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Preface

With the development of information and intelligence sciences and technologies as
well as the rise in social requirements, imprecise-information processing about
flexible linguistic values is becoming more and more important and urgent, and it
will play an indispensable role in intelligent systems, especially in the anthropo-
morphic intelligent systems.

Imprecision, which is different from uncertainty, is another independent attribute
of information, and the now so-called fuzziness is actually a kind of imprecision.
Therefore, the author proposed explicitly the concepts of imprecise information and
imprecise-information processing, and the book, just as the title shows, is a
monograph on imprecise-information processing.

Actually, on imprecise-information processing, many scholars have been doing
research with some results, among which the fuzzy set theory introduced by
American Professor Loft Zadeh is the most famous. In fact, since Zadeh proposed
the concept of fuzzy sets in 1965, the fuzzy-information processing technology
based on fuzzy set theory has developed rapidly and made some achievements.
However, so far, some important theoretical and technical problems in
fuzzy-information processing have not been solved very well. For this reason, not a
few scholars worked to improve and develop fuzzy set theory, and presented many
new ideas, theories, and methods, which all have their respective angles of view and
characteristics. But on the whole, people have not yet reached a common view, and
the existed problems are neither solved really. Making a general survey of the
decades of imprecise-information processing, although people presented many
theories and methods, a theoretical and technological system has not yet been
formed, that is, widely approved and has solid foundation of mathematics and logic
like that for uncertain-information processing. In particular, some scholars still put
imprecision of information into the category of uncertainty of information or mix
the two together to do research. Therefore, imprecise-information processing is still
a significant subject necessitating careful research.

After years of concentrated study, the author discovers that the imprecision of
information originates from the phenomenon of “continuous distribution or change”
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of magnitudes of a feature of things (or in other words, “uniform chain similarity”
of things) and the treating way of “flexible clustering” of human brain. Thus, based
on this and combined with the ways of human brain dealing with imprecise
information in daily language, I have examined and explored the principles and
methods of imprecise-information processing in an all-round way. As a result, a
series of new theories and methods different from fuzzy technology were obtained,
which forms a new theoretical and technological system of imprecise-information
processing. This book is just a summation of these research results. Of course,
viewed from the relationship between flexible sets and fuzzy sets, this book can also
be viewed as an “amendment” to fuzzy-information processing technology; how-
ever, it does not follow traditional thinking to make modifications and supple-
mentations in the existing framework of fuzzy set theory. Rather, tracing to the
source and opening a new path, this book researches and explores the
imprecise-information processing with new perspectives and ideas.

As early in the start of the 1990s, while building expert systems, from the doubt
of Zadeh’s CRI (compositional rule of inference) fuzzy reasoning, the author began
to think about the problem of “fuzzy.” In the period, I analyzed the objective cause
that brings about the “fuzziness” of information and proposed some terminologies,
concepts and methods such as “flexible linguistic values,” “flexible concepts,”
“degreed logic,”and “reasoning with degrees”. In 2000, a book Degree theory was
published in which I summed up the research results at that time. After that, I
continued to explore in this direction, further examined the formation principles and
mathematical models of flexible concepts, and realized that fuzzy set is somewhat
too general in describing a “fuzzy concept.” Accordingly, I introduced the termi-
nology and concept of “flexible sets,” further examined the flexible linguistic
values, and then founded the corresponding theories of mathematics and logic and
meanwhile also found the geometric models and practical models of flexible con-
cepts, the logical semantics of propositions, and the mathematical essence of
flexible linguistic rules. The series of new discoveries and new progress made me
more confident and determined to continue the cultivation in this field. During
further researches, I realized gradually that the more essential characteristic of those
so-called fuzzy (vague) concepts modeled by using fuzzy sets should be “flexible”
rather than “fuzzy or vague,” and the information containing flexible linguistic
values is actually a kind of imprecise information. Therefore, I took specifically
“imprecise-information processing” as a direction and objective and carried out an
all-round research. In September 2009, the results obtained were gathered as a book
and formally published with the name of Principles of Imprecise- Information
Processing (Chinese version).

After this book was published, I also had some further understanding and
thinking. For instance, we can also research approximate reasoning and computing
at the level of linguistic functions and can extend flexible linguistic value to more
general quantifiable linguistic value. Meantime, some problems and deficiencies in
this book are also found such as the exposition about “uniform chain similarity
relation” of things, the wording of “real number space,” the discrimination between
flexible concept and vague (fuzzy) concept, the analyses of inference in
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truth-degreed logic, and the logical semantics of propositions, which all need
improvement, and there are some redundancies in Chap. 12. In particular, the
comparison is not made in this book between the principles and methods of
approximate reasoning and computation we present and those in fuzzy set theory. In
addition, some contents in this book are not so closely related to the theme of this
book. Thus, I continued again the work nonstop. I did research further and at the
same time also made revisions, corrections, and extensions to the original work:
deleted or reduced some contents, extended some contents, changed some formu-
lations and especially added many new contents (such as “flexible linguistic
functions” and “quantifiable linguistic values” as well as the logical and mathe-
matical principles of approximate reasoning). Thus, some original chapters and
sections were deleted, but some new chapters and sections were added, and most of
original chapters and sections were rewritten or adapted; correspondingly, the
structure of text was also made a large modification—changed from the original 8
parts and 21 chapters to 9 parts and 26 chapters. Thus, a new work about
“Principles of Imprecise-Information Processing,” that is, the second edition of
original book, has been formed. At the beginning of 2015, the manuscript of the
new work had been basically completed, and then, some polishing was done. The
new work has two versions: one in Chinese and one in English, the latter being this
book.

Compared with the original edition, the new edition made much new progress
both in depth and in extent—not only the quantity is increased but also the quality
is raised, and the whole theoretical and technological system is more compact and
coherent. This book has nine parts. The first part gives an outline of
imprecise-information processing; the second part reveals the formation principle of
imprecise information and establishes its mathematical models; the third part is the
mathematical theory on imprecise information; the fourth part is the logic theory on
imprecise information; the fifth part expatiates on the principles and methods of
reasoning and computation with imprecise information and knowledge; the sixth
part is the application and acquiring techniques of imprecise knowledge; the sev-
enth part is the extension of imprecise information; the eighth part expatiates on and
deals with the overlap of and the correlation between imprecision and uncertainty;
and finally, the ninth part is further work. In terms of structure, Part I is the
introduction, Part II the origin, Parts III and IV the basis, Part V the main body,
Part VI the application (interface), Part VII the extension, Part VIII the cross, and
Part IX the frontier. Their logical relationships and the hierarchy of this book are
shown in the following diagram.

This book researches imprecise-information processing by using mathematical
and logical methods, but meanwhile, it also develops the corresponding theories of
mathematics and logic. The whole book presents over 100 important concepts,
derives over 40 theorems and more than 100 formulas, functions, and rules, and
gives over 70 specific methods and algorithms. Besides, there are also brief com-
mentaries of some existing viewpoints and methods (which are mainly of fuzzy set
theory) in this book.
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This book also has a feature; that is, there are many symmetrical, antithetical, or
corresponding concepts and terminologies such as “flexible linguistic value” and
“flexible set,” “membership function” and “consistency function,” “geometric
model,” and “algebraic model,” “combined linguistic value” and “synthetic lin-
guistic value,” “form of possession” and “form of membership,” “logical compo-
sition” and  “algebraical composition,”  “conjunction-type rule” and
“disjunction-type rule,” “complementary flexible partition” and “exclusive flexible
partition,” “flexible linguistic value” and “rigid linguistic value,” “medium value”
and “neutral value,” “L-N function” and “N-L function,” “certain rule” and
“uncertain rule,” “natural logical semantics” and “extended logical semantics,”
“reasoning with truth-degrees” and “reasoning with believability-degrees,”
“degree-true inference” and “near-true inference,” “numerical XX and “linguistic
XX,” “conceptual XX and “practical XX,” “XX of single conclusion” and “XX of
multiple conclusions,” “XX on the same space” and “XX from distinct spaces,”
“one-dimensional XX” and “multi-dimensional XX,” and “typical XX” and
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“non-typical XX,” thus forming many pairs of parallel or complementary theories
and methods—they are arranged in a crisscross pattern and together constitute a
multidimensional system of theories and technologies.

This book makes an all-round and systematic research of imprecise-information
processing, but the focus is on clarifying concepts, straightening out relationships,
revealing principles, and presenting methods to lay a theoretical foundation and
build a technological platform for further research and application. In fact, on the
basis of this book, we can directly develop related applications and also carry out
further researches.

Imprecise-information processing is a big subject; in addition, the vision and the
level of the author are limited, so the deficiencies and defects in both content and
expression in this book are unavoidable although great effort was made. Therefore,
the author sincerely invites experts and scholars to grant instructions and the readers
to comment and make suggestions!

Xi’an, China Shiyou Lian
January 2016
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Introduction



Chapter 1
Overview of Imprecise-Information
Processing

Abstract This chapter introduces firstly what is imprecise information and then
examines the origin of imprecise information, thus revealing the formation principle
of imprecise information, and then, it discusses the distinction and correlation
between imprecision and uncertainty of information, the research issues of
imprecise-information processing, and significance of studying imprecise-
information processing and the related disciplines and fields; finally, it outlines
the work of the book. Besides, a survey of researches on imprecise-information
processing is given in the chapter.

Keywords Imprecise information - Flexible linguistic values - Uncertain infor-
mation - Artificial intelligence

1.1 What Is Imprecise Information?

Imprecise information here refers mainly to the information that is expressed by
words with imprecise meanings. For example, “tall” is a word with imprecise
meaning in that there is no strict and rigid standard for a certain height to be
considered “tall.” Therefore, the word “tall” expresses imprecise information [1].

Words with imprecise meanings can be found everywhere in our daily commu-
nication and written materials. Here are some examples: “morning” and “evening”
characterizing time, “nearby” characterizing location, “far” and “near” characteriz-
ing distance, “much” and “little” characterizing quantity, “big” and “small” char-
acterizing volume or space, and “slight,” “a little,” “very,” and “extremely”
characterizing strength. Other words such as “fast,” “slow,” “hot,” “cold,” “good,”
“bad,” “diligent,” “hardworking,” “serious,” “friendly,” “beautiful,” “kindhearted,”
“brave,” “ardently love,” and “very likely” are all words with imprecise meanings.
Thus, it is clear that there is imprecision almost everywhere in our communication
(Look, this statement itself contains imprecision: What is “almost”?).

Imprecise information also includes the information expressed by words with
precise meanings but which can be replaced by numerical values, because,

© Springer Science+Business Media Singapore 2016 3
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compared to numerical values, words appear to be less precise. For example, school
records can be represented by “word grades,” such as “good” or “excellent,” but
also can be represented by corresponding numerical scores, such as 85 and 98.
Here, the former is not as precise as the latter. Additionally, the occurrence of a
random event can be described by the word “likely,” but can also be described by a
numerical probability; similarly, the former is also not as precise as the latter.
Therefore, the information expressed by such words as “good,” “excellent,” and
“likely,” is also imprecise.

Note: In addition to the above-mentioned causes, imprecision can also be caused
by inappropriate words or inappropriate measuring units (the imprecision caused by
measuring units is usually called inexactness). For example, when describing a
person’s place of residence, the name of country is not as precise as that of the
province or city. Also, “ton” is not as precise as “kilogram” and “kilogram” is not
as precise as “gram” in describing weights. This book will not cover the study of
these two kinds of imprecision.

1.2 Origin of Imprecise Information

As stated above, imprecise information is caused by words with imprecise meanings.
Then, why are the meanings of these words not precise? We know that words are
actually the linguistic symbolic representations of corresponding concepts in human
brain. The reason these words’ meanings are imprecise is that the concepts repre-
sented by these words have no strict definitions. That is, these concepts’ connota-
tions have no rigid standards or conditions and their denotations have no rigid
boundaries. In other words, their connotative conditions and denotative boundaries
have a certain softness or flexibleness. For example, for the word “tall,” heights over
1.75 m are all “tall” to a certain degree, and for “young,” ages under 40 years are all
“young” to a certain degree. For another example, the boundary between “hot” and
“cold” weather is actually a “flexible boundary.” That is, “hot” gradually transitions
to “cold,” and in turn, “cold” also gradually transitions to “hot.” Therefore, the
concepts expressed by words with imprecise meanings are actually “flexible con-
cepts.” That is to say, imprecise information turns out to be caused by flexible
concepts in our brain. Then, how are these flexible concepts formed?

We know that everything has some attributes or states, and there are some
relationships between things. To facilitate the narration, we call the attributes,
states, and relations of things collectively to be the features of things.

Observing and examining the boundless universe we live in, it can be found that
for one and the same feature, each relevant object has its specific magnitude and
these magnitudes are not exactly the same, but assume continuous distribution or
continuous change, thus forming a continuous range. Examples:

e Human heights continuously distribute or change from about 0.3 to 2.5 m,
forming a range of [0.3, 2.5], which is a continuous real interval.
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e Air temperatures continuously change from about —45 to 45 °C, forming a
range of [—45, 45], which is also a continuous real interval.

e Ages of humans continuously distribute or change from about 1 to 120, forming
the range of {1, 2, ..., 120}, and this is a continuous set of integers.

Note that the “continuous” here includes the “continuous” of real numbers, the
“continuous” of rational numbers (i.e., “dense”), and the “consecutive” of integers
(i.e., order) and to be the same later.

It can be seen from the above examples that after a certain measure being
introduced, the magnitudes of a feature of things are explicitly shown as concrete
numbers.

We call the numbers representing magnitudes of a certain feature of things to be
the numerical feature values, or simply, the numerical values, of things. Thus,
we will treat the magnitudes and numerical feature values, i.e., numerical values, of
the things as synonym later.

It is not hard to see that the continuity of magnitudes of a feature of things makes
corresponding things show as the uniform chain similarity relation. Then, facing
with one and another things being uniformly chained similar, how should the
human brain save and deal with relevant information? Of course, numerical feature
values can directly describe things precisely, but if they are used all the time and
everywhere, then the human brain would be unable to bear the enormous amount of
data and humans would be unable to tolerate the trouble.

It can be seen that in the continuous numerical feature values, the relation
between adjacent numbers is the approximation relation. Thus, we can cluster these
numerical values according to approximation relation and then express the numbers
in one and the same class by using one and the same word. This kind of word
summarizing a batch of numerical values is a big-granule value—linguistic value.
The linguistic values are also a kind of values representing magnitudes of features
of things, namely linguistic feature values. Clearly, the number of linguistic values
of one feature is very finite. Thus, by clustering and summarizing numerical values,
we can use finite number of linguistic values to represent an infinite number of
numerical values. Thus, the amount of information can be greatly reduced and the
complexity lowered.

Actually, according to the law of “quantitative change to qualitative change,”
there is an obvious difference between things’ properties represented by numerical
values far apart in range. So, speaking from this point, numerical feature values of
things must be clustered and partitioned. Another benefit of clustering and parti-
tioning numerical values and then expressing them in linguistic values is that we
can understand and grasp things at a higher level.

However, unfortunately, it is difficult to do the usual natural and objective
clustering and partitioning of these continuous numerical values (for detailed anal-
ysis, see Sect. 2.1). For this reason, the human brain adopts the clever strategy of
flexible clustering and flexible partitioning to obtain corresponding “flexible classes”
(for concrete principle and method, see Chaps. 2, 3) and afterward summarize the
thing’s properties stood for by flexible classes, thus obtaining “flexible concepts”
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Fig. 1.1 An example of flexible clustering and flexible classes in a range of heights of adults
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Fig. 1.2 The diagram of the origin of imprecise information

and “flexible linguistic values” representing flexible concepts. For example, as
shown in Fig. 1.1, through flexible partitioning of the range [1.4, 2.5] of heights of
adults by flexible clustering, we obtain the corresponding flexible classes, flexible
concepts, and flexible linguistic values: “short,” “average,” and “tall.”

From stated above, we see that it is just the phenomenon of “continuous distri-
bution or change” of magnitudes of a feature of things (or in other words, “uniform
chain similarity” of things) in the objective world and the treating way of “flexible
clustering” of the human brain that result in the flexible concepts in human brain, and
then, there occur flexible linguistic values and corresponding imprecise information.
Thus, the origin of imprecise information can be diagramed as follows (see Fig. 1.2).

Now, there exists yet another question: When does the human brain flexible
treating with respect to the continuous magnitudes of features? In other words, are
those flexible concepts in human brain obtained independently by each individual’s
own flexible clustering of corresponding feature’s magnitudes? We will discuss the
problem in Sect. 19.1.

There might be readers who think, “Aren’t the flexible concepts talked about
here same as ‘fuzzy concepts’ in some other literatures”? Right, the flexible con-
cepts we talk about here are just the fuzzy concepts called in some literatures. Then,
why do we call them flexible concepts but not fuzzy concepts? Section 19.3 will
give the answer.

1.3 Distinction and Correlation Between Imprecision
and Uncertainty of Information

Besides imprecise information, there also exists uncertain information in usual
information processing and communication. For example:


http://dx.doi.org/10.1007/978-981-10-1549-6_19
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It might rain tomorrow.

This sentence carries a piece of uncertain information—it rain tomorrow.

Note that the uncertainty we talk about here refers only to the uncertainty (of
information) that is caused from randomness of things or people’s lack of knowl-
edge of things. It is not that kind of uncertainty, said in the literature [2], including
fuzziness (i.e., imprecision), vagueness, unknownness, non-specificity, strife, dis-
cord, conflict, and ignorance. Of course, the uncertainty we talk about here also
does not include fallibility, instability, inaccuracy, incompletion, and ambiguity.

1. Distinction between imprecision and uncertainty

Imprecise information is the information that describes the features and relations of
things not specifically, strictly, or exactly enough. Uncertain information is the
information of which the authenticity cannot be determined, that is, the event, or the
properties, relationships, or behaviors of things expressed by which is not certain or
not sure.

From the last section, imprecise information originates from the continuous
distribution or change of numerical feature values of relevant things (or the uniform
chain similarity of things) and the flexible treating mechanism of human brain.
Uncertain information originates then from the feature of “partial share” of relevant
sets and the relations of “partial correspondence” or “partial inclusion” between
relevant sets (see Sect. 25.3).

Although the imprecise information has an objective basis, it is a “man-made”
product, so it has a certain subjectivity. The uncertain information is the objective
expression of properties or behaviors of things that people can’t be sure, but in the
description of the degree of uncertainty, there may be subjective factors.

Imprecise information is directly expressed by the relevant statements (of which
the uncertainty is shown in the linguistic value(s) of the relevant statements).
Uncertainty information, in general, cannot be expressed directly, but it is expressed
indirectly by the aid of a main-clause-structured compound sentence (we call it the
possibly type modal proposition, see Sect. 25.1). For example, the above uncertain
information “It rain tomorrow” is expressed by “It might rain tomorrow,” that is,
““It rain tomorrow’ is possible.”

From the above, we can see that uncertainty and imprecision are two mutually
independent attributes of information. Uncertain-information processing solves the
possibility problem of the truth or falsity of information, while imprecise-
information processing solves the strength problem of the truth or falsity of
information.

2. Correlation between imprecision and uncertainty

Now that uncertainty and imprecision are two mutually independent attributes of
information, the correlation between them would be not the relation of subordi-
nation. But, we find that there are some links between the two of them.
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Since different people may define the core and flexible boundary of a flexible
concept somewhat differently, uncertainty can be involved when determining
the common model (such as the core and support set, or the membership
function) of a flexible concept (see Sect. 4.1).

When conjecturing the corresponding numerical value from a flexible lin-
guistic value possessed by an object (i.e., converting a flexible linguistic value
into a numerical value), uncertainty will also be encountered (see Sect. 7.3.1).
From some of imprecise information, uncertain information can be drawn, or
some uncertain information originates from imprecise information, and
imprecise information (processing) and uncertain information (processing) can
be translated to each other in some conditions (see Sects. 24.6 and 25.3).
Uncertainty and imprecision of information sometimes occur simultaneously.
That is to say, there are both imprecision and uncertainty in one and the same
statement. In fact, because the “possible,” “probably,” and so on themselves
are not precise (they are quantifiable rigid linguistic values), (the information
expressed by) the main clause of a possibly type modal proposition is
imprecise, but the clause of it is uncertain. For example, the main clause of “‘It
rain tomorrow’ is possible” is imprecise, but the clause “It rain tomorrow” of it
is uncertain. There is such uncertainty information, it is also imprecise, or
there is such imprecise information, and it is also uncertain. For instance, the
“It rain heavily tomorrow” in “‘It rain heavily tomorrow’ is quite possible” is
uncertain as well as imprecise, or that it is imprecise as well as uncertain.

Above, we expounded the distinction and correlation between imprecision and
uncertainty of information. Actually, imprecise-information processing and
uncertain-information processing are both indispensable and important components
of artificial intelligence technology. On uncertain-information processing, people
have conducted quite deep research and acquired abundant achievements. As a
matter of fact, uncertain-information processing already has a solid mathematical
basis and a relatively perfect theoretical system. For example, probability theory
and mathematical statistics are just special mathematical branches concerned with
the processing of uncertain information. By contrast, imprecise-information pro-
cessing still lacks a solid theoretical basis and the technology is not mature enough.
These are the problems that the book is going to solve.

1.4 Research Issues of Imprecise-Information Processing

As a subject, the research issues of imprecise-information processing include basic
principles of imprecise information, the theories, technologies, and applications of
imprecise-information processing, and the human brain’s thinking mechanism
concerned with imprecise-information processing.
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1. Basic principles of imprecise information
Basic principles of imprecise information involve the following:

Objective basis, formation principle, and mathematical models of flexible
concepts,

Properties, types, relations, operations, and measures of flexible sets,
Properties, types, relations, and operations of flexible linguistic values,
Properties, types, relations, operations, and measures of propositions con-
taining flexible linguistic values and the corresponding logic and inference,
Related theories of quantifiable rigid linguistic values.

2. Basic technologies of imprecise-information processing
Basic technologies of imprecise-information processing include the following:

Techniques of imprecise-knowledge acquisition It includes artificial
acquisition and machine automated acquisition. Artificial acquisition is
generally done through such approaches as investigation and statistics to
acquire usual commonsense imprecise knowledge. Imprecise knowledge of a
professional field should be acquired from domain experts. Machine auto-
mated acquisition is to make computers directly induce, discover, and extract
imprecise knowledge from relevant data or facts by using means of machine
learning.

Techniques of representation, storage, conversion, transformation,
and translation of imprecise information and knowledge Of which,
representation and storage include the mathematical models of flexible lin-
guistic values and the representation and storage of propositions, predicate
language, rules, functions, frame, and semantic nets, containing flexible
linguistic values; conversion includes the interconversion between imprecise
information and precise information and the transformation and translation
between imprecise information and between the granule sizes of information/
knowledge.

Application techniques of imprecise information and knowledge Which
mainly refer to the inference and computation with imprecise information
and knowledge, and the approximate reasoning and computation utilizing
imprecise-information processing; And they, specifically speaking, include
relevant principles and methods, such as inference rules, computation
models and algorithms, and so forth.

Machine perception and communication techniques on imprecise infor-
mation It includes interconversion between linguistic valued information and
numerical valued information, imprecise-information-oriented man—machine
interface, machine understanding, and generation of imprecise information.
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3. Applications of imprecise-information processing

Application of imprecise-information processing involves the application fields and
projects, application ways and methods, and relevant software technologies.

The application of imprecise-information processing is very extensive. The fields
and projects that involve obviously imprecise information, such as imprecise-
problem solving, classifying, recognition, judging, decision making, natural lan-
guage processing (including natural language generation and understanding), man—
machine interfaces, intelligent robots, expert (knowledge) systems, anthropomor-
phic intelligent systems, and approximate reasoning, can rightfully use imprecise-
information processing technology, and some precise problems (e.g., control) can
also be indirectly solved by using imprecise-information processing technology.
Therefore, in addition that we research how to utilize imprecise-information pro-
cessing technology to solve the imprecise practical problems and engineering
problems, we also need to consider how to introduce the techniques and methods of
imprecise-information processing into the precise problem solving, to open up new
application areas and projects.

In software technology, what needs studying are data structure, knowledge rep-
resentation, data’knowledge base structures, relevant algorithms, system architecture,
interfaces, and man—machine interfaces, etc., which are suitable for imprecise-
information processing. Besides, the combination of imprecise-information pro-
cessing technology and other existing technologies is also involved.

4. Further research topics
Imprecision exists widely in our daily language, but the human brain can easily
grasp it and use it very flexibly. Therefore, in order to further research and apply
imprecise-information processing, we should examine thoroughly the human
brain’s processing mechanism with imprecise information, so we can be enlightened
and also borrow ideas from it. This will at least involve the following problems:

Brain models of flexible concepts;
Interconversion mechanisms between numerical information and linguistic
information in human brain;

e Qualitative thinking mechanism of human brain, that is, taking flexible
concepts as an entry point to explore the psychological and physiological
models of human brain’s clustering and summarizing and qualitative
thinking and the relationship between the two;

e Relationships between imprecise-information processing and linguistics,
logic, and cognitive science; this subject is also an interface between brain
science, psychological science, cognitive science, and intelligence science;

e Principles of imprecise-information processing based on quantum informa-
tion technology.
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1.5 Significance of Studying Imprecise-Information
Processing and the Related Disciplines and Fields

As the preface of this book points out, the direct motivation of studying imprecise-
information processing is from the intelligentization, especially the anthropomor-
phic intelligentization, of human society after informatization. From the last section,
we can see that the research of imprecise-information processing involves many
disciplines and fields, and the imprecise-information processing technology can be
applied to many disciplines and fields.

1. Imprecise-information processing and intelligence science and technology
Imprecision exists not only widely in our daily language, but also in our knowl-
edge, especially our experiential knowledge. Therefore, to realize artificial intel-
ligence and develop intelligence science and technology, imprecise-information
processing is unavoidable. In fact, at present, imprecise-information processing
technology is very important to many fields of artificial intelligence, such as
intelligent robots, intelligent Internet/Web, expert (knowledge) systems, pattern
recognition, natural language processing, machine learning, knowledge discovery
and data mining, machine translation, intelligent control, judging and decision,
and intelligent human—computer interface. In the long run, to further develop
artificial intelligence, the problem of computer processing human language must
be well solved. That is, machines must be capable of perceiving, thinking, and
communicating at the level of natural language just like humans. Otherwise,
artificial intelligence will always remain at the level of implementation and real-
ization of human intelligence on a machine. That is to say, machines must have the
anthropomorphic ability of imprecise-information processing to realize anthro-
pomorphic intelligent systems. Besides, speaking from exploring the mystery
of human intelligence, imprecise-information processing is also an important
problem. Therefore, the development of intelligence science and technology is
bound to face imprecise-information processing, so we must study the imprecise-
information processing. Moreover, with the more-and-more thorough research,
and wider-and-wider application of intelligence science and technology,
imprecise-information processing will appear even more important and more
pressing. Therefore, imprecise-information processing is an indispensable and
important component of intelligence science and technology.

2. Imprecise-information processing and information science and technology
Just as the name suggests, imprecise-information processing is certainly closely
related to information science and technology and should belong to the category of
information science and technology. To be more specific, imprecise-information
processing should belong to the category of what is now called “intelligence
information processing.” To be even more accurate, it should be within the
research field of “content-based information processing.” We know that infor-
mation science and technology is a big subject and that traditional information
processing is mainly processing about the information form, such as information



12

1 Overview of Imprecise-Information Processing

representation, storage, processing, transformation, transmission, and retrieving.
In this respect, a lot of related theories have been established and many techniques
developed. However, the research on content-based information processing is still
relatively weak. But content-based information processing is an inexorable
development trend of information science and technology. Imprecision is con-
cerned with the content of information. Therefore, imprecise-information pro-
cessing is a very important research subject in content-based information
processing and a very important research field and development field of infor-
mation science and technology both at present and in the future.

. Imprecise-information processing and computing science and technology

The objects processed by conventional computing science and technology are
numerical values, while the objects processed by imprecise-information pro-
cessing are the (flexible) linguistic values. The latter is a summarization of the
former, and the former is an instance of the latter. Therefore, imprecise-
information processing is related to computing science and technology. In fact,
by utilizing the reasoning and computing with flexible linguistic values, some
numerical computation problems can be solved. For example, translating some
complex nonlinear numerical functions or correlations into simple linguistic
functions, we then realize the approximate evaluation of the former by the exact
or approximate evaluation of the latter, thus increasing new ideas and approa-
ches, and opening up new approximate computation techniques for conventional
numerical computation. Additionally, we can also develop the computer lan-
guages and related hardware based on the flexible linguistic values to extend the
processing capabilities of existing computers.

Imprecise-information processing and logic

Logic studies the form and laws of human thinking, of which the basic objects
are concepts and judgments (propositions) and the main issue is inference.
Traditional logic deals with rigid concepts and rigid propositions, or treats
flexible concepts and propositions as rigid ones, which is a kind of coarse-
granule logic at the linguistic level. Imprecise-information processing is a kind
of information processing originated from, and based on flexible concepts, so it
needs a kind of logic based on the flexible concepts as a support. Thus, the logic
based on flexible concepts has a natural link and close relationship with
imprecise-information processing. This raises a new issue and opens up a new
area for logic. Actually, with flexible concepts, there also occur flexible
propositions. Thus, it is possible and necessary to found a new logic system.
Examining flexible concepts, flexible propositions, and corresponding inference
from the angle of logic, we will find a logic basis for imprecise-information
processing; thus, we can use logic to guide the research and development of
imprecise-information processing. Conversely, introducing flexible concepts
into logic will promote the development of logic. Since flexible concepts have
mathematical models, logic and inference based on flexible concepts would
certainly be related to numerical values and numerical computation. This, in
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turn, would add the color of numerical computation to operations and inference
of traditional symbolic logic and provide new theoretical and technological
support for the deepening and extension of logic.

5. Imprecise-information processing and linguistics
The linguistic representations of flexible concepts, namely flexible linguistic
values, are the usual adjectives and adverbs. In linguistics, people generally use
qualitative method to study these vocabularies, while in imprecise-information
processing, since they have mathematical models, the quantitative method can
be used. Thus, introducing ideas and methods from imprecise-information
processing into linguistics research will help linguistics step up to a new level
and further push its development. Conversely, relevant research results from
linguistics can also provide bases and instances for imprecise-information
processing. In fact, speaking from the angle of linguistics, the above-mentioned
content-based information processing is the semantic representation and pro-
cessing of natural language. It is now still difficult to establish semantic models
of natural language in natural language processing and computational linguis-
tics. Imprecise-information processing raises new research issues for linguistics
especially computational linguistics; meanwhile, it also provides new ways of
thinking and new approaches. Therefore, the combination of the two will have
mutual benefits.

6. Imprecise-information processing and brain and cognitive science
Flexible-ening (which is similar to softening) information perceived and pro-
cessing it freely is an intrinsic mechanism of human brain (see Sect. 19.1),
which is also a characteristic and advantage of human brain. Then, to further
research the imprecise-information processing mechanism of human brain, brain
and cognitive science should certainly be involved. The neural mechanism of
imprecise-information processing itself is a very important research subject of
brain and cognitive science, and the research on imprecise-information pro-
cessing will open up a new entry point for brain and cognitive science.

7. Imprecise-information processing and life science
The imprecise-information processing mechanism and function of human brain
should be innate. That is, the mechanism exits already in DNA. Then, in what
manner does it exist? Where is the location? What is the coding? These are all
research topics of life science. Thus, imprecise-information processing is closely
associated with life science. Imprecise-information processing presents new
research problems for life science and at the same time introduces a new entry
point for the research of life science.

8. Imprecise-information processing and mathematical science
Imprecise-information processing, in the final analysis, is to quantitatively pro-
cess the usual qualitative information with mathematical sciences as a tool.
Specifically, it is the establishment of the mathematical models of imprecise
information and development of the mathematical methods for corresponding
information processing. In fact, the research on imprecise-information processing
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involves a lot of mathematical fields and knowledge, such as sets, geometry,
algebra, logic, function, and probability, and it extends, deepens, and even
amends the relevant concepts, methods, and knowledge systems of these math-
ematical branches. It should also be mentioned that in recent years, the research
on quantum information theory and technology has become more and more
active. In information representation and processing, quantum information
technology has incomparable characteristics and advantages in comparison with
traditional technologies. Then, can quantum information technology be used to
represent and process imprecise information? This is obviously an issue worth
our attention and thought. The author’s intuition is that quantum information
technology will very likely be a more suitable and effective new technology for
imprecise-information processing. In a word, imprecise-information processing
is inseparable from mathematical science.
9. Imprecise-information processing and system science

System science researches the characters and states of systems. The characters
and states of some complex systems such as social systems, economic systems,
ecosystems, and information systems on the Internet are usually difficult to
describe exactly using traditional mathematical models, but they can be
described using the models with flexible linguistic values (such as flexible rules
or flexible linguistic functions). Although flexible linguistic values are of big
granule and not precise enough, the system models with flexible linguistic
values are a kind of higher-level general expression of characters and states of
systems, which are conducive to us to understand and grasp a complex or large
system. Therefore, the description of the characters and states of a system using
flexible linguistic values is significant and even necessary. Thus, imprecise-
information processing is also related to system science. In fact, the flexible rule
and flexible linguistic function discovery techniques in imprecise-information
processing can come in handy in Web mining, which is a research hot spot of
data mining.

1.6 A Survey of Research on Imprecise-Information
Processing

People have long been aware of imprecision in daily language and have put some
thought and study into it. As a matter of fact, as early in the 1930s, Polish logician
and philosopher Jan Lukasiewiczj studied the mathematical representations of
flexible concepts such as “tall,” “old,” and “hot.” He extended the range of logical
truth values to all numbers between 0 and 1. But he used numbers in interval [0, 1]
to represent the possibility of statements being true [3]. Thereafter, in 1937,
philosopher Max Black published a paper titled “Vagueness: an exercise in logical
analysis.” The paper analyzed the gradual change phenomenon of things and
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proposed the idea of using numbers to represent degrees. However, he believed that
vagueness is a probability problem. The paper (the appendix) defined the first
simple fuzzy set and outlined the basic ideas of fuzzy set operations [3].

In 1965, American professor Lotfi Zadeh extended the definition of traditional
sets and proposed the concepts of fuzzy set [4], membership grade, membership
function, etc., and took fuzzy sets as the mathematical models of flexible concepts.
Soon afterward, Professor Zadeh and some other scholars together presented and
developed a series of theories, techniques, and methods based on fuzzy sets, such as
fuzzy logic and fuzzy reasoning, thus forming the now called fuzzy set theory or
fuzzy technology.

In 1975, Ebrahim Mamdani, professor at London University, was the first to
apply fuzzy reasoning to the control of a steam engine and boiler combination,
putting fuzzy set theory into engineering application [3]. After that, fuzzy control
grew vigorously. Particularly in the early 1990s, Japanese engineers applied fuzzy
techniques to control electrical home appliances and had great success, thus
drawing a huge response and much attention from around the world. After this,
Europe and America all entered into this field competitively.

Soon after, there also appeared the techniques of fuzzy pattern recognition, fuzzy
judging, fuzzy decision making, etc., and the concepts of fuzzy measure, fuzzy
probability, fuzzy integral, fuzzy entropy, etc., also appeared. In 1978, Zadeh
proposed the possibility theory.

Although fuzzy technology got some results in practice, some important theo-
retical and technological problems still have not been well solved thus far, such as
the shape of the membership function of a fuzzy set, the objective basis and the
logic theoretical basis of the definitions of fuzzy logic operators, and the logical
foundation of fuzzy reasoning. These problems directly influence the effects and
efficiency of fuzzy technology.

Fuzzy reasoning is a kind of approximate reasoning; it is a key technique in
fuzzy technology and also a basic issue of imprecise-information processing.
A basic method of fuzzy reasoning is the CRI (compositional rule of inference)
proposed by Zadeh. This method can be divided roughly into the following steps:
design and select membership functions, convert fuzzy rule (e.g., A — B) into fuzzy
relation (e.g., R) and composition of relations, and converge multiple inference
outcomes (if occurring). In addition, for fuzzy control, there are two steps of
fuzzification and defuzzification. For each step, people again presented various
specific methods. Of them, for converting a fuzzy rule into a fuzzy relation, more
than ten “implication operators” were presented, such as the Zadeh operator,
Mamdani operator, Goguen operator, and T norm operator. Each of these methods
of fuzzy reasoning has its distinguishing feature and shows the unique intelligence
and talent of its creators. However, the problems of the general principle and logic
basis of fuzzy reasoning still have not been truly or completely solved so far. In fact,
the mathematical and logic theories based on fuzzy sets, that is, fuzzy mathematics
and fuzzy logic, do not provide much theoretical support for fuzzy reasoning. In
addition, we see that nearly all the good applications of fuzzy reasoning in engi-
neering benefited from the introduction of machine learning mechanisms or other
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mathematical principles. But the result of doing so is that except for the name of
“membership function,” the so-called fuzzy logic system has almost nothing to do
with fuzzy logic in the real sense. Just as the book Neuro-Fuzzy and Soft Computing
(foreword by Zadeh, authors are his students) said, neural-fuzzy systems encoun-
tered “the dilemma between interpretability and precision” [5]. It is no wonder that
C. Elkan gave a report “the paradoxical success of fuzzy logic” [6, 7] in the 11th
American Association for Al National Conference. Although more than 10 experts
rebutted Elkan’s opinion later, it is an indisputable fact that logical and mathe-
matical basis of fuzzy reasoning has not yet been really solved up to now.

In imprecise-information processing, in addition to using the fuzzy set, people
also proposed the flou set, vague set, and many other sets that extend fuzzy set, such
as 2-type fuzzy set, interval-valued fuzzy set, L-fuzzy set, and intuition fuzzy set.
There are many scholars devoting themselves to the improvement and development
of fuzzy set theory, and many new ideas, theories, and methods have been pre-
sented; for example, Chinese scholars presented “cloud model” [8], “interpolation
mechanism of fuzzy control” [9], “3I inference algorithm” [10], “universal logics”
[11], “weighted fuzzy logic” [12], and “new fuzzy set theory” [13]. In 1996, Zadeh
proposed the research direction of computing with words (CW) [2, 14] on the basis
of fuzzy set theory. He expresses approximately the relation between computing
with words and fuzzy logic as follows: fuzzy logic = computing with words. These
new and improved theories and methods all have their own strong points, viewing
angles, and features, but on the whole, people have not yet reached a common view,
the mathematical and logical basic problems in imprecise-information processing
have not be solved, and the scientificity and validity of relevant techniques and
methods lack theoretical support. In practice, it is still “a hundred flowers blos-
soming and a hundred schools of thought contending.” In particular, so far some
scholars still put imprecision of information into uncertainty of information or mix
the two together to do research.

Here, we also need to mention that after the appearance of fuzzy sets, some
mathematicians then began to devote themselves to the study of mathematical
theories based on fuzzy sets, which were quite hot for a time. But it seems that these
researches and achievements have no relation to imprecise-information processing.
Besides, people also combine fuzzy set theory with other intelligence technologies.
For example, there appear new techniques of fuzzy—neural networks and neural—
fuzzy systems on combining fuzzy sets with artificial neural networks. There also
appears fuzzy support vector machine on combining fuzzy sets with support vector
machine. And Zadeh further combined fuzzy logic, neural computing, probabilistic
reasoning, genetic algorithm, chaotic system, and so on and collectively called them
to be “soft computing” [5].

In the early 1990s, the author began to think about the problem of “fuzzy” from
the doubt of the CRI fuzzy reasoning of Zadeh. However, the author did not make
modifications and supplementations in the existing framework of fuzzy set theory by
following traditional thinking. Rather, with a new perspective and ideas, the author
traces the origin and researches imprecise-information processing in all around, from
the formation of imprecise information to modeling of it, from the representations of
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imprecise information to the conversion and transformation of it, from related
mathematical theories to logical theories, from (approximate) reasoning with
imprecise information and knowledge to (approximate) computation with imprecise
information and knowledge, from imprecise-problem solving to imprecise-
knowledge discovery, from flexible linguistic values to quantifiable rigid linguis-
tic values, from pure imprecise-information processing to the overlapping of
imprecision and uncertainty, from the principles of imprecise-information process-
ing to the applications and methods of it, etc. After years of unremitting exploring, a
series of new theories and methods different from fuzzy technology were obtained;
they form a new theoretical and technological system of imprecise-information
processing. The book is just a summation of these research results.

1.7 Work of the Book

Starting from its objective basis, the book explores and reveals the cause and
principle of forming imprecise information. Then, on the basis of which the book
establishes the related mathematical models, it further discusses and reveals the
principles and methods of imprecise-information processing in an all-around way,
thus establishing a new theoretical and technological system of imprecise-
information processing. Specifically, the book mainly does the following:

(1) Examines the characteristics of imprecise information, distinguishes the
imprecision of information from the uncertainty of information, treats
explicitly imprecise-information processing as an independent research field,
discriminates between vagueness (fuzziness) and flexibleness of concepts,
proposes the terminologies of “flexible concepts” and “flexible linguistic
values,” and rectifies the so-called vague (fuzzy) concepts as flexible
concepts.

(2) Examines the objective basis of flexible concepts and the cause of flexible
concepts, reveals the formation principles of flexible concepts and flexible
linguistic values, and presents their general mathematical models and mod-
eling methods.

(3) Proposes the concepts of flexible sets and flexible relations and founds rel-
evant theories and methods.

(4) Examines flexible linguistic values and relevant topics in an all-around way,
obtains some important results, and founds relevant theories and methods.

(5) Proposes the concepts of flexible linguistic function and correlation and the
concepts of flexible number and flexible function, discusses relevant topics,
and founds corresponding theories and methods.

(6) Introduces truth-degrees, founds the basic theory of truth-degreed logic, and
finds and presents the principles and methods of corresponding inference.
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Introduces flexible linguistic truth values, founds the basic theory of flexible
linguistic truth-valued logic, and presents the principles and methods of the
corresponding inference.

Finds and proposes the terminology and principle of logical semantics of
propositions and establishes the computation models of truth values of basic
compound propositions in two-valued logic and truth-degreed logic on the
basis. And finds and proposes the concepts of relatively negative-type logic
and relatively opposite-type logic.

Examines flexible rules and relevant topics in an all-around way, obtaining a
series of important results.

Introduces the adjoint functions of a flexible rule and gives some acquiring
methods and reference models.

Studies the reasoning and computation with flexible rules, clarifies their
logical and mathematical principles, and gives a series of reasoning and
computation approaches.

Studies the approximate evaluation of flexible linguistic functions, reveals its
basic principles, and presents some approaches and ideas.

Summarizes and rounds up the practical problems involving imprecise-
information processing and presents the corresponding solving techniques
and methods.

Explores imprecise-knowledge discovery and presents some methods and
ideas.

Introduces several measures to sets and flexible sets and founds relevant
theories.

Discusses relevant theories of quantifiable rigid linguistic values.

Talks briefly about the methodology of imprecise-information processing
and discusses several application topics.

Founds the probability theory of random flexible events.

Founds the believability-degree theory of flexible propositions and presents
the corresponding principle and method of reasoning with believability-
degrees.

Analyzes the origin of the uncertain information with a mathematical view
and then reveals the correlation between uncertain information (processing)
and imprecise information (processing).

The above (1) and (2) are the basic principles of imprecise information; (3), (4),
and (5) are the mathematical basic theory on imprecise information; (6), (7), and
(8) are the logic basic theory on imprecise information; (9), (10), (11), and (12) are
principles and techniques of inference and computation with imprecise information;
(13) is the application techniques of imprecise-information processing; (14) is the
acquiring techniques of imprecise knowledge; (15), (16), and (17) extend the extent
of imprecise-information processing and expatiate the basic methods and tech-
niques of imprecise-information processing; (18), (19), and (20) are the overlapping
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theories and techniques of imprecise-information processing and uncertain-
information processing and also reveals and clears up the connections and rela-
tions between the two. Additionally, the book also presents further research
directions and topics, and briefly expatiate the issues, approaches, and ideas.
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Part 11

Formation of Flexible Linguistic Values
and Their Mathematical Models:
Formation Principles and Modeling of
Imprecise Information



Chapter 2
Flexible Concepts and Flexible Linguistic
Values and Their Mathematical Models

Abstract This chapter takes real interval [a, b] as a general range of numerical
feature values and uses flexible clustering to obtain the corresponding flexible
classes and flexible concepts (flexible linguistic values), thus simulating and
revealing the objective basis, formation principle, and cause of flexible concepts,
and then establishing the mathematical models of flexible concepts, and deriving
their general expressions. Besides, it distinguishes between the flexible attributive
concept and the flexible entity concept and discusses pseudo-flexible linguistic
values.

Keywords Flexible concepts «+ Membership function - Consistency function

In the last chapter, we introduced and preliminarily discussed flexible concepts and
flexible linguistic values. In this chapter, we further analyze concretely the clus-
tering and partitioning of a range of numerical feature values of things, thus
revealing the objective basis, formation principle and mathematical essence of
flexible concepts and flexible linguistic values, and then establishing the mathe-
matical models of them.

2.1 Flexible Clustering in Range of Numerical Values
and Corresponding Flexible Concepts and Flexible
Linguistic Values

Let U be a range of numerical values of a feature of certain class of things. As stated
in Sect. 1.2, in order to reduce the amount of information, lower complicatedness,
and understand and grasp things at a higher level, the numbers in U must be
clustered and partitioned. In the following, we consider the corresponding method
of clustering.

As we know, the usual methods of clustering can generally be separated into two
types: dividing by a threshold and clustering with centers. The basic technique of
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Fig. 2.1 An illustration of equidistant distribution and uniform chain approximation of integers
Here ny, ny, ..., n; are a row of consecutive integers, and « is the distance or approximation-degree
between two adjacent integers

the former is the following: dividing a set awaiting partition according to a set
threshold and based on the similarity measurements between every two points to
realize the partition of the set; and the basic technique of the latter is the following:
according to the similarity measurements of every class center to all other points to
search the optimum partition of a set awaiting partition by employing certain
algorithm under the constraint of clustering criterion.

We also know, the continuum of real numbers means there is no interval
between numbers and their number is infinite. Therefore, for the range of numerical
values, U, consisted of real numbers, the approximation relations between every
two numbers cannot be examined; thus, the dividing by a threshold method cannot
be used to do corresponding clustering. And the continuity of integers is a kind of
succession, which is actually a kind of equidistant distribution. Between integers
distributed equidistantly is really a kind of uniform chain approximation relation;
that is, the degree of approximation between any two adjacent integers is the same
everywhere (as shown in Fig. 2.1). Thus, for the range of numerical values, U,
consisted of integers, doing corresponding clustering by employing dividing by a
threshold would only have two results: One number is a class or all numbers are a
class. Obviously, such clusters are pointless. The following relational matrix is just
a simple example:

1 2 3 45
1|1 a b ¢ d
2la 1 a b c
3/b a 1 a b
41c b a1l a
5/|d ¢ b a 1

where set {1, 2, 3,4, 5} of integers is a range of numerical feature values of a class
of things and a, b, ¢, and d (0 <d<c<b<a<) are respectively the degrees of
approximation between corresponding two adjacent numbers. To be sure, for a
finite U, the transitive closure #(R) of approximation relation R can also be used to
realize the partition of the set, but since the process of finding a transitive closure is
non-identical transformation, the partition thus obtained whether or not in line with
the actual cannot be guaranteed theoretically.

For the continuous numerical feature values, clustering with centers method may
be used. But also because of continuousness, clustering with centers would make
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the two numbers which are originally very close or even adjacent be put into
different classes. This is also obviously not reasonable.

Now, on the one hand, it is necessary to do clustering and partition of the
continuous numerical feature values; on the other hand, it is difficult to do the usual
objective and natural clustering and partition. What should we do?

Analyzing the usual methods of clustering, it can be seen that the characteristics
of them are all rigid dividing; that is, an object either belongs completely to a class
or does not belong completely to the class. But the degree of approximation
between numbers is decreasing progressively with the progressive increase of the
distance between two numbers. Therefore, a compromise is that we still use the idea
of clustering with centers, but do not draw a line clearly and rigidly between two
adjacent classes; rather, we set a gradual change transition region as a “boundary”
between them.

Let U = [a, b] (a, b € R (real number field)) be a range of numerical values. We
mark out some sub-regions Cy, C,,..., C, (as shown in Fig. 2.2) with appropriate
widths and appropriate intervals. Since there is some interval, the properties rep-
resented by various sub-regions (i.e., the summarization of properties represented
respectively by numbers in each sub-region) would have obvious differences. Thus,
Cy, Cy,..., C, can be separately treated as the center (region) of classes Ay, A,,...,
A, and the properties represented by them are respectively treated as the properties
stood for by the corresponding classes. Then, the numbers forming the center of a
class all have completely the property of the corresponding class, so they are core
members of the corresponding class. Since the properties represented by mutually
approximate numbers should also be approximate, the numbers outside the center
of a class also have the property of the class to some degree. And since the
approximation relation is transmitted decreasingly, these degrees will decrease
progressively with the progressive increase of the distance between a number and
the center of a class. Thus, the numbers in interval B; (i = 1,2,...,n — 1) also have
the property of A;, but the farther they are from center C;, the lower will be their
degrees of having the property of A,. Similarly, the numbers in interval B; have also
the property of A;,, and the farther they are from center C;,, the lower will be their
degrees of having the property of A;;;. And for one and the same number x € B, if
its degree of having the property of A; is high, then its degree of having the property
of A1 is low, and vice versa. Thus, the numbers in interval B; can be treated
respectively as the peripheral members of the classes A; and A;, ;. Then, core
members and peripheral members together can form a class about the property
represented by center C; and gathered according to approximation relation, in which
the core members form the center of the class and the peripheral members form the
boundary of the class. Thus, sub-regions Cy, Cs,..., C, and By, B,,..., B,—; form
classes Ay, A,,..., A, (as shown in Fig.2.2), where A, = C;+ By,
Ay =B+ Cy,+By,As =B, +C3+B3,...,A, =B,_1 + C,.

It can be seen that interval B; is the boundary of classes A; and A,,, separately,
and at the same time, it is also the demarcation between the two classes. In the latter
case, the interval B; seems to be the intersection of A; and A,,;, but not the inter-
section in the usual sense. In fact, every number in B; neither entirely belongs to



26 2 Flexible Concepts and Flexible Linguistic Values ...

Al Az A3 An
( A = ~" N —
1 - 1 -
a C] Bl Cz Bz C3 Bz Bn-l C‘n b X

Fig. 2.2 An illustration of clustering and partitioning of continuously distributed numerical
feature values, where the parts shown by the thickest line segments are separately the centers of
each class and the parts shown by the comparatively thick line segments are the boundaries
between these classes

Fig. 2.3 An example of A;
single class A
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class A; nor entirely belongs to class A;,, but belongs to A; to a certain degree and
also belongs to A;;; to a certain degree, and for one and the same x € B;, if the
degree of it belonging to A; is high, then the degree of it belonging to A, is low,
and vice versa. That is to say, the numerical objects in region B; have double
identity of “being this and also being that,” so the demarcation is also an inter-
mediary transition region between the two classes, and the line of demarcation of
two adjacent classes embodies implicitly on the pairs of complementary degrees of
membership of members in the region.

Viewed singly, a prototype of the classes stated above is shown in Fig. 2.3. As
you can see, the characteristic of this kind of class is that core members completely
have the property of the class while peripheral members have the property of the
class in some degree (accurately speaking, these degrees decrease progressively
from inside to outside). Observed from membership relation, core members com-
pletely belong to the class while peripheral members belong to the class to some
degree (these degrees also decrease progressively from inside to outside). Thus, the
boundary formed by peripheral members is a smooth transition region from the
members of the class that completely have the property of the class to those
members that do not completely have the property of the class (or in other words,
from the members of the class that completely belong to the class to those members
that do not completely belong to the class).

To sum up, the boundaries of classes obtained above are not like the usual rigid
boundaries, but have a kind of “flexibleness”; that is, they are “flexible boundaries.”
Thus, this kind of class is also a “flexible class.”

Since flexible classes A;, A,,..., A,, have covered the whole interval [a, b], there
are no usual intersections between them. Therefore, the group of the flexible classes
constitutes an unusual partition of [a, b]. Considering A;, A,,..., A, are flexible
classes, this kind of partition is a “flexible partition.”

Thus, we have solved the problem of the clustering and partition of range
[a, b] of numerical feature values. It can be seen that we realize the clustering and
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Fig. 2.4 Examples of flexible classes in temperature range [—15, 40]

partition by actually adopting a technique of “flexible dividing” according to the
continuousness of numerical feature values. In view of the characteristic of this
clustering method, we call it the “flexible clustering.”

Using flexible clustering, for example, to do partition of the range [—15, 40] of
temperature, we can obtain following flexible classes (as shown in Fig. 2.4).

It can be seen that the flexible clustering is not like the usual rigid clustering to
assign an object entirely to a class; rather, it assigns an object “in a certain degree,”
or in other words “partly,” to a class, and meanwhile “partly” to another class. In
other words, flexible clustering is not like rigid clustering the boundary being at the
outside of points, that is, between points; rather, the boundary is at the inside of
points.

In the above, we introduce flexible clustering by taking continuous range
[a, b] of real numerical values as an example. It can be seen that the kind of
clustering method is also applicable to range {ni, ny, ..., n,} of consecutive inte-
gers. Besides, the central points of center regions of all classes were not considered
in the flexible clustering above. Then, if needed, we can first set the central points
and then according to the central points set center regions and boundary regions.

Now, range U of numerical feature values is flexibly partitioned by flexible
clustering into flexible classes: Ay, Aj,..., A,. Then, taking these flexible classes as
denotations separately, one and another corresponding concepts are obtained. From
the above-stated, a flexible class from flexible clustering stands for on the whole a
corresponding property of things, so the flexible classes Ay, A,,..., A, stand for
properties A, A,',..., A’ with obvious difference (e.g., “cold,” “warm,” and “hot”
in Fig. 2.4). Thus, the concepts stood for by flexible classes Aj, A,,..., A, are the
attributive concepts. Since the denotations are flexible classes, these attributive
concepts are flexible concepts. Thus, the word that denotes a flexible concept, that
is, the label of corresponding flexible class, is just a flexible linguistic value.

Of course, considering from angle of feature value, summarizing separately the
numerical values in flexible classes Aj, A,,..., A,, the corresponding one and
another flexible linguistic values can also be resulted.

Thus, starting from the continuous numerical feature values of things, we have
obtained logically the corresponding flexible concepts and flexible linguistic values
through flexible clustering. Examining such concepts as “tall,” “big,” “many,” and
“quick” in our brain, obviously they also have the same characteristic as that of the
flexible concepts obtained in the above. Therefore, we believe that this type of
flexible concept in human brain is also thus formed at the numerical level, or in
other words in the mathematical sense.
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It has been seen that it is just the continuity of numerical feature values of things
and the flexible clustering of which by human brain that result in flexible concepts
in human brain, and then, there occur flexible linguistic values and imprecise
information. In other words, the continuous distribution or continuous change
phenomenon of numerical feature values of things is the objective basis of the
flexible concepts, flexible linguistic values, and imprecise information, and the
flexible clustering of continuous numerical feature values by human brain is
the formation principle of them, and that the rigid clustering cannot be objectively
done is the cause resulting in them.

2.2 Denotative Model of a Flexible Concept

The formation principle of flexible concepts shows that a flexible class just is the
mathematical essence of the corresponding flexible concept. Yet how should we
represent a flexible class?

2.2.1 Core and Support Set

We have already known that one flexible class C contains two types of members:
core members and peripheral members. We call the set consisting of core members
the core of a flexible class, and denote it as core(C); and we call the set consisting of
core members and peripheral members together to be the support set of a flexible
class, and denote it as supp(C). Thus, the boundary of flexible class C can also be
represented by difference supp(C) — core(C), which can be denoted by boun(C) [1].

Obviously, a flexible class C is completely determined by its core and support
set. Therefore, core core(C) and support set supp(C) just form a rough denotative
mathematical model of a flexible concept. That is to say, flexible class C can be
represented simply as core(C) and supp(C).

2.2.2 Membership Function

EEINT3

First, we introduce the measures of “difference-degree,” “sameness-degree,” etc.
We know that distance is a measure of the difference between two points in a
space. Two points with a distance of 0 are one and the same point, and they would
not be the same point if the distance is not 0. However, with the distance
decreasing, the difference between two points becomes smaller and smaller; that is,
they become closer and closer to be the same. Thus, two points with a nonzero
distance can be treated as the same with a degree. Intuitively, the same with a
degree is the partial same, while the usual same refers to the complete same.



2.2 Denotative Model of a Flexible Concept 29

Although distance can be used to describe the extent of difference between
objects, using it to describe the extent of identity degree of objects is difficult. And
what the distance reflects is the absolute quantity of difference between objects,
which is related to the dimension and measuring unit used, so the comparability
between distances is poor. For this reason, we introduce a kind of relative quantity
of difference—difference-degree. Since “difference” means “not the same,” the
degree of difference and degree of sameness should be complementary; that is, the
sum of the two is 1. Thus, from difference-degree, another measure—
sameness-degree—can be derived.

Definition 2.1 Let U = [a, b] be a range of numerical feature values. For Vx,y € U,
set

d(x,y) = |x =) (2.1)
to be called the distance between x and y; take
r=b—a (2.2)
as the reference distance; set

d(x,y)

D(x,y) =—

(2.3)

to be called the degree of difference, simply written as difference-degree, between
x and y; set

s(x,y)=1—-D(x,y)=1-— @ (2.4)
to be called the degree of sameness, simply written as sameness-degree, between
x and y.

From the definition, it can be seen that the sameness-degree is completely
determined by the distance, and its range of values is [0, 1].

With the sameness-degree, the relation between objects can be more precisely
described. As a matter of fact, the higher the sameness-degree between two two objects
is, the closer they are to be completely the same, while similarity is just sameness to
some degree, and the higher the sameness-degree is, the higher is the degree of simi-
larity. Therefore, the sameness-degree can be used to portray the similarity relation
between objects; or not strictly, the sameness-degree can be treated as the degree of
similarity or approximation (for strict definitions of “similarity,” see Sect. 3.8.2).

Since peripheral members only belong to flexible class C partly or to some
degree, portraying a flexible class by core(C) and supp(C) would appear somewhat
rough. Observe that core members belong to class C completely while peripheral
members belong to class C partly and that “completely belong to” can be viewed as
a particular case of “partly belong to.” So we can use a certain kind of measure to
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describe the degree of point x belonging to flexible class C. We call this measure
the degree of point x belonging to flexible class C, simply written as
membership-degree of x to C, and denote it as mc(x). We use mc(x) =1 to
indicate point x belongs to C completely and use m(x) = O to indicate point x does
not belong to C completely; generally, m.(x) = s (s € [0, 1]) indicates point x be-
long to C with membership-degree s.

It can be seen that according to the membership relationship, the membership-
degrees of the core members of flexible class C should all be 1, and the
membership-degrees of boundary members should be greater than 0 and less than 1,
while the membership-degrees of other points in [a, b] to flexible class C are all 0.
Thus, a flexible class C can just be represented by a set {(x,m.(x))|x € [a,b]} of
members attached with membership-degrees. It can be seen that this set also
describes a function f(x) = m.(x) on [a, b]. Thus, a flexible class C in [a, b] also
determines a function mc(x) on [a, b]. Conversely, function mc(x) also completely
determines flexible class C. We also follow Zadeh to call this function m(x) the
membership function of flexible class C. Thus, membership function m(x) is just
another kind of mathematical representation of flexible class C.

From the relation between flexible class and flexible concept, a membership
function is also a kind of mathematical model of a flexible concept. However, if the
mathematical model of a flexible concept only stays on the abstract conception of
membership function, it would be not enough for the modeling of a flexible con-
cept. In other words, for a flexible concept, we should study further the concrete
form of its membership function.

Definition 2.2 Let C be a flexible class in range [a, b]. Set {x|x € U,m.(x) = 1} is
called the core of C and denoted by core(C); its infimum inf(core(C)) and supre-
mum sup(core(C)) are called separately the negative core-boundary point and the
positive core-boundary point of flexible class C and denoted by ¢ and ¢/ ; set
{x]x € U,0.5<m(x) <1} is called the extended core of flexible class C and
denoted by core(C)"; set {x|x € U, m.(x) > 0} is called the support set of flexible
class C and denoted by supp(C); its infimum inf(supp(C)) and supremum sup(supp
(Q)) are called separately the negative critical point and positive critical point of
C and denoted by sz and s/ ; and set {x|x € U,0<m.(x)<1} is called the
boundary of flexible class C and denoted by boun(C), and the middle points of
boundary boun(C), namely % and ;Cg, are called separately the negative
median point and positive median point of flexible class C and denoted by m,
and m¢ .

Although Definition 2.2 defines the negative and positive critical points of a
flexible class, it can be seen from Fig. 2.2 that only flexible classes located inside
space [a, b] have double flexible boundaries, while those located at the boundary of
[a, b] have only one flexible boundary.

Since the membership-degrees of the core members of a flexible class are 1 and
those of the peripheral members are between 0 and 1, the middle of the graph of
membership function mc(x) must be flat. And it is also known from the relation
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between the degree of similarity and the distance that the closer the peripheral
members are to core-boundary points ¢z or ¢/, the closer their membership-
degrees will be to 1, and the farther the boundary members are from core-boundary
points ¢ or ¢/, the closer their membership-degrees will be to 0. Therefore, the
part of membership function m(x), which located at the boundary of flexible class
C, should be monotonic.

Based on the above analysis, let C be a flexible class in range [a, b],
core(C) = [c¢, el ] C [a,b], and supp(C) = (s¢, s ) C [a, b], because when point
x changes from s to ¢ or from s to ¢/, the membership-degree mc(x) increases
from O to 1, so we take

e +_oF +
r=cc—Sc, FT=sc —cf

as two reference distances. Thus, sameness-degrees

dlx o . .
s(x,cc)=1— (x,icc)zl_xi cC7:{ S(’l (x<cg)
r cc—S¢ € —Sc
d(x,cl) cl —x sg—x
Y _ c _Sc +
s(x,cc)flf#flfsg_Cgfsg_cér (x>cd)

With sameness-degree s(x, c¢), then for Vx € (s¢, ¢c), its membership-degree
mc(x) should be the product of membership-degree mc(cz) of ¢ and
sameness-degree s(x, cc), and while m¢(cz) = 1, then

_ _ _ _ X —Sn
mc(x) = mC(cC) ' S(X7CC) =1 S(xa CC) = S(X, CC) = _76;
cc — Sc
Similarly, for Vx € (¢f ,sg ), we have
+ + + + S¢ —X
me(x) =mc(s¢ ) s(x,5¢) =1-s(x,¢0) =s(x,c0) = T _of
c c

In consideration of Vx € [cz, ¢l |, mc(x) = 1, and Vx € [a, sg] and Vx € s/, b],
mc(x) = 0, thus we have

0, a<x<s;
vcfsg. ~ < x<co
cc—s¢’ S¢ <X<Cc
- +
me(x) = ¢ 1, e <x<c{ (2.5)
+ -
Sc X + +
oer Cc <x<s¢
0, X <x<b

It can be seen that this is a trapezoidal function (its graph is shown in Fig. 2.5).
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Fig. 2.5 An illustration of the membership functions of flexible concepts

The kind of trapezoidal functions is the membership function of flexible class
C with two flexible boundaries. Then, the membership function of the flexible class
C with only one flexible boundary (e.g., the flexible classes at the left and right ends
in Fig. 2.5 only have one flexible boundary) is a semi-trapezoidal function. It can be
seen that the membership function of the flexible class whose flexible boundary is at
the positive direction of coordinate axis is

1, a<x<ct
S‘*X

me(x) = SCET, cd <x<sd (2.6)
0, s¢<x<b

and that the flexible class whose flexible boundary is at the negative direction of
coordinate axis is

0, a<x<s;
X—S~ _ _

me(x) = CE*S% , sc<x<cg (2.7)
1, cc<x<b

Thus, from the generality of C, the above Egs. (2.5), (2.6), and (2.7) are just the
general expressions of the membership function of flexible classes in [a, b]. It can
be seen that the range of values of these membership functions is [0, 1], which
means that the degree of a point x belonging to class C can only be 0 or 1 or a
number between 0 and 1.

So far, we have derived the general expression, namely trapezoidal function
(including semi-trapezoidal function), of the membership functions based on the
formation principle of the flexible concepts and the sameness-degree.

For the trapezoidal functions, a kind of piecewise linear function, some readers
may have doubt: Could the mathematical model of the flexible concept be so
simple? Here, we want to remind our readers: This trapezoidal membership func-
tion of a flexible concept is derived on the basis of the continuous distribution of
numerical feature values of things, while though the continuous distribution of
numerical feature values is a reflection of the gradual change of things, it is not the
dynamic process of things gradually changing, but rather a static outcome. That is
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to say, range [a, b] is really the range of values formed by the gradual change of
things, rather than the “domain of definition” describing gradual change of things. If
it was the latter, then membership functions are certainly not all linear. Because the
process of the gradual change of things is not always uniform and linear, rather,
they are more usually nonlinear. For example, suppose on a certain day, the tem-
perature changes from —10 to 10 °C. This change process is generally non-uniform
and nonlinear, but the temperature range [—10, 10] formed by this change process is
continuous. And the membership functions of the flexible concepts about temper-
ature (e.g., cold and warm) are just defined on such kind of continuous range.

It also needs to be noted that such piecewise membership function is just for
flexible concepts on the one-dimensional range of numerical feature values. And in
the next chapter, we will see that the membership functions of some flexible
concepts on multidimensional measurement space are nonlinear. Further, in Chap. 4
we will see that the extended membership functions of many flexible concepts are
also nonlinear.

Actually, this kind of trapezoidal functions is consistent with the understanding
and application of human brain for corresponding flexible concepts. In fact, human
brain, in general, gives equal treatment to all core members of a flexible concept,
but for peripheral members, it then uses degree adverbs such as “comparatively”
and “somewhat” to modify. For example, in the sense of “young,” people between
ages 18 and 25 are generally not discriminated. The reason is human brain treats
people in this age group as core members of the flexible concept “young.” Of
course, in human brain there is no recognized and rigid agreement for the core
members and peripheral members of a flexible concept, but every person has his or
her own default mental scale.

From the above-stated, we see that the above-given membership functions have
objective basis, coincide with human brain’s mental reality, and have mathematical
basis. Now that a flexible class can be determined by its membership function, and
the membership function of a flexible class is a trapezoidal function, then we can
give a precise definition for a flexible class.

Definition 2.3 Let f(x) be a trapezoidal function with range [0, 1] on range [a, b] of
numerical feature values; then, function f{x) determines a flexible class C in [a, b],
and function f(x) is called the membership function of flexible class C and denoted
by mc(x), for Vx € U, mc(x) is the membership-degree of x to C.

From Definition 2.3 and Egs. (2.5), (2.6), and (2.7), for any flexible concept on
[a, b], as long as the core-boundary points ¢ and ¢/ and critical points s and s
of its denotative flexible class are given, then its core and support set can be
determined, and expression of its membership function can be written out.
Therefore, a membership function can be written as the following parameter form:

mC(X; SEaCEan7Sg) (28)
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Clearly, the above general expression of the membership functions on range [a,
b] of real numerical values is also applicable to flexible concepts on range
{n1,ny,...,n,} of consecutive integers.

It can be seen that a membership function actually portrays the relationship
between the points in a space and the denotation of a flexible concept on the space,
so a membership function is actually the denotative mathematical model of a
flexible concept, or denotative model for short.

2.3 Connotative Model of a Flexible Concept—
Consistency Function

We have known that a flexible linguistic value is a general designation of all
numerical values in the corresponding flexible class. The purpose of linguistic
values is to enlarge the granularity of information and reduce the amount of
information. However, those number objects in the denotation of a flexible concept
are objectively not the same but only approximate, so the strengths of objects’
features characterized by these numerical values are not the same. So the contri-
butions of these numerical values to the corresponding flexible linguistic value are
not the same. Therefore, a kind of measure is needed so as to portray the degree of a
numerical value consisting with a corresponding flexible linguistic value, or in other
words, the degree of it according with or supporting to the corresponding flexible
linguistic value. We call this measure to be the degree of a numerical value con-
sisting with a flexible linguistic value, simply written as consistency-degree of
x with A.

Definition 2.4 Let A be a flexible concept on range U = [a, b]; if the membership
function of corresponding flexible class is a semi-trapezoidal increasing function,
then the flexible linguistic value A is called an increasing linguistic value; if the
membership function is a semi-trapezoidal decreasing function, then the A is called
a decreasing linguistic value; and if the membership function is a trapezoidal
function, then A is called a convex linguistic value.

In the following, we first analyze the consistency-degree of numerical value
x with increasing linguistic value A.

Let A be an increasing linguistic value on range U = [a, b]. Observe that the
membership-degree of the critical point s of corresponding flexible class C to C is
0, which shows that s, contributes nothing to the property represented by A, so the
consistency-degree of it with A should be 0; and from s to right, with the increase
of distance from s, the consistency-degree of x with the property represented by
A becomes higher and higher, and the support becomes stronger and stronger; and
from s to the left, with the increase of distance from s, the difference between
x and the property represented by A is larger and larger. Therefore, critical point s
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is tantamount to the origin of coordinates of linguistic value A. Thus, the difference
of point x in U and critical point s

x—sc=x (2.9)

is also a kind of magnitude of x relative to linguistic value A. In fact, Eq. (2.9) is
just a translation transformation of coordinate, which transforms measurement x of
objects about the original attribute to measurement x' of the objects about its
sub-attribute (i.e., is, linguistic value A). Therefore, x" indeed represents the quantity
of point x having linguistic value A. But this quantity is only a kind of absolute
quantity with poor comparability. Now we consider the core-boundary point c;
obviously, it is a standard object of A and the membership-degree of it to A is 1, so
the consistency-degree of it with A should also be 1. Thus, we take the difference
between core-boundary point ¢ and critical point s, (i.e., the measurement of
point ¢ relative to A)

X|=c¢c —S¢ (2.10)
as an unit quantity of x’, now, set

o) =5 = 2% 2.1)
X1 cg—Sg
It can be seen that what g(x) represents is a relative quantity of number x with
linguistic value A. Obviously, g(sc) = 0 and g(c) = 1. And it can be verified that
g(x) also satisfies the following properties:
For Vx and y € U,

(1) When x # y, then g(x) # g(y);
(2) When x<y, then g(x) <g(y);
(3) When x<sg, g(x)<0; when x > ¢, g(x) > 1.

This shows that g(x) not only reflects the interrelation between all the numbers in
range U and linguistic value A, but it also maintains the original order relation
among all the numbers. Property (3), in particular, reflects the objectivity of g(x).
Therefore, g(x) can be taken as a measure of numbers x with linguistic value A—
consistency-degree.

Thus, the consistency-degrees of all points in U with flexible linguistic value
A form a function g(x) (x € [a, b]) on range U. We call such a function the con-
sistency function of flexible linguistic value (or flexible concept) A, and denote it
ca(x).

On the basis of the above analysis, we give the following definition.

Definition 2.5 Let A be an increasing linguistic value on range U = [a, b], s; be
the critical point of corresponding flexible class C, and c; be the core-boundary
point of C, then
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X —S8c

calx) = (xeU) (2.12)

cc — S¢
is called the consistency function of this linguistic value A. For Vx € U, c4(x) is the
consistency-degree of x with A.
Similar analyzing of decreasing linguistic value can also be done. Yet from the
symmetric relation between it and increasing linguistic value, we directly give the
definition.

Definition 2.6 Let A be a decreasing linguistic value on range U = [a, b], sl be
the critical point of corresponding flexible class C, and ¢/ be the core-boundary
point of C, then

=+
S¢ —Xx

calx) = (xeU) (2.13)

s el
is called the consistency function of this linguistic value A. For Vx € U, c,(x) is the
consistency-degree of x with A.

Since convex linguistic value has characteristics of both increasing linguistic
value and decreasing linguistic value, the expression of its consistency function
should be the combination of the above two consistency functions. But, the
intersection point of these two function curves needs to be determined.

Let the intersection point of these two function curves be (x*,y*), it is easy to
obtain that

fom + -
* Sc €¢c — Scfc * Sc —S¢

YTl —s) = (el —eq) Y T sé —so) = (el —eg)

Thus, we have the definition.

Definition 2.7 Let A be a convex linguistic value on range U = [a, )], s; and s/
be critical points of corresponding flexible class C, and c; and ¢/ be the
core-boundary points of C, then

o a<x<x*
CC*SC - -
calx) =19 o+ . . (2.14)
T, X <x<b
C C

is called the consistency function of this linguistic value A. For Vx € U, c,(x) is the
consistency-degree of x with A.

Actually, a convex linguistic value can also be viewed as the conjunction of an
increasing linguistic value and a decreasing linguistic value. So its consistency
function can also be expressed as
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Fig. 2.6 An illustration of the consistency functions of flexible linguistic values

calx) = min{ XS sf _ﬁ} (xe V) (2.15)

-
Cc =S¢ Sc —¢Cc¢

It can be seen from the above-stated three functional expressions that the con-
sistency function of a convex linguistic value is a triangular function and that the
consistency functions of an increasing linguistic value and a decreasing linguistic
value are linear functions. We may as well call the latter two the semi-triangular
functions. The graphs of these three functions are shown in Fig. 2.6. It can also be
seen that the range of a consistency function is interval [a, ff] (2 <0,1 < f).

From the graphs of the functions, it can be visually seen that a consistency
function indeed expresses the correlation between the thing’s property represented
by numerical values and that represented by the corresponding linguistic value, and
reflects the distribution of the essential attribute of a flexible concept on the mea-
surement space. Or in other words, the essential attribute of a flexible concept is just
fully reflected and completely expressed by the consistency-degree that every
number in the range of numerical values is with the corresponding linguistic value.
Therefore, speaking in this sense, the consistency function of a flexible linguistic
value can also be viewed as a kind of connotative mathematical model of the
corresponding flexible concept, or connotative model for short.

From the general expression of consistency functions above, for any flexible
concept, only its critical points s¢ and s/, its core-boundary points ¢, and ¢}, and
peak value point {- are needed to be given, and the specific expression of con-
sistency function can be written. Thus, a consistency function can be written as the
following parametric form:

cA(x;sE,cE,fc,cg,sg) (2.16)

Clearly, the above general expression of consistency functions on range [a, b] of
real numerical values is also applicable to the flexible linguistic values on range
{n1,ny,...,n,} of consecutive integer values.
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2.4 Connection and Distinction Between Membership
Function and Consistency Function

In this section, we further analyze the characteristics of membership functions and
consistency functions as well as the connection and distinction between the two.

Comparing the expressions and graphs of the two kinds of functions, it can be
seen that the expressions of them are both based on the critical points sz and s/t
and core-boundary points ¢ and ¢/ of a flexible concept and that the two func-
tions are completely the same for critical points, core-boundary points, and points in
the boundary of corresponding flexible class. Therefore, if only one of mc(x) or
ca(x) is known, the other can be obtained. Such is just the connection between
membership functions and consistency functions.

However, the two also have the following important distinctions:

(1) Functional differences
As viewed from functions, a membership function describes the denotation of
a flexible concept and reflects the clustering and summarization of the prop-
erties of objects, whereas a consistency function describes the connotation of a
flexible concept and reflects the distribution and detailing of the properties of
objects.
The biggest characteristic of the membership function is the following:
mapping all the objects inside the core of a flexible concept into 1 and
mapping all the objects outside the support set into 0, which play the role of
classification and summarization, meanwhile, which is also a bridge of the
conversion of information granularity from fine to coarse and the conversion
of information description from quantitative to qualitative.
In fact, the denotations of flexible concepts are a kind of flexible class.
Therefore, just like usual rigid classes, human brain sets up these flexible
classes also in order to enlarge granularity of information, reduce amount of
information, and simplify representation and processing of information.
Therefore, the number of elements in the core of a flexible class should
generally be greater than 1 and the membership-degrees of the elements in the
core should all equal to 1; that is, elements in the core are not discriminated
anymore; meantime, the boundary must be non-empty and the
membership-degrees of elements in it should be between 0 and 1. Besides, the
membership-degrees of elements outside the support set should all be equal to
0; that is, these elements are also not discriminated anymore. Only thus the
effect of classification and summarization could be achieved. And only thus
would it coincide with the original intention of human brain to set flexible
concepts. The membership function is just a mathematical realization of this
kind of functions of clustering and summarization.
The characteristics of consistency functions are distinguishing between vari-
ous number objects (including the number objects in the core of a flexible
concept and those outside the support set) according to their original
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approximation relation; that is, the consistency-degrees of different numbers
are not the same. Thus, the degree of a number object x having property A can
not only be numbers 0, 1, and numbers between 0 and 1, but it also can be
greater than 1 or less than 0. Therefore, the consistency function is also the
degree distribution function of the connotation of a flexible concept.
Just because of the above differences, a membership function is a trapezoidal
function and can only be a trapezoidal function, and a consistency function is a
triangular function and can only be a triangular function. The range of a
membership function is [0, 1] and must be [0, 1], while the range of a con-
sistency function is [a, f] (¢ <0, 1 < f) and must be [a, f3].

(2) Differences in the natures
Viewed from the nature, membership functions show a kind of subjective
classification by human (brain) of continuously distributed numerical feature
values of things, while consistency functions reflect the objective relations
between the numerical values that characterize feature of things and the cor-
responding linguistic values.

(3) Differences in application
Viewed from the angle of application, membership functions place emphasis
on classification and summarization, which solve the problems of “what is,” so
which can be used to solve such problems as classification, recognition,
diagnosis, and prediction; and consistency functions facilitate detailing and
accuracy, which solve the problem of “how,” and so can be used to solve such
problems as judgment, decision, control, and planning.
In a word, the membership function and the consistency function both have
characteristics of their own and the two have both connection and distinction,
and they complement each other and form a complete representation of a
flexible concept, which supplement each other in application and are both
indispensable.

2.5 Flexible Entity Concepts and Their Mathematical
Models

Strictly speaking, the flexible concepts stated above are all flexible attributive
concepts. Besides, there are flexible entity concepts in our brains. For example,
“good student” is a flexible entity concept. Then, what are the formation principle
and the mathematical models of flexible entity concepts? It can be seen that the
flexible entity concepts are closely linked with flexible attributive concepts. In fact,
in macro, a flexible entity concept is an entity concept modified by flexible
attributive concept, or in other words, it is a compound flexible concept combined
by a flexible attributive concept and an entity concept. In micro, the numbers in the
numerical valued range that a flexible attributive concept is on and the subsets
(equivalence classes) consisting of entity objects which take these numbers as
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respective numerical feature value in corresponding entity objected set are
one-to-one correspondence. Thus, in the sense of corresponding feature, the former
represents the latter. Thus, with a flexible attributive concept on numerical valued
range U being formed, corresponding flexible entity concept is also formed on
corresponding entity objected set S, and the mathematical model of the flexible
entity concept depends on or is reduced to those of corresponding flexible
attributive concept. Thus, the former can be obtained from the latter. For example,
for students, let “good” be a flexible attributive concept on the range [0, 100] of
scores of their synthetic evaluation. Suppose the support set and core of “good” are
supp(good) = (80, 100] and core(good) = [90, 100]; then, the corresponding
membership function is

0 0<x<80

b
Mgood (x) = { 3782, 80<x<90 (xis a score of synthetic evaluation)

I,  90<x<100

and the consistency function is

— 80
Cgood(x) :x 10 5 OSXSlOO

Thus, the membership function of “good student” is
Mgood student (Sx) = Mgood (X)
and the consistency function can be
Cgood student (Sx) = Cgood (x)

And the corresponding flexible class of “good student,” the flexible entity
concept, is a flexible class in universe {all students}, its support set, and core are

supp(good student) = {sx\sx € {all students}, 0 <go0d student (85x) < 1}
core(good student) = {sy|sx € {all students}, Mgoodstudent (5:) = 1}

Generally, let AE be a flexible entity concept combined by flexible attributive
concept A and entity concept E; then, its mathematical model is as follows:

Supp(AE) = {e|e € E, 0<mgs(e) <1} (2.17)
core(AE) = {e|e € E,mqp(e) = 1} (2.18)

myg(ex) = my(x) (2.19)
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cap(ey) = ca(x) (2.20)

where x is numerical feature value of an entity object and e, is the entity objects
whose numerical feature values is x.

2.6 About Pseudo-Flexible Linguistic Values

In the above, we reveal the formation principle of flexible linguistic values and
present their mathematical models; however, in daily language and information
exchange, people employ also flexible linguistic values to describe two, three or a
handful of discrete numerical values. For example, for 3 and 5, the two numbers,
speaking relatively, people would say that 3 (is) “little” while 5 (is) “much” (if the
two numbers characterize the quantities of objects), or say that 3 (is) “small” while
5 (is) “big” (if the two numbers characterize the volumes of objects); and then, if
there is also a 6 here, people would say then that 6 (is) “more” or “bigger.” It can be
seen that people usually use two opposite flexible linguistic values to describe the
comparison between two numerical values, whereas use the flexible linguistic
values having progressive relationship to describe the comparison between more
than two numerical values. However, note that the flexible linguistic values used in
this situation are not formed by clustering and summarization, merely relative. In
fact, they are a judgment of corresponding discrete numerical values. Of course, this
can also be regarded as a partition of the set of corresponding numerical values, but
which is flexible partition not rigid partition, and each flexible linguistic value
describes or represents only one numerical value. In a word, these relative flexible
linguistic values are not real flexible linguistic values we discussed previously,
which is really a kind of pseudo flexible linguistic value.

Pseudo-flexible linguistic values frequently occur in our daily language and
information exchange, and the most used are those opposite flexible linguistic
values. Besides the examples above, such as “high,” “low,” “fast,” “slow,” “hot,”
“cold,” “good,” “bad,” “young,” and “old” are all frequently used pseudo-flexible
linguistic values. They will occur when we describe relative feelings. For instance,
in severe cold, people would feel “warm” when the temperature rises a little; here,
“warm” is just a pseudo-flexible linguistic value that describes the corresponding
temperature relative to (that temperature) severe cold. Similarly, in intense heat,
people would feel “cool” when the temperature drops slightly; here, “cool” is just a
pseudo-flexible linguistic value that describes the corresponding temperature rela-
tive to (that temperature) intense heat.

Pseudo-flexible linguistic values are literally no different from real flexible lin-
guistic values. In natural language processing, whether a flexible linguistic value is
real or pseudo can be discriminated according to the context. Real flexible linguistic
values, as stated in previous sections, result from flexible clustering and flexible
partition, which represent one and another relatively fixed continuous sets of
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numerical values, and which are the flexible linguistic values on the corresponding
ranges of numerical values and also the flexible linguistic values often existing in
human brains; but pseudo-flexible linguistic values are provisionally generated,
which have only relative significance but have no connotation and denotation, and
one and the same pseudo-flexible linguistic value can represent different quantities
in different contexts. For example, we can still use “little” and “much” or “small”
and “large” to describe 30 and 50.

Although pseudo-flexible linguistic values occur frequently in our information
exchange, since they are not real flexible linguistic values summarizing a batch of
numerical values, in imprecise-information processing the kind of flexible linguistic
value is not involved actually. In view of this, we will do not discuss the kind of
pseudo-flexible linguistic value in this book.

2.7 Summary

In this chapter, we took real interval [a, b] as a general range of numerical feature
values and used flexible clustering to obtain the corresponding flexible classes and
flexible concepts (flexible linguistic values), thus simulating and revealing the
objective basis, formation principle, and cause of flexible concepts, and then we
established the mathematical models of flexible concepts and derived their general
expressions. Besides, we distinguished between the flexible attributive concept and
the flexible entity concept and discussed pseudo-flexible linguistic values.
The main points of the chapter are as follows:

e The phenomenon of “continuous distribution or change” of magnitudes of a
feature, i.e., numerical feature values, of things and the treating way of “flexible
clustering” of human brain result in flexible concepts (flexible linguistic values)
in human brain. In other words, the continuous distribution or change of
magnitudes of a feature of things is the objective basis of flexible concepts, and
the flexible clustering of continuous magnitudes of a feature by human brain is
the formation principle of flexible concepts, and that rigid clustering can not be
done objectively is the cause resulting in flexible concepts.

e A flexible concept can have two kinds of mathematical models: denotative
model and connotative model, the former being core + support set and mem-
bership function, and the latter consistency function; they constitute the com-
plete representation of a flexible concept.

e The membership functions of flexible concepts on numerical ranges are trape-
zoidal or semi-trapezoidal functions, and the consistency functions are triangular
or semi-triangular functions.

e The flexible concepts can be classified into flexible attributive concepts and
flexible entity concepts, but the former is the abstract of the latter and the latter
can be reduced to or is dependent on the former.



Reference

Reference

1. Lian S (2009) Principles of imprecise-information processing. Science Press, Beijing

43



Chapter 3

Multidimensional Flexible Concepts

and Flexible Linguistic Values and Their
Mathematical Models

Abstract This chapter further considers the flexible clustering and flexible classes
in measurement spaces and reveals the formation principles of multidimensional
flexible concepts and flexible linguistic values and establishes their mathematical
models, especially presenting the universal mathematical models of flexible prop-
erties (concepts) and flexible relations (concepts).

Keywords Multidimensional flexible concepts and flexible linguistic values -
Flexible attributive concepts - Flexible properties (concepts) - Flexible relations
(concepts)

In the last chapter, we did flexible clustering of numbers in a range of numerical
feature values of things and obtained the corresponding flexible concepts and
flexible linguistic values. However, the range of numerical feature values is
one-dimensional, so the flexible concepts on it are only the flexible concepts about
single feature of things. We call the flexible concepts to be “one-dimensional”
flexible concepts. Besides this kind of one-dimensional flexible concepts, there are
also the flexible concepts about multiple features of things in our brains. These
flexible concepts are on multidimensional ranges of numerical values, which can be
called the “multidimensional” flexible concepts. For example, “nearby circle O” is
just a two-dimensional flexible concept on a two-dimensional range of numerical
values. In addition, those flexible concepts about certain relations between things
can also be seen as multidimensional. Therefore, in this chapter, we will examine
further multidimensional flexible concepts and flexible linguistic values and their
mathematical models.

© Springer Science+Business Media Singapore 2016 45
S. Lian, Principles of Imprecise-Information Processing,
DOI 10.1007/978-981-10-1549-6_3
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3.1 Measurement Space and Corresponding Flexible
Clustering

A multidimensional region formed by the numerical values of multiple features of
things is just the Cartesian product of the corresponding multiple ranges of
numerical feature values. Therefore, this kind of multidimensional region is a kind
of “space.” Also, considering that the components of vectors wherein, namely
numerical feature values, are the values of corresponding measures, so we call this
kind of space the “measurement space.”

Definition 3.1 Let 7, %,,..., %, be n features of a certain type of things, and let
Uy, U,,..., U, be successively their ranges of numerical values. We call the
Cartesian product U; X U, X --- X U, = U to be the measurement space of the
type of things.

Example 3.1 Suppose the range of human’s heights is [0.5, 2.5] and the range of
human’s weights is [1, 120], then [0.5, 2.5] X [1, 120] is a measurement space of
human being.

From the definition and example, we can see that the points in a measurement
space are also continuous.

Now, speaking in terms of measurement space, a range of numerical feature
values is just a one-dimensional measurement space.

Note: The “space” here only refers to a kind of region but not involving the
operations on it, so the measurement space is not an n-dimensional vector space in
the strict sense, even though it consists of n-dimensional vectors.

Let U=U, XUy X --- XU, (U;=1la; b;],i=1, 2, ..., n; n>1) be a mea-
surement space.

Like the case of range [a, b] of numerical feature values, in order to reduce the
amount of information, lower complicatedness and understand and grasp things at a
higher level, clustering and partitioning of points in space U also need to be done,
and on the other hand, the points in U are also continuous. Therefore, the clustering
and partitioning of the points in space U also have to use the flexible clustering and
flexible partitioning.

Since points in measurement space U have multiple coordinates, they can be
continuous in multiple directions of coordinates and the multiple coordinates can be
combined to more or even infinite number of directions. Taking the
two-dimensional space U; X U, as an instance, it can be seen that points in mul-
tidimensional space U actually can be continuous in infinite directions, which
means that for multidimensional measurement space U, there can be multiple
methods of flexible clustering, such as bar flexible clustering, square flexible
clustering, circle flexible clustering, and even irregular flexible clustering, so there
can be multiple kinds of shapes of flexible classes (of course, we only need to
discuss those meaningful flexible clustering and flexible classes). However, we can
imagine visually that only bar flexible clustering and square flexible clustering, as
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well as the flexible clustering based on straight lines and planes, can realize the
flexible partition of the measurement space U.

Next, we give some related concepts of a flexible class in the n-dimensional
measurement space.

Definition 3.2 Let C be a flexible class in an n-dimensional measurement space
U. Set {x| x € U, mc(x) = 1} is called the core of C, denoted core(C); set {x |
x € U, 0.5 <m¢ (x) <1} is called the extended core of flexible class C, denoted
core(C)*; set {x| x € U, me(x) > 0} is called the support set of flexible class C,
denoted supp(C); set {x| x € U, 0 < mc(x) < 1} is called the boundary of flexible
class C, denoted boun(C). The boundary point, boundary line, or boundary plane of
the support set are called the critical point, critical line, and critical plane of flexible
class C, separately; the boundary point, boundary line, or boundary plane of the
core are called the core-boundary point, core—boundary line, and core—boundary
plane of flexible class C, separately; the middle point, middle line, or middle plane
of the boundary (region) are called the median point, median line, and median plane
of flexible class C, separately.

Definition 3.3 Let U C R” be an n-dimensional measurement space (n > 1). For V
x = (xg, X2, ..., X,) and y = (yq, Y2, ..., ¥p) € U; set

n

dx,y) = 4[> (i —») (3.1)

i=1

is called the distance between x and y; take

r = max d(x,y) (3.2)
as the reference distance; set
dx,y
Dr.y) = 1) (33)

is called the degree of difference, simply written as difference-degree, between
x and y; set

s(x,y)=1—-D(x,y) =1 —@ (3.4)

is called the degree of sameness, simply written as sameness-degree, between
x and y.
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3.2 Flexible Clustering with Respect to Partial Coordinate
Components

Firstly, let us consider flexible clustering with respect to one coordinate component
in two-dimensional and three-dimensional measurement spaces.

Let U= U X V C R? be a two-dimensional measurement space, where U = [a,
b] and V = [c, d], and then, U is a rectangle region on a two-dimensional plane. As
shown in Fig. 3.1, in U X V, a flexible class A is resulted by flexible clustering
merely with respect to the x coordinate of points, and a flexible class B is resulted
by flexible clustering merely with respect to the y coordinate of points. The dark
gray part in the figure is the core of the corresponding flexible class, and the light
gray part is the flexible boundary [1].

It can be seen that the boundaries of the core and support set of a flexible class in
a two-dimensional space are no longer points but lines, that is, core-boundary line
and critical line. Just like a one-dimensional flexible class, these two
two-dimensional flexible classes stand for two flexible concepts on a
two-dimensional measurement space U. Since flexible class A is resulted by clus-
tering according to the approximation relation between the x coordinates, for any (x,
y) € U X V, the membership-degree m4(x, y) is only related to x. Thus, we have

ma(x,y) =ma(x) (xeU,yeV) (3.3)
Similarly, we have
mp(x,y) =mg(y) (xeU,yeV) (3.6)
whose graphs are shown in Fig. 3.2. They are truncated ridged surface.

Correspondingly, the consistency functions of flexible linguistic values A and
B are

cax,y) =calx) (xeU,yeV) (3.7)
(a) (b)
v A A v A ’ ’
B
L | |

Fig. 3.1 Examples of two-dimensional flexible classes with respect to one coordinate component
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Fig. 3.2 Examples of the graphs of membership functions of flexible classes in a two-dimensional
space

Fig. 3.3 Examples of the graphs of consistency functions of flexible linguistic values on a
two-dimensional space

cg(x,y) =cply) (xeU,yeV) (3.8)

whose graphs are shown in Fig. 3.3. They are ridged surface.

What Fig. 3.4 shows is an example of flexible classes with respect to one
coordinate component in a three-dimensional measurement space. Flexible class
A stands for a flexible concept on the corresponding three-dimensional measure-
ment space. Because flexible class A is obtained from flexible clustering only with
respect to the approximation relation between coordinate components xg, its
membership function and consistency function are

ma(x,y,z) =ma(x) (xeU,yeV,ze W) (3.9)
ca(x,y,2) =calx) (xeU,yeV,zeW) (3.10)

It can be seen that this kind of flexible clustering in two-dimensional and
three-dimensional measurement spaces and their flexible classes can be completely
generalized to n-dimensional measurement space. In fact, the above
two-dimensional flexible classes A and B are tantamount to the extension of
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Fig. 3.4 An example of 2k
three-dimensional flexible
classes with respect to one
coordinated component

y A

one-dimensional flexible classes A and B on a two-dimensional space. Conversely,
the original one-dimensional flexible classes A and B are then tantamount to the
projections of two-dimensional flexible classes A and B on one-dimensional space.

Generally, for n-dimensional measurement space U = U; X U, X --- X U,, C R",
the membership function and consistency function of the flexible class A obtained
by doing flexible cluster in U with respect to coordinate component x;, which stands
for flexible concept A on U, separately are

mA(xth»-'-;xn):mA(xk)a XjE(]j, J=12,...n (311)
calxi,x,.. %) =calxe), x €U, j=1,2,...,n (3.12)

In a three-dimensional space, we could also do flexible clustering with respect to
two coordinate components simultaneously. For example, Fig. 3.5 just shows an
example of a flexible class obtained by flexible clustering with respect to two
coordinate components x and y simultaneously in a three-dimensional measurement
space, where (a) is a clustering without a center and (b) is a clustering with a center.
It can be seen that flexible class A here is only related to two coordinates x and y of
a point but not related to coordinate z, so whose membership function and the
consistency function of the corresponding flexible linguistic value should be

ma(x,y,z) = ma(x,y) (xeU,yeV,zeW) (3.13)
24 (@) z j(b)
A A
y y
g -

Fig. 3.5 Examples of flexible classes with respect to two coordinates x and y in a
three-dimensional space
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ca(x,y,2) =calx,y) (xeU,yeV,zeW) (3.14)

From this, it is not hard for us to derive the membership function of an n-
dimensional flexible class obtained by clustering with respect to k (1 < k < n)
coordinate components and the consistency function of the corresponding linguistic
value.

Note that although the above n-dimensional flexible classes (n > 1) and the
flexible concepts and flexible linguistic values stood for by them are obtained with
respect to one or multiple coordinate components of points, in appellation, we still
say that n-dimensional point (x, x,, ..., x,,) has flexible linguistic value A.

3.3 Square Flexible Clustering and Circular Flexible
Clustering

In the following, we do flexible clustering of points in a space with respect to all
coordinate components of a point, that is, with respect to a whole point, and then
get corresponding flexible classes and flexible concepts. This section discusses
square flexible clustering and circular flexible clustering.

3.3.1 Square Flexible Clustering and Flexible Squares

Square flexible clustering is the flexible clustering taking a square (including also
cubical and hypercubical) region as center.

Let U = U X V C R? be a two-dimensional measurement space, where U = [a,
b] and V = [c, d]. As shown in Fig. 3.6, draw two square regions with proper size in
U, of them one contains another and each side of them parallel to the corresponding
side of space U, and then take smaller square region (the part of dark gray in the
figure) as core and bigger square region as support set, forming then a square
flexible class C in space U. Unlike one-dimensional flexible classes, the

Fig. 3.6 Examples of square
flexible clustering and flexible
square in a two-dimensional
space

y A

=y



52 3 Multidimensional Flexible Concepts and Flexible Linguistic ...

two-dimensional flexible class C has 4 critical lines and 4 core-boundary lines.
Viewed from shape, this kind of flexible classes is just a flexible square. The
flexible square C stands for a flexible concept and flexible linguistic value on a
two-dimensional space U.

Obviously, the square flexible clustering in a two-dimensional measurement
space can also be generalized to general n-dimensional measurement space
U=U XUy X-- XU, U;=la; b;],i =1, 2, ..., n) and to obtain an n-dimen-
sional flexible square.

Actually, the flexible squares in multidimensional spaces are also a kind of
generalizations of the flexible intervals in one-dimensional spaces, but a flexible
square can also be viewed as the intersection of mutually orthogonal flexible classes
in a multidimensional space. For instance, the two-dimensional flexible square C in
Fig. 3.6 can also be viewed as the intersection of two orthogonal bar flexible classes
whose shapes are similar to A and B in Fig. 3.1.

Next, we consider then the membership function of a flexible square and cor-
responding consistency function. It can be seen that for point (x, y) in core of
flexible square C, the membership-degree mc(x, y) should certainly be 1, and for
points (x, y) on or outside critical line of the support set, the membership-degrees
mc(x, y) should be 0. In the following, we consider the membership-degrees of
points in the flexible boundary around the core for flexible square C. Let point
p = (x*, y*) be a point to the left of the core in the support set. It can be seen that
the distance from point p to the left core-boundary line of flexible square C is

d(PaP/) _ \/(x’ 7x*)2 + (o 7y*)2 — — i

Here, p’ = (¥ — y*) is the foot of perpendicular of point p to left core—boundary
line. Since in the direction of x, points change from (x',y) to (x”,y) (the latter is the
corresponding points on the left critical line), their membership-degrees change
from O to 1, for Definition 3.3, we take r = ¢ — s (cc, and sc_are separately the
negative core—boundary point and negative critical point of flexible square C in the
direction of x) as the reference distance. Therefore, we have

dPP/ /K *_x/
s(P,P) =1— (P, ):1—f P
r Cc, —S¢,  Cc, TS,
Thus,
X —x

mC(x*,y*) = mc(Pl) 'S(PJ?/) =1 'S(P7P/) S —
Cc, ~ Sc,

It can be seen that the membership-degree of point p should be between 0 and 1;
with the increase of the distance between it and the core, the membership-degree of
points to the left of the core should monotonically decreasing from 1 to 0. And by
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X = ¢c, and the point (x*, y*) is arbitrary, so for points at the left of the core of C,
we have

X —cc,
me(x,y) = pr—
G G

It can be seen from this equation that in the direction of x, for point (x, y) in the
negative- or positive-side boundary of core, the membership-degree mc(x, y) is
merely related to x. Similarly, in the direction of y, for point (x, y) in the negative- or
positive-side boundary of core, the membership-degree mc(x, y) is merely related to
y. Thus, viewed from x direction and y direction, the shape of membership function
mc(x, y) should all be trapezoidal. So it can be imagined that the shape of the
membership function of flexible square C should be a prismoid (also called trun-
cated square cone) surface as shown in Fig. 3.7a (of course, this prismoid is the
geometry of the membership function of flexible classes on the non-edge part of
space U. For those flexible classes at the edge of space U, the graphs of their
membership functions are then not of standard prismoid but “semi-prismoid”).

Overlooking the prismoid in Fig. 3.7a, we obtain Fig. 3.7b. It can be seen that
the support set of flexible square C is actually divided into 5 small regions by the
projections of 8 edges of the prismoid. Numbering these small regions, then region
a, is the core of flexible class C, and the others are all the boundaries of C.

From the above analysis and Figs. 3.7a, b, it is not hard to see that for

Y (x, ) € a, me(x, y) = 1; for V (x, y) € az, me(x,y) = C;_ja ; for V (x, y) € ay,

— 9
SCX

e -y st—x
Cy . J— - X .
me(x,y) = = for V() (% 3) € da, me(x,y) = o5 for V() € as,
y=sc,
me(x,y) = = \E . Therefore, to sum up, we have
y Y
(a) (b)
m | y A
RT=- - === === === ¥4
: \\ az ’/ :
| s 7
1 ! : 1
g a 1Ay
1 /'L ________ EN 1
X X

Fig. 3.7 An example of a two-dimensional flexible square and the graph of its membership
function
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X — SCX

T ) €
T
+

S¢—x
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& o WYEaw

1, (x,y) € ar
meten =4 (3.15)

Y =S¢,

_,—C‘,7 (x7y) € as

cc, — Sc,

st —y

%a (xay) ca

s¢, —ed,

0, (x,¥) € ayUaz Uaz Uag Uas

where s and Sct are the negative and positive critical points of flexible square

C about x, and ¢ and Cct are the negative and positive core—boundary points of

C about x; s and sa ~are the negative and positive critical points of C about y, and
cc, and cé: are the negative and positive core—boundary points of C about y.

Equation (3.15) is the general expression of the membership functions of flexible
squares based on square flexible clustering on a two-dimensional measurement
space U. The geometry of this function is prismoid surface (also called truncated
square cone). Of course, Eq. (3.15) is the membership function of flexible squares
at the non-edge part of space U. For those flexible squares at the edge of space U,
since the graph of their membership functions is not a standard prismoid but a
semi-prismoid, the expressions of their membership functions should be somewhat
different from the expression in Eq. (3.15).

From the membership functions of two-dimensional flexible squares, it is not
hard to derive that the membership functions of the multidimensional flexible
squares of over 3 dimensions should have the same characteristics, that is, they are
all trapezoidal functions viewed from every coordinate direction. Thus, the mem-
bership functions of these multidimensional flexible squares are similar to
Eq. (3.15), whose graphs are hyperprismoid surface (also called truncated hyper-
square cone). But the membership functions of the multidimensional flexible
squares of over 3 dimensions would be too complicated if written as in the above
form. Luckily, there are simple functional expressions in Sect. 5.5.2 which can
solve this problem.

By the membership functional expression (3.15), we immediately have the
corresponding consistency functional expression as follows:
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Fig. 3.8 An example of the graph of the corresponding consistency function of a two-dimensional
flexible square
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cc, — ¢,
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T T (X,y) €ay
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Here, regions a,, a3, a4, and as are shown in Fig. 3.8b, and the graph of the function
is shown in Fig. 3.8a, whose geometry is a wedge surface. Similarly, the kind of
consistency functions has also a simple general expression (reader can see the
Eq. (6.10) in Sect. 6.4.1).

3.3.2 Circular Flexible Clustering and Flexible Circles

Circular flexible clustering is the flexible clustering taking a circular (including also
spherical and hyperspherical) region as center. We still take a two-dimensional
space U = U X V as an instance. As shown in Fig. 3.9, drawing two concentric
circular regions of proper radius in U, then taking smaller circular region (the part
of dark gray in the figure) as core, bigger circular region as support set, thus forms a
circular flexible class C in space U. Viewed from shape, this kind of flexible class is
just a flexible circle. The flexible circle C stands for a flexible concept and flexible
linguistic value on a two-dimensional space U.

Similarly, the circular flexible clustering in a two-dimensional measurement
space can also be generalized to general n-dimensional measurement space
U=U XUy X-- XU, U;=|a; b;],i=1,2, ..., n) and to obtain an n-dimen-
sional flexible circle—including flexible circle, flexible sphere, and flexible
hypersphere, especially also including flexible interval.
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Fig. 3.9 An example of v
circular flexible clustering and

flexible circles in a

two-dimensional space

C
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U
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Fig. 3.10 An illustration of
the principle of deriving
membership function mc(P)
Xo x

Next, we consider then the membership function of a flexible circle and corre-
sponding consistency function.

It is shown in Fig. 3.9 that for any point P € U, if P € core(C), then m(P) = 1;
if P ¢ supp(C), the mc(P) = 0. Next, let us consider how to compute the
membership-degree of point P € boun(C).

As shown in Fig. 3.10, draw a straight line through the circle’s center Py and
point P, which intersects separately at P, and P with the core—boundary line and
critical line of flexible circle C, and then, intersection points P, and P are the core—
boundary point and critical point of flexible circle C that correspond to
P. Therefore, denote P. and P separately as cc and s¢, and take d(sc, cc) as the
reference distance; then,

s(P,cc) =1—D(P,cc)
d(P, Cc) - d(P, Sc)
d(SC,CC) d(SCaCC)
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Thus, the membership-degree of point P for flexible circle C

mc(P) = mc(cc) - s(P, cc)
=1-s(P,cc) = s(P,cc)
_ d(P,sc)
d(sc,cc)

Namely,

d(Pa SC)

mC(P) - d(Sc, Cc)

Thus, to sum up the above analysis, we have

1, P € core(C)
B d(P, Sc)
mc(P) = m, P e bOU.Il(C) (317)
0, P ¢ supp(C)

From the point P being arbitrary, so what Eq. (3.17) shows is the membership
function of flexible circle C. But this functional expression is an expression about
(whole) point P, and we may as well call it the point-level membership function
of flexible circle C.

Let P = (-xv )’), Cc= (-xm y(?)’ and Sc = (xs’ ys)9 and then

d(P,sc) =\ (x— x4 (= w)’

d(sC,CC) = \/()Cc *xg)z + (yc - ys)z

Thus,
1, (x,y) € core(C)
—x, 2 —ys 2
me(x,y) = { ML L0 (y ) € boun(C) (3.18)
(xc*xs) + (,‘Q*%‘)
0, (x,y) & supp(C)

This functional expression is an expression about the coordinates of point P, and
we may as well call it the coordinate-level membership function of flexible
circle C.

From the above functional expression, it can be seen that for any point P € U, as
long as the corresponding core—boundary point ¢ and critical point s¢ are known,
the membership-degree of it for flexible circle C can be found. However, when
finding a membership-degree, every time we have to find the corresponding core—
boundary point cc and critical point sc firstly, which is apparently rather
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cumbersome. Considering that the center point of a flexible circle and its core radius
and support set radius are fixed and known, and we find that the center and the two
radii are related to two distances in the functional expression, so these relations can
be utilized to transform the above membership functional expression.

Let r. and r¢ be separately radius of the core (i.e., inner circle) and support set
(i.e., the excircle) of C, and it is not hard to see that r, — r. = d(s¢, ¢¢) and r,— d(P,
Py) = d(P, sc). Consequently, the above Eqgs. (3.16) and (3.17) are transformed to

L, P € core(C)
me(P) = { 5=2®P) 1 p ¢ boun(C) (3.19)
0, P & supp(C)
and
L V- x0)? +<y o) <7
me(x,y) = § 2V :U)rf(y w_, Te <\/ (y—yo)’<r, (3:20)
0, rsf\/X—xo +y—y0)2

Here, r; and r,, and x¢ and y, are all known constants, and the evaluation of a
function is much simplified. Therefore, these two membership functional expres-
sions are more practical.

In the following, we then consider the consistency function. Since c¢ and s¢ are
separately the core—boundary point and critical point of flexible class C that corre-
spond to P, we set consistency-degree cc(s¢) = 0 and cc(cc) = 1. Thus, distance d
(s¢, cc) can be treated as a unit quantity, further to determine the consistency-degree
of any vector in space U with flexible linguistic value C. From Fig. 3.10, it can be

seen that for any vector P € U, if P € supp(C), then cc(P) = d(Psc)., ip P(x, y) &

d(sc.cc)’
supp(C), then cc(P) = j((f; i‘ )) Thus, to sum up, we have

(3.21)

d(P,sc)
CC(P) — d(b%,z;) ’) Pe Supp(c)
—dtcesys P& supp(C)

From the vector P being arbitrary, so Eq. (3.21) is the consistency function of
flexible linguistic value C. We may as well call this kind of consistency function
about vector P to be the vector-level consistency function of flexible linguistic
value C.
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Fig. 3.11 Examples of the graphs of membership function of flexible circle and corresponding
consistency function

From this function, we can further have

—Xs 2 —ys 2

cclx,y) = " (3.22)
—Y==n (x,y) & supp(C)

(xe _xs)z + (yc_.\’s)z

This is the component-level consistency function of flexible linguistic value C.

Likewise, the computation is somewhat cumbersome in application of two
functions, so we also transform them into the expressions about the center of circle
and the radius of core and radius of support set:

—d(P,P
cc(P) _nTdPP) sy (3.23)

rs — I¢c

oy VG0 )

rs — I

ce , (ky)eUxV (3.24)

The graph of function mc(x, y) is shown in Fig. 3.11a, whose geometry is a
round platform (also called truncated circular cone) surface. The graph of cc(x, y) is
shown in Fig. 3.11b, whose geometry is a circular cone surface.

It is conceivable that generalizing the above flexible circle on a two-dimensional
space to a three-dimensional measurement space and multidimensional measurement
spaces of over three dimensions, their geometries would be a flexible sphere and a
flexible hypersphere, and their membership function of coordinate level is then
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n
1, Z(Xi—xin)zﬁrl

r— )’ [ &
mc(xl,xz,...,x,,) = 7%'_’;1 0 , N< Z(X,‘ *X,‘l])2<r2 (325)
i=1
‘ 2
0, ra < /30 (= xiy)
i=1

where x; € U; (i =1, 2, ..., n), r; is the radius of core, and r, is the radius of
support set. The graph of function mc(x;, x», ..., x,) is an hyper-round platform
(also called hypertruncated circular cone) surface.

Correspondingly, the component-level consistency function of flexible linguistic
value C on n(n > 2)-dimensional measurement space is

n 2
r =/ 2o (i — Xip)
co(xr, X2, ..y Xy) = . lr ‘ s (x,x,.0x) €U (3.26)
!

whose graph is a hypercircular cone surface.

3.4 Datum-Based Flexible Clustering,
“About XX” and “Near XX”

The flexible clustering above are all by determining directly core and support set to
obtain a corresponding flexible class. However, some classes are about some
special points or point sets in space. For example, the two flexible classes that stand
for “about point P” and “near point P” are just for the specific point P. It can be seen
that to obtain the classes about specific point or point set, we need to determine the
point or point set focused firstly and then to determine corresponding core and
support set when doing clustering. Thus, the points or point sets focused are a kind
of datum of corresponding flexible clustering. Thus, in order to distinguish, we call
the flexible clustering with a datum to be the datum-based flexible clustering.

In the following, we introduce separately the datum-based flexible clustering that
takes, respectively, “point,” “line,” and “plane” as a datum.

3.4.1 Point-Based Flexible Clustering and Flexible Points

Point-based flexible clustering is the square flexible clustering or circular flexible
clustering that takes a point in a space as the center point.

vww.ebook3000.con)
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(a) (b)
y A y /

X X

Fig. 3.12 An example of point-based square flexible clustering in a two-dimensional measure-
ment space

Point-based square flexible clustering is as follows: Take firstly a point Py(xo, Yo)
in space U (we still take the two-dimensional space U = U X V as instance) as the
center point, draw two concentric squares with appropriate size, and then take
smaller square region as core and bigger square region as support set, forming a
square flexible class C (as shown in Fig. 3.12a), that is, a flexible square in the
space. Of course, it stands also for a flexible concept and flexible linguistic value on
the space. Because the flexible square is determined actually by two coordinates x,
and y, of its center point Py, its geometric interpretation is “about x, and about y,.”
But if the center point Py is not included, then the geometric interpretation of the
flexible square—strictly speaking, should be a hollow flexible square (as shown in
Fig. 3.12b)— is “close to Xy and close to yo” or “near xy and near y,”~ As for the
membership function of the flexible class C and the corresponding consistency
function, do not hard to see, are actually the same as the previous Eqgs. (3.15) and
(3.16).

Generally, the point-based square flexible clustering in an n-dimensional mea-
surement space is also analogous, that is, the corresponding flexible class is a solid
or hollow flexible “square.”

Point-based circular flexible clustering is as follows: Take firstly a point Py(xo,
Yo) in space U as the center point, draw two concentric circles with appropriate
radius, and then take smaller circle region as core and bigger circle region as
support set, forming a circular flexible class C (as shown in Fig. 3.13a), that is, a
flexible circle in the space. Of course, it stands also for a flexible concept and
flexible linguistic value on the space. Because the flexible circle is determined by its
center point Py, we call the kind of flexible class obtained by point-based flexible
clustering a flexible point, and its geometric interpretation is “about Py.”” Similarly,
if the center point Py is not included, then the geometric interpretation of the
flexible circle—strictly speaking, should be a hollow flexible circle (as shown in
Fig. 3.13b)— is “close to Py” or “near Py As for the membership function of the
flexible class C and the corresponding consistency function, do not hard to see, are
actually the same as the previous Eqgs. (3.17)—(3.24).
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Fig. 3.13 An example of point-based circular flexible clustering in a two-dimensional measure-
ment space

Generally, the point-based circular flexible clustering in an n-dimensional
measurement space is also analogous, that is, the corresponding flexible class is a
solid or hollow flexible sphere.

From the flexible classes in the above Figs. 3.12b and 3.13b and their geometric
interpretations, we see “near x, and near y,”’ refers to a hollow flexible square with
point (xq, Vo) as center point, while “near (xq, yo)” refers to a hollow flexible circle
with point (xg, yo) as center point. That is to say, the meanings of “near (xo, yp)” and
“near xy and near y,” are not same actually. Given extended application, the
meanings of “near (x, x,, ..., X,,)”” and “near x; and near x, and...and near x,” are
also not the same.

Similarly, the geometric interpretations of the flexible classes in Figs. 3.12a and
3.13a above show that the meanings of “about (x,, y9)”and “about xy and about y,”
are also not the same. In the same way, the meanings of “about (xq, x,, ..., x,,)” and
“about x; and about x, and...and about x,,” are also not the same.

Actually, extending point P, into a square region R, then the analogous
square-based flexible clustering can also be doing and obtaining a corresponding
flexible class. Further, if the flexible class contains the square region R as datum (as
shown in Fig. 3.14a), then the geometric interpretation of the corresponding flexible
class is “about R,”; otherwise, the corresponding flexible class is a semi-flexible
square frame (as shown in Fig. 3.14b), and its geometric interpretation is then “near
Ry

Similarly, extending point P, into a circular region R., then the analogous
circle-based flexible clustering can also be doing and obtaining a corresponding
flexible class. Further, if the flexible class contains the circular region R, as datum
(as shown in Fig. 3.15a), then the geometric interpretation of the corresponding
flexible class is “about R.”; otherwise, the corresponding flexible class is a
semi-flexible circular ring (as shown in Fig. 3.15b), and its geometric interpretation
is then “close to Rc” or “near R.”

From Figs. 3.14a and 3.15a, we can see that the core of “about R, contains the
square region R as datum, and the core of “about R.” contains the circular region R,
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(a) (b)
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Fig. 3.14 An example of square-based flexible clustering in a two-dimensional measurement
space

(a) (b)
v v

=y

X

Fig. 3.15 An example of circle-based flexible clustering in a two-dimensional measurement space

as datum. Then, speaking conversely, a flexible square B in measurement space can
also be viewed as the flexible class of a certain “about R’ and R, C core(B);
similarly, a flexible circle C in measurement space can also be viewed as the
flexible class of a certain “about R.” and R. C core(C). For the one-dimensional
measurement space, it is that a flexible interval can be viewed as a flexible class
whose core contains a certain interval [a, b], that is, the flexible interval can be
called “about [a, b]”; conversely, “about [a, b]” is also a flexible interval whose
core contains [a, b].

3.4.2 Line-Based Flexible Clustering and Flexible Lines

Line-based flexible clustering is a kind of datum-based flexible clustering taking a
curve in a space as the center line. For example, doing line-based flexible clustering
with curve y = f{x) in a two-dimensional space as the center line, we get a flexible
class as shown in Fig. 3.16. The gray part in the figure is the core of the flexible
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class, and the white parts up and down are flexible boundaries. We call the kind of
flexible class obtained from line-based flexible clustering a flexible line. Viewed
from the characteristics of the shape, this two-dimensional flexible line is also a
flexible band of equal widths in the space. So the geometric interpretation of a
flexible line is “about curve y = fix)”’; while when the center line y = f(x) is not
contained, it is “near curve y = f(x).”

Comparing the flexible circle above and the flexible band here, it can be seen
that the above idea and approach to obtain the membership function and consis-
tency function of a flexible circle is also applicable to the flexible band here, further,
the point-level and coordinate-level membership functions (3.17) and (3.19) of a
flexible circle, and the vector-level and component-level consistency functions
(3.18) and (3.20) are also applicable to flexible band C here. However, the problem
is for a point P(x, y) € U, and how are the corresponding core—boundary point c¢
and critical point s¢ to be determined? Or can the functional expressions about the
radius of core and the radius of support set be derived like those of a flexible circle?

In the following, we consider the membership function and consistency function
of flexible band C.

Since for arbitrary point P(x, y) € U, if P(x, y) € core(C), then m(x, y) = 1;if P
(x, y) & supp(C), then mc(x, y) = 0. Therefore, we only need to consider the
membership-degree of points in the flexible boundaries of flexible band C. As
shown in Fig. 3.16, let the radius of core and radius of support set of flexible band
C be separately r; and r,, and point P;(x;, y;) be a arbitrary point in the boundary of
flexible band C.

Obviously, the distance from point P{(x;, y;) to core—boundary line /. should be
the shortest of the distances from point P{(x;, y;) to points on curve [, that is, d(P;,
l) = glel? d(P;, P)). Then, how is the point on curve /. closest to point P(x;, ;) to be

determined? Suppose there is also a curve y = fi(x) through point P,(x;, ;) that is
parallel to center line y = f{x) (as shown by the broken line in the figure). And the
slope of tangent of this curve at point P;(x;, ;) is f(x;), and thus, tangent [ of curve
y = fi(x) through point Pi(x;, v;) is y — y; = f(x;) (x — x;) (as shown in Fig. 3.16).

From this, the straight line /" through point P;(x;, y;) and perpendicular to tangent
line /is y — y; = tg(arctg(f'(x;)) + 3 (x — x;). With this straight line /', we can then

Fig. 3.16 Illustration of
flexible line and its
membership function deriving
process

~

-

=
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find separately the intersection points of it and the core—boundary line and critical
line. From the “parallelism” of the three of the center line, core—boundary line, and
critical line, it is known that the intersection points of straight line I’ and the core—
boundary line and critical line are separately the core—boundary points ¢ and
critical point s¢ of flexible band C that is correlative with point P;(x;, y;). Thus, from
the point Pqx; y; being arbitrary, we can obtain the point-level and
coordinate-level membership functions and vector-level and component-level
consistency functions of flexible band C [the expressions are the same as shown in
Egs. (3.17), (3.18), (3.21), and (3.22)].

However, the precondition of this method is that the equations of the core—
boundary line and critical line must be known and that cumbersome computation
would be met when finding function value. Next, we consider whether the radius of
core and radius of support set of flexible band C can be used to derive the simpler
expressions of membership function and consistency function.

Solving equations set

{y =f(x)
y — i = tg(arctg(f'(x;)) + 3) (x — x;)

the intersection point Py(xg, yo) of straight line // and center line y = f(x) can be
obtained. Then, the distance from P;(x;, y;) to center line y = f{x) is

d(Pr, Po) = 1/ (xi = x0) + (1 — yo)°

Thus, the distance between Pi(x;, y;) and negative core-boundary line /. is

d(Pi, 1) =\ (3 — x0)” + (3 — o)’ — 1

whereas r; — 7. = d(s¢, cc) is just the reference distance, so the closeness of P;(x;,
y;) to core—boundary line . is

d(P;, I~
s(P1,) :1_M
r
_ \/(xi*x0)2+(yi*y0)2*rl
o B rn—n
- \/(xi - xo)2 + (yi — )’0)2
- I —n

Further, we have
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) - \/ - Xo )’0)2

1
e re — Ie

mC(xivyl) =1 S(P

Thus, from the point P,(x;, y;) being arbitrary, we have

L ¢<x—xo>2+<y—yo>2<rc
me(x,y) = { BVl rXO)r O0)” , e <\/ —yo)<r, (327
0, FSS\/X—XO y—yo)2

where r, and r, are separately the radius of core and radius of support set of flexible
band C, and x, and y, are the coordinates of a point that correspond to point P(x,
y) on center line y = f{x). Actually, point (xo, yo) iS tantamount to the “circle’s
center” that point (x, y) corresponds to.

This is the coordinate-level membership function of flexible band C based on the
radius of core and radius of support set. Here, r. and r; are known, but point (xo, yo)
needs to be found with point (x, y) for the occasion. It is not hard to imagine that the
graph of the membership function of this kind of flexible band is truncated
ridge-shaped.

In the same way, we can obtain the component-level consistency function of the
flexible linguistic value C that corresponds to flexible band C as follows:

-/ (x=x0)"+ -y
cc \/ o) O), (x,y) eU XV (3.28)

re

Its graph is ridge-shaped.

It should be noted that viewed from the form, here expressions in Eqs. (3.27) and
(3.28) seem to be no different from the previous expressions in Egs. (3.20) and (3.24).
But there (x, yo) is the center of a flexible circle, so it is unique and changeless, that is,
a constant, while here (xg, yo) is a point on the center line y = f{x) of a flexible band.
From the above equations’ set, it can be seen that the solutions x and y, are actually
also functions of x; and y;, respectively, while x; and y; are just x and y in Eqgs. (3.27)
and (3.28), so for the specific center line y = f{x), there would not appear x, and y, in
Egs. (3.27) and (3.28), but the corresponding functions g,o(x, ¥) and g,o(x, y).

In the above, we studied line-based flexible clustering and its flexible classes in a
two-dimensional space, and the line-based flexible clustering of over three
dimensions should be analogous. It can be imaged that a three-dimensional flexible
line would be a “flexible rope” with a center line as the axis. The flexible rope in a
three-dimensional space can also be viewed as the trace formed by the flexible
sphere that moves along the center line of the flexible rope with a point on the
center line as the center. On the basis of that, the membership function and con-
sistency function of a flexible rope can be constructed.
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Let the equation of curve [ in a three-dimensional space be

x = x(t)
y=y(1)
z=12z(1)

where ¢ is the parameter. Thus, the coordinate-level membership function and
component-level consistency function of flexible line C with curve [ as the center
line are

l7 d < r
me(x,y,2) = { 2oVaoxw) + 0oy’ + @zlw)® g (3.29)

0, o n<d

2 2 2

r2 =\ (x = x(10))* + (v = ¥(10))* + (z — 2(10)
Cc(X,y,Z): ) (xayaZ)GU
rn—r

(3.30)

where x(ty), y(ty), and z(ty) are coordinates of “sphere’s center” point that corre-
sponds to point P(x, y, z) on center line /, and r; and r, are separately the radius of
core and radius of support set of flexible line C, and

d =/ (x = x(10))> + (v = ¥(t0))* + (= — 2(10))*-

Generalizing the three-dimensional flexible line, we have the following
coordinate-level membership function and component-level consistency function of
flexible line C in an n-dimensional space:

CR— 3 n
mc(xl,xz, .. .,xn) = Zi l(l 1)) , < Z ()C,' —xl(to))2<r2 (331)

i=1
0, <y [ (i —xln)?
i=1

re— \/2?21 (x; — x(t0))?

ce(X1, X0, w0y Xy) = , (x1,x0,.. %) €U (3.32)

s — I
Here, x{(ty)) (i =1, 2, ..., n) is the coordinate of “sphere’s center” point that cor-
responds to point P(x, X, ..., X,) on center line /, and | and r, are separately the

radius of core and radius of support set of flexible line C.
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3.4.3 Plane-Based Flexible Clustering and Flexible Planes

Analogous to line-based flexible clustering, we can also take a curved surface as the
center plane to do datum-based flexible clustering for points in a space, and this is
what we call plane-based flexible clustering. For example, taking curved surface
z=flx, y) in a three-dimensional space as the center plane to do plane-based
flexible clustering, we obtain a flexible class as shown in Fig. 3.17. The gray part in
the figure is the core of the flexible class, and the white parts up and down are the
flexible boundaries. We call this kind of flexible class obtained from plane-based
clustering a flexible plane. Viewed from the characteristics of the shape, a
three-dimensional flexible plane is also a flexible plate in the space. Therefore, the
geometric interpretation of a flexible plane is “about curved surface P”’; while when
the center curved surface z = f(x, y) is not contained, it is “near curved surface P.”

For the kind of flexible class of flexible plate, we can use the above idea and
methods obtaining the membership function and consistency function of a flexible
circle and a flexible band to obtain its membership function and consistency
function. And it is not hard to see that the expressions of the point-level and
coordinate-level membership functions and vector-level and component-level
consistency functions of a flexible plate are still the previous expressions in
Egs. (3.17) and (3.18) and Egs. (3.21) and (3.22). In the following, we consider
whether a flexible plate has a membership function and consistency function based
on the radius of core and radius of support set.

It can be seen that the projections of a flexible plate in a three-dimensional space
on plane x—z or plane y—z are also flexible bands. Therefore, from the above mem-
bership function and consistency function of a flexible band, we can immediately get
the membership function and consistency function of flexible plate C as follows:

1, d<r
me(ry,d) = { Ve W CaT gy, (333)
0, i r < d

Fig. 3.17 An example of i
plane-based flexible z
clustering and flexible planes
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2
_n- (x—x0)"+ (v —0)* + (z— 20)
ce(x,y,2 \/ — , (ny,2)eU  (3.34)
2 — Il

Here, r; and r, are separately the radius of core and radius of support set of a
flexible plate, xo, yo, and z, are the coordinates of the “sphere’s center” point that
corresponds to point P(x, y, z) in center plane z=fx, y), and

d =/ (x = x(10))> + (v — ¥(t0))* + (= — 2(10))*-
More generally, the membership function and consistency function of flexible
hyperplane C on an n(n > 3)-dimensional space are

1, g(xi*xm)) <rc
me(X1, X2, X)) = %, rc<“é(x,-—xio))2<rs (3.35)
0, Ry G -5’
ro =/ i (= xi)’
ce(X1, X0, w0y Xy) = Pa— ;o (%0, x) €U (3.36)

Here, r. and r, are separately the radius of core and radius of support set of a
flexible hyperplane, and x,,, x2,, . . ., X, are the coordinates of the “center of sphere”
point that corresponds to point P(xy, x5, ..., X,,) in center plane F(xy, x,, ..., x,,) = 0

3.5 Universal Mathematical Models of Flexible Properties
(Concepts)

A flexible class in a multidimensional measurement space which is formed by
flexible clustering with respect to points (or their partial coordinate components)
stands for a corresponding attributive concept. In consideration of its denotation
being flexible classes in a multidimensional space, so we call this kind of flexible
concepts to be the multidimensional flexible attributive concept. But, up to now, the
flexible attributive concepts we talk refer actually to “flexible properties” things
have.

Examining the various flexible classes and their membership functions and
consistency functions in the above sections, it is not hard to see that the mathe-
matical models of multidimensional flexible properties (concepts) can be unified.
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In fact, previous point-level membership function (3.17), coordinate-level
membership function (3.18), vector-level consistency function (3.21), and
component-level consistency function (3.22) are also applicable to any flexible
property (concept) on multidimensional spaces.

Further, it can be seen that the mathematical models of multidimensional flexible
properties (concepts) and those of one-dimensional flexible properties (concepts) in
the last chapter can also be unified. In fact, the idea and method obtaining the
membership function and consistency function of a multidimensional flexible
property (concept) are the generalization of those of one-dimensional flexible
properties (concepts); conversely, applying the point-level membership function
and vector-level consistency function of a multidimensional flexible property
(concept) here to a one-dimensional flexible property (concept), the membership
function and consistency function obtained are just the general expressions (2.5)
and (2.14) given in Chap. 2. Only, since a one-dimensional space only has two
directions, for any point P € [a, b] in the same direction, its corresponding core—
boundary point ¢ and critical point s¢ are both changeless. Therefore, there c¢¢ and
sc are constants. And since a point in a one-dimensional space and its coordinates
are the same number, expression (2.5) is both a point-level membership function
and a coordinate-level membership function, and expression (2.14) is both a
vector-level consistency function and a component-level consistency function.

Thus, the following functions

I, P € core(C)
mc(P) = { 24 P € boun(C) (3.37)
0, P ¢ supp(C)

(3.38)

d(P,sc)
cc(P) = Tl P & supp(C)
“ce P #supp(C)
are separately the general expressions of point-level membership functions and
vector-level consistency functions of flexible properties (concepts) in an n(n = 1)-
dimensional measurement space, where P is a point variable, and c¢ and s¢ are
separately the core-boundary point and critical point for point P in the corre-
sponding flexible class C. Functions

L, (x1, %2, .« ., X)) € core(C)

g P
Zi:l (i)

me (X1, X2, -« Xn) = Ny RTE (x1,X2, . - -, Xn) € boun(C) (3.39)
i=1 e s
07 (xl7x2a .. 'axn) ¢ supp(C)
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Zle (i—x,)* (
Do )
Z::l (i—x,)*
_ - o (

X1, X2, .- 'vxﬂ) € supp(C)

X1,X2, .« .y Xn) & supp(C)

are separately the general expressions of coordinate-level membership functions
and component-level consistency functions of flexible properties (concepts) in an n
(n = 1)-dimensional measurement space, where x; is a point coordinate variable,
and x;, and x;, (i = 1, 2, ..., n) are separately the coordinates of cc and sc.

For a flexible class with center point, the general expressions of the point-level
membership function and vector-level consistency function can also be

1, P € core(C)
me(P) = { 5=2®P) 1 p ¢ boun(C) (3.41)
0, P ¢ supp(C)
rs — d(P, P())
cc(P) ==, PeU (3.42)

The general expressions of the coordinate-level membership function and
component-level consistency function can also be

o rs— Z:IZ[ (xi_xi())z “ 2
Me(X1,20, .y Xn) = ¢~ <[>0 (xi—x;,)"<rs  (3.43)

i=1

0, rs < Z(xi_xio)z
\/ i=1

n 2
re =\ Diy (% — Xi)
co(X1,X2, . Xy) = . _lr L (X, ax) €U (3.44)
S Cc

Here, Py is the center point of flexible class C that corresponds to point variable
P, x;,(i =1, 2, ..., n)is its coordinate, and r, and r; are separately the radius of core
and radius of support set of flexible class C.
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3.6 Flexible Relations (Concepts) and Their Mathematical
Models

Besides flexible properties, there are also “flexible relations” in flexible attributive
concepts (or, in human brain), that is, the flexible concepts on relations between
things, such as “similar,” “analogous,” “approximate,” “approximately equal to,”
“far greater than,” and “good friend” that are all flexible relations (concepts). In this
section, we will discuss the formation principle and mathematical models of flexible
relations (concepts).

EEINT3 EEINT3

3.6.1 Flexible Clustering in a Product Space

A flexible relation (concept) can be formed by using the method of flexible clus-
tering in measurement space U of objects, but in the space U, it is difficult or even
impossible to directly realize flexible clustering based on the relation of objects.
However, we know that a subset of Cartesian product S; X §, X -+ X S, stands for
an n-ary relation. Then, analogously, a flexible subset of product space U" can stand
for an n-ary flexible relation. That is to say, doing flexible clustering in product
space U", we can just obtain the flexible classes standing for the flexible relations
between points in U. Then, generally, to do flexible clustering in product space
U, XUy X .- XU, (U;is a k; (k; 2 1)-dimensional measurement space, i = 1, 2,
..., n), we can obtain more general flexible classes representing flexible relations.

Next, we consider the problem of flexible clustering in a product space.

It can be seen that when U is a one-dimensional space, it is very easy to do
flexible clustering in product space U". As a matter of fact, here n-dimensional point
(x1, X2, ..., x,) € U" is also a group of n-ary one-dimensional points, and x, x», ...,
X, are not coordinates but points in one-dimensional space U. Thus, any flexible
class in product space U" can be seen as a flexible class representing a certain
flexible relation. As, thus, any multidimensional flexible class representing a flex-
ible property can also be viewed as a flexible class representing a certain flexible
relation (of course, for one and the same multidimensional flexible class, the
flexible property and the flexible relation represented by which are two different
flexible concepts, and the names of the two are not the same either). That means to
do flexible clustering arbitrarily in an n(n > 1)-dimensional product space U", and
the flexible classes obtained are all seen as a flexible class representing a certain
flexible relation (of course, which can also be seen as a flexible class representing a
certain flexible property).

However, when U is a multidimensional space, it is difficult to do flexible
clustering in product space U". For example, when U is a two-dimensional space,
how is flexible clustering to be conducted in U X U? Even the shapes of the flexible
classes therein are all hard to image. As to further doing flexible clustering in more
general product space U; X U, X --- X U, it is even more difficult.
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Since the flexible clustering based on relation focuses on a certain relation
between points but not the property of points, it is not as direct and visual as flexible
clustering based on property. Therefore, though theoretically speaking, to do
flexible clustering in a product space, we can obtain corresponding flexible relations
(concepts), and how it is to be done is hard to formulate.

There is another problem, that is, although in an n(n > 1)-dimensional product
space U", flexible clustering can be done arbitrarily; what flexible relations (con-
cepts) do flexible classes thus obtained stand for? Obviously, most are hard to
formulate. And for those flexible classes with practical meanings, how the mem-
bership functions are to be obtained is also a problem.

Actually, just as a flexible property (concept) is the result of human brain
clustering and summarizing related properties that are continuously distributed, a
flexible relation (concept) is the result of human brain clustering and summarizing
related relations that are continuously distributed. For this reason, we need to look
for a kind of space that can directly characterize the continuous distribution of the
relation between objects.

3.6.2 Space Transformation and the Formation
of a Flexible Relation (Concept)

In the following, we take “similar” relation as an example to further analyze and
discuss the formation principle and mathematical models of a flexible relation
(concept).

Analyzing carefully the semantics of “similar,” it can be seen that “similar” is
actually reaching or exceeding “same” to a certain degree. Therefore, we can take
sameness-degree as a measure of the strengths of sameness between objects. Thus,
“similar” is a flexible concept on the range of sameness-degrees. From Sect. 2.1.2,
it is known that the range of sameness-degrees is [0, 1], so on which flexible
clustering can be done, and further, a flexible class standing for “similar” can be
obtained and so can its membership function and consistency function.

Let s € [0, 1] be a sameness-degree and wg, w; € [0, 1] be separately the critical
point and core—boundary point of “similar,” and then,

1, w <s<1
Mgimilar (S) = vjliwwgg y Wo<s<w (345>
0, 0<s<wy
S —Wy
similar = € 07 1 3.46
o) = 2 e 0, 1) (3.46)

are separately the membership function and consistency function of “similar” on the
range [0, 1] of sameness-degrees (whose graphs are shown in Fig. 3.18).
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Fig. 3.18 An illustration of

the membership function and e
consistency function of 1
flexible relation (concept)
“similar”
0 o
0 K

Thus, we obtain the flexible relation (concept) of “similar” by flexible clustering
in one-dimensional measurement space [0, 1] and establish its mathematical
models. However, that is only a conceptual mathematical model, and we still need
to further derive the mathematical models of “similar” in the practical measurement
space.

Let U be an n-dimensional measurement space, x = (xi, X, ..., X,), and y = (yy,
Y2, ..., ¥») € U, and by the definition and computation formula of sameness-degree
given in Sect. 2.1.2, we have

d(x,y)

r

sx,y)=1-

where r is a reference distance, generally taking the maximum value of the dis-
tances between points within a certain scope, here taking r = max d(x,y), whereas
EAYUS

distance d(x,y) = \/S.7_, (xi — yi)? is the Euclidean distance. Thus, substituting
—_ 3 1 S—W
s = s(x, y) into expression Fvgo’ we have

P

w1 — Wy w1 —Wo
Thus,
1, wy <1 -4 <
Ay _
msimilar(x7y) = M, wo<1— d(xy) <wi (347)
w1 —Wwo r
0, 0< 1 -4 <y

(1 *M) o d

r x7

Csimilar(xyy) =< 1- M c
w1 — Wo r

[0, 1] (3.48)

They are the point-level membership function and vector-level consistency
function of “similar” on product space U X U.
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Further, substituting x = (x1, x5, ..., x,,) and y = (y1, 2, ..., ¥,) into the above
expressions, we have
msimilar(x1;x27 e Xny Y1,Y2, - 'ayn)
n N 2
1 w1 = V2 B

B (1 Zflw»nz)% (3.49)

)

-

w1 —Wwo ’

——
0, O§I—M<w0

Csimilar(xlax27 ceXny Y1,Y2, - - 'ayn)

Z”, (Xi)‘i>2)
1— i=1 —wp Zn (x~ 2
r i= i yz)
= . 1— ! €1[0,1]
w1 — Wo r

(3.50)

They are the coordinate-level membership function and component-level con-
sistency function of “similar” on product space U X U.
In particular, when U = [a, b], the r = b — @ and the d(x,y) = |x — y|, and thus,

1, I =
TN
msimilar(x7y) = %, wo<l— ‘z:z‘ <wi (351)
0, 0<1 -5 <
(1 _ \X*)’\) —wo
b—a X —
Csimilar(xa )’) = W—W()’ 1- |—zl)| S [O, 1] (352)
| = _

These two functions are separately a point-level membership function and a
vector-level consistency function and also a coordinate-level membership function
and component-level consistency function separately.

We notice that mgmitar(X1, X2, «--5 Xy Y15 Y25 -5 Y) @0 Cimitar(X15 X2, -+ Xy Y15 Y2,
..., ¥p) are functions on a multidimensional space. So the variable substitutions
above makes the above flexible linguistic value “similar” on one-dimensional space
[0, 1] extended to multidimensional space U X U, thus, the flexible relation (con-
cept) of “similar” also becomes a flexible concept on multidimensional space;
moreover, the flexible class that “similar” denotes is a flexible subset R of product
space U X U.

Now, we see that relation “similar” is originally between two objects, but which
is hard to be obtained directly by flexible clustering in measurement space U of
objects or product space U X U. However, we transform every ordered pair (x, y) €
U X U to a real number s = s(x, y) through the measure of sameness-degree, thus
obtaining one-dimensional space [0, 1] from product space U X U; then, we obtain
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flexible concept “similar” on [0, 1] by flexible clustering and establish its mathe-
matical models; next, we extend the mathematical models of “similar” on
one-dimensional space [0, 1] to product space U X U through sameness-degree
(function) s = s(x, y), which is tantamount to transforming back “similar” from
one-dimensional space [0, 1] to product space U X U, making it into a flexible
concept on the latter.

It can be seen that in the formation process of the flexible concept “similar,”
sameness-degree s = s(x, y) plays a key role of a “bridge.” Actually,
sameness-degree s = s(x, y) is also a mapping or transformation. It is just this
mapping that transforms product space U X U into one-dimensional space [0, 1]
that makes this flexible concept of “similar” to be formed and then also makes it
returned to product space U X U and original space U.

Actually, to put it another way, “similar” is also “slightly different.” Thus,
“similar” can also be defined on difference-degree range [0, 1], or even defined
directly on distance range [0, b]. That is to say, we can use multiple kinds of
measures and transformations to establish the mathematical models of one and the
same flexible relation (concept). Of course, these expression forms of mathematical
models in different measures and transformations are not the same.

From the formation process of the flexible concept of “similar,” we see that the
formation of a flexible relation (concept) is tantamount to a process of going to a
one-dimensional measurement space from a product space and then returning back
to the product space from the one-dimensional measurement space. Therefore, the
formation principles of a flexible relation (concept) can be shown in Fig. 3.19. In
the figure, U, is a k; (k; = 1)-dimensional measurement space, P; € U; i = 1, 2, ...,
n), and v = ¢ (Py, P», ..., P,) are a certain measure about points Py, P», ..., P,, that
is, a certain kind of transformation from product space U, X U, X --- X U,, to
one-dimensional space [a, b]; R is the corresponding flexible relation (concept).

3.6.3 Universal Mathematical Models of Flexible Relations
(Concepts)

From the formation principle of flexible relations (concepts), we obtain the uni-
versal mathematical models of them.

U XU, X...XU, V=Q(Py, Po,.os Po) (. b] Flexible clustering R

v=@(Py, Py,..., P,)

Fig. 3.19 Diagram of the formation principle of a flexible relation (concept)
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1. General expressions of the membership function and consistency function
of binary flexible relations

0. a<g(Pi, P)<s;
HOLI i <P Py) <ci
me(Py, Py) = § 1. g S@(P1, P)) <cg (3.53)
kP72 ;;Ei}PZ), cg <@(P1,Py)<sg
0, s <@(P1,Py)<b
0, a<px,y) <sg
LS sp<o(xy)<cp
me(e.y) = q 1. g <olx,y) <cg (3.54)
O of <wy) <5
0, sg <plx,y)<b
P, Py) — sz si — (P, P
CR(Pl, Pz) = mln{(p( 1,’ 2), °R ) ° +(p( IJ; 2)}7 (p(Pla P2) € [a7 b]
Cg — g SR —Cp

(3.55)

cR(x,y):min{q)(x’y)_sR,s’;r _"’(ﬁy)}, o(x,y) € a, b]  (3.56)

- = T
Cr — SR SR —Cgr

where P, € Uy, P, € Uy, (P, Py) € Uy X U,, and ¢(P;, P,) is a measure about
point variables Py and Py; ¢, cg and sg, sp are separately the core—boundary
points and critical points of flexible relation R on range [a, b] of measures, and
x and y are separately the coordinate variables of P, and P,.

2. General expressions of the membership function and consistency function
of n-ary flexible relations

Oa ClS(ﬂ(P], 7Pn)§SE
P, Py)—S5 _ _
& lé —s,;) L ’ SR <¢(P17 '7Pn) <CR
mR(Pla 7Pn): 1+ Cﬁg(p(Pla"'aPn)gclg— (357)
Sg *SZ:’}(P::I;...Pn) , Clj <g0(P17 .. 7Pn) <S;
0, sg < @(P1,...,Py)<b
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Oa a< (p(xlv ,Xn) S YE
A <g(n ) <G
mp(x1, .., X)) = {1, g < Qxr, . x) <cf (3.58)
+_ .
M ol <o(n,m) Ssi
Oa SR S(P(xla axn)gb
P, — — o(Py,...,P
cr(Py, 7Pn):m1n{(p( . n_) SR,SR qi( 1 — n)}v
Cg — Sk Sg —cq (3.59)

—
o, ) —sg sg — o(x1,. . x
cR(xl,...,xn):mln{( — nz R R +( T ”)},
Cx — Sk Sg —Cp (3.60)

o(x1,...,X,) € [a,]]

where P, e U;i=1,2,...,n), (P, ..., P,) € U X Uy X ---XU,, and ¢(Py, ...,
P,) is a measure about point variables Py, ..., P,; cg, ¢g and sk, sy are
separately the core—boundary points and critical points of flexible relation R on

range [a, b] of measures, and x1, ..., x,, are separately the coordinate variables of
Py, ..., P,

3.7 Summary

In this chapter, we further considered the flexible clustering and flexible classes in
measurement spaces and revealed the formation principles of multidimensional
flexible concepts and flexible linguistic values and established their mathematical
models. In particular, we presented the universal mathematical models of flexible
properties (concepts) and flexible relations (concepts).

The main points and results of the chapter are as follows:

There are various ways of flexible clustering in a measurement space, such as
flexible clustering with respect to the partial coordinate components of a point
and flexible clustering with respect to whole point, and the latter can be further
classified as square flexible clustering, circular flexible clustering, point-based
flexible clustering, line-based flexible clustering, plane-based flexible clustering,
etc. The flexible classes obtained are flexible squares, flexible circles, flexible
points, flexible lines, flexible planes, etc., whose geometrical shapes are sepa-
rately flexible squares, flexible circles, flexible spheres, flexible bands, flexible
ropes, flexible plates, etc. These flexible classes stand for various kinds of
multidimensional flexible concepts. Since these flexible geometric bodies as
flexible classes are all formed by the overlapping of a pair of corresponding core
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and support set, the core and support set together can be viewed as the geometric
model of a flexible concept (correspondingly, the membership function and
consistency function can be said to be the algebraic model of a flexible concept).

e Flexible attributive concepts obtained by flexible clustering with respect to
points are generally flexible properties (concepts). The flexible properties
(concepts) on an n(n = 1)-dimensional space have universal mathematical
models.

e Except for special cases, a flexible relation (concept) is hard to be directly
obtained from flexible clustering in the corresponding product measurement
space, so we need to employ the method of space transformation to indirectly
obtain its mathematical model. The flexible relations (concepts) have also uni-
versal mathematical models.
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Chapter 4
Modeling of Flexible Concepts

Abstract This chapter discusses the methods of the determination and acquisition
of the membership functions and consistency functions of known flexible concepts
and discusses the dynamics and polymorphism of mathematical models of a flexible
concept.

Keywords Flexible concepts - Mathematical models - Membership function -
Consistency function

In Chaps. 2 and 3 we revealed the formation principle of flexible concepts and
presented their general mathematical models. In this chapter, we further discuss the
modeling methods of flexible concepts, that is, how the core and support set as well
as the membership function and consistency function of a given or known flexible
concept can be determined and acquired. For convenience of stating, we shorten the
membership function and consistency function as membership-consistency func-
tions in what follows.

4.1 Determination of Measurement Space and Directly
Modeling

We know that the determination of the core and support set as well as the
membership-consistency functions of a flexible concept actually also is reduced to
the determination of its core—boundary points (lines and planes) and critical points
(lines and planes). While to determine these parameters, we need to determine the
measurement space of corresponding feature firstly.

Any feature of objects has either numerical values or linguistic values, or both.
The numerical values are a certain kind of measurement, and non-symbolic lin-
guistic values are then the summarization of a batch of numerical values. If a feature
of objects has already a measure, then the range of values of the measure is the
range of numerical values of this feature. If a feature has not a measure (for
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instance, the feature of “attitude toward learning” can have linguistic values:
“conscientious,” “not conscientious,” etc., but generally it has no a measure), then
we can define its measure by the characteristics of the feature or the semantics of
corresponding linguistic value. For instance, those of the previous sameness-degree
and difference-degree are just done in this way. Of course, there exist some features
whose objective measure may be difficult to find. For these features, we can use the
method of marking subjectively to acquire their numerical values. Given a measure,
the measurement space of corresponding feature also be got, and then, we can
define corresponding flexible linguistic values on it.

As to how to determine the core—boundary points (lines and planes) and critical
points (lines and planes) of a flexible concept, we give some methods in the
following for Ref. [1].

1. “Personal preference” method
The so-called personal preference is to give the core—boundary points (lines and
planes) and critical points (lines and planes) of a corresponding flexible concept
according to one’s personal subjective understanding. Of course, for the flexible
concept with a center point (lines and planes), if the center of core, the radius of
core and the radius of support set can be given, then the corresponding core—
boundary points (lines and planes) and critical points (lines and planes) can also
be derived. Personal preference method is suitable for the modeling of the
related flexible concepts in the specified fields. The parameters of the core—
boundary points (lines and planes) and critical points (lines and planes) can be
directly given by domain experts from their knowledge and experience.

2. “Statistics from a group” method
The so-called statistics from a group is to collect a certain amount of “public
opinion” data by consulting in a certain number and part of the population, then
using mathematical statistical method to determine the parameters of core—
boundary points (lines and planes) and critical points (lines and planes). For
example, the values that mostly frequently occur or the mathematical expecta-
tion of the parameter variable, that is, the mean value, can be used as the value
of the corresponding parameter. The method of statistics from a group is suitable
for the modeling of the ordinary flexible concepts in daily language. Therefore,
this method can be used in natural language processing to determine those cores
and support sets as well as membership-consistency functions of the related
flexible concepts.

3. “Derivation with instances” method
This method is to derive the membership-consistency functions of a flexible
concept from several instances of this flexible concept, for example, according
to the heights of a class of students and the corresponding membership-degrees
to “tall” to derive the membership function of “tall.” In this method, we can use
function fitting or piecewise function fitting, and solving the corresponding
simultaneous equation to obtain core—boundary points and critical points.
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4. “Generation by translating” method

The so-called generation by translating is using the related parameters of the
known linguistic values and the relation between the known linguistic values
and the targeted linguistic values to derive the related parameters of the targeted
linguistic values through translation transformation and then obtain the corre-
sponding membership-consistency functions, or directly doing translation
transformation of the original linguistic values to derive the
membership-consistency functions of the targeted linguistic values. This method
is generally fit for the modeling of superposed linguistic values (which is to do
so in Sect. 7.1), but it can also be conversely used, that is, from the
membership-consistency functions of a superposed linguistic value to derive the
membership-consistency functions of the original linguistic value through
translation transformation.

Finally, it should be noted that although speaking for single flexible concept, its
core—boundary points (lines and planes) and critical points (lines and planes) need
to determined, for a group of flexible concepts Aj, A,, ..., A, of the corresponding
partition of a space, only the core—boundary points (lines and planes) of all flexible
concepts need to be determined. Because in this case, the negative core—boundary
point ¢, of flexible concept A; is just the positive critical point sAtl of flexible
concept A;_;, and the positive core—boundary point cAf of flexible concept A; is just
the negative critical point s, of flexible concept A;,;.

4.2 Space-Transforming Method

4.2.1 Space-Transforming Method for the Modeling
of a Flexible Relation (Concept)

Actually, the formation principle of flexible relations (concepts) in Sect. 3.6 also
gave a general method for acquiring mathematical models of flexible relations
(concepts), that is, first utilize the expression of definition of corresponding measure
to transform a flexible relation on a multidimensional product space into a flexible
concept on a one-dimensional measurement space (i.e., a range of numerical feature
values) and modeling for it, then transform conversely the mathematical models
obtained back to the original multidimensional space. In consideration of the
characteristic, we call this method of modeling of flexible relations (concepts) to be
the space-transforming method, the concrete steps of which are as follows:

(D Select or define an appropriate measure v = o(Py, P, ..., P,) according
to the semantics of relation R (P; € U; is a point variable, U; is a k;
(k; 2 1)-dimensional space, i = 1, 2, ..., n), take v = ¢(Py, P, ..., P,) as
a function on product space U; X U, X --- X U,, determine its range
U and treat U as the measurement space that R belongs to.
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@ Define flexible concept R on U by flexible clustering and obtain the
corresponding membership-consistency function mg(v) and cg(v).

@ Substitute v = ¢(xy, X2, ..., X,,) (x; is the coordinate variable of P;, i =
1, 2, ..., n) into mg(v) and cg(v) as well as the corresponding core—
boundary points and critical points, then obtaining immediately the
membership-consistency function mp(x;, X5, ..., X,,) and cg(x;, X2, ...,
x,) as well as the corresponding core and support set of R on product
space Uy X Uy X --- X U,

Example 4.1 “Approximately equal” is a flexible relation (concept) between real
numbers. Try to find its membership-consistency function by using
space-transforming method.

Solution “Approximately equal” is reaching or exceeding “equal” to a certain
degree. Then, how is the degree of equality between two numbers portrayed? We
know that if two numbers having same sign are approximately equal then their ratio
is close to 1, and vice versa. Thus, z = % (n, and n, have same sign and |n;| <|nz|)
2

can be treated as a measure that portrays the degree of the equality between two
numbers and we may as well call it as equality-degree. Obviously, the range of this
equality-degree is interval (0, 1], which can be called the equality-degree range.
Then, from the semantics, “approximately equal” can be a flexible concept on range
(0, 1] of equality-degrees. Let the membership function of “approximately equal”
on (0, 1] be as follows

0, O<z<zyy
Z— 2
mapproximutelyequal(z) = > — 2 y A1<Z<2 (41)
1, n<z<l

where z; and z, are separately the critical point and core-boundary point of “ap-
proximately equal,” the graph of function is shown in Fig. 4.1.

The corresponding consistency function is

Z—121

Capproximately equal (Z) = , O<zxl1 (42)
2 — 1
Fig. 4.1 An example of the m
membership function of Mapproximately equal(Z)
“approximately equal” on 1
range of equality-degrees :
1
1
1
1
1
|
0 : -
1
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Now, for arbitrary x, y € (-0, 0) or (0, +00), when |x|<|y|, substitute z =2

y
into the expression at right side of Eq. (4.1); then, it follows that
0, 0<7<z
X
Mapproximately equal (X,)’) = 4 , u<i<zn (43)
22— Y
1, 22 < Jy-( <1

when |x| > |y|, substitute z = % into the expression at right side of Eq. (4.1), then it
follows that

0, 0< ;V*C <z
Yr—u
’
Mapproximately equal (X;Y) = < , a< )y_c <22 (43 )
22— 2
1, < f—c <1

These two functional expressions joined together are just the membership function
of “approximately equal” on product space (—00, +00) X (—00, +00) (a part of its
graph is shown in Fig. 4.2).

And the corresponding consistency function is

Yo
, 0<§<1
— D —Z
Capproximately equal (X,)’) = )_12_ le (44>
—, 0<ix«l
2 — 2

Fig. 4.2 An example of the membership function of “approximately equal” on product space
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Similarly, by transformations z = § and z = 2 as well as the original critical point

71 and core—boundary point z, of “approximately equal,” we can obtain the critical
line and core-boundary line of “approximately equal” in two-dimensional space
(—00, +00) X (—00, +00) separately as

1
y=—Xx YyY=ax
21
and
1
y=—Xx, Y= X
22

The core and support set enclosed by them are shown in Fig. 4.3.

Of course, we can also put it another way—*“approximately equal” is “difference
being very small.” Thus, the “approximately equal” can also be defined on range
[0, 1] of difference-degrees, or even directly be defined on range [0, b] of distances.

Example 4.2 Try to give the membership-consistency function of the “far greater
than” relation between two numbers on interval [a, b].

Solution “Far greater than” should be reaching or exceeding “greater than” to a
certain degree, so we define measure z = % (x, y € [a, D], x 2 y) as greater than
degree. It is not hard to see that the corresponding range of measurements, that is,
the range of greater than degree, is [0, 1], while “far greater than” is a flexible
concept on the range [0, 1] of greater than degrees. Let its membership function be

Fig. 4.3 Core and support
set of “approximately equal”
in two-dimensional space

N“
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0, 0<z<z
Z— 721 <
Mfar greater than (Z) = o — 21 137122 (45)
) 22 Z S 1
and the consistency function be
Z— 1
Cfar greater than (Z) - , TE [0, 1] (46)
2 —12

where z; and z, are separately the critical point and core-boundary point of “far
greater than.”

Substitute z = ;== into the above two expressions, we have

b
0, 0< =2 <z
=z
Mifar greater than (X,)’) = b=a < % <22 (47)
22— 2 o
17 22 S ﬁ S 1
X—y
b—a ' x—y
Cfargreaterthan(x> y) = I " bh_a € [07 1] (48>

They are the membership function and consistency function of “far greater than” on
product space [a, b] X [a, b] (of course, we can also find the core and support set of
“far greater than” in two-dimensional space [a, b] X [a, b]). Using them, we can
compute the degree of x far greater than y in interval [a, b].

In the above, we introduced space-transforming method for the modeling of a
flexible relation (concept). However, there exist such flexible relations, which
cannot be represented into the flexible relations between numerical feature values or
feature vectors of related entity objects. For example, “friend relation” is just such a
flexible relation. Obviously, we cannot use a certain measurement to stand for a
person to define the fried relation between people. Then, how do we establish
models for this kind of flexible relations? For this kind of flexible relations, we can
use the method similar to space transforming to modeling.

In fact, we can use directly numbers to represent the relation between entity
objects, that is, defining a measure of corresponding relations between objects (for
example, we can give a mark to the friend relation between two people), then define
the flexible relation on the measurement range obtained, and then through “inverse
transforming” to obtain the mathematical models of the flexible relation about
corresponding entity objects.

Concretely speaking, let R be an n-ary flexible relation between entity objects
which cannot be represented by numbers. Then, we define measure v = ¢(oy,
0y, ..., 0,) (0; € E; is entity object, E; is a set of entity objects, i = 1, 2, ..., n), then
define flexible relation R on range [a, b] of measure function v = ¢(0y, 02, ..., 0,,),
and obtain the corresponding membership-consistency functions mg(v) and cg(v);
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from again measure function v = ¢(0y, 05, ..., 0,), we obtain membership-

consistency of flexible relation R on Cartesian product ;;(l E;:
i

mR((ol,oz, c 0,1)V) = mg(v) (4.9)
cR((Ol,oz, . o,l)v) = cr(v) (4.10)

the corresponding support set and core are

supp(R) = {o|o € ‘%1 E;,0<mg(0) < 1} (4.11)

core(R) = {0|o € igl E;,mg(0)= 1} (4.12)

where o = (04, 05, ..., 0,).

Of course, if viewed object group (04, 03, ..., 0,) as one object, then relation R is
a property of (01, 0,, ..., 0,). At that time, we can use measurement v in place of
(01, 02, ..., 0,) and take directly mgr(v) and cgr(v) as membership-consistency
functions of R.

4.2.2 Space-Transforming Method for the Modeling
of a Multidimensional Flexible Property (Concept)

In Chap. 3, we have discussed the formation principle and mathematical models of
multidimensional flexible properties (concepts), and given the general expressions
of the membership-consistency functions of flexible properties (concepts).
However, we see that if according to the formation principle we modeled for a
multidimensional flexible property (concept) using flexible clustering in multidi-
mensional space, then the computation would be tedious and which would be hard
to realize with the increase of the dimensions of the space. Even if directly using the
general expressions of the membership-consistency functions of multidimensional
flexible properties (concepts), there still exist difficult. Because the precondition of
using these general expressions is that the corresponding flexible class already is
known, but the flexible classes of those usually known flexible properties are often
unknown. Then, are there other methods for the modeling of the multidimensional
flexible properties (concepts)?

Actually, we find that the above-stated method of space transforming for the
modeling of flexible relations (concepts) can also be applied to the modeling of the
multidimensional flexible properties (concepts). Next, we take flexible property
(concept) “near the point Py” on multidimensional space U as an example to
illustrate the approach in detail.


http://dx.doi.org/10.1007/978-981-10-1549-6_3

4.2 Space-Transforming Method 89

It can be seen that whether in one-dimensional space or multidimensional space,
“near” is always a kind of flexible linguistic value that characterizes distance.
Therefore, range D = (0, b] of distances (based on a certain unit of length) is the
direct measurement space of flexible concept “near.” Thus, we can define the
membership-consistency functions of “near” on range D of distances.

Let

I, 0<z<z

mnear(Z) = ZZZZ:ZZI , A<z<y (413)
07 22 S Z
2 —Z
Cnear(Z) = Z22— 4 , 2Z€D (414)

here, z € D is distance, z; and z, are separately the core-boundary point and critical
point of “near.” The graph of the membership function is shown in Fig. 4.4.
We know that in multidimensional space U, for any point P(x) € U, distance

d(P,Py) = /327, (xi — x0)*. Thus, set

n

c=d(P.P) =[S (5= o) (4.15)

i=1

Then, substitute this expression into the above expressions (4.9) and (4.10), and
then we have

n
1, 0< (xi—xo) <z
i=1
22— :x, (xi—x)° [ & 2
mnear(xlax27~--7xn) = %%217 Z1< Z(xi_xo) <Z2 (416)
i=1
2
O, 22 < Z (xz - XO)
i=1
Fig. 4.4 Membership m |
function of flexible linguistic Mpear(2)
value “near” on range of
distances

(=)
2

o —
N /
/
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2=/ (i —x)?
Crear (X1, X2, « 1, Xy) = P s (x1,x0, .. 0x,) €U (4.17)
2 — 21

They are the membership-consistency functions of flexible concept “near the point
Py” on multidimensional space U. Besides, we can also consider the core and
support set of “near the point Py’ in multidimensional space U.

If the radius of core and radius of support set of “near” are already known, then
the membership-consistency functions of “near the point P,” can also be rewritten
as

(4.18)

mnea.r(xlyxb .- .7)(?,,) =

r— /2 (6 = x)?
Cnear(xlaxb-'-axn) = , , , (xlaXZa“'vxn) el (419)
2 — Il

It can be seen that these two functions are the same as the
membership-consistency functions of “near the point Py” in Sect. 3.4,

The above two functional expressions are actually also the common expressions
of the membership-consistency functions of “near the point P,” Core—boundary
point and critical point z; and z,, and radius of core and radius of support set r; and
7, in the expressions are all adjustable parameters, and for different practical
problems, values of different meanings and sizes should be given to characterize the
concept of “near” of different scales. For example, for “near the sun,” radii r; and r,
are several tens of thousands of kilometers, for “near the Milky Way Galaxy,” r;
and r, are several light years, for “near city A,” r; and r, are several kilometers, and
for “near the nucleus,” r; and r, are just several nanometers.

It can be seen that the key of the above-stated modeling method is the equation

It actually is a transformation from multidimensional space U to one-dimensional
distance space D = [0, b]. It is just this transformation that transforms multidi-
mensional space U to one-dimensional space [0, b], thus changing “near” on
multidimensional space U into “near” on one-dimensional space [0, b]; then, it also
transforms inversely the membership-consistency functions of the latter into those
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of the former. Therefore, the modeling method of multidimensional flexible
attributive concept “near the point Py” is also space-transforming method.

From this example, it can be seen that the space-transforming method can also be
used in the modeling of multidimensional flexible properties (concepts). The
specific steps are similar with minor differences to the space-transforming method
in the modeling of flexible relations (concepts).

Let A be a known multidimensional flexible property (concept), we can obtain its
membership-consistency functions by the following steps and method:

(D Select or define appropriate measure u = 1 (P) by the semantics of A (P € U is
a point variable, U is an n(n > 1)-dimensional space), treat u = /(P) as a
function on multidimensional space U, and determine the range V of it, and
then treat V as the measurement space that A belongs to.

@ Define flexible concept A on V by flexible clustering, obtaining the corre-
sponding membership-consistency functions mi(u) and c4(u).

Q@ Substitute u = Y(xy, X, ..., X,) (X1, X2, ..., X, are the coordinate variables of
point P) into my,(u) and cs(u) as well as the corresponding core—boundary
point and critical point, then obtaining immediately membership-consistency
functions mu(xy, x5, ..., X,) and ca(xy, X2, ..., X,,) as well as the corresponding
core and support set of A on multidimensional space U.

Thus, the space-transforming method is also a common method for the modeling
of multidimensional flexible concepts.

For the space-transforming method, we need also to make some explanation
here.

We know that a one-dimensional point and its coordinate are the same real
number, so a flexible concept on one-dimensional measurement space U is also the
summarization of a set of numerical values on U. For example, “hot” is the sum-
marization of a set of temperatures, “tall” is the summarization of a set of heights,
and “old” is the summarization of a set of ages, etc. Therefore, the
membership-consistency functions of flexible concepts on one-dimensional mea-
surement spaces are all the direct functions of corresponding measures. However, a
point on a multidimensional space is no more single real number but a vectors (xy,
X2, ..., X,,) consisting of multiple real numbers, so a flexible property (concept) on
multidimensional space U is the summarization of properties stood for by a batch of
vectors on U rather than the direct summarization of vector’s components or point’s
coordinates x;, x, ..., X,,, while a flexible relation (concept) is even more the
summarization of the relation stood for by a batch of “tuple of vector” on product
space U; X U, X --- X U, rather than the direct summarization of members v,
v, ..., v, of vector tuples. Therefore, nor are the membership-consistency functions
of flexible concepts on multidimensional spaces the direct functions of corre-
sponding measures. For instance, flexible concept “near the point P” on a
two-dimensional space can be stood for by a two-dimensional flexible class (a
flexible circle), but this “near” is for the whole of two-dimensional point (x,
y) rather than directly for point coordinates x and y. Therefore, the
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membership-consistency functions of “near the point P are not the direct functions
of x and y, either. For another instance, the flexible relation (concept) of “ap-
proximately equal” can be stood for by a two-dimensional flexible class (a flexible
band), but this “approximately equal” is for the relation between x and y in
two-dimensional point (x, y) rather than directly for point coordinates x and
y. Therefore, the membership-consistency functions of “approximately equal” are
not the direct functions of x and y. For this reason, we need to use the
space-transforming method to indirectly obtain the membership-consistency func-
tions of flexible concepts on a multidimensional space.

4.3 Variable Substitution and Extended
Membership-Consistency Functions

Definition 4.1 Let m4(u) and c4(u) be the membership-consistency functions of
flexible concept A, and u be the function of variables xy, x5, ..., x,,, namely u = f{xy,
X3, ..., X,). Then, functions

ma(f (X1, X2, -« oy Xn)) = ma(X1,X2, -« ., Xp)

ealf(xr, X2y« o Xn)) = ca(x1,x2, .. ., Xn)

are called the extended membership-consistency functions of flexible concept A.

Example 4.3 Suppose “excellent” is a flexible linguistic value on the range [0, 100]
of learning achievements, and whose membership function is #excelient(2). Also, it is
known that the learning achievement u is the average of exam scores x, y, and z of
three courses A, B, and C, namely

u_x+y+z
3

Then, substitute that expression into Mexcelient (i), We have

x+y+z

3 ) = Mexcellent (x, Vs Z)

mexcellent(u) = Mexcellent (

The function is a function about scores x, y, and z, which is just the extended
membership function of “excellence.”

Extended membership-consistency functions are needed in some practical
problems yet. From the mathematical point of view, the extended
membership-consistency function of a flexible concept is obtained by variable
substitution u = f{x;, xp, ..., X,) from its original membership-consistency
functions.
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Example 4.4 Find the membership-consistency functions and extended
membership-consistency functions of an “approximate right triangle.”

Solution We know that the right-angle in a right triangle is certainly a maximum
angle. Therefore, an approximate right triangle is the triangle whose max angle is
approximate to 90°. So this problem is also to obtain the membership-consistency
functions of “a triangle whose max angle is approximate to 90°.” Thus, we firstly
find the membership-consistency functions of the flexible concept of “approximate
to 90°” (simply ap90). It is not hard to see that the measurement range corre-
sponding to ap90 is interval [0, 180], and ap90 is a flexible class on space [0, 180].
Since the max angle of a triangle is certainly not smaller than 60°, so we take 60°
and 120°as the critical points and 80°and 100°as the core-boundary points. Thus,
the membership-consistency functions of ap90 are

0, 0<0<60
=60 60<0<80
mapoo(0) = ¢ 1, 80< <100 (4.20)

120=0 100<0<120
0, 120<6<180

Cap90(9) = { 12%)0,()7 90_< 0 (421)

From the above analysis, these two functions are the membership-consistency
functions of “approximate right triangle,” where 0 = max{x,y,z}, and x, y, and
z are separately the degrees of three internal angles of a triangle. Then, substitute
these expressions into the above expressions (4.16) and (4.17), we have

0, max{x, y,z} <60
w7 60 <max{x,y,z} <80
Inap90(x7 Y, Z) = 1 80 < max{x7y7 Z} < 100 (422)
W’ 100 <max{x,y,z} <120
0 120 < max{x,y,z}

%&;}_60’ max{x, y, z} <90
Capo (X, ¥, 2) = 120 — max{x,y,z} (4.23)

20 ’

90 <max{x,y,z}

The two functions are the extended membership-consistency functions of “ap-
proximate right triangle.”

Example 4.5 Find the membership-consistency functions and extended
membership-consistency functions of an “approximate isosceles triangle.”
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Solution An approximate isosceles triangle is a triangle in which the lengths of two
sides are approximate, that is, the two internal angles are approximate. “Two
internal angles are approximate” also means their difference is approximate to 0°.
Therefore, we firstly find the membership-consistency functions of “approximate to
0°” (simply ap0). According to the problem, we take [0, 180] as the corresponding
measure range. Then, ap0 is a flexible class on space [0, 180]. Suppose its radius of
core and radius of support set separately is 2.5° and 5°, then the
membership-consistency functions of ap( are

1, 0<0<25
5—
Mapo (0) = S5 25<0<5 (4.24)
0, 5<6<180
5-0
capo(f)) = W, 0 S 0 S 180 (425)

These are the membership-consistency functions of “approximate isosceles tri-
angle,” where 6 = min{|x — y|, [y — z|, [z — x|}, and x, y, and z are separately the
degrees of three internal angles of a triangle. Then, substitute these expressions into
the above expressions (4.24) and (4.25), we have immediately

1, 0<0<25
5 —min{|x —y|, |y — 2|, |z —
myo(x,y,2) = min{|x y2‘5|y dlz=2} 55 pes (4.26)
0, 5<0<180
5 —min{|x —y|,ly — 2|, |z —
colry,z) = 2= mid =yl v =d 2=k g (4.27)

25

These are the extended membership-consistency functions of “approximate
isosceles triangle.”

Note that the domain of an extended membership-consistency function cannot
certainly be treated as the measurement space that the corresponding flexible
concept corresponds to.

4.4 Dynamic and Polymorphism of Mathematical Models
of Flexible Concepts

As stated in Sect. 2.2, the cores and support sets of some flexible concepts in
human brain can expand or contract dynamically, and the measurement spaces that
some flexible concepts belong to can also expand or contract dynamically, while
expanding or contracting of a measurement space will also lead to adjusting of the
corresponding cores and support sets or redefining of the corresponding flexible
linguistic values. On the other head, we also find that with different problems one
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and the same flexible concept (i.e., one and the same flexible linguistic value) will
belong to different range of numerical values, or in other words, different mea-
surement spaces. For example, the “tall” of people, the “tall” of trees, and the “tall”
of mountains are all “tall,” but the measurement spaces that such three “tall” belong
to are not same obviously. For another example, the “quick” of people, the “quick”
of cars, and the “quick” of aircrafts are all “quick,” but the measurement spaces that
such three “quick” belong to are not same, either. There is another situation that
some flexible concepts have special denotations except basic denotation. For
example, the “old” of ordinary people and the “old” of sportsman, and the “young”
of ordinary people and the “young” of scientists are in such situations. That one and
the same flexible linguistic value has multiple belonging measurement spaces
means that which has multiple cores and support sets and multiple
membership-consistency functions. We call the characteristic to be the polymor-
phism of a flexible concept, i.e., a flexible linguistic value.

Thus, dynamics and polymorphism are problems encountered in the modeling of
flexible concepts. Dynamics of a flexible concept is reflected in the mathematical
models so that the belonging measurement space of a flexible linguistic value can
change, the core and support set; that is, the domains of membership-consistency
functions can also change; specifically speaking, it is that the values of related
parameters (as s,,c¢,,c, and s, ) can change, that is, these parameters become
variables. If parameters s,,c;,c, and s, are also variables, then the corre-
sponding expressions of membership-consistency functions represent separately a
cluster of functions. Polymorphism of a flexible concept is reflected in the math-
ematical models so that one and the same flexible linguistic value corresponds to
multiple measurement spaces, multiple cores and support sets, and multiple
membership-consistency functions. As for the parameters and domains suitable for
dynamic and polymorphism of membership-consistency functions, they need then
to be set and determined according to specific problems, where related domain
knowledge and common sense will be involved.

4.5 Summary

In this chapter, we discussed the methods of the determination and acquisition of
the membership functions and consistency functions of known flexible concepts
and discussed the dynamics and polymorphism of mathematical models of a flex-
ible concept. The main points and results of the chapter are as follows:

e The basic method of the modeling of a flexible concept: first, determine the
corresponding measure and measurement space according to the feature of
things that a target flexible concept belongs to, then, determine the core—
boundary points (lines and planes) and critical points (lines and planes) of the
corresponding flexible concept, and then give the corresponding core and
support set as well as membership-consistency functions.
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According to corresponding practical problem, we can select one of the methods
of personal preference, statistics from a group, derivation with instances, and
generation by translating to determine core—boundary points (lines and planes)
and critical points (lines and planes) of a flexible concept.

For flexible relations (concepts) and multidimensional flexible properties
(concepts), we can also adopt space-transforming method to modeling. That is,
first, transform a multidimensional space to a one-dimensional space through a
certain measure, then establish mathematical models for the corresponding
flexible concept on the one-dimensional space, after then transform it back to the
original space. The basic idea of the space-transforming method is “translating
problem,” which, generally speaking, is necessary for flexible relations (con-
cepts), while for multidimensional flexible properties (concepts) it is then a kind
of modeling technique.

For some flexible concepts, we can firstly find the membership-consistency
functions on the corresponding measurement space, then derive the more
practical extended membership-consistency functional expressions by using the
method of variable substitution.
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Chapter 5
Flexible Sets and Operations
on Flexible Sets

Abstract This chapter founds the fundamental theory of flexible sets. Firstly, it
gives the types and definitions of flexible sets and analyzes and expounds the
relationships and similarities and differences between flexible set and ordinary
(rigid) set, flexible set and fuzzy set, and flexible set and rough set, respectively;
then, it defines the operations on flexible sets and the relationships between flexible
sets. In addition, the concept of flexible relations is also presented.

Keywords Flexible sets - Fuzzy sets - Rough sets - Flexible relations

In Chaps. 2 and 3, we focused on the formation principles of flexible linguistic
values and obtained various flexible classes by flexible clustering in measurement
spaces. In fact, the flexible classes are also a kind of subset of measurement space,
but they are not usual subsets. In this chapter, we will further examine this special
subset from the angle of set theory.

5.1 Types and Definitions of Flexible Sets

We know that a flexible class is the denotative model of a flexible concept. Since
flexible concepts can be classified into flexible attribute concept and flexible entity
concept, flexible classes can also be classified into two types: One type is the
flexible classes corresponding to flexible attribute concepts, each of which consists
of numerical feature values or feature vectors, and we call them the flexible class of
numerical values; the other type is the flexible classes corresponding to flexible
entity concepts, each of which consists of entity objects, and we call them the
flexible classes of entities. Examining the two types of flexible classes (see Chaps. 2
and 3), it can be seen that the common characteristics of flexible classes are as
follows:
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A flexible class is completely determined by its core and support set;

The core and boundary of a flexible class are both non-empty;

Every element in the core of a flexible class belongs to the flexible class
completely, and every element in the boundary belongs to the flexible class
partially, or in other words, to a certain degree.

OO

And the flexible classes of numerical values have also the following
characteristics:

(D The base set that a flexible class of numerical values belongs to is a continuous
measurement space, and the flexible class itself is also continuous (here
“continuous” includes both the “continuous” of real numbers and the “con-
secutive” of integers, and for multidimensional measurement space, it is the
succession and the equidistant distribution of points; the same hereinafter);

@ The membership-degree of a point in the core of a flexible class of numerical
values to the flexible class is 1, and the membership-degree of a point in the
boundary to the flexible class is equal numerically to the degree of this point
closing to the corresponding core-boundary point, that is, the degree of
approximation or similarity (strictly, the sameness-degree) between the two.

Besides, a flexible class of entities is always dependent on the corresponding
flexible class of numerical values.

On the basis of the types and characteristics of flexible classes, we introduce the
terminology and concept of flexible sets.

Definition 5.1 Let U be an n-dimensional measurement space as a universe of
discourse, and let S; and S, be two non-empty subsets of U. If §; and S, are both
continuous and §; C S», then §; and S, determine a flexible subset A of U; we call
it the flexible set of numerical values, where S is called the core of A, denoted core
(A), each member of which belongs to A completely; S is called the support set of
A, denoted supp(A); and S, — S| is called the flexible boundary of A, denoted boun
(A), each member of which belongs to A to a certain degree that numerically equals
the degree of approximation between the member and the corresponding boundary
point of S;. And set {x|x € U,0.5<my(x) < 1,my(x) is the membership-degree of
x to A} is called the extended core of flexible set A, denoted core(4)".

It can be seen that the membership-degrees of the objects in core(A) to A should
be all 1, and by the definition (Definition 2.2) of sameness-degree, the
membership-degrees of the objects in boun(A) to A should be between 0 and 1.
Besides, the objects in U — S, completely do not belong to A, so their
membership-degree to A can only be 0. Thus, flexible set A actually defines a
mapping ¢ from measurement space U to interval [0, 1]. Conversely, if there exists
a mapping ¢: U — [0, 1] satisfying conditions in the above definition, then this
mapping also determines a flexible subset A of U. Thus, we have another definition
of the flexible set.

Definition 5.1’ Let U be an n-dimensional measurement space as a universe of
discourse, ¢ : U — [0, 1] be a mapping from U to interval [0, 1], S| = {x|x €
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U,p(x) =1} and S, = {x|x € U,0<¢p(x) <1}. If the following conditions are
satisfied:

(1) S; and S, are both non-empty and continuous;

(2) ForVx € S, — S, always 0<¢(x) <1, and ¢(x) is numerically equal to the
degree of approximation between x and the corresponding boundary point of
NE

(3) For Vx € U — S,, always ¢(x) = 0;

then set

{(x, p(x))lx € U, (x) € [0, 1]} =A

is called a flexible subset of U, where ¢(x)(x € U) is called the membership
function of A, denoted m,(x). For any x € U, ms(x) € [0, 1] is called the degree of
x belonging to flexible set A, or simply, the membership-degree of x [1]. Sets
S and S, are separately called the core and support set of flexible set A, denoted
separately core(A) and supp(A), difference S, — S; is called the boundary of flex-
ible set A, denoted boun(A). And set {x|x € U,0.5<my(x) <1} is called the
extended core of flexible set A, denoted core(4)*.

It can be verified that if we take the sameness-degree in Definition 2.1 as the
degree of approximation between two points, then by Definition 5.1, it can still be
derived that the membership function of flexible set A in one-dimensional mea-
surement space [a, b] is a trapezoidal function, namely

01 a<x<s,
C{j;‘;, Sy <x<cy
m =4 L <x<c¢) (5.1)
S}":C} .ol <x<sy
0, sy <x<b

Definition 5.2 Let E be a set of entities, and £ and E; be two non-empty subsets of
E,E| C E, and let v(0) be the feature vector of object o in E, and U be a continuous
measurement space consisting of all v(o). If S; = {v(o)lo € E;} and S, =
{v(0)|o € E;} can determine a flexible set A in U, then E; and E, determine a
flexible set O in E. We call the flexible set O to be the flexible set of entities, where
E, is called the core of O, denoted core(O), each member of which belongs to
O completely; E, is called the support set of O, denoted supp(0); and E, — E; is
called the flexible boundary of O, denoted boun(0O), each member of which belongs
to O to a certain degree that equals the membership-degree of feature vector of the
object to flexible set A of numerical values; that is, mp(0) = ma(v(0)) (0 €
E; — Ey,mp(0) is the membership-degree of o to O). And set {o|o €
E,0.5<mp(0) <1} is called the extended core of flexible set O, denoted core(0)".

Definition 5.2’ Let E be a set of entities, and v(0) be the feature vector of object
o in E, and let U be a continuous measurement space consisting of all v(0), and S,
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and S, be two non-empty subsets of U, and §; C S,. If S| and S, can determine a
flexible set A in U, then E; = {o|v(0) € S} and E; = {o|v(0) € S»} determine a
flexible set O in E. We call the flexible set O to be the flexible set of entities, where
E, is the core of O, and E; is the support set of O.

Actually, feature vector v(0) also denotes a correspondence relation from set E of
entities to measurement space U (generally speaking, it is a many-to-one corre-
spondence). Thus, the Definitions 5.2 and 5.2" above can also be simply stated as
the Definition 5.2" below.

Definition 5.2” If A = v(0) is a flexible set of numerical values in U, then
O =v '(A) is a flexible set of entities in corresponding set E of entities (here
vfl(A) denotes the inverse correspondence of v(0)).

It can be seen that like the relation between flexible entity concepts and flexible
attribute concepts, flexible sets of entities are established on the base of flexible sets
of numerical values, or in other words, flexible sets of entities are dependent on the
flexible sets of numerical values. This is to say, to establish a flexible set of entities,
we need to establish the corresponding flexible set of numerical values firstly.

Example 5.1 Let U =[1, 200] be a universe of discourse. We take subsets
[15,40] and [18,25] C U as the support set and core, respectively, then a flexible
set of numerical values of U, A, is obtained, whose membership function is

0, x<15
=L 15<x<18
ma(x) = I, 18<x<25
A=x 25<x<40
0, 40 < x

It can be seen that if U is interpreted as the range of ages of mankind, then this
flexible set of numerical values, A, can be treated as the denotative model of flexible
attribution concept “young”. With the flexible set of numerical values, A, the
denotative model of flexible entity concept “young people” is just the flexible set,
denoted AP, of entities based on A, whose support set and core are

supp(AP) = {p.|px € P,0<map(py) <1}
core(AP) = {p.|px € P,map(px) = 1}

and the membership function is
map(px) = ma(x), x€U

here, p, denotes a person aged x, and P is the mankind set.

As an extreme case, there may be only one element in the core of a flexible set.
We call the flexible set whose core contains only one element to be the single-
point-core flexible set. Since there is only one element in the core, this element is
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not only the center of the core, but also the core-boundary point, core-boundary
line, or core-boundary plane of this flexible set. The membership function of a
single-point-core flexible set in one-dimensional measurement space is a triangle or
semi-triangle function. The common expression of the membership function of a
single-point-core flexible set with center of core number 7 is as follows:

0, a<x<s,
X7S” —
e, S, <x<n
my,(x) = 1, X=n (5.1
s, —x
o, n<x<s/
0, s;F<x<b

From the definition of a flexible set, it is not hard to see that a flexible set can be
viewed as the extension of an ordinary (rigid) set, while an ordinary (rigid) set can
then be viewed as the contraction of a flexible set. The relationship between the two
is analogous to that between one-dimensional geometric space and two-dimensional
geometric space.

With this terminology of flexible set, the denotative representation of a flexible
concept can be said to be a flexible set.

5.2 Flexible Sets Versus Fuzzy Sets

We know that the fuzzy set [2] can be defined as follows.

Definition 5.3 Let X be a set as a universe of discourse, and let u: X — [0, 1] be a
mapping from X to interval [0, 1]. Then set

A= {(x.u(x)lx € X, u(x) € 0, 1]}

to be called a fuzzy subset of X, where u(x) (x € X) is called the membership
function (MF) of A. And sets S; ={xjxe X,u(x)=1} and S, = {xx€
X,0< u(x) <1} are separately called the core and support (set) of fuzzy set A.

Comparing this Definition 5.3 with the above Definition 5.1', it can be seen that
if removing conditions (1)—(3) in Definition 5.1’ and changing measurement space
U into an ordinary set X, then the definition of flexible set becomes the definition of
fuzzy sets. That is to say, the flexible set of numerical values is actually a kind of
special fuzzy set. And from Definition 5.2', the flexible set of entities is based on the
flexible set of numerical values, and the membership function of a flexible set of
numerical values is also tantamount to the membership function of corresponding
flexible set of entities. So, a flexible set of entities can also be regarded as being
determined by the mapping, that is, membership function, from corresponding
universe to interval [0, 1]. Thus, flexible sets of entities are also a kind of special
fuzzy sets. Thus, conceptually speaking, flexible sets of numerical values and
flexible sets of entities are all special fuzzy sets.
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However, our flexible sets discriminate explicitly an entity object from its
measurement, and discriminate explicitly between flexible sets of numerical values
and flexible sets of entities, and take the former as the basis of the latter, which just
coincides with the denotations of flexible attribution concept and flexible entity
concept and the relationship between the two; but fuzzy sets do not discriminate
explicitly an entity object from its measurement, do not discriminate explicitly
between fuzzy sets of numerical values and fuzzy sets of entities either, but only
give generally a concept of fuzzy set.

Also, viewed from the connotation, (D the base set of a flexible set of numerical
values must be a continuous measurement space, @ the core and support set of a
flexible set must be non-empty, @ the membership function of a one-dimensional
flexible set is trapezoidal function, but fuzzy sets have no these requirements, and
only a general and not specific membership function (mapping: X — [0, 1]) being
given as the definition of a fuzzy set. As to the shape of the membership functions,
due to lack of objective basis, it can merely be decided subjectively.

We now examine, respectively, the relationship between flexible sets and flex-
ible concepts and that between fuzzy set and flexible concept. We know that for any
flexible concept, its denotation can be represented as a flexible set; conversely, for
any flexible set, we can obtain a flexible concept by taking the flexible set as the
denotation. However, the relationship between fuzzy sets and flexible concepts is
not such. For instance, although the fuzzy subset in a non-continuous universe can
also be treated as the denotation of a certain concept, the concept is not a flexible
concept. For another example, a fuzzy set without a core does not stand for any
flexible concept.

In fact, when the support set of a discrete fuzzy set is a non-continuous subset in
a measurement space, this fuzzy set is only a subset of instances of the corre-
sponding flexible concept. For instance, the fuzzy set “tall men” consisting of
students in a class is a subset of instances of flexible concept “tall men.”

The reason it is called a subset of instances here is because this kind of fuzzy set
is not the denotation of the corresponding flexible concept but only some instances
in the denotation. A subset of instances is not a flexible set, but that some subsets of
instances may be represented in the form of flexible set, such as
{(x1,m(x1), (x2,m(x2), ..., (xn, m(xy) }or{(x,m(x))|x € U; € U}, and they may
also be represented in the form of membership function, such as mqa(x),x € U, (U,
is not continuous).

Now we are clear that many discrete fuzzy sets actually are only subsets of
instances of the corresponding flexible concepts. In this sense, the flexible sets are
also the background sets of this type of fuzzy set.

Having made clear the relationship and difference between flexible sets and
fuzzy sets, we see more clearly the problem in using fuzzy sets for the modeling of
flexible concepts. Meanwhile, we also see the reasons why the form of the mem-
bership function of a fuzzy set is chosen arbitrarily: Besides people’s unclear
understanding of the objective basis and formation principle of flexible concepts,
the definition of the fuzzy set also appears vague and general and not appropriate
enough for the expression of the denotation of a flexible concept.
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We use flexible sets of numerical values to model flexible attribution concepts
and use flexible sets of entities to model flexible entity concepts. However, fuzzy
set theory does not discriminate the two and all use fuzzy sets for modeling. By
comparison, the maladies of using fuzzy sets to model flexible concepts appear
obviously.

5.3 Flexible Sets Versus Rough Sets

In 1982, Polish mathematician Pawlak proposed the theory of rough sets [3]. Rough
set is considered an important tool to solve uncertainty problems. Next we will
make a comparison between the flexible set and the rough set.

A rough set can be defined as follows:

Definition 5.4 Let U be a set as a universe of discourse, and let R be an equivalence
relation on U. XCU cannot be exactly represented by a union of some equivalence
classes [x]z (x € U) in quotient set U/R, but can be roughly represented by two such
unions approximating to X. Then, X is called a rough subset of U, or simply, a
rough set. These two sets that jointly describe X are separately called the upper
approximation and lower approximation of rough set X, and denoted separately
R (X) and R_(X), namely

R (X) = | J{¥ilY; e U /R, YinX # @}

R_(X)=J{¥lv; € U/R Yv,CX}

J

difference

BNgr(X) =R (X) — R_(X)
is called the boundary of X.

Note: In rough set theory, what plays the role of equivalence relation R in
Definition 5.4 is the so-called indiscernibility relation. But the indiscernibility
relation is also an equivalence relation on U. Therefore, here we directly use the
equivalence relation to define a rough set.

It can be seen that upper approximation R (X) is the smallest set that contains
X in U formed by certain equivalence classes [x]g, and the lower approximation
R_(X) is the biggest set that is contained in X in U formed by certain equivalence
classes [x]z. Thus, for Vx € U: if x € R_(X), then x € X, that is, x is certainly a
member of X; if x ¢ R~ (X), then x ¢ X; that is, x is certainly not a member of X; if
X € BNg(X), then probably x € X; that is, x may be a member of X.

Comparing the flexible set with the rough set, we can see that:
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@D The flexible set and the rough set are both determined by two subsets in
corresponding universe.

@ 1If an element in a flexible set of numerical values was viewed as an equiva-

lence class, and the elements in a flexible set of entities were incorporated into
one and another equivalence classes according to equivalence relation “mea-
surement identical,” then the core of flexible set is corresponding to the lower
approximation R_(X) of rough set, the support set of flexible set is corre-
sponding to the upper approximation R (X) of rough set, and the boundary of
flexible set is corresponding to BNz(X) of rough set.
For example, let A be a flexible set of numerical values (which represents a
flexible attribute concept), O be a set of entities, and AO be a flexible set of
entities, and let R be equivalence relation “measurement identical.” Then, the
support set and core of flexible set of entities, AO, can be rewritten as

supp(AO) = {sx|sx € O/R,0<map(sx) <1}
core(AO) = {sx|sy € O/R,mpo(sx) = 1}

mao(sy) = ma(x)

here x is the measurement of an entity object, s, is equivalence class [0y]r,
and o, is an object whose measurement is x. Thus, the cores of flexible sets
A and AO, core(A) and core(AO), are corresponding to the lower approxima-
tion R_(X) of rough set, the support sets of flexible sets A and AO, supp(A) and
supp(A0), are corresponding to the upper approximation R (X) of rough set,
and the boundaries of flexible sets A and AO, boun(A) and boun(AO), are
corresponding to BNg(X) of rough set.

@ For the membership of objects inside the core and outside the support set, the
flexible set and the rough set are completely the same.

For instance, let A be a flexible set in universe U. Then Vx € U; if x € core(A),
then m4(x) = 1; thus, x is certainly a member of A; if x & supp(A), then m,(x) = 0;
thus, x is certainly not a member of A.

These are the similarities between flexible sets and rough sets. However, there
are yet essential differences between the two.

First, flexible sets have the distinction of flexible sets of numerical values and
flexible sets of entities, but rough sets have no such classification.

Second, the universe of discourse that a flexible set of numerical values belongs
to must be a measurement space, while rough set has no such restriction.

Third, the rough set (method) uses some special subsets—equivalence classes—
of a universe to portray and describe another subset (X) of the universe. But though
the flexible set (method) can also be looked as using equivalence classes to describe
the subset of a universe, more obviously it is using directly the elements of the
universe and membership-degrees to portray and describe subsets of the universe.
And the core and support sets of a flexible set are determined by human brain’s
flexible clustering for continuous quantities, while the lower approximation and
upper approximation of a rough set are constructed by people using mathematical
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methods. The former has very strong subjectivity, while the latter is completely
objective.

Finally, the key distinction is that in the treatment of the membership of objects
in boundaries, flexible sets and rough sets are utterly different. As a matter of fact,
for the flexible set, if x € boun(A), then x € A to a certain degree, but for the rough
set, if x € BNg(X), then x € X possibly. That is, an object in the boundary of a
flexible set belongs to the flexible set with a membership-degree, while an object in
the boundary of a rough set belongs to the rough set with a probability. In other
words, the objects in the boundary of a flexible set certainly have the property
possessed by members in the core and only the degree is large or small (greater than
0 and less than 1), while the objects in the boundary of a rough set do not certainly
have the property possessed by members in the lower approximation, but once they
have, then they have the property completely; that is, the degree is 1. In terms of
logic, the former is somewhat true, the latter is possibly true. Further, the degree of
an object in the boundary of a flexible set belonging to the flexible set is negatively
related to the distance from the object to the core of the flexible set, but there is not
any relationship between the probability of an object in the boundary of a rough set
belonging to the rough set and the distance from the object to the lower approxi-
mation of the rough set.

By the above comparison, we see that flexible sets and rough sets have not only
important similarities but also essential differences. Flexible sets are oriented at
imprecise information while rough sets are oriented at uncertain information.

5.4 Basic Relations Between Flexible Sets

Like ordinary sets, there are also various relationships between flexible sets, such as
intersection and inclusion. On the basis of containment, there is also the concept of
subflexible sets. Since a flexible set of entities depends on the corresponding
flexible set of numerical values, in the following we only discuss the relationships
of flexible sets of numerical values.

Definition 5.5 Let U be an n-dimensional measurement space, and let A and B be
two flexible subsets in U.

(1) If supp(A) N supp(B) = &, then we say flexible sets A and B are disjoint.

(2) If supp(A) N supp(B) # &, then we say the flexible sets A and B are
intersectant.

(3) If supp(A) C supp(B), then we say flexible set A is contained in flexible set B,
or that flexible set B contains flexible set A; especially, if also core(A) C core
(B), then we say flexible set A is normally contained in flexible set B, or that
flexible set B normally contains flexible set A, denote ACB.

Unless otherwise specified later, the inclusion relation between flexible sets
would always refer to normal containment. The Venn diagram representations for
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(a) (b) (0)

B B B

Fig. 5.1 Venn diagram representation for relationships between two-dimensional flexible sets.
a Disjointing b intersection ¢ containment

the disjointing, intersection, and containment of two-dimensional flexible sets are
shown in Fig. 5.1 (here flexible sets are all flexible circles).

Theorem 5.1 Let U be an n-dimensional measurement space, and let A and B be
two flexible subsets of U. The sufficient and necessary condition for ACB is that for
any x € U, my(x) < mg(x) holds always.

Proof Sufficiency: Assume that for any x € U, always my(x) < mp(x). Suppose in
such case, A ¢ B. By Definition 5.5, it follows that supp(A) ¢ supp(B) or core
(A) & core(B). If supp(A) ¢ supp(B), then there at least exists a x" € supp(A) such
that m,(x") > 0 while mpg(x") = 0, but which is in contradiction with m,(x) < mp(x).
Likewise, if core(A) ¢ core(B), there at least exists a x' € core(A) such that
mu(x") = 1 while mp(x") < 1, which is still in contradiction with mu(x) < mp(x).

Necessity: Assume ACB, that is, supp(A) C supp(B) and core(A) C core(B).
Then, for any x € U:

If x € core(A), then mu(x) = 1, additionally core(A) C core(B), so certainly x
core(B); thus, mp(x) = 1, and it follows that m4(x) = mp(x);

If x & supp(A), then my(x) = 0, but from supp(A) C supp(B), then mp(x) = 0,
and it follows that m,(x) < mpg(x);

If x € supp(A) — core(A), then 0 < my(x) < 1, additionally supp(A) C supp(B),
so certainly x € supp(B); in this case, suppose that m,(x) > mp(x), then since
my(x) and mp(x) are both linear functions, so there at least exists a x' € supp
(A) such that m,(x") = 1, while mp(x") < 1, which is obviously contradictory to core
(A) C core(B). |

Theorem 5.1 also means that myu(x) < mp(x) is in fact equivalent to supp
(A) C supp(B) and core(A) C core(B). Thus, we can also replace the latter by the
former to define the inclusion relation of flexible sets.

Definition 5.6 Let U be an n-dimensional measurement space, and let A and B be
two flexible subsets of U. If for any x € U, always my(x) < mp(x), then we say
flexible set A is contained in flexible set B or flexible set B contains flexible set A,
denote A C B.

With inclusion relation C, we can further define the subflexible set.
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Definition 5.7 Let U be an n-dimensional measurement space, and let A and B be
two flexible subsets of U. If A C B, then A is called a subflexible set of B.

Definition 5.8 Let U be an n-dimensional measurement space, and let A and B be
two flexible subsets of U. If for any x € U, always my(x) = mp(x), then we say that
flexible set A equals flexible set B, write A = B.

Theorem 5.2 Let U be an n-dimensional measurement space, and let A and B be
two flexible subsets of U. The sufficient and necessary condition for A = B is supp
(A) = supp(B) and core(A) = core(B).

Theorem 5.3 Let U be an n-dimensional measurement space, and let A and B be
two flexible subsets of U. The sufficient and necessary condition forA = Bis A C B
and B C A.

The proofs of these two theorems are similar to that of Theorem 5.1, so here are
omitted.

5.5 Basic Operations on Flexible Sets

Just like ordinary sets, flexible sets also have intersection, union, complement, etc.
We still use symbols N, U, and  to denote the intersection, union, and comple-
ment of flexible sets. Similarly, we only discuss the operations on flexible sets of
numerical values.

5.5.1 |Intersection, Union, Complement, and Difference
of General Flexible Subsets

A flexible set is completely determined by its support set and core. Therefore, for
flexible subsets in one and the same measurement space, the corresponding inter-
section, union, complement, and difference should also be determined by their
support sets and cores.

1. Intersection of flexible sets

Definition 5.9 Let U be an n-dimensional measurement space, and let A and B be
two flexible subsets of U. A N B is called the intersection of A and B, whose
support set and core are:

supp(AN B) = supp(A) Nsupp(B) (5.2)

core(ANB) = core(A) Ncore(B) (5.3)
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From the definition, it can be explicitly seen that intersection ANB C U. Next
we consider the membership function of A N B. Take arbitrary x € supp(A N B),
then from Eq.(5.2), it follows that x € supp(A) and x € supp(B). Thus, the fol-
lowing two statements are equivalent.

(D x belongs to A N B with degree d.

@ x belongs to A and to B both with degree d.
On the basis of this, we consider the relation between the membership function
mynp(x) of A N B and membership functions m,(x) and mpg(x) of A and B.
Let d = min{m,(x), mp(x)}, it can be seen that for any d' € (d, 1]; the
statement

@ x belongs to A and to B both with degree d’
is not correct; and for any d' € (0, d), though statement @ cannot be con-
sidered wrong, it does not express sufficiently the degree of both x belonging
to A and x belonging to B, while only when we take d' = d, statement Q)
expresses just right and accurately the degree of both x belonging to A and
x belonging to B. As a matter of fact, d = min{my(x), mp(x)} = inf{d' | d
"€ (d, 1]} = sup{d' | d' € (0, d)}. In addition, from the equivalence between
statements (D and @), x also belongs to A N B with degree d.

The analysis above shows that misp(x) should be defined as min{m,(x),
mpg(x)}; that is,

manp(x) = min{my (x), mp(x)} (5.4)

Note that the above analysis does not involve the relation between flexible sets
A and B. However, in fact, there are relationships of disjointing, intersection, and
containment between flexible sets. Then, has the relation between A and B any
influence on membership function my4 - p(x) or not? In other words, is Eq. (5.4) also
true for flexible sets A and B with relations of disjointing, intersection, or con-
tainment? In the following, we analyze this problem specifically by using a
two-dimensional measurement space as an example and Fig. 5.1 for reference.

(1) Suppose A and B intersect, or supp(A) N supp(B) # . Then for V(x,y) € U,
there are the following cases:

(1) If (x, y) € supp(A) N supp(B), then (x, y) € supp(A) and (x, y) € supp
(B). So in this case, 0 < my(x, y) < 1 and 0 < mp(x, y) < 1. We may as
well suppose my(x, ¥) < mp(x, y). Then just as the reason previously
analyzed, now it would be most appropriate to only take miyn p(x,
y) = min{mu(x, y), mp(x, y)}.

(i) If (x, y) & supp(A) N supp(B), but (x, y) € supp(A), then in this case,
mang, y) = 0,0 < my(x, y) < 1 and mp(x, y) = 0. Thus, min{my,(x, y),
mp(x, y)} = 0. Therefore, mu p(x, y) = min{my(x, y), mp(x, y)} too.
Similarly, if (x, y) & supp(A) N supp(B), but (x, y) € supp(B), then
also my q p(x, y) = min{ma(x, y), mp(x, y)}.
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(iii)

If (x, y) & supp(A) and (x, y) & supp(B), then (x, y) & supp(A) N supp
(B). In this case, mu(x, y) = 0, mp(x, y) = 0 and my ~ p(x, y) = 0. Thus, it
also follows that mu  g(x, y) = min{my(x, y), mp(x, y)}.

In summary, when A and B intersect, mu  g(x, ¥) = min{mu(x, y), mp(x, y)}
holds always.

(2) Suppose A is contained in B, that is, supp(A) N supp(B) = supp(A). Then for
V(x,y) € U, there are the following cases:

®

(i)

(iif)

If (x, y) € supp(A), then (x, y) € supp(B). In this case, 0 < mu(x,y) < 1
and 0 < mp(x, y) < 1. We may as well suppose mis(x, y) < mp(x, y).
Then, just as the reason previously analyzed, now it would be most
appropriate to only take my - g(x, y) = min{mu(x, ), mp(x, ¥)}.

If (x, y) & supp(A), but (x, y) € supp(B), then (x, y) € supp(A) N supp
(B). In this case, mu(x, y) =0, 0 < mp(x, y) < 1 and my 5, y) = 0.
Obviously also miy p(x, y) = min{my(x, y), mp(x, y)}.

If (x, y)¢supp(B), then certainly (x, y) ¢ supp(A). Thus
(x, y) & supp(A) N supp(B). In this case, mp(x, y) = 0, my(x, y) =0
and my np(x, y) = 0. Thus, we have also my ~p(x, y) = min{my(x, y),
mp(x, y)}.

In summary, when A is contained in B, my - p(x, y) = min{my(x, y), mp(x, y)}
holds always.

(3) Suppose A and B are disjoint, or supp(A) N supp(B) = J. Then for
Y(x,y) € U, there are the following cases:

®

(i)
(iif)

If (x, y) € supp(A), then (x, y) € supp(B). In this case, 0 < mu(x, y) < 1
and mp(x, y) = 0. Thus, min{my,(x, y), mp(x, y)} = 0. And by supp
(A) N supp(B) =, it follows that my~p(x, y) =0. Therefore,
mAﬁB(x9 y) = min{mA(x7 y)7 mB(-x7 )’)}

If (x, y) € supp(B), then also myp(x, y) = min{mu(x, y), mp(x, y)}.
If (x, y) & supp(A) and (x, y) & supp(B), then (x, y) & supp(A) N supp
(B). In this case, mu(x, y) = 0, mp(x, y) = 0 and my4 p(x, y) = 0. Thus,
we have also my~p(x, ) = min{myu(x, y), mg(x, y)}.

In summary, when A and B are disjoint, miy ~p(x, y) = min{my(x, y), mp(x, y)}
holds always.

The above analysis shows that Eq. (5.4) is not related to the relations between
flexible sets A and B. That is to say, no matter whether flexible sets A and B are
disjoint, intersectant, or containment, it follows always that my - g(x) = min{m,(x),
mp(x)}. Thus, from the relation between a flexible set and its membership function,
we then give the following definition.

Definition 5.9’ Let U be an n-dimensional measurement space, and let A and B be
two flexible subsets of U. A N B is called the intersection of A and B, whose
membership function is
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Fig. 5.2 An example of the
membership function of

mp(x)
intersection A N B 1 1(x) B

Manp(X)

0 /\

manp(x) = min{my (x), mg(x)} (5.3)

When U is one-dimensional measurement space [a, b] and A and B intersect, the
graph of membership function m4 - g(x) is shown in Fig. 5.2.

2. Union of flexible sets

Definition 5.10 Let U be an n-dimensional measurement space, and let A and B be
two flexible subsets of U. A U B is called the union of A and B, whose support set
and core are:

supp(AUB) = supp(A) U supp(B) (5.6)
core(A U B) = core(A) Ucore(B) (5.7)

By the definition, it can be explicitly seen that the union A U B C U. Making
an analysis similar to that of intersection A N B and its membership function, we
can also have another definition of A U B.

Definition 5.10’ Let U be an n-dimensional measurement space, and let A and B be
two flexible subsets of U. A U B is called the union of A and B, whose membership
function is

maup(x) = max{mu(x), mp(x)} (5.8)
When U is one-dimensional measurement space [a, b] and A and B intersect, the

graph of membership function my  g(x) is shown in Fig. 5.3.

From Figs. 5.2 and 5.3, it can be observed that intersection A N B and union
A U B therein do not fully meet the definition of a flexible set, so they are actually

Fig. 5.3 An example of the m
membership function of union
AUB 14 up(x)

| y >< KEQ)
0 —
X
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not real or standard flexible sets. That is to say, the set of flexible subsets of space
U is not closed under intersection (N ) and union (U) of flexible sets. Therefore,
strictly speaking, intersection (M) and union (U ) are not operations on flexible sets.
But for habit’s sake, we still call them the operations on flexible sets.

3. Complement of a flexible set

Similar to ordinary sets, when the whole universe U is partitioned into only two
flexible subsets, one of them is just the complement of the other. According to the
methods of flexible clustering and flexible partitioning in Sect. 2.1, we give the
following definition.

Definition 5.11 Let U be an n-dimensional measurement space, and let A be a
flexible subset of U. A is called the complement of A, whose support set and core
are:

supp(A°) = (core(A))” (5.9)
core(A°) = (supp(A))* (5.10)

In the following, we take flexible class A of one-dimensional measurement space
U = [a, b] as an example to analyze the membership function of complement A“.
Let the core-boundary points and critical points of A be s, ¢y, ¢, and s, , and let
the core-boundary points and critical points of A° be sj.,cy,ch and s)c. By
Definition 5.11, it can be observed that these two groups of parameters should have
the following relations:

tm o et o — ot
Cpe = 84,840 = CpySyc = Cp ,Cpe = 8,

Thus, for any x € (s,/,c,/), we have

- +
X — S)e X—C
_ A A
mA((x)_____+_+
Cac = Sac S T €4
syo—x
ma(x) = —F—=
Sa T Cy
add the above two equations, we have
+ +
xX—c S)—x
A A
mye(x) +mp(x) = —=2- 4+ F——F=1
s, —c, s, —c,

Likewise, for any x € (c,., s, ), it also follows that

mpe (x) +ma(x) =1
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And for any x € core(A°), mac(x) = 1 holds; on the other hand, since core
(A°) = (supp (A)) “ = U — supp(A), mu(x) = 0. Therefore, also

mye (x) +ma(x) =1

And for any x € core(A), mu(x) =1 holds; on the other hand, since core
(A) = U — supp(A°), mac(x) = 0. Thus, also

Mmac(x) +ma(x) = 1
The above analysis shows that for any x € U, always
Mmac(x) +ma(x) = 1

Generalizing this equation, then it is as follows:
For any n-dimensional vector x € U, always

mae(x) +mp(x) =1 (5.11)

That is, the sum of the membership-degrees of one and the same object for a pair
of relatively complemented flexible sets is always 1. Thus, we also have a definition
of A“.

Definition 5.11’ Let U be an n-dimensional measurement space, and let A be a
flexible subset of U. A is called the complement of A, whose membership function
is

mac(x) = 1 — m(x) (5.12)

When U is one-dimensional measurement space [a, b], the graph of membership
function mye(x) is shown in Fig. 5.4.

Actually, viewed from the angle of sets, that the sum of the membership-degrees
of an object for relatively complemented flexible sets is 1 also means that there is a
kind of complementation relation between membership-degrees of relatively
complemented flexible sets. Therefore, we call Egs. (5.11) and (5.12) to be the
complement law of membership-degrees.

In the above, we gave, respectively, two definitions for each of the intersection,
union, and complement operations of flexible sets. However, it can be proved that

Fig. 5.4 An example of the
graph of the membership
function of one-dimensional 1
complement A€

m
ma(x) mye (¥)

=
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the two definitions are in fact equivalent. From this, we have immediately the
following theorem.

Theorem 5.4 Let U be an n-dimensional measurement space, and let A and B be
two flexible subsets of U, then
supp(A N B) = supp(A) N supp(B) and core(A N B) = core(A) N core(B) &

manp(x) = min{my (x), mp(x)} (5.13)

supp(A U B) = supp(A) U supp(B) and core(A U B) = core(A) U core(B) €
maup(x) = max{ma(x), mg(x)} (5.14)
supp(A“) = (core(A))" Ncore(A°) = (supp(A))“e mye(x) = 1 —ma(x) (5.15)

Since the intersection and union of flexible sets are defined by the intersection
and union of their support sets and cores, the support sets and cores are ordinary
sets whose operations satisfy associative laws, so the intersection and union of
flexible sets in one-dimensional measurement space also satisfy associative laws.
Therefore, these two operations can be generalized to the case of n flexible sets.

Definition 5.12 Let A, A,,..., A, be n flexible sets in n-dimensional measurement
space U. Ay N A, N ... N A, and A} U A, U ... U A, are separately the
intersection and union of these n flexible sets, whose supports and cores are:

supp(A;1 NAx N...NA,) = supp(A;) Nsupp(Az) N...Nsupp(A,) (5.16)
core(A; NA,N...NA,) = core(A;) Ncore(Az) N...Ncore(Ay) (5.17)
supp(A; UAy U...UA,) = supp(4;) Usupp(Az) U. .. Usupp(4y,) (5.18)

core(A; UA,U...UA,) = core(A;) Ucore(Az) U. .. Ucore(Ay) (5.19)

Definition 5.12' Let A, A,,..., A, be n flexible sets in n-dimensional measurement
space U. Ay N A, N ... N A, and A; U A, U ... U A, are separately the
intersection and union of these n flexible sets, whose membership functions are:

MA N4y N..NA, (x) = min{mA1 (x)7 ma, ()C), - My, (x)} (520)
Ma, UA,U..ua, (X) = max{myu, (x),ma, (x),...,ma, (%)} (5.21)
4. Difference of flexible sets
Definition 5.13 Let U be an n-dimensional measurement space, and let A and B be

two flexible subsets of U. A — B is called the difference of A minus B, whose
support set and core are:



116 5 Flexible Sets and Operations on Flexible Sets

supp(A — B) = supp(A) — supp(B) (5.22)

core(A — B) = core(A) — core(B) (5.23)

5.5.2 Intersection and Union of Orthogonal Flexible
Subsets

Let U = [a, b] and V = [c, d]. Firstly, we consider the compound sets A N B and
A U B of orthogonal flexible sets A and B in two-dimensional product measure-
ment space U X V.

Let flexible sets A and B be shown in Fig. 5.5. According to the above definition
of intersection of flexible sets, only keeping the intersection of the support sets and
the intersection of the cores of flexible sets A and B in the figure, we obtain a
rectangular region as shown in Fig. 5.6, which is the intersection A N B of
orthogonal flexible sets A and B. Visually, the geometry of the intersection
A N B is a flexible block in space U x V.

Similarly, according to the definition of union of flexible sets, keeping the
support sets and cores of A and B in Fig. 5.5, we obtain the crisscross region as
shown in Fig. 5.7, which is the union A U B of orthogonal flexible sets A and B.

It can be observed that the compound sets A N B and A U B of orthogonal
flexible sets A and B are still flexible sets in U x V. Next, we analyze the mem-
bership functions of the two flexible sets.

(1) Membership function of flexible intersection A N B

We enlarge separately the flexible intersection A N B in Fig. 5.6 to that as shown
in Fig. 5.8. It can be observed that the flexible boundary of A N B (that is, the white
part around the rectangular region) can be viewed as jointed together by the flexible
boundary sections of A and those of B. And viewed from the direction of x-axis, the
core of A N Bis also a part of the core of the original A; viewed from the direction of
y-axis, thecore of A N Bisalso a part of the core of the original B. Thus, in the support

Fig. 5.5 Orthogonal flexible A
sets A and B | —

=y
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Fig. 5.6 Geometry of A
intersection A N B y | —

U
X
Fig. 5.7 Geometry of union A
AUB y '} —r—
Vv
B
U o
X

setof A N B, for points in the left and right boundaries (i.e., in x direction) of the core,
their original membership-degrees for flexible set A is also their membership-degrees
now for flexible set A N B; conversely, their membership-degrees for flexible set
A N Bonly be the membership-degrees to flexible set A. Similarly, in the support set,
for points located at the upper and lower boundaries (i.e., in y direction) of the core, the
membership-degrees to flexible set B are also the membership-degrees to flexible set
A N B; conversely, the membership-degrees to flexible set A N B only be those to
flexible set B. That is equivalent to saying that for any point (x, y) in the support set, its
membership-degree to flexible set A N B can only be computed by the
membership-degrees of its components x to A or y to B, but cannot be computed by
(x, y) as a whole. Thus, the boundary of flexible set A N B is divided into 4 parts (as

shown in Fig. 5.8). Then, for V(x,y) € core(ANB), manp(x,y) = 1; for V(x,y) €

alamAﬂB(x7y) = mA(x) = C)/;_—?;’ for V(x,y) € a23mAﬂB(x7y) = mA(x) = ﬁa
for V(x,y) € bi,manp(x,y) = mp(y) = C};fl;; and for V(x,y) € by, manp(x,y) =

+_y
Sp =Y

mp(y) = s;; -

To sum up the above analysis, we have
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C{iss; ) (xvy) € a
%7 (X,y) € a
) (x,y) € core(ANB)
o ) x7y
mang(x,y) = y—s5 (5.24)
G (x,7) € by
%7 (X,y) S b2
0, (x,y) & core(ANB)Ua; Uay, Ub; Ub,

where s, and s, are separately the negative and positive critical points of flexible
set A N B about x, and ¢, and ¢, are the negative and positive core-boundary
points of A N B about x; s; and s; are the negative and positive critical points of
A N Babouty, and cy and ¢ are the negative and positive core-boundary points
of A N B about y.

Equation (5.24) is the common expression of the membership functions of
flexible set A N B on two-dimensional measurement space U. The graph of the
function is shown in Fig. 5.9, whose shape is an edged (also called truncated square
pyramidal) surface. Of course, Eq. (5.24) is the membership function of those
flexible sets located at the non-edge part of space U. For those flexible sets located
at the edge of space U, the shape of their membership functions is not standard
terraces but semi-terraces, so these membership functional expressions should not
be totally the same as Eq. (5.24), and here, we had rather not go to details.

It can be seen that the membership function of A N B is also combined by the
membership functions of flexible sets A and B. In fact, viewed from the graph, the
membership function of A N B is obtained from membership functions of A and
B by cutting each other, while for the overlapping part of the two functions, in effect
which just is tantamount to taking the smaller values of the functions from
ma(x) and mp(y) as the value of function my - p(x, y). And then, we see that such
“taking the smaller” is actually also applicable to all points in the whole space.
Thus, the membership function of A N B can also be expressed by the following
expression:

mAﬁB(xay):min{mA(x)va(y)}’ X € vae 4 (525)
Fig. 5.8 The flexible v A
boundary of intersection - -
ANB . by /7
ay a B

=Y
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Fig. 5.9 Graph of
membership function
mp (X, ¥)

mAﬁB(x’ y)

(2) Membership function of flexible union A U B

From Fig. 5.7, it can be seen that for any point (x, y) € U X V, if (x, y) € supp
(A) and (x, y) & supp(B), then mayp(x, y) = ma(x, y); if (x, y) € supp(B) and
(x, y) & supp(A), then m4p(x, y) = mp(x, y); if (x, y) € supp(A) N supp(B), then
using the above analysis method of the membership function of flexible intersection
A N B, we have my | p(x, ¥) = max{my(x), mp(y)} (which is tantamount to only
keeping the above curved surface of the overlapping part of the two function
graphs); and for point (x, y) & supp(A) U supp(B), obviously, m,p(x, y) = 0.
Thus, in summary, the membership function of flexible set A U B is

mAUB(xvy) = max{mA(x)’mB(y)}’ xeU,yeV (526)

whose graph is shown in Fig. 5.10, with shape an orthogonal truncated ridged
surface.
To sum up, we give the following definition.

Definition 5.14 Let A and B be two orthogonal flexible sets in two-dimensional
measurement space U X V. A N B and A U B are separately the intersection and
union of A and B, and their membership functions are as follows:

mang(x,y) = min{ms (x),mp(y)}, x€U,yeV (5.27)

Fig. 5.10 Graph of map (X, y)
membership function
maug (x, y)
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maup(x,y) = max{my(x),mp(y)}, xe€U,yeV (5.28)

It is not hard to see that the membership functions of the intersection and union
of the orthogonal flexible sets in the two-dimensional space can also be generalized
to n-dimensional space.

Definition 5.15 Let A, A,,..., A, be pairwise orthogonal flexible subsets in
n-dimensional product measurement space U = U; X U, X ... X U,, and let
Al NA N ... NAyandA; U A, U ... U A, be separately the intersection and
union of the n flexible sets. The membership functions of the two compound
flexible sets separately are:

ma, Ay 0.4, (X1, X2, - X)) = min{mg, (x1), ma, (X2), . .., ma, (X4) } (5.29)

MA, AU uA, (X15X0, o X)) = max{my, (x1),ma, (x2),...,ma,(x,)}  (5.30)

5.6 Cartesian Product of Flexible Sets

In this section, we discuss the Cartesian product of flexible sets.

Definition 5.16 Let A and B be separately flexible sets in one-dimensional mea-
surement spaces U = [a, b] and V = [c, d]. A X B is called the Cartesian product of
flexible sets A and B, whose core and support set are given as follows:

core(A x B) = core(A) x core(B) (5.31)
supp(A x B) = supp(A) x supp(B) (5.32)

From the definition, the support set and core of Cartesian product A X B are
shown in Fig. 5.11. From the figure, it can be explicitly seen that the Cartesian
product of flexible sets A and B, A x B C U x V, and which is still a flexible set. In
the following, we consider the membership function of A X B.

Fig. 5.11 The support set A
and core of cartesian product A —
Ax B RN

=y
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Now that A X B is the product of A and B, then for V(x,y) € U x V,maxp(x,y)
should be a certain operation or function of my,(x) and mp(y). What kind of a
function is it exactly?

Viewed from the shape, the core and support set of this product seem to be
completely like those of the above intersection. But we notice that the two coor-
dinate components x and y of point (x, ¥) in support set and core here are both
related and contributive to the membership-degree of point (x, y) for the product
A X B, not like the point (x, y) in intersection, where only one coordinate com-
ponent plays the role really. Therefore, the membership function of this product
cannot be min{m,(x), mp(y)} like that of intersection. And in consideration of the
constraint of the membership function itself, that is, for V(x,y) € U x V, always
0 <maxp(x,y) <1, it seems that myyp(x,y) being taken as the weighted sum of
my(x) and mp(y) may be an appropriate choice. Thus, we tentatively suppose

_ Jwima(x) +wamp(y),  ma(x) #0Amp(y) #0
mAxB(xa)’) = { 0, Y mA(x) -0 va(i) -0 (*)

where x € U,y € V,wi,w, € (0,1) and wy + wp = 1.
Thus, for any (x,y) € U x V, there are then the following situations:

(1) If (x, y) € core(A X B), then it follows by Definition 5.16 that (x, y) € core
(A) X core(B). Thus, x € core(A) and y € core(B). Thus, by equation (*) we
have

maxp(x,¥) = wima(x) +womp(y) =wy - L+wy - 1l =w;+wy =1

(i) If (x, y) € supp(A X B), then it follows by Definition 5.16 that (x, y) € supp
(A) X supp(B). Thus, x € supp(A) and y € supp(B), and then 0 < my(x) < 1
and 0 < mp(y) < 1. Therefore, by equation (*) we have

0 <maxp(x,y) = wima(x) + womg(y) <1

(i) If (x, y) € supp(A X B), then it follows by Definition 5.16 that (x, y) & supp
(A) X supp(B). Thus, x & supp(A) or y & supp(B), that is, mu(x) =0 or
mp(y) = 0. Thus, by equation (*) we have

mAxB(xay) =0

The analysis above shows that the function given above can serve as the
membership function of product A X B. Since in the argument above Eqgs. (5.31)
and (5.32) are used, this membership function can be said to have been derived
from the two equations. Then, conversely, we consider whether Eqs. (5.31) and
(5.32) of Definition 5.16 can be derived from this membership function.
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Suppose there exists wy, w, € (0, 1) and w; +w, =1, such that
Maxp(X, ¥) = wima(x) + wompg(y), x € U,y € V, then, for any (x, y) € U X V, there
are then the following situations:

(1) If (x, y) € core(A X B), then maxp(x, y) = 1; then, it would follow by mxp(x,
y) = wimy(x) + womp(y) that wimyu(x) + womp(y) = 1; from which it must
follow that m4(x) = 1 and mp(y) = 1; thus, x € core(A) and y € core(B); thus,
we have (x, y) € core(A) X core(B). Conversely, let (x, y) € core(A) X core
(B), this shows that x € core(A) and y € core(B), so it follows that m,(x) = 1
and mp(y) = 1, and then it follows that muxg(x, y) = wima(x) + womp(y) =

wiel + wpel = wy + w, = 1; thus, we have (x, y) € core(A X B). That just
proves that core(A X B) = core(A) X core(B), namely Eq. (5.31).

(i) When (x, y) € supp(A X B), then 0 < myxp(x, y) < 1; also since myxp(x,
y) = winia(x) + womp(y), while my(x) # 0 A mg(y) # 0, it follows that
0 < wimu(x) + womp(y) < 1, and 0 < my(x) <1 and 0 < mp(y) < 1; hence,
x € supp(A) and y € supp(B); thus, we have (x, y) € supp(A) X supp(B).
Conversely, let (x, y) € supp(A) X supp(B), then it shows that x € supp
(A) and y € supp(B); thus, it follows that 0 < my(x) < 1 and 0 < mp(y) < 1,
and then it follows that 0 < wym,(x) + womp(y) < 1; thus, we have (x, y) €
supp(A X B). That just proves that supp(A X B) = supp(A) X supp(B), namely
Eq. (5.32).

To sum up the above analysis, we have also a definition below.
Definition 5.15" Let A and B be separately flexible sets in one-dimensional mea-
surement spaces U = [a, b] and V = [c, d]. Flexible set A X B is the Cartesian
product of A and B, whose membership function is:
_ Jwima(x) +wamp(y), ma(x) # 0 Amg(y) # 0
Maxs(%,y) = { 0, ma(x) =0V mp(y) =0 (3-33)

where x € U,y € V, wy, w, € (0,1) and wy + w, = 1.
By the above two definitions, we can also derive the following facts.

Corollary 5.1

(1) When my(x) > 0.5 and mg(y) > 0.5, for any w;, w, € (0,1) (w; + wy = 1),
always maxp(x, y) = wimu(x) + wompg(y) > 0.5.

(2) Extended core core(A X B)* of flexible product A X B cannot be expressed by
an operational expression of core(A)* and core(B)* of extended cores of
flexible sets A and B; we can only analyze it specifically according to specific
weights. But there are always more points in core(A X B)* than in core
(A)" X core(B)*.

3) AXB#AXV N UX B. That is tantamount to saying that the intersection
of two orthogonal flexible sets A X V. and U X B in U X V is not equal to the
product of the original sets A and B.
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In fact, for (x, y) that satisfies m4(x) > 0.5 and mp(y) > 0.5, let my(x) = 0.5 + &,
and mp(y) = 0.5 + &, then

wima(x) + womg(y) = w10.5 + & + w20.5 + &
= W105 + W205 + & + &
=054+¢ +& >05

Thus, (1) has been proved.

Since V(x, y) € core(A)* X core(B)" satisfies mu(x) > 0.5 and mg(y) > 0.5, so
maxg(x, y)>0.5. Consequently, (x, y) € core(A X B)". This shows core
(A)* X core(B)* C core(A X B)" and also shows that points (x, y) within the
median line of support set supp(A X B) all satisfy msxp(x, y) > 0.5. However, it is
not hard to see that between the median line and the boundary line of supp(A X B),
there may still be points (x, y) which satisfy muxp(x, y) > 0.5. For instance, take
point ", y) e supp(A X B), suppose ma(x’) = 1 and mB(y*) = 0.3, so the point is
located between the median line and the boundary line of supp(A X B). Then, when
taking w; = 0.8 and w, = 0.2, we have

Maxp(x,y) = wima(x*) +wamp(y*) = 0.8 x 1 +0.2 X 0.3 =0.86 > 0.5

That shows that point (x’, y*) € core(A X B)". Therefore, the points in core
(A X B)* are more than those in core(A)" X core(B)*. But, which points between
the median line and the boundary line of supp(A X B) satisfy m,xp(x, y) > 0.5 need
yet to be determined by specific weights wy and w,. Clearly, for different weights
wy and w,, the points that satisfy maxp(x, y) > 0.5 are different. That is to say,
extended core core(A X B)" cannot be expressed by a common expression but can
only be analyzed specifically according to specific weights.

By (2), we can immediately have fact (3), which is an important distinction
between flexible sets and rigid sets.

Like usual Cartesian products, the Cartesian product of flexible sets can also be
generalized to the cases of multiple flexible sets.

Definition 5.17 Let U; = [a;, b;], and let A; be a flexible set in U;, i=1, 2,..., n,
then flexible set A = ;<1 A; is the Cartesian product of Ay, A,,..., A,, whose core and
iz

support set are:

core(A) = -;13 core(A;) (5.34)

=

supp(A) =

W'X:

 Supp(A;) (5.35)

Definition 5.17' Let U; = [a;, b;], and let A; be a flexible setin U;, i = 1, 2,..., n.
Then, flexible set A = gl A; is the Cartesian product of A, A,,..., A,, whose

membership function is:
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ma) = { &V, ma,xi) 70 (5.36)

0, for others

n
where x = (xq, X2,..., Xn), X; € Ui, w; € (0,1) and > w; = 1.
i=1

By Definitions 5.17 and 5.17', we have the following theorem.

Theorem 5.6 Let U; = [a; b;], and let A; be a flexible setin U, i = 1, 2, ..., n, then,
core(A) = «gl core(A;) and supp(4) = gl supp(4;)

max) = 4 = wira, (%), ma, (i) # 0 (5.37)

0, for others

where x = (X], X2yeuny xn), X; € U,‘, w; € (0,1) and ZW,‘ =1.
i=1
Now the problem remained is that the coefficient, i.e., weight w; (i = 1, 2,..., n),
in this membership function is not determined. But the assignment of weights
should be determined by flexible linguistic values that flexible sets Ay, A,..., A,

and .>n<1 A; correspond to. In fact, product '>n<1 A, is just corresponding to the synthetic
i= i=

linguistic value A; @ A, @ ... © A, synthesized by the corresponding flexible
linguistic values Aj, A,,..., A, (see Sect. 6.4.2 for details).

5.7 Flexible Relations

There are many kinds of relationships between things, of which some are rigid, that
is, rigid relationship, but some are flexible, that is, flexible relationship. For
instance, “equation,” “parallel,” and “father and son” are rigid relationship, while
“similar,” “analogous,” “approximate,” “approximately equal to,” “far greater
than,” and “good friend” are all flexible relations. Like that a usual (rigid) relation
can be stood for by a (rigid) set, a flexible relation can also be stood for by a flexible
set.

We call the flexible relation stood for by a flexible set of numerical values to be
the flexible relation of numerical values, and call the flexible relation stood for by a
flexible set of entities to be the flexible relation of entities. For example, pure
“similar” relation is a kind of flexible relation of numerical values, while the
“similar” relation between persons is then of flexible relation of entities. Besides,
the flexible relation between entity objects which cannot be represented by
numerical values (e.g., the “friend” relation between persons) can also be classified
as flexible relation of entities. Since a flexible set of entities depends on the

EEINNT3
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corresponding flexible set of numerical values, a flexible relation of entities depends
on the corresponding flexible relation of numerical values. Therefore, in this chapter
we only discuss the flexible relations of numerical values.

Definition 5.18

(i) Let U and V be one-dimensional measurement spaces. Flexible subset R in
product space U X V is called a flexible relation from U to V, which also
called a binary flexible relation on U X V.

(i) Let U; i=1, 2,..., n) be a k; (k; 2 1)-dimensional measurement space.
Flexible subset R in product space U; X U , X ... X U, = U is called a
flexible relation between U;, U,,..., U,, which also called an n-ary flexible
relation on U.

Example 5.2 The two flexible sets that Figs. 5.12 and 5.13 show can separately
stand for two binary flexible relations of “approximately equal to” and “far greater
than” between a range of positive numbers.

Since flexible relations are also a kind of flexible sets, they can also be repre-
sented by the method representing flexible sets. For example, binary flexible
relation R can be represented as

{((xay)7mR(xay))|x € U?y € V}

And a flexible relation between finite measurement spaces can also be repre-
sented as a matrix of the form

mg(xi,y1)  mg(x,y2) - mg(xy,yn)
mR(XZayl) mR(Xz,yz) c mR(x27yn)
mR(xmayl) mR(xnuyZ) ce mR(xm7yn)

or an arrow diagram or a directed graph. For example, Fig. 5.14 is an arrow

diagram of binary flexible relation R from space U = {x, x5, ..., X} to space
Fig. 5.12 An example of the A
flexible set standing for Y y=x
“approximately equal to” _—

0 -
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Fig. 5.13 An example of the
flexible set standing for “far
greater than”

Fig. 5.14 An arrow diagram
of a flexible relation

5 Flexible Sets and Operations on Flexible Sets

v A

|

mg(xy, Y1)

[,

Y1

mR(Xms yn)

V = {y1, ¥2,..., ¥n}. Here, the numbers in the matrix and the numbers on the arrows
are the membership-degrees of corresponding ordered pair (x;, y;) for relation R.

5.8 Summary

In this chapter, we founded the fundamental theory of flexible sets. Firstly, we gave
the types and definitions of flexible sets and analyzed and expounded the rela-
tionships and similarities and differences between flexible set and ordinary (rigid)
set, flexible set and fuzzy set, and flexible set and rough set, respectively, and then
defined the operations on flexible sets and the relationships between flexible sets. In
addition, the concept of flexible relations is also presented.

The main points and results of the chapter are as follows:

e Flexible sets are a kind of subsets in the universe of discourse that have flexible
boundaries, which can be classified as flexible sets of numerical values and
flexible sets of entities, yet the latter depends on the former. We defined the
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flexible set by using “core and support set” and membership function separately.
Flexible sets are the extension of ordinary sets, which are a kind of special fuzzy
sets, which have some important similarities with rough sets but also have
essential differences.

e Flexible sets are a kind of mathematical models of flexible linguistic values
(flexible concepts), the two are mutually correspondent, while some discrete
fuzzy sets are only the subsets of instances of corresponding flexible linguistic
values (flexible concepts).

e There are also relationships of disjointing, intersection, containment, and
equality between flexible sets.

e Flexible sets also have the operations of intersection, union, complement, dif-
ference, and Cartesian product, which can be defined by the operations of cores
and support sets of corresponding component sets, also can be defined by the
operations of membership functions of component sets, and the two kinds of
definitions can be deduced from each other.

e The sum of the membership-degrees of one and the same object to a pair of
relatively complemented flexible sets is 1. We call this quantitative relation the
complement law of membership-degrees.
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Chapter 6
Flexible Linguistic Values and Operations
on Flexible Linguistic Values

Abstract This chapter founds the fundamental theory of flexible linguistic values.
First, this chapter introduces the types of flexible linguistic values, then analyzes
and defines the operations on flexible linguistic values, and in particular proposes
the concepts and methods of algebraic composition and decomposition of flexible
linguistic values. Meanwhile, this chapter also analyzes the properties and relations
of relatively negative linguistic values and then proposes the complementary par-
tition of a measurement space and the complementary relation of flexible linguistic
values. Besides, this chapter also considers other relations between flexible lin-
guistic values, especially analyzes and defines the approximation relation between
flexible linguistic values, and presents the corresponding measuring method.

Keywords Flexible linguistic values - Consistency functions - Imprecise information

Flexible sets are the mathematical essence of flexible concepts, but which are only
the denotations of flexible concepts, so using only the flexible sets, it is hard to
reflect many semantic features and relations of flexible concepts. Flexible linguistic
values are the semantic symbols of flexible concepts, and we also gave consistency
functions the mathematical models for flexible linguistic values. Thus, in this
chapter, we will focus on the flexible linguistic values, to discuss the operations on
them and the types, relations, and properties of them, so as to set up relevant
theoretical and technological bases.

6.1 Types of Flexible Linguistic Values

6.1.1 Atomic Linguistic Values, Basic Linguistic Values,
and Composite Linguistic Values

The flexible linguistic value resulted from flexible clustering of a measurement space
is an atomic linguistic value. The atomic flexible linguistic value corresponding to a
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group of flexible sets which form a flexible partition of a measurement space is a
group of basic flexible linguistic values on the measurement space. A basic flexible
linguistic value is certainly an atomic linguistic value, but the converse is not nec-
essarily true. A composite flexible linguistic value is made of several flexible lin-
guistic values (on the same space or distinct spaces) by logic operation of
conjunction (A) or disjunction (V), or algebraic operation of synthesis (D).

6.1.2 One-Dimensional Linguistic Values and
Multidimensional Linguistic Values

Viewed from the dimensions of space, flexible linguistic values can be separated
into one-dimensional linguistic values and multidimensional linguistic values. That
is, a linguistic value on the one-dimensional measurement space is called a
one-dimensional linguistic value, and a linguistic value on the multidimensional
measurement space is called a multidimensional linguistic value [1].

6.1.3 Full-Peak Linguistic Values and Semi-Peak Linguistic
Values

According to the shapes of consistency functions, flexible linguistic values can be sep-
arated into full-peak linguistic values and semi-peak linguistic values. Specifically
speaking, for a one-dimensional flexible linguistic value, if its consistency function is a
full-triangle function, then it is called a full-peak linguistic value; if its consistency
function is a semi-triangle function, then this flexible linguistic value is called a
semi-peak linguistic value. In particular, a linguistic value A with a decreasing
semi-triangle consistency function is called a positive semi-peak linguistic value, or a
positive semi-peak value for short, denoted A*; and a linguistic value A with an increasing
semi-triangle consistency function is called a negative semi-peak linguistic value, or a
negative semi-peak for short, denoted A”. For a multidimensional flexible linguistic
value, if the shape of its consistency function is a full wedge, full conical surface, or full
conical hypersurface, then it is called a full-peak linguistic value; if the shape of its
consistency function is a semi-wedge and semi-conical surface or semi-conical hyper-
surface, then this flexible linguistic value is called a semi-peak linguistic value.

6.1.4 Property-Type Linguistic Values and Relation-Type
Linguistic Values

Property-type flexible linguistic values are a kind of flexible linguistic values that
describes properties (also including states) of things, which is also the linguistic



6.1 Types of Flexible Linguistic Values 131

values characterizing flexible properties (concepts) of things. Relation-type flexible
linguistic values are a kind of flexible linguistic values that describes relationships
between things, which is also the linguistic values characterizing flexible rela-
tionships (concepts) between things.

6.2 Flexible Partition of a Space and Basic Flexible
Linguistic Values

6.2.1 Flexible Partition of a One-Dimensional Space
and Basic Flexible Linguistic Values

In Chap. 2, we have already done flexible partitioning of the one-dimensional
measurement space. Now, we give its formal definition.

Definition 6.1 Let U be a one-dimensional measurement space, = = {Cy, C,, ...,
C,,} is a non-empty group of flexible classes of U, if for Vx € U, there are the
following facts:

(1) There exists at least one Cy € 7 such that mck(x) # 0;
(2) chi(x) = l>
i=1

where 7 is called a flexible partition of U and flexible classes Cy, Cs, ..., C, are
called the basic flexible classes of U, and they collectively form a group of basic
flexible classes of U.

Next, we give the general method for flexible partitioning of one-dimensional
measurement space [a, b]:

(1) Determine the number of the flexible classes and the core of every flexible
class (note that the negative core-boundary point ¢, of the core of the first
flexible class should be the infimum a of the space, and the positive core—
boundary point Ca of the core of the last flexible class should be supremum
b of the space);

(2) From the left to the right, overlap one by one the positive critical point vg of
the previous flexible class with the negative core—boundary point c¢,  of the
following flexible class and overlap the negative critical point si, ~ of the
following flexible class with the positive core—boundary point céj of the
previous flexible class.

It can be proved that the group of flexible classes obtained by this way just forms
a flexible partition of [a, b].

In fact, let 7 = {Cy, C5, ..., C,} be a group of flexible classes in [a, b] obtained
by the above-stated method. It is easy to see that 7 already forms a cover of [a, b].
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This is to say, condition (6.1) in the definition is already satisfied. From condition
(6.2), we only need to prove:

(ot o) — (o _
For Yx€ CiN Ciy1 = (¢;" s ) = (57, ,¢ipy) @G=1, 2, ..., n), then
me; (x) +me,,, (x) =1
s —x
Let x€C;NCiyy, then from Egq.(6.2-6.5), m(x)=—— and
_ XS : + = + _ -
me,, (x) = e sinee ¢ =i and s;" = ¢, |, thus
+ - + -
st —x X —; st —x X —
i i+1 i i+1
mCi('x) +mc‘i+1(x) =F ¥ + = — = F — + T — =1
S — 6 Cit1 = Sit1 S —Sip1 S T Sip

Therefore, = forms a flexible partition of [a, b].

Definition 6.2 Let U be an n-dimensional measurement space, A, A,, ..., A,, be a
group of basic flexible sets of U. Correspondingly, flexible linguistic values A, A,, ...,
A, is just a group of basic flexible linguistic values on U, which is also a group of basic
flexible linguistic values of the corresponding feature of objects.

Example 6.1 Figure 6.1 is a flexible partition of range [0, 150] of human ages; the
infancy, juvenile, young, middle-aged, and old ages are all basic flexible linguistic
values on universe of discourse [0, 150], and they together form a group of basic
flexible linguistic values on range [0, 150] of human ages.

6.2.2 Flexible Partition of a Multidimensional Space
and Basic Flexible Linguistic Values

Previously, we gave the definition of the flexible partition of a one-dimensional
measurement space, but which is hard to be generalized to multidimensional
measurement space. In the following, we give a more general definition of the
flexible partition.

infancy juvenile young  middle-aged old, /
4

'
'
'
1
!
1 |
'
'
'
'

0 =
0 10 20 30 40 50 60 70 80 90 100 (year)

Fig. 6.1 A flexible partition of human age range
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Definition 6.3 Let U be an n-dimensional measurement space and = = {A}, A,, ...,
A,,} is a non-empty group of flexible subsets of U. If

m

(1) Jsupp(a) =U

i=1

(2) ﬂcore(Ai) =g

i=1

then 7 is called a flexible partition of U, and flexible sets A;, A,, ..., A, are called
the basic flexible sets of U, and they together form a group of basic flexible sets of
U. Correspondingly, flexible linguistic values A, Ay, ..., A,, are the basic flexible
linguistic values on U, and they together form a group of basic flexible linguistic
values on U.

Obviously, this definition of flexible partition also applies to one-dimensional
measurement space, and it also covers the previous Definition 6.1.

It is known from Chap. 3 that as far as shape is concerned, flexible classes on
multidimensional measurement spaces are more plentiful than those on
one-dimensional spaces. However, the flexible partitioning of a multidimensional
space, generally speaking, can merely be bar flexible partitioning and square
flexible partitioning. In the following, we take two-dimensional space as an
example to make a brief description.

1. Bar flexible partitioning
Suppose that space U is flexibly divided into m flexible classes A;, Ay, ..., A,
along the direction of x-axis (as shown in Fig. 6.2a, here take m = 4), and
U flexibly divided as n flexible classes By, B», ..., B, along the direction of y-
axis (as shown in Fig. 6.2b, here take n = 3). The grey rectangle areas in the
figure are, respectively, the cores of the flexible classes, and the white rectangle
areas by their sides are the boundaries of the corresponding flexible classes.

@ A A A A v ®

B,

B

=Y
\

=

Fig. 6.2 Examples of bar flexible partitioning of two-dimensional measurement space
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Fig. 6.3 An example of v

square flexible partitioning of

two-dimensional _l_ -4 __ J.I -

measurement space ' ! v ! '
INERENE

! 1 | 1 ! !

X

It can be easily seen that both 74, = {Ay, A,, ..., A,,} and 7 = {By, B>, ..., B,}
are flexible partitions of space U. Therefore, Ay, Ay, ..., A,, and By, By, ..., B,
can be two groups of orthogonal basic flexible linguistic values on space U.
2. Square flexible partitioning

Let U = U X V be a two-dimensional measurement space, where U = [a, b] and
V =[c, d]. As shown in Fig. 6.3, we simultaneously divide flexibly U in two
directions of x and y into 4 X 3 = 12 square flexible classes. The black squares
in the figure are the cores of the flexible classes; the white areas between black
squares are the public flexible boundaries of adjacent flexible classes; and the
rectangles encircled by broken lines around every black square are the support
set of the corresponding flexible classes. These 12 flexible classes stand for the
12 basic flexible linguistic values on U.

6.2.3 Extension and Reduction of Basic Flexible Linguistic
Values

How many basic linguistic values should be defined on a measurement space is not
definite and unchangeable. Sometimes, more are needed while other times only a
few. As a matter of fact, the basic linguistic values on a universe of discourse can be
extended or reduced totally by requirement. The extension and reduction of basic
linguistic values can be realized by redefining, and also by inserting and deleting.
With respect to a one-dimensional measurement space, there should be at least two
basic linguistic values, which are mutually negative, and between which more basic
linguistic values can be inserted if required to form a sequence of basic linguistic
values. Conversely, for a sequence of basic linguistic values that forms a flexible
partition of a space, those in the middle can unceasingly be deleted until only the
first and the last two basic linguistic values left. Certainly, when adding or deleting
basic linguistic values, the support sets and cores of the original one and the one
remained should all be modified appropriately such that the current basic linguistic
values can form a flexible partition of the universe of discourse.
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6.3 Logical Operations on Flexible Linguistic Values
on the Same Space

Logical operations on linguistic values on one and the same measurement space
have conjunction, disjunction, and negation.

6.3.1 Conjunction and Disjunction

The mathematical essence of flexible linguistic values is flexible sets in corre-
sponding measurement space. Therefore, the operations on flexible linguistic values
are reduced to the operations on the corresponding flexible sets. The basic opera-
tions on flexible linguistic values are conjunction (A) and disjunction (V), and
according to the semantics, the operations on the corresponding flexible sets are
intersection (M) and union (U). Then, from the membership functions of com-
pound flexible sets ANB and AUB in Sect. 5.5, the consistency functions of the
corresponding A A B and A V B can be directly obtained.

Definition 6.4 Let A and B be two flexible linguistic values of feature # of objects,
which is defined on n-dimensional measurement space U and whose consistency
functions be c,(x) and cz(x). The A A Band A V B connected by logical connectors
A (conjunction) and V(disjunction) are separately called the conjunction and dis-
junction of A and B, whose consistency functions are as follows:

Cang(x) = min{Cy(x),Cp(x)} x€U (6.1)
Cavp(x) = max{Cy(x),Cp(x)} x€U (6.2)
On one-dimensional measurement space U = [a, b], the graphs of the consis-

tency functions of A A B and A V B can be shown in Figs 6.4 and 6.5.
From the graphs, it can be seen that:

1. Conjunctive value A A B can have at most one region of support set, in which
there may not be a region of core.
2. Disjunctive value A V B may have two regions of support set and of core.

Fig. 6.4 An example of the

c
g;aAplll\ I;)f consistency function () cp(x)
© 1 AnB(X)
0 ’ 7 ) -
’ s \ ‘X
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Fig. 6.5 An example of the
graph of consistency function
of AVB cal®)

Cavp(X) cp(x)

, ‘y

That shows that a set of flexible linguistic values on the same space is not close
to the operations A and V defined above. Therefore, strictly speaking, A and V
cannot be called the operations on flexible linguistic values on the same space. As a
matter of fact, we seldom speak in this way in our daily communications.

The concepts of conjunctive values and disjunctive values on the same spaces
can also be generalized to the case of n component linguistic values.

Definition 6.5 Let A, A,, ..., A, be n flexible linguistic values of feature # of
objects, which be defined on n-dimensional measurement space U, and whose
consistency functions be ca, (x), ca,(X),...,ca,(x)(x € U). Ay AAy A - A A, and
Ay V AyV -+ V A, are separately the conjunction and disjunction of these n flexible
linguistic values, whose consistency functions are as follows:

Carnmsn..na, (%) = min{ea, (x), ea, (x), - ca, (X)) (6.3)

Cavasv...va, (x) = max{ca, (x), ca, (%), - . ., 4, (X)} (6.4)

6.3.2 Negation

Likewise, according to the semantics of negative connective —, the flexible set to
which —A corresponds should be the complement A“ of flexible set A to which
linguistic value A corresponds. Then, from the membership function of complement
A° in Sect. 5.5, the consistency function of —A can be directly obtained.

Definition 6.6 Let A be a flexible linguistic value on n-dimensional measurement
space U, whose consistency function be c4(x). ~A connected by logical connective
— (negation) is called the negation of A, whose consistency function is as follows:

ccalx)=1—calx), xe€U (6.5)
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Fig. 6.6 An example of the
graph of consistency function
of one-dimensional negative
value —A

On one-dimensional measurement space U = [a, b], the graph of the consistency
function of the negation —A of full-peak value A is shown in Fig. 6.6. The con-
sistency function of negative value —A on two-dimensional space U X V is as
follows:

calx,y)=1—calx,y) =1—calx) (x,y) €U

namely
CﬂA(xvy) =1- CA(X) = (x,y) ev (66)

The graph is shown in Fig. 6.7.
From Eq. (6.5), we have

ca(x)+calx)=1, xeU (6.7)

That is, the sum of the consistency-degrees of an object having two relatively
negative flexible linguistic values is 1. This shows that there is also complementation
relation between consistency-degrees of relatively negative flexible linguistic values.
We call Egs. (6.6) and (6.7) to be the complement law of consistency-degrees.

Fig. 6.7 An example of the
graph of consistency function
of two-dimensional negative
value —A
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Further, we call the complement law of consistency-degrees and the complement law
of membership-degrees in Sect. 5.5 to be the complement law of degrees.

Actually, the complement relation of degrees is also consistent with our intu-
ition. We know that an object always has a flexible linguistic value A in a certain
degree, which means that it also has flexible linguistic value —A in another degree at
the same time. That is to say, an object always has a pair of relatively negative
flexible values simultaneously. Moreover, there is such a relation between the
degrees of two relatively negative flexible linguistic values of one object: If the one
is increasing, then the other is decreasing and vice versa.

6.4 Compositions and Decompositions of Flexible
Linguistic Values on Distinct Spaces

6.4.1 Logical Composition and Decomposition, Combined
Linguistic Values

The flexible linguistic values on distinct spaces can also perform operations to form
a composite flexible linguistic value. For instance, “tall and big,” “healthy and
beautiful,” and “knowledgeable or experienced” are just the flexible linguistic
values composed by flexible linguistic values on distinct spaces.

6.4.1.1 Logical Composition of Flexible Linguistic Values

Let A and B be separately flexible linguistic values on measurement spaces U and
V. Then, what shapes are the flexible sets that conjunctive flexible linguistic value
A A B and disjunctive flexible linguistic value A V B correspond to?

Obviously, A A B is not a flexible linguistic value on measurement spaces U or
V, but should be a flexible linguistic value on product space U X V. However, the
flexible sets A and B that flexible linguistic values A and B correspond to (here the
same symbol is used for a flexible linguistic value and its flexible set) are the
subsets in distinct spaces. For this reason, A and B must be extended into the
flexible sets in product space U X V. That is, A and B be extended into A X V and
U X B, respectively. We use still A and B to denote A X V and U X B. Obviously,
A and B are orthogonal in product space U X V. Thus, the orthogonal intersection
ANB in UXYV is the flexible set that conjunctive flexible linguistic value
A A B corresponds to.

Similarly, the flexible set that disjunctive flexible linguistic value
A V B corresponds to is the orthogonal union AU B in product space U X V.

And it is known from Sect. 5.5.2 that
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mang(x,y) = min{ma(x),mg(y)}, x€U,yeV
maup(x,y) = max{m(x),mp(y)}, x€U,y€eV
Thus, the consistency functions of A A B and A V B are as follows:
cang(x,y) = min{ca(x),c5(y)}, x€U,yeV (6.8)
cavp(x,y) = max{ca(x),cs(y)}, x€U,yeV (6.9)

Their graphs are shown in Fig. 6.8a, b, and the shape of the former is a
square-tapered surface and the latter an orthogonal ridged surface.
Generally, we give the following definition.

Definition 6.7 Let A;, A,, ..., A, be separately flexible linguistic values of features

F1,Fo,...,.F, of objects, which be separately defined on measurement spaces
Uy, U,, ..., U,. Conjunctive value A; A Ay A ... A A, = C, and disjunctive value

A VAV ... VA, =C, connected by logical connectives “and” (A) and “or” (V),
respectively, are the flexible linguistic values on product space
U=U, XU, X - X U, Wereferto C, and C, as the combined linguistic value of

Ay, Ay, ..., A, or, simply, combined value, whose consistency functions are as
follows:
cc, (x) = min{ca, (x1), ca, (%2), - - ., ca, (%) } (6.10)
cc, (x) = max{ca, (x1),ca,(x2)s - ., ca, (X)) } (6.11)

where x = (x(, Xo, ..., X,), x; € Ui (i=1,2,...,n),and A, A,, ..., A, are called the
component values of their combined value.

A combined value can be renamed, or not be renamed, but be said “A; and A,
and ... and A,” and “A; or A, or ...or A,” separately. As a matter of fact, some
combined linguistic values have already been renamed. For instance, people call the
stature of “tall and big” to be “robust” and call “thin and small” to be “slim.”

Now, we see that a combined linguistic value is formed by several flexible lin-
guistic values on distinct spaces through logical operations conjunctive or disjunc-
tive. We call this phenomenon the logical composition of flexible linguistic values.

Fig. 6.8 Graphs of the consistency functions of AAB and AVB
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6.4.1.2 Logical Decomposition of a Flexible Linguistic Value

Viewed backward the logical composition of flexible linguistic values, then, it is
that a flexible linguistic value is decomposed into the conjunction or disjunction of
several other flexible linguistic values. In fact, some flexible linguistic values
themselves just can be decomposed or unfolded into the conjunction or disjunction
of multiple flexible linguistic values. For instance, suppose that there are two sports
events A and B. If it is thought that a sportsman is excellent only when the results of
events A and B are both good, which is tantamount to “excellence” being logically
decomposed into the conjunction of “A good” and “B good,” namely
excellence = A good A B good, the consistency function is Cexcellend(#) = min
{cax), cg()}(x € U,y € V). Butif it is thought that a sportsman is excellent when
the result of one at least of events A and B is good, which is tantamount to
“excellence” being logically decomposed into the disjunction of “A good” and
“B good,” namely excellence = A good V B good, the consistency function is

Cexce]lent(u) = maX{cA(x)v CB()’)}(X € Uv y € V)

Definition 6.8 Let C be a flexible linguistic value of feature # of objects, which
can be defined on measurement space V. If there exists flexible linguistic value
A, CU; (=1, 2, ..., n) such that C=A; AA,A---AA, or
C=A VA,V - VA, namely

cc(x) = min{ca, (x1),ca,(%2), - yca, (%)}, X = (x1,%2,.. ., x0), % € Uy (6.12)
or
cc(x) = max{ca, (x1),ca,(%2), .. yca, ()},  x = (x1,%2, .., %), % € U; (6.13)

then we say that C can be logically decomposed into the conjunction or disjunction
of flexible linguistic values Ay, A,, ..., A, on measurement spaces Uy, U,, ..., U,.

6.4.2 Algebraical Composition and Decomposition,
Synthetic Linguistic Value

6.4.2.1 Algebraical Composition of Flexible Linguistic Values

For the “excellent sportsman” in example above, suppose the judging criterion is
not “one scope good” or “various scopes all good,” but is “synthesizing scope
good,” which is the weighted sum of various scopes. Then, the relation between
“A good” and “B good” and “excellent” is not logical “and” or “or” at this time, but
should be a kind of numerical “plus.” Considering that the synthesizing scope is the
weighted sum of various scopes, “excellent” also should be the weighted sum of
“A good” and “B good,” which is represented by using consistency functions is as
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follows: Cexceltent(#) = wica(x) + wacg(y) (x € U, y € V, wy, wp € [0, 1], wy +
wy = 1). Thus, “plus” is also a kind of operation of flexible linguistic values.

Definition 6.9 Let A}, A,, ..., A, be separately flexible linguistic values of features
F1,F0,...,F, of objects, which is defined on measurement spaces U, U,, ...,
U,, respectively. A; plus A, plus ... plus A,, denote A; @ A, @ - A, is a
flexible linguistic value, denoted S, on product space U; X U, X --- X U, = U,
which is called synthesis of Ay, A,, ..., A,, and its consistency function is as
follows:

Z WiCy; ()Ci), when CA; ()Ci) >0
i=1

cs(x) = (6.14)

0, else

n
where x = (x, X, ..., X,), X € U, w; € (0,1), > w; =1
i=1

At this time, A, A,, ..., A, are called the ingredients of synthetic value S.

Now, in the judging criterion of “synthesizing scope good,”
A good @ B good = excellence.

Thus, multiple flexible linguistic values from distinct spaces can form a synthetic
linguistic value by operation of “plus.” Considering that this “plus,” i.e., weighted
sum, is a kind of algebraic operation; therefore, we call this composition the
algebraical composition of flexible linguistic values. The algebraical composition of
linguistic values means objects can be described more roughly by more general
languages.

It is necessary to note that, as we know, black color and white color can be
mixed into gray color, and three primary colors of red, green, and blue can be mixed
into various colors. Besides, sour taste and sweet taste can be mixed to a kind of
flavor which is both sour and sweet. Viewed from the angle of linguistic value, the
mixes of these colors and flavors can also be viewed as a kind of composition of
linguistic values; however, this kind of composite linguistic values is really a kind
of mixed linguistic values (but no synthetic linguistic values). Of course, we can yet
regard logically (non-physically) them as synthetic linguistic values.

From Eq. (6.14) above, the corresponding expression of membership function is
as follows:

n

mg(x) = Zw,-mA,(xi), my,(x;)) #0, x; € U, W; € (0, 1),Zw,- =1
i=1 i=1

It can be seen that the expression just is the membership function of flexible
product set A; XA, X .- XA, This shows that flexible product
A} X Ay X .- X A, is the denotative mathematical model of synthetic linguistic
value A, © A, D ... D A,,.
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6.4.2.2 Algebraical Decomposition of a Flexible Linguistic Value

Viewed backward the algebraical composition of flexible linguistic values, then it is
that a flexible linguistic value is decomposed into the weighted sum of several other
flexible linguistic values. For instance, viewing backward equation,
A good @ B good = excellence, then that is “excellence” be decomposed into the
“sum” of “A good” and “B good.” In fact, some flexible linguistic values them-
selves are just synthetic-type linguistic value, so they can be decomposed into the
“sum” of several ingredient values.

In practical problems, in order to describe objects more carefully and accurately,
a relatively abstract linguistic value sometimes needs to be specifically decomposed
into multiple sublinguistic values. For example, the flexible linguistic value of
“high” (of teaching level) can just be decomposed into three flexible linguistic
values of “master” (to content of the course), “appropriate” (of teaching methods),
and “good” (of effect of teaching). For another example, the flexible linguistic value
of “beautiful” (of looks) can be just decomposed into three flexible linguistic values
of “regular” (of facial features), “proper” (of facial structure), and “bright and clean”
(of skin color).

It can be seen that this kind of decomposition of linguistic value is not the
above-mentioned logical decomposition. Because the linguistic values obtained
from decomposition are the ingredient values of the original linguistic value, and
the relation between ingredient values is synthesis, i.e., weighted sum rather than
simple logical conjunction or disjunction. For instance, although the three flexible
linguistic values of “mastered,” “appropriate,” and “good” collectively form “high,”
their importance to “high” (of teaching level) is not the same, so there should be
different weights. Likewise, though the three ingredient values of “regular,”
“proper,” and “bright and clean” collectively form “beautiful,” their contributions to
“beautiful” are different, so each has its own weighted coefficient.

Definition 6.10 Let S be a flexible linguistic value of feature .7 of objects, which
can be defined on measurement space V. If there exits flexible linguistic value
A; C U, suchthat S=A; © A, © ... © A,, namely

cs(x) = zn:w,»cAi(x,-),cAi (x)>0 (6.15)

where x = (xq, X2, ..., X,), X; € U, w; € (0,1), and > w; = 1, then S is a synthetic
i=1

linguistic value, we say that which can be algebraically decomposed into the

weighted sum of flexible linguistic values Ay, A, ..., A,.

Example 6.2 Suppose that “beautiful” (of looks) can be algebraically decomposed
into “regular” (of facial features), “proper” (of facial structure), and “bright and
clean” (of skin color). Suppose the weights of the three ingredient values to their
synthesis “beautiful” be separately: 0.4, 0.35, and 0.25, and the consistency
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functions of “regular,” “proper,” and “bright and clean” are separately Cregular(¥),
Cproper(y), and Curight and clean(2)- Then, from Eq. (6.15), the consistency function of
“beautiful” is as follows:

Cbeautiful (x7 Y, Z) =04 Cregular (x) +0.35 Cproper (Y) +0.25 Cbright and clean (Z)

Thus, a flexible linguistic value can also be algebraically decomposed into the
weighted sum of multiple flexible linguistic values on distinct spaces. The alge-
braical decomposition of a flexible linguistic value means that objects can be
described more detail by more accurate flexible linguistic values.

Note that in daily language, people sometimes also use connective “and” but
strictly use “plus” to describe a synthetic linguistic value. For example, original “A
plus B” is said as “A and B.” In addition, the understanding and convention above
about the synthesis of linguistic values are supposing there must exist all ingredient
values for a synthetic value, that is, the consistency-degrees of all ingredient values
that participate in the synthesis should all be greater than 0. But if we suppose or
agree that it can be regarded as a synthetic value if there is only one ingredient
value, that is, at least one of the consistency-degrees of all ingredient values that
participate in a synthesis is greater than 0, then the consistency function of the
synthetic value is as follows:

cs(x) = ZwicAi(xi),x = (x1,X2,.., %), X €U, wi€(0,1), Zwi =1
i=1 i=1
(6.16)

But note that the flexible set that this consistency function corresponds to,

strictly speaking, is already not product Ain<1 A;.

6.5 Relatively Negative Flexible Linguistic Values
and Medium Point

From the definition of a negative value, it can be seen that the negation of the
linguistic value is just the linguistic value itself. That is to say, the negation is in fact
mutual. Therefore, mutual negation is also a kind of relation between linguistic
values. As a matter of fact, any linguistic value has its negation.

Further examining relatively negative flexible linguistic values, we find that on
one-dimensional space [a, b], there are the following three kinds of relatively
negative flexible linguistic values.

1. Two relatively negative flexible linguistic values on a universe. As shown in
Fig. 6.9, let A be a semi-peak flexible linguistic value on space [a, b], supp
(A) = [a, b]. Then, from the above-mentioned consistency functional expression
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Fig. 6.9 Relatively negative ck
relation between two values
on universe

0 / \
b

(6.5) of a negative value, negation —A of A should be linguistic value B in
Fig. 6.9, that is, —A = B. Conversely, the negation of B is just A, that is,
—B = A. Thus, between A and B is just relatively negative relation. These two
relatively negative flexible linguistic values are both semi-peak values, and they
form a flexible partition of the universe.

2. Full-peak value and its negation. As shown in Fig. 6.10, let A be a full-peak
flexible linguistic value on space [a, b]. Then, from the consistency functional
expression (6.5) of a negative value, negation —A of A should be as shown in
Fig. 6.10. It is shown that the negation of a full-peak value is divided into two
parts, and they are actually two values on space [a, b]. However, the flexible
linguistic values having the relatively negative relation are not necessarily all
basic flexible linguistic values.

3. Relatively negative relation between adjacent semi-peak values among basic
flexible linguistic values.

Letm = {A}, Ay, ..., A,} be a flexible partition of space U = [a, b]. Basic flexible
linguistic values A;, A,, ..., A, are adjacent one by one. Let the consistency
functions of semi-peak values A and A, of A; and A;,; be separately as follows:
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Fig. 6.11 Relatively negative relation between adjacent semi-peak values of basic flexible
linguistic values

Their graphs are shown in Fig. 6.11.
From the figure, it can be seen that points c;: and s, should be coincident, and

+ - e + + o - ;
s, and ¢, should be coincident, so s, — ¢, = ¢y, — sy, . Thus, for arbitrary
x€[Sai Cain1l,

sio—x X — S5 sio—x x—c; si—cf
()Jr ()7 A + Aiv1 _ PA + A PA A
CANX) T Ca X)) = T3 ¥ - - T r ¥ ¥ F T o +
S5 —c c -5 sy —c sy —c sy —c
A; A; Ait1 At A; A; A; A; A; A;

=1

This shows that two adjacent basic flexible linguistic values A; and A;,; on space
U, the positive semi-peak A; of the former A;, and negative semi-peak A;,; of the
latter A;,; are relatively negative on interval [E4;, Eaip1]-

The complement relation of consistency-degrees of relatively negative flexible
linguistic values makes a pair of relatively negative flexible linguistic values be able
to transform mutually. Thus, we can also unify or reduce a pair of relatively
negative flexible linguistic values as one flexible linguistic value.

The complement relation of consistency-degrees has also another characteristic;
that is, the consistency-degrees of an object with relatively negative flexible lin-
guistic values are always symmetrical about 0.5. For two relatively negative lin-
guistic values, this is just that the union of the range of values of the consistency
functions of a pair of relatively negative flexible linguistic values is symmetrical
about 0.5. We can visually see that from the above Figs. 6.9, 6.10, and 6.11.
Whereas the numerical value that 0.5 corresponds to is just median points m,, that
also is, m-,4, of the common boundary of two relatively negative flexible linguistic
values. That is to say, a median point has both two relatively negative flexible
linguistic values with the same consistency-degree of 0.5. Thus, we call a median
point the medium point between relatively negative flexible linguistic values,
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which stands for “half A and half —A,” such as half tall and half short, half hot and
half cold, and half true and half false etc.

If we take the intersection of the support sets of two relatively negative flexible
linguistic values, e.g., supp(4) Nsupp(—A), as the support set of a flexible linguistic
value, then this linguistic value is “some A and some —A.” It is the medium
linguistic value lying between A and —A, and 0.5 is just the core center of this
medium linguistic value.

Summarizing the mutual negation relation between flexible linguistic values,
there are the following judgments and properties about mutual negation:

e If there exists a medium point between two flexible linguistic values, then
between the two flexible linguistic values is mutual negation relation;

e The support sets of relatively negative flexible linguistic values intersect surely;
the intersection part is the common boundary of the two flexible linguistic
values; and the center point of this common boundary region is the medium
point between the two relatively negative flexible linguistic values.

e Two flexible classes are relatively negative if and only if there is a transition
zone which is this and also is that between their cores.

6.6 Complementary Flexible Partition of a Space
and Complementary Flexible Linguistic Values

6.6.1 Complementary Flexible Partition of a Space,
Complementary Flexible Classes and Complementary
Flexible Linguistic Values

From Definitions 6.1 and 6.3, it can be seen that flexible partition is actually a kind
of complementary partition of a space, so between the flexible classes obtained is
complementation relation, and between the corresponding flexible linguistic values
also is complementation relation.

Definition 6.11 Let U be an n-dimensional measurement space, and let A;, A, ...,
A,, be non-empty flexible subsets of U. If 7 = {Aj, A,, ..., A,,} is a flexible partition
of U, then = is called a complementary flexible partition of space U, flexible classes
Ay, A, ..., A, are called to be complementary, or say the corresponding flexible
linguistic values Ay, A,, ..., A,, are complementary.

More simply, complementary flexible partition is that between the cores of two
adjacent flexible sets there is a median point (line or plane) formed by medium
points that are also this and also that. For instance, the two partitions in Fig. 6.12
are both complementary flexible partitions (the white broken line in the figures is
the median line of adjacent flexible classes), and between the corresponding flexible
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Fig. 6.12 Examples of complementary flexible partition, complementary flexible classes, and
complementary flexible linguistic values. a Square space, b Circular space

classes and between the corresponding flexible linguistic values, all are comple-
mentation relation, respectively.

Comparing Definition 6.11 and Definition 6.3, it can be seen that the flexible
linguistic values Ay, A,, ..., A,, on space U are of complementation relation if and
only if A, A, ..., A, forms a group of basic flexible linguistic values on U.

Example 6.3 Suppose “small,” “medium,” and “large” be a group of basic flexible
linguistic values on one-dimensional space [0, 100], then they are of complemen-
tation relation. If only to define two basic flexible linguistic values of “small” and
“large” on space [0, 100], then “small” and “large” are also of complementation
relation (of course, meantime, they are also of mutual negation relation).

6.6.2 Relationship Between Mutual Complementation
and Mutual Negation

From the definition and examples of the complementation relation, it can be seen
that the complementation relation and mutual negation relation between flexible
linguistic values have a certain connection. As a mater of fact, the two have both
something in common and difference.

What they are in common is there is a medium point (line or plane) between two
relatively negative flexible linguistic values, while there is a medium point (line or
plane) between complementary flexible linguistic values pairwise.

The difference between them is as follows: Mutual negation is only for two
linguistic values and it is a relation between two linguistic values, while mutual
complementation can be for more than two linguistic values, which is a relation
among multiple linguistic values.

Thus, generally speaking, mutual complementation is not mutual negation.
However, if there are only two basic flexible linguistic values which are mutually
complementary on a universe, then the two are also of relatively negative.
Conversely, if there are two relatively negative basic flexible linguistic values on a
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universe, then the two are also of mutually complementary. This is to say, in the
special case of only two basic flexible linguistic values” The mutual complemen-
tation is certainly the mutual negation, and the mutual negation is certainly the
mutual complementation. Besides, since any linguistic value has a negation, and
two relatively negative flexible linguistic values can also form a flexible partition of
a universe, in this sense, the mutual negation is certainly the mutual complemen-
tation. In a word, the mutual negation can be viewed as a special kind of mutual
complementation.

6.7 Relations Between Flexible Linguistic Values

Mutual negation and mutual complementation are two relations among flexible
linguistic values; besides, there are also some other relations among flexible lin-
guistic values.

6.7.1 Order and Position

We use the order relation between peak value points of flexible linguistic values to
make definite the order relation between corresponding flexible linguistic values.

Definition 6.12 Let A and B be two flexible linguistic values on one and the same
numerical range [a, b], and &4 and £y be separately peak value points of A and
B. Then, A < B (A > B) if and only if &4 < &g (4 > &p). Where A < B indicates that
A is prior to B, or A is less than B, A > B indicates that A is behind B, or A is greater
than B.

EEINT3

Example 6.4 As shown in Fig. 6.13, “low,” “medium,” and “high” are three
adjacent flexible linguistic values on range [0.5, 2.5] of human’s heights, and from
Definition 6.12, their order is “low” < “medium” < “high.”

Similarly, we use the position of peak value point of a flexible linguistic value to
make definite the position of corresponding flexible linguistic value.

Fig. 6.13 An example of ck
order of relation between
flexible linguistic values
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Definition 6.13 Let A be a flexible linguistic value on n-dimensional measurement
space U, and &, be peak value points of A, of which the coordinate is (ay, ay, ...,
a,). Then, the coordinate (ay, a, ..., a,) is also the position of the flexible linguistic
value A in space U.

6.7.2 Composition—-Decomposition Relation
and Category—Subordination Relation

Speaking from the constitution of a linguistic value, we call relation between a
combined value and its component values and that between a synthetic value and its
ingredient values collectively to be the composition—-decomposition relation.

Conceptually speaking, between flexible linguistic values there is a category—
subordination relation. That is, relatively speaking, some flexible linguistic values
are category concepts or higher level concepts, while some are subordinate concepts
or lower level concepts. A subordinate concept is derived from corresponding
category concept, and the category concept is a father concept or basic concept,
while the subordinate concept is a son concept or a more special concept. For
instance, flexible triangle is a category concept of flexible right-angled triangle;
conversely, flexible right-angled triangle is a subordinate concept of flexible tri-
angle. Similarly, flexible right-angled triangle and flexible right isosceles triangle
are also of the category—subordination relation. Category—subordination relation is
also called the derivative relation or the generalization relation.

6.7.3 Inclusion Relation and Same-Level Relation

Definition 6.14 Let A and B be flexible linguistic values on the same measurement
space U. If the corresponding flexible set A is contained in flexible set B, then
flexible linguistic value A is called to be contained in flexible linguistic value B, or
B contains A.

Definition 6.15 Let A and B be flexible linguistic values on the same measurement
space U. If A does not contain B and B does not contain A either, then we say
flexible linguistic values A and B are same-level.

Example 6.5 What Fig. 6.14 shows is several flexible linguistic values having
inclusion relation or same-level relation. From the figure, it can be visually seen that
A, contains A,, By contains B,, C; contains C, and C3, and C, contains C3 while
Ay, By, and Cy are of same-level.

From this example, it can be seen that the curves of consistency functions of the
linguistic values having inclusion relation are not necessarily parallel.
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Fig. 6.14 Examples of same-level relation and inclusion relation between flexible linguistic
values
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6.8 Similarity and Approximation About Flexible
Linguistic Values

6.8.1 Similarity and Approximation Relations Between
Atom Flexible Linguistic Values
and the Corresponding Measures

(1) Definition of the similarity and approximation relations between atom
flexible linguistic values

Definition 6.16 Let A and B be atom flexible linguistic values on one and the same
measurement space. A and B are similar, if and only if the width of each boundary
of A and the width of corresponding boundary of B are equal.

It can be verified that the similarity relation between flexible linguistic values is
an equivalence relation.

From the graph of consistency function, it is not hard to see that the similarity of
one-dimensional flexible linguistic values A and B means the slopes of curves of
consistency functions c,(x) and cg(x) are the same correspondingly.

Definition 6.17 Let A and B be atom flexible linguistic values on one-dimensional
space U = [a, b]. A is approximate to B, if and only if

(i) A and B is similar;
(i) widt(supp(A)) = widt(supp(B)), widt(core(A)) = widt(core(B));
(iii) &yEcore(B)Y, that is, cx(&y) > 0.5.

Example 6.6 Flexible linguistic value A shown in Fig. 6.15(a) is approximate to
flexible linguistic value B, but flexible linguistic value A shown in Fig. 6.15(b) is
not approximate to flexible linguistic value B.

It is not hard to see that the approximation relation between linguistic values
does not satisfy symmetry.
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Fig. 6.15 Examples of the approximation relation between flexible linguistic values. a A is
approximate to B, b A is not approximate to B

(2) Measure of the approximation of atom flexible linguistic values

For the convenience of narrating, in the following we use d(*,*) to denote
distance, where * can be a point in a measurement space, or it can be a flexible
linguistic value or its core, extended core or support set.

Definition 6.18 Let A and B be atom flexible linguistic values on one-dimensional
space U = [a, b], and set
d(AvB) = d(éA7 éB)

to be called the distance between A and B, or the distance between their cores,
between their extended cores or that between their support sets.

By this definition, for one-dimensional atom flexible linguistic values A and B, it
follows that

d(A, B) = d(core(A), core(B)) = d(core(A) ", core(B) *) = d(supp(A), (supp(B))

By Definitions 6.18 and 6.17, we have the following theorem.

Theorem 6.1 For one-dimensional atom flexible linguistic values A and B, if A is
approximate to B, then distance d(4,¢p) = d(c}, c) = d(s}, sp).

Generalizing Definition 6.18, we have the following definition.

Definition 6.18' Let A and B be atom flexible linguistic values on n-dimensional
measurement space U, and set

d(A,B) = d(&a, Ep)

to be called the distance between flexible linguistic values A and B, or the distance
between their cores, between their extended cores, or that between their support sets.

Since inclusion is not necessarily similar, inclusion is not necessarily approxi-
mate either.
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Definition 6.19 Let Wand W'be atom flexible linguistic values on one-dimensional
space U = [a, b], &y and &y be, respectively, the peak value points of Wand W', and
my, and my; be respectively the negative and positive median points of W. Set

ry =&y —my, gy =my — &y (6.17)

to be separately called the negative approximate radius and the positive approxi-
mate radius of W;

dww Sy — Ewr dww Ly — Ly
Dyw =—=-—"—"=Dyw =—7=—7
Iy Sw — my Ty my, —

(6.18)

to be called the difference-degree of linguistic values W’ and W. If W' is approxi-
mate to W, then we say that

Sww' = 1-— DWW’ (619)

is the approximation-degree of linguistic values W' and W.

It can be seen that what the difference-degree represents is the relative difference
between peak value points &y and &y, while approximate radii ry, and ryy, of
linguistic values W are just two unit distances of this relative difference. The reason
why we take they as the unit distances is that, on the one hand, the two distances
are, respectively, the maximum distance from all points at the two side of peak
value point &y, in the extended core of flexible linguistic value W to the peak value
point; on the other hand, from the previous definition of the approximation of
flexible linguistic values, when linguistic value W'is approximate to linguistic value
W, peak value point &y of W’ should fall within the extended core of W. Thus, the
distance between two approximate flexible linguistic values will never exceed that
maximum distance, so to take them as the unit distances is appropriate.

Relative difference reflects the degree of a difference, which can be independent
of universes of discourse. Therefore, the relative differences between flexible lin-
guistic values in different universes of discourse are completely comparable. From
the meaning of the relative difference, we refer to relative difference between
flexible linguistic values as the difference-degree of flexible linguistic values. While
according to the definition of the distance between linguistic values, the distance
between two approximate linguistic values will never exceed the approximate
radius of each of the two linguistic values. Thus, the difference-degree of two
approximate linguistic values should be between O and 1. Further, the
approximation-degree should also be between 0 and 1.

Generalizing Definition 6.19 to n-dimensional atom flexible linguistic values, it
is the following definition.
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Definition 6.19' Let W and W' be atom flexible linguistic values on n-dimensional
measurement space U, &y and &y be, respectively, the peak value points of W and

W'. Take

rw = rrelin d(&w,x) (cw is the median plane of W)
xXecw

as the approximate radius of W, and set

d d
Dy = - (6.20)

Ty

to be called the difference-degree of flexible linguistic values W' and W. If W' is
approximate to W, then we say

Sww = 1-— DWW’ (621)

is the approximation-degree of flexible linguistic values W' and W.
(3) Reduction and orientation of approximation

(D Reduction from full-peak-valued approximation to semi-peak-valued
approximation

Let A and A’ be two full-peak flexible linguistic values on one-dimensional
measurement space U, suppose A’ is approximate to A from the negative side. Now,
we divide A into two semi-peak values A~ and A™. By the definition of approxi-
mation of flexible linguistic values, it should follow that &y € X4 = X, UX,", so
Vx € X, always x € X; UX,", and therefore, X,; C X, UX, . Thus, for the
positive semi-peak value A*’ of A’, there would not exist the problem of two
semi-peak A~ and A" being approximate to A. On the other hand, since A’ is
approximate to A from the negative side, so 4 < &4, this shows that
X, ¢ X, UX,". Therefore, the negative semi-peak value A" of A’ is just
approximate to the negative semi-peak value A of A. The analysis above shows
that full-peak value A’ which is approximate to full-peak value A from the negative
side actually is tantamount to its semi-peak value A” ' to be approximate to the
negative semi-peak value A~ of A from the negative side. Similarly, that full-peak
value A" which is approximate to full-peak value A from the positive side is actually
tantamount to its semi-peak value A*' to be approximate to the positive semi-peak
value A" of A from the positive side. We say this fact to be the reduction from
full-peak-valued approximation to semi-peak valued approximation, whose process
is shown in Fig. 6.16.

@ The orientation of approximating to a semi-peak value

From the definition of approximation relation of flexible linguistic values, it is
not hard to see that to approximate to a positive semi-peak linguistic value can only
be done from one side of the positive direction, while to approximate to a negative
semi-peak linguistic value can only be done from one side of negative direction (as
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o ®)
A
1
’

0 /
X
Fig. 6.16 Illustration of reduction from full-peak-valued approximation to semi-peak-valued
approximation. (It is from a to b to ¢)

—A*

(a)A+
c

§A+ é—A*' X §FA" SA' X §A' é(A" X

Fig. 6.17 Examples of the orientation of approximating to a semi-peak value where (a) and
(b) are correct, while (c) is wrong

shown in Fig. 6.17(a) and (b)). In fact, for negative semi-peak value A", if there is a
semi-peak value A~ being located at positive side of A™, as shown in Fig. 6.17(c),
then its peak value point is &, &core(A™)" surely, but this does not accord with
Definition 6.5. Actually, if semi-peak value A~ is a boundary value, then it is
obvious that at its one side of the positive direction, there would not exist a
linguistic value which is same-level with A ; if A is the negative semi-peak value
of full-peak value A, then according to the reduction of approximation of a full-peak
value in the above, at the side of the positive direction of A", the linguistic value
close to A” should be the approximate value A*’ of positive semi-peak value A™.
The above situation is also analogues to positive semi-peak value A*.

6.8.2 Similarity and Approximation Relations Between
Composite Flexible Linguistic Values
and the Corresponding Measures

(1) Definition of the similarity and approximation relations between com-
posite flexible linguistic values

Definition 6.20 Let A and B be composite flexible linguistic values on one and the
same space. A and B are similar, if and only if
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(i) The structures of A and B are same;
(i) The corresponding component values or ingredient values of A and B are
similar, respectively.

widt(supp(A})) = widt(supp(A;)), widt(core(A})) = widt(core(A;));

(i)  min ¢y (Ey) > 0.5, that is, for Vi € {1, 2, ..., n}, always &, € core

Definition 6.21 Let A and A’ be conjunctive flexible linguistic values on
n-dimensional product space U = Uy X U, X --- X U,. A’ is approximate to A, if
and only if

(i) A'and A are similar;
(i) The corresponding component values A;" and A; i =1, 2, ..., n) of A’ and
A satisfy

widt(supp(A})) = widt(supp(A;)), widt(core(A})) = widt(core(A;));

(i) m2in }cAI.(g’A/_) > 0.5, that is, for Vi € {1, 2, ..., n}, always &, € core

Definition 6.22 Let A and A’ be disjunctive flexible linguistic values on
n-dimensional product space U = Uy X U, X ---X U,. A' is approximate to A, if
and only if

(i) A'and A are similar;
(i) The corresponding component values A;" and A; (i =1, 2, ..., n) of A" and
A satisfy

widt(supp(A?)) = widt(supp(A;)), widt(core(A})) = widt(core(4;));

(iii) {max }CA,(fA’) > 0.5, that is, 3i € {1, 2, ..., n}, such that £,/ € core(4,)".
i€{1,2,...n i i

Definition 6.23 Let A and A' be synthetic flexible linguistic values on
n-dimensional product space U = Uy X U, X --- X U,. A’ is approximate to A, if
and only if

(i) A'and A are similar;

(i) The corresponding ingredient values A;" and A; (i =1, 2, ..., n) of A" and
A satisfy
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widt(supp(A?)) = widt(supp(A;)), widt(core(A})) = widt(core(4;));

n
(iii) 2} WiCA;(fA;) > 0.5.
i-
(2) Measure of approximation of composite flexible linguistic values
Since a composite linguistic value is not like an atom linguistic value obtained
directly by flexible clustering on measurement space, but is composed by flexible
linguistic values from different measurement spaces through logical operation or
algebraic operation, so we cannot directly define the distance between composite
linguistic values on the corresponding product space, and then using the distance to
define difference-degree and approximate-degree. However, just because a com-
posite linguistic value is composed by flexible linguistic values from different
measurement spaces through logical operation or algebraic operation, the
approximation-degree of the composite flexible linguistic value should be the result
of logical operation or algebraic operation of the approximation-degrees of their
component values or ingredient values. According to this understanding, we give
the definition of the approximation-degree of composite flexible linguistic values
and then derive backward the computation formulas of their difference-degree and
distance.

Definition 6.24 Let A and A’ be conjunctive flexible linguistic values on
n-dimensional product space U = U; X U, X -+ X U, and A’ be approximate to
A. Set

Spiq = min{sArlAl PSAlay .,SA:XAU} (6.22)

to be called the approximation-degree of conjunctive flexible linguistic values A’
and A.
Since

SA;A,- =1 _DA;A,- (iZ 1,27...,11),

therefore, A, = min{s AA SAAy e Sa) A )5 A, is equivalent to

j— 1 ’
Dyy, = max{DA/lAl,D Dy 4, }- Thus, the difference-degree Dy 4 of A" and
A is just

W IR

DArA :maX{DA,lAl’DA;Az’""DA:,An} (623)

Thus, when finding s4-4, we can firstly find difference-degree Dy44, then from
1- D44, obtaining s4.4, that is,
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SA/A = 1 — DA/A = 1 — maX{ AA 7DA/A2 DA;A,Z} (624)
and from
d i
A A;
Dy, =— (i=1,2,...,n)
i rAi
dA A7 A L An
sodyy, 1nmax{ - }— 4 between A’ and A.
An

) 7A2

Definition 6.25 Let A and A’ be disjunctive flexible linguistic values on
n-dimensional product space U = U; X U, X --- X U,, and A’ be approximate to
A. Set

Sqrq = maX{sA'lAﬂsA;Ay""sA,’lAn} (6.25)

to be called the approximation-degree of disjunctive flexible linguistic values A’
and A.

Similarly, the difference-degree of disjunctive flexible linguistic values A" and
A is as follows:

DA/A = min{DA/]A ’DA/AZ DA;A”} (626)

Thus, approximation-degree is as follows

SA'A = 1 7DA'A =1 7mln{DA/lA 7DA/A2 DA,ZAZ} (627)

AAI dAIA7 dA’A
] 1 1 2 < nfn —
While dA;Ak in min {DA'IANDA;AZ" Dy, } = min{-= Rt RR. } =

d,
Ap . . .
% s just distance d 4.

Definition 6.26 Let A and A’ be synthetic flexible linguistic values on
n-dimensional product space U = U; X U, X --- X U,, and A’ be approximate to
A. Set

SAA = WISg 4, +W2SAA +. —l—w,u, Zw, =1 (6.28)
i=1

to be called the approximation-degree of synthetic flexible linguistic values A’
and A.

From this definition, it is not hard to derive that the difference-degree of syn-
thetic flexible linguistic values A’ and A is as follows:
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Dyy =wiDyy +wp, .o twaDyy (6.29)
,A2 n

Thus, approximation-degree is as follows:
Saa=1—Dyy=1- ZWiDA;A, (6.30)
i=1

However, distance d4-4 cannot be obtained.

6.9 Summary

In this chapter, we found the fundamental theory of flexible linguistic values. First,
we introduced the types of flexible linguistic values, then analyzed and defined the
operations on flexible linguistic values, and, in particular, proposed the concepts
and methods of algebraic composition and decomposition of flexible linguistic
values. Meanwhile, we also analyzed the properties and relations of relatively
negative linguistic values, and then proposed the complementary partition of a
measurement space and the complementary relation of flexible linguistic values.
Besides, we also considered other relations between flexible linguistic values,
especially analyzed and defined the approximation relation between flexible lin-
guistic values, and presented the corresponding measuring method.
The main points and the results of the chapter are as follows:

e There are many types of flexible linguistic values, among which the most fre-
quently mentioned are atomic flexible linguistic values and composition flexible
linguistic values.

e Operations on flexible linguistic values can be classified as the operation on
flexible linguistic values on the same space (i.e., of the same feature) and the
operation on flexible linguistic values on distinct spaces (i.e., of distinct fea-
tures). The former has “conjunction,” “disjunction,” and “negation,” and the
corresponding set operations are intersection, union, and complement, while the
latter has logical composition and algebraic composition. The logical compo-
sition includes “conjunction” and “disjunction”; the corresponding flexible set
operations are orthogonal intersection and orthogonal union; and the composi-
tion values obtained are called the combined value. Algebraic composition is the
weighted sum (which is called synthesis); the corresponding flexible set oper-
ation is Cartesian product; and the composition value obtained is called the
synthetic value. This means that the synthetic value of flexible linguistic values
corresponds to the Cartesian product of flexible sets, and the latter is the
denotative mathematical model of the former.

e Any flexible linguistic value has its negation, and the sum of the
consistency-degrees of an object having a pair of relatively negative flexible
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linguistic values is 1. This relation is called the complement law of
consistency-degrees. There is one and only one medium point (line or plane) of
“half-this and half-that” between the flexible sets to which a pair of relatively
negative flexible linguistic values corresponds. Such two flexible sets form a
relatively negative partition of the corresponding measurement space. The
generalization of relatively negative partition is complementary partition; that is,
there is one and only one medium point (line or plane) of ‘“half-this and
half-that” between all two adjacent flexible sets in a space. A usual flexible
partition is actually the complementary partition, and the relation between the
corresponding flexible linguistic values is complementation relation, which form
a group of complementary basic flexible linguistic values on the measurement
space.

e Flexible linguistic values also have the relations of composition—decomposition,
category—subordination, same-level, inclusion, similarity, approximation, and
order.

e To approximate to a full-peak value can be reduced to approximate to a
semi-peak value, and to approximate to a semi-peak value can only be done
from one side of the direction of the peak value. The approximation-degree
between two atomic flexible linguistic values is computed by directly using
formula with distance, while the approximation-degree between two composite
flexible linguistic values is a certain operation of the approximation-degrees
between the corresponding component or ingredient linguistic values.
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Chapter 7

Superposition, Quantification, Conversion,
and Generalization of Flexible Linguistic
Values

Abstract This chapter is the continuation of the basic theory of flexible linguistic
values. First, the concepts of degree linguistic values and superposed linguistic
values are proposed, and the types, levels, and mathematical models of superposed
linguistic values are discussed. Next, the quantification of flexible linguistic values
is considered, and the flexible linguistic value with degree and its notation is
presented. And then, the relations between pure linguistic values, flexible linguistic
values with degrees and numerical values are expounded, and the corresponding
conversion principles and methods are presented. Lastly, one-dimensional flexible
linguistic values are generalized to vector flexible linguistic values and flexible
linguistic-valued vectors.

Keywords Flexible linguistic values - Consistency functions - Data conversion

7.1 Degree Linguistic Values and Superposed Linguistic
Values

1. Degree linguistic values
We call the usual adverbs portraying degrees such as comparatively, very, and
extremely to be degree linguistic values. It can be seen that degree linguistic
values should be the flexible linguistic values defined on the range [1 — f, ] or
[=5, B1 (B = 1) of consistency-degrees. Figure 7.1 illustrates several common
degree linguistic values. Of course, it still needs to be discussed how to most
appropriately take the relevant parameters of (the consistency functions of) these
degree linguistic values, and what here given only are reference models [1].

2. Superposed flexible linguistic values
The so-called superposed flexible linguistic value is the flexible linguistic value
that is formed by superposing a degree linguistic value and a flexible linguistic
value, which is common occurrence in natural language. For instance, “very
hot” is just a superposed flexible linguistic value formed by superposing degree
linguistic value “very” and flexible linguistic value “hot.” In a superposed
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Fig. 7.1 Flexible linguistic ch
values on range of slight  a little comparatively — very exgremely
consistency-degrees
1
0
0 0.5 0.

flexible linguistic value, the degree linguistic value in front has an effect of
modifying and restricting upon flexible linguistic value behind, this can also be
viewed as a kind of operation on the latter (can be said original language value),
and the superposed flexible linguistic value obtained by the operation is also a
flexible linguistic value, therefore, the degree linguistic values can be viewed as
a kind of operator of flexible linguistic values. Then, viewed from the point of
operation, a superposed flexible linguistic value can be considered to be
obtained by the superposition operation from an original linguistic value.

Definition 7.1 Let A be a flexible linguistic value, and let ¢ be a degree linguistic
value, we call cA a superposed flexible linguistic value based on A, or a superposed
value for short; and we call A the original linguistic value, or the original value for
short; and call degree linguistic value ¢ the degree operator.

For instance, “very tall” is a superposed value based on “tall,” while “very” is a
degree operator.

It can be seen that the function and effects of a degree operator are to weaken or
strengthen the semantics of the original linguistic value, so degree operators can be
separated into two classes: one is weakening operators, such as “slight,” “a little,”
“comparatively,” and “basically”; the other is strengthening operators, such as
“very,” “extremely,” and “quite”. We call superposed linguistic value cA formed by
a weakening operator as a weakening superposed linguistic value, and denote it
¢ A, and call superposed linguistic value cA formed by a strengthening operator as a
strengthening superposed linguistic value and denote it ¢*A.

If a superposed flexible linguistic value is again modified by a degree linguistic
value, then a double superposed value is formed. For instance, “very very cold” is a
double superposed value. A double superposed value can be denoted by
c100A. Further, there can be n-fold superposed value c...c,A.

3. Relation between a superposed flexible linguistic value and the original
value

Here, we only discuss the relation between a one-dimensional onefold super-
posed linguistic value and the original value.

Examining and analyzing the relation between a superposed linguistic value and
the original value, we find the following:
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Fig. 7.2 Example 1 of the relation between superposed values and the original value

Firstly, a superposed linguistic value and the original value based on a full-peak
value are the same-level relation, while a superposed linguistic value and the
original value based on a semi-peak value can be the same-level relation as well as
the inclusion relation.

Secondly, since a superposed value is a new linguistic value that modifies or
restricts the original value somewhat, and one-dimensional measurement space is
the linearly ordered set, so speaking from orientation, a weakening superposed
value is certainly located at the negative side of the original value, while a
strengthening superposed value is certainly located at the positive side of the
original value.

Thirdly, a superposed value and its original value may be approximate relation or
also may not be approximate relation.

Example 7.1 As shown in Fig. 7.2, flexible linguistic values on the range of human
ages: infancy, juvenile, young, middle-aged, comparatively old, and old have the
same-level relation, and old includes very old and extremely old. Here, “old” is an
original value, while comparatively old, very old, extremely old, etc. are all
superposed values based on “old.” Among them, “comparatively old” is a weak-
ening superposed value, which is located at the negative side of “old,” “very old,”
and “extremely old”, etc. are all strengthening superposed values, which are located
at the positive side of “old.”

Note that here the inclusion relation is theoretical or conceptual, while in
engineering practice (such as approximate reasoning), sometimes the flexible lin-
guistic values having inclusion relation needing to be designed as same-level
relation. For instance, designing linguistic values having inclusion relation as
shown in Fig. 7.2 into the same-level relation is shown in Fig. 7.3.

Generally speaking, there are only two basic linguistic values located at the
boundary of a one-dimensional measurement space, for instance, small and large,
short and tall, and cold and hot are all such linguistic values. However, in Fig. 7.3,
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Fig. 7.3 Example 2 of the relation between superposed values and the original value

the original value “old” located at boundary is actually decomposed into multiple
linguistic values, and also adding a “comparatively old” in front of “old,” thus
forming a sequence of approximate values.

4. Indirect method to obtain the consistency function of a superposed flexible
linguistic value

A superposed value is also an independent linguistic value, so its consistency
function can be written out according to its support set and core. However, since a
superposed value is based on an original value, and there exist inclusion, parallel, or
even similarity or approximation relations between the two, so the consistency
function of a superposed value and that of its original value have a certain
relationship. Through analysis of the relation between a superposed value and its
original value, we find that for a one-dimensional flexible linguistic value, we can
completely use the consistency function of original value to indirectly obtain the
consistency function of the corresponding superposed value.

We have already known that the weakening superposed value of a
one-dimensional full-peak linguistic value is sure located at its negative side, and
the strengthening superposed value is sure located at its positive side. Then, if we
suppose a superposed value is similar to its original value, then, translating
appropriately the consistency function of original value, we can just obtain the
consistency function of the superposed value. For brevity, we use A~ and A" to
separately denote weakening superposed value ¢ A and strengthening superposed
value c*A below.

Let A be an original linguistic value, and the consistency function of A be

X =8y

_ ) aS-xSéA
Ca — Sa
ca(x) = N
syo—x
P a<x<b
A A

Let the consistency function of weakening superposed value A~ be
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X— Sy

- 5 , a S xéA’
A~ T Sa-
ea-(x) s —x
e
Pt Ca- <x<b
A~ Ca-

We prescribe that A and A are similar, that is, the widths of the corresponding
boundaries of A~ and A are equal, thus

Sy fs;,’ = ‘CX —c/}‘ = ’cj 7C/Xc’ = ‘SX fs;‘ =&y — a0
while
S = Sa-| =d(A7,A)
then, set
d=d(A™,A)
Thus,
Sp- =8, =0, c4-=c, — 9, SAt :s/:r — 9, c;i :cgr -0

Substitute these 4 expressions above into the consistency function of the above
weakening superposed value A~, we have

% a<x<gy—98
a9 "y ) d<x<
P (T =) a—0sx<D
Modify the expression, getting
) %v a<x<&y—9 1)
a9 o lets 7.1
W) e S<x<h
PA A

From this, it is not hard to see that the relation between consistency functions
ca-(x) and cu(x) is

ca-(x) = ca(x+9)

That is, c4-(x) is the left shift of c4(x).
Making similar analysis, we also can obtain the relation between consistency
functions of strengthening superposed value A* and its original value A as follows:
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Fig. 7.4 An example of the ck
consistency functions of
superposed values of a
full-peak value

that is,

CO% a<x<éy+d
Ca+ (X) = s+A*(Xi¢5)
A, a+0<x<h

Sa T

(7.2)

The graphs of the above two consistency functions are shown in Fig. 7.4.

If original value A is a negative boundary value on a range of numerical values,
then its superposed value A~ is located at the positive side of A, and A* is located at
the negative side of A; thus, the consistency functions of A~ and A™ are the fol-
lowing Egs. (7.3, 7.4); if original value A is a positive boundary value, then
superposed value A™ is located at the negative side of A, and A* is located at the
positive side of A; thus, the consistency functions of A~ and A" are the following
Egs. (7.5, 7.6).

ca-(x) = ‘{:fcﬁ‘”, X € [a,b]
U (7.3,7.4)
ca+ (x) =4—==, x€la,b]
A
(x+0)—s
ca-(x) =—=-*, x€lab
) o a.5] (7.5,7.6)
car(x) = —==, x€lab

If the original value A is a non-boundary negative semi-peak value, then the
consistency functions of superposed values A~ and A" are the following Egs. (7.7,
7.8); if original value A is a non-boundary positive semi-peak value, then the con-
sistency functions of superposed values A~ and A* are the following Egs. (7.9, 7.10).

ks (7.7,7.8)
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S)—s-
ca-(x) :%, X € la,b]
(o) 25 (7.9,7.10)
— A
CAJF(X)_W’ X € [a,b]

Thus, as long as the distance between a superposed value and its original value is
known, or as long as one of the critical points, core-boundary points, and peak
value point of superposed value is determined, its consistency function can be
obtained by doing translation transformation of the consistency function of original
value. Therefore, we can call this kind of method to indirectly obtain a consistency

function to be the translation method.

Example 7.2 For the linguistic value “tall” describing height, if we take 1.80 m as
its negative core—boundary point and take 1.65 m as its negative critical point, then
the consistency function of “tall” is

x—1.65

T 1.0,2.
015 e [10.2.50

Ctall (X) =

Additionally, we take ‘“comparatively tall” as another linguistic value.
Obviously, it is a weakening superposed value of “tall.” We take 1.75 m as the
negative core-boundary point of “comparatively tall,” then the distance between
“comparatively tall” and “tall” is 0.05. Thus, the consistency function of “com-
paratively tall” is

x —1.60

T 1.0,2.
015 X € [10.2:50

Ccomparatively tall (X) = Ctall (X + 005) =

Lastly, we point out, the relation between a onefold superposed value and its
original value as well as the method to obtain indirectly the corresponding con-
sistency function above can be generalized to n-fold superposed values by analogy.

7.2 Flexible Linguistic Value with Degree

We know that a linguistic value is the summarization and a collective name of a
batch of continuous numerical values. However, the consistency-degrees of these
numerical values with the corresponding flexible linguistic value are not all 1. Then,
how to use corresponding flexible linguistic values to describe more accurately the
features corresponding to the numerical values whose consistency-degrees are not
1? In natural language, this function is generally realized by using the flexible
linguistic values modified and limited by degree adverbs “comparatively,” “a little,”
“very,” “extremely”, etc. In this book’s terminology, that is to use superposed
linguistic values to describe the feature of an object more accurately. However, a
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superposed value is still a flexible linguistic value, so using a superposed value for
description is still a kind of imprecise qualitative description. Therefore, we assume
that if the flexible linguistic values can be quantified, then the features of objects
can be described precisely by quantified flexible linguistic values. To this end, we
introduce the concept and method of the flexible linguistic value with degree.

Definition 7.2 We call a flexible linguistic value portrayed by a number as degree
to be the flexible linguistic value with degree.

A flexible linguistic value with degree can be represented by two-tuples
(A,d) (7.11)

where A is a flexible linguistic value, d € [a, f] (x <0, 1 < f) is a degree, whose
semantics is A with degree d.

For example, (fat, 0.6) is just a flexible linguistic value with degree, which
represents “fat” with degree 0.6 and can be interpreted as “slightly fat.” For another
example, (hot, 1.2) is also a flexible linguistic value with degree, which represents
“hot” with degree 1.2 and can be interpreted as “very hot.”

Besides two-tuples, we can also use form

dA (7.12)
or
Aq (7.13)

to represent a flexible linguistic value with degree, here we use a coefficient or
subscript to portray a linguistic value.

For instance, let A be “tall,” then “0.8 tall” or “tally g™ just represents “tall” with
degree 0.8, which can be interpreted as “comparatively tall.” Similarly, “1.3 tall” or
“tall; 3” can represent “very tall,” “l tall” or “tall;” represents a standard “tall.” If
we extend the scope of the degree to the range of equal to or less than O, then “0
tall” or “tally” can be used to represent standard “not tall,” and “—0.3 tall” or
“tall_o 3~ can be used to represent “very not tall.”

It can be seen that the flexible linguistic value with degree is actually the refining
of the usual flexible linguistic value, in which the degree is the exact portrayal of
the feature value an object has. Thus, for a feature of an object, there are two kinds
of methods to describe it exactly: One is using a numerical value to describe
directly, while the other is using a flexible linguistic value with degree to describe
indirectly. For instance, for a person’s height, we can use numerical value 1.68 m to
represent it; and can also use flexible linguistic value with degree, (tall, 0.75)
(degree 0.75 is a supposition), to represent it. So, a flexible linguistic value with
degree is in fact equivalent to a numerical value.

In fact, the flexible linguistic value with degree is using both a linguistic value
and a degree together to describe a feature of an object, which is a kind of
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description method that combines macro and micro and combines qualitative and
quantitative. On the one hand, it uses a flexible linguistic value to orient roughly the
feature of the object in macro; on the other hand, it also uses a degree to orient
exactly the feature based on the macro-orientation. Therefore, the combination of
the two just briefly and accurately characterizes the feature of the object. Such a
representation is also consistent with the objective fact that an object always has
certain flexible linguistic value in a certain degree.

From the relationship between flexible linguistic values and numerical values, it
can be seen that d in flexible linguistic value with degree, (A, d), is also
consistency-degree c4(x() of a certain numerical object x in the same universe
of discourse with flexible linguistic value A, that is, d = c4(x(). Thus, through
consistency function, the flexible linguistic values with degrees and numerical
values on the same universe of discourse can be converted mutually.

Like pure flexible linguistic values, flexible linguistic values with degrees can
also do composition operations. From the composition operations of flexible lin-
guistic values in Sect. 6.4, the rules of composition operations of flexible linguistic
values with degrees are as follows:

‘7\1(Ai,di) = (XIA,,HTIPd,) (714)

.\Z(Aiadi) = (4\n/1Al~,m'£11x di) (7.15)

n n n

@ (And) = | & A, ; wid; (7.16)
Of course, there may also be the situation that the consistency function is

unknown. In that a case we can estimate the value of d based on relevant experience

and knowledge.

7.3 Interconversion Between Flexible Linguistic Values
and Numerical Values

Now, a feature that an object has can not only be characterized by a numerical value
or a flexible linguistic value, but it can also be characterized by a flexible linguistic
value with degree. Therefore, there will be problems: How are these three kinds of
characterizations related? Can they be converted each other? And how to convert?
This section will discuss these problems.
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7.3.1 Interconversion Between Pure Flexible Linguistic
Values and Numerical Values

We know that a flexible linguistic value is the summarization of a set of numerical
values, while the numerical values are the instances of the corresponding flexible
linguistic value. Then, for a numerical value, what is the flexible linguistic value it
corresponds to? Or conversely, for a flexible linguistic value, what is the numerical
value it corresponds to?

1. Converting from a numerical value to a pure flexible linguistic value

Firstly, we refer to the conversion from numerical values to pure flexible lin-
guistic values as N-L conversion. N-L conversion can be viewed as a kind of
flexible-ening (which is similar to softening) of numerical values.

Converting a numerical value x in the universe of discourse U to a flexible
linguistic value on U has two case: One is that there are still not appropriate and
ready flexible linguistic values on U to choose, or although there are ready flexible
linguistic values, problem requires forming a flexible linguistic value with
numerical value x as peak value point. The other is that on U, there are already
ready flexible linguistic values for choose.

For the first case, a new flexible linguistic value needs to be constructed on U to
generally represent numerical value x. The method to construct this flexible lin-
guistic value is the method of flexible clustering stated in Chap. 2.

For the second case, we can choose one from the ready flexible linguistic values
to replace the numerical value x, despite the x may have simultaneously multiple
flexible linguistic values (e.g., a pair of relatively negative flexible linguistic values,
A and —A) with a certain degree separately. Then, how is this flexible linguistic
value to be chosen? It can be seen that this is actually to determine which flexible
property object x more possesses or which flexible set x more should belong to, that
is, to determine rigidly the possessive relation or membership relation of object
x (actually, that human brain converts a numerical value to a flexible linguistic
value just is so). Since the sum of degrees of a object having relatively negative
linguistic values is 1, while the N-L transformation requires the corresponding
flexible linguistic value to be unique, consistency-degree >0.5 is a basic condition
for the N-L transformation; thus, the one with largest consistency-degree is the best
choice. Further, the transformation in the situation can be still separated into the
following two cases:

(1) Converting it into a basic flexible linguistic value

Let U be a one-dimensional measurement space, xo € U be a numerical value,
and Ay, A,, ..., A, be a group of basic flexible linguistic values on U. Since two
adjacent basic flexible linguistic values are complementary, surely
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max{ca, (X0), a, (X0), - - -, ca,, (X0) } = ca,(x0) >0.5

Thus, if c4, (x0) > 0.5, then flexible linguistic value A, is the best basic flexible
linguistic value to match numerical value x,. Therefore, the general method to
convert x, into a basic flexible linguistic value is:

Firstly, substitute xq into consistency functions cy4, (x), ca,(%), ..., ca,(x) sepa-
rately, then take

CA, (Xo) = Il’laX{CA1 (X()), CA, (.Xo), <. C4, (X())}

If ¢4, (x0) > 0.5, then convert numerical value x, into flexible linguistic value Ay;
if ca,(x0) = 0.5, then or by the specific problem to decide whether to convert x,
into Ay, or not to do the conversion. This conversion process is

Xo — ¢a,(%0) > 0.5 — Ag (7.17)

(2) Converting it into an superposed linguistic value

Since our conversion principle is c4, (x0) > 0.5, but not c4, (xo) = 1, the above
converted basic flexible linguistic value A; may not be very accurate or very proper
for numerical value x,. Therefore, sometimes numerical value x still needs to be
converted into a more accurate and proper superposed linguistic value. This only
needs to substitute separately consistency-degree ¢y, (xo) to consistency functions
e, (v),cm,(¥)s ..., cm, (v) of relevant degree linguistic values Hy, H», ..., H,, then
take

e, (ca, (x0)) = max{cp, (ca, (x0)), cu, (€, (%0)), - - - cm, (ca, (x0)) }

then H; A; is just the superposed linguistic value that numerical value x, corre-
sponds to. This conversion process is

X0 — Ca, ()C()) — CH, (CAk ()Co)) — HlAk (718)

The above method converting a numerical value to a flexible linguistic value in
one-dimensional space can also be generalized to multidimensional space.

Let U be an n-dimensional measurement space, xo = (x, X, ..., x,) € U be an n-
dimensional numerical vector.

(1) Forming directly a flexible linguistic value from x,. The general method is the
following: take xo as peak value point, determine corresponding core radius
and support set radius according to requirement, forming a corresponding
flexible linguistic value on space U by using flexible clustering. We denote the
flexible linguistic value forming from vector xqy by (x¢) later.

(2) Converting x, into a basic flexible linguistic value. The general method is as
follows:
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Let Ay, Ay, ..., A,, be a group of basic flexible linguistic values on U. Firstly,
substitute separately xq into consistency functions cy, (x),ca, (%), ..., ca, (),
then take

ca, (x0) = max{ca, (x0),ca,(x0), - . ., ca, (%0)}

If ¢4, (x0) > 0.5, then convert numerical vector x¢ into flexible linguistic value
Ay; if ca,(x0) = 0.5, then do not convert. This conversion process is

X0 — Ca, (X()) — Ak (719)

In consideration that basic flexible linguistic values are all atom flexible lin-
guistic values, and from the above-stated converting principle from a numerical
value to a flexible linguistic value, it can be seen that c4 (xg) > 0.5 is actually the
sufficient and necessary condition for x( converting to flexible linguistic value A,
while ¢, (xg) > 0.5 is also equivalent to x, € core(A)”, so we have the following
theorem.

Theorem 7.1 Numerical value xo can be converted to an atom flexible linguistic
value A if and only if xy € core(A)*.

It is not hard to see that this theorem is tantamount to giving a geometrical
method for converting a numerical value into a flexible linguistic value.

It can be seen that converting from a numerical value to a basic flexible linguistic
value is really tantamount to the classification of numerical values. Thus, the
Theorem 7.1 is also equivalent to say, numerical value x, belongs fully to flexible
set A if and only if x, € core(A)*. That is to say, from the application point of view,
a flexible linguistic value (i.e., flexible set) is fully stood for by its extended core.
Further, we have the following conclusion.

Proposition 7.1 In concept, a flexible linguistic value (flexible set) is determined by
its core and support set, but in practical, which is fully stood for by its extended
core. In other words, core and support set are the conceptual model of a flexible
linguistic value (flexible set), while extended core is its practical model.

From the conversion from numerical values to flexible linguistic values, it can be
seen that when numerical values x is converted into pure flexible linguistic value
A, the meaning of “xq is A” in daily language is already not s ambiguous “xg is A in
a certain degree” but unambiguous “x¢ has A” or “xq belongs to A.” Despite now
the consistency-degree c(xg) and membership-degree mi,(xg) are not necessarily
equal to or greater than 1 and they have still a certain elasticity in interval (0.5, f]
(B = 1), but they certainly be greater than 0.5.

2. Converting from a pure linguistic values to a numerical value

Converting a flexible linguistic value into a numerical value is to select a number
(or vector) from corresponding measurement space, such that it can replace or
represent this flexible linguistic value. From the relation between flexible linguistic
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values and numerical values, this needs firstly to determine the extended core of the
flexible linguistic value and then selecting a number (or vector) from which. It can
be seen that speaking purely from consistency relation, in a extended core, the
number (or vector) that can replace the corresponding flexible linguistic value is
firstly the peak value point of the flexible linguistic value, and secondly is any
number (or vector) in the core, then is any number (or vector) in the extended core.
Thus, the method of converting a flexible linguistic value A on one-dimensional
measurement space U into a numerical value x is

A — core(A) " — xq (7.20)

where x, = &, or xy € core(A) or x, € core(A)".
Generally, the method of converting an atomic flexible linguistic value A on n-
dimensional measurement space U into a vector X is

A — core(A) T — xp (7.21)

where xog = &4 or xo € core(A) or xo € core(A)".

However, the conversion from a flexible linguistic value to a numerical value in
practical problems is usually with respect to a certain specific object. For example,
we know Zhang is tall but don’t know exactly how many meters is he, in this case,
it is needed that converting flexible linguistic value “tall” into a numerical value. It
can be seen that this kind of conversion can only be done by guessing, so which is
actually an uncertainty problem. Then, for this kind of conversion, if there is no
guidance from relevant knowledge or information, then the accuracy of the con-
version has no any assurance. And to increase the accuracy of the conversion,
related heuristic information is required, such as the probability distribution or
distribution density of numerical values or the relevant background information of
the corresponding object. For example, if the distribution of human’s heights is
known, then the accuracy of Zhang’s height would be effectively increased; while if
we know Zhang is a player of the national basketball, then you would surely
consider his height to be around 2 m.

Now we have seen that the conversions from flexible linguistic values to
numerical values can be separated into the conversion based on the relation between
linguistic values and numerical values and the conversion with respect to a certain
object. We may as well call the former to be conceptual conversion and the latter
specific conversion. From the above stated, conceptual conversion is purely related
to the consistency function of a flexible linguistic value, which can be realized by
using the previous expression (7.21); but specific conversion is an uncertainty
problem, and to increase its accuracy, which should be guided by relevant heuristic
information. If the density function of a numerical value is taken as the heuristic
information, then the distinction between these two kinds of conversions can be
visually seen from Fig. 7.5 (here, we now strictly put the density function and the
consistency function of variable x on a certain interval in the same coordinate
system).
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Fig. 7.5 Examples of the

density function and ¢
consistency function about x,

where f(x) shown by the

broken line is the density

function and c(x) shown by

the real line is the consistency
function 0

Besides, from Fig. 7.5, we can also clearly see that the consistency-degree of a
numerical value x with a certain flexible linguistic value A and the probability or
density that this numerical value x occurs are two different things, and they have no
direct connection. Therefore, generally speaking, the probability or density that
numerical value x occurs cannot be used to determine the consistency-degree of
x with flexible linguistic value A and vice versa.

Lastly, we refer to conversion from flexible linguistic values to numerical values
as L-N conversion. L-N conversion can be viewed as a kind of rigid-ening (which
is similar to hardening) of flexible linguistic values. In the following, we use
notation [A] to represent the rigid-ening of flexible linguistic value A and the
numerical value resulted from A being rigid-ened.

7.3.2 Interconversion Between Flexible Linguistic Values
with Degrees and Numerical Values

1. Converting from a numerical value to a (or multiple) flexible linguistic
value with degree

A numerical value can be converted as a flexible linguistic value with degree and
can also be converted as multiple flexible linguistic values with degrees.

Let xo € U = [a, D], and A4, A,, ..., A,, be flexible linguistic values on mea-
surement space U. Set

d; = max{ca, (x0), ca, (x0), - - -, €a,, (X0) } = ca,(x0)

then, (A, d;) is a flexible linguistic value with degree to which x, corresponds. This
is a conversion of one to one. This converting process is

xo — max{ca, (%), ca, (%0), - -y €a, (%0)} = & — (A}, ) (7.22)

In general, the degree d| in this flexible linguistic value with degree, (4, d;), may
be any number in corresponding range of degrees except for infimum o. But if Ay,
A,, ..., A,, is a group of basic flexible linguistic values on space U, then certainly,
d; 2 0.5; and if d; > 0.5, then it is also unique; and if d; = 0.5, then also d;—; = 0.5
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Fig. 7.6 Example of the degrees d; and d;;; satisfying >0 and <1

or dj,; = 0.5. That is to say, x, actually can also be converted as (4;-;, 0.5) or (A1,
0.5). From this situation, converting x into (4;, 0.5) or converting it into (A;—;, 0.5)
or (A1, 0.5), or do not do converting, should be decided by specific problem.

Let xo € U = [a, b], and Ay, A, ..., A,, be flexible linguistic values on mea-
surement space U. Set d; = c4.(x0) (i = 1, 2, ..., m), then we have flexible linguistic
values with degrees, (Ay, dy), (A, db), ..., (A, d,,), which are the flexible linguistic
values with degrees corresponding to numerical value x,. This is just a conversion
of one to many. This converting process is

ca, (x0) = di (Ar,dr)
X — CA2 (XO) = dz _ (A27d2) (723)
Ca,, (X()) = dm (Am7 dm)

Note that since (A, dy), (As, db), ..., (A, d,) are all from number x, by
converting, that is, they stand for one and the same numerical value x,, they are
equivalent mutually.

Similarly, in general, the degrees d,, d>, ..., d,, in these flexible linguistic values
with degrees are also any m numbers in corresponding range of degrees, but if Ay,
Ay, ..., A, is a group of basic flexible linguistic values on space U, and when
numerical value xg is located in supp(4;) N supp(A;;;) = (4, .+ Sa,) the boundary
region of two adjacent flexible linguistic values A; and A;y; (@ € {1, 2, ..., m — 1}),
then d; and d;, in the corresponding flexible linguistic values with degrees, (A;, d;)
and (A1, diy1), separately satisfy 0 < d; < 1 and 0 < d;; <1, and only d; and d;,,
satisfy >0 and <1 (as shown in Fig. 7.6).

The conversion from numerical value x, to a one-dimensional flexible linguistic
value with degree, obviously, can also be generalized to the conversion from n-
dimensional vector x to an n-dimensional flexible linguistic value with degree. The
method is similar to the former, so it is unnecessary to go into detail here.

Actually, the conversion from a numerical value to a flexible linguistic value
with degree in essence is to transform a numerical value into the consistency-degree
of the numerical value with a certain flexible linguistic value by the mapping of
consistency function.
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Lastly, we refer to the conversion from numerical values to flexible linguistic
values with degrees as N-Ld conversion for short.

2. Converting from a flexible linguistic value with degree to a numerical value

Firstly, we refer to the conversion from flexible linguistic values with degrees to
numerical values as Ld-N conversion for short. Viewed from principle, Ld-N
conversion is the inverse process of N-Ld conversion. Since N-Ld conversion is to
transform a numerical value to a corresponding consistency-degree through a
consistency function, Ld-N conversion is to transform the consistency-degree back
to a numerical value (i.e., measurement) through the inverse function of the original
consistency function. Thus, for a one-dimensional semi-peak linguistic value, Ld-N
conversion is very easy. In fact, let A C U be a one-dimensional semi-peak flexible
linguistic value, and (A, d) be a flexible linguistic value with degree. Since its
consistency function c4(x) is a 1-1 mapping, the inverse function c4-1(y) of ca(x) is
also a 1-1 mapping. Thus, substituting d into inverse function c4-1(y) of ca(x), we
have c4-1(d) = xo. This converting process is

(A, d) — ca1(d) = xo (7.24)

We then consider the conversion from a one-dimensional full-peak flexible
linguistic value with degree to a numerical value.

Let A C U be a one-dimensional full-peak flexible linguistic value and (A, d) be
a flexible linguistic value with degree. Since consistency function c(x) is a full
triangular function, there are two of its inverse function c,-1(y) and there would be
two corresponding xp, denote them by xp, and xp,. Then, which number should be
chosen as x(? Here, we present several schemes for the determination of x.

D Randomly take xo, or xo, as Xo.

@ Take xy = &. That is, to treat peak value point &, of flexible linguistic value
A as xg;

Q@ Takexy, =Xy = (x0, + x0,)/2. That is, the average value of xo, and xy, is treated
as Xxo.
It can be seen that though taking peak value point £, and average value Xj as
the converted value x,, there would occur some errors, since the two always
are between xo, and xj,, it follows that

max{|x01 - 5A‘> |)C()2 - 5A|} < |x01 _xoz‘

max{|x01 _%|7 |x02 —X_()|}<|X01 —)C()2|

Thus, the error produced by taking &4 or Xj is less than those by randomly
taking xp, or xo,.

@ Determine the selection of x, from the relevant background knowledge. For
example, if it is known that in a certain condition, the probability of the value
of x occurring at the half zone that xy, locates at is higher than occurring at the
half zone that xp, locates at (it can be seen that in such a situation, xo, and xo,
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certainly locate separately at the two half zones of support set supp(A)), then
we can take xo = xp,, or we can take any number in the half zone as the value
of X0-

Since the consistency function of a multidimensional flexible linguistic value is
irreversible, a multidimensional flexible linguistic value with degree is hard to be
converted to a numerical vector.

7.3.3 Interconversion Between Pure Flexible Linguistic
Values and Flexible Linguistic Values with Degrees

1. Converting from a flexible linguistic value with degree to a pure flexible
linguistic value

The method of converting a flexible linguistic value with degree to a pure
flexible linguistic value is as follows:

Let (A, d) be a flexible linguistic value with degree, and Hy, H,, ..., H, be degree
linguistic values. Substitute separately degree d into consistency functions cg, (x),
cm, (%), ..., cm, (x), take

ey, (d) = max{cy, (d), cu,(d), .. .,cu,(d)}

then superposed linguistic value H;A is the pure flexible linguistic value that flexible
linguistic value with degree, (A, d), corresponds to. The converting process is

(A, d) — cg,(d) — HiA (7.25)

We refer to the conversion from flexible linguistic values with degrees to pure
flexible linguistic values as Ld-L conversion for short.

2. Converting from a pure flexible linguistic value to a flexible linguistic value
with degree

Since the degree in a flexible linguistic value with degree is the image of
corresponding object’s measurement (i.e., numerical value) under the mapping of
consistency function of the flexible linguistic value, the degree is closed connected
with the numerical value that has this flexible linguistic value. Thus, to convert
one-dimensional pure flexible linguistic value A into flexible linguistic value with
degree, (A, d), corresponding measurement x, should be firstly known. When
numerical value xq is known, then substitute it into consistency function c4 (x); then,
it follows that consistency-degree c4(x9) = d; and immediately, further, we have
(A, d). The conversion process is
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A = calxg) — (A,d) (7.26)

However, if numerical value xy is not known, then degree d is hard to be
determined. In such a situation, peak value point &, of flexible linguistic value A can
be taken as numerical value x, to compute corresponding degree d, that is, take
d = ca(&4). The conversion process is

A —ca(éy) — (A,d) (7.27)

In particular, for superposed linguistic value cA, firstly find peak value point &4 of
this superposed linguistic value, then substitute &4 into corresponding consistency
function ¢4 (x) of the original flexible linguistic value A to obtain consistency-degree
ca(.a), and take d = ca(E.4); Then, (A, d) is the flexible linguistic value with degree
that flexible linguistic value cA corresponds to. The conversion process is

cA — Ep — calep) — (A, d) (7.28)

For multidimensional flexible linguistic value A, the above-stated conversion
method is also applicable, that is

A — CA()CQ) — (A,d) (729)
A — ca(éa) — (A,4) (7.30)

Lastly, we refer to the conversion from pure flexible linguistic values to flexible
linguistic values with degrees as L-Ld conversion for short.

7.4 Vector Flexible Linguistic Values and Flexible
Linguistic-Valued Vectors

We know that an atom flexible linguistic value on one-dimensional space [a,
b] actually represents a flexible interval in space [a, b], while one-dimensional atom
flexible linguistic value “about xy” or “near x,” then represent a flexible interval
with a center point, the consistency function of this linguistic value is a function for
x. On multidimensional spaces, atom flexible linguistic value “about Py(x1,, x2,, - .,
Xn,)” O “near Po(xy,, X,, ..., Xy,)” then represents a flexible circle, flexible sphere,
or flexible hyper sphere in the corresponding space, whose consistency function is a
function for point P, that is, vector (xi, X, ..., Xx,). Obviously, this type of multi-
dimensional atom flexible linguistic values with a center point is the generalization
of one-dimensional atom flexible linguistic values with a center point. In consid-
eration of the characteristic of its consistency function being a function for vectors,
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we call this type of multidimensional atom flexible linguistic value to be vector
flexible linguistic value.

Actually, the vector flexible linguistic value here is just the flexible linguistic
value (xg) forming from vector xy = (xy, X2, ..., X,,) said in previous Sect. 7.3.1.
Therefore, vector flexible linguistic value ((xy, x», ..., X)) and vector (xy, X, ..., X;,)
can be converted mutually. The conversion method is also the method given in
Sect. 7.3.1.

On the other hand, multiple one-dimensional atom flexible linguistic values can
also form a flexible linguistic-valued vector. For instance, let A;, A,, ..., A, be
separately atom flexible linguistic values on one-dimensional measurement spaces
Uy, Uy, ..., U, then (A, Ay, ..., A,) is a flexible linguistic-valued vector. The
flexible linguistic-valued vector is another kind of generalization of the
one-dimensional atom flexible linguistic value. From the relation between vectors
and points in a space, a flexible linguistic-valued vector (A, A,, ..., A,) also
denotes a point in corresponding flexible linguistic-valued vector space
Ly X L, X .- XL,, where L; = {A;) A; C U;} is a set of atom flexible linguistic

values on U;, i=1, 2, ..., n. Two-dimensional and three-dimensional flexible
linguistic-valued vectors are shown in Fig. 7.7. Then, what does flexible
linguistic-valued vector (A;, A,, ..., A,) denote in measurement space

U XU, X - XU,?

It can be see that if the relation between components Ay, A, ..., A, in vector (A,
A,, ..., A,) is regarded as conjunction relation, and, then (A, A,, ..., A,) is tan-
tamount to conjunctive flexible linguistic value on distinct spaces, Af AA; A--- A
A, . Thus, flexible linguistic-valued vector (A, A, ..., A,) denotes a flexible square
region in measurement space U; X U, X --- X U, to which conjunctive flexible
linguistic value A; A A, A - A A, corresponds (the flexible square region denoted
by two-dimensional flexible linguistic-valued vectors (A, B) is shown in Fig. 3.6).
Conversely, a flexible square region in measurement space U, X U, X --- X U, can
also be denoted by a flexible linguistic-valued vector.

(a) (b)

b

Fig. 7.7 Examples of flexible linguistic-valued vectors in flexible linguistic-valued vector spaces
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7.5 Summary

The chapter is the continuation of the basic theory of flexible linguistic values. First,
the concepts of degree linguistic values and superposed linguistic values are pro-
posed, and the types, levels, and mathematical models of superposed linguistic
values are discussed. Next, the quantification of flexible linguistic values is con-
sidered, and the flexible linguistic value with degree and its notation is presented.
And then, the relations between pure linguistic values, flexible linguistic values
with degrees, and numerical values are expounded, and the corresponding con-
version principles and methods are presented. Lastly, one-dimensional flexible
linguistic values are generalized to vector flexible linguistic values and flexible
linguistic-valued vectors.
The main points and results of the chapter are the following:

e Degree linguistic values are what we usually call degree adverbs, and a
superposed linguistic value is the linguistic value modified by a degree linguistic
value. Degree linguistic values can be viewed as a kind of operator of linguistic
values, which may be separated as two types of weakened ones and enhanced
ones. A superposed value can be modified repeatedly to form multifold super-
position. A superposed linguistic value is the same level with the original value;
further, they can be of inclusion relation or approximate relation. The consis-
tency function of a superposed value can be indirectly obtained by doing
translation transformation of the consistency function of the original value.

e The linguistic value portrayed by a degree is called flexible linguistic value with
degree, which describes the feature of an object by using both linguistic value
and degree, which are equivalent to the corresponding numerical value in effect.
For linguistic value A and object x,, the corresponding flexible linguistic value
with degree is (A, ca(xp)).

e Numerical values and flexible linguistic values as well as flexible linguistic
values with degrees can be mutually converted. Of them, the conversion from
numbers to flexible linguistic values has algebraic method and geometric
method; the conversion from flexible linguistic values to numerical values can
be separated as conceptual conversion and specific conversion; the former is
related to the consistency function of the flexible linguistic value while the latter
should be guided by the relevant heuristic information; and the conversion from
numerical values to flexible linguistic values with degrees has the conversions of
one to one and one to many.

e In concept, a flexible linguistic value (flexible set) is decided by its core and
support set, but in practical, which is fully stood for by its extended core, that is
to say, core and support set are the conceptual model of a flexible linguistic
value (flexible set), while core is its practical model.
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e A vector flexible linguistic value represents a flexible circle, flexible sphere or
hyper flexible sphere in the multidimensional measurement space.

e A flexible linguistic-valued vector represents a point in corresponding flexible
linguistic-valued vector space, but in measurement space, which represents a
flexible square to which a corresponding conjunctive flexible linguistic value
corresponds.
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Chapter 8

Relatively Opposite Flexible Linguistic
Values and Relatively Opposite
Flexible Sets

Abstract This chapter introduces the concepts of relatively opposite flexible lin-
guistic values and relatively opposite flexible sets and founds the related theories.

Keywords Relatively opposite flexible linguistic values - Relatively opposite
flexible sets

Flexible linguistic values discussed in the last two chapters are actually all flexible
linguistic value with negation, that is, the flexible linguistic value having negation.
In this chapter, we consider another kind of flexible linguistic values—flexible
linguistic value with opposite, that is, the flexible linguistic value having a con-
tradictory or opposite value. A flexible linguistic value with opposite and its
opposite just form a pair of relatively opposite flexible linguistic values.
Correspondingly, the two sets labeled by a pair of relatively opposite flexible
linguistic values are just a pair of relatively opposite flexible sets. This chapter
mainly discusses relatively opposite flexible linguistic values and relatively oppo-
site flexible sets.

8.1 Relatively Opposite Flexible Linguistic Values
and Their Types

1. Relatively opposite flexible linguistic values

Let A, B, and C be three basic flexible linguistic values that are adjacent in order
on space U = [a, b]. As shown in Fig. 8.1, B=—A A — C; that is, for A and C, B is
just a neutral value, while A and C are opposite to each other relative to
B. However, we see that this kind of contradiction relation between flexible lin-
guistic values A and C is different from the relatively negative relation. There is a
transition zone that is also this and also that between the cores of relatively negative
flexible linguistic values, while the transition zone between the cores of this kind of
contradictory flexible linguistic values is this but not that, and there is also a neutral
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Fig. 8.1 Illustration of
relatively opposite flexible
linguistic values (1)

point—peak value point & of neutral flexible linguistic value B, that is neither this
nor that. Therefore, this kind of contradiction relation between flexible linguistic
values is actually a relatively opposite relation.

Definition 8.1 Let A, B, and C be three flexible linguistic values that are adjacent in
order on space U = [a, b]. If B=—A A =C, then we say A and C are relatively
opposite about B, B is called the neutral value between A and C, the core core(B) of
B is called the neutral zone between A and C, and peak value point ¢y is called the
neutral point between A and C.

Examining the relation among “small,” “medium,” and “big” as basic flexible
linguistic values, it can be seen that “medium” is also “not big and not small,” that is, a
neutral value, so “small” and “big” are relatively opposite about “medium.” Similarly,
low—medium-high, young-middle-aged—old, cold—warm-hot, fast—intermediate—
slow, small deficit-roughly balancing—small surplus, etc., are all the situation that the
flexible linguistic value in the front and the one at the back are relatively opposite
about the flexible linguistic value in the middle.

Actually, from the definition, for arbitrary three adjacent basic flexible linguistic
values A;j_;, A, and A, ; on space U, semi-peak values A}" and Aj,, are relatively
opposite about A;, and A; is the neutral value between A | and Aj, ;.

As shown in Fig. 8.2, let A and C be two flexible linguistic values on space
U = [a, b], and Ny € U be the boundary between A and C, and N, & supp(A) and N,
¢ supp(C). It can be seen that B = {N,} is a transition zone (actually it is a
transition point) between A and C that is neither this nor that. Thus, for A and C,
B is a neutral value, while A and C are relatively opposite about B.

Definition 8.2 Let A and C be two flexible linguistic values on space U, and Ny €
U be the boundary between them. If xo & supp(A) and Ny ¢ supp(C), then we say

cj @ ck (b)
B
1 A \ c 1
/\ | /\
4 ‘ \
0‘ N7 = 0 -

No

Fig. 8.2 Illustration of relatively opposite flexible linguistic values (2)
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Fig. 8.3 Examples of various relatively opposite flexible linguistic values

A and C are relatively opposite about B = {Ny}, B is called the neutral value
between A and C, and Nj is called the neutral point between A and C.

Examining the relation between “small deficit,” “balancing,” and “small surplus”
in marketing (as shown in Fig. 8.3, here positive is surplus, negative is deficit, and
0 is balancing), it can be seen that they are just tantamount to the linguistic values
A, B, and C in Fig. 8.2a, while the linguistic values “slight deficit,” “balancing,”
and “slight surplus” are separately then tantamount to the linguistic values A, B, and
C in Fig. 8.2b. That is to say, “balancing” is the neutral value, “small deficit” and
“small surplus” are relatively opposite, and “slight deficit” and “slight surplus” are
relatively opposite.

Actually, the relatively opposite relation also existed in rigid linguistic values.
For instance, “{0}” is just the neutral value between “positive” and “negative,” so
“positive” and “negative” are relatively opposite. Similarly, “deficit” and “surplus,”
“concave” and “convex,” “rise” and “fall,” “victory” and “defeat,” “affirming” and
“dissenting,” etc., are all relatively opposite.

Later on, we denote the opposite of a flexible linguistic value A as —A, the
neutral value as Neu, and a neutral point as Ny.

EEINT3

2. Types of relatively opposite flexible linguistic values
After further examining, we find that the relatively opposite relation between
flexible linguistic values is comparatively complex, and they can be separated
into multiple types such as subjective relatively opposite, objective relatively
opposite, face—face relatively opposite, back—back relatively opposite, sym-
metrical relatively opposite, standard relatively opposite, and normal relatively
opposite.

(1) Subjective relatively opposite and objective relatively opposite
Subjective relatively opposite is the relatively opposite relation that people
think subjectively or that be artificially appointed. For instance, when we
divide the heights of adults into two flexible classes of “tall” and “short,” the
“tall” and “short” are relatively negative relation; but when we divide it into
three flexible classes of “tall,” “medium” and “short,” then “tall” and “short”
are relatively opposite relation. Whether to divide heights into two classes or
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three classes is completely subjective and artificial, so the relatively opposite
relation between “tall” and “short” is a subjective relatively opposite. Besides,
the relatively opposite relations between cold and hot, fast and slow, big and
small, etc., are all subjective relatively opposite.

The characteristic of subjective relatively opposite is that the neutral value and
neutral point between two relatively opposite flexible linguistic values are appointed
artificially, but not objective existences. Therefore, this kind of relatively opposite
relation is interchangeable with relatively negative relation. In fact, when inserting a
neither-this-nor-that neutral flexible linguistic value between a pair of relatively
negative linguistic values, the original relatively negative relation just becomes a
relatively opposite relation. Conversely, removing neutral flexible linguistic value
between a pair of relatively opposite flexible linguistic values, then the original
relatively opposite relation just becomes a relatively negative relation. For example,
if there is no “medium” between “big” and “small,” then “big” and “small” are
relatively negative; if there is “medium,” then they are relatively opposite.

Objective relatively opposite is the relatively opposite relation that objectively
existed and unchangeable. Its characteristic is that there exists objectively a neutral
point that is neither this nor that between two relatively opposite linguistic values.
This neutral point is just a turning point between two relatively opposite linguistic
values. It is just this turning point that making there is no transition zone that is this
and that between two relatively opposite linguistic values. Therefore, an objective
relatively opposite cannot be changed into a relatively negative, and vice versa. For
instance, “slight deficit” and “slight surplus” are just an objective relatively
opposite, because there exists a neutral point “0” between the two. Similarly, “small
deficit” and “small surplus,” “large deficit” and “large surplus,” “sharp rise” and
“deep fall,” “big victory” and “big failure,” “firmly support” and “resolutely
oppose,” etc., are all objective-opposite. Besides, the relatively opposite relations
between rigid linguistic values are all objective relatively opposite.

(2) Face-face relatively opposite, back—back relatively opposite, and sym-
metrical relatively opposite
Examining the characteristics of the relatively opposite flexible linguistic
values shown in Figs. 8.1 and 8.2, it can be seen that A in Fig. 8.1 is a positive
semi-peak value and C is a negative semi-peak value; thus, we visually refer to
this kind of relatively opposite as face-to-face relatively opposite, or face—face
relatively opposite for short; while A in Fig. 8.1b is a negative semi-peak
value, C is a positive semi-peak value; therefore, we visually refer to this kind
of relatively opposite as back-to-back relatively opposite, or back—back rela-
tively opposite.

In a broad sense, we refer to all semi-peak flexible linguistic values that are
symmetrical about a neutral value and have opposite peak types as face—face rel-
atively opposite or back—back relatively opposite. Further, we call collectively the
semi-peak and full-peak flexible linguistic values that are symmetrical about a
neutral value as symmetrical relatively opposite.
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Example 8.1 Let x = income payment and the range of x be [a, b]. As shown in
Fig. 8.3, defining flexible linguistic values of “slight deficit,” “slight surplus,”
“small deficit,” “small surplus,” etc., then “small deficit™ and “small surplus,”
“medium deficit™ and “medium surplus~,” and “large deficit” and “large surplus”
are all face—face relatively opposite, and the corresponding neutral values are all
“roughly balancing”; while “slight deficit” and “slight surplus,” “small deficit ” and
“small surplus™,” and “medium deficit ” and “medium surplus” are all back—back
relatively opposite, the corresponding neutral values are all {0}. These relatively
opposite relations are all symmetrical relatively opposite. In particular, full-peak
values “small deficit” and “small surplus” and “medium deficit” and “medium

surplus” are also symmetrical relatively opposite.

EEINTS

Note that as an independent flexible linguistic value,
roughly balancing = slight deficit V {0} V slight surplus
but as a neutral value,
roughly balancing = — small deficit ™ A — small surplus ™~

while “0” is the neutral point of all symmetrical relatively opposite linguistic values
in the figure.

Besides, it also can be seen that if the peak value point of a full-peak value is
treated as a neutral point, then from a full-peak flexible linguistic value, a pair of
back—back relatively opposite flexible linguistic values can be constructed. For
instance, with Peak value POintS ésmall deficits é:medium deficits é:small surpluss and
Cmedium surplus 1N Fig. 8.3 as neutral points separately, 4 pairs of back—back relatively
opposite flexible linguistic values can be constructed.

(3) Global relatively opposite and local relatively opposite

From Fig. 8.3, it also can be seen that besides the above-stated relatively
opposite flexible linguistic values, “slight deficit” and “medium deficit” about
“small deficit,” “large deficit” and “small deficit” about “medium deficit,”
“slight surplus” and “medium surplus” about “small surplus,” “small surplus”
and “large surplus” about “medium surplus,” etc., are all relatively opposite.
But “small deficit,” “medium deficit,” “small surplus,” and “medium surplus”
as neutral values are merely local, while neutral values “roughly balancing”
and {0} are global. Similarly, neutral points {pan deficits Smedium deficits Ssmall
surplus> ANA Epedium surplus are also local, while neutral point 0 is global.

We refer to the relatively opposite relations relative to local neutral value as local
relatively opposite, and the relatively opposite relations relative to global neutral
value as global relatively opposite.

It can be seen that the global neutral value and the neutral point in a space are
unique, and also objective and absolute, while the local neutral value and the neutral
point are subjective and relative. In fact, a global neutral point is tantamount to
dividing a whole space into two “half space” that are relatively opposite, while
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defining relatively opposite flexible linguistic values on either “half space” (of
course, we can even more define relatively negative flexible linguistic values; for
instance, in Fig. 8.3, “large deficit,” “medium deficit,” “small deficit,” and “slight
deficit” are just relatively negative pairwise, and “slight surplus,” “small surplus,”
“medium surplus,” and “large surplus” are also relatively negative pairwise).
Viewed conversely, the universe space that has a global neutral point is a “full
space” connected by two “half spaces” with a neutral point.

8.2 Relation Between Consistency-Degrees of Relatively
Opposite Flexible Linguistic Values

Two flexible linguistic values that are face—face relatively opposite are separated by
a neutral point, but because of the continuity of space, the difference between
objects in the support sets of these two linguistic values is still related to the
distance. Therefore, for those objects located at neutral zone and located at the
support set of an opposite value, we can use negative numbers to represent the
consistency-degrees of them having the corresponding another opposite value. In
this sense, the consistency functions of two face—face relatively opposite flexible
linguistic values can be extended to the whole universe space. Thus, we can discuss
the relation between degrees of one and the same object having a pair of face—face
relatively opposite flexible linguistic values.

1. Relation between the consistency-degrees of normal face—face relatively
opposite flexible linguistic values
We call a pair of face—face relatively opposite flexible linguistic values that the
corresponding neutral point is located at the center of the neutral zone and that
their core widths and boundary widths are separately equal, to be the normal
face—face relatively opposite flexible linguistic values. It can be seen that the
curves of consistency functions of a pair of normal face—face relatively opposite
flexible linguistic values are axis-symmetrical about straight line x = Ny. As
shown in Fig. 8.4, suppose that flexible linguistic values A and B on universe
U are normally face—face relatively opposite, and C and D are also normally
face—face relatively opposite, that is, B = —A, D = —C. Then, straight lines
vy = ca(x) and y = cp(x) are axis-symmetrical about vertical line x = Ny. Also let
the intersection point of straight lines y = c4(x) and y = cp(x) be (x*, y*). Thus,
from geometry knowledge, it is known that y = c4(x) and y = cp(x) are sym-
metrical about horizontal line y = y*. Now, arbitrarily take xo € U to construct
line x = x(, which intersects y = c4(x) at point (xo, y;), and intersects y = cp(x) at
pomt (X0, ¥2). Then, from y = c4(x) and y = cp(x) being symmetrlcal about
y =y", we can obtain that y; and y, are symmetrical about y . Therefore, we
have
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______________________ ! X
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(X0, y2)
Fig. 8.4 Illustration of normal face—face relatively opposite
v —=y2| = 2ly" =2
It can be seen that when y; > y,, y~ > y,; thus

yi—y2=20y" =)
when y; < y,, ¥ < yy; thus, still

yi—y2=20y" =)
It follows by this equation that

ity =2
while
yi = ca(x0),y2 = c_a(x0),y" = c_a(x") = ca(x")
Thus
ca(xo) +c_a(xo) =2c_a(x")
Since x, is arbitrary, we have
ca(x) +c_a(x) = 2ca(x") (8.1)

ca(x) +c_a(x) =2c_p(x") (8.2)
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where x" is the abscissa of the intersection point of consistency functions c4(x) and
c—a(x) of relatively opposite flexible linguistic values A and —A.

These two equations are the relational expressions of consistency functions of
normal face—face relatively opposite flexible linguistic values A and —A (=B) in
Fig. 8.4. From the above deriving process, it can be seen that there are also similar
relational expressions between consistency functions of relatively opposite flexible
linguistic values C and —C (=D) in the figure. Therefore, Egs. (8.1) and (8.2) have
generality, and they are just the relational expressions between consistency func-
tions of normal face—face relatively opposite flexible linguistic values. Using these
two equations, the consistency functions and consistency-degrees of a pair of face—
face relatively opposite flexible linguistic values can be obtained and converted
mutually.

2. Standard relatively opposite relation and opposite law
of consistency-degrees

Definition 8.3 We call such a pair of normal face—face relatively opposite flexible
linguistic values that there is only one point—neutral point in corresponding neutral
zone to be the standard face—face relatively opposite flexible linguistic values, or
standard relatively opposite flexible linguistic values for short.

For instance, the flexible linguistic values A and —A in Fig. 8.5 are just a pair of
standard relatively opposite flexible linguistic values.

It can be seen that neutral point N, between standard relatively opposite flexible
linguistic values is also the common boundary point of the supports sets of these
two linguistic values, and the union of these two support sets is symmetrical about
neutral point Ny; the flexible set to which neutral value Neu corresponds is a flexible
set with core containing single point.

We now consider the relation between the consistency functions of standard
relatively opposite flexible linguistic values.

It can be seen that the ordinate of intersection point (x, y") of the graphs of the
consistency functions of standard relatively opposite flexible linguistic values is 0,
that is, y* = 0. Therefore, standard relatively opposite flexible linguistic values are
also normal face—face relatively opposite flexible linguistic values, the intersection

Fig. 8.5 TIllustration of ch
standard relatively opposite - (-4) —A
flexible linguistic values
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point of their consistency functions being (x*, 0), while y* = cA(x*) = cfA(x*). Thus,
from Egs. (8.1) and (8.2), we have

ca(x)+e_alx)=0 (8.3)
c_a(x) = —ca(x) (8.4)

This is the relation between consistency functions of standard relatively opposite
flexible linguistic values.

Equation (8.4) means that the consistency-degrees of one and the same object
with two standard relatively opposite flexible linguistic values are opposite to each
other. We call Eq. (8.4) to be the opposite law of consistency-degrees of standard
relatively opposite flexible linguistic values, or simply, opposite law of
consistency-degrees of relatively opposite flexible linguistic values [1].

The opposite law is concerned with the consistency-degree of standard relatively
opposite flexible linguistic values. Then, for the membership degrees of the cor-
responding flexible sets, how is the two related? It can be seen that if viewed from
the range [0, 1] of membership degrees, the membership degrees of the corre-
sponding flexible sets of standard relatively opposite flexible linguistic values have
no relation. However, if the range of membership degrees is extended to [—1, 1],
then the membership degrees of one and the same object belonging to the flexible
sets corresponding to two standard relatively opposite flexible linguistic values are
also mutually opposite number. The graphs of corresponding two membership
functions are shown in Fig. 8.6.

Since the standard relatively opposite relation has such an important property of
degrees being relatively opposite, we will mainly consider standard relatively
opposite later. If there is no special note later, “relatively opposite” always refers to
the standard relatively opposite. In particular, we call two flexible linguistic values
that are standard relatively opposite to be the flexible linguistic value with
opposite.

Fig. 8.6 Membership ck
functions of the
corresponding flexible sets of
standard relatively opposite

' h Ve 1 N
flexible linguistic values YERIRN
]
/ . \
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Fig. 8.7 Examples of flexible linguistic values with opposites

Thus, A and —A in Fig. 8.5 are just two flexible linguistic values with opposites.
Besides, the flexible linguistic values like A, A,, ..., Ajo in Fig. 8.7 are also flexible
linguistic values with opposites.

8.3 Interchange Between Relatively Negative Relation
and Relatively Opposite Relation

In the above from the standpoint of relatively opposite relation, we referred to the
relation between flexible linguistic values that can be relatively opposite as well as
relatively negative as the subjective relatively opposite relation. Then, if viewed
from the standpoint of relatively negative relation, this kind of relation is also the
subjective relatively negative relation. In fact, many flexible concepts that are
usually thought to be relatively negative are all the subjective relatively negative.
That means the relatively negative relation between these flexible linguistic values
can also be changed into the relatively opposite relation.

A @ ~,(b)

Fig. 8.8 Illustration of interchanging between subjective relatively negative relation and
subjective relatively opposite relation
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Fig. 8.9 Illustration of interchanging between subjective relatively negative relation and
subjective relatively opposite relation (membership functions)

Let flexible linguistic values A and C be relatively negative, the graphs of
whose consistency functions are shown in Fig. 8.8a. It can be seen that point

+ + — 4o
x=24"T%9=%2% 5 the median point of the common boundary of A and
C. Then, now we take X as the neutral point between A and C, while core-boundary

points ¢, and ¢ of A and C do not change; then, the consistency functions of
A and C become

. B

CA'(X):—icha Ca SX
A

col) =5, sg<x

Since ¥ is the midpoint between core(A) and core(C), X — ¢, = ¢c — X; therefore,

X—Xx X—X X—X X—X
CA,(X)JFCC’(X):X—CJ’ +c‘—f:)_c—ch Jr)_c—cJr =0
A c A A

That is to say, A and C already become relatively opposite relation, whose graphs
are shown in Fig. 8.8b.

The membership functions that flexible linguistic values A and C are changed
from relatively negative to relatively opposite are shown in Fig. 8.9.

It can be visually seen from Figs. 8.8 and 8.9 that the general method of
changing relatively negative flexible linguistic values into relatively opposite
flexible linguistic values is as follows: Do not change the cores of the original
relatively negative flexible linguistic values, but to treat the original median point
that is this and also that as the neutral point that is neither this nor that, reconstruct
the consistency functions of two flexible linguistic values; also extend the range of
the membership function from [0, 1] to [—1, 1] to reconstruct the membership
function, and insert a set with core containing single point with the neutral point as
center in the original boundary region to treat as the neutral value between two
relatively opposite flexible linguistic values that are newly constructed.
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The inverse process of the change from relatively negative flexible linguistic
values to relatively opposite flexible linguistic values is the change from relatively
opposite flexible linguistic values to relatively negative flexible linguistic values.
Specifically speaking, it is that the cores of the original relatively opposite flexible
linguistic values are not changing, but treat the neutral point that is originally
neither this nor that as a median point that is also this and also that, then reconstruct
the consistency functions of the two flexible linguistic values; also contract the
range of the membership functions from [—1, 1] to [0, 1], and reconstruct mem-
bership functions, and cancel the neutral value between the original relatively
opposite flexible linguistic values.

Thus, when relatively negative flexible linguistic values are changed into rela-
tively opposite flexible linguistic values, the original medium point becomes a
neutral point, and thus, the original extended core becomes a support set; con-
versely, when relatively opposite flexible linguistic values are changed into rela-
tively negative flexible linguistic values, the original neutral point becomes a
medium point, and thus, the original support set becomes an extended core. That is
to say, with respect to the subjective relatively opposite and subjective relatively
negative, the support set of a flexible linguistic value with opposite is tantamount to
the extended core of a flexible linguistic value with negation, and vice versa.

8.4 Relevant Theories About Flexible Linguistic Value
with Opposite

Viewed from a linguistic value itself in isolation, there is no difference between a
flexible linguistic value with opposite and a flexible linguistic value with negation.
Therefore, some basic theories about flexible linguistic values with negations in
Chaps. 6 and 7 such as composition and decomposition, inclusion relation, simi-
larity relation, flexible linguistic value with degree, superposed linguistic values,
and interconversion between flexible linguistic values and numerical values are also
applicable and tenable for the flexible linguistic values with opposites. So here
repetition is omitted.

But, it should be specified and noted that the condition of the conversion from a
numerical value to a flexible linguistic value with opposite should be ¢y, (x9) > 0
but not ca, (xp) > 0.5. Thus, in dual, from Theorem 7.1 we have the theorem below.

Theorem 8.1 Numerical value (vector) x¢ can be converted into flexible linguistic
value with opposite, A, if and only if xo € supp(A).

Certainly, the operations of flexible linguistic values with opposites also have
their uniqueness. For instance, because a flexible linguistic value with opposite also
has its negative value, it is also a flexible linguistic value with negation at the same
time. Thus, there can be the compound flexible linguistic value that has both
opposite operation and negative operation.


http://dx.doi.org/10.1007/978-981-10-1549-6_6
http://dx.doi.org/10.1007/978-981-10-1549-6_7

8.4 Relevant Theories About Flexible Linguistic Value ... 195

Let A be a flexible linguistic value with opposite on universe U = [a, b], then
—A is also a flexible linguistic value with opposite. Thus, it follows that compound
linguistic values —A, —(—A), and —A A —(—A). From the definitions of related
operations of flexible linguistic values with opposites and flexible linguistic values
with negations, the consistency functions of these compound linguistic values are:

cma(x) = 1 —cax) (8.5)

e (0) = T —coa(x) = 1 = (=calx)) = 1 +calx) (8.6)

cman(-a) () = minfe—a (x), eoa) (1)} = min{l —ca(x), 1 +ealx)}  (8.7)
While —A A —(=A) = Neu, then

Neu(x) = min{1 — ca(x), 1 +ca(x)} (8.8)

Of course, we can have more such compound linguistic values that have
opposite-negation double operations

It can be seen that these consistency functions are all functions of the consis-
tency functions about flexible linguistic value with opposite, A. Thus, using these
consistency functions we can calculate the consistency-degree of x with corre-
sponding compound flexible linguistic values in the situation when the
consistency-degree c,(x) of object x with a certain flexible linguistic value with
opposite, A, is known.

Example 8.2 As shown in Fig. 8.10, we define three basic flexible linguistic values
of “affirming,” “dissenting” and “abstention” on score range [—100, 100]. Then,
“affirming” and “dissenting” are relatively opposite, and “abstention” is the neutral
value. Now it is already known that the degree of someone P affirming something is
0.8. Find the corresponding degrees of the attitude of this person to other 4 flexible

Fig. 8.10 Example of
relation between degrees of o ) )
relatively negative and _not afﬁr\mmg not dissenting
relatively opposite flexible dissenting \abstentlon/ 7 affirming

linguistic values

-100 0 100 (score)
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linguistic values. What is degree when the degrees of “affirming” are separately 1,
0, and —1?

Solution: From the figure, it can be seen that here “affirming” and “dissenting”
are a pair of standard relatively opposite flexible linguistic values, while “affirming”
and “not affirming” and “dissenting” and “not dissenting” are two pairs of relatively
negative flexible linguistic values; neutral value “abstention” is neither affirming
nor dissenting, that is, “abstention” = “not affirming” A “not dissenting.” From this,
when Cagirming(P) = 0.8, we have

Cnotaffirming(P) =1 — 0.8 = 0.2 (by complement law of consistency — degrees)

P

Cabstention (P) = min (Cnot affirming (P) » Cnot dissenting (P))

min(0.2, 1.8) = 0.2 (by conjunction operation of flexible linguistic values)

Crotdissenting 1 — (—0.8) = 1.8 (by complement law of consistency — degrees)

(P)

cdissenting(P) = — 0.8 (by opposite law of consistency — degrees)
(P)
(P)

Thus, Cummiming(P) = 0.8 is separately tantamount t0 Cpo¢ affirming(P) = 0.2,
Cdissenting(P) = —0.8, Cnot dissenting(P) = 1.8, and cypsiention(P) = 0.2. Then, if we
interpret (affirming, 0.8), (not affirming, 0.2), (dissenting, —0.8), (not dissenting,
1.8), and (abstention, 0.2) separately as “affirming on the whole,” “a bit not
affirming,” “totally opposite with dissenting on the whole,” “quite not dissenting,”
and “slightly neutral,” then the 5 versions are equivalent.

With the same reason, we have the following results:

Cafiirming(P) =1 is  separately  tantamount 0  Cnot  afirming(P) = 0,
Cdissenting(P) = _1: Chot dissenting(P) = 29 and Cabstention(P) = O; thl.lS, “tOtally affirm-
ing,” “totally not disaffirming,” “quite not dissenting,” and “totally not neutral” are
equivalent mutually.

Cafﬁrming(P) = 0 is separately tantamount to ¢yor afﬂrming(P) =1, Cdissenting(P) =0,
Crot dissenting(P) = 1, and Cypgienion(P) = 1; thus, “totally not affirming,” “totally not
un-dissenting,” “totally not dissenting,” and “remain strictly neutral” are equivalent
mutually.

Cafirming(P) = =1 is  separately  tantamount (0  Cpot  afiirming(P) = 2,
Cdissenling(P) =1, ot dissenting(P) =0, and capsienion(P) = 0; thus, “absolutely not
affirming,” “totally dissenting,” “totally not un-dissenting,” and “totally not neutral”
are equivalent mutually.

A flexible linguistic value with opposite is also a flexible linguistic value with
negation; that is to say, the flexible linguistic value with opposite plays double
roles. Then, how to judge whether such a linguistic values is treated as a flexible
linguistic value with opposite or a flexible linguistic value with negation in practical
application? Obviously, it is hard to distinguish it from the flexible linguistic value

LRI

RT3

2 ¢
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itself, but if we consider from the background of problem, then it is easy to
determine whether it should be with opposite or negation.

Here, it also should be noted that a flexible linguistic value with negation is not
necessarily a flexible linguistic value with opposite, so generally cannot be written
as —(—A).

8.5 Exclusive Flexible Partition of a Space and Exclusive
Flexible Linguistic Values

1. Exclusive flexible partition of a space, exclusive flexible classes, and
exclusive flexible linguistic values

Examining the characteristics of the support sets of standard relatively opposite
flexible linguistic values, it can be seen that two flexible linguistic values are of
standard relatively opposite if and only if the intersection of the complement of their
support sets is a single-point set. That is,

A=—-BAB=—A < supp(A)  Nsupp(B) = {no} (8.9)

Definition 8.4 Let A;, A,, ..., A,, be non-empty flexible sets in one-dimensional
measurement space U, if

supp(A;) Nsupp(Ai+1) =0 (i=1,2,....,m—1)
supp(—A;) Nsupp(—4; 1) = {no,,,} (=1,2,....m—1)

m—1

Usupp(Ai) U U {n0i+]} =U
i=1 i=1

then we say m = {A, Ay, ..., A, } is an exclusive flexible partition of space U and
flexible sets Ay, As,...,A,, are mutually exclusive, or that the corresponding flexible
linguistic values Ay, A,,...,A,, are mutually exclusive and A, A,,...,A,, form a
group of mutually exclusive basic flexible linguistic values on space U.

Example 8.3 As shown in Fig. 8.11a, 7y = {A;,As, ..., As} is an exclusive flexible
partition of one-dimensional space U = [a, b], flexible sets A, A,, ..., Ag are
mutually exclusive, and flexible linguistic values A,, A,, ..., Ag are mutually
exclusive. As shown in Fig. 8.11b, m, = {A1,A,,...,A10} is also a exclusive
flexible partition of space U = [a, b], flexible sets A, A,, ..., Ajo are mutually
exclusive, and flexible linguistic values A;, A,, ..., Ajo are mutually exclusive.

Definition 8.5 Let A;, A,, ..., A,, be non-empty flexible sets in n-dimensional
measurement space U, if for any adjacent A; and A; (i <j, 1 <i<m, 1 <j<m),
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L 4, Ay As Ay As As

Fig. 8.11 a Example 1 of exclusive flexible partition of one-dimensional space and the
corresponding exclusive flexible linguistic values. b Example 2 of exclusive flexible partition of
one-dimensional space and the corresponding exclusive flexible linguistic values

supp(A;) Nsupp(4;) =0
supp(—A;) Nsupp(—4;) = {eo, }

and

Uswpr@ayu  |J Afeo}=U

i=1 ije{12,...m}
then we say @ = {A,As,...,An} is an exclusive flexible partition of space U and
flexible sets Aq, A,, ..., A,, are mutually exclusive and the corresponding flexible
linguistic values Ay, A, ..., A,, are mutually exclusive, and Ay, A,, ..., A, form a

group of mutually exclusive basic flexible linguistic values on space U. Here, {eo, }
denotes a single-element set, which can be a single-point set {ny}, single-line set
{lp}, or single-plane set {pg}.
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(a) (b)

L L] ]

I I I |

Fig. 8.12 Examples of exclusive flexible partition of multidimensional space and the corre-
sponding exclusive flexible linguistic values

More simply speaking, a mutually exclusive flexible partition is that there is one
and only one demarcation point (line or plane) formed by neutral point(s) that is
neither this nor that between the support sets of two adjacent flexible sets.

Example 8.4 Figure 8.12 shows the examples of the exclusive flexible partition of
two-dimensional space and the corresponding mutually exclusive flexible sets and
mutually exclusive flexible linguistic values, where the white lines are the
demarcation lines of adjacent flexible classes.

Note that the exclusive flexible partition is much like usual rigid partition, yet
actually it is not rigid partition but is still flexible partition. Because the exclusive
flexible partition is still a partition based on flexible clustering, the classes obtained
are still flexible classes; only that there is only a boundary point (line or place)
between the support sets of two adjacent flexible classes, not like complementary
flexible partition, that the support sets of two flexible classes are intersected and that
there is a region as boundary between the cores.

2. Relation between mutual exclusion and relative opposite

From the definition and examples of mutual exclusion relation of flexible lin-
guistic values, it can be seen that the mutual exclusion has a certain connection with
relative opposite of flexible linguistic values, and the two have both something in
common and differences.

Resemblance: There is a neutral point (line or place) between two relatively
opposite flexible linguistic values, while there is a neutral point (line or plane)
between adjacent two of mutually exclusive flexible linguistic values.

Difference: Relative opposite is only concerned with two linguistic values,
which is a relation between two linguistic values, while mutual exclusion can be
concerned with two or more than two linguistic values, which is a relation among
multiple linguistic values.

Thus, generally speaking, mutual exclusion is not relative opposite. However, if
there are only two basic flexible linguistic values that are mutually exclusive on a
universe space, then the two are also relatively opposite. Conversely, if there are
only two basic flexible linguistic values that are relatively opposite on a universe
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space, then the two are also mutually exclusive. That is to say, relative opposite is a
special mutual exclusion; in the situation that there are only two basic flexible
linguistic values, relative opposite and mutual exclusion are just identical.

Further, we find that though generally speaking, mutual exclusion is not relative
opposite, and some flexible linguistic values that are mutually exclusive contain
flexible linguistic valued pairs that are relatively opposite.

As a matter of fact, as shown in Fig. 8.13, starting from point O of square region
U X V, draw forth 4 rays to up, down, left, and right (as shown by the broken lines
in the figure) such that the upper and lower two rays are on the same vertical line
and that left and right two rays are on the same horizontal line; then, take point O as
the origin, the vertical line as the vertical axis, and the horizontal line as the lateral
axis; next, construct separately the angle bisectors of 4 quadrants through origin
O (as shown by the white line in the figure, here they are just the diagonals of 4
squares), and then, the original square region is divided into 4 triangular sub
regions. Take the white line as the neutral line of the adjacent regions; then, the
above-stated partition is a mutually exclusive partition. Thus, we get 4 basic flexible
linguistic values on the corresponding space, and name them one by one as “up,”
“down,” “left,” and “right” according to the direction and denote them one by one
as U, D, L, and R.

It can be seen that the original 4 rays that pass origin O are also separately the
core centers of these 4 flexible linguistic values. As shown in Fig. 8.13, for point P
(x, ¥y) € U X V, construct straight line / through P(x, y) and origin O, and let the
included angle of / and the core center line of flexible linguistic value U (i.e., the
included angle of / and the vertical axis) be §. Obviously, & can be determined by
the polar coordinates of point P(x, y), so 8 should be the function of x and y. Thus,
from the geometric characteristic of flexible linguistic value U, we obtain the
consistency function of it about included angle § as follows:
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cu(0) = _45-0

$5%, when y>0
*57, Wwhen y<0

Let 6 = o(x, y), thus, we have

_ B0y - yhen y<0

45— (x,y) h =
rEa—

Similarly, we have

H-olxy) when y<O0
ep(x,y) = a5 0 Y
D( y) { _45—‘(‘/;(x,y)’ when y> 0
Now, take V(xo, yg) € U X V, let yg > 0, and suppose that the included angle of
the straight line / through point P(xy, yo) and the core center line of U is 0, that is,
@(xo, yo) = 6, then

45 — (p(Xo,yo) _ 45 — 90
45 45
45 — (p(X(),y()) _45 — 00

CD(x07y0) = - 45 = 45

cu(xo,¥0) =

Thus,

45-0p 45-0p

45 45 0

cy(xo0,¥0) + cp(x0,y0) =

This shows that U and D are relatively opposite; that is, the two linguistic values of
“up” and “down” are relatively opposite flexible linguistic values.

Similarly, we can derive that L and R are relatively opposite; that is, the two
linguistic values of “left” and “right” are relatively opposite flexible linguistic
values.

Thus, we obtain a group of mutually exclusive flexible linguistic values that
contains relatively opposite flexible linguistic values by conducting appropriate
mutually exclusive flexible partition of plane region U X V.

Note here the appropriate mutually exclusive flexible partition, the characteristic
of which is to exclusively divide the plane region U X V into 4 regions that are
strictly symmetrical pairwise. We may as well refer to this kind of partition that is
strictly symmetrical as normal partition. That is to say, the normal partition can
produce a group of mutually exclusive flexible linguistic values that contains rel-
atively opposite flexible linguistic values. However, if the partition of a universe
space is not normal, then it cannot be guaranteed that the exclusive flexible lin-
guistic values obtained contain relatively opposite flexible linguistic values. For
instance, though the partition as shown in Fig. 8.14 may be an exclusive flexible
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Fig. 8.14 An example of
non-normal partition of a
space

partition, it is not a normal partition, so relatively opposite flexible linguistic values
cannot be produced.

In the above, plane region U X V is normally divided into 4 regions, obtaining
two pairs of relatively opposite flexible linguistic values. Similarly, plane region
U X V can also be exclusively divided into 2 X 2% = 8,2 X 2° =16, ..., 2 X 2"
regions that are strictly symmetrical pairwise, obtaining 2" pairs of relatively
opposite flexible linguistic values.

On the other hand, using the same method, three-dimensional space region
U X VX W can also be normally divided into 6 regions, obtaining 3 pairs of
relatively opposite flexible linguistic values, and further to exclusively divide space
UXVXWinto 3x2%°=12, 3x2>=24, ..., 3 X 2" regions that are strictly
symmetrical pairwise, obtaining 3 X 2"~ pairs of relatively opposite flexible lin-
guistic values.

From the above examples, we see that there seems to be such a law: A group of
mutually exclusive basic flexible linguistic values whose total number is an even
number may contain relatively opposite flexible linguistic values, and a group of
mutually exclusive basic flexible linguistic values whose total number is an odd
number cannot contain relatively opposite flexible linguistic values.

8.6 Relatively Opposite Flexible Sets and Flexible Set
with Opposite

From the relation between a flexible linguistic value and its corresponding flexible
set, two flexible sets labeled by a pair of relatively opposite flexible linguistic values
are also relatively opposite flexible sets. Next, we give the definition of relatively
opposite flexible sets starting from sets directly.
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Definition 8.6 Let A and C be two flexible sets of one-dimensional space U = [a,
b], and supp(A)° N supp(C)° = B. If sets supp(A), B, and supp(C) are adjacent one
by one, and supp(A) N B N supp(C) = &, then we say flexible sets A and C are
relatively opposite about B, and B is called the neutral set between A and C. If
B = {Ny} (Ng € U), then we say flexible sets A and C are the standard relatively
opposite.

Definition 8.7 Let A and C be two flexible sets of one-dimensional space U = [aq,
b]. If set supp(A)° N supp(C)° = {Ny} (No € U), then we say flexible sets A and
C are relatively opposite about { Ny}, {Ny} is called the neutral set between flexible
sets A and C, and Nj is called the neutral point between A and C.

We call two flexible sets that are standard relatively opposite to be the flexible
set with opposite (dually, we call two complementary flexible sets to be the flexible
set with complement).

Viewed from a flexible set itself in isolation, there is no distinction between a
flexible set with opposite and a flexible set with complement, and a flexible set with
opposite can also be a flexible set with complement at the same time. Therefore, the
discussion and conclusions about flexible set with complement in Chap. 5 are also
applicable and tenable for flexible set with opposite. In the following, we directly
give the membership functions of flexible sets A, (—A), A N (—A)", and Neu:

e () = 1 — ma (x) (8.10)
m_ay(x) = 1+ ma(x) (8.11)

Mg Cay (¥) = min{ L — ma (2), 1+ ma ()} (8.12)
M (x) = min{ 1 = ma(x), 1+ ms ()} (8.13)

8.7 Summary

In this chapter, we introduced the concepts of relatively opposite flexible linguistic
values and relatively opposite flexible sets and founded the related theories. The
main points and results are as follows:

e If there is a neither-this-nor-that neutral point (line or plane) between the cor-
responding flexible sets of two flexible linguistic values, then these two flexible
linguistic values are of relatively opposite relation, and they are called relatively
opposite values; the corresponding flexible sets are also relatively opposite
relation, and the two sets are called relatively opposite flexible sets.

e Relatively opposite flexible linguistic values have the types of subjective rela-
tively opposite and objective relatively opposite, face—face relatively opposite
and back-back relatively opposite, global relatively opposite and local relatively
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opposite, normal face—face relatively opposite, standard relatively opposite, etc.
The consistency-degrees of one and the same numerical value with a pair of
standard relatively opposite flexible linguistic values are mutually opposite
number, and the relation is called the relatively opposite principle of the
consistency-degrees of relatively opposite flexible linguistic values.

The subjective relative opposite and the subjective relative negation can be
mutually changed. When a relative opposite relation is changed into a relative
negation relation, the corresponding neutral point becomes the medium point,
and the support set becomes the extended core; conversely, when a relative
negation relation is changed into a relative opposite relation, the corresponding
medium point becomes the neutral point, and the extended core becomes the
support set.

Flexible linguistic values with opposites have the operations and relations as
well as superposing and conversions, etc., similar to flexible linguistic values
with negations.

The flexible sets to which a pair of relatively opposite flexible linguistic values
correspond form a relatively opposite partition of the corresponding measure-
ment space. The generalization of relatively opposite partition is mutually
exclusive partition; that is, there is one and only one neither-this-nor-that neutral
point (line or plane) between adjacent flexible sets in a space. Between flexible
linguistic values obtained from a mutually exclusive partition is mutually
exclusive relation, which forms a group of mutually exclusive basic flexible
linguistic values on the corresponding space.
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Chapter 9
Correspondence Between Flexible Sets,
and Flexible Linguistic Functions

Abstract This chapter analyzes firstly the mathematical backgrounds and
relational representations of a set correspondence and a flexible-set correspondence,
thus revealing the mathematical essence, mathematical background, and relational
representation of a flexible-linguistic-valued correspondence, then proposes and
discusses flexible linguistic functions and flexible linguistic correlations, presents
their types and representation, analyzes their characteristics, properties, and eval-
uations, and in particular, discovers and proposes a quantitative description and
numerical model of flexible linguistic functions and flexible linguistic correlations.

Keywords Set correspondence - Flexible-set correspondence - Flexible-linguistic-
valued correspondence - Flexible linguistic functions - Flexible linguistic corre-
lations - Numerical-model representative

Now that the numerical values in a measurement space can be summarized into one
and another flexible linguistic value; then, a function or correlation between
numerical values in measurement spaces would be summarized into a function or
correlation described by flexible linguistic values. In fact, flexible linguistic func-
tions and correlations are just a kind of model or supplementary or necessary means
of modeling of some complex systems. In this chapter, we first talk about the
correspondence between sets, then discuss the correspondences between flexible
sets and between flexible linguistic values, and then will introduce and discuss
flexible linguistic functions and flexible linguistic correlations.

9.1 Correspondence Between Flexible Sets

In this section, we will examine another relation between flexible sets—corre-
spondence. We consider firstly the correspondence between sets.
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9.1.1 Correspondence Between Two Sets

Let A and B be two subsets. Conceive that if to each x € A there corresponds to a
y € B, then viewed from the level of set, there occurs a correspondence (relation)
between sets A and B.

1. Definition and type of correspondence between sets

Definition 9.1 Let U and V be two sets, and A C U and B C V. If to each
x € A there corresponds to at least one y € B, then we say that set A is corre-
sponded to set B, or set B corresponds to set A, write as A > B.

From this definition, if there is a function ffrom a set A to a set B, then set A is
corresponded to set B. The large amounts of function and correlation in mathe-
matics and practical problems show that the correspondence (relation) between sets
is existent.

Definition 9.2 Let A and B be two sets and A > B. If each element in B is the
image of a certain element or some elements in A under correspondence A — B,
then we say the correspondence A+ B to be an onto (or surjective)
correspondence.

Example 9.1 There are some examples of correspondence between sets in the
following Fig. 9.1 (here A and B are sets of real numbers), of them (b) and (d) are
onto correspondence.

Actually, set B® = {y|y = fix) € B, x € A}, then generally, B* C B, while when
B* = B, A+ B is an onto correspondence.

2. Relationship between the correspondence between sets and the corre-
spondence between elements

From the definitions and examples above, it can be seen that (D a correspon-
dence between sets is really the covering of a function or correlation between
elements of sets; conversely, it is just the function or correlation between elements
in microscopic that forms the correspondence between sets in macroscopic; @ one
and the same set correspondence covers simultaneously many or even an infinite of
functions or correlations. For example, when the set correspondences A —> B in (a),
(b), (c), and (d) in Fig. 9.1 are one and the same set correspondence, those two
functions in (a) and (b) and those two correlations in (c) and (d) are covered by the
same set correspondence A —> €B.

3. Relational representation and graph of a set correspondence
By definition, that set correspondence A > B is represented by a set is

{(x>y)|x €A,y :f(x) € B}

here f denotes a function or correlation covered by set correspondence A —> B.
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It can be seen that this set is a subset of product A X B; we denote it as (A X B)*.

Thus, (A X B)* C A X B. This is to say, (A X B)’ is a binary relation from set A to
set B. However, this binary relation is not general binary relation, which is a
function or correlation from A to B. Consequently, (A X B)' = f.

Now we have seen that

(D When the function or correlation covered is known, set correspondence

A — B can be represented as that function or correlation f as binary relation
covered by which, it is just the graph of f in visual. For example, if the four
correspondences, A > B, in Fig. 9.1 are not the same each other, then the
correspondence A > B in (a) can be represented as the corresponding binary
relation—function y = f(x); in visual, it is also that function curve in the figure;
and the correspondence A v B in (b) is similar; but the correspondence
A — B in (c) can be represented as the corresponding binary relation—cor-
relation Y = f(x) (Y is a set of images of x); in visual, it is also that set of points
or region whose shape is irregular in the figure; and the correspondence
A — B in (d) can be represented as the corresponding binary relation—cor-
relation—universal relation A X B; in visual, it is also that whole rectangular
region A X B in the figure.

When the function or correlation covered is not known, correspondence
A — B cannot be definitely gave in the form of a specific binary relation.
Because one and the same set correspondence A > B covers many or even an
infinite of functions or correlations, which may be various (merely the cor-
respondence between x and y have many cases of one-to-one, one-to-many,
many-to-one, etc.), therefore, the corresponding subsets (A X B)® of corre-
spondence A > B cannot have a unified expressing form and visual graph.
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Further, it can be seen that in all binary relations covered by set correspondence
A — B, the universal relation A X B is “the largest”. This is an extreme case.

To sum up, set correspondence A > B is the covering of a certain function or
correlation f from A to B, which can be represented generally as binary relation
(AX B’ CAX B, namely A+ B = (A X B)’; when the covered function or
correlation f is known, (A X B)® = f, so the graph of relation f is also the graph of
correspondence A > B; especially, when the covered binary relation is universal
relation A X B, correspondence A > B can be represented as product A X B,
namely A — B =A X B.

The relational representation of set correspondence A —> B shows clearly the
difference between the set correspondence A —> B and the set operations A X B and
AXV N UXB.

9.1.2 Correspondence Between Two Flexible Sets

Let U and V be two measurement spaces, and A and B be separately the flexible
subsets of U and V. Conceive that if to each x € U belonging to A with a degree
there corresponds a y € V belonging to B with a degree, then viewed from the level
of set, there occurs a correspondence (relation) between flexible sets A and B.

1. Definition and type of correspondence between flexible sets
The members of a flexible set can only belong to the flexible set with a degree,
and only the degrees greater than 0 are meaningful. Thus, we give the definition
below.

Definition 9.3 Let U and V be two measurement spaces, and A and B be separately
the flexible subsets of U and V. If to each x € U with m4(x) > O there corresponds
to at least one y € V with mp(y) > 0O, then we say that flexible set A is corresponded
to flexible set B, or flexible set B corresponds to flexible set A, write as A — B.

It can be seen that membership degrees m4(x) and mp(y) only show or bound
separately the scopes of x and y, but they bear no relation to whether y corresponds
to x. That is to say, in the sense of correspondence, the membership degree lose
effect, the status of all members in support sets supp(A) and supp(B) are all equal.
Then, since mu(x) > 0 is just x € supp(A), and mp(y) > 0 is just y € supp(B), thus,
the correspondence from flexible set A to flexible set B can be translated into or
reduced as the correspondence from support set supp(A) to support set supp(B);
conversely, the correspondence from support set supp(A) to support set supp(B) is
also the correspondence from flexible set A to flexible set B. While the corre-
spondence between support sets is the correspondence between rigid sets, from last
section, which is existent, therefore, the correspondence between flexible sets is
also existent.
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Definition 9.3’ Let U and V be two measurement spaces, and A and B be separately
the flexible subsets of U and V. If to each x € supp(A) there corresponds to at least
one y € supp(B), then we say that flexible set A is corresponded to flexible set B, or
flexible set B corresponds to flexible set A, write as A — B.

Obviously, the membership degrees m,(x) and mp(y) bear more no relation to
whether y corresponds to x.

Definition 9.4 Let A and B be two flexible sets and A —> B. If each element in supp
(B) is the image of a certain element or some elements in supp(A) under corre-
spondence A —> B, we say the correspondence A —> B to be onto (or surjective)
correspondence.

Example 9.2 There are some examples of flexible-set correspondence in the
following Fig. 9.2, of them (b) and (d) are onto correspondence.

2. Relationship of the correspondence between flexible sets and the corre-
spondence between elements
From the definitions and examples above, it can be seen that @D a flexible-set
correspondence is really the covering of a function or correlation between
elements of flexible sets; conversely, it is just the function or correlation between
elements in microscopic that forms the correspondence between flexible sets in
macroscopic; (@ one and the same flexible-set correspondence covers simulta-
neously many or even an infinite of functions or correlations. For example, when
flexible-set correspondences A > B in (a), (b), (c), and (d) in Fig. 9.2 are one
and the same flexible-set correspondence, those two functions in (a) and (b) and
those two correlations in (c) and (d) are covered by the one and the same
flexible-set correspondence A — B.
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3. Relational representation and graph of a flexible-set correspondence
By definition, that flexible-set correspondence A > B is represented by a set is

{(x,y)|x € supp(A),y = f(x)supp(B) }

here f denotes a function or correlation covered by flexible-set correspondence
Ar— B.

It can be seen that this set is a subset of product supp(A4) X supp(B), and we
denote it as (supp(A) X supp(B))’. Thus, (supp(A) X supp(B))* C supp(4) X supp
(B). That is to say, (supp(A) X supp(B))’ is a binary relation from set supp(A) to set
supp(B). However, this binary relation is not general binary relation, which is a
function or correlation from supp(A) to supp(B). Consequently, (supp(4) X supp
B) =f.

Now we have seen that

@ When function or correlation covered is known, flexible-set correspondence
A — B can be specifically represented as that function or correlation f as
binary relation covered by which, it is just the graph of f in visual. For
example, if the four correspondences, A /> B, in Fig. 9.2 are not the same
each other, then the correspondence A /> B in (a) can be represented as the
corresponding binary relation—function y = f(x); in visual, it is also that
function curve in the figure; and the correspondence A > B in (b) is similar;
but the correspondence A > B in (c) can be represented as the corresponding
binary relation—correlation Y = f{x) (Y is a set of images of x); in visual, it is
also that set of points or region whose shape is irregular in the figure; and the
correspondence A —> B in (d) can be represented as the corresponding binary
relation—correlation—universal relation supp(A) X supp(B); in visual, it is
also that whole rectangular region supp(A) X supp(B) in the figure.

® When function or correlation covered is not known, correspondence
A — B cannot be definitely given by the form of a specific binary relation.
Because one and the same flexible-set correspondence A —> B covers many or
even an infinite of functions or correlations, which may be various (merely the
correspondence between x and y have many cases of one-to-one, one-to-many,
many-to-one, etc.), therefore, the corresponding subsets (supp(4) X supp(B))°*
of correspondence A — B cannot have a unified expressing form and visual
graph.

Further, it can be seen that in all binary relations covered by flexible-set cor-
respondence A +— B, the universal relation supp(A) X supp(B) is “the largest,”
which is an extreme case.

To sum up, flexible-set correspondence A > B is the covering of a certain
function or correlation ffrom A to B, which can be represented generally as binary
relation  (supp(A) X supp(B))* C supp(A) X supp(B), namely A +—> B = (supp
(A) X supp(B))’; when the covered function or correlation f is known, (supp
(A) X supp(B))’ = f, so the graph of relation f is also the graph of correspondence



9.1 Correspondence Between Flexible Sets 211

A — B; especially, when the covered binary relation is universal relation supp
(A) X supp(B), correspondence A > B can be represented as product supp
(A) X supp(B), namely A — B = supp(A) X supp(B).

The relational representation of flexible-set correspondence A v B shows
clearly the difference between the flexible-set correspondence A ——> B and the
flexible set operations A X Band A X V N U X B.

Note that although the correspondence between numbers is always rigid, the
correspondence between sets (including flexible sets) can be rigid as well as flex-
ible. In fact, the correspondence > between (flexible) sets that we define above is
just rigid, while the “partial correspondence” between flexible sets, such as “basi-
cally corresponding”, “some corresponding” and so on, is then flexible, For “partial
correspondence” between two (flexible) sets, we will discuss in Sect. 20.6.

9.1.3 The Correspondence with a Compound Flexible Set

What the set correspondence and flexible-set correspondence above cover are the
functions and correlations of a variable, but there are also the functions and cor-
relations of multiple variables in mathematics and practical problems. A function or
correlation of multiple variables forms a correspondence from one compound set to
another set.

Definition 9.5 Let A, A,, ..., A, be separately flexible subsets of measurement
spaces Uy, U, ..., U,, and B be a flexible subset of V. If to each (x, x», ..., x,,) €
supp(A; N A, N - N A,) there corresponds to at least one y € supp(B), then we
say that compound flexible setA; N A, N --- N A, is corresponded to flexible set B,
or flexible set B corresponds to flexible set A; N A, N - N A, write A} N Ay N
-+ N A,— B.

Definition 9.5’ Let A;, A,, ..., A, be separately flexible subsets of measurement
spaces Uy, U,, ..., U,, and B be flexible subsets of V. If there exists a function or
correlation from supp(A; N A, N --- N A,) to supp(B), then we say that compound
flexible set A; N A, N -+ N A, is corresponded to flexible set B, or flexible set
B corresponds to flexible setA; N A, N -+ N A,, writeA; N A, NN A, — B.

Definition 9.6 Let A, A,, ..., A, be separately flexible subsets of measurement
spaces Uy, U,, ..., U,, and B be flexible subsets of V. If to each x; € supp(A;) or
Xy € supp(Ay) or ... or x,, € supp(A,) there corresponds to at least one y € supp(B),
then we say that compound flexible set A, U A, N -+ N A, is corresponded to
flexible set B, or flexible set B corresponds to flexible set Ay N A, N -+ N A,
write Al n A2 n - N An — B.

This definition is to say that correspondence A} N A, N - N A, Bis a
union of A — B, A, — B, ... and A,, — B, thatis, A; N A, N - N A, — Bis
equivalent to Ay — Bor A, —> Bor ... or A, /> B.
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Definition 9.7 Let A, A,, ..., A, be separately flexible subsets of measurement
spaces Uy, Us, ..., U,, and B be flexible subsets of V. If to each (x1, x», ..., x,,) € supp
(A} X Ay X -+ X A)) there corresponds to at least one y € supp(B), then we say that
compound flexible set A; X A, X --- X A, is corresponded to flexible set B, or
flexible set B corresponds to flexible set A; X A, X - XA, write
Ay X Ay X . X A, > B,

From the definitions above, it can be see that

e Correspondence A; N A, N -~ N A, ¥ B is formed by a function or corre-
lation from A; N A, N --- N A, to B and in turn which covers the function or
correlation, and also covers simultaneously all functions and correlations from
A N Ay N -+ N A, to B, of them the largest is (local) universal relation supp
Ay N Ay N - N A, X supp(B);

e Correspondence A; N A, N -~ N A, — B is formed by n functions or cor-
relations from A; to B, from A, to B, ..., from A, to B and in turn which covers
these functions or correlations, and also covers simultaneously all function and
correlations from A, to B, from A, to B, ..., from A, to B, of them the largest is
(local) universal relation

supp(A;) x supp(B) Usupp(Az) X supp(B) U - - - Usupp(4,) X supp(B)
= supp(A; UA U --- UA,) X supp(B);

e Correspondence A; X A, X -+ X A, > B is formed by a function or correlation
from Ay X A, X --- X A, to B and in turn which covers the function or corre-
lation, and also covers simultaneously all functions and correlations from
A; X Ay X - X A, to B, of them the largest is (local) universal relation supp
(Ap X Ay X oo X A,) X supp(B).

By the definitions of intersections and Cartesian products of flexible sets and
rigid sets, we have

supp(A; NA2 N --- NA,) = supp(A;) Nsupp(Az) N --- NsuppA,)

= supp(A1) Xsupp(A2) X - - XSuppA,)
supp(A; XAz X - -+ XA,) = supp(A;) Xsupp(A;) X - - - XsuppA,)

Thus, the largest of numerical relations covered by correspondenceA; N Ay N --N

A,, — B and that covered by correspondence A; X A, X --- X A, > B are the same,
that is, those are all universal relation supp(A;) X --- X supp(4,) X supp(B).

9.1.4 Flexible Relations and Flexible-Set Correspondences

First, it is not hard to see that from a binary flexible relation, we can obtain a
flexible-set correspondence (or a rigid-set correspondence). For example, it is such
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Fig. 9.3 Tllustration A (supp(A))
of a flexible-set —A

(set) correspondence obtained y T T

from a binary flexible ! .'r _____
I O S B (supp(B))

an example that shown in Fig. 9.3, here we obtain flexible-set correspondence
A — B [and rigid-set correspondence supp(A) ' supp(B)] from binary flexible
relation R.

Then, conversely, from two sections above we see that since the functions and
correlations between numbers are all rigid relations, so binary relations covered by
flexible-set correspondences are all binary rigid relation. That is to say, a
flexible-set correspondence can and merely can be represented as a binary rigid
relation, but a binary flexible relation (thus, there exist no “flexible mappings,”
“flexible functions,” or “flexible correlations” between two flexible sets in the sense
of (complete) correspondence —>). For example, see Fig. 9.3 reversely, the binary
relation covered by obtained flexible-set correspondence A —> B are then various
binary rigid relations that include that oval region in the figure, but not original
binary flexible relation R. This is to say, even if such a flexible-set correspondence
A — B obtained by binary flexible relation R cannot be represented as original
binary flexible relation R either.

From the analyses above, we find that a flexible subset of a Cartesian product has
dual role and dual interpretation.

In fact, let U and V be two measurement spaces. Then, a subset R of product
space U X V stands for a certain binary flexible relation, such as approximately
equal, far greater than, approximate, similar, and so forth. However, on the other
hand, since a ordered pair (x, y) in flexible subset R itself represents the corre-
spondence between two elements, so viewed from correspondence, the flexible
subset R also stands for a correspondence relation (may be function or correlation)
between elements, and no matter the R standing for what practical flexible relation,
viewing abstractly, which stands always for the correspondence relation between
elements. That is to say, one and the same flexible subset R of product set
U X V stands really for two kinds of binary relations—a practical binary relation in
semantics and a correspondence relation between elements at the same time. Since
the correspondence between numbers is always rigid, thus, one and the same
flexible subset R of product space U X V can stand for a certain practical binary
flexible relation as well as “correspondence relation” the binary rigid relation.

Actually, a rigid subset of a Cartesian product also has dual role and dual
interpretation, only practical relation, and correspondence relation stood for by
which are all rigid relation.
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9.2 Correspondence Between Flexible Linguistic Values

In the last section, we examined the correspondence between flexible sets. From the
relationship between flexible linguistic values and flexible sets, there also occurs
correspondence relation between flexible linguistic values.

Definition 9.8 Let A and B be two flexible linguistic values, which also label the
corresponding flexible sets at the same time. Flexible linguistic value B corresponds
to flexible linguistic value A if and only if corresponding flexible set B corresponds
to flexible set A.

Thus, from the conclusions about flexible-set correspondence in Sect. 9.1, we

can have immediately the following conclusion about flexible-linguistic-valued
correspondence:

Flexible-linguistic-valued correspondence A > B is the summarization of a
certain function or correlation from flexible set A to flexible set B, which also
summarizes simultaneously all functions and correlations from A to B, of them
the largest is universal relation supp(A) X supp(B).

Correspondence with composite flexible linguistic value,
Ay ANAs A -« AN A, — B, is the summarization of a certain function or corre-
lation from compound flexible set A; U A, N -+ N A, to flexible set B, which
also summarizes simultaneously all functions and correlations from
A N Ay N -+ N A, to B, of them the largest is (local) universal relation supp
Ay N Ay N - N A, X supp(B).

Correspondence with composite flexible linguistic value,
Ay VA,V - VA, — B, is the summarization of a certain function or corre-
lation from compound flexible set A; U A, U -+ U A, to flexible set B, which
also summarizes simultaneously all functions and correlations from
A U Ay U -+ U A, to B, of them the largest is (local) universal relation supp
Ay U Ay U -+ U A,) X supp(B).

Of course, correspondence A; V A, V .- V A, +— B can also be viewed as a
union of A; — B, A,— B, ..., A, — B, that is, Ay VA, V-« VA, — B is
equivalent to A; > Bor A, +—> Bor ... or A, — B.

Correspondence with composite flexible linguistic value,
A DA, D - ® A, — B, is the summarization of a certain function or cor-
relation from compound flexible set A; X A, X --- X A,, to flexible set B, which
also summarizes simultaneously all functions and correlations from
A; X Ay X -« X A, to B, of them the largest is (local) universal relation supp
(Ap X Ay X --- X A,) X supp(B).

A flexible-linguistic-valued correspondence can be represented as that function
or correlation between corresponding measurement subspaces summarized by
which, that is also its background function or background correlation.

In practical problems, the function or correlation summarized by a

flexible-linguistic-valued correspondence is the mathematical background of the
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flexible-linguistic-valued correspondence. We call it the background function and
background correlation of the flexible-linguistic-valued correspondence.

In the following, we also consider incidentally the relationship between
flexible-linguistic-valued vectors and flexible-linguistic-valued correspondences.

As numerical vector (x, y) can also be regarded as denoting the correspondence
x —y from x to y, flexible-linguistic-valued vector (A, B) can also be regarded as
denoting the correspondence A —> B from A to B. In fact, since (A, B) is an ordered pair,
s0 (A, B) is tantamount to correspondence A > B between flexible linguistic values in the
corresponding measurement space U X V. From last section, we have known that cor-
respondence A —> B is the summarization of a certain function or correlation from
corresponding flexible set A to flexible set B, of them the biggest is (local) universal
relation supp(A) X supp(B). Thus, in space U X V, flexible-linguistic-valued vector (A,
B) represents a region whose upper bound is supp(A) X supp(B).

Similarly, the flexible linguistic values in n-dimensional flexible-linguistic-valued
vector (Ay, Ay, ..., A,) are ordered. Therefore, in n-dimensional measurement space
U XUy X - XU, (A,A,,...,A,)istantamount to A; —> (A,, ..., A,), (A3, ..., A,)
is tantamountto A, —> (As, ..., A,), ..., therest may be inferred, and consequently (A,
A, ..., A,) is tantamount to A; V> (Ax > (...(A,—2 > (A,—1 > A,) ...). Also, by
the logical equivalence A +— (B +—> C) <= A A B +— C. Therefore, expression
A= Ay — (...(A4,—» — (A,—; — A, ...) is tantamount to flexible-linguistic-
valued correspondence Ay A Ay A -+ A A, — A,. Actually, from (A, A,, ...,
A) = (A, Ay, ..., A1), A,), we can also obtain immediately correspondence
A ANAy A - A A, ¥ A,. Thus, flexible-linguistic-valued vector (A}, A, ..., A,)is
tantamount to flexible-linguistic-valued correspondence A; A A, A ... A A,
_1 > A,,, while from last section we have known that which is the summarization of a
certain function or correlation from corresponding flexible setA; N A, N - N A,
— to flexible set A,,, of them the biggest is (local) universal relation supp(A;) X supp
(Ay) X --- X supp(A,). Thus, in space U; X U, X --- X U, flexible-linguistic-valued
vector (Aj, Ay, ..., A,) represents a region whose super bound is supp(4;) X supp
(A2) X -+ X supp(A,).

From Sect. 7.4, we have known that a flexible-linguistic-valued vector (A1, A,, ...,
A,), in measurement space U; X U, X --- X U, represents a flexible square region
corresponded to conjunctive flexible linguistic value A; A A, A --- A A,,, now which
also represents a region whose super bound is supp(A;) X supp(A,) X -+ X supp(4,),
namely the product of the support sets of all component linguistic values.

9.3 Flexible Linguistic Functions

9.3.1 Definitions and Types of Flexible Linguistic Functions

Definition 9.9

(1) We call the variable taking on linguistic values to be a linguistic variable and
denote it by capital letters X, Y, Z, ..., etc.


http://dx.doi.org/10.1007/978-981-10-1549-6_7

216 9 Correspondence Between Flexible Sets ...

(2) We call the function in which the independent variable(s) or dependent
variable take on flexible linguistic value(s) to be a flexible linguistic function.

From the definition, flexible linguistic functions can be classified as:

@D The flexible-linguistic-valued function of flexible linguistic variable(s), short
for Language-Language-type function, written L-L function;

@ The flexible-linguistic-valued function of numerical variable(s), short for
Number-Language-type function, written N-L function;

Q@ The numerical-valued function of flexible linguistic variable(s), short for
Language-Number-type function, written L-N function.

Besides, there may be the flexible-linguistic-valued function of hybrid variable(s).

In the above, we introduce flexible linguistic functions on the basis of existing
function concept. In order to facilitate the further study, in the following we define
again the flexible linguistic function from the perspective of relation.

Definition 9.10 Let U and V be two measurement spaces, .%;; be a set of flexible
linguistic values on U, and %y be a set of flexible linguistic values on V, and let
fC %Ly X Py be arelation from £ to L. If for each flexible linguistic value
X in &y, there always exists one and only one Y in %y such that (X, Y) € f, then
we say fis a flexible linguistic function from ¥ to &£y, write Y = f(X).

Example 9.3 Let U = [a, b] and V = [c, d] be two measurement spaces, and let
Ly = {Ay, As, Az, Ay, As, Ag | Ay, A, Az, Ay, As, Ag are flexible linguistic values on
U}, and &%y = {By, B,, B; B4 | By, By, B3 B, are flexible linguistic values on V}.
Then, f'= {(A1, B), (A2, By), (A3, Ba), (A4, By), (As, B3), (As, By} is a flexible
linguistic function from ¥ to Zy.

The Definition 9.10 is only a basic definition of flexible linguistic function.
Taking into account the type and number of independent variables and the type of
values of functions, we give more specific definitions of flexible linguistic functions
below.

Definition 9.11 Let U; be a one-dimensional measurement space, and .&; = {X;| X;
is an atomic flexible linguistic value on U;} (i=1, 2, ..., n), let V be a
one-dimensional measurement space, and ¥y = {Y | Y is an atomic flexible lin-
guistic value on V}, and let f C (& X ¥, X --- X L) X &, be a relation from
g] X 32 X ..o X gnto LPV.Ifforeacth (Xl,Xz, ...,Xn) S g] X 32 X .o X
&, there always exists one and only one Y € %y such that (X, Y) € f, then we say
fis an L-L function from ¥ X ¥, X .- X &, to &Ly, write ¥ = f(X).

Definition 9.12 Let U; be a one-dimensional measurement space (i = 1,2, ..., n),
V be a one-dimensional measurement space, £y = {Y | Y is an atomic flexible
linguistic value on V}, and let f C (U; X U, X --- X U,)) X &y be a relation from
U XUy X - XU, to &Py Iffor each x = (x1, x5, ..., x,) € Uy X Uy X --- X U,,,
there always exists one and only one Y € Ly such that (x, Y) € f, then we say fis an
N-L function from U; X U, X --- X U, to &y, write Y = fix).
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Definition 9.13 Let U; be a one-dimensional measurement space, L; = {X; | X; is an
atomic flexible linguistic value on U;} (i = 1, 2, ..., n), let V be a one-dimensional
measurement space, and let f C (¥ X ¥, X -+ X Z,) X V be a relation from
LI XLy X o X &L, to V. If for each X = (X, X5,..., X,) € L X Fp X -
X &, there always exists one and only one y € V such that (X, y) € f, then we say
fis an L-N function from % X %, X .- X &, to V, write y = f(X).

In the above definitions, the spaces U; (i=1, 2, ..., n) and V are both
one-dimensional, and the values that linguistic variables X and Y take are both
one-dimensional atomic flexible linguistic values, and the values that numerical
variables xy, x,, ..., x,, and y take are all scalars. Therefore, these flexible linguistic
functions are a kind of most simple flexible linguistic function. This kind of flexible
linguistic functions is directly based on the measurement space and is the most
common flexible linguistic function, so we call which as typical flexible linguistic
function.

Generalizing the typical flexible linguistic function, we give the more general
flexible linguistic function.

Definition 9.11' Let U; be a k; (k; > 1)-dimensional measurement space, £; = {X||
X; is an atomic flexible linguistic value on U;} (i=1, 2, ..., n), let V be an m
(m = 1)-dimensional measurement space, ¥y = {¥|Y is an atomic flexible linguistic
value on V}, and let f C (¥ X &, X - X &) X Ly be a relation from £ X
s X o X Zoto Ly. Ifforeach X = (X1, Xy, ..., X)) € L X ¥y X . X &, there
always exists one and only one Y € .Zy such that (X, Y) € f, then we say fis an L-L.
function from &; X ¥, X --- X &, to Ly, write Y = fiX).

Definition 9.12" Let U; be a k; (k; 2 1)-dimensional measurement space, (i = 1, 2,
..., n), let V be an m (m = 1)-dimensional measurement space, ¥y = {Y]Y is an
atomic flexible linguistic value on V}, and let f C (U; X U, X --- X U,)) X Ly bea
relation from U; X U, X -+ XU, to ZLy. If for each x= (x|, x5, ...,
x,) € Uy X Uy X --- X U, there always exits one and only one Y € ¥y such that
(x, Y) € f, then we say f is an N-L function from U, X U, X --- X U, to Ly, write
Y = f(x).

Definition 9.13' Let U; be a k; (k; > 1)-dimensional measurement space, £; = {X||
X; is an atomic flexible linguistic value on U;} (i=1, 2, ..., n), let V be an m
(m = 1)-dimensional measurement space, and let fC (¥ X %, X

X &) X V be arelation from ¥ X ¥, X ... X &, to V, If for each X = (X, X5,
X)) € L X Py X o X P, there always exits one and only one y = (yy, ya,
vevs Ym) €V such that (X, y) €f, then we say f is an L-N function
from ¥ X ¥H» X .- X &L, to V, write y = f(X).

It can be seen that Definition 9.11" is the generalization of Definition 9.11, but
actually it is already a function from a set of linguistic-valued vectors to a set of
linguistic values; Definition 9.12' is the generalization of Definition 9.12, but when
there is at least one space U;, whose dimension k; > 1, the function actually is
already a function from a set of vectors formed by the numerical vectors to a set of
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linguistic values; Definition 9.13' is the generalization of Definition 9.13, but it
actually is already a function from a set of linguistic-valued vectors to a set of
numerical vectors.

Besides, flexible linguistic functions, like numerical functions, can also be
separated as one-to-one and non-one-to-one as well as simple and compound.

9.3.2 Representations of Flexible Linguistic Functions

Like usual numerical functions, there are also two representation methods of
enumeration and formulation for flexible linguistic functions.

The enumeration representation of flexible linguistic functions is using a set of
the pairs of the values of independent variable and function to represent a flexible
linguistic function. For example, the flexible linguistic function in Example 9.3
above is just using enumeration method to represent.

The formulation representation of flexible linguistic functions is using an
operational expression of flexible linguistic variable(s) to represent a flexible lin-
guistic function. For example,

Y= (Xl/\X2>@(X3\/X4) (91)

is just a flexible linguistic function represented by formulation method, where Xj,
X5, X3, X4, and Y are all linguistic variable.

The equation above is an L-L function. Generally, the formulation representation
of an L-L function is

Y = E(X) 9.2)

and the formulation representations of an N-L function and an L-N function are
given separately

Y = (f(x)) (93)
and
y = [E(X)] (9.4)

Here parentheses () and brackets [] denotes separately N-L conversion and L-N
conversion. For example, there are an N-L function and an L-N function repre-
sented by formulation method in the following:

Z=03+4+1) (9.5)
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y = [XAY] (9.6)

Note that since the operations of flexible linguistic values only have —, A, V,
and @ ,s0 X, X A Y, XV Y, and X © Y the four operational expressions are most
basic and most simple flexible linguistic functions, and other flexible linguistic
functions represented by formulations are all their certain combination or com-
pound. For example, the above L-L function shown as Eq. (9.1) is actually being
compounded by Y7 = X; A X5, Y, = X3 V Xy, and Y = Y7 @ Y,. As for what are the
outcomes of these most basic operations needs to determine according to the actual
problems. That is to say, the flexible linguistic functions represented by formula-
tions, besides the functional expressions, also need to have a group of operational
definitions such as A; = B, A C3, A, = B; V C3 and D; = A, © E3, and so on.

Like numerical functions, although the representation of flexible linguistic
functions can be separated as enumeration method and formulation method,
speaking from theory, any flexible linguistic function can be represented by using
enumeration method.

9.3.3 Quantitative Description and Numerical Model
of a Flexible Linguistic Function

In the above flexible linguistic functions represented by using enumeration and
formulation are only a kind of descriptive definitions, which can only be treated as a
kind of qualitative models, of which the “geometric graphs” can only be “sets of
points” in the spaces of flexible linguistic values (speaking generally, it is difficult to
draw these point sets). Obviously, for many practical problems the qualitative
models are not able to meet the requirements. Then, can the flexible linguistic
functions be quantitatively described? And then, can the flexible linguistic functions
be translated into a kind of pure numerical object?

Considering that the flexible linguistic value with degree is the quantitative
representation of flexible linguistic values, we can use flexible linguistic value with
degree to quantitatively describe a flexible linguistic function. That is, (¥, d,) = f
(X, d,). It can be seen that the key of the quantitative description is to know the
correspondence relation (function or correlation) between the degrees d, and d,.
The correspondence relation between the degrees is also the quantitative model. But
it is not easy to obtain a precise quantitative model, Chap. 14 will discuss the
approaches to obtain approximate quantitative model.

In the following, we consider the numerical model of flexible linguistic
functions.

It can be seen that ordered pair (A, B) of flexible linguistic values is tantamount to
flexible-linguistic-valued correspondence A —> B. Thus, viewed from enumeration
representation, a flexible linguistic function is a set of flexible-linguistic-valued
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correspondences. And from the relation between flexible-linguistic-valued corre-
spondence and flexible-set correspondence, we know that a flexible-linguistic-
valued correspondence can be represented as that function or correlation summa-
rized by which, that is, its background function or background correlation. The
background function or background correlation is the numerical model of a
flexible-linguistic-valued correspondence. Then, does putting together the back-
ground functions or background correlations of all flexible-linguistic-valued corre-
spondences (i.e., ordered pairs of flexible linguistic values) of a flexible linguistic
function not just form a numerical model, i.e., the background function or back-
ground correlation, of the flexible linguistic function?

However, the problem is that in practical problem, the background function or
background correlation of a flexible-linguistic-valued correspondence is often
unknown. That is to say, it is also very difficult to obtain the numerical model of a
flexible linguistic function.

From Sect. 9.2, we have known that a flexible-linguistic-valued correspondence
A — B summarizes simultaneously all functions and correlations from A to B, of
them the largest is (local) universal relation supp(A) X supp(B). That is to say,
universal relation supp(A) X supp(B) not only is a correlation summarized by
flexible-linguistic-valued correspondence A > B, but also the least upper bound,
namely supremum, of all functions and correlations from A to B. Thus, we can take
universal relation supp(A) X supp(B) as a representative of numerical model of
flexible-linguistic-valued correspondence A — B.

From the Proposition 7.1 in Sect. 7.3.1, we have known that in concept, a flexible
linguistic value (flexible set) is decided by its core and support set, but in practical,
which is fully stood for by its extended core. Then, conceptual flexible-linguistic-
valued correspondence A —> B, i.e., set correspondence supp(A) > supp(B), is
practically set correspondence core(A)" +> core(B)". Thus, we further use smaller
universal relation core(A)" X core(B)" instead of supp(A) X supp(B) to represent the
numerical model of flexible-linguistic-valued correspondence A —> B.

Generally, we call a local wuniversal relation summarized by a
flexible-linguistic-valued correspondence to be the numerical model representa-
tive of the flexible-linguistic-valued correspondence.

Thus, a set of all local universal relations summarized by a flexible linguistic
function is just a representative of numerical model of the flexible linguistic
function, that is, the numerical model representative of the flexible linguistic
function.

Further, we call the numerical model representative formed by support sets to be
the conceptual representative, the numerical model representative formed by
extended cores to be the practical representative. In usual, the numerical repre-
sentatives we say refer to practical representative.

A local universal relation is also a region of corresponding product space.
Regarding that this region is a “square,” we call might as well which a “block
point” in corresponding measurement space. Thus, the geometric graph of the
numerical model representative of a flexible linguistic function is a block-point
curve in corresponding product measurement space. For example, the graph of the
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numerical model representative of the flexible linguistic function in Example 9.3 is
shown in Fig. 9.4.

More generally, the numerical model representative of a multivariate flexible
linguistic function is a set of local universal relations such as core
Ay N Ay N - N A)Y X core(B)*, its graph is a block-point surface or
block-point hypersurface in corresponding measurement space (see the example in
Fig. 9.5).

Now, we can translate a flexible linguistic function qualitatively described by a
group of flexible-linguistic-valued correspondences (i.e., ordered pairs of flexible
linguistic values) into its numerical model representative, that is, a group of local
universal relations. Though, the latter is only a special case of the functions and
correlations summarized by former, speaking generally, and which is not the
background function or background correlation of the former, since each local
universal relation covers the background function or background correlation of
corresponding ordered pair of flexible linguistic values, so the flexible linguistic
function represented by local universal relations covers the background function or
background correlation of original flexible linguistic function (as shown in
Fig. 9.6). It can be seen that this kind of big-granule function of block points is just
convenient for characterization of macro-characteristics of corresponding systems
(this coincided just with the original intention of linguistic-valued function).
Therefore, using it in place of original flexible linguistic function is more suitable
for and more convenient for macro-analysis of corresponding systems. In fact, for
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the systems on two- and three-dimensional measurement spaces, according to this
kind of numerical models we can conduct visual examination and analysis. Further,
through this kind of block-point function, we also can estimate the background
function or background correlation of original flexible linguistic function. In fact,
since it covers the background function or background correlation of original
flexible linguistic function section by section, so it provides a basis and framework
for analysis and research of the background function or background correlation of
original flexible linguistic function.

In the above examples are all the examples of numerical model representatives
of L-L functions, in the following we give again an example of numerical model
representatives of N-L functions (see Fig. 9.7). But note that L-N functions do not
require numerical-model representatives because they themselves are also their
background functions (an example as shown in Fig. 9.8).

9.3.4 Characteristics, Properties, and Evaluations
of Flexible Linguistic Functions

The flexible linguistic functions shown in Figs. 9.4 and 9.5 are all ideal cases—a
basic flexible linguistic value on domain just corresponds to a basic flexible
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linguistic value on range and the block-point curves are also unbroken; however,
the flexible linguistic functions in practical problems are not necessarily so, that is, a
basic flexible linguistic value on domain does not necessarily correspond to the
basic flexible linguistic value on range but may correspond to the non-basic flexible
linguistic value (as shown in Fig. 9.9), and there also may occur discrete block
points (as shown in Fig. 9.10). Certainly, that a flexible linguistic function should
consist of what kind of block points is completely determined by its characteristics.
Besides, since one and the same range of numerical values can have multiple
different partitions thus can result multiple different sets of linguistic values,
therefore one and the same numerical function can also be summarized by multiple
linguistic functions. Obviously, among the multiple linguistic functions summa-
rizing one and the same numerical function, the block-point curve or surface whose
block points are smaller would be more close to the curve or surface of the
numerical function. Especially, if the numerical function is a usual single-valued
function, then when (the size of) block-point approach usual points, the numerical
function is just the limit of such a sequence of linguistic functions. Thus, in theory,
a numerical function (include multivalued function and vectored function) can be
approached by a sequence of linguistic functions. Or in other words, we can use a
sequence of linguistic functions in which the sizes of linguistic values become
gradually smaller and smaller to approach to a numerical function (here the size,

Fig. 9.9 Example 3 of
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that is, the granule size, of a linguistic value refers to the size of the set or flexible
set (see Chap. 20) labeled by the linguistic value).

Like the usual numerical functions, the flexible linguistic functions would also
have some relevant properties, such as monotony, continuity, periodicity, etc. It is
not hard to see that the monotony of flexible linguistic functions is similar to that of
usual numerical functions, which can be defined by orders of independent variable
and function value, that is, when the value of independent variable increases, the
value of function also increases and the function is monotonously increased; when
the value of independent variable increases, the value of function decreases and the
function is monotonously decreased. The continuity of flexible linguistic functions,
for the flexible linguistic function that defined on a set of basic flexible linguistic
values on a measurement space, the continuity can be defined by the succession of
independent variable and function value, that is, when independent variable takes
next flexible linguistic value of present flexible linguistic value, the function also
takes next flexible linguistic value of present flexible linguistic value; for the
flexible linguistic function that defined on set of all flexible linguistic values on a
measurement space, the continuity can be defined by the continuity of peak value
points of independent variable(s) and function value. We can compute even the rate
of change of a flexible linguistic function from the peak value points of related
linguistic values. On the properties of flexible linguistic functions, we need to do
further study. Of course, because the granule size of linguistic values is larger and
their operations are very finite (having only A, V, and @), therefore, generally
speaking, the properties of flexible linguistic functions are relatively little.

The evaluation of the flexible linguistic functions, in principle, is similar to the
evaluation computation of the usual numerical functions. Specifically, for the
flexible linguistic functions represented by enumeration, the function value can be
obtained through looking up the table of valued pairs of a function according to
values of independent variables; for the flexible linguistic functions represented by
formulation, need first according to values of independent variables through
matching the expressions of the most basic operations defined to obtain the cor-
responding operation values, then according to expression of the function to match
successively and level by level the definitional expressions of corresponding
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operations to obtain the corresponding operation values, until the final function
value is obtained. Consequently, once evaluation process of a flexible linguistic
function forms a tree of linguistic values, and many times evaluation process form a
net of linguistic values. For example, suppose there is a flexible linguistic function
Y=(X; A Xy) © (X3 V Xy), and the corresponding definitional expressions of basic
operations are Aj AB;=E;, C;VD,=F, E © F,=G,.... Then, when
X, =A,, X, =By, X5 =C; and X, = D,, from the definitional expressions of first
and second operations we can have E;| and F», also from E}, F, and the definitional
expression of third operation we have the value G, of the function. It is not hard to
see that the evaluation of a flexible linguistic function represented by formulation
actually does not involve real computations but only is many times looking up the
table of definitions of operations. That is to say, the evaluation of a flexible lin-
guistic function is actually all looking up tables, but the flexible linguistic function
represented by enumeration requires a time looking up table while a flexible lin-
guistic functions represented by formulation requires many times looking up table.

9.4 Flexible Linguistic Correlations

Similar to correlations between numbers, there are correlations between flexible
linguistic values.

Definition 9.14 Let U and V be two measurement spaces, ¥ and %y be sepa-
rately the sets of flexible linguistic values on U and V, and C be a relation from %,
to Zy. If for each flexible linguistic value X € %y, there always exists at least one
Y € Zysuch that (X, Y) € C, then we say C is a flexible linguistic correlation from
Ly to Ly, write Y = C(X).

Example 9.4 Let U = [a, b] and V = [c, d] be two measurement spaces, and let
gu = {Ale Az, A3, A4, A5, A6|A1, Az, A3, A4, A5, A6 are flexible linguistic values on
U}, and &Ly = {B,, B,, B; B4B1, By, B3 B, are flexible linguistic values on V}.
Then, C = {(Ay, B)), (A2, B2), (A2, Ba), (A3, By) (A3, By), (A4, B1), (As, B3), (As, B2)}
is a flexible linguistic correlation from % to Zy.

Obviously, flexible linguistic correlations only can be represented by enumer-
ation method, that is, by a set of pairs of flexible linguistic values. Of course, a
flexible linguistic correlation represented by a set of pairs of flexible linguistic
values can only treated as a kind of qualitative model of corresponding system.

It can be seen that a flexible linguistic correlation is also formed by correlation
between numerical values and in turn which summarizes corresponding numerical
correlation. Similarly, in theory, a flexible linguistic correlation can be represented
as a numerical correlation summarized by which between corresponding mea-
surement space, that is, its background correlation, but in practical problems the
background correlation of a flexible linguistic correlation is not known in general.
This case is similar to the problem meted by flexible linguistic function. Therefore,
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Fig. 9.11 An example of y |
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we can take corresponding set of local universal relations as a numerical model
representative to represent the flexible linguistic correlation. For example, the graph
of the numerical model representative of the flexible linguistic correlation in
Example 9.4 is shown in Fig. 9.11.

Similarly, although, speaking generally, this kind of numerical model repre-
sentative is not the correlation summarized by original flexible linguistic correla-
tion, that is, background correlation, it covers original flexible linguistic correlation,
thus through it we can estimate the background correlation of original flexible
linguistic correlation. Similarly, this kind of big-granule correlation of block points
just easily characterizes macro-characteristics of corresponding systems. Therefore,
using it in place of original flexible linguistic correlation is more suitable for and
more convenient for macro-analysis of corresponding systems. In fact, for the
systems on two- and three-dimensional measurement spaces, based on this kind of
numerical model representative, we can conduct visual examination and analysis.

From Definition 9.14 and Fig. 9.11, we can see that a flexible linguistic corre-
lation can also be viewed as a multivalued flexible linguistic function, while flexible
linguistic functions are then a kind of special flexible linguistic correlations.
Besides, we can also see that a flexible linguistic correlation is generally formed by
pairs of basic flexible linguistic values. Then, if we unite properly the multiple basic
flexible linguistic values that correspond to the value of one and the same inde-
pendent variable, then some flexible linguistic correlations would become flexible
linguistic functions.

9.5 Summary

In this chapter, we analyzed firstly the mathematical backgrounds and relational
representations of a set correspondence and a flexible-set correspondence, thus
revealing the mathematical essence, mathematical background, and relational rep-
resentation of a flexible-linguistic-valued correspondence; then, we proposed and
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discussed flexible linguistic functions and flexible linguistic correlations, presented

their types and representation, analyzed their characteristics, properties, and eval-

uations, and in particular, discovered and proposed a quantitative description and

numerical model of flexible linguistic functions and flexible linguistic correlations.
The main points and results of the chapter are:

e Flexible-set correspondence A —> B is formed by a certain function or corre-
lation from flexible set A to flexible set B and in turn covers the function or
correlation, and which also covers simultaneously all functions and correlations
from A to B, of them the largest is universal relation supp(A) X supp(B).

¢ A flexible-set correspondence can be specifically represented as that function or
correlation covered by which.

e For one and the same pair of flexible sets A and B, the orthogonal intersection
A N B, the Cartesian product A X B and the correspondence A — B are not the
same each other.

e Flexible-linguistic-valued correspondence A —> B is a summarization of a cer-
tain function or correlation from flexible set A to flexible set B, which also
summarizes simultaneously all functions and correlations from A to B, of them
the largest is universal relation supp(A) X supp(B).

e In theory, a flexible-linguistic-valued correspondence can be represented as that
function or correlation summarized by which, that is also its background
function or background correlation.

e A local universal relation summarized by a flexible-linguistic-valued corre-
spondence can be treated as the numerical model representative of the
flexible-linguistic-valued correspondence, and its geometrical graph is a block
point in corresponding measurement space.

e A flexible linguistic function is generally a summarization of a certain (global)
numerical function or correlation without explicit expression, which can be
classified as the types of L-L, N-L, and L-N ones.

e The basic representation method of flexible linguistic functions is the enumer-
ation method, but some of them can also be represented by formulation method.

¢ Flexible linguistic functions have some characteristics like numerical functions,
but because the granule sizes of the independent variable and function value of
which are larger, so their properties are less.

e A flexible linguistic function can be quantitatively described by flexible lin-
guistic values with degrees, but one needs to know the corresponding quanti-
tative model, that is, the correspondence relation between degrees.

e A set of local universal relations summarized by a flexible linguistic function
can be treated as the numerical model representative of the flexible linguistic
function, and its graph is a block-point curve, surface, or hypersurface.

¢ A flexible linguistic correlation can only be represented by enumeration method,
and we can also take a set of corresponding local universal relations as it is
numerical model representative.

e The flexible linguistic function or correlation summarizing a numerical function
or correlation is not unique; in general, the flexible linguistic function or
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correlation whose linguistic value’s sizes are smaller, then which more
approaches to the corresponding numerical function or correlation.
Flexible-set correspondence A —> B can and only can be represented as a binary
rigid relation, but cannot be represented as a binary flexible relation.

There exist no “flexible mappings,” “flexible functions,” or “flexible correla-
tions” between two sets or flexible sets in the sense of (complete)
correspondence .

One and the same flexible subset of product measurement space stands for a
certain practical binary flexible relation as well as “correspondence relation” the
binary rigid relation.



Chapter 10
Flexible Numbers and Flexible Functions

Abstract This chapter proposes the concepts of flexible numbers,
flexible-numbered vectors, and flexible vectors based on flexible linguistic values
and flexible sets; gives their definitions and representations; and analyzes their
geometric characteristics. Further, this chapter defines the arithmetic operations,
scalar multiplication, and exponentiation of flexible numbers; defines the addition
and scalar multiplication of flexible vectors; and points out the properties of these
operations. Then, on the bases of flexible numbers and flexible linguistic functions,
this chapter proposes the concept of flexible functions, gives their definitions and
types, analyzes their analytic expressions, and further discusses the flexible-vector
functions.

Keywords Flexible numbers - Flexible functions

In this chapter, we will discuss a kind of special flexible linguistic value—flexible
numbers—and a kind of special flexible linguistic function—flexible functions.

10.1 Definition and Notation of Flexible Numbers

Examining the numbers described by flexible linguistic values “about 5,” “near
100,” and so on in usual, it can be seen that this type of numbers represents really a
flexible interval in real number field R, which can be called the flexible numbers.

Definition 10.1 A flexible interval with real number r € R as the center point
standing for “about 7 is called a flexible real number on real number field R, or a
flexible number for short, denoted ().

From the definition, a flexible number can be represented as a 5-tuple:

(s, ,c, . re s (10.1)
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5., and 5,7 are
separately the negative and positive core—boundary points and negative and positive
critical points of (7).

Obviously, the core—boundary points and critical points of (r) are related to the
core radius and support set radius of (7). So flexible number (r) can also be rep-
resented as a 3-tuple:

where r is the center number of flexible number (r); c,, cr

roo

(ryre,s) (10.2)

where r. and r, are separately the core radius and support set radius of flexible
number (7).

Since the core radius and support set radius of “about 7 actually change with the
size of the absolute value |r| of r, all the flexible numbers cannot be designated with
the same pair of core radius and support set radius. For this reason, we introduce
two parameters of core radius ratio ¢, and support set radius ratio s,. “Core radius
ratio” and “support set radius ratio” are separately meant the ratios of core radius r,
and support set radius 7, to the absolute value || of center number r, namely

rC rS

Cr:m, Sr*m

From this, we have
re = c,|r|, rs = 8,7

Thus, with the two radius ratios, we can represent flexible numbers according to
positive and negative separately as follows:

(r(1 =sy),r(L =¢,),r,r(14+¢,),r(1+s,)), r>0 (10.3)
(r(L+s.),r(14+¢.),r,r(1 =), r(1 = 5,)), r<0 (10.4)

where r is the center number of flexible number (r); r(1 — ¢,) and r(1 + ¢,) are
core—boundary points of (7); and (1 — s,) and r(1 + s,) are the critical points of (7).

From the determination of radius ratios c, and s,, the approaches of “personal
preference,” “statistics from a group,” or “derivation with instances” in Sect. 4.1
can be employed. Certainly, once radius ratios c, and s, are determined, then they
are common for all flexible numbers on the universe.

Since radius ratios ¢, and s, are meaningless to flexible 0, (0), we represent
(0) singly as follows:

(_rc7_rsao7 rc'7rs> (105)

where 7. and r, are separately the core radius and support set radius of (0), the
determination of which is the same as that of radius ratios ¢, and s,.
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Example 10.1 Taking core radius ratio ¢, = 0.02 and support set radius ratio s, =
0.04, then the representations of flexible numbers (1) and (5) are as follows:

(1
(5

(0.96,0.98,1,1.02,1.04)
(4.80,4.90,5,5.10,5.20)
( (10.6,10.8,10,10.2,10.4)
(96,98, 100, 102, 104)

(960,980, 1000, 1020, 1.040)
(-

104, —102, —100, —98, —96)

) =
) =
0) =
100) =
(1000)
(—100) =
The meanings of them are “about 1” and “about 5.”

For the given radius ratios c, and s,, the four numbers of 1 —s,, 1 —¢,, 1 + ¢,
and 1 + s, are fixed. So setting s;,=1—5, ¢c;=1—-¢, c2=1+¢, and
s» = 1 + s,, then the expression (10.3) becomes

(rsi,rer, 1,1, 1s2) (10.6)

Thus, the consistency function and membership function of the corresponding
positive flexible number () are as follows:

X — 18]
——, x<r
_ rcy — rs)
cr)(x) =9 "rs, —x (10.7)
—, r<x
rsp — rcp
0, x<rsy
X — IS
—, rs1<x<rcy
rcy — rsq
mgy(x) = 1},’Y2 ., T <x<rc; (10.8)
— Ty <x<rs
rsy) — rcp
0, rso <Xx

The corresponding function graph is shown in Fig. 10.1.

Similarly, the consistency function and membership function of negative flexible
number (r) can also be obtained. It would be more direct as for the consistency
function and membership function of (0).

In addition to “about r,” “near 7’ and “slightly exceeding r”’ can also be treated as
flexible numbers. But the flexible intervals that the two flexible numbers correspond to
are a kind of “semiflexible interval.” Therefore, the two flexible numbers can be called
semiflexible number (in comparison, “about r” is a full-flexible number).

Fig. 10.1 Graphs of the c {
consistency function and

membership function of

flexible number (r) 1
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Definition 10.2 A semiflexible interval with real number r € R as the supremum
(but does not contain r) standing for “near »” is called a weak semiflexible number
on real number field R, denoted as (r]|; a semiflexible interval with real number
r € R as the infinum (but does not contain r) standing for “slightly exceeding ” is
called a strong semiflexible number on real number field R, denoted [r).

From the definition, a weak semiflexible number and a strong semi-number can
be separately represented as

(rs1,rer, 7] (10.9)
[r,rea, rs2) (10.10)

It is easy to see that the consistency functions and membership functions of a
weak semiflexible number and a strong semi-number are, respectively, as follows:

X —rsy

c<,](x) :m, x<r (1011)
0, x<rsy
X —rsy
m(x) = el —rs;’ rsy <x<rci (10.12)
, rcy <x<r
rsp) — X
C[,-)(.X) = m, r<x (1013)
1, r<x<rcy
rs) — X
myy(x) = P— rey <x<rsp (10.14)
, r$H <X

The corresponding function graphs are separately shown in Fig. 10.2a, b.

(a) (b)
C C
!
1 .: i [
1 -t 1 -
! i
1 1
Il 1
0 - 0 : =
rsl FL'] r X r i”Cz rsz X

Fig. 10.2 Graphs of the consistency functions and membership functions of weak semiflexible
number (7] and strong semiflexible number [r)
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10.2 Operations on Flexible Numbers

Since flexible numbers are also a kind of flexible linguistic values, the flexible
numbers can also have logical operations and algebraic operations such as general
flexible linguistic values. However, flexible numbers are also a kind of numbers at
the same time, so flexible numbers should also have numerical operations of
addition, subtraction, multiplication, and division like usual numbers.

1. Arithmetic operations on flexible numbers

Definition 10.3 Let ./ g be a set of flexible numbers on real number field R, (x),
) € /R )+ ), (x) — (), (x) X (y), and (x)/(y) are in order called the opera-
tions of addition, subtraction, multiplication, and division on flexibl