to its support set and core. However, since a
superposed value is based on an original value, and there exist inclusion, parallel, or
even similarity or approximation relations between the two, so the consistency
function of a superposed value and that of its original value have a certain
relationship. Through analysis of the relation between a superposed value and its
original value, we find that for a one-dimensional flexible linguistic value, we can
completely use the consistency function of original value to indirectly obtain the
consistency function of the corresponding superposed value.

We have already known that the weakening superposed value of a
one-dimensional full-peak linguistic value is sure located at its negative side, and
the strengthening superposed value is sure located at its positive side. Then, if we
suppose a superposed value is similar to its original value, then, translating
appropriately the consistency function of original value, we can just obtain the
consistency function of the superposed value. For brevity, we use A− and A+ to
separately denote weakening superposed value c−A and strengthening superposed
value c+A below.

Let A be an original linguistic value, and the consistency function of A be

cAðxÞ ¼

x� s�A
c�A � s�A

; a� x� nA

sþA � x
sþA � cþA

; nA � x� b

8>><
>>:

Let the consistency function of weakening superposed value A− be

very old super old

comparatively 
old

infancy juvenile young middle-aged old extremely old c 

1 

0 
0 10 20 30 40 50 60 70 80 90 100 (year)

Fig. 7.3 Example 2 of the relation between superposed values and the original value
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cA�ðxÞ

x� s�A�

c�A� � s�A�
; a� xnA�

sþA� � x
sþA� � cþA�

; nA� � x� b

8>>><
>>>:

We prescribe that A− and A are similar, that is, the widths of the corresponding
boundaries of A− and A are equal, thus

s�A � s�A�
�� �� ¼ c�A � c�A�

�� �� ¼ cþA � cþA�
�� �� ¼ sþA � sþA�

�� �� ¼ nA � nA�j j

while

jnA � nA� j ¼ dðA�;AÞ

then, set

d ¼ dðA�;AÞ

Thus,

s�A� ¼ s�A � d; c�A� ¼ c�A � d; sþA� ¼ sþA � d; cþA� ¼ cþA � d

Substitute these 4 expressions above into the consistency function of the above
weakening superposed value A−, we have

cA�ðxÞ
x�ðs�A�dÞ

ðc�A�dÞ�ðs�A�dÞ ; a� x� nA � d
ðsþA �dÞ�x

ðsþA �dÞ�ðcþA �dÞ ; nA � d� x� b

8<
:

Modify the expression, getting

cA�ðxÞ
ðxþ dÞ�s�A
c�A�s�A

; a� x� nA � d
sþA �ðxþ dÞ
sþA �cþA

; nA � d� x� b

8<
: ð7:1Þ

From this, it is not hard to see that the relation between consistency functions
cA�ðxÞ and cA(x) is

cA�ðxÞ ¼ cAðxþ dÞ

That is, cA�ðxÞ is the left shift of cA(x).
Making similar analysis, we also can obtain the relation between consistency

functions of strengthening superposed value A+ and its original value A as follows:
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cAþ ðxÞ ¼ cAðx� dÞ

that is,

cAþ ðxÞ ¼
ðx�dÞ�s�A
c�A�s�A

; a� x� nA þ d
sþA �ðx�dÞ
sþA �cþA

; nA þ d� x� b

8<
: ð7:2Þ

The graphs of the above two consistency functions are shown in Fig. 7.4.
If original value A is a negative boundary value on a range of numerical values,

then its superposed value A− is located at the positive side of A, and A+ is located at
the negative side of A; thus, the consistency functions of A− and A+ are the fol-
lowing Eqs. (7.3, 7.4); if original value A is a positive boundary value, then
superposed value A− is located at the negative side of A, and A+ is located at the
positive side of A; thus, the consistency functions of A− and A+ are the following
Eqs. (7.5, 7.6).

cA�ðxÞ ¼ sþA �ðxþ dÞ
sþA �cþA

; x 2 a; b½ �
cAþ ðxÞ ¼ sþA �ðx�dÞ

sþA �cþA
; x 2 ½a; b�

8<
: ð7:3; 7:4Þ

cA�ðxÞ ¼ ðxþ dÞ�s�A
c�A�s�A

; x 2 ½a; b�
cAþ ðxÞ ¼ ðx�dÞ�s�A

c�A�s�A
; x 2 ½a; b�

8<
: ð7:5; 7:6Þ

If the original value A is a non-boundary negative semi-peak value, then the
consistency functions of superposed values A− and A+ are the following Eqs. (7.7,
7.8); if original value A is a non-boundary positive semi-peak value, then the con-
sistency functions of superposed values A− and A+ are the following Eqs. (7.9, 7.10).

cA�ðxÞ ¼ sþA �ðxþ dÞ
sþA �cþA

; x 2 ½a; b�
cAþ ðxÞ ¼ sþA �ðx�dÞ

sþA �cþA
; x 2 ½a; b�

8<
: ð7:7; 7:8Þ

a b x

c

1

0

Fig. 7.4 An example of the
consistency functions of
superposed values of a
full-peak value
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cA�ðxÞ ¼ ðxþ dÞ�s�A
c�A�s�A

; x 2 ½a; b�
cAþ ðxÞ ¼ ðx�dÞ�s�A

c�A�s�A
; x 2 ½a; b�

8<
: ð7:9; 7:10Þ

Thus, as long as the distance between a superposed value and its original value is
known, or as long as one of the critical points, core–boundary points, and peak
value point of superposed value is determined, its consistency function can be
obtained by doing translation transformation of the consistency function of original
value. Therefore, we can call this kind of method to indirectly obtain a consistency
function to be the translation method.

Example 7.2 For the linguistic value “tall” describing height, if we take 1.80 m as
its negative core–boundary point and take 1.65 m as its negative critical point, then
the consistency function of “tall” is

ctallðxÞ ¼ x� 1:65
0:15

; x 2 ½1:0; 2:50�

Additionally, we take “comparatively tall” as another linguistic value.
Obviously, it is a weakening superposed value of “tall.” We take 1.75 m as the
negative core–boundary point of “comparatively tall,” then the distance between
“comparatively tall” and “tall” is 0.05. Thus, the consistency function of “com-
paratively tall” is

ccomparatively tallðxÞ ¼ ctallðxþ 0:05Þ ¼ x� 1:60
0:15

; x 2 ½1:0; 2:50�

Lastly, we point out, the relation between a onefold superposed value and its
original value as well as the method to obtain indirectly the corresponding con-
sistency function above can be generalized to n-fold superposed values by analogy.

7.2 Flexible Linguistic Value with Degree

We know that a linguistic value is the summarization and a collective name of a
batch of continuous numerical values. However, the consistency-degrees of these
numerical values with the corresponding flexible linguistic value are not all 1. Then,
how to use corresponding flexible linguistic values to describe more accurately the
features corresponding to the numerical values whose consistency-degrees are not
1? In natural language, this function is generally realized by using the flexible
linguistic values modified and limited by degree adverbs “comparatively,” “a little,”
“very,” “extremely”, etc. In this book’s terminology, that is to use superposed
linguistic values to describe the feature of an object more accurately. However, a
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superposed value is still a flexible linguistic value, so using a superposed value for
description is still a kind of imprecise qualitative description. Therefore, we assume
that if the flexible linguistic values can be quantified, then the features of objects
can be described precisely by quantified flexible linguistic values. To this end, we
introduce the concept and method of the flexible linguistic value with degree.

Definition 7.2 We call a flexible linguistic value portrayed by a number as degree
to be the flexible linguistic value with degree.

A flexible linguistic value with degree can be represented by two-tuples

ðA; dÞ ð7:11Þ

where A is a flexible linguistic value, d 2 [a; b] (a ≤ 0, 1 ≤ b) is a degree, whose
semantics is A with degree d.

For example, (fat, 0.6) is just a flexible linguistic value with degree, which
represents “fat” with degree 0.6 and can be interpreted as “slightly fat.” For another
example, (hot, 1.2) is also a flexible linguistic value with degree, which represents
“hot” with degree 1.2 and can be interpreted as “very hot.”

Besides two-tuples, we can also use form

dA ð7:12Þ

or

Ad ð7:13Þ

to represent a flexible linguistic value with degree, here we use a coefficient or
subscript to portray a linguistic value.

For instance, let A be “tall,” then “0.8 tall” or “tall0.8” just represents “tall” with
degree 0.8, which can be interpreted as “comparatively tall.” Similarly, “1.3 tall” or
“tall1.3” can represent “very tall,” “1 tall” or “tall1” represents a standard “tall.” If
we extend the scope of the degree to the range of equal to or less than 0, then “0
tall” or “tall0” can be used to represent standard “not tall,” and “−0.3 tall” or
“tall−0.3” can be used to represent “very not tall.”

It can be seen that the flexible linguistic value with degree is actually the refining
of the usual flexible linguistic value, in which the degree is the exact portrayal of
the feature value an object has. Thus, for a feature of an object, there are two kinds
of methods to describe it exactly: One is using a numerical value to describe
directly, while the other is using a flexible linguistic value with degree to describe
indirectly. For instance, for a person’s height, we can use numerical value 1.68 m to
represent it; and can also use flexible linguistic value with degree, (tall, 0.75)
(degree 0.75 is a supposition), to represent it. So, a flexible linguistic value with
degree is in fact equivalent to a numerical value.

In fact, the flexible linguistic value with degree is using both a linguistic value
and a degree together to describe a feature of an object, which is a kind of
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description method that combines macro and micro and combines qualitative and
quantitative. On the one hand, it uses a flexible linguistic value to orient roughly the
feature of the object in macro; on the other hand, it also uses a degree to orient
exactly the feature based on the macro-orientation. Therefore, the combination of
the two just briefly and accurately characterizes the feature of the object. Such a
representation is also consistent with the objective fact that an object always has
certain flexible linguistic value in a certain degree.

From the relationship between flexible linguistic values and numerical values, it
can be seen that d in flexible linguistic value with degree, (A, d), is also
consistency-degree cA(x0) of a certain numerical object x0 in the same universe
of discourse with flexible linguistic value A, that is, d = cA(x0). Thus, through
consistency function, the flexible linguistic values with degrees and numerical
values on the same universe of discourse can be converted mutually.

Like pure flexible linguistic values, flexible linguistic values with degrees can
also do composition operations. From the composition operations of flexible lin-
guistic values in Sect. 6.4, the rules of composition operations of flexible linguistic
values with degrees are as follows:

^n
i¼1

Ai; dið Þ ¼ ^n
i¼1

Ai;min
n

i¼1
di

� �
ð7:14Þ

_n
i¼1

Ai; dið Þ ¼ _n
i¼1

Ai;max
n

i¼1
di

� �
ð7:15Þ

�n
i¼1

Ai; dið Þ ¼ �n
i¼1

Ai;
Xn
i¼1

widi

 !
ð7:16Þ

Of course, there may also be the situation that the consistency function is
unknown. In that a case we can estimate the value of d based on relevant experience
and knowledge.

7.3 Interconversion Between Flexible Linguistic Values
and Numerical Values

Now, a feature that an object has can not only be characterized by a numerical value
or a flexible linguistic value, but it can also be characterized by a flexible linguistic
value with degree. Therefore, there will be problems: How are these three kinds of
characterizations related? Can they be converted each other? And how to convert?
This section will discuss these problems.
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7.3.1 Interconversion Between Pure Flexible Linguistic
Values and Numerical Values

We know that a flexible linguistic value is the summarization of a set of numerical
values, while the numerical values are the instances of the corresponding flexible
linguistic value. Then, for a numerical value, what is the flexible linguistic value it
corresponds to? Or conversely, for a flexible linguistic value, what is the numerical
value it corresponds to?

1. Converting from a numerical value to a pure flexible linguistic value

Firstly, we refer to the conversion from numerical values to pure flexible lin-
guistic values as N-L conversion. N-L conversion can be viewed as a kind of
flexible-ening (which is similar to softening) of numerical values.

Converting a numerical value x in the universe of discourse U to a flexible
linguistic value on U has two case: One is that there are still not appropriate and
ready flexible linguistic values on U to choose, or although there are ready flexible
linguistic values, problem requires forming a flexible linguistic value with
numerical value x as peak value point. The other is that on U, there are already
ready flexible linguistic values for choose.

For the first case, a new flexible linguistic value needs to be constructed on U to
generally represent numerical value x. The method to construct this flexible lin-
guistic value is the method of flexible clustering stated in Chap. 2.

For the second case, we can choose one from the ready flexible linguistic values
to replace the numerical value x, despite the x may have simultaneously multiple
flexible linguistic values (e.g., a pair of relatively negative flexible linguistic values,
A and ¬A) with a certain degree separately. Then, how is this flexible linguistic
value to be chosen? It can be seen that this is actually to determine which flexible
property object x more possesses or which flexible set x more should belong to, that
is, to determine rigidly the possessive relation or membership relation of object
x (actually, that human brain converts a numerical value to a flexible linguistic
value just is so). Since the sum of degrees of a object having relatively negative
linguistic values is 1, while the N-L transformation requires the corresponding
flexible linguistic value to be unique, consistency-degree >0.5 is a basic condition
for the N-L transformation; thus, the one with largest consistency-degree is the best
choice. Further, the transformation in the situation can be still separated into the
following two cases:

(1) Converting it into a basic flexible linguistic value

Let U be a one-dimensional measurement space, x0 2 U be a numerical value,
and A1, A2, …, Am be a group of basic flexible linguistic values on U. Since two
adjacent basic flexible linguistic values are complementary, surely
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max cA1ðx0Þ; cA2ðx0Þ; . . .; cAmðx0Þf g ¼ cAk ðx0Þ� 0:5

Thus, if cAk ðx0Þ > 0.5, then flexible linguistic value Ak is the best basic flexible
linguistic value to match numerical value x0. Therefore, the general method to
convert x0 into a basic flexible linguistic value is:

Firstly, substitute x0 into consistency functions cA1ðxÞ, cA2ðxÞ, …, cAmðxÞ sepa-
rately, then take

cAk ðx0Þ ¼ max cA1ðx0Þ; cA2ðx0Þ; . . .; cAmðx0Þf g

If cAk ðx0Þ > 0.5, then convert numerical value x0 into flexible linguistic value Ak;
if cAk ðx0Þ = 0.5, then or by the specific problem to decide whether to convert x0
into Ak, or not to do the conversion. This conversion process is

x0 ! cAk ðx0Þ� 0:5 ! Ak ð7:17Þ

(2) Converting it into an superposed linguistic value

Since our conversion principle is cAk ðx0Þ > 0.5, but not cAk ðx0Þ = 1, the above
converted basic flexible linguistic value Ak may not be very accurate or very proper
for numerical value x0. Therefore, sometimes numerical value x0 still needs to be
converted into a more accurate and proper superposed linguistic value. This only
needs to substitute separately consistency-degree cAk ðx0Þ to consistency functions
cH1ðyÞ,cH2ðyÞ, …, cHnðyÞ of relevant degree linguistic values H1, H2, …, Hn, then
take

cHlðcAk ðx0ÞÞ ¼ max cH1ðcAiðx0ÞÞ; cH2ðcAiðx0ÞÞ; . . .; cHnðcAiðx0ÞÞf g

then Hl Ak is just the superposed linguistic value that numerical value x0 corre-
sponds to. This conversion process is

x0 ! cAk ðx0Þ ! cHk ðcAk ðx0ÞÞ ! HlAk ð7:18Þ

The above method converting a numerical value to a flexible linguistic value in
one-dimensional space can also be generalized to multidimensional space.

Let U be an n-dimensional measurement space, x0 = (x1, x2,…, xn) 2 U be an n-
dimensional numerical vector.

(1) Forming directly a flexible linguistic value from x0. The general method is the
following: take x0 as peak value point, determine corresponding core radius
and support set radius according to requirement, forming a corresponding
flexible linguistic value on space U by using flexible clustering. We denote the
flexible linguistic value forming from vector x0 by (x0) later.

(2) Converting x0 into a basic flexible linguistic value. The general method is as
follows:
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Let A1, A2, …, Am be a group of basic flexible linguistic values on U. Firstly,
substitute separately x0 into consistency functions cA1ðxÞ,cA2ðxÞ, …, cAmðxÞ,
then take

cAk ðx0Þ ¼ max cA1ðx0Þ; cA2ðx0Þ; . . .; cAmðx0Þf g

If cAkðx0Þ > 0.5, then convert numerical vector x0 into flexible linguistic value
Ak; if cAk ðx0Þ ¼ 0:5, then do not convert. This conversion process is

x0 ! cAk ðx0Þ ! Ak ð7:19Þ

In consideration that basic flexible linguistic values are all atom flexible lin-
guistic values, and from the above-stated converting principle from a numerical
value to a flexible linguistic value, it can be seen that cA (x0) > 0.5 is actually the
sufficient and necessary condition for x0 converting to flexible linguistic value A,
while cA (x0) > 0.5 is also equivalent to x0 2 core(A)+, so we have the following
theorem.

Theorem 7.1 Numerical value x0 can be converted to an atom flexible linguistic
value A if and only if x0 2 core(A)+.

It is not hard to see that this theorem is tantamount to giving a geometrical
method for converting a numerical value into a flexible linguistic value.

It can be seen that converting from a numerical value to a basic flexible linguistic
value is really tantamount to the classification of numerical values. Thus, the
Theorem 7.1 is also equivalent to say, numerical value x0 belongs fully to flexible
set A if and only if x0 2 core(A)+. That is to say, from the application point of view,
a flexible linguistic value (i.e., flexible set) is fully stood for by its extended core.
Further, we have the following conclusion.

Proposition 7.1 In concept, a flexible linguistic value (flexible set) is determined by
its core and support set, but in practical, which is fully stood for by its extended
core. In other words, core and support set are the conceptual model of a flexible
linguistic value (flexible set), while extended core is its practical model.

From the conversion from numerical values to flexible linguistic values, it can be
seen that when numerical values x0 is converted into pure flexible linguistic value
A, the meaning of “x0 is A” in daily language is already not s ambiguous “x0 is A in
a certain degree” but unambiguous “x0 has A” or “x0 belongs to A.” Despite now
the consistency-degree cA(x0) and membership-degree mA(x0) are not necessarily
equal to or greater than 1 and they have still a certain elasticity in interval (0.5, β]
(β ≥ 1), but they certainly be greater than 0.5.

2. Converting from a pure linguistic values to a numerical value

Converting a flexible linguistic value into a numerical value is to select a number
(or vector) from corresponding measurement space, such that it can replace or
represent this flexible linguistic value. From the relation between flexible linguistic
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values and numerical values, this needs firstly to determine the extended core of the
flexible linguistic value and then selecting a number (or vector) from which. It can
be seen that speaking purely from consistency relation, in a extended core, the
number (or vector) that can replace the corresponding flexible linguistic value is
firstly the peak value point of the flexible linguistic value, and secondly is any
number (or vector) in the core, then is any number (or vector) in the extended core.
Thus, the method of converting a flexible linguistic value A on one-dimensional
measurement space U into a numerical value x0 is

A ! core(AÞþ ! x0 ð7:20Þ

where x0 = ξA or x0 2 core(A) or x0 2 core(A)+.
Generally, the method of converting an atomic flexible linguistic value A on n-

dimensional measurement space U into a vector x0 is

A ! core(AÞþ ! x0 ð7:21Þ

where x0 = ξA or x0 2 core(A) or x0 2 core(A)+.
However, the conversion from a flexible linguistic value to a numerical value in

practical problems is usually with respect to a certain specific object. For example,
we know Zhang is tall but don’t know exactly how many meters is he, in this case,
it is needed that converting flexible linguistic value “tall” into a numerical value. It
can be seen that this kind of conversion can only be done by guessing, so which is
actually an uncertainty problem. Then, for this kind of conversion, if there is no
guidance from relevant knowledge or information, then the accuracy of the con-
version has no any assurance. And to increase the accuracy of the conversion,
related heuristic information is required, such as the probability distribution or
distribution density of numerical values or the relevant background information of
the corresponding object. For example, if the distribution of human’s heights is
known, then the accuracy of Zhang’s height would be effectively increased; while if
we know Zhang is a player of the national basketball, then you would surely
consider his height to be around 2 m.

Now we have seen that the conversions from flexible linguistic values to
numerical values can be separated into the conversion based on the relation between
linguistic values and numerical values and the conversion with respect to a certain
object. We may as well call the former to be conceptual conversion and the latter
specific conversion. From the above stated, conceptual conversion is purely related
to the consistency function of a flexible linguistic value, which can be realized by
using the previous expression (7.21); but specific conversion is an uncertainty
problem, and to increase its accuracy, which should be guided by relevant heuristic
information. If the density function of a numerical value is taken as the heuristic
information, then the distinction between these two kinds of conversions can be
visually seen from Fig. 7.5 (here, we now strictly put the density function and the
consistency function of variable x on a certain interval in the same coordinate
system).
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Besides, from Fig. 7.5, we can also clearly see that the consistency-degree of a
numerical value x with a certain flexible linguistic value A and the probability or
density that this numerical value x occurs are two different things, and they have no
direct connection. Therefore, generally speaking, the probability or density that
numerical value x occurs cannot be used to determine the consistency-degree of
x with flexible linguistic value A and vice versa.

Lastly, we refer to conversion from flexible linguistic values to numerical values
as L-N conversion. L-N conversion can be viewed as a kind of rigid-ening (which
is similar to hardening) of flexible linguistic values. In the following, we use
notation [A] to represent the rigid-ening of flexible linguistic value A and the
numerical value resulted from A being rigid-ened.

7.3.2 Interconversion Between Flexible Linguistic Values
with Degrees and Numerical Values

1. Converting from a numerical value to a (or multiple) flexible linguistic
value with degree

A numerical value can be converted as a flexible linguistic value with degree and
can also be converted as multiple flexible linguistic values with degrees.

Let x0 2 U = [a, b], and A1, A2, …, Am be flexible linguistic values on mea-
surement space U. Set

dj ¼ max cA1ðx0Þ; cA2ðx0Þ; . . .; cAmðx0Þf g ¼ cAjðx0Þ

then, (Aj, dj) is a flexible linguistic value with degree to which x0 corresponds. This
is a conversion of one to one. This converting process is

x0 ! max cA1ðx0Þ; cA2ðx0Þ; . . .; cAmðx0Þf g ¼ dj ! Aj; dj
� � ð7:22Þ

In general, the degree dj in this flexible linguistic value with degree, (Aj, dj), may
be any number in corresponding range of degrees except for infimum α. But if A1,
A2, …, Am is a group of basic flexible linguistic values on space U, then certainly,
dj ≥ 0.5; and if dj > 0.5, then it is also unique; and if dj = 0.5, then also dj−1 = 0.5

a b

f(x) 

cA(x)

x

c 

0

dFig. 7.5 Examples of the
density function and
consistency function about x,
where f(x) shown by the
broken line is the density
function and cA(x) shown by
the real line is the consistency
function
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or dj+1 = 0.5. That is to say, x0 actually can also be converted as (Aj−1, 0.5) or (Aj+1,
0.5). From this situation, converting x0 into (Aj, 0.5) or converting it into (Aj−1, 0.5)
or (Aj+1, 0.5), or do not do converting, should be decided by specific problem.

Let x0 2 U = [a, b], and A1, A2, …, Am be flexible linguistic values on mea-
surement space U. Set di = cAiðx0Þ (i = 1, 2, …, m), then we have flexible linguistic
values with degrees, (A1, d1), (A2, d2), …, (Am, dm), which are the flexible linguistic
values with degrees corresponding to numerical value x0. This is just a conversion
of one to many. This converting process is

x0 !
cA1ðx0Þ ¼ d1
cA2ðx0Þ ¼ d2

. . .
cAmðx0Þ ¼ dm

8>><
>>: !

A1; d1ð Þ
A2; d2ð Þ
. . .

Am; dmð Þ

8>><
>>: ð7:23Þ

Note that since (A1, d1), (A2, d2), …, (Am, dm) are all from number x0 by
converting, that is, they stand for one and the same numerical value x0, they are
equivalent mutually.

Similarly, in general, the degrees d1, d2, …, dm in these flexible linguistic values
with degrees are also any m numbers in corresponding range of degrees, but if A1,
A2, …, Am is a group of basic flexible linguistic values on space U, and when
numerical value x0 is located in supp(Ai) \ supp(Ai+1) = (s�Aiþ 1

, s�Ai
) the boundary

region of two adjacent flexible linguistic values Ai and Ai+1 (i 2 {1, 2, …, m − 1}),
then di and di+1 in the corresponding flexible linguistic values with degrees, (Ai, di)
and (Ai+1, di+1), separately satisfy 0 < di < 1 and 0 < di+1<1, and only di and di+1
satisfy >0 and <1 (as shown in Fig. 7.6).

The conversion from numerical value x0 to a one-dimensional flexible linguistic
value with degree, obviously, can also be generalized to the conversion from n-
dimensional vector x0 to an n-dimensional flexible linguistic value with degree. The
method is similar to the former, so it is unnecessary to go into detail here.

Actually, the conversion from a numerical value to a flexible linguistic value
with degree in essence is to transform a numerical value into the consistency-degree
of the numerical value with a certain flexible linguistic value by the mapping of
consistency function.

Fig. 7.6 Example of the degrees di and di+1 satisfying >0 and <1
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Lastly, we refer to the conversion from numerical values to flexible linguistic
values with degrees as N-Ld conversion for short.

2. Converting from a flexible linguistic value with degree to a numerical value

Firstly, we refer to the conversion from flexible linguistic values with degrees to
numerical values as Ld-N conversion for short. Viewed from principle, Ld-N
conversion is the inverse process of N-Ld conversion. Since N-Ld conversion is to
transform a numerical value to a corresponding consistency-degree through a
consistency function, Ld-N conversion is to transform the consistency-degree back
to a numerical value (i.e., measurement) through the inverse function of the original
consistency function. Thus, for a one-dimensional semi-peak linguistic value, Ld-N
conversion is very easy. In fact, let A � U be a one-dimensional semi-peak flexible
linguistic value, and (A, d) be a flexible linguistic value with degree. Since its
consistency function cA(x) is a 1-1 mapping, the inverse function cA�1ðyÞ of cA(x) is
also a 1-1 mapping. Thus, substituting d into inverse function cA�1ðyÞ of cA(x), we
have cA�1ðdÞ = x0. This converting process is

ðA; dÞ ! cA�1ðdÞ ¼ x0 ð7:24Þ

We then consider the conversion from a one-dimensional full-peak flexible
linguistic value with degree to a numerical value.

Let A � U be a one-dimensional full-peak flexible linguistic value and (A, d) be
a flexible linguistic value with degree. Since consistency function cA(x) is a full
triangular function, there are two of its inverse function cA�1ðyÞ and there would be
two corresponding x0, denote them by x01 and x02 . Then, which number should be
chosen as x0? Here, we present several schemes for the determination of x0.

① Randomly take x01 or x02 as x0.
② Take x0 = ξA. That is, to treat peak value point ξA of flexible linguistic value

A as x0;
③ Take x0 = x0 = (x01 + x02 )/2. That is, the average value of x01 and x02 is treated

as x0.
It can be seen that though taking peak value point ξA and average value x0 as
the converted value x0, there would occur some errors, since the two always
are between x01 and x02 , it follows that

maxfjx01 � nAj; jx02 � nAjg\jx01 � x02 j
maxfjx01 � x0j; jx02 � x0jg\jx01 � x02 j

Thus, the error produced by taking ξA or x0 is less than those by randomly
taking x01 or x02 .

④ Determine the selection of x0 from the relevant background knowledge. For
example, if it is known that in a certain condition, the probability of the value
of x occurring at the half zone that x01 locates at is higher than occurring at the
half zone that x02 locates at (it can be seen that in such a situation, x01 and x02
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certainly locate separately at the two half zones of support set supp(A)), then
we can take x0 = x01 , or we can take any number in the half zone as the value
of x0.

Since the consistency function of a multidimensional flexible linguistic value is
irreversible, a multidimensional flexible linguistic value with degree is hard to be
converted to a numerical vector.

7.3.3 Interconversion Between Pure Flexible Linguistic
Values and Flexible Linguistic Values with Degrees

1. Converting from a flexible linguistic value with degree to a pure flexible
linguistic value

The method of converting a flexible linguistic value with degree to a pure
flexible linguistic value is as follows:

Let (A, d) be a flexible linguistic value with degree, and H1, H2,…, Hn be degree
linguistic values. Substitute separately degree d into consistency functions cH1ðxÞ,
cH2ðxÞ, …, cHnðxÞ, take

cHkðdÞ ¼ max cH1ðdÞ; cH2ðdÞ; . . .; cHnðdÞf g

then superposed linguistic value HkA is the pure flexible linguistic value that flexible
linguistic value with degree, (A, d), corresponds to. The converting process is

ðA; dÞ ! cHk ðdÞ ! HkA ð7:25Þ

We refer to the conversion from flexible linguistic values with degrees to pure
flexible linguistic values as Ld-L conversion for short.

2. Converting from a pure flexible linguistic value to a flexible linguistic value
with degree

Since the degree in a flexible linguistic value with degree is the image of
corresponding object’s measurement (i.e., numerical value) under the mapping of
consistency function of the flexible linguistic value, the degree is closed connected
with the numerical value that has this flexible linguistic value. Thus, to convert
one-dimensional pure flexible linguistic value A into flexible linguistic value with
degree, (A, d), corresponding measurement x0 should be firstly known. When
numerical value x0 is known, then substitute it into consistency function cAðxÞ; then,
it follows that consistency-degree cAðx0Þ = d; and immediately, further, we have
(A, d). The conversion process is
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A ! cAðx0Þ ! ðA; dÞ ð7:26Þ

However, if numerical value x0 is not known, then degree d is hard to be
determined. In such a situation, peak value point ξA of flexible linguistic value A can
be taken as numerical value x0 to compute corresponding degree d, that is, take
d = cAðnAÞ. The conversion process is

A ! cAðnAÞ ! ðA; dÞ ð7:27Þ

In particular, for superposed linguistic value cA, firstly find peak value point ξcA of
this superposed linguistic value, then substitute ξcA into corresponding consistency
function cAðxÞ of the original flexible linguistic value A to obtain consistency-degree
cAðncAÞ, and take d = cAðncAÞ; Then, (A, d) is the flexible linguistic value with degree
that flexible linguistic value cA corresponds to. The conversion process is

cA ! ncA ! cAðncAÞ ! ðA; dÞ ð7:28Þ

For multidimensional flexible linguistic value A, the above-stated conversion
method is also applicable, that is

A ! cAðx0Þ ! ðA; dÞ ð7:29Þ

or

A ! cAðnAÞ ! ðA; dÞ ð7:30Þ

Lastly, we refer to the conversion from pure flexible linguistic values to flexible
linguistic values with degrees as L-Ld conversion for short.

7.4 Vector Flexible Linguistic Values and Flexible
Linguistic-Valued Vectors

We know that an atom flexible linguistic value on one-dimensional space [a,
b] actually represents a flexible interval in space [a, b], while one-dimensional atom
flexible linguistic value “about x0” or “near x0” then represent a flexible interval
with a center point, the consistency function of this linguistic value is a function for
x. On multidimensional spaces, atom flexible linguistic value “about P0(x10 , x20 , …,
xn0 )” or “near P0(x10 , x20 , …, xn0 )” then represents a flexible circle, flexible sphere,
or flexible hyper sphere in the corresponding space, whose consistency function is a
function for point P, that is, vector (x1, x2, …, xn). Obviously, this type of multi-
dimensional atom flexible linguistic values with a center point is the generalization
of one-dimensional atom flexible linguistic values with a center point. In consid-
eration of the characteristic of its consistency function being a function for vectors,

178 7 Superposition, Quantification, Conversion, and Generalization …



we call this type of multidimensional atom flexible linguistic value to be vector
flexible linguistic value.

Actually, the vector flexible linguistic value here is just the flexible linguistic
value (x0) forming from vector x0 = (x1, x2, …, xn) said in previous Sect. 7.3.1.
Therefore, vector flexible linguistic value ((x1, x2, …, xn)) and vector (x1, x2, …, xn)
can be converted mutually. The conversion method is also the method given in
Sect. 7.3.1.

On the other hand, multiple one-dimensional atom flexible linguistic values can
also form a flexible linguistic-valued vector. For instance, let A1, A2, …, An be
separately atom flexible linguistic values on one-dimensional measurement spaces
U1, U2, …, Un, then (A1, A2, …, An) is a flexible linguistic-valued vector. The
flexible linguistic-valued vector is another kind of generalization of the
one-dimensional atom flexible linguistic value. From the relation between vectors
and points in a space, a flexible linguistic-valued vector (A1, A2, …, An) also
denotes a point in corresponding flexible linguistic-valued vector space
L1 × L2 × ��� × Ln, where Li = {Ai| Ai � Ui} is a set of atom flexible linguistic
values on Ui, i = 1, 2, …, n. Two-dimensional and three-dimensional flexible
linguistic-valued vectors are shown in Fig. 7.7. Then, what does flexible
linguistic-valued vector (A1, A2, …, An) denote in measurement space
U1 × U2 × ��� × Un?

It can be see that if the relation between components A1, A2,…, An in vector (A1,
A2, …, An) is regarded as conjunction relation, and, then (A1, A2, …, An) is tan-
tamount to conjunctive flexible linguistic value on distinct spaces, A1 ^ A2 ^ � � � ^
An: Thus, flexible linguistic-valued vector (A1, A2, …, An) denotes a flexible square
region in measurement space U1 × U2 × ��� × Un to which conjunctive flexible
linguistic value A1 ∧ A2 ∧ ��� ∧ An corresponds (the flexible square region denoted
by two-dimensional flexible linguistic-valued vectors (A, B) is shown in Fig. 3.6).
Conversely, a flexible square region in measurement space U1 × U2 × ��� × Un can
also be denoted by a flexible linguistic-valued vector.

A

l2

C

B

A

(A, B, C) 

l1

l3

l1

B (A, B) 

l2

(a) (b)

Fig. 7.7 Examples of flexible linguistic-valued vectors in flexible linguistic-valued vector spaces
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7.5 Summary

The chapter is the continuation of the basic theory of flexible linguistic values. First,
the concepts of degree linguistic values and superposed linguistic values are pro-
posed, and the types, levels, and mathematical models of superposed linguistic
values are discussed. Next, the quantification of flexible linguistic values is con-
sidered, and the flexible linguistic value with degree and its notation is presented.
And then, the relations between pure linguistic values, flexible linguistic values
with degrees, and numerical values are expounded, and the corresponding con-
version principles and methods are presented. Lastly, one-dimensional flexible
linguistic values are generalized to vector flexible linguistic values and flexible
linguistic-valued vectors.

The main points and results of the chapter are the following:

• Degree linguistic values are what we usually call degree adverbs, and a
superposed linguistic value is the linguistic value modified by a degree linguistic
value. Degree linguistic values can be viewed as a kind of operator of linguistic
values, which may be separated as two types of weakened ones and enhanced
ones. A superposed value can be modified repeatedly to form multifold super-
position. A superposed linguistic value is the same level with the original value;
further, they can be of inclusion relation or approximate relation. The consis-
tency function of a superposed value can be indirectly obtained by doing
translation transformation of the consistency function of the original value.

• The linguistic value portrayed by a degree is called flexible linguistic value with
degree, which describes the feature of an object by using both linguistic value
and degree, which are equivalent to the corresponding numerical value in effect.
For linguistic value A and object x0, the corresponding flexible linguistic value
with degree is (A, cA(x0)).

• Numerical values and flexible linguistic values as well as flexible linguistic
values with degrees can be mutually converted. Of them, the conversion from
numbers to flexible linguistic values has algebraic method and geometric
method; the conversion from flexible linguistic values to numerical values can
be separated as conceptual conversion and specific conversion; the former is
related to the consistency function of the flexible linguistic value while the latter
should be guided by the relevant heuristic information; and the conversion from
numerical values to flexible linguistic values with degrees has the conversions of
one to one and one to many.

• In concept, a flexible linguistic value (flexible set) is decided by its core and
support set, but in practical, which is fully stood for by its extended core, that is
to say, core and support set are the conceptual model of a flexible linguistic
value (flexible set), while core is its practical model.
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• A vector flexible linguistic value represents a flexible circle, flexible sphere or
hyper flexible sphere in the multidimensional measurement space.

• A flexible linguistic-valued vector represents a point in corresponding flexible
linguistic-valued vector space, but in measurement space, which represents a
flexible square to which a corresponding conjunctive flexible linguistic value
corresponds.
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Chapter 8
Relatively Opposite Flexible Linguistic
Values and Relatively Opposite
Flexible Sets

Abstract This chapter introduces the concepts of relatively opposite flexible lin-
guistic values and relatively opposite flexible sets and founds the related theories.

Keywords Relatively opposite flexible linguistic values � Relatively opposite
flexible sets

Flexible linguistic values discussed in the last two chapters are actually all flexible
linguistic value with negation, that is, the flexible linguistic value having negation.
In this chapter, we consider another kind of flexible linguistic values—flexible
linguistic value with opposite, that is, the flexible linguistic value having a con-
tradictory or opposite value. A flexible linguistic value with opposite and its
opposite just form a pair of relatively opposite flexible linguistic values.
Correspondingly, the two sets labeled by a pair of relatively opposite flexible
linguistic values are just a pair of relatively opposite flexible sets. This chapter
mainly discusses relatively opposite flexible linguistic values and relatively oppo-
site flexible sets.

8.1 Relatively Opposite Flexible Linguistic Values
and Their Types

1. Relatively opposite flexible linguistic values

Let A, B, and C be three basic flexible linguistic values that are adjacent in order
on space U = [a, b]. As shown in Fig. 8.1, B = ¬A ∧ ¬ C; that is, for A and C, B is
just a neutral value, while A and C are opposite to each other relative to
B. However, we see that this kind of contradiction relation between flexible lin-
guistic values A and C is different from the relatively negative relation. There is a
transition zone that is also this and also that between the cores of relatively negative
flexible linguistic values, while the transition zone between the cores of this kind of
contradictory flexible linguistic values is this but not that, and there is also a neutral
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point—peak value point ξB of neutral flexible linguistic value B, that is neither this
nor that. Therefore, this kind of contradiction relation between flexible linguistic
values is actually a relatively opposite relation.

Definition 8.1 Let A, B, and C be three flexible linguistic values that are adjacent in
order on space U = [a, b]. If B = ¬A ∧ ¬C, then we say A and C are relatively
opposite about B, B is called the neutral value between A and C, the core core(B) of
B is called the neutral zone between A and C, and peak value point ξB is called the
neutral point between A and C.

Examining the relation among “small,” “medium,” and “big” as basic flexible
linguistic values, it can be seen that “medium” is also “not big and not small,” that is, a
neutral value, so “small” and “big” are relatively opposite about “medium.” Similarly,
low–medium–high, young–middle-aged–old, cold–warm–hot, fast–intermediate–
slow, small deficit–roughly balancing–small surplus, etc., are all the situation that the
flexible linguistic value in the front and the one at the back are relatively opposite
about the flexible linguistic value in the middle.

Actually, from the definition, for arbitrary three adjacent basic flexible linguistic
values Ai−1, Ai, and Ai+1 on space U, semi-peak values Ai−1

+ and Ai+1
− are relatively

opposite about Ai, and Ai is the neutral value between Ai−1
+ and Ai+1

− .
As shown in Fig. 8.2, let A and C be two flexible linguistic values on space

U = [a, b], and N0 2 U be the boundary between A and C, and N0 62 supp(A) and N0

62 supp(C). It can be seen that B = {N0} is a transition zone (actually it is a
transition point) between A and C that is neither this nor that. Thus, for A and C,
B is a neutral value, while A and C are relatively opposite about B.

Definition 8.2 Let A and C be two flexible linguistic values on space U, and N0 2
U be the boundary between them. If x0 62 supp(A) and N0 62 supp(C), then we say
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Fig. 8.1 Illustration of
relatively opposite flexible
linguistic values (1)
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Fig. 8.2 Illustration of relatively opposite flexible linguistic values (2)
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A and C are relatively opposite about B = {N0}, B is called the neutral value
between A and C, and N0 is called the neutral point between A and C.

Examining the relation between “small deficit,” “balancing,” and “small surplus”
in marketing (as shown in Fig. 8.3, here positive is surplus, negative is deficit, and
0 is balancing), it can be seen that they are just tantamount to the linguistic values
A, B, and C in Fig. 8.2a, while the linguistic values “slight deficit,” “balancing,”
and “slight surplus” are separately then tantamount to the linguistic values A, B, and
C in Fig. 8.2b. That is to say, “balancing” is the neutral value, “small deficit” and
“small surplus” are relatively opposite, and “slight deficit” and “slight surplus” are
relatively opposite.

Actually, the relatively opposite relation also existed in rigid linguistic values.
For instance, “{0}” is just the neutral value between “positive” and “negative,” so
“positive” and “negative” are relatively opposite. Similarly, “deficit” and “surplus,”
“concave” and “convex,” “rise” and “fall,” “victory” and “defeat,” “affirming” and
“dissenting,” etc., are all relatively opposite.

Later on, we denote the opposite of a flexible linguistic value A as −A, the
neutral value as Neu, and a neutral point as N0.

2. Types of relatively opposite flexible linguistic values
After further examining, we find that the relatively opposite relation between
flexible linguistic values is comparatively complex, and they can be separated
into multiple types such as subjective relatively opposite, objective relatively
opposite, face–face relatively opposite, back–back relatively opposite, sym-
metrical relatively opposite, standard relatively opposite, and normal relatively
opposite.

(1) Subjective relatively opposite and objective relatively opposite
Subjective relatively opposite is the relatively opposite relation that people
think subjectively or that be artificially appointed. For instance, when we
divide the heights of adults into two flexible classes of “tall” and “short,” the
“tall” and “short” are relatively negative relation; but when we divide it into
three flexible classes of “tall,” “medium” and “short,” then “tall” and “short”
are relatively opposite relation. Whether to divide heights into two classes or

c

1

0

−1

slight deficit  slight surplus 

large deficit small deficit small surplus large surplus 

medium deficit roughly balancing medium surplus

medium deficit small deficit 0 small surplus medium surplus x

Fig. 8.3 Examples of various relatively opposite flexible linguistic values

8.1 Relatively Opposite Flexible Linguistic Values … 185



three classes is completely subjective and artificial, so the relatively opposite
relation between “tall” and “short” is a subjective relatively opposite. Besides,
the relatively opposite relations between cold and hot, fast and slow, big and
small, etc., are all subjective relatively opposite.

The characteristic of subjective relatively opposite is that the neutral value and
neutral point between two relatively opposite flexible linguistic values are appointed
artificially, but not objective existences. Therefore, this kind of relatively opposite
relation is interchangeable with relatively negative relation. In fact, when inserting a
neither-this-nor-that neutral flexible linguistic value between a pair of relatively
negative linguistic values, the original relatively negative relation just becomes a
relatively opposite relation. Conversely, removing neutral flexible linguistic value
between a pair of relatively opposite flexible linguistic values, then the original
relatively opposite relation just becomes a relatively negative relation. For example,
if there is no “medium” between “big” and “small,” then “big” and “small” are
relatively negative; if there is “medium,” then they are relatively opposite.

Objective relatively opposite is the relatively opposite relation that objectively
existed and unchangeable. Its characteristic is that there exists objectively a neutral
point that is neither this nor that between two relatively opposite linguistic values.
This neutral point is just a turning point between two relatively opposite linguistic
values. It is just this turning point that making there is no transition zone that is this
and that between two relatively opposite linguistic values. Therefore, an objective
relatively opposite cannot be changed into a relatively negative, and vice versa. For
instance, “slight deficit” and “slight surplus” are just an objective relatively
opposite, because there exists a neutral point “0” between the two. Similarly, “small
deficit” and “small surplus,” “large deficit” and “large surplus,” “sharp rise” and
“deep fall,” “big victory” and “big failure,” “firmly support” and “resolutely
oppose,” etc., are all objective-opposite. Besides, the relatively opposite relations
between rigid linguistic values are all objective relatively opposite.

(2) Face–face relatively opposite, back–back relatively opposite, and sym-
metrical relatively opposite
Examining the characteristics of the relatively opposite flexible linguistic
values shown in Figs. 8.1 and 8.2, it can be seen that A in Fig. 8.1 is a positive
semi-peak value and C is a negative semi-peak value; thus, we visually refer to
this kind of relatively opposite as face-to-face relatively opposite, or face–face
relatively opposite for short; while A in Fig. 8.1b is a negative semi-peak
value, C is a positive semi-peak value; therefore, we visually refer to this kind
of relatively opposite as back-to-back relatively opposite, or back–back rela-
tively opposite.

In a broad sense, we refer to all semi-peak flexible linguistic values that are
symmetrical about a neutral value and have opposite peak types as face–face rel-
atively opposite or back–back relatively opposite. Further, we call collectively the
semi-peak and full-peak flexible linguistic values that are symmetrical about a
neutral value as symmetrical relatively opposite.
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Example 8.1 Let x = income payment and the range of x be [a, b]. As shown in
Fig. 8.3, defining flexible linguistic values of “slight deficit,” “slight surplus,”
“small deficit,” “small surplus,” etc., then “small deficit+” and “small surplus−,”
“medium deficit+” and “medium surplus−,” and “large deficit” and “large surplus”
are all face–face relatively opposite, and the corresponding neutral values are all
“roughly balancing”; while “slight deficit” and “slight surplus,” “small deficit−” and
“small surplus+,” and “medium deficit−” and “medium surplus” are all back–back
relatively opposite, the corresponding neutral values are all {0}. These relatively
opposite relations are all symmetrical relatively opposite. In particular, full-peak
values “small deficit” and “small surplus” and “medium deficit” and “medium
surplus” are also symmetrical relatively opposite.

Note that as an independent flexible linguistic value,

roughly balancing ¼ slight deficit _ f0g _ slight surplus

but as a neutral value,

roughly balancing ¼ : small deficitþ ^ : small surplus�

while “0” is the neutral point of all symmetrical relatively opposite linguistic values
in the figure.

Besides, it also can be seen that if the peak value point of a full-peak value is
treated as a neutral point, then from a full-peak flexible linguistic value, a pair of
back–back relatively opposite flexible linguistic values can be constructed. For
instance, with peak value points ξsmall deficit, ξmedium deficit, ξsmall surplus, and
ξmedium surplus in Fig. 8.3 as neutral points separately, 4 pairs of back–back relatively
opposite flexible linguistic values can be constructed.

(3) Global relatively opposite and local relatively opposite
From Fig. 8.3, it also can be seen that besides the above-stated relatively
opposite flexible linguistic values, “slight deficit” and “medium deficit” about
“small deficit,” “large deficit” and “small deficit” about “medium deficit,”
“slight surplus” and “medium surplus” about “small surplus,” “small surplus”
and “large surplus” about “medium surplus,” etc., are all relatively opposite.
But “small deficit,” “medium deficit,” “small surplus,” and “medium surplus”
as neutral values are merely local, while neutral values “roughly balancing”
and {0} are global. Similarly, neutral points ξsmall deficit, ξmedium deficit, ξsmall
surplus, and ξmedium surplus are also local, while neutral point 0 is global.

We refer to the relatively opposite relations relative to local neutral value as local
relatively opposite, and the relatively opposite relations relative to global neutral
value as global relatively opposite.

It can be seen that the global neutral value and the neutral point in a space are
unique, and also objective and absolute, while the local neutral value and the neutral
point are subjective and relative. In fact, a global neutral point is tantamount to
dividing a whole space into two “half space” that are relatively opposite, while
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defining relatively opposite flexible linguistic values on either “half space” (of
course, we can even more define relatively negative flexible linguistic values; for
instance, in Fig. 8.3, “large deficit,” “medium deficit,” “small deficit,” and “slight
deficit” are just relatively negative pairwise, and “slight surplus,” “small surplus,”
“medium surplus,” and “large surplus” are also relatively negative pairwise).
Viewed conversely, the universe space that has a global neutral point is a “full
space” connected by two “half spaces” with a neutral point.

8.2 Relation Between Consistency-Degrees of Relatively
Opposite Flexible Linguistic Values

Two flexible linguistic values that are face–face relatively opposite are separated by
a neutral point, but because of the continuity of space, the difference between
objects in the support sets of these two linguistic values is still related to the
distance. Therefore, for those objects located at neutral zone and located at the
support set of an opposite value, we can use negative numbers to represent the
consistency-degrees of them having the corresponding another opposite value. In
this sense, the consistency functions of two face–face relatively opposite flexible
linguistic values can be extended to the whole universe space. Thus, we can discuss
the relation between degrees of one and the same object having a pair of face–face
relatively opposite flexible linguistic values.

1. Relation between the consistency-degrees of normal face–face relatively
opposite flexible linguistic values
We call a pair of face–face relatively opposite flexible linguistic values that the
corresponding neutral point is located at the center of the neutral zone and that
their core widths and boundary widths are separately equal, to be the normal
face–face relatively opposite flexible linguistic values. It can be seen that the
curves of consistency functions of a pair of normal face–face relatively opposite
flexible linguistic values are axis-symmetrical about straight line x = N0. As
shown in Fig. 8.4, suppose that flexible linguistic values A and B on universe
U are normally face–face relatively opposite, and C and D are also normally
face–face relatively opposite, that is, B = −A, D = −C. Then, straight lines
y = cA(x) and y = cB(x) are axis-symmetrical about vertical line x = N0. Also let
the intersection point of straight lines y = cA(x) and y = cB(x) be (x

*, y*). Thus,
from geometry knowledge, it is known that y = cA(x) and y = cB(x) are sym-
metrical about horizontal line y = y*. Now, arbitrarily take x0 2 U to construct
line x = x0, which intersects y = cA(x) at point (x0, y1), and intersects y = cB(x) at
point (x0, y2). Then, from y = cA(x) and y = cB(x) being symmetrical about
y = y*, we can obtain that y1 and y2 are symmetrical about y*. Therefore, we
have
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y1 � y2j j ¼ 2 y� � y2j j

It can be seen that when y1 > y2, y
* > y2; thus

y1 � y2 ¼ 2ðy� � y2Þ

when y1 < y2, y
* < y2; thus, still

y1 � y2 ¼ 2ðy� � y2Þ

It follows by this equation that

y1 þ y2 ¼ 2y�

while

y1 ¼ cA x0ð Þ; y2 ¼ c�A x0ð Þ; y� ¼ c�A x�ð Þ ¼ cA x�ð Þ

Thus

cA x0ð Þþ c�A x0ð Þ ¼ 2c�A x�ð Þ

Since x0 is arbitrary, we have

cAðxÞþ c�AðxÞ ¼ 2cA x�ð Þ ð8:1Þ

cAðxÞþ c�AðxÞ ¼ 2c�A x�ð Þ ð8:2Þ
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Fig. 8.4 Illustration of normal face–face relatively opposite
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where x* is the abscissa of the intersection point of consistency functions cA(x) and
c−A(x) of relatively opposite flexible linguistic values A and −A.

These two equations are the relational expressions of consistency functions of
normal face–face relatively opposite flexible linguistic values A and −A (=B) in
Fig. 8.4. From the above deriving process, it can be seen that there are also similar
relational expressions between consistency functions of relatively opposite flexible
linguistic values C and −C (=D) in the figure. Therefore, Eqs. (8.1) and (8.2) have
generality, and they are just the relational expressions between consistency func-
tions of normal face–face relatively opposite flexible linguistic values. Using these
two equations, the consistency functions and consistency-degrees of a pair of face–
face relatively opposite flexible linguistic values can be obtained and converted
mutually.

2. Standard relatively opposite relation and opposite law
of consistency-degrees

Definition 8.3 We call such a pair of normal face–face relatively opposite flexible
linguistic values that there is only one point—neutral point in corresponding neutral
zone to be the standard face–face relatively opposite flexible linguistic values, or
standard relatively opposite flexible linguistic values for short.

For instance, the flexible linguistic values A and −A in Fig. 8.5 are just a pair of
standard relatively opposite flexible linguistic values.

It can be seen that neutral point N0 between standard relatively opposite flexible
linguistic values is also the common boundary point of the supports sets of these
two linguistic values, and the union of these two support sets is symmetrical about
neutral point N0; the flexible set to which neutral value Neu corresponds is a flexible
set with core containing single point.

We now consider the relation between the consistency functions of standard
relatively opposite flexible linguistic values.

It can be seen that the ordinate of intersection point (x*, y*) of the graphs of the
consistency functions of standard relatively opposite flexible linguistic values is 0,
that is, y* = 0. Therefore, standard relatively opposite flexible linguistic values are
also normal face–face relatively opposite flexible linguistic values, the intersection
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A  N0 −A
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Fig. 8.5 Illustration of
standard relatively opposite
flexible linguistic values
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point of their consistency functions being (x*, 0), while y* = cA(x
*) = c−A(x

*). Thus,
from Eqs. (8.1) and (8.2), we have

cAðxÞþ c�AðxÞ ¼ 0 ð8:3Þ

c�AðxÞ ¼ �cAðxÞ ð8:4Þ

This is the relation between consistency functions of standard relatively opposite
flexible linguistic values.

Equation (8.4) means that the consistency-degrees of one and the same object
with two standard relatively opposite flexible linguistic values are opposite to each
other. We call Eq. (8.4) to be the opposite law of consistency-degrees of standard
relatively opposite flexible linguistic values, or simply, opposite law of
consistency-degrees of relatively opposite flexible linguistic values [1].

The opposite law is concerned with the consistency-degree of standard relatively
opposite flexible linguistic values. Then, for the membership degrees of the cor-
responding flexible sets, how is the two related? It can be seen that if viewed from
the range [0, 1] of membership degrees, the membership degrees of the corre-
sponding flexible sets of standard relatively opposite flexible linguistic values have
no relation. However, if the range of membership degrees is extended to [−1, 1],
then the membership degrees of one and the same object belonging to the flexible
sets corresponding to two standard relatively opposite flexible linguistic values are
also mutually opposite number. The graphs of corresponding two membership
functions are shown in Fig. 8.6.

Since the standard relatively opposite relation has such an important property of
degrees being relatively opposite, we will mainly consider standard relatively
opposite later. If there is no special note later, “relatively opposite” always refers to
the standard relatively opposite. In particular, we call two flexible linguistic values
that are standard relatively opposite to be the flexible linguistic value with
opposite.

x
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Fig. 8.6 Membership
functions of the
corresponding flexible sets of
standard relatively opposite
flexible linguistic values
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Thus, A and −A in Fig. 8.5 are just two flexible linguistic values with opposites.
Besides, the flexible linguistic values like A1, A2,…, A10 in Fig. 8.7 are also flexible
linguistic values with opposites.

8.3 Interchange Between Relatively Negative Relation
and Relatively Opposite Relation

In the above from the standpoint of relatively opposite relation, we referred to the
relation between flexible linguistic values that can be relatively opposite as well as
relatively negative as the subjective relatively opposite relation. Then, if viewed
from the standpoint of relatively negative relation, this kind of relation is also the
subjective relatively negative relation. In fact, many flexible concepts that are
usually thought to be relatively negative are all the subjective relatively negative.
That means the relatively negative relation between these flexible linguistic values
can also be changed into the relatively opposite relation.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
-

c

1

0

−1

x 

Fig. 8.7 Examples of flexible linguistic values with opposites
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Fig. 8.8 Illustration of interchanging between subjective relatively negative relation and
subjective relatively opposite relation
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Let flexible linguistic values A and C be relatively negative, the graphs of
whose consistency functions are shown in Fig. 8.8a. It can be seen that point

x = sþA þ cþA 2 = s�C þ c�C
2 is the median point of the common boundary of A and

C. Then, now we take x as the neutral point between A and C, while core-boundary
points cþA and c�C of A and C do not change; then, the consistency functions of
A and C become

cA0 ðxÞ ¼ x� x
x� cþA

; c�A � x

cC0 ðxÞ ¼ x� x
c�C � x

; s�C � x

Since x is the midpoint between core(A) and core(C), x� cþA ¼ c�C � x; therefore,

cA0 ðxÞþ cC0 ðxÞ ¼ x� x
x� cþA

þ x� x
c�C � x

¼ x� x
x� cþA

þ x� x
x� cþA

¼ 0

That is to say, A and C already become relatively opposite relation, whose graphs
are shown in Fig. 8.8b.

The membership functions that flexible linguistic values A and C are changed
from relatively negative to relatively opposite are shown in Fig. 8.9.

It can be visually seen from Figs. 8.8 and 8.9 that the general method of
changing relatively negative flexible linguistic values into relatively opposite
flexible linguistic values is as follows: Do not change the cores of the original
relatively negative flexible linguistic values, but to treat the original median point
that is this and also that as the neutral point that is neither this nor that, reconstruct
the consistency functions of two flexible linguistic values; also extend the range of
the membership function from [0, 1] to [−1, 1] to reconstruct the membership
function, and insert a set with core containing single point with the neutral point as
center in the original boundary region to treat as the neutral value between two
relatively opposite flexible linguistic values that are newly constructed.
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Fig. 8.9 Illustration of interchanging between subjective relatively negative relation and
subjective relatively opposite relation (membership functions)
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The inverse process of the change from relatively negative flexible linguistic
values to relatively opposite flexible linguistic values is the change from relatively
opposite flexible linguistic values to relatively negative flexible linguistic values.
Specifically speaking, it is that the cores of the original relatively opposite flexible
linguistic values are not changing, but treat the neutral point that is originally
neither this nor that as a median point that is also this and also that, then reconstruct
the consistency functions of the two flexible linguistic values; also contract the
range of the membership functions from [−1, 1] to [0, 1], and reconstruct mem-
bership functions, and cancel the neutral value between the original relatively
opposite flexible linguistic values.

Thus, when relatively negative flexible linguistic values are changed into rela-
tively opposite flexible linguistic values, the original medium point becomes a
neutral point, and thus, the original extended core becomes a support set; con-
versely, when relatively opposite flexible linguistic values are changed into rela-
tively negative flexible linguistic values, the original neutral point becomes a
medium point, and thus, the original support set becomes an extended core. That is
to say, with respect to the subjective relatively opposite and subjective relatively
negative, the support set of a flexible linguistic value with opposite is tantamount to
the extended core of a flexible linguistic value with negation, and vice versa.

8.4 Relevant Theories About Flexible Linguistic Value
with Opposite

Viewed from a linguistic value itself in isolation, there is no difference between a
flexible linguistic value with opposite and a flexible linguistic value with negation.
Therefore, some basic theories about flexible linguistic values with negations in
Chaps. 6 and 7 such as composition and decomposition, inclusion relation, simi-
larity relation, flexible linguistic value with degree, superposed linguistic values,
and interconversion between flexible linguistic values and numerical values are also
applicable and tenable for the flexible linguistic values with opposites. So here
repetition is omitted.

But, it should be specified and noted that the condition of the conversion from a
numerical value to a flexible linguistic value with opposite should be cAk ðx0Þ[ 0
but not cAkðx0Þ[ 0:5. Thus, in dual, from Theorem 7.1 we have the theorem below.

Theorem 8.1 Numerical value (vector) x0 can be converted into flexible linguistic
value with opposite, A, if and only if x0 2 supp(A).

Certainly, the operations of flexible linguistic values with opposites also have
their uniqueness. For instance, because a flexible linguistic value with opposite also
has its negative value, it is also a flexible linguistic value with negation at the same
time. Thus, there can be the compound flexible linguistic value that has both
opposite operation and negative operation.
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Let A be a flexible linguistic value with opposite on universe U = [a, b], then
−A is also a flexible linguistic value with opposite. Thus, it follows that compound
linguistic values :A, :(−A), and :A ∧ :(−A). From the definitions of related
operations of flexible linguistic values with opposites and flexible linguistic values
with negations, the consistency functions of these compound linguistic values are:

c:AðxÞ ¼ 1� cAðxÞ ð8:5Þ

c:ð�AÞðxÞ ¼ 1� c�AðxÞ ¼ 1� ð�cAðxÞÞ ¼ 1þ cAðxÞ ð8:6Þ

c:A^:ð�AÞðxÞ ¼ minfc:AðxÞ; c:ð�AÞðxÞg ¼ minf1� cAðxÞ; 1þ cAðxÞg ð8:7Þ

While :A ∧ :(−A) = Neu, then

cNeuðxÞ ¼ minf1� cAðxÞ; 1þ cAðxÞg ð8:8Þ

Of course, we can have more such compound linguistic values that have
opposite-negation double operations

It can be seen that these consistency functions are all functions of the consis-
tency functions about flexible linguistic value with opposite, A. Thus, using these
consistency functions we can calculate the consistency-degree of x with corre-
sponding compound flexible linguistic values in the situation when the
consistency-degree cA(x) of object x with a certain flexible linguistic value with
opposite, A, is known.

Example 8.2 As shown in Fig. 8.10, we define three basic flexible linguistic values
of “affirming,” “dissenting” and “abstention” on score range [−100, 100]. Then,
“affirming” and “dissenting” are relatively opposite, and “abstention” is the neutral
value. Now it is already known that the degree of someone P affirming something is
0.8. Find the corresponding degrees of the attitude of this person to other 4 flexible

not affirming not dissenting 
dissenting   abstention affirming

c

1
0.8

0

−1

100 0      100 (score) 

Fig. 8.10 Example of
relation between degrees of
relatively negative and
relatively opposite flexible
linguistic values
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linguistic values. What is degree when the degrees of “affirming” are separately 1,
0, and −1?

Solution: From the figure, it can be seen that here “affirming” and “dissenting”
are a pair of standard relatively opposite flexible linguistic values, while “affirming”
and “not affirming” and “dissenting” and “not dissenting” are two pairs of relatively
negative flexible linguistic values; neutral value “abstention” is neither affirming
nor dissenting, that is, “abstention” = “not affirming” ∧ “not dissenting.” From this,
when caffirming(P) = 0.8, we have

cnot affirmingðPÞ ¼ 1� 0:8 ¼ 0:2 ðby complement law of consistency� degrees)

cdissentingðPÞ ¼ � 0:8 ðby opposite law of consistency � degrees)

cnot dissentingðPÞ ¼ 1� ð�0:8Þ ¼ 1:8 ðby complement law of consistency � degrees)

cabstentionðPÞ ¼min cnot affirmingðPÞ; cnot dissentingðPÞ
� �

¼ min(0:2; 1:8Þ ¼ 0:2 ðby conjunction operation of flexible linguistic values)

Thus, caffirming(P) = 0.8 is separately tantamount to cnot affirming(P) = 0.2,
cdissenting(P) = −0.8, cnot dissenting(P) = 1.8, and cabstention(P) = 0.2. Then, if we
interpret (affirming, 0.8), (not affirming, 0.2), (dissenting, −0.8), (not dissenting,
1.8), and (abstention, 0.2) separately as “affirming on the whole,” “a bit not
affirming,” “totally opposite with dissenting on the whole,” “quite not dissenting,”
and “slightly neutral,” then the 5 versions are equivalent.

With the same reason, we have the following results:
caffirming(P) = 1 is separately tantamount to cnot affirming(P) = 0,

cdissenting(P) = −1, cnot dissenting(P) = 2, and cabstention(P) = 0; thus, “totally affirm-
ing,” “totally not disaffirming,” “quite not dissenting,” and “totally not neutral” are
equivalent mutually.

caffirming(P) = 0 is separately tantamount to cnot affirming(P) = 1, cdissenting(P) = 0,
cnot dissenting(P) = 1, and cabstention(P) = 1; thus, “totally not affirming,” “totally not
un-dissenting,” “totally not dissenting,” and “remain strictly neutral” are equivalent
mutually.

caffirming(P) = −1 is separately tantamount to cnot affirming(P) = 2,
cdissenting(P) = 1, cnot dissenting(P) = 0, and cabstention(P) = 0; thus, “absolutely not
affirming,” “totally dissenting,” “totally not un-dissenting,” and “totally not neutral”
are equivalent mutually.

A flexible linguistic value with opposite is also a flexible linguistic value with
negation; that is to say, the flexible linguistic value with opposite plays double
roles. Then, how to judge whether such a linguistic values is treated as a flexible
linguistic value with opposite or a flexible linguistic value with negation in practical
application? Obviously, it is hard to distinguish it from the flexible linguistic value
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itself, but if we consider from the background of problem, then it is easy to
determine whether it should be with opposite or negation.

Here, it also should be noted that a flexible linguistic value with negation is not
necessarily a flexible linguistic value with opposite, so generally cannot be written
as −(:A).

8.5 Exclusive Flexible Partition of a Space and Exclusive
Flexible Linguistic Values

1. Exclusive flexible partition of a space, exclusive flexible classes, and
exclusive flexible linguistic values

Examining the characteristics of the support sets of standard relatively opposite
flexible linguistic values, it can be seen that two flexible linguistic values are of
standard relatively opposite if and only if the intersection of the complement of their
support sets is a single-point set. That is,

A ¼ �B ^ B ¼ �A , supp(AÞc \ supp(BÞc ¼ n0f g ð8:9Þ

Definition 8.4 Let A1, A2, …, Am be non-empty flexible sets in one-dimensional
measurement space U, if

supp Aið Þ \ supp Aiþ 1ð Þ ¼ ; ði ¼ 1; 2; . . .;m� 1Þ
suppð:AiÞ \ suppð:Aiþ 1Þ ¼ fn0iþ 1g ði ¼ 1; 2; . . .;m� 1Þ
[m
i¼1

suppðAiÞ [
[m�1

i¼1

fn0iþ 1g ¼ U

then we say p ¼ A1;A2; . . .;Amf g is an exclusive flexible partition of space U and
flexible sets A1, A2,…,Am are mutually exclusive, or that the corresponding flexible
linguistic values A1, A2,…,Am are mutually exclusive and A1, A2,…,Am form a
group of mutually exclusive basic flexible linguistic values on space U.

Example 8.3 As shown in Fig. 8.11a, p1 ¼ A1;A2; . . .;A6f g is an exclusive flexible
partition of one-dimensional space U = [a, b], flexible sets A1, A2, …, A6 are
mutually exclusive, and flexible linguistic values A1, A2, …, A6 are mutually
exclusive. As shown in Fig. 8.11b, p2 ¼ A1;A2; . . .;A10f g is also a exclusive
flexible partition of space U = [a, b], flexible sets A1, A2, …, A10 are mutually
exclusive, and flexible linguistic values A1, A2, …, A10 are mutually exclusive.

Definition 8.5 Let A1, A2, …, Am be non-empty flexible sets in n-dimensional
measurement space U, if for any adjacent Ai and Aj (i < j, 1 ≤ i < m, 1 < j ≤ m),
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supp Aið Þ \ supp Aj
� � ¼ ;

suppð:AiÞ \ suppð:AjÞ ¼ fe0ijg

and

[m
i¼1

sup pðAiÞ [
[

i;j2f1;2;...;mg
fe0ijg ¼ U

then we say p ¼ A1;A2; . . .;Amf g is an exclusive flexible partition of space U and
flexible sets A1, A2, …, Am are mutually exclusive and the corresponding flexible
linguistic values A1, A2, …, Am are mutually exclusive, and A1, A2, …, Am form a
group of mutually exclusive basic flexible linguistic values on space U. Here, {e0ij}
denotes a single-element set, which can be a single-point set {n0}, single-line set
{l0}, or single-plane set {p0}.

x 

A1 A2 A3 A4 A5 A6

1

0

−1

a b

x 230n
450n

670n
890n

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
-

1

0

−1

a b

(a)

(b)

Fig. 8.11 a Example 1 of exclusive flexible partition of one-dimensional space and the
corresponding exclusive flexible linguistic values. b Example 2 of exclusive flexible partition of
one-dimensional space and the corresponding exclusive flexible linguistic values
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More simply speaking, a mutually exclusive flexible partition is that there is one
and only one demarcation point (line or plane) formed by neutral point(s) that is
neither this nor that between the support sets of two adjacent flexible sets.

Example 8.4 Figure 8.12 shows the examples of the exclusive flexible partition of
two-dimensional space and the corresponding mutually exclusive flexible sets and
mutually exclusive flexible linguistic values, where the white lines are the
demarcation lines of adjacent flexible classes.

Note that the exclusive flexible partition is much like usual rigid partition, yet
actually it is not rigid partition but is still flexible partition. Because the exclusive
flexible partition is still a partition based on flexible clustering, the classes obtained
are still flexible classes; only that there is only a boundary point (line or place)
between the support sets of two adjacent flexible classes, not like complementary
flexible partition, that the support sets of two flexible classes are intersected and that
there is a region as boundary between the cores.

2. Relation between mutual exclusion and relative opposite

From the definition and examples of mutual exclusion relation of flexible lin-
guistic values, it can be seen that the mutual exclusion has a certain connection with
relative opposite of flexible linguistic values, and the two have both something in
common and differences.

Resemblance: There is a neutral point (line or place) between two relatively
opposite flexible linguistic values, while there is a neutral point (line or plane)
between adjacent two of mutually exclusive flexible linguistic values.

Difference: Relative opposite is only concerned with two linguistic values,
which is a relation between two linguistic values, while mutual exclusion can be
concerned with two or more than two linguistic values, which is a relation among
multiple linguistic values.

Thus, generally speaking, mutual exclusion is not relative opposite. However, if
there are only two basic flexible linguistic values that are mutually exclusive on a
universe space, then the two are also relatively opposite. Conversely, if there are
only two basic flexible linguistic values that are relatively opposite on a universe

(a) (b)

Fig. 8.12 Examples of exclusive flexible partition of multidimensional space and the corre-
sponding exclusive flexible linguistic values
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space, then the two are also mutually exclusive. That is to say, relative opposite is a
special mutual exclusion; in the situation that there are only two basic flexible
linguistic values, relative opposite and mutual exclusion are just identical.

Further, we find that though generally speaking, mutual exclusion is not relative
opposite, and some flexible linguistic values that are mutually exclusive contain
flexible linguistic valued pairs that are relatively opposite.

As a matter of fact, as shown in Fig. 8.13, starting from point O of square region
U × V, draw forth 4 rays to up, down, left, and right (as shown by the broken lines
in the figure) such that the upper and lower two rays are on the same vertical line
and that left and right two rays are on the same horizontal line; then, take point O as
the origin, the vertical line as the vertical axis, and the horizontal line as the lateral
axis; next, construct separately the angle bisectors of 4 quadrants through origin
O (as shown by the white line in the figure, here they are just the diagonals of 4
squares), and then, the original square region is divided into 4 triangular sub
regions. Take the white line as the neutral line of the adjacent regions; then, the
above-stated partition is a mutually exclusive partition. Thus, we get 4 basic flexible
linguistic values on the corresponding space, and name them one by one as “up,”
“down,” “left,” and “right” according to the direction and denote them one by one
as U, D, L, and R.

It can be seen that the original 4 rays that pass origin O are also separately the
core centers of these 4 flexible linguistic values. As shown in Fig. 8.13, for point P
(x, y) 2 U × V, construct straight line l through P(x, y) and origin O, and let the
included angle of l and the core center line of flexible linguistic value U (i.e., the
included angle of l and the vertical axis) be θ. Obviously, θ can be determined by
the polar coordinates of point P(x, y), so θ should be the function of x and y. Thus,
from the geometric characteristic of flexible linguistic value U, we obtain the
consistency function of it about included angle θ as follows:

left 

up

right 

down 

θ

p

O

Fig. 8.13 Examples of
relatively opposite flexible
linguistic values in
two-dimensional space
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cUðhÞ ¼
45�h
45 ; when y[ 0
� 45�h

45 ; when y\0

�

Let θ = φ(x, y), thus, we have

cUðx; yÞ ¼
45�uðx;yÞ

45 ; when y[ 0

� 45�uðx;yÞ
45 ; when y\0

(

Similarly, we have

cDðx; yÞ ¼
45�uðx;yÞ

45 ; when y\0

� 45�uðx;yÞ
45 ; when y[ 0

(

Now, take 8(x0, y0) 2 U × V, let y0 > 0, and suppose that the included angle of
the straight line l through point P(x0, y0) and the core center line of U is θ0, that is,
φ(x0, y0) = θ0, then

cU x0; y0ð Þ ¼ 45� uðx0; y0Þ
45

¼ 45� h0
45

cD x0; y0ð Þ ¼ � 45� uðx0; y0Þ
45

¼ � 45� h0
45

Thus,

cU x0; y0ð Þþ cD x0; y0ð Þ ¼ 45� h0
45

� 45� h0
45

¼ 0

This shows that U and D are relatively opposite; that is, the two linguistic values of
“up” and “down” are relatively opposite flexible linguistic values.

Similarly, we can derive that L and R are relatively opposite; that is, the two
linguistic values of “left” and “right” are relatively opposite flexible linguistic
values.

Thus, we obtain a group of mutually exclusive flexible linguistic values that
contains relatively opposite flexible linguistic values by conducting appropriate
mutually exclusive flexible partition of plane region U × V.

Note here the appropriate mutually exclusive flexible partition, the characteristic
of which is to exclusively divide the plane region U × V into 4 regions that are
strictly symmetrical pairwise. We may as well refer to this kind of partition that is
strictly symmetrical as normal partition. That is to say, the normal partition can
produce a group of mutually exclusive flexible linguistic values that contains rel-
atively opposite flexible linguistic values. However, if the partition of a universe
space is not normal, then it cannot be guaranteed that the exclusive flexible lin-
guistic values obtained contain relatively opposite flexible linguistic values. For
instance, though the partition as shown in Fig. 8.14 may be an exclusive flexible
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partition, it is not a normal partition, so relatively opposite flexible linguistic values
cannot be produced.

In the above, plane region U × V is normally divided into 4 regions, obtaining
two pairs of relatively opposite flexible linguistic values. Similarly, plane region
U × V can also be exclusively divided into 2 × 22 = 8, 2 × 23 = 16, …, 2 × 2n

regions that are strictly symmetrical pairwise, obtaining 2n pairs of relatively
opposite flexible linguistic values.

On the other hand, using the same method, three-dimensional space region
U × V × W can also be normally divided into 6 regions, obtaining 3 pairs of
relatively opposite flexible linguistic values, and further to exclusively divide space
U × V × W into 3 × 22 = 12, 3 × 23 = 24, …, 3 × 2n regions that are strictly
symmetrical pairwise, obtaining 3 × 2n−1 pairs of relatively opposite flexible lin-
guistic values.

From the above examples, we see that there seems to be such a law: A group of
mutually exclusive basic flexible linguistic values whose total number is an even
number may contain relatively opposite flexible linguistic values, and a group of
mutually exclusive basic flexible linguistic values whose total number is an odd
number cannot contain relatively opposite flexible linguistic values.

8.6 Relatively Opposite Flexible Sets and Flexible Set
with Opposite

From the relation between a flexible linguistic value and its corresponding flexible
set, two flexible sets labeled by a pair of relatively opposite flexible linguistic values
are also relatively opposite flexible sets. Next, we give the definition of relatively
opposite flexible sets starting from sets directly.

Fig. 8.14 An example of
non-normal partition of a
space
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Definition 8.6 Let A and C be two flexible sets of one-dimensional space U = [a,
b], and supp(A)c \ supp(C)c = B. If sets supp(A), B, and supp(C) are adjacent one
by one, and supp(A) \ B \ supp(C) = ∅, then we say flexible sets A and C are
relatively opposite about B, and B is called the neutral set between A and C. If
B = {N0} (N0 2 U), then we say flexible sets A and C are the standard relatively
opposite.

Definition 8.7 Let A and C be two flexible sets of one-dimensional space U = [a,
b]. If set supp(A)c \ supp(C)c = {N0} (N0 2 U), then we say flexible sets A and
C are relatively opposite about {N0}, {N0} is called the neutral set between flexible
sets A and C, and N0 is called the neutral point between A and C.

We call two flexible sets that are standard relatively opposite to be the flexible
set with opposite (dually, we call two complementary flexible sets to be the flexible
set with complement).

Viewed from a flexible set itself in isolation, there is no distinction between a
flexible set with opposite and a flexible set with complement, and a flexible set with
opposite can also be a flexible set with complement at the same time. Therefore, the
discussion and conclusions about flexible set with complement in Chap. 5 are also
applicable and tenable for flexible set with opposite. In the following, we directly
give the membership functions of flexible sets Ac, (−A)c, Ac \ (−A)c, and Neu:

mAcðxÞ ¼ 1� mAðxÞ ð8:10Þ

mð�AÞcðxÞ ¼ 1þmAðxÞ ð8:11Þ

mAc \ ð�AÞcðxÞ ¼ minf1� mAðxÞ; 1þmAðxÞg ð8:12Þ

mNeuðxÞ ¼ minf1� mAðxÞ; 1þmAðxÞg ð8:13Þ

8.7 Summary

In this chapter, we introduced the concepts of relatively opposite flexible linguistic
values and relatively opposite flexible sets and founded the related theories. The
main points and results are as follows:

• If there is a neither-this-nor-that neutral point (line or plane) between the cor-
responding flexible sets of two flexible linguistic values, then these two flexible
linguistic values are of relatively opposite relation, and they are called relatively
opposite values; the corresponding flexible sets are also relatively opposite
relation, and the two sets are called relatively opposite flexible sets.

• Relatively opposite flexible linguistic values have the types of subjective rela-
tively opposite and objective relatively opposite, face–face relatively opposite
and back–back relatively opposite, global relatively opposite and local relatively
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opposite, normal face–face relatively opposite, standard relatively opposite, etc.
The consistency-degrees of one and the same numerical value with a pair of
standard relatively opposite flexible linguistic values are mutually opposite
number, and the relation is called the relatively opposite principle of the
consistency-degrees of relatively opposite flexible linguistic values.

• The subjective relative opposite and the subjective relative negation can be
mutually changed. When a relative opposite relation is changed into a relative
negation relation, the corresponding neutral point becomes the medium point,
and the support set becomes the extended core; conversely, when a relative
negation relation is changed into a relative opposite relation, the corresponding
medium point becomes the neutral point, and the extended core becomes the
support set.

• Flexible linguistic values with opposites have the operations and relations as
well as superposing and conversions, etc., similar to flexible linguistic values
with negations.

• The flexible sets to which a pair of relatively opposite flexible linguistic values
correspond form a relatively opposite partition of the corresponding measure-
ment space. The generalization of relatively opposite partition is mutually
exclusive partition; that is, there is one and only one neither-this-nor-that neutral
point (line or plane) between adjacent flexible sets in a space. Between flexible
linguistic values obtained from a mutually exclusive partition is mutually
exclusive relation, which forms a group of mutually exclusive basic flexible
linguistic values on the corresponding space.
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Chapter 9
Correspondence Between Flexible Sets,
and Flexible Linguistic Functions

Abstract This chapter analyzes firstly the mathematical backgrounds and
relational representations of a set correspondence and a flexible-set correspondence,
thus revealing the mathematical essence, mathematical background, and relational
representation of a flexible-linguistic-valued correspondence, then proposes and
discusses flexible linguistic functions and flexible linguistic correlations, presents
their types and representation, analyzes their characteristics, properties, and eval-
uations, and in particular, discovers and proposes a quantitative description and
numerical model of flexible linguistic functions and flexible linguistic correlations.

Keywords Set correspondence � Flexible-set correspondence � Flexible-linguistic-
valued correspondence � Flexible linguistic functions � Flexible linguistic corre-
lations � Numerical-model representative

Now that the numerical values in a measurement space can be summarized into one
and another flexible linguistic value; then, a function or correlation between
numerical values in measurement spaces would be summarized into a function or
correlation described by flexible linguistic values. In fact, flexible linguistic func-
tions and correlations are just a kind of model or supplementary or necessary means
of modeling of some complex systems. In this chapter, we first talk about the
correspondence between sets, then discuss the correspondences between flexible
sets and between flexible linguistic values, and then will introduce and discuss
flexible linguistic functions and flexible linguistic correlations.

9.1 Correspondence Between Flexible Sets

In this section, we will examine another relation between flexible sets—corre-
spondence. We consider firstly the correspondence between sets.
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9.1.1 Correspondence Between Two Sets

Let A and B be two subsets. Conceive that if to each x 2 A there corresponds to a
y 2 B, then viewed from the level of set, there occurs a correspondence (relation)
between sets A and B.

1. Definition and type of correspondence between sets

Definition 9.1 Let U and V be two sets, and A � U and B � V. If to each
x 2 A there corresponds to at least one y 2 B, then we say that set A is corre-
sponded to set B, or set B corresponds to set A, write as A ↦ B.

From this definition, if there is a function f from a set A to a set B, then set A is
corresponded to set B. The large amounts of function and correlation in mathe-
matics and practical problems show that the correspondence (relation) between sets
is existent.

Definition 9.2 Let A and B be two sets and A ↦ B. If each element in B is the
image of a certain element or some elements in A under correspondence A ↦ B,
then we say the correspondence A ↦ B to be an onto (or surjective)
correspondence.

Example 9.1 There are some examples of correspondence between sets in the
following Fig. 9.1 (here A and B are sets of real numbers), of them (b) and (d) are
onto correspondence.

Actually, set Bs = {y|y = f(x) 2 B, x 2 A}, then generally, Bs � B, while when
Bs = B, A ↦ B is an onto correspondence.

2. Relationship between the correspondence between sets and the corre-
spondence between elements

From the definitions and examples above, it can be seen that ① a correspon-
dence between sets is really the covering of a function or correlation between
elements of sets; conversely, it is just the function or correlation between elements
in microscopic that forms the correspondence between sets in macroscopic; ② one
and the same set correspondence covers simultaneously many or even an infinite of
functions or correlations. For example, when the set correspondences A ↦ B in (a),
(b), (c), and (d) in Fig. 9.1 are one and the same set correspondence, those two
functions in (a) and (b) and those two correlations in (c) and (d) are covered by the
same set correspondence A ↦ 2B.
3. Relational representation and graph of a set correspondence

By definition, that set correspondence A ↦ B is represented by a set is

fðx; yÞjx 2 A; y ¼ f ðxÞ 2 Bg

here f denotes a function or correlation covered by set correspondence A ↦ B.
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It can be seen that this set is a subset of product A × B; we denote it as (A × B)s.
Thus, (A × B)s � A × B. This is to say, (A × B)s is a binary relation from set A to
set B. However, this binary relation is not general binary relation, which is a
function or correlation from A to B. Consequently, (A × B)s = f.

Now we have seen that

① When the function or correlation covered is known, set correspondence
A ↦ B can be represented as that function or correlation f as binary relation
covered by which, it is just the graph of f in visual. For example, if the four
correspondences, A ↦ B, in Fig. 9.1 are not the same each other, then the
correspondence A ↦ B in (a) can be represented as the corresponding binary
relation—function y = f(x); in visual, it is also that function curve in the figure;
and the correspondence A ↦ B in (b) is similar; but the correspondence
A ↦ B in (c) can be represented as the corresponding binary relation—cor-
relation Y = f(x) (Y is a set of images of x); in visual, it is also that set of points
or region whose shape is irregular in the figure; and the correspondence
A ↦ B in (d) can be represented as the corresponding binary relation—cor-
relation—universal relation A × B; in visual, it is also that whole rectangular
region A × B in the figure.

② When the function or correlation covered is not known, correspondence
A ↦ B cannot be definitely gave in the form of a specific binary relation.
Because one and the same set correspondence A ↦ B covers many or even an
infinite of functions or correlations, which may be various (merely the cor-
respondence between x and y have many cases of one-to-one, one-to-many,
many-to-one, etc.), therefore, the corresponding subsets (A × B)s of corre-
spondence A ↦ B cannot have a unified expressing form and visual graph.
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Further, it can be seen that in all binary relations covered by set correspondence
A ↦ B, the universal relation A × B is “the largest”. This is an extreme case.

To sum up, set correspondence A ↦ B is the covering of a certain function or
correlation f from A to B, which can be represented generally as binary relation
(A × B)s � A × B, namely A ↦ B = (A × B)s; when the covered function or
correlation f is known, (A × B)s = f, so the graph of relation f is also the graph of
correspondence A ↦ B; especially, when the covered binary relation is universal
relation A × B, correspondence A ↦ B can be represented as product A × B,
namely A ↦ B = A × B.

The relational representation of set correspondence A ↦ B shows clearly the
difference between the set correspondence A ↦ B and the set operations A × B and
A × V \ U × B.

9.1.2 Correspondence Between Two Flexible Sets

Let U and V be two measurement spaces, and A and B be separately the flexible
subsets of U and V. Conceive that if to each x 2 U belonging to A with a degree
there corresponds a y 2 V belonging to B with a degree, then viewed from the level
of set, there occurs a correspondence (relation) between flexible sets A and B.

1. Definition and type of correspondence between flexible sets
The members of a flexible set can only belong to the flexible set with a degree,
and only the degrees greater than 0 are meaningful. Thus, we give the definition
below.

Definition 9.3 Let U and V be two measurement spaces, and A and B be separately
the flexible subsets of U and V. If to each x 2 U with mA(x) > 0 there corresponds
to at least one y 2 V with mB(y) > 0, then we say that flexible set A is corresponded
to flexible set B, or flexible set B corresponds to flexible set A, write as A ↦ B.

It can be seen that membership degrees mA(x) and mB(y) only show or bound
separately the scopes of x and y, but they bear no relation to whether y corresponds
to x. That is to say, in the sense of correspondence, the membership degree lose
effect, the status of all members in support sets supp(A) and supp(B) are all equal.
Then, since mA(x) > 0 is just x 2 supp(A), and mB(y) > 0 is just y 2 supp(B), thus,
the correspondence from flexible set A to flexible set B can be translated into or
reduced as the correspondence from support set supp(A) to support set supp(B);
conversely, the correspondence from support set supp(A) to support set supp(B) is
also the correspondence from flexible set A to flexible set B. While the corre-
spondence between support sets is the correspondence between rigid sets, from last
section, which is existent, therefore, the correspondence between flexible sets is
also existent.
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Definition 9.3′ Let U and V be two measurement spaces, and A and B be separately
the flexible subsets of U and V. If to each x 2 supp(A) there corresponds to at least
one y 2 supp(B), then we say that flexible set A is corresponded to flexible set B, or
flexible set B corresponds to flexible set A, write as A ↦ B.

Obviously, the membership degrees mA(x) and mB(y) bear more no relation to
whether y corresponds to x.

Definition 9.4 Let A and B be two flexible sets and A ↦ B. If each element in supp
(B) is the image of a certain element or some elements in supp(A) under corre-
spondence A ↦ B, we say the correspondence A ↦ B to be onto (or surjective)
correspondence.

Example 9.2 There are some examples of flexible-set correspondence in the
following Fig. 9.2, of them (b) and (d) are onto correspondence.

2. Relationship of the correspondence between flexible sets and the corre-
spondence between elements
From the definitions and examples above, it can be seen that ① a flexible-set
correspondence is really the covering of a function or correlation between
elements of flexible sets; conversely, it is just the function or correlation between
elements in microscopic that forms the correspondence between flexible sets in
macroscopic; ② one and the same flexible-set correspondence covers simulta-
neously many or even an infinite of functions or correlations. For example, when
flexible-set correspondences A ↦ B in (a), (b), (c), and (d) in Fig. 9.2 are one
and the same flexible-set correspondence, those two functions in (a) and (b) and
those two correlations in (c) and (d) are covered by the one and the same
flexible-set correspondence A ↦ B.

supp(A)× supp(B)
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supp(B
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supp(B
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3. Relational representation and graph of a flexible-set correspondence
By definition, that flexible-set correspondence A ↦ B is represented by a set is

fðx; yÞjx 2 supp(AÞ; y ¼ f ðxÞsupp(B)g

here f denotes a function or correlation covered by flexible-set correspondence
A ↦ B.

It can be seen that this set is a subset of product supp(A) × supp(B), and we
denote it as (supp(A) × supp(B))s. Thus, (supp(A) × supp(B))s � supp(A) × supp
(B). That is to say, (supp(A) × supp(B))s is a binary relation from set supp(A) to set
supp(B). However, this binary relation is not general binary relation, which is a
function or correlation from supp(A) to supp(B). Consequently, (supp(A) × supp
(B))s = f.

Now we have seen that

① When function or correlation covered is known, flexible-set correspondence
A ↦ B can be specifically represented as that function or correlation f as
binary relation covered by which, it is just the graph of f in visual. For
example, if the four correspondences, A ↦ B, in Fig. 9.2 are not the same
each other, then the correspondence A ↦ B in (a) can be represented as the
corresponding binary relation—function y = f(x); in visual, it is also that
function curve in the figure; and the correspondence A ↦ B in (b) is similar;
but the correspondence A ↦ B in (c) can be represented as the corresponding
binary relation—correlation Y = f(x) (Y is a set of images of x); in visual, it is
also that set of points or region whose shape is irregular in the figure; and the
correspondence A ↦ B in (d) can be represented as the corresponding binary
relation—correlation—universal relation supp(A) × supp(B); in visual, it is
also that whole rectangular region supp(A) × supp(B) in the figure.

② When function or correlation covered is not known, correspondence
A ↦ B cannot be definitely given by the form of a specific binary relation.
Because one and the same flexible-set correspondence A ↦ B covers many or
even an infinite of functions or correlations, which may be various (merely the
correspondence between x and y have many cases of one-to-one, one-to-many,
many-to-one, etc.), therefore, the corresponding subsets (supp(A) × supp(B))s

of correspondence A ↦ B cannot have a unified expressing form and visual
graph.

Further, it can be seen that in all binary relations covered by flexible-set cor-
respondence A ↦ B, the universal relation supp(A) × supp(B) is “the largest,”
which is an extreme case.

To sum up, flexible-set correspondence A ↦ B is the covering of a certain
function or correlation f from A to B, which can be represented generally as binary
relation (supp(A) × supp(B))s � supp(A) × supp(B), namely A ↦ B = (supp
(A) × supp(B))s; when the covered function or correlation f is known, (supp
(A) × supp(B))s = f, so the graph of relation f is also the graph of correspondence
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A ↦ B; especially, when the covered binary relation is universal relation supp
(A) × supp(B), correspondence A ↦ B can be represented as product supp
(A) × supp(B), namely A ↦ B = supp(A) × supp(B).

The relational representation of flexible-set correspondence A ↦ B shows
clearly the difference between the flexible-set correspondence A ↦ B and the
flexible set operations A × B and A × V \ U × B.

Note that although the correspondence between numbers is always rigid, the
correspondence between sets (including flexible sets) can be rigid as well as flex-
ible. In fact, the correspondence ↦ between (flexible) sets that we define above is
just rigid, while the “partial correspondence” between flexible sets, such as “basi-
cally corresponding”, “some corresponding” and so on, is then flexible, For “partial
correspondence” between two (flexible) sets, we will discuss in Sect. 20.6.

9.1.3 The Correspondence with a Compound Flexible Set

What the set correspondence and flexible-set correspondence above cover are the
functions and correlations of a variable, but there are also the functions and cor-
relations of multiple variables in mathematics and practical problems. A function or
correlation of multiple variables forms a correspondence from one compound set to
another set.

Definition 9.5 Let A1, A2, …, An be separately flexible subsets of measurement
spaces U1, U2, …, Un, and B be a flexible subset of V. If to each (x1, x2, …, xn) 2
supp(A1 \ A2 \ ��� \ An) there corresponds to at least one y 2 supp(B), then we
say that compound flexible set A1 \ A2 \ ��� \ An is corresponded to flexible set B,
or flexible set B corresponds to flexible set A1 \ A2 \ ��� \ An, write A1 \ A2 \
��� \ An ↦ B.

Definition 9.5′ Let A1, A2, …, An be separately flexible subsets of measurement
spaces U1, U2, …, Un, and B be flexible subsets of V. If there exists a function or
correlation from supp(A1 \ A2 \ ��� \ An) to supp(B), then we say that compound
flexible set A1 \ A2 \ ��� \ An is corresponded to flexible set B, or flexible set
B corresponds to flexible set A1 \ A2 \ ��� \ An, write A1 \ A2 \ ��� \ An ↦ B.

Definition 9.6 Let A1, A2, …, An be separately flexible subsets of measurement
spaces U1, U2, …, Un, and B be flexible subsets of V. If to each x1 2 supp(A1) or
x2 2 supp(A2) or… or xn 2 supp(An) there corresponds to at least one y 2 supp(B),
then we say that compound flexible set A1 [ A2 \ ��� \ An is corresponded to
flexible set B, or flexible set B corresponds to flexible set A1 \ A2 \ ��� \ An,
write A1 \ A2 \ ��� \ An ↦ B.

This definition is to say that correspondence A1 \ A2 \ ��� \ An ↦ B is a
union of A1 ↦ B, A2 ↦ B, … and An ↦ B, that is, A1 \ A2 \ ��� \ An ↦ B is
equivalent to A1 ↦ B or A2 ↦ B or … or An ↦ B.
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Definition 9.7 Let A1, A2, …, An be separately flexible subsets of measurement
spacesU1,U2,…,Un, and B be flexible subsets of V. If to each (x1, x2,…, xn) 2 supp
(A1 × A2 × ��� × An) there corresponds to at least one y 2 supp(B), then we say that
compound flexible set A1 × A2 × ��� × An is corresponded to flexible set B, or
flexible set B corresponds to flexible set A1 × A2 × ��� × An, write
A1 × A2 × ��� × An ↦ B.

From the definitions above, it can be see that

• Correspondence A1 \ A2 \ ��� \ An ↦ B is formed by a function or corre-
lation from A1 \ A2 \ ��� \ An to B and in turn which covers the function or
correlation, and also covers simultaneously all functions and correlations from
A1 \ A2 \ ��� \ An to B, of them the largest is (local) universal relation supp
(A1 \ A2 \ ��� \ An) × supp(B);

• Correspondence A1 \ A2 \ ��� \ An ↦ B is formed by n functions or cor-
relations from A1 to B, from A2 to B, …, from An to B and in turn which covers
these functions or correlations, and also covers simultaneously all function and
correlations from A1 to B, from A2 to B, …, from An to B, of them the largest is
(local) universal relation

supp(A1Þ � supp(BÞ [ supp(A2Þ � supp(BÞ [ � � � [ supp(AnÞ � supp(BÞ
¼ suppðA1 [A2 [ � � � [AnÞ � supp(BÞ;

• Correspondence A1 × A2 × ��� × An ↦ B is formed by a function or correlation
from A1 × A2 × ��� × An to B and in turn which covers the function or corre-
lation, and also covers simultaneously all functions and correlations from
A1 × A2 × ��� × An to B, of them the largest is (local) universal relation supp
(A1 × A2 × ��� × An) × supp(B).

By the definitions of intersections and Cartesian products of flexible sets and
rigid sets, we have

supp(A1 \A2 \ � � � \AnÞ ¼ supp(A1Þ \ supp(A2Þ \ � � � \ suppAnÞ
¼ supp(A1Þ�supp(A2Þ� � � � �suppAnÞ

supp(A1�A2� � � � �AnÞ ¼ supp(A1Þ�supp(A2Þ� � � � �suppAnÞ

Thus,thelargestofnumerical relationscoveredbycorrespondenceA1 \ A2 \ ��� \
An ↦ B and that covered by correspondence A1 × A2 × ��� × An ↦ B are the same,
that is, those are all universal relation supp(A1) × ��� × supp(An) × supp(B).

9.1.4 Flexible Relations and Flexible-Set Correspondences

First, it is not hard to see that from a binary flexible relation, we can obtain a
flexible-set correspondence (or a rigid-set correspondence). For example, it is such
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an example that shown in Fig. 9.3, here we obtain flexible-set correspondence
A ↦ B [and rigid-set correspondence supp(A) ↦ supp(B)] from binary flexible
relation R.

Then, conversely, from two sections above we see that since the functions and
correlations between numbers are all rigid relations, so binary relations covered by
flexible-set correspondences are all binary rigid relation. That is to say, a
flexible-set correspondence can and merely can be represented as a binary rigid
relation, but a binary flexible relation (thus, there exist no “flexible mappings,”
“flexible functions,” or “flexible correlations” between two flexible sets in the sense
of (complete) correspondence ↦). For example, see Fig. 9.3 reversely, the binary
relation covered by obtained flexible-set correspondence A ↦ B are then various
binary rigid relations that include that oval region in the figure, but not original
binary flexible relation R. This is to say, even if such a flexible-set correspondence
A ↦ B obtained by binary flexible relation R cannot be represented as original
binary flexible relation R either.

From the analyses above, we find that a flexible subset of a Cartesian product has
dual role and dual interpretation.

In fact, let U and V be two measurement spaces. Then, a subset R of product
space U × V stands for a certain binary flexible relation, such as approximately
equal, far greater than, approximate, similar, and so forth. However, on the other
hand, since a ordered pair (x, y) in flexible subset R itself represents the corre-
spondence between two elements, so viewed from correspondence, the flexible
subset R also stands for a correspondence relation (may be function or correlation)
between elements, and no matter the R standing for what practical flexible relation,
viewing abstractly, which stands always for the correspondence relation between
elements. That is to say, one and the same flexible subset R of product set
U × V stands really for two kinds of binary relations—a practical binary relation in
semantics and a correspondence relation between elements at the same time. Since
the correspondence between numbers is always rigid, thus, one and the same
flexible subset R of product space U × V can stand for a certain practical binary
flexible relation as well as “correspondence relation” the binary rigid relation.

Actually, a rigid subset of a Cartesian product also has dual role and dual
interpretation, only practical relation, and correspondence relation stood for by
which are all rigid relation.

A (supp(A))

V 

U

B (supp(B)) 

R

Fig. 9.3 Illustration
of a flexible-set
(set) correspondence obtained
from a binary flexible
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9.2 Correspondence Between Flexible Linguistic Values

In the last section, we examined the correspondence between flexible sets. From the
relationship between flexible linguistic values and flexible sets, there also occurs
correspondence relation between flexible linguistic values.

Definition 9.8 Let A and B be two flexible linguistic values, which also label the
corresponding flexible sets at the same time. Flexible linguistic value B corresponds
to flexible linguistic value A if and only if corresponding flexible set B corresponds
to flexible set A.

Thus, from the conclusions about flexible-set correspondence in Sect. 9.1, we
can have immediately the following conclusion about flexible-linguistic-valued
correspondence:

• Flexible-linguistic-valued correspondence A ↦ B is the summarization of a
certain function or correlation from flexible set A to flexible set B, which also
summarizes simultaneously all functions and correlations from A to B, of them
the largest is universal relation supp(A) × supp(B).

• Correspondence with composite flexible linguistic value,
A1 ∧ A2 ∧ ��� ∧ An ↦ B, is the summarization of a certain function or corre-
lation from compound flexible set A1 [ A2 \ ��� \ An to flexible set B, which
also summarizes simultaneously all functions and correlations from
A1 \ A2 \ ��� \ An to B, of them the largest is (local) universal relation supp
(A1 \ A2 \ ��� \ An) × supp(B).

• Correspondence with composite flexible linguistic value,
A1 ∨ A2 ∨ ��� ∨ An ↦ B, is the summarization of a certain function or corre-
lation from compound flexible set A1 [ A2 [ ��� [ An to flexible set B, which
also summarizes simultaneously all functions and correlations from
A1 [ A2 [ ��� [ An to B, of them the largest is (local) universal relation supp
(A1 [ A2 [ ��� [ An) × supp(B).
Of course, correspondence A1 ∨ A2 ∨ ��� ∨ An ↦ B can also be viewed as a
union of A1 ↦ B, A2 ↦ B, …, An ↦ B, that is, A1 ∨ A2 ∨ ��� ∨ An ↦ B is
equivalent to A1 ↦ B or A2 ↦ B or … or An ↦ B.

• Correspondence with composite flexible linguistic value,
A1 ⊕ A2 ⊕ ��� ⊕ An ↦ B, is the summarization of a certain function or cor-
relation from compound flexible set A1 × A2 × ��� × An to flexible set B, which
also summarizes simultaneously all functions and correlations from
A1 × A2 × ��� × An to B, of them the largest is (local) universal relation supp
(A1 × A2 × ��� × An) × supp(B).

• A flexible-linguistic-valued correspondence can be represented as that function
or correlation between corresponding measurement subspaces summarized by
which, that is also its background function or background correlation.

In practical problems, the function or correlation summarized by a
flexible-linguistic-valued correspondence is the mathematical background of the
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flexible-linguistic-valued correspondence. We call it the background function and
background correlation of the flexible-linguistic-valued correspondence.

In the following, we also consider incidentally the relationship between
flexible-linguistic-valued vectors and flexible-linguistic-valued correspondences.

As numerical vector (x, y) can also be regarded as denoting the correspondence
x ↦ y from x to y, flexible-linguistic-valued vector (A, B) can also be regarded as
denoting the correspondence A ↦ B from A to B. In fact, since (A, B) is an ordered pair,
so (A,B) is tantamount to correspondenceA ↦ Bbetweenflexible linguistic values in the
corresponding measurement space U × V. From last section, we have known that cor-
respondence A ↦ B is the summarization of a certain function or correlation from
corresponding flexible set A to flexible set B, of them the biggest is (local) universal
relation supp(A) × supp(B). Thus, in space U × V, flexible-linguistic-valued vector (A,
B) represents a region whose upper bound is supp(A) × supp(B).

Similarly, the flexible linguistic values in n-dimensional flexible-linguistic-valued
vector (A1, A2, …, An) are ordered. Therefore, in n-dimensional measurement space
U1 × U2 × ��� × Un, (A1, A2,…, An) is tantamount to A1 ↦ (A2,…, An), (A2,…, An)
is tantamount toA2 ↦ (A3,…,An),…, the restmay be inferred, and consequently (A1,
A2, …, An) is tantamount to A1 ↦ (A2 ↦ (…(An−2 ↦ (An−1 ↦ An) …). Also, by
the logical equivalence A ↦ (B ↦ C) ⟺ A ∧ B ↦ C. Therefore, expression
A1 ↦ (A2 ↦ (…(An−2 ↦ (An−1 ↦ An) …) is tantamount to flexible-linguistic-
valued correspondence A1 ∧ A2 ∧ ��� ∧ An−1 ↦ An. Actually, from (A1, A2, …,
An) = ((A1, A2, …, An-1), An), we can also obtain immediately correspondence
A1 ∧ A2 ∧ ��� ∧ An−1 ↦ An. Thus,flexible-linguistic-valued vector (A1,A2,…,An) is
tantamount to flexible-linguistic-valued correspondence A1 ∧ A2 ∧ … ∧ An

−1 ↦ An, while from last sectionwe have known that which is the summarization of a
certain function or correlation from corresponding flexible set A1 \ A2 \ ��� \ An

−1 to flexible set An, of them the biggest is (local) universal relation supp(A1) × supp
(A2) × ��� × supp(An). Thus, in spaceU1 × U2 × ��� × Un, flexible-linguistic-valued
vector (A1, A2, …, An) represents a region whose super bound is supp(A1) × supp
(A2) × ��� × supp(An).

From Sect. 7.4, we have known that a flexible-linguistic-valued vector (A1, A2,…,
An), in measurement space U1 × U2 × ��� × Un, represents a flexible square region
corresponded to conjunctive flexible linguistic value A1 ∧ A2 ∧ ��� ∧ An, now which
also represents a regionwhose super bound is supp(A1) × supp(A2) × ��� × supp(An),
namely the product of the support sets of all component linguistic values.

9.3 Flexible Linguistic Functions

9.3.1 Definitions and Types of Flexible Linguistic Functions

Definition 9.9

(1) We call the variable taking on linguistic values to be a linguistic variable and
denote it by capital letters X, Y, Z, …, etc.
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(2) We call the function in which the independent variable(s) or dependent
variable take on flexible linguistic value(s) to be a flexible linguistic function.

From the definition, flexible linguistic functions can be classified as:

① The flexible-linguistic-valued function of flexible linguistic variable(s), short
for Language-Language-type function, written L-L function;

② The flexible-linguistic-valued function of numerical variable(s), short for
Number-Language-type function, written N-L function;

③ The numerical-valued function of flexible linguistic variable(s), short for
Language-Number-type function, written L-N function.

Besides, there may be the flexible-linguistic-valued function of hybrid variable(s).
In the above, we introduce flexible linguistic functions on the basis of existing

function concept. In order to facilitate the further study, in the following we define
again the flexible linguistic function from the perspective of relation.

Definition 9.10 Let U and V be two measurement spaces, LU be a set of flexible
linguistic values on U, and LV be a set of flexible linguistic values on V, and let
f � LU × LV be a relation from LU to LV. If for each flexible linguistic value
X in LU, there always exists one and only one Y in LV such that (X, Y) 2 f, then
we say f is a flexible linguistic function from LU to LV, write Y = f(X).

Example 9.3 Let U = [a, b] and V = [c, d] be two measurement spaces, and let
LU = {A1, A2, A3, A4, A5, A6 | A1, A2, A3, A4, A5, A6 are flexible linguistic values on
U}, and LV = {B1, B2, B3 B4 | B1, B2, B3 B4 are flexible linguistic values on V}.
Then, f = {(A1, B1), (A2, B4), (A3, B2), (A4, B1), (A5, B3), (A6, B2)} is a flexible
linguistic function from LU to LV.

The Definition 9.10 is only a basic definition of flexible linguistic function.
Taking into account the type and number of independent variables and the type of
values of functions, we give more specific definitions of flexible linguistic functions
below.

Definition 9.11 Let Ui be a one-dimensional measurement space, and Li = {Xi | Xi

is an atomic flexible linguistic value on Ui} (i = 1, 2, …, n), let V be a
one-dimensional measurement space, and LV = {Y | Y is an atomic flexible lin-
guistic value on V}, and let f � (L1 × L2 × ��� × Ln) × LV be a relation from
L1 × L2 × ��� × Ln to LV. If for each X = (X1, X2, …, Xn) 2 L1 × L2 × ��� ×
Ln, there always exists one and only one Y 2 LV such that (X, Y) 2 f, then we say
f is an L-L function from L1 × L2 × ��� × Ln to LV, write Y = f(X).

Definition 9.12 Let Ui be a one-dimensional measurement space (i = 1,2, …, n),
V be a one-dimensional measurement space, LV = {Y | Y is an atomic flexible
linguistic value on V}, and let f � (U1 × U2 × ��� × Un) × LV be a relation from
U1 × U2 × ��� × Un to LV. If for each x = (x1, x2, …, xn) 2 U1 × U2 × ��� × Un,
there always exists one and only one Y 2 LV such that (x, Y) 2 f, then we say f is an
N-L function from U1 × U2 × ��� × Un to LV, write Y = f(x).
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Definition 9.13 Let Ui be a one-dimensional measurement space, Li = {Xi | Xi is an
atomic flexible linguistic value on Ui} (i = 1, 2, …, n), let V be a one-dimensional
measurement space, and let f � (L1 × L2 × ��� × Ln) × V be a relation from
L1 × L2 × ��� × Ln to V. If for each X = (X1, X2,…, Xn) 2 L1 × L2 × ���
× Ln, there always exists one and only one y 2 V such that (X, y) 2 f, then we say
f is an L-N function from L1 × L2 × ��� × Ln to V, write y = f(X).

In the above definitions, the spaces Ui (i = 1, 2, …, n) and V are both
one-dimensional, and the values that linguistic variables X and Y take are both
one-dimensional atomic flexible linguistic values, and the values that numerical
variables x1, x2, …, xn and y take are all scalars. Therefore, these flexible linguistic
functions are a kind of most simple flexible linguistic function. This kind of flexible
linguistic functions is directly based on the measurement space and is the most
common flexible linguistic function, so we call which as typical flexible linguistic
function.

Generalizing the typical flexible linguistic function, we give the more general
flexible linguistic function.

Definition 9.11′ Let Ui be a ki (ki ≥ 1)-dimensional measurement space, Li = {Xi|
Xi is an atomic flexible linguistic value on Ui} (i = 1, 2, …, n), let V be an m
(m ≥ 1)-dimensional measurement space,LV = {Y|Y is an atomic flexible linguistic
value on V}, and let f � (L1 × L2 × ��� × Ln) × LV be a relation from L1 ×
2 × ��� × Ln to LV. If for each X = (X1, X2, …, Xn) 2 L1 × L2 × ��� × Ln, there
always exists one and only one Y 2 LV such that (X, Y) 2 f, then we say f is an L-L
function from L1 × L2 × ��� × Ln to LV, write Y = f(X).

Definition 9.12′ Let Ui be a ki (ki ≥ 1)-dimensional measurement space, (i = 1, 2,
…, n), let V be an m (m ≥ 1)-dimensional measurement space, LV = {Y|Y is an
atomic flexible linguistic value on V}, and let f � (U1 × U2 × ��� × Un) × LV be a
relation from U1 × U2 × ��� × Un to LV. If for each x = (x1, x2, …,
xn) 2 U1 × U2 × ��� × Un, there always exits one and only one Y 2 LV such that
(x, Y) 2 f, then we say f is an N-L function from U1 × U2 × ��� × Un to LV, write
Y = f(x).

Definition 9.13′ Let Ui be a ki (ki ≥ 1)-dimensional measurement space, Li = {Xi|
Xi is an atomic flexible linguistic value on Ui} (i = 1, 2, …, n), let V be an m
(m ≥ 1)-dimensional measurement space, and let f � (L1 × L2 × ���
× Ln) × V be a relation from L1 × L2 × ��� × Ln to V, If for each X = (X1, X2,
…, Xn) 2 L1 × L2 × ��� × Ln, there always exits one and only one y = (y1, y2,
…, ym) 2 V such that (X, y) 2 f, then we say f is an L-N function
from L1 × L2 × ��� × Ln to V, write y = f(X).

It can be seen that Definition 9.11′ is the generalization of Definition 9.11, but
actually it is already a function from a set of linguistic-valued vectors to a set of
linguistic values; Definition 9.12′ is the generalization of Definition 9.12, but when
there is at least one space Uk, whose dimension kk > 1, the function actually is
already a function from a set of vectors formed by the numerical vectors to a set of
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linguistic values; Definition 9.13′ is the generalization of Definition 9.13, but it
actually is already a function from a set of linguistic-valued vectors to a set of
numerical vectors.

Besides, flexible linguistic functions, like numerical functions, can also be
separated as one-to-one and non-one-to-one as well as simple and compound.

9.3.2 Representations of Flexible Linguistic Functions

Like usual numerical functions, there are also two representation methods of
enumeration and formulation for flexible linguistic functions.

The enumeration representation of flexible linguistic functions is using a set of
the pairs of the values of independent variable and function to represent a flexible
linguistic function. For example, the flexible linguistic function in Example 9.3
above is just using enumeration method to represent.

The formulation representation of flexible linguistic functions is using an
operational expression of flexible linguistic variable(s) to represent a flexible lin-
guistic function. For example,

Y ¼ ðX1^X2Þ�ðX3_X4Þ ð9:1Þ

is just a flexible linguistic function represented by formulation method, where X1,
X2, X3, X4, and Y are all linguistic variable.

The equation above is an L-L function. Generally, the formulation representation
of an L-L function is

Y ¼ EðXÞ ð9:2Þ

and the formulation representations of an N-L function and an L-N function are
given separately

Y ¼ ðf ðxÞÞ ð9:3Þ

and

y ¼ ½EðXÞ� ð9:4Þ

Here parentheses () and brackets [] denotes separately N-L conversion and L-N
conversion. For example, there are an N-L function and an L-N function repre-
sented by formulation method in the following:

Z ¼ ð3x2 þ 4y3 þ 1Þ ð9:5Þ
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y ¼ ½X^Y � ð9:6Þ

Note that since the operations of flexible linguistic values only have ¬, ∧, ∨,
and ⊕ , so ¬X, X ∧ Y, X ∨ Y, and X ⊕ Y the four operational expressions are most
basic and most simple flexible linguistic functions, and other flexible linguistic
functions represented by formulations are all their certain combination or com-
pound. For example, the above L-L function shown as Eq. (9.1) is actually being
compounded by Y1 = X1 ∧ X2, Y2 = X3 ∨ X4, and Y = Y1 ⊕ Y2. As for what are the
outcomes of these most basic operations needs to determine according to the actual
problems. That is to say, the flexible linguistic functions represented by formula-
tions, besides the functional expressions, also need to have a group of operational
definitions such as A1 = B2 ∧ C3, A2 = B1 ∨ C3 and D1 = A2 ⊕ E3, and so on.

Like numerical functions, although the representation of flexible linguistic
functions can be separated as enumeration method and formulation method,
speaking from theory, any flexible linguistic function can be represented by using
enumeration method.

9.3.3 Quantitative Description and Numerical Model
of a Flexible Linguistic Function

In the above flexible linguistic functions represented by using enumeration and
formulation are only a kind of descriptive definitions, which can only be treated as a
kind of qualitative models, of which the “geometric graphs” can only be “sets of
points” in the spaces of flexible linguistic values (speaking generally, it is difficult to
draw these point sets). Obviously, for many practical problems the qualitative
models are not able to meet the requirements. Then, can the flexible linguistic
functions be quantitatively described? And then, can the flexible linguistic functions
be translated into a kind of pure numerical object?

Considering that the flexible linguistic value with degree is the quantitative
representation of flexible linguistic values, we can use flexible linguistic value with
degree to quantitatively describe a flexible linguistic function. That is, (Y, dy) = f
(X, dx). It can be seen that the key of the quantitative description is to know the
correspondence relation (function or correlation) between the degrees dx and dy.
The correspondence relation between the degrees is also the quantitative model. But
it is not easy to obtain a precise quantitative model, Chap. 14 will discuss the
approaches to obtain approximate quantitative model.

In the following, we consider the numerical model of flexible linguistic
functions.

It can be seen that ordered pair (A, B) of flexible linguistic values is tantamount to
flexible-linguistic-valued correspondence A ↦ B. Thus, viewed from enumeration
representation, a flexible linguistic function is a set of flexible-linguistic-valued
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correspondences. And from the relation between flexible-linguistic-valued corre-
spondence and flexible-set correspondence, we know that a flexible-linguistic-
valued correspondence can be represented as that function or correlation summa-
rized by which, that is, its background function or background correlation. The
background function or background correlation is the numerical model of a
flexible-linguistic-valued correspondence. Then, does putting together the back-
ground functions or background correlations of all flexible-linguistic-valued corre-
spondences (i.e., ordered pairs of flexible linguistic values) of a flexible linguistic
function not just form a numerical model, i.e., the background function or back-
ground correlation, of the flexible linguistic function?

However, the problem is that in practical problem, the background function or
background correlation of a flexible-linguistic-valued correspondence is often
unknown. That is to say, it is also very difficult to obtain the numerical model of a
flexible linguistic function.

From Sect. 9.2, we have known that a flexible-linguistic-valued correspondence
A ↦ B summarizes simultaneously all functions and correlations from A to B, of
them the largest is (local) universal relation supp(A) × supp(B). That is to say,
universal relation supp(A) × supp(B) not only is a correlation summarized by
flexible-linguistic-valued correspondence A ↦ B, but also the least upper bound,
namely supremum, of all functions and correlations from A to B. Thus, we can take
universal relation supp(A) × supp(B) as a representative of numerical model of
flexible-linguistic-valued correspondence A ↦ B.

From the Proposition 7.1 in Sect. 7.3.1, we have known that in concept, a flexible
linguistic value (flexible set) is decided by its core and support set, but in practical,
which is fully stood for by its extended core. Then, conceptual flexible-linguistic-
valued correspondence A ↦ B, i.e., set correspondence supp(A) ↦ supp(B), is
practically set correspondence core(A)+ ↦ core(B)+. Thus, we further use smaller
universal relation core(A)+ × core(B)+ instead of supp(A) × supp(B) to represent the
numerical model of flexible-linguistic-valued correspondence A ↦ B.

Generally, we call a local universal relation summarized by a
flexible-linguistic-valued correspondence to be the numerical model representa-
tive of the flexible-linguistic-valued correspondence.

Thus, a set of all local universal relations summarized by a flexible linguistic
function is just a representative of numerical model of the flexible linguistic
function, that is, the numerical model representative of the flexible linguistic
function.

Further, we call the numerical model representative formed by support sets to be
the conceptual representative, the numerical model representative formed by
extended cores to be the practical representative. In usual, the numerical repre-
sentatives we say refer to practical representative.

A local universal relation is also a region of corresponding product space.
Regarding that this region is a “square,” we call might as well which a “block
point” in corresponding measurement space. Thus, the geometric graph of the
numerical model representative of a flexible linguistic function is a block-point
curve in corresponding product measurement space. For example, the graph of the
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numerical model representative of the flexible linguistic function in Example 9.3 is
shown in Fig. 9.4.

More generally, the numerical model representative of a multivariate flexible
linguistic function is a set of local universal relations such as core
(A1 \ A2 \ ��� \ An)

+ × core(B)+, its graph is a block-point surface or
block-point hypersurface in corresponding measurement space (see the example in
Fig. 9.5).

Now, we can translate a flexible linguistic function qualitatively described by a
group of flexible-linguistic-valued correspondences (i.e., ordered pairs of flexible
linguistic values) into its numerical model representative, that is, a group of local
universal relations. Though, the latter is only a special case of the functions and
correlations summarized by former, speaking generally, and which is not the
background function or background correlation of the former, since each local
universal relation covers the background function or background correlation of
corresponding ordered pair of flexible linguistic values, so the flexible linguistic
function represented by local universal relations covers the background function or
background correlation of original flexible linguistic function (as shown in
Fig. 9.6). It can be seen that this kind of big-granule function of block points is just
convenient for characterization of macro-characteristics of corresponding systems
(this coincided just with the original intention of linguistic-valued function).
Therefore, using it in place of original flexible linguistic function is more suitable
for and more convenient for macro-analysis of corresponding systems. In fact, for
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the systems on two- and three-dimensional measurement spaces, according to this
kind of numerical models we can conduct visual examination and analysis. Further,
through this kind of block-point function, we also can estimate the background
function or background correlation of original flexible linguistic function. In fact,
since it covers the background function or background correlation of original
flexible linguistic function section by section, so it provides a basis and framework
for analysis and research of the background function or background correlation of
original flexible linguistic function.

In the above examples are all the examples of numerical model representatives
of L-L functions, in the following we give again an example of numerical model
representatives of N-L functions (see Fig. 9.7). But note that L-N functions do not
require numerical-model representatives because they themselves are also their
background functions (an example as shown in Fig. 9.8).

9.3.4 Characteristics, Properties, and Evaluations
of Flexible Linguistic Functions

The flexible linguistic functions shown in Figs. 9.4 and 9.5 are all ideal cases—a
basic flexible linguistic value on domain just corresponds to a basic flexible
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linguistic value on range and the block-point curves are also unbroken; however,
the flexible linguistic functions in practical problems are not necessarily so, that is, a
basic flexible linguistic value on domain does not necessarily correspond to the
basic flexible linguistic value on range but may correspond to the non-basic flexible
linguistic value (as shown in Fig. 9.9), and there also may occur discrete block
points (as shown in Fig. 9.10). Certainly, that a flexible linguistic function should
consist of what kind of block points is completely determined by its characteristics.
Besides, since one and the same range of numerical values can have multiple
different partitions thus can result multiple different sets of linguistic values,
therefore one and the same numerical function can also be summarized by multiple
linguistic functions. Obviously, among the multiple linguistic functions summa-
rizing one and the same numerical function, the block-point curve or surface whose
block points are smaller would be more close to the curve or surface of the
numerical function. Especially, if the numerical function is a usual single-valued
function, then when (the size of) block-point approach usual points, the numerical
function is just the limit of such a sequence of linguistic functions. Thus, in theory,
a numerical function (include multivalued function and vectored function) can be
approached by a sequence of linguistic functions. Or in other words, we can use a
sequence of linguistic functions in which the sizes of linguistic values become
gradually smaller and smaller to approach to a numerical function (here the size,
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that is, the granule size, of a linguistic value refers to the size of the set or flexible
set (see Chap. 20) labeled by the linguistic value).

Like the usual numerical functions, the flexible linguistic functions would also
have some relevant properties, such as monotony, continuity, periodicity, etc. It is
not hard to see that the monotony of flexible linguistic functions is similar to that of
usual numerical functions, which can be defined by orders of independent variable
and function value, that is, when the value of independent variable increases, the
value of function also increases and the function is monotonously increased; when
the value of independent variable increases, the value of function decreases and the
function is monotonously decreased. The continuity of flexible linguistic functions,
for the flexible linguistic function that defined on a set of basic flexible linguistic
values on a measurement space, the continuity can be defined by the succession of
independent variable and function value, that is, when independent variable takes
next flexible linguistic value of present flexible linguistic value, the function also
takes next flexible linguistic value of present flexible linguistic value; for the
flexible linguistic function that defined on set of all flexible linguistic values on a
measurement space, the continuity can be defined by the continuity of peak value
points of independent variable(s) and function value. We can compute even the rate
of change of a flexible linguistic function from the peak value points of related
linguistic values. On the properties of flexible linguistic functions, we need to do
further study. Of course, because the granule size of linguistic values is larger and
their operations are very finite (having only ∧, ∨, and ⊕), therefore, generally
speaking, the properties of flexible linguistic functions are relatively little.

The evaluation of the flexible linguistic functions, in principle, is similar to the
evaluation computation of the usual numerical functions. Specifically, for the
flexible linguistic functions represented by enumeration, the function value can be
obtained through looking up the table of valued pairs of a function according to
values of independent variables; for the flexible linguistic functions represented by
formulation, need first according to values of independent variables through
matching the expressions of the most basic operations defined to obtain the cor-
responding operation values, then according to expression of the function to match
successively and level by level the definitional expressions of corresponding
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operations to obtain the corresponding operation values, until the final function
value is obtained. Consequently, once evaluation process of a flexible linguistic
function forms a tree of linguistic values, and many times evaluation process form a
net of linguistic values. For example, suppose there is a flexible linguistic function
Y = (X1 ∧ X2) ⊕ (X3 ∨ X4), and the corresponding definitional expressions of basic
operations are A1 ∧ B1 = E1, C1 ∨ D2 = F2, E1 ⊕ F2 = G1…. Then, when
X1 = A1, X2 = B1, X3 = C1 and X4 = D2, from the definitional expressions of first
and second operations we can have E1 and F2, also from E1, F2 and the definitional
expression of third operation we have the value G1 of the function. It is not hard to
see that the evaluation of a flexible linguistic function represented by formulation
actually does not involve real computations but only is many times looking up the
table of definitions of operations. That is to say, the evaluation of a flexible lin-
guistic function is actually all looking up tables, but the flexible linguistic function
represented by enumeration requires a time looking up table while a flexible lin-
guistic functions represented by formulation requires many times looking up table.

9.4 Flexible Linguistic Correlations

Similar to correlations between numbers, there are correlations between flexible
linguistic values.

Definition 9.14 Let U and V be two measurement spaces, LU and LV be sepa-
rately the sets of flexible linguistic values on U and V, and C be a relation from LU

to LV. If for each flexible linguistic value X 2 LU, there always exists at least one
Y 2 LV such that (X, Y) 2 C, then we say C is a flexible linguistic correlation from
LU to LV, write Y = C(X).

Example 9.4 Let U = [a, b] and V = [c, d] be two measurement spaces, and let
LU = {A1, A2, A3, A4, A5, A6|A1, A2, A3, A4, A5, A6 are flexible linguistic values on
U}, and LV = {B1, B2, B3 B4|B1, B2, B3 B4 are flexible linguistic values on V}.
Then, C = {(A1, B1), (A2, B2), (A2, B4), (A3, B1) (A3, B2), (A4, B1), (A5, B3), (A6, B2)}
is a flexible linguistic correlation from LU to LV.

Obviously, flexible linguistic correlations only can be represented by enumer-
ation method, that is, by a set of pairs of flexible linguistic values. Of course, a
flexible linguistic correlation represented by a set of pairs of flexible linguistic
values can only treated as a kind of qualitative model of corresponding system.

It can be seen that a flexible linguistic correlation is also formed by correlation
between numerical values and in turn which summarizes corresponding numerical
correlation. Similarly, in theory, a flexible linguistic correlation can be represented
as a numerical correlation summarized by which between corresponding mea-
surement space, that is, its background correlation, but in practical problems the
background correlation of a flexible linguistic correlation is not known in general.
This case is similar to the problem meted by flexible linguistic function. Therefore,
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we can take corresponding set of local universal relations as a numerical model
representative to represent the flexible linguistic correlation. For example, the graph
of the numerical model representative of the flexible linguistic correlation in
Example 9.4 is shown in Fig. 9.11.

Similarly, although, speaking generally, this kind of numerical model repre-
sentative is not the correlation summarized by original flexible linguistic correla-
tion, that is, background correlation, it covers original flexible linguistic correlation,
thus through it we can estimate the background correlation of original flexible
linguistic correlation. Similarly, this kind of big-granule correlation of block points
just easily characterizes macro-characteristics of corresponding systems. Therefore,
using it in place of original flexible linguistic correlation is more suitable for and
more convenient for macro-analysis of corresponding systems. In fact, for the
systems on two- and three-dimensional measurement spaces, based on this kind of
numerical model representative, we can conduct visual examination and analysis.

From Definition 9.14 and Fig. 9.11, we can see that a flexible linguistic corre-
lation can also be viewed as a multivalued flexible linguistic function, while flexible
linguistic functions are then a kind of special flexible linguistic correlations.
Besides, we can also see that a flexible linguistic correlation is generally formed by
pairs of basic flexible linguistic values. Then, if we unite properly the multiple basic
flexible linguistic values that correspond to the value of one and the same inde-
pendent variable, then some flexible linguistic correlations would become flexible
linguistic functions.

9.5 Summary

In this chapter, we analyzed firstly the mathematical backgrounds and relational
representations of a set correspondence and a flexible-set correspondence, thus
revealing the mathematical essence, mathematical background, and relational rep-
resentation of a flexible-linguistic-valued correspondence; then, we proposed and
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discussed flexible linguistic functions and flexible linguistic correlations, presented
their types and representation, analyzed their characteristics, properties, and eval-
uations, and in particular, discovered and proposed a quantitative description and
numerical model of flexible linguistic functions and flexible linguistic correlations.

The main points and results of the chapter are:

• Flexible-set correspondence A ↦ B is formed by a certain function or corre-
lation from flexible set A to flexible set B and in turn covers the function or
correlation, and which also covers simultaneously all functions and correlations
from A to B, of them the largest is universal relation supp(A) × supp(B).

• A flexible-set correspondence can be specifically represented as that function or
correlation covered by which.

• For one and the same pair of flexible sets A and B, the orthogonal intersection
A \ B, the Cartesian product A × B and the correspondence A ↦ B are not the
same each other.

• Flexible-linguistic-valued correspondence A ↦ B is a summarization of a cer-
tain function or correlation from flexible set A to flexible set B, which also
summarizes simultaneously all functions and correlations from A to B, of them
the largest is universal relation supp(A) × supp(B).

• In theory, a flexible-linguistic-valued correspondence can be represented as that
function or correlation summarized by which, that is also its background
function or background correlation.

• A local universal relation summarized by a flexible-linguistic-valued corre-
spondence can be treated as the numerical model representative of the
flexible-linguistic-valued correspondence, and its geometrical graph is a block
point in corresponding measurement space.

• A flexible linguistic function is generally a summarization of a certain (global)
numerical function or correlation without explicit expression, which can be
classified as the types of L-L, N-L, and L-N ones.

• The basic representation method of flexible linguistic functions is the enumer-
ation method, but some of them can also be represented by formulation method.

• Flexible linguistic functions have some characteristics like numerical functions,
but because the granule sizes of the independent variable and function value of
which are larger, so their properties are less.

• A flexible linguistic function can be quantitatively described by flexible lin-
guistic values with degrees, but one needs to know the corresponding quanti-
tative model, that is, the correspondence relation between degrees.

• A set of local universal relations summarized by a flexible linguistic function
can be treated as the numerical model representative of the flexible linguistic
function, and its graph is a block-point curve, surface, or hypersurface.

• A flexible linguistic correlation can only be represented by enumeration method,
and we can also take a set of corresponding local universal relations as it is
numerical model representative.

• The flexible linguistic function or correlation summarizing a numerical function
or correlation is not unique; in general, the flexible linguistic function or
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correlation whose linguistic value’s sizes are smaller, then which more
approaches to the corresponding numerical function or correlation.

• Flexible-set correspondence A ↦ B can and only can be represented as a binary
rigid relation, but cannot be represented as a binary flexible relation.

• There exist no “flexible mappings,” “flexible functions,” or “flexible correla-
tions” between two sets or flexible sets in the sense of (complete)
correspondence ↦.

• One and the same flexible subset of product measurement space stands for a
certain practical binary flexible relation as well as “correspondence relation” the
binary rigid relation.
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Chapter 10
Flexible Numbers and Flexible Functions

Abstract This chapter proposes the concepts of flexible numbers,
flexible-numbered vectors, and flexible vectors based on flexible linguistic values
and flexible sets; gives their definitions and representations; and analyzes their
geometric characteristics. Further, this chapter defines the arithmetic operations,
scalar multiplication, and exponentiation of flexible numbers; defines the addition
and scalar multiplication of flexible vectors; and points out the properties of these
operations. Then, on the bases of flexible numbers and flexible linguistic functions,
this chapter proposes the concept of flexible functions, gives their definitions and
types, analyzes their analytic expressions, and further discusses the flexible-vector
functions.

Keywords Flexible numbers � Flexible functions

In this chapter, we will discuss a kind of special flexible linguistic value—flexible
numbers—and a kind of special flexible linguistic function—flexible functions.

10.1 Definition and Notation of Flexible Numbers

Examining the numbers described by flexible linguistic values “about 5,” “near
100,” and so on in usual, it can be seen that this type of numbers represents really a
flexible interval in real number field R, which can be called the flexible numbers.

Definition 10.1 A flexible interval with real number r 2 R as the center point
standing for “about r” is called a flexible real number on real number field R, or a
flexible number for short, denoted (r).

From the definition, a flexible number can be represented as a 5-tuple:

s�r ; c
�
r ; r; c

þ
r ; sþr

� � ð10:1Þ

© Springer Science+Business Media Singapore 2016
S. Lian, Principles of Imprecise-Information Processing,
DOI 10.1007/978-981-10-1549-6_10

229



where r is the center number of flexible number (r); c�r , c
þ
r , s�r , and sþr are

separately the negative and positive core–boundary points and negative and positive
critical points of (r).

Obviously, the core–boundary points and critical points of (r) are related to the
core radius and support set radius of (r). So flexible number (r) can also be rep-
resented as a 3-tuple:

r; rc; rsð Þ ð10:2Þ

where rc and rs are separately the core radius and support set radius of flexible
number (r).

Since the core radius and support set radius of “about r” actually change with the
size of the absolute value |r| of r, all the flexible numbers cannot be designated with
the same pair of core radius and support set radius. For this reason, we introduce
two parameters of core radius ratio cr and support set radius ratio sr. “Core radius
ratio” and “support set radius ratio” are separately meant the ratios of core radius rc
and support set radius rs to the absolute value |r| of center number r, namely

cr ¼ rc
rj j ; sr ¼

rs
rj j

From this, we have

rc ¼ crjrj; rs ¼ srjrj

Thus, with the two radius ratios, we can represent flexible numbers according to
positive and negative separately as follows:

rð1� srÞ; rð1� crÞ; r; r 1þ crð Þ; r 1þ srð Þð Þ; r[ 0 ð10:3Þ

r 1þ srð Þ; r 1þ crð Þ; r; rð1� crÞ; rð1� srÞð Þ; r\0 ð10:4Þ

where r is the center number of flexible number (r); r(1 − cr) and r(1 + cr) are
core–boundary points of (r); and r(1 − sr) and r(1 + sr) are the critical points of (r).

From the determination of radius ratios cr and sr, the approaches of “personal
preference,” “statistics from a group,” or “derivation with instances” in Sect. 4.1
can be employed. Certainly, once radius ratios cr and sr are determined, then they
are common for all flexible numbers on the universe.

Since radius ratios cr and sr are meaningless to flexible 0, (0), we represent
(0) singly as follows:

ð�rc;�rs; 0; rc; rsÞ ð10:5Þ

where rc and rs are separately the core radius and support set radius of (0), the
determination of which is the same as that of radius ratios cr and sr.
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Example 10.1 Taking core radius ratio cr = 0.02 and support set radius ratio sr =
0.04, then the representations of flexible numbers (1) and (5) are as follows:

1ð Þ ¼ 0:96; 0:98; 1; 1:02; 1:04ð Þ
5ð Þ ¼ 4:80; 4:90; 5; 5:10; 5:20ð Þ

10ð Þ ¼ 10:6; 10:8; 10; 10:2; 10:4ð Þ
100ð Þ ¼ 96; 98; 100; 102; 104ð Þ

1000ð Þ ¼ 960; 980; 1000; 1020; 1:040ð Þ
ð�100Þ ¼ ð�104;�102;�100;�98;�96Þ

The meanings of them are “about 1” and “about 5.”

For the given radius ratios cr and sr, the four numbers of 1 − sr, 1 − cr, 1 + cr,
and 1 + sr are fixed. So setting s1 = 1 − sr, c1 = 1 − cr, c2 = 1 + cr, and
s2 = 1 + sr, then the expression (10.3) becomes

rs1; rc1; r; rc2; rs2ð Þ ð10:6Þ

Thus, the consistency function and membership function of the corresponding
positive flexible number (r) are as follows:

c rð Þ xð Þ ¼
x� rs1
rc1 � rs1

; x� r
rs2 � x
rs2 � rc2

; r� x

8><
>: ð10:7Þ

m rð Þ xð Þ ¼

0; x� rs1
x� rs1
rc1 � rs1

; rs1\x\rc1

1; rc1 � x� rc2
rs2 � x
rs2 � rc2

; rc2\x\rs2

0; rs2 � x

8>>>>>><
>>>>>>:

ð10:8Þ

The corresponding function graph is shown in Fig. 10.1.
Similarly, the consistency function and membership function of negative flexible

number (r) can also be obtained. It would be more direct as for the consistency
function and membership function of (0).

In addition to “about r,” “near r” and “slightly exceeding r” can also be treated as
flexible numbers. But theflexible intervals that the twoflexible numbers correspond to
are a kind of “semiflexible interval.”Therefore, the two flexible numbers can be called
semiflexible number (in comparison, “about r” is a full-flexible number).

(r)
c 

1

0
r xrc2rs1 rc1 rs2

Fig. 10.1 Graphs of the
consistency function and
membership function of
flexible number (r)
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Definition 10.2 A semiflexible interval with real number r 2 R as the supremum
(but does not contain r) standing for “near r” is called a weak semiflexible number
on real number field R, denoted as (r]; a semiflexible interval with real number
r 2 R as the infinum (but does not contain r) standing for “slightly exceeding r” is
called a strong semiflexible number on real number field R, denoted [r).

From the definition, a weak semiflexible number and a strong semi-number can
be separately represented as

rs1; rc1; rð � ð10:9Þ

r; rc2; rs2½ Þ ð10:10Þ

It is easy to see that the consistency functions and membership functions of a
weak semiflexible number and a strong semi-number are, respectively, as follows:

c rð � xð Þ ¼ x� rs1
rc1 � rs1

; x\r ð10:11Þ

m rð � xð Þ ¼
0; x� rs1
x� rs1
rc1 � rs1

; rs1\x\rc1

1; rc1 � x\r

8><
>: ð10:12Þ

c r½ Þ xð Þ ¼ rs2 � x
rs2 � rc2

; r\x ð10:13Þ

m r½ Þ xð Þ ¼
1; r\x� rc2
rs2 � x
rs2 � rc2

; rc2\x\rs2

0; rs2 � x

8><
>: ð10:14Þ

The corresponding function graphs are separately shown in Fig. 10.2a, b.

(r]

c 

1

0
r x

[r)

c 

1

0
r rc2rs1 rc1 rs2 x

(a) (b)

Fig. 10.2 Graphs of the consistency functions and membership functions of weak semiflexible
number (r] and strong semiflexible number [r)
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10.2 Operations on Flexible Numbers

Since flexible numbers are also a kind of flexible linguistic values, the flexible
numbers can also have logical operations and algebraic operations such as general
flexible linguistic values. However, flexible numbers are also a kind of numbers at
the same time, so flexible numbers should also have numerical operations of
addition, subtraction, multiplication, and division like usual numbers.

1. Arithmetic operations on flexible numbers

Definition 10.3 Let NR be a set of flexible numbers on real number field R, (x),
(y) 2 NR. (x) + (y), (x) − (y), (x) × (y), and (x)/(y) are in order called the opera-
tions of addition, subtraction, multiplication, and division on flexible numbers, and
the operation rules are as follows:

xð Þþ yð Þ ¼ xþ yð Þ ð10:15Þ

xð Þ � yð Þ ¼ ðx� yÞ ð10:16Þ

xð Þ � yð Þ ¼ x� yð Þ ð10:17Þ

xð Þ= yð Þ ¼ x=yð Þ ð10:18Þ

This definition means that the results of arithmetic operations of two flexible
numbers are still flexible numbers and the center numbers of the flexible numbers
are the results of the corresponding real number operations with the center numbers
of the two flexible numbers that take part in the operations.

Example 10.2 Let core radius ratio cr = 0.02 and support set radius ratio sr = 0.04,
and taking flexible numbers (7), (8) 2 NR, then

7ð Þ ¼ 7� 0:96; 7� 0:98; 7; 7� 1:02; 7� 1:04ð Þ ¼ 6:72; 6:86; 7; 7:14; 7:28ð Þ
8ð Þ ¼ 8� 0:96; 8� 0:98; 8; 8� 1:02; 8� 1:04ð Þ ¼ 7:68; 7:84; 8; 8:16; 8:32ð Þ

Thus,

7ð Þþ 8ð Þ ¼ 7þ 8ð Þ ¼ 15ð Þ
¼ 15� 0:96; 15� 0:98; 15; 15� 1:02; 15� 1:04ð Þ
¼ 14:40; 14:7; 15; 15:3; 15:6ð Þ

7ð Þ � 8ð Þ ¼ ð7� 8Þ ¼ ð�1Þ
¼ ð�1� 1:04;�1� 1:02;�1;�1� 0:98;�1� 0:96Þ
¼ ð�1:04;�1:02;�1;�0:98;�0:96Þ

7ð Þ � 8ð Þ ¼ 7� 8ð Þ ¼ 56ð Þ ¼ 53:76; 54:88; 56; 57:12; 58:24ð Þ
7ð Þ= 8ð Þ ¼ 7=8ð Þ ¼ 0:875ð Þ ¼ 0:840; 0:856; 0:875; 0:893; 0:910ð Þ
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Now that the operations of two flexible numbers are reduced to the operations of
their center numbers, while the latter are completely the arithmetic operations of
real numbers, the operations of flexible numbers also satisfy all properties such as
commutative laws, associative laws, and distributive laws of real operations, which
means that we can found various kinds of algebraic systems of flexible numbers
on the set NR of flexible numbers or its subsets.

2. Scalar multiplication and exponentiation on flexible numbers

Definition 10.4 Let NR be a set of flexible numbers on real number field R,
α 2 R, (x) 2 NR. α(x) and (x)α are separately called the scalar multiplication and
exponentiation on flexible numbers, whose operation rules are as follows:

a xð Þ ¼ axð Þ ð10:19Þ

xð Þa¼ xað Þ ð10:20Þ

This definition means that the product of a number and a flexible number is a
flexible number whose center number is the product of the number and the center
number of the flexible number, and the power of a flexible number is a flexible
number whose center number is the power of the center number of the flexible
number. Thus, it follows by the definition that

2 xð Þ ¼ 2xð Þ; n xð Þ ¼ nxð Þ
xð Þ2 ¼ x2

� �
; xð Þn¼ xnð Þ

On the other hand, from the addition of flexible numbers, it follows that
(x) + (x) = (x + x) = (2x). And by the above scalar multiplication, thus,
(x) + (x) = 2(x). Generally,

xð Þþ xð Þþ � � � þ xð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n xð Þs

¼ n xð Þ

Similarly, generally,

xð Þ � xð Þ � � � � � xð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n xð Þs

¼ xð Þn

3. Operations on semiflexible numbers

Since semiflexible numbers have the separation of strong and weak, the oper-
ations of semiflexible numbers are relatively complex. Further, we find that there
still exits one problem in the operations on semiflexible numbers; that is, except the
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addition of semiflexible numbers with same sign, other operations cannot be
defined by the operations of the corresponding supremum or infinum.

For instance, let core radius ratio cr = 0.02 and support set radius ratio sr = 0.04,
and taking semiflexible numbers (100] and (200] and expanding them, we have

100ð � ¼ 96; 98; 100ð � whosemedian point is 97ð Þ
200ð � ¼ 192; 196; 200ð � whosemedian point is 194ð Þ

Suppose we can define (x] − (y] = (x − y], then (100] − (200] = (100 −
200] = (−100]. Thus, for 8 x 2 (100] and 8 y 2 (200], x − y 2 (100] −
(200] = (−100]. While (−100] = (−104, −102, −100], median point is −103. Now,
we take 99 and 194.1, and then from the core–boundary points and median points
of (100] and (200], it can be seen that it should follow that 99 2 (100] and
194.1 2 (200]; however, 910.194.1 = −95.1 > −100, so −95.1 62 (−100], that is,
910.194.1 62 (100 − 200]. This counterexample shows that, generally speaking,
(x] − (y] ≠ (x − y].

For another example, for the above radius ratio, taking semiflexible numbers
(0.1] and (0.2] and expanding them, we have

0:1ð � ¼ 0:096; 0:098; 0:1ð � whosemedian point is 0:097ð Þ
0:2ð � ¼ 0:192; 0:196; 0:2ð � whosemedian point is 0:194ð Þ

Suppose we can define (x] × (y] = (x × y], then (0.1] × (0.2] = (0.1 × 0.2] =
(0.02]. Thus, for 8 x 2 (0.1] and 8 y 2 (0.2], it should follow that x × y 2 (0.1]
× (0.2] = (0.02]. While (0.02] = (0.0192, 0.0196, 0.02], median point is 0.0194.
Now, taking 0.0971 2 (0.1] and 0.1941 2 (0.2], however, 0.0971 × 0.1941 =
0.01884711 < 0.0194. That shows that 0.01884711 62 (0.02], that is, 0.0971 ×
0.1941 62 (0.1] × (0.2]. This counterexample shows that, generally speaking,
(x] × (y] ≠ (x × y].

In view of the analysis above, we only present the addition operation on the
semiflexible numbers with the same sign.

Definition 10.5 Let MR be a set of semiflexible numbers on real number field
R, (x], (y], [x), and [y) 2 MR, and their signs are the same. The addition operation
rules are as follows:

xð � þ yð � ¼ xþ yð � ð10:21Þ

x½ Þ þ y½ Þ ¼ xþ y½ Þ ð10:22Þ

xð � þ y½ Þ ¼ xþ yð Þ ð10:23Þ

x½ Þ þ yð � ¼ xþ yð Þ ð10:24Þ
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10.3 Flexible-Numbered Vectors

Definition 10.6 A vector ((x1), (x2), …, (xn)) with flexible numbers (x1), (x2), …,
(xn) as components is called a flexible-numbered vector.

The flexible-numbered vectors are an extension of the flexible numbers (of course,
which is also an extension of the usual vectors), which is also a kind of special flexible
linguistic-valued vector. Therefore, a flexible-numbered vector ((x1), (x2), …, (xn))
represents a point in flexible-numbered vector space (two-dimensional and three-
dimensional flexible-numbered vectors are similar to the flexible linguistic-valued
vectors as shown in Fig. (7.7). However, if the relation between components (x1),
(x2), …, (xn) is regarded as conjunction relation, and, then ((x1), (x2), …, (xn)) is
tantamount to (x1) ∧ (x2) ∧ ��� ∧ (xn). Thus, ((x1), (x2),…, (xn)) represents a flexible
square in n-dimensional spaceRn of which the label is (x1) ∧ (x2) ∧ … ∧ (xn), that is,
the intersection of orthogonal “bar-shaped” flexible squares (x1) × R × ��� × R,
R × (x2) × ��� R, ���, R × R × ��� × (xn) in Rn (the flexible square represented by
two-dimensional flexible-numbered vector ((x1), (x2)) is shown in Fig. 10.3).

On the other hand, since the components inflexible-numbered vector ((x1), (x2),…,
(xn)) are ordered, so, like flexible linguistic-valued vector, flexible-numbered vector
((x1), (x2), …, (xn)) is tantamount to flexible-numbered correspondence
(x1) ∧ (x2) ∧ ��� ∧ (xn−1) 7! (xn), which is the summarization of a certain function or
correlation from corresponding flexible set (x1) \ (x2) \ ��� \ (xn−1) to flexible set
(xn), of them the biggest is (local) universal relation supp((x1)) × supp((x2)) × ��� ×
supp((xn)). Thus, in spaceR

n, flexible-numbered vector ((x1), (x2),…, (xn)) represents
a region whose super bound is supp((x1)) × supp((x2)) × ��� × supp((xn)).

Example 10.3 ((1), (2), (3)) is just a flexible-numbered vector, which is a point in
flexible-numbered space (R); but in three-dimensional space R3 represents a flex-
ible square whose label is (1) ∧ (2) ∧ (3) as well as a region whose super bound is
supp((1)) × supp((2)) × supp((3)).

x

y 

((x1), (x2))

x1

y1

Fig. 10.3 An example of the
flexible squares represented
by two-dimensional
flexible-numbered vectors

236 10 Flexible Numbers and Flexible Functions

http://dx.doi.org/10.1007/978-981-10-1549-6_7


10.4 Flexible Vectors and the Operations
on Flexible Vectors

Definition 10.7 A flexible point with vector r = (r1, r2,…, rn) 2 Rn as center point
standing for “about r” is called a flexible vector on n-dimensional space Rn,
denoted (r).

By the definition, flexible vector (r) can be represented as follows:

r; rc; rsð Þ ð10:25Þ

where rc and rs are separately the core radius and support set radius of flexible
vector (r).

The geometry of flexible vector (r) is a flexible circle, flexible sphere, or flexible
hypersphere with point r as the center point in n-dimensional space Rn, whose
membership function and consistency function can directly adopt expressions (3.25)
and (3.26) in Sect. 3.3.2. But note that the parameters rc and rs here are the same for
all flexible vectors in one and the same universe. Actually, the flexible vectors here
are also the vector linguistic values called in Sect. 7.4.

Example 10.4 ((1, 2, 3)) is a flexible vector, which represents “about (1, 2, 3)” and
whose geometry is a flexible sphere with center point (1, 2, 3) in three-dimensional
space R3.

Note that viewed from the form, the flexible vectors can be viewed as a kind of
extension of flexible numbers, but in essence, there is great difference between the
flexible vectors and the flexible numbers. In fact, the core radius and support set
radius of flexible numbers change with the center numbers, but in one and the same
space, the core radius and support set radius of all flexible vectors are fixed and
unchanged. That is to say, a flexible number is related to its center number, while a
flexible vector is related to the position of its center point. So speaking strictly, the
flexible vectors are not the real extension of the flexible numbers. Thus, for one and
the same (x), the meaning of (x) as a flexible number is actually not same to that as a
one-dimensional flexible point.

Just the same as usual vectors, we can also define the operations of addition and
scalar multiplication on flexible vectors.

Definition 10.8 Let (Rn) be a flexible-vector space formed by all flexible vectors
on space Rn, and let (x), (y) 2 (Rn). (x) + (y) is called the addition of flexible
vectors, whose operation rule is as follows:

xð Þþ yð Þ ¼ ðxþ yÞ

This definition means that the sum of two flexible vectors is also a flexible
vector, whose center vector is the sum of the original two center vectors. For
instance,
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1; 2; 3ð Þð Þþ 4; 5; 6ð Þð Þ ¼ ð 1; 2; 3ð Þþ 4; 5; 6ð ÞÞ ¼ 5; 7; 9ð Þð Þ

Definition 10.9 Let (Rn) be a flexible-vector space formed by all flexible vectors
on space Rn, let α 2 R, and (x) 2 (Rn). α(x) is called the scalar multiplication of
flexible vectors, whose operation rule is as follows:

a xð Þ ¼ ðaxÞ

This definition means that the product of a number and a flexible vector is also a
flexible vector, whose center vector is the product of this number and the center
vector of the factor flexible vector. For instance,

5 1; 2; 3ð Þð Þ ¼ 5 1; 2; 3ð Þð Þ ¼ 5; 10; 15ð Þð Þ

It can be seen that the addition and scalar multiplication of flexible vectors are
actually reduced the addition and scalar multiplication of usual (rigid) vectors. By
the operation laws that the addition and scalar multiplication of usual n-dimensional
vectors satisfy, it is not hard to verify the following:

① Addition of flexible vectors satisfies commutative laws and associative laws;
② The sum of any flexible vector (x) 2 (Rn) and flexible zero vector (0) 2 (Rn)

is still (x), that is, (x) + (0) = (0) + (x) = (x);
③ For any flexible vector (x) 2 (Rn), there exits negative vector −(x) 2 (Rn)

such that (x) + ((x)) = (0).

Therefore, the flexible-vector space (Rn) with addition and scalar multiplication
of flexible vectors can form a linear space on real number field R.

Definition 10.10 A flexible void point with center point r = (r1, r2, …, rn) 2 Rn

which stands for “near r” is called a flexible void vector on n-dimensional space Rn,
denoted (r).

It is not hard to see that the flexible void vectors have the operations and
operation rules like flexible vectors, so it is unnecessary to go into details here.

10.5 Interconversion Between Flexible Numbers (Flexible
Vectors) and Rigid Numbers (Rigid Vectors)

1. Interconversion between flexible numbers and rigid numbers

Compared with the flexible numbers, usual numbers are just “rigid numbers.” So
the flexible numbers can be viewed as the extension of rigid numbers, and the rigid
numbers can be viewed as the contraction of flexible numbers. Since flexible
numbers are also a kind of flexible linguistic values, the flexible numbers and rigid
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numbers can be converted mutually. The conversion method can employ that
between flexible linguistic values and numerical values as given in Sect. 7.3.1.

Actually, a flexible number (x) converted into a rigid number is also a kind of
rigid-ening of the flexible number, which can be denoted by [(x)]; and a rigid
number x converted into a flexible number is also a kind of flexible-ening of the
rigid number, which can be denoted by (x).

2. Interconversion between flexible vectors and rigid vectors

Compared with the flexible vectors, usual vector is just “rigid vectors.” The
flexible vectors can be viewed as the extension of rigid vectors, while rigid vectors
can be viewed as the contraction of flexible vectors. Since flexible vectors are also a
kind of flexible linguistic values, the flexible vectors and rigid vectors can be
converted mutually. The conversion method can employ that between flexible
linguistic values and vectors given in Sect. 7.3.1.

Similarly, a flexible vector ((x1, x2, …, xn)) converted into a rigid vector is also a
kind of rigid-ening (hardening) of the flexible vector, which can be denoted by
[((x1, x2, …, xn))]; and a rigid vector (x1, x2, …, xn) converted into a flexible vector
is also a kind of flexible-ening (softening) of the rigid vector, which can be denoted
by ((x1, x2, …, xn)).

10.6 Flexible Functions

10.6.1 Definitions and Types of Flexible Functions

Definition 10.11

(1) We call the variable taking on flexible numbers to be a flexible-numbered
variable or flexible variable in short.

(2) We call the function in which the independent variable(s) or dependent
variable take on flexible number(s) to be a flexible-numbered function or
flexible function in short.

From the definition, flexible functions can be classified as follows:

• Flexible-number-valued function of flexible variable(s), short for flexible
number–flexible number-type function, written as FN–FN function;

• Numerical-valued function of flexible variable(s), short for flexible number–
number-type function, written as FN–N function;

• Flexible-number-valued function of numerical variable(s), short for number–
flexible number-type function, written as N–FN function.

In the above, we introduce flexible functions on the basis of existing function
concept. In the following, we define again the flexible function from the perspective
of relation.
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Definition 10.12 Let R be real number field, NR be a set of flexible numbers on R,
and f � NR × NR be a relation on NR. If for each flexible number (x) 2 NR, there
always exists one and only one (y) 2 NR such that ((x), (y)) 2 f, then we say f is a
flexible function on NR, write (y) = f((x)).

The above Definition 10.12 is a basic definition of flexible functions. Taking into
account the dimension of domain (i.e., the number of independent variables), we
give more types of flexible functions below.

Definition 10.13 Let R be real number field, NR be a set of flexible numbers on R,
and f � (NR)

n × NR be a relation from (NR)
n to NR. If for each flexible-numbered

vector ((x1), (x2),…, (xn)) 2 (NR)
n, there always exists one and only one flexible

number (y) 2 NR such that (((x1), (x2),…, (xn)), (y)) 2 f, then we say f is a FN-FN
function from (NR)

n to NR, write (y) = f((x1), (x2),…, (xn)).

Definition 10.14 Let R be real number field, NR be a set of flexible numbers on R,
and f � (NR)

n × R be a relation from (NR)
n to R. If for each flexible-numbered

vector ((x1), (x2),…, (xn)) 2 (NR)
n, there always exists one and only one real

number y 2 R such that (((x1), (x2),…, (xn)), y) 2 f, then we say f is a FN–N
function from (NR)

n to R, write y = f((x1), (x2),…, (xn)).

Definition 10.15 Let R be real number field,NR be a set of flexible numbers on R,
and f � Rn × NR be a relation from Rn to NR. If for each vector (x1, x2,…,
xn) 2 Rn, there always exists one and only one flexible number (y) 2 NR such that
((x1, x2,…, xn), (y)) 2 f, then we say f is a N–FN function from Rn to NR, write
(y) = f(x1, x2,…, xn).

It can be seen that the flexible function is a kind of special flexible linguistic
function; on the other hand, the flexible function is also an extension of the usual
“rigid” function; conversely, the rigid function is the contraction of the flexible
function.

10.6.2 Analytic Expressions and Properties of Flexible
Functions

Since flexible functions are a kind of special flexible linguistic function, in theory, a
flexible function can be represented by a set of pairs of values of independent
variable(s) and function, that is, by using enumeration method, just as general
flexible linguistic functions. However, since the operations of flexible numbers are
really numerical operations, therefore, flexible function is more suitable for the
formula representation.

(1) Analytic expression of FN–FN function

Firstly, since the arithmetic operations, scalar multiplication, and exponentiation
operation of flexible numbers all reduce to the corresponding operations of the
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corresponding center numbers, the expression of a flexible function may be an
arbitrary expression for the arithmetic operations, scalar multiplication, and expo-
nentiation operation of flexible numbers. For example,

3 xð Þ2 þ xð Þ ¼ 3x2 þ x
� �

Secondly, we know that the transcendental function (such as exponential function,
log function, trigonometric function, and hyperbolic function) on the real numberfield
can be expanded into a power series. Thus, a transcendental function of flexible
numbers can also be represented by the form of a power series offlexible numbers. For
example, the expansion of power series of exponential function ex is as follows

ex ¼ 1þ x
1!

þ x2

2!
þ x3

3!
þ � � � þ xn

n!
þ � � �

Thus, the flexible exponential function e(x) can be represented as follows:

eðxÞ ¼ 1ð Þþ ðxÞ
1!

þ ðxÞ2
2!

þ ðxÞ3
3!

þ � � � þ ðxÞn
n!

þ � � �

The power series on the right-hand side of the equation is an expression of
arithmetic operations of flexible numbers, so

1ð Þþ xð Þ
1!

þ xð Þ2
2!

þ xð Þ3
3!

þ � � � þ xð Þn
n!

þ � � �

¼ ð1þ x
1!

þ x2

2!
þ x3

3!
þ � � � þ xn

n!
þ � � �Þ ¼ exð Þ

Therefore,

e xð Þ ¼ exð Þ

Similarly, we can also have

ln xð Þ ¼ lnxð Þ
sin xð Þþ cos yð Þ ¼ sinxð Þþ cosyð Þ ¼ sinxþ cosyð Þ

Consequently, generally,

f x1ð Þ; x2ð Þ; . . .; xnð Þð Þ ¼ f x1; x2; . . .; xnð Þð Þ ð10:26Þ

This is to say, the analytic expression of a FN–FN function can be a expression of
operations of flexible variables (x1), (x2), …, (xn), that is,

yð Þ ¼ f x1ð Þ; x2ð Þ; . . .; xnð Þð Þ ð10:27Þ
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(2) Analytic expression of N–FN function

In consideration of that, N–FN function is a function for usual numerical vari-
ables x1, x2, …, xn, while the value of the function is a flexible number, so its
expression should be

yð Þ ¼ f x1; x2; . . .; xnð Þð Þ ð10:28Þ

where f(x1, x2, …, xn) can be a certain functional expression for x1, x2, …, xn.
For instance, (y) = about f(x) is a typical and very useful N–FN function. Here,

f(x) can be any function for x, such as x2 + 1, sinx, and ex; thus, the corresponding
N–FN functions are as follows:

yð Þ ¼ about “2 þ 1”

yð Þ ¼ near “sinx”

yð Þ ¼ slightly exceeding “ex”

Note that the graphs of the N–FN functions in space of real numbers are also a
kind of flexible line or flexible plane, and their geometries are also a kind of flexible
band, flexible rope, or flexible plate, but the width, diameter, or thickness of these
flexible bands, flexible ropes, and flexible plates are not uniform. The reason is that
the core radii and support set radii of flexible numbers vary with the sizes of the
center numbers. This is to say, the graph of an N–FN function in space of real
numbers is differential with flexible band, flexible rope, and flexible plate obtained
by flexible clustering in Chap. 3 (the width, diameter, or thickness of the latter are
uniform). For instance, the following Fig. 10.4 is just an example of the graph of an
N–FN function.

(3) Analytic expression of FN–N function

From the characteristics of FN–N functions, their analytic expression can be

y ¼ f x1ð Þ; x2ð Þ; . . .; xnð Þð Þ½ � ð10:29Þ

Fig. 10.4 An example of the
graphs of N–FN functions
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That is, firstly, it represents the function as a FN–FN function and then rigid-en
(harden) as the value of corresponding flexible function f((x)).

For instance, y = [(x)3 + (y)3], y = [ln(x)].
From the analytic expressions of flexible functions, it can be seen that the

properties and evaluation of a flexible function can be reduced to the properties and
evaluation of the corresponding numerical function. Therefore, flexible functions
have almost all properties of the corresponding numerical functions, and the
evaluation process of them includes the evaluation of corresponding numerical
functions and the conversion between rigid numbers and flexible numbers. Thus,
we can examine the properties (such as monotonicity, periodicity, continuity, and
differentiability) of a flexible function by the corresponding numerical function.

10.6.3 Flexible-Vector Functions
and Flexible-Vector-Valued Functions

Extending flexible-numbered function, we obtain the flexible-vector function and
flexible-vector-valued functions.

Definition 10.16 Let R be real number field,NR be a set of flexible numbers on R,
VR

n be a set of flexible vectors on Rn, and f � VR
n × NR be a relation from VR

n to
NR. If for each flexible vector (x) 2 VR

n, there always exists one and only one
flexible number (y) 2 NR such that ((x), (y)) 2 f, then we say f is a flexible-vector
function from VR

n to NR, write (y) = f((x)).

Definition 10.17 Let R be real number field, NR be a set of flexible numbers on R,
VR

n be a set of flexible vectors on Rn, and f � NR × VR
n be a relation from NR to

VR
n. If for each flexible number (x) 2 NR, there always exists one and only one

flexible vector (y) 2 VR
n such that ((x), (y)) 2 f, then we say f is a

flexible-vector-valued function from NR to VR
n, write (y) = f((x)).

Definition 10.18 Let R be real number field, VR
n be a set of flexible vectors on Rn,

VR
m be a set of flexible vectors on Rm, and f � VR

n × VR
m be a relation from VR

n to
VR

m. If for each flexible vector (x) 2 VR
n, there always exists one and only one

flexible vector (y) 2 VR
m such that ((x), (y)) 2 f, then we say f is a

flexible-vector-flexible-vector-valued function from VR
n to VR

m, write (y) = f((x)).

It can be seen that the flexible-vector functions and flexible-vector-valued
functions are also suitable for the formula representation, which also have some
properties of usual vector functions and vector-valued functions.
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10.7 Summary

In this chapter, we proposed the concepts of flexible numbers, flexible-numbered
vectors, and flexible vectors based on flexible linguistic values and flexible sets,
gave their definitions and representations, and analyzed their geometric character-
istics. Further, we defined the arithmetic operations, scalar multiplication, and
exponentiation of flexible numbers, defined the addition and scalar multiplication of
flexible vectors, and pointed out the properties of these operations. Then, on the
bases of flexible numbers and flexible linguistic functions, we proposed the concept
of flexible functions, gave their definitions and types, analyzed their analytic
expressions, and further discussed flexible-vector functions.

The main points and the results of this chapter are as follows:

• The flexible number (r) is a flexible interval standing for “about r” in real
number field R, and the weak semiflexible number (r] and strong semiflexible
number [r) are separately a semiflexible interval standing for “near r” and
“slightly exceeding r.” The center number, core radius ratio, and support set
radius ratio are three key parameters of a flexible number and a semiflexible
number, which completely determine a flexible number or semiflexible number.

• Since flexible numbers are both a kind of flexible linguistic value and a kind of
number, flexible numbers can have logical operations and algebraic operations
as common flexible linguistic values, and they can also have numerical opera-
tions such as addition, subtraction, multiplication, division, and scalar multi-
plication just as the usual numbers. But the operations of flexible numbers are
reduced to the operations of their center numbers. Therefore, the operations of
flexible numbers also satisfy all properties of real number operations; thus, we
can found various algebraic systems on sets of flexible numbers.

• Flexible-numbered vector is an extension of flexible numbers and also a special
case of usual linguistic-valued vectors. A flexible-numbered vector represents a
point in flexible-numbered vector space but in real number space, which rep-
resents a flexible square to which a corresponding conjunctive flexible-number
corresponds as well as a region whose upper bound is the product of the support
sets of all component flexible numbers.

• Flexible vector (r) is a flexible point representing “about r” in n-dimensional
space Rn, which is another kind of extension of flexible numbers, and also a
special case of common vector linguistic values. We can also define addition
and scalar multiplication operations of flexible vectors. The flexible-vector space
(Rn) with addition and scalar multiplication of flexible vectors can form a linear
space on real number field R. Besides, flexible void vector (r) is the flexible
vector that does not contain center point r, which represents “near r.”

• Flexible functions are a kind of flexible linguistic functions whose independent
variable(s) or function value take on flexible numbers, which can be classified as
FN–FN function, N–FN function, and FN–N function, whose analytical
expressions are written as (y) = f((x1), (x2),…, (xn)), (y) = (f(x1, x2,…, xn)), and
y = [f((x1), (x2),…, (xn))], respectively.
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• Flexible functions can almost satisfy all properties of corresponding numerical
functions, and we can examine the properties of a flexible function by the
corresponding numerical function.

• Flexible-vector functions and flexible-vector-valued functions are the extension
of flexible-numbered functions.
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Chapter 11
Truth-Degreed Logic and Corresponding
Inference

Abstract This chapter proposes the concept of flexible propositions and founds the
corresponding truth-degreed logic and inference theories. First, it considers the
representations and truth values offlexible propositions; next, it defines the numerical
truth value; that is, the truth-degree, of a flexible proposition, introduces the formal
representations of flexible propositions and the flexible propositions with composite
linguistic values, particularly, introduces the algebraic compound flexible proposi-
tion and the flexible proposition with a synthetic linguistic value, and then analyzes
and expounds the computation principles and methods of truth-degrees of the various
flexible propositions; then, it founds the corresponding truth-degreed logic algebras,
and then, it introduces flexible-propositional formulas and flexible-predicate for-
mulas, extends true and false and proposes the concepts of degree-true, degree-false,
near-true, and near-false, extends the validity of argument forms and proposes the
concepts of degree-valid argument form and near-valid argument form, and extends
the concepts of tautology and logical implication and proposes the concepts of
degree-true tautology, degree-true logical implication, near-true tautology, and
near-true logical implication, thus obtaining rules of degree-true inference and rules
of near-true inference and establishing the principles and methods called degree-true
inference and near-true inference in truth-degreed logic.

Keywords Flexible propositions � Truth-degreed logic � Degree-true inference �
Near-true inference

A proposition is a statement that describes object(s) having a certain property or
relationship. Then, when the property or relation described by a proposition is
flexible property or flexible relation, this proposition would be a “flexible propo-
sition”. In our information world, flexible propositions can be found everywhere. In
this chapter, we will examine flexible propositions and their numerical truth values
as well as the logic and inference at the level of numerical truth value.
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11.1 Representations and Truth Values of Flexible
Propositions

11.1.1 Flexible Propositions and Their Formal
Representations

We call a proposition that contain flexible concepts (that is, flexible linguistic
values) to be a flexible proposition. For example:

① Zhang is an excellent student.
② Li is tall.
③ 20000 is far greater than 2.

are all flexible propositions. Of them, ① and ② can also be said the property-type
flexible propositions by the linguistic values contained being property-type flexible
linguistic values, and ③ can be said a relation-type flexible proposition. The rep-
resentation of these three flexible propositions in first-order predicates are usually

① excellent student (Zhang)
② tall (Li)
③ far greater than (20000, 2)

The predicate names of these three predicates are all flexible linguistic values,
but of them, the “tall” and “far greater than” are flexible attribute concepts, while
“excellent student” is an flexible entity concept made of flexible attribute concept
“excellent” and entity concept “student”. Besides, the “Zhang” and “Li” are entity
objects.

We know that flexible linguistic values (flexible concepts) are formed on the
numerical feature values (measurements) of entity objects, whose mathematical
models are just established on the corresponding measurement spaces. On the other
hand, imprecise-information processing based on flexible propositions only
involves flexible linguistic values and corresponding numerical values in general.
Therefore, we use the corresponding measurements in place of those entity objects
and use the corresponding flexible attribute linguistic values in place of those
flexible linguistic values, which represent flexible entity concepts. Thus, flexible
propositions are uniformly represented as a kind of mathematical propositions.
Thus, the flexible propositions writing in predicates are uniformly expressed as
mathematical predicates; for example, those three flexible propositions above can
be mathematically written as follows:

① excellent (x0)
② tall (y0)
③ far greater than (20000, 2)

where x0 is the grade of Zhang, y0 is the height of Li, while the flexible entity
linguistic value “excellent student” is simplified as flexible attribute linguistic value
“excellent”.
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It can be seen that the semantics of this kind of propositions represented by
predicates is that the related object has a certain property or there is a certain
relationship between the related objects, while the latter is also that the set of the
objects has a certain property, so this representation is actually a form of
possession.

Definition 11.1 Let U be an n-dimensional measurement space,
x0 ¼ ðx10 ; x20 ; . . .; xn0Þ 2 U, and A be a flexible linguistic value on U. Expression

Aðx0Þ ð11:1Þ

is called the representation of a flexible proposition in the form of possession,
which means that x0 has flexible linguistic value A [1].

It can be seen that using the form of possession to represent a proposition, a
flexible linguistic value A just determines a cluster of flexible propositions, {A(x0) |
x0 2 U}, while A(x) (x 2 U) is also a propositional form. In order to distinguish it
from a proposition, we denote simply the propositional form A(x) (x 2 U) as px.

The form of possession is actually a representation of a proposition based on the
connotation of a concept. In the following, we give again a kind of representation of
a flexible proposition based on the denotation of a flexible concept.

Definition 11.2 Let U be an n-dimensional measurement space,
x0 ¼ ðx10 ; x20 ; . . .; xn0Þ 2 U, and A be a flexible linguistic value on U. Expression

x0 2 A ð11:2Þ

is called the representation of a flexible proposition in the form of membership,
which means that x0 belongs to flexible set A.

Thus, the above three propositions can also be represented in the form of
membership as follows:

① x0 2 A
② y0 2 B
③ (20000, 2) 2 R

here, x0 and y0 are separately the measured values representing the original entity
objects, A, B, and R are flexible sets that the flexible linguistic values “excellent,”
“tall,” and “far greater than” correspond separately to.

Similarly, using the form of membership to write a proposition, a flexible lin-
guistic value A also determines a flexible cluster of propositions, {x0 2 A |
x0 2 U}, while x 2 A (x 2 U) is also a kind of propositional form. In order to
distinguish it from a proposition, we also denote simply propositional form
x 2 A (x 2 U) as px.

In the above, we discuss flexible propositions and their formal representations. It
is not hard to see that any flexible proposition can be represented as or be translated
into the two mathematical forms of flexible propositions stated above. Therefore,
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we will consider mainly the two forms of flexible propositions and, in general
situation, also only use the two forms of flexible propositions.

11.1.2 Numerical Truth Value of a Flexible Proposition—
Truth-Degree

We see that the characteristic of the flexible propositions is that the linguistic values
therein are flexible linguistic values. Therefore, the authenticity of a flexible
proposition should not use the usual rigid linguistic truth values “true” and “false”
to describe. Then, how to describe the truth of a flexible proposition? In the fol-
lowing, we consider and solve this problem.

1. Denotation-truth-degree

Let p: x0 2 A be a flexible proposition.
Although viewed from the representation, x0 in the proposition belongs to flexible
set A, actually x0 belongs to flexible set A only with degree mA(x0). Membership
degree mA(x0) reflects the degree of x0 being a member of flexible set A, so number
mA(x0) also represents the degree of truth of flexible proposition p. Therefore, we
take number mA(x0) as a kind of numerical truth value of proposition p and call it
the degree of truth of proposition p, and simply write truth-degree.

Definition 11.3 Let U be an n-dimensional measurement space, A be a flexible
subset of U, x0 ¼ ðx10 ; x20 ; . . .; xn0Þ 2 U; and let p: x0 2 A, be a flexible propo-
sition. Set

tðpÞ ¼ mAðx0Þ ð11:3Þ

to be called the denotation-truth-degree of flexible proposition p.

Since denotation-truth-degree t(p) of flexible proposition p is defined by mem-
bership function mA(x) of flexible linguistic value A in the proposition, range [0, 1]
of membership function mA(x) is also the range of denotation-truth-degrees of all
flexible propositions in flexible proposition cluster {x0 2 A | x0 2 U}. And since
the range of membership function of any flexible linguistic value is all interval
[0, 1], the ranges of the denotation-truth-degrees of all flexible propositions are also
real interval [0, 1].

2. Connotation-truth-degree

Let p: A(x0), be a flexible proposition.
Just the same, viewed from the representation, x0 in the proposition has flexible
linguistic value A, but actually x0 has A only with degree cA(x0). Consistency-degree
cA(x0) reflects the degree of x0 having flexible linguistic value A, so number cA(x0)
also represents the truth-degree of the flexible proposition p. Thus, we take number
cA(x0) as another kind of truth-degree of flexible proposition p.
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Definition 11.4 Let U be an n-dimensional measurement space, A be a flexible
linguistic value on U, x0 ¼ ðx10 ; x20 ; . . .; xn0Þ 2 U; and let p: A(x0) be a flexible
proposition. Set

tðpÞ ¼ cAðx0Þ ð11:4Þ

to be called the connotation-truth-degree of flexible proposition p.

Example 11.1 Let U = [1, 2.5] be the height range of adults, and we define flexible
linguistic value “tall” on U as

ctallðxÞ ¼ x� 1:5
0:3

and let

p1: 1:70m be tall; p2: 1:80m be tall; p3: 1:90m be tall;

p4: 1:50m be tall; p5: 1:40m be tall; p6: 1:30m be tall:

Then

tðp1Þ ¼ ctallð1:70Þ ¼ 0:67;

tðp2Þ ¼ ctallð1:80Þ ¼ 1;

tðp3Þ ¼ ctallð1:90Þ ¼ 1:3;

tðp4Þ ¼ ctallð1:50Þ ¼ 0;

tðp5Þ ¼ ctallð1:40Þ ¼ �0:33;
tðp6Þ ¼ ctallð1:30Þ ¼ �1:

Since connotation-truth-degree t(p) of flexible proposition p is defined by con-
sistency function cA(x) of flexible linguistic value A in the proposition, range [αA,
βA] (αA ≤ 0, 1 ≤ βA) of consistency function cA(x) is also the range of
connotation-truth-degrees of propositions in proposition cluster {A(x0) | x0 2 U}.
Since the ranges of the consistency function of different flexible linguistic values
are not all the same, generally speaking, flexible propositions in different flexible
proposition clusters have different range of connotation-truth-degrees. But all ran-
ges [αX, βX] (X � U) of connotation-truth-degrees satisfy αX ≤ 0 and 1 ≤ βX.

In this section, we define the denotation-truth-degree and connotation-
truth-degree of a flexible proposition, and the two sometimes are generally called
the truth-degree of a proposition. Truth-degree is the numerical truth value of a
flexible proposition.
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11.2 Formal Representations and Computation Models
of Truth-Degrees of Compound Flexible Propositions

Let p: A(x) and q: B(y) be atom flexible propositions (we temporarily view x and
y as constants), and let p ∧ q, p ∨ q, ¬p, p → q, and p ←→ q be compound
flexible propositions made of p and q, which are referred to as the conjunctive
proposition, disjunctive proposition, negative proposition, implicational proposition
and equivalent proposition one by one. In this section, we examine the formal
representations and computations of truth-degrees of these basic compound flexible
propositions.

11.2.1 Representation in the Form of Possession,
and Computation Models
of Connotation-Truth-Degrees

Let proposition p: A(x), whose literal meaning is that x has flexible linguistic value
A, and let proposition q: B(y), whose literal meaning is that y has flexible linguistic
value B. Then,

(1) p ∧ q literally means that x has A and y has B. From this literal meaning, (x,
y) should have compound or combined flexible linguistic value A ∧ B. Thus,
the representation of p ∧ q in the form of possession should be

A ^ Bðx; yÞ ð11:5Þ

By this expression and the definition of the connotation-truth-degree of a
flexible proposition, it follows that t(p ∧ q) = cA∧B(x, y). And by Eq. (5.10),
we have

cA^Bðx; yÞ ¼ minfcAðxÞ; cBðyÞg

(Actually, since the degree of x having A is cA(x), and the degree of y having
B is cB(y), the degree of (x, y) having A ∧ B should be min{cA(x), cB(y)}).
Thus, the connotation-truth-degree of compound proposition p ∧ q is

tðp ^ qÞ ¼ minfcAðxÞ; cBðyÞg ð11:6Þ

(2) p ∨ q literally means that x has A or y has B. From this literal meaning,
(x, y) should has compound or combined flexible linguistic value A ∨ B. Thus,
the representation of p ∨ q in the form of possession should be
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A _ Bðx; yÞ ð11:7Þ

By this expression and the definition of the connotation-truth-degree of a
flexible proposition, it follows that t(p ∨ q) = cA∨B(x, y). And by Eq. (5.11),
we have

cA_Bðx; yÞ ¼ maxfcAðxÞ; cBðyÞg

(Actually, since the degree of x has A is cA(x), and the degree of y has B is
cB(y), the degree of (x, y) having A ∨ B should be max{cA(x), cB(y)}) Thus, the
connotation-truth-degree of compound proposition p ∨ q is

tðp _ qÞ ¼ maxfcAðxÞ; cBðyÞg ð11:8Þ

(3) ¬p literally means that x does not have A, which is tantamount to x having
¬A. From that, the representation of ¬p in the form of possession is

:AðxÞ ð11:9Þ

By this expression and the definition of the connotation-truth-degree of a
flexible proposition, it follows that t(¬p) = c¬A(x). And by Eq. (5.5), we have

c:AðxÞ ¼ 1� cAðxÞ

(Actually, this equation can also be obtained by the degree of x having A being
cA(x) and the complement law of degrees.) Thus, the connotation-truth-degree
of compound proposition ¬p is

tð:pÞ ¼ 1� cAðxÞ ð11:10Þ

(4) p → q is that p implies q (namely, p) q), or in other words, p is the suffi-
cient condition for q. That means that if there is p, then there is q; but if there is
no p, there might be q or might not be q.
Obviously, p and ¬p cannot occur at the same time. Thus, p → q is just
equivalent to (p ∧ q) ∨ (¬p ∧ (q ∨ ¬q)); that is,

p! q, ðp ^ qÞ _ ð:p ^ ðq _ :qÞÞ ð11:11Þ

We use T to denote the true proposition of truth-degree >0, that is, the
proposition being true with a certain degree. Thus,

q _ :q ¼ T ð11:12Þ
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and for any proposition r,

r ^ T ¼ T ^ r ¼ r ð11:13Þ

In fact, if t(r) > 0, then r = T; thus,

r ^ T ¼ T ^ T

¼ T ðby the above Eq: ð11:6Þ;
tðT ^ TÞ ¼ minftðTÞ; tðTÞg ¼ tðTÞ[ 0Þ
¼ r ðby r ¼ TÞ

and if t(r) ≤ 0, then r ∧ T = r (because t(r ∧ T) = min{t(r), t(T)} = t(r)).
Consequently,

ðp ^ qÞ _ ð:p ^ ðq _ :qÞÞ ¼ ðp ^ qÞ _ ð:p ^ TÞ
¼ ðp ^ qÞ _ :p
¼ ðp _ :qÞ ^ ðq _ :pÞ
¼ T ^ ðq _ :pÞ
¼ :p _ q

Thus, we have

p! q, :p _ q ð11:14Þ

This equivalence relation translates the representation and truth-degree com-
putation of relational compound proposition p → q to that of operational
compound proposition ¬p ∨ q, while the representation and the truth values of
the latter can be indirectly obtained from the representations and truth values
of basic compound propositions p ∨ q and ¬p. In fact, by expressions (11.7)
and (11.9), we can obtain that the representation of ¬p ∨ q in the form of
possession is ¬A ∨ B (x, y), while

c:A_Bðx; yÞ ¼ maxfc:AðxÞ; cBðyÞg ¼ maxf1� cAðxÞ; cBðyÞg

Consequently, the representation of p → q in the form of possession is

:A _ Bðx; yÞ ð11:15Þ

whose connotation-truth-degree is

tðp! qÞ ¼ maxf1� cAðxÞ; cBðyÞg ð11:16Þ
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(5) p ←→ q means that p and q are equivalent; that is, p and q imply each other,
or in other words, they are mutually sufficient conditions. Thus, we have

p ! q, p! qð Þ ^ q! pð Þ

And then from expression (11.14), we have

p ! q, ð:p _ qÞ ^ ð:q _ pÞ ð11:17Þ

Thus, from this equivalence relation and the above expressions (11.5) and
(11.15), the representation of p ←→ q in the form of possession is

ð:A _ BÞ ^ ðA _ :BÞðx; yÞ ð11:18Þ

while

cð:A_BÞ^ðA_:BÞðx; yÞ ¼ minfmaxf1� cAðxÞ; cBðyÞg;
maxfcAðxÞ; 1� cBðyÞgg

so the connotation-truth-degree of p ←→ q is

tðp ! qÞ ¼ minfmaxf1� cAðxÞ; cBðyÞg;
maxfcAðxÞ; 1� cBðyÞgg

ð11:19Þ

Of course, p ←→ q can also be explained as: p is the sufficient and necessary
condition for q (or q is the sufficient and necessary condition for p). That
means: If there is p, then there is q, while if there is no p, then there is no q,
that is, q if and only if p. Thus, p ←→ q is also equivalent to

ðp ^ qÞ _ ð:p ^ :qÞ

that is,

p ! q, ðp ^ qÞ _ ð:p ^ :qÞ ð11:20Þ

From this equivalence relation and the above expressions (11.5) and (11.7),
the representation of p ←→ q in the form of possession is

ðA ^ BÞ _ ð:A ^ :BÞðx; yÞ ð11:21Þ

Consequently,

cðA^BÞ_ð:A^:BÞðx; yÞ ¼ maxfminfcAðxÞ; cBðyÞg;
minf1� cAðxÞ; 1� cBðyÞgg
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and then, the connotation-truth-degree of p ←→ q is

tðp ! qÞ ¼ maxfminfcAðxÞ; cBðyÞg;
minf1� cAðxÞ; 1� cBðyÞgg

ð11:22Þ

Thus, p ←→ q has two expressions and two computation formulas of
connotation-truth-degree. But it can be proved that

ðp ^ qÞ _ ð:p ^ :qÞ , ð:p _ qÞ ^ ð:q _ pÞ

Thus,

maxfminfcAðxÞ; cBðyÞg;minf1� cAðxÞ; 1� cBðyÞgg
¼ minfmaxf1� cAðxÞ; cBðyÞg;maxfcAðxÞ; 1� cBðyÞgg

Now, we view the x and y in the above propositions as variables. Thus, we
then obtain a group of connotation-truth-degree computation formulas for
basic compound flexible propositions:

tðp ^ qÞ ¼ minfcA xð Þ; cB yð Þg ð11:23Þ

tðp _ qÞ ¼ maxfcA xð Þ; cB yð Þg ð11:24Þ

tð:pÞ ¼ 1� cA xð Þ ð11:25Þ

t p! qð Þ ¼ maxf1� cA xð Þ; cB yð Þg ð11:26Þ

t p ! qð Þ ¼ minfmaxf1� cA xð Þ; cB yð Þg;
maxfcA xð Þ; 1� cB yð Þgg ð11:27Þ

where x 2 U and y 2 V (U and V can be the same).

It can be seen that this group of formulae are a group of functions defined on the
corresponding measurement ranges. We may as well call them the functions of
connotation-truth-degrees of basic compound flexible propositions, and the exam-
ples of graphs of first three functions are shown in Fig. 11.1.

11.2.2 Representation in the Form of Membership,
and Computation Models
of Denotation-Truth-Degrees

From the representation in the forms of possession and the connotation-truth-degree
computation functions of the basic compound flexible propositions above, we can
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obtain their representations in the form of membership and denotation-truth-degree
computation functions. But in the following we still start directly from the mem-
bership relation to consider the representations in the form of membership and the
computations of denotation-truth-degree of the compound propositions. Similarly,
temporarily we view x and y in the following expressions as constants. In the
following, we do discussion in three situations.

Situation 1: Let proposition p: x 2 A, whose literal meaning is that x belongs to
flexible class A; and let proposition q: y 2 B, whose literal meaning is that y be-
longs to flexible class B. Then, there are two cases:

1. A � U and B � V

(1) p ∧ q literally means that x belongs to A and y belongs to B. Since A and B are
orthogonal, (x, y) 2 A × B or (x, y) 2 A × V \ U × B, but since p is related
to q by conjunction, A × V \ U × B corresponds to the logical conjunction
of linguistic values A and B, while A × B corresponds to the algebraic syn-
thesis of linguistic values A and B; on the other hand, for the flexible sets,
A × V \ U × B ≠ A × B, and A × B does not have such extended core and
support set like usual flexible sets. Therefore, (x, y) should belong to

Fig. 11.1 Examples of graphs of the functions of connotation-truth-degrees of compound flexible
propositions. a tðp ^ qÞ ¼ minfcA xð Þ; cB yð Þg, b tðp _ qÞ ¼ maxfcA xð Þ; cB yð Þg, c t p! qð Þ ¼ max
f1� cA xð Þ; cB yð Þg
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compound flexible set A × V \ U × B. From this, we have that the repre-
sentation of p ∧ q in the form of membership is

x; yð Þ 2 A� V \U � B ð11:28Þ

here, x and y can represent the attribute values of two different objects, and
they can also represent two different attribute values of one and the same
object.
By this expression and the definition of denotation-truth-degree of a flexible
proposition, it follows that t(p ∧ q) = mA×V\U×B(x, y). While by Eq. (5.29),

mA�V \U�B x;yð Þ ¼ min mAðxÞ;mBðyÞf g ðx 2 U; y 2 VÞ

Thus, the denotation-truth-degree of compound proposition p ∧ q is

tðp ^ qÞ ¼ minfmA xð Þ;mB yð Þg ðx 2 U; y 2 VÞ ð11:29Þ

(2) p ∨ q literally means that x belongs to A or y belongs to B. Thus, (x, y) should
belong to compound flexible set A × V [ U × B. From this, we have that the
representation of p ∨ q in the form of membership is

x; yð Þ 2 A� V [U � B ð11:30Þ

By this expression and the definition of denotation-truth-degree of a flexible
proposition, it follows that t(p ∨ q) = mA×V[U×B(x, y), while by Eq. (5.30),

mA�V [U�B x; yð Þ ¼ max mA xð Þ;mB yð Þf g

Thus, the denotation-truth-degree of compound proposition p ∨ q is

tðp _ qÞ ¼ maxfmA xð Þ;mB yð Þg ð11:31Þ

(3) ¬p literally means that x does not belong to A, which is equivalent to x be-
longing to Ac. From this, we have that the representation of ¬p in the form of
membership is

x 2 Ac ð11:32Þ

By this expression and the denotation-truth-degree definition of a flexible
proposition, it follows that t(¬p) = mAcðxÞ, while by Eq. (5.31),

mAcðxÞ ¼ 1� mA xð Þ

(Actually, from the degree of x belonging to A, mA(x), and the complement law
of degrees, this equation can also be obtained.) Thus, the denotation-truth-
degree of compound proposition ¬p is
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tð:pÞ ¼ 1� mA xð Þ ð11:33Þ

(4) For p → q, from

p! q, :p _ q

and expressions (11.30) and (11.32), we have the representation of p → q in
the form of membership is

x; yð Þ 2 Ac � V [U � B ð11:34Þ

while the membership function is

mAc�V [U�B x; yð Þ ¼ maxf1� mA xð Þ;mB yð Þg

thus, the denotation-truth-degree of compound proposition p → q is

t p! qð Þ ¼ maxf1� mA xð Þ;mB yð Þg ð11:35Þ

(5) For p ←→ q, from

p ! q, ð:p _ qÞ ^ ð:q _ pÞ

we have immediately that the representation of p ←→ q in the form of
membership is

x; yð Þ 2 ðAc � V [U � BÞ \ ðA� V [U � BcÞ ð11:36Þ

while the membership function is

mðAc�V [U�BÞ \ ðA�V [U�BcÞ x; yð Þ ¼ minfmaxf1� mA xð Þ;mB yð Þg;
maxfmA xð Þ; 1� mB yð Þgg

Thus, the denotation-truth-degree of compound proposition p ←→ q is

t p ! qð Þ ¼ minfmaxf1� mA xð Þ;mB yð Þg;
maxfmA xð Þ; 1� mB yð Þgg ð11:37Þ

2. A � U and B � U

In this case, A and B stand for different flexible linguistic values of one and the
same feature, and x, y 2 U are then different numerical values of one and the same
feature. Obviously, here x and y cannot be different numerical values of one and the
same object (for instance, x and y cannot be separately one and the same person’s
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height and weight), but they can only be numerical values of one and the same
feature of different objects (for instance, x is the height of P1, and y is the height of
P2). Therefore, a compound proposition in such a case can be viewed as a special
case of A � U and B � V in the above, that is, the compound proposition when
V = U. So viewed from the form, the representations in the forms of membership
and the computation formulas of denotation-truth-degrees of p ∧ q, p ∨ q, ¬p,
p → q, and p ←→ q are completely the same as those the above.

But in this case, there exists question in the meanings of the representations in
the forms of membership of compound propositions; for example, let p: 1.50 m is
short, and q: 1.80 m is tall, then how is p ∧ q: (x, y) 2 A \ B to be explained?

Situation 2: Let proposition p: x 2 A, and proposition q: y 2 A. Then, there is
only one case of A�U: Hence, here x and y also can only are numerical values of
one and the same feature of different objects (for instance, p: 1.75 m is tall, and q:
1.76 m is tall).

Making an analysis similar to (1.1), we can have:

p ^ q: ðx; yÞ 2 A\A ð11:38Þ

p _ q: ðx; yÞ 2 A[A ð11:39Þ

:p: x 2 Ac ð11:40Þ

p! q:ðx; yÞ 2 Ac [A ð11:41Þ

p ! q: ðx; yÞ 2 ðAc [AÞ \ ðA[AcÞ ð11:42Þ

But in consideration that between x and y in propositions p and q, there is
originally the relation of “greater than” or “less than”, that is, x < y or x > y, so
propositions p and q have implication relation. For instance, suppose x < y, then
p → q. Therefore, it is not fit for this type of propositions to be represented in the
form of membership.

Situation 3: Let proposition p: x 2 A, and proposition q: x 2 B. Then,

(1) When A;B � U; making an analysis similar to (1.1), we can have:

p ^ q: x 2 A\B ð11:43Þ

p _ q: x 2 A[B ð11:44Þ

:p: x 2 Ac ð11:45Þ

p! q: x 2 Ac [B ð11:46Þ

p ! q: x 2 ðAc [BÞ \ ðA[BcÞ ð11:47Þ
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(2) When A � U and B � V ; we can rewrite the original proposition q as: y is B,
and thus, the problem is reduced to be the previous (1.1).
Now we view the x and y in all the propositions above as variables. Thus, we
have a group of computation formulas of denotation-truth-degrees of basic
compound propositions:

tðp ^ qÞ ¼ minfmA xð Þ;mB yð Þg ð11:48Þ

tðp _ qÞ ¼ maxfmA xð Þ;mB yð Þg ð11:49Þ

tð:pÞ ¼ 1� mA xð Þ ð11:50Þ

t p! qð Þ ¼ maxf1� mA xð Þ;mB yð Þg ð11:51Þ

t p ! qð Þ ¼ minfmaxf1� mA xð Þ;mB yð Þg;
maxfmA xð Þ; 1� mB yð Þgg ð11:52Þ

where x 2 U and y 2 V (U and V can be the same).
It can be seen that this group of formulae are a group of functions defined on
the corresponding measurement ranges, which are the functions of
denotation-truth-degrees of 5 basic compound propositions. In the following,
we give the examples of graphs of first three functions (see Fig. 11.2).

11.2.3 Indirect Computation Models Based
on the Truth-Degrees of Component Propositions

1. Indirect computation models of denotation-truth-degrees

In the above, we use membership degrees to define directly the
denotation-truth-degree of compound propositions. But it can be seen that the
membership function of a compound proposition is also the function of the
membership functions mA(x) and mB(y) of its component propositions, while
mA(x) = t(p) and mB(y) = t(q). Therefore, we have

tðp ^ qÞ ¼ min mA xð Þ;mB yð Þf g
¼ min t pð Þ; t qð Þf g

namely

tðp ^ qÞ ¼ min t pð Þ; t qð Þf g ð11:53Þ
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Similarly, we have

tðp _ qÞ ¼ max t pð Þ; t qð Þf g ð11:54Þ

tð:pÞ ¼ 1� t pð Þ ð11:55Þ

tðp! qÞ ¼ maxf1� t pð Þ; t qð Þg ð11:56Þ

tðp ! qÞ ¼ minfmaxf1� t pð Þ; t qð Þg;
maxft pð Þ; 1� t qð Þgg ð11:57Þ

This group of equations also separately describe the relationship between the
denotation-truth-degrees of compound propositions p ∧ q, p ∨ q, ¬p, p → q,
p ←→ q, and the denotation-truth-degrees of their component propositions p and q.
Thus, when the denotation-truth-degrees of component propositions p and q are
known, we can use these equations to indirectly obtain the denotation-truth-degrees
of the corresponding compound propositions. Thus, this group of formulas is also
another group of functions of the denotation-truth-degrees of basic compound
propositions. They are a group of functions defined on the corresponding ranges of
denotation-truth-degrees, whose graphs are shown in Fig. 11.3.

Fig. 11.2 Examples of graphs of the functions of denotation-truth-degrees of compound flexible
propositions. a tðp ^ qÞ ¼ minfmA xð Þ;mB yð Þg, b tðp _ qÞ ¼ maxfmA xð Þ;mB yð Þg,
c t p! qð Þ ¼ maxf1� mA xð Þ;mB yð Þg
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2. Indirect computation models of connotation-truth-degrees

Similarly, from cA(x) = t(p) and cB(y) = t(q), the following equations can be
deduced from the definition expressions of the connotation-truth-degrees of com-
pound propositions:

tðp ^ qÞ ¼ min t pð Þ; t qð Þf g ð11:58Þ

tðp _ qÞ ¼ max t pð Þ; t qð Þf g ð11:59Þ

tð:pÞ ¼ 1� t pð Þ ð11:60Þ

t p! qð Þ ¼ maxf1� tðpÞ; tðqÞg ð11:61Þ

t p ! qð Þ ¼ minfmaxf1� tðpÞ; tðqÞg;
maxftðpÞ; 1� tðqÞg ð11:62Þ

These 5 equations are the relational expressions between the connotation-truth-
degrees of compound propositions p ∧ q, p ∨ q, ¬p, p → q, and p ←→ q and

Fig. 11.3 Examples of graphs of the indirect functions of denotation-truth-degrees of compound
propositions. a tðp ^ qÞ ¼ minft pð Þ; t qð Þg, b tðp _ qÞ ¼ minft pð Þ; t qð Þg,
c t p! qð Þ ¼ minft pð Þ; t qð Þg, d t p ! qð Þ ¼ minfmaxf1� tðpÞ; tðqÞg; maxftðpÞ; 1� tðqÞg
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those of their component propositions p and q. Thus, when the connotation-truth-
degrees of p and q are known, these formulas can be used to indirectly obtain the
connotation-truth-degrees of corresponding compound propositions p ∧ q, p ∨ q,
¬p, p → q, and p ←→ q. Therefore, this group of formulas is another group of
functions of the connotation-truth-degrees of basic compound propositions. They
are a group of functions defined on the corresponding ranges of connotation-truth-
degrees, whose graphs are shown in Fig. 11.4.

In the above, we derived the indirect computation formulas or functions of the
denotation-truth-degrees and the connotation-truth-degrees of basic compound
propositions. Although viewed from the expressions, the two groups of formulas are
completely the same, and the domain and range of the two are different. In fact, the
domain and range of the denotation-truth-degree functions are separately [0, 1] × [0,
1] and [0, 1], while those of the connotation-truth-degree functions are separately
[αA, βA] × [αB, βB] (αA ≤ 0, 1 ≤ βA; αB ≤ 0, 1 ≤ βB) and [α, β] (α ≤ 0, 1 ≤ β).

Note that originally, the definition domain of the operation min of
denotation-truth-degrees is [0, 1] \ [0, 1], and that of max is [0, 1] [ [0, 1], but
because [0, 1] is a universe for the denotation-truth-degrees and the two [0, 1] are of
orthogonal relation, [0, 1] \ [0, 1] = [0, 1] [ [0, 1] = [0, 1] × [0, 1]. Similarly,
the definition domain of the operation min of connotation-truth-degrees is

Fig. 11.4 Examples of graphs of the indirect functions of connotation-truth-degrees of compound
propositions. a tðp ^ qÞ ¼ minft pð Þ; t qð Þg, b tðp _ qÞ ¼ minft pð Þ; t qð Þg,
c t p! qð Þ ¼ minft pð Þ; t qð Þg, d t p ! qð Þ ¼ minfmaxf1� tðpÞ; tðqÞg; maxftðpÞ; 1� tðqÞg

266 11 Truth-Degreed Logic and Corresponding Inference



[αA, βA] \ [αB, βB], and that of max is [αA, βA] [ [αB, βB], but because [αA, βA]
and [αB, βB] are both universe for the connotation-truth-degrees and the two are of
orthogonal relation, [αA, βA] \ [αB, βB] = [αA, βA] [ [αB, βB] = [αA, βA] × [αB,
βB].

Besides, it is not hard to verify that those truth-degree computation formulas of
conjunctive and disjunctive compound propositions above can also be generalized
to more than 2 propositions.

From the above truth-degree computation formula t(¬p) = 1 − t(p) of the neg-
ative proposition, we have

t pð Þþ tð:pÞ ¼ 1 ð11:63Þ

This is the relation between the degrees of a pair of relatively negative propo-
sitions. We call this equality the complement law of truth-degrees.

11.2.4 Range of Truth-Degrees of Flexible Propositions
and Its Symmetry

Since the range of denotation-truth-degrees of all flexible propositions is real
interval [0, 1], generally, we call interval [0, 1] the denotation-truth-degree range of
flexible propositions. The complement relation of truth-degrees of relatively neg-
ative propositions shows that the truth-degrees of a pair of relatively negative
propositions are just symmetrical about 0.5, while interval [0, 1] contains the
denotation-truth-degrees of all relatively negative propositions, which are just
symmetrical with center 0.5.

Next, we examine what a kind of real interval is the connotation-truth-degree
range of flexible propositions and whether it also has symmetry.

We know that one flexible linguistic value A determines a flexible proposition
cluster {A(x0) | x0 2 U} and a connotation-truth-degree range [αA, βA] (αA ≤ 0,
1 ≤ βA). Then, the negative value ¬A of A also determines a flexible proposition
cluster {¬A(x0)| x0 2 U} and a connotation-truth-degree range [α¬A, β¬A] (α¬A ≤ 0,
1 ≤ β¬A). Thus,

a; b½ � ¼ aA; bA½ � [ ½a:A; b:A�
¼ ½minfaA; a:Ag;maxfbA; b:Ag�

is just the connotation-truth-degree range of propositions in flexible proposition
cluster {A(x0) | x0 2 U} [ {¬A(x0) | x0 2 U}.

Now, take 8 p 2 {A(x0) | x0 2 U} [ {¬A(x0) | x0 2 U}, then correspondingly,
¬p 2 {A(x0) | x0 2 U} [ {¬A(x0) | x0 2 U}. By the complement law of
truth-degrees, it follows that t(p) + t(¬p) = 1, which shows truth-degrees t(p) and t
(¬p) are symmetrical about 0.5. Also, since the proposition p is taken arbitrarily, the
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truth-degree range [α, β] (α ≤ 0, 1 ≤ β) is a real interval with symmetrical center
0.5. In fact, the symmetry of truth-degrees t(A(x0)) and t(¬A(x0)) about 0.5 origi-
nates from the symmetry of consistency-degrees cA(x0) and c¬A(x0) about 0.5,
which we have already known in Sect. 6.5.

Since the range [α, β] of truth-degrees is symmetrical about 0.5, α + β = 1.
Thus, α = 1 − β, while β = 1 − α. Therefore,

a; b½ � ¼ ½1� b; b� ¼ ½a; 1� a�

In view of this characteristic, from now on, we denote connotation-truth-degree
range as [1 − β, β] (1 ≤ β).

The characteristic of a truth-degree range being symmetrical about 0.5 guaran-
tees that truth-degree t(¬p) = 1 − t(p) is always computable; that is, truth-degree
range is the closed under negation operation of truth-degree (which will be defined
later).

11.3 Algebraic Compound Flexible Proposition/Flexible
Proposition with a Synthetic Linguistic Value
and Computation Model of Its Truth-Degree

The compound flexible propositions stated in the last section are usual compound
flexible propositions formed by using connectives “and” and “or”. However, we
find that besides these compound flexible propositions, there are compound flexible
propositions that formed by using “plus”; for example, “he is gifted plus he is
studious” is such a compound flexible proposition. In consideration that the relation
between the component propositions of this kind of compound flexible proposition
is not logic conjunction or disjunction but algebraic synthesis, we call this kind of
compound flexible proposition to be the algebraical compound flexible propo-
sition. In order to distinguish, we call usual compound flexible propositions to be
the logical compound flexible proposition.

Of course, in daily language, people sometimes also use connective “and” but
not use strictly “plus” to describe an algebraic compound flexible proposition. For
instance, original “A(x0) plus B(y0)” is said “A(x0) and B(y0)”.

Still like Sect. 6.4.2, we denote “plus” by⊕. Then, in general, “A(x0) plus B(y0)”
can be symbolized as “A(x0) ⊕ B(y0)”.

Let A1(x10 ) ⊕ A2(x20 ) ⊕ ��� ⊕ An(xn0 ) be an algebraic compound flexible
proposition. Then, its representation in the form of membership is

A1 � A2 � � � � � Anðx10 ; x20 ; . . .; xn0Þ ð11:64Þ
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It can be seen that the linguistic value in expression (11.64) is a synthetic
linguistic value. So we call the proposition of such form to be the flexible
proposition with a synthetic linguistic value.

Similarly, we call the proposition of forms

A1 ^ A2 ^ � � � ^ Anðx10 ; x20 ; . . .; xn0Þ ð11:65Þ

and

A1 _ A2 _ � � � _ Anðx10 ; x20 ; . . .; xn0Þ ð11:66Þ

to be the flexible proposition with a combined linguistic value.
And then, we call together combined linguistic value and synthetic linguistic

value to be the flexible proposition with a composite linguistic value.
The computation formulas of truth-degrees of flexible propositions with a

combined linguistic value have been really given in the above section. In the
following, we consider the computing formulas of truth-degrees of flexible
propositions with a synthetic linguistic value.

Let Ai be a flexible linguistic value on the measurement space Ui, xi0 2 Ui (i = 1,
2, …, n), and A1 ⊕ A2 ⊕ ��� ⊕ An(x10 , x20 , …, xn0 ) be a flexible propositions with a
synthetic linguistic value. By the definition of the connotation-truth-degree of a
flexible proposition, it follows that

tðA1 � A2 � � � � � Anðx10 ; x20 ; . . .; xn0ÞÞ ¼ cA1�A2�����Anðx10 ; x20 ; . . .; xn0Þ

Also from Eq. (6.17), we have

cA1�A2�����Anðx10 ; x20 ; . . .; xn0Þ ¼
Xn
i¼1

wicAiðxi0Þ; cAiðxi0Þ[ 0

where xi0 2 Ui, wi 2 [0, 1],
Pn

i¼1 wi = 1.
Consequently, the connotation-truth-degree of flexible proposition with a syn-

thetic linguistic value, A1 ⊕ A2 ⊕ ��� ⊕ An(x10 , x20 , …, xn0 ), is

tðA1 � A2 � � � � � Anðx10 ; x20 ; . . .; xn0ÞÞ ¼
Xn
i¼1

wicAiðxi0Þ; cAiðxi0Þ[ 0 ð11:67Þ

where xi0 2 Ui, wi 2 [0, 1],
Pn

i¼1 wi = 1.
From expression (11.64) and Eq. (11.67), we give directly the representation of

the proposition in the form of membership

ðx10 ; x20 ; . . .; xn0Þ 2 A1 � A2 � � � � � An ð11:68Þ
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and the corresponding computation formula of denotation-truth-degree

tððx10 ; x20 ; . . .; xn0Þ 2 A1 � A2 � � � � � AnÞ

¼
Xn
i¼1

mAiðxi0Þ; mAiðxi0Þ[ 0
ð11:69Þ

where xi0 2 Ui, wi 2 [0, 1],
Pn

i¼1 wi = 1.
Further, we have

tðA1 � A2 � � � � � Anðx10 ; x20 ; . . .; xn0ÞÞ ¼
Xn
i¼1

witðpxi0 Þ; tðpxi0 Þ[ 0 ð11:70Þ

where pxi0 = cAiðxi0Þ: This truth-degree computation formula is also a function on
the corresponding region [aA1 , bA1

] × [aA2 , bA2
] × ��� × [aAn , bAn

]. When n = 2, the
graph of truth-degree computation function of flexible proposition with a synthetic
linguistic value, A1 ⊕ A2(x10 , x20 ), is shown in Fig. 11.5.

11.4 Truth-Degree-Level Logic Algebras

Let p: A(x1), and q: A(x2), x1, x2 2 U, and let [1 − β, β] (β ≥ 1) be the
connotation-truth-degree range of flexible proposition cluster {A(x0) |
x0 2 U} [ {¬A(x0) | x0 2 U}. Denote t(p) and t(q) as t1 and t2 separately.
Examining the indirect computation formula t(p ∧ q) = min{t(p), t(q)} of
connotation-truth-degree of compound proposition p ∧ q, it can be seen that since
the interval [1 – β, β] is closed under operation ∧, this formula determines a
operation or function •:

Fig. 11.5 An example of
graph of the function of
truth-degree of flexible
proposition with a synthetic
linguistic value, A1 ⊕ A2(x10 ,
x20 )
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t1 	 t2 ¼ min t1; t2f g; t1; t2 2 ½1� b; b�

on the truth-degree range [1 − β, β] really.
Similarly, formulas t(p ∨ q) = max{t(p), t(q)} and t(¬p) = 1 − t(p) also deter-

mine operations:

t1þ t2 ¼ max t1; t2f g
�t ¼ 1� t

on the [1 − β, β].

Definition 11.5 Let Tc = [1 – β, β] (β ≥ 1) be a connotation-truth-degree range to
which a certain flexible proposition cluster corresponds, and t1 and t2 be two
truth-degreed variables taking values from Tc. we define three operations on Tc:

t1 	 t2 ¼ min t1; t2f g ð11:71Þ

t1þ t2 ¼ max t1; t2f g ð11:72Þ
�t ¼ 1� t ð11:73Þ

They are one by one called connotation-truth-degreed multiplication,
connotation-truth-degreed addition, and connotation-truth-degreed complement,
and they are collectively called connotation-truth-degreed operations.

It can be verified that operations + and • satisfy commutative laws, associative
laws, idempotent laws, and absorption laws, so Tc; þ ; 	h i forms a lattice. At the
same time, they also satisfy distributive laws, so Tc; þ ; 	h i is also a distributive
lattice. Besides, operations • and + also satisfy identity law and zero-one laws (here
the zero element is α, and the one element is β), complement operation − also
satisfies double complement law and De Morgan’s laws, so ½1� b; b�; þ ; 	;�h i
also forms a Morgan algebra.

Similarly, we can also define truth-degreed operations +, •, and − on range
Td = [0, 1] of denotation-truth-degrees, they are one by one called
denotation-truth-degreed multiplication, denotation-truth-degreed addition, and
denotation-truth-degreed complement, and they are collectively called
denotation-truth-degreed operations. And Td; þ ; 	h i forms also distributive lattice,
and Td; 	; þ ;�h i forms also Morgan algebra.

From stated above, based on truth-degrees and their operations we can set up the
logic algebras at the level of numerical truth value, that is, truth-degree. But it can
be seen that the connotation-truth-degree-level logic systems above actually include
denotation-truth-degree-level logic systems. Therefore, we only discuss
connotation-truth-degree-level logic and inference in what follows.
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11.5 Degree-True Inference

11.5.1 Flexible-Propositional Formulas
and Flexible-Predicate Formulas

Definition 11.6 We call the propositional formula (or propositional form) that
denotes a flexible proposition to be a flexible-propositional formula (or
flexible-propositional form); and call the predicate formula (or predicate form) in
which the predicate names are flexible linguistic values to be a flexible-predicate
formula (or flexible-predicate form).

Definition 11.7 Let P(p1, p2, …, pn) and Q(p1, p2, …, pn) be two
flexible-propositional formulas defined on truth-degree space [1 − β, β]n (β ≥ 1). If
for arbitrary (ε1, ε2, …, εn) 2 [1 − β, β]n (β ≥ 1), always

P e1; e2; . . .; enð Þ ¼ Q e1; e2; . . .; enð Þ

and then P(ε1, ε2, …, εn) and Q(ε1, ε2, …, εn) are called to be logically equivalent at
the level of truth-degree, or truth-degree-level logically equivalent for short,
denoted by writing

P p1; p2; . . .; pnð Þ , tQ p1; p2; . . .; pnð Þ ð11:74Þ

or

P p1; p2; . . .; pnð Þ ¼ tQ p1; p2; . . .; pnð Þ ð11:740Þ

The two expressions are called truth-degree logical equivalence or truth-degree
identity.

Those equalities in Table 11.1 are some important truth-degree identities.

11.5.2 Degree-Valid Argument Form

We know that logical inference must follow a valid argument form. A valid
argument form is the argument form that can guarantee that a true conclusion
follows from true premise(s). A valid argument form in logic is called a rule of
inference. There are many rules of inference in the traditional two-valued logic,
such as modus ponens, modus tollens, hypothetical syllogism.

In the traditional two-valued logic, rules of inference and the implicational tau-
tologies are one-to-one correspondence. That is to say, in the traditional two-valued
logic, an argument form is valid when and only when the corresponding implication
is always true. However, we find that there exists no tautology in the traditional sense
in truth-degreed logic; that is, there exists no such flexible-propositional formula P
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(p1, p2, …, pn), for any (ε1, ε2, …, εn) 2 [1 − β, β]n (β ≥ 1), P(ε1, ε2, …, εn) = 1
always.

In fact, a flexible-propositional formula on [1 − β, β]n (β ≥ 1) is only a
expression of truth-degreed operations, which is made of some propositional
variables joined by connectives ¬, ∧, ∨, → or ←→, and thus, though each εi in (ε1,
ε2, …, εn) is all from respective subrange (0, 1), they are tantamount to be all from
one and the same subrange (0, 1) when doing operations, while from the operator
definitions of connectives ¬, ∧, ∨, → and ←→, the open interval (0, 1) is all
closed under these operations; that is, for any p, q 2 (0, 1), it follows that ¬p, p ∧ q,
p ∨ q, p → q and p ←→ q 2 (0, 1). Thus, when (ε1, ε2, …, εn) 2 (0,
1)n � [1 − β, β]n, P(ε1, ε2, …, εn) 2 (0, 1) but 62 {0, 1} surely; that is to say, when
(ε1, ε2, …, εn) 2 (0, 1)n, P(ε1, ε2, …, εn) ≠ 1.

There exists no tautology in truth-degreed logic, which means that there exist no
rules of inference in the sense of “true” (that is, truth-degree = 1) in truth-degreed
logic, and then means that the concept of validity of argument forms in traditional
two-valued logic is not applicable to truth-degreed logic. Then, for truth-degreed
logic, what argument form is valid?

Considering that a truth-degree is the degree of a proposition being true, while a
flexible proposition is always true with a certain degree, and the range of
truth-degrees is [0, 1] or more general [1 − β, β] (β ≥ 1), the “true” in truth-degreed
logic should not refer only to absolute truth, i.e., truth-degree 1, but should be “truth
with a certain degree with infimum 0”, i.e., truth-degree >0. With this under-
standing, we can now define the validity of an argument form in truth-degreed
logic. In order to facilitate description, we call collectively the “true” with a certain
degree with infimum 0, i.e., the truth-degree >0, to be degree-true. In dual, we call
the “false” with a certain degree with supremum 1, i.e., the truth-degree <1, to be
degree-false.

Table 11.1 Some important truth-degree identities

E1 ¬¬P = P (Double negative law)

E2 P ∧ P = P, P ∨ P = P (Idempotent laws)

E3 P ∧ Q = Q ∧ P, P ∨ Q = P ∨ Q (Commutative laws)

E4 (P ∧ Q) ∧ R = P ∧ (Q ∧ R),
(P ∨ Q) ∨ R = P ∨ (Q ∨ R)

(Associative laws)

E5 P ∧ (Q ∨ R) = P ∧ Q ∨ P ∧ R,
P ∨ (Q ∧ R) = (P ∨ Q) ∧ (P ∨ R)

(Distributive laws)

E6 P ∧ (P ∨ Q) = P,
P ∨ (P ∧ Q) = P

(Absorption laws)

E7 ¬(P ∧ Q) = ¬P ∨ ¬Q,
¬(P ∨ Q) = ¬P ∧ ¬Q

(De Morgan’s laws)

E8 P → Q = ¬P ∨ Q (Implicational expression)

E9 P ←→ Q = (P → Q) ∧ (Q → P) (Equivalent expression)
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Definition 11.8 In truth-degreed logic, an argument form is valid, which means
that which can always guarantee that a conclusion of truth-degree >0 (degree-true)
follows from premise(s) of truth-degree >0 (degree-true).

Of course, this definition is only an intuitive definition. Comparing this defini-
tion with the definition of a valid argument form in traditional two-valued logic, we
can also say that the valid argument form is valid with a certain degree, or in other
words, which is a valid argument form in the sense of degree-true, we might as well
call it the degree-valid argument form.

11.5.3 Degree-True Tautologies and Degree-True Logical
Implication

1. Degree-true tautologies

Definition 11.9 Let P(p1, p2, …, pn) be a flexible-propositional formula on
truth-degree space [1 − β, β]n (β ≥ 1).

(1) If for each (ε1, ε2, …, εn) 2 [1 − β, β]n, always P(ε1, ε2, …, εn) > 0, then P
(p1, p2, …, pn) is called a tautology in the sense of degree-true on [1 − β, β]n,
or degree-true tautology for short.

(2) If for each (ε1, ε2, …, εn) 2 [1 − β, β]n, always P(ε1, ε2, …, εn) < 1, then P
(p1, p2, …, pn) is called a contradiction in the sense of degree-false on [1 − β,
β]n, or degree-false-contradiction for short.

When a flexible-propositional formula is a degree-true tautology, the proposi-
tional formula also is said to be the logically degree-valid.

With Definition 11.9, we can look for degree-true tautologies on truth-degree
space [1 − β, β]n. But we find, viewed from the form, these degree-true tautologies
are all tautologies in traditional two-valued logic, and vice versa.

In fact, let P(p1, p2, …, pn) be a degree-true tautology on truth-degree space
[1 − β, β]n, then on the truth-degree range {0, 1}, necessarily t(P(p1, p2, …,
pn)) > 0, but only 1 > 0 in {0, 1}, necessarily t(P(p1, p2, …, pn)) = 1, which shows
that P(p1, p2, …, pn) is an degree-true tautology on {0, 1}.

On the other hand, we find that the truth-degree of a degree-true tautology on
{0, 1} is always >0 (precisely, which should be ≥0.5) on truth-degree range [0, 1]
or on more general [1 − β, β] (β ≥ 1); for example, for any p, q 2 [1 − β, β],
always ¬p ∨ p ≥ 0.5. Then, on the truth-degree range [1 − β, β], a degree-true
tautology on original {0, 1} is surely a degree-true tautology.

The above facts show that the degree-true tautologies in truth-degreed logic and
the tautologies in traditional two-valued logic have the same logical expressions.
Thus, we can obtain indirectly degree-true tautologies from known tautologies.
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Degree-true tautologies are closely related with degree-valid argument forms.

Theorem 11.1 In truth-degreed logic, an argument form is degree-valid if and
only if its corresponding implication formula is always degree-true, that is, which is
a implicational degree-true tautology.

Proof Let P(p1, p2, …, pn) and Q(p1, p2, …, pn) be two flexible-propositional
formulas on truth-degree space [1 − β, β]n (β ≥ 1), P ) Q be an argument form in
truth-degreed logic, and P → Q be corresponding implication.

Suppose P ) Q is degree-valid. Then, when P > 0, necessarily Q > 0. This is
to say, in the condition of P ) Q being degree-valid, the case of P > 0 and Q ≤ 0
would not occur, while when P ≤ 0, 1 − P > 0, and so no matter what value of Q,
always P → Q = max{1 − P, Q} > 0. Thus, for any values of propositional
variables p1, p2, …, pn, always P → Q = max{1 − P, Q} > 0; that is, P → Q is
always degree-true, or logically degree-valid.

Conversely, suppose that P → Q is a degree-true tautology; that is, for any
values of propositional variables p1, p2, …, pn, always P → Q > 0. Since
P → Q = max{1 − P, Q}, always max{1 − P, Q} > 0, this inequality shows that
of 1 − P and Q, at least one is >0; that is, there are three cases: ① 1 − P > 0,
Q ≤ 0;② 1 − P ≤ 0, Q > 0;③ 1 − P > 0, Q > 0. It can be seen that cases ② and
③ do not affect max{1 − P, Q} > 0; but for case ①, if P > 0, then 1 − P > 0 has
not guarantee, and then max{1 − P, Q} > 0 would have no guarantee. Therefore, in
the condition of P → Q being a degree-true tautology, the case of P > 0 but Q ≤ 0
would not occur. That is to say, when P > 0, necessarily Q > 0. Thus, P ) Q is a
degree-valid argument form. ■

From Theorem 11.1, we can obtain a degree-valid argument form through an
always degree-true implication, i.e., an implicational degree-true tautology; or
conversely, by judging whether the corresponding implication is always
degree-true, i.e., whether which is an implicational degree-true tautology, we can
judge the validity of an argument form.

2. Degree-true logical implication

Definition 11.10 Let P(p1, p2, …, pn) and Q(p1, p2, …, pn) be two
flexible-propositional formulas on truth-degree space [1 − β, β]n (β ≥ 1). For
arbitrary truth-degree vectors (ε1, ε2, …, εn) 2 [1 − β, β]n, if P(ε1, ε2, …, εn) > 0
(degree-true), then also Q(ε1, ε2, …, εn) > 0 (degree-true), and then we call that P
(p1, p2, …, pn) logically implies Q(p1, p2, …, pn) in the sense of degree-true,
symbolically,

P p1; p2; . . .; pnð Þ ) [ 0Q p1; p2; . . .; pnð Þ ð11:75Þ

This expression is called the degree-true logical implication.
Those expressions in Table 11.2 are some important degree-true logical

implications.
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We only prove I3, the rest are left for the readers.

Proof Left side of

I3 ¼ P! Qð Þ ^ P

¼ ðmaxð1� P;QÞÞ ^ P by definition of !ð Þ
¼ minðmaxð1� P;QÞ;PÞÞ ðby definition of ^Þ

Suppose min(max(1 − P, Q), P) > 0, then necessarily max(1 − P, Q) > 0 and
P > 0; whereas when max(1 − P, Q) > 0, then necessarily 1 − P > 0 or Q > 0.
Now we know P > 0, so it can not be guaranteed that 1 − P > 0, therefore it can
only be Q > 0. Consequently, when P > 0 and Q > 0, left-hand side of I3 > 0.
Thus, also right-hand side of I3 > 0. ■

It can be seen that a degree-true logical implication also represents actually a
degree-valid argument form. Thus, from Theorem 11.1, we have immediately the
following theorem.

Theorem 11.2 Let P and Q be two flexible-propositional formulas. P ) >0Q, if
and only if always P → Q > 0 (i.e., P → Q is an implicational degree-true
tautology).

Definition 11.11 Let P(p1, p2, …, pn) and Q(p1, p2, …, pn) be two
flexible-propositional formulas on truth-degree space [1 − β, β]n (β ≥ 1). For
arbitrary (ε1, ε2, …, εn) 2 [1 − β, β]n, if P(ε1, ε2, …, εn) and Q(ε1, ε2, …, εn) are
always >0 (degree-true) or <1 (degree-false) at the same time, then we call that P
(p1, p2,…, pn) is logically equivalent to Q(p1, p2,…, pn) in the sense of degree-true,
symbolically,

P p1; p2; . . .; pnð Þ , [ 0Q p1; p2; . . .; pnð Þ ð11:76Þ

or

P p1; p2; . . .; pnð Þ ¼ [ 0Q p1; p2; . . .; pnð Þ ð11:77Þ

The two expressions are called the degree-true logical equivalence.

Table 11.2 Some important degree-true logical implications

I1 P ) >0P ∨ Q (Law of addition)

I2 P ∧ Q ) >0P, P ∧ Q ) >0Q (Law of reduce)

I3 (P → Q) ∧ P ) >0Q (Modus ponens)

I4 (P → Q) ∧ ¬Q ) >0¬P (Modus tollens)

I5 (P ∨ Q) ∧ ¬P ) >0Q (Disjunctive syllogism)

I6 (P → Q) ∧ (Q → R) ) >0P → R (Hypothetical syllogism)

I7 (P ←→ Q) ∧ (Q ← →R) ) >0P ←→ R
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Those expressions in Table 11.3 are some important degree-true logical
equivalence.

The proofs for these equivalence in Table 11.3 are waited still readers to do later.

Theorem 11.3 Let P and Q be two flexible-propositional formulas. P , >0Q if
and only if P ) >0Q and Q ) >0P.

Proof Suppose P , >0Q. From Definition 11.11, when P > 0, Q > 0, and when
Q > 0, P > 0, and thus by Definition 11.10, it follows that P ) >0Q and Q ) >0P.

Suppose P ) >0Q and Q ) >0P. From Definition 11.10, when P > 0, Q > 0,
and when Q > 0, P > 0, and this shows that both P and Q are >0 at the same time.
Thus, by Definition 11.11, it follows that P , >0Q. ■

Theorem 11.4 Let P and Q be two flexible-propositional formulas. If P , tQ, then
P ) >0Q and Q ) >0P.

Proof Suppose P , tQ. From Definition 11.7, the truth-degrees of P and Q are
always equal, so any (ε1, ε2, …, εn) 2 [1 − β, β]n (β ≥ 1) which can make P(ε1, ε2,
…, εn) > 0 also can make Q(ε1, ε2, …, εn) > 0 necessarily, and thus it follows that
P ) >0Q; and, any (ε1, ε2, …, εn) 2 [1 − β, β]n which can make Q(ε1, ε2, …,
εn) > 0 also can make P(ε1, ε2, …, εn) > 0 necessarily, and thus it follows that
Q ) >0P. ■

Theorem 11.5 Let P and Q be two flexible-propositional formulas. If P , tQ, then
P , >0Q.

Proof Suppose P , tQ. From Definition 11.7, the truth-degrees of P and Q are
always equal, and then, in truth-degree range [1 − β, β]n (β ≥ 1), the both P and
Q are >0 at the same time at the same time. Thus, by Definition 11.11, it follows
that P , >0Q. ■

Table 11.3 Some important degree-true logical equivalence

E1 ¬¬P , >0P (Double negative law)

E2 P ∧ P , >0P, P ∨ P , >0P (Idempotent laws)

E3 P ∧ Q , >0Q ∧ P, P ∨ Q , >0P ∨ Q (Commutative laws)

E4 (P ∧ Q) ∧ R , >0P ∧ (Q ∧ R),
(P ∨ Q) ∨ R , >0P ∨ (Q ∨ R)

(Associative laws)

E5 P ∧ (Q ∨ R) , >0P ∧ Q ∨ P ∧ R,
P ∨ (Q ∧ R) , >0(P ∨ Q) ∧ (P ∨ R)

(Distributive laws)

E6 P ∧ (P ∨ Q) , >0P, P ∨ (P ∧ Q) , >0P (Absorption laws)

E7 ¬(P ∧ Q) , >0¬P ∨ ¬Q,
¬(P ∨ Q) , >0¬P ∧ ¬Q

(De Morgan’s laws)

E8 P → Q , >0¬P ∨ ¬Q (Implicational expression)

E9 P ←→ Q , >0(P → Q) ∧ (Q → P) (Equivalent expression)
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11.5.4 Rules of Degree-True Inference and Degree-True
Inference

1. Rules of degree-true inference

We know that a valid argument form just is a rule of inference. From the stated
above, the degree-true logical implication to which an always degree-true implica-
tion, i.e., an implicational degree-true tautology, corresponds is actually a rule of
inference in truth-degreed logic; conversely, such a rule of inference in truth-degreed
logic can also be written as a degree-true logical implication. On the other hand, a
degree-true tautology in truth-degreed logic and a tautology in traditional two-valued
logic have the same logical expression. Thus, in the sense of degree-true, logical
implications in traditional two-valued logic are just the degree-true logical impli-
cations in truth-degreed logic, and rules of inference in traditional two-valued logic
are also, or can be treated as, the rules of inference in truth-degreed logic. But as a
rule of inference in truth-degreed logic, its premises and conclusion are both
degree-true, namely, their truth-degrees are all >0. So, for definiteness, the corre-
sponding argument forms should give clear indication of this characteristic; for
example, now, the universal modus ponens in truth-degreed logic is

A xð Þ ! B yð Þ; t A xð Þ ! B yð Þð Þ[ 0

A x0ð Þ; t A x0ð Þð Þ[ 0
) B y0ð Þ; t B y0ð Þð Þ[ 0

ð11:78Þ

We call the rules of inference in the sense of degree-true to be the rules of
degree-true inference. Thus, the rule of inference shown by expression (11.78)
above is degree-true-universal modus ponens (degree-true-UMP for short).
With rules of degree-true inference, the reasoning in truth-degreed logic would be
conducted. We call this kind of reasoning following rules of degree-true inference
to be the degree-true inference.

The degree-true-UMP demands that major premise A(x) → B(y) satisfies t(A
(x) → B(y)) > 0. Then, how can we logically judge whether t(A(x) → B(y)) > 0?

We know that t(A(x) → B(y)) = max{1 − t(A(x)), t(B(y))}, so t(A(x) → B
(y)) > 0 is also max{1 − t(A(x)), t(B(y))} > 0, the latter is tantamount to that 1 − t
(A(x)) > 0 or t(B(y)) > 0, and then it also is tantamount to that t(A(x)) ≤ 0 or t(B
(y)) > 0. Thus, the following three cases can all make major premise A(x) → B
(y) satisfying demand “t(A(x) → B(y)) > 0”:

① t(A(x)) ≤ 0, t(B(y)) > 0
② t(A(x)) ≤ 0, t(B(y)) ≤ 0
③ t(A(x)) > 0, t(B(y)) > 0

However, on the other hand, degree-true-UMP demands also minor premise A
(x0) satisfying t(A(x0)) > 0. Thus, the A(x) in major premise A(x) → B(y) can only
take t(A(x)) > 0.
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The analysis above shows that so long as t(A(x)) > 0 and t(B(y)) > 0, then t(A
(x) → B(y)) > 0; that is, the former implies the latter. Thus, (A(x), t(A(x)) > 0) → (B
(y), t(B(y)) > 0) also implies (A(x) → B(y), t(A(x) → B(y)) > 0). Therefore, we use
the former in place of the latter to make degree-true-UMP becoming

A xð Þ; t A xð Þð Þ[ 0ð Þ ! ðB yð Þ; t B yð Þ[ 0ð Þ
A x0ð Þ; t A x0ð Þð Þ[ 0
) B y0ð Þ; t B y0ð Þð Þ[ 0

ð11:79Þ

It can be seen that we do not need to judge whether t(A(x) → B(y)) > 0 actually,
while only we need to know A(x) → B(y) satisfying correspondence relation (A(x),
t(A(x)) > 0) → (B(y), t(B(y)) > 0).

From the relation between the truth-degree of a flexible proposition and the
consistency-degree of object in the proposition with the corresponding flexible
linguistic value (as t(A(x)) = cA(x)), the above degree-true-UMP is also tantamount
to the following universal modus ponens with consistency-degrees shown by
expression (11.80), and vice versa.

A xð Þ; cA xð Þ[ 0ð Þ ! B yð Þ; cB yð Þ[ 0ð Þ
A x0ð Þ; cA x0ð Þ[ 0
) B y0ð Þ; cB y0ð Þ[ 0

ð11:80Þ

Example 11.2 Suppose there is a proposition: If the degree of fat of a person is >0,
then the degree of heavy of the person is >0 and also known that the degree of fat of
Zhang is 0.35. Since 0.35 > 0, we have the conclusion: The degree of heavy of
Zhang is >0. This argument is also a degree-true inference, and its formal version is

fat xð Þ; cFat xð Þ[ 0ð Þ ! heavy yð Þ; cHeavy yð Þ[ 0
� �

fat xZhang
� �

; cFat xZhang
� � ¼ 0:35[ 0

) heavy yZhang
� �

; cHeavy yZhang
� �

[ 0

here, x and y denote separately the degree of fat and the degree of heavy of one and
the same person, fat(x) and heavy(y) denote separately “x is fat” and “y is heavy”,
and xZhang and yZhang are separately the degree of fat and the degree of heavy.

The natural language version of this argument is:

If a person is fat to a certain degree; then the person is heavy to a certain degree

Zhang is fat with a certain degree
) Zhang is heay with a certain degree

Conversely, the argument in natural language similar to this expression way is
just a degree-true inference based on degree-true-UMP, or in other words, the
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arguments of this kind of expression way are the deductive reasoning suitable for
degree-true inference.

From expression (11.80) and the example, we see that when conducting a
degree-true inference, the computing and judging of the truth-degrees (which are
really consistency-degrees) of minor premise would be involved. For instance, if
the A(x) in expression (11.80) is a compound proposition form (as A1(x1) ∧ A2(x2)),
then need to compute the overall truth-degree of minor premise in argument, then
judge whether it >0. And in outcome of the argument, only a scope of t(B(y0)) (i.e.,
cB(y0)) is pointed out, but the specific number is not given, as to that the numerical
object y0 is specifically which number also cannot be known. In fact, the meaning
of the conclusions is only: 9y0 2 supp(B) such that cB(y0) > 0, i.e., t(B(y0)) > 0
(degree-true). Therefore, degree-true inference is only an inference about scope of
truth-degrees, which is not the exact reasoning at the level of truth-degree.

Then, if requiring, whether the cB(y0) or y0 can be found out? It can be seen to
find cB(y0) we need to know the correspondence relation between cA(x) and cB(y).
However, major premise merely gives a macro-correspondence relation between the
two, and obviously, from this relation, it is hard to obtain the cB(y0) by cA(x0).
Consistency-degree cB(y0) cannot be obtained, and then number y0 also cannot be
obtained, because to find y0 needs cB(y0) and inverse function cB

−1(u) of cB(y). Then,
in the condition of cB(y0) being unknown, if requiring y0, we can only select a
number from the support set of linguistic value B as an approximate value of y0.

11.6 Near-True Inference

11.6.1 Near-Valid Argument Form

Although degree-true inference is a kind of reasoning method, it is only suitable to
such unconventional sentences as “if x is A to a certain degree, then y is B to a
certain degree” whose meanings are ambiguous, and since the scope of >0 is too
large, the conclusions obtained are also not precision. And, those flexible propo-
sitions involved in usual arguments are all the flexible propositions whose meanings
are unambiguous such as “if x is A, then y is B”. From the logical semantics of the
propositions (see Sect. 12.4), the truth-degrees of this kind of flexible propositions
are all >0.5. This is to say, in usual arguments, whether the truth-degrees of premise
>0.5 (but not merely >0) is should to be considered. Thus, the condition
“truth-degree >0” in the definition of degree-valid argument form appears too broad
and not practical.

Actually, although a truth-degree of >0 is true to a certain degree, a truth-degree
of >0.5 is more tending toward true. And from the complement law of
truth-degrees, the truth-degrees of <0.5 are more tending toward false, as to
truth-degree 0.5 is just “half true and half false”. In order to facilitate description,
we call collectively truth-degrees of >0.5 to be near-true and call collectively
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truth-degrees of <0.5 to be near-false. Thus, 0.5 is just located in the intermediate
between near-true and near-false, which is a watershed between near-true and
near-false. On the other hand, we see that the truth-degree of a degree-true tautology
actually is always ≥0.5 and the truth-degree of a degree-false tautology is then
always ≤0.5. These facts seem to tip us to take truth-degree 0.5 as another datum to
define the validity of argument forms in truth-degreed logic.

Definition 11.8′ In truth-degreed logic, an argument form is valid means that
which can always guarantee that a conclusion of truth-degree >0.5 (near-true)
follows from premise(s) of truth-degree >0.5 (near-true).

Similarly, this definition is only an intuitive definition. We might as well call it
the near-valid argument form.

Note that actually, we can also use “truth-degree ≥0.5” to define the validity of
an argument form and “true” tautology in truth-degreed logic to obtain a
quasi-near-valid argument form. But since 0.5 is a neutral truth-degree not
near-true as well as not near-false, while usual reasoning is the reasoning in the
sense of near-true (truth-degree >0.5), and therefore, we use “truth-degree >0.5”
rather than “truth-degree ≥0.5” in Definition 11.9′.

Besides, we can also use “≥0.5” in place of “>0.5” in Definitions 11.10 and
11.11 above to obtain quasi-near-true tautologies and quasi-near-true logical
implication, and then to obtain the rules of quasi-near-true inference. However,
similarly, since usual reasoning is the reasoning in the sense of near-true
(truth-degree >0.5), in the following we only discuss the near-true formulas,
near-true logical implication, and near-true inference in the sense of truth-degree
>0.5.

11.6.2 Near-True Tautologies and Near-True Logical
Implication

1. Near-true tautologies

Since near-true denotes subrange (0.5, β] (β ≥ 1) of truth-degrees, and near-false
denotes subrange [1 − β, 0.5) of truth-degrees, to make a propositional formula is
always near-true or near-false,medium truth-degree 0.5must be removed in [1 − β, β]
firstly. From three kinds of basic operations of truth-degrees, it can be known that the
truth-degree of a propositional formula is 0.5 only when the truth values its variables
take contain 0.5. Thus, the truth-degree range [1 − β, β] in which 0.5 is removed
becomes [1 − β, β] − {0.5} = [1 − β, 0.5) [ (0.5, β], and the corresponding
truth-degree space becomes ([1 − β, β] − {0.5})n. Now,we can define corresponding
near-true tautologies and near-false-contradictions on the truth-degree space ([1 − β,
β] − {0.5})n without medium truth-degree 0.5.
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Definition 11.9′ Let P(p1, p2, …, pn) be a flexible-propositional formula on
truth-degree space [1 − β, β]n (β ≥ 1).

(1) If for each (ε1, ε2, …, εn) 2 ([1 − β, β] − {0.5})n, always P(ε1, ε2, …,
εn) > 0.5, then P(p1, p2, …, pn) is called a tautology in the sense of near-true
on the truth-degree space without middle (0.5), ([1 − β, β] − {0.5})n, or a
near-true tautology for short.

(2) If for each (ε1, ε2, …, εn) 2 ([1 − β, β] − {0.5})n, always P(ε1, ε2, …,
εn) < 0.5, then P(p1, p2, …, pn) is called a contradiction in the sense of
near-false on the truth-degree space without middle, ([1 − β, β] − {0.5})n, or
a near-false-contradiction for short.

When a flexible-propositional formula is a near-true tautology, the propositional
formula also is said to be the logically near-valid.

With Definition 11.9′, we can look for near-true tautologies on truth-degree
space ([1 − β, β] − {0.5})n. But we find, in forms, these near-true tautologies are
all tautologies in traditional two-valued logic, and vice versa.

In fact, let P(p1, p2, …, pn) be an tautology on truth-degree space ([1 − β,
β] − {0.5})n, then, on the truth-degree range {0, 1}, necessarily t(P(p1, p2, …,
pn)) > 0.5. While only 1 > 0.5 in {0, 1}, necessarily t(P(p1, p2, …, pn)) = 1, which
shows that P(p1, p2, …, pn) is a tautology on {0, 1}.

On the other hand, we find that the truth-degree of a tautology on {0, 1} is
always ≥0.5 on truth-degree range [0, 1] or on more general [1 − β, β] (β ≥ 1); for
example, for any p, q 2 [1 − β, β], always ¬p ∨ p ≥ 0.5. Then, on the truth-degree
range [1 − β, β] − {0.5} that does not contain medium truth-degree 0.5, a tautology
on original {0, 1} is surely a near-true tautology.

The above facts show that the near-true tautologies in truth-degreed logic and the
tautologies in traditional two-valued logic have the same logical expressions. Thus,
we can obtain indirectly near-true tautologies from known tautologies.

Near-true tautologies are closely related with near-valid argument forms.

Theorem 11.1′ In truth-degreed logic, an argument form is near-valid if and only
if its corresponding implication is always near-true, that is, which is a near-true
tautology.

Proof Let P(p1, p2, …, pn) and Q(p1, p2, …, pn) be two flexible-propositional
formulas on truth-degree space ([1 − β, β] − {0.5})n (β ≥ 1), P ) Q be an argu-
ment form in truth-degreed logic, and P → Q be corresponding implication.

Suppose P ) Q is near-valid. Then, when P > 0.5, necessarily Q > 0.5. This is
to say, in the condition of P ) Q being near-valid, the case P > 0.5 and Q < 0.5
would not occur. While when P < 0.5, 1 − P > 0.5, no matter what value of Q,
always P → Q = max{1 − P, Q} > 0.5. Thus, for any values of propositional
variables p1, p2, …, pn, always P → Q = max{1 − P, Q} > 0.5; that is, P → Q is
always near-true, or logically near-valid.
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Conversely, suppose that P → Q is a near-true tautology; that is, for any values
of propositional variables p1, p2, …, pn, always P → Q > 0.5. Since
P → Q = max{1 − P, Q }, always max{1 − P, Q } > 0.5, this inequality shows
that of 1 − P and Q, at least one is >0.5; that is, there are three cases: ①
1 − P > 0.5, Q < 0.5;② 1 − P < 0.5, Q > 0.5;③ 1 − P > 0.5, Q > 0.5. It can be
seen that cases ② and ③ do not affect max{1 − P, Q} > 0.5; but for case ①,
P > 0.5 does not guarantee 1 − P > 0.5, and then does not guarantee max{1 − P,
Q } > 0.5. Therefore, in the condition of P → Q a near-true tautology, the case of
P > 0.5 but Q < 0.5 would not occur. That is to say, when P > 0.5, necessarily
Q > 0.5. Thus, P ) Q is a near-valid argument form. ■

From Theorem 11.1′, we can obtain a near-valid argument form through an
always near-true implication, i.e., an implicational near-true tautology; or con-
versely, by judging whether the corresponding implication is always near-true, i.e.,
whether which is an implicational near-true tautology, we can judge the validity of
an argument form.

2. Near-true logical implication

Definition 11.10′ Let P(p1, p2, …, pn) and Q(p1, p2, …, pn) be two
flexible-propositional formulas on truth-degree space ([1 − β, β] − {0.5})n (β ≥ 1).
For arbitrary truth-degree vectors (ε1, ε2, …, εn) 2 ([1 − β, β] − {0.5})n, if P(ε1, ε2,
…, εn) > 0.5 (near-true), then also Q(ε1, ε2, …, εn) > 0.5 (near-true), and then we
call that P(p1, p2,…, pn) logically implies Q(p1, p2,…, pn) in the sense of near-true,
symbolically,

P p1; p2; . . .; pnð Þ ) [ 0:5Q p1; p2; . . .; pnð Þ ð11:750Þ

This expression is called the near-true logical implication.
Similarly, there are near-true logical implications similar to those in Table 11.2

in truth-degree logic.
It can be seen that a near-true logical implication also represents actually a

near-valid argument form. Thus, from Theorem 11.1′, we have immediately the
following theorem.

Theorem 11.2′ Let P and Q be two flexible-propositional formulas. P ) >0.5Q, if
and only if always P → Q > 0.5 (i.e., P → Q is an implicational near-true
tautology).

Proof Suppose P ) >0.5Q. Then, when P > 0.5, necessarily Q > 0.5, thus,
P → Q = max{1 − P, Q} = Q > 0.5, namely, P → Q near-true; when P < 0.5,
P → Q = max{1 − P, Q} = 1 − P > 0.5, namely, P → Q also near-true.

Conversely, suppose P → Q is a implicational near-true tautology; that is,
always P → Q > 0.5. Since P → Q = max{1 − P, Q}, always max{1 − P,
Q} > 0.5, and this inequality shows that the case of P > 0.5 and Q < 0.5, that is,
P near-true and Q near-false, would not occur. Therefore, P logically implies Q in
the sense of near-true, namely, P ) >0.5Q. ■
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Definition 11.11′ Let P(p1, p2, …, pn) and Q(p1, p2, …, pn) be two
flexible-propositional formulas on truth-degree space [1 − β, β]n (β ≥ 1). For
arbitrary (ε1, ε2, …, εn) 2 ([1 − β, β] − {0.5})n, if P(ε1, ε2, …, εn) and Q(ε1, ε2, …,
εn) are always >0.5 (near-true) or <0.5 (near-false) at the same time, then we call
that P(p1, p2, …, pn) is logically equivalent to Q(p1, p2, …, pn) in the sense of
near-true, symbolically,

P p1; p2; . . .; pnð Þ , [ 0:5Q p1; p2; . . .; pnð Þ ð11:760Þ

or

P p1; p2; . . .; pnð Þ ¼ [ 0:5Q p1; p2; . . .; pnð Þ ð11:770Þ

The two expressions are called the near-true logical equivalence.
Similarly, there are near-true logical equivalences similar to those in Table 11.3

in truth-degree logic.

Theorem 11.3′ Let P and Q be two flexible-propositional formulas. P , >0.5Q if
and only if P ) >0.5Q and Q ) >0.5P.

Proof Suppose P , >0.5Q. From Definition 11.11′, when P > 0.5, Q > 0.5, and
when Q > 0.5, P > 0.5, thus by Definition 11.10′, it follows that P ) >0.5Q and
Q ) >0.5P.

Suppose P ) >0.5Q and Q ) >0.5P. From Definition 11.10′, when P > 0.5,
Q > 0.5, and when Q > 0.5, P > 0.5, this shows that both P and Q are >0.5 at the
same time, and also implying that both <0.5 at the same time (because there are
only two cases in truth-degree range ([1 − β, β] − {0.5})n), and thus, by Definition
11.11′, it follows that P , >0.5Q. ■

Theorem 11.4′ Let P and Q be two flexible-propositional formulas. If P , tQ,
then P ) >0.5Q and Q ) >0.5P.

Proof Suppose P , tQ. From Definition 11.7, the truth-degrees of P and Q are
always equal, so any (ε1, ε2, …, εn) 2 ([1 − β, β] − {0.5})n which can make P(ε1,
ε2, …, εn) > 0.5 also can make Q(ε1, ε2, …, εn) > 0.5 necessarily, and thus it
follows that P ) >0.5Q; and, any (ε1, ε2, …, εn) 2 ([1 − β, β] − {0.5})n which can
make Q(ε1, ε2, …, εn) > 0.5 also can make P(ε1, ε2, …, εn) > 0.5 necessarily, and
thus it follows that Q ) >0.5P. ■

Theorem 11.5′ Let P and Q be two flexible-propositional formulas. If P , tQ,
then P , >0.5Q.

Proof Suppose P , tQ. From Definition 11.7, the truth-degrees of P and Q are
always equal, then, in truth-degree range ([1 − β, β] − {0.5})n, both P and Q are
>0.5 at the same time and also <0.5 at the same time, and thus, by Definition 11.11,
it follows that P , >0.5Q. ■
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11.6.3 Rules of Near-True Inference and Near-True
Inference

1. Rules of near-true inference

As stated above, the near-true logical implication to which an always near-true
implication, i.e., an implicational near-true tautology, corresponds is actually a rule
of inference in truth-degreed logic without middle; conversely, such a rule of
inference in truth-degreed logic without middle can also be written as a near-true
logical implication. On the other hand, a near-true tautology in truth-degreed logic
and a tautology in traditional two-valued logic have the same logical expression.
Thus, in the sense of near-true, logical implications in traditional two-valued logic
are just the near-true logical implications in truth-degreed logic without middle, and
rules of inference in traditional two-valued logic are also, or can be treated as, the
rules of inference in truth-degreed logic without middle. But as a rule of inference
in truth-degreed logic without middle, its premises and conclusion are both
near-true, namely, their truth-degrees are all >0.5. So, for definite, the corre-
sponding argument forms should give clear indication of this characteristic; for
example, now, the universal modus ponens in truth-degreed logic without middle is

A xð Þ ! B yð Þ; t A xð Þ ! B yð Þð Þ[ 0:5

A x0ð Þ; t A x0ð Þð Þ[ 0:5
) B y0ð Þ; t B y0ð Þð Þ[ 0:5

ð11:780Þ

We call the rules of inference in the sense of near-true to be the rules of
near-true inference. Thus, the rule of inference shown by expression (11.78′)
above is near-true-universal modus ponens (near-true-UMP for short). With
rules of near-true inference, the inference in truth-degreed logic without middle
would be done. We call this kind of inference following rules of near-true inference
to be the near-true inference.

The near-true-UMP demands that major premise A(x) → B(y) satisfies t(A
(x) → B(y)) > 0.5. But it can be proven that “if t(A(x)) > 0.5 then t(B(y)) > 0.5)”
implies “t(A(x) → B(y)) > 0.5” (the proof is similar to previous degree-true-UMP,
so here omitted). Therefore, we can use the former in place of the latter to formulate
near-true-UMP as

A xð Þ; t A xð Þð Þ[ 0:5ð Þ ! ðB yð Þ; t B yð Þ[ 0:5ð Þ
A x0ð Þ; t A x0ð Þð Þ[ 0:5
) B y0ð Þ; t B y0ð Þð Þ[ 0:5

ð11:790Þ

Thus, we do not need to judge whether t(A(x) → B(y) > 0.5 actually, while only
we need to know A(x) → B(y) satisfying correspondence relation (A(x), t(A
(x)) > 0.5) → (B(y), t(B(y) > 0.5).
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From the relation between the truth-degree of a flexible proposition and the
consistency-degree of object in the proposition with the corresponding flexible
linguistic value, the above near-true-UMP is also tantamount to the following
universal modus ponens with consistency-degrees shown by expression (11.80′),
and vice versa.

A xð Þ; cA xð Þ[ 0:5ð Þ ! B yð Þ; cB yð Þ[ 0:5ð Þ
A x0ð Þ; t A x0ð Þð Þ[ 0:5
) B y0ð Þ; cB y0ð Þ[ 0:5

ð11:800Þ

Example 11.2′ Suppose there is a proposition: if the degree of fat of a person
is > 0.5, then the degree of heavy of the person is >0.5; also known: The degree of
fat of Zhang is 0.85. Since 0.85 > 0.5, we have the conclusion: The degree of heavy
of Zhang is >0.5. This argument is also a near-true inference, and its formal version
is

Fat xð Þ; cFat xð Þ[ 0:5ð Þ ! Heavy yð Þ; cHeavy yð Þ[ 0:5
� �

Fat xZhang
� �

; cFat xZhang
� � ¼ 0:85[ 0:5

) Heavy yZhang
� �

; cHeavy yZhang
� �

[ 0:5

The natural language version of this argument is:

If a person is fat; then the person is heavy

Zhang is fat
) Zhang is heay

Conversely, the argument in natural language similar to this expression way is
just a near-true inference following near-true-UMP, or in other words, the argu-
ments of this kind of expression way are the deductive reasoning suitable for
near-true inference.

From expression (11.80′) and the example we see that, similar to degree-true
inference, when conducting a near-true inference, the computing and judging of the
truth-degrees (which are really consistency-degrees) of minor premise would be
involved, and in outcome of the argument, only a scope of t(B(y0)) (i.e., cB(y0)) is
pointed out, but the specific number is not given; as to which number being the
number object y0 is also unknown. In fact, the meaning of the conclusion is only:
9 y0 2 core(B)+ such that cB(y0) > 0.5, that is, t(B(y0)) > 0.5 (near-true). Therefore,
near-true inference also is only an inference about scope of truth-degrees, which is
not the exact reasoning at the level of truth-degree.

Similarly, only by the macro-correspondence relation between cA(x) and cB(y),
the cB(y0) and y0 cannot be obtained. But, now the scopes of cB(y0) and y0 are
reduced.
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Finally, it would note that the near-true inference above is the reasoning on the
range of truth-degrees without middle (0.5), and then, in practical reasoning, when
occurs the evidence fact of truth-degree = 0.5, corresponding reasoning would be
not done. However, a special treatment can also be done according to specific
problems, that is, including 0.5 into near-true to do near-true inference.

11.7 Pure Formal Symbol Deduction in Truth-Degreed
Logic

It can be seen that except for the characteristic of premise’s and conclusion’s
truth-degrees >0, or, >0.5, there is no difference between the symbolic deducing
processes of degree-true inference and near-true inference and that of usual infer-
ence in two-valued logic. Therefore, pure formal symbol deduction (including
propositional and predicate symbol deductions) can be done in truth-degreed logic
and truth-degreed logic without middle, and corresponding formal systems can also
be established. But, note that the pure formal symbol deduction in truth-degreed
logic can be done only in the sense of degree-true (so this kind of symbol deduction
can be called the degree-true symbol deduction, the corresponding formal systems
can be called the degree-true formal systems); and the pure formal symbol
deduction in truth-degreed logic without middle can be done only in the sense of
near-true (so this kind of symbol deduction can be called the near-true symbol
deduction, the corresponding formal systems can be called the near-true formal
systems); otherwise, the corresponding symbol deduction and formal systems
would be senseless.

11.8 Summary

In this chapter, we proposed the concept of flexible propositions and founded the
corresponding truth-degreed logic and inference theories. First, we considered the
representations and truth values of flexible propositions; next, we defined the
numerical truth value; that is, the truth-degree, of a flexible proposition, introduced
the formal representations of flexible propositions and the flexible propositions with
composite linguistic values, particularly, introduced the algebraic compound flexible
proposition and the flexible proposition with a synthetic linguistic value, then ana-
lyzed and expounded the computation principles and methods of truth-degrees of the
various flexible propositions, and then founded the corresponding truth-degreed
logic algebras; and then we introduced flexible-propositional formulas and
flexible-predicate formulas, extended true and false and proposed the concepts of
degree-true, degree-false, near-true, and near-false, extended the validity of argu-
ment forms and proposed the concepts of degree-valid argument form and near-valid
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argument form, and extended the concepts of tautology and logical implication and
proposed the concepts of degree-true tautology, degree-true logical implication,
near-true tautology, and near-true logical implication, thus obtaining rules of
degree-true inference and rules of near-true inference, and establishing the principles
and methods called degree-true inference and near-true inference in truth-degreed
logic.

The main points and results of the chapter are as follows:

• Flexible propositions are the propositions that contain flexible linguistic values.
A flexible proposition can be represented in two forms of possession and
membership.

• A compound flexible proposition can be written as a flexible proposition with a
composite linguistic value that includes flexible proposition with a combined
linguistic value and flexible proposition with a synthetic linguistic value, and
vice versa.

• The numerical truth value of a flexible proposition, that is, the truth-degree, is
the degree of the corresponding object having the corresponding flexible lin-
guistic value or belonging to the corresponding flexible set, which are,
respectively, called the connotative-truth-degree and denotative-truth-degree of
the flexible proposition. The truth-degree of a compound flexible proposition
also can be indirectly obtained by using the truth-degrees of the corresponding
component propositions through certain computation.

• The ranges of degrees of flexible propositions are all symmetrical about 0.5. The
sum of truth-degrees of relatively negative flexible propositions is 1, and the
relation is called the complement law of truth-degrees.

• On the basis of the truth-degree computation models of compound flexible
propositions, the corresponding truth-degreed logic algebras can be founded.

• In truth-degreed logic, there are no the valid argument forms in the traditional
sense and no tautology in traditional sense and exist no universally usable rules
of inference at the level of truth-degree, and exact reasoning at the level of
truth-degree cannot be done in general.

• In truth-degreed logic, we can define the valid argument forms, the tautologies,
and the rules of inference in the sense of degree-true (i.e., truth-degree >0), that
is, so-called degree-valid argument forms, degree-true tautologies, and rules of
degree-true inference, and thus in truth-degreed logic, the inference in the sense
of degree-true, i.e., so-called degree-true inference, can be done, but which can
only apply to unconventional propositions. In truth-degreed logic without
middle, we can define the valid argument forms, the tautologies, and the rules of
inference in the sense of near-true (i.e., truth-degree >0.5), that is, so-called
near-valid argument forms, near-true tautologies, and rules of near-true infer-
ence, and thus in truth-degreed logic without middle, the inference in the sense
of near-true, i.e., so-called near-true inference, can be done, which can apply to
usual flexible propositions. Degree-true inference and near-true inference are
both the inference at the level of truth-degree scope.
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• The degree-true tautologies in truth-degreed logic, the near-true tautologies in
truth-degreed logic without middle, and the near-true tautologies in traditional
two-valued logic share the same logical expressions.

• In the sense of degree-true or near-true, the pure formal symbol deduction on
propositional formulas and predicate formulas can also be done, and corre-
sponding formal systems can also be established.
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Chapter 12
Flexible-Linguistic-Truth-Valued Logic
and Corresponding Inference

Abstract This chapter founds the fundamental theory of flexible-linguistic-
truth-valued logic. First, it introduces two flexible linguistic truth values of flexible
propositions, rough-true and rough-false, and then it deduces the computation models
for the flexible linguistic truth values of compound flexible propositions according to
the relation between numerical truth values and flexible linguistic truth values and
then founds the flexible-two-valued logic algebraic system. Next it examines flexible
propositional logic and flexible predicate logic in the flexible-two-valued logic as
well as corresponding inference, proposes the concepts of rough-valid argument
form, rough-true tautology, rough-true logical implication, and rule of rough-true
inference, and establishes the inference principles and methods called rough-true
inference. In addition, it also discusses the approximate reasoning based on
rough-true-UMP. In particular, it proposes the terminology of logical semantics of a
proposition and defines anew the linguistic truth values of compound flexible
propositions based on the logical semantics. Lastly, it sketches flexible command
logic, negation-type logic, and opposite-type logic.

Keywords Flexible-linguistic-truth-valued logic � Rough-true inference � Logical
semantics

Besides numerical truth values, the flexible propositions also have linguistic truth
values. In this chapter, we consider the linguistic truth values of flexible proposi-
tions and the corresponding logic and inference.

12.1 Linguistic Truth Values of Flexible
Propositions—Rough-True and Rough-False

We know that “true” and “false” are two linguistic truth values in the traditional
two-valued logic. Then, are these two linguistic truth values appropriate for the
flexible propositions? Obviously, if “true” and “false” are rigid, that is, “rigid true”
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and “rigid false,” then they are not suitable, but if they can also be flexible, then they
are also applicable to the flexible propositions. Actually, for the flexible propositions,
“true” and “false” are originally flexible, that is, “flexible true” and “flexible false.” In
fact, since the linguistic values inflexible propositions areflexible concepts, so there is
no a rigid standard and boundary whether object(s) in a flexible proposition have
corresponding flexible linguistic value or whether which belongs to corresponding
flexible set. For example, since “tall” is a flexible linguistic value, so the truth value of
proposition “Jack is a tall” can only be flexible true or flexible false. This is to say,
flexible propositions have linguistic truth values “true” and “false” as well, but this
kind of true and false is actually flexible. In order to distinguish, we may as well refer
to this kind of “flexible true” and “flexible false” of flexible propositions as rough-
true and rough-false, and denote them separately by italics T and F [1].

Actually, linguistic truth values “rough-true” and “rough-false” are also the
summarization of numerical truth values, that is, truth-degrees, of flexible propo-
sitions, they are also two relatively negative flexible linguistic values on both range
[0, 1] of denotation-truth-degrees and range 1� b; b½ � b� 1ð Þ of connotation-truth-
degrees, and they, respectively, denote two relatively complemented flexible classes
in [0, 1] and 1� b; b½ �. The consistency functions of “rough-true” and
“rough-false” on range [0, 1] of truth-degrees are, respectively:

cT tð Þ ¼ t; 0� t� 1 ð12:1Þ

cF tð Þ ¼ 1� t; 0� t� 1 ð12:2Þ

whose graphs are shown in Fig. 12.1; the support set, core, and extended core of
“rough-true” are separately (0, 1], {1}, and (0.5, 1], and the support set, core, and
extended core of “rough-false” are separately [0, 1), {0}, and [0, 0.5). The con-
sistency functions of “rough-true” and “rough-false” on range 1� b; b½ � b� 1ð Þ of
truth-degrees are, respectively

cT tð Þ ¼ t; 1� b� t� b ð12:3Þ

cF tð Þ ¼ 1� t; 1� b� t� b ð12:4Þ

whose graphs are shown in Fig. 12.2; the support set, core, and extended core of
“rough-true” are separately ð0; b�, 1; b½ �, and ð0:5; b�; and the support set, core, and
extended core of “rough-false” are separately ½1� b; 1Þ, ½1� b; 0�, and ½1� b; 0:5Þ.

It can be seen that for any truth-degree t 2 0; 1½ � or ½1� b; b� b� 1ð Þ, the degree
of it being rough-true is t itself, and the degree of it being rough-false is 1 − t. It
shows that the truth-degree originally is with respect to rough-true, that is, the
truth-degree as numerical truth value is actually the degree of a proposition being
“true” or “rough-true.” From this, we see that the true and false in two-valued logic
are not always rigid true and rigid false, and they can also be flexible true and flexible
false. In fact, when the linguistic values in a proposition are rigid linguistic values,
that is, this proposition is a rigid proposition, its “true” or “false” is rigid true or rigid
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false; while when the linguistic values in a proposition are flexible linguistic values,
that is, this proposition is flexible proposition, its “true” or “false” is flexible true or
flexible false. For example, the truth value of proposition “Jack is an Olympic
champion” is rigid true or rigid false since the “Olympic champion” is a rigid
linguistic value, while the truth value of proposition “Jack is an excellent sportsman”
is flexible true or flexible false since the “excellent sportsman” is a flexible linguistic
value. Actually, in daily logic thinking, we sometimes use rigid true and rigid false,
while sometimes use flexible true and flexible false, only we do not note that.

Note that because flexible propositional clusters have respective truth-degree
range, so b in truth-degree range ½1� b; b� is actually a variable; thus, different
truth-degree ranges have respective different flexible linguistic truth values
T (rough-true) and F (rough-false). This is to say, flexible linguistic truth values T and
F are not corresponding to a fixed truth-degree range, but corresponding to multiple,
even infinite, truth-degree ranges. But from a logical point of view, these different Ts
and Fs have no distinction and also need not to be distinguished. Therefore, when
using T and F later, we do not consider those specific truth-degree ranges they belong
to, while only discuss the T and F on the general truth-degree range ½1� b;b�.

12.2 Conversion from Numerical Truth Values to Flexible
Linguistic Truth Values

A flexible proposition has both numerical truth value and linguistic truth value, then
for one and the same flexible proposition p, what is the linguistic truth value that its
numerical truth value corresponds to? That will involve the conversion from a
numerical truth value to a linguistic truth value.

0      1 t

c

1

0

cF(t) cT(t)

Fig. 12.1 Rough-true and
rough-false on truth-degree
range [0, 1]

1

0

 1-       0           1

( ) ( )
Fig. 12.2 Rough-true and
rough-false on truth-degree
range [1 − β, β]
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The conversion from a numerical truth value to a linguistic truth value is for a
given truth-degree t 2 0; 1½ � or ½1� b; b� b� 1ð Þ to find the linguistic truth value
that t corresponds to and only a choice or outcome can be given (in usual language
and logic it also required so, and we just do so). Now, the linguistic truth values here
only have rough-true and rough-false, and the two are relatively negative, then from
the complementary law of degrees, necessarily cT tð Þ[ 0:5 or cF tð Þ[ 0:5 or
cT tð Þ ¼ cF tð Þ ¼ 0:5. Since only a choice is asked, then the linguistic truth value with
a greater consistency-degree should be chosen as the linguistic truth value that
t corresponds to. Thus, for truth-degree t 2 0; 1½ � or ½1� b; bÞ, if cT tð Þ[ 0:5, then
the linguistic truth value that t corresponds to is “rough-true” (T); if cF tð Þ[ 0:5, then
the linguistic truth value that t corresponds to is “rough-false” (F). Thus, any
numerical truth value except for 0.5 can be converted into a corresponding linguistic
truth value. And since cT tð Þ ¼ t and cF tð Þ ¼ 1� t, so we have the following rules.

Rules of truth value conversion: for truth-degree t 2 ½1� b; b� b� 1ð Þ,

if t[ 0:5; then convert t into T;

if t\0:5; then convert t into F;

if t ¼ 0:5; then do not convert:

It can be seen from the above conversion rules for truth values that

(1) For any t 2 0; 0:5½ Þ or ½1� b; 0:5Þ, cF tð Þ[ 0:5, and cT tð Þ\0:5, that is, t is
rough-false; conversely, if t is rough-false, then necessarily t 2 0; 0:5½ Þ or
½1� b; 0:5Þ:

(2) For any t 2 0:5; 1ð � or 0:5; bð �, cT tð Þ[ 0:5, and cF tð Þ\0:5, that is, t is
rough-true; conversely, if t is rough-true, then necessarily t 2 (0.5, 1] or (0.5, β].

As thus, the two linguistic truth values rough-true and rough-false actually
denote, respectively, 2 subregions [0, 0.5) and (0.5, 1] on truth-degree range [0, 1],
or 2 subregions [1 − β, 0.5) and (0.5, β] on truth-degree range [1 − β, β] (β ≥ 1).
That means rough-false and rough-true actually become 2 rigid linguistic truth
values on truth-degree ranges, and the medium truth-degree 0.5 is excluded from [0,
1] and [1 − β, β]. Thus, their consistency functions are shown in Fig. 12.3.

1

0
  0     0.5     1

( ) ( )
1

0
1  0 0.5    1

( ) ( )

(a) (b)

Fig. 12.3 Rigid-ended rough-true and rough-false. a Rigid-ened rough-true and rough-false on [0,
1], b Rigid-ened rough-true and rough-false on [1 − β, β]

294 12 Flexible-Linguistic-Truth-Valued Logic …



This is to say, speaking from the concept alone, rough-true and rough-false are
two flexible linguistic truth values, but when judging the truth of a proposition, they
are hardened into two rigid linguistic truth values. Or in other words, rough-true and
rough-false are originally two flexible linguistic truth values defined on truth-degree
ranges [0, 1] and [1 − β, β] (1 ≤ β), but in effect, they become two rigid linguistic
truth values defined on truth-degree ranges [0, 1]–{0.5} and [1 − β, β]–{0.5}.
Reviewing the “near-true” and “near-false” in Sect. 11.6, we can see that the
“rough- true” and “rough-false” after harden here are just the “near-true” and
“near-false” said there. This is to say, in conceptual, the “rough-true” and
“rough-false” are two flexible linguistic truth values, but in practical, they are just
rigid linguistic truth values “near-true” and “near-false.”

12.3 Operations of Flexible-Linguistic-Truth-Values and
Flexible-Two-Valued Logic Algebra

In the following, we define the computation models of truth values of compound
flexible propositions based on the two flexible linguistic truth values of rough-true
and rough-false.

Firstly, from the conversion rules of truth values above, we have immediately
the following theorem.

Theorem 12.1 The flexible proposition p is rough-true if and only if t(p) > 0.5;
and p is rough-false if and only if t(p) < 0.5.

And from the above-defined linguistic truth values of rough-true and rough-false
and the computation formulas of truth-degrees of compound propositions, we have
the following theorem.

Theorem 12.2 Let p and q be two propositions, then

(1) p ^ q is rough-true if and only if p is rough-true and q is rough-true.
(2) p _ q is rough-true if and only if p is rough-true or q is rough-true.
(3) :p is rough-true if and only if p is rough-false.
(4) p! q is rough-true if and only if p is rough-false or q is rough-true.
(5) p ! q is rough-true if and only if p and q are both rough-true or both

rough-false.

Proof We only prove (1) and (4).
Let p ∧ q be rough-true. From this, we have t(p ∧ q) > 0.5; while t(p ∧ q) =

min{t(p), t(q)}, so min{t(p), t(q)} > 0.5, which shows t(p) > 0.5 and t(q) > 0.5,
thus p is rough-true and q is rough-true. Conversely, let p be rough-true and q be
rough-true. Then t(p) > 0.5 and t(q) > 0.5, thus min{t(p), t(q)} > 0.5; while min{t
(p), t(q)} = t(p ∧ q), so t(p ∧ q) > 0.5, therefore p ∧ q is rough-true.
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Let p → q be rough-true. From this, we have t(p → q) > 0.5; while t(p →
q) = max(1 − t(p), q), so max{1 − t(p), q} > 0.5, which shows 1 − t(p) > 0.5 or t
(q) > 0.5; then, if 1 − t(p) > 0.5, then t(p) < 0.5, that is, p is rough-false, in this
case, no matter what values t(q) takes, always p is rough-false; similarly, for t
(q) > 0.5, that is, q is rough-true, right now what values t(p) takes does not matter
either. Conversely, let p be rough-false or q be rough-true. Then, if p is rough-false,
then t(p) < 0.5, thus, t(¬p) > 0.5, that is, ¬p is rough-true, thus, 1 − t(p) > 0.5,
right now necessarily max{1 − t(p), t(q)} > 0.5, so p → q is rough-true; if q is
rough- true, then just the same, max{1 − t(p), t(q)} > 0.5, thus p → q is also
rough-true.■

It can be seen that Theorem 12.2 is equivalent to the definitions of linguistic
truth values of compound flexible propositions p ∧ q, p ∨ q, ¬p, p → q, and
p ← →q, meanwhile, 5 kinds of operations of two flexible linguistic truth values
of rough-true and rough-false are given.

Definition 12.1 Let T and F denote separately flexible linguistic truth values of
rough-true and rough-false, and we define 5 kinds of operations ∧, ∨, ¬,
→ and ← → on {T, F} as follows:

Which are in order called flexible logical multiplication, flexible logical addition,
flexible logical negation, flexible logical implication, and flexible logical equiva-
lence. Where T and F, respectively, denote rough-true and rough-false.

Thus, conceptually we have founded a flexible linguistic truth-valued logic on
the basis of truth-degreed logic, that is, truth-degree range [1 − β, β] (β ≥ 1) ([0, 1]
is included, same below); however, in effect, this flexible linguistic truth-valued
logic is a rigid linguistic truth-valued logic on the truth-degree range [1 − β, β]–
{0.5} (β ≥ 1). Since it is a two-valued logic, so we call it simply
flexible-two-valued logic. It can be verified that flexible linguistic truth values
T and F for operations ∧, ∨, and ¬ satisfy all the laws that rigid linguistic truth
values T and F for operations ∧, ∨, and ¬. Therefore, 〈{T, F}, ∧, ∨, ¬〉 also
forms a Boolean algebra, we call this Boolean algebra the 2-element flexible
propositional algebra, or 2-element flexible truth-valued algebra.
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12.4 Logical Semantics of Propositions

We discover that a usual simple proposition always implicates itself being true (or
rough-true) regardless of whether it is really true (or rough-true) or not. For instance,
the proposition “Jack is tall” always implicates which is rough-true regardless of
how tall Jack really is and what is the truth-degree of this proposition. For another
instance, the proposition “Snow is black” implicates which is true if only viewed
from the literal expression, although in fact it is false. Generally, the literal meaning
of simple proposition “x0 is A” is “x0 has A” or “x0 belongs to A,” but actually, x0
only has A to a degree or belongs to A to a degree. Therefore, proposition “x0 is A”
itself in fact implicates it is true (or rough-true, this point can also be seen from the
conversion from numerical values to pure flexible linguistic values in Sect. 7.3.1).

Further, we discover that a compound proposition not only implicates itself
being true but also implicates the logical relation between the truths of its com-
ponent propositions, and the two are consistent. For instance, conjunctive propo-
sition p ∧ q implicates “p ∧ q true” and “p true and q true,” while implicational
proposition p → q implicates “p → q true” and “if p true, then q true.”

Since the truth of a proposition can be determined only through practice test or
logical inference, so the implicating of a proposition for the truth of itself or the
logical relation between the truths of its component propositions is only a
assumption or agreement for the truth of itself and the logical relation between the
truths of its component propositions.

We called the assumption and agreement of a proposition for the truth of itself
and the logical relation between the truths of its component propositions to be the
logical semantics of the proposition.

It can be seen that the truth values in the logical semantics of a proposition
usually are always “true” or “rough-true.” We call the logical semantics that only
contains “true” or “rough-true” to be the natural logical semantics or standard
logical semantics of a proposition.

The natural logical semantics of a proposition is embodied in its literal
description. In two-valued logic, the natural logical semantics of 5 common basic
compound propositions are shown in Table 12.1.

Table 12.1 Natural logical semantics of 5 basic compound propositions

Compound
propositions

Logical semantics in traditional
two-valued logic

Logical semantics in
flexible-two-valued logic

p ∧ q p true and q true p rough-true and q rough-true

p ∨ q p true or q true p rough-true or q rough- true

¬p not p true not p rough-true

p → q If p true then q true If p rough-true then q rough-true

p ← →q p true if and only if q true p rough-true if and only if
q rough-true
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Now we further see that in the usual mathematical logic, the logical semantics of
propositional formulas are actually all natural logical semantics or, in other words,
standard logical semantics. Actually, it is also the case in the more traditional
formal logic. For instance, equalities ¬p ∧ p = F and ¬p ∨ p = T are the symbol
representations of the famous law of contradiction (a proposition and its negation
cannot be true at the same time) and law of excluded middle (a proposition and its
negation cannot be false at the same time) in formal logic. From these two
equalities, it can be seen that the logical semantics of propositional formulas
¬p ∧ p and ¬p ∨ p are just such natural logical semantics as shown in Table 12.1.

What the above stated is the logical semantics of propositions in two-valued
logic; then, in multivalued truth-degreed logic, the standard logical semantics of
simple proposition p is “t(p) > 0.5,” i.e., “p near-true,” and the standard logical
semantics of 5 basic compound flexible propositions are shown in Table 12.2.

We now understand that the literal meaning of a proposition is also the
embodiment of its logical semantics. We used “literal meanings” in Sect. 11.2 to
deduce the computation formula of the truth-degree of a compound proposition, but
now we can use logical semantics to deduce again the computation formulas of the
truth-degrees of compound propositions. It is not difficult to verify that the results
are exactly the same as the formulas in Sect. 11.2. Therefore, the logical semantics
of a compound proposition decides the truth computation model of the compound
proposition, the logical semantics of compound propositions are the basis of logical
operations, and the truth-degree computations are in essence based on the logical
semantics of compound propositions. As a matter of fact, in Sect. 11.2.3, the basic
reason why the two groups of indirect computation formulas of the truth-degree of
compound propositions are the same is because the logical semantics of corre-
sponding compound propositions are the same.

Now that the natural logical semantics of proposition “x0 2 A” always refers
itself being rough-true or near-true, and then membership relation “x0 2 A” is
tantamount to “proposition ‘x0 2 A’ rough-true,” that is, t(x0 2 A) > 0.5. While t
(x0 2 A) = mA(x0), so x0 2 A ) mA(x0) > 0.5. Conversely, if mA(x0) > 0.5, while
mA(x0) = t(x0 2 A), so t(x0 2 A) > 0.5, that is, proposition “x0 2 A” rough-true,
that is also, x0 2 A; consequently, it follows that mA(x0) > 0.5 ) x0 2 A. Thus, to
sum up, we have x0 2 A , mA(x0) > 0.5. On the other hand,
mA(x0) > 0.5 , x0 2 core(A)+, so we also have x0 2 A , x0 2 core(A)+.

Table 12.2 The standard
logical semantics of 5 basic
compound propositions in
truth-degreed logic

Compound
propositions

Standard logical semantics

p ∧ q p near-true and q near-true

p ∨ q p near-true or q near-true

¬p not p near-true

p → q If p near-true, then q near-true

p ← →q p near-true if and only if q near-true
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Similarly, we can also have A(x0) ⇔ cA(x0) > 0.5 and A(x0) ⇔ x0 2 core(A)+.
Therefore, by the arbitrariness of x0, we have the following theorem.

Theorem 12.3 Let A be a flexible linguistic value on measurement space U, then
for any x 2 U, we have

x 2 A, mA xð Þ[ 0:5 ð12:5Þ

x 2 A, x 2 core Að Þþ ð12:6Þ

A xð Þ , cA xð Þ[ 0:5 ð12:7Þ

A xð Þ , x 2 core Að Þþ ð12:8Þ

Extending “near-true” or “t(p) > 0.5” in standard logical semantics of a flexible
proposition as “degree-true” or “t(p) > 0,” the corresponding logical semantics is
called the extended logical semantics of the flexible proposition. Shown in
Table 12.3 are the extended logical semantics of 5 basic compound flexible
propositions.

Note that since natural logical semantics is a tacit logical semantics of propo-
sitions, so for distinguishing, if we treat a certain proposition p: x0 is A, with its
extended logical semantics, then it should be rewritten as p′: x0 is A to a certain
degree.

Finally, it should be noted that:

① The compound flexible propositions stated above refer to the logic compound
flexible propositions, while the algebraic compound flexible propositions have
no this wording of logical semantics.

② The logical semantics of a flexible proposition with a composite linguistic
value is similar to the logical semantics of a simple flexible proposition.

③ In the situation without special specifying, the logical semantics mentioned
later all refer to standard logical semantics.

Table 12.3 The extended logical semantics of 5 basic compound flexible propositions in
truth-degreed logic

Compound proposition Extended logical semantics

p ∧ q p degree-true and q degree-true

p ∨ q p degree-true or q degree-true

¬p not p degree-true

p → q If p degree-true, then q degree-true

p ← →q p degree-true if and only if q degree-true
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12.5 Definitions and Computation Models of Linguistic
Truth Values of Compound Flexible Propositions
Based on Logical Semantics

With the logical semantics described by rough-true and rough-false of compound
propositions, we then can use the logical semantics in place of “literal meaning” of
a proposition to directly deduce the definition and computation model of linguistic
truth value of a compound flexible proposition.

(1) The natural logical semantics of conjunctive compound flexible proposition
p ∧ q is: p rough-true and q rough-true. That is to say, viewed from the form,
p ∧ q represents the conjunction of propositions p and q, but viewed from the
sense of truth, the meaning of p ∧ q actually and always is: p rough-true and
q rough-true. Then, according to this logical semantics, if the real situations of
p and q are:

① p and q are both rough-true, then which just accords with this logical
semantics, so in this case p ∧ q is rough-true;

② At least one of p and q is not rough-true, that is, rough-false, then which
goes contrary to this logical semantics, so in this case p ∧ q is rough-false.

Thus, the correspondence relation between truth values of p ∧ q and those of
p and q is shown in Table 12.4.

(2) The natural logical semantics of disjunctive compound flexible proposition
p ∨ q is: p rough-true or q rough-true. That is to say, viewed from the form,
p ∨ q represents the disjunction of propositions p and q, but viewed from the
sense of truth, the meaning of p ∨ q actually and always is: p rough-true or
q rough-true. Then, according to this logical semantics, if the real situations of
p and q are:

① At least one of p and q is rough-true, then which just accords with this
logical semantics, so in this case p ∨ q is rough-true;

② p and q are both rough-false, then which goes contrary to this logical
semantics, so in this case p ∨ q is rough-false.

Thus, the correspondence relation between the truth values of p ∨ q and those
of p and q is shown in Table 12.5.

Table 12.4 Truth values of
p ∧ q based on the logical
semantics

t(p) t(q) t(p ∧ q)

F F F

F T F

T F F

T T T
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(3) The natural logical semantics of negative compound flexible proposition ¬p is:
¬p rough true. Then, according to this logical semantics, if the real situations
of p are:

① p is rough-false, that is, ¬p is rough-true, then which just accords with this
logical semantics, so in this case ¬p is rough-true;

② p is rough-true, that is, ¬p is rough-false, then which goes contrary to this
logical semantics, so in this case ¬p is rough-false.

Thus, the correspondence relation between truth values of ¬p and those of p is
shown in Table 12.6.

(4) The natural logical semantics of implicational compound flexible proposition
p → q is: if p rough-true, then q rough-true. Then, according to this logical
semantics, if the real situations of p and q are:

① p rough-true and q rough-true, obviously, which is completely in accor-
dance with the logical semantics of p → q, so in this case, p → q is
rough-true;

② p rough-false but q rough-true, which seems not to tally with the logical
semantics of p → q, but it does not go contrary to the logical semantics of
p → q either, so in this case, p → q can also be treated as rough-true;

③ p rough-false and q rough-false, this case is also neither tallying with nor
going contrary to the logical semantics of p → q, so in this case p → q is
also rough-true;

④ p rough-true but q rough-false, obviously, which is completely contrary to
the logical semantics of proposition p → q, so in this case p → q is
rough-false.

Consequently, the correspondence relation between truth values of p → q and
those of p and q is shown in Table 12.7.
It can be seen that the truth values of p → q can also be summed up as:
p → q is rough-true when and only when p is rough-false or q is rough-true.
Thus, we have

Table 12.5 Truth values of
p ∨ q based on the logical
semantics

t(p) t(q) t(p ∨ q)

F F F

F T T

T F T

T T T

Table 12.6 Truth values of
¬p based on logical semantics

t(p) t(¬p)

F T

T F
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p! q, :p _ q

Actually, p rough-false is also ¬p rough-true, q rough-false is also
¬q rough-true. Therefore, the above ② is also equivalent to ¬p rough-true and
q rough- true; the ③ is also equivalent to ¬p rough-true and ¬q rough-true.
Thus, the logical semantics of compound proposition p → q, “if p rough-true,
then q rough-true,” is also equivalent to “p is a sufficient condition for q.”

(5) Similarly, from the natural logical semantics “q true when and only when
p true” of equivalent compound proposition p ← →q, we can have the cor-
respondence relation between truth values of p ← →q and those of p and
q are shown in Table 12.8.

Comparing Tables 12.4, 12.5, 12.6, 12.7, and 12.8 with Theorem 12.2, it can be
seen that the two are completely the same. That is to say, linguistic truth values
obtained based on the truth-degree computation formulas of compound propositions
are the same as the linguistic values obtained based on their logical semantics. Just
the same, these 5 tables define 5 operations on set {F, T}. Obviously, the truth
operations defined by them are also the truth operations given by Definition 12.1,
and the 5 operations are also the computation models of linguistic truth vales of the
corresponding compound propositions.

The above discussions show that logical semantics is also a criterion to judge the
truth of a proposition. If the real truth values of component propositions of a
compound proposition accord with this criterion, then this compound proposition is
rough-true, else it would be rough-false.

It can be seen that the definitions and computationmodels of linguistic truth values
of compound flexible propositions above we obtain based on the logical semantics of
propositions are completely consistent with the truth definitions and computation
models of the corresponding compound propositions in traditional two-valued logic.
Actually, the logical semantics of propositions is very important and crucial. It is the
basis of logical operations and logical reasoning. With regard to the logical semantics
of the compound proposition, we will further discuss it in another work.

Table 12.7 Truth values of
p → q based on logical
semantics

t(p) t(q) t(p → q)

F F T

F T T

T F F

T T T

Table 12.8 Truth values of
p ← →q based on logical
semantics

t(p) t(q) t(p ← →q)

F F T

F T F

T F F

T T T
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12.6 Rough-True Inference

12.6.1 Rough-True Tautologies and Rough-True Logical
Implication

Definition 12.2 Let P(p1, p2, …, pn) and Q(p1, p2, …, pn) be two flexible
propositional formulas, if for arbitrary e1; e2; . . .; en 2 T ;Ff g, always

P e1; e2; . . .; enð Þ ¼ Q e1; e2; . . .; enð Þ

then we call P p1; p2; . . .; pnð Þ is logically equivalent to Q p1; p2; . . .; pnð Þ in the
sense of rough-true, symbolically,

P p1; p2; . . .; pnð Þ ,T Q p1; p2; . . .; pnð Þ

or

P p1; p2; . . .; pnð Þ ¼T Q p1; p2; . . .; pnð Þ

The two expressions are called the rough-true logical equivalence.

Those expressions in Table 12.9 are some important rough-true logical
equivalences.

Table 12.9 Some important rough-true logical equivalences

E1 ¬¬P ,T P (Double negative law)

E2 P ∧ P ,T P,
P ∨ P , T P

(Idempotent laws)

E3 P ∧ Q ,T Q ∧ P,
P ∨ Q ,T P ∨ Q

(Commutative laws)

E4 (P ∧ Q) ∧ R ,T P ∧ (Q ∧ R),
(P ∨ Q) ∨ R ,T P ∨ (Q ∨ R)

(Associative laws)

E5 P ∧ (Q ∨ R) ,T P ∧ Q ∨ P ∧ R,
P ∨ (Q ∧ R) ,T (P ∨ Q) ∧ (P ∨ R)

(Distributive laws)

E6 P ∧ (P ∨ Q) ,T P,
P ∨ (P ∧ Q) ,T P

(Absorption laws)

E7 ¬(P ∧ Q) ,T ¬P ∨ ¬Q,
¬(P ∨ Q) ,T ¬P ∧ ¬Q

(De Morgan’s laws)

E8 P ∨ F ,T P,
P ∧ T ,T P

(Identity laws)

E9 P ∨ T ,T T,
P ∧ F ,T F

(0–1 laws)

E10 P ∨ ¬P ,T T
P ∧ ¬P ,T F

(Negation laws)

E11 P → Q ,T ¬P ∨ Q (Implicational expression)

E12 P ← →Q ,T (P → Q) ∧ (Q → P) (Equivalent expression)
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It is not hard to prove these logical equivalences in Table 12.9 with truth tables,
so here the proof is omitted.

Definition 12.3 Let P p1; p2; . . .; pnð Þ and Q p1; p2; . . .; pnð Þ be two flexible
propositional formulas, for arbitrary e1; e2; . . .; en 2 T ;Ff g, ifP e1; e2; . . .; enð Þ ¼ T ,
then Q e1; e2; . . .; enð Þ ¼ T , and then we call that P p1; p2; . . .; pnð Þ logically implies
Q p1; p2; . . .; pnð Þ in the sense of rough-true, symbolically,

P p1; p2; . . .; pnð Þ )T Q p1; p2; . . .; pnð Þ

This expression is called the rough-true logical implication.

Those expressions in the Table 12.10 are some important rough-true logical
implications.

We only prove I3, and the rest are left for the readers.

Proof Suppose (P → Q) ∧ P = T, then from the definition of ∧, necessarily
P → Q = T and P = T; whereas when P → Q = T, then necessarily P = F or
Q = T; now we know P = T, so it can only be Q = T. Thus, when P = T and Q = T,
left-hand side of I3 = T, and also right-hand side of I3 = T. ■

Theorem 12.4 Let P and Q be two flexible propositional formulas, then P,T Q,
if and only if P)T Q and Q)T P.

Proof Suppose P,T Q, then by the definition of “,T” (Definition 12.2), it fol-
lows that the truth values of P and Q are always equal, then, any ε1, ε2, …, εn 2 {T,
F} which can make P(ε1, ε2, …, εn) rough-true then also can make Q(ε1, ε2, …, εn)
rough-true, thus, we have P)T Q. Conversely, any ε1, ε2, …, εn 2 {T, F} which
can make Q(ε1, ε2,…, εn) rough-true then also can make P(ε1, ε2,…, εn) rough-true;
thus, we have Q)T P.

Suppose P)T Q and Q)T P, then by the definition of “)T” (Definition 12.3),
it follows that P and Q rough-true at the same time; additionally, since P and Q only
can take two truth values T and F, so they have also necessarily rough-false at the
same time. So the truth values of them are always equal. Thus, by the definition of
“,T” (Definition 12.2), it follows that P,T Q. ■

Table 12.10 Some important rough-true logical implications

I1 P )T P ∨ Q (Law of addition)

I2 P ∧ Q )T P,
P ∧ Q )T Q

(Law of reduce)

I3 (P → Q) ∧ P )T Q (Modus ponens)

I4 (P → Q) ∧ ¬Q )T ¬P (Modus tollens)

I5 (P ∨ Q) ∧ ¬P )T Q (Disjunctive syllogism)

I6 (P → Q) ∧ (Q → R) )T P → R (Hypothetical syllogism)

I7 (P ← →Q) ∧ (Q ← →R) )T P ← →R
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Definition 12.4 Let P(p1, p2, …, pn) be a flexible propositional formula.

(1) If for arbitrary ε1, ε2, …, εn 2 {T, F}, always P(ε1, ε2, …, εn) = T, then P(p1,
p2, …, pn) is called a tautology in the sense of rough-true on set {T, F} of truth
values, or a rough-true tautology for short.

(2) If for arbitrary ε1, ε2, …, εn 2 {T, F}, always P(ε1, ε2, …, εn) = F, then P(p1,
p2, …, pn) is called a contradiction in the sense of rough-false on set {T, F}, or
a rough-false contradiction for short.

When a flexible propositional formula is a rough-true tautology, the proposi-
tional formula also is said to be the logically rough-valid.

Example 12.1 Given the flexible propositional formulas:

(1) (p → q) ∧ p → q
(2) (p → q) ∧ ¬q → ¬p
(3) (p → q) ∧ ¬p → ¬q

It can be proved that expressions (1) and (2) are both rough-true tautology, but
expression (3) is not.

Proof We only prove (1) is always rough-true.

1) Suppose (p → q) ∧ p rough-true. Then, necessarily p → q and p are both
rough-true. And by the definition of operation →, in the case of
p → q rough-true and antecedent p rough-true, consequent q can only be
rough-true. That is to say, there is no the situation of antecedent
(p → q) ∧ p rough-true while consequent q rough-false. Therefore,
(p → q) ∧ p → q is a rough-true tautology. By the definition of operation →,
then (p → q) ∧ p → q rough-true.

(2) Suppose (p → q) ∧ p rough-false. By the definition of operation →, then
(p → q) ∧ p → q rough-true.

Synthesizing (1) and (2), (p → q) ∧ p → q is a rough-true tautology.

Definition 12.5 Let P be a flexible predicate formula, and U be its domain of
individuals.

For interpretation I in U,

(1) If P is rough-true, then P is called rough-true on interpretation I.
(2) If P is rough-false, then P is called rough-false on interpretation I.

For any interpretation I in U,

(1) If P is always rough-true, then P is always rough-true on U, or a rough-true
tautology on U.

(2) If P is always rough-false, then P is always rough-false on U, or a rough-false
contradiction on U.
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Definition 12.6 Let P be a flexible predicate formula. For any domain of
individuals

(1) If P is always rough-true, then P is called a rough-true tautology.
(2) If P is always rough-false, then P is called a rough-false contradiction.

Theorem 12.5 Let P and Q be two flexible propositional formulas. P)T Q, if and
only if P → Q ≡ T (i.e., P → Q is a implicational rough-true tautology).

Proof Let P)T Q. Then, when P rough-true, Q necessarily is rough-true; thus, by
the definition of truth values of P → Q, P → Q is rough-true; When P rough-false,
for arbitrary Q, by the definition of truth values of P → Q, always
P → Q rough-true.

Conversely, let P → Q be always rough-true, i.e., P → Q is a implicational
rough-true tautology, by the definition of truth-degree connective “→,” then there
would not occur the situation of P rough-true but Q rough-false. Therefore,
P logically implies Q in the sense of rough-true, that is, P)T Q. ■

Theorem 12.4 is to say that just the same as the relation between implicational
tautology and logical implication in traditional two-valued logic, in
flexible-two-valued logic, one implicational rough-true tautology also corresponds
to one rough-true logical implication and vice versa.

12.6.2 Rules of Rough-True Inference and Rough-True
Inference

1. Rough-valid argument form

Definition 12.7 In flexible linguistic truth-valued logic, an argument form is
rough-valid means that which can always guarantee that a rough-true conclusion
follows from rough-true premise(s), that is, when premises rough-true, conclusion
also rough-true.

Theorem 12.6 In flexible linguistic truth-valued logic, an argument form is
rough-valid if and only if its corresponding implication is always rough true, that
is, which is a rough-true tautology.

Proof Let P(p1, p2, …, pn) and Q(p1, p2, …, pn) be two flexible propositional
formulas, P) Q be an argument form in flexible-two-valued logic, and P → Q be
corresponding implication.

Suppose P) Q is rough-valid. Then, when P rough-true, necessarily
Q rough-true. This is to say, in the condition of P) Q being rough-valid, the case
of P rough-true and Q rough-false would not occur. While by the truth definition of
P → Q, when P rough-false, always P → Q rough-true no matter what value of
Q. Thus, for any values of propositional variables p1, p2, …, pn, P → Q is always
rough-true, or logically rough-valid.
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Conversely, suppose that P → Q is a rough-true tautology, that is, for any values
of propositional variables p1, p2, …, pn, P → Q is always rough-true. By the truth
definition of P → Q, then there are three cases: ① P rough-true and Q rough-true;
② P rough-false andQ rough-true; and③ P rough-false andQ rough-false. It can be
seen that in the condition of P → Q being a rough-true tautology, the case of
P rough-true but Q rough-false would not occur. That is to say, when P rough-true,
necessarily Q rough-true. Thus, P ) Q is a rough-valid argument form. ■

From Theorem 12.6, we can obtain a rough-valid argument form through an
implicational rough-true tautology; or conversely, by judging whether the corre-
sponding implication is a rough-true tautology, we can judge the rough validity of
an argument form.

2. Rules of rough-true inference

The same situation as traditional two-valued logic, in flexible-two-valued logic, an
rough-true logical implication just is a rule of inference. Thus, those rough-true
logical implications in Table 12.8 are all rules of inference in flexible-two-valued
logic. Actually, it can be verified that the tautologies in traditional two-valued logic
are all the rough-true tautologies on truth value set {T, F}. Thus, in the sense of
rough-true, logical implications in traditional two-valued logic are just the logical
implications in the flexible-two-valued logic, and rules of inference in traditional
two-valued logic are also, or can be treated as, the rules of inference in
flexible-two-valued logic. But the rules of inference in flexible-two-valued logic are
the rules of inference in the sense of rough-true, so, for definite, the corresponding
argument form should give clear indication of this characteristic. For example, in
flexible-two-valued logic, the universal modus ponens is:

A xð Þ ! B yð Þ rough-true
A x0ð Þ rough-true

) B y0ð Þ rough-true ð12:9Þ

We call the rules of inference in the sense of rough-true to be the rules of
rough-true inference. Thus, the rule of inference shown by expression (12.9)
above is rough-true-universal modus ponens (rough-true-UMP for short). We
call this kind of inference following rules of rough-true inference to be the
rough-true inference.

A rule of rough-true inference is the argument form that can guarantee that
rough-true conclusion follows from rough-true premise(s). Actually, the rough-true
contains true really. Viewing from the level of truth-degree, rough-true denotes
really subrange (0.5, β] (1 ≤ β) of truth-degrees, so a rule of rough-true inference is
just an argument form that can guarantee that conclusion whose
truth-degree 2 (0.5, β] follows from premises whose truth-degrees 2 (0.5, β]. That
shows that rules of rough-true inference are more general rules of inference, and the
rough-true inference is more general inference, while usual rules of inference and
inference in traditional two-valued logic are only the special cases of the rules of
rough-true inference and rough-true inference.
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3. Rough-true deduce reasoning

Here, we only consider the rough-true deduce reasoning following
rough-true-UMP.

The rough-true-UMPdemands thatmajor premiseA(x) → B(y)must be rough-true.
But we also cannot directly judge its truth, while using “A(x) rough true → B
(y) rough-true” in place of “A(x) → B(y) rough-true.” Because by the definition of
implication connective → as an operator, “A(x) rough-true → B(y) rough-true”
implies “A(x) → B(y) rough-true.” Thus, the rough-true-UMP can be rewritten as

A xð Þ rough�true! B yð Þ rough-true
A x0ð Þ rough-true

) B y0ð Þ rough-true ð12:10Þ

As thus, when reasoning, we need to consider whether major premises A xð Þ !
B yð Þ satisfies “A xð Þ rough�true! B yð Þ rough�true.” Actually, according to the
logical semantics of propositions, here major premises A xð Þ ! B yð Þ satisfies
“A xð Þ rough�true! B yð Þ rough�true ” originally (this is tantamount to say, those
major premises in practical reasoning are always rough-true. Of course, which may
be real rough-true, but also can be supposed rough-true, otherwise, corresponding
reasoning would be senseless). Thus, when reasoning, we only need to consider
whether minor premise A x0ð Þ is rough true.

We see that the conclusion in expression (12.10) is B y0ð Þ rough-true, but which
number is the number object y0 in which it is not pointed out. In fact, the meaning
of the conclusions is only: 9y0 2 core Bð Þþ such that B y0ð Þ rough-true. This is like
the situation of near-true-universal modus ponens in Sect. 11.6.3, that is, we only
know existing y0 but not get it. Of course, through L-N converting, the approximate
value of y0 can be obtained from linguistic value B.

Example 12.2 Suppose there is the following argument:

If a person is tall and fat; then the person is heavy

Zhang is tall and fat
) Zhang is heavy

Since “tall,” “fact,” and “heavy” are all flexible linguistic values, so here premise
and conclusion are all flexible propositions; thus, their truth values are all
rough-true. This is to say, this argument is actually a rough-true deduce reasoning
following rough-true-UMP, whose symbolic version is

Tall xð Þ ^ Fat yð Þ rough-true! Heavy zð Þ rough-true
Tall xZhang

� � ^ Fat yZhang
� �

rough-true

) Heavy zZhang
� �

rough-true
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From expression (12.10) and Example 12.2, it can be seen that usual reasoning
with flexible propositions is really rough-true inference we said here. In other
words, rough-true inference is applied to the deduce reasoning on flexible
propositions.

Further, we see that because the conceptual flexible linguistic truth value
“rough-true” is hardened into rigid linguistic truth value “near-true” in practical
application, therefore the conceptual rules of rough-true inference are actually the
corresponding rules of near-true inference in reasoning. Thus, the conceptual
rough-true inference is really the near-true inference.

4. Pure formal rough-true symbol deduction

It can be seen that except for the characteristic of premises and conclusion being
both rough-true, the symbol deduction processes of rough-true inference and usual
inference in two-valued logic have no difference. Therefore, pure formal symbol
deduction (including propositional and predicate symbol deductions) can be done in
flexible-two-valued logic, and various formal systems (including propositional
calculus formal systems and predicate calculus formal systems) can also be
established. Viewed from the syntactic structure, there is no any difference between
these formal inference and formal systems and those in traditional two-valued logic.
Of course, the formal systems in flexible-two-valued logic should be called flexible
propositional calculus formal systems or flexible predicate calculus formal systems.

12.7 Approximate Reasoning Following
Rough-True-UMP

Examining carefully the rough-true-UMP stated in last section, it can be seen that
where minor premise A x0ð Þ can match the antecedent A xð Þ of major premise
A xð Þ ! B yð Þ, and the two are both rough-true, but the truth-degrees of the two are
not necessarily the same. The truth-degree of a proposition equals to the
consistency-degree of object having corresponding flexible linguistic value in the
proposition. It can be seen from this that the rough-true-UMP may be used to do
approximate reasoning.

Here, approximate reasoning is also the fuzzy inference in the fuzzy set theory,
which is a kind of reasoning with non-exact matching flexible predicate, whose
basic scheme is

If x is A; then y is B this is a simplified formulation of corresponding universal propositionð Þ
x0 is A0

What is y0?

ð12:11Þ

12.6 Rough-True Inference 309



Or simply

A! B
A0

B0?
ð12:12Þ

where x, x0 2 U, y, y0 2 V , A, and A′ are flexible linguistic values of feature F , A′ is
approximate to A semantically; B and B′ are flexible linguistic values of feature G;
A, A′ and B, B′ are, respectively, defined on one-dimensional measurement spaces
U and V.

Next we give an example.

Example 12.3 Suppose there is the flexible proposition: If x is small, then y is large,
which represents the correspondence relation between x in space U and y in space
V; and its known x0 2 U is relatively small. Question: How about the corresponding
y0?

Solution Let A and B, respectively, denote “small” and “large,” then the original
flexible proposition can be expressed as A xð Þ ! B yð Þ, and the known fact “x0 is
relatively small” can expressed as A0 x0ð Þ; thus, the problem becomes the following
argument:

A xð Þ rough�trueð Þ ! B yð Þ rough�trueð Þ
A0 x0ð Þ rough�trueð Þ

y0?
ðAÞ

Since here linguistic value A′ in minor premises only is an approximate value of
antecedent linguistic value A in major premise, the two cannot completely match, so
rough-true-UMP cannot be directly used for the argument. But it can be seen that if
minor premise A0 x0ð Þ can be transformed into A x0ð Þ, and A x0ð Þ rough true yet, that
is, cA x0ð Þ[ 0:5, then we can use rough-true-UMP to do the reasoning. That is,

A xð Þ rough-trueð Þ ! B yð Þ rough-trueð Þ
A x0ð Þ rough-trueð Þ

) B y0ð Þ rough-trueð Þ

Thus, this outcome B y0ð Þ of the reasoning is also the result of expression
(A) above, that is, the result of doing approximate reasoning with A xð Þ ! B yð Þ and
A0 x0ð Þ.

Then, how does A0 x0ð Þ be transformed into A x0ð Þ? The method is: First, find
consistency-degree cA x0ð Þ and then judge whether cA x0ð Þ[ 0:5, if cA x0ð Þ[ 0:5,
then A x0ð Þ rough true, and thus we can change A0 x0ð Þ to A x0ð Þ. Finding
consistency-degree cA x0ð Þ has two situation: ① When x0 is known, find cA x0ð Þ
directly; ② when only A′ is known but x0 is not explicit, take peak-value point nA0
of A′ as x0, then find cA nA0ð Þ.
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Similarly, the y0 in reasoning outcome above is not known in general. If require,
we then can obtain an approximate value of y0 from flexible linguistic value B by
L-N conversion.

The above analysis shows that we can utilize rough-true-UMP to realize the
approximate reasoning with flexible propositions. But it can be seen that the lin-
guistic value in conclusion of this kind of approximate reasoning is always the
conclusion (linguistic value B) in major premise. This makes that the obtained
approximate linguistic value is not enough appropriate. This is a limitation of this
approximate reasoning method. Therefore, we will further research and discuss
approximate reasoning in Part V of the book.

12.8 Relations Between Truth-Degreed Logic,
Flexible-Two-Valued Logic, and Traditional
Two-Valued Logic

Previously, we founded truth-degreed logic and flexible-two-valued logic, and then,
what relations are there between these two kinds of logic and between them and the
traditional two-valued logic? Firstly, we would consider the relation between
truth-degree, rough-true, and rough-false, as well as true and false in the traditional
two-valued logic.

(1) Relation between truth-degree and “true” and “false”

Comparing the truth-degree with the “true” and “false” in the traditional two-valued
logic, it can be seen that for rigid propositions, truth values “true” and “false” in
traditional two-valued logic are tantamount to truth-degrees 1 and 0 in truth-degreed
logic; and for flexible propositions, “true” and “false” in traditional two-valued
logic are tantamount to “near-true” and “near-false” in truth-degreed logic, that is,
subranges (0.5, 1] and [0, 0.5) in denotation-truth-degree range [0, 1], or subranges
ð0:5; b� and ð1� b; 0:5� in connotation-truth-degree range 1� b; b½ �. That shows
“true” and “false” in traditional two-valued logic are linguistic truth values, but not
numerical truth values. Although usually “true” and “false” are denoted by 1 and 0,
there 1 and 0 are only symbols representing linguistic truth values but not the real
numerical values 1 and 0.

(2) Relation between truth-degree and “rough-true” and “rough-false”

It can be seen from the definition that the “rough-true” and “rough-false” are
linguistic truth values, while the truth-degree is numerical truth values. “rough-true”
and “rough false” are the summarizations of truth-degrees, while the truth-degrees
are the instances of “rough-true” and “rough-false.” But a truth-degree itself is also
the degree of “rough-true.”
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(3) Relation between the “true” and “false” and the “rough-true” and
“rough-false”

Comparing the “rough-true” and “rough-false” with the “true” and “false” in
traditional two-valued logic, it can be seen that

① For the rigid propositions, “rough-true” is the extension of “true,” while
“true” is the contraction of “rough-true”; just the same, “rough-false” is the
extension of “false” and “false” is the contraction of “rough-false”;

② For the flexible propositions, “true” and “false” are also “rough-true” and
“rough-false.”

It can be seen from the relation between truth values that truth-degreed logic,
flexible-two-valued logic, and traditional two-valued logic have the following
relations:

(1) Traditional two-valued logic and flexible-two-valued logic are actually both
linguistic truth-valued logic founded on truth-degree range [1 − β, β] (1 ≤ β).
From the relations between the truth-degree and the “true” and “false” as well
as their operations, and from the relations between the truth-degree and the
“rough-true” and “rough-false” as well as their operations, we can say that
traditional two-valued logic and flexible-two-valued logic are both founded on
the basis of truth-degreed logic.

(2) For the rigid propositions, traditional two-valued logic is just rigid-two-valued
logic, which is tantamount to special truth-degreed logic that only takes two
values of 0 and 1; for the flexible propositions, traditional two-valued logic is
tantamount to two-valued logic based on hardened “rough-true” and
“rough-false.”

(3) Viewed from truth values, flexible-two-valued logic includes traditional
two-valued logic, or in other words, flexible-two-valued logic is the extension
of rigid-two-valued logic.

12.9 Flexible Command Logic

Command logic is also called imperative logic, which is a logic branch that studies
the logic characteristics and the inference of commands expressed by imperative
sentences. The command in command logic is generally consists of command
receivers and the command tasks, but the command receivers that can be known
from context can be omitted in the command. For instance, the following are just
several commands:

① Jack, get a pen!
② Silence, please!
③ John, don’t go!
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④ Jack and John, please listen carefully!
⑤ Let us go to the library or the sport stadium!
⑥ If the furnace temperature is a bit low, turn the air door bigger!
⑦ If and only if I receive your phone, I will remit to you!

Like propositions, the commands also have positive and negative commands,
simple and compound commands, and compound commands can be separated as
conjunctive, disjunctive, implicational, and equivalent commands. In fact, the
above ③ is just a negative command, the rest are positive commands, ④ is a
conjunctive command, ⑤ is a disjunctive command, ⑥ is an implicational com-
mand, and ⑦ is an equivalent command.

It can be seen that the task of a command actually is a certain action or behavior,
while the action and behavior have corresponding states. The words that describe
states are adverbs, which are called adverbial adjunct in the grammar. Many of
linguistic values that describe the action states of objects are flexible linguistic
values. For example,

Run quickly!
Please do not make loud noise!
Hit them hard!
We should study hard!

The “quickly,” “loud,” “hard,” and “hard” in these commands are all flexible
linguistic values.

We call a command that contains flexible linguistic values to be the flexible
command.

It can be seen that flexible commands are often encountered and used in our
daily life. Actually, in the production rules of usual control and planning, the
consequents of many rules are all flexible commands. For example, the command in
the consequent of the above ⑥ is just a flexible command. Therefore, the study and
processing of flexible commands cannot be shunned away in imprecision infor-
mation processing.

We call the command logic that studies flexible commands to be the flexible
command logic. Similar to the previous flexible proposition logic, flexible com-
mand logic studies the logic theory about flexible commands, especially approxi-
mate reasoning with flexible commands.

12.10 Negative-Type Logic and Opposite-Type Logic

Examining the true and false in traditional two-valued logic, the 0 and 1 in
truth-degreed logic, and the T (rough-true) and F (rough-false) in
flexible-two-valued logic, it can be found that the opposite, or in other words,
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symmetrical, truth values in these logics are all relatively negative, and these logics
have a common characteristics, that is, they all have negation operation. Having
negation operation is due to these logics are based on the propositions with
negation (i.e., the proposition whose linguistic values are the linguistic values with
negation), while the flexible linguistic values in propositions with negation have
negation operation. A flexible linguistic value and its negation are relatively neg-
ative, which causes the propositions are relatively negative, which in turn causes the
corresponding truth values are relatively negative.

In view of the characteristics of containing negation operation and symmetrical
truth values being relatively negative, we call this type of logic to be negation-type
logic. Negation-type logic is also the logic with relatively negative propositions, or
in other words, relatively negative linguistic values, as background. Thus, the
truth-degreed logic previously discussed in Chap. 11 and the flexible linguistic
truth-valued logic in this chapter and the traditional two-valued logic are all
negation-type logic.

We know that there are also relatively opposite linguistic values except for
relatively negative linguistic values. And relatively opposite linguistic values would
result in another type of propositions—proposition with opposite, that is, the
proposition whose linguistic values are the linguistic values with opposite and then
forming another type of logic—opposite-type logic, that is, the logic with relatively
opposite linguistic values and relatively opposite propositions as background and
containing opposite operation. For opposite-type logic, we will make detailed
discussion in another work.

12.11 Summary

In this chapter, we founded the fundamental theory offlexible-linguistic-truth-valued
logic. First, we introduced two flexible linguistic truth values of flexible proposi-
tions, rough-true and rough-false, and then we deduced the computation models for
the flexible linguistic truth values of compound flexible propositions according to
the relation between numerical truth values and flexible linguistic truth values and
then founded the flexible-two-valued logic algebraic system. Next we examined
flexible propositional logic and flexible predicate logic in the flexible-two-valued
logic as well as corresponding inference, proposed the concepts of rough-valid
argument form, rough-true tautology, rough-true logical implication, and rule of
rough-true inference, and established the inference principles and methods called
rough-true inference. In addition, we also discussed the approximate reasoning
based on rough-true-UMP. In particular, we proposed the terminology of logical
semantics of a proposition and defined anew the linguistic truth values of compound
flexible propositions based on the logical semantics. Lastly, we sketched flexible
command logic, negation-type logic, and opposite-type logic.
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The main points and results of the chapter are:

• Flexible propositions have two relatively negative flexible linguistic truth values
—rough-true and rough-false, which are also the result of the relatively negative
flexible partition of the truth-degree range. These two flexible linguistic truth
values have similar computation models to those of the usual linguistic truth
values “true” and “false,” so there occur the flexible-two-valued logic algebraic
systems based on the rough-true and rough-false.

• On the basis of flexible-two-valued logic operations, flexible propositional logic
and flexible predicate logic can be founded. Similar to the traditional two-valued
logic, there are the concepts of rough-true tautologies, rough-false contradic-
tions, rough-true logical implication, rough-true logical equivalence, and so on
in flexible-two-valued logic. Further, there are also the corresponding rules of
rough-true inference such as rough-true-universal modus ponens
(rough-true-UMP).

• Inference in flexible-two-valued logic is still exact inference at the level of
linguistic truth value, in which the pure formal symbolic deduce and usual
deduce reasoning are in formal not essential different from those in the tradi-
tional two-valued logic, but to do the former must be in the essence of
“rough-true.” Besides, in flexible-two-valued logic, some approximate reason-
ing can be indirectly realized by utilizing rough-true-UMP.

• The relations between truth-degreed logic, flexible-two-valued logic, and tra-
ditional two-valued logic are:
Traditional two-valued logic and flexible-two-valued logic are actually both
linguistic truth-valued logics founded on truth-degree range 1� b; b½ � 1� bð Þ.
For rigid propositions, traditional two-valued logic is tantamount to special
truth-degreed logic that only takes the two values of 0 and 1; for flexible
propositions, traditional two-valued logic is tantamount to the linguistic
truth-valued logic based on hardened two values of rough-true and rough-false.
Therefore, flexible-two-valued logic includes traditional two-valued logic, or in
other words, it is the extension of traditional two-valued logic.

• The assumption or agreement for the truth of a proposition itself or the logic
relation between the truths of its component propositions is the logical semantics
of the proposition. The logical semantics that always refers to “true,”
“rough-true,” or “near-true” is the natural logical semantics or standard logical
semantics of a proposition, and that referring to “degree-true” is the extended
logical semantics of a proposition. In the natural logical semantics,

A xð Þ , cA xð Þ[ 0:5, x 2 core Að Þþ, mA xð Þ[ 0:5, x 2 A

Logical semantics is the criterion to judge the truth of a proposition and also a
basis for logical operations and logical inference.

• Rough-true and rough-false and their operations are all conceptual; in the
practical application, they then are tantamount to the corresponding near-true
and near-false and their operations.
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Chapter 13
Flexible Linguistic Rules and Their
Numerical Model

Abstract This chapter introduces and makes an all-round examination of flexible
linguistic rules. First, it expounds the concept and types of flexible linguistic rules;
discusses the transformation and reduction of them; analyzes the truth domains and
logical semantics of flexible linguistic rules; analyzes the mathematical essences
and mathematical backgrounds of flexible linguistic rules; and then presents a
numerical model of a flexible linguistic rule, which provides a condition for using
mathematical approach to realize reasoning and computation with flexible linguistic
rules. Besides, it discusses the relationship between the flexible linguistic rules and
the flexible linguistic functions and correlations, and gives a query on the practice
of treating a fuzzy rule as a fuzzy relation in the traditional fuzzy set theory.

Keywords Flexible linguistic rules � Flexible linguistic functions � Numerical-
model representative

Flexible linguistic rules are a kind of common and important representation form of
imprecise information and knowledge, which play an indispensable and important
role in imprecise-information processing. This chapter introduces flexible linguistic
rules and their type and transformation; analyzes their truth domains, logical
semantics, mathematical background, and mathematical essence; and then presents
a numerical model of flexible linguistic rules.

13.1 What Is a Flexible Linguistic Rule?

Production rule, or simply rules, is a kind of knowledge representation technique
used widely in artificial intelligence. The general form of a rule is as follows:

If hAntecedenti then hConsequenti

or symbolically,
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A!C

where Antecedent (A) is a simple proposition or compound proposition and
Consequent (C) is a simple proposition or command, which can also be a com-
pound proposition or command. The antecedent is premise or condition, and the
consequent is conclusion or action. When the premise in antecedent occurs or the
condition is satisfied, then the conclusion in consequent is produced or the action is
executed.

For the production rule, there are multiple different wordings in the literature,
such as if-then rule, conditional statement, inference sentence, and implicational.
The production rules represent relations of cause–result, result–cause, correspon-
dence, response, etc., between things. Viewed from the angle of logic, a production
rule is an implicational proposition or an implicational command, which represents
an implication relation. But viewed abstractly from the angle of mathematics, a
production rule always represents the correspondence relation between its ante-
cedent and consequent [1].

Definition 13.1 We call a production rule whose antecedent or consequent contains
flexible linguistic values to be the flexible linguistic rule or flexible rule for short.

The following are some examples of flexible rules (expressed in natural
language):

(1) If temperature is high and sunshine, and water and fertilizer are sufficient,
then plants grow fast.

(2) If the voltage is high or the electric resistance is small, then the electric
current is large.

(3) If one is gifted plus who is studious, then he/she can achieve good results.
(4) If the furnace temperature is too high, then close the air door smaller or

reduce the speed of the fan.
(5) If the body becomes fat, then do more sports and diet properly.
(6) If an apple has a big size, symmetrical shape, bright color, and smooth skin,

then this apple is a superior apple.
(7) If the road becomes bad or visibility is down or an obstacle appears at not far

ahead, then reduce speed appropriately.
(8) If bank notes are issued excessively plus supplies are not enough plus there

exists severe monopoly, then the price will rise sharply.
(9) If one has a high fever, headache, and poor appetite, then he/she probably has

caught a bad cold.
(10) If the weather is especially sultry and without any wind, then there highly

probably will be a heavy storm.
(11) If x is close to 0, then y = 1.
(12) If x = 0, then y is far greater than 10.

It can be seen that viewed from the level of linguistic values, a flexible rule is
also an implicational compound flexible proposition or flexible command.
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Note that here the “flexible” in “flexible linguistic rule” and “flexible rule” is
with respect to the linguistic values in antecedent and consequent of a rule, but not
with respect to the correspondence relation between antecedent and consequent of
the rule. The “flexible” rule with respect to the correspondence relation between
antecedent and consequent of a rule will be discussed in Chap. 25.

Since a flexible linguistic value is the summarization and a general term of a
batch of numerical values, so viewed deep in the level of numerical values, or in
other words, substituting the objects in a proposition by corresponding measure-
ments, that is, numerical values, a flexible rule is also an implicational compound
possessive relation or membership relation made of possessive relations or mem-
bership relations, for instance, AðxÞ ! BðyÞ and x 2 A ! y 2 B: Also, if repre-
senting strictly in the first-order predicate, then a flexible rule is an universal
implicational compound flexible proposition or flexible command, as 8xAðxÞ !
9yBðyÞ: (This is just the major premise of universal modus ponens.)

13.2 Types of Flexible Linguistic Rules

Actually, flexible linguistic rules widely exist in our knowledge especially expe-
riential knowledge and common sense, or in other words, much of our knowledge
are all represented by the form of flexible rules. In order to understand flexible rules
more comprehensively and more deeply, next we classify flexible rules from dif-
ferent angles.

1. Classification according to the structures and the linguistic values

According to the structures of antecedent and consequent and the nature of
flexible linguistic values, we present the following several types of flexible rules.

We call the rule of the form

AðxÞ!BðyÞ ð13:1Þ

to be the flexible rule with single condition and single conclusion; call the rules of
the forms

A1ðx1Þ ^ A2ðx2Þ ^ � � � ^ AnðxnÞ ! BðyÞ
A1ðx1Þ _ A2ðx2Þ _ � � � _ AnðxnÞ ! BðyÞ
A1ðx1Þ � A2ðx2Þ � � � � � AnðxnÞ ! BðyÞ

9=
; ð13:2Þ

to be the flexible rule with multiple conditions and single conclusion; and then call
them in order to be the conjunction-type rule, disjunction-type rule (the two are
collectively called the combination-type rule), and synthesis-type rule; call the rules
of the forms
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AðxÞ ! B1ðy1Þ ^ B2ðy2Þ ^ � � � ^ BmðymÞ
AðxÞ ! B1ðy1Þ _ B2ðy2Þ _ � � � _ BmðymÞ

�
ð13:3Þ

to be the flexible rule with single condition and multiple conclusions; and call the
rules of the forms

A1ðx1Þ ^ A2ðx2Þ ^ � � � ^ AnðxnÞ ! B1ðy1Þ ^ B2ðy2Þ ^ � � � ^ BmðymÞ
A1ðx1Þ ^ A2ðx2Þ ^ � � � ^ AnðxnÞ ! B1ðy1Þ _ B2ðy2Þ _ � � � _ BmðymÞ
A1ðx1Þ _ A2ðx2Þ _ � � � _ AnðxnÞ ! B1ðy1Þ ^ B2ðy2Þ ^ � � � ^ BmðymÞ
A1ðx1Þ _ A2ðx2Þ _ � � � _ AnðxnÞ ! B1ðy1Þ _ B2ðy2Þ _ � � � _ BmðymÞ
A1ðx1Þ � A2ðx2Þ � � � � � AnðxnÞ ! B1ðy1Þ ^ B2ðy2Þ ^ � � � ^ BmðymÞ
A1ðx1Þ � A2ðx2Þ � � � � � AnðxnÞ ! B1ðy1Þ _ B2ðy2Þ _ � � � _ BmðymÞ

9>>>>>>=
>>>>>>;

ð13:4Þ

to be the flexible rule with multiple conditions and multiple conclusions.
Where A, B, Ai, and Bj (i = 1, 2, …, n; j = 1, 2, …, m) in the expressions (13.1)–

(13.4) above are all atomic linguistic values, and x, y, xi, and yj are one-dimensional
or multidimensional numerical variables.

Additionally, we call the rules with a composite linguistic value of the forms

A1 ^ A2 ^ � � � ^ Anðx1; x2; . . .; xnÞ ! BðyÞ
A1 _ A2 _ � � � _ Anðx1; x2; . . .; xnÞ ! BðyÞ

�
ð13:5Þ

to be the flexible rule with a combined linguistic value; and call the rule with a
composite linguistic value of the form

A1 � A2 � � � � � Anðx1; x2; . . .; xnÞ ! BðyÞ ð13:6Þ

to be the flexible rule with a synthetic linguistic value.
Where Ai (i = 1, 2, …, n) and B in three expressions above are all atomic

linguistic values, and xi and y are one-dimensional or multidimensional numerical
variables.

From the representation of possessive relation form of compound flexible
propositions (see Sect. 11.2.1), it can be seen that a flexible rule with multiple
conditions and single conclusion can be rewritten as a rule with a composite lin-
guistic value; conversely, a flexible rule with a composite linguistic value can also
be rewritten as a flexible rule with multiple conditions, so a flexible rule with
multiple conditions and single conclusion is equivalent to the corresponding flex-
ible rule with a composite linguistic value.

Further, we call the flexible rule with multiple conditions and single conclusion
to be the standard flexible rule, and call the standard flexible rule in which the
numerical variables are one-dimensional variables to be typical flexible rule.

It is shown the rules (1), (6), (9), and (10) in the examples in last section are
conjunction-type rules; the rules (2) and (7) are disjunction-type rules; and rules
(3) and (8) are synthesis-type rules; and except that rules (4) and (5) are the rule
with multiple conclusions, the remaining rules are all rules with single conclusion,
which are standard flexible rules and typical flexible rules.
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Finally, we point out that since, generally speaking, a flexible rule whose
antecedent is a compound proposition and consequent is also a compound propo-
sition or command can always be split or transformed logically into multiple
flexible rules with multiple conditions and single conclusions, that is, standard
flexible rules, and the standard flexible rules are more convenient for reasoning and
use, we discuss mainly standard flexible rules, especially, typical flexible rules, in
the chapters and sections later.

2. Classification according to the characteristics of feature values of the
antecedent and consequent

The rules discussed above are all such rules in which the feature values in the
antecedent and consequent are all linguistic values, but there are also some special
rules in which the feature values in antecedent or consequent are numerical values.

We refer to the rule whose feature values in the antecedent and consequent are
both linguistic values as a L-L (short for language–language) rule, refer to the rule
whose feature values are the linguistic values in the antecedent but the numerical
value in the consequent as a the L-N (short for language–number) rule, and refer to
the rule whose feature values are the numerical values in the antecedent while the
linguistic values in the consequent as a N-L (short for number-language) rule. Thus,
according to the characteristics of the feature values in the antecedent and conse-
quent, flexible rules can be separated into three types of L-L rules, L-N rules, and
N-L rules. For instance, the rule (11) in last section is an L-N rule, and rule (12) is
an N-L rule, while the rest are all L-L rules.

3. Classification according to the nature of flexible linguistic values

According to the nature of flexible linguistic values, flexible rules can be sep-
arated into property–property rules, property–relation rules, relation–property rules,
relation–relation rules, and hybrid–property rules.

(1) Property–property rules

A property–property rule is the rule whose linguistic values in the antecedent
and consequent are both property-type flexible linguistic values. For example,

If x is large; then y is small

which is a property–property rule.

(2) Property–relation rule

A property–relation rule is the rule that the linguistic values in the antecedent are
property-type flexible linguistic value, while the linguistic values in consequent are
relation-type flexible linguistic value. For instance,
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If x is large; then y is far greater than z

which is just a property-relation rule.

(3) Relation–property rules

A relation–property rule is the rule that the linguistic values in the antecedent are
relation-type flexible linguistic values, while the linguistic values in the consequent
are the property-type flexible linguistic values. For example,

If x and y are approximately equal; then z is near z0

which is just a relation–property rule.

(4) Relation–relation rules

A relation–relation rule is the rule that the linguistic values in both the ante-
cedent and consequent are relation-type flexible linguistic values. For example,

If x and y are approximately equal; then u is far greater than v

which is a relation–relation rule.

(5) Hybrid-property rules

A hybrid-property rule is the rule that the linguistic values in the antecedent are
relation-type flexible linguistic values and property-type flexible linguistic values,
while the linguistic values in the consequent are property flexible linguistic values.
For instance,

If x and y are approximately equal and x is smaller; then y is also smaller

which is a hybrid-property rule.

4. Classification according to the variables

We call the flexible rule in which the variables are all numerical variable to be a
numerical variable rule. Those variables (as x, y, z, xi, yi, x, y, etc.) in the previous
expressions of various rules are all numerical variables; therefore, those rules above
are all numerical variable rules. But, there is also a kind of rules, in which the
variables are linguistic variables. We call the flexible rule in which the variables are
all linguistic variable to be a linguistic variable rule. For example,

If X is A; then Y is B

which just is a linguistic variable rule, which is really
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If X ¼ A; then Y ¼ B

and can also be formalized as

AðxÞ ! BðyÞ

even

8xAðxÞ ! 9yBðyÞ

Actually, numerical variable rule and linguistic variable rule are only two def-
erent expression forms of one and same rule, the semantics of the two are really the
same. For example, we use linguistic variables V, R, and I to represent separately
voltage (quantity), electric resistance (quantity), and electric current (quantity), and
then, the above rule (2) can be expressed as

If V is high or R is small; then I is large

that is

If V ¼ high or R ¼ small; then I ¼ large

This is a linguistic variable rule. Of course, it can also be formalized as

High ðVÞ _ Small ðRÞ ! Large ðIÞ

or

8V High ðVÞ _ 8R Small ðRÞ ! 9I Large ðIÞ

But if we use numerical variables v, r, and i to represent separately voltage
(quantity), electric resistance (quantity), and electric current (quantity), then the
above rule (2) can also be expressed as

High ðvÞ _ Small ðrÞ ! Large ðiÞ or v 2 High _ r 2 Small ! i 2 Large

This is two numerical variable rules. Similarly, they can also be expressed by
quantified predicate formula as

8v High ðvÞ _ 8rSmall ðrÞ ! 9i Large ðiÞ

Since a numerical variable rule is equivalent to the corresponding linguistic
variable rule, that is, both represent the correspondence (relation) between ante-
cedent linguistic values and consequent linguistic values, we would not distinguish
them later.
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5. Classification according to the natures of correspondence relations

As previous stated, viewed abstractly, a production rule represents the corre-
spondence relation between its antecedent and consequent. Since the correspon-
dence relations between things have the distinction of certainty and uncertainty,
flexible rules can be separated into certain rules and uncertain rules.

Certain flexible rules are the flexible rules modified by words “necessary,”
“certain,” and so on. For example, the component proposition “if p then q” in
proposition “‘if p then q’ is necessary” is a certain flexible rule. Uncertain flexible
rules are then the type of flexible rules modified by words “possible,” “very likely,”
and so forth. For example, the component proposition “if p then q” in proposition
“‘if p then q’ is possible” just is an uncertain flexible rule.

The statement describing a certain or uncertain flexible rule is also a proposition,
and the kind of proposition can also be represented as the form of rule. For instance,
“‘if p then q’ is necessary” can be represented as “‘if p then necessarily q,’” and “‘if
p then q’ is possible” can be represented as “‘if p then possibly q.’” Obviously, the
two expression forms are just the expression forms in daily language. But, in daily
language, the modifiers “necessary,” “certain,” and so on describing certain rules
are often omitted, thus making that a rule describing a certain rule and the certain
rule described by which become one and the same rule.

In logic, the propositions containing words “necessarily,” “possibly,” and so on
are called the modal propositions. Therefore, this kind of flexible rules containing
words “necessarily,” “possibly,” and so on can also be called the modal flexible
rules. Further, according to modal words, we then separate modal flexible rules into
necessarily-type modal flexible rules, possibly type modal flexible rules, and
flexible possibly-type modal flexible rules. For example, in the preceding rules in
last section, rule (9) is a possibly-type modal flexible rule and rule (10) is a flexible
possibly-type modal flexible rule; the rest are simplified necessarily-type modal
flexible rules, that is, certain flexible rules.

For the uncertain rules and modal flexible rules, we will further discuss in Chaps.
24 and 25.

13.3 Transformation and Reduction of Flexible Linguistic
Rules

From the finding methods of the membership-consistency functions of multidi-
mensional linguistic values (see Sect. 4.2), it is known that a multidimensional
linguistic value can be transformed into a one-dimensional linguistic value through
space transformation; that means that through space transformation, a rule with
multidimensional linguistic values can be transformed into a rule with one-
dimensional linguistic values, or more generally, a non-typical flexible rule be
transformed into a typical flexible rule. Next, we analyze it through some instances.
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Example 13.1 Let Aðx1; x2; . . .; xnÞ ! BðyÞ be a rule with multidimensional lin-
guistic values whose antecedent linguistic value is property-type linguistic value,
ðx1; x2; . . .; xnÞ 2 U � Rn; and y 2 V : where U is not the direct measurement space
that A belongs to, and the direct measurement space A belongs to is really a
one-dimensional space [a, b], but there exists mapping u: U ! ½a; b�; for
ðx1; x2; . . .; xnÞ 2 U;uðx1; x2; . . .; xnÞ ¼ r 2 ½a; b�: Thus, flexible linguistic value
A on U can be transformed into flexible linguistic value A on [a, b], and then, the
flexible proposition A(x1, x2, …, xn) is transformed into flexible proposition A(r).
Thus, the original rule with multidimensional linguistic value,
Aðx1; x2; . . .; xnÞ ! BðyÞ, also is transformed into rule with one-dimensional lin-
guistic value, AðrÞ ! BðyÞ:
Example 13.2 Let Rðx1; x2; . . .; xnÞ ! BðyÞ be a rule with multidimensional lin-
guistic value whose antecedent linguistic value is a relation-type linguistic value,
ðx1; x2; . . .; xnÞ 2 U � Rn: Since R is a relation flexible linguistic value on U, so
U is not the direct measurement space that A belongs to. But if there exists mapping
u: U ! ½a; b�; for ðx1; x2; . . .; xnÞ 2 U;uðx1; x2; . . .; xnÞ ¼ r 2 ½a; b�; then flexible
linguistic value A on U can be transformed into flexible linguistic value A on [a, b];
further, flexible proposition A(x1, x2, …, xn) is transformed into flexible proposition
A(r). Thus, the original rule with multidimensional linguistic value,
Rðx1; x2; . . .; xnÞ ! BðyÞ; is also transformed into rule with one-dimensional lin-
guistic value, RðrÞ ! BðyÞ:
Example 13.3 Let A(x) ! R(y1, y2, …, ym) be a rule with multidimensional lin-
guistic value whose consequent linguistic value is a relation-type flexible linguistic
value, x 2 U � R; and ðy1; y2; . . .; ymÞ 2 V: V is not the direct measurement space
that R belongs to. Yet there exists function r ¼ wðy1; y2; . . .; ymÞ; flexible linguistic
value R on m-dimensional space V can be transformed into flexible linguistic value
R on one-dimensional space [a, b]. Thus, flexible proposition Rðy1; y2; . . .; ymÞ is
transformed into R(r), which is tantamount to that rule with multidimensional
linguistic value, AðxÞ ! Rðy1; y2; . . .; ymÞ; is transformed into rule with
one-dimensional linguistic value, AðxÞ ! RðrÞ:
Example 13.4 Let Rnðx1; x2; . . .; xnÞ ! Rmðy1; y2; . . .; ymÞ be a relation–relation
rule, ðx1; x2; . . .; xnÞ 2 U � Rn; and ðy1; y2; . . .; ymÞ 2 V � Rm: U and V are not
the direct measurement spaces that Rn and Rm belong to, respectively, but there
exists functions rn ¼ uðx1; x2; . . .; xnÞ and rm ¼ wðy1; y2; . . .; ymÞ; which can
transform flexible linguistic value Rn on n-dimensional space U into flexible lin-
guistic value Rn on one-dimensional space [an, bn], and can transform flexible
linguistic value Rm on m-dimensional space V into flexible linguistic value Rm on
one-dimensional space [am, bm]. Thus, flexible proposition Rn(x1, x2, …, xn) is
transformed into Rn(rn); Rm(y1, y2, …, ym) is transformed into Rm(rm), which is
tantamount to rule with multidimensional linguistic value; and Rn(x1, x2, …,

xn) ! Rm(y1, y2, …, ym) is transformed into rule with one-dimensional linguistic
value, Rn(rn) ! Rm(rm).
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Example 13.5 Let A1ðx11 ; x12 ; . . .; x1rÞ ^ A2ðx21 ; x22 ; . . .; x2sÞ ^ � � � ^ Anðxn1 ;
xn2 ; . . .; xntÞ ! Bðy1; y2; . . .; ymÞ be a conjunction non-typical flexible rule, where
ðxi1 ; xi2 ; . . .; xijÞ 2 Uiði ¼ 1; 2; . . .; nÞ; ðy1; y2; . . .; ymÞ 2 V;A1;A2; . . .; An and
B are multidimensional property-type or relation-type flexible linguistic values. Ui

and V are not the direct measurement space that Ai and B belong to, respectively,
but there exists mappings ri ¼ uðxi1 ; xi2 ; . . .; xijÞ and r ¼ ðy1; y2; . . .; ymÞ which
can transform flexible linguistic value Ai on multidimensional space Ui into flexible
linguistic value Ai on one-dimensional space [ai, bi] and transform flexible linguistic
value B on multidimensional space V into flexible linguistic value B on
one-dimensional space [a, b]; thus, flexible proposition Aiðxi1 ; xi2 ; . . .; xijÞ is
transformed into Ai(ri) and B(y1, y2, …, ym) is transformed into B(r). Consequently,
the non-typical flexible rule A1ðx11 ; x12 ; . . .; x1rÞ ^ A2ðx21 ; x22 ; . . .; x2sÞ ^ � � � ^
Anðxn1 ; xn2 ; . . .; xntÞ ! Bðy1; y2; . . .; ymÞ is transformed into typical flexible rule
A1ðr1Þ ^ A2ðr2Þ ^ � � � ^ AnðrnÞ ! BðrÞ:

It can be seen that from these examples that as long as there exists such
mathematical transformations, that is, mappings, the rule with multidimensional
linguistic value can be transformed into rule with one-dimensional linguistic value.
Thus, an approach is provided for solution of relevant problems of rules with
multidimensional linguistic value and non-typical flexible rules. The fact of rule
transformation also shows that rules with multidimensional linguistic value and
non-typical flexible rules can all be reduced to rules with one-dimensional linguistic
value and typical flexible rules.

13.4 Truth Domains and Logical Semantics of Flexible
Linguistic Rules

1. Truth domains of flexible propositional forms

Let A be a flexible linguistic value on n-dimensional measurement space
U. Then, for arbitrary x0 2 U; a flexible proposition A(x0) is always formed.
Therefore, when x is a variable, possessive relation A(x) actually is a flexible
propositional form, which represents a propositional cluster Aðx0Þjx0 2 Uf g with
flexible linguistic value A.

We know that for any x0 2 U, when and only when cA(x0) > 0, that is, x0 2
supp(A), t(A(x0)) > 0, that is, proposition A(x0) is true in a certain degree or, in
other words, A(x0) is rough-true. Thus, the corresponding flexible set A is also a
kind of truth set or truth domain—we can call it the rough-truth domain. Since
t(A(x0)) > 0.5 , cA(x0) > 0.5 , x0 2 core(A)+, the extended core core(A)+ of
flexible set A is also the near-truth domain of flexible propositional form A(x).
Rough-truth set is the conceptual truth domain of flexible propositional form A(x),
and near-truth set is the practical truth domain of A(x).
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Similarly, membership relation x 2 A is also a kind of flexible propositional
form, of which the conceptual truth domain and practical truth domain are also
separately flexible set A and extended core core(A)+.

From Sect. 11.2, we know that the possessive relation forms of 5 basic com-
pound propositions are separately A ^ Bðx; yÞ;A _ Bðx; yÞ;:AðxÞ;:A _
Bðx; yÞ and ð:A _ BÞ ^ ðA _ :BÞ ðx; yÞ and the membership relation forms are
separately ðx; yÞ 2 A� V \U � B; ðx; yÞ 2 A� V [U � B; x 2 Ac � V [U �
B and ðx; yÞ 2 ðAcðx; yÞ 2 Ac � V [U � BÞ \ ðA� V [U � BcÞ: Then, the con-
ceptual truth domains and practical truth domains of the flexible propositional
forms with the 5 pairs of compound possessive relations and membership relations
are separately one by one the corresponding flexible sets A� V
\U � B;A� V [U � B, Ac;Ac � V [U � B, and ðAc � V [U � BÞ \ ðA�
V [U � BcÞ and extended cores coreðAÞþ � V \U � coreðBÞþ , core(AÞþ � V
[U � coreðBÞþ , core(AcÞþ, core(AcÞþ � V [U � coreðBÞþ , and ðcore(AcÞþ �
V [U � coreðBÞþ Þ \ ðcore(AÞþ � V [U � coreðBcÞþ (as shown in Figs. 13.1,
13.2, 13.3, and 13.4, where the gray parts are practical truth domains).

2. Truth domain of a flexible rule

We know that the AðxÞ!BðyÞ as a flexible rule refers to universal implicational
compound flexible proposition 8xAðxÞ ! 9yBðyÞ: Considering that the antecedent A
(x) is a sufficient condition for the consequent B(y), and speaking in term of the
corresponding flexible sets, the complete meaning of flexible rule AðxÞ ! BðyÞ is as
follows: For any x in measurement spaceU, if x belongs to flexible set Awith a certain
degree, then there exists at least one y in measurement space to belong to flexible set
B with a certain degree; or else, the corresponding y belongs to flexible sets B or Bc

with a certain degree. It can be seen that the x here is arbitrary, but y is dependent on x,
that is, which is bound by x. Therefore, the truth-degree of ruleAðxÞ ! BðyÞ cannot be
decided completely by the mutually independent truth-degrees of antecedent and
consequent like proposition Aðx0Þ ! Bðy0Þ; but according to specific problem to
analyze specifically that for x0 in U which can make tðAðx0ÞÞ[ 0 tðAðx0ÞÞ[ 0:5;
which y0 in the corresponding V can make tðBðy0ÞÞ[ 0 ðtðBðy0ÞÞ[ 0:5Þ:We denote
set y0jy0 2 V ;when tðAðx0ÞÞ[ 0; tðBðy0ÞÞ[ 0f g as Bs and set y0jy0 2 V ;f
when tðAðx0ÞÞ[ 0:5; tðBðy0ÞÞ[ 0:5g as (core(B)+)s. Thus, the conceptual truth
domain of flexible rule AðxÞ ! BðyÞ is

A� V \U � Bs [Ac � V \U � ðB[BcÞ
¼ A� V \U � Bs [Ac � V \U � V

¼ A� V \U � Bs [Ac � V

¼ Ac � V [U � Bs

namely
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Fig. 13.1 The truth domain
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A ∧ B(x, y)
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Fig. 13.2 The truth domain
of flexible propositional form
A ∨ B(x, y)
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Fig. 13.3 The truth domain
of flexible propositional form
A(x) → B(y)
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Fig. 13.4 The truth domain
of flexible propositional form
A(x) ← →B(y)
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Ac � V [U � Bs ðBs�BÞ ð13:7Þ

and the practical truth domain is

coreðAcÞþ � V [U � ðcoreðBÞþ Þs ððcoreðBÞþ Þs�coreðBÞþ Þ ð13:8Þ

Actually, in consideration of the possessive relation form and membership
relation form of rule 8xAðxÞ ! 9yBðyÞ are separately 8x9y:A _
Bðx; yÞ and 8x9yðx; yÞ 2 Ac � V [U � B; and in consideration of y being depen-
dent on x and ðcoreðBÞþ Þs � coreðBÞþ ; then the above conceptual truth domain
and practical truth domain of rule 8xAðxÞ ! 9yBðyÞ can also be derived from the
conceptual truth domain Ac × V [ U × B and practical truth domain coreðAcÞþ �
V [U � coreðBÞþ of propositional form AðxÞ ! BðyÞ:

It can be seen that for arbitrary Bs and ðcoreðBÞþ Þs;

Ac � V [U � Bs�Ac � V [U � B ð13:9Þ

coreðAcÞþ � V [U � ðcoreðBÞþ Þs� coreðAcÞþ � V [U � coreðBÞþ ð13:10Þ

This shows that regions Ac � V [U � B and coreðAcÞþ � V [U � coreðBÞþ
are separately the most one, that is, least upper bound, of all possible conceptual
truth domain and practical truth domain of rule 8xAðxÞ ! 9yBðyÞ: Thus, though we
cannot give definitely the truth domains of flexible rule 8xAðxÞ ! 9yBðyÞ; we can
know their scopes. On the other hand, the Ac × V [ U × B and coreðAcÞþ �
V [U � coreðBÞþ at right-hand side of the above two expressions are just sepa-
rately the conceptual truth domain and practical truth domain of flexible proposi-
tional form AðxÞ ! BðyÞ (as shown in Fig. 13.3). That is to say, the truth domain of
flexible propositional form AðxÞ ! BðyÞ is the least upper bound of the truth
domain of flexible rule 8xAðxÞ ! 9yBðyÞ: This is the relation between the truth
domain of flexible rule 8xAðxÞ ! 9yBðyÞ and the truth domain of flexible propo-
sitional form AðxÞ ! BðyÞ:

From the truth domains of rule AðxÞ ! BðyÞ; it is not hard to further deduce the
truth domains of other rules.

3. Logical semantics of a flexible rule

Since flexible rules are a kind of universal proposition, they should have logical
semantics. Next, we first analyze what is the logical semantics of rule AðxÞ ! BðyÞ:
Using predicate to represent rule AðxÞ ! BðyÞ; it is the universal proposition:

8xAðxÞ ! 9yBðyÞ

Its literal meaning is for 8x 2 U; if x is A, then there exists y 2 V ; y is
B. According to the literal meaning of this rule, the truth relation between its
antecedent and consequent is as follows:
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For 8x 2 U; if “x is A” is near-true, then there exists y 2 V ; “y is B” is near-true.
Obviously, this is just the logical semantics of rule AðxÞ ! BðyÞ: Its formal

representation is

tðAðxÞÞ[ 0:5 ! tðBðyÞÞ[ 0:5 ð13:11Þ

or

tðx 2 AÞ[ 0:5 ! tðy 2 BÞ[ 0:5 ð13:12Þ

It can be seen that the logical semantics of rule AðxÞ ! BðyÞ is consistent with
the logical semantics of simple implicational proposition Aðx0Þ ! Bðy0Þ it covers.
As a matter of fact, the logical semantics of a rule is also the abstraction of the
logical semantics of the simple implicational proposition it covers.

From the logical semantics of rule AðxÞ ! BðyÞ; it is not hard to further deduce
the logical semantics of other rules. For example,

① The logical semantics of conjunctive rule A1ðx1Þ ^ A2ðx2Þ ^ � � � ^ AnðxnÞ !
BðyÞ is as follows:
If A1ðx1Þ is near-true and A2(x2) is near-true and … and An(xn) is near-true,
then B(y) is near-true
That is,

tðA1ðx1ÞÞ[ 0:5 ^ tðA2ðx2ÞÞ[ 0:5 ^ � � � ^ tðAnðxnÞÞ[ 0:5 ! tðBðyÞÞ[ 0:5

ð13:13Þ

② The logical semantics of disjunctive rule A1ðx1Þ _ A2ðx2Þ _ � � � _ AnðxnÞ !
BðyÞ is as follows:
If A1(x1) is near-true or A2(x2) is near-true or… or An(xn) is near-true, then B
(y) is near-true
That is,

tðA1ðx1ÞÞ[ 0:5 _ tðA2ðx2ÞÞ[ 0:5 _ � � � _ tðAnðxnÞÞ[ 0:5 ! tðBðyÞÞ[ 0:5

ð13:14Þ

And the logical semantics of rules with a combined linguistic value, A1 ^
A2 ^ � � � ^ Anðx1; x2; . . .; xnÞ ! BðyÞ and A1 _ A2 _ � � � _ Anðx1; x2; . . .;
xnÞ ! BðyÞ; are separately

if A1 ^ A2 ^ � � � ^ Anðx1; x2; . . .; xnÞ is near-true; then B yð Þ is near-true

and
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if A1 _ A2 _ � � � _ Anðx1; x2; . . .; xnÞ is near-true; then B yð Þ is near-true

That is,

tðA1 ^ A2 ^ � � � ^ Anðx1; x2; . . .; xnÞÞ[ 0:5 ! tðBðyÞÞ[ 0:5 ð13:15Þ

and

tðA1 _ A2 _ � � � _ Anðx1; x2; . . .; xnÞÞ[ 0:5 ! tðBðyÞÞ[ 0:5 ð13:16Þ

③ The logical semantics of rule with a synthetic linguistic value, A1 � A2 �
� � � � Anðx1; x2; . . .; xnÞ ! BðyÞ; is as follows:

If A1 � A2 � � � � � Anðx1; x2; . . .; xnÞ is near-true; then B yð Þ is near-true

That is,

tðA1 � A2 � � � � � Anðx1; x2; . . .; xnÞÞ[ 0:5 ! tðBðyÞÞ[ 0:5 ð13:17Þ

4. The extended logical semantics of flexible rules

The logical semantics stated above is the natural (or standard) logical semantics
of flexible rules, while the extended logical semantics of flexible rules, like those of
flexible propositions, is described by using “degree-true,” that is, if the antecedent
degree-true then the consequent degree-true. For example, the extended logical
semantics of rule AðxÞ ! BðyÞ is as follows: if A(x) degree-true then B(y) de-
gree-true, or formally and quantitatively, tðAðx0ÞÞ[ 0 ! tðBðyÞÞ[ 0: The exten-
ded logical semantics of other rules is similar.

5. Truth domain and logical semantics of a rule with linguistic values with
opposite

The above-stated truth domains and logical semantics are both for the usual rules
with linguistic values with negation. A rule with linguistic values with opposite also
has its truth domain and logical semantics. Since the support set of a linguistic value
with opposite is tantamount to the extended core of a linguistic value with negation,
so the conceptual truth domain and practical truth domain of rule with linguistic
values with opposite, AðxÞ ! BðyÞ; are as follows:

Ac � V [U � Bs ðBs�BÞ ð13:18Þ

suppðAcÞ � V [U � suppðBsÞ ðsuppðBsÞ�suppðBÞÞ ð13:19Þ

From this, it is not hard to further deduce the truth domains of other rules with
linguistic values with opposite.
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If we use linguistic truth values to describe the logical semantics of rules, then
the logical semantics of rules with linguistic values with opposite is no different
from those of the rules with linguistic values with negation. But if we use
truth-degrees, then “near-true” in the logical semantics of the rule with linguistic
values with opposite is “truth-degree >0,” but not “truth-degree >0.5.” For instance,
for rule with linguistic values with opposite, AðxÞ ! BðyÞ; its logical semantics
described by linguistic truth values is as follows:

For 8x 2 U; if A(x) is near-true, then there exists y 2 V ; and B(y) is near-true,
while its logical semantics described by truth-degree is

tðAðxÞÞ[ 0 ! tðBðyÞÞ[ 0 ð13:20Þ

From that, it is not hard to further deduce the logical semantics of other rules
with linguistic values with opposite.

13.5 Mathematical Essence, Mathematical Background,
and Numerical Model of Flexible Linguistic Rules

1. Implication and correspondence

We know that viewed from the angle of logic, a flexible rule is just an impli-
cational compound flexible proposition. So a flexible rule represents the implication
relation between its antecedent and consequent.

The so-called implication is that the antecedent is a sufficient condition for the
consequent. Therefore, the complete expression of rule AðxÞ ! BðyÞ should be as
follows:

if AðxÞ then BðyÞ; else BðyÞ _ :BðyÞ

while separately speaking, the sentence is as follows:

AðxÞ 7!BðyÞ
:AðxÞ 7!BðyÞ _ :BðyÞ ¼ VðyÞðV ¼ B _ :BÞ

�
ð13:21Þ

(Note that here the arrow symbol “ 7! ” represents “correspondence” but not “im-
plication”). That is to say, completely speaking, the implication includes the two
propositional correspondences.

We examine again the following argument:

AðxÞ ! BðyÞ
Aðx0Þ

) Bðx0Þ
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It can be seen that although the implication includes the correspondences
between the antecedent and consequent in the two cases of the rule’s antecedent
being true and false, rule AðxÞ ! BðyÞ is used in usual on condition that fact A(x0)
is known, so only the correspondence AðxÞ 7!BðyÞ whose antecedent is true is used
in the usual logical inference actually, while the correspondence :AðxÞ 7!BðyÞ _
:BðyÞ whose antecedent is false is not used at all. That means in reasoning the rule
that represents the implication relation can completely be treated as a correspon-
dence between antecedent and consequent to be used. In the following, we further
consider the mathematical background and mathematical essence of a flexible rule
as a correspondence.

2. Mathematical essence and mathematical background of a flexible rule

Firstly, let us examine the simplest L-L rule AðxÞ ! BðyÞ:
We know that the complete representation of rule AðxÞ ! BðyÞ is 8xAðxÞ !

9yBðyÞ; which means for any x 2 U, if x has A, then there exists y 2 V to have
B. Thus, viewed as a whole, rule 8xAðxÞ ! 9yBðyÞ represents the correspondence
A 7! B from flexible linguistic value A to B. Actually, if rewriting AðxÞ ! BðyÞ
into form AðXÞ ! BðYÞ of linguistic variables, then the flexible-linguistic-valued
correspondence A 7!B can be obtained immediately. Then viewed from the level of
flexible linguistic functions, flexible rule AðxÞ ! BðyÞ is also tantamount to a pair
(A, B) of values of a certain flexible linguistic function Y ¼ f ðXÞ on the corre-
sponding universe of discourse. Thus, the correspondence A 7!B follows still. In a
word, viewed from the angle of mathematics, flexible rule AðxÞ ! BðyÞ is essen-
tially flexible-linguistic-valued correspondence A 7!B:

And from the relation between flexible linguistic values and flexible sets, the
flexible-linguistic-valued correspondence A 7!B just is the flexible set correspon-
dence A 7!B: Thus, the mathematical essence of flexible rule AðxÞ ! BðyÞ is the
flexible set correspondence A 7!B: Actually, if rewriting the rule AðxÞ ! BðyÞ of
possessive relation into rule x 2 A ! y 2 B of membership relation, then the
flexible set correspondence A 7!B can be more directly obtained.

To sum up, flexible rule AðxÞ ! BðyÞ can be simply written as flexible-
linguistic-valued correspondence, i.e., flexible set correspondence, A 7!B:

From Sect. 9.2, we know that the mathematical background of flexible-
linguistic-valued correspondence A 7!B is a function or correlation from A to B,
which is called the background function or background correlation of correspon-
dence A 7!B: Thus, the mathematical background of flexible rule AðxÞ ! BðyÞ is
also a function or correlation from A to B, which is also the background function or
background correlation of rule AðxÞ ! BðyÞ:
3. Numerical model of a flexible rule

From Sect. 9.2, we known that in theory, flexible-linguistic-valued correspon-
dence A 7!B can be represented as its background function or background corre-
lation. Thus, flexible rule AðxÞ ! BðyÞ can be translated into a binary relation.
From Sect. 9.3.3, we known that the binary relation is the numerical model of
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flexible-linguistic-valued correspondence A 7!B; and thus, it is also the numerical
model of the flexible rule AðxÞ ! BðyÞ: However, in practical problems, the
background function or background correlation of a flexible rule is often unknown.
From Sects. 9.3.3 and 9.4, we can take universal relation coreðAÞþ � coreðBÞþ as
a numerical-model representative of flexible-linguistic-valued correspondence
A 7!B: Thus, universal relation coreðAÞþ � coreðBÞþ is also a numerical model
(representative) of flexible rule AðxÞ ! BðyÞ:

Actually, taking coreðAÞþ � coreðBÞþ as the numerical model of rule AðxÞ !
BðyÞ is in accord with the logical semantics tðAðxÞÞ[ 0:5 ! tðBðyÞÞ[ 0:5 of rule
AðxÞ ! BðyÞ: In fact, tðAðxÞÞ[ 0:5 , x 2 coreðAÞþ and tðBðyÞÞ[ 0:5 , y 2
coreðBÞþ:

With universal relation as the numerical model, we can use mathematical
method to examine and apply flexible rules, and by which, we also can estimate the
practical background function or background correlation of a rule. In fact, region
core(A)+ × core(B)+ is a block point in corresponding product space U × V (as
shown in Fig. 13.5a), which gives obviously the scope of graph of background
function or background correlation of rule AðxÞ ! BðyÞ: Of course, coreðAÞþ �
coreðBÞþ is the practical representative of rule AðxÞ ! BðyÞ; while the conceptual
representative of the rule is then suppðAÞ � suppðBÞ (as shown in Fig. 13.5b).

According to the above analysis and result about rule AðxÞ ! BðyÞ; in general,
the rules with n-conditions are as follows:

A1ðx1Þ ^ A2ðx2Þ ^ � � � ^ AnðxnÞ ! BðyÞ
A1ðx1Þ _ A2ðx2Þ _ � � � _ AnðxnÞ ! BðyÞ
A1ðx1Þ � A2ðx2Þ � � � � � AnðxnÞ ! BðyÞ

that is, rules with a n-ary composite linguistic value

core (B
)

+

core (A)+ x

y

V

U

supp (B
)

supp (A)+ x

y

V

U

(a) (b)

Fig. 13.5 Graph of the numerical-model representative of rule A (x) → B(y)
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A1 ^ A2 ^ � � � ^ Anðx1; x2; . . .; xnÞ ! BðyÞ
A1 _ A2 _ � � � _ Anðx1; x2; . . .; xnÞ ! BðyÞ
A1 � A2 � � � � Anðx1; x2; . . .; xnÞ ! BðyÞ

can be separately written briefly as flexible-linguistic-valued correspondences

A1 ^ A2 ^ � � � ^ An 7!B ð13:22Þ

A1 _ A2 _ � � � _ An 7!B ð13:23Þ

A1 � A2 � � � � � An 7!B ð13:24Þ

and the mathematical essence of them are separately flexible set correspondences

A1 \A2 \ � � � \An 7!B ð13:25Þ

A1 [A2 [ � � � [An 7!B ð13:26Þ

A1 � A2 � � � � � An 7!B ð13:27Þ

and the numerical-model representatives are separately local universal relations

coreðA1 \A2 \ � � � \AnÞþ � coreðBÞþ ð13:28Þ

coreðA1 [A2 [ � � � [AnÞþ � coreðBÞþ ð13:29Þ

coreðA1 � A2 � � � � � AnÞþ � coreðBÞþ ð13:30Þ

Of them, the two-dimensional block points coreðA1 \A2Þþ � coreðBÞþ and
coreðA1 [A2Þþ � coreðBÞþ are shown in Figs. 13.6 and 13.7.

y

core(B) +

x1
core(A2)

+

x2

core(A1)
+

Fig. 13.6 The geometry of
numerical-model
representative of rule
A1 ∧ A2 → B
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Note that if we split rule A1 _ A2 ! B into A1 ! B and A2 ! B; then the
corresponding numerical-model representatives are coreðA1Þþ � coreðBÞþ and
coreðA2Þþ � coreðBÞþ (their geometries are shown in Fig. 13.8).
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Fig. 13.7 The geometry of numerical-model representative of rule A1 ∨ A2 → B
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13.6 A Query on the Fuzzy Relational Representation
of a Fuzzy Rule

In the last section, we analyzed flexible rules in the two aspects of logic and
mathematics, and on the basis of their mathematical essence and mathematical
background, we obtained naturally the numerical model coreðAÞþ � coreðBÞþ of
flexible rule AðxÞ ! BðyÞ: While the universal relation coreðAÞþ � coreðBÞþ is
obviously a kind of rigid relation.

However, in the fuzzy set theory, a flexible rule (called fuzzy rule in fuzzy set
theory) is treated as a binary flexible relation (called fuzzy relation in fuzzy set
theory) and also be treated according to implication relation. In fact, in fuzzy
set theory, rule AðxÞ ! BðyÞ is represented into fuzzy relation

R ¼
Z

U�V

lRðx; yÞ=ðx; yÞ

where membership function lRðx; yÞ; called implication operator, is a certain
operation of membership functions lAðxÞ and lBðyÞ: For example, lRðx; yÞ ¼
max 1� lAðxÞ; lBðyÞf g is just a basic implication operator, and the fuzzy set
R which corresponds to is Ac � V [U � B:

The question now is that in fuzzy set theory, it does not be explained that, and
we also are unable to perceive that, what is the theory basis of representing a fuzzy
rule ðAðxÞ ! BðyÞÞ into a binary flexible relation ðAc � V [U � BÞ? In fact, no
matter viewed from the level of flexible linguistic values, that is, flexible sets, or
viewed from the level of the elements, that is, numerical values, of flexible sets, the
correspondence between flexible linguistic values of antecedent and consequent of
a flexible rule and the binary relation—function or correlation summarized by the
rule are all rigid relation. Even if a flexible rule is treated as an implication relation,
which would still be represented as a binary rigid relation. From Sect. 13.4, we
know that fuzzy set Ac � V [U � B should be the conceptual truth domain of rule
AðxÞ ! BðyÞ as implication relation.

13.7 Relationship Between the Flexible Linguistic Rules
and the Flexible Linguistic Functions
and Correlations

Now, we see that a flexible rule, viewed from the angle of mathematics, is
essentially a flexible-linguistic-valued correspondence, and a flexible linguistic
function (or flexible linguistic correlation) is then a set of flexible-linguistic-valued
correspondences. That is to say, the flexible rule (set) and the flexible linguistic
function (or flexible linguistic correlation) are actually two kinds of equivalent
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representation forms of the correspondence relation between flexible linguistic
values. From the forms of expression, we can also so say that the flexible rules are a
logical representation of flexible linguistic function, and the flexible linguistic
function is a mathematical representation of the flexible rules. In fact, a set of
flexible rules represents a function (or correlation) or a subfunction (or sub corre-
lation) from the range of linguistic values in antecedent to the range of linguistic
value in consequent; conversely, a flexible linguistic function (or flexible linguistic
correlation) can also be represented as a set of flexible rules.

Here also in need of special note is:

① Since a disjunction-type flexible rule with multiple conditions, A1 _ A2 _
� � � _ An ! B; can be split into multiple rules with single condition, A1 !
B;A2 ! B; . . .; An ! B; thus, from the set of disjunction-type rules

ðA1 _ A2 _ � � � _ An ! BÞjAi � Ui ði ¼ 1; 2; . . .; n:Þ;B � Vf g

multiple flexible linguistic functions of a variable, i.e., a set of flexible
linguistic functions of a variable

ðAi;BÞjAi � UiÞ;B � Vf g; i ¼ 1; 2; . . .; n:

can follows; conversely, from a set of flexible linguistic functions of a
variable:

ðAi;BÞjAi � UiÞ;B � Vf g; i ¼ 1; 2; . . .; n:

We can also have a set of disjunction-type flexible rules with multiconditions:

ðA1 _ A2 _ � � � _ An ! BÞjAi � Ui ði ¼ 1; 2; . . .; n:Þ;B � Vf g

② In a set of flexible rules which represents a flexible linguistic correlation, there
are the rules whose antecedents are the same but consequents are different. Of
course, we can also combine them into a rule, of which the consequent is the
disjunction of multiple flexible linguistic values.

13.8 Summary

In this chapter, we introduced and made an all-round examination of flexible lin-
guistic rules. First, we expounded the concept and types of flexible linguistic rules
and discussed the transformation and reduction of them; then we analyzed the truth
domains and logical semantics of flexible linguistic rules; and then we analyzed the
mathematical essences and mathematical backgrounds of flexible linguistic rules
and presented a numerical model of a flexible linguistic rule, which provides a
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condition for using mathematical approach to realize reasoning and computation
with flexible linguistic rules. Besides, we also discussed the relationship between
the flexible linguistic rules and the flexible linguistic functions and correlations, and
gave a query on the practice of treating a fuzzy rule as a fuzzy relation in the
traditional fuzzy set theory.

The main points and results of the chapter are as follows:

• There are many types of flexible rules, among which the most frequently
mentioned are as follows: conjunction-type rules, disjunction-type rules, and
synthesis-type rules got from the structure, and corresponding rule with a
combined linguistic value and rule with a synthetic linguistic value got from the
linguistic values, as well as typical flexible rules.

• Through space transformation, a flexible rule with multidimensional linguistic
values can be transformed into a flexible rule with one-dimensional linguistic
values, or more generally, a non-typical flexible rule can be transformed to a
typical flexible rule. Thus, non-typical flexible rules can be reduced to typical
flexible rules.

• Speaking from the angle of concept or logic, a flexible rule represents the
implication relation between its antecedent and consequent; however, viewed
from the practical or mathematical angle, a flexible rule represents the corre-
spondence between its antecedent and consequent, also the correspondence
between its linguistic values, that is, corresponding flexible sets, in antecedent
and consequent.

• The mathematical essence of a flexible rule is the corresponding flexible set
correspondence, which is the summarization of the local function or correlation
between corresponding measurement spaces, and the function or correlation
summarized is the mathematical background of the flexible rule.

• The local universal relation formed by the Cartesian product of the extended
cores of antecedent and consequent linguistic values of a flexible rule summa-
rizes background function or background correlation of the rule, which can be
treated as a numerical-model representative, whose geometrical interpretation is
a block point in corresponding measurement space.

• In logic, the implication relation A ! B covers the correspondence A 7!B;
while in mathematics, the corresponding sets of the former contains that of the
latter; treating a rule ðAðxÞ ! BðyÞÞ only as a correspondence ðA 7!BÞ can
completely satisfy the require of reasoning, which is closer to the mathematical
background of rule; treating a rule as an implication relation does not agree with
the pattern and require of usual logical reasoning and go far away from the
mathematical background of rules, and there would occur large information
redundancy.

• The truth domains of a flexible rule have the separation of the conceptual truth
domain and practical truth domain. The relation between the truth domains of a
flexible rule and the corresponding flexible propositional form is that the former
is the least upper bound of the latter.

13.8 Summary 341



• The flexible linguistic rules and the flexible linguistic functions and flexible
linguistic correlations are two kinds of equivalent representation forms of the
correspondence relation between flexible linguistic values.
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Chapter 14
Adjoint Functions of a Flexible Linguistic
Rule

Abstract This chapter first reveals the triple functional relations implicated by a
flexible rule and proposes the term of adjoint function of a rule and gives some
specific methods and reference models for the construction of rules’ adjoint
functions.

Keywords Adjoint functions � Adjoint measured functions � Adjoint degreed
functions � Adjoint truth-degreed functions

Further analyzing the correspondence relations between the antecedent and con-
sequent of a flexible linguistic rule at three levels of measure, degree, and
truth-degree, we find that a flexible linguistic rule implicates really triple functions.
This chapter will analyze and discuss the characteristics of these functional relations
and the ideas and methods of obtaining them based on the mathematical back-
ground, mathematical essence, numerical model, and logical semantics of flexible
linguistic rules.

14.1 Functional Relations Implicated by a Flexible
Linguistic Rule

From Sect. 13.5 we know that flexible linguistic rule A(x) → B(y) represents
essentially the correspondence (relation) between flexible linguistic values A and B.
Further viewed from mathematical background, this rule also implicates the cor-
respondence relation between measures x and y, that is, x ↦ y. And because x and
y are variables, so when y varies with x, consistency-degree cB(y) also varies with
cA(x). Therefore, rule A(x) → B(y) actually also implicates the correspondence
relation between consistency-degrees cA(x) and cB(y), that is, cA(x) ↦ cB(y). And
from cA(x) = t(A(x)) and cB(y) = t(B(y)); thus, rule A(x) → B(y) actually also
implicates the correspondence relation between truth-degrees t(A(x)) and t(B(y)),
that is, t(A(x)) ↦ t(B(y)) [1].
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Actually, the logical semantics “if t(A(x)) > 0.5 then t(B(y)) > 0.5” of the rule
implicates that t(px) and t(qy) have a certain correspondence relation, and then
consistency-degrees cA(x) and cB(y), and measures x and y also have a certain
correspondence relations.

These correspondence relations x ↦ y, cA(x) ↦ cB(y) and t(px) ↦ t(qy) may be
usual function, also may be correlation. While correlations can also be viewed as a
kind of multiple-valued function. Thus, we can say that rule A(x) → B(y) impli-
cates functional relations of three different levels of measure, degree, and
truth-degree.

Of course, the above is only the analysis of the simplest property–property rule
with single condition. But it is not hard to see from it that the other types of flexible
rules all implicate such triple functional relations.

In nature, the triple functional relations implicated by a flexible rule are in order
measured function, degreed function, and truth-degreed function from inside to
outside. If they are explicitly expressed, they are 3 functions accompanying a rule.
We call them three to be adjoint functions of a rule.

It can be seen that if the adjoint degreed function of corresponding flexible rule
can be known, then the problem occurred in approximate reasoning based on
rough-true universal modus ponens in Sect. 12.7 would not be hard to be solved
(actually, the degreed function here is also the quantitative model of flexible lin-
guistic functions, see Sect. 9.3.3). Therefore, these adjoint functions of rules are of
great importance to reasoning based on flexible rules. And the measured function
actually links logical reasoning with numerical computation.

It need also to be pointed out that rules involved in this chapter only refer to the
rules in usual language and professional fields, but not include implicational tau-
tologies in logic, that is, rules of inference, such as (p → q) ∧ p ) q, (p → q) ∧
¬q ) ¬p, and (p → q) ∧ (q → r) ) p → r. Though viewed from the form, this
type of inference rules also belongs to production rules, they are production rules in
logic, that is, logic rules. Logic rules are different from the rules in usual language
and professional fields, which are the abstract models and basic frames to do rea-
soning with the latter. Compared with the usual field rules, logic rules are the rules of
a higher level, or in other words, a kind of meta-rules. Therefore, these logic rules
have no corresponding truth-degreed functions, nor degreed functions, even less
measured functions. In fact, a logic rule actually includes infinite specific arguments,
while the truth-degreed functions, degreed functions, and measured functions in
these arguments all differ in thousands of ways, so they cannot have a common
functional relation. On the other hand, the arguments in imprecise-information
processing are all arguments with specific field knowledge. Though these arguments
need inference rules, does not need and involve the trueness degreed function,
degreed function, and measured function of inference rules themselves.
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14.2 Analysis of the Graph Spaces of Flexible Rules’
Adjoint Functions

Although a flexible rule implicates triple functional relations, to obtain the accurate
expressions of the corresponding adjoint functions is difficult or even impossible.
So we can only consider the approximate expressions of these functions. To this
end, we first make an analysis of the graph spaces of these adjoint functions.

Since the truth-degree t(A(x0)) of proposition A(x0) equal numerically to
consistency-degree cA(x0), or membership degree mA(x0), so the adjoint
truth-degreed function of a rule is in essence the same to its adjoint degreed
function. Therefore, we only consider the adjoint degreed function and adjoint
measured function of rules. Also because a degreed function based on
consistency-degree covers really a degreed function based on membership degree,
so we only consider the former below.

1. The graph spaces of degreed functions

We first examine the graph space of adjoint degreed function of flexible rule with
single condition, A → B. Since consistency-degrees cA(x) and cB(y) are also
truth-degrees t(A(x)) and t(B(y)) in number, so the logical semantics “if t(A
(x)) > 0.5 then t(B(y)) > 0.5” of the rule is embodied as “if cA(x) > 0.5 then
cB(y) > 0.5” at the level of consistency-degree. In other words, in terms of
consistency-degree, the logical semantics of the rule is “if cA(x) > 0.5, then
cB(y) > 0.5.” Thus, the logical semantics of the rule also gives the basic charac-
teristic of the functional relation between degree dA of antecedent and degree dB of
consequent of the rule, that is, when dA 2 (0.5, βA] then dB 2 (0.5, βB]. On the
other hand, in argument, the requirement “t(A(x0)) > 0.5” of rough-true inference
for minor premise A(x0) reflected at the level of consistency-degree is just
“cA(x0) > 0.5.” Thus, for the degreed function dB = fd(dA), actually only the func-
tion section on interval (0.5, βA] needs to be considered. Thus, although the domain
and the range of the degreed function are separately [αA, βA] and [αB, βB] in concept,
they are then (0.5, βA] and (0.5, βB] in practice. Thus, the graph space of degreed
function of the rule with single condition, A → B, is

ð0:5; bA� � ð0:5;bB� ð14:1Þ

(as shown by the gray region in Fig. 14.1). It can be seen that the space is much
smaller than the original spaces [αA, βA] × [αB, βB].

We then examine the graph space of the adjoint degreed function of a rule with
multiple conditions/a composite linguistic value.

It can be seen that the (indirect) domain of definition of degrees of antecedent
A1 ∧ A2 of conjunction-type rule A1 ∧ A2 → B is (α1, β1] × (α2, β2], and the range
of values of the degrees of its consequent B is (α, β]. Thus, in conceptual, the domain
and the range of degreed function of rule A1 ∧ A2 → B are separately (α1, β1] × (α2,
β2] and (α, β]. But under the constraints of requirement “cA1^A2ðx1; x2Þ > 0.5” of
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rough-true inference and logical semantics “if cA1^A2ðx1; x2Þ > 0.5, then
cBðyÞ > 0.5” of the rule, we really only need to consider the function section on
subregion (0.5, β1] × (0.5, β2]. Therefore, the domain and the range of the degreed
function are separately (0.5, β1] \ (0.5, β2] and (0.5, β] in practice. Thus, the graph
space of adjoint degreed function of rule A1 ∧ A2 → B is

ðð0:5; b1� � ð0:5; b2�Þ � ð0:5; b� ð14:2Þ

(as shown in Fig. 14.2a).
Likewise, from logical semantics “if cA1_A2ðx1; x2Þ > 0.5, then cBðyÞ > 0.5” and

requirement “cA1_A2ðx1; x2Þ > 0.5” of rough-true inference, the graph space of
adjoint degreed function of disjunction rule A1 ∨ A2 → B is then

ðð0:5; b1� � ða2; b2�Þ [ ðða1; b1� � ð0:5; b2�Þ � ð0:5; b� ð14:3Þ

(as shown in Fig. 14.2b).
Note: because rule A1 ∨ A2 → B is actually a union of A1 → B and A2 → B, so

its adjoint degreed function should be originally two discrete two-dimensional
subspaces (0.5, β1] × (0.5, β] and (0.5, β2] × (0.5, β] (as shown in Fig. 14.3), while
three-dimensional subspace ((0.5, β1] × (α2, β2]) [ ((α1, β1] × (0.5, β2]) × (0.5,
β] is then a extension of the two subspaces in corresponding three-dimensional

A      0     0.5 1 A

B

   1

0.5

   0

B

Fig. 14.1 Graphic
representation of graph space
of adjoint degreed function of
the rule with single condition,
A → B

1        0.5 1

2

      0.5

2

0.5

2

       0.5

2
1       0.5 1

0.5

(a) (b)

Fig. 14.2 Graphic representation of graph spaces of adjoint degreed functions of rules with
2 conditions/2-ary composite linguistic values, A1 ∧ A2 → B and A1 ∨ A2 → B
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subspace (α1, β1] × (α2, β2] × (α, β]. We will see later that to do so does not affect
the design of corresponding adjoint degreed function.

And the graph space of adjoint degreed function of synthesis rule
A1 ⊕ A2 → B is

R� ð0:5; b� ð14:4Þ

where R = {(d1, d2)|(d1, d2) 2 [α1, β1] × [α2, β2] and w1d1 + w2d2 > 0.5,
w1 + w2 = 1}

From the above analysis, it is not hard to imagine that the graph spaces of adjoint
degreed functions of general rules with n-conditional/n-ary composite linguistic value,
A1 ∧ A2 ∧ ��� ∧ An → B, A1 ∨ A2 ∨ ��� ∨ An → B and A1 ⊕ A2 ⊕���⊕ An → B.

2. The graph spaces of measured functions

Actually, from the numerical-model representative, i.e., universal relation core
(A)+ × core(B)+, of flexible rule A → B (see Sect. 13.5), the graph space of adjoint
measured function of a flexible rule can be obtained immediately—this universal
relation itself just is the graph space of adjoint measured function of corresponding
rule. But in the following, we consider a new the graph space of adjoint measured
function of a rule from logical semantics of the rule and requirement of rough-true
inference.

Suppose A and B are of full-peak, of which the support sets are separately (s�A ,
sþA ) and (s�B , s

þ
B ), and extended cores are separately (m�

A , m
þ
A ) and (m�

B , m
þ
B ). It

can be seen that t(A(x)) > 0.5 and t(B(y)) > 0.5 embodied on the measures x and
y are just the x 2 core(A)+ = (m�

A , m
þ
A ) and y 2 core(B)+ = (m�

B , m
þ
B ). Thus, by the

logical semantics of rule and the requirement of rough-true inference, the domain
and range of adjoint measured function of rule A → B in conceptual are separately
(s�A , s

þ
A ) and (s�B , s

þ
B ), but in practical are separately (m�

A , m
þ
A ) and (m�

B , m
þ
B ).

Therefore, the graph space of adjoint measured function of this rule is rectangular
region.

m�
A ;m

þ
A

� �� m�
B ;m

þ
B

� � ð14:5Þ

(see Fig. 14.4). It can be observed that this rectangular region (m�
A , m

þ
A ) × (m�

B ,
mþ

B ) just is core(A)+ × core(B)+. That is to say, the graph space of the adjoint

Fig. 14.3 Graphic
representation of graph spaces
of adjoint degreed functions
of rules A1 → B and A2 → B
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measured function of a rule obtained from logical semantics of the rule and
requirement of rough-true inference is completely consistent with the
numerical-model representative of the rule. Obviously, this space is greatly reduced
from the conceptual function space (s�A , s

þ
A ) × (s�B , s

þ
B ). From Fig. 14.4, we can

also see the shapes of graph spaces of adjoint measured function of corresponding
rules when flexible linguistic values A or B are of semi-peak.

Similarly, from the requirement of rough-true inference and rule’s logical
semantics or the numerical-model representative of the rule, the graph spaces of
adjoint measured functions of rules with 2 conditions/2-ary composite linguistic
values are one by one.

m�
A1
;mþ

A1

� �
� m�

A2
;mþ

A2

� �h i
� m�

B ;m
þ
B

� � ð14:6Þ

m�
A1
;mþ

A1

� �
� s�A2

; sþA2

� �� �
[ m�

A2
;mþ

A2

� �
� s�A1

; sþA1

� �� �h i
� m�

B ;m
þ
B

� � ð14:7Þ

R� m�
B ;m

þ
B

� � ð14:8Þ

Here R = {(x1, x2)∣(x1, x2) 2 (s�A1
, sþA1

) × (s�A2
, sþA2

), and w1mA1ðx1Þ +
w2mA2ðx2Þ > 0.5, w1 + w2 = 1}. Of which, the graph spaces of adjoint measured
functions of the conjunction-type and the disjunction-type rules
A1(x1) ∧ A2(x2) → B(y) and A1(x1) ∨ A2(x2) → B(y) are shown in Fig. 14.5a, b,
but the graph space of synthesis rule A1 ⊕ A2(x1, x2) → B(y) cannot be draw
concretely due to the values of rights w1 and w2 are not fixed. But from

R � m�
A1
;mþ

A1

� �
� m�

A2
;mþ

A2

� �

we have

R� m�
B ;m

þ
B

� � � m�
A1
;mþ

A1

� �
� m�

A2
;mþ

A2

� �h i
� m�

B ;m
þ
B

� �

Thus, from Fig. 14.5, we can also imagine the shapes of graph spaces of adjoint
measured functions of corresponding rules when flexible linguistic values A1, A2, or
B are of semi-peak.

As Am A Am As

Bs

Bm

B

Bm
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Fig. 14.4 An example of
graph space of adjoint
measured function of the rule
with single condition, A → B
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Note: because rule A1 ∨ A2 → B is actually a union of A1 → B and A2 → B, so
its adjoint measured function should be originally two discrete two-dimensional
subspaces (m�

A1
, mþ

A1
) × (m�

B , mþ
B ) and (m�

A2
, mþ

A2
) × (m�

B , mþ
B ), while

three-dimensional subspace [((m�
A1
, mþ

A1
) × (s�A2

, sþA2
)) [ ((m�

A2
, mþ

A2
) × (s�A1

,
sþA1

))] × (m�
B , m

þ
B ) is then a extension of the two subspaces in corresponding

three-dimensional subspace (s�A1
, sþA1

) × (s�A2
, sþA2

) × (s�B , s
þ
B ). We will see later that

to do so does not affect the design of corresponding adjoint measured function.
From the above analysis, it is not hard to imagine that the graph spaces of adjoint

measured functions of general rules with n conditions/an n-ary composite linguistic
values,A1 ∧ A2 ∧���∧ An → B, A1 ∨ A2 ∨���∨ An → B andA1 ⊕ A2 ⊕���⊕ An → B.

14.3 Construction of Adjoint Functions of Flexible Rules
and Some Reference Models

The graph spaces of the adjoint functions of rules provide the theoretical basis for
constructing corresponding functions. In principle, the corresponding approximate
adjoint functions can be induced and deduced from known sample data in the graph
spaces of the adjoint functions of rules by using certain kind of mathematical
methods (such as curve fitting, regression analysis, interpolation) or machine leaning
approaches (such as neural network learning). But we see from the above analyses
that under the constraints of the mathematical essence, logical semantics of rules and
rough-true inference, the valid graph space of an adjoint function of a flexible rule is
relatively small. The smaller space means that the function is simpler, say, it can be
monotonic or even linear (in fact, theoretically, if the space is sufficiently smaller,
then any function in the space can all be treated as an approximate adjoint function of
rule). Therefore, we take directly linear function, that is, straight line, plane, or
hyperplane, as an approximate adjoint function of corresponding correlation or
functional relation. Of course, if there exist sample data, which can be used to guide
the construction of corresponding approximate functions.
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Fig. 14.5 Examples of graph spaces of adjoint measured functions of a rule with
2-conditions/a 2-ary composite linguistic value
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In the following, we will construct concretely the three kinds of adjoint functions
of typical L-L flexible rules and treat the expressions obtained as the reference
models of corresponding functions.

14.3.1 Construction of Adjoint Degreed Functions
and Some Reference Models

1. Adjoint degreed function of a rule with single condition

Let A → B be a rule with single condition.

(1) Suppose that in region (0.5, βA] × (0.5, βB] consistency-degrees cA(x) and
cB(y) are of correlation. Then make the median line of the rectangular region
(as shown in Fig. 14.6a), we have function

dB ¼ bB � 0:5
2

; 0:5\dA � bA ð14:9Þ

It can be seen that the maximum error between the degree dB obtained from

this function and the expected value d0B does not exceed
1
2
(βB − 0.5). Then,

we can take this function as an adjoint degreed function of rule A → B.
(2) Suppose that consistency-degrees cA(x) and cB(y) are of a functional relation

in region (0.5, βA] × (0.5, βB]. Then make a diagonal of rectangular region
(as shown in Fig. 14.6b), we have function

dB ¼ bB � 0:5
bA � 0:5

ðdA � 0:5Þþ 0:5; 0:5\dA � bA ð14:10Þ

It can be seen that the maximum error between the degree dB obtained from
this function and the expected value d0B does not exceed βB − 0.5, and the
average error does not exceed 1

2(βB − 0.5). Then, we can take this function
as an adjoint degreed function of rule A → B.

(a) (b) (c)

Fig. 14.6 Examples of adjoint degreed functions of a rule with single condition
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(3) Suppose that there are sample data (dAi , dBi ) (i = 1, 2, …, n). Then, we can
construct the following adjoint degreed function (an example of its graph is
shown in Fig. 14.6c),

dB ¼ jdA þ k; j� 1; k� 0; 0:5\dA � bA ð14:11Þ

where κ and λ are two adjustable parameters, whose values can be
determined by the distributing characteristic of the sample points (dAi , dBi )
(i = 1, 2, …, n).

2. Adjoint degreed function of a rule with multiple conditions/a composite
linguistic value

It can be seen that the adjoint degreed function of a rule with composite lin-
guistic value should be the functional relation between the overall degree of rule’s
antecedent and the degree of rule’s consequent. Thus, for a rule with multiple
conditions/a composite linguistic value should find the overall degree of its
antecedent firstly and then consider the relation between the overall degree and the
degree of consequent of the rule. We know already that subregions (0.5, β1] × (0.5,
β2] and ((0.5, β1] × (α2, β2]) [ ((α1, β1] × (0.5, β2]) are separately the domains of
definition of degrees of A1 ∧ A2 and A1 ∨ A2, and the corresponding degree
computation formulas are

dA1^A2 ¼ minfdA1 ; dA2g
dA1_A2 ¼ maxfdA1 ; dA2g

From this, it is not hard to see that on the region (0.5, β1] × (0.5, β2], the
minimum of dA1^A2 is min{0.5, 0.5} = 0.5, the maximum is max{β1, β2} = β∧.
Thus, the operation min maps two-dimensional region (0.5, β1] × (0.5, β2] to
one-dimensional region (0.5, β∧]. Thus, we construct an function from region (0.5,
β∧] to (0.5, βB]:

dB ¼ bB � 0:5
b^ � 0:5

ðdA1^A2 � 0:5Þþ 0:5 dA1^A2 2 ð0:5; b^� ðb^ ¼ minfb1; b2gÞ

This is a straight line passing points (0.5, 0.5) and (β∧, βB) in space (0.5,
β∧] × (0.5, βB]. Considering that dA1^A2 = min{dA1 , dA2}, so the adjoint degreed
function of conjunction-type rule A1 ∧ A2 → B should be

dB ¼ bB � 0:5
b^ � 0:5

ðdA1^A2 � 0:5Þþ 0:5 ð14:12Þ

where β∧ = min{β1, β2}, dA1^A2 = min{dA1 , dA2}, (dA1 , dA2 ) 2 (0.5, β1] × (0.5, β2]).
This is a plane in space ((0.5, β1] × (0.5, β2]) × (0.5, βB].

14.3 Construction of Adjoint Functions of Flexible Rules … 351



Note: we do not substitute the expression of dA1^A2 into Eq. (14.12), but write
them separately, which is because in reasoning whether dA1^A2 > 0.5 needs to be
judged first.

Likewise, we can also construct an adjoint degreed function of the
disjunction-type rule A1 ∨ A2 → B as follows:

dB ¼ bB � 0:5
b_ � 0:5

ðdA1_A2 � 0:5Þþ 0:5 ð14:13Þ

where β∨ = max{β1, β2}, dA1_A2 = max{dA1 , dA2}, (dA1 , dA2 ) 2 ((0.5, β1] × (α2,
β2]) [ ((α1, β1] × (0.5, β2]). This is a plane in space ((0.5, β1] × (α2, β2]) [ ((α1,
β1] × (0.5, β2]) × (0.5, βB].

It can be seen that although this function, in form, is regard as a function in space
((0.5, β1] × (α2, β2]) [ ((α1, β1] × (0.5, β2]) × (0.5, β], in effect, which are two
functions located separately in two-dimensional spaces (0.5, β1] × (0.5, β] and (0.5,
β2] × (0.5, β].

Also, the overall degree of the antecedent A1 ⊕ A2 of synthesis rule
A1 ⊕ A2 → B is

dA1	A2 ¼ w1dA1 þw2dA2 ; w1 þw2 ¼ 1;w1;w2 2 ½0; 1�

and the domain of this degree is region [α1, β1] × [α2, β2] (α1 ≤ 0, 1 ≤ β1, α2 ≤ 0,
1 ≤ β2). It is not hard to see that in region [α1, β1] × [α2, β2], the maximum of
dA1	A2 is w1β1 + w2β2, denote b	. Thus, we construct adjoint degreed function of
rule: A1 ⊕ A2 → B as

dB ¼ bB � 0:5
b	 � 0:5

ðdA1	A2 � 0:5Þþ 0:5 ð14:14Þ

where b	 = w1β1 + w2β2, dA1	A2 = w1dA1 + w2dA2 , (dA1 , dA2 ) 2 [α1, β1] × [α2, β2].
This is a plane in space ([α1, β1] × [α2, β2]) × (0.5, βB] (but not necessarily
continuous).

It can be see that the three adjoint degreed functions in general are suitable to the
rules that between degrees of antecedent and consequent of it is functional relation,
and they cannot further be optimized. We can also use methods similar to those
previous for constructing adjoint degreed functions of a rule with single condition
to construct the adjoint functions of multiple variables as the expressions in
Eqs. (14.9) and (14.11) suitable for correlations or can being optimized.

Generalizing the adjoint degreed functions of a rule with 2 conditions/a 2-ary
composite linguistic value, we could obtain the more general adjoint degreed
functions of a rule with n conditions/an n-ary composite linguistic value.
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14.3.2 Construction of Adjoint Measured Functions
and Some Reference Models

Notice first: in order to reduce the graph space of rule’s measured function and
make the corresponding reasoning easier, for the measured function, in what fol-
lows we only discuss those rules whose antecedents are semi-peak values. It is
conceivable that the consequent of a rule whose antecedents are semi-peak values
may also be semi-peak value, but may also be full-peak value. Because the rule
whose antecedents are full-peak values can be spilt into the rules whose antecedents
are semi-peak values (see Sect. 16.2 for the split principle). Therefore, it would be
enough for us to only discuss the measured functions of the rules whose antecedents
are semi-peak values.

1. Adjoint measured functions of a rule with single condition

Let A → B be a rule with single condition, A and B be all negative semi-peak
value, and their extended core be separately (mA, ξA] and (mB, ξB].

(1) Suppose that measures x and y are of correlation in region (mA, ξA] × (mB,
ξB]. Then, make the median line of the rectangular region (as shown in
Fig. 14.7a), we have function

y ¼ nB � mB

2
; mA\x� nA ð14:15Þ

Then, it can be treated as an adjoint measured function of rule A → B.
(2) Suppose that measures x and y are of functional relation in region (mA,

ξA] × (mB, ξB]. Then, make the diagonal of the rectangular region (as shown
in Fig. 14.7b), we have function

y ¼ nB � mB

nA � mA
ðx� mAÞþmB; mA\x� nA ð14:16Þ

Then, it can be treated as an adjoint measured function of rule A → B.

Fig. 14.7 Examples of adjoint measured functions of a rule with single condition whose
consequent is semi-peak value
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(3) Suppose that there are sample data (xi, yi) 2 (mA, ξA] × (mB, ξB] (i = 1, 2,
…, n). Then, we can construct the following adjoint measured function (its
example is as shown in Fig. 14.7c):

y ¼ k
nB � mB

nA � mA
ðx� mAÞþmB þ k; mA\x� nA ð14:17Þ

where κ and λ are two adjustable parameters, κ ≥ 1, λ ≥ 0, whose values
can be determined by the distributing characteristic of the sample points (xi,
yi) (i = 1, 2, …, n).

The above three functions are all for the rules whose antecedent linguistic value
A and consequent linguistic value B are both negative semi-peak value. Similarly,
we can also give the adjoint measured functions of rule A → B whose A or B is
positive semi-peak value. In the following, we then consider the adjoint measured
functions of rule A → B whose A is semi-peak value but whose B is full-peak
value. Since the extended core of a full-peak value is also a rectangular region, so
we can also use the above-stated method to construct the corresponding measured
function. For instance, generally, the following measured function can be
constructed:

y ¼ k
mþ

B � m�
B

nA � m�
A

ðx� m�
A Þþm�

B þ k; m�
A\x� nA ð14:18Þ

and

y ¼ k
mþ

B � m�
B

mþ
A � nA

ðx� nAÞþm�
B þ k; nA � x\mþ

A ð14:19Þ

where κ ≥ 1, λ ≥ 0 whose graphs are separately shown in Fig. 14.8a, b.

(a) (b)Fig. 14.8 Examples of
adjoint measured function of a
rule with single condition
whose consequent is a
full-peak value
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2. Adjoint measured functions of a rule with multiple conditions/a composite
linguistic value

We firstly still consider the adjoint measured functions of a rule with
2 conditions/a 2-ary composite linguistic value. Here, flexible linguistic values are
all negative semi-peak values.

From Sect. 14.2, it can be known that the graph space of adjoint measured
function of the conjunction-type rules A1 ∧ A2 → B is ((mA1 , nA1

] \ (mA2 ,
nA2

]) × (mB, ξB]. Ordinarily, any function in the space can be taken as an adjoint
measured function of rule A1 ∧ A2 → B. In consideration of the logical semantics,
“if cA1^A2ðx1; x2Þ > 0.5, then cB(y) > 0.5” of the rule, and cA1^A2ðx1; x2Þ = min
{cA1ðx1Þ, cA2ðx2Þ}, also min{cA1ðx1Þ, cA2ðx2Þ} = cA1ðx1Þ or min{cA1ðx1Þ,
cA2ðx2Þ} = cA2ðx2Þ; therefore, we construct 2 measured functions which separately
satisfy “cB(y) > 0.5 when cA1ðx1Þ > 0.5” and “cB(y) > 0.5 when cA2ðx2Þ > 0.5”:

y ¼ nB�mB
nA1�mA1

ðx1 � mA1ÞþmB; mA1\x1 � nA1
;mA2\x2 � nA2

as min cA1ðx1Þ; cA2ðx2Þf g ¼ cA1ðx1Þ
y ¼ nB�mB

nA2�mA2
ðx2 � mA2ÞþmB mA1\x1 � nA1

; mA2\x2 � nA2
as min cA1ðx1Þ; cA2ðx2Þf g ¼ cA2ðx2Þ

(

ð14:20Þ

As shown in Fig. 14.9a, the two functions together are adjoint measured func-
tions of the rule A1 ∧ A2 → B.

Based on the graph space [((m�
A1
, mþ

A1
) × (s�A2

, sþA2
)) [ ((m�

A2
, mþ

A2
) × (s�A1

,
sþA1

))] × (m�
B , mþ

B ) of adjoint measured function of the disjunction-type rule
A1(x1) ∨ A2(x2) → B(y), we construct the two function expressions as follows:

y ¼ nB�mB
nA1�mA1

ðx1 � mA1ÞþmB; mA1\x1 � nA1
; sA2\x2� nA2

as min cA1ðx1Þ; cA2ðx2Þf g ¼ cA1ðx1Þ
y ¼ nB�mB

nA2�mA2
ðx2 � mA2ÞþmB sA1\x1 � nA1

;mA2\x2� nA2
as min cA1ðx1Þ; cA2ðx2Þf g ¼ cA2ðx2Þ

(

ð14:21Þ

Its graphs are shown in Fig. 14.9b.
It can be seen that although the two functions, in form, are regarded as functions

in space [((m�
A1
, mþ

A1
) × (s�A2

, sþA2
)) [ ((m�

A2
, mþ

A2
) × (s�A1

, sþA1
))] × (m�

B , m
þ
B ), in

effect, which are two functions located separately in two-dimensional spaces (m�
A1
,

mþ
A1
) × (m�

B , m
þ
B ) and (m�

A2
, mþ

A2
) × (m�

B , m
þ
B ).

Based on the graph space R × (mB, ξB] (where R = {(x1, x2) | (x1, x2) 2 (sA1 ,
nA1

] × (sA2 , nA2
] and w1cA1ðx1Þ + w2cA2ðx2Þ > 0.5, w1 + w2 = 1}) of adjoint mea-

sured function of the synthesis-type rule A1 ⊕ A2 (x1, x2) → B(y), we construct the
following adjoint measured function, whose graph is shown in Fig. 14.9c.
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x1 x2 y 1
nA1

nA2
nB 1

s�A1
nA2

m�
B 1

nA1
s�A2

m�
B 1

��������

��������
¼ 0 ð14:22Þ

where sA1 < x1 ≤ nA1
, sA2 < x2 ≤ nA2

, w1cA1ðx1Þ + w2cA2ðx2Þ > 0.5, w1 + w2 = 1.
It can be seen that this is a plane passing points (nA1

, nA2
, ξB), (s�A1

, nA2
, m�

B ) and
(nA1

, s�A2
, m�

B ).
Here, it should be noted that although the graph space of adjoint measured

function of rule A1 ⊕ A2 → B, in theory, is core(A1 × A2)
+ × core(B)+, extended

core core(A1 × A2)
+, in general, cannot explicitly given; therefore, here R × (mB,

ξB] representing space core(A1 × A2)
+ becomes already supp(A1 × A2) × core(B)+

actually.
From the above adjoint measured functions of a rule with single condition and a

rule with 2 conditional/a 2-ary composite linguistic value, we then can have the
more general adjoint measured functions of a rule with n conditional/a n-ary
composite linguistic value.

Fig. 14.9 Examples of adjoint measured functions of a rule with 2 conditions/a 2-ary composite
linguistic value
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14.4 Adjoint Functions of Non-typical Flexible
Linguistic Rules

Obtaining directly the adjoint functions of non-typical flexible rules would
encounter difficulty. But from Sect. 13.3, it is known that a non-typical flexible rule
can be transformed into a typical flexible rule through space transformation. And
for the latter, we have already had methods to obtain adjoint functions. Based on
this way of thinking, we discuss the approaches of obtaining the adjoint functions of
non-typical flexible rules below.

1. Adjoint functions of a property–property rule with the antecedent of
multidimensional linguistic value

Let A(x1, x2, …, xn) → B(y) be a property–property rule whose antecedent is a
multidimensional atomic linguistic value, (x1, x2, …, xn) 2 U 
 Rn, and
y 2 V. Suppose that there exits mapping φ: U → [a, b], r = φ(x1, x2, …, xn),
flexible linguistic value A on U can be transformed into flexible linguistic value
A on [a, b]. Thus, multidimensional flexible rule A(x1, x2, …, xn) → B(y) can be
transformed into one-dimensional flexible rule A(r) → B(y). Obviously, for this
one-dimensional flexible rule, we are able to obtain its triple adjoint functions.
Therefore, the triple adjoint functions of original rule A(x1, x2, …, xn) → B(y) can
be indirectly obtained.

(1) Let the adjoint degreed function of rule A(r) → B(y) be

dB ¼ bB � 0:5
bA � 0:5

ðdA � 0:5Þþ 0:5; 0:5\dA � b ð14:23Þ

Since transforming φ only changes the space and dimensions of flexible lin-
guistic value A, it does not change the correspondence relation between the
linguistic values of antecedent and consequent at the level of degree.
Therefore, this degreed function should also be an adjoint degreed function of
the original rule A(x1, x2, …, xn) → B(y).

(2) Let the adjoint measured function of rule A(r) → B(y) be

y ¼ nB � mB

nA � mA
ðr � mAÞþmB; mA\r� nA or nA � r\mA

This measured function is the functional relation between r and y, while
r = φ(x1, x2, …, xn), then substitute it into the above expression, and then we have

y ¼ nB � mB

nA � mA
ðuðx1; x2; . . .; xnÞ � mAÞþmB ð14:24Þ
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where mA < φ(x1, x2, …, xn) ≤ ξA or ξA ≤ φ(x1, x2, …, xn) < mA. This is just an
adjoint measured function of the original rule A(x1, x2, …, xn) → B(y).

Example 14.1 Suppose there is rule r1: if (x, y) is near point (5, 6), then u is large.
Using A and B to separately denote “near” and “large,” we define their consistency
functions as follows:

cAðz; 0; 1; 2Þ ¼ 2� z; 0� z\2

cBðu; 8; 9; 10Þ ¼ u� 8; 8\u� 10

Using adjoint measured function (14.16), then it follows that

u ¼ nB � mB

nA � mA
ðz� mAÞþmB

Take z = φ(x, y) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 5Þ2 þðy� 6Þ2

q
, mA = 1.5, ξA = 0, mB = 8.5, ξB = 10,

then we have measured function

u ¼ 10�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 5Þ2 þðy� 6Þ2

q
; 0�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 5Þ2 þðy� 6Þ2

q
\1:5

The graph of this function is a conical surface (as shown in Fig. 14.10). Now
viewed conversely, this measured function can also be interpreted as rule r1.
This shows that it is appropriate to treat this function as the mathematical model of
rule r1.

2. Adjoint functions of a property–property rule with multiple conditions and
multidimensional linguistic values

Let A1(x1, x2, …, xn) ∧ A2(y1, y2, …, ym) → B(z) be a conjunction-type property–
property rule with multidimensional linguistic values, where (x1, x2, …,

Fig. 14.10 An example of
the adjoint measured function
of a property–property rule
with the antecedent of
multidimensional linguistic
value
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xn) 2 U 
 Rn, and (y1, y2, …, ym) 2 V 
 Rm. Suppose that there exit mappings φ:
U → [a1, b1], r1 = φ(x1, x2, …, xn) and ψ: V → [a2, b2], r2 = ψ(y1, y2, …, ym) such
that flexible linguistic value A1 on U can be transformed into flexible linguistic
value A1 on [a1, b1], and flexible linguistic value A2 on V can be transformed into
flexible linguistic value A2 on [a2, b2]. Consequently, original flexible rule that
contains multidimensional linguistic values

A1ðx1; x2; . . .; xnÞ ^ A2 y1; y2; . . .; ymð Þ ! BðzÞ

is transformed into the flexible rule that contains only one-dimensional linguistic
values

A1ðr1Þ ^ A2ðr2Þ ! BðzÞ

From this, we find the triple adjoint functions of the original rule A1(x1, x2, …,

xn) ∧ A2(y1, y2, …, ym) → B(z).

(1) Let the adjoint degreed function of rule A1(r1) ∧ A2(r2) → B(z) be

dB ¼
bB�0:5
bA1�0:5 ðdA1 � 0:5Þþ 0:5; 0:5\dA1 � bA1

; 0:5\dA2 � bA2

bB�0:5
bA2�0:5 ðdA2 � 0:5Þþ 0:5; 0:5\dA1 � bA1

; 0:5\dA2 � bA2

8<
: ð14:25Þ

Then, this is also an adjoint degreed function of the original rule.
(2) Let the adjoint measured function of rule A1(r1) ∧ A2(r2) → B(z) be

y ¼ nB�mB
nA1�mA1

ðr1 � mA1ÞþmB; mA1\r1 � nA1
; mA2\r2 � nA2

y ¼ nB�mB
nA2�mA2

ðr2 � mA2ÞþmB; mA1\r1 � nA1
; mA2\r2 � nA2

(

while r1 = φ(x1, x2, …, xn) and r2 = ψ(y1, y2, …, ym), substitute them into the
expressions above, then we have

y ¼ nB�mB
nA1�mA1

ðuðx1; x2; . . .; xnÞ � mA1ÞþmB

y ¼ nB�mB
nA2�mA2

ðwðy1; y2; . . .; ymÞ � mA2ÞþmB

(
ð14:26Þ

where mA1 < φ(x1, …, xn) ≤ nA1
, mA2 < ψ(y1, …, ym) ≤ nA2

. This is just an
adjoint measured function of the original rule.

3. Adjoint function of a relation–property rule

Let R(x1, x2, …, xn) → B(y) be a relation–property rule whose antecedent is a
relational linguistic value, (x1, x2, …, xn) 2 U 
 Rn. Suppose that there exists
mapping φ: U → [a, b], r = φ(x1, x2, …, xn) such that flexible linguistic value A on
U can be transformed into flexible linguistic value A on [a, b]. Thus, the original
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relation–property rule R(x1, x2, …, xn) → B(y) is transformed into R(r) → B(y).
From this, we find the triple adjoint functions of the original rule R(x1, x2, …,

xn) → B(y).

(1) Let the adjoint degreed function of rule R(r) → B(y) be

dB ¼ bB � 0:5
bR � 0:5

ðdR � 0:5Þþ 0:5; 0:5\dR � bR ð14:27Þ

Since transforming φ only changes the space, dimensions, and property of
flexible linguistic value R, it does not change the correspondence relation
between antecedent and consequent linguistic values at the level of degree.
Therefore, this degreed function should also be an adjoint degreed function of
the original rule R(x1, x2, …, xn) → B(y).

(2) Let the adjoint measured function of rule R(r) → B(y) be

y ¼ nB � mB

nA � mR
ðr � mRÞþmB; mR\r� nR or nR � r\mR

This measured function is the functional relation between r and y, while
r = φ(x1, x2, …, xn), then substitute it into the expression above, we have

y ¼ nB � mB

nR � mR
ðuðx1; x2; . . .; xnÞ � mRÞþmB ð14:28Þ

where mR < φ(x1, x2, …, xn) ≤ ξR or ξR ≤ φ(x1, x2, …, xn) < mR. This is just an
adjoint measured function of the original rule R (x1, x2, …, xn) → B(y).

Example 14.2 Suppose that there is rule r2: if x is close to y, then u is small. Using
R and B to separately denote “close to” and “small,” we define its consistency
function as follows:

cR z; 0:8; 0:9; 1; 1:1; 1:2ð Þ ¼ 10z� 8; 0:8\z� 1

17� 10z; 1� z\1:2

�

cBðu; 0; 1; 2 Þ ¼ 2� u; 0� u\2

and employing adjoint measured function (14.35), then it follows that

u ¼ nB � mB

nR � mR
ðz� mRÞþmB

Taking z = φ(x, y) = x
y, then when 0.85 < x

y ≤ 1, mR = 0.85, ξR = 1, mB = 1.5
and ξB = 0; when 1 ≤ x

y < 1.15, mR = 1.15, ξR = 1, mB = 1.5, and ξB = 0. Thus, we
have measured function
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u ¼ 10� 10 x
y ; 0:85\ x

y � 1
10 x

y � 10; 1� x
y\1:15

�

This is just an adjoint measured function of the original rule, its graph is shown
in Fig. 14.11. Now viewed conversely, this measured function can also be inter-
preted as rule r2.

4. Adjoint functions of a flexible rule with the antecedent and consequent of
multidimensional linguistic value

Let A(x1, x2, …, xn) → B(y1, y2, …, ym) be a rule whose antecedent and con-
sequent are all multidimensional linguistic values, (x1, x2, …, xn) 2 U, (y1, y2, …,
ym) 2 V; A, B can be property-type linguistic values and relation-type linguistic
values. Suppose there exist transformations rn = φ(x1, x2, …, xn) and rm = ψ(y1, y2,
…, ym) such that flexible linguistic value A on n-dimensional space U can be
transformed into flexible linguistic value A on one-dimensional space [a, b] and
flexible linguistic value B on m-dimensional space V can be transformed into
flexible linguistic value B on one-dimensional space [c, d]. Thus, non-typical
flexible rule A(x1, x2, …, xn) → B(y1, y2, …, ym) is transformed into typical flexible
rule A(rn) → B(rm). Based on this, we find the triple adjoint functions of original
rule A(x1, x2, …, xn) → B(y1, y2, …, ym).

(1) Let the adjoint degreed function of rule A(rn) → B(rm) be

dB ¼ bB � 0:5
bA � 0:5

ðdA � 0:5Þþ 0:5; 0:5\dA � bA ð14:29Þ

Since transformations φ and ψ only change the spaces, dimensions, and
properties of flexible linguistic value A and B, they do not change the corre-
spondence relation between antecedent and consequent linguistic values at the
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Fig. 14.11 An example of
the approximate measured
function of a relation–
property rule
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level of degree. Therefore, this degreed function should also be an adjoint
degreed function of the original rule A(x1, x2, …, xn) → R(y1, y2, …, ym).

(2) Let the adjoint measured function of rule A(rn) → B(rm) be

rm ¼ nB � mB

nA � mA
ðrn � mAÞþmB; mA\rn � nA or nA � rn\mA

Substitute rn = φ(x1, x2, …, xn) into right side of the equation above, it follows
that

rm ¼ nB � mB

nA � mA
ðuðx1; x2; . . .; xnÞ � mAÞþmR

Also suppose

ðy1; y2; . . .; ymÞ ¼ w�1ðrmÞ

Thus, from the above two equations we have

y1; y2; . . .; ymð Þ ¼ w�1 nB � mR

nA � mA
u x1; x2; . . .; xnð Þ � mAð ÞþmR

	 

ð14:30Þ

This is an adjoint measured function of the original rule A(x1, x2, …, xn) → B
(y1, y2, …, ym).

It can be seen that Eq. (14.30) is really a vector-valued function. This
vector-valued function is the mathematical background and background function of
the flexible rule whose antecedent and consequent are all multidimensional lin-
guistic values—the most typical non-typical flexible rule. Actually, it is not hard to
see that the measured functions of all rules whose consequents are multidimen-
sional flexible linguistic values are certain kind of vector-valued function.

We see from the above-stated that for non-typical flexible rules, we can trans-
form them into typical flexible rules through certain kinds of mathematical trans-
formations, that is, mappings, then find the adjoint functions of the latter; further
derive the adjoint functions of original rule. The measured function instances in
Examples 14.1 and 14.2 above just verify the correctness of this method.

5. Adjoint functions of a rule with multiple conclusions

From the logical relation between antecedent and consequent as well as the logical
relation between various terms in consequent, it is not hard to see that the rules with
multiple conclusions, A → B1 ∧ B2 ∧���∧ Bm and A → B1 ∨ B2 ∨���∨ Bm) (where
A is either a simple proposition or a compound proposition A1 ∧ A2 ∧���∧ An,
A1 ∨ A2 ∨���∨ An, or A1 ⊕ A2 ⊕���⊕ An) can be split into m rules with single
conclusion, A → B1, A → B2, …, A → Bm, which are separately either conjunc-
tive or disjunctive; Or conversely speaking, the conjunction and the disjunction
of rules with single conclusion, A → B1, A → B2, …, A → Bm are separately
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A → B1 ∧ B2 ∧���∧ Bm and A → B1 ∨ B2 ∨���∨ Bm. Consequently, the conjunction
and disjunction of the adjoint functions of the m rules with single conclusion are
separately the adjoint functions of the two rules with multiple conclusions. Thus, to
obtain the adjoint functions of the rules with multiple conclusions,
A → B1 ∧ B2 ∧���∧ Bm and A → B1 ∨ B2 ∨���∨ Bm, we need to firstly find the
adjoint functions of rules with single conclusion, A → B1, A → B2, …, A → Bm,
respectively, then join them separately by conjunction (∧) and disjunction (∨). For
example, the adjoint degreed function of rule A → B1 ∧ B2 ∧���∧ Bm would be

fd1ðdAÞ ^ fd2ðdAÞ ^ � � � ^ fdmðdAÞ

and the adjoint degreed function of rule A → B1 ∨ B2 ∨���∨ Bm would be

fd1ðdAÞ _ fd2ðdAÞ _ � � � _ fdmðdAÞ

where fdiðdAÞ is the adjoint degreed function of rule A → Bi (i = 1, 2, …, m).

6. Adjoint functions of a rule with linguistic values with opposite

All types of adjoint functions above are all for the flexible rules in negation-type
logic. But the rule with linguistic values with opposite in opposite-type logic should
also have similar adjoint functions. Therefore, it is also necessary to find the adjoint
functions of a rule with linguistic values with opposite.

Since the near-true in the logical semantics of a rule with linguistic values with
opposite means truth-degree >0, rather than >0.5. Therefore, the domains and
ranges of triple adjoint functions of a rule with linguistic values with opposite
should be somewhat different from those of the adjoint functions of a rule with
linguistic values with negation. To be specific, the domains and ranges of the
truth-degreed function and degreed function of a rule with single condition should
take 0 as the lower bound, and those of measured function should take critical
points as the lower bound or upper bound. For example, for the rule with linguistic
values with opposite, A(x) → B(y), the domains of its truth-degreed function and
degreed function are [0, βA], and the ranges are [0, βB]. Thus, the graph spaces of
the functions are [0, βA] × [0, βB], correspondingly, the graph space of its measured
function is [sA, ξA] × [sB, ξB] or [ξA, sA] × [sB, ξB].

As thus, the thinking and method of finding the adjoint functions of a rule with
linguistic values with opposite are completely the same as the previous; only the
corresponding functional expressions and domains are somewhat different. And the
difference is then: the location of 0.5 of the original adjoint truth-degreed function
and degreed function is just 0 in the adjoint truth-degreed function and degreed
function of a rule with linguistic values with opposite; the location of the median
point of the original adjoint measured function is the critical point of the adjoint
truth-degreed function and degreed function of a rule with linguistic values with
opposite. The same is true for the differences between domains. Since it is so, we
only need to make a little modifications of the original adjoint functions, that is,
changing 0.5 into 0, and changing the median point (as mA and mB) into critical
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point (as sA and sB), then we can have the corresponding adjoint functions of a rule
with linguistic values with opposite.

14.5 Adjoint Functions of Flexible Linguistic Rules
in Extended Logical Semantics

The adjoint functions discussed above are based on the natural (standard) logical
semantics of rules, in the following we consider the adjoint functions of flexible
rules in extended logical semantics.

The extended logical semantics of a flexible rule is as follows: if antecedent
degree is true, then consequent degree would be true (for details, see Sect. 13.4). It
can be seen that according to the extended logical semantics, the graph space of the
adjoint degreed function of a flexible rule is the product of corresponding subranges
with 0 as infimum of range of consistency functions of flexible linguistic values of
antecedent and consequent of the rule, and the graph space of the adjoint measured
function of a flexible rule is the product of corresponding support sets of flexible
linguistic values of antecedent and consequent of the rule. For example, the
extended logical semantics of rule with single condition, A(x) → B(y), is if A
(x) degree-true then B(y) degree-true, that is, t(A(x)) > 0 → t(B(y)) > 0. Then,
according to the extended logical semantics, the graph space of the adjoint degreed
function of the rule is (0, βA] × (0, βB] (as shown in Fig. 14.12) and the graph space
of the adjoint measured function of the rule is (s�A , s

þ
A ) × (s�B , s

þ
B ) (as shown in

Fig. 14.13).
Similarly, based on such graph spaces, using the methods similar to preceding

methods, we can also construct the approximate adjoint degreed function and
adjoint measured function of a flexible rule in extended logical semantics. But, by
comparing the graph spaces of adjoint degreed functions and adjoint measured
functions of flexible rules in extended logical semantics with the corresponding
graph spaces of adjoint degreed functions and adjoint measured functions of flexible
rules in standard logical semantics in Sect. 14.2, it can be seen that the former are
much bigger than the latter. Therefore, the errors of adjoint functions constructed
for flexible rules in extended logical semantics are much greater than the errors of
corresponding adjoint functions constructed in standard logical semantics.

Fig. 14.12 Example of graph
spaces adjoint degreed
functions of a flexible rule in
extended logical semantics
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14.6 Optimization of Flexible Linguistic Rules’ Adjoint
Functions

In the above, we analyzed and discussed the adjoint functions of all types of flexible
rules and gave some reference models. It can be seen that these reference models
are actually similar to piecewise or blocking linear interpolation functions. Because
of the constraints of rough-true inference and logical semantics of rules, the graph
spaces of the adjoint functions of rules have be reduced greatly, and for the mea-
sured function, we also used the technique of semi-peak valued rules making that
the graph spaces of corresponding functions are further reduced. So it should say
that these reference models given can satisfy the requirements of some practical
problems.

Nonetheless, it still cannot be guaranteed that the above-stated methods and
models can satisfy the requirements of all practical problems. Then, to further
improve the accuracy of the adjoint functions of rules, on the basis of the
above-stated methods and models, we can use machine learning or the optimization
methods to optimize further these functions. In fact, in principle, as long as there is
certain amount of sample data, and by machine learning, then the approximate
degree of the adjoint functions can be effectively improved.

Besides, there is also other way to raise the approximate degree of the adjoint
functions, that is, narrowing the support sets of the flexible linguistic values in rules
because in theory, the method we use to construct adjoint functions is the function
approximation, that is, using local linear functions to approximate a global non-
linear function. Obviously, the narrower the domains of the local functions are, the
better the approximation effects would be and the higher approximate degree would
be. Of course, narrowing support sets would involve the adjustments of rules and
rule sets.

14.7 Summary

In this chapter, we first revealed the triple functional relations implicated by a
flexible rule, proposed the term of adjoint function of a rule, and gave some specific
methods and reference models for the construction of rules’ adjoint functions.

Fig. 14.13 Example of graph
spaces adjoint measured
functions of a flexible rule in
extended logical semantics
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The main points and results of the chapter are as follows:

• A flexible rule actually implicates functions or correlations at three levels of
truth-degree, degree, and measure whose concrete expressions are then three
adjoint functions of the rule; we can only try to find their corresponding
approximate functions, that is, approximate truth-degreed function, approximate
degreed function, and approximate measured function.

• These adjoint functions of rules can be obtained in principle by using mathe-
matical methods or machine learning methods; but under the constraints of
rough (near)-true inference and natural (standard) logical semantics of rules, the
graph spaces of adjoint functions of rules are already smaller relatively, so for
typical rules we can also linear functions as the corresponding approximate
adjoint functions; for non-typical rules we then can use space transforming
method to obtain their adjoint functions. In extended logical semantics, the
graph spaces of adjoint functions of rules are the biggest; thus, the errors of
corresponding approximate adjoint functions are greater.

• Combined with sample data, the given reference models of adjoint functions can
be further optimized, and the approximate degree of the adjoint functions can
also raised by narrowing the support sets of the corresponding flexible linguistic
values.
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Chapter 15
Reasoning and Computation with Flexible
Linguistic Rules

Abstract This chapter expounds, in the frame of logic, the principles, and methods
of reasoning with flexible linguistic rules. First, it presents natural inference with
data conversion(s) according to the relation between numerical values and flexible
linguistic values. Then, it presents the principles and methods of reasoning with
truth-degrees and reasoning with degrees based on rule’s adjoint functions, on the
basis of rough-true (near-true) inference. And it discusses reasoning with degrees
with data conversion(s) and approximate reasoning and computation based on
reasoning with degrees. In addition, it discusses parallel reasoning with degrees.

Keywords Natural inference � Reasoning with truth-degrees � Reasoning with
degrees � Approximate reasoning � Approximate computation

The reasoning with flexible linguistic rules is a central technique of
imprecise-information processing. On the basis of the previous Chaps. 6, 7, 11–14,
this chapter will discuss the (approximate) reasoning and computation with flexible
linguistic rules.

15.1 Natural Inference with Data Conversion(S)

The so-called natural inference is just usual reasoning. Although the symbols
(linguistic values) in flexible rules are flexible, the reasoning with flexible rules is
not different from that with general rules when the evidence fact matches com-
pletely with the premise of corresponding rule. However, since flexible linguistic
values and numerical values can be converted mutually, the natural inference with
flexible rules has its unique points. In fact, with data conversion(s), natural infer-
ence with flexible rules can be used in three ways:

① To do N-L conversion firstly then to do reasoning (as shown in Fig. 15.1);
② To do L-N conversion after reasoning (as shown in Fig. 15.2); and
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③ To do N-L conversion firstly then to do reasoning and to do L-N conversion
after reasoning (as shown in Fig. 15.3).

(In these figures, x0 and y0 are numerical values, and A and B are flexible linguistic
values.) In the following, we give some examples.

Example 15.1 Suppose there is a flexible rule of classifying apples set for a robot:

If an apple has a big size, symmetrical shape, bright color, and
smooth skin, then this apple is a superior apple.

And it is known that the observed values of size, shape, color, and skin of an apple
from the robot are separately a1, a2, a3, and a4. Question: Will the robot classify the
apple into the superior apple?

Solution It can be seen that because the linguistic values in antecedent of this
classifying rule are flexible linguistic values, while these observed values of the
apple from robot are numerical values, the observed values are needed to be con-
verted into flexible linguistic values firstly before robot classifying the apple
according to this rule.

We denote flexible linguistic values “big,” “symmetrical,” “bright,” “smooth,”
and “superior” one by one as A1, A2, A3, A4, and B, and then, the original rule can be
symbolized as A1 ∧ A2 ∧ A3 ∧ A4 → B.

Suppose the consistency-degrees of numerical values a1, a2, a3, and a4 with the
corresponding flexible linguistic values “big,” “symmetrical,” “bright,” and
“smooth” are one by one 1.0, 0.86, 1.05, and 0.98, that is, cA1ða1Þ ¼ 1:0,
cA2ða2Þ ¼ 0:86, cA3ða3Þ ¼ 1:05, and cA4ða4Þ ¼ 0:98. Clearly, the 4

Fig. 15.1 The diagram of
natural inference with N-L
conversion

Fig. 15.2 The diagram of
natural inference with L-N
conversion

Fig. 15.3 The diagram of natural inference with both N-L and L-N conversions
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consistency-degrees are all greater than 0.5. Thus, numerical values a1, a2, a3, and
a4 can be converted separately into flexible linguistic values A1, A2, A3, and A4. And
then, from the logic relation between A1, A2, A3, and A4, conjunctive flexible
linguistic value A1 ∧ A2 ∧ A3 ∧ A4 follows. Of course, from

cA1^A2^A3^A4ða1; a2; a3; a4Þ ¼ min cA1ða1Þ; cA2ða2Þ; cA3ða3Þ; cA4ða4Þf g
¼ min 1:0; 0:86; 1:05; 0:98f g ¼ 0:86[ 0:5

the flexible linguistic value A1 ∧ A2 ∧ A3 ∧ A4 can also be obtained directly from
numerical values a1, a2, a3, and a4.

Now, from fact A1 ∧ A2 ∧ A3 ∧ A4 and rule A1 ∧ A2 ∧ A3 ∧ A4 → B, and
according to modus ponens, the conclusion B follows. Thus, the robot will put the
apple into the class of superior apples.

It can be seen that in this example, there is an N-L conversion before reasoning.

Example 15.2 Suppose there is a flexible rule used for robot driving:

If the road becomes bad or visibility is down or an obstacle appears
at not far ahead, then reduce speed appropriately.

And it is known that the sighted values of road condition, visibility, and distance
ahead from the robot’s eyes in car running separately are a1, a2, and a3. Question:
How should the robot now specifically operate?

Solution It can be seen that since the linguistic values in antecedent of the rule are
flexible linguistic values, the sighted values from the robot’s eyes should be con-
verted into flexible linguistic values firstly before reasoning with this rule. Also
since the linguistic value in the consequent of the rule is a flexible linguistic value,
while the robot operating the car requires a precise quantity, the outcome (flexible
linguistic value) would be needed to be converted into a numerical value after
reasoning.

We denote flexible linguistic values “bad,” “low,” “not far,” and “appropriately”
one by one as A1, A2, A3, and B, and then, the original rule is symbolized as
A1 ∨ A2 ∨ A3 → B.

Suppose the consistency-degrees of numerical values a1, a2, and a3 with the
corresponding flexible linguistic values “bad,” “low,” and “not far” are one by one
0.15, 0.95, and 0, that is, cA1ða1Þ ¼ 0:15, cA2ða2Þ ¼ 0:95, and cA3ða3Þ ¼ 0.
Obviously, only consistency-degree cA2ða2Þ is greater than 0.5. Thus, numerical
value a2 can be converted into flexible linguistic value A2. But since A2 implies
A1 ∨ A2 ∨ A3, disjunctive flexible linguistic value (fact) A1∨ A2 ∨ A3 can still
follow. Of course, from

cA1_A2_A3ða1; a2; a3Þ ¼ max cA1ða1Þ; cA2ða2Þ; cA3ða3Þf g
¼ max 0:15; 0:95; 0f g ¼ 0:95[ 0:5
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the flexible linguistic value A1 ∨ A2 ∨ A3 can also be obtained directly from
numerical values a1, a2, and a3.

Thus, from fact A1 ∨ A2 ∨ A3 and rule A1 ∨ A2 ∨ A3 → B, and according to
modus ponens, the conclusion B follows. That is, the robot should make the car
slow down appropriately. But, how much is the specific operating quantity?

To obtain the specific operating quantity, the flexible linguistic value B must be
converted into a number b. According to the conversionmethods given in Sect. 7.3.1,
theoretically speaking, any number in the extended core of flexible linguistic value
B can be taken as the numerical value b. Thus, the robot specifically operates to
reduce speed with this operating quantity b.

It can be seen that in this example, there is an N-L conversion before reasoning
and an L-N conversion after reasoning.

Example 15.3 Suppose there is a flexible rule describing economic phenomena:

If bank notes are issued excessively plus supplies are not enough
plus there exists severe monopoly, then the price will rise
sharply.

And it is known that the amounts of banknote issuance, supplies, and assessment of
management in a certain period separately are a1, a2, and a3. Question: Will the
price rise sharply?

Solution Similarly, the linguistic values in the antecedent of this rule are flexible
linguistic values, while the relevant statistical data given in the problem are
numerical values, so we should firstly convert these numerical values into flexible
linguistic values.

We denote flexible linguistic values “(issued) excessively,” “(supplies) not
enough,” “severe (monopoly),” and “(rising) sharply” one by one as A1, A2, A3, and
B, and then, the original rule can be symbolized as A1 ⊕ A2 ⊕ A3 → B.

Suppose the consistency-degrees of a1, a2, and a3 with the corresponding flex-
ible linguistic values “(issued) excessively,” “(supplies) not enough,” and “severe
(monopoly)” are one by one 1.25, 0.78, and 1.36, that is, cA1ða1Þ ¼ 1:25,
cA2ða2Þ ¼ 0:78, and cA3ða3Þ ¼ 1:36. And suppose the weights of the three
consistency-degrees are separately 0.35, 0.25, and 0.40. Since

cA1�A2�A3ða1; a2; a3Þ ¼ 1:25� 0:35þ 0:78� 0:25þ 1:36� 0:40 ¼ 1:1765[ 0:5

numerical values a1, a2, and a3 can be converted into synthetic flexible linguistic
value A1 ⊕ A2 ⊕ A3.

Thus, from fact A1 ⊕ A2 ⊕ A3 and rule A1 ⊕ A2 ⊕ A3 → B, and according to
modus ponens, the conclusion B follows. That is, the price will rise sharply.

Similarly, there is also an N-L conversion before reasoning in the example. But
there is no L-N conversion after reasoning. Of course, if required, an L-N conversion
can also be done after reasoning. In fact, “(rise) sharply” can be converted into a real
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interval indicating the rising range, [b1, b2] (i.e., the extended core of “sharply”) or a
number indicating specific degree, b (a number in the extended core).

All the reasoning in the above is for rules with single conclusion, while for rules
with multiple conclusions, A → B1 ∧ B2 ∧ ��� ∧ Bm and A → B1 ∨ B2 ∨ ��� ∨ Bm

(where A is a simple proposition or a compound proposition A1 ∧ A2 ∧ ��� ∧ An,
A1 ∨ A2 ∨ ��� ∨ An, or A1 ⊕ A2 ⊕ ��� ⊕ An), the general form of corresponding
natural inference is as follows:

A ! B1 ^ B2 ^ � � � ^ Bm

A
) B1 ^ B2 ^ � � � ^ Bm

ð15:1Þ

and

A ! B1 _ B2 _ � � � _ Bm

A
) B1 _ B2 _ � � � _ Bm

ð15:2Þ

Now, if it is required to convert conclusion of flexible linguistic value form
B1 ∧ B2 ∧ ��� ∧ Bm or B1 ∨ B2 ∨ ��� ∨ Bm into numerical value form, then firstly
convert Bi into number xi(i = 1, 2, …, m), respectively, and then join them by
conjunction (∧) or disjunction (∨) and express as

x1 ^ x2 ^ � � � ^ xm

or

x1 _ x2 _ � � � _ xm

From what is stated above, it can be seen that with data conversion(s), the natural
inference with flexible rules can be applied to problem solving such as classifying,
forecasting, decision, control, and so forth. And as long as the granule sizes of
relevant flexible linguistic values are suitable, and the rules are proper, then the
outcomes obtained will meet the requirements. Further, we see that a natural
inference system with interfaces of both N-L and L-N conversions realizes actually
a mapping from the measurement space of antecedent linguistic values of rules to
the measurement space of consequent linguistic values. Therefore, the natural
inference utilizing this approach is effectively the approximate evaluation of the
background function of corresponding flexible rules. It is easy to see that the
smaller the granule sizes of corresponding flexible linguistic values are, the higher
is the precision of the approximate value obtained. Thus, this method can be used to
construct a function approximator (as shown in Fig. 15.4). And in theory, such a
function approximator can approximate any (non-chaotic) continuous function on a
measurement space if the rules are many enough and the granule sizes of corre-
sponding flexible linguistic values are small enough.
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From the above, we can see that the natural inference with data conversion(s)
can completely be applied for solving the relevant practical problems, so it should
have a good application prospect. However, we find that it has also some short-
comings, mainly,

① The obtained reasoning result (flexible language value) is not further portrayed
and subdivided.

② It is difficult to further improve the accuracy of the output numerical value in
the case of the granule sizes of flexible linguistic values being invariant.

③ It is hard to realize the approximate reasoning when facts do not match
completely with the premises of a rule.

For this reason, in the following, we will introduce the methods of reasoning and
computation utilizing adjoint functions of a rule.

15.2 Reasoning with Truth-Degrees

We know that the near-true-UMP (short for Universal Modus Ponens) in
truth-degreed logic (see Sect. 11.6.3) is

AðxÞ; t AðxÞð Þ[ 0:5ð Þ ! ðBðyÞ; t BðyÞ[ 0:5ð Þ
Aðx0Þ; t Aðx0Þð Þ[ 0:5

)Bðy0Þ; t Bðy0Þð Þ[ 0:5
ð15:3Þ

that is

AðxÞ near-trueð Þ ! BðyÞ near-trueð Þ
Aðx0Þ near-trueð Þ

)Bðy0Þ near-trueð Þ ð15:3’Þ

and the rough-true-UMP in flexible-two-valued logic (see Sect. 12.6.2) is

AðxÞ rough-trueð Þ ! BðyÞ rough-trueð Þ
Aðx0Þ rough-trueð Þ

)Bðy0Þ rough-trueð Þ ð15:4Þ

Fig. 15.4 The diagram of a
function approximator formed
by a natural inference system
with data conversion
interfaces
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But when reasoning, rough-true-UMP is really near-true-UMP. That is to say, when
reasoning, “A(x) rough-true → B(y) rough-true” is really “A(x) near-true → B
(y) near-true,” i.e., “(A(x), t(A(x)) > 0.5) → (B(y)), t(B(y) > 0.5),” while this
expression implicates the correspondence relation or functional relation between
truth-degrees t(A(x)) and t(B(y)). In Chap. 14, we examined specially this kind of
relations and gave some reference models of approximate functions [1].

Let px: A(x) (x 2 U) and qy: B(y) (y 2 V). Now, we consider flexible rule
px → qy at the level of proposition. Since there exists a truth-degreed functional
relation between antecedent and consequent of rule px → qy, its adjoint
truth-degreed function tqy ¼ ftðtpxÞ satisfies: when tpx [ 0:5, ftðtpxÞ ¼ tqy [ 0:5.
Thus, from expression (15.3), we have the following argument form:

ðruleÞ ðpx; tpxÞ ! ðqy; ftðtpxÞÞ
ðfactÞ ðpx0 ; tp0Þ

ðresultÞ ðqy0 ; tq0Þ
ð15:5Þ

where tpx ¼ tðpxÞ; ftðtpxÞ ¼ tqy is the adjoint truth-degreed function of rule px → qy,
tp0 ¼ tðpx0Þ is the truth-degree of proposition px0 (fact), tq0 ¼ ftðtp0Þ is the
truth-degree of proposition qy0 (conclusion).

Because the adjoint truth-degreed function of a rule is constrained by the logical
semantics of the rule, when tpx [ 0:5 necessarily ftðtpxÞ ¼ tqy [ 0:5 (for details, see
the analysis of graph space of rule’s adjoint truth-degreed function in Sect. 14.2).
Thus, from this, on the one hand, it can follow that t(px → qy) > 0.5, i.e., major
premise px → qy near-true; on the other hand, when, truth-degree of minor premise,
tp0 [ 0:5, necessarily tq0 ¼ ftðtp0Þ[ 0:5. This shows that the argument form shown
by the above expression (15.5) is a valid argument form in the sense of near-true.
Thus, it can be taken as a rule of near-true inference. In consideration that the
characteristic of this rule of inference is that computing of truth-degrees is added on
the basis of near-true-UMP, and the tq0 in reasoning result is specific truth-degree
(unlike degree-true inference, near-true inference, and rough-true inference only
knowing a scope of truth-degrees, that is, tq0 [ 0, tq0 [ 0:5, or qy0 rough-true), so we
call it to be truth-degree-level universal modus ponens, or truth-degree-level-UMP
for short. And then, we call the reasoning following truth-degree-level-UMP to be
reasoning with truth-degrees.

It can be seen that besides doing symbolic matching of the evidence fact to the
antecedent of a rule, reasoning with truth-degrees also needs to judge whether
tp0 [ 0:5, and if yes, then substituting tp0 into ftðtpxÞ and ftðtp0Þ ¼ tq0 follows;
further, the result (qy0 , tq0 ) of the argument is obtained. This is to say, in the process
of reasoning with truth-degrees, judging and computing of truth-degrees accom-
panies judging and deducing of symbols. Therefore, the basic principle of reasoning
with truth-degrees can also be simply expressed as follows:
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deducing of propositional symbolsþ computing of truth� degrees

For simplicity, we rewrite the above expression (15.5), namely truth-degree-
level-UMP, as the following form

ðpx ! qy; ftðtpxÞÞ
ðpx0 ; tp0Þ

ðqy0 ; tq0Þ
ð15:6Þ

The following reasoning with truth-degrees also all uses the representation form
disjointing a rule and its truth-degreed function.

From the above statement, we see that reasoning with truth-degrees is logical. In
fact, the truth-degree-level-UMP as basis comes down in one continuous line with
rough-true-UMP, near-true-UMP, UMP, and MP, which is the further quantifica-
tion of rough-true-UMP and near-true-UMP and can obtain the specific truth-degree
of conclusion (this solves in a certain sense the problem that truth-degree-level
exact inference cannot be done in truth-degreed logic), on the other hand, which
also can be viewed as a generalization of traditional UMP. In fact, the
truth-degree-level-UMP with truth-degreed function tqy ¼ tpx , and when tp0 ¼ 1, is
tantamount to traditional UMP.

Generally, the general scheme of reasoning with truth-degrees with the rule with
multiple conditions is as follows:

ðpx ! qy; ftðtpxÞÞ
ðpx0; tp0Þ

ðqy0 ; tq0Þ
ð15:7Þ

where px ¼ px1 ^ px2 ^ � � � ^ pxn , px1 _ px2 _ � � � _ pxn , or px1 � px2 � � � � � pxn ,
ftðtpxÞ is the adjoint truth-degreed function of rule px → qy, px0 ¼ px10
^px20 ^ � � � ^ pxn0 , px10 _ px20 _ � � � _ pxn0 , or px10 � px20 � � � � � pxn0 , tp0 ¼ t px0ð Þ ¼
minftðpx10Þ; tðpx20Þ; . . .; tðpxn0Þg, maxftðpx10Þ; tðpx20Þ; . . .; tðpxn0Þg, or

Pn
i¼1 witðpxi0Þ

(from Sects. 11.2 and 11.3) and tp0 [ 0:5, and tq0 ¼ tðqy0Þ ¼ ftðtp0Þ[ 0:5.
The argument following this scheme still judges firstly whether tpa0 [ 0:5 if yes,

then substitute tpa0 into ftðtpxÞ; ftðtp0Þ ¼ tq0 follows; further, result ðqy0 ; tq0Þ follows.
But tp0 is the overall truth-degree of facts px10 ; px20 ; . . .; pxn0 , so before judging
whether tp0 [ 0:5, if tp0 is not given, then we should find tp0 firstly from the
truth-degrees tðpx10Þ; tðpx20Þ; . . .; tðpxn0Þ of component propositions.

Note: The above reasoning with truth-degrees is actually oriented to the flexible
rules in negation-type logic, for the rules with linguistic values with opposite in
opposite-type logic, and then, we need to judge whether tp0 [ 0 when reasoning
and in the obtained result ðqy0 ; tq0Þ, and tq0 [ 0.

Note that the reasoning with truth-degrees here is not to compute the
truth-degree of conclusion qy0 by the truth-degrees of premises px → qy and px0 .
That is to say, the truth-degree of conclusion qy0 is actually not directly related to
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that of premise px → qy. The reason is that as stated in 14.1, though inference rule
(p → q) ∧ p ⇒ q is also a kind of production rule, it is actually a kind of
meta-rules, whose semantics is that conclusion q is near-true when both premises
p → q and p are near-true, but there is no corresponding computation formula or
function of truth-degrees. While in actual argument, premise p → q is always
assumed relatively true, that is, its truth-degree is bigger than 0.5; otherwise, the
argument cannot be done.

15.3 Reasoning with Degrees

Expanding propositional forms px and qy in rule px → qy into possessive relation
forms, we then have rule A(x) → B(y) (x 2 U, y 2 V). Correspondingly, from the
relation between adjoint truth-degreed function and adjoint degreed function of a
rule (see Sect. 14.1), the adjoint truth-degreed function of rule px → qy just is the
adjoint degreed function of rule A(x) → B(y) numerically (and vice versa). Thus,
from the truth-degree-level-UMP in the last section, we have the following infer-
ence form with degreed function and degreed computation:

ðruleÞ AðxÞ ! BðyÞ; fdðdAÞð Þ
ðfactÞ ðAðx0Þ; dA0Þ

ðresultÞ ðBðy0Þ; dB0Þ
ð15:8Þ

where fd(dA) is the adjoint degreed function of rule A(x) → B(y), dA0 (i.e.
cA(x0)) > 0.5 is the degree of linguistic value A in proposition A(x0) as evidence
fact, dB0 (i.e. cB(y0)) = fd(dA) > 0.5 is the degree of linguistic value B in proposition
B(y0) as the result of reasoning.

It can be seen that this form of inference only is a version of the
truth-degree-level-UMP. So it is equivalent to truth-degree-level-UMP. Since the
numerical computation here is the computation about degrees, therefore, we call
this inference form to be the degree-level universal modus ponens, or
degree-level-UMP for short, and call the reasoning following degree-level-UMP to
be the reasoning with degrees.

The semantics of UMP with degrees is as follows: if the degree dA of x having
A is >0.5, then degree of y having B is fd(dA) > 0.5; now, it is already known that
the degree of some x0 having A is dA0 and dA0 [ 0:5, so there exits y0, the degree of
which having B is dB0 ¼ fd dAð Þ and dB0 [ 0:5. Thus, The process of reasoning with
degrees is firstly to do matching of symbolic patterns of the linguistic value as
evidence fact to the linguistic value of rule’s antecedent and then judge whether
dA0 [ 0:5; if yes, then substitute dA0 into fd(dA), dB0 ¼ fdðdA0Þ follows; further result
(B, dB0 ) follows; from the range of degreed function (see Sect. 14.2), it is known
that necessarily dB0 [ 0:5.
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It can be seen that reasoning with degrees is actually a kind of inference at the
level of the predicate. So, simply speaking, the basic principle of reasoning with
degrees is deducing of predicate symbols + computing of degrees.

From Sect. 13.5, it is known that a flexible rule is essentially the correspondence
between the linguistic values of antecedent and consequent. Thus, rule A(x) → B
(y) is reduced as A → B. Therefore, correspondingly, propositions A(x0) and B(y0)
as evidence fact and inference result can be briefly denoted as linguistic values
A and B, while two-tuples (A(x0), dA0 ) and (B(y0), dB0 ) be briefly denoted as lin-
guistic values with degrees (A, dA0 ) and (B, dB0 ). Thus, the above expression (15.8)
can be simplified as the following form:

A ! B; fdðdAÞð Þ
ðA; dA0Þ

ðB; dB0Þ
ð15:8’Þ

From the statement above, we see that reasoning with degrees is actually a
version of reasoning with truth-degrees, so it also logical. In fact, reasoning with
degrees is the quantification of flexible predicate inference, which is a kind of
logical inference with predicates that is both qualitative and quantitative. On the
other hand, reasoning with degrees can also be viewed as a generalization of
traditional inference with predicates. As a matter of fact, the reasoning with degrees
with the degreed function dB = dA, and when degree dA0 ¼ 1, just is tantamount to
traditional inference with predicate.

Generally, the general scheme of reasoning with degrees with the rule with
multiple conditions/a composite linguistic value is as follows:

A ! B; fdðdAÞð Þ
ðA; dA0Þ

ðB; dB0Þ
ð15:9Þ

where A = A1 ∧ A2 ∧ ��� ∧ An, A1 ∨ A2 ∨ ��� ∨An, or A1 ⊕ A2 ⊕ ��� ⊕ An, fd(dA)
is the degreed function of rule A → B, dA0 ¼ minfdA10 ; dA20 ; . . .; dAn0g,
maxfdA10 ; dA20 ; . . .; dAn0g, or

Pn
i¼1 widAi0 (from tp0 in expression (15.7)) and

dA0 [ 0:5, dAi0 is the degree of Ai(i = 1, 2, …, n), and dB0 ¼ fdðdA0Þ[ 0:5.
The reasoning following this scheme is still firstly to do symbolic matching of

the fact to the antecedent of a rule and then judges whether dAa [ 0:5; if yes, then
substitute dAa into fd(dA), dB0 ¼ fdðdA0Þ follows; further result (B, dB0 ) follows. But
dA0 is the overall degree of composite linguistic value A as a fact, so before judging
whether dA0 [ 0:5, if dA0 is not given, then we should find firstly the corresponding
dA0 from the degrees dA10 ; dA20 ; . . .; dAn0 of component linguistic values.

Example 15.4 Let A1, A2, A3, and B denote separately flexible linguistic values
“(issued) excessively,” “(supplies) not enough,” “severe (monopoly),” and “(rise)
sharply,” and there are known facts: (A1, 1.25), (A2, 0.78), and (A3, 1.36). Try to do
reasoning with degrees with flexible rule A1 ⊕ A2 ⊕ A3 → B.
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Solution According to the general scheme of reasoning with degrees above, the
reasoning with degrees to be done is

ðA1 � A2 � A3 ! B; fdðdAÞÞ
ðA1 � A2 � A3; dA0Þ

ðB; dB0Þ

It can be seen that to do this reasoning with degrees, it is needed to construct the
adjoint degreed function fd(dA) of rule A1 ⊕ A2 ⊕ A3 → B and compose original
evidence facts (A1, 1.25), (A2, 0.78), and (A3, 1.36) into (A1 ⊕ A2 ⊕ A3, dA0 ).

For simplicity, we directly reference to the Eq. (14.14) in Sect. 14.3.1; let the
adjoint degreed function fd(dA) of rule A1 ⊕ A2 ⊕ A3 → B be

dB ¼ bB � 0:5
b� � 0:5

ðdA � 0:5Þþ 0:5

where b� ¼ w1bA1
þw2bA2

þw3bA3
, dA ¼P3

i¼1 widAi , 0\dAj � bAj
j ¼ 1; 2; 3ð Þ.

Suppose the maximum of consistency-degrees of “(issued) excessively” is
bA1

¼ 2:5, the maximum of consistency-degrees of “(supplies) not enough” is
bA2

¼ 1:8, and the maximum of consistency-degrees of “severe (monopoly)” is
bA3

¼ 2:0, and from the weights given in Example 15.3, w1 = 0.35, w2 = 0.25, and

w3 = 0.4 and then b� ¼P3
i¼1 wibAi

¼ 0:35� 2:5þ 0:25� 1:8þ 0:4� 2:0 � 2:1;
Also, suppose then the maximum of consistency-degrees of “(rise) sharply” is
bB ¼ 2:0. Substituting the two numbers above into the above function expression,
we have a actual adjoint degreed function fd(dA) of rule A1 ⊕ A2 ⊕ A3 → B:

dB ¼ 15
16

dA þ 1
32

And from the operation rules offlexible linguistic values with degrees (see Sect. 7.2),

A1; 1:25ð Þ � A2; 0:78ð Þ � A3; 1:36ð Þ
¼ ðA1 � A2 � A3; 1:25� 0:35þ 0:78� 0:25þ 1:36� 0:40Þ
¼ ðA1 � A2 � A3; 1:2Þ

Now, the major and minor premises of the reasoning with degrees separately are
as follows:

A1 � A2 � A3 ! B;
15
16

dA þ 1
32

� �
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and

ðA1 � A2 � A3; 1:2Þ

It is clear that the composite linguistic value A1 ⊕ A2 ⊕ A3 in the minor premise
matches completely with the antecedent linguistic value in the major premise, and
dA0 ¼ 1:2[ 0:5. Therefore, the corresponding reasoning with degrees can be done.

Substituting dA = 1.2 into function dB ¼ 15
16 dA þ 1

32, dB ≈ 1.16 follows.
Consequently, the result of the reasoning with degrees is: (B, 1.16). That is, the
price will rise sharply, and the strength is 1.16.

Actually, for evidence facts (A1, 1.25), (A2, 0.78), and (A3, 1.36), if flexible rule
is A1 ∧ A2 ∧ A3 → B or A1 ∨ A2 ∨ A3 → B, the corresponding reasoning with
degrees can also be done.

Finally, it should be noted that:

① The above reasoning with degrees is actually oriented to the flexible rules in
negation-type logic, while for the rules with linguistic values with opposite in
opposite-type logic, we need to judge whether dA0 [ 0 in reasoning, and dB0 in
reasoning result is also >0.

② Although the reasoning with degrees has its specific representation schemes
and methods, if applied flexibly, it can be used to achieve reasoning in a
variety of situations and of a variety of requirements, such as reasoning with
data conversion(s), multistep reasoning, multipath reasoning, parallel reason-
ing, or even approximate reasoning and computation. These will be expoun-
ded in details in the following sections. The examples of the engineering
applications of reasoning with degrees see “Sect. 18.6 Principle of flexible
control with examples.”

15.4 Reasoning with Degrees with Data Conversion(S)

Reasoning with degrees requires the evidence facts in premise to be flexible lin-
guistic values with degrees, but in practical problems, some known evidence facts
are numerical values. In such a case, we can convert numerical values into flexible
linguistic values with degrees firstly and then do reasoning with degrees (as shown
in Fig. 15.5). It can be seen that this is also the reasoning with degrees with N-Ld
conversion.

For the method converting a numerical value x0 into a linguistic value with
degree, see Sect. 7.3.2. While for a group of numerical values as evidence facts, x1,
x2, …, xn, it is needed to convert firstly x1, x2, …, xn into linguistic values with
degrees (A1i , d1), (A2j , d2),…, (Ank , dn), respectively, and then, according to the
logic relation between them (that is, the structure type of the antecedent linguistic
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value of the corresponding rule), compose these linguistic values with degrees into
a composite linguistic value with degree (for the composing rules, see Sect. 7.2).

The result of reasoning with degrees is a linguistic value with degree (B, dB), but
sometimes, we need to know what is the number (y0) it corresponds to. In this case,
we can convert linguistic value with degree (B, dB) into a numerical value (as
shown in Fig. 15.6). It can be seen that this is also the reasoning with degrees with
Ld-N conversion.

For the specific method converting linguistic value with degree (B, dB) into a
numerical value, see Sect. 7.3.2.

The third case is that known evidence facts are numerical values and the final
result after reasoning is also required to be a numerical value. In this situation, it is
needed to convert relevant numerical values into flexible linguistic values with
degrees before reasoning and to convert flexible linguistic values with degrees as
reasoning result into a numerical value (as shown in Fig. 15.7). It can be seen that
this is also the reasoning with degrees with both N-Ld and Ld-N conversions.

Actually, the Figs. 15.5, 15.6, and 15.7 above are additional three usages of
reasoning with degrees (which are similar to the three usages of natural inference
with flexible rule in previous Sect. 15.1).

Example 15.5 We use reasoning with degrees to solve the problem in Example
15.1 above.

Solution It can be seen that the corresponding reasoning with degrees is as follows:

ðA1 ^ A2 ^ A3 ^ A4 ! B; fdðdAÞÞ
ðA1 ^ A2 ^ A3 ^ A4; dA0Þ

ðB; dB0Þ

Fig. 15.5 Diagram of
reasoning with degrees with
N-Ld conversion

Fig. 15.6 Diagram of
reasoning with degrees with
Ld-N conversion

Fig. 15.7 Diagram of reasoning with degrees with both N-Ld and Ld-N conversions
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here A = A1 ∧ A2 ∧ A3 ∧ A4.

With reference to the Eq. (14.12) in Sect. 14.3.1, let the adjoint degreed function
fd(dA) of rule A1 ∧ A2 ∧ A3 ∧ A4 → B be

dB ¼ bB � 0:5
b^ � 0:5

ðdA � 0:5Þþ 0:5

where b^ ¼ minfbA1
; bA2

; bA3
; bA4

g, dA ¼ minfdA1 ; dA2 ; dA3 ; dA4g, 0:5\dAj � bAj

j ¼ 1; 2; 3; 4ð Þ.
Suppose the maximum of consistency-degrees of “big” is bA1

¼ 1:5, the max-
imum of consistency-degrees of “symmetrical” is bA2

¼ 1:1, the maximum of
consistency-degrees of “bright” is bA3

¼ 1:35, and the maximum of
consistency-degrees of “smooth” is bA4

¼ 1:15. Then, b^ ¼ minfbA1
; bA2

;bA3
bA4

g
¼ 1:5; 1:1; 1:35; 1:15f g ¼ 1:1. Suppose then the maximum of consistency-degrees
of “superior” is bB ¼ 1:2. Substituting the above two numbers into the above
function expression, we have an actual adjoint degreed function of rule
A1 ∧ A2 ∧ A3 ∧ A4 → B:

dB ¼ 1
1
6
dA � 1

12

And from cA1ða1Þ ¼ 1:0; cA2ða2Þ ¼ 0:86; cA3ða3Þ ¼ 1:05 and cA4ða4Þ ¼ 0:98
given in Example 15.1, we convert separately numerical values a1, a2, a3, and a4
into flexible linguistic values with degrees (A1, 1.0), (A2, 0.86), (A3, 1.05), and (A4,
0.98). And then, compose them according to the logic relation among them, and
thus, it follows that conjunctive flexible linguistic value with degree:

ðA1 ^ A2 ^ A3 ^ A4;min 1:0; 0:86; 1:05; 0:98f gÞ ¼ ðA1 ^ A2 ^ A3 ^ A4; 0:86Þ

Now, the major and minor premises of the reasoning with degrees separately are
as follows:

A1 ^ A2 ^ A3 ^ A4 ! B; 1
1
6
dA � 1

12

� �

and

ðA1 ^ A2 ^ A3 ^ A4; 0:86Þ

Obviously, the composite linguistic value A1 ∧ A2 ∧ A3 ∧ A4 in minor premise
matches completely with the antecedent linguistic value in major premise, and
dA0 ¼ 0:86[ 0:5 Therefore, corresponding reasoning with degrees can be done.

Substituting dA = 0.86 into degreed function dB ¼ 1 1
6 dA � 1

12, dB ≈ 0.75 fol-
lows. Thus, the result of the reasoning is (B, 0.75). That is, this apple can be put into
the class of superior apples, but its membership-degree is only 0.75.
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Example 15.6 We use reasoning with degrees to solve the problem in Example
15.2 above.

Solution It can be seen that the corresponding reasoning with degrees is as follows:

ðA1 _ A2 _ A3 ! B; fdðdAÞÞ
ðA1 _ A2 _ A3; dA0Þ

ðB; dB0Þ

here A = A1 ∨ A2 ∨ A3.

With reference to the Eq. (14.13) in Sect. 14.3.1, let the adjoint degreed function
fd(dA) of rule A1 ∨ A2 ∨ A3 → B be

dB ¼ bB � 0:5
b_ � 0:5

ðdA � 0:5Þþ 0:5

where b_ ¼ maxfbA1
; bA2

; bA3
g, dA ¼ maxfdA1 ; dA2 ; dA3g, 0:5\dAj � bAj

j ¼ 1; 2; 3ð Þ.
Suppose the maximum of consistency-degrees of “(road) bad” is bA1

¼ 1:5, the
maximum of consistency-degrees of “(visibility) low” is bA2

¼ 1:0, and the max-
imum of consistency-degrees of “not far (ahead)” is bA3

¼ 1:2. Then,
b_ ¼ maxfbA1

; bA2
bA3

g ¼ f1:5; 1:0; 1:2g ¼ 1:5. Suppose then the maximum of
consistency-degrees of “appropriately (reduce speed)” is bB ¼ 1:25. Substituting
the above two numbers into the above function expression, we have an actual
adjoint degreed function of rule A1 ∨ A2 ∨ A3 → B:

dB ¼ 1:5dA � 0:25

And from cA1ða1Þ ¼ 0:15; cA2ða2Þ ¼ 0:95, and cA3ða3Þ ¼ 0 given in Example
15.2, we convert separately numerical values a1, a2, and a3 into flexible linguistic
values with degrees (A1, 0.15), (A2, 0.95), and (A3, 0). And then, compose them
according to the logic relation, and thus, it follows that disjunctive flexible lin-
guistic value with degree

ðA1 _ A2 _ A3;max 0:15; 0:95; 0f gÞ ¼ ðA1 _ A2 _ A3; 0:95Þ

Now, the major and minor premises of the reasoning with degrees separately are
as follows:

ðA1 _ A2 _ A3 ! B; 1:5dA � 0:25Þ
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and

ðA1 _ A2 _ A3; 0:95Þ

Clearly, the composite linguistic value A1 ∨ A2 ∨ A3 in minor premise matches
completely with the antecedent linguistic value in major premise, and
dA0 ¼ 0:95[ 0:5. Therefore, corresponding reasoning with degrees can be done.

Substituting dA = 0.95 into degreed function dB = 1.5 dA − 0.25, dB ≈ 1.18
follows. Thus, the result of the reasoning is (B, 1.18). That is, promptly reduce
speed appropriately in strength 1.15.

And the specific operating quantity to which degree 1.18 corresponds should be
obtained by converting flexible linguistic value with degree (B, 1.18) (the con-
verting method, see Sect. 7.3.2). In theory, the numerical value obtained by con-
verting flexible linguistic value with degree (B, 1.18) is more accurate as the
numerical value obtained by converting pure flexible linguistic value B.

Example 15.7 We use reasoning with degrees to solve the problem in Example
15.3 above.

Solution It can be seen that the corresponding reasoning with degrees is as follows:

ðA1 � A2 � A3 ! B; fdðdAÞÞ
ðA1 � A2 � A3; dA0Þ

ðB; dB0Þ

here A = A1 ⊕ A2 ⊕ A3.

But, this reasoning with degrees has been done in Example 15.4 above; here, we
need only to convert numerical values from relevant statistical data, a1, a2, and a3,
into flexible linguistic values with degrees (A1, 1.25), (A2, 0.78), and (A3, 1.36).
Besides, if required, the flexible linguistic value with degree as reasoning result,
(B, 1.16), can also be converted into a number indicating specific degree, b.

All the reasoning with degrees in the above is for rules with single conclusion,
while for rules with multiple conclusions, A → B1 ∧ B2 ∧ ��� ∧ Bm and
A → B1 ∨ B2 ∨ ��� ∨ Bm (where A is a simple proposition or a compound propo-
sition A1 ∧ A2 ∧ ��� ∧ An, A1 ∨ A2 ∨ ��� ∨ An, or A1 ⊕ A2 ⊕ ��� ⊕ An); the general
form of corresponding reasoning with degrees is as follows

A ! B1 ^ B2 ^ � � � ^ Bm; fd1ðdAÞ ^ fd2ðdAÞ ^ � � � ^ fdmðdAÞð Þ
ðA; dA0Þ

ðB1; dB1Þ ^ ðB2; dB2Þ ^ � � � ^ ðBm; dBmÞ
ð15:10Þ

and

A ! B1 _ B2 _ � � � _ Bm; fd1ðdAÞ _ fd2ðdAÞ _ � � � _ fdmðdAÞð Þ
ðA; dA0Þ

ðB1; dB1Þ _ ðB2; dB2Þ _ � � � _ ðBm; dBmÞ
ð15:11Þ

382 15 Reasoning and Computation with Flexible Linguistic Rules

http://dx.doi.org/10.1007/978-981-10-1549-6_7


where fdiðdAÞ is the adjoint degreed function of rule A → Bi(i = 1, 2, …, m).
Now, if it is required to convert the conclusion of flexible linguistic value with

degree ðB1; dB1Þ ^ ðB2; dB2Þ ^ � � � ^ ðBm; dBmÞ or ðB1; dB1Þ _ ðB2; dB2Þ _ � � � _
ðBm; dBmÞ into numbers, we firstly convert flexible linguistic value with degree
(Bi; dBi ) into number xi(i = 1, 2, …, m), respectively and then join them by con-
junction (∧) or disjunction (∨) and express as follows:

x1 ^ x2 ^ � � � ^ xm

or

x1 _ x2 _ � � � _ xm

From what is stated above, we can see that like natural inference with data con-
version(s), the reasoning with degrees with data conversion(s) can also be applied to
problem solving such as classifying, forecasting, decision, control, and so forth. And
as long as the granule sizes of relevant flexible linguistic values are suitable, and the
rules are proper, especially when the corresponding adjoint degreed functions of rules
are also suitable, the outcomes obtained will meet the requirements.

15.5 Utilizing Reasoning with Degrees to Realize
Approximate Reasoning and Approximate
Computation

Reasoning with degrees is a kind of inference of exact symbol matching and degree
computing, but utilizing reasoning with degrees, we can also realize the approxi-
mate reasoning of inexact symbol matching and the approximate computation (of
course, if considering that rule’s adjoint degreed function itself is approximate, then
reasoning with degrees is also a kind of approximate reasoning).

15.5.1 Utilizing Reasoning with Degrees to Realize
Approximate Reasoning

1. Basic principle

Here, the approximate reasoning refers to the inexact symbol matching inference of
the following form:

A ! B
A0

?
ð15:12Þ
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Here, A′ is an approximate value of A (as the superposed value of A). Viewed from
appearance, this is not reasoning with degrees, but it is not hard to see that as long
as A′ can be converted into (A, dA0 ), reasoning with degrees can be used to realize
this kind of approximate inference. As a matter of fact, after converting A′ to
(A, dA0 ), the above approximate reasoning can be changed to the reasoning with
degrees of the form

A ! B; fdðdAÞð Þ
ðA; dA0Þ

ðB; ?Þ ð15:13Þ

As to the conversion from A′ to (A, dA0 ), see the method of conversion from A′(x0)
to A(x0) in Sect. 12.7. The conversion from pure linguistic value A′ to linguistic
value with degree (A, dA0 ) can be called L′-Ld conversion.

From reasoning with degrees, the deduced result of the above expression (15.13)
should be (B, dB0 ). However, this kind of result generally does not conform to the
requirement of approximate reasoning. Since viewed from given fact A′, its deduced
result should also be a B′ that is approximate to B. Therefore, after reasoning with
degrees, we still need to convert (B, dB0 ) into appropriate (B′, dB0

0
). The method of

this conversion is to find out firstly corresponding y0 from (B, dB0 ) and then take y0
as the peak value point to construct a flexible linguistic value with reference to the
“size” of B; then, this flexible linguistic value can be treated as B′ obtained. The
conversion from linguistic value with degree ðB; dB0Þ to pure linguistic value B′ can
be called Ld-L′ conversion.

Thus, utilizing reasoning with degrees, we have realized inexact symbol
matching approximate reasoning, whose principle and process are illustrated in
Fig. 15.8.

2. Approximate reasoning with the rule with multiple conditions/a composite
linguistic value

The above approximate reasoning is the approximate reasoning with the rule with
single condition and atomic linguistic value, whose basic principles are also
applicable to the approximate reasoning with the rule with multiple conditions/a
composite linguistic value. However, from Sect. 6.8, it is known that the approx-
imation relation between composite linguistic values is not that direct and simple
like the approximation relation between atomic linguistic values, so when to

Fig. 15.8 Diagram of the principle of approximate reasoning realized by utilizing reasoning with
degrees
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conduct approximate reasoning with the rule with a composite linguistic value, the
conversion from composite linguistic value A′ as an evidence fact to the corre-
sponding linguistic value with degree (A, dA0 ) is also relatively complex and
troublesome. In fact, to convert composite linguistic value A′ into the corresponding
linguistic value with degree (A, dA0 ), we need firstly to convert its component
linguistic values or ingredient values A1′, A2′, …, An′ separately into the corre-
sponding linguistic values with degrees (A1, dA10 ) (A2, dA20 ), …, (An, dAn0 ) (since
these linguistic values are already atomic linguistic values, the conversion method
is the same as that the previous) and then implement corresponding composition of
these linguistic values with degrees according to the operation types in the original
composite linguistic value A′; the obtained composite linguistic value with degree is
just the corresponding (A, dA0 ).

Specifically speaking, let A0
a ¼ A0

1 ^ A0
2 ^ � � � ^ A0

n, whose conversion method is
firstly to convert its component linguistic values A0

1;A
0
2; . . .;A

0
n separately into

linguistic values with degrees (A1, dA10 ), ðA2; dA20Þ; . . .; ðAn; dAn0Þ and then conduct
conjunctive composition of the latter. By the composition rules in Sect. 7.2,

ðA1; dA10Þ ^ ðA2; dA20Þ ^ � � � ^ ðAn; dAn0Þ ¼ ðA1 ^ A2 ^ � � �
^ An;minfdA10 ; dA20 ; . . .; dAn0gÞ

Thus, the original conjunctive linguistic value A0
a ¼ A0

1 ^ A0
2 ^ � � � ^ A0

n is con-
verted into

A1 ^ A2 ^ . . . ^ An;minfdA10 ; dA20 ; . . .; dAn0gð Þ

Similarly, disjunctive linguistic value A0
o ¼ A0

1 _ A0
2 _ � � � _ A0

n is converted into

A1 _ A2 _ � � � _ An;maxfdA10 ; dA20 ; . . .; dAn0gð Þ

and synthetic linguistic value A0
s ¼ A0

1 � A0
2 � � � � � A0

n is converted into

A1 � A2 � . . .� An;
Xn
i¼1

widAi0

 !
;
Xn
i¼1

wi ¼ 1

After composite linguistic value A′ as an evidence fact is converted into cor-
responding linguistic value with degree (A, dA0 ), the approximate reasoning with
the rule with a composite linguistic value also becomes the reasoning with degrees
with the rule with a composite linguistic value in previous Sect. 15.3. As to the
treatment of deduced result, it is the same as that of the previous approximate
reasoning with the rule with single condition and atomic linguistic value.

3. Approximate reasoning with multirules

Actually, approximate reasoning in practical problems is often the following
approximate reasoning with multirules:
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A1 ! B1

A2 ! B2

. . .
Am ! Bm

A
?

ð15:14Þ

where A1, A2, …, Am and A are flexible linguistic values on one-dimensional
measurement space U, and B1, B2, …, Bm, and B are flexible linguistic values on
one-dimensional measurement space V (here, Bi and Bj (i, j 2 {1, 2, …, n},
i ≠ j) may be the same), or more general approximate reasoning:

A1 ! B1

A2 ! B2

. . .
Am ! Bm

A
?

ð15:15Þ

where Ai ¼ Ai1 ^ Ai2 ^ � � � ^ Ain , Ai1 _ Ai2 _ � � � _ Ain , or Ai1 � Ai2 � � � � � Ain , Ai

(i = 1, 2, …, m), and A are composite flexible linguistic values on n-dimensional
product space U = U1 × U2 × ��� × Un.

For the approximate reasoning with multirules, we need firstly to examine which
rule’s antecedent linguistic value that the evidence fact A is closer to (actually, if
A1, A2,…, An are all basic flexible linguistic values or composite linguistic values
composed by basic flexible linguistic values, then A can only be approximate to one
flexible linguistic value among them) and then choose the rule to do approximate
reasoning. Suppose the chosen rule is Ak → Bk, k 2 {1, 2, …, n}, and then,
approximate reasoning with multirules just is reduced to the following approximate
reasoning with single rule:

Ak ! Bk

A
?

ð15:16Þ

The method to examine which rule’s antecedent linguistic value that the evi-
dence fact A being closer to is to compute the approximate degrees of A and the
antecedent linguistic values of all rules (see Sect. 6.8), and then, one with the
maximum approximate degree is the closest.
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15.5.2 Utilizing Reasoning with Degrees to Realize
Approximate Computation

From Sect. 15.4 above, we see that on the one hand, for the numerical evidence
fact, we can convert it into a linguistic value with degree and then conduct rea-
soning with degrees; on the other hand, we can also convert the deduced result of a
linguistic value with degree into a number. Then, couldn’t the combination of the
two just realize the approximate evaluation of the background function of a rule?
That is to say, the approximate computation of numerical values can also be
realized by utilizing reasoning with degrees. Actually, what is shown in Fig. 15.7
above is just the principle and process of this kind of approximate evaluation of a
function. The principles of utilizing reasoning with degrees to realize approximate
evaluation of a function can also be more specifically illustrated in Fig. 15.9.

Further, we see that a system of reasoning with degrees with interfaces of both
N-L and L-N conversions realizes really a function approximator (as shown in

Fig. 15.9 Illustration of the principle of approximate evaluation utilizing reasoning with degrees

Fig. 15.10 The diagram of a function approximator formed by a system of reasoning with degrees
with interfaces of data conversions
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Fig. 15.10). And in theory, such a function approximator can also approximate any
(non-chaotic) continuous function on a measurement space.

15.6 Parallel Reasoning with Degrees in the Sense
of Degree-True

In Sect. 11.5.4, we discussed the deductive reasoning in the sense of “degree-true,”
i.e., degree-true inference. Now, we further consider the reasoning with degrees in
the sense of degree-true.

Actually, speaking from inference scheme, the reasoning with degrees in the
sense of degree-true has no difference with the reasoning with degrees in the sense
of near-true above. However, in the reasoning with degrees in the sense of
degree-true, the graph space of rule’s adjoint degreed function is [αA, βA] × [αB, βB]
(but not former (0.5, βA] × (0.5, βB] in near-true inference), and it requires degree
dA0 in evidence fact (A, dA0 ) to satisfy dA0 [ 0 (but not dA0 [ 0:5 in near-true
inference). And then, if to convert flexible linguistic value (B, dB0 ) into number y0,
then the y0 2 [αB, βB] (but not that y0 2 (0.5, βB] in near-true inference).

That the degree dA0 in the evidence fact (A, dA0 ) is >0 but not >0.5 in the
reasoning with degrees in the sense of degree-true is such that numerical evidence
facts x0 or x1, x2, …, xn may cause multiple flexible rules to be triggered simul-
taneously and form a parallel reasoning with degrees.

In fact, let A1, A2, …, An be a group of basic flexible linguistic values, it can be
known from Sect. 7.3.2 that for the numerical value x0 2 supp(Ai) \ supp(Ai+1) =
(s�Aiþ 1

, s�Ai
) (i 2 {1, 2,…, n − 1}), the corresponding degrees dAi and dAiþ 1 in flexible

linguistic values with degree (Ai, dAi ) and (Ai+1, dAiþ 1 ) obtained from converting x0
are all >0. Thus, according to rule of degree-true inference, the corresponding
flexible rules Ai → Bj and Ai+1 → Bk will be triggered at the same time, thus
forming a kind of parallel reasoning with degrees (as shown in Fig. 15.11).

Further, let U and V be two one-dimensional measurement spaces, A1, A2, …, An

be a group of basic flexible linguistic values on U, and B1, B2, …, Bm be a group of
basic flexible linguistic values on V, and let x 2 U and y 2 V. Suppose that x can be
converted into (Ai, dAi ) and (Ai+1, dAiþ 1 ), in which dAi and dAiþ 1 satisfy separately

Fig. 15.11 Diagram of parallel reasoning with degrees in the sense of degree-true
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0\dAi\1 and 0\dAiþ 1\1, and y can be converted into (Bj, dBj ) and (Bj+1, dBjþ 1 ),
in which dBj and dBjþ 1 satisfy separately 0\dBj\1 and 0\dBjþ 1\1. Thus, when
x and y as evidences are conjunctive relation, there can occur 2 × 2 = 4 conjunctive
flexible linguistic values with degree: ðAi; dAiÞ ^ ðBj; dBjÞ, ðAi; dAiÞ ^ ðBjþ 1; dBjþ 1Þ;
ðAiþ 1; dAiþ 1Þ ^ ðBj; dBjÞ and ðAiþ 1; dAiþ 1Þ ^ ðBjþ 1; dBjþ 1Þ. While ðAi; dAiÞ ^ ðBj; dBjÞ ¼
ðAi ^ Bj;minfdAi ; dBjgÞ, ðAi; dAiÞ ^ ðBjþ 1; dBjþ 1Þ ¼ ðAi ^ Bjþ 1; minfdAi ; dBjþ 1gÞ,
Aiþ 1; dAiþ 1

� � ^ Bj; dBj

� � ¼ ðAiþ 1 ^ Bj;minfdAiþ 1 ; dBjgÞ and ðAiþ 1; dAiþ 1Þ ^ ðBjþ 1;

dBjþ 1Þ ¼ ðAiþ 1 ^ Bjþ 1;minfdAiþ 1 ; dBjþ 1gÞ. Thus, flexible rules Ai ^ Bj ! Ck1 ,
Ai ^ Bjþ 1 ! Ck2 , Aiþ 1 ^ Bj ! Ck3 , and Aiþ 1 ^ Bjþ 1 ! Ck4 can be triggered at the
same time, thus realizing a parallel reasoning with degrees in which 4 rules are
simultaneously executed.

Similarly, when x and y are disjunction or synthesis relation, there can also occur
4 composite flexible linguistic values with degree, respectively, and then, they can
trigger simultaneously 4 corresponding flexible rules, respectively, forming parallel
reasoning with degrees.

Generally, let U1, U2, …, Us be s one-dimensional measurement spaces.
Suppose xi 2 Ui (i = 1, 2, …, s) can be converted into a pair of two flexible
linguistic values with degree (Aij , dij ) and (Aijþ 1 , dijþ 1 ), in which the degrees dij and
dijþ 1 are all greater than 0. Thus, when x1, x2, …, xs are conjunction or disjunction
or synthesis relation, there will occur 2 × 2 × ��� × 2 = 2s composite flexible lin-
guistic values with degree of the form

A1j ^ A2k ^ � � � ^ Asl ;min d1j d2k ; . . .; dsl
� �� �

or

A1j _ A2k _ � � � _ Asl ;max d1j d2k ; . . .; dsl
� �� �

or

A1j � A2k � � � � � Asl ;w1d1j þw2d2k þ . . .þwsdsl
� �

;
Xs
i¼1

wi ¼ 1

 !

and then, 2s flexible rules of the form

A1j ^ A2k ^ � � � ^ Asl ! Bw1

or

A1j _ A2k _ � � � _ Asl ! Bw2
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or

A1j � A2k � � � � � Asl ! Bw3

would be triggered, forming parallel reasoning with degrees.
From the above statement, we see that for some numerical values, through N-L

conversion, a parallel reasoning with degrees in the sense of degree-true can be
realized. However, the parallel reasoning with degrees in the sense of degree-true
has some shortcomings and limitations.

① Speaking from the principle, the parallel reasoning cannot always be per-
formed, but only performed for those numerical values in the flexible
boundary regions between corresponding flexible linguistic values;

② The logic basis of this parallel reasoning is degree-true inference, and the
graph space of the adjoint degreed function of the rule used is the product of
corresponding support sets, so the error of corresponding adjoint degreed
function is larger. Consequently, the error of numerical value (y0) obtained by
conversion from the result of the reasoning is also larger.

③ The relationship between flexible linguistic values in various reasoning con-
clusions is relatively complex. They may be the same flexible linguistic value,
but can also be different flexible linguistic values, and may be adjacent flexible
linguistic values, but can also be non-adjacent flexible linguistic values.
Therefore, to synthesize these conclusions and then convert it into a numerical
value (y0), we can merely make specific analyses to specific problems but not
give a unified method.

15.7 Approximate Computation with the Adjoint
Measured Functions of Rules

Although utilizing reasoning with degrees the approximate computation of the value
of the background function of a rule can be realized, the adjoint measured function
of a rule just is an approximate function of background function of the rule. If the
adjoint measured function of a rule can be constructed or is known, then we can
directly use it to conduct the approximate computation of the value of the back-
ground function of the rule. Since the adjoint measured function of a rule is only a
local approximate function of relevant global background function on the universe
of discourse, the first step of this kind of approximate computation is to choose the
adjoint measured function of a corresponding rule according to known number x0.
After the function is determined, substitute x0 into it and conduct computation. Thus,
generally speaking, the approximate computing process with the adjoint measured
functions of rules is function choosing + computation (as shown in Fig. 15.12).
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Since ameasured function is dependent on a rule, here function choosing is closely
connected to the rules. The specific choosingmethod is for a known number x0, firstly
judge which rule’s antecedent linguistic value is more compatible with it [i.e., which
consistency-degree is more greater; this is also tantamount to converting x0 into a
corresponding linguistic value A (for the conversion method, see Sect. 7.3.1)] and
then take the adjoint measured function of the rule as the chosen measured function.

Of course, the corresponding measured function can also be directly determined
from the region where x0 locates. That is, the measured function is chosen whose
domain iswhere x0 locates. Since the domain of the adjointmeasured function of a rule
is the extended core of the corresponding flexible linguistic value, by Theorem 5.2,
this is actually tantamount to still choosing measured function from rules.

Since the function choosing is always decided by the corresponding flexible rule,
this kind of approximate computation with the adjoint measured functions of rules
is actually “navigated” by rules and reasoning with rules. Or in other words, this
kind of approximate computation with the adjoint measured functions of rules is
actually a kind of numerical computation based on logical inference.

For the application examples of approximate computation with the adjoint mea-
sured functions of rules, see “Sect. 18.6 Principle offlexible control with examples.”

15.8 Summary

In this chapter, we expounded, in the frame of logic, the principles and methods of
reasoning with flexible linguistic rules. First, we presented natural inference with
data conversion(s) according to the relation between numerical values and flexible
linguistic values. Then, we presented the principles and methods of reasoning with
truth-degrees and reasoning with degrees based on rule’s adjoint functions, on the
basis of rough-true (near-true) inference. And we discussed reasoning with degrees
with data conversion(s) and approximate reasoning and computation based on
reasoning with degrees. In addition, we discussed parallel reasoning with degrees.

The main points and results of the chapter are as follows:

• Natural inference with data conversion(s) is a simple and easy method of rea-
soning and approximate computation with flexible rules about imprecise
information.

Fig. 15.12 Diagram of
approximate computing with
the adjoint measured
functions of rules
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• Truth-degree-level-UMP as a rule of inference is the further quantification of
rough-true (near-true)-UMP, which is the rough-true (near-true)-UMP at the level
of truth-degree; which also can be viewed as a generalization of traditional UMP.

• Reasoning with truth-degrees is a kind of exact propositional inference at the level
of truth-degree and realized by the method of deducing propositional sym-
bols + computing of truth-degrees in the framework of truth-degree-level-UMP.
Reasoning with truth-degrees solves at least theoretically the problem that
truth-degree-level exact inference cannot be realized in truth-degreed logic.

• Degree-level-UMP is a version of truth-degree-level-UMP, which is the UMP at
the level of degree (consistency-degree), which can also be viewed as a kind of
generalization of traditional UMP.

• Reasoning with degrees is a version of reasoning with truth-degrees, which is a
kind of exact predicate inference at the level of degree and realized by the
method of deducing predicate symbols + computing of degrees in the frame-
work of degree-level-UMP. Reasoning with degrees further quantifies tradi-
tional qualitative predicate inference, or say it is a combination of qualitative
and quantitative reasoning. From the performing process, it is the numerical
computation under guidance of logical inference and the logical inference
supported by numerical computation.

• Reasoning with degrees has many usage ways; it can be used for multistep
reasoning and multipath reasoning, and combined with data conversion(s), it can
be adapted to various practical problems. In particular, utilizing reasoning with
degrees, we can realize approximate reasoning and approximate computing.

• Natural inference with data conversion(s) and reasoning with degrees simulate
“percepts-thinking-response” process of human brain; they have a good prospect
of application in the fields of intelligent robots, intelligent agents, expert sys-
tems, knowledge-based systems, decision support systems, and natural language
processing.

• For some numerical values, through N-L conversion, a parallel reasoning with
degrees in the sense of degree-true can be realized. However, the parallel rea-
soning with degrees has shortcomings and limitations.
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Chapter 16
Approximate Evaluation of Flexible
Linguistic Functions

Abstract This chapter analyzes and reveals the approximate evaluation principles
of flexible linguistic functions from the angle of mathematics and gives the cor-
responding methods. Besides, it discusses approximate computation utilizing the
approximate evaluation of flexible linguistic functions and comments on the tra-
ditional fuzzy logic system.

Keywords Flexible linguistic functions � Approximate evaluation � Interpolation
of linguistic function

The so-called approximate evaluation of flexible linguistic functions is to find the
value of a flexible linguistic function in the situation of unknowing its total
expressing. This is also often encountered in practical problems just like the
approximate evaluation of numerical functions. We know that there are already
many theories and methods for the approximate evaluation of the numerical
functions. Then, what are the theories and methods for the approximate evaluation
of the flexible linguistic functions? This chapter will discuss this problem.

Firstly a statement:

① The approximate relation between flexible linguistic values discussed in this
chapter is the approximate relation defined in Sect. 6.8.

② Since the correlation is actually also a kind of multivalued function, so for the
convenience of narrating, in the following we call uniformly the background
function and background correlation of a flexible linguistic function to be the
background function and denote them by one and the same symbol.

16.1 Approximate Evaluations in Two Cases

There are approximate evaluations of the flexible linguistic functions in two cases.
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1. Approximate evaluation with single pair of corresponding values

That is, known a pair of corresponding values, (A, B), satisfying certain flexible
linguistic function Y = f(X) and approximate value A′ of the assumed value A of
independent variable to find corresponding function value B′ = f(A′). The geo-
metrical representation of this kind of approximate evaluation (with respect to the
typical linguistic functions) is by a known point (XA, YB) on block point curve
(surface or hypersurface) Y = f(X) (XA and YB are the extended cores of A and
B) and XA′ closing to horizontal coordinate XA of the point to determine the vertical
coordinate YB′ of another point (XA′, YB′) on this curve (surface or hypersurface).

2. Approximate evaluation with multiple pairs of corresponding values

That is, known a group of pairs of corresponding values, (A1, B1), (A2, B2), …,
(Am, Bm), satisfying certain flexible linguistic function Y = f(X) and an assumed
value A of independent variable to find the corresponding function value B = f(A).
The geometrical representation of this kind of approximate evaluation (with respect
to typical flexible linguistic functions) is by a group of known points (XA1, YB1),
(XA2, YB2), …, XAm, YBm) on block point curve (surface or hypersurface)
Y = f(X) and horizontal coordinate XA of point (XA, YB) to determine vertical
coordinate YB of the point.

16.2 Approximate Evaluation of a Monovariate Flexible
Linguistic Function with Single Pair
of Corresponding Values

16.2.1 Basic Issues and Ideas

Firstly let us consider the approximate evaluation of the monovariate typical flex-
ible linguistic function.

Suppose a pair of corresponding values, (A, B), satisfying flexible linguistic
function Y = f(X) on one-dimensional measurement space U is known, and the
flexible linguistic value A′ � U is approximate to A, now it is asked to find function
value B′ = f(A′). From the mathematical essence and numerical model of a flexible
linguistic function, that is tantamount to say, known a point (XA, YB) (XA and YB are
the extended cores of A and B) on block point curve Y = f(X) in two-dimensional
space U × V, and XA′ closing to horizontal coordinate XA of this point, ask to
determine vertical coordinate YB′ of another point (XA′, YB′) on this curve.

Actually, this kind of approximate evaluation problem of the linguistic functions
is completely similar to the problem finding function value y00 ¼ f ðx00Þ from a
known pair of corresponding values. (x0, y0), satisfying numerical function
y = f(x) and x00 closing to assumed value x0 of independent variable.

From this it is not hard to see that since block point ðXA0 ¼ YB0Þ is also on curve
Y = f(X), and its horizontal coordinate XA′ is close to horizontal coordinate XA of
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block point (XA, YB) on curve Y = f(X), when the background function of function
Y = f(X) is not discontinuous or chaos, vertical coordinate YB′ of block point (XA′,
YB′) should be also close to vertical coordinate YB of (XA, YB). Thus, to find YB′, such
problems as the orientation of YB′ relatively to YB, distance of YB′ to YB and the size
of YB′ would be involved. In other words, if the orientation of YB′ relatively to YB,
the distance of YB′ to YB and the size of YB′ are all known, then YB′ would be
completely determined. Since flexible linguistic value B′ should be approximate to
B, so B′ actually is the approximate value of B. Thus, from our definition of the
approximate relation of flexible linguistic values, the sizes of YB′ and YB are totally
the same. Next, we analyze and discuss how the problem of the orientation and
distance of YB′ is to be solved [1].

1. Orientation of YB′ and refining of a linguistic function

It can be seen that similar to the situation of numerical functions, the orientation
of YB′ relatively to YB is decided by the orientation of XA′ relatively to XA and the
property of linguistic function Y = f(X). In fact,

① If Y = f(X) is monotone increasing at point XA, then when XA′ is located at the
negative side of XA, then YB′ is located at the negative side of YB; when XA′ is
located at the positive side of XA, then YB′ is located at the positive side of YB.

② If Y = f(X) is monotone decreasing at point XA, then XA′ is located at the
negative side of XA, then YB′ is located at the positive side of YB; when XA′ is
located at the positive side of XA, then YB′ is located at the negative side of YB.

③ If Y = f(X) is convex at point XA, then no matter what side XA′ is located at XA,
YB′ is always located at the negative side of YB; If Y = f(X) is concave at point
XA, then no matter what side XA′ is located at XA, YB′ is always located at the
positive side of YB.

Since the orientation between flexible linguistic values is defined by the orien-
tation between their peak-value points, so the orientation of XA′ at XA can be
determined by the orientation of peak-value point ξA′ at ξA. Thus, orientation of XA′

at XA would be easy to determine. However, how can we know the property of
flexible linguistic function Y = f(X) at XA? Obviously, if the whole block point
curve Y = f(X) is known, or at least the adjacent block points of block point (XA, YB)
are known, then the property of function Y = f(X) at XA can be determined. But
there is only one known block point of (XA, YB) now. Therefore, the property of
function Y = f(X) at point XA cannot be determined directly at the level of the block
point curve. Then, we penetrate deep within block point (XA, YB) to analyze the
property of corresponding background function fAB(x). Since although block point
(XA, YB) is small, it is still a region space, so curve y = fAB(x) should have a certain
run in (XA, YB). Obviously, based on background function fAB(x) having different
properties, when XA′ closes to XA, there would be YB′s from different orientations to
correspond to YB. As shown in Fig. 16.1, for one and the same horizontal coor-
dinate XA′, with respect to background function f1(x), the corresponding vertical
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coordinate is YB0
1
, but with respect to background function f2(x), the corresponding

vertical coordinate is YB0
2
.

Next we take block point (XA, YB) to which the pair of corresponding values,
(A, B), corresponds whose two values are both full-peak values (as shown in
Fig. 16.2) as an example to analyze the possible properties of background function
fAB(x) in this small region.

From the figure, it can be seen that the peak-value points of full-peak values
A and B divide block point XA × YB into four parts. For the convenience of nar-
rating, we refer to the semi-region at the negative side of peak-value point ξA in XA

as the negative semi-region of XA, denote X�
A , and refer to the semi-region at the

positive side of peak-value point ξA in XA as the positive semi-region of XA, denote
X þ
A . Similarly, we refer to the semi-region at the negative side of peak-value point

ξB in YB as the negative semi-region of YB, denote Y�
B , and refer to the semi-region

at the positive side of peak-value point ξB in YB as the positive semi-region of YB,
denote Y þ

B .
Now suppose for background function fABðxÞ, there is a group of data points

ðxi; yiÞ 2 XA � YBði ¼ 1; 2; . . .nÞ which can be treated as sample data [which can be
the original sample data of generating valued pair (A, B)]. Then, if for all xk 2 X�

A ,
always yk ¼ fABðxkÞ 2 Y þ

B , and for all xl 2 X þ
A , always yl ¼ fABðxlÞ 2 Y�

B , then the
distributive scope of data points (i.e., valued pairs) of background function fABðxÞ in
region XA � YB is roughly shown in Fig. 16.3a (the gray region is the distributive
scope of the data points, which is the same below). If for all xk 2 X�

A , always
yk ¼ fABðxkÞ 2 Y�

B , and for all xl 2 X þ
A , always yl ¼ fABðxlÞ 2 Y þ

B , then the dis-
tributive scope of data points of background function fAB(x) in region XA � YB is
roughly shown in Fig. 16.3b. The rest can be reasoned by analogy. Thus, as shown
in Fig. 16.3, the data points of background function fAB(x) have totally 9 distri-
bution situations in region XA × YB.

Fig. 16.1 An illustration of
the relation between
background functions and
orientations of YB′

Fig. 16.2 Image of block
point (XA, YB)
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From the figure, we can visually see all the possible distribution situations of data
points of background function fAB(x) in region XA × YB, and which implicates all
possible runs of the function curve of single-valued background function in region
XA × YB. For instance, of them, (a) is obviously decreasing, (b) is increasing,
(d) implicates concave, (e) implicates convex, etc. It can be seen that these properties
of background function fAB(x) are helpful for determining the orientation of YB′. In
fact, for Fig. 16.3a, when XA′ is located at the negative side of XA, YB′ can only be
located at the positive side of YB; when XA′ is located at the positive side of XA, YB′
can only be located at the negative side of YB. For Fig. 16.3b; when XA′ is located at
the negative side of XA, then YB′ can only be located at the negative side of YB; when
XA′ is located at the positive side of XA, then YB′ can only be located at the positive
side of YB. For Fig. 16.3c, no matter which side XA′ is located at XA, YB′ is always
located at the negative side of YB. For Fig. 16.3d, no matter which side XA′ is located
at XA, YB′ is always located at the positive side of YB. Then, the problem now is how
to indicate all kinds of properties of background function fAB(x) so that the orien-
tation of YB′ can be easily determined in evaluation or inference.

From Fig. 16.3, it can be further seen that if only semi-regions X�
A � YB and

X þ
A � YB are considered, then the 9 kinds of possible background functions

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 16.3 An analysis of the distribution situation of data points of background function fAB(x) of
a rule
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fAB(x) on full-region XA × YB all can be separately described by two semi-peak
linguistic valued pairs. As a matter of fact, from the mathematical essence of
linguistic values, every semi-region in the figure just can be denoted as a pair of
semi-peak linguistic values. For instance, two semi-regions in Fig. 16.3a can be
separately denoted as linguistic valued pairs (A−, B+) and (A+, B−). Actually, the
way of describing summarily a background function by semi-regions is also tan-
tamount to splitting a pair of full-peak linguistic values into two pairs of semi-peak
linguistic values. From the reducibility of approximation of full-peak values and the
single direction of approximation of semi-peak values (see Sect. 6.8), two pairs of
semi-peak linguistic values formed by decomposing single pair of full-peak lin-
guistic values together just play the role of the original pair of full-peak linguistic
values. Thus, the original 9 possible pairs of full-peak linguistic values become 18
pairs of semi-peak linguistic values. And then, it can be seen that these 18 pairs of
linguistic values can also be reduced into the following 6 pairs of linguistic values:

ðA�;B�Þ; ðA�;Bþ Þ; ðAþ ;B�Þ; ðAþ ;Bþ Þ; ðA�;BÞ; ðAþ ;BÞ

Now consider that for the 6 pairs of linguistic values, when there is an
approximate value A′ close to A− or A+, the orientation of corresponding YB′ rela-
tively to YB� , YBþ or YB. Firstly, let us examine the relation between the two signs
(that is, positive and negative signs) of every pair of linguistic values in the first 4
pairs of linguistic values above and the orientation between YB′ and YB when XA′ is
approximate to XA. It can be seen that since the signs of former and latter two
semi-peak values in a pair of semi-peak linguistic values are just the signs of
semi-region Y�

B or Y þ
B where the two semi-peak values locate, and the approxi-

mation to a semi-peak value is from single direction, so for each one of these 4 pairs
of linguistic values, the sign of first linguistic value is just consistent with the sign
of orientation of approximate linguistic value A′, and the sign of second linguistic
value is just consistent with the sign of orientation of YB′ needing to be determined.
That is to say, the two signs of former and latter linguistic values of a pair of
semi-peak linguistic values also indicate the orientations of XA′ and YB′ meanwhile.

For the pair of linguistic values whose second linguistic value is full-peak value,
we can set YB′ and YB to overlap, that is, YB′ = YB. In fact, as shown in Fig. 16.4
(take pair of linguistic values, (A−, B), as an instance), since the range of back-
ground function is full-region YB, no matter what side YB′ is located at YB, YB′
cannot totally cover the range YB of background function fAB(x) on X�

A , which
means that corresponding block point (XA′, YB′) cannot cover the curve of back-
ground function y = fAB(x). That obviously would cause a very large error, so it’s
undesirable. And to make YB′ cover completely the range of fAB(x) on X�

A , we then
can only make YB′ and YB overlap.

Thus, for the above-stated 6 pairs of linguistic values, the determination and
indication of the orientation of YB′ are both solved.

In the above, we solve the determination and the indication of the orientation of
YB′ by splitting a pair of corresponding values of a linguistic function (i.e., a rule).
Actually, since approximating to a semi-peak value is single direction, so for the
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linguistic valued pair in which second linguistic value B is a semi-peak value, the
orientation of YB′ relatively to YB is consistent with the sign of this semi-peak value
B. That is to say, we can do not split those pairs of linguistic values whose first
linguistic value is a full-peak value while second is a semi-peak value.

The split of a pair of linguistic values is also the refining of the corresponding
linguistic function, which is also the more meticulous and exact summarization and
approximation of the corresponding background function. In fact, from Fig. 16.4, it
can be seen that except for the last case (i), the graph scopes of the background
functions in the previous 8 cases all reduce a little.

2. Distance from YB′ to YB

Now we consider how to find the distance from YB′ to YB. For this problem, we
firstly examine the relation between distances dBB′ and dAA′.

Since block points (XA, YB) and (XA′, YB′) are on one and the same block point
curve, so in the situation of the background function of function Y = F(X) being not
discontinuous and chaos, YB′ should also be close to YB when XA′ is close to XA.
That is to say, distances dBB′ and dAA′ are related in a way. Thus, as long as distance
dAA′ is known, distance dBB′ can be estimated. However, distance is an absolute
difference after all, and since dBB′ and dAA′ belong to different universe of discourse,
so it is relatively difficult to directly assess the specific functional relation between
the two. In consideration of

DW 0W ¼ dW 0W

rW
; sW 0W ¼ 1� DW 0W

(here DW′W and sW′W are separately the difference-degree and approximation-degree
between linguistic values W′ and W ; rW ¼ nW � m�

W or mþ
W � nW is the approxi-

mate radius (see Definition 6.19)); therefore, the relation between difference-
degrees DB′B and DA′A and the relation between approximation-degrees sB′B and sA′A
are consistent with the relation between distances dBB′ and dA′A. Thus, we can turn
to consider the relation between sB′B and sA′A. Then, what relation should be there
between sB′B and sA′A? Of course, it can be various correspondence relations, such
as linear function, nonlinear function. But in consideration of that the size of region

(a) (b) (c)

Fig. 16.4 An illustration of the relation between orientations of YB′ and YB
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XA × YB is already very small, so we can approximately treat the relation between sB
′B and sA′A as a linear functional relation.

Actually, taking a dynamic view, point (XA, YB) is the limit of point (XA′, YB′), so
YB′ and XA′ should approximate to YB and XA synchronously. That is to say, for any
pair (XA′, YB′), although distances dBB′ and dAA′ are not necessarily equal and the
step length of YB′ approximating to YB is not necessarily equal to that of XA′

approximating to XA, the degree of YB′ closing to YB should be the close to that of
XA′ closing to XA. And from the relation between DX′X and sX′X, and for simplicity,
we directly consider the relation between DB′B and DA′A. Let

DB0B ¼ kDA0A

Further, from DB0B ¼ dB0B
rB

and DA0A ¼ dA0A
rA
, we have

dB0B

rB
¼ k

dA0A

rA

Consequently,

dB0B ¼ k
dA0A

rA
� rB ð16:1Þ

This is the computation formula of distance dB′B, where k is an adjustable
parameter.

Particularly, when take k = 1, we have

dB0B ¼ dA0A
rB
rA

ð16:2Þ

This equation is also tantamount to taking

DB0B ¼ DA0A

that is, the computation formula of dB′B when sB′B = sA′A.

dB�0B� ¼ dA�0A�
rB�

rA�

Of course, this distance formula is a universal formula, which includes all 4
kinds of correspondence relations of linguistic values A, B, A′ and B′ as semi-peak
values. For instance, for the pair of corresponding values, (A−, B−), and approxi-
mate value A−′, the computation formula of corresponding dB−′B− (using for-
mula 16.2) is
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dB�0B� ¼ dA�0A�
rB�

rA�

As to when function values B and B′ are full-peak value, since we set directly
YB′ = YB, so there is no need to compute distance dB′B.

16.2.2 AT Method of Approximate Evaluation

In the above, we analyzed and discussed three problems of the orientation, distance,
and size of YB′ and gave corresponding thinking and method for the solution.
Further, it is not hard to see that when the orientation and distance of YB′ are
obtained, actually we do not need to find out YB′, the support set and core of
linguistic value B′ can be deduced, certainly its consistency function can also be
obtained.

In fact, let

supp(B0) = s�B0 ,sþB0
� �

core(B0) = c�B0 ,cþB0
h i

where s�B and sþB are two critical points of flexible linguistic value B, c�B and cþB are
two core–boundary points of B, s�B0 and sþB0 are two critical points of flexible
linguistic value B′, c�B0 and cþB0 are two core–boundary points of B′. Suppose that
distance dB′B has already been obtained by formula (16.1). Since the size of supp
(B′) and the size of supp(B) are the same, the size of core(B′) and the size of core
(B) are the same.

When B is a negative semi-peak value, that is, YB′ is located at the negative side
of YB, we have

s�B0 ¼ s�B � dB0B; sþB0 ¼ sþB � dB0B ð16:3Þ

c�B0 ¼ c�B � dB0B; cþB0 ¼ cþB � dB0B ð16:4Þ

When B is a positive semi-peak value, that is, YB′ is located at the positive side of
YB, we have

s�B0 ¼ s�B þ dB0B; sþB0 ¼ sþB þ dB0B ð16:5Þ

c�B0 ¼ c�B þ dB0B; cþB0 ¼ cþB þ dB0B ð16:6Þ

When B is a full-peak value, that is, YB′ = YB, we have
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s�B0 ¼ s�B ; ; s
þ
B0 ¼ sþB ð16:7Þ

c�B0 ¼ c�B ; cþB0 ¼ cþB ð16:8Þ

With the critical points and core–boundary points of B′, its consistency function
cB′(y) and membership function mB′(y) can be directly written out, but cB′(y) and
mB′(y) of B′ can also be indirectly obtained through doing translation transformation
of consistency function cB(y) and membership function mB(y) of B. The concrete
procedure is as follows:

When B is a negative semi-peak value, that is, YB′ is located at the negative side
of YB, set

cB0 ðyÞ ¼ cBðyþ dB0BÞ ð16:9Þ

When B is a positive semi-peak value, that is, YB′ is located at the positive side of
YB, set

cB0 ðyÞ ¼ cBðy� dB 0BÞ ð16:10Þ

When B is a full-peak value, that is, YB′ = YB, set

cB0 ðyÞ ¼ cBðyÞ ð16:11Þ

With consistency function cB′(y), peak-value point ξB′ is implied in them. But we
can also directly find peak-value point ξB′ from distance dB′B. In fact,

When B is a negative semi-peak value, that is, YB′ is located at the negative side
of YB,

nB0 ¼ nB � dB0B ð16:12Þ

When B is a positive semi-peak value, that is, YB′ is located at the positive side of
YB,

nB0 ¼ nB þ dB0B ð16:13Þ

When B is a full-peak value, that is, YB′ = YB,

nB0 ¼ nB ð16:14Þ

It can be seen that the above several groups of equations for finding the critical
points, core–boundary points, consistency function and peak-value points of flex-
ible linguistic value B′ are tantamount to do translation transformation separately of
the corresponding elements of flexible linguistic value B. Therefore, we call these
translation transformations as doing translation transformation of linguistic value B.

To sum up the above results, from a pair of corresponding values, (A, B), satisfying
flexible linguistic function Y = f(X) and A′ approximating to A (A and A′ are both
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semi-peak value), the corresponding function value f(A′) = B′ can be obtained by
using the following steps and method:

(1) Find out peak-value points ξA and ξA′ of flexible linguistic values A and A′, find
distance dA′A between extended cores XA′ and XA by ξA and ξA′;

(2) Compute distance dB′B by using formula (16.1) or (16.2);
(3) According to the correspondence relation of orientations decided by valued pair

(A, B), determine the orientation of YB′ relatively to YB, then choose appropriate
formulae from Eqs. (16.3)–(16.8) to find critical points s�B0 and sþB0 , and core–
boundary points c�B0 and c�B0 of linguistic value B′, and obtaining the extended core
of B′, and then write out consistency function cB′(y) of B′ (if requiring); or doing
directly translation transforming of consistency function cB(y) of linguistic value
B with Eqs. (16.9)–(16.11) to obtain cB′(y) of B′ Of course, here B′.

Of obtained is only an approximate value of F(A′).
Thus, we have solved the approximation evaluation problem of flexible linguistic

functions with one pair of corresponding values.
It can be seen that in this approximate evaluation method there are two key

techniques: the one is finding approximate-degree sB′B from approximate-degree sA′A,
which is tantamount to “transmitting” the approximate-degree of linguistic values A′
andA to linguistic valuesB andB′ through correspondence relation (A,B); another key
technique is translation transformation. Therefore, we call this method to be the
approximate evaluation method using approximate-degree transmission and trans-
lation transformation, or AT method for short.

Note: although thismethod is namedATmethod, actually only difference-degree is
used in it rather than approximate-degree. Such naming is because the approximate-
degree and the difference-degree can be derived from one another, and approximate-
degree the formulation is more appropriate with approximate evaluation.

16.2.3 An Analysis of Rationality and Effectiveness
of AT Method

Actually, since the AT method is obtained based on the numerical model (repre-
sentative) of a flexible linguistic function, so it is naturally reasonable. In the
following we do further analysis.

Firstly, we use the relation between distances dB′B and dA′A to derive the
approximate function of background function summarized by corresponding pair of
corresponding values.

As stated above, when B is a negative semi-peak value, that is, YB′ is located at
the negative side of YB,

nB0 ¼ nB � dB0B
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while

dB0B ¼ dA0A
rB
rA

here take k ¼ 1ð Þ

From the above two equations, it follows that

nB0 ¼ nB � dA0A
rB
rA

ð16:15Þ

Thus, for valued pair (A−, B−), then dA′A = ξA − ξA′ and
rB
rA
¼ nB�m�

B
nA�m�

A
; thus,

nB0 ¼ nB � nA � nA0ð Þ nB � m�
B

nA � m�
A

It can be seen that ξA, ξB, m�
A , and m

�
B at the right-hand side of the above equation

are all known. Thus, by using this equation, ξB′ can be directly obtained from ξA′.
Then, when peak-value point ξA′ varies in X�

A , peak-value point ξB′ also follows to
vary in Y�

B . That is to say, when peak-value points ξA′ and ξB′ are viewed as variables,
the above equation is just the expression of function between ξA′ and ξB′. Thus,
using variables x and y to replace ξA′ and ξB′ in the above equation, we have

y ¼ nB � ðnA � xÞ nB � m�
B

nA � m�
A
; m�

A � x� nA ð16:16Þ

Thus, we obtain a function defined on the X�
A . It can be seen that this is a linear

function, whose graph is a line segment connecting points (ξA, ξB) and m�
Am

�
B

� �
.

And this line segment is just a diagonal of rectangular region X�
A � Y�

B (as shown in
Fig. 16.7a). That shows that for any x0 2 X�

A , substitute which into expression
(16.16), necessarily the found y0 2 Y�

B .
On the other hand, region X�

A � Y�
B is also the graph space of background

function fA�B�ðxÞ of valued pair (A−, B−); thus, necessarily fA�B� x0ð Þ 2 Y�
B .

Therefore, y0 � fA�B�ðx0Þj j\ Y�
B

�� ��, which shows that y′ and fA�B�ðx0Þ should be
approximate. Consequently, function (16.16) is the approximate function of
background function fA�B�ðxÞ of valued pair (A−, B−).

Similarly, we can also derive the corresponding approximate functions of valued
pairs (A−, B+), (A+, B−), (A+, B+), (A−, B) and (A+, B) as follows, their graphs are
shown in Fig. 16.5.

y ¼ nB þðnA � xÞm
þ
B � nB

nA � m�
A
; m�

A � x� nA ð16:17Þ

y ¼ nB � ðx� nAÞ
nB � m¼

B

mþ
A � nA

; nA � x�mþ
A ð16:18Þ
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y ¼ nB þðx� nAÞ
mþ

B � nB
mþ

A � nA
; nA � x�mþ

A ð16:19Þ

y ¼ nB; m�
A � x� nA ð16:20Þ

y ¼ nB; nA � x�mþ
A ð16:21Þ

Readers may have found that here these approximate measured functions are
also the kind of function similar to the expression (14.16) with only some difference
in the expression form. Thus, by using these approximate measured functions, we
can perform approximate computation of the background functions of rules.

(a) (b)

(c) (d)

(e) (f)

Fig. 16.5 Examples of graphs of the approximate measured functions of rules
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Now we have seen that peak-value point nB0 obtained by using AT method is
actually obtained by the computation of the approximate function of corresponding
background function. That is to say, AT method just uses these approximate
functions to roughly estimate the values of various unknown background functions
to realize approximate reasoning. It shows that the function approximation is just
the basic idea and theoretical basis of AT method. Therefore, AT method should be
reasonable. Besides, from Eqs. (16.1) and (16.2), it can be seen that when dA0A
equals to 0, dB0B also equals to 0. That is to say, when A′ equals to A, B′ obtained by
AT method is also just B. That shows AT method is compatible with the modus
ponens in traditional two-valued logic. Or in other words, the former can be viewed
as a kind of generalization of the latter, and the latter can be viewed as a special
case of the former. That further shows the rationality of AT method.

Now we examine the effectiveness of AT method. Let

e ¼ fABðxÞ�j f �ABðxÞ

be the error between background function fAB(x) and its corresponding approximate
function f �ABðxÞ. Since background function fAB(x) is unknown, so the error e is hard
to compute accurately, but it can be seen that averagely speaking, error e should not
exceed half of the width of semi-region Y�

B or Y þ
B , namely

e�max widtðY�
B Þ;widtðY þ

B Þ� � ð16:22Þ

Actually, the complete local background function fAB(x) of a pair of full-peak
values is defined on the support set of its antecedent linguistic value A, which is
originally only one part of global background function f(x), and the AT method
splits a pair of full-peak values into two pairs of semi-peak values, which is tan-
tamount to dividing local function fAB(x) into two sections, and then further reduces
these two function sections to on two semi-extended cores of A. That is to say,
background function fAB(x) and its approximate function f �ABðxÞ we now talk and
discuss about are only one small part of a complete background function, whose
domain is already relatively narrow. Therefore, function fAB(x) itself is very likely
monotonous and even linear. Then, for such function fAB(x), we use linear function
f �ABðxÞ to approximate it, then error e would not be very large. Even if function
fAB(x) is still nonlinear and non-monotonous, but because parameter k in Eq. (16.1)
is adjustable, additionally the limitation of the scope of values, the error should also
be limited and controllable. In fact, even if formula (16.2) is used to obtain dB′B,
theoretically speaking, for any error requirement ε > 0, as long as widt() is suffi-
ciently small, we can make e < ε. Of course, to make widt() sufficiently small, then
extended cores XA and YB must be both sufficiently small.
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16.3 Approximate Evaluation of a Multivariate Flexible
Linguistic Function with Single Pair
of Corresponding Values

Now on the basis of approximate evaluation principle of monovariate typical
flexible linguistic functions, we further study the approximate evaluation of mul-
tivariate typical flexible linguistic functions.

16.3.1 Issues and Ideas of the Approximate Evaluation
of Multivariate Flexible Linguistic Functions

The problem of the approximate evaluation of a multivariate flexible linguistic
function is also how to determine the orientation and distance of YB′. Since inde-
pendent variable’s assumed value A in the pair of corresponding values, (A, B), of a
multivariate flexible linguistic function is a conjunctive composite flexible linguistic
value, so the problem about the orientation and distance of corresponding YB′ is
relatively complex.

1. Splitting of the valued pairs and the orientation of YB′

Firstly, we split all pairs of corresponding values of a flexible linguistic function
into the valued pairs in which independent variables’ assumed values are all the
conjunctions of semi-peak values. For instances, ðA�

1 ^ Aþ
2 ^ � � � ^ A�

n ;B
þ Þ,

ðA�
1 ^ Aþ

2 ^ � � � ^ Aþ
n ;B�Þ; . . .; ðAþ

1 ^ Aþ
2 ^ � � � ^ A�

n ;BÞ. Thus, the multivariate
flexible linguistic functions in the following are just the ones whose independent
variables’ assumed values are all semi-peak linguistic values and whose function
values are semi-peak values or full-peak values.

Since a linguistic value has two semi-peak values: a positive one and a negative
one, the valued pair in which independent variable’s value is the conjunctive value
of n full-peak values can be split into 2n valued pairs in which independent vari-
ables’ assumed values are the conjunctive values of semi-peak values, and a total of
all these possible valued pairs is 3 × 2n. Of them, every valued pair summarizes the
background function on the corresponding subregion in n-dimensional extended
core XA. The correspondence relation of signs of linguistic values in every valued
pair just indicates the correspondence relation of orientations of the corresponding
XA′ and YB′. That is, when XA′ is located at the Θ side of XA, (Θ is a n-ary repeatable
arrangement of *, *2{+, −}), the corresponding YB′ is located at the negative side,
positive side of YB or overlaps with YB. That is to say, the orientation of YB′
relatively to YB is completely decided by the corresponding valued pair directly.

Extended core XA of the full-peak conjunctive value A is an n-dimensional
region, from the relation between a linguistic value and its extended core, the
splitting of the valued pair stated above is tantamount to divide extended core XA
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into 2n subregions according to the peak-value points (two-dimensional extended
core and its division of subregions are shown in Fig. 16.6), every subregion is the
extended core of a semi-peak conjunctive value. That means the extended core of a
full-peak conjunctive value has 2n orientations altogether, every orientation is a
repeatable arrangement of the corresponding n signs. For instance, two-dimensional
extended core XA as shown in Fig. 16.6 is divided into 4 subregions, so there occur
4 orientations, namely ++, −+, +−, and −−.

It needs to be explained that although extended core XA′ of an approximate value
can approach XA from any direction around XA, the descriptions of orientations of
XA′ relatively to XA can only be limited 2n. That is because a composite linguistic
value on a multidimensional space is different from an atomic linguistic value on a
multidimensional space. As thus, for composite linguistic value A and atomic
flexible linguistic value A on an n-dimensional space, though corresponding
approximate values can approach separately them from any direction around them,
for composite linguistic value A, the corresponding approaching can only described
by orientations, while for atomic linguistic value A, the corresponding approaching
can be described by directions. Obviously, the former description is rough, while
the latter description is exact.

2. Computation of distance

Since here independent variable’s value A is a conjunctive linguistic value
composed by n semi-peak linguistic values, whose extended core is the intersection
of n orthogonal extended cores, and the (description of) orientation of the extended
core is an arrangement of orientations of n one-dimensional extended cores, the
distance, difference-degree, and approximate-degree of the extended core of A can
only be, respectively, defined by the distance, difference-degree, and approximate-
degree of n one-dimensional extended cores, or in other words, which can only be
defined in the sense of its coordinate components, but not by the whole of
the extended core, that is, the peak-value point vector. And from the definitions of
the approximate relation and approximate-degree of composite linguistic values, the
approximate relation and approximate-degree between two composite linguistic

Fig. 16.6 An illustration of
the division of
two-dimensional extended
core XA1 � XA2 and their
orientations
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values are just the approximate relation and approximate-degree between their
extended cores.

Let A ¼ A1 ^ A2 ^ � � � ^ An, and A0 ¼ A0
1 ^ A0

2 ^ � � � ^ A0
n, where A;A0 � U ¼

U1 � U2 � � � � � Un;Ai and A0
i i ¼ 1; 2; . . .; nð Þ are both semi-peak value, XA and

XA′ are separately the extended cores of A and A′. Similarly, here also take

sB0B ¼ k � sA0A

that is,

DB0B ¼ k � DA0A

and by Eq. (6.23), it should follows that

DA0A ¼ max DA0
1A1 ;DA0

2A2 ; . . .;DA0
nAn

n o

On the other hand, DB0B ¼ dB0B

rB
. Thus,

dB0B

rB
¼ k �max DA0

1A1 ;DA0
2A2 ; . . .;DA0

nAn

n o

Consequently,

dB0B ¼ k �maxfDA0
1A1 ;DA0

2A2 ; . . .;DA0
nAng � rB

¼ k �maxfdA
0
1A1

rA1

;
dA0

2A2

rA2

; . . .;
dA0

nAn

rAn

g � rB ð16:23Þ

16.3.2 AT Method of Approximate Evaluation
of Multivariate Flexible Linguistic Functions

Based on the above analysis on the approximate evaluation problem of the multi-
variate flexible linguistic functions, we can have the AT method of the corre-
sponding approximate evaluation.

Let A ¼ A1 ^ A2 ^ � � � ^ An, and A0 ¼ A0
1 ^ A0

2 ^ � � � ^ A0
n, where

A;A0 � U ¼ U1 � U2 � � � � � Un;, B � V ;Ai;A0
i i ¼ 1; 2; . . .; nð Þ and B are all

one-dimensional semi-peak values. Then, the AT method of approximate evalua-
tion of a multivariate flexible linguistic function Y = F(X) is as follows:

(1) Find out distances dA1A0
1
; dA2A0

2
; . . .; dAnA0

n
between the corresponding compo-

nents of linguistic valued vectors A and A′;
(2) Find distance dBB′ by formula (16.23);
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(3) Determine the orientation of YB′ relatively to YB according to the correspon-
dence relation between orientations decided by valued pair (A, B), then choose
appropriate formulas from Eqs. (16.3)–(16.8) do corresponding translation
transformation of critical points s�B and sþB and core–boundary points c�B and
cþB of linguistic value B to obtain critical points s�B0 and sþB0 and core–boundary
points c�B0 and cþB0 of linguistic value B′, and obtaining the extended core of B′,
and then write out consistency function cB′(y) of linguistic value B′
(if requiring); or do directly translation transformation of consistency function
cB(y) of linguistic value B with Eqs. (16.9)–(16.11) to obtain consistency
function cB′(y) of linguistic value B′.

Next, we make a simple analysis of the rationality and effectiveness of this AT
method of approximate evaluation of multivariate flexible linguistic functions.
Firstly, taking the pair of corresponding values of a bivariate flexible linguistic
function as an example, we examine the approximate function of its background
function.

As stated previously, when B is a negative semi-peak value, that is, YB′ is located
at the negative side of YB,

nB0 ¼ nB � dB0B

while

dB0B ¼ dA0
kAk

rB
rAk

ðhere take k ¼ 1Þ

From the above two equations, we have

nB0 ¼ nB � dA0
kAk

rB
rAk

ð16:24Þ

For the valued pair ðAþ
1 ^ Aþ

2 ;B
�Þ, suppose that max DA0

1A1 ;DA0
2A2

n o
¼ DA0

2A2 ,

then,

dA0
kAk

rB
rAk

¼ n0A2
� nA2

� � nB � m�
B

mþ
A2

� nA2

Thus,

nB0 ¼ nB � n0A2
� nA2

� � nB � m�
B

mþ
A2

� nA2

It can be seen that ξB, nA2
;mþ

A2
and m�

B on the right-hand side of the above

equation are all known. Thus, when peak-value point nA0
A
; nA0

2

� �
varies in
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positive-positive subregion of XA, peak-value point ξB′ follows to vary in the
negative subregion of YB. That is to say, when nA0

2
and ξB′ are viewed as variables,

this equation is also a formula or function of finding ξB′ directly by nA0
2
. Thus, using

variables x1, x2 and y to replace nA0
1
, nA0

2
and ξB′ in the equation, we have

y ¼ nB � x2 � nA2

� � nB � m�
B

mþ
A2

� nA2

ð16:25Þ

where nA2
� x2 �mþ

A2
, nA1

� x1 �mþ
A1
. Thus, we obtain a function on the

positive-positive subregion of XA. It can be seen that this is a linear function, whose

graph is a plane through points nA1
; nA2

; nB
� �

, mþ
A1
; nA2

; nB
� �

, mþ
A1
;mþ

A2
;m�

B

� �
and

nA1
;mþ

A2
;m�

B

� �
(as shown in Fig. 16.7a). This function is an approximate function

of background function fAB(x, y) of valued pair Aþ
1 ^ Aþ

2 ;B
�� �

. However, if

max DA0
1A1DA0

2A2

n o
¼ DA1A0

1
, then the corresponding approximate function is

y ¼ nB � x1 � nA1

� � nB � m�
B

mþ
A1

� nA1

ð16:26Þ

where nA1
� x1 �mþ

A1
; nA2

� x2 �mþ
A2
. The graph is a plane through points

nA1
; nA2

; nB
� �

, mþ
A1
; nA2

;m�
B

� �
, mþ

A1
;mþ

A2
m�

B

� �
and nA1

;mþ
A2
; nB

� �
(as shown in

Fig. 16.7b).
Similarly, we can also derive the approximate functions of background function

fAB(x) of other valued pairs. Particularly, for the valued pairs in which B is full-peak
value, we take the approximate functions of their background functions all as

y ¼ nB

(a) (b)

Fig. 16.7 Illustrations of bivariate approximate functions
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Generalizing the above approximate functions of the pairs of corresponding
values of a bivariate flexible linguistic function, the general expression of the
approximate functions of the pairs of corresponding values of n-variable flexible
linguistic functions is

y ¼ nB þ xk � nAk

� � nB � mB

mA2 � nAk

; k 2 f1; 2; . . .; ng ð16:27Þ

where mAj\xj � nAk
or nAk

� xj\mAj j ¼ 1; 2; . . .; nð Þ,
max DA0

1A1 ;DA0
2A2 ; . . .;DA0

nAn

n o
¼ DAkA0

k
; and

y ¼ nB ð16:28Þ

here mAj\xj � nAk
or nAk

� xj\mAj j ¼ 1; 2; . . .; nð Þ, B is full-peak value.
These approximate functions are all linear functions. AT method just is using

these linear functions to approximate various kinds of unknown background
function to realize approximate evaluation. That is to say, AT method of approx-
imate evaluation of multivariate flexible linguistic function is the generalization of
AT method of approximate evaluation of unary flexible linguistic functions; thus,
the rationality and effectiveness of AT method are further shown.

16.4 Approximate Evaluation of a Flexible Linguistic
Function with Multiple Pairs of Corresponding
Values

16.4.1 Basic Ideas and Approaches

The problem of the approximate evaluation of a flexible linguistic function with
multiple pairs of corresponding values is known several pairs of corresponding
values, (A1, B1), (A2, B2),…, (Am, Bm), satisfying certain flexible linguistic function
Y = f(X) on universe of discourse U (Ai 2 U, Bi 2 V, here we take typical flexible
linguistic function as a representative), which form a function on the group of basic
flexible linguistic values on U or only a part of pairs of corresponding values of the
function, but the expression of f(X) is not known, then, for any flexible linguistic
value A 2 U, to find function value f(A).

From the above approximate evaluation of a flexible linguistic function with
single pair of corresponding values, it can be supposed that for the approximate
evaluation of a flexible linguistic function with multiple pairs of corresponding
values, we can firstly select an Ak from all pairs of corresponding values, (A1, B1),
(A2, B2), …, (Am, Bm), which is mostly close to A, then to find the approximate
value B0

k by using corresponding (Ak, Bk) and A, then, this B0
k is just the approxi-

mate value of f(A) found.
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This is an approach of approximate evaluation of a flexible linguistic function
with multiple pairs of corresponding values. It can be seen that this approach is
really reducing the approximate evaluation with multiple pairs of corresponding
values to that with single pair of corresponding values. For the latter we can use AT
method. However, note that the prerequisite of using AT method is linguistic value
A must be approximate to Ak. That is to say, linguistic value A not only must be
relatively most close to Ak, but it also must be absolutely approximate to Ak. That
means if the known valued pairs are not “dense” enough, then maybe for certain
fact A, the AT method cannot be used to do approximate evaluation due to the
corresponding valued pair (Ak, Bk) unable to be found. Such is a limitation of this
approach.

We know that for the usual numerical function, when several pairs of corre-
sponding values, that is, sample data (a1, b1), (a2, b2), …, (am, bm) of certain
function y = f(x) are known but not the function (expression) itself, there are
usually the following approaches to evaluate the function value f(a):

(1) If the sample data show the unknown function y = f(x) is a mono-valued
function, that is, a usual function, then, firstly construct interpolation function
g(x) by using certain kind of interpolation methods with the these samples,
then find g(a) = b as the approximate value of f(a); or, using certain kind of
function fitting technique to obtain the corresponding approximate function
f*(x), then find f*(a) = b as an approximate value of f(a);

(2) If the sample data show that the unknown function y = f(x) is a multivalued
function, that is, a usual correlation, then, we can use certain kind of regression
analysis method to obtain the corresponding approximate function f̂ ðxÞ, then
find f̂ ðaÞ ¼ b as an approximate value of f(a).

Enlightened by the approximate evaluation methods of numerical functions, for
the approximate evaluation of linguistic functions, we have similar ideas and
approaches.

(1) With samples (A1, B1), (A2, B2), …, (Am, Bm), use certain kind of linguistic
interpolation methods to construct linguistic interpolation function g(X), then
find g(A) = B as an approximate value of f(A). We call the approach to be the
interpolation method.

(2) With samples (A1, B1), (A2, B2), …, (Am, Bm), use certain kind of linguistic
function fitting techniques to obtain a corresponding approximate global
linguistic function f*(X), then find f*(A) = B as an approximate value of f(A).
We call the approach to be the approximate global function method.
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The two approaches are both utilizing the exact evaluation of the corresponding
approximate linguistic function to realize the approximate evaluation of the original
linguistic function, where the key is to get a suitable approximate linguistic func-
tion. This is actually raising an acquisition problem of linguistic functions. Since
the acquisition of the linguistic functions already belongs to the category of
knowledge discovery, about which we will make special discussions in Sect. 19.6.

16.4.2 Interpolation of Linguistic Function

Below we give an interpolation method of linguistic function based on the inter-
polation formula of corresponding background function. The main steps are as
follows:

① Convert pairs of linguistic values, (A1, B1), (A2, B2),…, (Am, Bm), into pairs of
numerical values, (a1, b1), (a2, b2), …, (am, bm), and convert linguistic value
A into numerical value a;

② Select and use a certain existent interpolation formula y = f*(x) to find out
f*(a) = b;

③ Convert numerical value b into flexible linguistic value B.

This method is translating firstly the approximate evaluation of a flexible lin-
guistic function into the approximate evaluation of a numerical function and doing
approximate evaluation of the numerical function, then converting the obtained
value of the approximate function into a flexible linguistic value.

It can be seen that the key of this method is the conversion from linguistic valued
pairs (A1, B1), (A2, B2), …, (Am, Bm) to numerical valued pairs (a1, b1), (a2, b2),…,
(am, bm) and the selection of interpolation formula. The former is actually the
conversion from Ai to ai and from Bi to bi (i = 1, 2, …, m), that is, the conversion
from a flexible linguistic value to a numerical value. The usual method of this
conversion has already been given in Sect. 7.3.1, while to convert a flexible lin-
guistic value into its peak-value point can be the first choice. Here, we just convert
Ai to its peak-value point nAi

and convert Bi to its peak-value point nB. The selection
of the interpolation formula should be decided by the characteristics of practical
problems. As to the conversion from result b of the approximate computation to
flexible linguistic value, B is comparatively easy. In fact, we can take b as the
peak-value point to define a suitable flexible linguistic value, or convert b into
corresponding flexible linguistic value Bk according to the consistency-degrees of
b with all flexible linguistic values B1, B2,… Bm on universe of discourse V (see for
reference the conversion methods given in Sect. 7.3.1). Nonetheless, for some
problems (e.g., control), numerical value b can be directly used, thus the conversion
from b to B is not needed.
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Since the computation of a flexible function is actually reduced to the compu-
tation of a usual numerical function, this kind of linguistic function interpolation
should be mostly suitable for flexible functions.

16.4.3 Interpolation of Linguistic Function and Numerical
Approximate Computation, and to Comment
Concurrently Fuzzy Logic System

It can be seen that in the above interpolation of flexible linguistic function, if what is
known is not flexible linguistic value A but numerical value a, meanwhile the
conversion of resulting numerical value b to linguistic value B is not needed, then
such interpolation of linguistic function just becomes the interpolation of numerical
function. That means the interpolation of the linguistic functions can be used to
realize the approximate evaluation computation of corresponding background
numerical functions.

Actually, there are already scholars who have proved that fuzzy controller in
essence is a certain interpolators and that the commonly used fuzzy control algo-
rithms can all be reduced to certain interpolation methods [2]. Besides, literature [3]
also points out that the fuzzy reasoning method proposed by Zadeh effectively
expresses the proximate and interpolative reasoning used by humans.

We know that the key link in fuzzy control is fuzzy inference, while fuzzy
inference is a kind of approximate reasoning at the level of linguistic values and
with rules with linguistic values. Since a rule with linguistic values actually covers
multiple or even infinite number of special functions or correlations, hence the
numerical interpolation functions realized by fuzzy control algorithms are actually a
kind of general interpolation function, or in other words, it is a kind of interpolation
function that is not optimized for a specific problem. Thus, the approximate effect
of this kind of interpolation function cannot be guaranteed and can only depend on
luck. This is just an important cause why fuzzy inference and fuzzy control are
good for some problems but not so for some other problems.

An interpolation function represented by fuzzy controller is a so-called fuzzy
logic system. In order to raising the accuracy of a fuzzy logic system, people
employ generally the method of machine learning to adjust appropriately some
parameters (such as the orientation of the peak-value point and the width of the
support set) of corresponding membership function. That is tantamount to an
approach of the optimization of the interpolation function. However, people find
that although adjusting some parameters of the corresponding membership function
according to the requirement of practical problems can indeed make the corre-
sponding fuzzy logic system optimized and can even make the fuzzy logic system,
that is, the corresponding fuzzy interpolation function to approximate to any con-
tinuous function on a compact set U � Rn [4]; however, at this time the mem-
bership functions cannot coincide with the original semantics of the corresponding
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flexible linguistic values, and they even are greatly mismatched. Thus, there occurs
“the dilemma between precision and interpretability” [4]. In fact, in this situation,
except for the name of “membership function,” the so-called fuzzy logic system has
already not any connections with the fuzzy logic in the real sense, but becomes a
neural network system.

Fuzzy controllers, the kind of interpolation function, is not proposed by people
from the angle of the linguistic function interpolation, but which is discovered after
the analysis of principle of fuzzy controllers. Then, we now consider this problem
from the interpolation of linguistic function; better results will surely be gained.

16.5 Summary

In this chapter, we analyzed and revealed the approximate evaluation principles of
flexible linguistic functions from the angle of mathematics and gave the corre-
sponding methods. Besides, we also discussed approximate computation utilizing
the approximate evaluation of flexible linguistic functions and commented on the
traditional fuzzy logic system.

The main points and results of the chapter are as follows:

• The approximate evaluation of a flexible linguistic function is for a certain
assumed value of independent variables to find the corresponding function value
in the situation that several pairs of corresponding values satisfying the function
are already known but the expression of the function is unknown. Its principle is
similar to the approximate evaluation of a numerical function.

• For the approximate evaluation of a flexible linguistic function with single pair
of corresponding values, the method of approximate-degree transmission and
translation transformation, that is, the so-called AT method, can be used.

• For the approximate evaluation of a flexible linguistic function with multiple
pairs of corresponding values, there are the following three approaches:

① By the approximate relation between the given assumed values of independent
variables and the corresponding linguistic values in the samples, translate the
approximate evaluation of flexible linguistic function with multiple pairs of
corresponding values into that offlexible linguistic functionwith single pair of
corresponding values.

② With the samples given, construct a linguistic interpolation function by
using certain linguistic interpolation method, then find the corresponding
function value as an approximate value found.

③ With the samples given, obtain the corresponding approximate flexible
linguistic function by using a certain fitting technique of linguistic functions,
then find the corresponding function value as an approximate value found.
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Chapter 17
Approximate Reasoning and Computation
Based on the Approximate Evaluation
Principle of Flexible Linguistic Functions

Abstract Starting from the relation between flexible linguistic rules and flexible
linguistic functions, this chapter reveals the mathematical essence of approximate
reasoning, and then presents an approximate reasoning method and two approxi-
mate evaluation methods of numerical functions. Besides, it in principle makes a
comparison between and commentary on the methods of approximate reasoning
and computation given in this book and the traditional fuzzy methods.

Keywords Flexible linguistic functions � Approximate reasoning � Approximate
evaluation

Approximate reasoning is originally a kind of logical inference with flexible linguistic
rules, but from mathematical essence of flexible linguistic rules (see Sect. 13.5) and
the relation between flexible linguistic rules and flexible linguistic functions (see
Sect. 13.7), a flexible linguistic rule is a pair of corresponding values of corre-
sponding flexible linguistic function. Thus, the approximate reasoning with flexible
linguistic rule(s) can be induced into the approximate evaluation of corresponding
flexible linguistic function, or to say, we can utilize the principle of the approximate
evaluation of flexible linguistic functions to realize the approximate reasoning with
flexible linguistic rule(s). This opens up a new approach for approximate reasoning.
Besides, utilizing flexible linguistic function, the approximate evaluation of corre-
sponding background numerical function can also be realized.

17.1 Mathematical Essence of Approximate Reasoning

Approximate reasoning can be divided as approximate reasoning with single rule
and approximate reasoning with multiple rules. Approximate reasoning with single
rule is to deduce corresponding flexible linguistic value as conclusion, B′, from
known flexible rule A → B and the approximate value A′ of its antecedent flexible
linguistic value A. Approximate reasoning with multiple rules is to deduce
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corresponding flexible linguistic value as conclusion, B, from known flexible rules
A1 → B1, A2 → B2, …, Am → Bm and linguistic value as evidentiary fact,
A. Viewed from the relationship between the flexible linguistic rules and the
flexible linguistic function, approximate reasoning with single rule just is the
approximate evaluation of a flexible linguistic function with single pair of corre-
sponding values; and approximate reasoning with multiple rules just is the
approximate evaluation of a flexible linguistic function with multiple pairs of
corresponding values. If we view these known valued pairs as a local flexible
linguistic function on the universe, then approximate reasoning with multiple rules
is tantamount to that in the situation of only knowing a local flexible linguistic
function on the universe to do the evaluation computation of global flexible lin-
guistic function.

Thus, it can be seen that the mathematical essence of approximate reasoning is
the approximate evaluation of flexible linguistic functions. Thus, approximate
reasoning with flexible linguistic rules can be realized by the approximate evalu-
ation of corresponding flexible linguistic function [1].

17.2 Approximate Reasoning with Single Rule Based
on the Approximate Evaluation Principle of Flexible
Linguistic Functions

1. AT method of the approximate reasoning with single rule with single
condition

From the mathematical essence of approximate reasoning and the AT method of
the approximate evaluation of monovariate flexible linguistic function with single
pair of corresponding values in Sect. 16.2, we have the approximate reasoning
method with single rule with single condition.

Suppose there is flexible rule A → B and A′ approximating to A, then we can
derive the corresponding B′ by the following steps:

(1) Find out the peak-value points ξA and ξA′ of flexible linguistic values A and A′,
use ξA and ξA′ to obtain the distance dA′A between extended cores XA′ and XA;

(2) Compute distance dBB′ by using formula (16.1) or (16.2);
(3) Determine the orientation of YB′ relatively to YB according to the orientation

correspondence relation decided by rule A → B, then use the suitable for-
mulas in Eqs. (16.3)–(16.8) to obtain critical points s�B0 and sþB0 and core–
boundary points c�B0 and cþB0 of linguistic value B′, and obtaining the extended
core of B′, and then write out consistency function cB′(y) of B′ (if requiring); or
use Eqs. (16.9)–(16.11) do directly translation transformation of consistency
function cB(y) of linguistic value B to obtain cB′(y) of B′.

Thus, we obtain a new method of approximate reasoning, we may as well call
the method to be AT method of approximate reasoning with single rule with single
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condition, or simply, AT reasoning. It can be seen that AT reasoning is actually a
pure numerical computation process.

Example 17.1 Suppose there are flexible rule “if the furnace temperature is low,
then open the air door big” and fact “furnace temperature is rather low.” Try to do
approximate reasoning by using AT method and make a decision on controlling the
air door.

Solution Let the range of furnace temperature be U = [100, 1000], the range of
opening degree of the air door be V = [0, 100], “low” and “big” be separately
linguistic values on U and V, and the both be semi-peak values, of them “low” be a
positive semi-peak and “big” be a negative semi-peak. Thus, the orientation corre-
spondence relation between the antecedent and consequent linguistic values of the
rule is positive-negative. We denote linguistic values “low” and “rather low” onU as
A and A′, respectively, and denote linguistic value “big” on V as B. We define the
positive critical point of A to be sþA = 500, positive core–boundary point cþA = 300,
and peak-value point ξA = 100; define the positive critical point of A′ to be
sþA0 = 600, positive core–boundary point cþA0 = 400, and peak-value point ξA′ = 200;
and define the negative critical point of B to be s�B = 50, negative core–boundary
point c�B = 80, and peak-value point ξB = 100. The corresponding consistency
functions are as follows:

cA xð Þ ¼ 500� x
200

; x 2 U

cA0 xð Þ ¼ 600� x
200

; x 2 U

cB yð Þ ¼ y� 50
30

; y 2 V

The graphs of these functions are shown in Fig. 17.1.
It can be seen that flexible linguistic value A′ is located at the positive side of

A. Thus, B′ to be obtained should be located at the negative side of B. And it is easy
to obtain that median points mþ

A = 400 and m�
B = 65, approximate radius rþA ¼

mþ
A � nA ¼ 300; approximate radius r�B ¼ nB � m�

B ¼ 35; and dA0A ¼ nA0 � nA ¼
100; so from Eq. (16.2), the distance

0 100 300 500 x

c 

1

0 

low 

rather low 

Fig. 17.1 The consistency
function of flexible linguistic
values “low” and “rather low”
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dB0B ¼ dA0A
r�B
rþA

¼ 100� 35/300 � 11:7

Further, from Eq. (16.9), the consistency function of B′ is

cB0 yð Þ ¼ cB0 yþ dB0Bð Þ ¼ y� 38:3
30

; y 2 V

The graph is shown in Fig. 17.2.
Viewed from the distance and function curve, linguistic value B′ can be named

“rather big.” That is to say, the decision obtained by approximate reasoning is open
the air door rather big.

It needs to be noted that although AT reasoning is realized by using the
approximation evaluation method of a flexible linguistic function, we do not need to
know corresponding flexible linguistic function Y = f(X) in implementation, only
need viewing the known rule A → B as a pair of corresponding values, (A, B), of
corresponding linguistic function Y = f(X). Besides, in AT reasoning, the function
cA′ (x) is required must be displacement functions of cA(x). However, in the actual
reasoning, we do not have to write out the expressions of cA′ (x), and only needing
to know the peak-value point of flexible linguistic value A′.

2. AT method of approximate reasoning with a conjunction-type rule with
multiple conditions

Based on the mathematical essence of approximate reasoning and the AT
method of approximate evaluation of a multivariate flexible linguistic function with
single pair of values in Sect. 16.3, we have the AT method of approximate rea-
soning with a conjunction-type rule with multiple conditions.

Let A ¼ A1^A2^ � � � ^An, A0 ¼ A0
1^A0

2^ � � � ^A0
n, A

0 �U ¼ U1 � U2 � . . .� Un,
and B � V , where Ai;A0

i i ¼ 1; 2; � � � ; nð Þ and B are all one-dimensional semi-peak
values. Then, the AT method of approximate reasoning with the conjunction-type
rule A ! B is as follows:

(1) Find out distances dA1A0
1
; dA2A0

2
; . . .; dAnA0

n
between corresponding component

values of conjunctive linguistic values A and A′;
(2) Find distance dBB′ by using formula (16.23);
(3) Determine the orientation of YB′ relatively to YB according to the orientation

correspondence relation decided by rule A → B, then choose suitable for-
mulas in Eqs. (16.3)–(16.8) to do corresponding translation transforming of

c 

1 

0 

big 

0 50 80 100 y

B’

Fig. 17.2 The consistency
function of flexible linguistic
values “big” and “B′”
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critical points s�B and sþB and core–boundary points c�B and cþB of linguistic
value B to obtain critical points s�B0 and sþB0 and core–boundary points c�B0 and
cþB0 of linguistic value B0, and obtaining the extended core of B0, and then write
out the consistency function cB0 yð Þ of linguistic value B0 (if requiring); or do
directly translation transformation of consistency function cB(y) of linguistic
value B with Eqs. (16.9)–(16.11) to obtain consistency function cB′(y) of
linguistic value B′.

3. AT method of approximate reasoning with a non-conjunction-type rule
with multiple conditions

In the above, we have developed an approximate reasoning method with a
conjunction-type flexible rule with multiple conditions on the basis of the
approximate evaluation principle of a multivariate flexible linguistic function.
However, the rule with multiple conditions also have of disjunction-type and
synthesis-type, even more general rule with a composite linguistic value formed by
multiple kinds of operations. Then, for these non-conjunction-type rules, can the
approximate evaluation principle of flexible linguistic functions also be used to
realize the corresponding approximate reasoning?

Actually, for disjunction-type rule A1 ∨ A2 ∨ ��� ∨ An → B, if composite lin-
guistic value A1 ∨ A2 ∨ ��� ∨ An is viewed as an atomic linguistic value on product
space U1 × U2 × ��� × Un, that is, set A1 ∨ A2 ∨ ��� ∨ An = A, then this rule
becomes a rule with single condition, A → B. And if set also
A0
1 _ A0

2 _ � � � _ A0
n ¼ A0, then from the relationship between the flexible rules and

the flexible linguistic function, in principle, AT method of approximate reasoning
with a rule with single condition can be used to realize the approximate reasoning
with disjunction-type rules. In implementation, when computing distance dB′B,
since A and A′ are actually composite linguistic values, and it is known from
Sect. 6.8 that sA′A = max{sA0

1A1 , sA0
2A2 , …, sA0

nAn} and DA′A = min{DA0
1A1 , DA0

2A2 , …,

DA0
nAn}, while DA0

iAi =
dA0

i
Ai

rAi
(i = 1,2, …, n); thus, here the computation formula

should be

dB0B ¼ min
dA0

1A1

rA1

;
dA0

2A2

rA2

; . . .
dAn0An
rAn

� �
� rB ð17:1Þ

Similarly, for synthesis-type flexible rule A1 ⊕ A2 ⊕ ��� ⊕An → B, we can also
use AT method to realize approximate reasoning. Of course, the computation
formula of distance dB′B here is

dB0B ¼
Xn
i¼1

wi
dA0

i

rAi

� rB;
Xn
i¼1

wi ¼ 1 ð17:2Þ

Further, for more general rule with a composite linguistic value, E(A1, A2,…,
An) → B, its antecedent E(A1, A2,…, An) can also be viewed as an atomic linguistic
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value, that is, setting E(A1, A2,…, An) = A, and setting fact E(A1′, A2′,…, An′) = A′,
then treat which as approximate reasoning with a rule with single condition. Of
course, when determining approximate degree sA′A, needing to compute the distance
dA′A by using corresponding formulas of operations ∧, ∨ and ⊕ from top to down
layer by layer according to the structure of E(A1, A2, …, An).

Example 17.2 Suppose there is a flexible rule with a composite linguistic value

A^B^Cð Þ _ D � E � Fð Þ ^ G_H _ Ið Þ ! J

and fact

A0 ^B0^C0ð Þ _ D0 � E0 � F0ð Þ ^ G0 _H0 _ I 0ð Þ

To be asked to do approximate reasoning using AT method.

Solution Set (A ∧ B ∧ C) ∨ (D ⊕ E ⊕ F) ∧ (G ∨ H ∨ I) = A1, then (A′ ∧ B′ ∧
C′) ∨ (D′ ⊕ E′ ⊕ F′) ∧ (G′ ∨ H′ ∨ I′) = A1′. Thus, the original rule and fact
become

A1 ! J andA0
1

Thus, by AT method, we have

dJ 0J ¼ dA0
1A1

rJ
rA1

However, here A1 is a composite flexible linguistic value, from the logical operation
order and brackets, the structure of the top layer of A1 is

A2 _ A3

where A2 = A ∧ B ∧ C, A3 = (D ⊕ E ⊕ F) ∧ (G ∨ H ∨ I). Thus,

dA0
1A1 ¼ min

dA0
2A2

rA2

;
dA0

3A3

rA3

� �
� rA1

while

dA0
2A2 ¼ max

dA0A

rA
;
dB0B

rB
;
dC0C

rC

� �
� rA2

Set A4 = D ⊕ E ⊕ F, A5 = G ∨ H ∨ I, then A3 = A4 ∧ A5. Thus,

dA0
3A3 ¼ max

dA0
4A4

rA4

;
dA0

5A5

rA5

;

� �
� rA3
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where

dA0
4A4 ¼ w1

dD0D

rD
� rD þw2

dE0E

rE
� rE þw3

dF0F

rF
� rF ;

X3
i¼1

wi ¼ 1

dA0
5A5 ¼ min

dG0G

rG
;
dH0H

rH
;
dI 0I
rI

� �
� rA5

Now substitute the above all distances successively backward into the corre-
sponding expressions, then dJ′J is lastly obtained. Further corresponding flexible
linguistic value J′ can be obtained. As for the approximate radii in them, they can all
be computed by the expression of definition of approximate radii of atomic lin-
guistic values in Sect. 6.8.

4. AT method of approximate reasoning with a non-typical flexible rule

AT method is for the typical flexible rules. For a non-typical flexible rule, we can
firstly transform it into a typical rule, and then using AT method to do approximate
reasoning, then, transforming backward the resulting flexible linguistic value
obtained by using original transformation, the eventual resulting flexible linguistic
value can be obtained.

For example, let A1 ∧ A2 ∧ ��� ∧ An → B be a conjunction-type non-typical
flexible rule, where Ai � Ui (i = 1, 2, ���, n) and B � V are multidimensional
property-type or relation-type flexible linguistic values. Then, we can take trans-
formations φ1, φ2,…, φn, and ψ to transform multidimensional flexible linguistic
values A1, A2, …, An and B separately into one-dimensional flexible linguistic
values A1, A2, …, An and B, thus the original non-typical flexible rule
A1 ∧ A2 ∧ ��� ∧ An → B is transformed into typical flexible rule
A1 ∧ A2 ∧ ��� ∧ An → B. For the latter, obviously, AT method can be used to do
the approximate reasoning. Let one-dimensional flexible linguistic value obtained
be B′. Then, using backwardly the original transformation ψ to B′, the eventual
result—multidimensional flexible linguistic value B′ follows.

17.2.1 Approximate Reasoning with an N–L or L–N Rule

Since its antecedent is numerical value, so for an N–L rule, the usual distance dA′A
with respect to L–L rule becomes the distance dx′x between the numerical value x′ as
evidence fact and numerical value x in the rule’s antecedent, and the approximate
radius rA also becomes rx. Thus, the computation formula of corresponding distance
dB′B becomes

dB0B ¼ dx0x
rB
rx

ð17:3Þ
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(Actually, from the definitions of the distance and approximate radius about flexible
linguistic values, it can be seen that distance dx′x is also tantamount to distance dA′A
between flexible linguistic values A′ and A with separately peak-value points x′ and
x, and approximate radius rx is also tantamount to approximate radius rA). As to the
orientation of B′, it can also be determined by the rule itself. Thus, the approximate
reasoning with an N–L rule can also use AT method. Of course, when reasoning,
the approximate radius rx of numerical value x need to be determined according to
practical problem.

Similarly, since its consequent is a numerical value, so for an L–N rule, the usual
distance dB′B with respect to L–L rule is also the distance dy′y between y′ as the
resulting numerical value and numerical value y in the rule’s consequent. Its
computation formula is

dy0y ¼ dA0A
ry
rA

ð17:4Þ

When approximate reasoning, it only is needed to treat conclusion y of rule as the
peak-value point ξB of conclusion linguistic value B of the usual L–L rule, then y′ to
be found in approximate reasoning is also tantamount to peak-value point nB0 of
corresponding B′. Thus, from the computation formula of nB0 , we have

y0 ¼ y� dy0y ðwhen y0\yÞ ð17:5Þ

y0 ¼ yþ dy0y ðwhen y0 [ yÞ ð17:6Þ

y0 ¼ y ðwhen y0 ¼ yÞ ð17:7Þ

Thus, the approximate reasoning with an L–N rule can also use AT method. Of
course, when reasoning, the approximate radius ry of numerical value y and the
magnitude relation between y′ and y need to be determined according to the
practical problem.

17.3 Approximate Reasoning with Multiple Rules Based
on the Approximate Evaluation Principle of Flexible
Linguistic Functions

From the approximate evaluation method of flexible linguistic functions and the
mathematical essence of approximate reasoning with multiple rules, we can have
three approaches of approximate reasoning with multiple rules:

(1) By using AT method. That is, firstly choose the Ak from antecedent linguistic
values A1, A2, …, An of all rules, which is closest to linguistic value A as fact
(actually, if A1, A2, …, An are all basic flexible linguistic values or composite
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linguistic values composed by basic flexible linguistic values, then A can only
be approximate to one flexible linguistic value among them), then do
approximate reasoning with corresponding rule Ak → Bk and fact A, and by
using AT method to obtain corresponding Bk′. Then, this Bk′ is just the B to be
found.

(2) By using a global linguistic function. That is, firstly treat rules A1 → B1,
A2 → B2, …, An → Bn as pairs of corresponding values, (A1, B1), (A2, B2),
…, (An, Bn), of a unknown global linguistic function, that is, viewing
{(A1, B1), (A2, B2), …, (An, Bn)} as a local linguistic function, then with this,
by using knowledge discovery techniques to obtain this global linguistic
function Y = f(X), then use directly the Y = f(X) to find f(A) = B. Thus, the
corresponding approximate reasoning is also realized.

(3) By using linguistic interpolation. That is, firstly treat rules A1 → B1,
A2 → B2, …, An → Bn as pairs corresponding values, (A1, B1), (A2, B2), …,
(An, Bn), of a global linguistic function, then with these valued pairs and
known linguistic value A, using the approximate computation method of
certain kinds of “linguistic interpolation” to directly obtain the approximate
value B′ of corresponding linguistic function. Thus, this approximate evalu-
ation of linguistic function just realizes the corresponding approximate
reasoning.

It can be seen that approach (1) reduces actually the approximate reasoning with
multiple rules to the approximate reasoning with single rule. However, if the lin-
guistic function formed by corresponding rule set is discontinuous, then the method
cannot be normally used. Besides, AT method also requires all antecedent linguistic
values of flexible rules to be semi-peak linguistic values.

17.4 Approximate Evaluation of Numerical Functions
Based on the Approximate Evaluation Principles
of Flexible Linguistic Functions

The evidence fact A′ in AT method is a linguistic value (an atomic linguistic value
or a composite linguistic value). However, in practical problems, some evidence
facts may be numerical value x (including scalar or vector). Then, in this case, must
numerical value x be converted into linguistic value A′? The answer is negative.
The reason is that since in AT method, actually as long as knowing peak-value
point ξA′ of linguistic value A′, distance dB′B can be obtained at once. So for
numerical evidence fact x, it can be directly treated as peak-value point ξA′ of
corresponding linguistic value A′. That is to say, a numerical fact met in AT method
can directly participate in reasoning and does not need to be converted into a
linguistic value.

On the other hand, from Eqs. (16.12), (16.13), and (16.14) in Chap.16, it can be
seen that in AT method, peak-value point ξB′ of conclusion linguistic value B′ can
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be directly obtained, then, when a practical problem eventually needs is a numerical
value, this ξB′ can be treated as one choice for the eventual numerical value, or it can
even be the first choice. Therefore, speaking in this sense, linguistic value B′ neither
need to be converted into a numerical value in the approximate reasoning with AT
method.

Approximate reasoning with AT method does not need to convert numerical
evidence facts into linguistic values and also does not need to convert a linguistic
value conclusion into a numerical value. This means AT method can be directly
used in the approximate evaluation computation of corresponding background
functions. Besides, from Sect. 16.4, it is known that utilizing linguistic interpola-
tion, the approximate evaluation computation of corresponding background
numerical functions can also be realized.

Thus, the approximate computation method based on the approximate evaluation
principles of flexible linguistic functions can be used for automatic control. As a
matter of fact, in actual automatic control systems, the input quantity and the output
quantity are generally always exact numerical values. For this, the traditional fuzzy
control generally uses the methods of fuzzification and defuzzification to treat. Then,
now if the corresponding control system uses AT method or linguistic interpolation
method to realize approximate computing, then these two procedures of fuzzification
and defuzzification can be omitted (the examples on the approximate computing and
control using AT method can see a demonstration in Sect. 18.6).

17.5 Utilizing Exact Evaluation of a Flexible Linguistic
Function to Realize Approximate Evaluation
of a Numerical Function

Actually, by the relation between linguistic function and numerical function, as well
as N–L and L–N conversions, we can utilize directly the exact evaluation of a flexible
linguistic function to realize the approximate evaluation of the corresponding
background numerical function (including the multivalued background function).
Specifically speaking, first convert the known number (vector) x0 = (x1, x2, …, xn)
2 U = U1 × U2 × ��� × Un into flexible linguistic value (vector) A = (A1, A2, …,
An) = A1 ∧ A2 ∧ ��� ∧ An on the domain Ls(U) of the corresponding flexible
linguistic function Y = f(X) through N–L conversion; then find out the correspond-
ing value of linguistic function B = f(A) from A and Y = f(X); finally convert
flexible linguistic value B into number y0′ 2 V through L–N conversion. Then, the y0′
is just an approximate value of y0 which is the value of background function of
flexible linguistic function y = f(x) at x = x0, namely y0′ ≈ y0 = f(x0). The process
and principle of this method of approximate evaluation computing is shown in
Fig. 17.3.

It can be seen that here function value B is an exact value of flexible linguistic
function Y = f(X) at independent variable X = A. So the “approximation” of the
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approximate evaluation actually is mainly showed on the final L–N conversion.
From the conversion relations between linguistic values and numerical values and
the semantics of flexible linguistic function, if the flexible linguistic values A and
B and flexible linguistic function Y = f(X) are proper for the corresponding practical
problem, then the y0′ obtained from x0 given is reasonable, effective and sufficient
for requirement.

The kind of approximate evaluation computation method based on exact eval-
uation or exact inference has another characteristic, that is, only needing to know
the extended cores of corresponding flexible linguistic values, then all reasoning
and computation can be done by “geometric method” but do not need the consis-
tency functions of the flexible linguistic values, do also not need the adjoint degreed
functions and measured functions of the corresponding rules. So the method of
approximate evaluation computation is actually simpler and more convenient.

Actually, from the relation between flexible rules and flexible linguistic func-
tions, the exact evaluation of a flexible linguistic function is also the exact reasoning
with corresponding flexible rules, so this exact evaluation of numerical function
utilizing the exact evaluation of flexible linguistic function is also the exact eval-
uation of numerical function realized by utilizing natural inference with data con-
versions in Sect. 15.1. Therefore, this exact evaluation method of numerical
function, in theory, is completely feasible for those problems (such as the action
control of robots and certain process control) without exact mathematical models
but can be described and dealt with by flexible linguistic functions or flexible rules.
Even more general, for any numerical function (including multiple valued function
and vector valued function) relation this method can be used to find its function
value as long as the corresponding flexible linguistic function can be written out.

17.6 A Comparison of Approximate Reasoning
and Computation in This Book and Fuzzy
Reasoning and Computation

We used five chapters from Chaps. 13–17 to reveal the principles of the approxi-
mate reasoning and computation with flexible linguistic values and gave multiple
approaches of approximate reasoning and computation such as natural inference
(with data conversion(s)), reasoning with degrees in the frame of logic, AT method

Y=f(X) 
N-L 

transformation

x0 A L-N
transformation

B y0’

Fig. 17.3 Diagram of principle of approximate evaluation of a numerical function realized by
utilizing exact evaluation of a flexible linguistic function
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and interpolation methods in the frame of flexible linguistic function and so forth.
While the fuzzy reasoning and corresponding approximate computation based on
fuzzy set theory is also belong to the kind of approximate reasoning and compu-
tation with flexible linguistic values, but they are very different from our methods.
In the following, we will make a simple comparison of the two in aspects of
principles, methods, effects, etc.

1. Rationales

It is well known that the basic principle of traditional fuzzy reasoning is CRI
(compositional rule of inference) proposed by Zadeh, that is, using the composition
of fuzzy relations called to realize approximate reasoning. Specifically speaking, it
is that first represent a fuzzy rule (i.e., flexible rule we call) A → B into a fuzzy
relation (i.e., flexible relation we call) R (as defining R = (Ac × V) [ (U × B)),
and viewing fuzzy set A′ approximating to A also as a fuzzy relation and to do
composition of A′ and R, then treating the obtained result B′ (also a fuzzy set) as the
result deduced by rule A → B and fact A′. This principle of inference is represented
by an equation just is

B0 ¼ A0 � R ð17:8Þ

The membership functional representation form of the equation is

lB0 ðyÞ ¼ f ðlRðx; yÞ; lA0ðxÞÞ ð17:80Þ

where μR(x, y) is implicational operator so-called.
However, research of us shows that rule A → B can merely be represented

as a binary rigid relation, but a binary flexible relation, or, a binary fuzzy relation
(see Sects. 13.5 and 13.6). In fact, in theory, rule A → B is equivalent to a binary
rigid relation, but the binary rigid relation cannot be definitely written in general, so
can only be represented by universal relation core(A)+ × core(B)+ or supp
(A) × supp(B).

Besides, we see that to obtain approximate conclusion B′, the rule A → B and
fact A′ would be used of course, but the conduct of directly making the two intersect
is improper perhaps. Because A → B is only a rule with linguistic values but a
linguistic function, and the fact A′ does not match the antecedent A of A → B, then,
in this situation, doing directly composition of A′ and A → B is unreasonable no
matter from the logic or mathematics. No wonder CRI is not compatible with
traditional modus ponens, despite CRI is called generalized modus ponens in fuzzy
set theory.

Actually, the reasoning with one rule A → B is an inference on properties, while
the reasoning with two rules A → B and B → C just is an inference on relations.
In CRI, the minor premise, namely fact A′, is extended as a binary relation, but the
binary relation is only a pseudo binary relation, which is still a monadic relation
really. In addition, the composition of relations is conditional, not any two relations
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can be composed; as for composing two rules of binary relation, they must satisfy
transitivity.

Also, viewed from over ten kinds of implicational operators and over ten kinds
of formulas of relation composition, it cannot be helped the objectivity of fuzzy
reasoning arousing suspicion. In fact, from the implicational operator (presented by
Zadeh)

lRðx; yÞ ¼ maxf1� lAðxÞ; minflAðxÞ; lBðyÞgg ð17:9Þ

and the formula of relation composition

lB0ðyÞ ¼ minflA0ðxÞ;maxf1� lAðxÞ; minflAðxÞ; lBðyÞgg ð17:10Þ

it is not hard to see that min{μA′ (x), max{1 − μA(x), min{μA(x), μB(y)}} is actually
the truth-degree of premise (A → B) ∧ A′ of reasoning, while also treating it as the
truth-degree of conclusion B′ is then entirely artificially set.

Besides, fuzzy reasoning does not consider the orientation of linguistic value A′
relatively to antecedent linguistic value A of rule A → B, but which is closely
related to the accuracy of conclusion linguistic value B′ and the exactness of cor-
responding number y′. Because viewed from the perspective of flexible linguistic
functions, the approximate reasoning is also the approximate evaluation of a flex-
ible linguistic function with a single pair of corresponding values.

Correspondingly, our approximate reasoning and computation approaches have
logical and mathematical rationales.

In fact, our natural inference is just usual modus ponens; and our reasoning with
degrees is following inference rule “truth-degree-level(degree-level)-UMP”, and in
which the numerical computation models and methods are founded naturally on the
bases of the mathematical essence of flexible rules and approximate reasoning, and
under the constraints of the logical semantics of rules and the inference rules of
“near-true” and “rough-true”. So it is logical. Just because this, it is completely
compatible with modus ponens in traditional logical, which is really the thinning
and generalization of latter.

Our AT method is then presented based on the numerical models and the
approximate evaluation principle of linguistic functions in viewpoint of mathe-
matics completely, so its rationality is obvious (for specific demonstration see
Sect. 16.2.3). As to other reasoning and computation methods (as interpolation
method and approximate global function method) based on linguistic functions,
since they are presented at the level of linguistic functions, so they have solid
mathematical basis, and these methods are all closely related to mathematical
backgrounds of practical problems, and our approximate computation with the
adjoint measured functions of rules is then directly applying the approximate
background functions of corresponding rules to be realized. Therefore, the
rationality of these methods is also beyond doubt.

Actually, from the perspective of logic, our natural inference, reasoning with
degrees, and AT method are all the reasoning in the sense of near-true
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(truth-degree > 0.5), that is, near-true inference we said (see Sect. 11.6); while
fuzzy reasoning can roughly be counted as the reasoning in the sense of degree-true
(truth-degree > 0), that is, degree-true inference we said (see Sect. 11.5), and, the
fuzzy reasoning with multiple rules (such as Mamdani-style inference and
Sugeno-style inference) can roughly be included in the parallel reasoning with
degrees we said (see Sect. 15.6). From previous Chaps. 11–15, we see that
near-true inference is consistent with the natural logical semantics of propositions,
so it tallies with inference mechanism of human brain; while degree-true inference
is not consistent with the natural logical semantics of propositions (it corresponds to
extended logical semantics of propositions), hence it does not tally with inference
mechanism of human brain, particularly, the parallel reasoning with degrees based
on the degree-true inference is more different from the inference mechanism of
human brain; in addition, after parallel reasoning with degrees, for the synthesizing
of multiple conclusions, there is not a unified method or model having theoretical
basis.

2. Efficiencies and effects

Comparing near-true inference and degree-true inference, we see that using
near-true inference, one and the same problem can be solved by reasoning once, but
if using degree-true inference, then it needs to be done by (parallel) reasoning
generally twice or multiply. That is to say, the efficiency of our natural inference,
reasoning with degrees and AT method in the sense of near-true, generally
speaking, will be higher than that of fuzzy reasoning in the sense of degree-true.

Also, let us observe ranges of truth-degrees, the range of truth-degrees of
near-true inference is (0.5, β] (β ≥ 1), and the range of truth-degrees of degree-true
inference is (0, β]; while the range of truth-degrees of fuzzy reasoning is [0, 1]. Note
that the 1 in [0, 1] here is equivalent to [1, β] in (0.5, β]. From the three ranges of
truth-degrees, it can roughly be observed that the effect (i.e., accuracy) of our
reasoning methods, generally speaking, will be better than that of fuzzy reasoning.

In the following, we will further analyze the efficiencies and effects of the two
kinds of reasoning.

First, fuzzy reasoning treats rule A → B as couple or implication relation
(namely, “if A then B, else B ∨ ¬B”). As couple relation, the rule A → B is rep-
resented as the Cartesian product of corresponding fuzzy sets, A × B, the geometric
space this fuzzy set occupied in real is the region supp(A) × supp(B) in corre-
sponding universe of discourse (as shown in Fig. 17.4a). While in our inference
methods, the rule A → B is then further represented as smaller region core
(A)+ × core(B)+ (as shown in Fig. 17.4b).

As implication relation, rule A → B is also the following two correspondences:

A 7!B
:A 7!B _ :B

�

Which is represented as region (Ac × V) [ (U × B) (as shown in Fig. 17.4c) in
fuzzy reasoning. Since the evidence fact A′ of the reasoning is an approximate value
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of A, so the above second correspondence “¬A 7! B ∨ ¬B” is really superfluous.
That is to say, when rule A → B is treated as implication relation, there is
redundancy in fuzzy reasoning. Yet our reasoning methods only use correspon-
dence A 7! B in implication relation like the usual logical inference. Therefore, the
reasoning can be implemented, but also there is no any redundancy.

Secondly, seeing from processes, fuzzy reasoning is based on region supp
(A) × supp(B) or (Ac × V) [ (U × B) to realize approximate reasoning and
computation. From the analysis above, it can be known that region
(Ac × V) [ (U × B) − core(A)+ × core(B)+ is practically useless in reasoning.
Then, the effect is conceivable finding the approximate value B’ or corresponding
number y’ based on such a space much bigger than the actual requirement.

Yet our natural inference and reasoning with degrees realize approximate
reasoning and computation in the subregion core(A)+ × core(B)+ of(A × V) [
(U × B); our AT method realizes approximate reasoning and computation round the
peak-value point (ξA, ξB) in region core(A) × core(B). From Sect. 13.5 we known
that region core(A)+ × core(B)+ is the smallest space that includes the background
function or background correlation of rule A → B. Thus, viewed only from
problem-solving space, the error caused by our approximate reasoning methods is
certainly not more than that by fuzzy reasoning, on the whole. As to our other
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Fig. 17.4 The spaces rule A → B occupies in different methods
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approximate reasoning and computation methods utilizing linguistic functions,
because of their mathematical rationality, therefore their efficiency and effect are
also assured.

When fuzzy reasoning is applied to approximate computation of numerical
values (as auto-control), the nature of the input and output data generally are needed
to change through fuzzification and defuzzification (as shown in Fig. 17.5). But our
AT method can be directly applied to approximate evaluation of a function, which
is tantamount to omitting two procedures of fuzzification and defuzzification.
Although our approximate evaluation methods that utilize natural inference, rea-
soning with degrees and flexible linguistic function have also the conversion pro-
cedure from a linguistic value to a numerical value, that is, L–N conversion, our
conversion can always guarantee the numerical result (y00) obtained falls in the
extended core of corresponding flexible linguistic value (B) (as shown in
Fig. 17.6a), so it is always effective and satisfactory. However, the methods of
fuzzy reasoning and follow-up defuzzification cannot guarantee that the obtained
numerical result (y00) falls within the extended core of corresponding flexible lin-
guistic value (B) (as shown in Fig. 17.6b), as a result, there would occur the
phenomenon of sometimes valid, but some other times invalid as well as valid for
some problems but invalid for some other problems. We think, it just is an
important cause of the fuzzy control being not reliable and stable enough.

A 

By0’

x0 x

y

y0’

x0 x

y A 

B

(a) (b)

Fig. 17.6 Examples of the positions of numerical result (y0′) obtained by two different
approximate computing models. a The region between two vertical dotted lines is support set
of flexible linguistic value A, and between two solid lines is the extended core of A. b The region
between two horizontal dotted lines is support set of flexible linguistic value B, and between two
solid lines is the extended core of B

fuzzy reasoning fuzzification
x0 A’

defuzzification
B y0’

Fig. 17.5 Diagram of principle of approximate evaluation computing of fuzzy controller
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Actually, fuzzy controller is a kind of interpolator essentially (this is just the
cause of fuzzy reasoning can be used to approximate computation to solve the
practical problems such as automatic control). But viewed from approximate
computation, this interpolate method is inefficient (the cause is as stated above).

The approximate computing model of a fuzzy controller is considered to be able
to further develop into a fuzzy logic system which can realize “universal approx-
imator,” but this kind of approximate computing systems has a severe problem—its
principle cannot be clearly explained (see Sect. 16.4.3). But the kinds of approxi-
mate computing models we gave in Chaps. 15–17 only need to add, respectively, a
function of reducing dynamically granule sizes of flexible linguistic values, then
they can all realizing the “universal approximator,” and the functions approximated
are more widespread, for example, which can also being a multiple valued function
and vector function.

3. Research methods

In research of fuzzy reasoning, the mathematical backgrounds of practical
problems are consider rarely, the orientation of an approximate linguistic value is
still not considered, but it is tried in the same way that at the level of logic and
language to research a fuzzy logic method that can treat the practical problems in
different poses and with different expressions.

However, since (A → B) ∧ A′ ) B′ is not a valid argument form, so it is
impossible to deduce B′ directly from A → B and A′. On the other hand, logical
relation cannot reflect, or in other words, covers, the orientation relation when one
linguistic value approaches to another linguistic value, but the orientation relation is
of great importance to the B′ to be obtained.

We know that a linguistic valued rule actually summarizes infinite number of
practical binary relations—correlations or functions. And relatively to the practical
binary relation summarized by rule A → B, the binary relation core(A)+ × core(B)+

is an universal relation, while binary relation (Ac × V) [ (U × B) is a bigger
universal relation. Therefore, the approximate reasoning at the level of linguistic
value should have a guide of the lower-level numerical values, i.e., the mathe-
matical background. Otherwise, with only logic or mathematical methods, it is
difficult to obtain a desired effect. On the other hand, the approximation of flexible
linguistic value A′ to A also involves the orientation problem; different orientations
may bring different inference results. However, in the methods of pure logical
inference, the information about orientation cannot be reflected, so A′ approximates
to A no matter from which direction, the result B′ is all the same. Obviously, the
efficiency of the result of such approximate reasoning can only go by luck.

But our approximate reasoning methods are just guided by the relevant math-
ematical background information of practical problems, where linguistic values
only have the effect of macroscopic positioning, while the specific computations are
also different with different problems.
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4. Scopes and abilities

The rules with multiple conditions involved in fuzzy reasoning are only two
types of conjunction and disjunction, but our flexible rules have a type of
synthesis-type rule except for the two types of rules. That is to say, compared with
fuzzy reasoning, our methods have more wide scope of application and more
powerful processing ability.

17.7 Summary

In this chapter, starting from the relation between flexible linguistic rules and
flexible linguistic functions, we revealed the mathematical essence of approximate
reasoning and then presented an approximate reasoning method and two approxi-
mate evaluation methods of numerical functions. Besides, we also made a com-
parison between and commentary on, in principle, the methods of approximate
reasoning and computation given in this book and the traditional fuzzy methods.

The main points and results of the chapter are as follows:

• The mathematical essence of approximate reasoning with flexible linguistic
rules is the approximate evaluation of a flexible linguistic function, so the
approximate evaluation principles of flexible linguistic functions can be used to
realize the approximate reasoning. Thus, for approximate reasoning with single
rule, there is a series of AT reasoning method; and for approximate reasoning
with multiple rules, we then can translate it into approximate reasoning with
single rule; besides, we can also use the methods of approximate global lin-
guistic function or linguistic interpolation. These approximate reasoning meth-
ods can also be used for the approximate evaluation of corresponding numerical
functions.

• Approximate reasoning at the level of linguistic value is really the summa-
rization of approximate computation at the level of numerical value, which
should be guided by the related mathematical background; A pure logic or pure
mathematical approximate reasoning method without the consideration of the
mathematical background of rules is significant only when the sizes of the
corresponding flexible linguistic values are sufficiently small, while in usual
situation, the effect of the approximate reasoning only depends on luck.

• Utilizing the exact evaluation of flexible linguistic functions and the corre-
sponding N–L and L–N conversions, the approximate evaluation of a corre-
sponding background function can be realized, its effectiveness is decided by the
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properness of corresponding flexible linguistic values and flexible linguistic
function.

• In theory, a system of approximate evaluation computation of a numerical
function with a flexible linguistic function or flexible linguistic rule set which
can reduce dynamically granule sizes of linguistic values is just a “universal
approximator” that can approximate any (non-chaotic) continuous function on a
measurement space.
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Chapter 18
Imprecise-Problem Solving,
and Anthropomorphic Computer
Application Systems

Abstract This chapter expounds the basic techniques of imprecise-problem
solving—the engineering application of the imprecise-information processing and
then discusses the anthropomorphic computer application systems with imprecise-
information processing ability.

Keywords Imprecise-problem solving � Flexible classifying � Flexible judging �
Flexible decision making � Flexible control � Flexible pattern recognition � Human–
computer interface � Natural language processing � Anthropomorphic computer
application systems

In the preceding chapters, the basic principles and methods of the imprecise-
information processing were expatiated. In this chapter, we discuss how to use these
principles and methods to solve practical problems, and then to build anthropo-
morphic computer application systems, which have the ability to deal with
imprecise information.

18.1 Imprecise Problems and Their Solving

Automatic solution to difficult problem, that is, the so-called problem solving, is an
important research issue of artificial intelligence. In addition to the intellectual
problems, broadly speaking, the problems here include the practical problems or
engineering problems such as classifying, recognition, judging, decision making,
forecasting, diagnosis, control, dispatching, planning and programming, designing,
and explaining. Of numerous practical problems, some are imprecise, that is, in
which the imprecise information is contained. For example, if the classes in a
problem of classifying or recognition are flexible classes, then the problem is
imprecise. For another example, when the condition, goal, or conclusion in a
problem of judging, decision, control, programming, forecasting, or diagnosis are
flexible linguistic values or flexible sets, then the problem is imprecise. There are
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some problems (as process control), which are themselves precise, but the
knowledge and data used in the process to solve them are flexible linguistic values
or flexible linguistic rules or functions [1].

The processes and methods of solving imprecise problems are similar to that of
the usual precise-problem solving, but the imprecise-problem solving will involve
imprecise-information processing. That is to say, in the imprecise-problem solving,
flexible linguistic values, flexible sets, membership functions, consistency func-
tions, flexible linguistic rules, or flexible linguistic functions, etc., would be used,
and the interconversion between numerical values and flexible linguistic values
may be involved. In fact, according to the nature and characteristics of a problem
and the representation form of relevant knowledge, the imprecise-problem solving
can be reduced to two basic ways of computing with membership or consistency
functions (or flexible sets or their extended cores) and reasoning and computing
with flexible linguistic rules or flexible linguistic functions.

18.2 Flexible Classifying with Membership Functions
(or Extended Cores)

We refer to the classifying in which the classifications are flexible classes as flexible
classifying.

Pattern recognition is a kind of classifying, which can be generally classified into
two types of statistical pattern recognition and structural pattern recognition.
Statistical pattern recognition respects the numerical feature of objects to describe a
pattern or a pattern class awaiting recognition as an n-dimensional vector, called
feature vector. Structural pattern recognition respects the structural feature of the
objects to describe a pattern or a pattern class awaiting recognition as a character
string having certain kind of tree structure. The pattern classes in usual pattern
recognition are rigid classes. Then, if the pattern classes in a pattern recognition are
flexible classes, then we say the pattern recognition is a flexible pattern recog-
nition. Flexible pattern recognition is a kind of flexible classifying. The flexible
classifying, alike usual rigid classifying, firstly there have to exist the knowledge
about known classifications, then the corresponding classifying can be done with
these knowledge. In the usual statistical pattern recognition, the knowledge about
known classifications is shown as the discrimination functions of the classifications;
in the usual structural pattern recognition, the knowledge about known classifica-
tions is shown as the descriptive rules of the classifications (a kind of grammar rules
of formal language).

Next, we take flexible pattern recognition as an example to examine flexible
classifying. In this section, we consider firstly flexible pattern recognition with
feature vectors, that is, flexible statistical pattern recognition.
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18.2.1 Usual Flexible Classifying

In traditional statistical pattern recognition, the discrimination functions are real
functions of n variables defined on the feature space (that is, measurement space)
of objects awaiting classifying. For instance, let Ω be a feature space, and let
x = (x1, x2, …, xn) 2 Ω, and gi(x) be the discrimination function of class ωi � Ω
(i = 1, 2, …, c), then we have classifying rules as follows:

If for 8 j 6¼ I; giðxÞ[ gjðxÞ; then x 2 xi i ¼ 1; 2; . . .; cð Þ ð18:1Þ

This is the usual statistical pattern recognition method. Then, when here class ωi is a
basic flexible class on Ω, this recognition is just a flexible recognition or flexible
classifying.

So flexible classifying also needs to define the discrimination functions of the
corresponding flexible classes. It can be seen from the relation between membership
functions and flexible classes that the membership functions are also the discrim-
ination functions of flexible classes.

Let π = {A1, A2,…, An} be a flexible partition of feature space U, and A1, A2,…,
An be basic flexible classes of U. We know that for any flexible class Ai � {A1, A2,
…, An} and any object x 2 U, we can always say x belongs to Ai with a certain
degree (mA(x)), which can be symbolically represented as x 2mAi ðxÞ A. However,
usual classifying requires the class that x belongs to be only one choice rather than
ambiguous. Therefore, at this time we need to make a selection from basic flexible
classes A1, A2, …, An. Naturally, the flexible class with the biggest membership-
degree should be chosen as the class that x belongs to (this is just the principle of
maximum membership in fuzzy set theory), that is, x should be classified as the
flexible class Ak with membership-degree mAk (x) = max{mA1 (x), mA2 (x), …,
mAn (x)}, that is, x 2 Ak. Thus, we have the following flexible classifying decision
rules:

If for 8 j 6¼ i;mAiðxÞ[mAjðxÞ; then x 2 Ai i ¼ 1; 2; . . .; cð Þ ð18:2Þ

Certainly, these rules can also be formulated as:

If mAiðxÞ ¼ max mA1ðxÞ;mA2ðxÞ; . . .;mAnðxÞf g; then x 2 Ai i ¼ 1; 2; . . .; cð Þ
ð18:3Þ

Thus, flexible classifying is also the classifying with membership functions.
Observing membership-degree mAi (x) = max{mA1 (x), mA2 (x), …, mAn (x)}, it can

be seen that necessarily mAi (x) ≥ 0.5. Because if mAi (x) < 0.5, then from the
complementary law of degrees, should mAlðxÞ ¼ m:Ak ðxÞ[ 0:5, which is obviously
contradictory to mAk ðxÞ = max{mA1 (x), mA2 (x), …, mAn (x)} (from the relation
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between basic linguistic values, ¬Ak is a semi-peak value of basic flexible linguistic
value Al adjacent to Ak, so ¬Ak is also in π). Thus, with respect to the basic flexible
classes, mAk ðxÞ[ 0:5 also equals to say mAk ðxÞ = max{mA1 (x), mA2 (x),…, mAn (x)}.

Based on the analysis above, we give the following definition.

Definition 18.1 Let {A1, A2, …, An} be a flexible partition of feature space U. For
any x 2 U, if mAk ðxÞ[ 0:5, then we call object x belongs to flexible set Ak � {A1,
A2, …, An}, denote as x 2 Ak.

Thus, we have another kind of decision rules of flexible classifying:

If mAk xð Þ[ 0:5; then x 2 Ai i ¼ 1; 2; . . .; cð Þ ð18:4Þ

if mAk xð Þ\ 0:5; then x 2 :Ai i ¼ 1; 2; . . .; cð Þ ð18:5Þ

As thus, mA(x) = 0.5 is just the plane of demarcation between flexible classes Ak

and ¬Ak.
Actually, the plane of demarcation mAk ðxÞ ¼ 0:5 is just the plane of demarcation

gi(x) − gj(x) = 0 between adjacent flexible classes constructed by discrimination
functions gi(x) and gj(x) (j ≠ i) in usual pattern recognition. We show this fact
by one-dimensional flexible classes Ak and ¬Ak below. From the general expression
of membership function of one-dimensional flexible classes (see Eq. (2.5) in
Sect. 2.2.2), it can be seen that the expressions of membership functions of flexible

classes Ak and ¬Ak at part of intersection are separately
sþAk�x

sþAk�cþAk
and

x�s�:Ak
c�:Ak�s�:Ak

. Whereas

the two expressions are just the discrimination functions of flexible classes Ak and
¬Ak separately (at part of intersection), which are separately tantamount to usual
discrimination functions gi(x) and gj(x). Thus, from the plane of demarcation
gi(x) − gj(x) = 0, we can have the plane of demarcation between Ak and ¬Ak as

sþAk
� x

sþAk
� cþAk

� x� s�:Ak

c�:Ak
� s�:Ak

¼ 0

In consideration of cþAk
¼ s�:AK

and sþAk
¼ c�:Ak

, thus from the equation above, we
can deduce

2
x� s�:Ak

c�:Ak
� s�:Ak

� 1 ¼ 0;

namely

x� s�:Ak

c�:Ak
� s�:Ak

¼ 0:5
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that is

m:Ak xð Þ ¼ 0:5 s�:AK
\ x\ c�:Ak

� �

thus,

sþAk
� x

sþAk
� cþAk

¼ 0:5

that is

mAk xð Þ ¼ 0:5 cþAk
ð\ x\ sþAk

� �

That is to say, mAk ðxÞ � m:Ak ðxÞ ¼ 0 is equivalent to mAk ðxÞ ¼ 0:5 or
m:Ak ðxÞ ¼ 0:5:

Conversely, from mAk ðxÞ ¼ 0:5 and m:Ak ðxÞ ¼ 0:5, it follows obviously that
mAk ðxÞ � m:Ak ðxÞ ¼ 0:

Yet on the other hand, we know, mAk (x) = 0.5 is originally the median plane of
flexible class Ak (also flexible class ¬Ak); hence, it is just the plane of demarcation
between extended core core(Ak) and core(¬Ak). Thus, the above analysis shows that
we in actual can take directly the plane of demarcation between extended cores of
adjacent flexible classes as the plane of demarcation between corresponding flexible
classes. This means that the flexible classifying can also be realized by extended
cores of flexible classes but without membership functions.

Note that the above flexible classifying method is actually for the relatively
complement flexible classes. For relatively opposite flexible classes (see Sect. 8.6),
then the decision condition mAk ðxÞ > 0.5 of classifying needs to be changed to
mAk ðxÞ > 0, and mAk ðxÞ < 0.5 be changed to mAkðxÞ < 0.

In the above, we introduced the flexible classifying method with membership
functions (or extended cores). It can be seen that as long as having the membership
functions (or extended cores) of flexible pattern classes, the main problem of
flexible classifying is then solved. Thus, the main work of flexible classifying is to
obtain the membership functions of the corresponding flexible classes (which is
similar to the main work—try to obtain the discrimination functions—of classifi-
cations of the usual statistical pattern recognition). Then, for the flexible classes
with direct membership functions, the problem becomes very simple; but for the
flexible classes without direct membership functions, then needing by certain
method to indirectly obtain their membership functions. Next, we introduce a kind
of method to obtain the membership functions (or extended cores) of the related
flexible classes by decomposing linguistic values and further realize flexible pattern
recognition.
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18.2.2 An Example of Flexible Pattern Recognition

As we know, the basic strokes of Chinese characters are horizontal, vertical,
left-falling, right-falling, dot, hook, etc., which are basic components of Chinese
characters; any Chinese character is all assembled by these basic components.
Therefore, these basic strokes are also basic linguistic values on the character pattern
space of Chinese characters. Since these strokes do not have strict and rigid writing
standards (for instance, “horizontal” does not have to be absolutely level, “vertical”
does not have to be absolutely upright, and as for “left-falling” and “right-falling”,
they are more less strict), therefore, these basic strokes are actually also the basic
flexible linguistic values on the character pattern space of Chinese characters. Then,
any character (character pattern) made up of these basic flexible linguistic values is
naturally a composite flexible linguistic value on the character pattern space of
Chinese characters. Similarly, the 26 letters in English are also the basic flexible
linguistic values on the character pattern space of English language, viewed from
the character pattern, and any English word is also a composite flexible linguistic
value made up of these basic flexible linguistic values. Besides, 10 Arabic numbers
are also the basic flexible linguistic values on the character pattern space of numbers,
viewed from the character pattern, and any number is also just a composite flexible
linguistic value made up of these basic flexible linguistic values.

Examining these the formation of these composite flexible linguistic values, it
can be seen that the writing order of the basic linguistic values should be logical
relation of “and” one by one, so such composite linguistic values are the combined
linguistic values made up of its basic values, logically. Thus, viewed from the
character pattern, every Chinese character is a combined value made up of basic
strokes, every English word is a combined value made up of basic letters, and every
number character is a combined value made up of basic numbers. Since different
combined values have different make-up manners, therefore, different structure
forms are formed.

For instance, for numeric character 6, we write it as the “standard form” as
shown in Fig. 18.1a, from its structural characteristics, we then cut it up into two
parts (as shown in Fig. 18.1b). It can be seen that these two parts can be made up of
directed line segments a, b, c, and d (as shown in Fig. 18.1c). Therefore, directed
line segments a, b, c, and d can be treated as basic components, while the whole
numeric character 6 can be viewed to be formed by line segments a, b, c, and

a b c
d

a

c

c

b

d

a

(a) (b) (c) (d)

Fig. 18.1 Illustration of the formation of numeric character 6
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d according to the writing order of numeric character 6, linking from the beginning
to the end and forming first the upper part then the lower part (as shown in
Fig. 18.1d). That is to say, this standard numeric character 6 is formed by standard
directed line segments a, b, c, and d according to certain order and structure. Thus,
here a, b, c, and d are just basic linguistic values describing numeric character 6,
and numeric character 6 is described as accbda by the 4 basic linguistic values,
whose structure is shown in Fig. 18.2.

The basic linguistic values a, b, c, and d given above are standard vertical and
horizontal directed line segments. However, the numeric character 6 usually written
by people is actually not of that standard form, in which the segments are only
approximate a, b, c, and d, or in other words, flexible a, b, c, and d. For distin-
guishing, we denote flexible a, b, c, and d in boldface letter as a, b, c, and d. Thus,
the numeric character 6 we usually write is “flexible shaped 6”, while a, b, c, and
d are its basic flexible linguistic values, “flexible shaped 6” is a combined value of
these basic flexible linguistic values. Thus, we only need to change the above a, b,
c, and d that describe “standard 6” into a, b, c, and d, and the structure tree of
“flexible shaped 6” (as shown in Fig. 18.3) is obtained.

From the figure, it can be seen that the structure tree of this combined flexible
linguistic value “flexible shaped 6” is an “AND tree” in form. The root node of this

a bc dc a

(6)

(U) (D)

Fig. 18.2 Structure tree of
standard 6

c b d aa c

U D 

Fig. 18.3 Structure tree of
“flexible shaped 6”
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AND tree is a combined linguistic value, the leaf nodes are the corresponding basic
linguistic values, and intermediate nodes have double identities: component values
for the upper node and combined values for the lower nodes. The whole structure
tree reflects the structural characteristics of the corresponding combined linguistic
value.

As this “flexible shaped 6” can be decomposed into a logical combination of
corresponding component values, then, as long as the membership functions of
flexible classes that basic values correspond to are given, the membership function
of flexible class that this combined value corresponds to can be obtained. We use
still “flexible shaped 6” and a, b, c, d to denote the flexible classes that they
correspond to as flexible linguistic values.

Let the membership functions of basic flexible classes a, b, c, and d be ma(x),
mb(y), mc(z), and md(u). Then, from the structure tree of “flexible shaped 6”, we
have

mU x; zð Þ ¼ min ma xð Þ;mc zð Þf g;
mD x; y; z; uð Þ ¼ min mc zð Þ;mb yð Þ;md uð Þ;ma xð Þf g;
m6 x; y; z; uð Þ ¼ min mU x; zð Þ;mD x; y; z; uð Þ� �

¼ min ma xð Þ;mc zð Þ;mc zð Þ;mb yð Þ;md uð Þ;ma xð Þf g
¼ min ma xð Þ;mb yð Þ;mc zð Þ;md uð Þf g

That is, the membership function of “flexible shaped 6” is

m6 x; y; z; uð Þ ¼ min ma xð Þ;mb yð Þ;mc zð Þ;md uð Þf g

We now give the expressions of membership functions of basic flexible classes
a, b, c, and d. We define a, b, c, and d all as single-point-core flexible sets. Taking
a as an instance, let absolute horizontal directed line segment a1 be the cluster
center of a, then, the degree x of the angle between a stroke s with a1 is the
measurement of stroke s, and the a is a flexible class in measurement space [−180,
180]. Let the two directed line segments that have included angle of ±20° with a1
are separately the positive and negative critical elements of a, then the expression of
membership function of a is as follows

ma xð Þ ¼
xþ 20
20 ; �20 � x\ 0

1; x ¼ 0
20�x
20 ; 0\ x � 20

8><
>: ð18:6Þ

Similarly, the membership functions of b, c, and d can also be given.
Thus, we have obtained the membership function of “flexible shaped 6” through

decomposing linguistic values. Then, take this function as the discrimination
function of flexible pattern class “flexible shaped 6”, the recognition of numeric
character 6 can be realized.
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It can be seen from Fig. 18.3 that we can also actually use geometric method to
judge whether a line segment is in the extended core of a flexible line segment, then
to judge whether a whole combination of awaiting recognition line segments
belongs to “flexible shaped 6”.

Of course, the above is only an example. But from that it can be seen that for
numeric characters, letters, written words, figures, pictures, and even sceneries, etc.,
this kind of method can all be used to realize the corresponding flexible pattern
recognition. The point of this method is two: firstly, the considered pattern classes
can be reduced to certain kinds of flexible linguistic values; secondly, try to use the
method of decomposing linguistic value to obtain the membership functions (or
extended cores) of related flexible classes.

Actually, in usual, this type of pattern recognition of written characters and
figures is more dealt with by using the method of structural pattern recognition.
Structural pattern recognition generally uses rules and inferences to realize recog-
nition. But here we then used function computation to realize the recognition.

The usual classifying actually generally does not know or does not need to
construct the classes themselves, only the discrimination function, even the line or
plane of demarcation are needed, while the membership function of a flexible class
in flexible classifying is also tantamount to the flexible class itself. So the difference
between the two lies in that such a flexible class is a subspace of a continuous
measurement space, while a usual class is then a set of some non-continuously
distributed points, and the classes are also disjoint. Usual classifying problems are
all that known some non-continuously-distributed points with class-label, then use
certain method to derive the lines or planes of demarcation or the discrimination
function of corresponding classes. Then, can such methods be applied to flexible
classifying? That is, known some non-continuously-distributed points with
class-labels and membership-degrees, then use certain method to derive the
membership functions of corresponding flexible classes. This problem is also tan-
tamount to finding the membership function of a flexible concept from a subset of
instances of a known flexible concept, or in other words, known a part of corre-
sponding values of a membership function to find the whole corresponding values.
If this problem can be solved, then this is using the method of finding membership
functions to obtain line and plane of demarcation. Then, can flexible rope, flexible
line, flexible plate, and flexible plane be treated as flexible classes to obtain the
corresponding lines and planes of demarcation? That is a problem that needs our
study.

18.2.3 Flexible Classifying of Multiple Conclusions

The above flexible classifying are all the usual flexible classifying of which
the classifying conclusion only contains one flexible classification. But if the
conclusion is set as or required to be multiple flexible classifications, then the
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conclusion of corresponding flexible classifying are the multiple flexible classes
with membership-degree:

A1; dA1ð Þ; A2; dA2ð Þ; . . .; Am; dAmð Þ

here A1, A2, …, Am are flexible classifications as conclusion set in advance,
dAi = mAi (x) (i = 1, 2, …, m). And the classifying process is

x !
mA1 xð Þ
mA2 xð Þ
. . .
mAm xð Þ

8>><
>>:

!
x 2 A1; dA1ð Þ
x 2 A2; dA2ð Þ
. . .
x 2 Am; dAmð Þ

8>><
>>:

ð18:7Þ

We call the flexible classifying of which the conclusion contains multiple
flexible classifications to be the flexible classifying of multiple conclusions, and call
usual the flexible classifying of which the conclusion contains only one flexible
classification to be the flexible classifying of one conclusion.

By the way, the classifying problem is actually a typical problem. It actually
represents a class of problems. In fact, in addition to recognition problems, other
problems such as diagnosis, forecasting, and judging can be summed up as or in
essence are also classifying problem.

18.3 Flexible Judging with Consistency Functions

We refer to the judging whose result is flexible linguistic value as flexible judging.

18.3.1 Usual Flexible Judging

1. Some concepts on flexible judging Like the usual judging, flexible judging also
involves the objects, indexes, bases, models, ways, and methods of judging.

Objects of judging are the objects being judged, which can be all kinds of things,
such as a paper, a class, a performance, a product, a design, or a software system, an
engineering project, an enterprise, a school, even the economic system of a country
or the whole world.

Indexes of judging are the items of the content of judging, also the features of
objects judged. In order to judge an object as accurately as possible, usually the
feature of the object is decomposed into multiple or multilevel more specific and
detailed features, thus forming a feature tree, that is, a judging index system. For
instance, the feature tree shown by Fig. 18.4 can be viewed as an index system.
From the relationship between features and measurement spaces, an index system
also has a corresponding measurement space tree.
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Bases of judging are the formulation of the feature values really possessed by
objects judged, which can be numerical values or linguistic values. Numerical
values are also a kind of score, and linguistic values are a kind of grade. For
example, the hundred-mark system and the five-grade marking system to evaluate
students’ academic performance in schools nowadays are, respectively, numerical
values and linguistic values we speak here. The numerical values need a formula or
a function to synthesize, and we refer to this kind of function as numerical eval-
uation function of objects judged. The linguistic values also need a formula or
function to synthesize, and we refer to this kind of function as the linguistic-valued
evaluation function of objects judged. Flexible judging can also be realized by
adopting (the set of) flexible rules called evaluation rules and through reasoning
(some linguistic-valued evaluation functions can also be represented as the form of
a set of production rules). Numerical evaluation functions, linguistic-valued eval-
uation functions, and evaluation rules are the models of flexible judging.

With the evaluation functions, the numerical feature values or linguistic feature
values of objects judged can be computed or calculated, according to this then a
decision can be made for objects. So flexible judging with evaluation functions also
needs to have the corresponding decision functions and decision rules. The flexible
judging with evaluation rules needs to have the corresponding inference mecha-
nism, which we will introduce in Sect. 18.5.

2. Numerical Evaluation Functions and Linguistic-Valued Evaluation
Functions

A judging system can have only one numerical evaluation function. This numerical
evaluation function is just the numerical function in the measurement space that the
evaluation index system corresponds to, which is just the function summarized and
described by corresponding flexible linguistic function. Therefore, the numerical
evaluation function is actually a compound function formed by multiple or multi-
layer subfunctions, whose hiberarchy is completely the same as that of the judging
index system. For instance, the construction of the numerical evaluation function to
which the evaluation index system shown in Fig. 18.4 corresponds is shown in
Fig. 18.5. Where the 8 characters at bottom are separately the variables on 8
bottom-layer measurement ranges, they are 8 independent variables of evaluation
function; u1, u2, and u3 at middle layers are the variables on 3 middle-layer
measurement ranges, and they are separately the functions of corresponding
bottom-layer independent variables, namely

Fig. 18.4 An example of
feature tree
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u1 ¼ f1 x1; x2; x3ð Þ; u2 ¼ f2 y1; y2ð Þ; u3 ¼ f3 z1; z2; z3ð Þ

The u at the top is a variable on the top-layer measurement range A, which is a
function of variables u1, u2, and u3 on middle measurement range, namely

u ¼ f0 u1; u2; u3ð Þ

To compound these two layers of functions, we have

u ¼ f x1; x2; x3; y1; y2; z1; z2; z3ð Þ

This is the evaluation function of the example system, whose range is A, and the
domain is E � F � G �H� I � J � K� L. If every layer function is all
weighted sum form, then the expression of the evaluation function is

u ¼ w1x1 þw2x2 þw3x3 þw4y1 þw5y2 þw6z1 þw7z2 þw8z3

where w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 = 1.
A judging system also can have only a linguistic-valued evaluation function.

This linguistic-valued evaluation function is just the flexible linguistic function on
the measurement space to which the evaluation index system corresponds.
Generally speaking, the linguistic-valued evaluation function to which an evalua-
tion index system corresponds is represented as a linguistic-valued net.

3. Discrimination Functions and Decision Rules

(1) Discrimination function based on a numerical evaluation function
Judging with a numerical evaluation function is actually to reclassify the
values of evaluation function of objects judged. For this purpose, we need
to design a discrimination function for each of the preset judging results.
Here, this discrimination function is just the consistency function of every
final linguistic value as result. Since the linguistic values on the top
measurement space are the final result linguistic values, so the consistency
functions of all linguistic values on top measurement space are just the
discrimination functions of the corresponding judging results. Thus, for the
judging way with a numerical evaluation function, the work we need to do
is to design corresponding numerical evaluation function according to the

y y

u

x x x z z z

uu u

Fig. 18.5 An example of the
structure of a numerical
evaluation function
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judging index system, then to design all the linguistic values and their
consistency functions, that is, discrimination functions, on the range of the
numerical evaluation function, that is, the top measurement space. The
specific steps are, for a given numerical evaluation function, firstly find its
range U, then define corresponding basic flexible linguistic value Ai (i = 1,
2, …, n) on U, thus the consistency functions:

cAiðuÞ ði ¼ 1; 2; . . .; nÞ

follows, then, substitute evaluation function u = f(x1, x2, …, xm) into them,
we have

cAiðx1; x2; . . .; xmÞ ði ¼ 1; 2; . . .; nÞ ð18:8Þ

These are the discrimination functions based on a numerical evaluation
function. It can be seen that these discrimination functions are originally
monovariate functions on the top one-dimensional measurement space U,
but through evaluation function u = f(x1, x2,…, xm), which are transformed
into multivariate functions on the product of all measurement spaces at
bottom layer.

(2) Discrimination functions based on a linguistic-valued evaluation
function
The flexible judging with a linguistic-valued evaluation function is to
calculate the concerned data of various preset conclusion linguistic values
through linguistic-valued evaluation function according to the relevant data
of objects judged, then to decide final conclusion linguistic values. It can
be seen that for every preset conclusion linguistic value, its extended
consistency function on the measurement spaces at bottom layer in index
system can be obtained through corresponding linguistic-valued evaluation
function, and on the basis of these consistency functions the final con-
clusion linguistic values can be chosen, so these consistency functions are
just the discrimination functions based on a linguistic-valued evaluation
function.

(3) Decision rules
With the discrimination functions, flexible judging problem is the same as
flexible classifying. Let U = U1 × U2 × ��� × Un be the measurement
space at bottom layer in a judging index system, and let A1, A2, …, Am be
the preset basic flexible linguistic values as the judging conclusion lin-
guistic values on the top measurement space. With discrimination func-
tions cAi (x) (i = 1, 2, …, m), we have flexible decision rules:

If cAi xð Þ[ 0:5; then Ai xð Þ i ¼ 1; 2; . . .;mð Þ ð18:9Þ
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It can be seen that these flexible decision rules are actually also tantamount
to the conversion rules from numerical values (vectors included) to flexible
linguistic values.
From the above stated, it can be seen that the flexible judging with
evaluation functions (including numerical evaluation function and
linguistic-valued evaluation function) is all really based on the evaluation
computation of consistency functions of conclusion flexible linguistic
values.
Note that the above flexible judging methods are actually for the flexible
linguistic values with negation. For the flexible linguistic values with
opposite, the judging conditions cAi (x) > 0.5 should be changed into
cAi (x) > 0 (i = 1, 2, …, m).

18.3.2 Flexible Judging of Multiple Conclusions

The above flexible judging is usual flexible judging of which the judging conclu-
sion only contains one flexible linguistic value. But if the judging conclusion is set
as or required to be multiple linguistic values, then the conclusion of corresponding
flexible judging is multiple flexible linguistic values with degree:

A1; dA1ð Þ; A2; dA2ð Þ; . . .; Am; dAmð Þ

here A1, A2, …, Am are preset conclusion flexible linguistic values,
dAi = cAi (x) (i = 1, 2, …, m). And the judging process is

x !
cA1 xð Þ
cA2 xð Þ
. . .
cAm xð Þ

8>><
>>:

!
A1; dA1ð Þ xð Þ
A2; dA2ð Þ xð Þ
. . .
Am; dAmð Þ xð Þ

8>><
>>:

ð18:10Þ

Thus, the decision rules of this kind of flexible judging are tantamount to the
one-to-many conversion from numerical values (vectors included) to flexible lin-
guistic values with degree.

We call the flexible judging of which the conclusion contains multiple flexible
linguistic values to be the flexible judging of multiple conclusions, and call
the flexible judging of which the conclusion contains only one linguistic value to be
the flexible judging of one conclusion.
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18.4 Flexible Programming Problem Solving

1. What is flexible programming?

The usual programming is to find the extreme value of a function under constraint
conditions. The general mode is

min y ¼ f ðxÞ
s:t:

�

where y = f(x) is called objective function, and s.t. (abbreviation of subject to)
followed by an equation or inequality is the constraint condition.

Obviously, the objective functions and constraint conditions of traditional pro-
gramming problems are precise and rigid. However, the objective functions or
constraint conditions of some practical problems can also be flexible: either the
objectives are flexible, or the constraints are flexible, or the two are both flexible.
Flexible objective means that the objective is not an exact number but may be a
flexible number. Flexible constraint means that the constraint is not a strict equation
or inequality, but a flexible equation or flexible inequality, that is, a flexible set. For
example, the objective “profit being high” and the constraint “cost being low” are
separately a flexible objective and a flexible constraint.

In order to distinguish, we refer to the programming whose objective is flexible
objective or whose constraint is flexible constraint as flexible programming. Thus,
viewed from the nature of the objective and constraint, flexible programming
problems can be summarized into the following 4 types:

① rigid objective–rigid constraint type
② rigid objective–flexible constraint type
③ flexible objective–rigid constraint type
④ flexible objective–flexible constraint type

It can be seen that where type ① is the usual programming, that is, rigid
programming, while the latter three are all flexible programming.

Next, we discuss the latter 3 kinds of flexible programming problems, which
involve two aspects of description and solution.

2. Description of flexible programming problems

Actually, the flexible constraint is just that the corresponding “equal” is not strictly
equal but approximately equal; the corresponding “not equal” is not strictly greater
than or less than, but approximately greater than or approximately less than. Thus,
the range of values of decision variable x is not an ordinary set, but a flexible set.
Therefore, for a flexible constraint, we can use a flexible set to describe it. For
example, let A be a flexible subset in the universe of discourse which represents
“approximately equal to 0”, then, we can use
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s:t: x 2 A

to describe the constraint condition of “x is approximately equal to 0.” For another
example, if flexible set B stands for “low (cost)”, then “(cost) x is low” and the
constraint condition can be described as

s:t: x 2 B

Similarly, a flexible objective means the objective is not an exact number, but a
flexible number. Then, the corresponding objective function is an N-L flexible
linguistic function of “y = about f(x)”. This flexible linguistic function is a certain
kind of flexible line or flexible plane. That is to say, for a flexible objective function,
we can use a flexible linguistic function to describe.

3. Solving of flexible programming problems

We know that in the sense of flexible classifying (of complementary classes), a
flexible set is completely stood for by its extended core (see Proposition 7.1 in
Sect. 7.3.1). Thus, x 2 X ⇔ x 2 core(X)+. Hence, core(X)+ can be used to replace
x 2 X. As thus, the original flexible constraint becomes a rigid constraint. For
instance, the above

s:t: x 2 A

s:t: x 2 B

can be rewritten as

s:t: x 2 core Að Þþ
s:t: x 2 core Bð Þþ

That is to say, for a programming problem with flexible constraint we can use
the method of “first flexible then rigid” to solve.

We also know that an N-L flexible linguistic function of “y = about f(x)” always
has a center line or center plane, while this center line or center plane is the usual
function (in fact, this kind of flexible linguistic function is just constructed from
such center line or center plane). Thus, we can first solve the programming problem
with the center line or center plane as objective function, then make the result
obtained into a flexible number, while this flexible number is just the objective
value to be found.

That is to say, for a programming problem with flexible objective we can use the
method of “first rigid then flexible” to solve.

To sum up the above analysis, we have the following conclusions:

① For a flexible programming problem of rigid objective and flexible con-
straint, we can use the method of “first flexible then rigid” to solve.
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② For a flexible programming problem of flexible objective and rigid con-
straint, we can use the method of “first rigid then flexible” to solve.

③ For a flexible programming problem of flexible objective and flexible
constraint, we can use both the methods of “first flexible then rigid” and
“first rigid then flexible” to solve.

Finally, we point out that the flexible programming problems with flexible sets
with opposite and their solving methods are similar to the above stated.

18.5 Flexible Linguistic Rule/Function-Based Systems

In this section, we consider the problem solving with flexible linguistic rules or
flexible linguistic functions

From the previous Chaps. 15–17, we know that the methods of approximate
reasoning with flexible linguistic rules have the reasoning with degrees, AT
method, interpolation method and approximate global function method, and the
methods of approximate evaluation of flexible linguistic functions have AT method,
interpolation method and approximate global function method, and utilizing these
methods of approximate reasoning and computing about linguistic values the
approximate evaluation of corresponding background numerical functions can be
realized. Besides, utilizing the exact reasoning with flexible linguistic rules or the
exact evaluation of flexible linguistic functions, the approximate evaluation of
corresponding background numerical functions can also be realized. Further
examining and comparing these methods, it is not hard to see that although these
methods of reasoning and computing have respective characteristics, they have all
the order and process of “data conversing → processing (reasoning and comput-
ing) → data conversing”; therefore, the corresponding computer program systems
can adopt uniform structure form—flexible linguistic rule/function-based system.

1. Architecture of a flexible linguistic rule/function-based system

A flexible linguistic rule/function-based system includes four basic components
of “reasoning-computing” engine, flexible linguistic rule/function base, and
input and output interfaces. Besides, there is a temporary component—dynamic
database. Its architecture is shown in Fig. 18.6.

• The “reasoning-computing” engine is a program module, whose function is to
execute (approximate) reasoning, computing, and system control. In general, for
natural inference and reasoning with degrees, corresponding “reasoning-
computing” engine can be design as a common program module similar to
the inference engine in usual production systems; but for the exact evaluation of
AT method and interpolation method, corresponding “reasoning-computing”
engine can be design as the program module executing corresponding
algorithms.
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• The flexible linguistic rule/function base is a kind of data file that organizes and
stores flexible linguistic rules (and adjoint functions) or flexible linguistic
functions.

• The dynamic database is also called global database, synthetic database, etc.,
which is a kind of temporary dynamic data structure, used for storing source
data, intermediate results, and final results, etc.

• Input and output interfaces are in charge of the conversion of the natures and
formats of data. For example, for reasoning with degrees, input interface con-
verts different form inputs of numerical data, pure linguistic values and so on
into linguistic values with degree, then puts them into dynamic database for use
in reasoning, while output interface converts the final result of reasoning into
required linguistic value with degree, pure linguistic value, or number as the
output of system. And for the approximate evaluation computing of background
numerical functions, input interface then converts numbers into flexible lin-
guistic values, output interface, then conversely, converts flexible linguistic
values into numbers.

2. Models and algorithms of reasoning and computation

Models and algorithms of reasoning and computation in different flexible linguistic
rule/function-based systems will be different from specific methods of reasoning
and computation used. In the following, we introduce the corresponding models
and algorithms in the case of reasoning with degrees.

Reasoning with degrees with flexible linguistic rules is a kind of imprecise
reasoning. In reasoning with degrees, besides symbol matching and deduction,
computation and transmission of degree are also involved. In addition, if the same
result is deduced many times, then related synthesis method (e.g., mean, weighted
sum, maximum, minimum) of final degree of this result also needs to be given.
Similar to uncertain reasoning, in reasoning with degrees the related adjoint degreed

inference-computation 

engine

input 

interface
dynamic data base

flexible linguistic 

rule/function base

output 

interface

Fig. 18.6 Architecture of a
flexible linguistic
rule/function-based system
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functions, threshold, and the synthesis methods of degree computation and trans-
mission together can also be called a kind of imprecise-reasoning model.

Similar to the usual production system, a flexible linguistic rule/function-based
system can have two basic run ways of forward reasoning and backward reasoning.
In the following, we give the two basic algorithms of the engine of reasoning with
degrees for reference.

Forward reasoning algorithm

① Put initial linguistic values with degree into dynamic database.

② Take linguistic values with degree in the dynamic database to match objective condition, if
the objective condition is satisfied, then the reasoning succeeds, end.

③ Take the antecedents of all rules in the rule base to match separately linguistic values with
degree in dynamic database, organize matched succeed rules into a set of await-using rules.

④ If the set of await-using rules is empty, then reasoning fails, quit.

⑤ Select a rule from set of await-using rules by using a certain strategy to do the corresponding
computation of degrees, then construct a corresponding linguistic value with degree from the
obtained results and add it into dynamic database.

⑥ Cancel the set of await-using rules, turn to ②.

Backward reasoning algorithm

① Put the initial linguistic values with degree into dynamic database, put the objective condition
into the OPEN table and CLOSED table in the dynamic database.

② If the OPEN table is empty, then the reasoning succeeds; then starting from the leaf nodes of
the search tree recoded by CLOSED table, compute layer-by-layer degrees of all nodes, treat the
root node and its degree as the resulting linguistic value with degree, and insert it into the
dynamic database, end.

③ Move out the first node in OPEN table to match initial linguistic values with degree in the
dynamic database; if the match succeeds, then turn to ②.

④ Take the consequents of all rules in the rule set to match with objective condition, take the
antecedent of the rule which is first matched successfully and is unused as a new node, and put it
with a pointer directing its father node into OPEN table and CLOSED table separately, then turn
to ③.

⑤ If this node is the objective condition, then reasoning fails, quit.

⑥ Move the father node of this node back to OPEN table to replace this node and its brother
nodes, turn to ③.

3. Building of systems

The flexible linguistic rule/function-based systems are a kind of software system
of imprecise-problem solving with flexible linguistic rules or flexible linguistic
functions. The work of building this type of system includes the acquisition of
flexible linguistic rules or flexible linguistic functions, the establishment of
rule/function bases, the design of “reasoning-computing” engine, and the design of
input–output interfaces. It can be seen that building of this type of system is very
similar to that of traditional expert/knowledge systems. Hence, the proper tools and
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environments of expert system or knowledge engineering can be employed to
simplify and accelerate the development of these systems. If there is a common
shell system, then for a specific problem solving, only the corresponding rule/
function base need to be set up or the corresponding “reasoning-computing” engine
need to be selected. Thus, when the rules in rule base are the classifying rules of a
field or engineering problem, or when the “reasoning-computing” engine is
classifying-oriented, this system is just a flexible classifying system; and when the
rules in rule base are the evaluation rules of a field or object, or when the
“reasoning-computing” engine is judging-oriented, this system is just a flexible
judging system; and when the rules in rule base are the decision rules of a field or
problem, or when the “reasoning-computing” engine is decision-oriented, this
system is just a flexible decision system. With the support of the shell system, the
main work of building flexible classifying, flexible judging, and flexible decision
systems are to acquire related classifying rules or functions, judging rules or
functions, and decision rules or functions of flexible linguistic values.

About the acquisition of flexible linguistic rules and flexible linguistic functions,
we will have a special discussion in Chap. 19. But since flexible-linguistic-valued
net is another representation form of a flexible linguistic rule set or a flexible
linguistic function, so the former can be converted into the latter when the flexible
linguistic valued net is known. For example, from the flexible-linguistic-valued net
(see Fig. 18.3) describing the character pattern of “flexible shaped 6” in number
recognition problem in Sect. 18.2.2 the following rule set follows:

6 ::¼ UD

U ::¼ ab

D ::¼ cbda

Here, the production rules are similar to the grammatical rules in formal language,
which are the combination rules of graph objects. Actually, this method using
production rules to describe the construction of objects is just the method usually
used in structural pattern recognition.

Building a flexible linguistic rule/function-based system, the relevant practical
problem can be solved through reasoning or computation by using this software
system.

18.6 Principle of Flexible Control with Examples

We refer to the decision expressing in flexible linguistic value as flexible decision.
We refer to the control whose decision is a flexible decision as flexible control. The
general structure of a flexible control system with flexible rules or flexible linguistic
function is shown in Fig. 18.7.
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From the figure, it can be seen that flexible control system is different from other
control systems is that it use flexible controller; the flexible controller together with
two data converting interfaces is a flexible linguistic rule/function-based system, of
which the working process is as follows: firstly, convert input quantities (numerical
values) into flexible linguistic values, then do reasoning and computing and
obtaining result flexible linguistic value, and then convert the flexible linguistic
value into a control quantity (a numerical value).

But if the “reasoning-computing” use the methods of AT, interpolation, or
approximate computation with measured function, then the N-L and L-N conver-
sions are not needed. Thus, the corresponding flexible control system can be
simplified as what is shown in Fig. 18.8.

We give several examples of flexible control below.
Let the input quantities of a certain control system be error e and change rate

Δe of error, let the controlling quantity be u, and let their ranges of values be
E = [−90, 90], ΔE = [−45, 45] and U = [−18, 18] respectively. As shown in
Figs. 18.9, 18.10 and 18.11, suppose the 7 basic linguistic values of negative large,
negative medium, negative small, zero, positive small, positive medium, and
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positive large are all defined on the three measurement spaces, respectively, and
separately denoted by E-NL, E-NM, E-NS, E-ZE, E-PS, E-PM, E-PL; ΔE-NL,
ΔE-NM, ΔE-NS, ΔE-ZE, ΔE-PS, ΔE-PM, ΔE-PL; U-NL, U-NM, U-NS, U-ZE,
U-PS, U-PM, U-PL one by one.

Suppose there are 15 flexible rules in total in the control system, which express
the correspondence relation between input quantities and controlling quantity by
using the flexible linguistic values. These rules are the decision rules to make a
certain control with respect to the states of object controlled. The rule set is shown

c

1

0
−90 −60    −30 0 30 60 90 e

E-NL E-NM E-NS    E-ZE     E-PS E-PM    E-PL 

Fig. 18.9 Flexible linguistic values on range of errors, E
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Fig. 18.10 Flexible linguistic values on range of rates of error change, ΔE

−18 −12      −6 0 6 12 18 u

U-NL NM U- U-NS    U-ZE    U-PS U-PM    U-PL 

c 

1

0

Fig. 18.11 Flexible linguistic values on range of controlling quantities, U
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in Table 18.1. The linguistic values located at the first row and the first column in
the table are two antecedent linguistic values of a rule, while the other linguistic
values in the table are the consequent linguistic values of the rules which corre-
spond to corresponding antecedent linguistic values.

Now split each of the rules whose antecedent linguistic values include full-peak
value into the rule whose antecedent linguistic values are all semi-peak value. For
instance, the rule located at row 5 and column 3

If e is E-PS and De is DE-NS; then u is U-NS

after being split, the following 2 rules can be resulted (may not be all)

① If e is E-PS− and Δe is ΔE-NS+, then u is U-NS+

② If e is E-PS+ and Δe is ΔE-NS−, then u is U-NS−

Thus, the critical points, median points, core–boundary points, and peak-value
points of E-PS− and E-PS+ on measurement space E are one by one:

s�E-PS� ¼ 10;m�
E-PS� ¼ 15; c�E-PS� ¼ 20; nE-PS� ¼ 30

sþE-PSþ ¼ 50;mþ
E-PSþ ¼ 45; cþE-PSþ ¼ 40; nE-PSþ ¼ 30

Then the consistency functions are

cE-PS�ðeÞ ¼ 1
10

e� 1; 10 \ e � 30

cE-PSþ ðeÞ ¼ � 1
10

eþ 5; 30 � e \ 50

And the critical points, median points, core–boundary points, and peak-value points
of ΔE-NS− and ΔE-NS+ on measurement space ΔE are one by one:

Table 18.1 A set of flexible control rules

U ΔE

ΔE-NL ΔE-NM ΔE-NS ΔE-ZE ΔE-PS ΔE-PM ΔE-PLE

E-NL U-PL

E-NM U-PM

E-NS U-PS U-PS

E-ZE U-PL U-PM U-PS U-ZE U-NS U-NM U-NL

E-PS U-NS U-NS

E-PM U-NM

E-PL U-NL
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s�DE-NS� ¼ �25;m�
DE-NS� ¼ �21:5; c�DE-NS� ¼ �20; nDE-NS� ¼ �15

sþDE-NSþ ¼ �5;mþ
DE-NSþ ¼ �7:5; cþDE-NSþ ¼ �10; nDE-NSþ ¼ �15

Then, the consistency functions are

cDE-NS�ðDeÞ ¼ 1
5
Deþ 5; �25\De � � 15

cDE-NSþ ðDeÞ ¼ � 1
5
De� 1; �15 � De\ � 5

Also, the critical points, median points, core–boundary points, and peak-value
points of U-NS− and U-NS+ on measurement space U are one by one:

s�U-NS� ¼ �10;m�
U-NS� ¼ �9; c�U-NS� ¼ �8; nU-NS� ¼ �6

sþU-NSþ ¼ �2;mþ
U-NSþ ¼ �3; cþU-NSþ ¼ �4; nU-NSþ ¼ �6

Then, the consistency functions are

cU-NS�ðuÞ ¼ 1
2
uþ 5; �10\ u � � 6

cU-NSþ ðuÞ ¼ � 1
2
u� 1; �6� u\� 2

Now, suppose input quantities e = 20 and Δe = −8, it is asked to give the
corresponding control quantity u.

In the following, we will use separately 4 kinds of different methods of
approximate reasoning and computation to obtain the corresponding control
quantity u.

(1) By method of natural inference with data conversion(s)

Substituting input quantities e = 20 and Δe = −8 into the consistency functions of
the antecedent linguistic values of two rules above, it follows that

cE-PS� 20ð Þ ¼ 1
10

� 20� 1 ¼ 1[ 0:5

cDE-NSþ ð�8Þ ¼ � 1
5
� ð�8Þ � 1 ¼ 0:6[ 0:5

cE-PSþ 20ð Þ ¼ 0\ 0:5

cDE-NS�ð�8Þ ¼ 0\ 0:5

Consequently, we have facts E-PS− and ΔE-NS+, and know that only premises “e is
E-PS−” and “Δe is ΔE-NS+” of rule ① are satisfied. Thus, by rule (①)

464 18 Imprecise-Problem Solving, and Anthropomorphic Computer …



If E-PS� and DE-NSþ then U-NSþ

and facts

E-PS� and DE-NSþ

the conclusion U-NS+ is deduced directly.
This is a result of a linguistic value, but process control requires numerical

control quantity, so it needs to convert the flexible linguistic value U-NS+ into a
numerical value as control quantity u. It is known from L-N converting rule that
arbitrary number u0 2 core(U-NS+)+ = [−6, −3) can all be taken as the value of
control quantity u such as −4, −5 or −6. Here, we take u = −3.2.

(2) By method of reasoning with degrees

Similarly, from e = 20 and Δe = −8 as well as cE-PS�ð20Þ ¼ 1 and
cDE-NSþ ð�8Þ ¼ 0:6, we know that only rule ① can be used, and facts (linguistic
values with degree) (E-PS−, 1.0) and (ΔE-NS+, 0.6) follow. Thus, we use the
following reasoning with degrees

E-PS� ^ DE-NSþ ! U-NSþ ; fd dE-PS�^DE-NSþð Þð Þ
E-PS� ^ DE-NSþ ; dE-PS�^DE-NSþð Þ

U-NSþ ; dU-NSþð Þ

We use Eq. (14.12) in the reference models of the adjoint degreed functions of a
rule with multiple conditions in Sect. 14.3.1, that is,

dB ¼ bB � 0:5
b^ � 0:5

ðdA � 0:5Þþ 0:5

where β∧ = min{bA1
, bA2

, bA3
, bA4

}, dA = min{dA1 , dA2 , dA3 , dA4}, 0.5 < dAj ≤ bAj

(j = 1, 2, 3, 4).
Suppose the maximum of consistency-degrees of E-PS− is bE-PS� ¼ 1:5, and the

maximum of consistency-degrees of ΔE-NS+ is bDE-NSþ ¼ 1:5; And Suppose the
maximum of consistency-degrees of U-NS+ is bU-NSþ ¼ 1:5. Then, the actual
adjoint degreed function of the rule ① above is

du ¼ 2� 0:5
2� 0:5

ðde^De � 0:5Þþ 0:5

here de^De = min{de, dDe}, de ¼ cE-PS�ðeÞ and dDe ¼ cDE-NSþ ðDeÞ, (de, dDe) 2
(0.5, 2] × (0.5, 2]).

Also, from (E-PS−, 1.0) and (ΔE-NS+, 0.6), it follows that
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ðE-PS�; 1:0Þ ^ ðDE-NSþ ; 0:6Þ ¼ E-PS� ^ DE-NSþ ;min 1; 0:6f gð Þ
¼ ðE-PS� ^ DE-NSþ ; 0:6Þ

Consequently, by reasoning with degrees, we have the conclusion: (U-NS+, 0.6).
This is a result of a linguistic value with degree, so it needs to convert (U-NS+, 0.6)

into a numerical value u. Thus, substituting du = 0.6 into the inverse function of
cU-NSþ ðuÞ

c�1
U-NSþ ðduÞ ¼ �2du � 2

we have

u ¼ c�1
U-NSþ ðduÞ ¼ �2du � 2 ¼ �2� 0:6� 2 ¼ �3:2

namely

u ¼ �3:2

This is just the final controlling quantity.

(3) By AT method

It can be seen that the input quantities e = 20 2 core(E-PS−)+ = (15, 30] and
Δe = −8 2 core(ΔE-NS+)+ = [−15, −7.5). So set 20 be nE-PS�0 and −8 be nDE-NSþ 0 ,
that is, take 20 and −8, respectively, as peak-value points of the flexible linguistic
values E-PS�0 and DE-NSþ 0 that are, respectively, approximate to E-PS− and ΔE-
NS+ on the measurement spaces E and ΔE (as shown in Figs. 18.12 and 18.13).
And on the other hand, known nE-PS� ¼ 30 and nDE-NSþ ¼ �15. Thus, distances
dE-PS�0E-PS� ¼ 30� 20 ¼ 10 and dDE-NSþ 0DE-NSþ ¼ �8� ð�15Þ ¼ 7. Since E-PS�0

and DE-NSþ 0 are separately approximate to the premise conditions E-PS− and
ΔE-NS+ of rule ①, so the above rule ① would be used for approximate reasoning.

−90 −60     −30 0  20 30 60 90 e

E-PS-’
E-NL E-NM E-NS    E-ZE     E-PS E-PM    E-PL

c 

1

0

Fig. 18.12 The E-PS�0 approximating to E-PS−
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Thus, according to AT method, the distance dU-NSþ 0U-NSþ is required. From the
peak-value point and median point gave in the problem, we have the approximate
radii

rE-PS� ¼ nE-PS� � m�
E-PS� ¼ 30� 15 ¼ 15

rDE-NSþ ¼ mþ
DE-NSþ � nDE-NSþ ¼ �7:5� ð�15Þ ¼ 7:5

rU-NSþ ¼ mþ
U-NSþ � nU-NSþ ¼ �3� ð�6Þ ¼ 3

Thus, by Formula (16.23), we have the distance

dU-NSþ 0U-NSþ ¼ max
dE-PS�0E-PS�

rE-PS�
;
dDE-NSþ 0DE-NSþ

rDE-NSþ

� �
� rU-NSþ

¼ max
10
15

;
7
7:5

� �

¼ 7
7:5

� 3

¼ 2:8

Since U-NS+ is a positive semi-peak value, so by rule ①, U-NSþ 0 ought to be
located at the positive side of U-NS+ (as shown in Fig. 18.14). Thus, by Formula
(16.13) we have

nU-NSþ 0 ¼ nU-NSþ þ dU-NSþ 0U-NSþ ¼ �6þ 2:8 ¼ �3:2

If this nU-NSþ 0 is just taken as control quantity, then

u ¼ �3:2

Of course, other numbers in extended core core U-NSþ 0ð Þþ are also be taken as
control quantity.

E-NS+’
E-NL E-NM E-NS E-ZE   E-PS E-PM  E-PL

c 

1

0

−45 −30     −15  −8 0 15 30 45 Δe

Fig. 18.13 The DE-NSþ 0 approximating to ΔE-NS+
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(4) By method of computation of approximate measure function

We use Eq. (14.20) in the reference models of approximate measure functions of a
rule with multiple conditions in Sect. 14.3.2, then the adjoint measured function of
the above rule ① is

u ¼ nU-NSþ � sþU-NSþ

nE-PS� � s�E-PS�
ðe� m�

E-PS�Þþmþ
U-NSþ ;m�

E-PS� \ e � nE-PS� ; nDE-NS� � De\mþ
DE-NSþ

u ¼ nU-NSþ � sþU-NSþ

nDE-NSþ � sþDE-NSþ
ðDe� mþ

DE-NSþ Þþmþ
U-NSþ ;m�

E-PS� \ e � nE-PS� ; nDE-NS� �De\mþ
DE-NSþ

Substituting s�EPS� ¼ 10, m�
EPS� ¼ 15, nEPS� ¼ 30, sþDENSþ ¼ �5, mþ

DENSþ ¼ �7:5,
nDENSþ ¼ �15, sþUNSþ ¼ �2, mþ

UNSþ � 3 and nUNSþ ¼ �6 separately into the
expressions of right side of the above two equations, then we have

u ¼ � 1
5
e; 15� e � 30; �15� De � � 5

u ¼ 2
5
De; 15� e � 30; �15� De � � 5

Similarly, we can have the adjoint measured function of rule ② to be

u ¼ 1
5
e� 12; 30 � e � 45; �21:5�De � � 15

u ¼ � 1
5
De� 13:5; 30 � e � 45; �21:5� De � � 15

−18 −12      −6  −3.2 0 6 12 18 u

U-NS+’
U-NL U-NM U-NS     U-ZE    U-PS U-PM    U-PL

c 

1

0

Fig. 18.14 The U-NSþ 0 approximating to U-NS+
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From

cE-PS� 20ð Þ ¼ 1
10

� 20� 1 ¼ 1[ 0:5

cDE-NSþ ð�8Þ ¼ � 1
5
� ð�8Þ � 1 ¼ 0:6[ 0:5

cE-PSþ 20ð Þ ¼ 0\ 0:5

cDE-NS�ð�8Þ ¼ 0\ 0:5

it can be seen that input quantities e = 20 and Δe = −8 can satisfy and also only
satisfy the premise conditions of rule ①, so the adjoint measured function of rule
① can be used for computing. Also since

min cE-PS� 20ð Þ; cDE-NSþ ð�8Þf g ¼ min 1; 0:6f g ¼ cDE-NSþ ð�8Þ

So we use the second measure function of the above rule ① to compute control
quantity. Substituting input quantities directly into the function expression, we have

u ¼ 2
5
De ¼ 2

5
� ð�8Þ ¼ �3:2

namely

u ¼ �3:2

Substituting u = −3.2 into the consistency function of flexible linguistic value
U-NS+ on space U, we have consistency-degree

cU-NSþ ð�3:2Þ ¼ � 1
2
� ð�3:2Þ � 1 ¼ 0:6[ 0:5

That shows that control quantity −3.2 is just U-NS+ in terms of linguistic values.
This is consistent with the reasoning result of the above (2) and (3).

In the above, the working process of a flexible controller was introduced through
examples. It can be seen that here the methods of reasoning and computation all
have mathematical and logical basis, so the accurateness of final result—control
quantity will depends mainly on the accurateness of the field rules. If the field rules
themselves were inaccurate or even wrong, then the reasoning result would natu-
rally be inaccurate.

It would need to be noted that as the traditional fuzzy controller, for some control
problems, the flexible controller here can also be further simplified into a control
table, so as to be realized directly in hardware. In fact, if the accuracy requirement
of control quantity of a practical problem can be met, the measurement spaces
which input and output quantities belong to can become two discrete point sets by
discretization, then the control function realized by a controller can be simplified
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into a digital list—control table. Thus, control can be directly performed through
consulting the table. And this flexible controller that only has one control table can
completely realized in hardware.

18.7 Anthropomorphic Computer Application Systems
with Imprecise-Information Processing Ability

Examining the principles and methods of imprecise-problem solving in the previous
sections, it can be found that the flexible classifying with membership functions and
the flexible judging with consistency functions, abstractly, are the conversion from
numerical values to flexible linguistic values, and the reasoning with flexible lin-
guistic rules and the evaluation of flexible linguistic functions are the transformation
between flexible linguistic values. That is to say, the interconversion between
numerical values and flexible linguistic values, and the transformation between
flexible linguistic values are the basic techniques of imprecise-information pro-
cessing used in imprecise-problem solving. Associating our human information
processing from these techniques and methods of solving imprecise problems on
computer systems, it is not hard to find that the method of dealing with imprecise
information of human is similar to that in engineering problems (actually, the latter
just simulates the former).

In fact, in the process of daily information processing (including perceiving,
thinking and expressing) in human brain, the interconversion between numerical
values and flexible linguistic values, and the transformation between flexible lin-
guistic values are also performed from time to time. For instance, in bitterly cold
winter, when you go out of door and feel cold, you might say “it’s so cold today.”
Then, this “cold” is just the flexible linguistic value converted from a numerical
value of the outdoor temperature (as −10 °C) through your nervous system
(including sensory nerve and cerebral cortex) which reflects your macro psycho-
logical feeling (this conversion from numerical values to flexible linguistic values,
i.e., from external stimuli to the psychological feeling, is a process of flexible
classifying). For another example, when you hear the imperative sentence “walk
faster!”, you probably would stride forward with an appropriate speed according to
the situation on the spot. Here, “fast” is just a flexible linguistic value, while your
walking speed is a measurable value, that is, a numerical value. Thus, in the process
from you hearing the flexible linguistic value “faster” to you changing your pace,
there is a conversion from a flexible linguistic value to a numerical value in your
nervous system (this conversion from numerical values to flexible linguistic values,
i.e., from “faster” heard to the specific walking speed, is a process of flexible
control). For additional example, “if it is cold, you wear more clothes” is one of our
common sense of life, which is also a flexible linguistic rule. Then, when per-
forming the rule, human brain does a transformation from flexible linguistic value
“cold” to flexible linguistic value “more” through reasoning.
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Now that there occurs the interconversion between numerical values and flexible
linguistic values, and the transformation between flexible linguistic values in the
process of human’s perceiving, thinking, and expressing, then we can use these
imprecise-information processing techniques and the machine understanding and
generation techniques of imprecise information to simulate functionally the process
of imprecise-information processing of human (on the computers), and to develop
and build the computer application systems, or more general intelligent systems
(especially, intelligent robots), which can perceive, think, and express in flexible
linguistic values as human, so as to realize the anthropomorphic computer appli-
cation systems and intelligent systems with imprecise-information processing
ability.

18.8 Summary

In this chapter, we expounded the basic techniques of imprecise-problem solving—
the engineering application of the imprecise-information processing, and then
discussed the anthropomorphic computer application systems with imprecise-
information processing ability.

The main points and results of the chapter are as follows:

• Imprecise problems are the practical problems or engineering problems con-
taining or involving imprecise information or knowledge, of them, flexible
classifying, flexible judging, flexible decision, and flexible programming are
typical problems. Imprecise-problem solving can be reduced to two basic ways
of computing with membership or consistency functions (or flexible sets or their
extended cores) and reasoning and computing with flexible linguistic rules or
flexible linguistic functions.

• The classifying whose classifications are flexible classes is flexible classifying,
which can be classified as the usual flexible classifying of single conclusion and
the special flexible classifying of multiple conclusions. Flexible classifying can
be realized by taking the membership functions of the corresponding flexible
classes as the discriminant functions or taking the plane of demarcation between
extended cores of corresponding flexible classes as the plane of demarcation or
taking the flexible linguistic rules or flexible linguistic functions as the decision
rules or decision functions.

• The judging whose conclusions are flexible linguistic values is flexible judging,
which can be classified as the usual flexible judging of single conclusion and the
special flexible judging of multiple conclusions. Flexible judging can be realized
by taking the consistency functions of the corresponding flexible linguistic
values as the decision functions, can also be realized by taking the related
flexible linguistic rules as the evaluation rules and through reasoning.
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• The decision expressed by flexible linguistic values is flexible decision. Flexible
decision can generally be realized through reasoning or computation by using
flexible linguistic rules or flexible linguistic function.

• The programming whose objective functions or constraints are flexible objec-
tives or flexible constraints is flexible programming. Flexible programming can
be solved by methods of “first flexible then rigid,” “first rigid then flexible,” and
the combination of the two.

• Flexible linguistic rule/function-based system is a type of common problem
solving system, which solves corresponding problem through (approximate)
reasoning and computation with relevant flexible linguistic rules or flexible
linguistic functions. The architecture and building process and method of the
problem solving system are similar to usual expert systems or knowledge-based
systems.

• The interconversion between numerical values and flexible linguistic values,
and the transformation between flexible linguistic values are the basic tech-
niques of imprecise-information processing used in imprecise-problem solving,
and using these techniques, we can also build the anthropomorphic computer
application systems and intelligent systems with imprecise-information pro-
cessing ability.
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Chapter 19
Imprecise-Knowledge Discovery

Abstract This chapter further discusses firstly the formation mechanism and
essential characteristic of flexible concepts and discriminates between the flexible
concept and the vague (fuzzy) concept; then, it explores imprecise-knowledge
discovery, proposes some ideas and approaches, and presents some specific algo-
rithms and methods.

Keywords Imprecise-knowledge discovery � Data mining � Machine learning

Knowledge discovery, or data mining, is an important research area of the current
artificial intelligence technology. In this chapter, we further discuss firstly the
formation mechanism and essential characteristic of flexible concepts as well as the
relation and distinction between flexible concepts and vague (fuzzy) concepts on
the basis of previous chapters and then discuss techniques and methods of
imprecise-knowledge discovery.

19.1 Instinct of Clustering and Summarizing and Natural
Classifying Mechanism of Human Brain and Flexible
Concepts

The author infers after studies that clustering and summarizing is an intrinsic
instinct of human brain and that the brain also has a natural classifying mechanism
[1]. For example, we can see different colors when visible lights of different
wavelengths come to our eyes, e.g., the light of wavelengths of 622–760 nm is red
and that of 492–577 nm is green. We know that light waves originally have no
color, but only are of different lengths, yet we see corresponding colors after they
come to our eyes. These different colors are actually the result of human brain’s
clustering and summarizing of light waves according to their wavelengths.
Therefore, the process from lights coming to our eyes to see corresponding colors is
actually a process of human brain classifying the lights.
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Further, physiology tells us that optic nerve cells (called cone cells) sensitive to
the three colors of red, green, and blue, respectively, are distributed on the retina of
human eyes. When lights come to our eyes, those of different wavelengths are felt
by different cone cells, and then, the corresponding stimuli are transmitted to the
visual cortex of brain, thus forming visual senses—colors. This is to say, lights
which come to eyes are allocated to corresponding color classes by the three kinds
of cone cells. This shows that the mechanism of automatically classifying lights is
what human brain has naturally, which is embodied in the structure of human’s
nervous system.

Similarly, acoustics and physiology tell us that the scale and tone of sound are
determined by the frequencies of sound waves and different frequencies result in
different scales. This indicates that the sound we hear is actually the result of brain’s
classifying of sound wave frequency signals received by ears. Obviously, this kind
of classifying mechanism of human brain is also natural-born.

Actually, bitter and sweet of taste, fragrant and smelly of smell, soft and hard of
sense of touch, the hot and cold feelings of body, and so on are all results of brain
classifying corresponding sensory stimulus signals. And the corresponding classi-
fying mechanisms are also innate. For example, specialized neurons which can
separately feel hundreds of different flavors are just distributed on human’s tongue,
and there are also specialized neurons in the nose which can feel hundreds of
thousands of different odors.

Now, we consider whether human brain also has a corresponding natural clas-
sifying mechanism for such feelings as “big,” “much,” “tall,” “fast,” “beautiful,”
and “good”. It is not hard to see that these feelings are also the results of human
brain clustering and summarizing corresponding numerical feature values, that is,
some flexible classifications partitioned. When we face an object, the corresponding
feeling we get is the result of our brain classifying the object according to the
corresponding observations or appraisal values. We believe these classifications are
not acquired by people individually clustering and summarizing later in life, and
they are also embodied in the existing classifying mechanism of human brain. That
is to say, these flexible concepts in the human brain are not acquired by humans
consciously clustering and summarizing the magnitudes of features of things in life;
rather, they are preset innately, while only names are given afterward to those
corresponding flexible classes, respectively. In fact, it is also impossible that each
individual personally clusters and summarizes from scratch after birth to formulate
corresponding flexible concepts. This is because we cannot watch all people of all
heights to cluster “tall” and “short,” nor can we examine all people of all ages to
cluster “old” and “young.” Actually, infants and children learn these flexible
concepts not by clustering and summarizing but just by remembering the names of
corresponding concepts through a few examples. For example, the author of the
book once heard a two-and-a-half-year-old child say “wind so strong” and “I’m
tired.” It can be seen that the two flexible concepts in the child’s brain, “strong” of
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wind force and “tired” of body, are inherent, while the two words, “strong” and
“tired,” representing those concepts are what the child heard from adults around.

Color, sound, odor, flavor, and so on are psychological feelings formed from the
direct stimulation of sensory organs by certain kinds of physical signals, which are
the clustering and summarizing of the body’s physiological quantities formed by
the outside objective physical quantities. We may as well call these feelings the
first-level feelings or primary feelings and on the basis of which there are also
higher-level feelings, such as second-level, third-level, and even n-level. For
example, “big,” “much,” “tall,” “fast,” “beautiful,” “noble,” “diligent,” and “ex-
cellent” are some high-level feelings. A higher-level feeling is a feeling formed on
the basis of lower-level feelings. For example, a beautiful painting is formed by
various colors and a piece of pleasing music is formed by various sounds. This is to
say, the aesthetics of works of paintings and music are formed on the basis of colors
and sounds, respectively, while the quality of the works of an artist is the reflections
of his/her artistic level; thus, the feeling of the artistic level of an artist is based on
the quality of his/her works. It can be seen that high-level feelings result from the
psychological quantities in the human brain formed by objective things (such as
numbers, shapes, words, behaviors, events), which represent the information of
certain semantics, logic, or image. That is, high-level feelings are the clustering and
summarization of psychological quantities. Unlike primary feelings, high-level
feelings seem to be formed through a process of judging and evaluation, and there
exist no specialized sensory neurons for these feelings. But like primary feelings,
when we face an object and get a certain high-level feeling (and then describe the
feeling in corresponding words), this is actually as classifying the object according
to the observation or appraisal values.

Actually, the psychological quantities stated in the above are just a kind of
marks, i.e., a kind of subjective measurement values, given after people estimating
things; and some psychological quantities and physiological quantities can also be
represented by the corresponding objective measurement values. Therefore, our
high-level feelings and primary feelings are flexible concepts on these measurement
values, while the linguistic expressing of these feelings is flexible linguistic values
on the corresponding measurement ranges.

To sum up, we believe that the mechanisms of human brain flexibly clustering
and flexibly classifying continuous magnitudes of features of things are innate and
that these mechanisms are gradually formed and developed in human being’s or
even living being’s evolution with the increase of the quantity of information that
the nervous system processes. This is to say, the natural flexible clustering and
flexible classifying functions of human brain are adapted to its information envi-
ronment, which is just as the body structure and flying ability of birds are fitted with
the physical environment of air.
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19.2 Further Understanding Flexible Concepts
and Flexible Treating Mechanism of Human Brain

1. From flexible clustering to flexible classifying

By the decision rule “if mAkðxÞ[ 0:5; then x 2 Ai” of flexible classifying in
Sect. 18.2, any x whose membership-degree mA(x) > 0.5 is all regarded as
belonging to flexible class A. As thus, those objects with membership degrees
between 1 and 0.5 which are originally not core members of flexible class A are
actually also treated as core members of A in flexible classifying. By the decision
rule “if cAiðxÞ[ 0:5; then Ai(x)” of flexible judging in Sect. 18.3, all x whose
consistency-degrees cAðxÞ[ 0:5 are regarded as having flexible linguistic value A.
As thus, those objects with consistency-degrees between 1 and 0.5 which originally
did not completely have flexible linguistic value A are actually treated as completely
having value A in flexible judging. Actually, the judging is essentially a kind of
classifying. Thus, viewed from the angle of classifying, flexible concepts are also
flexible.

On the other hand, from Sect. 7.3.1, we know that the conversion from a flexible
linguistic value to a numerical value is not unique, but has a range of values—the
extended core. That is to say, not only the numbers in core (i.e., the core members)
can be treated as the representative of corresponding flexible linguistic value, but
those numbers that are outside the core in the extended core, originally peripheral
members, can also be treated as the representatives of corresponding flexible lin-
guistic values. Thus, this kind of L-N conversion has a certain elasticity; that is, it is
also flexible. Consideration of a flexible decision (such as flexible control) is always
expressed as a certain numerical value, that is, to do an L-N conversion, in the
specific implementation. Therefore, viewed from the decision-making process,
flexible concepts are still flexible.

Now, we see that the “flexible” of the flexible concepts not only is shown in the
formation (clustering) of flexible concepts, but is also shown in people’s applying
of them (like classifying, judging, and decision). Therefore, only from the two
aspects, the formation and application, of flexible concepts, can we understand
flexible concepts fully and entirely.

2. Rigid-ening of flexible linguistic values

However, the flexible classifying, flexible judging, and flexible decision making
are having their bottom lines. In fact, the median point, median line, or median
plane in the boundary region of two adjacent flexible classes is just the bottom line
of corresponding flexible treating. That is to say, in the case that the bottom line is
not touched, classifying, judging, and decision making are flexible, but once the
bottom line is touched, they then become rigid.
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In fact, from

x 2 A , x 2 core(AÞþ

it can be seen that if viewed from classifying or membership relation, a flexible set
A is actually equivalent to its extended core(A)+ or is stood for completely by its
extended core(A)+. While the latter is a rigid set, this is tantamount to saying that
flexible set A is rigid-ened. Thus, the basic flexible classes of the original mea-
surement space are also rigid-ened in the sense of classifying. For instance, basic
flexible classes rigid-ened in two-dimensional measurement space are shown in
Fig. 19.1. Here, the white straight lines were the original median lines of the
boundary of two adjacent flexible classes, and now, they are the boundary lines of
two adjacent rigid-ened flexible classes (the blocks encircled by white lines in the
figure are the extended cores of corresponding flexible sets, and black broken line
blocks are the cores of corresponding flexible sets).

On the other hand, from A(xÞ , x 2 core(A)þ , it can be seen that flexible
linguistic value A is actually equivalent to rigid linguistic value core(A)+, or in other
words, it is completely replaced by rigid linguistic value core(A)+. That is tanta-
mount to saying that the flexible linguistic value A is rigid-ened. Thus, original
basic flexible linguistic values on measurement space are also rigid-ened in the
sense of possessive relation. For instance, the basic flexible linguistic values
rigid-ened in one-dimensional space are shown in Fig. 19.2. It can be seen that the
median points of two adjacent flexible linguistic boundaries now become the
demarcation points of two adjacent rigid-ened flexible linguistic values.

U ×V 

Fig. 19.1 An illustration of
rigid-ened basic flexible
classes in two-dimensional
space
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Fig. 19.2 An illustration of rigid-ened basic flexible linguistic values in one-dimensional space
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It can be seen from statement above that the core and support set are only
conceptual models of a flexible concept, while extended core is the practical model
of a flexible concept.

3. Significance of first “flexible” then “rigid”

The phenomenon of flexible sets being rigid-ened in classifying, judging, and
decision hints to people: The continuous measurement space considered difficult to
rigid partition in the concept is rigidly partitioned in practice; thus, the problem
solving with flexible sets actually becomes the problem solving with rigid sets.
Thus, there occur questions:

(1) Now that the rigid partition has been realized finally, why did we take a
circuitous route—first flexible parting and then rigid parting?

(2) Now that the problem is finally solved on the rigid set, why did we take a
circuitous route—first professing it as being solved on the flexible set and then
it changes to be solved on the rigid set?

(3) Since it is so, what’s the meaning of using the flexible sets? Why not directly
determine the demarcation point (line or plane) between two sets from the
beginning?

We say that flexible partition is not redundant.
Since the points in a measurement space are continuous, the points between two

adjacent flexible classes are all transitional points that “belong to this class to a
certain degree and also belong to that class to a certain degree,” and also, the closer
to the central position between two classes a point is, the more difficult it is to
determine the membership of that point. Therefore, in this situation, it is very
difficult to directly find the demarcation point (line or plane) between two sets.
However, we cannot directly look for the demarcation point (line or plane). Instead,
we determine the cores of two classes firstly, that is, determine those points that
belong completely to corresponding classes. For one-dimensional flexible classes,
this is to determine their core-boundary points. Obviously, to judge whether an
object has a certain property completely is much easier than to judge whether an
object has just two properties with half-and-half, that is, whether it is located at the
middle between two classes. That is to say, to determine the core-boundary points
of two classes is relatively easier than to determine the midpoint between the two
classes. Additionally, as long as the core-boundary points of two adjacent classes
are determined, then the region between the two core-boundary points of the two
classes is their public boundary. And once the public boundary region of two
classes is obtained, the midpoint of this region is just naturally the demarcation
point of two flexible classes hardened. Actually, the approach of only considering
cores but not considering boundaries is just the skill of “focusing on the main thing
while giving up secondary things.” Thus, looking at the result, indirectly deter-
mining the midpoint through determining the cores is actually done by using
flexible partition to achieve a rigid partition and by using flexible clustering to
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achieve rigid clustering; because if we do not use the flexible partition, then it is
very difficult to rigidly partition continuous objects.

On the other hand, when classifying, judging, and decision making, the flexible
classes obtained from flexible clustering are used as rigid classes. This embodies a
kind of flexibility and elasticity to deal with the problem, and it is a show of “having
a hard core despite one’s mild exterior.” Although objects located between two
classes are both in the two classes, but in problem solving, generally it is always
required that the corresponding result is not ambiguous—it must be in one class or
the other, not both. Therefore, we have to use the approach of “first flexible then
rigid.”

Actually, in the final analysis, the strategy of “first flexible then rigid” is orig-
inally possessed by the human brain. In fact, flexible clustering is a strategy that
human brain deals with the continuity (or uniform chain similarity); on the other
hand, the logic of human brain thinking is of “middle” excluded, so its decision can
only be that there occurs rigidness in flexibleness.

In summary, the approach of “first flexible then rigid” is actually a correct,
scientific, and clever strategy and technique to solve the problems with continuity
(or uniform chain similarity), and it is not an unnecessary move, nor is it deliber-
ately mystifying.

4. Flexible treating and complexity

Let us also make an analysis of the connection between the treating way of
flexible clustering and flexible partition used by the human brain and the com-
plexity of corresponding things.

From the above statement, we see that flexible clustering and flexible parti-
tioning are a kind of expedient measures adopted by the human brain when faced
with continuous magnitudes of features of things that are hard to be rigidly clustered
and partitioned. That is to say, if there were no continuous distribution or change of
magnitudes of features of things, the human brain would not do flexible clustering
and flexible partitioning. In other words, the flexible treating mechanism of the
human brain is only related to continuity of magnitudes of features of things (or the
uniform chain similarity of things).

Of course, for complex things, the human brain would still use clustering and
partitioning, because by doing so, we can describe things in bigger granules. Thus,
not only the amount of information would be reduced, but also the complexity of
problems would be lowered, and we can also analyze problems, understand, and
grasp things at a higher level.

Actually, from the methodology point of view, for those complex or large-scale
problems, the strategies to be adopted first should be classifying, graduating,
blocking, grouping, and so on, known as “divide and conquer.” Actually, people
follow and use this principle consciously and unconsciously in many areas. For
instance, the zoning and ranking in administration and management, the modu-
larizing and data abstracting in software development, and the categorizing in
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scientific research are all effective means and methods used by people in solving
complex or large-scale problems.

Therefore, a complex problem should be analyzed and researched with appro-
priate big granule or large scale. Otherwise, we would “see the trees but not the
forest,” thereby making the problems difficult to solve. However, such big granule
and large scale are not necessarily flexible granule and flexible scale, or fuzzy
granule and fuzzy scale. When and only when there also exists “continuous” in the
complexity, big and flexible granules and scales should be used.

To sum up, there is no necessary connection between flexible treating and
complexity, and the real cause of the human brain flexibly treating corresponding
information is the continuity of magnitudes of features of things (or the uniform
chain similarity of things), rather than complexity or largeness of things.

19.3 Discrimination Between Flexible Concept and Vague
(Fuzzy) Concept

1. Why is the “flexible concepts” taken as appellation?

As stated in Sect. 2.1, the denotation of a flexible concept is a flexible class, that
is, the boundary of which is a flexible region with characteristic of “belonging to
this and also belonging to that,” “degree changing gradually,” and “transiting
smoothly” rather than a rigid line with characteristic of “belonging to either this or
that” and “degree changing sharply.” This characteristic of the denotations of
flexible concepts can be abstractly illustrated as follows (see Fig. 19.3). Besides,
the center region and boundary region of the denotation of one and the same
flexible concept also have a slight difference in different people. That is to say, the
center and boundary regions of the denotation of a flexible concept are elastic to a
certain extent. In a word, viewed from the static characteristic of denotations,
flexible concepts have a kind of “flexibleness” or “elasticity.”

Let us also examine the situations of flexible concepts in practical applications.
From the last section, flexible concepts also show a certain flexibleness in such
processes as classifying, judging, decision making, etc. For example, the objects
close to the center region of a flexible class within the boundary region are

Fig. 19.3 The sketch map of denotation characteristics of flexible concepts. These three figures
represent respectively a denotation of a flexible concept. The blackness of each point represents the
degree of the point belonging to the corresponding flexible class
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originally the peripheral members of the flexible class, but they usually are also
included in the corresponding class as core members. Similarly, the number objects
close to the center region of a flexible class are usually also treated as the repre-
sentatives of the corresponding linguistic value for use in decision making. That is
to say, such classifying and decision making are really “flexible classifying” and
“flexible decision making.” For another example, in process control with flexible
linguistic values, the system first needs to convert the input measurements into
corresponding flexible linguistic values, which is really a flexible classifying pro-
cedure. Then, for a decision of flexible linguistic values, the system flexibly selects
a number in the center region of the corresponding flexible class or among the
peripheral members close to the center region as the control quantity to output.

Further, we find that the width or position of the center region and boundary
region of the denotation of a flexible concept would change dynamically for certain
reasons. That is, the center and boundary regions have certain expanding or con-
tracting. For example, when having a cold, we feel “cold” in the temperature that is
not cold to us normally. This is really because the center region or boundary region
of “cold” extends toward higher temperatures. While once recovered, the center
region or boundary region of “cold” would contract back, and thus, our feeling of
cold returns to normal.

To sum up, whether viewed from the static characteristics in formation or from
the dynamic characteristics in application, the flexible concepts all have flexible-
ness. Therefore, we call this kind of concepts to be the “flexible concepts.”

2. What is vague concept?

As the term suggests, a vague concept should be such a concept whose con-
notation is not yet or completely clear to people, which is the abstraction of things
that people have not yet a clear understanding of at the moment, or only have a
superficial knowledge. For example, “life” and “intelligence” are just such con-
cepts. Since which essential attributes they have are not yet or completely clear,
their denotation is not yet or completely definite. Besides, whether a concept is
vague or not may vary from person to person. In fact, a concept can be clear to
some people but vague to some other people. For instance, “genes” and “black
hole” may be clear concepts to professionals or experts but vague concepts to
laymen.

However, we see that although the denotations of vague concepts are not defi-
nite, in general, their denotations have no such characteristics of “degree changing
gradually” and “transiting smoothly” as shown in Fig. 19.3. Besides, vague con-
cepts have no what dynamic characteristics in application.

3. Flexible concepts or vague (fuzzy) concepts?

However, for a long time, flexible concepts have been viewed as vague concepts
(which also be called fuzzy concepts after fuzzy sets). The reason is that their
denotative boundaries are unsharp.
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It can be seen from the analyses of characteristics of flexible concepts and vague
concepts that viewed from “denotative boundaries are unsharp,” flexible concepts
seem to be a kind of vague concepts. However, the outstanding characteristics of
“degree changing gradually,” “transiting smoothly,” and “expanding and con-
tracting dynamically” of the denotative boundaries make also them become a kind
of special vague concept—flexible concepts. That is to say, although flexible
concepts have vagueness (fuzziness), this is not their outstanding and key charac-
teristic. Therefore, it is inappropriate to call flexible concepts as vague (fuzzy)
concepts only by reason of “denotative boundaries are unsharp.” It is a similar
distinction as saying that although mankind has also some characteristics of ani-
mals, we cannot broadly call mankind to be just an animal; after all, the charac-
teristics human beings have are far beyond the capabilities of general animals.

Indeed, the denotation of the flexible concept has no definite definition in
general. However, viewed from the formation of a flexible concept, the denotative
boundary being indefinite is not because that people do not know clearly the things
covered by which as well as their characteristics, but only an expediency in
treatment. Just because of this, unsharp denotative boundaries do not affect people’s
understanding and application of this kind of concepts. In fact, in daily information
exchange, a flexible linguistic value represents mainly its core members and those
peripheral members close to the center region. But for other objects in the boundary
region, people then, in general, use another flexible concept such as “slightly ××,”
“comparatively ××,” and “very ××” to describe and sometimes also use “medium”
to represent the objects in the common boundary region of two relatively negative
flexible concepts. For example, if 1.75 m is a non-core member of “tall,” then we
can say that it is “relative tall,” and 1.70 m, which is between “tall” and “short,” can
then be said to be “average.” Thus, although denotative boundaries are unsharp, for
every flexible concept in a universe, people know what they refer to. Conversely,
every object in a universe also can be represented by a certain flexible linguistic
value on the universe. Thus, it can be seen that people actually know fairly well
concepts with “unsharp denotative boundaries.” This is also why people do not
consciously try to find where the accurate boundaries of these concepts are, but can
still understand and grasp them accurately and can handle them unmistakably.
Obviously, in these places, flexible concepts and general vague (fuzzy) concepts are
not the same. Thus, viewed from people’s grasp and use of them, the flexible
concepts seem to differ from real vague (fuzzy) concepts. Just think: a two-year-old
child understands what is mean to “run quickly,” so can we say that “quickly” is
vague? Of course, people also use some real vague concepts, but cannot grasp them
accurately (otherwise, they are not vague).

To sum up, we have the following conclusions:

① Viewed from denotative boundaries being unsharp, flexible concepts can be
regarded as a kind of vague (fuzzy) concept, but the outstanding character-
istics of “degree changing gradually,” “transiting smoothly,” and “expanding
and contracting dynamically” of which make also them become actually
flexible concepts.
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② Viewed from formation and application, flexible concepts are not real vague
(fuzzy) concepts.

We then examine the meaning of the words. It is obvious that “vague” or “fuzzy”
does not reflect the objective facts of the “gradual change” and “continuous” of
the properties of things, nor does it expresses the outstanding characteristics of “de-
gree changing gradually,” “transiting smoothly,” and “expanding and contracting
dynamically” of theflexible boundary of the corresponding flexible classes, even less to
embody the non-rigid characteristic offlexible concepts when they are used; however,
“flexible” just reflects, expresses, and embodies these facts and characteristics.

The analysis above shows that concepts based on numerical values without
definite definitions in the human brain but can still be grasped accurately and be used
flexibly by people should be called flexible concepts, but calling or viewing them as
vague (fuzzy) concepts is not appropriate, which is absolutely a misunderstanding.
This misunderstanding not only confuses flexible concepts with real vague concepts,
but also loses essential characteristics of flexible concepts; hence, it is disadvanta-
geous to, even will incorrect guidance for, people’s research on flexible concepts.
The root of bringing about the misunderstanding is that the objective basis, for-
mation principle, and characteristic in the practical application of flexible concepts
are not considered, but only “denotative boundaries being unsharp,” a non-essential
characteristic, are seen one sidedly, in isolation and statically.

19.4 Flexible Cluster Analysis

Cluster analysis is using mathematical method to divide a given set of objects (data
points in a measurement space) into several classes. Conventional clustering
methods can be classified as two types: dividing by a threshold and clustering with
centers.

Dividing by a threshold is usually called graded clustering or pedigree cluster-
ing, whose basic conduct is according to a set threshold to divide a set awaiting
partition with certain similarity measurements between every two points to realize a
partition of the set. Visually speaking, dividing by a threshold is to define a sim-
ilarity function firstly to compute the similarity degree of adjacent two points and
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Fig. 19.4 Example 1 of dividing by a threshold
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form a similarity relation net and then rigidly divide the relation net according to a
set threshold for similarity degrees, thus forming several rigid classes (see examples
in Figs. 19.4 and 19.5). The number of classes obtained by using dividing by a
threshold is determined by the magnitude of the threshold, the extreme case being a
point is a class, or all points are a class. Of course, in specific operations, people
also propose many methods such as “biggest tree method.” Besides, people also
transform the similarity problem into fuzzy equivalence problem through the
transitive closure of similar matrix, but the validity of results obtained by this
method has no guarantee in theory.

Clustering with centers is also called dynamic clustering method, whose basic
conduct is to search the optimum partition of a set awaiting partition with the
similarity measurements of every class center to all other points by employing a
certain algorithm in the constraint of clustering criterion. Here, the center of a class
can be a representative point, mean point, or point set as the core of the class, and
these class centers are dynamically changeable; the clustering criterion requires the
similarity degree between members within a class should be biggest, but similarity
degree between members from distinct classes should be smallest, generally which
are given in the form of an objective function or a criterion function. C-mean
algorithm just is a classic algorithm in clustering with centers. Visually speaking,
clustering with centers is to define a similarity measure and take some points as
clustering centers, then compute the similarity degrees between the rest points and
all center points, thus forming a system of clusters on similarity, and then rigidly
divide the system of clusters according to the similarity degree by the principle of
similarity maximum, and decide the membership of every point, and forming
several rigid classes.

Though dividing by a threshold and clustering with centers are both based on the
similarity relation between objects, the former is based on the similarity relations
between every two objects in an object set, while the latter is based on the similarity
relations between every center object and other objects. Since the center of a class
actually represents a property, the practice of clustering with centers is taking the

Fig. 19.5 Example 2 of
method of dividing by a
threshold
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property represented by the class center as the standard to gather objects having
similar property into a class. Therefore, clustering with centers is really a kind of
clustering on property, while dividing by a threshold is a kind of clustering on
relation. The name of an object class formed by clustering on property is just the
name of the corresponding property. But the name of an object class formed by
clustering on relation is not the name of the corresponding relation (“similar” or
“approximate”), but which need to be renamed, and the name is decided according
to the common property of objects in the class. As thus, all classes obtained from
relation clustering are actually also property classes. Property is explicit and visual,
and the clustering based on property can be helped by intuition. Relation is usually
implicit, and clustering based on relation is hard to be helped by intuition.

The approximation (similarity) relation is originally a kind offlexible relation, but
the given data sets awaiting partition usually are not continuous, so the traditional
cluster analysis, that is, the above stated two types of methods, is actually a kind of
rigid clustering method realized by cutting the weak link on similarity chain or
similarity net. If a data set awaiting partition is continuous, then from the Sect. 2.1,
we know that only the method offlexible clustering can be used [now we see that the
flexible clustering is also a kind of clustering on property based on the approxi-
mation (similarity) relation]. Only in some special situations, rigid clustering is then
used to partition a data set.

Then, for a non-continuous data set, can the method of flexible clustering still be
used to do flexible partition?

After the appearance of fuzzy sets, people proposed fuzzy cluster analysis. The
idea is to cluster a data set into one and another fuzzy subset, then if required,
rigid-en the obtained fuzzy subsets into rigid subsets. Since data sets are usually
non-continuous, this kind of fuzzy subset is actually an instance subset of flexible
set we said. An important algorithm of fuzzy clustering is fuzzy C-mean algorithm.
There the membership function μj(x) is used in place of the feature function tj(x) in
the original C-mean algorithm, but we cannot see how this membership function is
related to the corresponding fuzzy set.

In the following, we give a method of utilizing flexible clustering to partition a
data set. The basic idea of this method is to construct c classes to collect or carve up
the points in the data set. The requirement is that there is no intersection among
cores of c classes and it should guarantee that every point in the data set given at
least falls into the support set of a certain flexible class. The method can be sep-
arated into the following 4 specific algorithms.

1. Point clustering algorithm

This algorithm takes points as clustering centers to construct flexible classes by
using point-based flexible clustering, and the basic steps are as follows:

① For data set D considered, give c points as clustering centers and corre-
sponding core radii and support set radii, to construct the membership func-
tions of corresponding flexible points (flexible circles or flexible spheres).
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② Compute the membership degrees of every point in D to all flexible points
(flexible circles or flexible spheres) and relegate all points into corresponding
flexible classes according to the principle of maximum membership.

③ Compute criterion function, if requirement is satisfied, then end.
④ Adjust clustering center points, or core radii and support set radii, turn to ②.

2. Line clustering algorithm

This algorithm takes lines as clustering centers to construct flexible classes by
using line-based flexible clustering, and the basic steps are as follows:

① For data set D considered, give c lines as clustering centers and corresponding
core radii and support set radii, to construct the membership functions of
corresponding flexible lines (flexible bands or flexible ropes).

② Compute the membership degrees of every point in D to all flexible lines
(flexible bands or flexible ropes) and relegate all points into corresponding
flexible classes according to the principle of maximum membership.

③ Compute criterion function, if requirement is satisfied, then end.
④ Adjust clustering center lines or core radii and support set radii, turn to ②.

3. Plane clustering algorithm

This algorithm takes planes as clustering centers to construct flexible classes by
using plane-based flexible clustering, and the basic steps are as follows:

① For data set D considered, give c planes as clustering centers and the corre-
sponding core radii and support set radii, to construct the membership func-
tions of corresponding flexible planes (flexible plates).

② Compute the membership degrees of every point in D to all flexible planes
(flexible plates) and then relegate all points into corresponding flexible classes
according to the principle of maximum membership.

③ Compute criterion function, if requirement is satisfied, then end.
④ Adjust clustering center planes or core radii and support set radii, turn to ②.

4. Block clustering algorithm

This algorithm takes points as clustering centers to construct flexible classes by
using point-based square flexible clustering, and the basic steps are as follows:

① For data set D considered, give c points as clustering centers and corre-
sponding core radii and support set radii, to construct the membership func-
tions of corresponding flexible squares.
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② Compute the membership degrees of every point in D to all flexible squares
and relegate all points into corresponding flexible classes according to the
principle of maximum membership.

③ Compute criterion function, if requirement is satisfied, then end.
④ Adjust clustering center points or core radii and support set radii, turn to ②.

The membership functions of the corresponding flexible classes in these clus-
tering algorithms can be constructed and obtained by methods given in Chap. 3.

Besides the above partition based on relation and partition based on property
(that is, dividing by a threshold and clustering with centers), there is another method
of partitioning a data set, that is, to use the sample data whose classifications are
known to induce the discrimination function of each classification, the geometric
interpretation of which is to induce the curve, and surface or hypersurface which
can partition the product space of the space that data belong to and the space of
classification labels. We may as well refer to this method of partitioning a data set
through samples as the induction with samples. The characteristics of sample
induction method are that the number and labels of classes of a data set are known
(while the classes and the number in dividing by a threshold and clustering with
centers methods are not known beforehand but need to be formed and determined in
partition). The common characteristic of the three methods partitioning a data set is
that they all need to adjust associative parameters over and over again, which is
actually also doing searches in corresponding spaces. Viewed with the eye of
learning, these searches are also machine learning. Specifically speaking, methods
of dividing by a threshold and clustering with centers are learning without a teacher
or unsupervised learning, while sample induction method is learning with a teacher
or supervised learning.

19.5 Flexible Linguistic Rule Discovery

Flexible linguistic rules used in problem solving can generally be given by domain
experts from experience, which can also be discovered and acquired by machines
directly from relevant sample data through self-learning. The relevant sample data
may be pure numerical values, may also be pure linguistic values, or may also be
the hybrids of numerical values and linguistic values. For pure numerical sample
data, we can adopt statistical method to induce and summarize corresponding
flexible linguistic rules (set). The specific ideas and methods will be introduced in
the discovery of flexible linguistic function in the next section. For non-pure
numerical samples, we can use a machine learning method called “decision tree
learning” to obtain the corresponding flexible linguistic rules (set).

Decision tree learning is an important rule discovery method. For a known
instance set, through decision tree learning, some rules with linguistic values can be
induced usually. An instance in an instance set is a tuple or record consisted of
several attribute values of an object, in which one term is taken as the conclusion or
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decision, the rest is the condition or premise of this decision term. Decision tree
learning is to induce a general association relation, that is, decision rules, from the
association facts between those known conditions and conclusions in an instance
set. Here, an attributive value is generally a certain kind of linguistic values.
Therefore, every data term in the instance set has a corresponding measurement
space, and this linguistic attributive value corresponds to a subset in the corre-
sponding measurement space. Then, if this linguistic attributive value is a flexible
linguistic value, then the corresponding subset is also a flexible subset; conversely,
if the subset in the measurement space is a flexible subset, then the corresponding
linguistic attributive value is a flexible linguistic value. Thus, for such an instance
set consisted of flexible linguistic attributive values, the rules obtained through
decision tree learning are also flexible linguistic rules.

The above analysis shows that the machine learning method of decision tree
learning can be used to discover and acquire flexible linguistic rules. But the
precondition is that the attributive values in the instance set are flexible linguistic
values. Thus, if the known attributive values in an instance set are already linguistic
values or flexible linguistic values, then decision tree learning can be performed
directly. From the decision rule of possessive relation (see Sect. 18.3), it is known
that in this situation, a flexible linguistic attributive value is in essence tantamount
to a rigid linguistic attributive value. Therefore, this kind of decision tree learning
with known flexible linguistic attributive values is not different from the usual
decision tree learning. But if there are pure numerical data terms in known
instances, then such numerical attributive values need to be converted into flexible
linguistic values and then to conduct decision tree learning. The converting method
is also that of converting a numerical value into a flexible linguistic value stated
previously in Sect. 7.3.1.

Since numerical attributive values can be converted into flexible linguistic
attributive values, then, for a pure numerical data set, we can convert it into a data
set of flexible linguistic values by N-L conversion, taking the latter as the instance
set of decision tree learning, further to induce and abstract corresponding flexible
linguistic rules from it. This can be viewed as another approach to discover flexible
linguistic rules with pure numerical samples.

Certainly, prior to data conversion, it is necessary to firstly flexibly partition the
measurement space [ai, bi] that each numerical datum xi belongs to and define the
flexible linguistic values on it. The method of flexibly partitioning space [ai, bi] can
see Sect. 6.2 for reference.

Besides, in the process of discovering flexible linguistic rules by decision tree
learning stated above, the acquiring of adjoint functions of rules can also be done at
the same time. In fact, in the converting process from numerical values to linguistic
values, the instances of the correspondence between the antecedent consistency-
degree and the consequent consistency-degree of a rule have already been pro-
duced; in the mean time, there exist also already the instances of the correspondence
between the measures of antecedent and consequent of the rule. The former can be

488 19 Imprecise-Knowledge Discovery

http://dx.doi.org/10.1007/978-981-10-1549-6_18
http://dx.doi.org/10.1007/978-981-10-1549-6_7
http://dx.doi.org/10.1007/978-981-10-1549-6_6


used to construct or adjust the adjoint degreed functions of rules, and the latter can
be used to construct or adjust the adjoint measured functions of rules.

Specifically speaking, in the process of acquiring an instance set, also, note
down the correspondence relations between linguistic values in every instance

A1;A2; . . .;An�1ð Þ 7!An

and the correspondence relation between corresponding original numerical values

x1; x2; . . .; xn�1ð Þ 7! xn

and correspondence relation between degrees

d1; d2; . . .; dn�1ð Þ 7! dn

Thus, taking these numerical correspondence relations and degree correspon-
dence relations as samples, the corresponding adjoint measure functions and adjoint
degree functions can be constructed or optimized. Of course, these samples can also
be used directly in machine learning to obtain corresponding approximate adjoint
measure functions and approximate adjoint degree functions of rules.

19.6 Flexible Linguistic Function Discovery

The flexible linguistic function discovery is to induce and summarize a corre-
sponding approximate flexible linguistic function from some known sample data
(since flexible rules are also a representation form of flexible linguistic functions,
the flexible rule discovery in last section also belongs to the flexible linguistic
function discovery). The flexible linguistic function discovery is a new problem,
which has no ready theories and methods yet. According to the characteristics of
sample data, we will give some specific ideas and methods below for reference.

1. Inducing directly a L-L function by statistical method

For pure numerical sample data, according to their characteristics, we can induce
and summarize the corresponding flexible linguistic function by statistical method
directly. The specific steps and method are as follows:

① Do flexible partition of the measurement spaces which are taken as the domain
and range of a flexible linguistic function, then convert known pure numerical
samples into corresponding flexible linguistic valued samples;

② Induce the correspondence relation between corresponding flexible linguistic
values with sample data by using statistical method (which can also be
complemented by visual technique);

③ If the induction succeeds, then the result obtained can just be treated as a
corresponding (approximate) L-L flexible linguistic function, end;
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④ According to current case, refine the partition of domain and range, or adjust
appropriately the original basic flexible linguistic values, then turn to ②.

Obviously, generally speaking, if the domain is partitioned sufficiently minute,
then we can always obtain the correspondence relation between the corresponding
flexible linguistic values. Therefore, the above stated method is feasible in theory.

Of course, to be a flexible linguistic function finally, it might be necessary to
optimize the obtained result from induction (e.g., to appropriately merge or divide
relevant flexible subsets). Since the result obtained by induction is actually a group
of flexible rules, if there occurs redundancy, decision tree learning can be used for
reduction.

Since linguistic functions are closely related to numerical functions, while the
numerical function discovery has had many mature theories and methods, we can
use for reference the method of numerical function discovery to develop the
methods of flexible linguistic function discovery, and we can also use numerical
function discovery to indirectly realize flexible linguistic function discovery. Next,
we give two specific methods.

2. Discovering a N-L flexible linguistic function by flexible fitting

The so-called flexible fitting is using an N-L flexible linguistic function to fit
related known data points.

Let ðai; biÞ ðai 2 U; bi 2 V ; i ¼ 1; 2; . . .; nÞ be the known sample data. The
basic steps of flexible fitting for which are as follows:

① According to the characteristics of the sample data, choose one numerical
function y ¼ f ðxÞ ðx 2 U; y 2 VÞ as the cluster center and define the corre-
sponding flexible number ðrÞ ¼ (f ðxÞ) (that is, “about f(x)”) and its consis-
tency function c(r)(y);

② Take ai and bi from data set fða1; b1Þ; ða2; b2Þ; . . .; ðan; bnÞg, compute
f ðaiÞ; ðf ðaiÞÞ ¼ ðriÞ and cðriÞðbiÞ ði ¼ 1; 2; . . .; nÞ;

③ If min
1� i� n

cðriÞðbiÞ[ 0:5, then end, Y ¼ ðf ðxÞ) is the N-L function to be found;

④ Appropriately adjust relevant parameters of f(x), turn to ②.

3. Constructing an approximate flexible linguistic function by an approximate
numerical function

This method is first to discover a corresponding approximate numerical function
from the sample data and then use the approximate numerical function to obtain the
corresponding flexible linguistic function. The specific steps are as follows:

Let ðai; biÞ ðai 2 U; bi 2 V ; i ¼ 1; 2; . . .; nÞ be the known sample data.
Firstly, use certain method to do function fitting for data points (ai, bi) (i = 1, 2,

…, n) to obtain an approximate numerical function y ¼ f ðxÞ ðx 2 U; y 2 VÞ;
Then, utilize the approximate numerical function y ¼ f ðxÞ to construct corre-

sponding linguistic function:
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① Constructing L-L function

For the flexible linguistic value X � U, set y1 ¼ min
x2coreðXÞþ

f ðxÞ and y2 ¼
max

x2coreðXÞþ
f ðxÞ and construct flexible interval ððy1�; ½y2ÞÞ; thus obtaining flexible

linguistic value Y ¼ ððy1�; ½y2ÞÞ�V .
In this way, to each flexible linguistic value X 2 L(U), there corresponds a

unique flexible linguistic value Y�V . Thus, we have an L-L flexible linguistic
function Y = F(X), X 2 L(U).

② Constructing N-L function

For x 2 U, set Y = (f(x)) (i.e., “about f(x)”).
Thus, to each x 2 U, there corresponds a unique flexible linguistic value Y�V .

Thus, we have an N-L flexible linguistic function Y = F(x), x 2 U.
Notes: The above function fitting is in a broad sense, and the specific methods

include the mathematical methods of interpolation method, regression method,
fitting method, and so on as well as the machine learning methods of neural net-
work and SVM (short for support vector machine). As to what method to choose
should be decided by the characteristics of the sample data. Strategically speaking,
the fitting can be global or local such as sectional or piecewise. Generally speaking,
the function of the latter is simpler and more precise, so it is more preferred.

The above methods of acquiring linguistic functions are for pure numerical
samples. For non-pure numerical samples, the method of decision tree learning
introduced in the previous section can be used. We can also convert them into pure
numerical data and then use the above stated methods. The method of converting is
as follows:

Let the known sample data be ðAi;BiÞ or ðxi;BiÞ (Ai � U; xi 2 U;
Bi 2 V ; i ¼ 1; 2; . . .; nÞ. Then, separately replacing Ai and Bi by standard instances
ai and bi of flexible linguistic values Ai and Bi, thus obtains numerical sample (ai, bi)
(ai 2 U, bi 2 V, i = 1, 2,…, n).

Here, the standard instance is the numerical value in the support set of corre-
sponding flexible linguistic value which can stand for the flexible linguistic value.
Generally, taking the peak-value point of a flexible linguistic value as its standard
instance, can also take the corresponding core-boundary point or a certain point in
the extended core. Of course, it is best to take the point with the highest probability
according to the background knowledge of the practical problem.

As to the samples of type ðAi; biÞ ðAi � U, bi 2 VÞ, the converting can be
omitted, because after conversion, it is still difficult to obtain the corresponding
numerical function and linguistic function. But, from which the local L-N linguistic
function y = F(X), X 2 Ls(U) � L(U) can be directly obtained.
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19.7 Flexible Function Discovery

As a kind of special flexible linguistic functions, the flexible functions, i.e.,
flexible-numbered functions, of course can be discovered by using the methods of
flexible linguistic function discovery given in last section. But since the particu-
larity of flexible numbers—the kind of flexible linguistic values—that which and
rigid numbers, that is, real numbers, can be converted to each other, and the
operations of which can be reduced to the operations of real numbers, therefore, we
can utilize the discovery methods of usual functions plus data conversions to realize
the discovery of flexible functions. In the following, we give a method of con-
structing approximate flexible function by combining data conversions with neural
network.

We know that a flexible number (x0) can rigid-en as rigid number x0, and
conversely, a rigid number y0 can also flexible-en as flexible number (y0) (see
Sect. 10.5). On the other hand, for a functional relation indicated by sample data of
real numbers, generally speaking, it can be approximated with a neural network.
Thus, for the sample data consisted of pairs of flexible numbers, we can combine
data conversions with neural network to construct corresponding approximate
flexible function, and the specific method is as follows:

Suppose there is a set of sample data of flexible numbers:
ððða1iÞ; ða2iÞ; . . .; ðaniÞÞ; ðbiÞÞ ðaji 2 Uj; bi 2 V ; i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; nÞ.
Firstly, convert the set of sample data of flexible number,
ððða1iÞ; ða2iÞ; . . .; ðaniÞÞ; ðbiÞÞ ði ¼ 1; 2; . . .;mÞ, into set of sample data of rigid
number, ðða1i ; a2i ; . . .; aniÞ; biÞ ði ¼ 1; 2; . . .;mÞ, through L-N conversion; then
according to the characteristics of these data of real number, construct a proper
neural network and train it with these data (the neural network trained successfully
is tantamount to a corresponding approximate numerical function) and then add
interfaces of L-N and N-L conversions to the neural network trained successfully,
and thus, we obtain a approximate flexible function indicated by original sample
data of flexible numbers, ðyÞ ¼ f ððx1iÞ; ðx2iÞ; . . .; ðxniÞÞ (as shown in Fig. 19.6).
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x1 ), … , (
inx ))

L-N
conversion

y
N-L

conversion

(y)neural 

network

sample data
of rigid 
number 

sample data
of flexible
number 

L-N
conversion
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(
i

x1 , … , 
inx )

Fig. 19.6 Diagram of an approximate flexible function combining data conversions and neural
network
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19.8 Summary

In this chapter, we further discussed firstly the formation mechanism and essential
characteristic of flexible concepts and discriminated between the flexible concept
and the vague (fuzzy) concept, and then, we explored imprecise-knowledge dis-
covery, proposed some ideas and approaches, and presented some specific algo-
rithms and methods.

The main points and results of the chapter are as follows:

• The “flexible” of the flexible concepts not only is shown on the forming
(clustering) of flexible concepts, but also is reflected on the employing (classi-
fying, judging, and decision) by people of it. Therefore, only when from the two
aspects of formation and application to understand the flexible concepts, can we
understand the flexible concepts fully and entirely.

• The concepts in human brain, which are based on numerical values and are not
defined definitely but can be grasped accurately and be used flexibly by people,
are really a kind of flexible concepts, so calling or regarding them as vague
(fuzzy) concepts is not appropriate.

• There is no necessary connection between the flexible treating of related
information by human brain and the complexity of things. The real cause of
human brain doing flexible treating is the continuity of the quantities of a feature
of things (less strictly speaking, it is the uniform chain similarity of things),
rather than complicatedness or largeness of things.

• For a discrete set of points in a measurement space, we can realize its partition
by flexible clustering in the corresponding measurement space, which is called
flexible cluster analysis. For different dimensional measurement spaces, the 4
flexible clustering algorithms of point clustering, line clustering, plane cluster-
ing, and block clustering are presented here.

• We can use the method of decision tree learning to discover flexible rules.
• We can use the statistical method to induce and summarize directly corre-

sponding flexible linguistic functions from sample data.
• We can use the method of flexible fitting to discover N-L flexible linguistic

functions and also can construct an approximate linguistic function from an
approximate numerical function.

• We can use the method of combining data conversions and neural network to
construct an approximate flexible function.
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Chapter 20
Several Measures of Sets and Flexible Sets

Abstract This chapter introduces multiple measures such as size and share for
ordinary sets and flexible sets and analyzes and expounds their properties, relations,
and operations. And it presents the concepts of partial inclusion, partial equality,
and partial correspondence and introduces the measures of inclusion-degree,
equality-degree, and correspondence-rate. In particular, it founds and presents the
sufficient and necessary conditions for these relations to satisfy transitivity and the
corresponding transitive formulas of inclusion-degrees (equality-degrees) and
correspondence-rates.

Keywords Size of a flexible set � Share of a flexible set � Partial inclusion � Partial
equality � Partial correspondence � Inclusion-degree � Equality-degree �
Correspondence-rate

This chapter gives several measures for ordinary sets and flexible sets, which
include size, share, inclusion-degree, equality-degree, and correspondence-rate.

20.1 Size of a Set

1. Definition and properties of the size of a set

Definition 20.1 We call the amount of elements of a set X (when X is a discrete
set), or length, area, volume, or hyper volume of a set X (when X is a continuous
set) to be the size of the set X, denotes as jXj [1].
Example 20.1

① Let X ¼ all English lettersf g; then Xj j ¼ 26:
② Let X ¼ all integersf g; then Xj j ¼ 1:
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③ Let X ¼ all real numbersf g; then Xj j ¼ 1:
④ Let X ¼ ½a; b�; then Xj j ¼ b� a:
⑤ Let X ¼ ½a; b� � ½c; d�; then Xj j ¼ ðb� aÞ � ðd � cÞ:
It can be seen that “size” is also a kind of numerical feature of a set, which is a

kind of absolute measure of a set. For the discrete sets, the size here is completely
the same as the concept of cardinal number in the traditional set theory, but for the
continuous sets, the size is not the same thing as the cardinal number, and the sizes
of continuous sets of different dimension are not comparable.

From the definition, the size of a set obviously has the following basic
properties.

Theorem 20.1 Let U be a universal set, and A, B�U:

(i) Aj j � Uj j ðboundednessÞ
(ii) if A � B then jAj � jBj ðmonotonyÞ
(iii) jAj + jA0j ¼ jUjðcomplementarityÞ
(iv) £j j ¼ 0

It can be seen that for universal set U, the size of subsets actually also defines a
function on its power set; that is, set function l: 2U ! ½0; b�; ðb ¼ Uj jÞ:
2. Size of a compound set

Let U be a universal set, and A, B 2 2U ; we consider the sizes of compound sets
A\B; A[B and Ac. Of course, the most basic method is to compute specifically
according to the operation definitions of sets and the definitions of the size of a set.
We now consider whether we can utilize the sizes of component sets to indirectly
compute the size of a compound set.

From the definitions of operations of intersection ð \ Þ, union ð [ Þ, and com-
plement ðcÞ of sets, it follows easily that

A[Bj j ¼ Aj j þ Bj j � Aj j \ Bj j ð20:1Þ

jAcj ¼ jUj � jAj ð20:2Þ

From the two equalities, it can be seen that the size of the union can be reduced as
the size of the intersection. But since the elements in intersection A\B are related
to the relation between component sets A and B, so for the size A\Bj j; we are
unable to give a general computation formula based on the size of component sets;
that is, there does not exist a common operation △ such that

A\Bj j ¼ Aj jM Bj j

498 20 Several Measures of Sets and Flexible Sets



Thus, there does not exist a common operation ▽ such that

A[Bj j ¼ Aj jr Bj j

Only in some special situations there are some computation formulas of sizes. In
fact, it is not hard to see:

(1) When A \ B=ф,

jA[Bj ¼ jAj + jBj ð20:3Þ

(2) If A � B; then

jA\Bj ¼ jAj; jA[Bj ¼ jBj ð20:4Þ

(3) If there exists linearly ordered set hL;�i � 2U ; then for arbitrary A,
B 2 hL;�i;

jA\Bj ¼ min jAj; jBjf g ð20:5Þ

jA[Bj ¼ max jAj; jBjf g ð20:6Þ

3. Size of a Cartesian product

Firstly, from the definition of the size of a set, it is not hard to see that for any
two sets X and Y, always

X � Yj j ¼ Xj j � Yj j ð20:7Þ

That is, the size of a product is equal to the product of sizes of factors.
Since the Cartesian product of n sets satisfies

�n
i¼1

Xi ¼ ðX1;X2 � � � � � Xn�1Þ � Xn

Therefore, the above formula can also be generalized. That is, for any n(n > 1) sets
X1;X2; . . .;Xn;

X1X2 � � � � � Xnj j ¼ X1j j � X2j j � � � � � Xnj j ð20:8Þ

4. Size of an orthogonal compound subset

In the following, we consider the size of a compound set formed by the
orthogonal subsets in Cartesian product U � V :
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Let A � U and B � V ; then in Cartesian product U � V ; A is extended as A� V ;
and B is extended as B� U; and the two are orthogonal. It is not hard to see that
A� V \B� U ¼ A� B; and obviously

A� Bj j ¼ Aj j � Bj j ð20:9Þ

Thus,

A� V \U � Bj j ¼ Aj j � Bj j ð20:10Þ

Further,

A� V [U � Bj j ¼ A� Vj j þ U � Bj j � A� V \U � Bj j
¼ Aj j � Vj j þ Uj j � Bj j � Aj j � Bj j ð20:11Þ

Generally, let set Ai � Uiði ¼ 1; 2; . . .; nÞ; denote U1 � U2 � � � �Ui�1 � Ai �
Uiþ 1 � � � � � Un as Ai; then

A1 \A2 \ � � � \An ¼ A1 � A2 � � � � � An

Further,

A1 \A2 \ � � � \Anj j ¼ A1j j � A2j j � � � � � Anj j ð20:12Þ

A1 [A2 [ � � � [Anj j
¼

X
1� i� n

Aij j �
X

1� i� j� n

Aij j � Aj

�� ��� �þ X
1� i� j� k� n

Aij j � Aj

�� �� � Akj j� �

� � � � þ ð1Þnþ 1 A1j j � A2j j � � � � � Anj j ð20:13Þ

20.2 Sizes of a Flexible Set

1. Definition and properties of the size of a flexible set

Let U be a universal set and U be a discrete set, and A be a flexible subset of
U. Since the membership-degree mA(x) = 1 of element x in core core(A), so every
element x in core core(A) all can be regarded as a full member of A. Yet the element
x in boundary boun(A) only belongs to A with degree mA(x), so these elements
cannot be regarded as the full members of A. Then, how do we calculate the size of
flexible set A? Considering the membership-degree of element x in core(A) is 1,
which is just regarded as one element of A, so for any x 2 boun(A), it is appropriate
to take numerical value mA(x) as the element amount of x relative to A. For instance,
when mA(x) = 0.8, then x is regarded as 0.8 member of A, when mA(x) = 0.5, then
x is regarded as 0.5 or a half member of A. Thus, for flexible set A in discrete
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universe of discourse U, we use membership-degree mA(x) to convert and count its
size. Thus, we have

Aj j ¼
X

x2 suppðAÞ
mAðxÞ

We then consider the size of continuous flexible subset A of U when universal
set U is continuous set [a, b]. Similarly, every element in core(A) of flexible set A is
a full member of A, while element x in boun(A) is only a partial member of
A. Therefore, we still use the membership-degree to convert and count the size of
flexible set A. But since here flexible set A is a flexible subset of one-dimensional
continuous set [a, b], its size is described by length but not by the number of
elements. Based on this characteristics of A, we first equally divide interval [a,
b] into n small intervals: [a1, b1], [a2, b2],…, [an, bn] (a1 = a, bn = b), for every
small interval [ai, bi] (i = 1, 2, …, n), take the membership-degree of its center
point; that is, mAðai þ bi

2 Þ; as the uniform membership-degree of all points in [ai, bi];
thus, it can be seen that

mAðai þ bi
2

Þ � ½ai;bi�
�� �� ¼ mAðai þ bi

2
Þ � ðbi � aiÞ

is just the approximate value of size j½ai; bi�j of interval [ai, bi]. Further,Pn
i¼1 mAðai þ bi

2 Þ � ðbi � aiÞ is the approximate value of ∣A∣. Now set ½ai; bi�j j ¼ d !
0; then we have

lim
d!0

Xn
i¼1

mA
ai þ bi

2

� �
� ðbi � aiÞ ¼

Zb

a

mAðxÞdx

this is just the length of flexible set A; thus,

Aj j ¼
Zb

a

mAðxÞdx ¼
Z
U

mAðxÞdx

Thus, the computation problem of the size of flexible subset of continuous set [a,
b] is solved. It can be seen that generalizing this formula into general n-dimensional
measurement space U, it would be

Aj j ¼
ZZ

��
Z
U

mAðx1; x2; . . .; xnÞdx1dx2. . .dxn

To sum up, we give the definition below.
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Definition 20.2 Let U be an n-dimensional measurement space, A be a flexible
subset of U. We denote the size of A by Aj j:
(i) When U is a discrete set,

Aj j ¼
X
x2U

mAðxÞ ð20:14Þ

(ii) When U is a continuous set,

Aj j ¼
ZZ

��
Z
U

mAðx1; x2; . . .; xnÞdx1dx2. . .dxn ð20:15Þ

From the definition, it can be seen that for any flexible set A � U; always

coreðAÞj j\ Aj j\ suppðAÞj j ð20:16Þ

For the size of flexible sets, there are the following properties.

Theorem 20.2 Let U be an n-dimensional measurement space, and A and B be the
flexible subsets of U, then

(i) Aj j � Uj j ðboundednessÞ
(ii) if A � B then Aj j � Bj j ðmonotonyÞ
(iii) Aj j þ Acj j ¼ Uj j ðcomplementarityÞ

Proof From the definition of the size of a flexible set, (i) and (ii) hold viously, we
only prove (iii). By Definition 20.2, when U is a discrete set,

Aj j þ Acj j ¼
X
x2U

mAðxÞþ
X
x2U

ð1� mAðxÞÞ

¼
X
x2U

mAðxÞþ ð1� mAðxÞÞ½ �

¼
X
x2U

1

¼ jUj
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When U is a continuous set,

Aj j þ Acj j ¼
Z
U

mAðxÞdxþ
Z
U

ð1� mAðxÞÞdx

¼
Z
U

½mAðxÞþ ð1� mAðxÞÞ�dx

¼
Z
U

1dx

¼ jUj

(2) Relation between the sizes of a flexible set and its extended core

We find that the sizes of a flexible set and its extended core have the following
relation.

Theorem 20.3 Let A be a flexible subset of n-dimensional measurement space U, if
A is not a Cartesian product, then

coreðAÞþ�� �� ¼ Aj j ð20:17Þ

That is, the size of the extended core of a flexible set is equal to the size of the
flexible set.

Proof From Corollary 5.1 in Sect. 5.6, it is known that the extended cores of
flexible Cartesian products cannot be expressed in a uniform expression of oper-
ations, so Eq. (20.17) is not for flexible Cartesian products. Next, we prove that for
single one-dimensional flexible set, two-dimensional flexible set, and
two-dimensional flexible intersection and flexible union, Eq. (20.17) is tenable.

(1) Let A be a flexible subset of one-dimensional space U = [a, b], whose
membership function is

mAðxÞ ¼

0; a� x� s�A
x�s�A
c�A�s�A

; s�A\x\c�A

1; c�A � x� cþA
sþA �x
sþA �cþA

; cþA \x\sþA

0; sþA � x� b

8>>>>>>>><
>>>>>>>>:
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Then, by the definition of the size of a flexible set, should be

Aj j ¼
Zb

a

mAðxÞdx

¼
Zc�A
s�A

x� s�A
c�A � s�A

dxþ
ZcþA
c�A

1dxþ
ZsþA

cþA

sþA � x
sþA � cþA

dx

¼ c�A � s�A
2

þðcþA � c�A Þþ
sþA � cþA

2

¼ sþA þ cþA
2

� c�A þ s�A
2

¼ mþ
A � m�

A

¼ coreðAÞþ�� ��
Actually, this result can also be obtained by geometrical approach. We know that

the value of definite integral
R b
a mAðxÞdx is the area of the curved side trapezoid

determined by function mA(x) (as shown in Fig. 20.1). But from the figure, it can be
seen that the two opposite vertex triangles over interval s�A ; c

�
A

� �
should be con-

gruent, the two opposite vertex triangles over interval cþA ; sþA
� �

also be congruent.
Therefore, the area of the rectangle S encircled by the three broken straight lines
over interval m�

A ;m
þ
A

� �
just equals to the area of the curved side trapezoid deter-

mined by integrand function mA(x) on the coordinate axes, whereas the area of this
rectangle S is obviously equal to

ðmþ
A � m�

A Þ � 1 ¼ mþ
A � m�

A

m 

1

0
a −

As −
Am −

Ac +
Ac +

Am +
As b x

mA(x)
S 

Fig. 20.1 Illustration of the relation between the sizes of flexible set A and its extended core
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Thus, we have

Zb

a

mAðxÞdx ¼ mþ
A � m�

A

(2) Let A� V be a bar flexible subset in two-dimensional space U � V (U = [a,
b], V = [c, d]) (as shown in Fig. 5.5 of Sect. 5.5.2), whose membership
function is mA�V ðx; yÞ ¼ mAðxÞ ðx 2 U; y 2 VÞ: From the definition of the size
of a flexible set, A� Vj jRR suppðA�VÞmA�Vðx; yÞdxdy ¼

R
suppðAÞ mAðxÞdx

R
V dy;

whereas from (1),
R
suppðAÞ mAðxÞdx ¼ mþ

A � m�
A ; yet

R
V dy ¼ ðd � cÞ;

thus, A� Vj j ¼ ðmþ
A � m�

A Þðd � cÞ; whereas just ðmþ
A � m�

A Þðd � cÞ ¼
coreðA� VÞþ�� ��:

(3) Let A be a circular flexible subset in two-dimensional space U (as shown in
Fig. 3.9 in Sect. 3.3), and let the membership function of A be mA(x, y), whose
graph is shown in Fig. 3.11a, then Aj j ¼ RR

suppðAÞmAðx; yÞdxdy. However, from
the geometric interpretation of double integral, it can be seen that the size Aj j of
circular flexible set is numerically equal to the volume of the round platform
shown in Fig. 3.11a. Any longitudinal section of this round platform that passes
the center axis is a trapezoidal plane. Similar to the trapezoid in Fig. 20.1, by
segmenting and patching of this trapezoidal plane, a rectangle plane can also be
obtained, of which the area equal to that of the trapezoidal plane. Thus, a
cylinder can be obtained whose volume equal to that of the round platform. And
the volume of this cylinder is numerically coreðAÞj j:

(4) Let A� V \U � B be an orthogonal compound flexible set in
two-dimensional space U � V (as shown in Fig. 5.5 of Sect. 5.5.2), whose
membership function is mA�V ðx; yÞ ¼ mAðxÞ ðx 2 U; y 2 VÞ; whose graph is
shown in Fig. 5.9. Similarly, size A� V \U � Bj j is numerically equal to the
volume of the prismoid shown in Fig. 5.9. To find the volume of this pris-
moid, we firstly patch up a wedge separately on the two inclined planes on the
direction of y-axis, making it a semi-prismoid with two right planes on the
direction of y-axis. It can be imagined that this semi-prismoid is also a graph
similar to the bar flexible subset in (2), that is, which is a truncated ridge. We
cut this truncated ridge into three sections, that is, three shorter truncated
ridges. From (2), we can know their volumes are one by one ðmþ

A � m�
A Þ

ðc�B � s�B Þ; ðmþ
A � m�

A ÞðcþB � c�B Þ; ðmþ
A � m�

A ÞðsþB � cþB Þ: Now, as long as
subtracting the volume of the wedges in the first and rear two truncated ridges
from the sum of the three volumes, we can obtain the volume the original
prismoid we try to find. It can be seen that the volume of the wedge is just
half of the volume of the truncated ridge it belongs to; that is, ðmþ

A � m�
A Þ

ðc�B � s�B Þ=2 and ðmþ
A � m�

A ÞðsþB � cþB Þ=2; whereas it is just that
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ðc�B � s�B Þ=2 ¼ c�B � m�
B ; ðsþB � cþB Þ=2 ¼ mþ

B � cþB

Therefore, the volume of the original prismoid is

mþ
A � m�

A

� �
c�B � m�

B

� �þ mþ
A � m�

A

� �
cþB � c�B
� �

þ mþ
A � m�

A

� �
mþ

B � cþB
� � ¼ mþ

A � m�
A

� �
mþ

B � m�
B

� �

It can be seen that the right-hand side of this equation just is the size of the extended
core of A� V \U � B; that is, coreðA� V \U � BÞþ�� ��: Thus,

A� V \U � Bj j ¼ coreðA� V \U � BÞþ�� ��
The fact that the size of a flexible set equals to that of its extended core has great
significance. It can not only make size’s computation simpler, but also provide a
basis for the follow-up relevant theories.

3. Size of a compound flexible set

It is not hard to see that similar to the rigid sets, the sizes of compound flexible
sets also have the following two basic relational expressions:

Acj j ¼ Uj j � Aj j ð20:18Þ

A[Bj j ¼ Aj j þ Bj j � A\Bj j ð20:19Þ

As to the size of intersection A\B; it needs to be analyzed specifically; there is no a
general compound computation rule and only in some special situations can the
compound computation be performed.

Theorem 20.4 Let U be an n-dimensional measurement space, and A and B be
flexible subsets of U.

(i) If A\B ¼ £; then

A[Bj j ¼ Aj j þ Bj j ð20:20Þ

(ii) If A � B; then

A\Bj j ¼ Aj j; A[Bj j ¼ Bj j ð20:21Þ

506 20 Several Measures of Sets and Flexible Sets



(iii) If there exists linearly ordered set hL;�i � 2U ; then for arbitrary A,
B 2 hL;�i;

A\Bj j ¼ min Aj j; Bj jf g ð20:22Þ

A[Bj j ¼ max Aj j; Bj jf g ð20:23Þ

4. The size of a flexible Cartesian product and the size of an orthogonal
compound flexible set

Let flexible set Ai � Ui (i = 1, 2, …, n). From the definition of the size of a
flexible set,

A1 � A2 � � � � � Anj j ¼
ZZ

� � �
Z

suppðA1�A2�����AnÞ

mA1�A2�����Anðx1; x2; . . .; xnÞdx1dx2. . .dxn

ð20:24Þ

Then, for the Cartesian product of flexible sets, can its size be indirectly com-
puted by using the sizes of its factor flexible sets?

Let flexible sets A � U and B � V ; then

jA� Bj ¼
ZZ

suppðA�BÞ
mA�Bðx; yÞdxdy ¼

ZZ
suppðA�BÞ

½w1mAðxÞþw2mBðyÞ�dxdy

¼
ZZ

suppðA�BÞ
½w1mA�V ðx; yÞþw2mU�Bðx; yÞ�dxdy

¼
ZZ

suppðA�BÞ
w1mA�V ðx; yÞdxdyþ

ZZ
suppðA�BÞ

w2mU�Bðx; yÞdxdy

¼ w1

ZZ
suppðA�BÞ

mA�V ðx; yÞdxdyþw2

ZZ
suppðA�BÞ

mU�Bðx; yÞdxdy

¼ w1

Z
suppðAÞ

mAðxÞdx
Z

suppðBÞ

dyþw2

Z
suppðAÞ

dx
Z

suppðBÞ

mBðyÞdy

¼ w1 � Aj j � suppðBÞj j þw2 � suppðAÞj j � Bj j
ð20:25Þ

where w1, w2 2 ð0; 1Þ; w1 + w2 = 1.
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Generally, for flexible set Ai � Ui (i = 1, 2, …, n), we have

A1 � A2 � � � � � Anj j ¼ w1 � A1j j � suppðA2 � A3 � � � � � AnÞj j
þw2 � A2j j � suppðA1 � A3 � � � � � AnÞj j

. . .

þwn � Anj j � suppðA1 � A2 � � � � � An�1Þj j ð20:26Þ

where w1, w2, …, wn 2 (0,1), w1 + w2 + ��� + wn = 1.
On the other hand, from coreðAÞþ � coreðBÞþ � A� B; then

A� Bj j[ coreðAÞþ � coreðBÞþ�� ��
while

coreðAÞþ � coreðBÞþ�� �� ¼ coreðAÞþ�� �� � coreðBÞþ�� �� ¼ Aj j � Bj j

Therefore, we have

A� Bj j[ Aj j � Bj j ð20:27Þ

Then generally, for flexible set Ai � Ui (i = 1, 2, …, n), we have

A1 � A2 � � � � � Anj j[ A1j j � A2j j � � � � � Anj j ð20:28Þ

Next, we consider the computation problem of sizes of compound flexible sets
formed by the orthogonal flexible subsets in a product space.

Let U and V both be one-dimensional measurement spaces, and A and
B separately be the flexible subsets of U and V. In product space U � V ; A is
extended into A� V ; and B is extended into U � B: Then, it is not hard to see that
A� V \U � B � U � V is also a flexible set, while suppðA� V \U � BÞ ¼
suppðA� BÞ; so by the definition of the size of a flexible set,

A� V \U � Bj j ¼
ZZ

suppðA�BÞ
minfmAðxÞ;mBðyÞgdxdy ð20:29Þ

where min{mA(x), mB(y)} is the membership function of intersection A� V \U �
B: Then, the size of union A� V [U � B is

A� V [U � Bj j ¼ A� Vj j þ U � Bj j � A� V \U � Bj j
¼

ZZ
suppðA�VÞ

mAðxÞdxdyþ
ZZ

suppðU�BÞ
mBðyÞdxdy

�
ZZ

suppðA�BÞ
min mAðxÞ;mBðyÞf gdxdy ð20:30Þ
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On the other hand, by Theorem 20.3, it is known that the size of a flexible set is
equal to that of its extended core. Thus,

A� V \U � Bj j ¼ coreðA� V \U � BÞþ�� ��
while

coreðA� V \U � BÞþ ¼ coreðAÞþ � coreðBÞþ

coreðAÞþ � coreðBÞþ�� �� ¼ coreðAÞþ�� �� � coreðBÞþ�� ��
Therefore,

A� V \U � Bj j ¼ coreðA� V \U � BÞþ�� �� ¼ coreðAÞþ � coreðBÞþ�� ��
¼ coreðAÞþ�� �� � coreðBÞþ�� ��

And then, by

coreðA� V [U � BÞþ ¼ coreðA� VÞþ þ coreðU � BÞþ � coreðA� V \U
� BÞþ

coreðA� VÞþ�� �� ¼ coreðAÞþ�� �� � Vj j
coreðU � BÞþ�� �� ¼ coreðBÞþ�� �� � Uj j

and it follows that

A� V [U � Bj j ¼ coreðA� V [U � BÞþ�� ��
¼ coreðA� VÞþ�� ��þ coreðU � BÞþ�� ��� coreðA� V \U � BÞþ�� ��
¼ coreðAÞþ�� �� � Vj j þ coreðBÞþ�� �� � Uj j � coreðAÞþ�� �� � coreðBÞþ�� ��

Thus, we obtain a group of indirect computation formulas of the sizes of
orthogonal compound flexible subsets, namely

A� V \U � Bj j ¼ coreðAÞþ�� �� � coreðBÞþ�� �� ð20:31Þ

A� V [U � Bj j ¼ coreðAÞþ�� �� � Vj j þ coreðBÞþ�� �� � Uj j � coreðAÞþ�� �� � coreðBÞþ�� ��
ð20:32Þ
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Generally, let flexible set Ai � Ui (i = 1, 2,…, n), and denote�U1 � U2 � � � � �
Ui�1 � Ai � Uiþ 1 � � � � � Un as Ai, then

A1 \A2 \ � � � \Anj j ¼ coreðA1Þþ
�� �� � coreðA2Þþ

�� �� � � � � � coreðAnÞþ
�� �� ð20:33Þ

A1 [A2 [ � � � [Anj j
¼

X
1� i� n

coreðAiÞþ
�� ��� X

1� i� j� n

coreðAiÞþ
�� �� � coreðAjÞþ

�� ��� �

þ
X

1� i� j� k� n

coreðAiÞþ
�� �� � coreðAjÞþ

�� �� � coreðAkÞþ
�� ��� �

� � � � þ ð1Þnþ 1 coreðA1Þþ
�� �� � coreðA2Þþ

�� �� � � � � � coreðAnÞþ
�� �� ð20:34Þ

20.3 Share of a Set

1. Definition and properties of the share of a set

Definition 20.22 Let U be a bounded set as a universal set, and A�U; set

sharðAÞ ¼ jAj
jUj ð20:35Þ

to be called the share of subset A in universal set U, or simply the share of set A.

Example 20.2 Let U = {a, b, c, d, e} and A = {a, b, c}, then

sharðAÞ ¼ 3=5 ¼ 0:6

It can be seen that the share shar(�) can also be viewed as a function on power set
2U. Then, when U is a bounded discrete set, the range of shar(x) is
0; 1

n ;
2
n ; . . .;

n�1
n ; 1

	 

; when U is a bounded continuous set, the range of shar(x) is

[0,1].
Obviously, share is also a numerical feature of a set, and it is a relative measure

of a set. It is not hard to prove that the share satisfies the following basic properties.

Theorem 20.5 Let U be a bounded set as a universal set.

(i) Boundedness: shar(∅) = 0 and shar(U) = 1;
(ii) Monotony: 8 A;B 2 2U ; if A � B; then shar(A) ≤ shar(B).
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2. Shares of a compound set

From the definition of the share, the shares of compound subsets A \ B,
A [ B, and Ac 2 2U should be

sharðA\BÞ ¼ jA\Bj
jUj ð20:36Þ

sharðA[BÞ ¼ jA[Bj
jUj ð20:37Þ

sharðAcÞ ¼ jAcj
jUj ð20:38Þ

This is the method to compute the share of a compound set from the definition of
the share. Next, we discuss the method to compute the share of a compound set with
the share of its component sets. It can be seen that the share computation of a
compound set in fact is completely decided by its size, so from the previous
compound computation of sizes, it is known that for arbitrary A, B 2 2U ; there are
also the following two basic relational expressions:

sharðAcÞ ¼ 1� sharðAÞ ð20:39Þ

sharðA[BÞ ¼ sharðAÞþ sharðBÞ � sharðA\BÞ ð20:40Þ

Since there is no a general computation formula for the size |A\B|, so for share
shar(A\B), there is no a general computation formula either. However, in special
situations, there are compound computation formulas for shares.

Theorem 20.6 Let U be a universal set, and A and B are subsets of U, then

(i) If A \ B = ∅, then

sharðA[BÞ ¼ sharðAÞþ sharðBÞ ð20:41Þ

(ii) If A � B; then

sharðA\BÞ ¼ sharðAÞ; sharðA[BÞ ¼ sharðBÞ ð20:42Þ

(iii) If there exists linearly ordered set hL;�i � 2U ; then for arbitrary A,
B 2 hL;�i;

sharðA\BÞ ¼ min sharðAÞ; sharðBÞf g ð20:43Þ

sharðA[BÞ ¼ max sharðAÞ; sharðBÞf g ð20:44Þ
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Proof We prove the first equality of (iii):

sharðA\BÞ ¼ A\Bj j
Uj j

¼ min Aj j; Bj jf g
Uj j

¼ min
Aj j
Uj j ;

Bj j
Uj j

� �

¼ minfsharðAÞ; sharðBÞg

Similarly, the second equality of (iii) can also be proved.
Besides, from Eq. (20.39), we have

sharðAÞþ sharðAcÞ ¼ 1 ð20:45Þ

That is, the sum of shares of complementary sets is 1. More generally, we have
the following theorem.

Theorem 20.7 Let U be a universal set, and Ai � U;
S

i Ai ¼ U;
T

i Ai ¼ £; i = 1,
2, …, n, then

Xn
i¼1

sharðAiÞ ¼ 1 ð20:46Þ

We call equalities (20.45) and (20.46) to be the complement law of shares.

From the definition of the share and the share computation formulas of com-
pound sets, we can also have the following two theorems.

Theorem 20.8 Let A and B be two subsets of one and the same universal set. Then,

sharðA\BÞ ¼ 1; if and only if sharðAÞ ¼ 1 and sharðBÞ ¼ 1:

Proof

(1) Let A, B�U: Suppose sharðA\BÞ ¼ 1: By the definition of the share, A\Bj j
Uj j ¼

1; thus A\Bj j ¼ Uj j; since A, B�U; then must A = U and B = U. Thus, it
follows that shar(A) = 1 and shar(B) = 1.

Conversely, suppose shar(A) = 1 and shar(B) = 1. Then, it follows that
A = U and B = U. Thus, A\B ¼ U: Therefore, it follows that sharðA\BÞ ¼ 1:

(2) Let A�U and B�V : Suppose sharðA\BÞ ¼ 1: By the definition of the share,
A\Bj j
U�Vj j ¼ 1, while A\Bj j ¼ A� Bj j ¼ Aj j � Bj j. Thus, A\Bj j

U�Vj j ¼ Aj j� Bj j
U�Vj j ¼ Aj j� Bj j

Uj j� Vj j ¼ 1,

and then Aj j
Uj j � Bj j

Vj j ¼ 1; thus, Aj j
Uj j ¼ 1 and Bj j

Vj j ¼ 1, so Aj j ¼ Uj j and Bj j ¼ Vj j, since
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A�U and B�V ; so must A = U and B = V. Thus, it follows that shar(A) = 1 and
shar(B) = 1.

Conversely, Suppose shar(A) = 1 and shar(B) = 1. Then, A = U and
B = V. Thus, A\B ¼ A� B ¼ U � V : Therefore, it follows that
ðA\BÞ ¼ sharðU � VÞ ¼ 1:

Theorem 20.9 Let A and B be two subsets of one and the same universal set. If
shar(A) = 1 or shar(B) = 1, then shar(A [ B) = 1.

Proof

(1) Let A, B�U; and shar(A) = 1 or shar(B) = 1. By the definition of the share, it
must follow that A = U or B = U; therefore, A[B = U; thus, shar(A[B) = 1.

(2) Let A�U; B�V ; and shar(A) = 1 or shar(B) = 1. By the definition of the
share, it must follow that A = U or B = V; therefore, A[B ¼ ðA� VÞ [ ðB�
UÞ ¼ U � V ; thus, shar(A [ B) = 1.

3. Share of a Cartesian product and share of an orthogonal compound set

Let A � U and B � V ; then A × B � U × V, and from A� Bj j ¼ Aj j � Bj j; we
have

sharðA� BÞ¼ A� Bj j
U � Vj j ¼

Aj j � Bj j
Uj j � Vj j ¼

Aj j
Uj j �

Bj j
Vj j = sharðAÞ � sharðBÞ

That is,

sharðA� BÞ ¼ sharðAÞsharðBÞ ð20:47Þ

That is to say, the share of a product is equal to the product of shares of factors.
Let A � U and B � V : From A� V \B� U ¼ A� B; it follows that

sharðA� V \B� UÞ ¼ sharðA� BÞ ¼ sharðAÞsharðBÞ

sharðA� V [U � BÞ ¼ sharðA� VÞþ sharðU � BÞ � sharðA� V \B� UÞ
¼ sharðAÞsharðVÞþ sharðUÞsharðBÞ � sharðAÞsharðBÞ
¼ sharðAÞ � 1 þ 1 � sharðBÞ � sharðAÞsharðBÞ
¼ sharðAÞþ sharðBÞ � sharðAÞsharðBÞ

Denote A� V as A and U � B as B, then

sharðA\BÞ ¼ sharðAÞsharðBÞ ð20:48Þ

sharðA[BÞ ¼ sharðAÞþ sharðBÞ � sharðAÞsharðBÞ ð20:49Þ
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That means the share of the intersection of extended sets is equal to the product of
the shares of the original sets, and that the share of the union of extended sets is
equal to the difference between sum and product of the shares of the original sets.

Generally, let set Ai � Uiði ¼ 1; 2; . . .; nÞ; denote U1 � U2 � � � � � Ui�1 � Ai �
Uiþ 1 � � � � � Un as Ai. Then

sharðA1 \A2 \ � � � \AnÞ ¼ sharðA1ÞsharðA2Þ. . .sharðAnÞ ð20:50Þ

sharðA1 [A2 [ � � � [AnÞ ¼
X

1� i� n

sharðAiÞ �
X

1� i� j� n

sharðAiÞsharðAjÞ

þ
X

1� i� j� k� n

sharðAiÞsharðAjÞsharðAkÞ

� � � � þ ð1Þnþ 1sharðA1ÞsharðA2Þ. . .sharðAnÞ
ð20:51Þ

20.4 Share of a Flexible Set

1. Definitions and properties of the Shares of a flexible set

By the definition of the size of a flexible set above, we directly give the defi-
nition of the share of a flexible set.

Definition 20.4 Let U be an n-dimensional measurement space, and A is a flexible
subset of U, set

sharðAÞ ¼ Aj j
Uj j ð20:52Þ

to be called the share of flexible subset A in universal set U, or simply the share of
flexible set A.

From this definition and the definition of the size of a flexible set, we have the
following formulas:

(i) When U is a discrete set,

sharðAÞ ¼

P
x2suppðAÞ

mAðxÞ

Uj j ð20:53Þ
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(ii) When U is a continuous set,

sharðAÞ ¼
RR � � � R suppðAÞ mAðx1; x2; . . .; xnÞdx1dx2. . .dxn

Uj j ð20:54Þ

About the shares of flexible sets, there are the following basic properties.

Theorem 20.10 Let A and B be flexible subsets of n-dimensional measurement
space U. Then,

(i) shar(A) < 1 (boundedness)
(ii) If A � B; then shar(A) < shar(B) (monotony)
(iii) shar(core(A)+) = shar(A) (here A is not a flexible product set)

Properties (i) and (ii) are obvious; property (iii) can be obtained from the
definition of the share of a flexible set and Theorem 20.3.

2. Share of a compound flexible set

(1) Directly computing based on the definition of share

Based on the definition of the share of a flexible set,

sharðAcÞ ¼ Acj j
Uj j ð20:55Þ

shar A\Bj j ¼ A\Bj j
Uj j ð20:56Þ

shar A[Bj j ¼ A[Bj j
Uj j ð20:57Þ

(2) Indirectly computing based on the shares of component sets

The share computation of the compound flexible sets has similar results to the
ordinary compound sets. That is, for arbitrary flexible subsets A, B in space U,
always

sharðAcÞ ¼ 1� sharðAÞ ð20:58Þ

shar A[Bð Þ ¼ sharðAÞþ sharðBÞ � shar A\Bð Þ ð20:59Þ

In particular, the following theorem follows.

Theorem 20.11 Let A and B be flexible subsets of n-dimensional measurement
space U.
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(i) If A \ B = ∅, then

shar A[Bð Þ ¼ sharðAÞþ sharðBÞ ð20:60Þ

(ii) If A � B; then

shar A\Bð Þ ¼ sharðAÞ and shar A[Bð Þ ¼ sharðBÞ ð20:61Þ

(iii) If there exists linearly ordered set hL;�i � 2U ; then for arbitrary A, B 2
hL;�i; then

sharðA\BÞ ¼ min sharðAÞ; sharðBÞf g ð20:62Þ

sharðA[BÞ ¼ max sharðAÞ; sharðBÞf g ð20:63Þ

Besides, from Eq. (20.54), we have

sharðAÞþ sharðAcÞ ¼ 1 ð20:64Þ

That is, the sum of the shares of complementary flexible sets is 1. More generally,
we have the following theorem.

Theorem 20.12 Let A1, A2, …, An be a group of flexible subsets of n-dimensional
measurement space U, they just form a flexible partition of space U, then

Xn
i¼1

sharðAiÞ ¼ 1 ð20:65Þ

So, the shares of flexible sets still obey the complement law of shares.

3. Shares of flexible Cartesian product and orthogonal compound flexible sets

Let flexible set Ai � Uiði ¼ 1; 2; . . .; nÞ: By the definition of the share of a
flexible set, it follows that

sharðA1 � A2 � � � � � AnÞ ¼ A1 � A2 � . . .� Anj j= U1 � U2 � � � � � Unj j
¼

ZZ
� � �

Z
suppðA1�A2�����AnÞ

mA1�A2�����Anðx1; x2; . . .; xnÞdx1dx2. . .dxn= U1 � U2 � � � � � Unj j

ð20:66Þ

But from Eq. (20.25), for flexible sets A � U and B � V ; then

A� Bj j ¼ w1 � Aj j � suppðBÞj j þw2 � suppðAÞj j � Bj j
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Thus, we have

sharðA� BÞ ¼ A� Bj j= U � Vj j
¼ ðw1 � Aj j � suppðBÞj j þw2 � suppðAÞj j � Bj jÞ= U � Vj j
¼ ðw1 � Aj j � suppðBÞj jÞ= U � Vj j þ ðw2 � suppðAÞj j � Bj jÞ= U � Vj j
¼ w1sharðAÞ sharðsuppðBÞÞþw2sharðsuppðAÞÞsharðBÞ

ð20:67Þ

where w1;w2 2 ð0; 1Þ; w1 + w2 = 1.
Generally, from Eq. (20.26), for flexible sets Ai � Uiði ¼ 1; 2; . . .; nÞ;

sharðA1 � A2 � � � � � AnÞ ¼ w1sharðA1Þshar(suppðA2 � A3 � � � � � AnÞÞ
þw2sharðA2Þshar(suppðA1 � A3 � � � � � AnÞÞ

. . .

þwnsharðAnÞshar(suppðA1 � A2 � � � � � An�1ÞÞ
ð20:68Þ

where w1, w2, …, wn 2 ð0; 1Þ; w1 + w2 + ��� + wn = 1.
On the other hand, from Eq. (20.28), that is

A1 � A2 � � � � � Anj j[ A1j j � A2j j � � � � � Anj j

we have

sharðA1 � A2 � � � � � AnÞ[ sharðA1ÞsharðA2Þ. . .sharðAnÞ ð20:69Þ

Next, we consider the computation problem of the share of compound flexible
sets formed by orthogonal flexible subsets in a product space.

Let U and V both be one-dimensional measurement spaces, and A and B be
separately the flexible subsets of U and V. From the definition of the share of a
flexible set,

sharðA� V \U � BÞ ¼ A� V \U � Bj j= U � Vj j
¼

ZZ
suppðA�BÞ

minfmAðxÞ;mBðyÞgdxdy= U � Vj j ð20:70Þ
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sharðA� V [U � BÞ ¼ sharðA� VÞþ sharðU � BÞ � sharðA� V \U � BÞ
¼

ZZ
suppðA�VÞ

mAðxÞdxdy= U � Vj j

þ
ZZ

suppðU�BÞ
mBðyÞdxdy= U � Vj j

�
ZZ

suppðA�BÞ
minfmAðxÞ;mBðyÞgdxdy= U � Vj j

ð20:71Þ

But on the other hand, from the above section, we have already known that

A� V \U � Bj j ¼ coreðAÞþ�� �� � coreðBÞþ�� ��
Consequently,

shar A� V \U � Bj j ¼ ð coreðAÞþ�� �� � coreðBÞþ�� ��Þ= U � Vj j
¼ ð coreðAÞþ�� �� � coreðBÞþ�� ��Þ=ð Uj j � Vj jÞ
¼ ð coreðAÞþ�� ��= Uj jÞ � ð coreðBÞþ�� ��= Vj jÞ
¼ ð Aj j= Uj jÞ � ð Bj j= Vj jÞ
¼ sharðAÞsharðBÞ

And from

A� Vj j ¼ coreðA� VÞþ�� ��; U � Bj j ¼ coreðU � BÞþ�� ��
it follows that

shar A� Vð Þ ¼ A� Vj j= U � Vj j ¼ Aj j= Uj j ¼ sharðAÞ

shar U � Bð Þ ¼ U � Bj j= U � Vj j ¼ Bj j= Vj j ¼ sharðBÞ

Thus,

sharðA� V [U � BÞ ¼ sharðA� V) + shar(U � BÞ � sharðA� V \U � BÞ
¼ sharðAÞþ sharðBÞ � sharðAÞsharðBÞ
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As thus, we obtain a group of indirect computation formulas of the shares of
orthogonal compound flexible sets, namely

sharðA� V \U � BÞ ¼ sharðAÞsharðBÞ ð20:72Þ

sharðA� V [U � BÞ ¼ sharðAÞþ sharðBÞ � sharðAÞsharðBÞ ð20:73Þ

Generally, let flexible sets Ai � Uiði ¼ 1; 2; . . .; nÞ; denote U1 � U2 � � � � �
Ui�1 � Ai � Uiþ 1 � � � � � Un as Ai, then

sharðA1 \A2 \ � � � \AnÞ ¼ sharðA1ÞsharðA2Þ. . .sharðAnÞ ð20:74Þ

sharðA1 [A2 [ � � � [AnÞ ¼
X

1� i� n

sharðAiÞ �
X

1� i\j� n

sharðAiÞsharðAjÞ

þ
X

1� i\j\k� n

sharðAiÞsharðAjÞsharðAkÞ

� � � � þ ð1Þnþ 1sharðA1ÞsharðA2Þ. . .sharðAnÞ
ð20:75Þ

20.5 Inclusion-Degree and Equality-Degree

1. Partial inclusion and partial equality

“Inclusion” and “equality” are two relations between sets, but “intersection” can
also be viewed as inclusion to some degree or equality to some degree, or in other
words “partial inclusion” and “partial equality.”

Definition 20.5 Let A and B be two sets.

(i) If A \ B ≠ ∅, then we say set A partially contains set B and set B partially
contains set A, or to say that set A and set B are partially equal.

(ii) If A \ B ≠ ∅ and A 6� B; B 6� A; then we say that set A properly partially
contains set B and set B properly partially contains set A, or to say that set
A and set B are properly partially equal.

Definition 20.6 Let A and B be two flexible sets.

(i) If coer(A)+ \ coer(B)+ ≠ ∅, then we say that flexible set A partially contains
flexible set B and flexible set B partially contains flexible set A, or to say that
flexible set A and flexible set B are partially equal.

(ii) If coer(A)+ \ coer(B)+ ≠ ∅ and coer(A)þ 6� coerðBÞþ ; coerðBÞþ 6�
coer(A)þ ; then we say that flexible set A properly partially contains flexible
set B and flexible set B properly partially contains flexible set A, or to say that
flexible set A and flexible set B are properly partially equal.
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Relatively to the partial inclusion, usual inclusion “�” is a complete inclusion.
Conversely speaking, the complete inclusion is a special case of the partial inclu-
sion. Likewise, relatively to the partial equality, usual equality “=” is a complete
equality. Conversely speaking, the complete equality is a special case of the partial
equality.

Obviously, the relations of partial inclusion and partial equality between sets
(including flexible sets) all satisfy symmetry. But it is not hard to see that they are
not necessarily to satisfy transitivity.

Theorem 20.13

(1) Let A, B, and C be three different non-empty sets. Then, a sufficient and
necessary condition for that sets A, B, and C are of partial inclusion in order
and the partial inclusion relation satisfies transitivity is

ðA\BÞ \ ðB\CÞ 6¼ £ ð20:76Þ

(2) Let A, B, and C be three different non-empty flexible sets, then a sufficient and
necessary condition for that flexible sets A, B, and C are of partial inclusion in
order and the partial inclusion relation satisfies transitivity is

ðcoreðAÞþ \ coreðBÞþ Þ \ ðcoreðBÞþ coreðCÞþ Þ 6¼ £ ð20:77Þ

Proof We prove (1) first.
Sufficiency: Suppose ðA\BÞ \ ðB\CÞ 6¼ £: since ðA\BÞ \ ðB\CÞ ¼

A\B\C ¼ A\C \B; so A\C \B 6¼ £; and then A\C 6¼ £: While
ðA\BÞ \ ðB\CÞ 6¼ £ is equivalent to A\B 6¼ £ and B\C 6¼ £; while A\B 6¼
£ and B\C 6¼ £ are equivalent to A being partially contained in B and B being
partially contained in C; additionally, A\C 6¼ £ is equivalent to A being partially
contained in C. Thus, as long as A is partially contained in B and B is partially
contained in C, then A is partially contained in C.

Necessity (by contraposition):
Suppose ðA\BÞ \ ðB\CÞ 6¼ £: Then ðA\BÞ 6¼ £ or ðB\CÞ 6¼ £; thus, A is

not partially contained in B or B is not partially contained in C. Also since
ðA\BÞ \ ðB\CÞ ¼ A\C \B; so also A\C 6¼ £ or B 6¼ £; but known B 6¼ £;
so only A\C 6¼ £; thus, A is not partially contained in C.

Thus, (1) is proved.
Similarly, (2) can also be proved.

Example 20.3 Let U, V, and W be three different measurement spaces, and A, B,
and C are three subsets or flexible subsets that are pairwise orthogonal in product
space U × V × W. It is not hard to verify that A, B, and C are of partial inclusion in
order, and the partial inclusion relation satisfies transitivity.
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It is clear that partial equality relation and its transitivity have also the sufficient
and necessary condition similar to Theorem 20.13.

2. Definitions of the inclusion-degree and equality-degree

Since there are different cases of “parts,” we can use certain measures to quantify
“partial inclusion” and “partial equality.”

Definition 20.25 Let U be a bounded set as a universal set, and A, B � U. Set

contðA;BÞ ¼ A\Bj j
Aj j ð20:78Þ

to be called the degree of set A being contained in set B, or the degree of set
B containing set A, short for the degree of inclusion, written inclusion-degree, of
B to A.

From Eq. (20.78), it can be seen that when A \ B = ∅, cont(A, B) = 0; when
A \ B = A, cont(A, B) = 1; when A \ B ≠ ∅ and A \ B ≠ B, 0 < cont(A,
B) < 1, which indicates that set A is contained in set B with degree cont(A, B). It can
be seen that the measure of inclusion-degree not only can quantify the “partial
inclusion” between sets, but also can describe “non-inclusion” and “complete
inclusion” between sets; that is, it uniforms “non-inclusion,” “complete inclusion,”
and “partial inclusion” between sets.

Note that inclusion-degree portrays the approximate degree for the inclusion
relation, but not the membership-degree or consistency-degree for inclusion rela-
tion. In fact, inclusion relation is a rigid relation, while “basically containing,”
”rather containing,” and “nearly containing” are flexible relations. Inclusion-degree
is a kind of measure for inclusion; on the range of this measure, the flexible
linguistic values of ”basically containing,” “rather containing,” and “nearly con-
taining” can be defined.

Similarly, we can also use a certain measure to quantify the “partial equality”
between sets.

Definition 20.8 Let U be a bounded set as a universal set, and A and B�U: Set

equaðA;BÞ ¼ A\Bj j
A[Bj j ð20:79Þ

to be called the degree of equality, written equality-degree, between set A and set B.

From Eq. (20.79), it can be seen that when A\B 6¼ £; equa(A, B) = 0; when
A\B 6¼ £ and A = B, equa(A, B) = 1; when A\B 6¼ £ and A ≠ B, then A\B �
A[B; thus, 0 < equa(A, B) < 1, which indicates that set A and set B are equal with
degree equa(A, B). This shows that the measure of equality-degree not only can
quantify “partial equality” between sets, but also can describe “non equality” and
“complete equality” between sets; that is, it uniforms the “non equality,” “complete
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equality,” and “partial equality” between sets. And we can define the flexible
linguistic values of “(being) basically equal,” “(being) rather equal,” and “(being)
nearly equal.”

Definition 20.9 Let U be a bounded measurement space, and A and B be flexible
subsets of U, set

contðA;BÞ ¼ coreðAÞþ \ coreðBÞþ�� ��
coreðAÞþ�� �� ð20:80Þ

to be called the degree of flexible set A being contained in flexible set B, or the
degree of flexible set B containing flexible set A, simply the degree of inclusion,
written inclusion-degree, of flexible set B to flexible set A.

Of course, conceptually speaking, it should be

contðA;BÞ ¼ A\Bj j
Aj j ð20:81Þ

and

(i) When U is a discrete set,

contðA;BÞ ¼
P

x2suppðA\BÞ mA\Bðx1; x2; . . .; xnÞP
x2suppðAÞ mAðx1; x2; . . .; xnÞ ð20:82Þ

(ii) When U is a continuous set,

contðA;BÞ ¼
RR � � � R suppðA\BÞ mA\Bðx1; x2; . . .; xnÞdx1dx2. . .dxnRR � � � R suppðAÞ mAðx1; x2; . . .; xnÞdx1dx2. . .dxn ð20:83Þ

Definition 20.10 Let U be a bounded measurement space, and A and B be the
flexible subsets of U, set

equaðA;BÞ ¼ coreðAÞþ \ coreðBÞþ�� ��
coreðAÞþ [ coreðBÞþ�� �� ð20:84Þ

to be called the degree of equality, written equality-degree, between flexible set
A and flexible set B.
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Similarly, conceptually speaking, it should be

equaðA;BÞ ¼ A\Bj j
A[Bj j ð20:85Þ

and

(i) When U is a discrete set,

equaðA;BÞ ¼
P

x2suppðA\BÞ mA\Bðx1; x2; . . .; xnÞP
x2suppðA[BÞ mA[Bðx1; x2; . . .; xnÞ ð20:86Þ

(ii) When U is a continuous set,

equaðA;BÞ ¼
RR � � � R suppðA\BÞ mA\Bðx1; x2; . . .; xnÞdx1dx2. . .dxnRR � � � R suppðA[BÞ mA[Bðx1; x2; . . .; xnÞdx1dx2. . .dxn ð20:87Þ

It can be seen that the inclusion-degree, equality-degree, and share of sets are all
defined on the basis of the sizes of sets. Then, are there connections between them?
The answer is affirmative. In fact, for arbitrary A, B 2 U, since

contðA;BÞ ¼ A\Bj j
Aj j ¼ A\Bj j= Uj j

Aj j= Uj j ¼ sharðA\BÞ
sharA

Therefore,

contðA;BÞ ¼ sharðA\BÞ
sharA

ð20:88Þ

Similarly, it can follow that

equaðA;BÞ ¼ sharðA\BÞ
sharðA[BÞ ð20:89Þ

The two equalities reveal the relation between the share of sets and the
inclusion-degree and equality-degree between sets. They can also be viewed as
another definition of the inclusion-degree and equality-degree between sets. Since
the inclusion-degree and equality-degree between flexible sets are defined based on
the their extended cores, the latter are rigid sets, so there is also such relations
between the share of flexible sets and the inclusion-degree and equality-degree
between flexible sets.
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3. Basic properties of inclusion-degree and equality-degree

Inclusion-degree and equality-degree are two kinds of measures of the relations
between sets. From the definition, it is not hard to verify that the inclusion-degree
and equality-degree between sets (including flexible sets) have the following basic
properties.

Theorem 20.14 Let U be a bounded measurement space, and A and B be subsets
or flexible subsets of U, then

(i) 0 ≤ cont(A, B) ≤ 1.
(ii) cont(A, B) = 0, if and only if A \ B = ∅.
(iii) cont(A, B) = 1, if and only if A \ B = A, that is, A � B:

Theorem 20.15 Let U be a bounded measurement space, and A and B are the
subsets or flexible subsets of U, then

(i) 0 ≤ equa(A, B) ≤ 1.
(ii) equa(A, B) = 0, if and only if A \ B = ∅.
(iii) equa(A, B) = 1, if and only if A = B.

Theorem 20.16 Let U, V, and W are three different measurement spaces, and A, B,
and C are three subsets or flexible subsets that are pairwise orthogonal in product
space U × V × W, then

contðA;CÞ ¼ contðA;BÞ � contðB;CÞ ð20:90Þ
Proof Let A, B, and C be rigid subsets. Thus,

contðA;BÞ � contðB;CÞ ¼ A\Bj j
Aj j � B\Cj j

Bj j

¼ A\Bj j� B\Cj j
Aj j� Bj j ¼ ðA\BÞ \ ðB\CÞj j

Aj j� Bj j ðbecause A and B are orthogonal,

and B and C are orthogonal; so

A\B and B\C are also

orthogonalÞ
¼ A\B\Cj j

Aj j� Bj j ¼ ðA\CÞ \Bj j
Aj j� Bj j ¼ A\Cj j� Bj j

Aj j� Bj j ðA\C and B are orthogonalÞ

¼ A\Cj j
Aj j ¼ contðA;CÞ

that is,

contðA;CÞ = contðA;BÞ � contðB;CÞ

Similarly, we can prove when A, B, and C are flexible subsets, also
contðA;CÞ = contðA;BÞ � contðB;CÞ.
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It is clear that partial equality relation has also the property similar to
Theorem 20.16.

20.6 Partial Correspondence and Correspondence-Rate

In Sect. 9.1, we discussed the correspondence between two sets; in this section, we
further discuss partial correspondence between two sets and its measure.

Definition 20.11 Let A and B be two sets. If to partial x2A, or in other wards, to
each x 2 A1 � A � ðA1 6¼ £Þ; there corresponds a y2B, then we say that set A is
partially corresponded by set B, or set B corresponds to a part of set A. This
relationship between sets A and B is called the partial correspondence.

In the sense of membership, a flexible set is completely represented by its
extended core, so the partial correspondence between flexible sets is the following
definition.

Definition 20.12 Let A and B be two flexible sets. if to partial x 2 core(A)+, or in
other wards, to each x 2 A1 � coreðA1Þþ ðA1 6¼ £Þ, there corresponds a y 2 core
(B)+, then we say that flexible set A is partially corresponded by flexible set B, or
flexible set B corresponds to a part of flexible set A. This relationship between
flexible sets A and B is called the partial correspondence.

Relatively to the partial correspondence, the correspondence “ 7! ” in Sect. 9.1 is
an complete correspondence. Conversely speaking, the complete correspondence
7! is a special case of the partial correspondence.

It is not hard to see that partial correspondence (relation) between sets is not
necessarily to satisfy transitivity.

Theorem 20.17 Let A, B, and C are three non-empty sets, there is partial corre-
spondence relation fA–B from A to B, and there is partial correspondence relation
fB–C from B to C, then A is partially corresponded by C, or C corresponds to a part
of set A, if and only if,

fA�BðAÞ \ f�1
B�CðCÞ 6¼ £ ð20:91Þ

Proof This theorem is to say that the intersection of the image of partial corre-
spondence relation fA–B and the inverse image of partial correspondence relation
fB–C is not empty is a sufficient and necessary condition for that the partial corre-
spondence relation between sets A, B, and C has transitivity. Because
fA�BðAÞ \ f�1

B�CðCÞ � B, fA�BðAÞ \ f�1
B�CðCÞ 6¼ £ means that there is at least an

y 2 B, which is the image of a certain x 2 A as well as the inverse image of a
certain z 2 C. Then, through this y, the z in C just corresponds to the x in A. Thus,
A is partially corresponded by C.
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Otherwise, if fA�BðAÞ \ f�1
B�CðCÞ 6¼ £, then it means that there is no such y 2 B,

which is the image of a certain x 2 A as well as the inverse image of a certain
z 2 C. Thus, any x 2 A could not be corresponded by elements in C. Therefore,
A is not (partially) corresponded by C. ■

Next, we analyze the relationship between the “inclusion” and “correspondence”
between two sets.

Let set A be partially contained in set B, then there is x 2 A, and this x 2 B too;
thus x 7! x is just a correspondence between the elements of A and B. This shows
that set A is partially corresponded by set B. Thus, partial inclusion can be viewed
as a special case of partial correspondence. Similarly, the inclusion between sets can
also be viewed as a special case of correspondence between sets.

Definition 20.13 Let A and B be two sets, C�A� B be a correspondence relation
from A to B, and A1 = {x | (x, y) 2 C}. Set

corrðA;BÞ ¼ A1j j
Aj j ð20:92Þ

to be called the rate of correspondence, simply written correspondence-rate, of set
B to set A; or, the correspondence-rate of correspondence (relation) from A to B.

Definition 20.13′ Let A and B be two flexible sets, C�core(A)þ � coreðBÞþ be a
correspondence relation from A to B, and A1 = {x | (x, y) 2 C}. Set

corrðA; BÞ ¼ A1j j
coreðAÞþ�� �� ð20:93Þ

to be called the rate of correspondence, simply written correspondence-rate, of
flexible set B to flexible set A; or, the correspondence-rate of correspondence (re-
lation) from A to B.

Actually, for a flexible set, its size is equal to the size of its extended core, so
A1j j

coreðAÞþj j is also equal to A1j j
Aj j .

Since A1j j
Aj j ¼ sharðA1Þ; the correspondence-rate of set B to set A is just the share of

subset A1 in A.
Obviously, when A1 6¼ £; corrðA, B) = 0; when A1 6¼ £ and A1 � A; 0 < corr

(A, B) < 1; when A1 = A, corr(A, B) = 1. And vice versa.
As thus, the “correspondence-rate” unifies “correspondence”(i.e., “complete

correspondence”), “partial correspondence,” and “non correspondence” between
sets, and which can be used to define these three rigid linguistic values. In par-
ticular, “partial correspondence” is quantified into number set (0, 1), which can be
called the range of correspondence-rate. Further, we can also define the flexible
linguistic values: “rather corresponding,” “basically corresponding,” and “roughly
corresponding” on the range (0, 1) of correspondence-rates. These flexible linguistic
values as relationship are some flexible relations.
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Actually, a correspondence is also a transformation, and the correspondence-rate
is also transformation rate. Therefore, for the partial correspondence relation with
transitivity, the partial correspondence from A to C is also the product of the partial
correspondence from A to B and the partial correspondence from B to C. Thus, the
correspondence-rate of C to A is also the product of the correspondence-rate of B to
A and the correspondence-rate of C to B.

Theorem 20.18 Let A, B, and C be three non-empty sets. If A, B, and C are partial
correspondence in order, and the partial correspondence relation satisfies transi-
tivity, then

corrðA;CÞ ¼ corrðA;BÞ � corrðB;CÞ ð20:94Þ

We call Eq. (20.94) to be the transitive formula of correspondence-rates.

In the following, we analyze the relation between the inclusion-degree and
correspondence-rate between sets.

Let sets A and B be the two subsets of universal set U, then,

contðA;BÞ ¼ A\Bj j
Aj j

corrðA;BÞ ¼ A1j j
Aj j ; A1 ¼ fxjðx; xÞ 2 R � A� Bg

Now we consider if there is A1 = A\B?

(1) From the expression of definition of A1, it can be seen that when A\B = ∅,
necessarily A1 = ∅; and vice versa.

(2) Suppose A \ B ≠ ∅, take 8 x 2 A\B; then x 2 A and x 2 B; thus, x 2 A1;
take 8 x 2 A1, from the expression of definition of A1, then x 2 A and x 2 B;
thus, x 2 A \ B.

From (1) and (2), we have A \ B = A1. Consequently,

contðA; BÞ = corrðA; BÞ ð20:95Þ

That is to say, inclusion-degree cont(A, B) is a special case of
correspondence-rate corr(A, B). Thus, by Theorem 20.18, we have immediately the
following theorem.

Theorem 20.19 Let A, B, and C be three non-empty sets. If A, B, and C are partial
inclusion in order, and the partial inclusion relation satisfies transitivity, then

contðA;CÞ ¼ contðA;BÞ � contðB;CÞ ð20:96Þ

We call Eq. (20.96) to be the transitive formula of inclusion-degrees.
Actually, Theorem 20.16 just verifies the correctness of the theorem.
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20.7 Summary

In this chapter, we introduced multiple measures such as size and share for ordinary
sets and flexible sets, and analyzed and expounded their properties, relations, and
operations. We presented also the concepts of partial inclusion, partial equality, and
partial correspondence and introduced the measures of inclusion-degree,
equality-degree, and correspondence-rate. In particular, we found and presented the
sufficient and necessary conditions for these relations to satisfy transitivity and the
corresponding transitive formulas of inclusion-degrees (equality-degrees) and
correspondence-rates.

The main points and results of the chapter are as follows:

• Size is a kind of measure of the element amount of a set; share is the ratio of the
size of a set to the size of the universal set it is in.

• Size and share of the sets have boundedness, monotony, and complementarity.
• Size and share of a flexible set that is not a Cartesian product equal to the size

and share of its extended core.
• Size and share of the compound sets (intersection and union) of subsets have no

general compound computation formulas, but the size and share of the com-
pound sets of subsets that forms a linearly ordered set have compound com-
putation formulas.

• Size and share of compound sets of orthogonal subsets in a product spaces have
general compound computation formulas.

• Size and share of the Cartesian product of rigid sets separately equal to the
products of sizes and product of shares of its factor sets; size and share of the
Cartesian product of flexible sets have no general indirect computation formulas,
but the range of values of them can be estimated.

• Inclusion-degree and equality-degree are, respectively, a kind of quantification
for the partial inclusion relation and partial equality relation between two sets,
and correspondence-rate is a kind of quantification for the partial correspon-
dence relation between two sets. For a relation satisfying transitivity, we can use
the transitive formula to obtain indirectly corresponding measurement.
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Chapter 21
Quantifiable Rigid Linguistic Values
and Related Theories

Abstract This chapter expounds briefly the basic theory of information processing
with quantifiable rigid linguistic values, which is parallel or similar to the corre-
sponding theory of information processing with flexible linguistic values. Besides, it
introduces the quantifiable rigid linguistic values and their measures, partial pos-
session and possessing rate, partial implication and implication-degree, and partial
equivalence and equivalence-degree, in particular, finds and presents the judging
condition of partial implication (equivalence) relation satisfying transitivity and the
corresponding transitive formulas of implication-degrees (equivalence-degrees).

Keywords Quantifiable rigid linguistic values � Imprecise information � Partial
implication � Implication-degree

The so-called quantifiable rigid linguistic values are words that can be replaced by
numerical values stated in Sect. 1.1. Information processing with quantifiable rigid
linguistic values is also a part of imprecise-information processing.

21.1 Quantifiable Rigid Linguistic Values and Their
Mathematical Models

1. Quantifiable features, quantifiable rigid linguistic values, and ordered
rigid sets
We find that some features of objects can be described by numerical values as
well as by linguistic values, but some other features can only be described by
linguistic values or symbols. For instance, a person’s height and weight can be
described by numerical values as well as by linguistic values, while whose sex
and hobby can only be described by linguistic values or symbols.

We call the features of objects that can be described by numerical values to be
quantifiable features and call the features that can be described only by linguistic
values or symbols to be unquantifiable features.
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Then, a person’s height and weight are quantifiable features, while a person’s
sex and hobby are unquantifiable features.

Similarly, atmospheric pressure and temperature of the earth’s surface, and the
length, area, and volume of objects are all quantifiable features. People already gave
corresponding measures for these features. There are also some features theoreti-
cally speaking should be quantifiable but have generally no corresponding mea-
sures. For instance, a person’s character, appearance, will and morality, etc., are
such quantifiable features.

For a quantifiable feature, we can design or define certain kind of measure as
corresponding numerical value (the usual numerical values are actually all to be
produced in this way), further obtaining the corresponding range of numerical
values. If the range of numerical values (one-dimensional measurement space) of a
feature is continuous, then we can do flexible clustering or flexible partitioning of it,
and obtaining corresponding flexible subsets and flexible linguistic values. But if
requiring, we can also do rigid clustering or rigid partitioning of a range of numerical
values and obtaining corresponding rigid subsets and rigid linguistic values. Since
the ranges of numerical values are ordered sets, so its rigid subsets are also ordered
sets. The elements in an ordered set are similar but not the same, though the
membership-degree of every element in an ordered rigid set to the ordered rigid set
are all the same—all is 1 without exception, the degree of consistency of them with
corresponding rigid linguistic value are not the same. In other words, elements in an
ordered rigid set are equivalent relation for membership-degree, but a chain
approximate or even uniform chain approximate relation for consistency-degree.
Therefore, a rigid linguistic value that summarizes an ordered rigid set can also have
consistency function. Based on this characteristic, we call the linguistic value that
summarizes an ordered rigid set to be a quantifiable rigid linguistic value.

Examples of quantifiable rigid linguistic values are very many. For example,
“positive” and “negative” of numbers; “surplus” and “deficit” in business; “rise”
and “fall” of stock price are all quantifiable rigid linguistic values obtained by doing
rigid partitioning of the corresponding range of numerical values. For another
example, “fail,” “pass,” “medium,” “good,” and “excellence” representing one by
one score sections [0, 59], [60, 69], [70, 79], [80, 89], and [90, 100] in hundred
mark system are all quantifiable rigid linguistic values.

The above given quantifiable rigid linguistic values are all resulted from the rigid
clustering or rigid partitioning of the existing ranges of numerical values. There is
also another type of quantifiable rigid linguistic values that are prior to the corre-
sponding measures and ranges of numerical values, that is, the linguistic values
occur firstly and then the corresponding measures and ranges of numerical values
are defined definitely. For instance, “possibly/probably/likely” is a quantifiable rigid
linguistic value of this type, which obviously occurred before the “probability” in
mathematics. Besides, “partial inclusion” of sets also belongs to this type of
quantifiable rigid linguistic values. In fact, “partial inclusion” is “non-entire
inclusion,” so firstly it is a rigid linguistic value, whereas in previous Sect. 20.5, we
defined the measure of “inclusion-degree” for “partial inclusion”; further, there is
also range (0, 1) of inclusion-degrees. Actually, many rigid linguistic values in our
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daily language all belong to this type of quantifiable rigid linguistic values, which
are the summarization of corresponding numerical feature values of objects, but
have no definitely defined measures and ranges of numerical values.

Actually, the relation between a quantifiable rigid linguistic value and a range of
numerical values is the relation of “summarized” and “quantified.” Viewed from the
range of numerical values to the quantifiable rigid linguistic value, a range of
numerical values is summarized as a corresponding quantifiable rigid linguistic
value; conversely, viewed from the quantifiable rigid linguistic value to the range of
numerical values, a quantifiable rigid linguistic value is then quantified as a cor-
responding range of numerical values. For instance, range (0, 1) of probabilities is
summarized as “possibly”; viewed conversely, then “possibly” is quantified as the
range (0, 1) of probabilities. Also, the range (0, 1) of inclusion-degrees is sum-
marized as “partial inclusion,” viewed conversely, then “partial inclusion” is
quantified as the range (0, 1) of inclusion-degrees.

2. Consistency functions of quantifiable rigid linguistic values
To establish the consistency function of a quantifiable rigid linguistic value,
firstly the property such as monotone increasing, monotone deceasing, or
convex of the consistency function needs to be determined according to the
semantics of the linguistic value. That is tantamount to determining whether the
linguistic value is left semi-peak value, right semi-peak value, or full-peak
value.

Then, consider the number, that is, standard number, whose consistency-degree
with the quantifiable rigid linguistic value is 1 in the corresponding ordered rigid
set. Since the membership-degrees of all elements in an ordered rigid set are all 1,
so the starting value of the consistency-degrees of all elements in an ordered rigid
set with corresponding quantifiable rigid linguistic values is all 1. Thus, for a left
semi-peak quantifiable rigid linguistic value, its left boundary point is just its
standard number; for a right semi-peak quantifiable rigid linguistic value, its right
boundary point is just its standard number; for a full-peak quantifiable rigid lin-
guistic value, its left and right boundary points are both its standard numbers.

Next, determine the reference distance as a unit quantity. With the unit quantity,
the expression of the consistency function can be written out.

Example 21.1 The graphs of consistency functions of 5 quantifiable rigid linguistic
values that represent the academic achievements are shown in Fig. 21.1. Of them,

c

1

0
0 60 70 80 90 100 x

fail pass   medium  good  excellence

Fig. 21.1 Examples of the
consistency functions of
quantifiable rigid linguistic
values
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the expressions of consistency functions of “excellence,” “medium,” and “fail” are
one by one:

cexcellenceðxÞ ¼ 1þ x� 90
10

; 90� x� 100

cmediumðxÞ ¼
1þ x� 70

5
; 70� x� 75

1þ 80� x
5

; 75� x\80

8><
>:

cfailðxÞ ¼ 1þ 60� x
60

; 0� x\60

Here, we take 10 as the unit quantity of “pass,” “good,” and “excellence”, take
60 as the unit quantity of “fail,” and take 5 as the unit quantity of “medium.” Of
course, other numbers can also be taken.

We see that although a quantifiable rigid linguistic value is the summarization of
a rigid set, since its rigid set is an ordered set of numbers, so its consistency
function may be monotone or convex, or even be triangular and semi-triangular like
the consistency function of the flexible linguistic values.

3. Relation between quantifiable rigid linguistic values and flexible linguistic
values
If a range (or sub range) of numerical values that a quantifiable rigid linguistic
value corresponds to is also continuous, then we can define flexible linguistic
values on it. For instance, on range (0, 1) of numerical values that “possibly”
corresponds to, that is, range of probabilities, the flexible linguistic values
“fairly probably,” “very likely” can be defined (as shown in Fig. 21.2), on
ranges [a, 0) and (0, b] of numerical values that “surplus” and “deficit” belong
to, flexible linguistic values “small deficit” and “large surplus” and so on can
be defined, respectively.

Actually, a range of numerical values of a quantifiable feature usually also
corresponds to one quantifiable rigid linguistic value, only that for some features the
linguistic value is not so obvious. For instance, temperature in fact indicates the
degree of “hot,” age indicates the degree of “old,” height indicates the degree of
“high,” and speed indicates the degree of “fast.” Therefore, speaking in this sense,

 0 0.5 1   x

very likely

c
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0

fairly probably
Fig. 21.2 Examples of
flexible linguistic values on
the range of probabilities
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the range of numerical values of air temperature this quantifiable feature, as range
[−50, 50] of temperature, just corresponds to quantifiable rigid linguistic value “hot
to a certain degree.” Conversely speaking, the “hot to a certain degree” summarizes
range [−50, 50] of temperature. Similarly, range [1, 200] of age corresponds to “old
to a certain degree,” range (0, b] of height corresponds to “high to a certain degree,”
range (0, c] of speed corresponds to “fast to a certain degree”. Thus, a flexible
linguistic value defined on the range of numerical values of a certain feature can
also be said as defined on the range of numerical values of the corresponding
quantifiable rigid linguistic value.

Thus, all flexible linguistic values can be said as defined on the range of
numerical values of corresponding quantifiable rigid linguistic values. Therefore,
we can say that all flexible linguistic values originate from quantifiable rigid lin-
guistic values. Such is just the relation between the quantifiable rigid linguistic
values and the flexible linguistic values. Thus, the origins and relation of the
quantifiable rigid linguistic values and the flexible linguistic values are shown in
Fig. 21.3.

measure (function)

range of numerical values

continuous set

flexible linguistic value 

flexible subset

rigid partition

rigid cluster quantifiable rigid linguistic value
continuous rigid subset

non continuous
set

quantifiable rigid linguistic value
ordered rigid subset

quantifiable feature

(quantifiable rigid linguistic value)

quantifiable rigid linguistic value

flexible partition

flexible cluster

flexible partition

flexible cluster

rigid partition

rigid cluster

Fig. 21.3 Diagram of the origins and relation of quantifiable rigid linguistic values and flexible
linguistic values
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21.2 Other Related Theories About Quantifiable Rigid
Linguistic Values

1. Types of quantifiable rigid linguistic values
Firstly, quantifiable rigid linguistic values can be classified into property-type
quantifiable rigid linguistic values and relation-type quantifiable rigid linguistic
values. The former such as “positive,” “negative,” “concave,” “convex,”
“surplus,” “deficit,” “victory,” “defeat,” “rise,” “fall,” and “likely,” while the
latter such as “partial inclusion,” “partial sameness,” “greater than,” “less
than,” and “partial implication.”

Besides, similar to the flexible linguistic values, quantifiable rigid linguistic
values have also multiple types of one-dimensional values and multidimensional
values, full-peak values, and semi-peak values, values with negation and values
with opposite, medium values and neutral values, atomic values and composite
values, value with degree, and so on. For instance, “positive” and “negative” are
opposite values mutually, while “zero” is just a neutral value lying between
“positive” and “negative.” However, they also have some differences from the
flexible linguistic values, such as there is no the superposed quantifiable rigid
linguistic value because the superposed value of a degree linguistic value and a
quantifiable rigid linguistic value is a flexible linguistic value.

2. Operations on quantifiable rigid linguistic values
Quantifiable rigid linguistic values on the same space can have the operations
of conjunction, disjunction, and negation. These operations are reduced to
operations of corresponding ordered rigid sets, that is, the usual set operations.
But here we need to view the linguistic value to which empty set ф corre-
sponds as a special quantifiable rigid linguistic value. Besides, for the quan-
tifiable linguistic value that itself represents whole range of numerical values,
the corresponding range of numerical values of its negation needs to do
analysis specifically. Generally speaking, this kind of range of numerical
values is the number set of a single point. For example, “possibly” represents
range (0, 1) of probabilities, its negative value “not possibly” represents then
probability 0. While 0 can also be represented as set {0}, then, this single
pointed number set is just the range of numerical values that “not possibly”
corresponds to. From this example, we see that the negative value of a
quantifiable rigid linguistic value is still a quantifiable rigid linguistic value.
Thus, the conjunctions, disjunctions, and negations of the quantifiable rigid
linguistic values on the same space are still quantifiable rigid linguistic values.

Quantifiable rigid linguistic values on distinct spaces can also have the opera-
tions of conjunction, disjunction, and synthesis. These operations can be repre-
sented and implemented by using the corresponding operations of consistency
functions and can also be reduced to operations of corresponding ordered rigid sets,
that is, conjunction (∧), disjunction (∨), and negation (¬) operations are reduced
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separately to the intersection (\ ), union ([ ), and complement (c) operations of
corresponding ordered rigid sets, while synthesis operation (⊕) is then reduced to
the product operation (×) of corresponding ordered rigid sets.

3. Quantifiable rigid relations
The relation denoted by a relation-type quantifiable rigid linguistic value is a
quantifiable rigid relation. For instance, the previously mentioned “partial
inclusion,” “partial sameness,” “greater than,” “less than,” and “partial impli-
cation” are all quantifiable rigid relations.

From Fig. 21.3, it can be seen that from a relation-type quantifiable rigid lin-
guistic value, the corresponding measure and range of numerical values can be
obtained. Therefore, a quantifiable rigid relation is actually also a rigid relation that
can be quantified by using certain kind of measure. For example, inclusion-degree
can be used to quantify the “partial inclusion” between sets, so the “partial inclu-
sion” relation between the sets is a quantifiable rigid relation. For another example,
“sameness-degree” can be used to quantify the “partial sameness” between objects,
so “partial sameness” relation is also a quantifiable rigid relation. Similarly, “greater
than,” “less than” between numbers, “partial sameness” between sets, and so on are
all quantifiable rigid relations.

From Sect. 3.6, it is known that flexible relations (concepts) all can be reduced to
flexible concepts on the one-dimensional measurement space. Actually, this
one-dimensional measurement space is also the measurement space of corre-
sponding quantifiable rigid relation. Therefore, a relation-type flexible linguistic
value is also a flexible linguistic value on the measurement space of corresponding
quantifiable rigid relation. For example, “similar” is a flexible linguistic value on
the measurement space—range [0, 1] of sameness-degrees—of “partial sameness,”
and “far greater than” is a flexible linguistic value on the measurement space—
range [1, +∞) of greater-than-degrees—of “greater than,” and “close to inclusion”
between sets is a flexible linguistic value on the measurement space—range (0, 1)
of inclusion-degrees—of “partial inclusion.” This shows that the flexible relations
actually come on the basis of the quantifiable rigid relations.

4. Other related topics

• Since the upper half part of the graph of consistency function is also a triangular
or semi-triangular, so a quantifiable rigid linguistic value also has a peak-value
point.

• There is also relatively negative relation between quantifiable rigid linguistic
values (which means a quantifiable rigid linguistic value also has a negative
value), which corresponds to the relatively complement relation between cor-
responding rigid subsets. More generally, there is also complementary relation
between quantifiable rigid linguistic values, which corresponds to the comple-
mentary relation between corresponding rigid subsets. And the complementary
relation between rigid subsets corresponds to the rigid partition of a range of
numerical values.
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• Between quantifiable rigid linguistic values, there are also relations of inclusion,
same-level, similarity, approximation, and so on.

• Quantifiable rigid linguistic values can also be quantified, that is, there are also
rigid linguistic values with degree.

• Quantifiable rigid linguistic values can also mutually convert with the numerical
values as well as the rigid linguistic values with degree. The converting method
is similar to that of the flexible linguistic values.

• There can also be quantifiable rigid linguistic functions and quantifiable rigid
linguistic valued vectors.

21.3 Relatively Opposite Quantifiable Rigid Linguistic
Values and Relatively Opposite Rigid Sets

Definition 21.1 Let A, B, and C be three basic quantifiable rigid linguistic values
adjacent one by one on one-dimensional measurement space U, which form a
partition of U. If the semantics of A and C is opposite, B is non-A and non-C, then
we say that A and C are opposite mutually, and call B a neutral value.

Likewise, we denote the opposite of a quantifiable rigid linguistic value A as −A,
and denote a neutral value as Neu.

There are many examples of relatively opposite quantifiable rigid linguistic
values. Examples, “positive” and “negative” are relatively opposite, while “0” is the
neutral value; “concave” and “convex” are relatively opposite, while “flat” is the
neutral value; “up” and “down” are relatively opposite, while “middle” is the neu-
tral value; “left” and “right” are relatively opposite, while “middle” is the neutral
value; “front” and “back” are relatively opposite, while “middle” is the neutral
value; “support” and “opposite” are relatively opposite, while “neutrality” is the
neutral value; “surplus” and “deficit” are relatively opposite, while “balance” is the
neutral value; “victory” and “defeat” are relatively opposite, while “draw” is
the neutral value; and “rise” and “fall” are relatively opposite, while “unchanged” is
the neutral value.

The ranges of numerical values of features to which different relatively opposite
quantifiable rigid linguistic values belong are also different. However, viewed
abstractly, this type of range of numerical values is generally a symmetrical real
interval [−b, b] with center 0.

Let A and −A be a pair of relatively opposite quantifiable rigid linguistic values
on space U = [−b, b], and Neu is the neutral value. Then, A, −A, and Neu separately
represent sets [−b, 0), (0, b], and {0}. Hereafter we still use symbols A, −A, and
Neu to denote sets represented by them.

Definition 21.2 Let A and −A be a pair of relatively opposite quantifiable rigid
linguistic values on space U = [−b, b], and Neu be the neutral value. Then, we say
corresponding sets A and �A � U are opposite mutually, {0} is the neutral set. In
particular, we call 0 2 U the neutral point.
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As shown in Fig. 21.4, let A, Neu and −A separately denote subsets [−b, 0), {0}
and (0, b]. Thus, we have the following set “operations”:

�ð�AÞ ¼ A ð21:1Þ

Ac ¼ �A[Neu ð21:2Þ

ð�AÞc ¼ A[Neu ð21:3Þ

Neuc ¼ A[ � A ð21:4Þ

A\ � A ¼ ; ð21:5Þ

A[ � A[Neu ¼ U ð21:6Þ

Ac \ ð�AÞc ¼ Neu ð21:7Þ

Ac [ ð�AÞc ¼ U ð21:8Þ

From the above set operations, we have the following relational expressions of
linguistic values:

�ð�AÞ ¼ A ð21:9Þ

:A ¼ �A _ Neu ð21:10Þ

:ð�AÞ ¼ A _ Neu ð21:11Þ

:Neu ¼ A _ �A ð21:12Þ

:A ^ :ð�AÞ ¼ Neu ð21:13Þ

Besides, the relatively opposite between quantifiable rigid linguistic values is all
objective relatively opposite.

The relatively opposite is a relation between two quantifiable rigid linguistic
values. More generally, among multiple quantifiable rigid linguistic values is just a
mutually exclusive relation, which corresponds to the mutually exclusive relation
among corresponding rigid subsets, and the latter corresponds to the mutually
exclusive rigid partition of a measurement space.

The so-called mutually exclusive rigid partition, simply speaking, is that there is
a neutral point (line or plane) that is neither this nor that between all adjacent rigid
subsets in space.

A Neu −A

−b 0 b

Fig. 21.4 Examples of relatively opposite quantifiable rigid linguistic values and their sets
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Thus, to take into account the usual complementary rigid partition, a measure-
ment space has four kinds of partitions of complementary rigid partition, mutually
exclusive rigid partition, complementary flexible partition, and mutually exclusive
flexible partition.

21.4 Quantifiable Rigid Propositions and Corresponding
Logic and Inference

1. Quantifiable rigid propositions with negation and their logic and inference
We call a proposition that contain quantifiable rigid linguistic values to be a
quantifiable rigid proposition. For example,

A company had a financial deficit the current year.
5 is greater than 2.

are two quantifiable rigid propositions.
Generally, Let p: x0 is A, be a quantifiable rigid proposition. Obviously, it can

also be represented by possessive relational form A(x0) and membership relational
form x0 2 A.

Since the linguistic value A therein is a rigid linguistic value, so the truth values
of quantifiable rigid proposition A(x0) can be rigid linguistic truth values “true”
or “false.” Since A is also quantifiable, so its truth values can also be numerical
value—truth-degree. This truth-degree (which refers to connotation truth-degree,
same below) is also just consistency-degree cA(x0), that is, t(p) = cA(x0). Since
consistency-degree cA(x0) 2 [1, β], the “true” of the quantifiable rigid proposition is
the summarization of range [1, β] of truth-degrees; viewed conversely, it is also that
the “true” of a quantifiable rigid proposition is quantified as range [1, β] of
truth-degrees. Thus, the “true” of the quantifiable rigid proposition is a quan-
tifiable rigid linguistic truth value.

Let us conceive that if the quantifiable rigid proposition A(x0) is false, then its
negation ¬A(x0) is true. Since the negation of a quantifiable rigid linguistic value is
still a quantifiable rigid linguistic value, ¬A is still a quantifiable rigid linguistic
value, and ¬A(x0) is also a quantifiable rigid proposition; thus, the “true” of ¬A(x0)
is also a quantifiable linguistic truth value. We denote the corresponding range of
truth-degrees that it represents as [1, β0]. The “true” of negative proposition ¬A(x0)
is equivalent to the “false” of the original proposition A(x0). As thus, the “false” of
original proposition A(x0) is also a quantifiable rigid linguistic truth value, and the
“range of falseness-degrees” that it represents is the range [1, β0] of truth-degrees of
¬A(x0). To distinguish, we denote quantifiable rigid linguistic truth values “true”
and “false” separately as T and F.

Since the conjunction, disjunction, and negation of the quantifiable rigid lin-
guistic values with negation are still quantifiable rigid linguistic values with
negation, the conjunctive, disjunctive, and negative propositions of the quantifiable
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rigid propositions with negation are still quantifiable rigid propositions with
negation. Meanwhile, the “true” and “false” of quantifiable rigid propositions are
quantifiable rigid linguistic truth values, so the logic based on the quantifiable rigid
propositions with negation is a kind of quantifiable rigid linguistic truth valued
relatively negative logic.

The computation methods of truth-degrees of the conjunctive and disjunctive
compound quantifiable rigid propositions are the same as those of corresponding
compound flexible propositions, that is,

tðp ^ qÞ ¼ minfcAðxÞ; cBðyÞg ¼ min tðpÞ; tðqÞf g ð21:14Þ

tðp _ qÞ ¼ maxfcAðxÞ; cBðyÞg ¼ max tðpÞ; tðqÞf g ð21:15Þ

While the computation of truth-degree of negative quantifiable rigid proposition
can only be

tð:pÞ ¼ c:Aðx0Þ ð21:16Þ

Thus, the truth-degree computation formulas of the implicational and equivalent
quantifiable rigid propositions are

tðp! qÞ ¼ maxftð:pÞ; tðqÞg ð21:17Þ

tðp ! qÞ ¼ minfmaxftð:pÞ; tðqÞg;maxftðpÞ; tð:qÞgg ð21:18Þ

Here, tðpÞ; tðqÞ; tð:pÞ and tð:qÞ 2 ½1; b�; thus, tðp ^ qÞ; tðp _ qÞ; tðp! qÞ and
tðp ! qÞ 2 ½1; b�. And if ¬A is the symbolic rigid linguistic value, then c:Aðx0Þ is
meaningless. In such a case, tð:pÞ ¼ false.

It can be seen that the truth-degree computation formulas of conjunctive and
disjunctive quantifiable rigid propositions actually define two kinds of operations
on range [1, β] of truth-degrees:

x � y ¼ min x; yf g ð21:19Þ

xþ y ¼ max x; yf g ð21:20Þ

Thus, based on range [1, β] of truth-degrees, we can also construct corre-
sponding truth-degree logic algebra, such as ½1; b�; �; þh i.

It can be seen that the quantifiable rigid linguistic truth values T and F are really
the particular cases of the rigid linguistic truth values “true” and “false,” that is,
T and F, in the usual two-valued logic. Therefore, viewed from the level of lin-
guistic truth values, the two-valued logic based on quantifiable rigid linguistic truth
values T and F is “isomorphic” with the traditional two-valued logic. Thus, in this
two-valued logic, there also are the inference rules and inference schemes that are
similar to those in traditional two-valued logic. And because T and F are the
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detailing of non-symbolic rigid linguistic truth values T and F, so the rules of
inference and inference in this two-valued logic can also be formulated by scope of
truth-degrees like the rules of rough-true inference and the rough-true inference in
Sect. 12.6.2. For example, its modus ponens

p! q ðTÞ
p ðTÞ
) q ðTÞ ð21:21Þ

can be expressed by writing

p! q; tðp! qÞ[ 1

p; tðpÞ[ 1
) q; tðqÞ[ 1

ð21:22Þ

Yet its universal modus ponens

AðxÞ ! BðyÞ TÞ
Aðx0Þ ðTÞ
) Bðy0Þ ðTÞ ð21:23Þ

can be expressed by writing

AðxÞ ! BðyÞ; tðAðxÞ ! BðyÞÞ[ 1

Aðx0Þ; tðAðx0ÞÞ[ 1
) Bðy0Þ; tðBðy0ÞÞ[ 1

ð21:24Þ

2. Quantifiable rigid propositions with opposite and the corresponding logic
For quantifiable rigid propositions with opposite, their conjunction and dis-
junction operations are completely the same as those of the above quantifiable
rigid propositions with negation, while the opposite proposition is a proposi-
tion with the opposite value of the linguistic value of the original proposition as
the linguistic value. Since the conjunction, disjunction, and opposite of
quantifiable rigid linguistic values with opposite are still quantifiable rigid
linguistic values with opposite, so the conjunction, disjunction, and opposite of
quantifiable rigid propositions with opposite are still quantifiable rigid
propositions with opposite. In the meantime, it is easy to see that the “true” and
“false” of a quantifiable rigid proposition with opposite are also quantifiable
rigid linguistic truth values (which can be separately denoted by T and F. But
notice that here T and F are of a relatively opposite relation), so the logic based
on the quantifiable rigid propositions with opposite is a kind of opposite-type
logic of quantifiable rigid linguistic truth values.
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21.5 Quantifiable Rigid Linguistic Rules and Quantifiable
Rigid Linguistic Functions, and Corresponding
Reasoning and Computation

We call the rule whose antecedent and consequent contain quantifiable rigid lin-
guistic values to be a quantifiable rigid linguistic rule. For example,

If a listed company had a financial deficit, then its stock price
would fall

is a quantifiable rigid linguistic rule.
Since quantifiable rigid linguistic values have many similar properties, opera-

tions, and relations with flexible linguistic values, quantifiable rigid linguistic rules
also have similar classifications, logic semantics, mathematical background, and
mathematical essence with flexible linguistic rules. Further, these rules have also
similar triple adjoint functions and the reasoning and computation with them.

A function whose independent variables or dependent variable take on quan-
tifiable rigid linguistic values is called a quantifiable rigid linguistic function. The
quantifiable rigid linguistic functions have also classifications, representations,
mathematical background, and mathematical essence that are similar to those of the
flexible linguistic functions. Thus, there are also similar approximate evaluation
methods.

Speaking from connotation, information represented by quantifiable rigid lin-
guistic value is also a kind of imprecise information. Therefore, there are also
corresponding imprecise problems. And there are also the problems solving based
on the consistency functions of the quantifiable rigid linguistic values or based on
the quantifiable rigid linguistic rule-/function-based systems. Besides, there are the
acquisition and discovery methods of quantifiable rigid rules and quantifiable rigid
linguistic functions similar to those of flexible values and flexible linguistic
functions.

21.6 Several Important Quantifiable Rigid Linguistic
Values and Their Measures

This section introduces some important rigid linguistic values about sets, linguistic
values, and propositions and introduces corresponding measures for them.

1. Partial possession and possessing rate

Definition 21.3 Let U be a set, and A be a subset of U. If part of objects in
U possesses property A, i.e., property-type linguistic value A, that subset A stands
for, then we say that A is of partial possession. If all of the objects in U possess
property-type linguistic value A, then we say that A is of total possession. Set
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poss(AÞ ¼ Aj j
Uj j ¼ shar(AÞ ð21:25Þ

to be called the rate of objects in U possessing corresponding property-type lin-
guistic value A, simply, possessing rate of property-type linguistic value A.

This definition means that the possessed rate of a property-type linguistic value
is numerically equal to the share of the corresponding set.

Obviously, generally speaking, 0� poss(AÞ� 1. If A 6¼ ; and A � U, then
0\poss(AÞ\1. Whereas A ¼ U, poss(AÞ ¼ 1, and vice versa.

It is clear that the measure “possessing rate” unifies “partial possession,” “total
possession,” and “non-possession,” and it can also be used to define these three
rigid linguistic values. In particular, “partial possession” is quantified as set (0, 1) of
real numbers, which can be called the range of possessing rates. Further, on the
range (0, 1) of possessing rates we can define flexible linguistic values such as
“most possession,” “few possession,” and “very few possession.”

2. Partial implication and implication-degree
We know that there are two most basic relations of implication and equiva-
lence between propositions. The usual implication and equivalence are defined
from the angle of logic by the relation between the truth values of propositions,
which have nothing to do with the content of the propositions, so they are
logical implication and logical equivalence. However, we find that considering
from the content, there also exist implication and equivalence relations
between propositions. We call the implication and equivalence relations based
on the content of the propositions to be the semantic implication and equiv-
alence relations.

(1) Partial (semantic) implication

Definition 21.4 Let p: x0 is A and q: y0 is B, be two propositions. If the corre-
sponding set A is contained in set B, that is, A�B, then we say that proposition
p semantically implies proposition q, denote p ¼ .q.

Example 21.2 Let p: Zhang is a junior, and q: Zhang is a university student. Then,
p ¼ .q.

Definition 21.5 Let p: x0 is A and q: y0 is B, be two propositions. If the corre-
sponding set A is corresponded by set B, that is, A 7!B, then we also say that
proposition p semantically implies proposition q, denote p ¼ .q.

Definition 21.6 Let p: x0 is A and q: y0 is B, be two propositions. If p ¼ .q and
q ¼ .p, then we say that proposition p and proposition q are semantically equiv-
alent, denote p/ ¼ .q.

542 21 Quantifiable Rigid Linguistic Values and Related Theories



Semantic implication and semantic equivalence are defined on the basis of the
relation between corresponding sets of propositions, but it can be seen that:

① If proposition p semantically implies proposition q, then p is also certainly
logically implies proposition q, that is, from p ¼ .q necessarily p) q follows,
but conversely, not necessarily;

② If propositions p and q are semantically equivalent, then p and q also certainly
be logically equivalent, that is, from p/ ¼ .q necessarily p, q follows, but
conversely, not necessarily.

Definition 21.7 Let p: x0 is A and q: y0 is B, be two propositions. If the corre-
sponding set A is partially contained in set B, then we say proposition p partially
(semantically) implies proposition q, denote p− q.

Example 21.3 Let p: Zhang is a youth, and q: Zhang is a university student. It is not
hard to see that set {youth} is partially contained in set {university students}, so
p− q.

Example 21.4 Let p: Zhang is short, and q: Zhang is very fat. Since there is a part
and only a part people are very fat in short people, set {short} is partially contained
in set {very fat}. Thus, p− q.

Definition 21.8 Let p: x0 is A and q: y0 is B, be two propositions. If the corre-
sponding set A is partially corresponded by set B, then we say proposition p par-
tially (semantically) implies proposition q, denote p− q.

Relatively to the partial (semantic) implication − , the (semantic) implication
“ = .” above is a complete implication. Conversely speaking, the complete
implication ¼ . is a special case of the partial implication − .

(2) Implication-degree [1] and transitive formula of implication-degrees

From Definitions 21.7 and 21.8, it can be seen that “partial implication” is a
quantifiable rigid linguistic value, which represents a quantifiable rigid relation.

Definition 21.9 Let propositions p: x0 is A, and q: y0 is B. We use impl(p, q) to
denote the degree of proposition p (semantically) implying proposition q, that is, the
degree of implication, to write as implication-degree, of p to q. Then,

(1) If the corresponding set A is partially contained in set B, then

impl(p; qÞ ¼ cont(A;BÞ ð21:26Þ

(2) If the corresponding set A is corresponded partially by set B, then

impl(p; qÞ ¼ corr(A;BÞ ð21:27Þ

Example 21.5 Let p: Jack is a junior college student, and q: Jack is a college
student, and let A = {junior college students} and B = {college students}. Then,
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impl(p; qÞ ¼ cont(A;BÞ ¼ jA\Bj=jAj ¼ jAj=jAj ¼ 1

That is, the implication-degree of proposition p implying proposition q is 1.

Example 21.6 For propositions p and q in Example 21.3, suppose that 60 % of the
youth are university students. Then,

impl(p; qÞ ¼ cont youthf g; college studentsf gð Þ
¼ j youthf g\ college studentsf gj=j youthf gj
¼ jfyoung college studentsgj=j youthf gj
¼ 0:6

From the Eq. (21.27), it can be seen that impl(p, q) = 0 means p does not imply
q; impl(p, q) = 1 means p completely implies q; 0 < impl(p, q) < 1 means p implies
q to a degree.

As thus, implication-degree unifies “partial implication,” “complete implica-
tion,” and “non-implication,” and which can also be used to define these three rigid
linguistic values. In particular, “partial implication” is quantified as set (0, 1) of real
numbers, which can be called range of implication-degrees. Further, we can define
the flexible linguistic values such as “rather implying,” “basically implying,” and
“nearly implying,” etc., on the range (0, 1) of implication-degrees.

From the definition of partial implication, when proposition p partly implies
proposition q, proposition q also partly implies proposition p. That is to say, the
relation of partial implication between propositions (including flexible propositions)
satisfies (semantics) symmetry. But the partial implication is not necessarily to
satisfy transitivity. However, since the partial implication between propositions is
defined by the partial inclusion or partial correspondence between corresponding
sets, so the transitivity of the former should be consistent with that of the latter.
Thus, we have the following theorems.

Theorem 21.1 Let propositions p: x0 is A, q: y0 is B, and r: z0 is C. If the
corresponding sets A, B, and C are partially contained in order and the partial
inclusion relation satisfies transitivity, or A, B, and C are partially corresponded in
order and the partial correspondence relation also satisfies transitivity, then the
propositions p, q, and r are partially implied in order and the partial implication
relation satisfies transitivity, that is, if p− q and q − r, then p− r.

Theorem 21.2 Let propositions p: x0 is A, q: y0 is B, and r: z0 is C. If  p− q and
q − r, and the partial implication relation satisfies transitivity, then

impl(p; rÞ ¼ impl(p; qÞ � impl(q; rÞ ð21:28Þ
Proof When implication-degree is defined as inclusion-degree, by the Eq. (20.90)
in Sect. 20.5, we have immediately the Eq. (21.28), and when implication-degree is
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defined as correspondence rate, by the Eq. (20.94) in Sect. 20.6, we have also
immediately the Eq. (21.28).

We call Eq. (21.28) to be the transitive formula of implication-degrees.

3. Partial equivalence and equivalence-degree

Definition 21.10 Let p: x0 is A and q: y0 is B, be two propositions. If  p− q and
q − r, then we say propositions p and q are partially semantically equivalent,
denote p q− .

Example 21.7 Let p: Zhang is a youth and q: Zhang is a university student. It is not
hard to see that set {youth} is partly contained in set {college students}, and set
{college students} is partly contained in set {youth}, which shows that propositions
p and q are partially implied each other; thus, p q− .

Similarly, “partial equivalence” is also a quantifiable rigid linguistic value,
which represents a quantifiable rigid relation.

Definition 21.11 Let proposition p: x0 is A and q: y0 is B. Set

equi(p; qÞ ¼ same(A;BÞ ð21:29Þ

to be called the degree of equivalence, written equivalence-degree, between
proposition p and proposition q.

From Eq. (21.29), it can be seen that equi(p, q) = 0 means p and q are not
equivalent; equi(p, q) = 1 means p and q are completely equivalent; 0 < equi(p,
q) < 1 means p and q are equivalent to a degree.

As thus, equivalence-degree unifies “partial equivalence,” “equivalence” (i.e.,
“completely equivalence”) and “non-equivalence,” and which can also be used to
define these three rigid linguistic values. In particular, the “partial equivalence” is
quantified as set (0, 1) of real numbers, which can be called the range of
equivalence-degrees. Further, we can also define the flexible linguistic values such
as “(being) rather equivalent,” “(being) basically equivalent,” and “(being) nearly
equivalence,” etc., on the range (0, 1) of equivalence-degrees.

From definitions, it can be seen that the partial equivalence relation satisfies
symmetry, however, is not necessarily to satisfy transitivity. But the partial
equivalence relation has also the judgment conditions and properties similar to
Theorems 21.1 and 21.2.

21.7 Summary

In this chapter, we expounded briefly the basic theory of information processing
with quantifiable rigid linguistic values, which is parallel or similar to the corre-
sponding theory of information processing with flexible linguistic values. But we
should note the relation and distinction between quantifiable rigid linguistic values
and flexible linguistic values:
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• The linguistic value which summarizes an ordered rigid set is a quantifiable rigid
linguistic value, and the linguistic value which summarizes a flexible subset is a
flexible linguistic value.

• All flexible linguistic values can be said as defined on the range of numerical
values of the corresponding quantifiable rigid linguistic values.

Besides, we introduced also the quantifiable rigid linguistic values and their
measures: partial possession and possessing rate, partial implication and
implication-degree, and partial equivalence and equivalence-degree, in particular,
found and presented the judging condition of partial implication (equivalence)
relation satisfying transitivity and the corresponding transitive formulas of
implication-degrees (equivalence-degrees).
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Chapter 22
Methodology of Imprecise-Information
Processing and Some Other Application
Problems

Abstract This chapter proposes two basic ideas and techniques of
imprecise-information processing—degree-introducing and appropriate granularity;
discusses the relational inference with quantifiable rigid relations and flexible
relations; proposes the method of knowledge representation with degrees and gives
some representation schemes; discusses relational database models with degrees;
and proposes the principles and methods of machine understanding of flexible
concepts with knowledge base and automatic generation of flexible concepts by
using object-oriented programming.

Keywords Imprecise-information processing � Degree-introducing � Appropriate
granularity � Relational inference with degrees � Knowledge representation with
degrees � Relational database with degrees

In this chapter, we will talk briefly basic ideas and techniques of
imprecise-information processing and discuss several other application problems
besides imprecise-problem solving.

22.1 Degree-Introducing and Appropriate Granularity—
Basic Approach and Technique
of Imprecise-Information Processing

Degree-introducing and appropriate granularity are basic approach and technique of
imprecise-information processing.

The so-called degree-introducing is to use certain kind of measure to quantify
information. For example, we use “inclusion-degree” to quantify “partial inclusion”
and use “sameness-degree” to quantify “partial sameness,” which are typical
degree-introducing. For another example, we use “greater-than-degree” to quantify
the “greater than” of numbers, use difference-degree, sameness-degree, and
equivalence-degree to quantify the similarities and differences of numbers and
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vectors, and use similarity-degree and approximate-degree to quantify similarity
and approximate relations, and so on, which are all degree-introducing.
Furthermore, we use the sameness-degree to define membership-degree and use a
unit quantity to define consistency-degree, which are also degree-introducing, and
we use membership-degree and consistency-degree to formulate the membership
and consistency relations between an object and a flexible concept; this is also a
kind of degree-introducing. Further, that we use the linguistic value with degree to
portray attributes, states, and relations as well as behaviors of objects is also
degree-introducing. Viewed from representation form f x;mAðxÞð Þjx 2 Ug, the
flexible sets (and fuzzy sets) can also be called “the set with degrees” in a broad
sense. Also, in the establishment of adjoint degreed functions of flexible rules, the
idea and method of degree-introducing are also used [1, 2].

Flexible linguistic values and quantifiable rigid linguistic values are the origins
of imprecise information, and they are also the objects of imprecise-information
processing. We diagram the origins, relation, and modeling principles of these two
classes of linguistic values as follows (see Fig. 22.1), from which we can see more
clearly and visually the position and function of degree-introducing in
imprecise-information processing. It can be seen that degree-introducing is a basic
technique of imprecise-information processing.

Obviously, flexible linguistic values are also a kind of quantifiable linguistic
values. Thus, flexible linguistic values and quantifiable rigid linguistic values can be
uniformly called the “quantifiable linguistic values.” Thus, imprecise-information
processing can also be said as the information processing about quantifiable lin-
guistic values.

The so-called appropriate granularity is according to specific problem to design
the linguistic values whose granule sizes are appropriate. Appropriate linguistic
values can be used to describe more accurately things and relations between them,
and the results of information processing also are more effective. In general, the
smaller the granules of linguistic values are, the more precision the things are por-
trayed. The design and selection of linguistic values can be classified as two types:
static and dynamic. The latter is especially important in approximate computation
problems (as flexible control) based on flexible rules or flexible linguistic functions.
Static design is for a relevant measurement space to set basic linguistic values in
advance, while dynamic design is then according to the requirement to set tem-
porarily the corresponding linguistic values, because in some information process-
ing, corresponding linguistic values and their sizes will change dynamically with the
expand and contract and change of measurement spaces. The sizes and number of
linguistic values need to be determined according to the characteristics of the specific
problem, the relevant domain knowledge, and the actual requirements and, for
dynamic linguistic values, need to design the corresponding data structures and
algorithms, so to conduct real-time definition and partition of measurement spaces,
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and to conduct real-time definition, addition, deletion, and adjustment of (cores and
support sets, or extended cores) of relevant linguistic values, thus to make system
can use flexibly appropriate linguistic value granules in the running process. It seems
that there will be some work we can do here.

22.2 Relational Inference with Degrees

We know that relational inference is also a common inference form. Traditional
relational inference is the inference with rigid relations. This section discusses a
kind of relational inference with quantifiable rigid relation and flexible relation.

degree-introducing
degree-introducin

measure (function)

measurement space

continuous space

quantifiable rigid linguistic value
continuous rigid subset

quantifiable feature
(quantifiable rigid linguistic value)

quantifiable rigid linguistic value

flexible linguistic value 

flexible sub set

flexible partition

flexible cluster

rigid partition

rigid cluster

non continuous
space

quantifiable rigid linguistic value
ordered rigid subset

rigid partition

rigid cluster

flexible linguistic value
flexible subsetflexible partition

flexible cluster
degree-introducing consistency function 

membership function

degree-introducing

degree-introducing

linguistic values
with degree

Fig. 22.1 Diagram of the principles of origins, relation, and modeling of quantifiable rigid
linguistic values and flexible linguistic values
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22.2.1 Relational Inference with Degrees with Quantifiable
Rigid Relations

1. Relational inference with degrees with degree-transitive quantifiable rigid
relations

Definition 22.1 Let R be a binary quantifiable rigid relation on set S, and let
deg(x; yÞ 2 R be a measure about R. If for 8x; y; z 2 S, when deg(x; yÞ [ 0 and
deg(y; zÞ[ 0; deg(x; zÞ[ 0, then we say that relation R satisfies degree-transitivity
and that R is a degree-transitive quantifiable rigid relation.

Question: Given R is a degree-transitive quantifiable rigid relation, and xRy and
yRz. Then, in the case of R having no corresponding measure computation formula
deg(�, �), how can we get the degree of xRz?

Since there is no measure computation formula, we can only make certain
estimate of the degree or try to compute its approximate value. Imagine: If we can
know the estimated values dRxy and dRyz of measure of relations xRy and yRz and
know the relation between the measurement of xRz and the measurements of xRy
and yRz, then we can use the transitivity of R and this relation to indirectly obtain an
approximate value dRxz of measure of xRz. Therefore, we have the relational
inference with degrees of the following scheme:

ðxRy; dRxyÞ
ðyRz; dRyzÞ
ðxRz; dRxzÞ

ð22:1Þ

Here, it is required that dRxy � 1 and dRyz � 1, where dRxy , dRyz , and dRxz are
separately the degrees of (x, y), (y, z), and (x, z) having relation R; dRxz ¼
f ðdRxy ; dRyzÞ is the computation formula of dRxz . We find that the formula generally
can take

dRxz ¼ dRxy þ dRyz � dRxydRyz ð22:2Þ

For example, the “greater than” of real numbers is a degree-transitive quantifi-
able rigid relation; then, with “greater than,” we can do a relational inference with
degrees.

For another example, if propositions p, q, and r are partially implied in order,
and the partial implication relation satisfies transitivity, then from Definitions 21.7,
21.8, and 21.9, the partial implication satisfies degree-transitivity. Thus, by
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Theorem 21.2 (see Sect. 21.6), the following relational inference with degrees
would follow:

ð22:3Þ

here, impl(p, r) = impl(p, q)impl(q, r).

2. Relational inference with degrees with degree-symmetric quantifiable rigid
relation

Definition 22.2 Let R be a binary quantifiable rigid relation on set S, and let
deg(x; yÞ 2 R be a measure about R. For 8x; y 2 S, if deg(x; yÞ[ 0, then
deg(y; xÞ[ 0, and deg(x; yÞ ¼ deg(y; xÞ, then we say R satisfies the
degree-symmetry and that R is a degree-symmetric quantifiable rigid relation.

Question: Given R is a degree-symmetric quantifiable rigid relation, and xRy;
also, A is a quantifiable property, and object x has property A. Then, in the case of
A having no corresponding consistency function cA(�), how can we obtain the
degree of object y having property A?

Imagine that if we can know the measure deg(x, y) of xRy or its estimated value
dRxy and the estimated value dAx of consistency-degree cA(x) and know the relation
between deg(x; yÞjdAy (symbol “|” denotes “or”) and dRxy and dAx , then we can use
the symmetry of R and this relation to obtain the approximate value of corre-
sponding cA(y). Therefore, we have the relational inference with degrees as the
following scheme:

ðxRy; �x; yÞjdRxyÞ
ðAðxÞ; dAxÞ
ðAðyÞ; dAyÞ

ð22:4Þ

Here, it is required that dRxy � 1 and dAx [ 0:5 (when A is a flexible linguistic
value) or dAx � 1 (when A is a quantifiable rigid linguistic value), deg(x, y) and dRxy

are the degrees of x and y having relation R; dAx and dAy are separately the degree of
x and y having property A; dAy ¼ f dR; dAð Þ is the computation formula of dAy . The
formula generally can be

dAy ¼ ðdeg(x; yÞjdRxyÞdAx ð22:5Þ

Example 22.1 Let propositions p: x0 is A and q: y0 is B have partial equivalence
relation; then, from Definitions 21.10 and 21.11, the partial equivalence satisfies the
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degree-symmetry. Thus, we can have the relational inference with degrees as the
following scheme:

ð22:6Þ

where poss(B) = equi(p, q)poss(A).

22.2.2 Relational Inference with Degrees with Flexible
Relations

1. Relational inference with degrees with flexible transitive flexible relations

Definition 22.3 Let U be an n-dimensional measurement space, and let R be a
binary flexible relation on product space U � U, and let cR(x, y) be the consistency
function of R. If for 8x; y; z 2 U, when cR(x, y) > 0 and cR(y, z) > 0, then
cR(x, z) > 0, then we say relation R satisfies flexible transitivity and that R is a
flexible transitive flexible relation.

Question: Given R is a flexible transitive flexible relation, and xRy and yRz.
Then, in the case of R having no corresponding consistency function cR(�, �), how
do we obtain the degree of xRz?

Since there is no consistency function, we can only make certain estimate of the
degree or try to compute its approximate value. Imagine that if we can know the
estimated values dRxy and dRyz of the consistency-degrees of xRy and yRz, and the
relation between the consistency-degree of relation xRz and the consistency-degrees
of xRy and yRz, then we can use the transitivity of R and this relation to indirectly
obtain the approximate value dRxz of consistency-degree of relation xRz. Therefore,
we have the relational inference with degrees as the following scheme:

ðxRy; dRxyÞ
ðyRz; dRyzÞ
ðxRz; dRxzÞ

ð22:7Þ

here, it is required that dRxy [ 0:5 and dRyz [ 0:5, where dRxy , dRyz , and dRxz are
separately the degrees of (x, y), (y, z), and (x, z) having relation R; dRxz ¼
f ðdRxy ; dRyzÞ is the computation formula of dRxz .

For example, the “far greater than” relation of real numbers is a flexible tran-
sitive flexible relation; then, with “far greater than,” we can do a relational inference
with degrees.
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2. Relational inference with degrees with flexible symmetric flexible relations

Definition 22.4 Let U be an n-dimensional measurement space, let R be a binary
flexible relation on product space U � U, and let cR(x, y) be the consistency
function of R. If for 8x; y 2 U, when cR(x, y) > 0 then cR(y, x) > 0, and
cR(x, y) = cR(y, x), then we say R satisfies flexible symmetry and that R is a flexible
symmetrical flexible relation.

Question: Given that R is a flexible symmetric flexible relation, and xRy; also,
A is a quantifiable property, and object x has property A. Then, in the case of having
no corresponding consistency function cA(�) of A, how do we obtain the degree of
object y having property A?

Imagine that if we can know the consistency-degree cR(x, y) of xRy or its
estimated value dRxy and the estimated value dAx of consistency-degree cA(x) and
know the relation between cRðx; yÞjdAy and dRxy and dAx , we can then use the
symmetry of R and this relation to obtain the approximate value of corresponding
cA(y). Therefore, we have the relational inference with degrees as the following
scheme:

ðxRy; cRðx; yÞjdRxyÞ
ðAðxÞ; dAxÞ
ðAðyÞ; dAyÞ

ð22:8Þ

here, it is required that cR(x, y) > 0.5, dRxy [ 0:5, and dAx [ 0:5 (when A is a
flexible linguistic value) or dAx � 1 (when A is a quantifiable rigid linguistic value),
cR(x, y), and dRxy are the degrees of x and y having relation R; dAx and dAy are
separately the degrees of x and y having property A; dAy ¼ f ðcRðx; yÞ j dRxy ; dAxÞ is
the computation formula of dAy .

Example 22.2

P1 alike P2; 0:9ð Þ
pretty P1ð Þ; 1:2ð Þ
pretty P2ð Þ; 1:08ð Þ

here 1.08 = 0.9 × 1.2, that is, dprettyy ¼ dalikexydprettyx .
It can be seen that the key of relational inference with degrees is the degree

computation formula. Then, how do we determine this computation formula? For
the transitive relation and symmetric relation, is there a unified expression of
functions for either? These are just the problems we need to study. But it is not hard
to see that for many practical problems, the multiplication operation similar to the
above examples is all applicable.

22.2 Relational Inference with Degrees 553



22.3 Knowledge Representation with Degrees

Using degrees, i.e., consistency-degrees, we can precisely depict usual knowledge
representation schemes such as tuples, predicates, rules, frames, semantic, and
networks to form the tuple with degrees, the predicate with degrees, the rule with
degrees, the frame with degrees, the semantic net with degrees, etc. Next, we will
exemplify them one by one.

1. Tuple with degrees
The general form of the tuple with degrees is as follows

objecth i; featureh i; linguistic valueh i; degreeh ið Þð Þ ð22:9Þ

For example

the apple; taste; sweet; 0:95ð Þð Þ

This is just a tuple with degree, which can be interpreted as:

This apple is comparatively sweet.

2. Predicate with degrees
Predicates are also linguistic values. Following the practice of linguistic values
with degree, we can also attach a degree to a predicate, that is, refine it as a
predicate with degree to precisely depict the feature of the corresponding object.
According to the characteristics of the form of predicates, we can write a
predicate with degree as

Pd objecth ið Þ or dP objecth ið Þ ð22:10Þ

where P denotes predicate, d denotes degree, Pd is subscript denotation, and dP is
multiplication denotation.

For example,

white1:0ðsnowÞ or 1:0white ðsnowÞ

is just a predicate with degree, which can be interpreted as follows: Snow is white.
For another example,

friends1:15ðMike; JackÞ or 1:15 friends Mike; Jackð Þ

is also a predicate with degree, which can be interpreted as:

Mike and Jack are good friends.
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3. Rule with degrees
A production rule containing linguistic values with degrees is called a pro-
duction rule with degree, simply, a rule with degree. Its general form is as
follows:

objecth i; featureh i; linguistic valueh i; degreeh ið Þð Þ
! objecth i; featureh i; linguistic valueh i; degreeh ið Þð Þ ð22:11Þ

For example,

banana; color; yellow; 0:7ð Þð Þ ! ðbanana;maturity; ripe; 0:9ð ÞÞ

is just a rule with degree, which can be interpreted as:

If a banana is rather yellow, then it is comparatively ripe.

4. Frame with degrees
We call a frame containing linguistic values with degrees to be a frame with
degrees.

For example, there is a frame with degrees describing date below.

frame name: dateh i
category: dried fruith i; 0:8ð Þ
shape: (round, 0.7)
color: (red, 1.0)
taste: (sweet, 1.1)
usage: scope: (edible, officinal)

default: edible

5. Semantic network with degrees
We call a semantic network containing linguistic values with degrees a semantic
network with degrees.

For example, there is a semantic network with degrees describing dog below (see
Fig. 22.2).

Note that the “understand” in linguistic value with degree (can-understand, 0.9)
in Fig. 22.2 is not that kind of adjectives or adverbs as attribute or adverbial
representing the attributes, states, or relations of objects, but a verb as predicate
representing the behavior of object, and the 0.9 is then to modify this verb, which
play the role of adverb (adverbial) (actually, the degrees in linguistic values with
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degrees are all play the role of adverb), and which can be viewed as the conversion
of corresponding adverb such as “well.”

It can be seen that the thinking of depicting imprecision by degree is like
depicting uncertainty by probability. This kind of method is used in the traditional
knowledge representations, thus extending the expression ability of these knowl-
edge representations.

Lastly, it should be pointed out that the representation with degrees above for
imprecise knowledge is a kind of representation with respect to objects, that is, the
degrees here are with respect to specific objects but they are not the mathematical
models of corresponding flexible linguistic values; however, if an object in a tuple,
predicate, rule, frame, semantic, or network is a variable, then corresponding degree is
also a variable―it is the consistency function of correspondingflexible linguistic value.

22.4 Relational Database with Degrees

We know that as attribute values of objects, linguistic values are largely used in
databases. But an object always has a certain linguistic value to a certain degree, so
it would appear not fine or accurate enough that we only use pure linguistic values
to describe things in some situations. For example, in a database of offender
characteristics, naturally the data are hoped to be detailed and accurate. Therefore,
we can attach a real number to a linguistic value in database to depict the degree of
corresponding object having the linguistic value. Particularly, for the relational
database, if the relation R is also a flexible relation (for example, “talented pro-
fessionals” is a flexible relation), then every record should also have a
consistency-degree with R. In the following, we introduce the degrees into the field
of database and give several relational database models with degree for reference.

1. Relational model of linguistic values with degrees
To depict objects in more detail and more accurately, we can attach a real
number called the degree to a data item in usual relational databases to form a
compound data item. Then, the relational database model based on this kind of

is-a-kind-of
master

(can-understand, 0.9) 
dog

sm
ell

(keen, 1.5) 

(carnivore, 0.4)

Fig. 22.2 An example of semantic network with degrees
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compound data items is what we call the relational model of linguistic values
with degrees.

(1) Data models

Definition 22.5 Let D1;D2; . . .;Dn be n one-dimensional measurement spaces as
domains, and let Li be a set of linguistic values on Di i ¼ 1; 2; . . .; nð Þ. Construct
Cartesian product:

L1 �L2 � � � � �Ln ¼ LD

Take subset R�LD such that it can form a relation on domain
L1 �L2 � � � � �Ln. If for every tuple in R

r ¼ ðA1;A2; . . .;AnÞ

a vector

d ¼ ðd1; d2; . . .; dnÞ ðdi 2 ½ai; bi�; ai 	 0; bi � 1; i ¼ 1; . . .; nÞ

can be determined, then two-tuples

ðR; dÞ ð22:12Þ

are called a relation of linguistic values with degrees on domain
L1 �L2 � � � � �Ln, denoted RLd. A tuple in RLd can be represented as an
ordered pair of tuples.

ðr; dÞ ¼ A1;A2; . . .;Anð Þ; d1; d2; . . .; dnð Þð Þ ð22:13Þ

where r ¼ A1;A2; . . .;Anð Þ is called a tuple of linguistic values, and
d ¼ d1; d2; . . .; dnð Þ is called a tuple of degrees.

It can be seen that the relation of linguistic values with degrees is actually a
double relation. This kind of relation can be implemented by two associative
“isomorphism” two-dimensional tables. For example, Table 22.1 is two
two-dimensional tables of a relation of linguistic values with degrees.

Viewed from effect, the relation of linguistic values with degrees, RLd, is a
detailing of the usual relation R.

(2) Relational operations
The relation of linguistic values with degrees, RLd, can also have all kinds of
relational operations. But since the data items are compound ones, the parts of
linguistic value and degree of a data item should be operated synchronically.
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2. Flexible-relational model with degrees
For a flexible relation, we can establish a kind of flexible-relational database
model with degrees called.

(1) Data model

Definition 22.6 Let D1;D2; . . .;Dn be n one-dimensional measurement spaces as
domains; construct Cartesian product:

D1 � D2 � � � � � Dn ¼ D

Take subset R�D such that it can form a flexible relation on domains
D1 � D2 � � � � � Dn. If for every tuple in R

r ¼ x1; x2; . . .; xnð Þ

a consistency-degree with flexible relation R

dðrÞ 2 ½a; b� ða	 0; b� 1Þ

can be determined, then two-tuples

R; dðrÞð Þ ð22:14Þ

Table 22.1 An example of relation of linguistic values with degrees
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are called a flexible relation with degrees on domain D1 � D2 � � � � � Dn, denoted
Rd. A tuple of Rd can be represented as ordered pair

ðr; dðrÞÞ ¼ ððx1; x2; . . .; xnÞ; dðrÞÞ ð22:15Þ

where r ¼ ðx1; x2; . . .; xnÞ 2 D is the tuple of flexible relation R, and dðrÞ 2
½a; b� a	 0; b� 1ð Þ is the consistency-degree of r with flexible relation R.

It can be seen that the flexible relation with degrees is actually a kind of
two-layer relation, which can be implemented by two associative “homomorphism”
two-dimensional tables. For example, Table 22.2 is an example of two-dimensional
table of flexible relation with degrees about “excellent textbook.”

It can be seen that flexible relation with degrees, Rd, is a kind of generalization of
the usual relations (database).

(2) Relational operations
Let R1; d1ðr1Þf g and R2; d2ðr2Þf g be two flexible relations with degrees;
then, the related operations are defined as follows:

(1) Intersection with degrees (\ )

R1; d1ðr1Þf g \ R2; d2ðr2Þf g ¼ fR1 \R2; min ðd1ðr1Þ; d2ðr2ÞÞg

(2) Union with degrees ([ )

R1; d1ðr1Þf g[ R2; d2ðrÞf g ¼ fR1 [R2; max ðd1ðr1Þ; d2ðr2ÞÞg

Table 22.2 An example of flexible relation with degrees
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(3) Other operations including selection, projection, connection, insertion, dele-
tion, updating, etc., are basically the same as operations in usual relational
databases, and only the processing of degrees needs to be added. Obviously, in
these operations, degree d(r) can also be treated as a condition.

3. Flexible-relational model with degrees of linguistic values with degrees
If a relation is a linguistic valued relation as well as a flexible relation, then the
two models above can be superposed into a kind of database model of flexible
relation with degrees of linguistic values with degrees.

(1) Data model

Definition 22.7 Let D1;D2; . . .;Dn be n one-dimensional measurement spaces as
domains, and Li be a set of linguistic values on Di i ¼ 1; 2; . . .; nð Þ. Construct
Cartesian product:

L1 �L2 � � � � �Ln ¼ LD

and take subset R�LD such that it can form a flexible relation on domain
L1 �L2 � � � � �Ln. If for every tuple in R

r ¼ A1;A2; . . .;Anð Þ

a vector

d ¼ d1; d2; . . .; dnð Þ ðdi 2 ½ai; bi�; ai 	 0; bi � 1; i ¼ 1; . . .; nÞ

can be determined, and for (r, d) and R, a real number

dðrÞ 2 ½a; b� ða	 0; b� 1Þ

can be determined, then compound two-tuples

ððR; dÞ; dðrÞÞ ð22:16Þ

are called a flexible relation with degrees of linguistic values with degrees on
domain L1 �L2 � � � � �Ln, denoted Rd�Ld . A tuple in Rd�Ld can be represented
as an ordered pair of compound tuples

ððr; dÞ; dðrÞÞ ¼ A1;A2; . . .;Anð Þ; d1; d2; . . .; dnð Þð Þ; dðrÞð Þ ð22:17Þ

where r ¼ ðA1;A2; . . .;AnÞ is a tuple of linguistic values, d ¼ d1; d2; . . .; dnð Þ is a
tuple of degrees, and dðrÞ 2 ½a; b� ða	 0; b� 1Þ is the consistency-degree of
(r, d) with flexible relation R.

It can be seen that the flexible relation with degrees of linguistic values with
degrees is actually a kind of two-layer double relation, which can be implemented
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by two associative “isomorphism” two-dimensional tables and another
two-dimensional table that is “homomorphism” with them. For example,
Table 22.3 is an example of the two-dimensional tables of the flexible relation with
degrees of linguistic values with degrees about “excellent textbook.”

It can be seen that flexible relation with degrees of linguistic values with degrees,
Rd-Ld, is a kind of detail and generalization of the usual relation (database).

(2) Relational operations
Let R1; r1ð Þ; d1ðr1Þf g and R2; r2ð Þ; d2ðr2Þf g be two flexible relations with
degrees of linguistic values with degrees; then, the related operations based on
flexible relations are defined as follows:

(1) Intersection with degrees (\ )

R1; r1ð Þ; d1ðr1Þf g\ R2; r2ð Þ; d2ðr2Þf g ¼ R1; r1ð Þ \ R2; r2ð Þ; min d1ðr1Þ; d2ðr2Þð Þf g

Table 22.3 An example of flexible relation with degrees of linguistic values with degrees
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(2) Union with degrees ([ )

R1; r1ð Þ; d1ðr1Þf g[ R2; r2ð Þ; d2ðrÞf g ¼ R1; r1ð Þ [ R2; r2ð Þ; max d1ðr1Þ; d2ðr2Þð Þf g

(3) Other operations including selection, projection, connection, insertion, dele-
tion, updating, etc., are basically the same as operations in usual relational
databases, and only the processing of degrees needs to be added.

In the above, we gave tentatively three kinds of relational database models with
degrees. It can be seen that this idea and method of degree-introducing are also
applicable for other types of databases (such as network and object-oriented).

It should be pointed out lastly that an important application of the database with
degrees is that it can be used to describe the sample data set in supervised machine
learning. In fact, the degrees here are the consistency-degrees between corre-
sponding numerical objects and corresponding linguistic values, which can just be
treated as the supervisor’s signal in sample data.

22.5 Some Ideas for Machine Understanding
and Generation of Flexible Concepts and Flexible
Propositions

22.5.1 Machine Understanding of Flexible Concepts
with Knowledgebase

1. Understanding of atomic concepts
Atomic flexible concepts are a kind of initial and basic flexible concepts directly
founded on the basis of perceived information, which belongs to common sense
or axiomatic knowledge. According to the analyses in Sect. 19.1, the formation
mechanism of the atomic concepts should be innate of human brain. So we
believe that people understand directly the atomic flexible concepts from per-
ceptual knowledge. Thus, understanding of the atomic concepts can be imple-
mented directly using their membership/consistency functions. For instance, for
“tall,” from its membership function, its core and support set can be known;
thus, the scope of height of a certain person can be estimated. If one is also “very
tall,” then from the consistency function, one’s height scope can be estimated.

Viewed from the realization method, the understanding of the atomic perceptual
flexible concepts can be realized by conversion from numerical values to flexible
linguistic values; conversely, the execution of atomic flexible commands can also
be realized by conversion from flexible linguistic values to numerical values.
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2. Understanding of the compound concepts
Compound concepts are a kind of concepts compounded by its component
concepts through logical connectives. Therefore, people’s understanding of a
compound concept should be achieved by combining the understanding of its
component concepts and the understanding of logical connectives such as AND,
OR, and NOT. It is clear that the meaning of a logical connective is its logical
semantics. Therefore, the understanding of a compound concept is the under-
standing based on its component concepts and logical knowledge. The under-
standing of a compound concept can be realized by the computation of
corresponding compound consistency function and also by the reasoning with
the corresponding flexible rules.

3. Understanding of the synthetic concepts
A synthetic concept is a concept compounded by its ingredient concepts through
algebraic operations. The understanding of a synthetic concept can be realized
by the computation of corresponding consistency function and also by reasoning
with the corresponding synthesis-type flexible rules.

4. Understanding of the derivative concepts
The so-called derivative concepts are a kind of concepts defined by known
concepts. The understanding of a derivative concept is the understanding based
on its definition. The derivative concepts is a kind of high-level concept based
on the known concepts, which generally belong to specialized knowledge,
defined by rules, and acquired by learning. Therefore, the understanding of the
derivative concepts is the understanding based on specialized knowledge and
linguistic knowledge, and the understanding according to the relationship
between known concepts and defined concepts.

To sum up, the understanding of flexible concepts require to build two level of
knowledge bases, that is, a knowledge base of primary concepts and a knowledge
base of advanced concepts. The former stores the membership or consistency
functions of the primary concepts, and the latter stores the membership or con-
sistency functions of the derivative concepts and the flexible rules. With the two
types of knowledge bases, we can build a machine understanding system of flexible
concepts with knowledge bases. The structure of the system is shown in Fig. 22.3.
Therein, the computing of function and the reasoning with rules are two main
function components.
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22.5.2 Machine Generation and Application of Flexible
Concepts with Object-Oriented Programs

Here, the so-called machine generation of flexible concepts is that machine can
independently automatically generate the membership/consistency functions of
relevant flexible concepts. Specifically speaking, the membership or consistency
functions can be automatically formed from parameters given in advance. To
achieve this, in the machine we can set a common parameters-undetermined
computation program of the membership or consistency function. Once the
parameter values are given, the program execute the corresponding computation of
membership/consistency function, further obtaining corresponding membership-
degree or consistency-degree. Thus, in effect, it is tantamount to the corresponding
membership/consistency function being generated. It is not hard to see that this
function can just be implemented by using object-oriented programs. As a matter of
fact, designing a flexible concept class, then using a group of parameters, then an
instance object, that is, a specific flexible concept, can be generated. Next, we give
tentatively an example of a flexible concept class implemented by C++ programs.

inference 

Interfaces of input/output and data conversion 

consistency
function base

flexible rule
base

computation 

Fig. 22.3 Structure of an understanding system of flexible concept with knowledge base
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For simplicity, the above defined is only a flexible concept class of negative
semi-peak value. Using this flexible concept class, then its instance objects, that is,
specific flexible concepts, can be generated. For example, the statement below can
generate an instance of flexible concept named “(weather) hot”: hot.

Flexibleconcept hot(“(weather) hot”,20,28);

here, 20 and 28 are the critical point and core–boundary point of “(weather) hot.”
Next, we send a message to object hot:

hot. consistencyfunction(25);

That is, asking it to compute the consistency-degree of 25 °C with “(weather)
hot.” According to the critical point and core–boundary point for “(weather) hot”
set above, the returned result of the system should be:

consistencydegree: 0.625

From this example, it can be seen that we can use object-oriented technology to
build a flexible concept knowledgebase consisting of flexible concept classes with
corresponding parameters, so as to simulate functionally generation and under-
standing of the flexible concepts. Obviously, the more flexible concepts there are in
the knowledgebase, the richer is machine’s relevant knowledge, and the stronger is
the corresponding ability of imprecision information processing. And then, we can
also build a flexible concept net according to logical relations between flexible
concepts.

22.6 Summary

In this chapter, the work of us is as follows:

• From the perspective of methodology proposed, two basic ideas and techniques
of imprecise-information processing—degree-introducing and appropriate
granularity.

• Discuss the relational inference with quantifiable rigid relations and flexible
relations and gave the corresponding schemes of relational inference with
degrees for transitivity and symmetry relations.

• Propose the method of knowledge representation with degrees and gave some
representation schemes such as tuple with degrees, predicate with degrees, frame
with degrees, semantic network with degrees, and rule with degrees.

• Discussed relational database models with degrees and presented the relational
model of linguistic value with degrees, flexible-relational model with degrees
and flexible-relational model with degrees of linguistic values with degrees.

• Proposed a principle of machine understanding flexible concepts with knowl-
edge base and presented a method of automatically generating flexible concepts
by using object-oriented programming.
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Chapter 23
Probabilities of Random Flexible Events

Abstract This chapter introduces the concept of random flexible events, analyzes
the corresponding probability computation principles, and then establishes corre-
sponding probability computation models for various types of flexible events.

Keywords Random flexible events � Conceptual probability � Practical probability

What the previous chapters discussed are all pure imprecise-information processing,
but there are also the phenomenon and problems of the crossing and overlapping of
imprecision and uncertainty in the real world. In this chapter, we discuss random
flexible events and their probabilities as well as flexible linguistic values on the
probability range.

23.1 Random Flexible Events and Their Probabilities

23.1.1 Random Flexible Events

We know that the random event is a basic concept in probability theory. However,
random events discussed in probability theory are usually some “rigid events” or
“random rigid events.” The so-called rigid events are ones that have rigid standards
or demarcations. For instance, “raining” is a rigid event, since the demarcation of
the event of “raining” is rigid, and raining or not raining is very clear cut. For
another example, “draw an unqualified product from a batch of products” is also a
rigid event since there must be a rigid standard on what is an unqualified product.

However, our information communication also involves a lot of random “flex-
ible events.” The so-called flexible events are ones that have no rigid standards or
demarcations, or in other words that are described by flexible linguistic values [1].
For instance, “rain heavily” is a flexible event since how heavy should be regarded
as heavy has not a rigid standard and demarcation. For another example, “draw a
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good product from a batch of product” is also a flexible event because “good” is
only an adjective, and “good product” has not a rigid standard.

We know that for a rigid event, the probability of its occurrence can be calcu-
lated and the probability is a precise number. Then, for a flexible event, how its
probability is represented and computed? In the following, we will discuss these
problems.

23.1.2 Probability of a Flexible Event with Uniformly
Distributed Random Variable

1. Probability of a flexible event with uniformly distributed discrete random
variable

In the traditional probability theory, for uniformly distributed discrete random
variable X, the probability of corresponding event eA (X 2 A) is generally computed
by using the following formula:

PðeAÞ ¼ Aj j
Xj j ¼

k
n

where Ω = {e1, e2, …, en} is a sample space, A is a set of basic events that event eA
contains, and | | denotes the size of a set. What this equation formulates is the
so-called classical probability.

Since the probabilities of all basic events are equivalent, or in other words, the
probability distribution of random variable X on Ω is uniform, so the probability of
event eA should be equal to the ratio of the size |A| of basic event set A to the size |Ω|
of sample space, i.e., the share of A in Ω. Such is the basic principle of the classical
probability.

When Ω is a set of consecutive integers and eA is a flexible event, A would be a
flexible set. And the elements in a flexible set all belong to this flexible set to some
degrees. Therefore, the membership-degree of an element to the flexible set is the
contribution of it in numerical to the size of the flexible set. Thus, the size of flexible
set A should be

Aj j ¼
X

x2sup pðAÞ
mAðxÞ

That is, the element amount of flexible set A is the sum of element x in Ω by
converting according to membership-degree mAðxÞ. Thus, we have

PðeAÞ ¼ Aj j
Xj j ¼

P
x2sup pðAÞ mAðxÞ

Xj j ð23:1Þ
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This is the computation model of the probability of a flexible event with uniformly
distributed discrete random variable.

Example 23.1 In the game of craps, sample space Ω = {1, 2, 3, 4, 5, 6}. Here,
integer i 2 (i = 1, 2, 3, 4, 5, 6) represents that result is i points.

We use random variable X to represent the number of points occurring in a throw
of dice, then according to the classical probability,

PðX ¼ iÞ ¼ 1
6

ði ¼ 1; 2; 3; 4; 5; 6Þ

PðX ¼ 2 or X ¼ 6Þ ¼ 1þ 1
6

¼ 2
6

PðX[ 3Þ ¼ 1þ 1þ 1
6

¼ 3
6

The above three events are all rigid events. Examining sample space Ω, obvi-
ously, it is a continuous set in the sense of integers, so which can be regarded as a
measurement space. Therefore, on it there can occur flexible events. For instance,
“result is a big point” and “result is a small point” of the throw of dice are two
flexible events on Ω. We define the membership functions of the corresponding
flexible sets “big point” and “small point” of the two flexible events as follows:

mbig pointðxÞ ¼ 1; 0ð Þ; 2; 0:2ð Þ; 3; 0:4ð Þ; 4; 0:6ð Þ; 5; 0:8ð Þ; 6; 1ð Þf g
msmall pointðxÞ ¼ f 1; 1ð Þ; 2; 0:8ð Þ; 3; 0:6ð Þ; 4; 0:4ð Þ; ð5; 0:2Þ; ð6; 0Þg

Thus, from Eq. (23.1),

PðX 2 big pointÞ ¼ 0þ 0:2þ 0:4þ 0:6þ 0:8þ 1
6

¼ 3
6
¼ 1

2

PðX 2 small pointÞ ¼ 1þ 0:8þ 0:6þ 0:4þ 0:2þ 0
6

¼ 3
6
¼ 1

2

2. Probabilities of flexible events with uniformly distributed continuous ran-
dom variable

In traditional probability theory, for uniformly distributed continuous random
variable X, the probability of corresponding event eA (X 2 A) is generally computed
by the following formula:

PðX 2 AÞ ¼ Aj j
Uj j

where U is a real number interval, and A � U is measurable. What this equation
formulates is the so-called geometric probability.
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Since the distribution of the probability of random variable X on U is uniform,
the probability of event eA equals the ratio of the size |A| of subset A to the size |U|
of U. Such is the basic principle of the geometric probability.

Just the same, when U is regarded as a measurement space and eA is a flexible
event, corresponding A is a continuous flexible set. And the size of a continuous
flexible set equals the definite integral of its membership function on the support
set. Thus, the size of A should be

Aj j ¼
Z

sup pðAÞ

mAðxÞdx

Thus, we have

PðX 2 AÞ ¼ Aj j
Uj j ¼

R
sup pðAÞ mAðxÞdx

Uj j ð23:2Þ

This is the computation model of the probability of a flexible event with uniformly
distributed continuous random variables.

Example 23.2 Suppose a certain random number generator can generate
equiprobably any real number in interval [0, 10]. Now to compute: the probability
of this random number generator producing a real number of “about 5” at one time.

Let X be a real number generated by the random number generator, then X is a
random variable. Thus, “generating a real number of about 5” can be represented as:
X2 about 5. Clearly, this is a flexible event, suppose

mabout 5ðxÞ ¼

0; x� 4:6
x� 4:6

2
; 4:6\x\4:8

1; 4:8� x� 5:2
5:4� x

2
; 5:2\x\5:4

0; 5:4� x

8>>>>>>>><
>>>>>>>>:

It follows that

Z10
0

mabout 5ðxÞdx ¼ 0:6

½0; 10�j j ¼ 10
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Thus,

PðX 2 about 5Þ ¼ 0:6=10 ¼ 0:06

23.1.3 Probability of a Flexible Event with Non-uniformly
Distributed Random Variable

We know that in traditional probability theory, for non-uniformly distributed ran-
dom variable X, the probability of the corresponding event eA (X 2 A) is generally
computed by the following two formulas:

(1) For discrete random variable X

P a1 �X� b1ð Þ ¼
X

xk2½a1;b1�
Pk

Pkf g is the probability distribution sequence of Xð Þ

(2) For continuous random variable X

P a1 �X� b1ð Þ ¼
Zb1
a1

qðxÞdx

ðqðxÞ is the distribution density function of XÞ

Whilewhen eA:X 2 A is aflexible event, the corresponding setA is aflexible set, that
is, flexible interval. Let supp(A) = [a1, b1]. Imagine support set [a1, b1] is divided into a
number of small intervals ½a11 ; b11 �; ½a12 ; b12 �; . . .; ½a1n ; b1n �, on every small interval, the
probability density is close to uniform distribution; thus, we take qða1iÞ as the uniform
probability density on small interval ½a1i ; b1i � i ¼ 1; 2; . . .; nð Þ. SetDi ¼ ½a1i ; b1i �j j, but
because ½a1i ; b1i � is the support set of a flexible linguistic value, the effective length of
½a1i ; b1i � should be the integral of membership function mA(x) on ½a1i ; b1i �. Therefore,
we then take mAða1iÞ as the uniform membership-degree on ½a1i ; b1i �, then

½a1i ; b1i �j j � mAða1iÞDi

Thus,

Pða1i �X� b1iÞ � qða1iÞmAða1iÞDi

Therefore,

PðX 2 AÞ �
Xn
i¼1

qða1iÞmAða1iÞDi
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Set Di ! 0, then

lim
Di!0

Xn
i¼1

qða1iÞmAða1iÞDi

 !
¼
Zb1
a1

qðxÞmAðxÞdx ¼
Z

sup pðAÞ

qðxÞmAðxÞdx

Thus, we have

PðX 2 AÞ
Z

sup pðAÞ

qðxÞmAðxÞdx ð23:3Þ

This is the probability of a flexible event with non-uniformly distributed continuous
random variable.

However, unfortunately, for the flexible events with non-uniformly distributed
discrete random variables, we have not found a reasonable method to compute their
probabilities. But fortunately, we can compute their “practical probabilities” (see
next section).

23.1.4 Probability on the Extended Core—The Practical
Probability of a Flexible Event

In the above, we derived the computation formula of probability of a flexible event
starting from the concept of flexible events. However, like flexible classifying,
when we try to find the probability of a flexible event, actually the flexible event
should be flexible classified firstly. And the probability to be found is just the
probability of the flexible event that had been flexibly classified. For instance, to
find the probability of a heavy rain, we do not do it in an isolated way, but find the
probability of the flexible event that be classified as “heavy rain.” Then, how do we
compute the probability of this “flexible event” that is classified?

Since the flexible event after being classified actually already is a “rigid event”
represented by the extended core of original flexible event, its probability is the
probability of random variable on the extended core of the corresponding flexible
linguistic value. Thus, for the flexible event eA: X 2 A, there would be following
cases:

(1) If random variable X is uniform distribution, then

① When X is a discrete variable,

PðeAÞ ¼ PðX 2 coreðAÞþ Þ ¼ coreðAÞþ�� ��
Xj j ð23:4Þ

where Ω is the sample space corresponding to random variable X
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② When X is a continuous variable,

PðeAÞ ¼ PðX 2 core(AÞþ Þ ¼ coreðAÞþ�� ��
Uj j ð23:5Þ

where U is the measurement space corresponding to random variable X

(2) If random variable X is non-uniform distribution, then

① When X is a discrete variable,

PðeAÞ ¼ PðX 2 core(AÞþ Þ ¼
X

xk2coreðAÞþ
Pi ð23:6Þ

where {Pk} is the probability distribution sequence of X.
② When X is a continuous variable,

PðeAÞ ¼ PðX 2 core(AÞþ Þ ¼
Z

coreðAÞþ
qðxÞdx ð23:7Þ

where qðxÞ is the probability density function of X.
In order to distinguish, we call the probability of random variable X on the

support set of flexible linguistic value A to be the conceptual probability of flexible
event eA, while call its probability on the extended core of flexible linguistic value
A to be the practical probability of flexible event eA. Thus, the previous
Eqs. (23.1)–(23.3) are the computation formulas of conceptual probabilities, while
the Eqs. (23.4)–(23.7) are the computation formulas of practical probabilities.

Example 23.3 Denote the random variable of daily rainfall as ξ. Let the range of
values of ξ be interval [0, 1000], and let probability density function be ρ(x). Then,
“rain lightly” is a flexible event on this interval. Suppose the support set and core of
“light rain” be separately (0, 30) and (0, 20], then its extended core is (0, 25]. Thus,
the conceptual probability of light rain on a certain day is

Pðn 2 light rainÞ ¼
Z30
0

qðxÞmlight rainðxÞdx

The practical probability is

Pðn 2 light rainÞ ¼ Pðn 2 ð0; 25�Þ ¼
Z25
0

qðxÞdx

Later if not specifically specified, the probability of a flexible event always refers
to its practical probability. But, from Theorem 20.3, the size of the extended core of
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a flexible set which is not a Cartesian product is equal to the size of the flexible set.
So for a flexible event which is non-synthetic flexible event with uniformly dis-
tributed random variable, its conceptual probability is equal to the practical
probability.

23.1.5 Linguistic Values on Probability Range

Obviously, “necessarily,” “possibly,” and “not possibly” are three basic rigid lin-
guistic values on the range [0, 1] of probabilities (as shown in Fig. 23.1a). There are
flexible linguistic values of “very probably/likely,” “fairly probably/likely,” and
“not highly probably/likely,” etc., on the range [0, 1] of probabilities, the graphs of
whose membership functions are shown in Fig. 23.1b.

23.2 Probability of a Compound Flexible Event
on the Same Space

Firstly, we call the flexible event eA described by flexible linguistic value A on
measurement space U to be a flexible event on measurement space U and call the
compound flexible event made up of events on one and the same measurement
space to be a compound flexible event on the same space.

In the following, we consider the probabilities of compound flexible events on
the same space, ¬eA, eA ∧ eB, eA ∨ eB and eA → eB.

Let A and B be flexible linguistic values on one-dimensional measurement space
U, X be a random variable on U, and eA: X 2 A and eB: X 2 B be flexible events on
U. It can be seen that the negative flexible event ¬eA is actually also flexible event
e¬A: X 2 Ac, that is,

:eA ¼ e:A ð23:8Þ

not 
highly 
probably

 0 0.5 0.6 0.8 1 x

fairly 
probably

very probably
c 

1

0

possibly

0                   1 x

impossibly necessarily

(a) (b)

Fig. 23.1 a Basic linguistic values on the range of probabilities, b examples of flexible linguistic
values on the range of probabilities
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the conjunctive flexible event eA ∧ eB: X 2 A ∧ X 2 B is also eA∧B: X 2 A \ B; the
disjunctive flexible event eA ∨ eB: X 2 A ∨ X 2 B is also eA∨B: X 2 A [ B, namely

eA ^ eB ¼ eA^B ð23:9Þ

eA _ eB ¼ eA_B ð23:10Þ

whereas implicational flexible event eA → eB: X 2 A → X 2 B is the eB in con-
dition eA, we adopt the notation in traditional probability theory to denote eA → eB
as eB|eA and call it the conditional flexible event.

Now, also by the definition of probability of the flexible event given in the
section above, then

(1) When X is uniform distribution,

Pðe:AÞ ¼
coreðA0Þþ�� ��

Uj j ð23:11Þ

PðeA^BÞ ¼
coreðA\BÞþ�� ��

Uj j ð23:12Þ

PðeA_BÞ ¼
coreðA[BÞþ�� ��

Uj j ¼ coreðAÞþ�� ��þ coreðBÞþ�� ��� coreðA\BÞþ�� ��
Uj j

¼ coreðAÞþ�� ��
Uj j þ coreðBÞþ�� ��

Uj j � coreðA\BÞþ�� ��
Uj j

¼ PðeA þPðeBÞ � PðeA^BÞ

ð23:13Þ

PðeBjeAÞ ¼ PðeA ^ eBÞ
PðeAÞ ¼ PðeA^BÞ

PðeAÞ

¼ coreðA\BÞþ�� ��= Uj j
coreðAÞþ�� ��= Uj j ¼ coreðA\BÞþ�� ��

coreðAÞþ�� ��
ð23:14Þ

Also, by the Theorem 20.3 and the definition of the inclusion-degree of flexible sets,

coreðA\BÞþ�� ��
coreðAÞþ�� �� ¼ A\Bj j

Aj j ¼ contðA;BÞ

Thus, we have

PðeBjeAÞ ¼ contðA;BÞ ð23:15Þ

That is, the probability of an implicational or conditional flexible event is numer-
ically equal to the inclusion-degree between corresponding flexible sets.
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Of course, Eq. (23.15) only is the definition of probability of conditional flexible
event on the same space. Like the conditional probability in traditional probability
theory, the probability of a conditional flexible event on the same space also has
corresponding Bayes’ formula. Besides, on the basis of probability of conditional
flexible event on the same space, there is the corresponding total probability for-
mula. These formulas are similar to the formulations in traditional probability
theory, so it is unnecessary to go into details here.

(2) When X is non-uniform distribution and discrete,

Pðe:AÞ ¼ Pðx 2 coreðA0Þþ Þ ¼
X

xk2coreðA0Þþ
Pi ð23:16Þ

PðeA^BÞ ¼
X

xk2coreðA\BÞþ
Pi ð23:17Þ

PðeA_BÞ ¼
X

xk2coreðA[BÞþ
Pi ¼

X
xk2coreðAÞþ

Pi þ
X

xk2coreðBÞþ
Pi �

X
xk2coreðA\BÞþ

Pi

ð23:18Þ

PðeBjeAÞ ¼
X

xk2coreðA\BÞþ
Pi=

X
xk2coreðAÞþ

Pi ð23:19Þ

here {Pk} is the distribution sequence of X.
(3) When X is non-uniform distribution and continuous,

Pðe:AÞ ¼
Z

coreðA0Þþ
qA0 ðxÞdx ð23:20Þ

PðeA^BÞ ¼
Z

coreðA\BÞþ
qA\BðxÞdx ð23:21Þ

PðeA_BÞ ¼
Z

coreðAÞþ
qAðxÞdxþ

Z
coreðBÞþ

qBðxÞdx�
Z

coreðA\BÞþ
qA\BðxÞdx

ð23:22Þ

PðeBjeAÞ ¼
Z

coreðA\BÞþ
qA\BðxÞdx=

Z
coreðAÞþ

qðxÞdx ð23:23Þ

here ρ(*) is the density function of X.
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Since :eA ¼ e:A, eA ∧ eB = eA∧B, eA ∨ eB = eA∨B, and eA → eB = eB|eA; thus,
we obtain a group of probability computation formulas of compound flexible events
:eA, eA ∧ eB, eA ∨ eB and eA → eB.

Generally, let A1, A2, …, An be flexible linguistic values on one-dimensional
measurement space U, X be a random variable on U, and eAi : X 2 Ai (i = 1, 2, …,
n) be a flexible event on U, then

(1) When X is uniform distribution,

PðeA1 ^ eA2 ^ � � � ^ eAnÞ ¼
coreðA1 \A2 \ � � � \AnÞþ
�� ��

Uj j

¼ coreðA1Þþ
�� ��

Uj j
coreðA1 \A2Þþ
�� ��

coreðA1Þþ
�� �� . . .

coreðA1 \A2 \ � � � \AnÞþ
�� ��
coreðA1 \A2 \ � � � \An�1Þj j

¼ PðeA1ÞPðeA2 jeA1Þ. . .PðeAn jeA1 ^ eA2 ^ � � � ^ eAn�1Þ
ð23:24Þ

(2) When X is non-uniform distribution and discrete,

PðeA1 ^ eA2 ^ � � � ^ eAnÞ ¼
X

xk2coreðA1 \A2 \ ��� \AnÞþ
Pi

¼
X

xk2coreðA1Þþ
Pi

P
xi2coreðA1 \A2Þþ PiP
xx2coreðA1Þþ Pi

� � �
P

xi2coreðA1 \A2 \ ��� \AnÞ PiP
xi2coreðA1 \A2 \ ��� \An�1Þ Pi

¼ PðeA1ÞPðeA2 jeA1Þ. . .PðeAn jeA1 ^ eA2 ^ � � � ^ eAn�1Þ
ð23:25Þ

(3) When X is non-uniform distribution and continuous,

PðeA1 ^ eA2 ^ � � � ^ eAnÞ ¼
Z

coreðA1 \A2 \ ��� \AnÞþ
qðxÞdx

¼
Z

coreðA1Þþ
qðxÞdx

R
coreðA1 \A2Þþ qðxÞdxR

coreðA1Þþ qðxÞdx � � �
R
coreðA1 \A2 \ ��� \AnÞþ qðxÞdxR
coreðA1 \A2 \ ��� \An�1Þþ qðxÞdx

¼ PðeA1ÞPðeA2 jeA1Þ. . .PðeAn jeA1 ^ eA2Þ ^ � � � ^ eAn�1Þ
ð23:26Þ

(4) For any X, always

PðeA1 _ eA2 _ � � � _ eAnÞ ¼
Xn
i¼1

PðeAiÞ �
X

1� i\j� n

P eAi ^ eAj

� �
þ

X
1� i\j\k� n

P eAi ^ eAj ^ eAk

� �� � � � þ ð�1Þnþ 1PðeA1Þ ^ eA2 ^ � � � ^ eAnÞ

ð23:27Þ
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PðeBjeA1 ^ eA2 ^ � � � ^ eAnÞ

¼ PðeA1 ^ eA2 ^ � � � ^ eAn ^ eBÞ
PðeA1 ^ eA2 ^ � � � ^ eAnÞ

; PðeA1 ^ eA2 ^ � � � ^ eAnÞ 6¼ 0 ð23:28Þ

PðeBjeA1 _ eA2 _ � � � _ eAnÞ

¼ PððeA1 _ eA2 _ � � � _ eAnÞ ^ eBÞ
PðeA1 _ eA2 _ � � � _ eAnÞ

; PðeA1 _ eA2 _ � � � _ eAnÞ 6¼ 0

ð23:29Þ

In particular, when A1, A2, …, An are a group of complementary basic flexible
linguistic values on U, flexible events eA1 ; eA2 ; . . .; eAn form a group of comple-
mentary basic flexible events on U.

Since

core(A1Þþ \ coreðA2Þþ \ � � � \ coreðAnÞþ ¼ £

and in the situation that medium point mAi i ¼ 1; 2; . . .; nð Þ is overlooked,

core(A1Þþ [ coreðA2Þþ [ � � � [ coreðAnÞþ ¼ U

Thus,

PðeA1 ^ eA2 ^ � � � ^ eAnÞ ¼ 0 ð23:30Þ

PðeA1 _ eA2 _ � � � _ eAnÞ ¼ PðeA1ÞþPðeA2Þþ � � � þPðeAnÞ ¼ 1 ð23:31Þ

That is to say, flexible events eA1 ; eA2 ; . . .; eAn are really also a group of exclusive
events.

From this, it follows that for any A � U,

PðeAÞ ^ Pðe:AÞ ¼ 0 ð23:32Þ

PðeAÞ _ Pðe:AÞ ¼ PðeAÞþPðe:AÞ ¼ 1 ð23:33Þ

Thus,

Pðe:AÞ ¼ 1� PðeAÞ ð23:34Þ

That is to say, flexible events eA and e:A are conceptually complementary and are
practically exclusive.

It is not hard to see that the above analysis and its result are also applicable to the
flexible events on multidimensional space U.

Lastly, about the independence of flexible events on the same space, we have the
following analysis and result.
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Let A be a flexible linguistic value on measurement space U, X and Y be sep-
arately the random variables on U, and eA: X 2 A and e0A: Y 2 A be two flexible
events on U. It can be seen that though the events eA and e0A are both with flexible
linguistic value A, sine X and Y are two random variables; there is actually no
dependent relation between the two events. Therefore,

PðeA ^ e0AÞ ¼ PðeAÞðe0AÞ

Thus, flexible events eA and e0A are mutually independent.
Generally, all flexible events that are with one and the same flexible linguistic

value, but belong to different random variables, are all mutually independent.

23.3 Probabilities of a Flexible Event with a Composite
Linguistic Value and a Compound Flexible Event
from Distinct Spaces

The above compound flexible events are all the events described by atomic lin-
guistic values and the compound flexible events on the same space. In this section,
we consider the flexible event described by a composite linguistic value and the
compound flexible event made up of flexible events on distinct measurement spaces
and their probabilities.

1. A flexible event with a combined linguistic value and its probability

Definition 23.1 Let A1, A2,…, An be flexible linguistic values on n-dimensional
measurement space U = U1 × U2 × ��� × Un, which denote separately mutually
orthogonal flexible sets A1, A2, …, An in U, and let (X1, X2, …, Xn) be a random
vector (that is, n-dimensional random variable). We call the flexible event
eA1^A2^���^An : (X1, X2, …, Xn) 2 A1 \ A2 \ ��� \ An and eA1_A2_���_An : (X1, X2, …,
Xn) 2 A1 [ A2[ ��� [ An to be the flexible events with a combined linguistic
value.

Example 23.4 Let U = V = W = {0, 1, 2, …, 999, 1000} be separately the ranges
of scores of people’s three attributions of facial features, facial shape, and skin, A be
the flexible linguistic value: (facial features) “regular” on U, B be the flexible
linguistic value: (facial shape) “ proper” on V, and C be the flexible linguistic value:
(skin) “bright and clean” on W, and let X, Y, and Z be separately random variables
that represent the scores of facial features, facial shape, and skin. Then, the flexible
events eA∧B∧C: (X, Y, Z) 2 A × V × W \ U × B × W \ U × V × C (which
means that the person has “regular (facial features)” and “proper (facial shape)” and
“bright and clean (skin)”) and eA∨B∨C: (X, Y, Z) 2 A × V × W [ U × B ×
W [ U × V × C (which means that the person has “regular (facial features)” or
“proper (facial shape)” or “bright and clean (skin)” are two flexible events with
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combined linguistic values, which separately take a photo of a person randomly
from the photo database with index file U × V × W who has “regular (facial fea-
tures) and proper (facial shape) and bright and clean (skin)”, and who has “regular
(facial features) or proper (facial shape) or bright and clean (skin))”. If we define
“beautiful” = “regular (facial features)” and “proper (facial shape)” and “bright and
clean (skin),” then ebeautiful = eA∧B∧C; if we define “beautiful” = “regular (facial
features)” or “proper (facial shape)” or “bright and clean (skin),” then
ebeautiful = eA∨B∨C.

Next, we analyze the probability computation of flexible events with a combined
linguistic value.

Let A and B be two flexible linguistic values on measurement space U × V,
which denote separately flexible sets A and B on U × V, and let flexible events
eA∧B: (X, Y) 2 A \ B and eA∨B: (X, Y) 2 A [ B be two flexible events with
two-dimensional combined linguistic values. Then, by the definition of (practical)
probability of a flexible event:

(1) When (X, Y) is uniform distribution,

PðeA^BÞ ¼
coreðA\BÞþ�� ��

U 	 Vj j

¼ coreðAÞþ 	 coreðBÞþ�� ��
U 	 Vj j ¼ coreðAÞþ�� �� coreðBÞþ�� ��

Uj j Vj j

¼ coreðAÞþ�� ��
Uj j

coreðBÞþ�� ��
Vj j ¼ PðeAÞPðeBÞ ð23:35Þ

PðeA_BÞ ¼
coreðA[BÞþ�� ��

U 	 Vj j

¼ coreðAÞþ�� ��
U 	 Vj j þ coreðBÞþ�� ��

U 	 Vj j � coreðA\BÞþ�� ��
U 	 Vj j

¼ coreðAÞþ�� ��
Uj j þ coreðBÞþ�� ��

Vj j � coreðAÞþ�� ��
Uj j

coreðBÞþ�� ��
Vj j

¼ PðeAÞþ ðeBÞ � PðeAÞðeBÞ ð23:36Þ

(2) When (X, Y) is non-uniform distribution,

① For discrete variable (X, Y),

PðeA_BÞ ¼
X

ðxk ;yjÞ2coreðA	V \U	BÞþ
Pij ¼

X
ðxk ;yjÞ2coreðAÞþ 	coreðBÞþ

Pij ð23:37Þ
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PðeA_BÞ ¼
X

ðxk ;yjÞ2coreðA	V [U	BÞþ
Pij

¼
X

ðxk ;yjÞ2coreðA	VÞþ
Pij þ

X
ðxk ;yjÞ2coreðU	BÞþ

Pij �
X

ðxk ;yjÞ2coreðA	V \U	BÞþ
Pij

¼
X

xk2coreðAÞþ
Pi þ

X
yj2coreðBÞþ

Pj �
X

ðxk ;yjÞ2coreðA	V \U	BÞþ
Pij

¼ PðeAÞþPðeBÞ � PðeA^BÞ
ð23:38Þ

here Pij 2 {Pkl}, {Pkl} is the joint distribution sequence of (X, Y); Pi 2 {Pk},
Pj 2 {Pl}, {Pk}, and {Pl} are separately the distribution sequence of X and Y.

Then, as long as random variables X and Y are mutually independent, there
would occur X

ðxk ;yjÞ2coreðAÞþ 	coreðBÞþ
Pij ¼

X
xk2coreðAÞþ

Pi

X
yj2coreðBÞþ

Pj

thus

PðeA^BÞ ¼
X

xk2coreðAÞþ
Pi

X
yj2coreðBÞþ

Pj ¼ PðeAÞPðeBÞ ð23:39Þ

PðeA_BÞ ¼
X

xk2coreðAÞþ
Pi þ

X
yj2coreðBÞþ

Pj �
X

xk2coreðAÞþ
Pi

X
yj2coreðBÞþ

Pj

¼ PðeAÞþPðeBÞ � PðeAÞPðeBÞ
ð23:40Þ

② For continuous variable (X, Y),

PðeA^BÞ ¼
ZZ

coreðA	V \U	BÞþ
qðx; yÞdxdy ¼

ZZ
coreðAÞþ 	coreðBÞþ

qðx; yÞdxdy

ð23:41Þ

PðeA_BÞ ¼
ZZ

coreðA	V [U	BÞþ
qðx; yÞdxdy

¼
ZZ

coreðA	VÞþ
qðx; yÞdxdyþ

ZZ
coreðU	BÞþ

qðx; yÞdxdy�
ZZ

coreðAÞþ 	coreðBÞþ
qðx; yÞdxdy

ð23:42Þ

where ρ(x, y) is the joint density function of two-dimensional random variable
(X, Y).
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Then, as long as random variables X and Y are mutually independent, there
would occur ρ(x, y) = ρX(x) � ρY(y) (ρX(x) and ρY(y) are separately the marginal
density functions of random variables X and Y); thus,

PðeA^BÞ ¼
ZZ

coreðAÞþ 	coreðBÞþ
qðx; yÞdxdy ¼

ZZ
coreðAÞþ 	coreðBÞþ

qXðxÞqYðyÞdxdy

¼
Z

coreðAÞþ
qXðxÞdx

Z
coreðBÞþ

qYðyÞdy

¼ PðeAÞPðeBÞ
ð23:43Þ

PðeA_BÞ ¼
ZZ

coreðA	VÞþ
qðx; yÞdxdyþ

ZZ
coreðU	BÞþ

qðx; yÞdxdy�
ZZ

coreðAÞþ 	coreðBÞþ
qðx; yÞdxdy

¼
ZZ

coreðA	VÞþ
qXðxÞqYðyÞdxdyþ

ZZ
coreðU	BÞþ

qXðxÞqYðyÞdxdy�
ZZ

coreðAÞþ 	coreðBÞþ
qXðxÞqYðyÞdxdy

¼
Z

coreðAÞþ
qXðxÞdx

Z
V

qYðyÞdyþ
Z
U

qXðxÞdx
Z

coreðBÞþ
qYðyÞdy�

Z
coreðAÞþ

qXðxÞdx
Z

coreðBÞþ
qYðyÞdy

¼
Z

coreðAÞþ
qXðxÞdx � 1þ 1 �

Z
coreðBÞþ

qYðyÞdy�
Z

coreðAÞþ
qXðxÞdx

Z
coreðBÞþ

qY ðyÞdy

¼
Z

coreðAÞþ
qXðxÞdxþ

Z
coreðBÞþ

qY ðyÞdy�
Z

coreðAÞþ
qXðxÞdx

Z
coreðBÞþ

qYðyÞdy

¼ PðeAÞþPðeBÞ � PðeAÞPðeBÞ
ð23:44Þ

Thus, we obtain a group of the probability computation formulas of flexible
events with combined linguistic values, eA∧B and eA∨B. Obviously, these formulas
can also be generalized to flexible events with n-dimensional combined linguistic
values, eA1^A2^���^An and eA1_A2_���_An . In particular, when random variables X1, X2,
…, Xn are all uniform distribution and mutually independent,

PðeA1^A2^���^AnÞ ¼ PðeA1ÞPðeA2Þ. . .PðeAnÞ ð23:45Þ

PðeA1_A2_���_AnÞ ¼
Xn
i¼1

PðeAiÞ �
X

1� i\j� n

PðeAiÞPðeAjÞþ
X

1� i\j\k� n

PðeAiÞPðeAjÞPðeAk Þ

� � � � þ ð�1Þnþ 1PðeA1ÞPðeA2Þ. . .PðeAnÞ
ð23:46Þ

2. Probability of a compound flexible event from distinct spaces

Here, the compound flexible event from distinct spaces refers to the flexible event
made up of flexible events that are from distinct measurement spaces connected by
logic relations ∧ (and) or ∨ (or).
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Example 23.5 Let U = [a, b] and V = [c, b] be separately the variation ranges of
the temperature of the earth’s surface and the wind power, A be a flexible linguistic
value on U: (temperature) “high,” and B be a flexible linguistic value on V: (wind)
“strong,” and let X and Y be separately random variables that represent temperature
and wind power, and flexible events eA: X 2 A and eB: Y 2 B be separately “the
temperature is high tomorrow” and “the wind is strong tomorrow.” Then compound
flexible events eA ∧ eB: X 2 A ∧ Y 2 B and eA ∨ eB: X 2 A ∨ Y 2 B are two
compound flexible events from distinct spaces.

Next, we consider the probability of a compound flexible event from distinct
spaces.

Let A and B be separately flexible linguistic values on measurement spaces
U and V, X and Y be separately random variables on U and V, and eA: X 2 A and eB:
Y 2 B be separately flexible events on the measurement space spaces U and V.

It can be seen that if extending A and B into the flexible linguistic values that
denote separately sets A × V and U × B, then the compound flexible event from
distinct spaces, eA ∧ eB: X 2 A ∧ Y 2 B, is tantamount to the flexible event with
combined linguistic value, eA∧B: (X, Y) 2 A × V \ U × B, and eA ∨ eB:
X 2 A ∨ Y 2 B is tantamount to the flexible event with combined linguistic value,
eA∨B: (X, Y) 2 A × V [ U × B. Namely, eA ∧ eB = eA∧B, eA ∨ eB = eA∨B. Thus,
the probability computation formulas of flexible events with combined linguistic
values, eA∧B and eA∨B, in the above are also the probability computation formulas of
the compound flexible events from distinct spaces, eA ∧ eB and eA ∨ eB; that is,

PðeA ^ eBÞ ¼ PðeA^BÞ ð23:47Þ

PðeA _ eBÞ ¼ PðeA_BÞ ¼ PðeAÞþPðeBÞ � PðeA_BÞ ð23:48Þ

while when random variables X and Y are both uniform distribution and mutually
independent,

PðeA ^ eBÞ ¼ PðeAÞPðeBÞ ð23:49Þ

PðeA _ eBÞ ¼ PðeAÞþPðeBÞ � PðeAÞPðeBÞ ð23:50Þ

More generally,

PðeA1 ^ eA2 ^ � � � ^ eAnÞ ¼ PðeA1^A2^���^AnÞ ð23:51Þ

PðeA1 _ eA2 _ � � � _ eAnÞ ¼ PðeA1_A2_���_AnÞ ¼
Xn
i¼1

PðeAiÞ � PðeA1^A2^���^AnÞ

ð23:52Þ
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while when random variables X1, X2, …, Xn are all uniform distribution and
mutually independent,

PðeA1 ^ eA2 ^ � � � ^ eAnÞ ¼ PðeA1ÞPðeA2Þ. . .PðeAnÞ ð23:53Þ

PðeA1 _ eA2_Þ. . . _ eAn

¼
Xn
i¼1

PðeAiÞ �
X

1� i\j� n

PðeAiÞPðeAjÞþ
X

1� i\j\k� n

PðeAiÞPðeAjÞPðeAk Þ

� � � � þ ð�1Þn�1PðeA1ÞPðeA2Þ. . .PðeAnÞ
ð23:54Þ

3. A flexible event with a synthetic linguistic value and its probability

Definition 23.2 Let A1, A2, …, An be the flexible linguistic values on the
n-dimensional measurement space U = U1 × U2 × ��� × Un, which denote sepa-
rately mutually orthogonal flexible sets A1, A2, …, An in U, and (X1, X2, …, Xn) be
a random vector (that is, an n-dimensional random variable). We call the flexible
event eA1
A2
���
AN : (X1, X2, …, Xn) 2 A1 × A2 × ��� × An to be a flexible event
with a synthetic linguistic value.

Example 23.6 Based on the flexible linguistic values A, B, and C in the Example
23.4, we define the flexible event with a synthetic linguistic value, eA⊕B⊕C: (X, Y,
Z) 2 A × B × C, whose meaning is that this person has ‘‘regular (facial features)”
plus ‘‘proper (facial shape)” plus ‘‘bright and clean (skin),” which takes randomly a
photograph of a person from the photograph database with U × V × W as the index
file while this person has “regular (facial features)” plus “proper (facial shape)” plus
“bright and clean (skin).” If we define “beautiful” = “regular (facial fea-
tures)” ⊕ “proper (facial shape)” ⊕ “bright and clean (skin),” then
ebeautiful = eA⊕B⊕C.

Since the extended core core(A1 × A2 × ��� × An)
+ of flexible Cartesian product

A1 × A2 × ��� × An cannot be represented in a general expression of operations, the
probability of flexible event with a synthetic linguistic value, eA1
A2
���
AN , also has
no a common computation formula, but it needs specific analysis for specific
problems. Therefore, in the following we consider the conceptual probability of a
flexible event with a synthetic linguistic value, and for its practical probability we
also make an analysis and estimate.

(1) Let random variable (X1, X2, …, Xn) is uniform distribution. By the definition
of the conceptual probability of a flexible event (see Eqs. 23.1 and 23.2):
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When X1, X2, …, Xn are discrete variables,

PconceptðeA1
A2
���
AN Þ ¼
A1 	 A2 	 � � � 	 Anj j
X1 	 X2 	 � � � 	 Xnj j

¼

P
ðx1;x2;...;xnÞ2sup pðA1	A2	���	AnÞ

mA1	A2	���	Anðx1; x2; . . .; xnÞ

X1 	 X2 	 � � � 	 Xnj j
ð23:55Þ

When X1, X2, …, Xn are continuous variables,

PconceptðeA1
A2
���
AN Þ ¼
A1 	 A2 	 � � � 	 Anj j
U1 	 U2 	 � � � 	 Unj j

¼
R
sup pðA1	A2	���	AnÞ mA1	A2	���	Anðx1; x2; . . .; xnÞdðx1; x2; . . .; xnÞ

U1 	 U2 	 � � � 	 Unj j

¼
R
sup pðA1	A2	���	AnÞ

Pn
i¼1 wimAiðxiÞdx1dx2; . . .; dxn

U1 	 U2 	 � � � 	 Unj j

¼
Pn

i¼1 wi
R
sup pðAiÞmAiðxiÞdxi

U1 	 U2 	 � � � 	 Unj j

ð23:56Þ

(2) Let random variable (X1, X2, …, Xn) is non-uniform distribution. By the
definition of the conceptual probability of the corresponding flexible event
(see Eq. 23.3), when X1, X2, …, Xn are continuous variables,

PconceptðeA1
A2
���
AN Þ ¼
Z

sup pðA1	A2	���	AnÞ

qðx1; x2; . . .; xnÞmA1	A2	���	Anðx1; x2; . . .; xnÞdðx1; x2; . . .; xnÞ

¼
Z

sup pðA1	A2	���	AnÞ

qðx1; x2; . . .; xnÞ
Xn
i¼1

wimAiðxiÞdðx1; x2; . . .; xnÞ

¼
Xn
i¼1

wi

Z
sup pðAiÞ

qðxiÞmAiðxiÞdxi

¼
Xn
i¼1

wiPconceptðeAiÞ

ð23:57Þ

But it is a pity that when X1, X2, …, Xn are discrete variables, the corre-
sponding probability PconceptðeA1
A2
���
AN Þ cannot be computed.

Next we analyze the practical probability of flexible event eA1
A2
���
AN .
When random variables X1, X2, …, Xn are all uniform distribution,

PðeA1
A2
���
AN Þ ¼
coreðA1 	 A2 	 � � � 	 AnÞþ
�� ��

U1 	 U2 	 � � � 	 Unj j ð23:58Þ
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From the stated above, core(A1 × A2 × ��� × An)
+ cannot be expanded. But since

the points in core(A1 × A2 × ��� × An)
+ are always more than points in core

(A1)
+× core(A1)

+× ��� × core(An)
+, it follows that

coreðA1	A2	 � � �AnÞþ [j jcoreðA1Þþ	coreðA2Þþ	 � � � 	coreðAnÞþ
�� ��
coreðA1 	 A2 	 � � � 	 AnÞþ
�� ��

U1 	 U2 	 � � � 	 Unj j [
coreðA1Þþ 	 coreðA2Þþ 	 � � � 	 coreðAnÞþ
�� ��

U1 	 U2 	 � � � 	 Unj j

while

coreðA1Þþ 	 coreðA2Þþ 	 � � � 	 coreðAnÞþ
�� ��

U1 	 U2 	 � � � 	 Unj j ¼ coreðA1Þþ
�� ��

U1j j
coreðA2Þþ
�� ��

U2j j . . .
coreðAnÞþ
�� ��

Unj j
¼ PðeA1ÞPðeA2Þ. . .PðeAnÞ
¼ PðeA1^A2^���^AnÞ

Therefore,

PðeA1
A2
���
AN Þ[PðeA1^A2^���^AnÞ ð23:59Þ

When random variables X1, X2, …, Xn are all non-uniform distribution,

PðeA1
A2
���
AN Þ ¼
ZZ

coreðA1	A2	���	AnÞþ
. . .

Z
qðx1; x2; . . .; xnÞdx1dx2. . .dxn

ð23:60Þ

Likewise, this expression also cannot be further expanded, but we can know

ZZ
coreðA1	A2	���	AnÞþ

� � �
Z

qðx1; x2; . . .; xnÞdx1dx2. . .dxn [
Z

coreðA1Þþ
qX1

ðx1Þ
Z

coreðA2Þþ
qX2

ðx2Þ. . .
Z

coreðAnÞþ
qXn

ðxnÞ

while

Z
coreðA1Þþ

qX1
ðx1Þ

Z
coreðA2Þþ

qX2
ðx2Þ. . .

Z
coreðAnÞþ

qXn
ðxnÞ ¼ PðeA1ÞPðeA2Þ. . .PðeAnÞ

¼ PðeA1^A2^���^AnÞ

Thus, also

PðeA1
A2
���
AN Þ[PðeA1^A2^���^AnÞ
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This expression is tantamount to

PðeA1^A2^���^AnÞ\PðeA1
A2
���
AN Þ

Further, it is not hard to see that

PðeA1
A2
���
AN Þ\PðeA1_A2_���_AnÞ

As thus, to sum up, we have

P eA1^A2^���^Anð Þ\P eA1
A2
���
ANð Þ\P eA1_A2_���_Anð Þ ð23:61Þ

Thus, generally speaking, we can also take

P eA1^A2^���^Anð ÞþP eA1_A2_���_Anð Þ
2

as an approximate value of P eA1
A2
���
ANð Þ.
4. Probability of a conditional flexible event from distinct spaces

Let eA: X 2 A and eB: Y 2 B be separately a flexible event on measurement spaces
U and V. We consider the probability of implicational flexible event eA → eB:
X 2 A → Y 2 B, that is, the probability of conditional flexible event eB |eA: X 2 A|
Y 2 B.

(1) Random variables X and Y are uniform distribution

From Definition 20.13′, the correspondence-rate of flexible sets A to B:

corrðA;BÞ ¼ A1j j
coreðAÞþj j, where A1 = {x|(x, y) 2 R} and R � core(A)+ × core(B)+.

From this, it can be seen that in the case of A1 ≠ ∅, that is, random variables X and
Y are not mutually independent, when random variable X 2 A1 � U, the corre-
sponding random variable Y 2 V. That is, when event eA occurs, event eB also

occurs at the same time. Let eA1 : X 2 A1. Then PðeA1Þ ¼ A1j j
Uj j ¼ PðeA ^ eBÞ. Thus,

A1j j
coreðAÞþ�� �� ¼ A1j j= Uj j

coreðAÞþ�� ��= Uj j ¼
PðeA ^ eBÞ

PðeAÞ ¼ PðeBjeAÞ

Conversely, it is

PðeBjeAÞ ¼ A1j j
coreðAÞþ�� �� ¼ corrðA;BÞ ð23:62Þ
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(2) The random variables X and Y are non-uniform distribution

① For the discrete random variables X and Y, when X and Y are not mutually
independent,

PðeBjeAÞ ¼
X
xk2A1

Pi=
X

xk2coreðAÞþ
Pi ð23:63Þ

where A1 = {x|(x, y) 2 R} ≠ ∅, R � core(A)+ × core(B)+, Pi 2 {Pk}, {Pk}
is the distribution sequence of X.

② For the continuous random variables X and Y, when X and Y are not
mutually independent,

PðeBjeAÞ ¼
Z
A1

qðxÞdx=
Z

coreðAÞþ
qðxÞdx ð23:64Þ

where A1 = {x|(x, y) 2 R} ≠ ∅, R � core(A)+ × core(B)+, ρ(x) is the
density function of X.

From the above stated, more generally, when random vector (X1, X2, …, Xn) and
random variable Y are not mutually independent,

PðeBjeA1 ^ eA2 ^ � � � ^ eAnÞ ¼

Abj j
coreðA1 \A2 \ ��� \AnÞþj jP

x2Ab
PxP

x2coreðA1 \A2 \ ��� \AnÞ PxRR
Ab
���
R

qðx1;x2;...;xnÞdx1dx2...dxnRR
coreðA1 \A2 \ ��� \AnÞþ

���
R

qðx1;x2;...;xnÞdx1dx2...dxn

8>>>>>><
>>>>>>:

ð23:65Þ

where Ab = {x | (x, y) 2 R} ≠ ∅, R � core(A1 \ A2 \ ��� \ An)
+ × core(B)+;

Ai is the flexible set of corresponding flexible linguistic value Ai (i = 1, 2, …, n) in
product space U1 × U2 × ��� × Un; the three operational expressions correspond
separately to the probability computations of conditional flexible events eBjeA1 ^
eA2 ^ � � � ^ eAn when random variables are separately uniform distribution,
non-uniform discrete distribution and non-uniform continuous distribution. Besides,

P eBjeA1 _ eA2 _ � � � _ eAnð Þ ¼ P ðeA1 _ eA2 _ � � � _ eAnÞ ^ eBð Þ
P eA1 _ eA2 _ � � � _ eAnð Þ ;P eA1 _ eA2 _ � � � _ eAnð Þ 6¼ 0

ð23:66Þ
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P eBjeA1^A2^���^Anð Þ ¼ P eA1^A2^���^An ^ eBð Þ
P eA1^A2^���^Anð Þ ;P eA1^A2^���^Anð Þ 6¼ 0 ð23:67Þ

P eBjeA1_A2_���_Anð Þ ¼ P eA1_A2_���_An ^ eBð ÞÞ
PðeA1_A2_���_AnÞ

;PðeA1_A2_���_AnÞ 6¼ 0 ð23:68Þ

PðeBjeA1
A2
���
AN Þ ¼
PðeA1
A2
���
An ^ eBÞ

PðeA1
A2
���
AnÞ
;PðeA1
A2
���
AnÞ 6¼ 0 ð23:69Þ

Of course, Eqs. (23.62)–(23.69) only are the definitions of probability of a
conditional flexible event from distinct spaces. Like the conditional probability in
traditional probability theory, the probability of a conditional flexible event from
distinct spaces also has corresponding Bayes’ formula. Besides, on the basis of
probability of a conditional flexible event from distinct spaces, there are the cor-
responding total probability formula and independence of flexible events, which is
similar to the formulations in traditional probability theory, so it is unnecessary to
go into details here.

5. A flexible event with opposite and its probability

The flexible events discussed in previous sections are actually all the flexible events
described by flexible linguistic values with negation—which we may as well call it
as the flexible event with negation; thus, the flexible event described by flexible
linguistic values with opposite is the flexible event with opposite.

Similar to flexible events with negation, flexible events with opposite can also
have multiple types such as basic event, compound event on the same space, and
compound event from distinct spaces and so forth, and they also have the corre-
sponding properties. Since a linguistic value with opposite is completely stood for
by its support set, the probability of a flexible event with opposite is determined by
its support set. As thus the extended cores in the previous probability computation
formulas of flexible events with negation are only needed to be changed into the
support sets, we can obtain the probability computation formulas of the corre-
sponding flexible events with opposite, and these formulas are the computation
formulas of the practical probabilities of flexible events with opposite as well as the
conceptual probabilities of them. In other words, such as usual “rigid” events, the
flexible events with opposite do not distinguish conceptual probability and actual
probability.

23.4 Summary

In this chapter, we introduced the concept of random flexible events, analyzed the
corresponding probability computation principles, and then established corre-
sponding probability computation models for various types of flexible events.
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This chapter has also the following results:

• Probability of a flexible event can be separated as conceptual probability and
practical probability, which are separately the probability on the support set and
extended core of the corresponding flexible set.

• Compound flexible events have the separation of same space and distinct space,
and the former has no general probability computation formulas, while the latter
has.

• Flexible events with a synthetic linguistic value are a kind of special flexible
events with composite linguistic value from distinct spaces; for their practical
probabilities, we generally can only give the estimated values.
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Chapter 24
Degrees of Believability of Flexible
Propositions and Reasoning
with Believability-Degrees

Abstract This chapter introduces a measure called believability-degree for the
believability of propositions, and on the basis of the theories of traditional proba-
bility and flexible event’s probability presents the computation principles and
methods of the believability-degrees of compound propositions on the same space
and from distinct spaces, in particular, the computation principles and methods of
propositions with a composite linguistic value and implicational propositions, thus
founding the believability-degree theory of propositions. Then, it discusses the
inference on the believability of propositions and presents an uncertain reasoning
scheme based on believability-degrees—reasoning with believability-degrees and
the corresponding reasoning model. And then, it discusses the dual reasoning about
uncertainty and imprecision for the believability and truth of propositions simul-
taneously and presents a scheme and model of dual reasoning. Besides, it also
discusses the correlation between partial implication, uncertain implicational
proposition, relational inference with implication-degrees, and reasoning with
believability-degrees.

Keywords Believability-degrees � Reasoning with believability-degrees � Partial
implication � Uncertain reasoning

Truth is a so important attribute of the propositions that almost all logics are
connected to the truth of the propositions. Besides truth, the propositions also have
another attribute—believability. The believability of propositions involves uncer-
tainty, it also involves imprecision, and it is related to the truth of the propositions.
In this chapter, we examine the measure and the reasoning about the believability of
propositions (referring mainly to flexible propositions).
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24.1 Believability and Degree of Believability
of a Proposition

1. Believability—another attribute of propositions

Examine the following statements:

…… × ×’s words are unbelievable……

……has half-believing to some hearsay ……

……doubt about this academic view……

It can be seen that here “words,” “hearsay,” and “view” all refer to propositions
from a logical point of view, while “unbelievable,” “half-believing,” and “doubt”
are all for the truth of the corresponding propositions. “Unbelievable” is that one
cannot believe a person’s words (a proposition) to be true, “half-believing” and
“doubt” are both suspicions about the truth or correctness of some speech (a
proposition). So, the believability is actually also an attribute of propositions (in-
cluding flexible propositions).

Obviously, if a proposition being true is certain or necessary, then which is
completely believable, and vice versa; if a proposition being true is impossible, then
which is completely unbelievable, and vice versa; and if a proposition being true is
possible, then which is believable with some degree, and vice versa. Yet “necessary”
and “impossible” can be viewed as two extreme cases of “possible.” Thus, the
believability of a proposition can be said as the possibility of the proposition being
true [1]. Of course, here, true includes rigid true and flexible true (that is, rough-true).

2. Linguistic expressions of believability

We know that the linguistic expressions of possibility have necessarily,
probably/likely, improbably/unlikely, highly probably/likely, fairly probably/likely,
not very probably/likely, etc. Then, the linguistic description of a proposition being
true has just: necessarily (true), probably/likely (true), improbably/unlikely (true),
highly probably/likely (true), fairly probably/likely (true), not very probably/likely
(true), etc. Correspondingly, the linguistic expressions of the believability of propo-
sitions have: completely believable, believable with some degree, completely unbe-
lievable, highly believable, fairly believable, not very believable, etc. In these words
stated above, the necessarily, probably/likely, and improbably/unlikely are three rigid
linguistic values that express possibility, and they are three basic linguistic values,
while highly probably/likely, fairly probably/likely, not very probably/likely, etc., are
flexible linguistic values. These two kinds of linguistic values are all linguistic values
on the range [0, 1] of probabilities. Correspondingly, completely believable, believ-
able with some degree, and completely unbelievable are three rigid linguistic values
that express the believability, and they are three basic linguistic values, while highly
believable, fairly believable, and not very believable are flexible linguistic values.
These two kinds of linguistic values should be the linguistic values on the measure-
ment space of the believability of propositions.
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3. Degree of believability—numerical value of the believability of a
proposition

Since believability is the possibility of a proposition being true, and the number that
describe the magnitude of possibility is probability, the numerical value of the
believability of a proposition is numerically equal to the probability of the
proposition being true. Therefore, this numerical value can be called the degree of
believability of a proposition.

Definition 24.1 We call the practical probability of an event described by a
proposition p to be the probability of the proposition being true, denote P(p). Set

cðpÞ ¼ PðpÞ ð24:1Þ

to be called the degree of believability of proposition p, simply written
believability-degree.

Example 24.1 Let proposition p: The heads of a coin is upward. Since the prob-
ability of heads being upward when tossing a coin is always 0.5, the probability of
proposition p being true is 0.5, that is, P(p) = 0.5. Thus, c(p) = 0.5.

By the definition, if A is a quantifiable linguistic value, that is, a flexible lin-
guistic value or a quantifiable rigid linguistic value, on measurement space U, then
for the random variable x that takes values from U, the believability-degree of
proposition A(x) is

cðAðxÞÞ ¼ Aj j
Uj j ¼ shar(A) ð24:2Þ

That means for a proposition with quantifiable linguistic value, its believability-
degree is numerically equal to the share of the corresponding set.

Example 24.2 Let proposition q: Zhang is tall. In the situation of the height of
Zhang being unknown, the height h of Zhang is just a random variable, so the truth
value of proposition q cannot be determined. Thus,

cðqÞ ¼ Hj j
½a; b�j j

here, H is the flexible set to which the flexible linguistic value “tall” corresponds,
and interval [a, b] is the range of height of humans.

It needs to be noted that though we define the probability of a proposition being
true as the believability-degree of the proposition, how to compute this probability
is complex. It’s because the truthfulness of a proposition is not only related to the
proposition itself, but also related to the situations such as the background and
context of the proposition. For instance, for the believability-degree of proposition
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q in the above Example 24.2, except the given computation methods, there are at
least the following cases and methods of calculation.

① If for all people in a certain scope, then

cðqÞ ¼ s1
s2

where s1 denotes the total of tall persons, and s2 denotes the total of relevant
peoples.

② If for a certain classification (e.g., three classes of tall, middle, and short), then

cðqÞ ¼ 1
s

where s denotes the total of classes.
③ If for the maker Pe of proposition q, then

cðqÞ ¼ the probability of Pe telling the truth

That means c(q) may be a kind of frequency or estimated value.

In a word, just like the usual probability, the degree of believability of a
proposition is also not always absolute and objective, which can also be relative and
subjective. Therefore, the computation of the believability-degree of a proposition
should be determined by specific problem.

Since believability-degree is defined by probability, the problem to find a
believability-degree is also reduced to the problem to find the corresponding
probability, and the range of believability-degrees is the same as the range of
probabilities, which is also real interval [0, 1]. Besides, the types, properties, for-
mulas, theorems, and so forth of probabilities are also true for believability-degrees.

Comparing Eqs. (24.2) and (21.25), it can be seen that for a quantifiable lin-
guistic value A, the believability-degree of simple proposition A(x) is numerically
equal to possessing-rate of A, that is,

cðAðxÞÞ ¼ poss(A) ð24:3Þ

and vice versa.
The believability of propositions is relative to the uncertainty of information, and

believability-degree is portraying and measuring the strength of uncertainty of
information.

4. Linguistic values on believability-degree range

Now, examining the relation between the numerical values of the believability, that
is, believability-degrees, of propositions and the linguistic values previously given,
it can be seen that completely believable, believable with some degree, and com-
pletely unbelievable are also three basic linguistic values on the range [0, 1] of

598 24 Degrees of Believability of Flexible Propositions …

http://dx.doi.org/10.1007/978-981-10-1549-6_21


believability-degrees of propositions (as shown in Fig. 24.1a). And slightly
believable, not very believable, and very believable are the flexible linguistic values
on the range [0, 1] of believability-degrees (as shown by Fig. 24.1b).

If describing the believability of flexible propositions by using flexible linguistic
values, then the uncertainty of imprecision is described by imprecision again. Here,
imprecision and uncertainty cross two times: First is the uncertainty of imprecision,
and second is the imprecision of uncertainty, which is just as that the probability of
occurrence of a flexible event is described by a flexible linguistic value.

Examining the linguistic values on the range of believability-degrees and the
linguistic values on the range of probabilities in Sect. 23.1.5, it can be seen that the
two are just one to one correspondence, that is, completely believable ←→ nec-
essarily, believable with some degree ←→ possibly, and completely unbeliev-
able ←→ not possibly. The correspondence relation between linguistic values is
also the correspondence relation between the believability of a proposition and the
possibility of it being true.

5. Relation between believability and truth of a proposition

A proposition has two attributes of truth and believability, and then, for one and the
same proposition, what is the relation of its believability and truth?

From the definition of believability-degree, it can be seen that in ideal situation,
if a proposition is true (also including rough-true and near-true, the same below),
then its believability-degree is certainly 1; if it is false (also including rough-false
and near-false, the same below), then its believability-degree is certainly 0; and if its
truth value cannot be determined, then its believability-degree is certainly between
0 and 1. Conversely, if the believability-degree of a proposition is 1, then it is surely
true; if its believability-degree is 0, then it is impossible to be true; if the
believability-degree is between 0 and 1, then that it is true or false cannot be
determined, but the closer to 1 the believability-degree is, the more likely true is
the proposition, the closer to 0 the believability-degree is, the more likely false is
the proposition.

To sum up the analysis above, the relation between the truth and believability of
a proposition can be stated as the following theorem.

completely 
unbelievable

not very 
believable

 0 0.5 0.6 0.8 1 x

fairly
believable

very believable
c

1

0

believable
with some 
degree

0                   1 x

completely 
believable

(a) (b)

Fig. 24.1 a Rigid linguistic values on range of believability-degrees, b examples of flexible
linguistic values on the range of believability-degrees
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Theorem 24.1 Let p be a proposition. Then,

(1) p is true if and only if c(p) = 1;
(2) p is false if and only if c(p) = 0;
(3) p is true or false cannot be determined if and only if 0 < c(p) < 1, and the

closer to 1 c(p) is, the more likely to be true is p; the closer to 0 c(p) is, the
more likely to be false is p.

For the flexible propositions, the above (1), (2), and (3) can also be further
expressed as

ð1Þ tðpÞ[ 0:5 , cðpÞ ¼ 1 ð24:4Þ

ð2Þ tðpÞ\0:5 , cðpÞ ¼ 0 ð24:5Þ

ð3Þ tðpÞ[ 0:5 or tðpÞ\0:5 can not be determined , 0\cðpÞ\1 ð24:6Þ

The relation between the truth and believability of a flexible proposition
described in linguistic values is as follows:

A proposition is true if and only if it is completely believable; a proposition is
false if and only if it is completely unbelievable; and a proposition is true or false
cannot be determined if and only if it is believable with some degree.

The theorem above reveals the relation between the truth and believability of a
proposition, so we can use one of the two to obtain or estimate another. Since
believability-degrees can always be obtained (when objective believability-degrees
cannot be obtained, subjective believability-degrees can be given by experience),
for a proposition whose truth value can not be determined, we can use its
believability-degree to estimate its truth.

24.2 Believability-Degree of a Compound Flexible
Proposition on the Same Space

We call the compound proposition in which the flexible linguistic values are on the
same space to be a compound flexible proposition on the same space. A compound
proposition on same space is also the proposition that describe a compound flexible
event on the same space. Thus, the believability-degree of a compound flexible
proposition on the same space is reduced to the probability of a flexible compound
event on the same space.

24.2.1 Believability-Degrees of Basic Compound Flexible
Propositions

Let propositions p: A(x) and q: B(y), and A and B be flexible linguistic values on
measurement space U.
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By the definition of the believability-degree of a proposition, the believability-
degree of a compound proposition is also the probability of a compound proposition
being true. Thus,

cð:pÞ ¼ Pð:pÞ ¼ 1� PðpÞ ¼ 1� cðpÞ
cðp ^ qÞ ¼ Pðp ^ qÞ
cðp _ qÞ ¼ Pðp _ qÞ ¼ PðpÞþPðqÞ � Pðp ^ qÞ ¼ cðpÞþ cðqÞ � cðp ^ qÞ

Thus, we have the computation formulas of the believability-degrees of the com-
pound propositions as follows:

cð:pÞ ¼ 1� cðpÞ ð24:7Þ

cðp ^ qÞ ¼ Pðp ^ qÞ ð24:8Þ

cðp _ qÞ ¼ cðpÞþ cðqÞ � cðp ^ qÞ ð24:9Þ

It can be seen that now the problem is reduced to how to find P(p ∧ q)?
From Sect. 23.2, we know that when p and q describe flexible events on one and

the same measurement space, P(p ∧ q) has no general computation formula about
P(p) and P(q). Merely in the following special cases, P(pq) can be definitely
obtained. In fact,

If p and q are relatively negative, that is, p = ¬q, then by P(p ∧ q) =
P(¬q ∧ q) = 0, it follows that c(p ∧ q) = 0.

If P(p) = 1 and P(q) = 1, then by P(p ∧ q) = 1, it follows that c(p ∧ q) = 1.

If P(p) = 0 or P(q) = 0, then by P(p ∧ q) = 0, it follows that c(p ∧ q) = 0.

Consequently, we have the following theorem.

Theorem 24.2 Let proposition p: A(x) and q: B(x), and A and B be linguistic
values on the measurement space U.

(1) If p and q are relatively negative, then c(p ∧ q) = 0, c(p ∨ q) = c(p) + c(q);
(2) If c(p) = 1 and c(q) = 1, then c(p ∧ q) = 1;
(3) If c(p) = 0 or c(q) = 0, then c(p ∧ q) = 0.

Besides, by c(¬p) = 1 − c(p), we have

cðpÞþ cð:pÞ ¼ 1 ð24:10Þ

Equation (24.10) formulates the relation between the believability-degrees of
relatively negative propositions, and we call them the complement law of
believability-degrees.
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From the complement law of believability-degrees, we have

If c pð Þ ¼ 1; then cð:pÞ ¼ 0;

If c pð Þ ¼ 0; then cð:pÞ ¼ 1;

If c pð Þ 2 0; 1ð Þ; then cð:pÞ 2 0; 1ð Þ:

Next, we further examine the relation among the believability-degrees of mul-
tiple flexible propositions.

Definition 24.2 Let flexible proposition pi: Ai(x), i = 1, 2,…, n. If A1, A2,…, An be
a group of complementary basic flexible linguistic values on measurement space U;
then, we say propositions p1, p2, …, pn are a group of complementary flexible
propositions on the space U.

It can be seen that when n = 2, the group of complementary flexible propositions
is a pair of relatively negative flexible propositions. From the probabilities of
compound flexible events, it is not hard to derive that if p1, p2, …, pn are a group of
complementary flexible propositions on the space U, then

cðp1Þþ cðp2Þþ � � � þ cðpnÞ ¼ 1 ð24:11Þ

So, the believability-degrees of complementary flexible propositions still obey
the complement law of believability-degrees.

24.2.2 Believability-Degree of an Implicational Flexible
Proposition

Let propositions p: A(x) and q: B(y), and A and B be flexible linguistic values on
measurement space U.

By the definition of believability-degree of a proposition, the believability-degree
c(p → q) of implicational flexible proposition p → q is also the probability of
proposition p → q being true, that is, c(p → q) = P(p → q). While P(p → q) =
P(eA → eB) and P(eA → eB) = P(eB | eA), P(p → q) = P(eB | eA). Thus,

cðp ! qÞ ¼ P eB eAjð Þ ð24:12Þ

That is to say, the believability-degree of implicational flexible proposition
p → q is also the corresponding conditional probability P(eB | eA).

Since flexible linguistic values A and B belong to the same space U, x and y as
random variables are uniform distribution; from Eq. (23.15), it follows that

cðp ! qÞ ¼ contðA;BÞ ð24:13Þ
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That is to say, the believability-degree of implicational flexible proposition
p → q made up of flexible propositions p and q on the same space equals
numerically to the inclusion-degree between corresponding sets, and vice versa.

The deriving from cont(A, B) to c(p → q) is as follows:

contðA;BÞ A\Bj j
Aj j ¼ A\Bj j= Uj j

Aj j= Uj j ¼ PðeA ^ eBÞ
PðeAÞ ¼ PðeB eAj Þ ¼ cðp ! qÞ

Also by Definition 21.9, it follows that

implðp; qÞ ¼ cont(A;B)

Thus, we have

c(p ! q) = implðp; qÞ ð24:14Þ

That is to say, the believability-degrees of some implicational propositions on
the same space equal numerically to the implication-degrees of their premises to
conclusions, and vice versa.

It should be mentioned that there are also scholars in China who presented the
concept of the implicational degree, but there, the implicational degree was treated
as the truth values of implicational compound propositions, so it means differently
from the implication-degree in this book. Besides, there is literature that discussed
the degree of rule A → B itself being true through the concept of “the strength of a
rule.” However, it seems not clear enough whether this degree of being true refers
to the believability-degree or truth-degree of an implicational compound
proposition.

Next, we further discuss the relation between the implication relation between
propositions and the magnitude relation between the corresponding
believability-degrees.

Lemma 24.1 Let U = [a, b], A1, A2, …, An be flexible linguistic values on U, and
qi: x is Ai, x 2 U, i 2 {1, 2, …, n}. Then for arbitrary i, j 2 {1, 2, …, n},

qi ) qi if and only if Ai � Aj

Proof Suppose Ai � Aj. Then, by the definition of the inclusion of flexible sets, it
follows that mA1ðxÞ�mA2ðxÞ; thus, when mA1ðxÞ[ 0:5, it also follows that
mA2ðxÞ[ 0:5, that is, when qi is roughly-true, qj is also certainly roughly-true.
Thus, we have qi;) qj.

Conversely, suppose qi;) qj. Then, it shows that when qi is true, qj is certainly
true. That is, when mA1ðxÞ[ 0:5, it also follows that mA2ðxÞ[ 0:5; thus, it shows
that mA1ðxÞ�mA2ðxÞ. Then, from the x being arbitrary, we have Ai � Aj.

From this lemma, further we have the following corollary.
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Corollary 24.1 q1 ) q2 ) � � � ) qn if and only if A1 � A2 � � � � � An.

Theorem 24.3 Let Qn ¼ fqijqi : x be Ai; x 2 U;Ai � U; i 2 1; 2; . . .; nf gf g. Then,
for arbitrary qi, qj 2 Qn, if qi ) qj, then c(qi) < c(qj).

Proof Suppose qi ) qj. Then, by Lemma 24.1, it follows that Ai � A, whereas
when Ai � Aj, shar(Ai) < shar(Aj), and by the definition of believability-degree, it
follows that shar(Ai) = c(qi) and shar(Aj) = c(qj), and consequently, we have
c(qi) < c(qj).

This theorem means that when proposition qi implies proposition qj, then
proposition qj is more believable than proposition qi. For instance, if Jack is very
tall, then Jack is certainly tall. Therefore, Jack is tall is more believable than Jack is
very tall.

Actually, the conclusion in Theorem 24.3 is also tenable for general propositions
p and q with implication relation. That is, if proposition p implies proposition q,
then q is more believable than p. Because when p implies q, p only is a sufficient
condition for q.

By Theorem 24.3, we further have

Corollary 24.2 q1 ⇒ q2 ⇒ ��� ⇒ qn then c(q1) < c(q2) < ��� < c(qn).

24.3 Believability-Degrees of a Flexible Proposition
with a Composite Linguistic Value and a Compound
Flexible Proposition from Distinct Spaces

1. Believability-Degrees of a flexible proposition with a composite linguistic
value

Let flexible propositions with a composite linguistic value be pA1^A2^���^An :
A1 ∧ A2 ∧ ��� ∧ An(x10 ; x20 ; . . .xn0 ), pA1_A2_���_An : A1 ∨ A2 ∨ ��� ∨
An(x10 ; x20 ; . . .; xn0 ), and pA1�A2�����An : A1 ⊕ A2 ⊕ ��� ⊕ An(x10 ; x20 ; . . .; xn0 ), where
A1 ∧ A2 ∧ ��� ∧ An, A1 ∨ A2 ∨ ��� ∨ An, and A1 ⊕ A2 ⊕ ��� ⊕ An are flexible lin-
guistic values on product space U1 × U2 × ��� × Un. By the definition of
believability-degree of a proposition, it follows that

cðpA1^A2^���^AnÞ ¼ PðpA1^A2^���^AnÞ ¼ PðeA1^A2^���^AnÞ ð24:15Þ

cðpA1_A2_���_AnÞ ¼ PðpA1_A2_���_AnÞ ¼ PðeA1_A2_���_AnÞ ð24:16Þ

cðpA1�A2�����AnÞ ¼ PðpA1�A2�����AnÞ ¼ PðeA1�A2�����AN Þ ð24:17Þ

That is, the believability-degrees of the flexible propositions with a composite
linguistic value are reduced to the probabilities of the corresponding flexible events
with a composite linguistic value.
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2. Believability-Degree of a compound flexible proposition from distinct
spaces

A compound flexible proposition from distinct spaces is the compound proposition
in which the flexible linguistic values are on distinct measurement spaces, which is
also the proposition that describes a compound flexible event from distinct spaces.
Thus, the believability-degree of a compound flexible proposition from distinct
spaces is reduced to the probability of a compound flexible event from distinct
spaces.

Let propositions pi: Ai (xi), Ai be a flexible linguist value on the measurement
space Ui (i = 1, 2, …, n), and U1, U2, …, Un be different from each other. By the
definition of believability-degree of a proposition and the probability computation
formula of a compound flexible event from distinct spaces (see Sect. 23.3), it
follows that

cðpAi ^ pAi ^ � � � ^ pAiÞ ¼ PðpAi ^ pAi ^ � � � ^ pAiÞ ¼ PðeA1^A2^���^AnÞ
¼ cðpA1^A2^���^AnÞ

Thus, we have

cðpAi ^ pAi ^ � � � ^ pAiÞ ¼ cðpA1^A2^���^AnÞ ð24:18Þ

In the same reason, we have

cðpAi _ pAi _ � � � _ pAiÞ ¼ cðpA1_A2_���_AnÞ ¼
Xn
i¼1

cðpAiÞ � cðpA1^A2^���^AnÞ ð24:19Þ

While when x1, x2, …, xn as random variables are all uniform distribution and
mutually independent,

cðpAi ^ pAi ^ � � � ^ pAiÞ ¼ cðpAiÞcðpA2Þ. . .cðpAnÞ ð24:20Þ

cðpAi _ pAi _ � � � _ pAiÞ ¼
Xn
i¼1

cðpAiÞ �
X

1� i\j� n

cðpAiÞcðpAjÞ

þ
X

1� i\j\k� n

cðpAiÞcðpAjÞcðpAkÞ � . . .þð�1Þnþ 1cðpAiÞcðpA2Þ. . .cðpAnÞ

ð24:21Þ

3. Believability-Degree of an implicational flexible proposition from distinct
spaces

Let p: A(x), q: B(y), and A and B be separately flexible linguistic value on mea-
surement spaces U and V, U ≠ V. By the definition of believability-degree of a
proposition, it follows that
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cðp ! qÞ ¼ Pðp ! qÞ ¼ PðeB eAj Þ ð24:22Þ

That is to say, the believability-degree of a implicational flexible proposition from
distinct spaces is still the corresponding conditional probability P(eB|eA).

Then, Generally, the believability-degrees of implicational flexible propositions
with multiple conditions are as follows:

cðA1ðx1Þ ^ A2ðx2Þ ^ � � � ^ AnðxnÞ ! BðyÞÞ ¼ PðeB eA1 ^ eA2 ^ � � � ^ eAnj Þ ð24:23Þ

cðA1ðx1Þ _ A2ðx2Þ _ � � � _ AnðxnÞ ! BðyÞÞ ¼ PðeB eA1 _ eA2 _ � � � _ eAnj Þ ð24:24Þ

and those of implicational flexible propositions with a composite linguistic value
are

cðA1 ^ A2 ^ � � � ^ Anðx1; x2; � � � xnÞ ! BðyÞÞ ¼ PðeB eA1^A2^���^AnÞj ð24:25Þ

cðA1 _ A2 _ � � � _ Anðx1; x2; . . .xnÞ ! BðyÞÞ ¼ PðeB eA1_A2_���_AnÞj ð24:26Þ

cðA1 � A2 � � � � � Anðx1; x2; . . .xnÞ ! BðyÞÞ ¼ PðeB eA1�A2�����ANj Þ ð24:27Þ

Since linguistic values A and B belong to distinct measurement spaces, when
x and y as random variables are uniform distribution, by Eq. (23.62), it follows that

cðp ! qÞ ¼ corrðA;BÞ ð24:28Þ

That is to say, speaking from definition, the believability-degrees of some impli-
cational flexible propositions from distinct spaces equal numerically to the
correspondence-rates between corresponding flexible sets, and vice versa.

Also by Definition 21.9,

implðp; qÞ ¼ corrðA;BÞ

Thus, we have

cðp ! qÞ ¼ implðp; qÞ ð24:29Þ

That is to say, speaking from definition, the believability-degrees of some impli-
cational flexible propositions from distinct spaces equal numerically to the
implication-degrees between corresponding flexible propositions, and vice versa.

Obviously, the above two Eqs. (24.28) and (24.29) also can be generalized to the
implicational flexible propositions with multiconditions and implicational flexible
propositions with a composite linguistic value.

606 24 Degrees of Believability of Flexible Propositions …

http://dx.doi.org/10.1007/978-981-10-1549-6_23
http://dx.doi.org/10.1007/978-981-10-1549-6_21


24.4 Reasoning with Believability-Degrees

The usual logical inference is an inference for the truth of propositions.
Believability-degree is a measure portraying the believability of propositions, so
with believability-degree, the inference for the believability of propositions can be
realized. We call the inference with the believability-degree of a proposition to be
reasoning with believability-degrees.

The basic rules and schemes of reasoning with believability-degrees is the same
as that of the usual logical inference, but the premise and conclusion of an argument
are both with a believability-degree, and the believability-degree of conclusion is
the computation result of that of premise. As thus, when conducting reasoning with
believability-degrees, besides the symbolic deduction, the believability-degree
computation can also be done. Therefore, the principle of reasoning with
believability-degrees can be simply expressed as

Reasoning with Believability-Degrees = Symbolic Deducing + Believability-
Degree Computing

Specifically speaking, the general scheme of reasoning with believability-
degrees based on the modus ponens is

ðp ! q; cðp ! qÞÞ
ðp0; cðp0ÞÞ

ðq; cðqÞÞ ð24:30Þ

Here, c(p → q), c(p0), and c(q) are separately the believability-degrees of the major
premise, minor premise, and conclusion.

When reasoning, the believability-degrees c(p → q) and c(p0) of premises
already have been given, so it only needs to compute the believability-degree c
(q) of conclusion q. Here, we employ the multiplication operation, namely

cðq0Þ ¼ cðp0Þ � cðp ! qÞ ð24:31Þ

The theoretical basis of us employing the formula (24.31) is the total probability
formula in probability theory. In fact, in practical problems:

(1) If there only is probably one case of p → q, then it shows that there is no
:p → q; thus, c(:p → q) = 0. Then, by total probability formula, it follows
that

cðq0Þ ¼ cðp0Þ � cðp ! qÞþ cð:p0Þ � cð:p ! qÞ ¼ cðp0Þ � cðp ! qÞ

(2) Besides that p → q is possible, if there also are probably p1 → q, p2 → q,…,
pn−1 → q (of course, the events described by these uncertain propositions
should be mutually exclusive), then, by total probability formula, adding up
the corresponding believability-degrees c(q0)1, c(q0)2, …, c(q0)n−1 and c(q0)
together to be the final believability-degree c(q0)

* of conclusion q0, that is
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cðq0Þ� ¼ cðq0Þþ cðq0Þ1 þ cðq0Þ2. . .þ cðq0Þn�1

Thus, computing the believability-degree of conclusion with the formula
(24.31) in reasoning with believability-degrees based on the modus ponens is
always correct.

Actually, here, major premise p → q is just a production rule. When the lin-
guistic values therein are flexible linguistic values, it is also a flexible rule. That
means the reasoning with believability-degrees is also a kind of inference with rules
or flexible rules.

Example 24.3 Suppose there is a modal rule: If the weather is sultry and almost
windless, then it is probably going to be a storm (for modal rules, we will discuss in
Chap. 25), and suppose the believability-degree of uncertain rule “if the weather is
sultry and almost windless, then it is going to be a storm” described by the modal rule
is 0.75. And there is a forecast: The believability-degree of “it will be sultry
tomorrow” is 0.95, and the believability-degree of “almost windless” is 0.90. Find the
believability-degree of “it will storm tomorrow” according to the given rule and facts.

Solution Let p1: It is sultry, p2: It is almost windless, and q: It is storming. Then,
from the problem given, it follows that c(p1 ∧ p2 → q) = 0.75, c(p1) = 0.95, and
c(p2) = 0.90. Obviously, p1 and p2 are propositions on distinct spaces; assuming the
corresponding two events are mutually independent, then by the Eq. (24.23), it
follows that

cðp1 ^ p2Þ ¼ cðp1Þcðp2Þ ¼ 0:95	 0:90 
 0:86

Thus, we have the following reasoning with believability-degrees:

ðp1 ^ p2 ! q; 0:75Þ
ðp10 ^ p20 ; 0:86Þ

ðq0; 0:65Þ

where 0.65 ≈ 0.86 × 0.75 = c(q0). Thus, the believability-degree of “it storms
tomorrow” is about 0.65.

Since the believability-degrees between 0 and 1 and modal words “likely,”
“highly likely,” and so forth can be converted mutually, so in reasoning with
believability-degrees, the rules whose believability-degrees are between 0 and 1
(greater than 0 and less than 1) are also uncertain rules. Actually, reasoning with
believability-degrees is mainly concerned with propositions and rules with
believability-degrees between 0 and 1, whereas it is known from Theorem 24.1 that
the truth values of propositions with believability-degrees between 0 and 1 cannot
be determined. Therefore, the reasoning with believability-degrees belongs to
usually called uncertain reasoning, while the definitions, computation formulas, and
methods of believability-degrees we given above form a so-called uncertain rea-
soning model. Of course, the corresponding threshold values also can be set in
practical problems.
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Actually, expression (24.30) also can be seen as a rule of inference in the sense
of believability-degree. Look from the form, it is the modus ponens with
believability-degrees, so we call it to be the believability-degrees modus ponens.
Besides this believability-degrees modus ponens, there also can be other rules of
inference in reasoning believability-degrees. For instance,

ðp ! q; cðp ! qÞÞ
ðq ! r; cðq !ÞÞ

) ðp ! r; cðp ! rÞÞ
ð24:32Þ

also is a rule of inference with believability-degrees, which can be called the
believability-degree hypothetical syllogism.

The computation formula of believability-degree in this rule of inference with
believability-degrees is c(p → r) = c(p → q)c(q → r). But using this formula is
conditional, that is, the uncertain implication relation between the propositions p, q,
and r needs to satisfy transitivity. In the following, we prove this formula as a theorem.

Theorem 24.4 Let propositions p: x is A, q: y is B, and r: z is C, and A, B, and
C are quantifiable linguistic values, and “if p then possibly q” and “if q then
possibly r” are two uncertain implicational propositions (rules). If the implication
relation between propositions p, q, and r satisfies transitivity, then

cðp ! rÞ ¼ cðp ! qÞcðq ! rÞ ð24:33Þ
Proof

cðp ! qÞ ¼ cðq ! rÞ ¼ PðeB eAj ÞPðeC eAj Þ ðeA; eB; eC
are flexible events described separately by propositions p,q and rÞ

¼ PðeAeBÞ
PðeAÞ

PðeBeCÞ
PðeBÞ

¼ PðeAeBÞPðeBeCÞ
PðeAÞPðeBÞ

¼ PðeAeBeBeCÞ
PðeAÞPðeBÞ because eAeB and eBeC are independent mutuallyð Þ

¼ PðeAeBeCÞ
PðeAÞPðeBÞ ¼

PðeBeAeCÞ
PðeAÞPðeBÞ

¼ PðeBÞPðeAeCjeBÞ
PðeAÞPðeBÞ by multiplication formulað Þ

¼ PðeAeCjeBÞ
PðeAÞ

¼ PðeAeCÞ
PðeAÞ because eAeC is independent from eB at the timeð Þ

¼ PðeC eAj Þ ¼ cðp ! rÞ

We call Eq. (24.33) to be the transitive formula of believability-degrees.
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From the expression of definition of believability-degree, it can be seen that
believability-degree includes implication-degree, and implication-degree in turn
includes inclusion-degree and correspondence-rate. Therefore, this transitive for-
mula of believability-degrees includes actually transitive formula of implication-
degrees (in Sect. 21.6) and then also includes transitive formulas of inclusion-
degrees and correspondence-rates (in Sect. 20.6).

Remark For the measure of uncertainty, people have used many different
methods and have proposed many of uncertain reasoning model. For instance, in
certainty factor theory, a measure of certainty factor (CF) as the degree of
believability of a proposition is used, while the computation formulas of the degrees
of believability of compound propositions are

CFðq ^ pÞ ¼ minfCFðpÞ;CFðqÞg;CFðq _ pÞ ¼ maxfCFðpÞ;CFðqÞg

Besides certainty factor theory, there are also the proof theory and subjective
Bayesian approach, as well as the probabilistic reasoning with Bayesian network,
etc. Since uncertain reasoning is not the subject of research of this book, here, the
principles of these methods are not discussed.

24.5 Dual Reasoning with B-D(T)

Reasoning with believability-degrees is a kind of inference concerned with the
believability of propositions, which is a kind of uncertain reasoning, and solves the
inference problems about uncertain information, while the reasoning with degrees
(truth-degrees) given in Chap.15 is the inference concerned with the truth of
propositions, which is a kind of imprecise reasoning, and solves the inference
problems about imprecise information. However, there is still some of information
being uncertain as well as imprecise, or imprecise as well as uncertain (see Sect. 1.3).
Then, how to deal with the inference with this kind of information?

It is not difficult to see that if we combine the reasoning with
believability-degrees and the reasoning with degrees (truth-degrees) to realize a
kind of dual reasoning that has both reasoning with believability-degrees and
reasoning with degrees (truth-degrees), the problem will be solved.

In fact, as long as the truth-degreed function of major premise (that is, rule) and
the truth-degree of minor premise (that is, evidentiary fact) are given in the rea-
soning with believability-degrees, the dual reasoning with believability-degrees and
truth-degrees just can be realized. The specific scheme is

ðp ! q; c; ðp ! qÞ; ftðtÞÞ
ðp0; cðp0Þ; tp0Þ

ðq0; cðq0Þ; tq0Þ
ð24:34Þ

where c(q0) = c(p0)c(p → q), tq0 ¼ ftðtp0Þ, tp0 [ 0:5.
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Now, also let p: A(x) and q: B(y), then (p0, tp0 ) is equivalent to (A(x0), dA0 ), and
(q0, tq0 ) is equivalent to (B(y0), dB0 ). Correspondingly, truth-degreed function ft(t) is
equivalent to degreed function fd(d). Thus, from expression (24.34), we can also
have the following dual reasoning with believability-degrees and degrees:

ðA ! B; cðA ! BÞ; fdðdÞÞ
ðA0; cðA0Þ; dA0Þ

ðB0; cðB0Þ; dB0Þ
ð24:35Þ

where c(B0) = c(A0)c(A → B), dB0 ¼ fdðdA0Þ; dA0 [ 0:5.
Note that the meaning of the reasoning outcome (q0, c(q0), tq0 ) in expression

(24.34) above is as follows: The believability-degree of proposition q0 is c(q0), and
when q0 is true indeed, the truth-degree of which is tq0 ; and the meaning of the
reasoning outcome ((B0, c(B0)), dB0 ) in expression (24.35) is as follows: The
believability-degree of conclusion B0 is c(B0), and when B0 is true indeed, the
degree of which is dB0 . However, we cannot understand the two outcomes as: The
believability-degree of q0 whose truth-degree being tq0 is c(q0) and the
believability-degree of B0 whose degree being dB0 is c(B0), because the q0 whose
truth-degree being tq0 is equivalent to the B0 whose degree being dB0 , and the latter
is equal to a certain number (or vector) y0 in measurement space V. And from
probability theory, it can be known that P(X = y0) < P(X 2 B0 � V); especially,
when V is a continuous set, P(X = y0) = 0 (i.e., an infinitesimal).

Since the degree and truth-degree of a proposition are interchangeable, and
adjoint degreed function and adjoint truth-degreed function of a rule are also
interchangeable, expression (24.35) of the kind of dual reasoning with
believability-degrees and degrees is essentially the same (also interchangeable) as
expression (24.34) of the kind of dual reasoning with believability-degrees and
truth-degrees. Therefore, we tie expressions (24.34) and (24.35) together to call the
dual reasoning with believability-degrees and degrees (truth-degrees) and simply
write as dual reasoning with B-D(T).

Note that in this dual reasoning, the reasoning with believability-degrees and the
reasoning with degrees (truth-degrees) are mutually independent.

We say that the above dual reasoning with B-D(T) on the believability and truth
at the same time also has practical significance and background. As a matter of fact,
in many cases, our reasoning is for truth as well as for believability. For instance,
reasoning is needed in disease diagnosis to figure out what disease a patient may
have and the severity if the disease was suffered indeed. This kind of reasoning is
just on the believability and truth at the same time, which involves believability-
degree and degree (truth-degree). Therefore, this kind of reasoning is dual reasoning
with B-D(T). For another example, the weather forecast also needs reasoning done
to estimate the weather of a future certain day(s) and its intensity. This reasoning is
also on the believability and truth at the same time, which also involves
believability-degree and degree (truth-degree). Thus, this kind of reasoning is dual
reasoning with B-D(T).
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Example 24.4 Add the degreed function of rule and the degrees of evidentiary facts
to the problem in Example 24.3 and then do dual reasoning with B-D to find the
believability-degree of rainstorm tomorrow and its strength.

Solution Denote “sultry” as A1, “almost windless” as A2, and “storm” as B, sup-
pose dA1 ¼ 1:25 and dA2 ¼ 0:96, and employ directly Eq. (14.12) in Sect. 14.3.1,
that is,

dB ¼ bB � 0:5
b^ � 0:5

dA1^A2 � 0:5ð Þþ 0:5

where β∧ = min{β1, β2}, dA1^A2 ¼ min dA1 ; dA2f g, dA1 ; dA2ð Þ 2 0:5; b1ð � 	 0:5; b2ð �,
as an expression of adjoint degreed function of the rule. And suppose also β1 = 2.5,
β2 = 1.5, and βB = 3, then β∧ = min{β1, β2} = min{2.5, 1.5} = 1.5, substitute 3 and
1.5 into the above expression, obtaining the adjoint degreed function of the rule is

fd dð Þ ¼ 2:5d � 0:75; d ¼ min dA1 ; dA2f g

Since min dA1 ; dA2f g ¼ min 1:25; 0:96f g ¼ 0:96[ 0:5, thus, we have the following
dual reasoning with B-D:

ðA1 ^ A2 ! B; 0:75; fdðdÞÞ
ðA10 ^ A20 ; 0:86; 0:96Þ

ðB0; 0:65; 1:65Þ

The outcome is as follows: The believability-degree of rainstorm tomorrow is about
0.65; and when the conclusion is true, the strength of rainstorm is 1.65.

Example 24.5 Suppose there is a modal rule: If someone has a slight fever plus a
stuffy nose slightly plus a light of aversion to wind, then highly likely he gets a
slight cold, and suppose the believability-degree of uncertain rule “if someone has a
slight fever plus a stuffy nose slightly plus a light of aversion to wind, then he gets a
slight cold” described by the modal rule is 0.95. There are also the facts: Someone
has a slight fever with degree of 1.06, a stuffy nose slightly with degree of 0.85, and
a light of aversion to wind with degree of 0.97. And suppose the
believability-degree of the fact is 1. According to given rule and facts, what is the
believability-degree of this person catching slight cold? And if he/she catching
slight cold, then what is the degree of the slight cold?

Solution It can be seen that this is a dual reasoning with B-D problem. Denote “a
slight (fever)” by A1, “(stuffy nose) slightly” by A2, “a light (of aversion to wind)”
by A3, and “a slight (cold)” by B, and then, the original rule can be symbolized as

A1�A2�A3 ! B
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With reference to the Eq. (14.14) in Sect. 14.3.1, let the adjoint degreed function
fd(dA) of the rule be

dB ¼ bB � 0:5
b� � 0:5

ðdA � 0:5Þþ 0:5

where b� ¼ w1bA1
þw2bA2

þw3bA3
, dA ¼ P3

i¼1 widAi0\dAj � bAj
ðj ¼ 1; 2; 3Þ.

Suppose the maximum of consistency-degrees of “a slight (fever)” is bA1
¼ 2:5,

the maximum of consistency-degrees of “(stuffy nose) slightly” is bA2
¼ 1:8, and

the maximum of consistency-degrees of “a light (of aversion to wind)” is bA3
¼ 2:0,

and suppose the weights w1 = 0.5, w2 = 0.3, w3 = 0.2. Then b� ¼ P3
i¼1 wibAi

¼
0:5	 2:5þ 0:3	 1:8þ 0:2	 2:0 
 2:2. Suppose then the maximum of
consistency-degrees of “slight (cold)” is bB ¼ 2:0. Now, substituting the two
numbers into the above functional expression, we have an adjoint degreed function
of the rule:

dB ¼ 15
17

dA þ 1
17

where dA ¼ 0:5dA1 þ 0:3dA2 þ 0:2dA3 , 0\dAj � bAj
j ¼ 1; 2; 3ð Þ.

And from the facts given, it follows that dA1 ¼ 1:06, dA2 ¼ 0:85, and dA3 ¼ 0:97;
then the overall degree of facts is

dA1�A2�A3 ¼ 0:5 dA1 þ 0:3 dA2 þ 0:2 dA3 ¼ 0:5	 1:06:þ 0:3	 0:85þ 0:2	 0:97

 0:98[ 0:5

Additionally, c(A1 ⊕ A2 ⊕ A3 → B) = 0.95, c(A1 ⊕ A2 ⊕ A3) = 1. Thus, we
have the following dual reasoning with B-D:

ðA1 � A2 � A3 ! B; 0:95; fdðdAÞÞ
ðA1 � A2 � A3; 1; 0:98Þ

ðB; 0:95; 0:92Þ

The reasoning outcome says that the believability-degree of this person caught a slight
cold is 0.95, and if this conclusion is true, then the degree of the slight cold is 0.92.

The dual reasoning with B-D(T) is also uncertain imprecise dual reasoning.
From the scheme and examples of the dual reasoning above, the connection and
relationship between uncertain reasoning and imprecise reasoning can be clearly
seen. Actually, viewed from dual reasoning perspective, pure reasoning with
degrees (truth-degree) and pure reasoning with believability-degrees are all special
dual reasoning—the former is the dual reasoning in which all believability-degrees
are fixedly 1, and the latter is the dual reasoning in which all truth-degrees are
fixedly 1 or >0.5. More general, the pure uncertain reasoning is precise uncertain
reasoning, and the pure imprecise reasoning is certain imprecise reasoning.
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24.6 Partial Implication, Relational Inference
with Implication-Degrees, and Reasoning
with Believability-Degrees

In Sect. 21.6, we presented the concept of partial implication (and partial equiva-
lence and partial possession). Since being “partial implication” but usual “complete
implication,” the truth of the implicational compound proposition p → q made up
of two propositions p and q having partial implication cannot be determined; that is,
the implicational proposition is a uncertain proposition. For uncertain propositions,
the logical inference in usual sense cannot be done. In this chapter, we introduced
the method of reasoning with believability-degrees to solve the inference with
uncertain propositions. Thus, for uncertain propositions p → q and p0 (here p:
A(x) and q: B(y)), using believability-degrees modus ponens, we have

ðp ! q; cðp ! qÞÞ
ðp0; cðp0ÞÞ

ðq0; cðq0ÞÞ ð24:36Þ

where c(q0) = c(p0)c(p → q).
And by Eqs. (24.14) and (24.29), c(p → q) = impl (p → q), and by Eq. 24.3,

c(p0) = poss(A) and c(q0) = poss(B). Thus, the reasoning with believability-degrees
shown by expression (24.36) can be translated into the following relational
inference:

ð24:37Þ

where poss(B) = poss(A)impl(p, q).
Similarly, by believability-degree hypothetical syllogism, we have the relational

inference below:

ð24:38Þ

where impl(p, r) = impl(p, q)impl(q, r).
Now, we consider conversely if there occurs firstly the relational inference

shown by expressions (24.37) and (24.38) (actually, here, expression (24.38) is just
the relational inference expression (22.3) in Sect. 22.2.1, and the relational infer-
ence expression (22.6) in Sect. 22.2.2 includes the expression (24.37) here), then by
c(p → q) = impl(p → q), and c(p0) = poss(A) and c(q0) = poss(B), we also can
have the reasoning with believability-degrees shown by expressions (24.36) and
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(24.32). That is to say, the relational inference with implication-degrees also can be
translated into the reasoning with believability-degrees.

To sum up, the relational inference with implication-degrees and some reasoning
with believability-degrees originate from partial implication relation between
propositions [further tracing, which will originate from partial correspondence
(inclusion)], and the two kinds of inference also can be translated to each other
through “bridge”—c(p → q) = impl(p → q). Thus, we have the following dia-
gram (Fig. 24.2).

From Fig. 24.2, we can see intuitively the relationship between partial impli-
cation, uncertain propositions, relational inference with implication-degrees, and
reasoning with believability-degrees. In consideration that implication-degree is to
portray partial implication, i.e., to portray imprecision, the corresponding relational
inference is to deal with imprecise information, while believability-degree is to
portray uncertainty, and reasoning with believability-degrees is to deal with
uncertain information; therefore, this diagram also reveals an origin of uncertain
information and the correlation between imprecise-information (processing) and
uncertain-information (processing); that is, some uncertain information originates
from imprecise information, and imprecise-information (processing) and uncertain-
information (processing) can be translated to each other in some conditions.

24.7 A Note on Reasoning with Truth-Degrees (Degrees)

Finally, we intend to make a discussion and explanation for reasoning with
truth-degrees (degrees).

From the above dual reasoning, we see that reasoning with truth-degrees (degrees)
is using truth-degrees (degrees) of fact and through the truth-degreed (degreed)
function between antecedent and consequent of a rule to compute truth-degree (de-
gree) of conclusion, while reasoning with believability-degrees is using believability-
degrees of fact and believability-degree of a rule to compute believability-degree of
conclusion. Then, whether reasoning with truth-degrees (degrees) can use the

reasoning with 

believability-degrees

relational inference with 

implication-degrees

partial implication

(partial possession)

uncertain implicational proposition

(uncertain simple proposition) 

Fig. 24.2 Diagram of relation between partial implication, uncertain implicational proposition,
relational inference with implication-degrees, and reasoning with believability-degrees
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truth-degree (degree) of rule and the truth-degrees (degrees) of fact to compute the
truth-degree (degree) of conclusion? The answer is negative.

In fact, from Chap. 15, it can be known that our reasoning with truth-degrees and
reasoning with degrees are the reasoning in the frame of relatively-true inference,
but independent reasoning based on truth-degrees or degrees. And from usual
mathematical logic and Sects. 11.6 and 12.6 in the book, we know that any rule of
inference demands that all premises must have simultaneously a certain truth value
such as true, roughly-true, and relatively-true, and conclusion has also the truth
value; On the other hand, in a reasoning, the corresponding rule is always appointed
or supposed to be true, roughly-true, or relatively-true (otherwise, corresponding
reasoning will is insignificant). That is to say, the real truth values of a rule do not
play any role in reasoning; thus, there is no situation that rule and fact with different
truth-degrees participate in one and the same reasoning; that is, there occurs no
following reasoning with truth-degrees:

p ! q; t1
p; t2
) q; t3

ð24:39Þ

where t1 ≠ t2, t3 = f(t1, t2).
Similarly, there also occurs no following reasoning with truth-degrees following

hypothetical syllogism (Transitivity):

p ! q; t1
q ! r; t2

) p ! r; t3
ð24:40Þ

where t1 ≠ t2, t3 = f(t1, t2).
As for reasoning with degrees, there is function relation between the degrees of

the antecedent and the consequent of a rule; however, the rule as a whole has no
something “degree”; therefore, there is no situation that a rule with a degree to
participate in reasoning liking expressions (24.39) and (24.40).

24.8 Summary

In this chapter, we introduced a measure called believability-degree for the
believability of propositions and on the basis of the theories of traditional proba-
bility and flexible event’s probability presented the computation principles and
methods of the believability-degrees of compound propositions on the same space
and from distinct spaces, in particular, the computation principles and methods of
propositions with a composite linguistic value and implicational propositions, thus
founding the believability-degree theory of propositions. Then, we discussed the
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inference on the believability of propositions and presented an uncertain reasoning
scheme based on believability-degrees—reasoning with believability-degrees and
the corresponding reasoning model. And then, we discussed the dual reasoning
about uncertainty and imprecision for the believability and truth of propositions
simultaneously and presented a scheme and model of dual reasoning. Besides, we
also discussed the correlation between partial implication, uncertain implicational
proposition, relational inference with implication-degrees, and reasoning with
believability-degrees.

This chapter has the following conclusions:

• A proposition is true if and only if it is completely believable; a proposition is
false if and only if it is completely unbelievable; a proposition being true or false
cannot be determined if and only if it is believable with some degree.

• The sum of the believability-degrees of complementary flexible propositions is
1.

• When proposition p implies proposition q, q is more believable than p.
• Relational inference with implication-degrees and some reasoning with

believability-degrees originate from partial implication relation between propo-
sitions, and the two kinds of inference also can be translated to each other in some
conditions.

• Some uncertain information originates from imprecise information, and
imprecise-information (processing) and uncertain-information (processing) can
be translated to each other in some conditions.
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Chapter 25
Some Discussions About Possibly-Type
Modal Propositions and Rules

Abstract This chapter introduces firstly the concepts and terminologies of
necessarily-type, possibly-type, and flexible possibly-type modal propositions and
rules and presents a representation with believability-degree of (possibly-type)
modal propositions and rules; next, it presents the definition and computation
formulas of truth values of modal propositions; presents a reasoning method with
modal propositions and rules; and derives a transitive formula of
believability-degrees, and presents a model of relational inference with
believability-degrees; then it analyzes and reveals the origin of possibly-type modal
propositions, and then reveals also an origin of uncertain information; finally, it
introduces flexibly-quantified propositions and their formal representation, and then
reveals also a correlation between imprecise information and uncertain information.

Keywords Possibly-type modal propositions � Uncertain information � Imprecise
information

First, we call such flexible linguistic values as “fairly possibly/probably/likely,”
“highly possibly/probably/likely,” “not very possibly/probably/likely,” and so forth
to be the flexible modal words.

In daily information exchange, people always use modal or flexible modal words
such as “possibly/probably/likely,” “fairly possibly/probably/likely,” “very
possibly/probably/likely,” and “not highly possibly/probably/likely” to describe
uncertainty. The sentences using modal or flexible modal words to describe
uncertainty themselves are a kind of propositions, and these words are all quan-
tifiable linguistic values, so the type of propositions describing uncertainty them-
selves is also imprecise. Then, how are the truth values of the type of propositions
to be determined? How is the corresponding reasoning to be done? These are the
problems to be discussed in this chapter. In addition, we will analyze the origin of
possibly-type modal propositions and reveal the origin of uncertain information as
well as a relation between imprecise information and uncertain information.
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25.1 (Possibly-Type) Modal Propositions and Rules
and Their Representation with Believability-Degree

Definition 25.1

(1) We call the proposition containing modal word “necessarily” and
“possibly/probably/likely” to be a modal proposition and call a modal (uni-
versal) implicational proposition to be the modal rule.

(2) We call the propositions and rules containing modal words “necessarily,” “cer-
tainly,” and so on to be the necessarily type modal propositions and rules and call
the propositions and rules containing modal words “possibly/probably/likely” to
be the possibly type modal propositions and rules. Expressly, we call the possi-
bly-type propositions and rules containing flexible modal words “fairly
possibly/probably/likely,” “highly possibly/probably/likely,” “not very possibly/
probably/likely,” and so forth to be the flexible possibly-type modal propositions
and rules.

Observe these propositions below:

① It will certainly rain tomorrow.
② It will probably rain tomorrow.
③ If it is overcast then it will necessarily rain.
④ If it is overcast then it will probably rain.
⑤ It will fairly probably rain lightly tomorrow.
⑥ If it is heavily overcast, then it will very likely rain heavily.

It can be seen that all the above propositions are modal proposition, and ③, ④,
and ⑥ of them are modal rules; further subdividing, then, of them, ① and ③ are
necessarily-type modal propositions; ②, ④, ⑤, and ⑥ are possibly-type modal
propositions; ③ is also a necessarily-type modal rule; ④ is also a possibly-type
modal rule; ⑤ is also a flexible possibly-type modal proposition; and ⑥ is also a
flexible possibly-type modal rule.

Note that the propositions and rules in the definitions above include also flexible
propositions and flexible rules. Therefore, if to subdividing, then the corresponding
various modal flexible propositions and flexible rules will follow. For example, the
above⑤ is just a modal flexible proposition and also a possibly-type modal flexible
proposition and a flexible possibly-type modal flexible proposition; while ⑥ is a
modal flexible rule, and also a possibly-type modal flexible rule and a flexible
possibly- type modal flexible rule.

Actually, modal propositions (including flexible possibly-type modal proposi-
tions) are a kind of nested compound proposition, which can always be stated as the
following form:

p isA ð25:1Þ
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where p is a proposition and A is a modal or flexible modal linguistic value. For
example, the above modal proposition “It will probably rain tomorrow” can also be
stated as “‘it will rain tomorrow’ is probable,” and flexible possibly-type modal
proposition “if it is overcast then it will very probably rain” can also be stated as “‘if
it is overcast then it will rain’ is very possible.” This is to say, viewed from the
angle of syntax, a modal proposition is just a main-clause-structured compound
sentence [1].

From the main-clause structure, it can be clearly seen that the linguistic value
A in modal proposition “p is A” is to describe the possibility of subordinate clause
(proposition) being true. From the relation between the possibility of a proposition
being true and the believability of it, here linguistic value A is tantamount to
linguistic value A′ that describes the believability of subordinate clause p. Thus,
proposition “p is A” is also tantamount to proposition “p is A′”. For instance, “‘it
will rain tomorrow’ is possible” is tantamount to “‘it will rain tomorrow’ is
believable with some degree.” Thus, a modal proposition can also be formally
represented as

p; believability;A0ð Þ or p;A0ð Þ ð25:2Þ

For example, “it will probably rain tomorrow,” that is, “‘it will rain tomorrow’ is
possible,” can be represented as

it will rain tomorrow; believability; believable with some degreeð Þ

or

it will rain tomorrow, believable with some degreeð Þ

And “if it is overcast then it will very probably rain,” that is, “‘if it is overcast
then it will rain’ is very possible,” can be represented as

ðif it is overcast then it will rain, believability, very believable)

or

ðif it is overcast then it will rain, very believable)

Now, we see that modal propositions are actually a main clause in which the
believability of subordinate clause is also expressed, or in other words, modal
propositions are a kind of compound proposition that expresses the believability of
its subordinate clause.

On the other hand, we know that the believability of a proposition can also be
portrayed precisely by believability-degrees. Thus, converting linguistic value A′
representing believability into a believability-degree, that is, a number, then modal
proposition “p is A” can be represented as
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ðp; believability; cÞ or ðp; cÞ ð25:3Þ

For example, “it will probably rain tomorrow” can also be represented as

it will rain tomorrow; believability; 0:6ð Þ or it will rain tomorrow; 0:6ð Þ

here, we convert modal word “probably” into 0.6. And “if it is overcast then it will
very probably rain” can also be represented as

ðIf it is overcast then it will rain; believability; 0:8Þ

or

ðIf it is overcast then it will rain; 0:8Þ

Definition 25.2 We call tuples (p, believability, c(p)) or (p, c(p)) made up of
proposition p and its believability-degree c(p) to be a proposition with
believability-degree. In particular, if p is a (universal) implicational proposition,
then (p, believability, c(p)) or (p, c(p)) is called a rule with believability-degree.

Thus, the above expression (25.3) and examples are the proposition with
believability-degree or rule with believability-degree. Thus, we can also say that a
modal proposition or rule (mainly refers to the possibly-type modal propositions
and rules) can be represented as a proposition with believability-degree or a rule
with believability-degree.

It can be seen that the method of representing a modal proposition or rule as a
proposition with believability-degree or a rule with believability-degree is: first
convert corresponding modal word (linguistic value) into a numerical value, that is, a
believability-degree, then replace modal word with the believability-degree, and
then take the subordinate clause in original modal proposition or rule, that is,
the “sub” proposition or rule described by original proposition or rule, together with
the believability-degree to form a tuple. As for the conversion from modal or flexible
modal linguistic values to believability-degrees, the method is the same as that from
general linguistic values to numerical values in Sect. 7.3. For the definitions of
corresponding flexible-modal linguistic values, see Fig. 24.1 in Sect. 24.1.

Note that there is another conversion approach, that is, we do not consider the
modal word in a modal proposition or rule, but take its subordinate clause and its
real believability-degree to form a proposition with believability-degree or rule with
believability-degree. But since the real believability-degree of a subordinate clause,
in general, is not equal to the believability-degree obtained by converting from
corresponding modal word, the proposition with believability-degree or rule with
believability-degree obtained by the approach is not certainly equivalent to the
original modal proposition or rule. Then, to convert a modal proposition or rule to
proposition with believability-degree or rule with believability-degree, which
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approach should we use? This would be decided according to the practical
problems.

Of course, conversely, a proposition with believability-degree or rule with
believability-degree can also be converted into a modal proposition or rule, and the
method is also to convert believability-degree into the corresponding modal word.

25.2 Truth Values of Possibly-Type Modal Propositions
and Reasoning with Possibly-Type Modal
Propositions

1. Truth values of possibly-type modal propositions

The possibly-type modal propositions (including flexible possibly-type modal
propositions) are also propositions; then, ① how do we determine the truth of this
kind of proposition? ② How do we do reasoning with this kind of propositions?
For example, how is the truth of possibly-type modal proposition “it will probably
rain tomorrow” to be determined? For another example, can we do reasoning with
rule “if it is overcast then it will probably rain” and fact “it will probably be
overcast tomorrow”?

From the relation between believability-degree and linguistic values “believable
with some degree,” “very believable,” “rather believable,” and so on, as well as the
definition of truth of flexible propositions (see Sect. 11.1), the truth-degree of modal
proposition “p is A” is numerically equal to the consistency-degree cA(c(p)) of the
believability-degree c(p) of subordinate clause p with the flexible linguistic value A,
namely

tðp isAÞ ¼ cAðcðpÞÞ ð25:4Þ

Equation (25.4) is the computation formula of truth values of all flexible
possibly-type modal propositions.

Note that here believability-degree c(p) is the real believability-degree of
proposition p, rather than believability-degree c in (p, c) converted from modal
proposition “p is A.” So consistency-degree cA(c) cannot be treated as truth-degree t
(p is A). In fact, since number c is obtained by converting linguistic value A, always
cA(c) > 0.5; but cA(c(p)) may be >0.5 and may also be =0.5 or <0.5.

If we define the consistency function of modal word “possibly” as

cpossiblyðxÞ ¼ 1; 0\x\1
0; x ¼ 0 or x ¼ 1

�
ð25:5Þ

then Eq. (25.4) is also the computation formula of truth values of all possibly-type
modal propositions.
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Thus, for all of possibly-type modal propositions, only when a modal word
matches with the believability-degree of corresponding subordinate clause, the
corresponding modal proposition is true. That is like a person’s height can be
described exactly by numerical value y(m), but can also generally be described by
linguistic values such as “tall” and “short.” However, for one and the same person,
the two kinds of descriptions must be well matched or compatible. For instance, for
1.90 m, we say it is a “tall” is correct of course, but if it is said to be a “short,”
which is then certainly wrong. Similarly, for 1.50 m, we say it is a “tall” is wrong,
but saying it is a “short” is then correct.

If we define still the consistency functions of modal words “necessarily” and
“impossibly” as

cnecessarilyðxÞ ¼
1; x ¼ 1

0; x 6¼ 1

(
ð25:6Þ

cimpossiblyðxÞ ¼
1; x ¼ 0

0; x 6¼ 1

(
ð25:7Þ

then Eq. (25.4) is the computation formula of truth values of all modal propositions.
Thus, for the truth of modal propositions in usual modal logic (here it refers to

modal logic in the narrow sense, that is, the modal logic of truth theory), we have
the following judging rules:

(1) A modal proposition with modal word “necessarily” is true if and only if the
believability-degree of its subordinate clause is 1;

(2) A modal proposition with modal word “possibly” is true if and only if the
believability-degree of its subordinate clause is bigger than 0 and smaller than
1;

(3) A modal proposition with modal word “impossibly” is true if and only if the
believability-degree of its subordinate clause is 0.

If the notation of a modal proposition in modal logic is used, then the three
judging rules are as follows:

tðhpÞ ¼ 1 , cðpÞ ¼ 1 ð25:8Þ

tð}pÞ ¼ 1 , 0\cðpÞ\1 ð25:9Þ

tð:}pÞ ¼ 1 , cðpÞ ¼ 0 ð25:10Þ

Example 25.1 Let p: Sun rises from the east tomorrow. Obviously, c(p) = 1.
Therefore, t(□p) = 1.

Let q: Sun rises from the west tomorrow. Obviously, c(q) = 0. Therefore, t
(¬◇q) = 1.
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Let r: Jack is probably a translator. Suppose according to the analysis and
estimation, 0 < c(r), then t(◇p) = 1.

Note that in daily language, the word “necessarily” in necessarily-type modal
propositions is often omitted, which leads to a necessarily-type modal proposition
(as “p is necessary”) to be simplified as the subordinate clause (p) it describes.
This, in turn, is equivalent to say, those usual propositions that are not modified by
modal word “necessarily” are really defaulted as “being necessary.” From the
relation between the possibility of a proposition being true and the believability of
the proposition (see Sect. 24.1), that a proposition (p) is necessary is equivalent to
say that the proposition is completely believable (i.e., c(p) = 1); from the relation
between believability and truth of a proposition, that a proposition is completely
believable (c(p) = 1) is equivalent to that the proposition is true (t(p) = 1) (see
Theorem 24.1 in Sect. 24.1). Thus, that a proposition is defaulted as to be
believable is equivalent to that the proposition is defaulted as to be true. The latter
just is the natural logical semantics of a proposition we say (see Sect. 12.4). That is
to say, that usual a proposition implicates itself being true is coincident with that it
is defaulted as to be believable. This shows from another angle that the natural
logical semantics of propositions we discover and present is existent and correct.

2. The reasoning with possibly-type modal propositions

We observe the question: Suppose there are possibly-type modal rule “If it is
overcast then it will probably rain” and possibly-type modal proposition “It is
probably overcast tomorrow” as a fact, question is: will it rain tomorrow?

It can be seen that since the evidentiary fact “probably overcast” does not match
totally with the premise condition “overcast” of rule, it is not hard to do reasoning
by using directly given possibly-type modal proposition and rule. However,
possibly-type modal propositions and rules can be expressed as the form with
believability-degrees, that is, converting them into proposition with
believability-degree and rule with believability-degree; for the proposition with
believability-degree and rule with believability-degree, we can do reasoning with
believability-degrees stated in Chap. 24. Of course, the outcome of reasoning with
believability-degree is also a proposition with believability-degree, but as long as it
is converted into a modal proposition, the modal proposition is the conclusion to
which original modal proposition and rule correspond.

Thus, we represent the rule “if it is overcast then it will probably rain” as

ðit is overcast then it will rain; c1Þ

and the fact “it will probably be overcast tomorrow” as

ðit is will overcast tomorrow; c2Þ
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Then, we have the following reasoning with believability-degrees:

ððIf it is overcast then it will rain; c1Þ
ðIt is overcast tomorrow; c2Þ

) ðIt rains tomorrow; c3Þ

where c3 = c1 c2. Now, we convert c3 into a modal or flexible modal linguistic
value. Suppose the flexibl-modal linguistic value converted by believability-degree
c3 is “fairly likely,” then the conclusion obtained by the modal proposition and rule
given above is as follows: It rains tomorrow fairly likely.

From the above example, we see that for possibly-type modal propositions and
rules, we can convert them into the propositions and rules with believability-degree
and do the corresponding reasoning with believability-degrees; then, if needed,
we convert the obtained conclusion into a corresponding modal proposition again.

It can be seen that the above method is actually translating the reasoning with the
possibly-type modal propositions into the reasoning with believability-degrees with
the subordinate clause of them. That is to say, the reasoning with possibly-type
modal propositions here is actually the reasoning with believability-degrees with
respect to the subordinate clauses, but not the reasoning with degrees or
truth-degrees with respect to the main clauses. As for the reasoning with degrees or
truth-degrees with respect to the main clauses, the principles and methods, in
principle, are the same as that in previous Chap.15.

One problem worthy of our attention here is although a modal rule itself has true
or false, or truth-degree, the real truth values of the modal rules do not play any role
in reasoning. In fact, ① if a modal rule is directly employed to do reasoning (if that
can be done), then it always is treated as true or rough-true, because if not, the
reasoning could not be done; ② if converting directly a corresponding modal rule
into a rule with believability-degree to do reasoning, then since the
believability-degree in the rule with believability-degree is from conversion of the
modal or flexible modal linguistic value in original modal rule, but not the real
truth-degree of subordinate clause of original modal rule, and the rule with
believability-degree always is still treated as true or rough-true; therefore, the
truth-degree of the rule that is obtained from the real believability-degree of the rule
is still not used in reasoning; ③ if the rule with believability-degree in reasoning is
made up of the subordinate clause of corresponding modal rule and its
believability-degree, then not to mention that such a rule with believability-degree
is unnecessarily equivalent to the original modal rule, even if they are equivalent,
the rule with believability-degree is still treated as true or rough-true. In a word, the
above three cases of reasoning are all not related to truth value of rule with
believability-degree. This shows again that the truth values of implicational
propositions can only be used for the judgment of the truth or validity of itself, but
cannot be used in the corresponding reasoning.
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25.3 Origin of Possibly-Type Modal Propositions

Let A be a subset or flexible subset of U and B be a subset or flexible subset of
V. And let x0 2 U, A(x0) be a simple proposition, y0 2 V, and B(y0) be a simple
proposition.

By Definition 21.3, it is known that

possðAÞ ¼ sharðAÞ ð25:11Þ

Thus, when shar (A) 2 (0, 1), poss(A) 2 (0, 1). And shar(A) 2 (0, 1) is equiv-
alent to saying that set A holds the partial share of universal set U, and poss
(A) 2 (0, 1) is equivalent to saying that linguistic value A can only be possessed by
the partial objects in U. Thus, for x0 2 U, the possibly-type modal simple propo-
sition would be occurred: A(x0) is possible.

That the logical relation between “partial share,” “partial possession,” and
possibly-type modal simple proposition above is to say that from “partial share,” the
“partial possession” can be drawn forth; from “partial possession,” the
possibly-type modal simple propositions can be drawn forth.

By Definition 21.9, it is known that

impl AðxÞ;BðyÞð Þ ¼ corrðA;BÞjcontðA;BÞ ð25:12Þ

Thus, when corr(A, B) 2 (0, 1), or cont(A, B) 2 (0, 1), impl(A(x), B(y)) 2 (0, 1).
And corr(A, B) 2 (0, 1) is equivalent to saying that set A is partly corresponded by
set B, cont(A, B) 2 (0, 1) is equivalent to saying that set A is partly contained by set
B, and impl(A(x), B(y)) 2 (0, 1) is equivalent to saying that proposition A(x) implies
partly proposition B(y). Thus, for x0 2 U and y0 2 V, the possibly-type modal
implicational proposition would be occurred: A(x0) → B(y0) is possible.

That the logical relation between “partial correspondence” or “partial inclusion,”
“partial implication,” and possibly-type modal implicational proposition above is to
say that from “partial correspondence” or “partial inclusion,” the “partial implica-
tion” can be drawn forth; from “partial implication,” the possibly-type modal
implicational propositions can be drawn forth.

To sum up, a “route map” drawing possibly-type modal propositions is shown in
Fig. 25.1.

From this diagram, it can be seen intuitively that the possibly-type modal
propositions originate from the feature of “partial share” and the relations of “partial
correspondence” or “partial inclusion” of relevant sets.

For “partial share,” the range of shares is the real interval (0, 1), and for “partial
correspondence” and “partial inclusion,” the range of correspondence-rates and the
range of inclusion-degrees are also the interval (0, 1). Therefore, viewed abstractly,
interval (0, 1) is also the range of numerical values to which quantifiable linguistic
value “partial” corresponds. Thus, the flexible linguistic values of “most,” “ma-
jority,” “overwhelming majority,” “few,” “tiny minority,” and so on can be defined
on the interval (0, 1). These flexible linguistic values are all to describe quantities,
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so they can also be used to describe “partial possession” and “partial implication.”
For example,

Majority of trees have been sprouting.
In most cases, if the deposit interest rates fall, the stock is

up.

Obviously, this sentence is also a flexible proposition. In the following, we
introduce several terms and their notations and give the formal representation of this
kind of flexible propositions.

Definition 25.3 We call collectively the words that represent imprecise number
such as “majority,” “vast majority,” “overwhelming majority,” “minority,” and
“tiny minority” to be the flexible quantifiers and denote them in order as Mx, BMx,
VBMx, Ux, and VUx; the propositions quantified by these flexible quantifiers are
called the flexibly-quantified propositions.

For instance, MxA(x) is a flexibly-quantified proposition, which means there are
a majority of x 2 U, and x is A.

For another instance, BMx 9 y(A(x) → B(y) is also a flexibly-quantified
proposition which means for great majority of x 2 U, there exists y 2 V, and if
x is A, then y is B.

It can be seen that flexibly-quantified propositions are actually a kind of state-
ments of specific “partial possession” and “partial implication.” Therefore,
flexibly-quantified propositions originate also from the “partial share” and the
“partial correspondence” or “partial inclusion” of sets. On the other hand, it is not
hard to see that from flexibly-quantified proposition, possibly-type modal propo-
sitions can also be drawn forth.

For example, given a flexibly-quantified proposition MxA(x) (x 2 U), then by
the semantics of MxA(x), for 8x0 2 U, we have possibly-type modal proposition: A
(x0) is likely.

Similarly, from flexibly-quantified proposition BMx 9 y(A(x) → B(y)), we can
have flexible possibly-type modal proposition:

partial possessionpartial share

possibly-type modal 

implicational propositions

partial 
correspondence 
(inclusion)

partial implication

possibly-type modal  

simple propositions

Fig. 25.1 A “route map” of possibly-type modal propositions being drawn (1)
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If A xð Þ then very likelyB yð Þ; that is; A xð Þ ! B yð Þ is very likely

Thus, we obtain another “route map” drawing possibly-type modal propositions
(see Fig. 25.2).

Synthesizing Figs. 25.1 and 25.2, we have the following as in Fig. 25.3.
The diagram shows that it is just from the feature of “partial share” of relevant

sets and the relations of “partial correspondence” or “partial inclusion” between
relevant sets that possibly-type modal propositions are drawn. Since a possibly-type
modal proposition is actually to describe its uncertain subordinate proposition(s),
Fig. 25.3 shows and reveals also an origin of uncertain information. Also, since
flexibly-quantified propositions express imprecise information, thus, the diagram
shows and reveals also a correlation between imprecise information and uncertain
information.

25.4 Summary

In this chapter, the work and results of us are as follows:

• Introduced the terminology of flexible modal words, subdivided modal propo-
sitions, and rules and presented the concepts and terminologies of
necessarily-type, possibly-type, and flexible possibly-type modal propositions
and rules.

partial share

possibly-type modal 

implicational propositions

partial 
correspondence
(inclusion)

flexibly-quantified
implicational
propositions

possibly-type modal  

simple propositions

flexibly-quantified
simple 

propositions

partial 

possession

partial 

implication

Fig. 25.2 A “route map” of possibly-type modal propositions being drawn (2)

partial share

partial 
correspondence(inclusion) partial implication

possibly-type modal propositions

flexibly-quantified propositions

partial possession

Fig. 25.3 A “route map” of possibly-type modal propositions being drawn (3)
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• Presented a representation with believability-degree of (possibly-type) modal
propositions and rules, that is, proposition with believability-degree and rule
with believability-degree.

• Presented the definition and computation formulas of truth values of modal
propositions; gave a reasoning method with modal propositions and rules;
derived a transitive formula of believability-degrees; and presented a model of
relational inference with believability-degrees.

• Revealed the relationship between the simplified representation of
necessarily-type modal propositions and the natural logical semantics of
propositions, thus showing the correctness of our view about the logical
semantics of propositions.

• Analyzed and revealed the origin of possibly-type modal propositions and then
revealed also an origin of uncertain information, that is, uncertain information
originates from the feature of “partial share” and the relations of “partial cor-
respondence” or “partial inclusion” of relevant sets.

• Introduced flexibly-quantified propositions and their formal representation and
then drawn possibly-type modal propositions from flexibly-quantified proposi-
tions. Thus, also a correlation between imprecise information and uncertain
information is revealed, that is, uncertain information can also be drawn from
some of imprecise information.
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Chapter 26
Several Further Research Directions
and Topics

Abstract This chapter discusses further work, which includes application devel-
opment and theoretical and technical explorations. In what follows, the author, from
his perspective, presents directly 6 research directions and some research problems
for references.

Keywords Imprecise information � Flexible linguistic values � Artificial intelli-
gence � Anthropomorphic intelligent systems � Natural language processing

All previous chapters of this book have founded a theoretical and technological
system of imprecise-information processing, which provides a technological plat-
form for relevant applications and lays a theoretical foundation for further resear-
ches. In this chapter, we discuss further work, which includes application
development and theoretical and technical explorations. But since the problems
involving imprecise-information processing are very extensive, this chapter cannot
exhaust all research directions and topics. In what follows, the author, from his
perspective, presents directly 6 research directions and some topics for reference [1].

26.1 Development of Anthropomorphic Computer
Application Systems and Intelligent Systems
with Imprecise-Information Processing Ability

It is obvious that the anthropomorphic computer application systems and the
intelligent systems with imprecise-information processing ability are more flexible,
friendly, and more intelligent. The ability to deal with imprecise information is
necessary for some systems, especially for the computer systems involving human’s
natural language.

This research direction puts the imprecise-information processing technology
given in the book directly into practices to solve relevant practical problems and
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develop corresponding computer application systems (such as the
imprecise-problem solving systems about classifying, recognition, judging, con-
trolling, diagnosis, forecasting, and planning) and intelligent systems (such as
intelligent computers, intelligent robots, intelligent Internet/Web, intelligent mobile
phones, and expert systems), especially anthropomorphic computer application
systems and intelligent systems. Dividing from technology, this direction mainly
has the following subjects:

1. Development of various N-L and L-N conversion interfaces

Almost all of the computer application systems and intelligent systems with
imprecise-information processing ability require the conversion interfaces between
numerical values and flexible linguistic values. And the anthropomorphic computer
application systems and intelligent systems more require the input and output
interfaces as human’s perceiving and expressing. In addition to the related hardware
devices (such as sensors), the key technologies inside these interfaces are also the
N-L and L-N conversions as we said. Therefore, the development of the N-L and
L-N conversion interface is an important project. Obviously, to build a common
conversion interface is difficult and also not necessary; we only need to build the
conversion interfaces with respect to different problems.

To do N-L and L-N conversions, there must be the corresponding flexible lin-
guistic values. Thus, a conversion interface of N-N or L-N needs a flexible lin-
guistic value base to support it. The key of a flexible linguistic value is its
mathematical model, i.e., consistency function. It is relatively easy to establish a
normal model of a flexible linguistic value, but the dynamic model is difficult. This
is also a problem that needs to be further studied.

Of course, for a high-level anthropomorphic intelligence system, having only
these conversion interfaces is not enough, but which also requires a support of the
machine understanding and generation techniques of imprecise information. This
involves natural language processing. About it, we will discuss specially in the
following Sect. 26.3.

2. Development of problem-solving systems with imprecise knowledge

(1) Development of problem-solving systems with membership or consis-
tency function
This subject is to develop the computer application systems which are based
on flexible linguistic values or flexible sets (or more general quantifiable
linguistic values or ordered sets) and can solve relevant practical problems
or engineering problems. The main work this subject involves is the
determination and acquirement of relevant membership or consistency
function, and the designing of relevant computer software.
It should be pointed out that though pattern recognition and comprehensive
judging are also important application areas of fuzzy technology, the flexible
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recognition and flexible judging given in the book are new technologies
different from fuzzy recognition and fuzzy judging. Besides, the flexible
programming proposed in the book is also a kind of new technology yet to
be put into use. These new technologies and their applications are all
problems for further research.
Information fusion is a research hot spot at present. The synthesizing of
flexible linguistic values in this book has similarities with information
fusion. Then, can the synthesizing of flexible linguistic values be applied to
information fusion? That is also a research problem. Obviously, applying
flexible linguistic-valued synthesis to information fusion will add new
content for information fusion, and the research on this problem has
important significance and application value for the build of intelligent
robots.

(2) Development of problem-solving systems with flexible linguistic rules or
flexible linguistic functions
This subject is to develop computer application systems which base on
flexible linguistic rules or flexible linguistic functions and can solve relevant
practical problems and engineering problems. The main work this subject
involves is acquiring relevant flexible linguistic rules and its corresponding
adjoint-degreed functions or measured functions, acquiring relevant flexible
linguistic functions, and designing relevant computing and reasoning soft-
ware systems.
What should be pointed out is that for the classical control problem of
inverted pendulum control, though by using multiple methods such as tra-
ditional control, fuzzy control and humanoid control and so on, people have
already done successfully experiments and implementations, we still need to
experiment with the flexible control method presented in this book. In doing
so, on the one hand, flexible control method can be tested and advanced; on
the other hand, it can also be compared with other methods.

3. Common development platforms for flexible linguistic rule/function-based
systems
In order to help develop intelligent systems with flexible linguistic rules and
flexible linguistic functions, we can develop relevant common development
platforms, of which the main work are the design and implementation of flexible
linguistic rules base and its management system, inference and computing
components, definition and computing components of flexible linguistic func-
tions, N-L conversion and L-N conversion components, input and output inter-
faces, etc. Here, it involves the description language of flexible linguistic rules,
the structures of rule bases and function bases, relevant function modules of
management and maintenance, explanation modules, inference algorithms,
imprecise-reasoning models, etc. In addition, it also involves some sub-problems
such as dual reasoning modes and models for imprecision and uncertainty.
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4. Adaptive flexible linguistic rule/function-based systems
In order to further improve the intelligent level and effect of flexible linguistic
rule/function-based systems, adaptive flexible linguistic rule/function-based
systems must be developed. This kind of adaptive system mainly includes two
parts of the automatic acquisition and real-time optimization of flexible lin-
guistic rules and flexible linguistic functions. That is to say, this kind of flexible
linguistic rule/function-based system has self-learning ability, which can learn
from the work environment to find flexible linguistic rules or flexible linguistic
functions and make them optimized continuously, thus improving its intelligent
level continuously. Here, it involves the dynamic expanding or contracting and
the dynamic flexible clustering and flexible partition (even hierarchical flexible
clustering and flexible partition) of a measurement space, self-organizing of
flexible linguistic values, self-optimizing of rules and functions, etc.

26.2 Imprecise-Knowledge Discovery and Machine
Learning with Imprecise Information

On this direction, there are at least the following research subjects:

1. Flexible cluster analysis

In Sect. 19.4, some algorithms on flexible cluster analysis were already presented, but
these algorithms still need to be put into practice and get checked and improved in
practical problems. In addition, this research subject also needs further exploration.

2. Discovery of flexible linguistic rules

In Sect. 19.5, some basic ideas and approaches for the discovery of flexible lin-
guistic rules were already given. But there the method is actually tantamount to
rigidening (hardening) the flexible linguistic values firstly and then processing it
according to the usual decision tree learning method. Then, if with flexible classes
directly, how is the decision tree learning conducted? Here, it would involve the
computation of the corresponding information entropies and the problem of one and
the same object possessing simultaneously multiple flexible linguistic values.

3. Discovery of flexible linguistic (flexible-numbered) functions

In Sects. 19.6 and 19.7, some ideas and methods for the discovery of flexible
linguistic functions and flexible functions (i.e., flexible-numbered functions) were
already given. However, the mathematical background of the practical problems
may be various, so the discovery of flexible linguistic functions is not natural. For
example, to a flexible subset of measurement space U there correspond many
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flexible subsets of measurement space V. Then, for this situation, the corresponding
mathematical background needs to be analyzed or processed, such as by increasing
the dimensions of the definition domain to decrease the number of the corre-
sponding values. For another example, it is also a problem whether the local lin-
guistic function formed by several pairs of flexible linguistic values (or rules with
flexible linguistic values) can always be extended into a global flexible linguistic
function. Flexible linguistic (flexible) function discovery is very important to the
complex system modeling; then, can we design an algorithm of summarizing the
corresponding flexible linguistic (flexible) function with the relevant sample data?
This is a problem worth considering. Here, we can consider the hierarchical flexible
clustering and flexible partition, thus designing a set of stepwise refinement (i.e., the
size of flexible linguistic values is diminishing) flexible linguistic functions. In a
word, on the discovery of flexible linguistic (flexible) functions, more research
needs us to do.

4. Function learning with flexible numbers or flexible sets

Function learning is to acquire functions that satisfy certain requirements with
some known sample data and by using certain machine learning methods. Usually,
the sample data are all the ordered pairs consisted of ordinary numbers (real
numbers) or vectors, and the corresponding data sets are also ordinary sets. Then,
when the sample data are the ordered pairs consisted of flexible numbers or flexible
vectors, or corresponding data sets are flexible sets, how is the corresponding
function learning to be done?

Actually, now there already appeared some researches and results on this aspect.
For example, people now introduce the idea of fuzzy set and membership-degree to
support vector machine (SVM); thus, there occurs a new technique of fuzzy SVM.
Thus, we can consider how to combine flexible numbers, flexible vectors, and
flexible sets with SVM to realize “flexible support vector machine.”

Also, on the basis of SVM, some scholars also proposed Core Vector Machines
(CVM) [2] and Ball Vector Machines (BVM) [3]. Core vector machine can be said
to be a kind of fast SVM suitable for large data sets. The idea of core vector
machines is to transform the Kernel methods including SVMs into the Minimum
Enclosing Ball (MEB) problem in computational geometry. We find that the
minimum enclosing ball here has some similarities to the flexible ball proposed in
this book. Therefore, we can further study the connection and relation between the
two and then find the machine learning methods based on flexible balls and other
geometrical flexible classes.

Of course, we can also combine flexible numbers, flexible vectors, and flexible
sets with other machine learning techniques such as artificial neural network and
intelligent algorithms. Thus, this research subject is also the problem of how to
combine imprecise-information processing with traditional machine learning
techniques.
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26.3 Natural Language Understanding and Generation
with Flexible Concepts

The words that represent flexible concepts can be found everywhere in our daily
language, so the natural language understanding and generation with flexible
concepts appear to be very necessary and important. Therefore, it naturally becomes
a direction necessitating further research. On this direction, several tentative ideas
have already been proposed in Sect. 22.5. Overall, on the one hand, the mathe-
matical models of flexible concepts can be introduced into natural language pro-
cessing, or in other words combining the theories of flexible linguistic values with
the existing natural language processing theories and techniques, to study the
natural language processing with flexible concepts. For instance, we can study the
semantics theory with flexible linguistic values. For another instance, embedding
the interconversion mechanism between numerical values and linguistic values into
the process of the usual natural language processing is also a considerable
approach. On the other hand, we can explore new theories and methods of natural
language processing according to the characteristics of flexible concepts and the
mathematical models given in this book. For example, we can combine the
membership or consistency function of flexible concepts to build the knowledge
bases or corpuses of flexible concepts to accomplish the understanding of flexible
concepts. Besides, there is also the dynamic modeling problem of flexible concepts.
In short, there still exits many problems on natural language generation and
understanding with the flexible concepts to need us research. Of course, the natural
language processing referred to here is only at the level of linguistics and computer
programming, as to the natural language understanding and generation at the level
of human brain is yet in need of the breakthrough of brain and cognitive science.

26.4 Flexible Logic Circuits and Flexible
Computer Languages

Traditional logic circuits are all designed based on “rigid” logic (including
two-valued logic and multivalued logic). Just the same, traditional programming
languages (including machine language and advanced programming language) are
all designed with “rigid” linguistic values. Now, with truth-degreed logic and
flexible linguistic-truth-valued logic, we can also design corresponding logic cir-
cuits and computer languages based on the two logics. Further, these logic circuits
can be used to form all kinds of special purpose chips and computers.

On the other hand, flexible computer languages with flexible linguistic values
can also be developed. Specifically speaking, they include those from the machine
flexible instructions of lowest level to flexible requirements description language in
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flexible engineering, flexible description language of software architectures, etc.,
and those from the general flexible machine languages and flexible advanced
programming languages to flexible command languages directly used in decision
and control. Certainly, the research in this area would also involve flexible formal
language and automaton theory with flexible linguistic values.

With these computer hardware and software oriented to imprecise information,
we can directly use them to process imprecise information. Obviously, this will be
very significant and valuable to some instruments and meters, installations and
facilities, sensors, effectors, etc., especially sensor networks and intelligent robots.

It can be seen that there are many subjects and subsubjects being worthy of study
in this direction.

26.5 Exploring on Brain Model of Flexible Concepts
and Qualitative Thinking Mechanism of Human
Brain

Membership function and consistency function are the mathematical models of a
flexible concept, but they are actually a kind of relation and transformation model
from the physiological numerical information of human brain to its psychological
linguistic information. Then, viewed from the angle of anatomy, what kinds of
model and mechanism are the expression, relation, and transformation of these two
kinds of information in human brain? Such is just the brain model of flexible
concepts we speak. Closely connecting with the brain model of flexible concepts is
the qualitative thinking mechanism of human brain. Thus, the brain model of
flexible concepts and qualitative thinking mechanism of human brain will form
another research direction. For this research direction, we only give the following
tentative thoughts.

For the brain models of flexible concepts, what we might first think of is neural
network. The classical neural network models have forward network, feedback
network, self-organizing network, etc. Which is more suitable for the representation
of flexible concepts?

The work process of forward BP network is the input-processing-output of
information, which is actually a function and thus suitable for processing of
information. Thus, BP network can be used to realize the membership functions and
consistency functions of flexible concepts as the brain model of flexible concepts.
The widely interconnected Hopfield network is good at expressing states, thus
suitable to realize the memory and association of information. Then, we can also
consider using Hopfield network to store flexible concepts. Self-organizing feature
map network Kohonen is a kind of unsupervised competitive learning network,
which is good at realizing clustering. Then, if the winner unit of this network
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represents the core of a flexible concept, then its neighborhood is just tantamount to
the support set. Thus, in comparison, self-organizing map network seems more
suitable to represent flexible concepts. However, neural networks generally need
learning and training, while most flexible concepts, especially commonsense flex-
ible concepts, generally do not need learning. Therefore, even if using traditional
neural networks to represent flexible concept can be realized forcedly, there are still
some limitations.

With the development of quantum information technology, people proposed the
concept of Quantum neural computing. By researching, it is discovered that there
occurs quantum effect in human brain, and there is a certain association between the
quantum phenomenon and the consciousness of human brain, and the collapse of
quantum wave function is very similar to the reconstructing of neural pattern in the
memory process of human brain, and there is astonishing similarity between the
dynamic equations of quantum process based on quantum potential and brain
process based on neural potential, and a single quantum neuron has just the non-
linear mapping ability that is tantamount to that of the traditional two-layered
forward neural network. Quantum neural computing is now becoming a research
hot spot, and a number of quantum neural network models have been proposed such
as quantum parallel self-organizing mapping model (SOM) and quantum associa-
tive memory model. The weight update of SOM is completed through a series of
synchronous operations, thus making the traditional repeating training process
become a one-time learning process, which is more similar to the one-time learning
and memory function of human brain. Quantum associative memory model can
save 2n patterns within the time of O(mn) by using n quantum neurons and also
recall one pattern in the time of O(

ffiffiffiffiffi
2n

p Þ. It can be seen that this kind of quantum
neural network model has exponential improvement in memory capacity and
recalling speed compared with traditional Hopfield network model. Therefore, if
this kind of quantum neural network is used to store flexible concepts, then the
performance is more superior.

Like other concepts, flexible concepts are a kind of feeling or sensation at the
“macro”-psychological level of human brain. In fact, the thinking activities (such as
our memory, association, reasoning, computing, and thinking) that human brain can
be aware is carried out at the psychological level. The thinking processes at the
psychological level can be explicitly expressed in linguistic symbols; thus, human
brain’s thinking process can be expressed in words and be modeled in logic.
However, the thinking of human brain at the macro-psychological (or linguistic)
level is closely connected to the group behavior at neuronic level—it is just the
group behavior of neurons at the low micro-physiological level that forms the
advanced thinking activities at the macro-psychological level. The relation between
the group behavior of neurons and the advanced thinking activities of human brain
is the “gush” or “emergence” phenomenon called in system science. Therefore, a
flexible concept should also a kind of overall attribution gushed or emerged from a
system formed by multiple basic units in human brain. If these basic units are
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neurons, then neuron networks can be used for modeling of flexible concepts.
Further, if the whole attribute emerged from a neuron network is at the
macro-physical level (such as electric level), then the traditional neuron networks
can be used for modeling; if the whole attribute emerged from a neuron network is
at the micro-physical level (such as electron, atom, or molecule), then the quantum
neuron networks can be used for modeling. However, if these basic units supporting
the thinking of human brain are not neurons, and neurons are rather only a kind of
transporting and processing channels of information, then we need to further probe
what on earth are these basic units. Some studies have shown that a new physics
that connects quantum phenomenon and general relativity can explain some human
brain activities such as understanding, perception, and awareness. Based on that,
people transfer attention from studying the network structure formed by neurons to
focusing on analyzing the supermicro-structure and molecular combination within a
neural cell such as canaliculus, microfilament, and neurofilament inside a neuron.

Since the psychological activities and thinking of human brain are closely
connected with language, studying the linguistic mechanism of human brain should
be very helpful for revealing the mystery of these basic units. In addition, the
formation principles of all kinds of senses (such as visual sense, hearing, taste,
sense of touch, and hot and cold feelings) of human brain are also helpful for the
revealing of this mystery of the basic units, while the physiological principles about
language and senses need to be found in the layers and subareas of cerebral cortex.

On the other hand, whether the material basis which forms the psychological
feelings and thinking of human brain is electrical or chemical is also a key problem
needing us considering. Because viewed from the information transmission
mechanism of a neural system, it is both electrical (showing electric potential and
impulse) and also chemical (showing various kinds of neurotransmitters).

It can be seen that in this direction there still exists many challenging problems
to need us further research. It goes without saying that as long as the brain model of
flexible concepts is made a breakthrough, the qualitative thinking mechanism of
human brain will also be revealed along with.

In addition, it is worth considering whether or not the reasoning and computing
with degree proposed and realized in this book can be treated as a clue to help
exploring human brain’s logical reasoning mechanism and further revealing the
general qualitative thinking mechanism.

26.6 Related Mathematical and Logic Theories

The flexible sets, flexible relations, flexible linguistic values, flexible linguistic
functions, flexible numbers, flexible functions, etc. that are proposed in this book
form a basis of “imprecise mathematics” or “flexible mathematics,” while the
truth-degreed logic and flexible-linguistic-truth-valued logic and so on in the book
form a basis of “imprecise logic” or “flexible logic.” From that, we can further
research and find related mathematical theories and logic theories.
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In the mathematics, we can consider these topics below:

• On the basis of flexible sets and flexible relations, research and found corre-
sponding theories of matrixes, graphs, lattices, algebraic systems, measures and
integrals, topology and space, and so forth.

• Viewed from the angle of geometry, the flexible points, flexible lines, flexible
planes, flexible circles, and flexible squares in this book are a kind of flexible
geometry. In contrast, the usual geometries are rigid geometries. Thus, the
flexible geometries are the extension of rigid geometries, while rigid geometries
are the contraction of flexible geometries. Then, based on these flexible
geometries, we can explore and found the corresponding “flexible geometry”
theory. Besides, the multiple kinds of geometrical flexible classes in this book
are all connected with computational geometry. Therefore, the two can be
combined for research.

• Flexible numbers can be viewed as the extension of usual real numbers. Then,
can we found a kind of “flexible mathematics” based on flexible numbers?

• Flexible vectors are a kind of extension of usual vectors, and usual vectors can
be viewed as the contraction of flexible vectors. Then, can we further research
the operations on flexible vectors and then found the corresponding
“flexible-vector algebra” and “flexible-vector space” theories?

• Flexible functions are a kind of extension of usual real functions, and usual real
functions can be viewed as the contraction of flexible functions. Then, can we
research and found the theories of “flexible calculus” and “flexible differential
equations” based on flexible functions?

• Theory and technique of approximate computation based on flexible linguistic
functions.

• Theories on probability and mathematical statistics and entropy based on flex-
ible sets, flexible linguistic values and flexible numbers, etc.

In the logic, on the basis of the truth-degreed logic, flexible linguistic-truth-
valued logic founded in this book, we can further research negation-type logic,
opposite-type logic, multivalued logic, etc., and connect and compare these logics
with the existing logic theories to make clear and straighten out their relations to
found a more complete logic theory. On the other hand, new logic branches can be
developed on the basis of the logic theories in this book such as flexible modal logic
and numerical modal logic, flexible cognitive logic, and flexible command logic,
and it can also be studied whether there exists mutually complementary logic and
mutually exclusive logic. Logic operations and logic systems also involve algebraic
theories, and there are also some problems necessitating further research. Besides,
the existing fuzzy mathematics theories can be restudied by using the flexible set
theory.

As can be seen, there is a wide range of subjects for further research and
exploration in mathematics and logic, which indicates that in these directions one
can accomplish a great deal.
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